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Abstract

In real-world scenarios, user preferences for items are constantly drifting over time as
item perception and popularity are changing when new fashions or products emerge. The
ability to model the tendency of both user preferences and item attractiveness is thus
vital to the design of recommender systems (RSs). However, conventional methods in
RSs are incapable of modeling such a tendency accordingly, leading to an unsatisfactory
recommendation performance.

This thesis proposes a framework for the temporal dynamics problem in RSs. The tempo-
ral properties and dynamic information in user preferences and item attractiveness derived
from user feedback over items are modeled, learned and applied to predict user preferences
on items over time. The framework provides original solutions to improve the performance
of RSs by incorporating and exploiting this significant but traditionally neglected infor-
mation.

Firstly, a novel probabilistic temporal model for RSs is developed to tackle the inherent
nonlinear and non-Gaussian dynamic problem with the complex and diverse real-world
recommendation scenarios. It tracks simultaneously latent factors that represent user
preferences and item attractiveness. A learning and inference algorithm combining a
sequential Monte Carlo method and the Expectation-Maximization algorithm for this
model is developed to tackle the top-k recommendation problem over time. Secondly, a
novel probabilistic personalized and item-wise temporal model is proposed to solve the cold
start transition (CST) problem by collaborative tendencies without any prior assumptions
about the structure of the dynamics. The CST problem is first defined in this thesis,
which is a result that users often leave feedback on an item only once and on only one
period, preventing from learning any dynamics directly. Finally, a Bayesian Wishart
matrix factorization method is proposed to model the temporal dynamics of variances
due to sudden changes and other local temporal e↵ects among user preferences and item
attractiveness. It combines the collapsed Gibbs sampling method and the elliptical slice
sampling method.

The presented models and learning algorithms are validated experimentally on several
real-world public benchmark datasets. The experimental results demonstrate that those
models and algorithms significantly outperform a variety of state-of-art methods in RSs.
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Chapter 1

Introduction

1.1 Introduction to Recommender systems

As the information technology is pervasive in our daily life, the abundance of information

available to individuals in their online activities, such as digital content distribution and

electronic commerce, leads to the di�culty of individuals to e�ciently locate objects, such

as documents and movies, to meet their requirements. Technologies to precisely target

user interests and e�ciently facilitate their decision-making processes become increasingly

important in this era of information overload. For most of scenarios, users only have some

general idea about their preferences and this level of thoughts cannot be easily transformed

to some specific keywords and requirement. Therefore, an information filtering tool is

needed to help users to overcome the problem of information overload.

Personalized recommender systems (RSs) are such powerful tools that automatically iden-

tify various user preferences and item characteristics and yield personalized item recom-

mendations to match the interests of users. The term “item” is a general notation utilized

to denote any object that the system recommends to its users, for example, products,

people [49, 132] or other objects [7, 168, 113, 31]. This characteristic of personalized RSs

is di↵erent from that of information retrieval systems in which users should explicitly feed

1
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the systems with the inputs that compactly and precisely describe the information that

users are seeking. Meanwhile, the conventional techniques for information retrieval are

developed without taking a special care of personalization, which makes them unable to

deliver precisely the exact services to satisfy an individual’s personal taste. In addition to

personalized RSs, there are also RSs that provide users with non-personalized recommen-

dations. The non-personalized recommendations are much simpler to generate [115, 184].

While this kind of recommendation is useful and usually found in news recommendations

[11, 10, 115], it is not typically addressed by the research of RSs and it is not the focus

of this thesis. Without the specific statement, the term “personalized” will be omitted in

the following discussion for the purpose of clarity.

Resnik and Varin developed the first recommender system in 1997 [190]. Since then, RSs

have constantly been evolving to meet the requirement of higher recommendation accuracy

and user satisfaction. With the help of RSs, the user can quickly reach the point of his

interests without going through irrelevant information. Currently, RSs are an integral

component of web-based applications, such as book recommendations in Amazon [148],

news recommendation in Google [68], and movie recommendations in Netflix [129]. In the

annual Securities and Exchange Commission filing, Netflix has partially contributed its

success of business model to the e↵ective use of its recommender system [194]. A relevant

and e↵ective recommender system increases user satisfaction which in turn increases the

probability to take positive actions (such as rating in explicit feedback; click in implicit

feedback) by the user on the recommended items.

1.1.1 Recommendations and User Feedback

Personalized recommendations are usually o↵ered as a ranked list of items for the user.

Items are ranked by RSs based on the estimation of user preferences under some con-

straints. In order to fulfill such a computational task, the historical and context informa-

tion relating to user preferences and item attractiveness is constantly collected by RSs.

Generally speaking, there are two forms of input data for RSs. They are explicit feedback
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and implicit feedback. The commonly used explicit feedback in RSs is numeric ratings,

such as 1-5 stars provided by customers in Amazon’s online book reviews; the binary

preference, such as the like button clicked by Facebook users; the ordinal ratings, such

as, one of the terms “strongly like, like, neutral, dislike” selected by users to express their

preferences. Implicit feedback is usually collected transparently to front-end users. This

type of feedback is usually recorded by the back-end servers in the form of the server logs,

such as the clicking history of users on items or their viewing history over web pages.

When this type of implicit feedback is exploited, RSs usually assume that users prefer

those items that they have touched with to those items whose logs cannot be found.

1.1.2 Categories

Conventional methods in RSs can be roughly classified into three categories: content-

based or context-based filtering approach, collaborative filtering (CF) approach, and their

hybrid approach.

Collaborative filtering The basic idea behind methods in CF approach is based on

a simple and straightforward observation: individuals usually resort to recommendations

provided by others for generating daily and routine decisions [39, 115]. This observation

is especially true when individuals lack su�cient personal experience or competence to

evaluate the potentially overloaded number of items exposed to them. For example, it

is a common practice for a consumer to peruse the reviews provided by other consumers

or professional review websites before making a purchase decision; individuals often ask

some advice from their friends about places of attractions to visit or restaurants to get

together.

In order to model this observation, the developed methods in CF predict a user’s interests

over all the unseen items by exploiting its historical feedback and the historical feedback

of “like-minded” users. Specifically, if the user in the system agreed in the past with some

other users, the past items preferred by these similar users should also be appreciated by
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the active user. The similarity computed from the historical feedback between the active

user and its similar users can, to some extents, reflect the preferences that are passed from

the other users to the active user. This is the reason why this approach is named after

collaboration.

Content-based approach Content-based or context-based RSs are constructed to rec-

ommend the active user items that are matched with the ones that are preferred by the

user in the past [198, 204, 216, 57, 67]. The similarity of items is usually computed from

the features that are extracted from the content or context information describing these

items. If the properties of user profiles that store user interests and preferences are also

constructed and matched up with the features of the item description, the personalized

recommendation can be achieved. For example, when users that are coming from the

similar geographical regions or classified into the same age or cultural group demonstrate

the preferences over some books or movies in one genre, it is highly possible for those users

to like some other books or movies coming from the same genre.

Note that in the classical way to classify the types of RSs, there are three other separate

approaches in RSs, which are the demographic-based approach [166], community-based

approach [87, 93, 96], and knowledge-based approach [208, 78]. The demographic-based

approach assumes that di↵erent recommendations should be generated for di↵erent de-

mographic groups. The community-based approach assumes that the friends explicitly

identified by the active user could generate more meaningful feedback to learn the prefer-

ences of the active user than relying on the recommendations from similar but anonymous

users. The knowledge-based approach is usually case-based [115]. It recommends items to

the active user on the basis of specific domain knowledge about how the user preferences

and requirements are satisfied by some specific item features. Because all of those three

approaches actually exploit the information sourced from the contents or contexts of either

users or items, they are classified into the content-based approach.
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Hybrid methods The third approach in RSs combines the above two approaches in or-

der to take advantages of both CF and the content-based approach [46, 94, 70]. The content

or context information not only mitigates the cold start problem [13, 203], which will be

discussed in next subsection, in CF approach but also supplies the approach with more

intuitive and broaden constraints to be explored. For example, RSs exploiting information

from social networking, such as Twitter and Facebook, are an active field of recommender

system research and receiving more and more attention in recent years. Methods using

social relations of the active user can also be roughly classified into the hybrid approach

that combines CF and content-based approach. Social networks introduce social relations

of users. When this kind of relations is exploited by RSs, the close friends are assumed

to share similar opinions and preferences and they have some profound influences on the

preferences of the active user. This practice shares the concept of “like-minded” users in

CF. However, rather than learning the similarity from the historical data, social relations

are usually extracted from a graph model that is constructed from the content information

relating to users.

1.1.3 Comparison

Because users are usually exposed to overwhelming information on the web, the gathered

datasets in real-world scenarios are usually extremely sparse. For explicit feedback in the

systems, only an extremely tiny portion of items have been rated by users and most users

only provide the system with a little feedback. Meanwhile, as users do not bother to revise

their feedback, the feedback is commonly non-repetitive. Even though more information

could be collected through users’ viewing and clicking history, this phenomenon is still

largely true for implicit user feedback. This is known as the problem of data sparsity in

RSs [115]. Therefore, for each user or item, instance based techniques in data mining and

machine learning may not obtain su�cient training data to yield personalized recommen-

dations. CF, which e↵ectively shares the historical feedback from other users and items,

has been shown to be e�cient at mitigating the problem of data sparsity.
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The information applications incorporating RSs are also dynamic in nature [128]. There

are always new users starting to embrace the systems and new items emerging. For

those newly emerged items, CF usually does not collect enough feedback from users.

Similarly, those newly appeared users may still be inactive and do not generate enough

feedback over items. For those users and items, RSs adopting CF approach are incapable

of generated accurate recommendations. These problems are known in the community of

RSs as the problems of cold start users [146, 38] and cold start items [202], respectively.

In this case, content-based or context-based approach, which usually does not rely on the

gathering of the interaction information from users and items, is still able to provide users

with some systematic recommendations. Compared with CF that does not rely on side

information, the automatic analysis of content or side information relating to users and

items, such as feature extraction and selection, usually introduces some extra burden into

RSs. Meanwhile, the content information is usually expensive to obtain and there may

be some risks to exploit, which imposes some extra constraints on the applicability of this

approach. For example, even though all the user information had been carefully made

anonymous, the Netflix company had to cancel its second competition in developing a

more accurate recommender system for personalized movie recommendations [2].

In addition to the problem of data sparsity and the problems of cold start users and

cold start items, conventional methods in RSs also encounter other issues, such as limited

coverage and lack of diversity for personalized recommendations. In order to leverage the

collaboration from similar users, the active user must share a set of commonly rated items

with other users. In order to impose constraints on social relations, the active user should

not be an isolated node. Diversity [224, 136] is usually considered as an opposite measure

to similarity. To some extents, this problem is reminiscent of the well-known trade-o↵

between exploration and exploitation [180, 142] in the study of machine learning and data

mining. Therefore, it may not be very interesting for users to have been recommended a

set of items with similar characteristics and attractiveness, because it will take users longer

to explore the range of unseen items. Since the current research in RSs is still focusing on

generating recommendation lists with higher accuracy to meet personalized satisfaction,

those problems will not be explored in detail in the following discussion.
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1.2 Motivation

Matching item characteristics with user preferences is essential to the success of RSs. User

preferences for products are constantly drifting over time as they are gaining more knowl-

edge and experience and becoming more mature in a long-term period or simply changing

their moods under various circumstances in a short-term period. Meanwhile, product per-

ception and popularity are changing when new fashions or products emerge or seasonal

influences become evident. The varying nature of user preference and item attractiveness

is especially prominent in cases where users are repeatedly exposed to consume some prod-

ucts of certain categories, such as movies, news and music [145, 158]. For example, users

may watch di↵erent types of movies with their children from those with their partners at

di↵erent times; movies may lose their popularity because they are filmed a while ago but

get popularity again because they win awards or are closely relating to current a↵airs.

Because the user feedback is continuously gathered by applications that incorporate RSs

in the real-world scenarios, the tendency of not only user preferences but also item at-

tractiveness is actually residing in the input data to RSs. For example, Figure 1.1 and

Figure 1.2 excerpt from [128] demonstrate two temporal e↵ects within the Netflix dataset

for movie recommendations. Figure 1.1 shows that there is a sudden jump of the average

movie rating, and Figure 1.2 illustrates that the average rating for each movie tends to

keep increasing since the first day when the movie had been rated in the system. In this

regard, the non-stationary user and item factors actually require the real-world RSs to

be continuously updated to adapt to the current tendency of user preferences and item

popularity. Note that similar to the situation in the static scenario, it is usually not the

case that users repeatedly consume the same item over time.

1.2.1 Temporal dynamics in recommender systems

Traditional methods in RSs mainly focus on the generation of personalized recommen-

dations for users whose preferences are assumed to be static. This static assumption is
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Figure 1.1: The first temporal e↵ect on the Netflix dataset [128].

Figure 1.2: The second temporal e↵ect on the Netflix dataset [128].

such a strong assumption that it may cause problems when users and items exist in the

systems over a long period. Although those systems may have successfully learned user

preferences and item popularity from the past data in the training period, the predicted

user preferences and item attractiveness may be no longer valid when those estimated

characteristics have changed during the testing period or in the real-world deployment.

More importantly, static methods in RSs are fitted into the feedback without taking into

account that the data are actually generated by a dynamic process. Thus, the learned

models only attempt to yield the best average models that aim to capture the global pat-
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terns of user and item behaviors in the past. As time goes, it is very di�cult for those

RSs constructed under static assumption to refrain their recommendations from drifting

away their ground truth.

Due to their incapability of modeling such a tendency accordingly, those methods lead

to lower-than-expected predictive power and thus unsatisfactory recommendation per-

formance in many real-world deployments. Therefore, the ability to model the ten-

dency of both user preferences and product attractiveness is vital to the design of RSs

[128, 145, 158, 80, 215, 7]. In fact, it is shown [128] that the performance of recommen-

dation system can be improved by explicitly modeling the temporal behaviors of user

preferences in the underlying model.

Categories In general, methods in temporal or dynamic RSs can be divided into four

approaches in terms of how the temporal and dynamic information is utilized [160]: heuris-

tic approach, binning-based approach, online updating approach and dynamic-based ap-

proach. The detailed review of temporal dynamic methods in RSs will be covered in

Chapter 2.

Heuristic approach As the current user preferences may be better represented by the

current feedback than the old one, methods in the heuristic approach exploit the temporal

influences by discounting the temporal e↵ects of the past feedback on the future behaviors

of users and items while preserving the long-term trends that are inherent in the data.

Usually, a pivot point will be determined empirically or learned from the historical data

[73, 229]. Concept drift methods have been used to detect a pivot point when user’s

interests are dramatically changing. Meanwhile, there are also some methods of this

approach that extract the temporal influences from user feedback and use them as the

input data or features for later usages. Therefore, methods belonging to heuristic approach

can be regarded as a pre-processing stage that re-weights available information to make

the original algorithms temporal-aware. Even though the time-based weighting approach

is easy to understand and simple to implement, it is prone to information loss and tends

to undervalue the past data.
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For instance, the time instance when the rating prediction occurs is selected as the pivot

point in [73]. By taking as input the time distance between the pivot point and the

timestamp associated with a given rating, the exponential function is utilized to discount

the temporal influence of the rating. The user similarity in CF is then weighted by the

calculated temporal weights.

Binning-based approach Methods in the binning-based approach appear in various forms,

but they all bucketize the data by time intervals to which the data are collected [128,

117, 170]. Hence, both training and testing data in this approach could be from the

same interval and they are usually generated by a random split of all the data in this

interval. Thus, the predictions for a user’s interests to the unseen items are actually post

hoc predictions about what her interests would have been in the past, rather than what

her interests would be in the future. While this approach demonstrates its predictive

ability when user preferences have periodic attributes, it is not a general approach that is

able to be applicable to many other real-world scenarios. Meanwhile, in practice, it is too

rigorous to consider only the periodic e↵ects on the trends in user preferences and item

attractiveness while excluding other temporal e↵ects. For example, user preferences over

clothes are highly influenced by seasonal e↵ects but it is unwise to exclude the influence

of the current fashion that is irrelevant to seasons.

For example, after grouping user feedback into time intervals and randomly splitting train-

ing and testing data in each time interval, the local temporal e↵orts within any time in-

terval are captured by associated latent factors in the procedure of matrix factorization

[128]. The temporal dynamics across time intervals are largely neglected in the model.

Online updating approach Methods in the online updating approach aim at modeling how

a recommender system would be used in practice, i.e. only information in the past is used

to predict the unknowns that are in the future. The underlying model should be updated

to reflect the newly arrived feedback in the system. Online updating mechanisms are thus

developed to update model parameters dynamically [71, 149, 14]. However, methods of

this approach usually place an emphasis on the scalability of the updating stage and ignore

the modeling of dynamics of user taste and item attractiveness.

10



1. Introduction

For example, in order to catch up the latest trends of user preferences, similarity com-

putation in CF has been online updated when newly arrived user feedback is available

[154]. In order to avoid rebuilding the whole model from scratch and reducing the com-

putational complexity, the updating procedure is somewhat similar to the procedure of

updating model parameters in incremental learning.

Dynamic-based approach The dynamic-based approach explicitly models the temporal

dynamics in the feedback to track the tendency of user preferences and item attractiveness.

A stochastic state space model or temporal regressions are usually adopted in this approach

to track the tendency of user preferences [158, 199]. However, item attractiveness in this

approach is assumed to be static in the state space model, leading to a temporal linear

model. Meanwhile, to be tractable, distributions in the system have to comply with

Gaussian distributions, which may oversimplify the real situations in practice and could

lead to low predictive performance.

For example, the first order Gaussian random walk, which is a non-stationary stochastic

process with linear and Gaussian assumptions, is utilized to model the dynamics of user

latent factors that compactly represent user preferences [80, 158, 55]. The generative

procedure for users’ ratings on items is also assumed to follow Gaussian distribution. By

further assuming the item attractiveness is relatively static over time, the Kalman filtering

is applied to track the probabilistic linear model reflecting the tendency of user preferences.

1.2.2 Existing Problems

As briefly mentioned in Section 1.2.1 and will be described in Chapter 2 in detail, diverse

approaches and techniques have been investigated and proposed in order to properly in-

tegrate the temporal and dynamic information into RSs. With those newly developed

techniques, the performance of RSs has been greatly improved under temporal context.

However, there are still some major problems in terms of how the temporal dynamics are

being explored and exploited in those methods as follows,
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1) The tendency of user preferences is usually assumed to be linear and Gaussian.

2) Item characteristics or attractiveness is usually assumed to be static.

3) The generative process for user feedback is usually assumed to be Gaussian dis-

tributed.

4) The model structure to capture the tendency of user preferences and item attrac-

tiveness is either predefined or learned from a linear system.

5) A universal dynamic model is commonly adopted across all users and items in the

system, rather than using personalized and item-wise dynamic systems.

6) The temporal dynamics of variation of user preferences and item attractiveness are

largely neglected. Almost all of existing work on RSs focus on the modeling of

temporal dynamics of average behaviors of user preference and item attractiveness.

Problems 1 ⇠ 5 described above may oversimplify the real-world scenarios in two-folds.

Firstly, problems 1 ⇠ 3 restrict the range of targets under investigation. Secondly, when

it comes to modeling the temporal dynamics, problems 4 and 5 hamper the flexibility and

diversity of the developed model. The 6-th or last point described above illustrates the

weakness of the current methods from an algorithmic point of view.

1.3 Aims

The work in this research attempts to overcome some of existing problems in RSs that work

under temporal context and improves their performance by finely modeling the temporal

and dynamic information from user feedback. The developed methods and algorithms

in this research aim to provide original solutions to improve the performance of RSs

by incorporating and exploiting this significant but traditionally neglected information.

Specifically, the research aims are shown as follows,
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1) Based on the dynamic-based approach mentioned in Section 1.2.1, a novel probabilis-

tic temporal bilinear model for RSs has been developed to tackle the nonlinear and

non-Gaussian dynamic problems, which is inherent in the tendency of user prefer-

ences and item attractiveness in the complex and diverse real-world recommendation

scenarios.

2) A novel probabilistic personalized and item-wise temporal model has been developed

to solve the cold start transition problem and learn the personalized and item-wise

dynamics by collaborative tendencies without any prior assumptions about the struc-

ture of the dynamics of users and items. The cold start transition problem is a result

that users often leave feedback on an item only once and for only one period, pre-

venting from learning any dynamics directly.

3) A Bayesian Wishart MF method has been developed to model the temporal dynamics

of variances of model parameters, which models the sudden changes and other local

temporal e↵ects among user preferences and item attractiveness.

1.4 Methodology

Based on the survey of the study of temporal dynamics in RSs, some existing problems of

RSs exploiting temporal and dynamic information have been identified in this section. In

order to tackle with those problems, methods are proposed and briefly discussed in this

section.

1.4.1 Overview of the Research Work

The whole research work will be divided into three related components. Specifically, the

first part of this research focuses on the finely modeling of the tendency of user preferences

and item attractiveness simultaneously, which also releases the Gaussian assumption on the

generative procedure of user feedback. The second part attempts to learn the personalized
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and item-wise model structures of dynamic systems from user feedback in order to flexibly

capture the tendency of user preferences and item attractiveness. Meanwhile, a new

problem in the learning of personalized and item-wise dynamic systems, namely, the cold

start transition problem, has been identified and solved. The last part of this research

models the temporal dynamics of variations of model parameters in RSs due to the sudden

changes and other local temporal e↵ects among user preferences and item attractiveness.

This part of work also aims to investigate a new perspective to model the tendency of user

preferences and item attractiveness.

1.4.2 Three Components

In order to tackle the problems listed in Section 1.2.2, the strategies adopted in this

research are briefly discussed in the following, which also includes the contributions made

by this research.

Modeling Temporal Dynamics Flexibly In order to overcome the problems listed

in Section 1.2.2, this research makes the following contributions.

• A particle filtering for MF method is developed to track both the tendency of user

preferences and item popularity e�ciently, which could be of both non-linear and

non-Gaussian. The designed observation function is non-Gaussian and proper for

the Top-N recommendation [66] under temporal context.

• A novel probabilistic temporal bilinear model is developed to enforce the temporal

interaction between user preferences and item attractiveness and dynamically adjust

significance on di↵erent dimensions of latent factors.

• A novel self-training mechanism is developed to cooperate with particle filtering to

solve the problems of data sparsity and scalability in CF.

• An e↵ective and e�cient learning algorithm is developed for the probabilistic tem-

poral bilinear model by combining particle filtering and EM framework [35].
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• The proposed models and learning algorithms are experimentally shown to achieve

significant improvement in the performance of top-k recommendation.

Learning Personalized and Item-wise Temporal Dynamics In order to solve the

cold start transition problem in dynamic RSs, this research makes the following contribu-

tions.

• A dynamic model is developed for the tendency of user preferences and item popu-

larity in a personalized and item-wise fashion, where no assumption on dynamical

model structure is imposed,

• A collaborative inference and learning algorithm is developed. This algorithm explic-

itly considers the uncertainties of model structure and dynamically updates model

parameters to track user preferences and item attractiveness accurately,

• An algorithm exploiting the temporal dynamics of “like-minded” users and similar

items is developed to learn the cold start transition models.

• The proposed models and learning algorithms are experimentally shown to achieve

significant improvement in the performance of Top-N recommendation.

Modeling and Learning Temporal Dynamics of Variations In order to solve the

last problem listed in Section 1.2.2, this research makes the contributions as follows,

• A novel Bayesian MF method for RSs is developed to model the tendency of user

preferences and item attractiveness e↵ectively via the direct controlling of temporal

dynamics of covariances of user and item latent vectors.

• An e↵ective and e�cient inference algorithm for the Bayesian model is developed,

which combines the collapsed Gibbs sampling method and elliptical slice sampling

method [35].

15



1. Introduction

• It is experimentally shown that the proposed model and learning algorithm lead to

the improvement in the temporal performance of RSs for rating prediction on public

benchmark datasets.
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1.6 Organization

The rest of this thesis is organized as follows,

1) Chapter 2 will conduct an intensive literature review on existing methods in RSs

involving the modeling of temporal and dynamic information from user feedback.

2) Chapter 3 will discuss the research in detail on how probabilistic bilinear models are

constructed to track the tendency of both user preferences and item attractiveness
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1. Introduction

simultaneously. Their learning and inference algorithms will be also discussed in

this chapter before showing the experimental results on three real-world benchmark

datasets.

3) In Chapter 4, the necessities of constructing the personalized and item-wise dynamic

system for RSs will be discussed at first. Then, the learning and inference method

to construct such a dynamic system will be derived in detail. Finally, experimental

results will be demonstrated and discussed.

4) Chapter 5 discusses research on modeling the temporal dynamics of variations of

user preferences and item popularity. The learning and inference algorithms are

also discussed in detail for the developed model. Then, experimental results will be

illustrated and discussed.

5) Chapter 6 concludes this research and discusses the possible directions of future

work.
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Chapter 2

Background

Methods that exploit temporal and dynamic information in recommender systems (RSs)

can be roughly divided into four categories. Generally speaking, each category takes a

di↵erent perspective when exploiting such temporal and dynamic information. In this

chapter, detailed discussions relating to these methods in each category will be presented.

Meanwhile, besides discussing the techniques involving the modeling of temporal and

dynamic information in RSs, it is necessary to discuss some methods developed for static

or conventional RSs. Those static methods are so fundamental that on the basis of which

almost all the RSs exploiting temporal and dynamic information are developed.

2.1 Fundamental methods in Conventional Recommender

Systems

Although there are numeric methods that tackle various problems in conventional RSs,

there are three types of methods closely related to the modeling of temporal and dynamic

information in RSs. They are, memory-based collaborative filtering (CF), probabilistic

matrix factorization (PMF) and Bayesian personalized ranking (BPR). This section dis-

cusses these fundamental methods in conventional RSs.
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2.1.1 Memory-based Collaborative Filtering

As mentioned in Section 1.1.2 in Chapter 1, the rationale behind CF is that if users agreed

in the past, then the recommended items by similar users should also be favored by the

user to be recommended items. The user-based CF method [215, 76, 48, 115, 68] is thus

developed to capture this concept for explicit user feedback.

The similarity between user u and user v can be computed based on their rating history.

Let ru,i denote the numeric rating that user u gives on item i. By treating the past ratings

of user u as a vector that is filled with zeros when its entry is unknown and otherwise ru,i,

many similarity measurements have been proposed, such as distance measures [6, 119],

cosine similarity or L2 norm [111, 220, 215] and Pearson correlation coe�cient [18, 198].

Among those measurements, the Pearson correlation is commonly used due to its simplicity

and e�ciency, which is defined as follows,

w(u, v) =

P
i2I

u,v

(ru,i � r̄u)2(rv,i � r̄v)2
qP

j2I
u

(ru,j � r̄u)2
qP

j2I
v

(rv,j � r̄v)2
, (2.1)

where r̄u is the average of ratings given by user u on items Iu, Iu the set of items that

have been rated by user u and Iu,v the set of items that have been rated by both user u

and user v.

After obtaining the similarity among users, the preference of user u on its unseen item j

can be estimated by assembling its similar users’ preferences on item j. This computation

can be expressed as follows,

r̂uj = r̄u +

P
v2U

j

w(u, v)(rv,j � r̄v)
P

v2U
j

w(u, v)
, (2.2)

where Uj denotes the set of users that have rated item j. The denominator of the above

equation is used to normalize the computation. The contributions from similar users are

adjusted by removing its average rating. This practice is somehow used to consider the fact

that users may adopt di↵erent numeric rating values to express the identical preference

over an item. Eq (2.2) does not filter out those users that are less similar to user u, which

may introduce unnecessary noise and degrade the performance of prediction. Therefore,
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2. Background

it is common to assemble the preferences from the nearest neighbors of the user. After

identifying the K nearest neighbors N (u) of user u, the prediction can be improved by

replacing Uj with Uj \N (u) in Eq (2.2).

The above CF method is constructed based on user-user similarity and it needs to store

the rating history of all users in memory. Symmetrically, it is also possible to take the

perspective of items. Then, the method computes item-item similarity and assembles user

preference on the unseen item from similar items. This approach is advocated by Amazon

and named as item-based CF [148, 201, 214]. Roughly speaking, those two approaches do

not result in a significant performance di↵erence. However, when the number of items is

much less than the number of users in the system, the item-based approach has a smaller

computational complexity than user-based one.

The memory-based CF is easy to understand and simple to implement. The algorithm

also enjoys a low computational complexity and has easily interpretable results. However,

it is not easy for this approach to select a proper set of neighbors to compose the user’s

preferences accurately. Meanwhile, the empirical adjustment in Eq (2.2) can only partially

mitigate the problem of diverse rating criteria among users.

2.1.2 Probabilistic Matrix Factorization

Probabilistic matrix factorization [197], as a model-based approach to CF, has been widely

used due to its simplicity and e�ciency. This method relies on the usage of latent vari-

ables or factors to represent the complicated reasons behind user preferences over item

characteristics compactly.

In particular, assuming that there are N users and M items, let R 2 RN⇥M be a user-item

preference matrix with an entry ru,i representing the rating given by user u to item i. The

model also assumes that rating ru,i is generated by a Gaussian distribution P (ru,i|Uu, Vi)

conditioned on K-dimensional vectors Uu and Vi from user and item latent matrices U 2

RN⇥K and V 2 RM⇥K , where K is the number of latent factors adopted. In addition,
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prior distributions P (U) and P (V ) are formulated to contain regularization terms [196].

These latent variables are further assumed to be marginally independent while any rating

ru,i is assumed to be conditionally independent given latent vectors Uu and Vi for user u

and item i [196]. Figure 2.1 shows the graphical model of PMF. The likelihood distribution

over preference matrix R is defined as follows,

P (R|U, V,↵) =
NY

u=1

MY

i=1

Iu,i · N (ru,i|UuV
T
i ,↵�1), (2.3)

where N (x|µ,↵�1) is a Gaussian distribution with mean µ and precision ↵, and Iu,i is an

indicator variable with value 1 when the rating ru,i is not missing and value 0 when the

rating is not observed. Priors P (U) and P (V ) are given as follows,

P (U |↵U ) =
NY

u=1

N (Uu|0,↵�1U I), and P (V |↵V ) =
MY

i=1

N (Vi|0,↵�1V I). (2.4)

Uu

Vi

ru,i

N

M

Figure 2.1: The graphical model of probabilistic matrix factorization method.

Maximizing the log-posteriors over U and V is equivalent to minimizing the sum-of-square

error function with quadratic regularization terms for MF [196], leading to the following

objective function,

E =
1

2

NX

u=1

MX

i=1

Iu,i(ru,i � UuV
T
i )2 +

�U
2

NX

u=1

||Uu||2Frob +
�V
2

MX

i=1

||Vi||2Frob, (2.5)

where �U = ↵U/↵, �V = ↵V /↵, and || · ||
Frob

denotes the Frobenius norm. The stochastic

gradient descent (SGD) method [40, 41, 85] is a popular approach to learning those latent

factors for the above objective function. Meanwhile, the alternating least squares method

[221] has also been developed to conduct this learning task.
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There are no constraints on the domains of latent factors, which makes the results of PMF

di�cult to interpret. For example, by considering the signs of user and item latent factors,

the specific user preference on a hidden dimension cannot be read o↵ from the value of

user latent factors on that dimension. This limitation can be overcome by restricting

the domain of latent factors to be non-negative. It results in non-negative MF [59, 137,

103], whose factors are easily interpretable. Although it is possible to conduct dynamic

non-negative MF [175, 80], the non-negative constraint is either easily violated [80] or

computationally expensive to maintain [80, 175], considering a large number of users and

items in RSs. Hence, this constraint is usually neglected [80].

2.1.3 Bayesian Personalized Ranking from Implicit Feedback

Traditional methods in RSs usually focus on the explicit feedback from users. BPR aims

to conduct personalized Top-N recommendation by exploiting the rich implicit feedback,

such as view times and monitored clicks, which are automatically tracked by the system

[188, 95, 179]. The traditional approaches usually either ignore the missing entries in

the feedback or treat all the missing entries as the negative values. This measure cannot

reflect the real world scenario because the non-observed user-item pairs are the results of

the mixing of the real negative feedback and the missing values. Moreover, the traditional

treatment of non-observed data makes the learning methods su↵er from the data imbalance

problem [188, 99]. That is, the input data to the learning methods either contain only one

class of instances or have much more negative instances than the positive ones due to the

problem of data sparsity [115] in RSs.

To overcome these issues, BPR constructs tuples of items from the implicit feedback, from

which the personalized preference over items can be inferred. Let I denote the universe of

items and I+

u denote the set of items that are seen by user u. By assuming that user u is

more interested in items in I+

u than unobserved items I \I+

u , the implicit feedback can be

used to construct the training data DS as DS = {(u, i, j)|i 2 I+

u and j 2 I \I+

u , for all u 2

U}, where U denotes the set of all users.

22



2. Background

Based on the constructed data, the personalized recommendation problem can be con-

verted to the personalized pairwise ranking problem. Let x̂uij denote an arbitrary real-

valued function with model parameter ⇥, and it should be designed to capture the pref-

erence relation among user u, item i and item j. By keeping this function abstract, a

generic optimization criterion, named as BPR-OPT, is proposed as follows [188, 82],

BPR�OPT = lnP (⇥|DS) =
X

(u,i,j)2D
S

ln�(x̂uij) + lnP (⇥) =
X

(u,i,j)2D
S

ln�(x̂uij)� �⇥||⇥||2,

(2.6)

where �
⇥

works as a regularization coe�cient as defined in the PMF method, and the

function ln denotes the natural logarithm function. The function �(·) is the sigmoid func-

tion [171]. This optimization criterion is derived from the maximum posterior estimator

for optimal personalized pairwise ranking [188]. It is also shown that the optimization of

this criterion equals to the maximization of the area under the AUC curve [188].

For the personalized Top-N recommendation, two models, the MF model and the K-

nearest neighbor model [33], are proposed to implement x̂uij . Only the MF model will be

discussed here because it is more close to the research work conducted in this thesis.

Let vector Uu represent the K-dimensional latent vector of user u and vector Vi represent

the K-dimensional latent vector of item i. The function x̂uij can be defined as x̂uij =
PK

k=1

UukVik = UT
u Vi. Then, the model parameter is ⇥ = {U, V } by stacking over all the

user and item latent factors into matrices.

The method learns parameter ⇥ using the SGD method [188]. In order to speed up the

convergence of the SGD method, the bootstrap sampling approach [98, 36] is also adopted,

which selects a subset of training data DS . This sampling approach can also alleviate the

data imbalance problem by avoiding cycling through the full data DS [188].

2.1.4 Summary

In general, user feedback can be classified as either explicit or implicit feedback. Compared

with explicit feedback, implicit feedback is usually regarded as being easier to obtain and
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less sparse. BPR is thus designed to handle implicit feedback to predict user preferences

over items. In contrast, explicit feedback is usually thought of conveying more informa-

tion relating to users’ opinions on items, which makes memory-based CF and PMF very

popular for RSs. Meanwhile, because BPR is a pairwise approach to rank user preferences

over items, some methods based on the list-wise ranking [205] are also proposed in RSs.

However, it may not be straightforward to apply them to implicit feedback. Moreover,

considering the computational complexity of those methods, temporal extensions of those

methods may be inapplicable to real-world scenarios in RSs.

Therefore, most of the existing work in exploiting temporal and dynamic information in

RSs is based on the approaches and ideas adopted by memory-based CF and PMF, which

are discussed in detail in the following sections.

2.2 Heuristic Approach in Recommender Systems with Tem-

poral and Dynamic Information

As briefly discussed in Chapter 1, the heuristic approach is a relatively simple approach

in RSs that exploit temporal and dynamic information from user feedback. Usually, this

approach can be regarded as a pre-processing stage that computes the temporal influences

of input data to make the static methods in RSs time-aware. Methods in this approach

usually discount the importance of user feedback. Those methods are named as importance

reweighting based methods in this thesis. In addition, some methods of this approach

calculate the temporal influences of user feedback and then feed them as the input data

into algorithms at later stages in RSs. For those methods, they are referred as methods

with temporal importance as inputs.
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2.2.1 Importance Reweighting Based Methods

For classic methods in RSs, such as item-based CF, all the user feedback is given equal

weights, even if the feedback may be generated at di↵erent time instances. Intuitively

speaking, the recent feedback, which is given by users on items, should have a larger

impact on the predictions of user’s current interests than the feedback that is collected

a long time ago. In this regard, the performance of CF should generate more precise

predictions if the temporal importance of user feedback is explicitly taken into account.

Time decaying function in collaborative filtering The time function is used to

assign di↵erent weights to ratings to reflect the fact that the recent ratings are more

important than the older ratings. Item-based CF is thus extended by assigning the ratings

with di↵erent weights based on the personalized time functions [73]. Let ru,i denote the

true rating of item i given by user u from the training data and r̂u,i denote the preference

prediction of user u on its unseen item i. This predicted preference in item-based CF can

be extended as follows,

r̂u,i =

P
j2N (i) ru,j ·sim(i, j) · f(tu,j)P

j2N (i) sim(i, j) · f(tu,j)
, (2.7)

where sim(i, j) measures the similarity between item i and item j, and N (i) represents

the set of k nearest neighbors of item i which can be found out based on the given rating

history. The function f(t) is the time function that reduces monotonically with time t,

and tu,j represents the timestamp of rating ru,j . The function f(t) is usually defined as the

exponential function as f(t) = exp(�� · t), where exp is the exponential function and � is

the decay rate interpreted as the reciprocal of the half-life parameter T
0

with the following

relation, f(T
0

) = 1

2

f(0). There are some alternative functions to the exponential function

used in the time decaying approach. Nevertheless, the decaying e↵ects are emphasized on

the most recent data to reflect the user’s latest interest. Hence, the exponential function,

whose gradient near zero value is steeper than its gradient far away from zero, properly

serves this purpose.

It is not feasible to compute T
0

for every user and item. Therefore, the method assumes
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that the same user has the identical decay rate of preferences over a group of similar items.

The half-life parameter T
0

is then computed for each user and each cluster of items. The

clusters could be obtained by the K-means clustering method [116, 22] based on the rating

history of items. For the user u, the half-life parameter over one cluster of items can be

learned from the training data by minimizing the following mean absolute error (MAE)

[53], argminMAE(T
0

) = argmin
P

M

c

i=1 |r̂u,i�ru,i|
M

c

, where Mc is the number of items in the

cluster c. As the above optimization problem is di�cult to solve due to its non-concave

property, an approximation technique is used to obtain the optimal solution by doing grid

searching [30, 219] over some selected discrete values of T
0

.

Instead of numerical ratings, explicit user feedback in RSs can also appear in other forms,

such as, tags attached by users to some resources. Tags and times are two main factors to

reflect the process of tagging behaviors of users in social tagging systems [135, 253, 51]. A

more frequently used tag for a user usually means that the tagged resource is more inter-

esting to the user [168, 109]. Meanwhile, more recently tagged resources should, to some

extents, reflect the user’s current interests. Those tags should be placed more emphasis on

the predictions of users’ future preferences. Therefore, personalized recommendations are

expected to be improved by exploiting the tag and time information in the social tagging

systems. The user-based CF method could be extended by integrating the tag and time

information in user feedback [253, 51]. The time weight strategy adopts the time decaying

function to reflect the idea that more recent tags should receive more emphasis.

When incorporating the temporal information from user feedback into RSs, the temporal

factor that captures the time sensitivity between the purchase time and the recommenda-

tions could also be exploited to improve the performance of RSs [229]. The temporal in-

formation exploited in this way is ubiquitous in the post-purchase recommendation, which

is common in e-commerce websites [230, 229]. It recommends users the relevant items

after the user made a purchase. Then, the time weight mechanism is adopted to give the

weight to the category relevance and the product-level behavioral relevance. Instead of

adopting a decaying function, the unit step function about time could be used. Hence,

for the category relevance, the number of purchases is only counted for those purchases
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that are made within a predefined time distance from the active purchase. Similarly, for

the product-level relevance, the step function is multiplied by it in order to only count the

historical purchases within the time window.

The approach discussed above utilizes the time decaying function that tends to undervalue

the importance of the historical data. Meanwhile, the linear combination may not only

introduce extra burdens to the model complexity control but also be too simple to capture

the relationship between the tag and its temporal information.

Kernel-based Time Decay Function Because users may have a sudden change of

interests, the continuous smoothing scheme over the timeline may result in suboptimal

predictions. Hence, user behaviors are explicitly modeled and divided into a sequence of

sessions to overcome this issue, where the session-like behaviors capture the user’s short-

term interests [245].

The temporal e↵ects of user interests in the tagging systems are also investigated [131, 248,

246, 130]. Assume that the tagging behaviors of di↵erent users are independent. Then, the

tags attached to post p for user u at time t are defined to follow a multinomial distribution

as [246], Pt(p|u) /
Q

⌧2T
p

✓c(⌧ |p,u)⌧,u , where Tp represents the set of tags attached to post

p, c(⌧ |p, u) is the number of times that tag ⌧ is attached to post p and ✓⌧,u denotes the

probability that user u prefers tag ⌧ . The standard kernel smoothing techniques [36, 98]

are used to construct the likelihood function based on Pt(p|u) to model the temporal

e↵ects of user interests. Given user u’s historical data Du, its likelihood with respect to all

the users and tags is given as l(⌘|Du) =
P

t02T K(t � t0)
P

p02P
t,u

P
⌧2T

p

0 c(⌧, p
0|u) log ⌘⌧ ,

where T is the set of time steps for all records, Pt,u is the set of posts tagged by user u at

the t-th time step and c(⌧, p0|u) is the number of times that tag ⌧ attached to post p0 by

user u. The function K(·) is the kernel function and ⌘⌧ denotes the set of ✓⌧,u over all the

tags for user u. Assuming the lifetime of the short-term interests follows an exponential

distribution [246], K(·) is defined as the probability of the emerged topics remaining alive,

which is 1 minus its cumulative function.
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The maximization of the likelihood function of Du defined above is achieved by using the

method of Lagrangian multipliers [32] with the constraint that all of ✓⌧,u in the multinomial

distribution should sum to 1. Then, the probability that user u applies tag ⌧ at time t

can be estimated, which is actually the fraction of occurrences weighted by the kernel

function. There are also some situations that topic switches occur. Therefore, for each

post p, the kernel smoothing will only be e↵ective from the post pi from which the latest

session begins. The similarity between two consecutive posts pi�1 and pi is computed by

the Jaccard’s coe�cient [173] from the tags attached to those posts. Let Ji denote the

computed similarity and ti = tp
i

� tp
i�1 be the time interval between those two posts. The

topic switch can then be identified by using the nearest neighbor method by taking the

inputs as the set of pairs (Ji, ti) over all the posts.

Kernel-based smoothing techniques are used to track the temporal e↵ects of user interests,

where the exponential function is used as the kernel function. In this regard, this approach

reweights the temporal importance of user feedback. It also focuses on the modeling of the

short-term interests, which may be insu�cient to capture many other real-world scenarios

in which the importance of historical data should not be neglected. Meanwhile, the kernel

parameters, which are numerous and play vital roles in modeling the temporal dynamics,

are not learned from the data but only empirically constructed.

Summary As discussed above, the methods based on importance reweighting to exploit

temporal and dynamic information in RSs are intuitive to understand and easy to imple-

ment. For almost all of memory-based methods in RSs, it is straightforward to extend

them to incorporate the temporal and dynamic information by using this approach, and

the computational complexity introduced by this kind of extension is usually negligible.

However, this approach tends to oversimplify the complicated scenarios in the tendency

of user preferences and item attractiveness. Too much emphasis has been placed on the

recent user feedback, and the importance of the past feedback is thus underestimated.
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2.2.2 Methods with Temporal Importance as Inputs

In addition to utilizing the time decaying mechanism to penalize temporal influences of user

feedback, there are also methods in the heuristic approach to process temporal information

as input data or features for later stages.

Combine Temporal and Location Information The temporal information and ge-

ometric information can also be combined to improve the performance of personalized

point-of-interest (POI) recommendation [247]. In particular, the check-in times of user

activities and the locations of POIs are integrated into user-based CF to fulfill this task.

The temporal information is usually assumed to have periodic properties and it is thus

bucketized into time frames with a fixed length. Hence, this approach also shares some

similarities with methods in a binning-based approach.

The preference cu,lt of user u over a POI l at time t is a linear combination of its temporal

behavior and geometric behavior as [247], cu,lt = ↵cu,lt,(te)+(1�↵)cu,lt,(sp), where the parameter

↵ controls the trade-o↵ between the preference for check-in data cu,lt,(te) and the preference

from location data cu,lt,(sp).

Assume that there are L POIs and T time intervals in the system. The temporal preference

cu,lt,(te) of user u over a POI l at time t is defined as, cu,lt,(te) =
P

v

w
(te)
u,v

P
t

0 c̃
v,l

t

0 ·⇢
t,t

0
P

v

w
(te)
u,v

, where ⇢t,t0

captures the similarity between time intervals t and t0 across all users and all locations.

The temporal similarity w(te)
u,v between user u and user v is defined as,

w(te)
u,v =

PT
t=1

PL
l=1

c̃u,lt c̃v,ltqPT
t=1

PL
l=1

(c̃u,lt )2
qPT

t=1

PL
l=1

(c̃v,lt )2
, (2.8)

where c̃u,lt is the smoothed cu,lt based on ⇢t,t0 . The temporal similarity is not defined across

all the time intervals in order to alleviate the problem of data sparsity [247].

The geometric similarity is based on the idea that the user’s willingness to a POI is

reducing as the distance increases. This is captured by using a power law [64] to model

and using the least-square regression [36] to learn its parameters from the historical data.
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The geometric or spatial preference is defined based on the conditional probability and its

derivation is based on the assumption that any historically visited POI is conditionally

independent given a target POI l.

Combine Temporal Information and Social Activeness The probabilistic LSA

model [101] could also be used to model the community (topic) distribution jointly over

users and items [244]. In order to consider the social influence and the tendency of user

interests, the social activeness and the temporal feature of users are also incorporated into

this model. Then, the MF-based CF model is constructed for each community based on

the computed results from the previous model to make the Top-N recommendations. This

is a two-phase strategy to generate the personalized Top-N recommendations.

Let R 2 RN⇥M denote a user-item rating matrix for N users and M items. By treating

user as word and item as document, the likelihood function of probabilistic LSA model is

defined as L(U) = logP (U |✓) =
PN

u=1

PM
i=1

ru,i · log[
PK

k=1

P (u|zk)P (zk|i)], where P (zk|i)

is the probability that item i on community zk, P (u|zk) is the probability that community

zk contains user u and zk 2 {1, . . . ,K}. EM [35] is used to learn P (zk|i) and P (u|zk). All

the items are then clustered into K communities based on P (zk|i).

Instead of using P (u|zk) to cluster users, a measurement of POI could be used to incor-

porate the temporal information and the activeness of users. A time decay function is

used to exploit the tendency of user preference as Wt = 1

1+�|t
u,i

�tlast
u

| , where tu,i is the

timestamp of rating ru,i and tlastu is the timestamp of the latest rating given by user u.

Let Wa(i) denote the social activeness of user u. It is defined as Wa(u) =
1

1+log(Rank(u)) ,

where Rank(u) is the rank of user u derived from the PageRank algorithm [181] whose

transition matrix is defined as, PageRank(u) = 1�d
M + d

P
v2N (u)

PageRank(v)
L(v) . The N (u)

is the set of users that user u trusts and L(v) is the cardinality of the set of users who

trust user v. The overall e↵ect W is then defined as a linear combination of Wa and

Wt as W = ↵Wt + (1 � ↵)Wa, where parameter ↵ controls the trade-o↵ between those

two components. The POI-measurement for user ui on community zk is then defined as,

POI(u, zk) =
PM

i=1

Wuiru,iP (i|zk).
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In the perspective of MF, the above approach can be regarded as a pre-processing stage,

which clusters users and items on the combinations of ratings, the social activeness of users

and the tendency of user interests. The problem of data sparsity is partially mitigated by

learning latent factors per community. However, due to the usage of probabilistic LSA,

users and items are jointly clustered. Hence, this approach is incapable of recommending

items to users if they do not belong to the same community.

Combining Temporal Information and Taxonomy User feedback could be grouped

into T discrete time periods or epochs to model the current tendency of user preferences.

The predictions of transactions for user a are then conducted based on memory-based

CF with data from the latest epoch. Similar transactions of all but the user from any

epochs are identified to alleviate the problem of data sparsity under the temporal context.

Because both the items transacted by users and the topics estimated from the user’s

transactions can change dramatically from one epoch to another, the taxonomy of items

[107, 250], which is manually labeled and relatively stable, is used to identify similarities

among epochs [178].

The temporal interests of user u are modeled by two vectors. Vector iut denotes the item

transactions of user u at epoch t, where its j-th entry iu,jt represents the frequency of item

j’s transactions. Vector cut denotes the class transactions of user u at epoch t, where its

k-th entry cu,kt represents the frequency of transactions under class k in the taxonomy.

The frequency accumulates counts of items belonging to all the descendants of class k.

Let C denote the set of classes available in the taxonomy, Cj denote its j-th class, and

Cj,t(u) the subset of classes in class Cj which are transacted by user u at epoch t. For

user a and any other user u, the class and item similarities between any epoch t 2 1, . . . , T

and the latest epoch T for class transactions are calculated. For example, for user a and

any other user u, their similarity between any epoch t 2 1, . . . , T and the latest epoch T

for class transactions is defined by Sc(a, u, t) as follows,

SC(a, u, t) =
X

C
j

2C

P
C

k

2{C
j,T

(a)\C
j,t

(u)}min(ca,kT , cu,kt )

|{Cj,T (a) [ Cj,t(u)}|
. (2.9)
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The min operation in the above equation is used to filter out the transaction noise. The

item similarity can be similarly derived. Based on the above similarities, the prediction of

frequency transacted by user a on item j in user-based CF can be expressed by considering

the set of users whose epochs of transactions are most similar to the current transactions

of user a and the overall similarity between user a and user u at epoch t.

However, this method does not consider the temporal interaction and collaboration be-

tween user preferences and item attractiveness when exploiting the temporal information.

In addition, users tend to purchase multiple items in one transaction, while the relations

among those items are also usually ignored in this approach.

Summary As discussed above, methods in this subsection pre-process the user feedback

by utilizing the temporal information and using them as the transformed feedback for

later stages in the methods. In order to fully exploit various information available in

RSs, temporal information is usually combined with other types of information, such as

locations from users’ check-in data and taxonomy from items’ meta data. As a by-product

of this approach, the problem of data sparsity in RSs could, to some extents, be alleviated.

Although it is usually infeasible or expensive to obtain that heterogeneous information,

the performance of RSs is expected to be improved when the data fusion is deliberately

achieved. However, similar to the approach using temporal information to reweight the

importance of user feedback, the temporal information exploited in methods discussed

in this subsection usually ignore the significance of the past data and oversimplify the

tendency of user preferences and item attractiveness in the real-world scenarios.

2.2.3 Discussion

The experimental results from the methods discussed above show that the performance

of RSs can be improved by simply introducing the time weights for preference prediction.

However, these approaches tend to ignore the importance of the historical data, because

the monotonic decreasing function oversimplified the complicated tendency of user prefer-
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ences and item attractiveness. Meanwhile, the half-life parameters are only learned from

the training data and not dynamically updated when new feedback is available. This sim-

plification may make the proposed methods incapable of catching up with the tendency

and the sudden changes of user preferences and item attractiveness during the period of

prediction. Furthermore, when temporal influences are combined with other factors, such

as tag importance and content relevance, the proposed models involve empirical compo-

nents and introduce a huge burden to model complexity control.

The performance of RSs can also be improved by utilizing the temporal information to

construct the user feature vector or input data that will be used by later stages in RSs.

However, the usage of temporal information is usually heuristic, which usually undervalues

the temporal influence of past user feedback. Meanwhile, the fusion between temporal

preference and other information, such as spatial preference, usually resorts to a simple

linear combination, which may not capture the trade-o↵ between various components

across time intervals flexibly and accurately.

Furthermore, the dynamic information and the stage to update the model parameters are

not explicitly considered. Methods in this direction usually focus only on the short-term

user preference. Hence, the models may not cope with the problem of data sparsity when

users do not provide enough feedback. Moreover, those methods usually do not consider

the modeling of item popularity over time.

2.3 Binning-based Approach in Recommender Systems with

Temporal and Dynamic Information

In the binning-based approach, the e↵ects of temporal dynamics in user preferences and

item attractiveness are usually explicitly modeled while training and testing data could

be from the same interval. The prediction for users’ interests is actually post hoc about

what interests would have been in the past, rather than what interests would be in the

future. In the context of Bayesian recursive estimation, the binning-based approach can
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be regarded as resembling the smoothing based estimation.

2.3.1 Matrix Factorization with Temporal Information

By deliberately designing the interpretations of latent factors in MF methods, various and

diverse rationals behind user preferences and item attractiveness in RSs can be represented

compactly by those methods. In this regard, many methods in the binning-based approach

exploit the temporal information in RSs by using latent factors in MF to capture the

tendency of user preferences or the temporal interactions between users and items from

side information.

Modeling Temporal Influences The first method under investigation in this approach

is the SVD++ method [128, 29, 123]. In this method, latent factors are added for each

time interval. A rating ru,i rated by user u to item i can be statically decomposed as

follows,

ru,i = µ+ bi + bu + V T
i (Uu + |I(u)|�

1
2

X

j2I(u)

Yj), (2.10)

where I(u) represents the set of items that have been rated by user u and µ is the average

of ratings. The latent factors bu and bi are used to capture the user biases and item

biases for user u and item i, respectively. The latent factors Vi are used to capture the

item characteristics of item i, and the latent factors Uu are included to capture the user

preference for user u. The average influence from similar items is also considered by

incorporating the latent e↵ects (factors) Yj from all the rated items of user u, which is

expressed by the term |I(u)|�
1
2
P

j2I(u) Yj .

For modeling the temporal dynamics in Eq (2.10), the basic idea is to align all the latent

factors along the time index. By dividing the ratings into time intervals according to their

timestamps, the time index for each time interval is denoted as t. The temporal item bias

term bi(t) is expressed as bi(t) = bi + bi,Bin(t), where bi,Bin(t) is the core component to

capture the temporal behavior. Due to the problem of data sparsity, the time intervals
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are further grouped into coarser bins that have longer span, which is identified as Bin(t).

The concrete number of bins depends on the application.

A linear function is used to capture the gradual drift of user bias. The temporal user bias

is defined as bu(t) = bu + ↵u · devu(t) + bu,t, where parameter ↵u controls the importance

of the time deviation, and the time deviation of ratings is defined as devu(t) = sign(t �

tu) · |t� tu|� , where tu denotes the mean date of ratings given by user u. The function

sign(t� tu) gives the sign of the time distance between t and tu. The parameter � is set

by the cross-validation method [36, 83].

Furthermore, user preferences are also assumed to change constantly over time. The

K-dimensional latent factors Uu = (Uu,1, . . . , Uu,K) can also be extended to model the

temporal dynamics as follows,

Uu,k(t) = Uu,k + ↵u,k · devu(t) + Uu,k,t 8k 2 1, . . . ,K. (2.11)

The latent factor Uu,k captures the stationary e↵ects and the term ↵u,k · devu(t) is used

to capture the possible linear dynamics over time. The local and short-term variability is

modeled by the latent factor Uu,k,t.

Finally, ratings in Eq (2.10) can be extended to model the temporal dynamics at time t as

rui(t) = µ+bi(t)+bu(t)+V T
i (Uu(t)+|I(u)|�

1
2
P

j2I(u) Yj). The learning of latent factors is

conducted by minimizing the associated squared error function with regularization terms

on the training data. An SGD method is utilized to conduct the minimization.

Although the temporal information relating to user preferences is exploited in this ap-

proach, item latent factors are assumed to be static, which neglects the temporal interac-

tions between user preferences and item attractiveness. In addition, the dynamics of user

preferences across consecutive time frames are also omitted, which ignores the evolution

processes of user preferences and leads to the learned latent factors focusing more on the

local e↵ects of user preferences.
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Combine Temporal and Location Information Given a POI i, its user preference

fu(i) by user u, spatial preference fl(i) at location l and temporal preference ft(i) at

time t can also be combined to improve the performance of RSs [144]. All of these three

components return a score that measures the preference of POI i. PMF is adopted to

learn the components of user preference and temporal preference. The spatial preference

is built from the distance information and review scores from some reference websites. The

outputted scores from those three components for each location i are used as its feature

vector for a learning-to-rank method [140, 45] to get the final preference score for POI i.

Let c(u, i) denote the check-in frequency of user u over POI i, which is computed from

the training check-in data. Let Uu 2 RK
UP represent the latent factors of user u and

Vi 2 RK
UP represent the latent factors of POI i. The user preference fu(i) is defined

as fu(i) = UT
u Vi. The factorization method for temporal preference aims to model the

weekly periodic patterns of check-in behaviors. Therefore, the check-in data are bucketized

according to di↵erent days of the week. Let Ht 2 RK
TP represent the latent factors of

t-th hour of the week and Wi 2 RK
TP represent the latent factors of POI i. The temporal

preference ft(i) is defined as ft(i) = HT
t Wi. Because the dimensionality KUP is usually

di↵erent from KTP , the above equations use di↵erent latent factors Wi to represent the

attractiveness of POI. In addition, the frequencies of all users’ check-in data conditioned

on the hour of the week and the hour of the day are used as the temporal features of the

later learning-to-rank problem [140, 44].

For the spatial preference component, it is computed by not only considering the dis-

tance dist(i, l) between the query location l and the location of POI i but also using the

popularity scores obtained from some mainstream review websites.

BPR [188] is used to formulate the optimization problems to learn latent factors of user

and temporal preferences. SGD learns those latent factors from the historical check-ins.

Then, for each POI, its scores of both user and temporal preference are computed. By

combining with the spatial preference, those computed scores are used as the feature vector

for the POI. With the preference label in the training data, the method uses the ListNet

method [52] to obtain a learning-to-ranking model to generate the final preference score.
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The approach discussed above only exploits the temporal information to construct the user

feature vector that will be used by the ListNet method. The MF methods are thus used as

a pre-processing stage. The temporal model is also used to model the periodic patterns in

users’ check-in history data, which can be regarded as a binning-based approach because

the predictions are made with retrospective information. Meanwhile, the dynamics of user

preferences and item attractiveness are also ignored.

Modeling User Evolution The personal development of users could also be explored

and exploited to model the user evolution in RSs. Traditional RSs usually assume that

the user community evolves over time and has di↵erent preferences at di↵erent time stages

[128, 239, 145]. However, two users may have similar preferences for a product if they have

the similar experience levels, even if their responses to the products occur temporally far

away [170]. In other words, the personal clock is considered when modeling the temporal

e↵ects of user evolution. Meanwhile, the user gains its experience as time goes, so the

experience is assumed to be monotonically non-decreasing. The di↵erent evolution stages

are therefore divided by users’ experiences.

Assume that there are E stages existing in the user evolution. Due to various background

associated with users, there is no requirement that a user needs to achieve all the experience

levels. For each rating ru,i given by user u to item i, there is a latent variable eu,i 2

{1, . . . , E} that identifies the experience level of user u at the time tu,i when the rating

ru,i is given. A simple monotonicity constraint on time and experience is imposed as

8u, i, j, tu,i � tu,j => eu,i � eu,j .

The latent factor model in CF is adopted to model rating ru,i, which is defined as

rec(u, i) = ↵ + �u + �i + UT
u Vi, where the latent factor ↵ is a global o↵set, the latent

factor �u and �i represent the bias for user u and item i, respectively. The latent factors

Uu and Vi represent the user preferences and item properties for user u and item i, respec-

tively. The above equation is modified to incorporate the personalized experience level as

rec(u, i) = ↵(eui) + �u(eui) + �i(eui) + UT
u (eui) · Vi(eui).
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Let ⇥ = {↵(e),�u(e),�i(e), �u(e), �i(e)} and ⌅ = {eui}. Those latent factors and experi-

ence variables can be learned by minimizing the mean squared error of the predictions on

a set of training rates R as follows,

(⇥̂, ⌅̂) = argmin
⇥,⌅

X

r
u,i

2R

1

|R|(ru,i � rec(u, i))2 + �⌦(⇥), (2.12)

s.t. tu,i � tu,j => eu,i � eu,j , (2.13)

where ⌦(⇥) is a regularization term to prevent overfitting and � is its regularization

coe�cient. Because similar experience levels should have similar parameters, a smooth

constraint is imposed on adjoined experiences as ⌦(⇥) =
PE

e=1

||⇥e � ⇥e+1

||2
2

, where ⇥e

is all the parameters defined with experience level e.

The above optimization problem is non-convex. By alternatively optimizing against ⇥

and ⌅, the local optimal solution can be obtained. Given the categorical variable ⌅, ⇥

can be obtained at each iteration by using the L-BFGS method [150], which is a quasi-

Newton method for non-linear optimization problems with many variables. Then, by

fixing the learned ⇥, the discrete variable ⌅ can be obtained by solving a longest common

subsequence problem [100] in dynamic programming [65].

The approach discussed above can also be regarded as a binning-based approach with a

special treatment for time intervals with the personalized and variable length. Therefore,

it is suitable for prediction in situations that exhibit periodic properties. Although it

imposes the personalized timeline that corresponds to di↵erent personal experience levels,

the approach only considers the user evolution in terms of experience gain and ignores the

modeling of dynamics of user preferences and item attractiveness. It does not explicitly

consider the temporal information relating to item attractiveness either.

Incorporate Various Temporal E↵ects The four main types of time e↵ects in MF-

based CF are also studied in detail [238]. The first three temporal e↵ects are related to

the bias term in the model: the time e↵ects of time bias, user bias and item bias. The last

e↵ect is related to the shifting of user preference over time. In addition to those four main
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types of time e↵ects, there are other types of simple time e↵ects, such as item-month e↵ect

and the e↵ects of user activity. After learning the latent factors using MF, the predicted

rating values are post-processed by taking into account those simple time e↵ects.

Let ru,i denote the rating given by user u to item i. A regularized MF model with bias

is defined as ru,i = µ + bu + bi + UT
u Vi, where µ is the average rating of all ratings. The

latent factors bu and bi represent user bias for user u and item bias for item i, respectively.

The latent factors Uu and Vi are used to capture user preference for user u and item

characteristics for item i, respectively. The time bias model is then derived by extending

the above equation as ru,i = µ+ bu+ bi+ bt+UT
u Vi, where the latent factor bt with t = tu,i

represents the time bias at the time that rating ru,i is presented. The user bias model

enhances the previous equation as ru,i = µ + bu + bi + bt
u,i

+ UT
u Vi + XT

u Z⌧ , where the

time interval ⌧ = ⌧u,i = tu,i � t. Latent factors Xu capture the user bias for user u, and

latent factors Z⌧ capture the temporal influences at time interval ⌧ . The item bias model

enhances the previous equation as ru,i = µ+ bu+ bi+ bt
u,i

+UT
u Vi+XT

u Z⌧ +ST
i Y!, where

! = !u,i = tu,i� t, and ST
i Y! represents the fluctuation of item i’s popularity within time

interval !. By incorporating the shifting of user preferences into the above equation, the

time-dependent MF model is finally defined as follows,

r̂u,i = µ+ bu + bi + bt
u,i

+ UT
u Vi +XT

u Z⌧ + ST
i Y! +

X

k

Gu,kLi,kH⌧,k, (2.14)

where latent factors Gu, Li and H⌧ are introduced for user u, item i and time interval

⌧ . By minimizing the mean squared error function with respect to the retrospective data,

those latent factors can be learned by using the SGD method.

Then, the simple time e↵ects are used to post-process the predicted rating. For example,

if the item-month e↵ect is used, the finally predicted rating is defined as ru,i  ru,i +

avei,t
m

(u, i), where avei,t
m

(u, i) is the average prediction error of item i at month tm as

avei,t
m

(u, i) =
P

(u,i)2K,t

m

(u,i)=t

(r
u,i

�r̂
u,i

)

n
i,t

m

, where ni,t
m

is the number of ratings of item i at

month tm and K denotes all the user and item pairs in user feedback.

Through carefully categorizing various types of temporal e↵ects on user feedback, the tem-

poral information in RSs could be captured more finely by latent factors in MF. When the
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user feedback does demonstrate those kinds of properties being modeled, it is reasonable

to expect the performance of RSs can be improved. However, the temporal dynamics of

user and item latent factors are still largely ignored, which shifts away from the modeling

of the tendency of user preferences and item attractiveness in RSs.

Infusing Heterogeneous User Feedback The temporal information in RSs could also

be fused with heterogeneous user feedback and social information from a friendship-based

social network [151, 50, 126] to improve the performance of RSs. For this approach, the CF

problem in personalized recommendations is usually treated as a ranking problem for each

user and the focus is shifted on modeling the relative ordering of items for each user rather

than the absolute rating values [153]. The heterogeneous user feedback is combined by

transforming both explicit and implicit feedback into a unified pairwise preference-based

representation. The user and item latent factors are learned at every time intervals to

exploit the temporal information from user feedback. Meanwhile, a temporal smoothness

regularization is adopted to ensure those latent factors change slightly over successive time

frames. The information from social friendship network is also explored and exploited to

alleviate the problem of data sparsity and the problem of cold-start users in CF.

The Bradley-Terry model [106] is exploited to construct the probability of user preference.

Let U denote the user latent matrix and V denote the item latent matrix. The user u’s

feedback on item i can be predicted as x̂ui = UT
u Vi. Let �̂u,i,j = x̂u,i � x̂u,j . The Bradley-

Terry model assigns the probability of pairwise preference as, P (�u,i,j = 1) = ��(�̂u,i,j),

P (�u,i,j = �1) = ��(��̂u,i,j), and P (�u,i,j = 0) = 1� ��(�̂u,i,j)� ��(�̂u,i,j), where �� is the

logistic sigmoid function with additional parameter � to control the probability of ties as

��(x) =
1

1+�e�x

. By dividing the feedback into T time intervals, a sequence of user latent

factor matrices {U
1

, . . . , UT } is used to learn the user preferences at every time interval.

The item latent factors are assumed to be static. Then, for a rating xu,it given by user u

to item i at time t, it can be predicted as x̂u,it = (Uu
t )

TVi.

By using X and X̂ to denote the stacking of xu,i and x̂u,i accordingly, user and item

latent factors can be learned by optimizing the Bradley-Terry model-based loss function
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Lbt(X, X̂), which is inspired by BPR. The optimization problem incorporating temporal

information is defined as L =
PT

t=1

Lbt(Xt, X̂t)+R(⇥), where R(⇥) is a temporal smooth-

ness constraint to avoid large fluctuation of latent factors across successive time intervals.

The temporal constraint is defined as follows,

R(⇥) = C
1

TX

t=1

||⇥t||2Frob + C
2

(
TX

t=2

||⇥t �⇥t�1||2Frob), (2.15)

where parameters C
1

and C
2

are regularization coe�cients. Then, the SGD method can

be applied to learn those latent factors.

Although the temporal smoothness regularization is imposed on the optimization problem

across time intervals, the dynamics of user latent factors are not modeled in the approach

discussed above. Meanwhile, item latent factors are assumed to be static over time. It

also neglects temporal interactions between user preferences and item attractiveness and

their influences on the evolution processes of user and item latent factors.

Modeling the e↵ects of Temporal Order Sometimes, the temporal information in

RSs can appear in an opaque manner. The quality of items that have been previously

exposed to the user should have some influences on the perceived quality of the current

item. In this regard, the temporal order of ratings could be exploited to improve the

performance of RSs. Two MF-based CF methods are proposed to incorporate the type of

temporal information [117].

Let the user-item interaction matrix R 2 RN⇥M denote ratings given by N users over

M items. Let K denote the dimensionality of latent factors in the method. The user

preferences are represented by a N ⇥K-dimensional latent factor matrix U , and the item

preferences at the current time t are represented by a M ⇥ K-dimensional latent factor

matrix Vt. The currently predicted rating between user u and item i is Fu,i =< Uu, V i
t >

where < ·, · > is the inner product operator.

For the currently perceived item i for user u, without loss of generality, it is assumed that

the user’s last rated item is k and the item rated n times by the user before the current
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item is item l. By a slight abuse of notation, let V k
t�1 represent the latent factors of item

k and V l
t�N represent the latent factors of item l.

The first model is named as a multiplicative model as Fu,i =< Uu, V i
t , V

k
t�1, . . . , V

l
t�N >,

and the second model is named as an additive model, Fu,i =< Uu, V i
t > + < Uu, V k

t�1 >

+ · · ·+ < Uu, V l
t�N >. The regularized objective function is defined asR[U, Vt, Vt�1, . . . , Vt�N ] =

1

2

(F � R)2 + �U ||U ||2Frob + �V
t

||Vt||2Frob + · · · + �V
t�N

||Vt�N ||2Frob, where parameters �{·}

are regularization coe�cients. The SGD method is used to learn those latent factors.

Considering the number of regularization coe�cients, it may be not a trivial task for model

complexity control in the methods discussed above. Meanwhile, the models actually set

the time step per rating, which may make the problem of data sparsity extremely severe.

In addition, the dynamics of user and item latent factors are not modeled and the temporal

information relating to user preferences is also ignored.

2.3.2 Non-negative Matrix Factorization with Temporal Information

As mentioned in Section 2.1.2, although non-negative MF [63, 59, 137] has clear inter-

pretations over its latent factors, non-negative constraints usually imposes extra burdens

on computational resources and could be easily violated when considering the temporal

information in RSs. For the completeness of this survey, methods in this subsection, which

may have high computational complexities for RSs, are also included.

Temporal Information as Feedback The temporal information could be used as a

significant source of user feedback in non-negative MF to discover the themes associated

with item groups. A group is usually considered as a group of a mixture of themes, where

a theme consists of a set of items that share some similar patterns of context and content

in items [147].

Let P denote the set of photos in the system. For each photo, its color, texture, shape and

SIFT [156] are used as its content feature that is set as a D-dimensional vector. Then, a
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photo-feature matrix can be obtained as WF 2 R|P|⇥D, where the i-th row represents the

feature vector of photo i [147].

For context information, the following contexts are extracted to construct photo-context

matrices: the owners or users of each photo, the tags attached to each photo and the

uploaded time of each photo. Let U denote the set of users that have posted photos in the

system. The photo-user matrix WU 2 R|P|⇥|U| is defined as WU
i,u = 1 if user u owns photo

i and WU
i,u = 0 otherwise. Let Q denote the set of tags that have been attached to photos.

The photo-tag matrix WQ 2 R|P|⇥|Q| is defined as WQ
i,j = 1 if tag j is attached to photo

i and WQ
i,j = 0 otherwise. By dividing the timestamps into |S| disjoint but consecutive

time intervals, the photo-temporal matrix W T 2 R|P|⇥|S| is defined as W T
i,t = 1 if photo

i is uploaded within the t-th time interval and W T
i,t = 0 otherwise. All of those context

matrices are also normalized to ensure that
P

iWi,· = 1.

Let P 2 R|P|⇥K
+

denote the photo latent matrix. Its entry Pi,j captures the probability

that photo i belongs to theme j. Let ZF 2 RK⇥D
+

denote the theme-feature latent matrix.

Its entry ZF
i,j captures the relation between theme i and feature j. Those latent factors

can be learned by solving the following optimization problem,

min J(P, ZF ) = minD(WF ||P · ZF ), (2.16)

st. P 2 R|P |⇥K
+

, ZF 2 RK⇥D
+

,
X

j

Pi,j = 1 8i, (2.17)

where D(A||B) is the KL-divergence [98, 36] between matrix A and matrix B, which is

defined as D(A||B) =
P

i,j(Ai,j log
A

i,j

B
i,j

� Ai,j +Bi,j). Similarly, the context latent factor

matrix can be learned by using the objective functions, J(P,ZU ) = D(WU ||P · ZU ),

J(P,ZQ) = D(WQ||P · ZQ), and J(P,ZT ) = D(W T ||P · ZT ), where ZU , ZQ and ZT

represent the user latent factor matrix, tag latent factor matrix and temporal latent factor

matrix, respectively. The joint optimization problem over both the context and content

features can be thus formulated [147]. This optimization problem is no longer concave. A

local optimal can be found by a recursive updating method inspired by [137].

Although the method discussed above exploiting temporal information to generate recom-

mendations, it does not consider the personalized recommendation, which should be the
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focus of the current study of RSs. Meanwhile, it does not consider the dynamics of latent

factors, which shares the weaknesses of the methods discussed in previous sections.

Temporal Information as Regularization With new documents keeping arriving

in the system, the existing topics are evolving and new topics are emerging. The non-

negative MF method, which has a clear interpretation for topic extraction and clustering,

has been used to discover and cluster latent topics for documents at every time step.

Meanwhile, the existing topics should evolve smoothly over time while the new topics

should be encouraged to emerge. In this regard, the temporal regularization is developed

to impose the constraint over the temporal behaviors of latent factors representing the

relations between documents and topics and the relations between topics and terms [193].

Let X(t) 2 RN(t)⇥D denote the observed document-term matrix at time t, where N(t)

represents the number of documents existing in the system and D is the number of terms.

The (d, r)-th entry of X(t) is statistically weighted using its standard term frequency. Let

X(t
1

, t
2

) denote the vertical concatenation of the document-term matrix X(t) from time

t
1

to time t
2

. At the current time t, the system only considers the data streaming in a

time window of size !. That is, X(t� ! + 1, t).

Assume that there are K(t) topics at time t, and the topics are not removed even if its

popularity diminished. Therefore, K(t) is monotonically non-decreasing. Let W ⇤ denote

the document latent factor matrix at time t, which has the same number of rows as the

number of documents accumulated in X(t � ! + 1, t). The last N(t) rows of W ⇤ are

the weight matrix W (t) that corresponds to the document-term matrix X(t). Let H(t)

denote a topic latent factor matrix, where the number of rows is set to be K(t). At time

t, Kem = K(t)�K(t�1) is the emerging topics and K(t�1) is the evolving topics. They

have corresponding topic latent factor matrices Hem and Hev.

The Hodrick-Prescott trend filtering [187] is used to impose temporal constraints on

emerging topics. It estimates the unobserved latent variables at each time step from

a series of scalar observations in data. The emerging topics wi, which is the i-th col-
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umn in the document latent matrix, are encouraged to grow over time. Let the matrix

S 2 {0, 1}T⇥N denote the time-document matrix. Its (i, j)-th entry equals to 1 if docu-

ment j appears in the i-th time interval and 0 otherwise. The objective function is defined

as minW,H ||X(t � ! + 1, t) �WH||2Frob + µL(Swi), where µ controls the importance of

the hinge loss L that has a weight ct at each time t, and Swi accumulates the temporal

contribution of topic i over documents. The optimization problem defined above is solved

by cycling through wi and hi while keeping other variables fixed, which is inspired by

K-SVD [15] for dictionary learning.

The above approach takes a special care of newly observed documents and imposes smooth

constraints across time frames. Meanwhile, the temporal information is also exploited to

encourage the survival of the emerging topic. However, no dynamics relating to document

and term latent factors have been modeled. The temporal constraint over the emerging

topic is also under a linear assumption which may not capture real-world scenarios that

topics are able to grow in a very fast and abrupt pace. The number of topics at di↵erent

time steps is dynamic and has a profound influence on the emergence of topics, but those

numbers are only empirically and manually determined.

Summary There are few studies on incorporating temporal information in non-negative

MF, especially for the binning-based approach. Although non-negative MF achieves huge

success in clustering and topic discoveries, the computational burdens introduced by this

approach may not trade well with its benefits for clear interpretations of latent factors

and the improvement of temporal performance of RSs.

2.3.3 Tensor Decomposition with Temporal Information

The tensor factorization [145, 182] extends MF by introducing latent vectors on the specific

time dimension to take care of the temporal information. Unlike other methods that

model the temporal influence of user and item latent factors, those methods usually focus

on the overall e↵ects of temporal information that are shared across all users and items.
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Therefore, this approach usually assumes that latent factors representing user preferences

and item attractiveness are static.

This approach adopts tensor factorization [63, 133], which maximizes the ranking-based

measure for prediction of the possible temporal-spatial correlations for tourists [231]. Let

U 2 RN⇥K be the latent matrix representing tourist preferences among N tourists,

V 2 RM⇥K be the latent matrix representing location attractiveness among M POIs,

and T 2 RL⇥K be the latent matrix representing the characteristics of temporal con-

text among L time slots. The preference Xu,s,t of user u to the s-th POI at the t-th

time slot can be described by the inner products of their corresponding latent vectors as

Xu,s,t =
PK

k=1

Uu,kVs,kTt,k.

In real world scenarios, the tourists’ interests of POIs are usually captured by graded rel-

evance. In this regard, the latent vectors described above can be learned by optimizing an

objective function that captures list-wise preference of users. The NDCG metric [98, 36],

which is a cumulative and multilevel measure of ranking quality, is adopted to form the

objective function. Let Pu,i,t denote the ranked position of the i-th POI in the recom-

mendation list of user u at the t-th time slot. By treating Xu,i,t as the relevance score,

the NDCG for user u at the t-th time slot is defined as NDCGu,t = Zu,t
Pn

i=1

2

X

u,i,t�1
log(1+P

u,i,t

)

,

where n is the number of places of attractions in the recommendation list and Zu,t is the

normalization factor. Then, the overall NDCG for all users and all time slots is defined as

NDCG = 1

N ·L
PN

u=1

PL
t=1

NDCGu,t.

The objective function can be thus formulated as follows,

L(U, V, T ) =
1

N · L

NX

u=1

LX

t=1

Zu,t

nX

i=1

2Xu,i,t � 1

log(1 + (1 +
Pn

j=1,j 6=i I(Xu,j,t � Xu,i,t)))
, (2.18)

where I(Xu,j,t � Xu,i,t) equals to 1 if Xu,j,t � Xu,i,t and 0 otherwise. Because of the non-

smoothness of the above indicator function, the objective function is non-di↵erentiable

with respect to latent vectors U , V and T . Therefore, the logistic function is used to

approximate the indication function. In order to avoid overfitting during the learning,

the Frobenius norms are added in the objective function. The latent parameters can then
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be obtained by optimizing the above objective function. The steepest gradient descent

method [36] is adopted to achieve this optimization.

Although the temporal information is exploited, it is only used as a kind of context in-

formation. The aspects of dynamic information residing in the temporal data are not

considered. For example, to model the dynamic information, the tensor factorization ap-

proach in [145], which will be discussed later, has imposed a multivariate normal random

walk over the consecutive time latent vectors.

2.3.4 Latent factors with Temporal Information

Conventionally, the temporal information is integrated into the procedure of MF to im-

prove the performance of RSs. However, the latent factors alone could be used to represent

temporal information in other optimization problems. By adopting latent factors, the per-

sonalized click shaping is developed to extend the user segment-based click shaping method

[11, 10]. Instead of learning the allocation plan between each user segment and every ar-

ticle to be recommended, a personalized allocation plan will be learned to provide the

personalized recommendation of items. The temporal data are bucketized by their times-

tamp, and only data from the current time interval are used to generate the allocation

plan for the next time interval [12].

However, the personalized recommendation cannot be directly generated by solving the

multi-objective program due to two main challenges. Firstly, for user segment-based click

shaping, unseen users can be classified into the existing user segments that are assumed

to be static in the model. However, this is not the case in the personalized situation,

because it is di�cult to predict who will visit in the next time interval. For unseen users,

it is challenging to compute personalized allocation plans. Secondly, it is computationally

expensive to solve the linear programming problem, considering the huge number of users

and items.

To overcome these problems, the localized multi-objective program that contains a large
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number of user dependent primal variables will be converted to its dual problem [163]

which only contains a few user independent dual variables [12]. The user specific alloca-

tion plan can then be computed on the fly from the dual optimal solution. Meanwhile,

some constraints are added to the optimization problem to ensure the convertibility. These

constraints make the optimization problem become strong convexity. As there is not any

information about which users will visit in next time interval in advance, the solution to

the quadratic programming problem [79] defined in the optimization problem can only

be approximated. The sampling method is used to select a set of users randomly. The

personalized allocation plan is only considered for those sampled users. Then, the dual

solution is obtained by solving a smaller quadratic programming problem. The personal-

ized recommendation is generated from personalized allocation plan that is reconstructed

from the solution of the dual problem of the personalized multiple objective programming

problems with respect to click-through rate and time-spent.

Apart from only recommending one item in the above approach, no collaboration, whether

it is temporal or not, among users and items are exploited. In addition, the model is

constructed based on the information from current time interval. Therefore the dynamics

of user preferences and item popularity are also neglected.

2.3.5 Temporal Information with Cross-domain Matrix Factorization

The cross-domain collaborative framework [139, 138] is used to model the drifting of user

interests over time. For any user u, its interests at di↵erent time intervals are modeled by

its multiple counterparts over those time intervals. The group level rating matrix, which

is a compact rating pattern representation and its entry expresses the expected rating

from one user prototype (group) over one item prototype (group), is considered as static

and shared across the temporal domain. The user preference and item popularity can,

therefore, be expressed as the convex combination of these prototypes. By assuming that

the user distributions and item distributions over those prototypes are changing over time,

the user interests can be modeled by the user distributions over user prototypes at each
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time interval. In order to alleviate the problem of data sparsity, it is also assumed that

the user and item counterparts of successive time intervals are closely related.

Let R 2 RN⇥M denote the rating matrix for N users and M items whose ratings span T

time intervals. The matrix Y , which has the same size as R, denotes the time index of

each rating in R as Yij 2 {1, . . . , T}. Let Rt denote the ratings in the t-th time interval

or temporal domain. For each user ui, {ui
1

, . . . , uiT } denotes its T counterparts.

Inspired by rating-matrix generative model in [138], a group-level rating matrix B 2 RK⇥L

is shared across the temporal domain for K user prototypes and L item prototypes. The

(k, l)-th entry in matrix B denotes the expected rating of user prototype k over item

prototype l. The discrete user distribution of user counterpart uit at time t is denoted by

pit with
PK

k=1

pit[k] = 1. Meanwhile, the discrete item distribution of item counterpart vjt

at time t is denoted by qjt with
PL

q=1

qjt [l] = 1. Then, a rating given by user i to item j

can be expressed as ri,j = (pit)
TBqjt [139].

The Bi-LDA method [185], which is a Bayesian latent factor model for MF, can be used to

treat the rating-matrix generative model with a fully Bayesian approach. It is straightfor-

ward to apply the Bi-LDA model for each user counterparts and item counterparts across

the T time intervals. However, due to the problem of data sparsity, the performance of the

direct usage of Bi-LDA is unsatisfied [139]. Based on the assumption that counterparts

across successive time intervals are similar, the generative process for pit and qjt at time t

can be modified as follows,

pit ⇠ Dirichlet(�pit�1), and qjt ⇠ Dirichlet(�qjt�1), (2.19)

where the parameter � is used to avoid the concentration of the distributions on few

components [37, 233]. Then, the collapsed Gibbs sampling [152, 186] can be used to

obtain the posteriors of those latent factors that are necessary to make predictions of ri,j .

However, the dynamics of user preferences and item attractiveness are ignored, and user

and item distributions over their corresponding prototypes are assumed to be changing

slightly, which may not catch up with the sudden change of user preferences and item

attractiveness in RSs.
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2.3.6 Adaptive Multi-hyperplane Machine with Temporal Information

By using the adaptive multi-hyperplane machine method [232], user preferences over cat-

egories of web events can be transformed into a label ranking problem [105, 225]. The

temporal information relating to user activities is used to generate those feature vectors

that contain temporally related information, such as, the intensity and recency computed

from the server logs. Meanwhile, the names of categories of web events are regarded as

the classes (labels) to be ranked [74].

Let the function g(i, x) denote a scoring function for instance x and class i. It is de-

fined as [74], g(i, x) = maxj wT
i,jx, where wi,j is the j-th class weight (i.e., hyperplane)

for the i-th class (label). The overall weight matrix W for L classes is defined as W =

[w
1,1 . . . w

1,b1 |w2,1 . . . w
2,b2 | . . . |wL,1 . . . wL,b

L

], where {b
1

, b
2

, . . . , bL} is the set of the num-

ber of class weights for each of L classes. The adaptive multi-hypeplane machine method

minimizes the following convex problem for the i-th training instance xt,

Lt(W |z) = �

2
||W ||2Frob + l(W ; (xt, yt); zt), (2.20)

where l(W ; (xt, yt); zt) = max(0, 1 + maxi2Y\y
t

g(i, xt) � wT
y
t

,z
t

xt), Y represents the set of

all labels, yt is the true label of instance xt and zt is calculated as an index of a true class

weight that provides the highest score. The SGD method is used to compute W .

The label ranking problem is di↵erent from the learn-to-rank problem because the latter

problem ranks over items rather than labels. Meanwhile, a set of hyperplanes is learned

for each label. Therefore, it may be computationally too expensive to apply this method

to personalized recommendations. The collaboration among users and items are not taken

into account either.

2.3.7 Graph model with Temporal Information

Graph model is also investigated and constructed to incorporate the temporal information

explicitly in RSs. By taking into accounts all related factors, a fully observed graph model
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Figure 2.2: An example of a session-based temporal graph [239].

is built and recommendations are generated by using random walking algorithms inspired

by the PageRank method. Meanwhile, the hidden graph model, such as the hidden Markov

model, is also exploited to represent the user preferences by its latent states and capture

the evolutions of user preferences by their transitional relations.

Fully Observable Graph Model Long-term and Short-term Interests After empir-

ically dividing the timestamps associated with the interactions between users and items

into bins (sessions), a session-based temporal graph can be constructed based on the trans-

formed input feedback that consists of pairs of < user, item > and < session, item > [239].

The constructed graph is a directed bipartite graph G(U ,S, I, E , w), where U , S and I

denote the set of user nodes, session nodes and item nodes in the graph, respectively. In

general, user node u connects to any item node i in which item i has been viewed by user u.

Those connected edges represent users’ long-term interests. A session node s connects to

those users and items that have interacted within the s-th time session. Those connected

edges represent users’ short-term interests. Figure 2.2 shows the constructed session-based

temporal graph. The edge weight function w(n, n0) in w assigns a non-negative weight to

any edge e(n, n0) in the set of edges E , which is defined as follows,

w(n, n0) =

8
>>>>><

>>>>>:

1 n 2 U [ S, n0 2 I,

⌘u n 2 I, n0 2 U ,

⌘s n 2 I, n0 2 S.

The di↵erent weights ⌘u and ⌘s are used to emphasize the di↵erent influences from long-

term and short-term e↵ects.
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Meanwhile, the transition matrix for the constructed graph that captures the propagation

relations among those nodes can be defined as follows,

�(n, n0) =

8
>>>>><

>>>>>:

1

|out(n)|⇢ , n 2 U [ S, n0 2 I,

( ⌘
⌘|out(n)\U|+|out(n0

)\S|)
⇢, n 2 I, n0 2 U ,

( 1

⌘|out(n)\U|+|out(n0
)\S|)

⇢, n 2 I, n0 2 U ,

where ⌘ = ⌘
u

⌘
s

. The set out(n) is defined as {n0 2 V : e(n, n0) 2 E}. The parameter ⇢

is the tuning parameter to control the impact of out-degree in the propagation over the

constructed graph. Then, an inference method based on the PageRank method could be

used to conduct the inference and recommendation, which is conceptually similar to the

random walking algorithms over the graphs developed in [141, 143].

The approach discussed above explicitly considers both long-term and short-term interests

of users. However, it still belongs to a binning-based approach, which is the post hoc about

the users’ interests in the past and more suitable for recommending items having periodic

properties. Moreover, although temporal interactions between user preferences and item

attractiveness are captured via designated session-nodes, the dynamic information across

time frames is not explicitly modeled by those session-nodes, whose influences may be

reduced during the transition propagation via item nodes in the model.

Similarity-based Method It is possible to exploit temporal information and item taxonomy

based on a graph model to generate personalized recommendations [102]. The purchase

history of users is uniformly divided into consecutive segments with a predefined time

interval T . For any segmented time frame or stage t, user u’s profile Ru
t is described

as a weighted category vector. The i-th entry represents the i-th category in the item

taxonomy. Its value is the number of times that items belonging to the category and its

subcategories have been purchased by user u within this time frame.

Based on the computed user profiles, three types of similarities are computed: user-user

similarity, item-item similarity and category-category similarity. Then, a multi-modal

graph can be constructed with user nodes, item nodes and category nodes. A block-wise

adjacent matrixW of the built graph is defined by the above three types of similarities. The
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random walk with restart method [183] can be used to compute a converged distribution

in this graph. Except for the usage of the restart node that represents the user under

investigation, the learning procedure is similar to the iteration stage used to obtain the

stationary distribution from a discrete time discrete value stochastic process induced from

a direct acyclic graph with transition matrix W. Because the state in the state space of

the stochastic process consists of users, items and categories, the recommended items for

user u can be generated from similar items, the most recently purchased item from the

similar users and the most popular items in the favorable categories.

The approach discussed above neglects all the available information outside of the current

time frame, because it constructs user profiles and item profiles from the data within the

t-th time frame to generate recommendations in it. In addition, it considers no temporal

dynamics in the model, which may lead to overlooking the influences of the long-term

tendency of user preferences and item attractiveness.

Pairwise Preference-based Method The methodology of dynamic pairwise learning can be

applied to improve the performance of RSs [34]. The pairwise learning method is developed

based on the implicit feedback extracted from users’ actions on portal services. In order to

generate recommendations, user segments are constructed by clustering users with their

feature vectors. The graph-based model is built for each user segment with the training

data that is only caused by users in that segment. The identical recommendations will be

given to all the users belonging to the same segment.

In order to extract the pairwise preferences from user actions over time in the method, the

logs of user actions are divided into a sequence of sessions as Su
t =< u; t; (d

1

, d
2

, · · · , dP );C >,

where Su
t denotes the grouped actions for user u’s at time interval t, (d

1

, d
2

, · · · , dP ) de-

notes the contents that are exposed to user u at time t and the set C represents the

exposed contents that are clicked by user u. Then, user u prefers content j over content i

at time t if j 2 C and i /2 C, which is denoted as di < dj .

For each user segment C, a directed preference graph at time interval t is denoted as

GC

t =< Vt, Et,WC

t >, where Vt is the set of content nodes at time t. The directed edge

53



2. Background

ei,j 2 Et is connected from node V i
t to node V j

t if di < dj at time t. The weight WC<i,j>
t

associated with the edge ei,j , which measures the strength of the preference, is defined as

WC<i,j>
t = ⇢WC<i,j>

t�1 + �C[t,t�1] , where �C[t,t�1] denotes the number of times that content

j is preferred over content i by any user in user segment C between time t and t� 1. The

parameter ⇢ controls the time decay rate of user preference over time. After building the

dynamic preference graph, an algorithm based on the PageRank method [181, 19] can be

used to compute the preferences SC
t of user segments over V items at every time interval

t by initializing it as SC<i>
t = 1

|V | for i = {1, . . . , V }.

The approach discussed above does not exploit the collaboration among users. In addition,

it imposes linear and Gaussian assumptions on the dynamics of hidden scores, which may

oversimplify the real-world scenarios in RSs. Meanwhile, the preferences of user segments

over items are directly modeled by hidden scores rather than the interactions between user

preferences and item attractiveness. This modeling approach may be not coping with the

problem of data sparsity in RSs either.

Hidden Markov Model A hidden Markov model [35, 211] is developed for generating

personalized recommendations to model the sequence of user visits to di↵erent blog articles

in each month. The model assumes that its state describes the classes of all the users.

Class specific observation models are also global. By initializing each user with a di↵erent

state distribution over latent classes, personalized recommendations at every time step are

achieved by computing the latent class distribution for each user using its historical data

[195].

Because the users browser various number of blog articles in each month, the observations

in every month are generated by using two distributions. Let Nu
t denote the number of

articles consumed by user u in month t. This count variable Nu
t is modeled as a set of

class specific negative binomial distributions [5], each of which has a pair of parameters

{(ak, bk)|1, . . . ,K} with K hidden classes.

Let Iu
t denote the set of articles visited by user u at time step t. The item selection
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process is modeled by a set of class specific multinomial distributions across all items.

The multinomial distribution in the k-th class has parameter ✓k, and each article in the

Nu
t observations is selected from those multinomial distributions.

The parameters and latent class states are learned from the training data by using EM.

The MAP extension of EM [35] is used to avoid overfitting. The model adopts Dirichlet

distributions [36, 98] as the priors for the rows of the transition matrix and the initial state

distribution [195]. The parameters of those priors are tuned based on the cross-validation

method [124]. After training the proposed model, the probability that user u visits article

i at next time step t+ 1 is defined as follows,

P (i 2 Iu
t+1

) =
X

k

P (Zt+1

= k)P (i 2 Iu
t+1

; ak, bk, ✓k), (2.21)

where Zk+1

denotes the latent class at time t + 1. Then, the article with the highest

probability is recommended to user u.

Although the dynamics of user preference is modeled by the transition of its hidden class,

there is no updating procedure considered in the model when new observations arrive. The

model is also constructed based on the hidden classes that a user belongs to. Because this

is a global assumption adopted during the design of the model, there is no collaboration

conducted. Meanwhile, the order that articles are observed is not modeled within the

time frame. The temporal order is only considered from one time step (month) to another.

Meanwhile, even if the individual user demonstrates the di↵erent paths of state transitions,

all of those behaviors are controlled by the identical model. Finally, the tendency of item

attractiveness is not taken into account.

Summary As discussed above, the graph model can be utilized to not only construct

interpretable recommendations to suit personal interests but also incorporate temporal

information in user feedback explicitly and seamlessly to RSs. However, it is challenging

to model the temporal influences and dynamics across time frames that are caused by

the tendency of user preferences and item attractiveness. Due to the random walking

algorithms adopted in recommendations, graph-based RSs are expected to achieve satis-
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fiable diversity for recommended results, but the accuracy of recommendations may be

compromised.

2.3.8 Discussion

In the binning-based approach, existing methods rely on future information to make the

predictions on unrated items in the past. Therefore, this direction can make proper predic-

tions for those temporal scenarios that exhibit periodic properties. Most of the methods

in the binning-based approach are based on model-based CF. In particular, latent factors

are utilized to represent user preferences, item characteristics, and temporal influences.

Meanwhile, the developed models are usually based on PMF, and the SGD method is a

common practice to learn those model parameters.

The developed methods in this direction place more emphasis on the local e↵ects of tem-

poral dynamics and tend to capture them through the introduction of some extra latent

factors. Although the temporal information in user feedback is widely exploited in this

approach, most of the methods in the approach do not consider the dynamics of user

preferences and item attractiveness. In other words, the dynamic systems of latent factors

across time intervals are largely neglected, and the item characteristics or attractiveness

are usually assumed to be static over time. This practice may be inadequate to cope with

the complexity of real-world scenarios. For methods considering the dynamics such as

[139, 193, 170], those dynamics are working as the temporal constraints or regularization

under the binning-based framework. Those temporal dynamics cannot work independently

if the underlying models are not extended to new time intervals by introducing extra latent

factors and retraining.

In real-world deployments, RSs are continuously collecting user feedback, it is necessary

to handle those newly observed data in the developed methods. However, there are no

such updating stages for methods in the binning-based approach. Instead, the models

are usually retrained with all the ratings up to date to make predictions over next time

interval. Furthermore, this approach usually introduces too many latent components to
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capture various causes behind user preferences and item attractiveness. Considering the

number of regularization coe�cients, it may add too much burden on model complexity

control.

2.4 Online Updating Approach for Recommender Systems

with Temporal and Dynamic Information

In real-world scenarios, it is not only necessary to consider temporal influences intrinsic in

the past user feedback but also essential to update model parameters to reflect the trends

introduced by the newly collected user feedback. In this regard, methods of the online

updating approach for RSs are developed.

2.4.1 Online Updating with Matrix Factorization

Similar to methods in the binning-based approach, a large portion of methods in the online

updating approach is also developed based on the MF-based CF. Some of the representative

methods in this direction will be discussed in detail in this subsection.

Online version for Probabilistic Matrix Factorization The online updating meth-

ods for the PMF method and the Top-one probability based ranking MF method [205] are

developed. The online updating methods [149] convert the batch based learning methods,

which are widely used in the learning of user and item latent factors, into a recursive

updating procedure, in which user and item latent factors are updating based on the

previously learned latent factors and the newly arrived ratings. Meanwhile, two popular

learning methods are exploited. They are the SGD method and dual averaging method

[242, 240].

Let ru,i denote the rating given to item i by user u. Without loss of generality, it is

assumed to be newly arrived. By using some simple algebraic rewriting, the gradient of
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the objective function in PMF with respect to latent factors can be recursively expressed as

Uu  Uu�⌘((gu,i�ru,i)g0u,iVi+�UUu), and Vi  Vi�⌘((gu,i�ru,i)g0u,iUu+�V Vi), where

Uu and Vi represent the latent factors for user u and item i, respectively. The parameters

�U and �V are regularization coe�cients for regularization terms to avoid overfitting. gu,i

represents the estimated value of ru,i, which is the product of corresponding latent factors

and expressed as UT
u Vi. g0u,i denotes the derivative of gu,i with respect to user or item

latent factors which are identified according to the context.

Let Iu denote the set of items that have been rated by user u. Let YU
u

denote the

average gradient of user u with respect to latent factors of user u in the dual average

method. It can be recursively written as YU
u

 t
u

�1
t
u

YU
u

+ 1

t
u

(gu,i � ru,i)g0u,iVi, and

YV
i

 t
i

�1
t
i

YV
i

+ 1

t
i

(gu,i � ru,i)g0u,iUu, where tu and ti denote the number of times that

user u have rated an item and item i have been rated, respectively. The average gradient

YU
u

is also an approximation of (
P

i2I
u

(gu,i�ru,i)g0u,iVi)/tu, which is the definition of the

average gradient of the square loss with respect to user latent factor Uu.

By solving the following equations for the average gradients of latent factors, user and

item latent factors are obtained in the average gradient method,

Uu = argmin
w

Y T
U
u

· w + �U ||w||2
2

, and Vi = argmin
w

Y T
V
i

· w + �V ||w||2
2

, (2.22)

where �U and �V are regularization coe�cients.

Similarly, the recursive formulation of the Top-one probability based ranking MF can be

derived. The only exception is the updating formula for item i, because the Top-one

probability is only defined in terms of users. Let Y V
i

t
i

denote the gradient of the objective

function in the Top-one probability with respect to latent factors of item i when the ti-th

rate is assigned to item i. The updating formula is approximated as follows,

Y V
i

t
u+1
 (1� ↵c·t

i)Y V
i

t
i

+ { exp(gu,i)P
k2Iu

t

u+1
exp(gu,k)

� exp(ru,i)P
k2It

u+1
u

exp(ru,k)
}, (2.23)

where Iu
t
u+1

denotes the set of items that have been rated by user u when there are tu+1

rates. The decaying factor gradually approaches 1 as the time goes. The rationale behind
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this approximation is based on the observation that the changes in the Top-one probability

are getting smaller when more ratings are revealed on the item.

Although the approximation used for item latent factors under the Top-one probability

presents some interesting techniques, the recursive formula in the approach discussed above

does not di↵erentiate the SGD method in practice. Because the SGD method usually

takes one sample at each iteration and it is initialized by the previously learned values.

Meanwhile, even though the approach presents some useful techniques to avoid retraining

the whole model when new observations are being accumulated, it actually does not model

any temporal and dynamic information on user feedback.

Online version of Matrix Factorization with One-pass updating An online train-

ing mechanism is usually required for the scenarios that usually run for a short period

[14, 16]. Therefore, each observed sample is used to update the model parameters only

once. This strategy makes the SGD method in learning procedure become a one-pass

optimization method.

A real-world scenario for one-pass updating, such as a single ad campaign, is demonstrated

in [14]. Instead of modeling a user as a linear combination of feature vectors, the inter-

dependency among user features is also explored. By assuming that all the users only

appear once, it is not necessary to use a projection matrix to map from user feature space

to user latent vector space. In this regard, user latent factors are completely constructed

from the context information.

Let K and D denote the dimensionality of latent factors and user feature vectors, respec-

tively. For user ui, its feature vector vu
i

is constructed from D standalone values and
�
D
2

�

overlapped values from feature vectors. Let s and o be the dimensionality of standalone

values and overlapped values respectively, and K = D · s +
�
D
2

�
o. Let ṽju

i

denote user

ui’s j-th feature vector whose entries are set to 1 except for those entries reserved for

standalone and overlapped components. Then, vu
i

2 RK is constructed as vu
i

=
QD

j=1

ṽju
i

.

Figure 2.3 shows the brief idea to construct user latent factors from feature vectors.
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Figure 2.3: An example of constructing a user latent vector from its feature vector with
D = 3 [14].

By treating the CF problem as a ranking problem, the probability of a click on the item

should be maximized. Let va
j

2 RK denote the latent factors of item aj . Then, the

score of the match is defined as S(ui, aj) = vTu
i

va
j

. Following the approach in [17], the

probability PC(ui, aj) of a click for (ui, aj) is defined as follows,

PC(ui, aj) = |C| · expS(ui

,a
j

)

P
(u

k

,a
l

)2N expS(uk

,a
l

)

, (2.24)

where C denotes the set of (user, item) pairs that result in a click, NC denotes the set

of (user, item) pairs that do not result in a click on the item, and N = C [ NC. Item

latent factors can then be learned by maximizing the log-likelihood over all the clicks as

⇥ = argmax log
Q

(u
i

,a
j

)2C PC(ui, aj). The SGD method with one pass is used to learn

those latent factors.

There is no temporal and dynamic information being exploited in the model. The online

aspect of the model only focuses on the strategy to update the model parameters. It does

not consider a latent factor matrix that projects user features to latent space. Therefore,

the applicability of the proposed method should be not very wide.

Online Version of Bayesian Personalized Preferences The static BPR approach

in Section 2.1.3 can be extended to an online version to make the real-time Top-N recom-

mendations. For social network applications like Twitter, a continuous stream of incoming
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tweets is arriving at a relatively high rate. By equipping with the online pairwise rank-

ing approach [71], the real-time Top-N recommendations for a set of tweets can be made

feasible based on individual preferences that are learned from the user’s past interactions

with Twitter.

Specifically, a pairwise ranking objective function is developed for PMF as follows [71],

argmin
✓={U,V }

L(P,U, V ) +
�U
2
||U ||2

2

+
�V
2
||V ||2

2

, (2.25)

where the matrix U represents the stacking of user latent factors and the matrix V is

the stacking of item latent factors. Parameters �U and �V are regularization coe�cients.

The set P is the set of tuples constructed from the data stream to reflect the pairwise

preferences of users, which follows the common practice in [188]. The SVM loss [36, 98],

or the hinge loss is used in Eq (2.25). This loss function is advocated by RankSVM [54]

for learning in the pairwise ranking task. The loss function L is then defined as follows,

L(P,W,H) =
1

|P |
X

p2P
h(yu,i,j · < Uu, Vi � Vj >), (2.26)

where h(z) = max(0, 1� z), and yu,i,j = sign(xu,i � xu,j). In the above equations, h(z) is

the hinge loss function, xu,i represents the preferences of user u over item i, Uu is the user

u’s latent factors and Vi represents the latent factors for item i.

User and item latent matrices U and V can be obtained by applying the SGD method to

Eq (2.26). Due to the nature of the online streaming, the learning algorithm should also

be bounded in both space and time. In this regard, the sampling approach is adopted

to reduce both space and time complexity in the inference procedure. Three sampling

mechanisms can be exploited to achieve this purpose. They are, single pass, user bu↵er

and reservoir sampling. In particular, the single pass sampling method does not remember

previously observed instances and takes a single pair from the input stream. The update

of the model is performed at every iteration using the sampled pair. The user bu↵er

method retains the latest n instances per user to update the model. Finally, the reservoir

sampling, which demonstrates the best performance in the experiments, retains a fixed

size of instances in a reservoir for all the users. This sampling mechanism has also been
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proposed as an e�cient solution to the problem of online AUC maximization for binary

classification [252].

The proposed method extends the static BPR model to an online model. However, the

model also neglects the modeling of temporal and dynamic information in the stream-

ing data. Meanwhile, although the experimental results demonstrate that the proposed

method outperforms some other baseline methods, such as, the weighted regularized MF

method, the comparison is not convincing because the compared methods are not updated

whenever the new data are available.

Online updating and O✏ine training In real-world scenarios, new items are con-

tinuously entering the RSs and the characteristics of old items keep changing over time.

An online component should be useful to cope with the newly arrived items and an o✏ine

component could be used to update the characteristics of the old items. For controlling of

model complexity, both of online and o✏ine components are usually based on the identical

model [155]. The di↵erences between those two components arise from the usage of the

underlying model. In particular, those two models are feed by di↵erent datasets and up-

dated at di↵erent frequencies. The online component frequently updates the online model

so that the newly arrived items can be timely recommended to the users. The o✏ine

component is only updated when a batch of the sets of newly arrived items is merged

into the o✏ine component. Meanwhile, the online component stores the sets of the newly

arrived data while the o✏ine component stores all the historical data.

Meanwhile, in most existing RSs that use latent Dirichlet allocation (LDA) to exploit the

context information [8, 228, 169], the number of topics to be modeled is set to be the

dimensionality of latent factors in the MF [155]. Meanwhile, latent factors are usually

initialized or bounded by the associated topic distributions learned from the corpus. This

approach implicitly assumes that the context information is the dominant e↵ect that

influences the learning of latent factors in MF [155], which is usually not true in practice.

In order to release this arguably strong coupling between topic distributions and item
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latent factors, a topic specific latent matrix X 2 RK⇥P is introduced as an indirection

layer, where P is the number of topics to be modeled and K the dimensionality of latent

factors. Let ✓d,i denote the probability that item i belongs to topic d. The item specific

latent factor matrix V 2 RK⇥M can be decomposed as V = XY , where the matrix

Y 2 RP⇥M represents the topic distributions over M items with its entry Yd,i = ✓d,i. The

topic distribution matrix Y is learned from LDA in which the corpus consists of the set

of item descriptions. Let U 2 RK⇥N denote the user specific latent matrix over N users.

The predicted rating given by user u over item i is described as ru,i = UT
u XVi.

For explicit feedback in RSs, the inputs in the pairwise-based learn-to-rank approach are

generated by comparing the relevance of any pair of rated items for each user. After

obtained the input data, latent factors are optimized to minimize the pairwise loss that is

described by the cross entropy cost function [120] as follows,

L = min
U,X

NX

u=1

X

(i,j)2⌦
u

� eru,i�ru,j

1 + eru,i�ru,j
· (r̂u,i � r̂u,j) + log(1 + er̂u,i�r̂u,j ) +

1

2
(||U ||2 + ||V ||2),

(2.27)

where r̂u,i denotes the predicted rating given by user u on item i as ru,i, and ⌦u denotes the

set of pairwise preferences built for user u. The parameter � is the regularization coe�cient

for regularization terms to prevent overfitting. The SGD method is used to obtain the

local optimal solutions to this optimization problem. However, the underlying model is

basically a static one, which attempts to fuse the context information via LDA with MF.

Finally, the personalized recommendation list for user u is generated probabilistically from

both the online and o✏ine components.

Although the approach discussed above presents a practical framework to cope with the

streaming of user feedback in RSs, it actually does not utilize any incremental algorithm

to implement the updating of either online or o✏ine component. The updating stage is

still conducting by retraining those components with the expanded dataset. Meanwhile,

no temporal and dynamic information in user feedback has been exploited to model the

tendency of user preferences and item attractiveness.
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Summary For MF-based online updating methods in RSs, the key observation is that

the learned latent factors should be updating when enough amount of observations have

arrived in the systems. For the purely incremental approach, methods aim to utilize the

newly available information to update the constructed model. The major focus has been

placed on the reduction of computational complexity to comply with the online context.

However, the temporal dynamics of user preferences and item attractiveness are largely

ignored in this direction. In contrast, the other approach in this direction models the

temporal dynamics of user preferences to reflect the current trends of users’ interests. The

newly arrived observations are usually used as the driven inputs to derive the predictions of

the nearest future interests of users. However, some separate stages are usually required to

accumulate the arrived data and update the models used in predictions o✏ine. Meanwhile,

the temporal dynamics of item attractiveness are usually neglected and the temporal

interactions between user preferences and item attractiveness are not modeled.

2.4.2 Online Updating with Memory-based Collaborative Filtering

Section 2.2 shows that the temporal information plays an important role in improving the

performance of memory-based collaborated filtering method in RSs. Hence, incremental

updating algorithms have also been developed [154] to make the developed models catch

up the latest tendency of user preferences.

Similar to the approach used in 2.2.1, a time-based decaying function is used to generate

the temporal relevance fu,i
↵,t for user u on item i at time t. This decay function is defined

as shown in Section 2.2.1. By incorporating the temporal relevance defined, the similarity

between item i and item j is defined as follows,

Si,j
t =

P
u2U i

t

\Uj

t

(fu,i
↵,t · ru,i)(f

u,j
↵,t · ru,j)

qP
u2U i

t

(fu,i

↵,t

·r
u,i

)

2

P
u2Uj

t

(fu,j

↵,t

·r
u,j

)

2

, (2.28)

where ru,i denotes the rating that user u gives to item i and U i
t represents the set of

neighbors of user u at time t. Thus, the similarity places more emphasis on the recent

ratings. Meanwhile, those items identified by this similarity measure are inclined to have
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linked users that assign similar ratings at time t. The score prediction r̂u,it for user u over

item i at time t can be expressed as a weighted average of ratings on the subset of the

nearest neighbors of item i as follows,

r̂u,it = r̄ut +

P
j2N i

t

\Iu

t

Si,j
t · fu,j

�,t · ru,j
P

j2N i

t

\Iu

t

Si,j
t · fu,j

�,t

, (2.29)

where N i
t is the set of the nearest neighbors of item i at time t and Iu

t represents all the

items rated by user u at time t. The r̄ut denotes the average rating of user u at time t. Note

that a separate decaying factor � is used in the score prediction to model the temporal

behaviors of user preferences more finely.

In order to enable online updating in memory-based CF, the temporal relevance should

be recursively computed as fu,i
↵,t+1

= e�↵ · fu,i
↵,t . Let P

i,j
t =

P
u2U i

t

\Uj

t

(fu,i
↵,t · ru,i)(f

u,j
↵,t · ru,j),

and Uu
t denote the set of items that are rated by user u at time t, and 4Uu

t = Uu
t \ Uu

t�1

denote the newly rated items by user u at time t. The quantity P i,j
t can be recursively

computed from P i,j
t�1 as follows,

P i,j
t =

X

u24U i

t

\Uj

t�1

(ru,i) · (fu,j
↵,t · ru,j) +

X

v24Uj

t

\U i

t�1

(fv,i
↵,t · rv,i) · (rv,j)+

X

k24U i

t

\4Uj

t

(rk,i · rk,j) +
X

l2U l

t�1\U
j

t�1

(f l,i
↵,t · rl,i)(f

l,j
↵,t · rl,j)

= 4P i,j
t + e�2↵ · P i,j

t�1, (2.30)

where the term4P i,j
t captures the incremental quantity incurred by the newly rated items.

Although the approach discussed above focuses on the incremental learning of user prefer-

ences from the newly arrived observations, it can be classified as an importance reweighting

approach that emphasizes the contributions from the recent ratings. Hence, it also su↵ers

from the problem that the significance of past data may be undervalued.

2.4.3 Online Updating with Tensor Factorization

A tensor factorization method that incorporates three facets, which are user preferences,

item characteristics, and temporal influences, has been developed at each time interval
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[114]. Instead of learning the latent factors representing the projection between each facet

and the corresponding dimension of the core latent component, an incremental learning or

online updating method is developed to adapt the latent factors to the current observations

on the basis of the newly observed inputs and the latent factors learned from the previous

time interval [114]. To alleviate the problem of data sparsity, the regularization terms,

which are forms of Laplacian matrices [172], are imposed on the latent factors to capture

the similarities of the entities. Those Laplacian matrices are constructed from the context

information in the training data.

Take the tweets dataset in [114] as an example. The dataset consists of a list of tuples

(s, u, w, t), where s denotes a tweet source, u is the target user mentioned by using “@user-

name”, w denotes the word that is included in the body of the tweet and t denotes the

time that the tweet is published. All the data are grouped by their timestamps into T

time intervals. Let U , S and W denote the sets of users, sources, and words, respectively.

Then, the data are modeled as a three-order tensor sequence Xt 2 R|S|⇥|U|⇥|W|, where

|S|, |U| and |W| are the number of sources, users and words, respectively. Meanwhile, to

reduce the data sparsity under the temporal context, Xt contains all the tuples (s, u, w, t0)

where t0  t.

The tensor factorization of Xt is then described as Xt = Yt ⇥S St ⇥U Ut ⇥W Wt, where

Yt 2 RDS⇥DU⇥DW is the core tensor sequence at time t with latent dimensions DS , DU

and DW . Matrix St 2 R|S|⇥DS , Ut 2 R|U|⇥DU and Wt 2 R|W|⇥DW are the latent factor

matrix for sources, targets and words, respectively. The users’ social relations, such as the

number of common friends, can be used to construct the Laplacian matrix LS . Similarly,

other context information can be used to construct the flexible regularization terms in

terms of the Laplacian matrices LU and LW . To reduce the computational complexity,

an approximation method to learn those latent factors incrementally is developed based

on some simple linear algebra operations with the assumption that all high order (greater

and equal to 2) perturbation terms in the formula expansion are trivial and safe to ignore.

The concrete updating equations after some linear algebra operations are omitted here for

clarity. The interesting reader could refer to [114] for more information.
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Although an incremental method is developed to conduct tensor factorization over the

temporal domain, the regularization terms are still static in terms of only exploiting some

static information. Moreover, temporal smoothness constraints are usually not imposed

on the regularization. Hence, the method is an online updating method for tensor factor-

ization with static regularization terms.

Online updating with Assumed Density Filtering In RSs, user feedback can

demonstrate in various forms. Three types of observation functions are also developed

to cope with various forms of user feedback [213]. They are observation function for rat-

ing based user feedback, observation function for the binary feedback and observation

function for a set of ordinal ratings on a user-specific scale. When the observation models

are not conjugate with the transition models, some approximations have been used to

make the computation tractable. Expectation propagation [174, 84] is used to fulfill this

task. To adapt the model to the latest observations, an updating stage based on assumed

density filtering (ADF) is also used.

Let the tuple (x, y,�, r) denote the rating based user feedback. Vectors x 2 Rn, y 2 Rm and

� 2 Rf represent the n-dimensional user feature vector, the m-dimensional item feature

vector and the f -dimensional other context feature vector extracted from the meta data,

respectively. The scalar r 2 R represents the rating. Following the approach in PMF, the

rating r is assumed to follow a Gaussian distribution as follows,

P (r|s, t, b) = N(r|sT t+ b,�2), (2.31)

where � is the standard deviation of the observation noise. Vector s 2 RK is a K-

dimensional trait vector defined as s = Ux where U 2 RK⇥n is the user latent factor

matrix. Similarly, vector t 2 RK is a K-dimensional trait vector defined as t = V y where

V 2 RK⇥m is the item latent factor matrix. The bias b is defined as b = �Tw where the

latent factors w model the weights over the context information �. Meanwhile, the method

places independent Gaussian priors over each factor of those latent factors.

For observation function for a set of ordinal ratings on a user-specific scale, the interpre-
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tation of scale may be di↵erent from user to user and the mapping from ordinal rating to

user internal rank may be nonlinear. Therefore, for each user u, a user-specific threshold

bu 2 RL�1 is maintained, which has L consecutive intervals (bu(i�1), bu(i)) with varying

lengths. As a fully Bayesian approach, it is also assumed that the latent threshold has

independent Gaussian prior as P (bu,i) = N(bu,i|µi,�2i ). The observation function with

binary user feedback can be regarded as a special case of the ordinal user feedback.

To handle with various forms of observation functions, an inference algorithm that com-

bines the variational message passing [237] and expectation propagation is developed,

which approximates the posteriors of latent variables when the analytical solutions are

not available. Meanwhile, ADF [227, 26] is also adopted to conduct the online updating

that incrementally takes care of newly observed feedback.

To be capable of modeling the tendency of user preferences and item attractiveness, the

dynamics of latent factors can also be modeled. For the online updating conducted by

ADF, the dynamics can be incorporated by assuming that the variance of a latent factor

follows a first order Gaussian random walk. For the full expectation propagation stage,

latent variables in the above observation models are repeated for each time interval. At

each time step, the backward messages and marginals are updated from future observations

for the posterior of latent factors. It thus conducts a smoothing estimation.

Although expectation propagation and ADF are used to approximate the inference when

it is applicable, the dynamics are still under Gaussian and linear assumptions. For the

inference conducted by the full expectation propagation, temporal dynamics are only ex-

ploited in the way as the binning-based approach does. The separate ADF only works as

online updating procedure. Meanwhile, the approach assumes that the dynamics intro-

duced by variances on every latent factor are independent of each other, and the e↵ects

of interactions among user and item latent vectors are largely neglected.
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2.4.4 Online Updating with Sampling Scheme

A set of informative user feedback could also be dynamically constructed to capture the

current tendency of user preferences and item attractiveness. A representative set of the

dataset is kept in a reservoir [72, 226]. User and item latent factors in MF-based CF are

updated by only using samples from this reservoir and the newly observed data [58].

In particular, the reservoir contains the most informative data. Instead of maintaining

an accurate sketch of all the historical data in the reservoir with a constraint of a fixed

size [72, 226], the sampling mechanism aims to maintain the current interests of users.

Let c denote the size of the reservoir. The t-th data will be added to the reservoir with

a probability of 1 � c
t . This probability reflects the observation that it is not necessary

to discard the input data immediately after the initialization. When the size limit of the

reservoir is reached, an old data instance in the reservoir will be replaced by the newly

observed data. For any instance si in the reservoir St�1, the probability that si will be

replaced is defined as P (si /2 St) = 1 � P (si 2 St�1), where P (si 2 St�1) / e
1

t�i . The

value t� i measures the time distance between the current time order t and the time order

i of the old instance si added into the reservoir. This probability reflects the idea that the

older the data is, the more possible it will be replaced.

After building the current reservoir, positive instances used to update the latent factors

will be sampled from the reservoir. There are also two sampling mechanisms commonly

used to obtain negative samples. The first strategy will give high probability over unseen

items that have largely predicted ratings. Under the assumption that unobserved items

are usually disliked by users, those items with largely predicted ratings should be corrected

with a high priority. The second strategy will sample unseen items for a user with high

probability if the unseen item has been rated by other users recently. Items with such

a property imply that they have some characteristics to distinguish the user that do not

rate them with other users that have rated. Hence, more emphasis has been placed on the

recent data, which may underrate the importance of past data. Meanwhile, after a long

period, the reservoir may be dominated by the recent user feedback.
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2.4.5 Discussion

Methods in online updating approach attempt to adapt model parameters to the latest

trends of user preference and item attractiveness by incorporating the temporal influences

of newly observed user feedback. However, compared with the dynamic approach that will

be discussed in next section, methods of this approach usually neglect the modeling of the

dynamics of the tendency of user preferences and item preferences.

Because the key component of methods in this direction is to develop some mechanisms

to cope with the newly observed user feedback, the concept of incrementally updating

the model parameters is widely adopted in those methods. Usually, it is not feasible to

decompose the learning and inference procedures into incremental ones. Therefore, some

assumptions and approximations are necessary to facilitate the derivation. Meanwhile, it

is also possible to rely on sampling mechanisms to keep the underlying models updated.

2.5 Dynamic-based Approach for Recommender Systems

with Temporal and Dynamic Information

In this section, methods in the dynamic-based approach for exploiting temporal dynamics

in RSs will be discussed in detail. Although methods share a lot of similarities with the

fundamental techniques adopted in other three approaches, the characteristic of meth-

ods in this approach is that the dynamics of the tendency of user preference and item

attractiveness will be explicitly taken into account.

2.5.1 State-space Approach

For methods based on the state-space approach, the Bayesian filtering techniques [26],

such as the Kalman filtering [158], are intensively involved in tracking the tendency of user

preferences. However, almost all the existing methods in the state-space approach rely on
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the linear and Gaussian assumptions for user preference, which oversimplify the real-world

scenarios in RSs. Roughly speaking, methods in this approach can be classified into latent

factors-based methods, which are developed to track latent vectors, and distribution-based

methods, which aims to track the distribution parameters.

Latent Factors based Methods Because latent factors are able to represent user

preferences compactly, most of the methods in the state-space approach rely on utilizing

latent factors as the states. However, there are few studies conducted in this direction,

which are discussed in detail in this section.

A Spatio-Temporal Approach

A spatio-temporal model is developed based on model-based CF [158]. The model adopts

a state space approach, where the latent factors in MF are treated as the state [218, 217].

The spatial model attempts to capture the correlations among users and items based on

implicit feedback and context information. The temporal component models the temporal

and dynamic information in user feedback through the adoption of dynamic systems to

model the process evolution.

Let Uu denote the latent factors that represent the preference of user u. A Gaussian

Markov random field [192] can be used as a prior to imposing an informative prior over

user latent factors as follows,

fU (U) /
Y

u,v

e�
↵

2 W
u,v

U

||U
u

�U
v

||2 , (2.32)

where matrix U is the stacking of all the user latent factors and W u,v
U is the similarity

between latent factors of user u and user v. The parameter ↵ is predefined, which controls

the strength of this prior. According to Hammersely-Cli↵ord theorem [134], the conditional

distribution of user u’s latent factors on latent factors of all other users can be reduced

from the joint distribution in Eq (2.32) as follows,

P (Uu|U
(�u)) ⇠ N (

P
v2U(u)W

u,v
U UvP

v2U(u)W
u,v
U

, (↵
X

v2U(u)

W u,v
U )�1I), (2.33)
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where U
(�u) denotes all the user latent factors except the latent factors of user u, and

U(u) denotes all the neighbors of user u that are identified by the Markov random field.

The matrix I is a proper identity matrix. Therefore, the dependencies among user latent

factors are modeled by ellipsoidal constraints that are functions of covariance matrices.

By combining the priors over user and item latent factors, the latent parameters U and V

can be optimized using the objective function below. This optimization objective function

is constructed identically in the way that is utilized in PMF to convert the probability

distribution to a deterministic objective function.

NX

u=1

MX

i=1

(ru,iUu
TVi)

2 + �(||U ||2 + ||V ||2) + ↵(tr(UT�UU) + tr(V T�V V )), (2.34)

where � is the standard deviation in the priors of latent factors and it works as the

regularization coe�cient in the objective function. The term �U is the graph Laplacian

[69] that is constructed from the similarity matrix WU as �U = DU � WU , where the

diagonal matrix DU is defined as D(u,u)
U =

P
v W

u,v
U . The trace term tr(UT�UU) can be

expressed as tr(UT�UU) =
P

u,v W
u,v
U ||Uu � Uv||2. This term penalizes the discrepancy

between user u and user v. The similarity matricesWU andWV are empirically constructed

from the context information or ratings in the training data.

Meanwhile, user latent factors are assumed to follow a first order Gaussian random walk.

The dynamic system for user u at time t is defined as follows [158, 217],

Uu
t = Uu

t�1 + wu
t , (2.35)

and the observation function for user u at time t is given as follows,

rut = Hu
t U

u
t + vut . (2.36)

Under this assumption, the Kalman filtering can be used to update latent factors U and

V . For simplicity, wu
t = �I and vut = �I with �,� 2 R+ for all users over all time steps.

After combining both spatial prior and the temporal prior, the complete likelihood of user

latent factors {U⌧}t⌧=1

and ratings {r⌧}t⌧=1

is defined as follows,

P ({U⌧}t⌧=1

, {r⌧}t⌧=1

|{WU,⌧}t⌧=1

, ✓) =
tX

⌧=1

P (U⌧ |U⌧�1, ✓)P (r⌧ |U⌧ , ✓)P (U⌧ |WU,⌧ , ✓), (2.37)
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where the observation function P (r⌧ |U⌧ , ✓) is defined in Eq (2.36), the transition distribu-

tion P (U⌧ |U⌧�1, ✓) is defined in Eq (2.35) and the spatial prior P (U⌧ |WU,⌧ , ✓) is defined

in Eq (2.32).

Due to the introduction of the similar matrix WU,t, the latent factors Uu
t cannot be up-

dated independently of other latent vectors in the Kalman filtering. Hence, the Kalman

filtering [77] has to update the state that is the concatenation of all the user latent vectors

simultaneously. It is also necessary to reduce the computational complexity of updating

the covariance matrix ⌃̄t, which is a Nk⇥Nk matrix. Then, the mean field approximation

[36] is adopted to approximate the posterior P (Ut|{r⌧}t⌧=1

, {WU,⌧}t⌧=1

, ✓). The developed

spatio-temporal model for CF does not model the temporal behavior of item latent factors.

This incapability is due to the linear and Gaussian assumptions imposed on the model.

If the item latent factors were also modeled into the state space, the observation model,

which is no longer linear, will violate the assumption. The Kalman filtering is thus not

able to be applied to track the tendency of user latent factors.

Kalman filtering with Non-negative Matrix Factorization in User Adoption

The behaviors of users adopting items across di↵erent time steps are modeled and the

personalized recommendations are made based on the evolving user preferences [80]. The

problem of user adopting items is di↵erent from the rating prediction problem in RSs.

Unlike the setting of rating prediction in which users only rate each item once, the users

in the context of temporal adoption can adopt the identical item more than once and each

adoption may have di↵erent quantity numbers.

Let Y 2 RN⇥M⇥T denote the adoption matrix, where N is the number of users, M the

number of items and T the number of time intervals that contains the timestamps when

the adoptions occur. Like the user-item interaction matrix in RSs, the adoption matrix

is highly sparse. Due to the nature of adoption matrix, it also makes sense to collapse it

along the time dimension and obtain a matrix Y ⇤ 2 RN⇥M where Y ⇤u,i =
PT

t=1

Yu,i,t.

Let {Xt 2 RK⇥M |t = 1, . . . } denote a set of latent factor matrices over time, where K is
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the dimensionality of the latent factor. Then, user preferences at each time step t can be

represented by user latent factors at time t. Let X⇤ 2 RK⇥M denote user latent factor

matrix for the collapsed adoption matrix Y ⇤. Similarly, let C 2 RK⇥N denote the item

latent factor matrix. Note that item latent factors are assumed to be static over time as

usual. The first-order linear dynamic system [60] is used to model the tendency of user

latent factors. In particular, four types of dynamic systems are proposed. The first type of

dynamic system of user u is defined as Xu
t = Au

tX
u
t�1+w and Y u

t = CXu
t +v, where Au

t is

the projection matrix for user u at time t. The item latent matrix C is separately learned

by using the non-negative MF where the prediction is defined as Y ⇤ = C ·X⇤. The variables

w and v are uncorrelated Gaussian noise defined as v ⇠ N(0, R) and w ⇠ N(0, Q), where

the covariance matrices R and Q are set to be 0.1 ⇤ I in the method.

In non-negative MF, the collapsed adoption matrix Y ⇤ is composed of the contribu-

tion of both C and X⇤. In the above model, C is learned from Y ⇤ and remains con-

stant while user latent factors are changing over time to reflect the temporal adop-

tions Y . Therefore, Xt has to be adjusted downwards to compensate the spread of Y ⇤

over time. In this regard, it is also possible to spread to the contribution of C across

time, which leads to the second type of dynamic system as Y u
t = CuXu

t + v, where

Cu = C
the number of observed item steps for user u . Note that the transition function in the dy-

namic system keeps unchanged.

In the above models, the projection matrix Au
t is di↵erent for each user at each time step.

Due to the problem of data sparsity in RSs, those transition functions may introduce too

many free variables and cause the parameter learning prone to overfitting. Therefore, the

third type of dynamic system will adopt a global projection matrix A for all users at every

time step, Xu
t = AXu

t�1 + w. The fourth type of dynamic system combines the idea of

spreading the e↵ect of C and the global projection matrix A, which has the following

dynamic system, Xu
t = AXu

t�1 + w and Y u
t = CuXu

t + v.

The dynamic systems learn their parameters dynamically at each time step. In particu-

lar, the projection matrix An,t is dynamically updated using Kalman or RTS smoothing

method [210, 80, 217]. Meanwhile, user latent factors are tracked by using the Kalman
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filtering. Although the model is based on the non-negative MF, the usage of RTS smooth-

ing and Kalman filtering will violate the non-negative constraint, which makes the learned

latent factors hard to be interpreted again. If non-negative constraints are adopted and

Lagrange optimization is used, the computational complexity will be too high to be ap-

plicable in RSs [80].

The approach discussed above imposes linear and Gaussian assumptions on the dynamic

system, which may not be adequate to catch up with sudden changes in the tendency of

user preferences. Meanwhile, the tendency of item attractiveness is ignored. Furthermore,

all the users share the identical parametric form of dynamic systems. By considering the

diversity of user preferences and a large number of users in the systems, this approach

may be not flexible enough to be tailored to user’s specific tendency.

Binary Feedback with Poisson Factorization In order to model the tendency of user pref-

erences and item attractiveness in the implicit (binary) feedback, the Poisson distribution

is also exploited [55]. Let K denote the dimensionality of latent factors in the system.

Similar to the latent factor representation used in [80, 145], U t 2 RK⇥N and V t 2 RK⇥M

are used in [55] to represent the latent matrices over N users and M items at time interval

t, respectively. For user u and item i at time interval t, the implicit feedback yu,it can be

defined as follows,

yu,it ⇠ Poisson(
KX

k=1

e(U
u,k

t

+

¯U
u

)(V i,k

t

+

¯V
i

)), (2.38)

where Ūu and V̄i represent the latent factors irrelevant to temporal e↵ects for user u and

item i, respectively.

Similar to the linear dynamic systems used above, the first order Gaussian random walk

models the temporal dynamics of latent factors across time frames. However, to capture

the idea inspired by the Poisson factorization [89], the transition model is imposed for

every latent factor of user u as Uu
k,t = Uu

k,t�1 + ✏U , where the Gaussian noise ✏U is defined

as ✏U ⇠ N (0,�2U ) over all the users. The transition model for each latent factor in item

latent matrix is defined symmetrically. Due to the usage of the Poisson distribution to

capture the binary feedback, the posterior distributions of latent factors are no longer
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analytically solvable and the Kalman filtering is actually not employed to update the

inference in [55]. Therefore, the variational inference is adopted to approximated those

posteriors. After obtaining the estimated posteriors, the prediction of user u’s preference

over unseen item i at time t can be estimated via the following formula, E[yu,it |Y] =

E
posterior

[e(U
u,k

t

+

¯U
u

)(V i,k

t

+

¯V
i

)], where the set Y represents the historical binary feedback up

to the current time interval.

Compared with methods in previous subsections, the method developed in [55] focuses on

the accurate modeling of the binary user feedback in RSs. The latent factors are used

to represent the user preferences and item attractiveness over time. Similar to previous

methods, this method still imposes linear and Gaussian assumptions over the transitional

relations over latent factors. Due to the non-conjugate property of the adopted observation

model, the Kalman filtering cannot be used to update the inference over those latent

factors across time frames. Therefore, to estimate the tendency of user preferences and

item attractiveness over time, this approach has to retrain the underlying model based

on all the historical data and the newly arrived feedback, which may not catch up with

the sudden changes in user preferences and item attractiveness. Meanwhile, due to the

adoption of Poisson factorization, the interactions and collaboration among user and item

latent factors can only happen to one particular latent dimension, which does not capture

the e↵ects across latent dimensions and may require a higher degree of freedom in the

underlying model than that of models in [80, 158].

Pairwise preferences with Dynamics User segments are constructed by clustering

users by their feature vectors to enable personalized recommendations. All the users

belonging to the same segment will be provided with the same recommendations. In order

to extract the pairwise preferences from user actions over time, the logs of user actions

are divided into a sequence of sessions as shown in Section 2.3.

A probabilistic model based on Bayesian hidden score method [222] is developed to gener-

ate user segment-based ranking and recommendations [34]. Let ri,j;ct denote the perceived

preference between content i and content j for user segment c at time interval t. The
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preference is assumed to have the following distribution,

ri,j;ct ⇠ P (ri,j;ct |si;ct , sj;ct ,�) = N(ri,j;ct |sj;ct � si;ct ,�), (2.39)

where � denotes the standard deviation of the Gaussian distribution. The latent factors si;ct

and sj;ct represent the intrinsic attractiveness of content i and content j for user segment

c at time t, respectively.

Each latent factor si;ct is assumed to follow a first order Gaussian random walk as follows,

si;ct ⇠ P (si;ct |si;ct�1,�) = N(si;ct |si;ct�1,�), (2.40)

where � is the standard deviation of Gaussian noise. Given the set of perceived preferences

R, the likelihood function of Bayesian hidden score can then be defined as follows,

P (R;↵,�) =
Y

t

Y

ri,j;c
t

2R

P (ri,j;ct |si;ct , sj;ct ,�)P (si;ct |si;ct�1,�)P (sj;ct |sj;ct�1,�). (2.41)

The SGD is used to maximize the logarithm of the likelihood function P (R;↵,�) to learn

the latent factors si;ct that correspond to the preference of user segment over contents.

Although dynamics are modeled by those methods, there are no recursive estimation

methods involved, such as Kalman filtering or ADF. Meanwhile, the method does not

exploit the collaboration among users. The preferences of user segments over items are

directly modeled by hidden scores rather than the interaction between user preferences

and item attractiveness. In this regard, the modeling approach taken above may be too

coarse for the personalized recommendation.

Non latent factor-based method An individual level hazard model is developed to

estimate the user preferences from the time duration that the user has spent listening to

a song [62]. Meanwhile, it is assumed that the duration that a user listens to a song is

proportional to the utility that the user derives from the song. A log-normal distribution

[64, 110] is used to model the listening duration yu,i of user u for song i as follows,

f(yu,i|µu,�u) = (2⇡)�
1
2 (yu,i�u)

�1exp{�(log(yu,i)� µu)2

2�2u
}, (2.42)
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where µu is the mean for user u and �u the standard deviation for user u. Because only the

listening duration up to the length of the song in question is observed, a survival function

S(yu,i|µu,�u) is also applied. Then, the likelihood function over user u’s observations yu

is defined as follows,

L(µu,�u|yu) =
n
uY

i=1

f(yu,i|µu,�u)
�
uS(yu,i|µu,�u)

(1��
u

), (2.43)

where nu represents the number of observation for user u, and the parameter �u is the

censor indicator for user u. The mean µu is decomposed as µu = XT�u, where the matrix

X denotes song attributes and genre dummies from meta information and �u denotes the

latent coe�cients for user u. An aggregate model is also used to capture the impact of

the songs’ unique characteristics that are not reflected in X.

The Gibbs sampling method [86] that is equipped with Metropolis-Hasting MCMCmethod

[21] is used to sample the posterior distributions of model parameters �u, latent variables

�u and their covariance ⌦�
u

. Because there are numerous exploratory variables, the vari-

able selection method [97] is applied to each individual model to remove the redundant

variables. This variable selection stage is not applied to the aggregate model because all

song-specific constants are expected to be estimated. The goal of variable selection is to

eliminate the inclusion of j-th property inXu if �u,j is close to 0. Let u = ( u,1, . . . , u,P )

denote the indicator variables, where �u,p is set to 0 if  u,p = 0 and �u,p is set to 1 if

 u,p = 1. The Gibbs sampling method used in the above procedure is thus extended by

incorporating the posterior distribution P ( new
u |�u 

u

,�2u, 
old
u , yu), where yu = yu,· and

�u 
u

represents the reduced vector of latent coe�cients.

To dynamically update model parameters �u, variables �u and  u, the particle filtering

(PF) [200, 60], which is one of the Sequential Monte Carlo methods [75], is used to track

and update them whenever new observations arrive. The observation function in PF is

based on the reduced set of variables obtained from the variable selection stage. The

transition function adopts the first order Gaussian random walk.

Although the PF method is used to update model parameters and latent coe�cients when

new observations arrive, the observation function only models the individual’s observa-
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tions and thus no collaboration involved. Meanwhile, the collaborative customization only

serves as the average over the uncertainty of individual models and the aggregate model,

which does not share the ideas of CF. Moreover, the dynamics of item attractiveness are

neglected.

Summary As discussed above, the dynamic approach based on latent factors in RSs

not only represent user preferences and item attractiveness compactly but also explicitly

tracks the tendency of user preferences via the evolutions of user latent factors. However,

those models usually impose some restrict assumptions about the evolution process, which

may not capture the real-world scenarios accurately. In addition, the temporal interactions

and collaborations between user preferences and item attractiveness are largely neglected,

which may not catch up with the sudden changes in user preferences and item attractive-

ness across time frames. For methods based on non-latent factors, the parameters of some

distributions are usually treated as the states and tracked. Because a proper distribution

capturing user feedback is sometimes application dependent, methods in this approach

are not as general as methods in dynamic approach based on latent factors. Similar to its

counterpart, dynamic approach based on non-latent factors usually ignores to model the

temporal information relating to item attractiveness and temporal interactions between

user preferences and item attractiveness.

2.5.2 Dynamics Modeled by Temporal regression

The linear regression model [176, 167] is also adopted to model the dynamics of user

preferences for exploiting the temporal dynamics in RSs. The learned models are usually

fixed after the training period, which may not capture the trends in user preferences and

item popularity over time. Meanwhile, compared to the first order random walk that

functions as a random search in state space or parameter space, the learned regression

model is a universal one that guides the dynamics across all users. This modeling approach

may be too coarse to fit into the diversity of user preferences in RSs.
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Linear Regression Models A simple regression approach for each item could be used

to model the short-term dynamics of the item. The short-term evolution of the probability

that items are rated is modeled by a temporal regression model [42].

Let pi(t) denote the popularity of item i at time t. Then, for movie i, its popularity pi(t)

at time t is modeled as follows,

pi(t) = ↵i,0 + ↵i,1(t� t
0

) + · · ·+ ↵i,K(t� t
0

)K , (2.44)

where t
0

is the time index of the beginning time interval in the training data. Model

parameters {↵i,0, . . . ,↵i,K} are learned from the training data that only span a short

period, and model complexity K is selected from empirical studies, such as the cross-

validation method.

In order to incorporate the temporal information in personalized RSs, the preference

score(u, i, t) of user u on item i at time t is defined as follows,

score(u, i, t) =
1p

|R(u, t)|

X

k2R(u,t)

wk,i + pi(t), (2.45)

where R(u, t) represents the set of items that have been rated by user u at time t, and the

latent factor wk,i represents the contribution from item k to item i. The parameters in

pi(t) and latent factor wk,i over all users and items are jointly learned with the constraint

that score(u, i, t) � score(u, j, t) if item i has been rated at a rate greater or equal to 3

while item j are not. A ranking loss, which is an instance of a non-separable loss in [234], is

used to relax the constraints and form the objective function of the optimization problem.

Then, the SGD method is used to learn those parameters and latent factors. Finally,

the personalized recommendation list is generated by ranking items via the predicted

score(u, i, t) over the next time interval.

As discussed above, there may be too many free parameters to learn a model with a satisfi-

able ability of generalization. This problem may be getting worse when the available data

are very sparse, which is not uncommon in the context of exploiting temporal dynamics

in RSs. Meanwhile, this approach does not exploit the collaboration among users, which

is essential to cope with the problem of data sparsity in RSs.
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Online learning and O✏ine initialization A fast online learning stage is developed

to track item latent factors that represent the item characteristics over time [9]. The

parameters of the linear regression model used for online tracking are initialized by an

o✏ine learning stage, which is conducted much less frequent than the online stage.

Both online and o✏ine components share the same observation models. For binary feed-

back, they use the Bernoulli distribution to model an observation as yi,jt ⇠ Bernoulli(pi,jt ),

where yi,jt is the binary feedback given by user i on item j at time t and pi,jt is the suc-

cess probability of this distribution. The logarithm of the likelihood function of all the

observations {yi,jt } is given as follows,

l({yi,jt }; {pi,jt }) =
X

i,j,t

(yi,jt log(pi,jt ) + (1� yi,jt ) log(1� pi,jt )). (2.46)

Let si,jt = log pi,j
t

1�pi,j
t

denote the log-odds of pi,jt . For numeric feedback, the model assumes

that the observation yi,jt follows a Gaussian distribution with mean si,jt and standard

deviation �. Its logarithm of the likelihood function of all the observations is given as

follows,

l({yi,jt }; {si,jt },�) = �R

2
�
X

i,j,t

(yi,jt � si,jt )2

2�2
+ C, (2.47)

where C is the constant irrelevant to model parameters and R is the number of feedback.

For easy exposition, the following discussion is only based on the numeric feedback. The

situation of binary feedback can be similarly derived.

Let Uu
t 2 RK⇥1 and V i

t 2 RK⇥1 denote the latent factors representing the preferences of

user u at time t and the characteristics of item i at time t, respectively. Let Xu,i
t denote

the feature vector for both user u and item i at time t, which is computed o✏ine from the

context information related to user u at time t and item i. Because most of the contextual

information related to items is static, the item feature vectors are assumed to be fixed

over time as usual. The feature vector of item i is denoted as Xi.

The o✏ine component adopts a bilinear regression model to model the relationship between

the feature vectors and the hidden state si,jt used in Eq (2.47). In particular, the regression
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model is defined as su,it = (Xu,i
t )T b + (Uu

t )
TAXi + (Uu

t )
TV i

t , where b and A are model

parameters that will be learned o✏ine from the historical data. A Bayesian approach is

also taken to enhance the bilinear regression model in the above equation. The prior of

user latent factors Uu
t at time t is assumed to follow a multivariate normal distribution

as Y u
t ⇠ MVN (G · Xu

t ,�
2

UI), where model parameters G and �U will also be trained

beforehand. To further reduce the computational complexity, the item latent factors V i
t

at time t are assumed to be further decomposable as V i
t = B✓it, where the matrix B

represents an o✏ine learned projection matrix and item latent factors ✓it represent item

properties more compactly. The prior of ✓it is also assumed to follow a multivariate normal

distribution as ✓it ⇠MVN(0,�2V I) with standard deviation �V .

EM is used to learn model parameters with all the available historical data stored in the

o✏ine component. The Gibbs sampling method is used to approximate the posterior of

latent factors whenever the expectations are not analytically derivable. After learning

parameters ⌘ from the o✏ine component, the current item latent factors can be updated

through the online component. The online regression model is defined as su,it = (Xu,i
t )T b+

(Uu
t )

TAXi + (Uu
t )

TB✓it. This regression model is almost identical to the o✏ine model

except it only has one parameter ✓it. By treating this linear regression model as the

observation function in a dynamic system, the Kalman filtering can update latent factors

✓it with the assumption that the transition system of ✓it follows a Gaussian random walk.

Item latent factors are tracked based on the initialized regression model, which is used as

the observation function, from the o✏ine component. However, the regression model used

in the o✏ine component does not model the dynamics of latent factors across time frames.

Model parameters are learned in a sense that they are averaged over observations from

a set of time frames without considering any ordering constraints. Moreover, the online

component only tracks item latent factors and ignores user latent factors.
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2.5.3 Discussion

Almost all the methods in dynamic-based approach for RSs have the linear and Gaussian

assumptions, which may not be adequate to catch up with the sudden changes in the

tendency of user preferences. Meanwhile, the tendency of item attractiveness is largely

neglected. Under the linear and Gaussian assumptions used in the dynamic model, it is

not straightforward to jointly track both the user and item latent factors, because the

observation functions will become non-linear ones.

Furthermore, all the users share the identical parametric form of dynamic systems. This

approach may not be flexible enough to tailor the models to user’s specific tendency,

considering the diversity of user preferences and item attractiveness and a large number

of users and items in the systems.

2.6 Miscellaneous

There are some other studies relating to exploit temporal and dynamic information in

RSs. Those miscellaneous studies, which do not fit well into previous four approaches, are

discussed in detail in this section.

2.6.1 Personalized marginal utility with Temporal Information

Existing product RSs usually only consider the order of items that are purchased by users

[128, 189, 239]. However, the time intervals between purchases can also greatly influence

the users’ decisions in future [118]1. Intuitively speaking, within a short period and for

some items, users do not tend to purchase the similar items after the latest purchase.

1Nevertheless, in [118], only the possible time instances that a user will probably make
a purchase on one particular item has been studied and inferred. Item preferences at each
time instances for the user are largely neglected. Actually, experiments do not distinguish
various item transitions for one particular kind of item.
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This consumer behavior is known as the law of diminishing marginal utility [27]. Hence,

the purchase interval information from the purchase history of users is combined with the

marginal utility to generate product recommendations [251].

In practice, users have di↵erent preferences for items. Hence, the classic utility measure is

extended to be personalized one as �u,i =
P

k �
k
u ⇤ cki , where �u,i denotes the utility of item

i for user u, �ku represents the k-th latent factor of user u’s preferences and cki is the k-th

latent factor of the characteristics of item i. The utility surplus [27] for user u on item i

can be then defined as US(u, i) = �u,i � ↵u · pricei, where the parameter ↵u controls the

sensitivity of user u to the price of item i, and pricei is the price of item i.

Let Ti and Tj denote the set of timestamps at which item i and item j are purchased by

user u, respectively. Let � = {[ti1 , tj1 ], . . . , [tin , tjn ]} denote the pairs of timestamps that

are selected by the following criterion: for each item i with a timestamp ti
l

in the set Ti,

its counterpart in Tj has the smallest interval tj
l

� ti
l

and the time interval is also less

than a predefined threshold w. Then, the average purchase interval du,i,j representing the

average time interval between the post-purchase on item j after the purchase on item i

for user u is defined as follows,

du,i,j =

P
[t
i

r

,t
j

r

]2� tjr �
t
i

r

log(2+count(t
j

r

,t
i

r

))P
[t
i

r

,t
j

r

]2�
1

log(2+count(t
j

r

,t
i

r

))

, (2.48)

where count(tj
r

, ti
r

) measures the number of items purchased by user u between time tj
r

and time ti
r

. Due to the problem of data sparsity, it is impossible to generate the average

time interval d0u,i,j between any pair of items for a user, and d0u,i,j is then estimated

collaboratively based on du,i,j to alleviate this problem.

After obtaining the average time intervals, the utility surplus can be extended by incor-

porating them as follows,

US+(Xi, i, u) = �u,i · ((Xi + 1)�i �X�
i

i ) · (1 + max
j2H

u

PI(u, j, i))µi � ↵u · pricei, (2.49)

where Hu is the purchase history of user u, and parameters �i, µi and ↵u could be

learned from the data beforehand. The function PI(u, j, i) is defined as PI(u, j, i) =

1

log(|t�t
i

�d0
u,i,j

|+2)

. This function o↵sets the e↵ect of purchase intervals.
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Similar to PMF, the joint distribution defined over parameters ↵u, µi, �i, �u and ci

can be converted to an optimization problem via maximum likelihood estimation. The

above approach assumes that prior distributions of all the parameters follow the Gaussian

distributions whose standard deviations work as coe�cients in the regularization.

The above approach explicitly considers the time interval between user purchases to im-

prove the performance of RSs. However, only temporal information is exploited. The

dynamics between latent factors across time frames are not considered. Meanwhile, there

is no updating stage adopted in the model. After learning, the model can only make

predictions based on the model parameters that are fitted to the training data.

2.6.2 Dynamic Item Weighting and Selection for Collaborative Filtering

From the perspective of the classic instance-based learning approach [235], users in RSs

can be treated as instances, and ratings that users give to items can be regarded as

feature vectors that describe instances. Intuitively, some features are more important

and informative than others. Therefore, dynamic feature weighting and dynamic feature

selection can be applied to user-based CF to improve the performance of recommendation

by introducing the weights when computing the similarities among users [25].

Specifically, two groups of methods are studied to generate item weights. The first group

of methods yields the item weights based on some statistical methods, such as, variance

and mutual information [164] that use frequency counts as the empirical estimation of

the probability distribution. The second group exploits the tags attached to items to

compute the weights based on the empirically defined formula that measures the number

of common tags shared between items. After introducing the weighting mechanism, the

similarity, such as Pearson correlation coe�cient [115], is modified as follows,

WPCC(u, v, j) =

P
i(wj,i(ru,i � r̄u)(rv,i � r̄v)pP

i(wj,i(ru,i � r̄u))2
P

i(wj,i(rv,i � r̄v))2
, (2.50)

where wj,i is the weight between item i and item j, and ru,i is the rating that user u gives

to item i with user u’s average rating r̄u.
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Some empirical criteria are also adopted as feature selection methods. Among them, the

dynamic best-f-per-overlap [235], which selects f items with largest weights presented in

both the target user profile and profiles of its neighbors, outperforms other methods.

The above approach attempts to improve the performance of user-based CF by dynami-

cally selecting important features for each user. However, the temporal information which

is vital to model the tendency of user preferences and item attractiveness has been ne-

glected in the proposed method. Meanwhile, the experiments conducted demonstrate

that little improvement can be made through the proposed feature weighting and feature

selection methods when computing the similarities between users.

2.6.3 Evaluating the dynamic properties of recommendation algorithms

In order to measure the temporal performance of RSs, a temporal leave-one-out technique

is also proposed in [47]. This measurement is inspired by the methodology of the leave-

one-out method [124] for training static methods. The temporal leave-one-out technique

requires that the prediction of a rating ru,it for user u on item i at time t is made only based

on the ratings prior to time t. By sorting the temporal order of ratings and applying this

methodology to each rating, a temporal MAE metric is obtained, where MAE represents

mean absolute error metric [115].

Meanwhile, the number of ratings perceived by users is constantly increasing as the time

passes. For dynamic RSs, it is essential to measure the temporal behaviors of these meth-

ods when more and more ratings are arriving at the system over time. Therefore, a metric

called ProfileMAE [47] is proposed to measure the evolution of the average prediction error

as the number of inputs keeps increasing over time.

Although these evaluation metrics have some interesting properties, their computation

requires much more computational resources compared with commonly used metrics, such

as RMSE, precison@N and recall@N, in RSs. Meanwhile, these metrics are not widely

tested and verified and not widely noticed and acceptable in the study of RSs.
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2.6.4 Dynamic Negative Item Sampling

Existing work on pairwise-based ranking for CF methods relies on either random sam-

pling over unseen items or some heuristic approach to select negative items to construct

the training pairs [188, 191, 157]. Either approach is prone to introducing the bias in

the built training data and leading to a prolonged training period. Meanwhile, the tradi-

tional BPR-based methods optimize area under curve or AUC curve [252, 36], which may

be insu�cient for personalized RSs when the relative positions of recommended items in

the recommendation list do matter. Hence, a dynamic negative item sampling method is

developed to overcome these problems by sampling negative instances that aim to maxi-

mize the NDCG measure of the recommended list. The dynamic nature of the sampling

mechanism is from its procedure to obtain various negative samples at each iteration of

the SGD method that is used to learn the latent factors in the model.

The idea of LambdaRank method [45] is borrowed to ensure that the samples are optimized

against the NDCG metric. The gradient of the loss function C in the pairwise ranking

can be then expressed as follows [249],

@C(< i, j >u)

@!
= f(�i,j , ⇣u)(

@r̂u,i
@!
� @r̂u,j

@!
), (2.51)

where f(�i,j , ⇣u) is the lambda weight function for the pair of items i and j, and ⇣u

is the generated ranking list for user u. The notation < i, j >u denotes the pairwise

preference input for user u on item i and item j. The parameter �i,j is the learning rate

for this pair. For the purpose of NDCG maximization, the function f(�i,j , ⇣u) is defined

as f(�i,j , ⇣u) = �i,j 4NDCGi,j , where 4NDCGi,j represents the di↵erence between the

NDCG values when the ranks of item i and item j are switched.

It is computationally expensive to compute f(�i,j , ⇣u), considering the huge number of

users and items in the RSs. Therefore, a negative item sampling scheme is developed to

approximate �i,j 4 NDCGi,j , which e�ciently obtains negative samples without cycling

through all the items. The idea is based on the observation that the higher ranked unseen

items, regardless of its real preferences by users, have a large impact on the computation
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of �i,j 4NDCGi,j . Therefore, it is reasonable to place more emphasis on those negative

samples that will be ranked in the top positions.

Two sampling mechanisms are proposed. Both of them are based on a two-phase sampling

scheme. That is, a subset of unseen items is randomly drawn, which is used as the

candidate samples in the first phase. In the second phase, one negative item that has

a high rank with large probability will be sampled to construct the training pair. The

di↵erences between those two sampling mechanisms lie at the number of candidate samples

in the first phase and how to reject one but all candidates in the second phase.

The sampling schemes at each iteration in the optimization procedure not only enhance

the pairwise ranking-based MF by optimizing against NDCG metric but also develop an

e�cient and systematic way to obtain negative samples. However, it is very specific to

BPR-based methods and no temporal information in user feedback is exploited.

2.7 Summary

In this chapter, an intensive literature review has been conducted for existing methods

that exploit temporal and dynamic information in RSs. As mentioned in the chapter,

those methods can be roughly categorized into four approaches: the heuristic approach,

binning-based approach, online updating approach and dynamic-based approach. The

technical details and their advantages and weaknesses are also briefly discussed.

Roughly speaking, most of the methods in the heuristic-based approach are easy to un-

derstand and implement. However, the temporal dynamics of user preferences and item

attractiveness are largely neglected in this approach. Meanwhile, the temporal interac-

tions between user preferences and item attractiveness are also not considered. Although

those methods usually underestimate the importance of past feedback, they do not tend

to introduce any extra computational burden to their counterpart static methods and are

suitable for real-world deployments that encounter a huge number of users and items and

do not have a rigorous specification of the way to exploit the temporal information.
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For methods in the binning-based approach, their great computational complexity involved

in the training stage may impede their deployment as responsive tools for real-world

deployments. However, their low computational complexity for prediction still enables

them to be applied by repeatedly retraining their models o✏ine with all the data up to the

current timestamp. Methods of this approach tend not to model the temporal information

relating to item attractiveness and the dynamics and temporal interactions between user

preferences and item attractiveness. In addition, by borrowing the temporal information

after the timestamp when the predictions should be made, the recommendations generated

in this approach are actually post hoc about what interests would have been in the past,

instead of predicting the future interests of those users. However, for user feedback that

does demonstrate some periodic properties, methods in this approach are more proper

than reweighting the importance of user feedback.

Methods in the online updating approach take into consideration the continuous nature

of the gathering of user feedback in RSs. For some methods that incrementally update

their constructed models, this approach is able to reduce the computational complexity of

generating satisfiable recommendations and make the original methods more responsive

and attractive. For some methods that consider exploiting the temporal information from

the continuously arrived observations, they are more capable of catching up with the

current tendency of user preferences whenever new observations arrive in the systems.

However, most of the methods in this approach do not consider modeling the dynamics

and temporal interactions between user preferences and item attractions. Meanwhile, the

tendency of item attractiveness, which is also vital to the success of RSs, is also largely

neglected in this approach.

Most of the methods in previous three approaches can be regarded as somewhat simplified

versions of methods developed in the dynamic-based approach by fixing some of their

components as static. In other words, it is possible to deduct from methods in the dynamic-

based approach to approximate some methods in previous three approaches. However,

no matter whether the state space has been adopted or not, methods in the dynamic-

based approach tends to place linear and Gaussian constraints on both the dynamics of
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user preferences and the distributions of user feedback. Meanwhile, the tendency of item

attractiveness is usually ignored and assumed to be static over time. Furthermore, the

temporal influences and interactions between user preferences and item attractiveness are

not explicitly considered.

2.8 Discussion

Existing methods of the four approaches discussed above have explored and exploited the

temporal information in various ways. Methods in heuristic-based and online updating

approaches can find their origins in other fields, such as concept drifting [81], incremental

learning and regression in machine learning and data mining. Methods in the dynamic-

based approach also share some similarities with methods in object tracking and signal

processing. However, as discussed above, the characteristics and requirements of RSs, such

as the problem of data sparsity and the large number of users and items in the systems, im-

pose some new challenges and problems when exploiting and transferring those techniques

to RSs. Methods in the binning-based approach are quite unique for the study of RSs,

but they usually ignore the temporal dynamics of user preferences and item attractiveness

and are not as applicable as methods in other three approaches.

Although there exist some studies on utilizing temporal and dynamic information in RSs,

existing methods are still under some rigorous assumptions that simplify the real-world

scenarios. Meanwhile, even though the temporal dynamics of user preferences have been

covered in some of the methods discussed above, the temporal dynamics of item attrac-

tiveness is not investigated in those existing methods. The methodology of collaboration

plays a significant role in the success of CF in RSs. However, for those existing methods,

the temporal collaboration and interactions between users and items are also neglected.

Furthermore, almost all of existing methods in those four approaches merely focus on the

modeling of temporal dynamics of average behaviors of user preference and item attrac-

tiveness. The temporal dynamics of variations of user preferences and item attractiveness

are not taken into consideration.

90



2. Background

As discussed above, methods of each approach have their advantages and weaknesses.

However, compared with other three approaches, methods in the dynamic-based approach

demonstrate more interesting traits from the algorithmic perspective. Hence, the research

in this thesis will focus on the dynamic-based approach at first. The work conducted at

Chapter 3 and Chapter 4 aims to advance the methods in this category by overcoming

their shortages while preserving their advantages as much as possible. Then, Chapter 5

focuses on exploring and taking advantages of the temporal dynamics of variations of user

preferences and item attractiveness. Specifically, a fine modeling of the tendency of user

preferences and item attractiveness will be conducted at first, which not only tracks those

two components in RSs simultaneously but also releases the Gaussian assumption on the

generative procedure of user feedback. After equipped with this model, the personalized

and item-wise model structures of dynamic systems from user feedback is investigated.

This model aims to capture the tendency of user preferences and item attractiveness

flexibly. In order to achieve this goal, a new problem in the learning of personalized and

item-wise dynamic systems, namely, the cold start transition problem, has been identified,

defined and solved. Finally, the temporal dynamics of variations of model parameters in

RSs, which is usually overlooked, will be explicitly modeled. This modeling approach aims

to cope with the sudden changes and other local temporal e↵ects among user preferences

and item attractiveness. In terms of algorithmic perspective, it also aims to explore a new

approach to model the tendency of user preferences and item attractiveness.
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Chapter 3

Tracking the Tendency of User

Preferences and Item

Attractiveness

3.1 Introduction

In real-world deployments, user feedback is continuously gathered over a long period. As

depicted in Figure 1.1 and Figure 1.2 in Chapter 1, this feedback, to some extents, reveals

a tendency of user preferences and item attractiveness. As discussed in Section 1.2.2

in Chapter 1, existing methods exploiting temporal dynamics in RSs largely neglect the

modeling of temporal dynamics in both user preferences and item attractiveness. Even

though there exist some methods that attempt to exploit temporal dynamics, they usually

neglect to model the dynamic nature corresponding to the tendency of item attractiveness.

Hence, the inherently and significantly temporal interactions between users and items are

also ignored. In addition, user feedback is usually assumed to be Gaussian distributed,

which may oversimplify real-world scenarios. This chapter thus focuses on modeling these

important aspects intrinsic in user feedback to improve the performance of RSs over time.
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Because the datasets in practice are usually extremely sparse and the feedback is commonly

non-repetitive, a user’s interests over all of its unseen items are usually predicted by

exploiting its historical feedback and the historical feedback of “like-minded” users. This

idea is the exact mechanism adopted by collaborative filtering (CF) [115], which is widely

used in RSs. Inspired by this motivation, under temporal context, users’ tastes over their

unknown items within a concrete time frame are also extracted by exploiting the feedback

of users and other “like-minded” users on similar items up to the time frame. Furthermore,

as discussed in Section 1.1.3 in Chapter 1, the content or context related information in RSs

is usually unavailable and contains relatively static information. Taking all these factors

into consideration, the methods discussed in this chapter are developed on the basis of CF.

Specifically, those developed methods enhance MF-based CF with the capability to exploit

temporal dynamics in RSs. The fine modeling of the temporal and dynamic dependencies

among user preferences and item attractiveness across time frames is also emphasized,

which aims to explore the intrinsic temporal interaction in RSs as much as possible.

As discussed in Chapter 2, the dynamic-based approach shows some advantages over pre-

vious three approaches, i.e., heuristic based, binning-based and online updating based ap-

proaches. This approach explicitly models temporal dynamics by either a stochastic state

space model or temporal regressions. However, in such an approach, item attractiveness is

usually assumed to be static and Gaussian distributed. Hence, in order to overcome these

problems, the particle filtering [200] could be utilized as a dynamic technique to model

non-Gaussian observed behaviors and track latent factors representing user preferences

and item attractiveness. Instead of using a huge concatenated state vector consisting of

all the user and item latent factors, to make the developed method tractable, those latent

factors are separately tracked for individual user and item at each time frame. Although

this enhancement improves the performance of recommendations in general, specific care

must be taken as simply applying this compromised approach could lead the model to

develop in inaccurate direction. For example, the separation of user and item latent fac-

tors in the state space makes the developed method prone to the divergence of particle

filtering, especially when the tracked tendency is multimodal and highly nonlinear. As

this situation is not uncommon for user preferences and item popularity, new models and
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learning algorithms are further required to enhance the developed particle filtering-based

method to improve the temporal performance of RSs.

Meanwhile, under temporal context, the problem of data sparsity [115] becomes more

challenging as many users would be inactive for some consecutive time slots. Exploiting

additional information, such as contextual information or common patterns [115], or im-

puting missing data are two common approaches to mitigate the problem of data sparsity.

However, as discussed above, the gathering of extra information is usually infeasible in

practice. Hence, side information is not considered in this chapter. Alternatively, miss-

ing data are usually imputed as negative [212, 191] or other values [207, 112]. However,

these methods are only developed for static context on the basis of some heuristic rules

or point estimators. Furthermore, all these methods impute all or most missing data,

which not only heavily reduces the scalability of the underlying models but also reduces

the recommendation accuracy.

The work described in this chapter attempts to solve the above problems by [160, 161],

1) making both user preferences and item attractiveness time-varying, and tracking

both of their representations by exploiting temporal and dynamic structures in user

feedback, which could be non-Gaussian distributed,

2) creating a new dynamic model based on particle filtering and introducing factor

weights to not only enforce the interactions among user preferences and item attrac-

tiveness but also dynamically weight di↵erent dimensions of latent factors according

to their temporal importance,

3) utilizing the self-training principle [254] to construct the training data dynamically

based on the distributions of the current personalized prediction of user preferences,

4) proposing a new learning algorithm, without the introduction of nontrivial extra

computational complexity, to dynamically update the model in order to alleviate

the problems when separately tracking user and item latent factors.
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Specifically, the proposed system uses two sets of latent vectors to represent user prefer-

ences and item attractiveness compactly and respectively at each time step, whose ini-

tial settings are learned by a probabilistic matrix factorization method. Based on these

representations, the system employs particle filtering to track separately the tendency

of user preferences and item attractiveness over time. In order to enforce the tempo-

ral and dynamic interactions among user and item latent factors, the system utilizes a

novel probabilistic temporal bilinear model to improve further the temporal recommenda-

tion performance. In order to mitigate the problems of data sparsity and scalability, the

system also adopts a novel self-training mechanism to construct the training data dynam-

ically. The system then dynamically updates all the model parameters taking as inputs

the temporally constructed training data. For a Top-N recommendation, a personalized

recommendation list for each user is generated based on the predicted user preferences for

items, which are computed using the updated model parameters and the current user and

item latent vectors.

The rest of this chapter is organized as follows. Related work is presented in Section 3.2.

The particle filtering for MF method, the probabilistic temporal bilinear model and the

self-training scheme are discussed in Section 3.3, Section 3.4 and Section 3.5, respectively.

Section 3.6 covers the developed learning algorithm. The pseudo code and the analysis

of the computational complexity of developed methods are given in Section 3.7. The

performance of proposed methods and a variety of baseline methods is presented and

analyzed in Section 3.8. Finally, Section 3.9 will present the summary.

3.2 Related Work

In this section, some of the closely related work to the methods presented in this chapter is

briefly discussed as a reminder. The interested readers are suggested to use the detailed dis-

cussion in Chapter 2 as a reference. There have been few studies [158, 80, 128, 241, 195, 55]

on exploiting temporal dynamics to improve the performance of RSs where [158, 80] are

closely related to the work conducted in this chapter. However, item latent factors are
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only updated but not tracked in [158]. In [80], item latent factors are assumed to be static

and only user latent factors are tracked by Kalman filters. As the transition functions are

not learned o✏ine in this chapter, the method in [158] can incorporate [80] by removing

spatial priors and fixing item latent factors. In addition, the usage of Kalman filters re-

stricts the dynamics and observation functions to be linear and Gaussian which may not

be the case in practice. In [55], the Poisson distribution is employed to focus on the mod-

eling of the binary (implicit) feedback at every time intervals. Meanwhile, the linear and

Gaussian assumptions over the transitional relations of latent factors are still imposed.

The Kalman filtering cannot be applied to update the inference over latent factors due to

the non-conjugate property introduced by the observation model. The particle filtering

method has also been used to update a log-normal distribution dynamically that models

user preferences in music recommendation [62], assuming the staticness of item popular-

ity. Nonetheless, the method is not based on latent factors, and very application-specific

(otherwise, no proper features). Since [158, 80] provide the state-of-the-art approach for

the temporal recommendation, the proposed methods are compared to them as described

in later sections.

Conventional CF with imputation [115] su↵ers from the domination of imputed ratings.

Sampling missing data is only used in the non-temporal context in one class CF [191],

which can be deducted from the problem to be tackled in this chapter by setting relevant

ratings as positive examples. User or item oriented sampling schemes, which only based on

the times that items or users present, are proposed in [191]. However, the recommendation

accuracy is compromised to boost the scalability of the underlying method. Samples are

also selected based on pairwise estimation for one class CF to train the model iteratively

[249]. All of these sampling methods are developed under static context. Moreover, unlike

the developed methods in this chapter, these algorithms do not solve the problems of

scalability and sparsity at the same time.

The developed learning algorithm in this chapter has a close relationship with the algo-

rithm in [92], which exploits the EM method to learn a probabilistic bilinear model for

vision tracking. However, the methods developed in this chapter have a di↵erent gen-
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erative model. Meanwhile, the dynamic system in [92] is an identity function. Particle

filtering in [92] actually becomes an importance sampling method. In other words, no

dynamic and temporal information is used and the model can be regarded as a subset

of the model developed in this chapter. In [61], a predictive model is developed to make

recommendations of dynamic contents. This model is not based on latent factors. Instead,

it directly constructs user and item profiles based on static and temporal side information.

In addition, its parameters are only learned o✏ine.

In [9], an online regression method has been exploited to update both user and item

latent factors under the Gaussian assumption. However, both regression weight matrices

and projection matrices are fixed and not updated online. Unlike the dynamic approach

adopted in this chapter, latent factors in the method are not dynamically updated or

tracked but only retrained with data in the current time frame. Therefore, information

from latent factors at previous time frame are ignored, which makes this method function

as a binning-based approach.

Almost all of these methods utilizing temporal information improve recommendation per-

formance under error metrics, such as RMSE [115]. Instead of directly measuring user

preferences over the recommendation, error metrics compare the actual user ratings in the

test datasets with the numerical recommendation scores that are generated by these meth-

ods. In contrast, the developed methods in this chapter exploit temporal and dynamic

information to improve the temporal performance of RSs on accuracy metrics, such as top-

k hitrate [212], which attempt to measure recommendation relevance or user satisfaction

directly.

3.3 Particle Filtering for Matrix Factorization

A state space approach [200] is adopted in this chapter to represent compactly and track

the tendency of user preferences and item popularity. Even with linear and Gaussian

assumptions, it is not easy to define the state as a joint vector of user and item latent
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Figure 3.1: A slice of the graphical model of particle filtering for matrix factorization at
time t� 1 and t.

factors. This is because the coexistence of user and item latent factors can easily make the

observation function bilinear, which lacks analytical and tractable solutions. Furthermore,

it is shown in [196] that empirical distributions of the posteriors should be non-Gaussian.

Therefore, the particle filtering is utilized to track these latent factors simultaneously.

The particle filtering iteratively approximates regions of high density as discrete sample

points. As the number of particles goes to infinity, the approximation converges to the

true distribution [200]. In practice, given d-dimensional state space, the number of re-

quired particles should be O(2d) to achieve a satisfactory result [200]. In order to make

a compromise between the accuracy of user and item representation and tractability of

particle filtering, latent factors for each user and item are separately tracked. Figure 3.1

shows a slice of the graphical model of particle filtering for MF. Let Ru,i
t denote the rating

given by user u on item i at time t, and Uu
t and V i

t denote the latent factors for user u

and item i at time t, respectively. These latent variables are assumed to be marginally

independent while any rating Ru,i
t is assumed to be conditionally independent given latent

vectors Uu
t and V i

t [196].

3.3.1 The transition function

Because of the lack of prior knowledge, it is assumed that the transition functions of user

and item latent factors follow a first-order random walk driven by multivariate normal

noise. However, with the non-Gaussian observation model shown later, this assumption
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does not imply that the tendency of user preference and item attractiveness should follow

a normal distribution. These functions impose smooth constraints on the underlying

dynamics, but the usage of particle filtering enables the estimated latent factors to catch

up with a sudden change of the tendency. The transition functions at time t are defined

as follows,

Uu
t = Uu

t�1 + cut , (3.1)

V i
t = V i

t�1 + dit, (3.2)

where cut ⇠ N (0,�U I ) and dit ⇠ N (0,�V I ) are defined as unrelated Gaussian process

noises. Intuitively, the scalar values �U and �V should be di↵erent, considering the dif-

ferent evolving pace of user preferences and item attractiveness. Because their associated

Gaussian noises mathematically work as the step size of the randomly searching in the

latent factor space, they are set as �U = �V = � in this chapter for simplicity.

3.3.2 The observation function

The observation function should reflect the ability of a particle to reconstruct the given

feedback (ratings). In PMF, maximizing the log-posteriors over U and V is equivalent to

minimizing the sum-of-square error function with quadratic regularization terms for MF

[196], leading to the following objective function,

E =
1

2

NX

u=1

MX

i=1

Yu,i(ru,i � UuV
T
i )2 +

�U
2

NX

u=1

||Uu||2Frob +
�V
2

MX

i=1

||Vi||2Frob, (3.3)

where �U = ↵U/↵, �V = ↵V /↵, and || · ||
Fro

denotes the Frobenius norm.

The objective function in Eq (3.3) is an immediate candidate to define the observation

function as follows,

P (R|U, V, ✓) / e�E . (3.4)

However, this candidate function is sub-optimality for the Top-N recommendation task,

because an algorithm attempting to minimize the root-mean-squared-error in prediction

does not have a satisfactory performance for the Top-N recommendation [66]. Moreover,
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Eq (3.3) assumes that unobserved data in both training and testing cases are missing at

random. That is, the probability that a rating to be missing is independent of its value.

Nevertheless, it is shown [212] that feedback in RSs is generally not missing at random

(NMAR). Low ratings are much more likely to be missing than high ratings because users

are free to choose items to give feedback [212].

In order to design a suitable observation function, the key idea is to consider the ranking

of all the items, no matter whether they are observed or not. By treating all the missing

data as negative with weights (wAMAN), the observation function over imputed ratings

R̄u
t for s-th particle of user u is,

P (R̄u
t |U

u,(s)
t , {V i,(s0)

t }) =
S0X

s0=1

exp{�
MX

i=1

Wu,i((r̄
u,i
t � Uu,(s)

t (V i,(s0)
t )T )2+

�U
2
||Uu,(s)

t ||2
Frob

+
�V
2
||V i,(s0)

t ||2
Frob

)}, (3.5)

where

r̄u,it =

8
><

>:

ru,it if Y u,i = 1

rm if Y u,i = 0.

The value rm is an imputed value for all the missing data, which is regarded as the

average value of ratings in the complete but unknown data. The weight Wu,i is defined

to reflect the confidence over imputation and it is set as a global constant wm for the

imputed data for simplicity [212]. The latent vectors Uu,(s)
t and V i,(s0)

t represent the s-th

and s0-th samples of user and item latent factors at time t, respectively. The observation

function over the s0-th particle of item i is defined similarly. The S0 is the number of

particles for item i and exp represents the exponential function. The exponential loss

in the observation function is inspired by the formulation of the energy function in the

Markov random field [36]. This loss function will place more emphasis on those particles

that can reconstruct user preferences over items more precisely. Other loss functions, such

as the squared loss or absolute loss, have also been explored in the trails, but it is di�cult

for them to filter out well-performed particles for the Top-N recommendation task. For

later reference, this method is named as PFUV. Because the point mass approximation for
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posterior distributions is obtained via particle filtering, the usage of regularization terms in

observation functions can only slightly prevent the PFUV method from overfitting. These

terms are ignored in the following discussion for clarity.

3.3.3 Tracking

Assuming that the estimation at time t over all the item latent vectors Vt is given, the

posterior distribution of Uu
t is approximated by particle filtering with S particles as follows,

P (Uu
t |R1:t, {V i

t }) =
SX

s=1

wu,(s)
U,t �(Uu

t � Uu,(s)
t ), (3.6)

where the latent vector Uu,(s)
t and its weight wu,(s)

U,t represent the s-th particle of user u at

time t. Using the transition priors in Eq (3.1) and Eq (3.2) as the proposal distributions,

the weight at time t for all the particles is evaluated recursively as

wt = wt�1 · P (Rt|Ut, Vt), (3.7)

where P (Rt|Ut, Vt) is the observation function discussed in Section 3.3.2. The indicators

for users, items and particles are omitted in the formula for clarity. The particle Uu,(s)
t

is obtained by propagating the s-th particle Uu,(s)
t�1 using dynamics in Eq (3.1). The

estimation of item i’s latent factors at time t is obtained analogously. User and item

latent factors are estimated alternatively as shown in Algorithm 1.

3.4 Probabilistic Temporal Bilinear Model

In this section, a probabilistic temporal bilinear model will be developed, taking as input

the explicit feedback of users over items.

3.4.1 Probabilistic Temporal Bilinear Model

Although the approach discussed in the previous section has been developed to improve

the recommendation in general, the separate tracking of user preferences and item attrac-
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tiveness in the latent vector space can cause some other problems, such as divergence and

degeneration of particle filtering [200]. Hence, the approach is inclined to deviate from the

correct tendency of user preferences and item popularity. Meanwhile, di↵erent dimensions

of latent factors may have di↵erent interpretation and importance [115]. In addition to the

separate tracking of these factors, it is beneficial to explicitly and finely model the dynamic

importance of these latent dimensions over time, because this modeling can deeply exploit

the temporal and dynamic relations between user preferences and item attractiveness.

A novel probabilistic bilinear model is thus developed in this chapter to overcome these

problems. The model aims to not only mitigate the problems of divergence and degenera-

tion during dynamic modeling but also finely model the temporal and dynamic importance

between user and item latent vectors. Figure 3.2 illustrates a slice of the graphical model

of this probabilistic model at time t� 1 and t.

Specifically, the temporal weighting matrix {Dt 2 RK⇥K |t 2 1, . . . } explicitly models

such a dynamic relation among latent dimensions. Any rating at time t is now condi-

tionally independent given Dt and corresponding user and item latent vectors while the

latent vectors are still marginally independent as before. Extra degrees of freedom are

introduced by these temporal importance matrices, enabling the developed model to de-

pict the tendency of user preferences and item characteristics more finely. Through the

matrix that is learned online, the developed model dynamically and adaptively confines

the temporal variation of user and item latent factors over time. Each weighting matrix

will be optimized when a balance between exploitation and exploration in the latent space

is reached. This additional optimization also mitigates the divergence and degeneration of

particle filtering over a long period of time. The temporal dynamics at each time frame is

carefully extracted by Dt and temporal latent factors of users and items. The developed

model is thus also expected to tackle the problem of data sparsity in RSs partially.

The transition function Similar to the PFUV method discussed in the previous sec-

tion, it is assumed that the transition functions of user and item latent factors follow

a first-order random walk driven by multivariate normal noise. Similarly, with the non-
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Uu
t�1

V i
t�1

Ru,i
t�1

Dt�1

Uu
t

V i
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t

Dt

N

M

N

M

Figure 3.2: A slice of the graphical model of the probabilistic temporal bilinear model at
time t� 1 and t.

Gaussian observation model shown later, this assumption does not imply that the tendency

of user preference and item attractiveness should follow a normal distribution. The tran-

sition functions of user and item latent factors are identical to the ones described in Eq

(3.1) and Eq (3.2), and they are omitted here for clarity.

For ease of exposition, Dt is restricted to a diagonal matrix to reduce the computational

complexity of the model in this chapter. This simplification will not impact the following

discussion of the developed model. It is straightforward to release the current restriction

on Dt by vectorizing Dt and also adopting a first-order random walk as the priors, where

MCMC and the spherical Gaussian proposal could be used to sample each component of

it [236] during the M-step in Algorithm 1 that will be shown later.

The observation function By adopting the interaction matrix Dt to enforce the tem-

poral importance among user and item latent factors and capture the significance on

di↵erent latent dimensions, the observation function over imputed ratings R̄u
t for s-th

particle of user u is defined as follows,

P (R̄u
t |U

u,(s)
t , {V i,(s0)

t }, Dt) =
S0X

s0=1

exp{�
MX

i=1

Wu,i(r̄
u,i
t � Uu,(s)

t Dt(V
i,(s0)
t )T )2}. (3.8)
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Similarly, with S particles for user u, the observation function for s0-th particle of item i

is,

P (R̄i
t|V

i,(s0)
t , {Uu,(s)

t }, Dt) =
SX

s=1

exp{�
NX

u=1

Wu,i(r̄
u,i
t � V i,(s0)

t Dt(U
u,(s)
t )T )2}, (3.9)

where r̄u,it is defined in Eq (3.3.2). Similarly, with S particles for user u, the observation

function at time t for s0-th particle of item i can be derived.

Tracking Assuming that the estimation at time t over the matrix Dt and all the item

latent vectors Vt is given, the posterior distribution of Uu
t is approximated by particle

filtering with S particles as follows,

P (Uu
t |R1:t, {V i

t }, Dt) =
SX

s=1

wu,(s)
U,t �(Uu

t � Uu,(s)
t ), (3.10)

where � is the delta function and the latent vector Uu,(s)
t and its weight wu,(s)

U,t represent

the s-th particle of user u at time t, and Uu,(s)
t is obtained by propagating the s-th particle

Uu,(s)
t�1 using Eq (3.1). By using the Gaussian transition priors as the proposal distributions

in the particle filtering, the weight at time t for all the particles is evaluated recursively as

wt = wt�1 · P (Rt|Ut, Vt, Dt), (3.11)

where P (Rt|Ut, Vt, Dt) is the observation function. The indicators for users, items and

particles in it are omitted for clarity. The estimation of item i’s latent factors at time t is

obtained similarly. User and item latent factors are estimated alternatively. This method

is named as PTBM for later reference.

Prediction In order to estimate a particle’s weight for Uu
t in Eq (3.11), a weight of a

particle for V i
t is needed. Likewise, a weight of a particle is used for Uu

t to reweight a

particle for item latent factors. As the computation of all possible pairs of user and item

particles is too expensive, canonical particles [92] Ûu
t and V̂ i

t are resorted to representing

the total e↵ect of particles on the estimation for user u’s and item i’s latent factors at

time t, respectively.
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In general, canonical particles Ûu
t and V̂ i

t can be any proper function taking as input

{(wu,s
U,t , U

u,s
t )|s 2 1 . . . S} and {(wi,s0

V,t , V
i,s0

t )|s0 2 1 . . . S0}. In order to avoid the degen-

eracy problem [200] in particle filtering, particles will be resampled in proportional to

their weights. After resampling, the expectations of posterior distributions of Ut and Vt

are utilized as canonical particles, which are estimated as Ûu
t =

PS
n=1

wu,(n)
U,t Uu,(n)

t and

V̂ i
t =

PS0

m=1

wi,(m)

V,t V i,(m)

t for user and item latent factors, respectively. After learning the

interaction matrix Dt in next section, user u’s preference over item i at time t can be

estimated as Ûu
t Dt(V̂ i

t )
T .

3.5 Personalized Self-Training Method

In practice, the user feedback is usually unavailable before the recommendation is made,

which implies observation Rt at the current period is not available to estimate the tendency

of user preferences and item attractiveness before recommendation. It is straightforward

to use all the historical observations R
1:t�1 to approximate the estimation. However,

the ratings would be dominated by the past information and cannot represent the recent

tendency. An alternative approximation uses the most recent observation Rt�1 instead.

However, under temporal context, the ratings are too sparse for each user or item to track

the current tendency. The data sparsity can be reduced by imputing all the missing data

as shown in Eq (3.8). However, the dynamics in this approximation will drift away from

the true tendency due to the domination of imputed ratings in R̄t�1. Meanwhile, this

approximation does not have a satisfactory scalability due to the usage of all the missing

data.

Therefore, the self-training principle [254] is exploited to solve the problems mentioned

above. Instead of treating wAMAN, for each user at every time step, a subset of missing

items is dynamically selected as negative samples to complement the user’s most recent

observation. This personalized and self-training procedure not only distinguishes the past

and recent information but also avoids dominating recent observation with imputed data.
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3.5.1 Self-training sampling method

Given user u and its current unobserved items Im,u
t , a set of Nn,u

t items In,u
t ✓ Im,u

t is

selected by a multi-nominal distribution. The distribution is defined as follows,

P (x
1

, · · · , xNm,u

t

|Nn,u
t , ✓

1

, . . . , ✓Nm,u

t

) / ✓x1
1

· · · ✓
x
N

m,u

t

Nm,u

t

, (3.12)

whereNm,u
t is the number of unobserved items for user u until time t, {xi|i 2 {1, . . . , Nm,u

t }}

represents the times that unobserved item i would be selected as negative, and {✓i|i 2

{1, . . . , Nm,u
t }} is the probability that unobserved item i is disliked by user u. Without

restricting xi’s to binary variables, this personalized selection is adaptive. An unseen item

with a high probability will be selected more frequently than those with lower probability.

As the accumulation of wm for the same negative sample in Eq (3.8), more emphasis will

be placed on the sample. By imposing such restriction, Nn,u
t di↵erent items will be chosen.

This restriction will be adopted in the model for ease of exposition.

Confidence estimation A candidate negative sample should have a small prediction

error and a large estimation variance if the sample was negative. Given the historical data

R
1:t�1, ✓i is defined as P (r̂u,i = rm^var(r̂u,i)|R1:t�1) where r̂u,i = rm represents the event

that the predicted rating equal to the imputed value and var(r̂u,i) represents the variance

of prediction. Assuming prediction error and variance are conditionally independent given

latent factors Ut and Vt, the probability ✓i can be derived as follows,

✓i =

Z
P (r̂u,i = rm|Ut, Vt, Dt)P (var(r̂u,i)|Ut, Vt, Dt)P (Ut, Vt|R1:t�1, Dt)dUtdVt

⇠
SX

s=1

S0X

s0=1

wu,(s)
U,t wi,(s0)

V,t P (r̂u,i|Uu,(s)
t , V i,(s0)

t , Dt)P (var(r̂u,i)|Uu,(s)
t , V i,(s0)

t , Dt), (3.13)

where the predicted joint distribution of latent factors is estimated using particle filtering

described below, S and S0 are the number of particles used to track user u’s latent factors

and item i’s latent factors, respectively.
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Prediction Combining with canonical particles V̂t and Eq (3.13), the prediction distri-

bution of user u’s preference over item i is estimated as follows,

✓i ⇠
SX

s=1

wu,(s)
U,t P (r̂u,i = rm|Uu,(s)

t , V̂ i
t , Dt)P (var(r̂u,i)|Uu,(s)

t , V̂ i
t , Dt), (3.14)

where Uu,(s)
t are obtained by propagated Uu,(s)

t�1 as in Eq (3.1). A small distance between

the imputed value and the predicted rating usually means a high confidence that the item

should be negative. Thus, the probability of the estimated rating with respect to its true

value is defined as follows,

P (r̂u,i = rm|Uu,(s)
t , V̂ i

t ) = exp{�|Uu,(s)
t Dt(V̂

i
t )

T � rm|}. (3.15)

In terms of variance estimation, the estimated rating with most uncertainty is selected.

The probability of prediction variance can be estimated as follows,

P (var(r̂u,it |Uu,(1)
t , . . . , Uu,(S)

t , V̂ i
t , Dt)) = exp{ 1

S � 1

SX

s=1

(Uu,(s)
t DtV̂

i
t � Ûu

t DtV̂
i
t )}. (3.16)

3.5.2 Two-Phase Self-Training Method

Considering the large size and high sparsity of user-item preference matrix, the previous

sampling scheme using all the unobserved items is infeasible in practice. A two-phase

approach is utilized to reduce computational complexity.

In phase I, for each user u, a subset I 0n,ut of unobserved items Im,u
t is sampled. Generally,

this sampling scheme can be implemented in terms of any distribution that properly

represents NMAR. It is shown [212] that arbitrary data missing mechanism is NMAR as

long as missing data happen with a higher probability than relevant ratings do. A uniform

distribution of Im,u
t is utilized to avoid interfering prediction distribution, which has been

extensively used to handle some large datasets [249, 191]. For simplicity, it is set that

|I 0n,ut | = 2 ⇤Nn,u
t .

In phase II, the personalized probability ✓i will be computed only for candidates I 0n,ut .

Based on Eq (3.12), negative samples will be selected and then combined with the observed
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data Rt�1 to construct a sparsity reduced data R̄t at time t. User and item latent factors

are thus tracked by using this dynamically constructed data. The PFUV method equipped

with this two-phase self-training method is named as ST-PFUV hereafter, and the PTBM

method equipped with this self-training scheme is named as ST-PTBM for later reference.

3.6 Learning algorithm

In contrast to user and item latent factors in ST-PTBM, the interaction matrix Dt

is treated as model parameters and the EM framework [35] is applied to update its

value dynamically. Let D̄t denote the learned value of the matrix from the previous

iteration of the EM algorithm at time frame t. The expectation of log-complete likeli-

hood logP (Rt, Ut, Vt|Ut�1, Vt�1, Dt), with respect to the marginal posterior distribution

P (Ut, Vt|Ut�1, Vt�1, D̄t, Rt) over latent variables Ut and Vt, is derived as follows,

E =

Z
P (Ut, Vt|D̄t, R̄1:t) · logP (R̄

1:t, Ut, Vt|Dt)dUtdVt

=

Z
P (Ut, Vt|Ut�1, Vt�1, D̄t, R̄t)·

(logP (R̄t|Ut, Vt, Dt) + logP (Ut) + logP (Vt))dUtdVt. (3.17)

The prior P (·) = exp(�0.5⇤�|| · ||2
Frob

) functions as Frobenius norms for regularization. At

each time frame, on the E-step, the algorithm will reweight each sample that represents the

hypothesis over the structure of user and item latent space. On the M-step, the particles

will be resampled and Dt will be reestimated to adjust the weights on di↵erent latent

dimensions dynamically and prevent particle filtering from divergence.

3.6.1 E-step

On the E-step of the algorithm, the posterior distribution of latent factors Ut and Vt is

defined as follows,
MY

u=1

NY

v=1

P (Uu
t , V

i
t |D̄t, R̄t). (3.18)
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By alternatively estimating user and item latent factors, each joint posterior distribution in

Eq (3.18) is approximated as the product of marginal posterior distributions P (Uu
t |D̄t, R̄t)

and P (V i
t |D̄t, R̄t). For user u, its marginal posterior distribution can be further estimated

as follows,

P (Uu
t |D̄t, R̄1:t)

/
Z

P (R̄t|Uu
t , V

v
t , D̄t)P (Uu

t |Uu
t�1)P (V i

t )P (Uu
t�1|R̄1:t�1, D̄t)dV

i
t dU

u
t�1

⇡
Z

P (R̄t|Uu
t , V

v
t , D̄t)P (Uu

t |Uu
t�1)P (V̄ i

t )P (Uu
t�1|R̄1:t�1, D̄t)dU

u
t�1

⇡ P (R̄t|Uu
t , V̄

i
t , D̄t)P (Uu

t |Ūu
t�1)P (V̄ i

t ), (3.19)

where Ūu
t and V̄ i

t represent the estimated values from the previous iteration for user u

and item i, respectively. Analogously, the marginal posterior distribution over V i
t can be

derived.

According to the above derivation, these marginal posterior distributions can be estimated

using particle filtering and canonical particles as described in previous sections. As men-

tioned in Section 3.4.1, canonical particles Ût and V̂t are used to represent the estimated

latent factors for users and items at time t. Therefore, the expectation of log-complete

likelihood in Eq (3.17) can be approximated as,

E ⇡
Z Y

u

(
SX

s=1

wu,(s)
U,t �(Uu

t � Uu,(s)
t )) ·

Y

i

(
S0X

s0=1

wi,(s0)
V,t �(V i

t � V i,(s0)
t ))·

(logP (Rt|Ut, Vt, Dt) + logP (Ut) + logP (Ut)))dUtdVt

⇡ logP (Rt|Ût, V̂t, Dt) + logP (Ût) + logP (V̂t) + C

⇡ logP (R̂t|Ût, V̂t, Dt) + logP (Ût) + logP (V̂t) + C, (3.20)

where C is a constant representing all the terms irrelevant to model parameters Dt, and

the observation function is given in the form of Eq (3.22). The second approximation

in Eq (3.20) results from the substitution of canonical particles of user and item latent

factors as shown in Section 3.4.1.

Intuitively, Eq (3.20) draws only one sample of Ut and one sample of Vt from the pos-

terior distribution P (Ut, Vt|Dt, R̂t), and these two samples happen to be the canonical
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representation of user and item latent factors. Instead of treating all the missing data

as negative, the approximation in Eq (3.20) adopts a two-phase sampling mechanism to

construct a set of ratings dynamically as the current training data. A subset of missing

items is selected for each user at every time step as negative samples to complement the

user’s most recent observation. The dynamically constructed observations are denoted as

R̂t at time t. This personalized approach not only distinguishes the past and recent in-

formation but also avoids dominating recent observation with imputed data. In addition,

although ST-PTMB is discussed only on explicit feedback, this sampling scheme enables

the model to be a general one that could be applied to (much denser) implicit feedback

without increasing the computational complexity.

3.6.2 M-step

After gathering su�cient statistics of model parameters with respect to the posterior

distributions of user and item latent factors, Dt is re-estimated at each M-step to maximize

the probability of generating the ratings in the training data. Optimization methods,

such as stochastic gradient ascent, tend to fit the model to the imputed value as accurate

as possible. As a unique imputed value is set to those selected negative samples, this

optimization approach can easily overfit the model and make the predicted user preferences

over unrated items indistinguishable. Experimental results (not shown in this chapter) also

verify this statement. Therefore, on the M-step, a separate particle filtering is utilized to

update Dt dynamically at every time step.

Let diag�1(Dt) denote the diagonal elements of matrix Dt. Similar to the transition

functions in Section 3.4.1, the dynamics of diag�1(Dt) is assumed to follow a first-order

random walk driven by multivariate normal noise,

diag�1(Dt) = diag�1(Dt�1) + et, (3.21)

where et ⇠ N (0,�DI ) is a Gaussian process noise that is unrelated to cut and dit.
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The observation function in the particle filtering to track diag�1(Dt) is,

P (R̂t|Ût, V̂t, Dt) =
S00X

s00=1

exp{�
X

u,i

(Wu,i(r̄
u,i
t � Ûu

t D
(s00)
t (V̂ i

t )
T )2 + ↵||Dt||2

Frob

)}, (3.22)

where S00 is the number of particles and ↵ is the regularization coe�cient to prevent over-

fitting. This observation function takes as input the whole set of dynamically constructed

samples. Analogous to the definition in Section 3.4.1, the canonical particle for Dt is

defined as D̂t =
PS00

s00=1

w(s00)
t D(s00)

t .

Because the posterior distributions about the weighting matrix and user and item latent

factors are not Gaussian after the introduction of wm and the imputed value, some approx-

imations have been exploited during the derivation of E-step and M-step in the learning

algorithm. The developed EM-based method may not always maximize the likelihood

function during iterations. The particle filtering working as an optimization method to

search the latent factor space is also used here to alleviate this issue. This optimization

method is also suitable for approximating the multimodal distribution. Besides, a prop-

erly designed convergence condition also helps the learning procedure achieve a balance

between exploitation and exploration. For example, the improvement with respect to

the measurement metric on current observations, such as the Top-N recall metric, could

be directly used as the convergence condition. Considering the multimodal property in

temporal RSs and the local convergence of the EM framework, the developed EM-based

method in ST-PTMF is expected to perform well in practice. The experimental results

shown below also empirically confirm this expectation.

3.7 Pseudo-code and Complexity

The proposed methods are summarized in Algorithm 1. When selecting the most confident

negative samples to build the current training data, the second phase of the sampling

scheme in Section 3.5.2 is extended by integrating Dt into it. This modification is not

shown in Algorithm 1 for clarity. For easy comparison with baseline methods in Section

3.8, ST-PTBM is initialized with D
0

= I in Algorithm 1.
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Each user or item’s latent vectors is tracked separately by a particle filter, and every

particle in Dt is loosely coupled to other particles. Therefore, these sequential samplers

can be easily speeded up via sampling from these distributions in parallel. As shown in

Table 3.6, the speedup should be significant, especially when either the number of users

or the number of items are large.

3.7.1 Computational Complexity

Recall that user and item latent factors are Ut 2 RN⇥K and Vt 2 RM⇥K respectively,

where K ⌧ min(N,M). It is set S = S0 = S00 and Nn,u
t = N̂ for simplicity.

The time complexity of personalized prediction in the proposed methods is O(KM). For

computational complexity, at each time step, the PFUV method takes O(KSMN). As

the sampling size N̂ is usually comparable with K ⌧ min(N,M), the ST-PFUV method

takes O(KS(M +N)N̂) ⇡ O(K2S(M +N)), which scales e�ciently as a linear function

of the size of users and items.

The usage of the extra diagonal matrix Dt 2 RK⇥K will not change the complexity of the

sampling scheme. It takes O(KSN̂) to compute the probability P (r̂u,it |{U (s),u
t }, V̂ i

t , Dt) for

item i, and takes the same complexity to compute the probability P (r̂u,it |{V (s0),u
t }, Ûu

t , Dt)

for user u. The time complexity for updating Dt is O(SN̂K2). The time complexity of

ST-PTBM at each time frame is O(KS((K + N + M)N̂)) ⇡ O(K2S(N + M)), which

is comparable to O(KTiter(N +M)) of the gradient descent in PMF at each time frame

where the number of iterations Titer usually has the same magnitude as S.

3.8 Experiment

The performance of developed methods is tested on the Movielens 100K [1], Hetrec [3] and

Netflix datasets [108]. The MovieLens dataset spans 32 weeks with integer rating scale

from 1 to 5 while the HetRec dataset spans 12 years with half mark rating scale from 1 to
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Input: R0, ratings before time 0, the sequence of ratings {R1, . . . , R
T

} to present, and the number of missing

data to be selected, Nneg

t

Output: user latent factors {U
t

|t 2 [1, . . . , T ]}, item latent factors {V
t

|t 2 [1, . . . , T ]} and the weighting matrices

{D
t

|t 2 [1, . . . , T ]}

/* initialization */

calculate the initial values of U0 and V0 with R0, and set D0 = I.

foreach user u do

for s 2 [1, . . . , S] do

U
u,(s)
0  Uu

0

end

end

setup particles for item latent factors and the weighting matrix as above.

/* algorithm */

while t 2 [1, . . . , T ] do
/* stage of dynamically building the current training data */

select Nneg

t

negative samples for each user and item as in shown in Section 3.5.2, and combine them with R
t

to generate the current training data

ˆR
t

;

while not converged do
/* E-stage */

/* stage of tracking user u’s latent factors */

foreach user u do

reweight each particle using

ˆV
t�1, Eq (3.11), Eq (3.1) and Eq (3.8) ;

resampling [200] ;

calculate canonical particle

ˆUu

t

;

end

/* stage of tracking item i’s latent factors */

foreach item i do

reweight each particle using

ˆU
t

, Eq (3.11), Eq (3.2) and the observation function of item i similar to

Eq (3.8) ;

resampling ;

calculate canonical particle

ˆV i

t

;

end

/* M-stage */

/* stage of learning D */

reweight each particle using

ˆU
t

,

ˆV
t

, Eq (3.11), Eq (3.21) and Eq (3.22) ;

resampling ;

calculate canonical particle

ˆD
t

;

end

/*prediction*/

predict user u’s preferences over all the items by

ˆUu

t

ˆD
t

ˆV
t

end

Algorithm 1: The Pseudo-code of Probabilistic temporal bilinear model. The particle

filtering for MF (PFUV) method can be reduced from this method.
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5. These two datasets are selected to test the performance of the proposed methods for

short and long periods of time, respectively. A Netflix dataset is also tested to verify the

performance of proposed method on a reasonably large dataset. This sampled version of

Netflix dataset spans 27 months.

3.8.1 Protocol

In the experiments, ratings are grouped on the basis of the time frame in which their

timestamps are. Ratings before a predefined time instance t
test

are used as training data,

and ratings after it are test data. This setting is preferred over a random split over all

the data. As in a real-world deployment, it is infeasible to generate prediction utilizing

information in the future. The training periods for MovieLens 100K, HetRec and Netflix

are September ⇠ December 1997, September 1997 ⇠ December 2007 and the 1-st ⇠ 15-th

months, respectively. Their testing periods are the 1-st ⇠ 16-th weeks in 1998, January

⇠ December in 2008 and the 16-th ⇠ 27-th months, respectively. Di↵erent units of time

frame are selected to ensure that ratings for each user in a time slot are not too sparse.

Based on this setup, MovieLens 100K contains 530 users and 1493 items with the overall

sparsity of 93.3% and the sparsity 99.96% in the last frame and HetRec contains 1775

users and 9228 items with the overall sparsity of 95.1% and the sparsity of 99.98% in

the last frame. Netflix contains 480, 189 users and 17, 770 items with the overall sparsity

98.84%. A sampled version of Netflix is used. It has the sparsity of 99.98% in the last

frame, which is extracted from 4% of the Netflix dataset and 20% users and 20% movies

were randomly selected from the whole pool. All the algorithms are repeated 10 times

and the means and standard deviations of those results are reported.

Temporal accuracy metrics The metrics precision@k and recall@k [66] are utilized

to measure recommendation relevance, which directly assesses the quality of the Top-N

recommendations. In order to measure user satisfaction in recommendations, the Top-N

hitrate [66, 212] is utilized. As the Top-N hitrate recall is proportional to the Top-N

hitrate precision [212], the Top-N hitrate recall is adopted and it is named as top@k for
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later reference. In order to test the temporal performance, the temporal extensions of

these accuracy metrics are defined. These conventional accuracy metrics adopted to RSs

can be found in [66, 115].

For user u, let prec(k, u, t) denote precision@k in month t. During the prediction at time

t� 1, instead of using all the items in testing data as conventional precision@k does, the

temporal metrics only scan items in month t to determine their relevance to a user. The

temporal precision is defined as follows,

prectemp(k) =
1

T ⇤N

TX

t=1

NX

u=1

prec(k, u, t), (3.23)

which is the average on all users over all the time frames T . The temporal recall recalltemp(k)

and temporal hitrate toptemp(k) are defined analogously. As a common practice, items with

maximum rating value are treated as relevant items, and measure k = 10 for precision. For

hitrate, it is set that k = 10 and each relevant item is mixed with 500 randomly sampled

unobserved items to avoid spending too much computational power on evaluation. It is

set that k = 100 for recall because all the items are being ranked in the temporal context.

All the model parameters are tuned under temporal recall and use the identical setting to

test the performance of algorithms under temporal precision and hitrate.

Baseline methods In order to test the performance of the proposed methods that

enforce and track the temporal and dynamic importance between user preferences and item

attractiveness, they are compared with the following five algorithms as part of baseline

methods: STKF [158], ST-PTBM-One, TopPopular, PureSVD [66], and AllRank [212].

The method in [158] is implemented to verify the advantages of handling non-Gaussian

behaviors and tracking the tendency of item popularity, which dynamically tracks user

latent factors based on both spatial and temporal information. The implemented method

is named as STKF for later reference. As ST-PTBM method does not rely on side in-

formation, users’ rating history is utilized to compute the spatial priors for STKF for a

fair comparison. It is shown [191] that user-oriented sampling has better performance

than uniform sampling, it is, therefore, hybrid with ST-PFUV method, and it is named
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as ST-PFUV-User for later reference. In order to demonstrate the e�ciency of the devel-

oped learning algorithm, the number of iterations is also fixed in the learning algorithm

of ST-PTBM to be 1 and this method is named as ST-PTBM-One thereafter.

The above baseline methods are dynamic methods to RSs. To the best of our knowledge,

most of the developed algorithms in temporal RSs are compared with static versions of

some baseline algorithms. In the following experiments, some static algorithms are in-

troduced and these algorithms are made dynamic. By retraining all these static baseline

methods at each time step with all the data up to the time step, as a common practice in

a real-world deployment, they are enhanced by exploiting temporal information to make

the comparison fair. TopPopular is a non-personalized algorithm that ranks item higher

when the more times that the item is rated as relevant. It is chosen to verify that it is

beneficial to consider personalized recommendation in a temporal context. PureSVD and

AllRank are state-of-the-art algorithms developed to pursuit the Top-N recommendation

task. They are selected to illustrate the ability of the developed methods to cope with

non-Gaussian behaviors. These dynamic extensions are named as DynTopPopular, Dyn-

PureSVD and DynAllRank, respectively. In order to confirm the necessity of exploiting

temporal information, PMF is also adopted as the only static method in the experiments,

which always predicts the ranking without updating model parameters.

Meanwhile, it is set that S = S0 = S00 = 1000 and K = 8 for all the Monte Carlo-based

methods to balance their accuracy, variance and scalability. The imputed value is set to

rm = 1.95 which is a lower value than the average observed ratings in all the datasets.

All the Monte Carlo-based methods are initialized by AllRank, and STKF is initialized by

PMF with spatial priors only. All the parameters in the experiments are tuned by cross-

validation method [115]. All other parameters in sampling methods and all the parameters

(including the number of latent factors) in other baseline methods are separately tuned to

achieve their best performance. The temporal recall metric is used during tuning and the

identical settings are applied to test temporal precision and hitrate metrics. It is shown

[243] that the e↵ectiveness of RSs with sparse datasets is usually not high, especially the

training and testing data are organized in chronological order instead of being randomly
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split. Thus, we focus on comparing the relative performance of algorithms instead of

comparing their absolute performance. For clarity, some insight into the results will be

discussed on the Hetrec and Netflix datasets only. The analysis also applies to the results

on the Movielens dataset.

3.8.2 MovieLens 100K

It is set that weight wm = 0.05, regularization constant � = 0.05 and K = 12 for Dy-

nAllRank, K = 10 for DynPureSVD and PMF, and K = 20 for STKF. It is also set that

� = 0.05 to reduce variance in particle filtering. The number of selected negative samples

in the personalized sampling mechanism is set to be 30 times the number of users and

items in ST-PFUV and ST-PTBM. It is also set that �D = 0.4 and ↵ = 0.4 for ST-PTBM.

There is no need to tune these parameters simultaneously. The parameters for AllRank

can be tuned at first, and then the parameters for particle filtering can be selected. The

parameters for learning Dt can be determined at last. As the developed models are in-

crementally constructed, this incremental approach to parameter tuning works well in

experiments in this chapter and is not prone to the overfitting of the model.

Results Table 3.1 shows the results of the methods under temporal accuracy metrics as

defined in Section 3.8.1. Due to the fact that few relevant items exist for each user in a

time frame, low values in the table are expected. Compared with these baseline methods,

ST-PTBM has the best performance. Except for the improvement on the ST-PTBM-

One method on the precision metric, all the improvements brought by ST-PTBM are

statistically significant under both paired and unpaired t-tests [115] with p = 0.05. This

result verifies that the ability of the proposed method to improve the temporal performance

of RSs. This can be ascribed to the fine modeling and learning of temporal dynamics of

user preferences and item characteristics in the proposed method.

The ST-PTBM, ST-PTBM-One and ST-PFUV methods outperform all other dynamic

algorithms. This result shows that our proposed algorithms can e↵ectively extract the
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Method prectemp(k) recalltemp(k) toptemp(k)
PMF 0.0445±0.0058 0.2479±0.0282 0.1425±0.1117
DynTopPopular 0.0465±0.0000 0.2910±0.0000 0.1782±0.0010
DynPureSVD 0.0233±0.0000 0.3410±0.0000 0.2806±0.0047
DynAllRank 0.0546±0.0059 0.4140±0.0232 0.3162±0.0168
STKF 0.0632±0.0000 0.3040±0.0000 0.1725±0.0046
ST-PFUV-User 0.0458±0.0024 0.3630±0.0094 0.2339±0.0096
ST-PFUV 0.0613±0.0022 0.4403±0.0095 0.3543±0.0095
ST-PTBM-One 0.0646±0.0012 0.4617±0.0156 0.3652±0.0156
ST-PTBM 0.0651±0.0028 0.4843±0.0112 0.3758±0.0138

Table 3.1: Temporal accuracy of methods on the MovieLens dataset under temporal met-
rics. The best performance is in italic font.

Method prectemp(k) recalltemp(k) toptemp(k)
PFUV-Rect-wAMAN 0.0423±0.0032 0.3310±0.0169 0.2400±0.0123
PFUV-Hist-User 0.0447±0.0040 0.3648±0.0141 0.2439±0.0106
DynAllRank-User 0.0164±0.0043 0.2358±0.0150 0.1151±0.0184

Table 3.2: E↵ects of recent and historical data on the MovieLens dataset under temporal
metrics. The best performance is in italic font.

important temporal and dynamic information of user preferences and item characteristics,

and benefit from the finely modeling among latent factors and the dynamic adjustment of

the significance on di↵erent latent dimensions. The developed algorithms successfully ex-

ploit this vital information and fine structures, even if the dynamics modeling in tracking

follows a first order random walk. The ST-PTBM method improves ST-PFUV method

over the temporal accuracy measurement by 6.20%, 9.99% and 6.07% as shown in Figure

3.3, respectively. Recall that the developed methods are tuned based on the recall metric

during training and the identical settings are applied to precision and Top-N hitrate mea-

surement. Moreover, the ST-PTBM method improves ST-PTBM-One over the temporal

recall metric by 4.89%. This improvement confirms the e↵ectiveness of the developed

learning algorithm which dynamically learns the interaction matrix Dt and updates user

and item latent factors Ut and Vt.

Meanwhile, it is obvious from Table 3.1 that all personalized and dynamic algorithms

have better performance than that of the static PMF method under all the temporal

metrics. Static PureSVD and static AllRank methods have similar performance and are

omitted here. This conclusion is expected because more and more information about
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Figure 3.3: The improvement of ST-PTBM over baseline methods on the MovieLens
dataset under temporal accuracy metrics.

users is gathered as the time passes, which also demonstrates the importance of temporal

dynamic modeling in RSs.

The usage of ratings In order to further illustrate the power of self-training and the

importance of distinguishing recent and historical ratings, the PFUV method is tested with

two extra settings, where ratings consist of (1) recent observation and wAMAN, (2) all the

historical data and missing data sampled by the user-oriented scheme. They are named

as PFUV-Rect-wAMAN and PFUV-Hist-User for later reference. Not to discriminate

against the baseline methods, the best baseline method DynAllRank is also extended by

replacing wAMAN with user-oriented sampling, and name it DynAllRank-User for later

reference. Table 3.2 shows the performance of these methods, where the PFUV-based

methods outperform the best baseline method with PFUV-Hist-User the best. Combining

with those in Table 3.1, results in Table 3.2 further confirm the ability of the developed

methods to balance information intrinsic in recent observations and the sparsity reduction

introduced by imputation to better incorporate temporal and dynamic information.

119



3. Tracking the Tendency of User Preferences and Item Attractiveness

Figure 3.4: The average of accumulated improvement for ST-PTBM on the MovieLens
dataset since the 1-st week in 1998.

Temporal behaviors In order to further evaluate temporal behaviors of the proposed

methods, the average of accumulated improvement (AAI) over time is defined. Let the

performance of any two methods under temporal recall in month t be Rec
1

(t) and Rec
2

(t),

respectively. The AAI in month t
1

is defined as follows,

1

t
1

t1X

t=1

(Rec
1

(t)�Rec
2

(t)). (3.24)

Figure 3.4 plots the AAI metric among ST-PTBM, ST-PTBM-One, ST-PFUV and STKF

methods. Except in the first month of the red (circle) curve (ST-PTBM vs ST-PTBM-

One), all the curves are above zero, showing that the developed method constantly outper-

forms baseline methods by taking advantage of the fine modeling of temporal dynamics in

user preferences and item attractiveness. Meanwhile, compared with ST-PTBM-One, the

tendency of the circle curve demonstrates that the developed learning algorithm is more

e↵ective at exploiting the underlying temporal patterns. The blue (dash-dotted) curve

shows that ST-PTBM constantly improves ST-PFUV by finely modeling and adaptively

adjusting the temporal importance among user preferences and item popularity. The green
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Figure 3.5: The number of iterations in the learning algorithm at each time frame on the
MovieLens dataset.

(dash) curve (ST-PTBM vs STKF) shows that the temporal performance can be signif-

icantly improved by tracking the tendency of item attractiveness and coping with non-

Gaussian behaviors. While baseline methods require longer training period, ST-PTBM

performs well even if the training period is short (within 5 time frames) and accumulated

amount of ratings is relatively few. Figure 3.5 illustrates a sequence of the average number

of iterations in EM under temporal recall metric and one run of the sequence. It shows

the robustness of the proposed learning algorithm under the sampling schemes.

3.8.3 HetRec

This experiment focuses on the study of temporal recommendation performance of pro-

posed methods over a longer period. The ST-PTBM, ST-PTBM-One and ST-PFUV

methods are compared with the best baseline method, DynAllRank, and the static PMF

method. The performance of PMF, DynAllRank, STKF is also included to demonstrate

the benefits of personalized and temporal recommendation conducted by our methods.
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Similar to previous experiments, ST-PTBM has the best performance under all the tem-

poral metrics as shown below. For PMF, it is set that K = 40, the step size for SGD

as 0.005, � = 0.05, and the weight wm = 0.08. It is set �U = �V = 0.05 for ST-PTBM

and ST-PTBM-One and set �U = �V = 0.1 for ST-PFUV. The factor of negative samples

selection for users and items is set to be 30 in ST-PTBM and 50 in ST-PFUV. It is also

set �D = 0.1 and ↵ = 0.4 for ST-PTBM. As mentioned before, these parameters are

incrementally tuned.

Method prectemp(k) recalltemp(k) toptemp(k)
PMF 0.0054±0.0012 0.1629±0.0116 0.2577±0.0082
DynAllRank 0.0074±0.0003 0.2263±0.0093 0.4416±0.0078
STKF 0.0110±0.0000 0.1679±0.0000 0.3168±0.0000
ST-PFUV 0.0130±0.0004 0.3036±0.0161 0.5143±0.0042
ST-PTBM-One 0.0126±0.0003 0.3087±0.0040 0.5285±0.0065
ST-PTBM 0.0149±0.0008 0.3325±0.0027 0.5392±0.0050

Table 3.3: Results on the HetRec dataset under temporal metrics. The best performance
is in italic font. N̂ = 50 for ST-PFUV and ST-PFUV-User, and N̂ = 30 for ST-PTBM
and ST-PTBM-One.

N̂ 10 20 30 40 50 60 70
ST-PFUV-User 0.1754 0.1882 0.1977 0.2026 0.2020 0.2071 0.2041
ST-PFUV 0.2536 0.2826 0.2980 0.3016 0.3036 0.3013 0.3032
ST-PTBM-One 0.3085 0.3102 0.3087 0.3088 0.3052 0.3007 0.3033
ST-PTBM 0.3070 0.3320 0.3338 0.3323 0.3252 0.3276 0.3245

Table 3.4: E↵ect of di↵erent sizes of samples on the HetRec dataset under temporal
metrics. The best performance is in italic font.

Results Table 3.3 illustrates the results of these methods under temporal metrics. The

ST-PTBM method significantly outperforms other methods in terms of temporal accuracy.

Particularly, it improves the temporal measurement over that of ST-PFUV by 14.6%,

9.52% and 4.84%, respectively. Meanwhile, it improves the temporal measurement over

that of PTBM-One by 18.3%, 7.7% and 2.02%, respectively. Recall that we focus on the

improvement instead of the relative values. All the improvements brought by ST-PTBM

method are statistically significant under both paired and unpaired t-tests with p = 0.05.

Compared with results on MovieLens 100K, ST-PTBM has a much greater improvement

over baseline methods. This result verifies that ST-PTBM has a much better ability to
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exploit temporal and dynamic information, especially over a longer period. Meanwhile,

the performance of ST-PTBM-one is only comparable with that of ST-PFUV method.

Table 3.4 shows the results for di↵erent sizes of negative samples, N̂ . The key point

observed from the table should be the trends in the results, which are introduced by the

various number of negative samples adopted. Meanwhile, the standard deviations of the

results of ST-PFUV methods are 0.0202, 0.0212, 0.0182, 0.0161, 0.0133, 0.0087, 0.0089

for those various numbers of negative samples. The standard deviations of other methods

have similar trends and are omitted in Table 3.4 for clarity. Up to N̂ = 30, ST-PFTBM

method is constantly being improved as the e↵ect of sparsity reduction. A larger number

of samples will clutter the built observations with negative samples.

Temporal behaviors Figure 3.6 plots the AAI among ST-PTBM, ST-PTBM-One, ST-

PFUV and PMF methods. All the curves in the figure are above zero, showing that

our method constantly outperforms baseline methods over time. Intuitively speaking,

the learning algorithm of ST-PTBM provides particle filtering with more opportunities

to search the latent vector space. The search will terminate when a balance between

exploitation and exploration in the latent space is reached. By contrast, ST-PTBM-One

only searches the latent space once, and it is prone to the divergence of particle filtering

over a long period.

Note that as D
0

= I is set at the initialization, ST-PTBM, ST-PTBM-One and ST-PFUV

have the identical initial conditions learned by the AllRank method at time 0. After doing

some exploratory analysis on the Hetrec dataset, it is found that the tendency of the blue

(dotted dash) curve (ST-PTBM vs ST-PFUV) and the red (circle) curve (ST-PTBM vs ST-

PTBM-One) is due to the rapidly decreasing of active users in the dataset over time (only

16.64% active users remained at the final time frame) and the accidentally retrospective

learning. As there is less new information available at each time frame as the time passes,

all these methods are overinflunced by the historical data and they are attempting to

extract patterns relating to the temporal importance of the historical data repeatedly.

Compared with other methods, ST-PTBM always fully exploited the temporal dynamics
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at each time frame to improve the temporal performance of RSs. Therefore, under such

a situation, this retrospective improvement made by ST-PTBM over ST-PTBM-One and

ST-PFUV has been reduced. The almost linear tendency of the green (dash) curve (ST-

PTBM vs PMF) also supports this statement because the AAI curve shows that PTBM is

still producing improvement across consecutive time frame. Meanwhile, the experimental

results on Movielens 100K and Netflix datasets show that even if the dataset is very sparse

(Netflix 98.84% overall vs Hetrec 95.1% overall), ST-PTBM can still perform much better

than other methods.

Figure 3.7 illustrates a sequence of the average number of iterations in the learning algo-

rithm under temporal recall metric and one run of the sequence. It shows the robustness

of the proposed learning algorithm under two-phase sampling scheme and the sequential

Monte Carlo estimation. Compared with Figure 3.4 and Figure 3.5, the training period

of ST-PTBM is much shorter (within 2 time frames), showing ST-PTMB is more capable

of exploiting temporal and dynamic information, which may also be due to more ratings

that are accumulated for each user in a time frame.

3.8.4 Netflix

In this subsection, the focus is placed on the temporal recommendation performance of

ST-PTBM on a reasonably large dataset. Similar to previous experiments, ST-PTBM

and ST-PTBM-One are compared with the best baseline method ST-PFUV. Analogously,

the performance of PMF, DynAllRank, STKF methods is also included to demonstrate

the benefits of personalized and temporal recommendation conducted by the developed

methods in this chapter. The ST-PTBM method also achieves the best performance under

all the temporal metrics as shown below. For PMF and DynAllRank methods, they are

set to K = 20, � = 0.1. For ST-PFUV, ST-PTBM-One and ST-PTBM methods, they are

set � = 0.1 and the weight wm = 0.02. The number of selected negative samples is set to

be 30. It is also set �D = 0.1 and ↵ = 0.4 for ST-PTBM method. These parameters are

also incrementally tuned.
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Figure 3.6: The average of accumulated improvement for ST-PTBM on the Hetrec dataset
since January 2008.

Figure 3.7: The number of iterations in the learning algorithm at each time frame on the
Hetrec dataset.
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Method prectemp(k) recalltemp(k) toptemp(k)
PMF 0.0080±0.0000 0.3339±0.0009 0.3011±0.0025
DynAllRank 0.0226±0.0002 0.5050±0.0011 0.4799±0.0012
STKF 0.0087±0.0000 0.3518±0.0000 0.3220±0.0000
ST-PFUV 0.0243±0.0001 0.5351±0.0008 0.5000±0.0004
ST-PTBM-One 0.0250±0.0003 0.5370±0.0012 0.5025±0.0008
ST-PTBM 0.0292±0.0006 0.5752±0.0030 0.5215±0.0024

Table 3.5: Results of methods on the Netflix dataset under temporal metrics. The best
performance is in italic font.

Results Table 3.5 shows the results of the methods under temporal accuracy metrics.

As mentioned before, the focus is placed on the relative improvement of these methods

due to the existence of few relevant items for each user in a time frame. All the improve-

ments brought by the ST-PTBM method are statistically significant under both paired

and unpaired t-tests with p = 0.05. This result shows that the proposed method works

successfully on a reasonably large and sparse real-world dataset. ST-PTBM improves

ST-PFUV over the temporal accuracy metrics by 20.16%, 7.50% and 4.30%, respectively.

Meanwhile, ST-PTBM improves ST-PTBM-One over temporal recall metric by 7.11%.

Similar to the experimental results on the Hetrec dataset, the ST-PTBM method can

achieve a better balance between exploitation and exploration when it searches the latent

factor space.

Comparison of temporal behaviors Figure 3.8 plots the AAI among ST-PTBM,

ST-PTBM-One, ST-PFUV and STKF methods. All the curves are above zero, showing

that the developed method constantly outperforms baseline methods over time by taking

advantage of the fine modeling of temporal dynamics in user preferences and item at-

tractiveness. Meanwhile, compared with ST-PTBM-One, the tendency of the circle curve

demonstrates that the proposed learning algorithm is more e↵ective at exploiting the un-

derlying temporal patterns. The blue dash-dotted curve (ST-PTBM vs ST-PFUV), which

almost overlaps with the circle curve, illustrates that ST-PTBM improves ST-PFUV over

time by enforcing the temporal importance between user preferences and item popularity

and dynamically adjusting weights of latent dimensions. Compared with ST-PFUV, extra
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Figure 3.8: The average of accumulated improvement for ST-PTBM on the Netflix dataset
since the 16-st month.

degrees of freedom are introduced in the ST-PTBM method. The improvement between

the two methods can also be partially explained as these variables are able to depict the

tendency of user preferences and item characteristics more finely. Because the interaction

matrix is learned online in ST-PTBM, it implicitly constructs temporal importance that

confines the variation of user and item latent factors over time.

The green (dash) curve (ST-PTBM vs STKF) shows that the temporal performance of

RSs can be significantly improved by tracking the tendency of item attractiveness and

coping with non-Gaussian behaviors. The improvement of ST-PTBM over STKF is also

attributed to the failure of STKF when it encounters non-Gaussian and NMAR behaviors

on user preferences and item popularity. Conversely, the sequential sampling approxima-

tion and the learning method enable the ST-PTBM method to track the non-Gaussian

and even non-linear tendency of user preferences and item popularity which is common in

practice. The light red (dotted) curve (ST-PTBM-One vs ST-PFUV) is flat and very close

to zero-axis. This observation shows that only slight improvement could be made when
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Figure 3.9: The number of iterations in the learning algorithm at each time frame on the
Netflix dataset.

temporal importance is not finely modeled and adaptively learned. Figure 3.9 illustrates

a sequence of the average number of iterations in EM under temporal recall metric and

one run of the sequence.

Method PMF ST-PFUV ST-PTBM-One ST-PTBM
Hetrec time 432.9 198.7 215.3 241.1
Hetrec parallel - 133.6 153.2 172.1
Netflix time 3460.2 857.3 1644.2 2316.5
Netflix parallel - 523.7 637.3 907.9

Table 3.6: The average running times of compared methods in the experiments. The unit
is second and the best performance is in italic font.

Computational time As a sequential approach, the developed methods dynamically

learn model parameters and track user and item latent factors. The approach adopted

in the developed methods does not change the computational complexity of prediction.

Thus, the total running time of each time frame (including both training or retraining

time and prediction time) is averaged to compare the e�ciency of these methods. The
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algorithms are implemented in Matlab and run on a 4-core machine with 3.3G Hz CPU

and 8G memory.

The running times of these methods under temporal recall metric on the Hetrec and Netflix

datasets are listed in the first and third lines in Table 3.6, respectively. Because the

running times on the MovieLens dataset are quite closed to each other for the compared

methods, they are ignored here for clarity. Their running times under other temporal

metrics have the similar e↵ects and they are ignored for clarity. As mentioned before, it

is straightforward to speed up ST-PTBM by parallelizing the Monte Carlo method and

learning algorithm. The running times of these parallelized versions (with 4 threads) are

listed in the second and fourth lines in Table 3.6. A parallelized version of PMF is not

implemented. The average numbers of iterations for ST-PTBM on the Hetrec and Netflix

datasets are 1.74 and 2.75 at each time step, respectively. The key observation in the

table is that ST-PTBM can be greatly speeded up by parallelization. Therefore, it is

reasonable to expect the running time of ST-PTBM is comparable with baseline methods

when ST-PTBM is deployed on more sophisticated machines. Note that PMF has been

among the fastest state-of-the-art CF methods.

3.9 Summary

A novel probabilistic temporal bilinear model is presented to improve the performance

of RSs over time. The developed model exploits the temporal and dynamic information

in users’ historical feedback to finely model the tendency of user preferences and item

attractiveness. It simultaneously tracks latent factors representing user preferences and

item attractiveness for the Top-N recommendation. Meanwhile, this model enforces the

temporal interactions between user preferences and item attractiveness and dynamically

adjusts significance on di↵erent dimensions of user and item latent factors. To simul-

taneously solve the problems of data sparsity and scalability under temporal context, a

novel two-phase self-training mechanism is developed to construct a small but delicate set

of observations from missing data dynamically. A new learning and inference algorithm
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combining a sequential Monte Carlo method and the EM algorithm is also developed to

take advantages of temporal information and dynamic structure in the feedback.

Those methods are evaluated on three real-world benchmark datasets under the temporal

extensions of accuracy metrics. The experimental results demonstrate that the devel-

oped methods significantly improve the recommendation performance over a variety of

state-of-the-art algorithms, which confirms that the developed method can e↵ectively and

e�ciently learn and track both latent factors and model parameters over time. The exper-

iments also illustrate the advantages of the temporal dynamic model over static ones and

the benefits of tracking both user preferences and item attractiveness instead of tracking

merely user preferences.

The developed method assumes that the temporal dynamics of latent factors representing

user preferences and item attractiveness over time follow the first order Gaussian random

walk. Also, it imposes a unique dynamic system, which is not tailored to meet the various

and diverse trends of user preferences and item attractiveness in RSs. Chapter 4 will

discuss these problems in detail and develop solutions to them.
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Chapter 4

On Learning the Dynamics in

Temporal Recommender Systems

4.1 Introduction

As mentioned in Section 1.2.2, Chapter 1, the model structure to capture the tendency of

user preferences and item attractiveness in recommender systems (RSs) is either predefined

or learned to fit a linear system. In addition, rather than using the personalized and item-

wise dynamic systems, a universal dynamic model is commonly adopted across all users

and items in RSs that aim to exploit temporal dynamics in user feedback. In this chapter,

the development of modeling the temporal dynamics in RSs will be continued, especially

focusing on solving the above-mentioned problems when trying to model the tendency of

user preferences and item attractiveness flexibly.

Recall that temporal RSs can be classified into four approaches in terms of how the

temporal and dynamic information is utilized: heuristic, binning-based, online updating

and dynamic-based approaches [160]. Generally, the first three approaches can be deducted

from the dynamic-based approach, which explicitly models the temporal dynamics by

either a stochastic state space approach or temporal regressions. Existing methods of this
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approach simply assume that the tendency of user preferences and item attractiveness is

known a priori or the model structure of the dynamics is provided. Because it is non-

trivial to design meaningful personalized transition models in RSs, some simple transition

systems, such as the first order random walk, become popular candidates. However, it is

often the case that some users or items are inactive within some time frames. Compared to

the aimlessly searching by the random walk, it is reasonable to assume that user preferences

and item attractiveness are better governed by the inertia of their dynamics. Meanwhile,

instead of using a large concatenated state vector consisting of all the user and item latent

vectors, the existing methods [80, 160] separately track latent vectors for each user and

item to make the algorithm tractable. This compromise combines with an unintentional

dynamic system, such as the random walk model, may lead to the degradation of the

temporal performance of RSs. More importantly, considering the diversity of users and

items, their properties could evolve in quite diverse manners over time. Instead of just

using one model trying to fit all, it is thus more desirable to place fewer assumptions or

constraints on the model structures.

For modeling the dynamics, it is always assumed that there is su�cient information to

learn the transition models [88, 255]. However, this is not always the case under the

personalized and item-wise context. For example, for some users that give feedback only

within one time frame in the training period, it is impossible to extract some meaningful

dynamic patterns merely based on their own feedback, since this feedback does not span

enough time intervals. This problem also exists for some items. In this chapter, this kind of

problems is defined as the cold start transition problem. It is di↵erent from the traditional

cold start problem in RSs, where users or items with no feedback exist 1. For these users

or items that su↵er from the cold start transition problem, they may have provided or

received some feedback within a time frame, however, which does not span enough time

intervals during the training period to derive transition models. For dynamic2 RSs, at

1The cold start problem is referred in a strict sense. In the wide sense, users or items
are allowed to have a little amount of feedback associated with them. For example, when
items only receive less than 5 ratings, they are regarded as the cold start items.

2The cold start transition problem and the developed solution to it in this chapter are
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each time frame, the prediction is made and observations are then used to update models.

Hence, no personalized dynamic recommendation can be appropriately obtained for such

users without solving the cold start transition problem.

In this chapter, the cold start transition problem in RSs exploiting temporal dynamics is

solved by [162]

1) modeling the tendency of user preferences and item popularity in a personalized and

item-wise fashion, where no assumption on dynamical model structure is imposed,

2) proposing a collaborative inference and learning algorithm that explicitly considers

the uncertainties of model structure and dynamically updates the model to track

user and item latent vectors accurately and alleviate the compromise in the separate

tracking, and

3) exploiting the temporal dynamics of “like-minded” users and similar items to learn

the cold start transition models.

To the best of the author’s knowledge, this is the first work that aims to solve the cold

start transition problem in RSs. Meanwhile, it is the first work to develop the personalized

and item-wise dynamical systems for RSs without structure assumption.

Overall, the proposed system uses two sets of latent vectors to represent user preferences

and item attractiveness compactly and respectively at each time frame, whose initial

settings are partially learned by a probabilistic matrix factorization (PMF) method. Based

on these representations, the system employs a probabilistic personalized and item-wise

temporal model to track the tendency of user preferences and item attractiveness over time

simultaneously. The model parameters are dynamically updated by the learning algorithm

whenever a new batch of feedback occurs. Meanwhile, the posterior distributions involving

the temporal dynamics of “like-minded” users and similar items are utilized to generate the

initial settings for those users and items that su↵er from the cold start transition problem.

not restricted to temporal data. For ease of exposition, “temporal” and “dynamic” are
used interchangeably in this chapter.
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For the Top-N recommendation task [115], a personalized recommendation list for each

user is generated based on the predicted user preferences for items. The prediction at

each time step is adapted by using the updated transition models and the current user

and item latent vectors.

The rest of this chapter is organized as follows. Related work is briefly discussed in

Section 4.2. Section 4.3 describes the developed model. In Section 4.4, the inference and

learning algorithm of this model is covered. The learning algorithm to cope with the

cold start transition problem is also covered in this section. The performance of proposed

algorithms with a variety of baseline methods are compared and discussed in Section 4.6.

Finally, the summary will be presented in Section 4.7.

4.2 Related Work

The developed methods in this chapter are closely related to the methods discussed in

Chapter 3. For clarity, the related work on particle filtering for MF methods is ignored in

this section.

The developed learning algorithm in this chapter is closely related to the learning algorithm

in [255, 90], which also relies on the EM framework to identify the model uncertainty.

However, the method in [255] only focuses on the modeling of the observation model and

assumes the temporal dynamics are predefined rather than dynamically learned over time.

The developed method is also di↵erent from [90], which is not developed to adjust the

dynamics adaptively to new inputs and is only designed to work with data with very low

sparsity that is not practical in RSs.

Conventional extreme learning machine (ELM) has been used in [23] to achieve online

adaptive object tracking. However, they are used for classification and do not update the

kernel parameters. The dynamics are not modeled during the tracking, and the learning

algorithm in [23] also does not consider the model uncertainties.
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The learning algorithm in [92] exploits the EM framework and particle filtering to learn a

probabilistic bilinear model. However, as the dynamic system in [92] is an identity function,

there is no dynamic and temporal information being incorporated into that algorithm and

the model can be regarded as a subset of the developed method even if it does not include

the backward filtering procedure in the developed algorithm.

In [61], a predictive model is developed to recommend dynamic contents. This model is

not based on latent vectors. Instead, the method directly constructs some user and item

profiles based on both static and temporal side information. Unlike the proposed methods

in this chapter, all of these methods are not developed to model the personalized and

item-wise dynamics or tackle with the cold start transition problem. Furthermore, even if

the temporal information is considered, model structure uncertainties in these models are

not deliberately considered during the learning procedure.

4.3 Personalized and Item-wise Model

The first step towards solving the cold start transition problem is to learn a general tran-

sition model for dynamics. A state space approach [200] is adopted to model the tendency

of user preferences and item attractiveness in the personalized Top-N recommendation.

Simulation techniques, such as sequential Monte Carlo methods [200], are used to estimate

user and item latent factors simultaneously and cope with non-linear and non-Gaussian

behaviors. Recall that the number of required particles should be O(2d) for a d-dimensional

state space to achieve a satisfactory result [209]. Following the approach in Chapter 3,

latent factors are separately estimated for each user and item to make a compromise

between the accuracy of user and item representations and the tractability of simulation

techniques. Following [197, 196], these latent variables are still assumed to be marginally

independent while any rating Ru,i
t is still assumed to be conditionally independent given

user u’s latent vector Uu
t at time t and item i’s latent vector V i

t at time t.

However, as mentioned before, the dynamical systems in temporal RSs are assumed to
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be either known a priori or with known model structures. For instance, the first-order

Gaussian random walk with or without specifying the step size is a popular fallback as

the transition models for the known model structures. An online adaptive ELM [104]

is developed in this chapter to model the dynamics for each user and item, where no

assumption on their model structures is imposed. Thus, the learned dynamical systems are

tailored to capture the diverse dynamics of the latent vectors representing user preferences

and item popularity. With “like-minded” users and similar items as the collaborators,

these fully personalized and item-wise dynamical systems are then used to solve the cold

start transition problem in dynamic RSs. The inertia of the personalized and item-wise

dynamics provides the developed method with fine granular control to help predict and

distinguish user preferences and item attractiveness within some time frames when there

are few observations available for some users and items.

4.3.1 Modeling dynamics

Considering the t-th time window ranging from t�n+1 to t with 1  n  t, let Uu
m 2 RK

and V v
m 2 RK be latent vectors representing user u’s preferences and item v’s attractiveness

at time m in the time window. The tendency of user preference and item attractiveness

is usually modeled by a nonlinear first-order transitional relation between the current

and previous latent factors. Specifically, the nonlinear transition models for a user u’s

preferences and item v’s attractiveness in the nonlinear state space based dynamical system

are defined as follows,

Uu
m = fu(U

u
m�1) + um, (4.1)

and

V v
m = fv(V

v
m�1) + vm, (4.2)

where um and vm are independent and identically distributed (I.I.D.) noise processes with

possibly non-Gaussian distribution.

A major focus of the work in this chapter is to model the completely unspecified nonlinear

functions fu and fi accurately and e�ciently to reflect the tendency of user preferences
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and item attractiveness flexibly in order to improve the performance of RSs over time. All

the uncertainties in the function f are captured in a set of parameter vectors ✓ that is

treated as an unknown but deterministic set of vectors.

In order to make the transition functions fu and fv fully determined by the user feedback,

no assumptions or constraints should be placed on the model structure. Therefore, an

online adaptive ELM is developed to model the temporal dynamics in RSs. Specifically,

for each user u and item v, an ELM with L hidden kernels and K outputs is exploited as

the basis to construct the transition model. Note that only the number of hidden kernels

and outputs is specified here and the structure of the dynamics of both user and item

latent factors will be automatically learned from the user feedback. As Section 4.4.2 will

show, the developed ELM is adaptive in a sense that it constantly adjusts its parameters

at each time frame to capture the current tendency.

For a typically hidden kernel l in the t-th window, the Gaussian kernel for user u is

utilized with the center µu,l
t 2 RK , where l 2 1, . . . , L. Its covariance matrix ⌃u,l

t 2 RK⇥K

is usually restricted to �lI with identity matrix I and �l 2 R+ [104]. To emphasize the

correlation between latent vectors, the developed model does not impose such a constraint

and uses ⌃u,l
t = ⌃u

t 2 RK⇥K . This release aims to increase flexibility while avoiding over-

parametrization for sparse data in dynamic RSs. Let the interconnection weight matrix

for user u be Hu
t 2 RK⇥L, where hul,t 2 RK is the interconnection weights between the l-th

hidden Gaussian kernel and outputs in user u’s evolution process in the t-th time window,

and the matrix is the column-wise stacking of hul,t as H
u
t = [hu

1,t, . . . , h
u
L,t].

The evolution process fu(Uu
m�1) of user u’s preferences can be defined as follows,

Uu
m = Hu

t �
u
t (U

u
m�1) + but , (4.3)

where the vector but 2 RK captures the individual’s preference bias in the t-th time window.

The L-dimensional vector �u
t (U

u
m�1) for user u at time m� 1 in the t-th time window is

defined as follows,

�u
t (U

u
m�1) = [�u

t,1(U
u
m�1), . . . ,�

u
t,L(U

u
m�1)]

T , (4.4)
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where its scalar component �u
t,l(U

u
m�1) is defined as follows,

�u
t,l(U

u
m�1) = exp(�1

2
(Uu

m�1 � µu,l
t )T⌃u,l�1

t (Uu
m�1 � µu,l

t )), (4.5)

Similarly, the transition models for item v can be obtained.

4.3.2 The observation model

In order to make it tractable, the personalized and item-wise temporal model separately

models the evolution processes of user preferences and item attractiveness for each user

and item. It is the observation model in which enables “like-minded” users and similar

items collaborate with each other and convey this collaboration into the dynamics.

Intuitively speaking, in the observation model, a user u’s preferences over items are gov-

erned by both user u’s latent factors and the latent factors of all the items that are also

shared by other users when inferences about their latent preferences are made. As dis-

cussed in Chapter 3, the feedback in RSs is generally not missing at random [212]. Low

ratings are much more likely to be missing than high ratings [212] because users are free

to choose items to give their feedback. A proper observation model should consider the

ranking of all the items, no matter whether they are observed or not [212]. Instead of

treating all the missing data as negative, a subset of missing items is sampled for each

user at every time frame as negative samples to complement the user’s most recent obser-

vation [160]. The dynamically constructed observations for user u at time m are denoted

as R̂u
m. This personalized approach not only distinguishes the past and recent information

but also avoids dominating recent observation with imputed data.

The observation model over constructed ratings R̂u
m for user u at time m is defined as

follows,

P (R̂u
m|Uu

m,{V j
m}) = exp{�

MX

j=1

wim((r̄u,jm � Uu
t (V

j
m)T )2+

�

2
||Uu

m||2
Frob

+
�

2
||V j

m||2
Frob

)}, (4.6)
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where || · ||
Frob

denotes the Frobenius norm that is used as the regularization term. The

constant � is regularization coe�cient and r̄u,jm equals to ru,jm if it is observed and equals to

rm otherwise. The value rm is an imputed value for all the missing data, which is regarded

as the average value of ratings in the complete but unknown data. The weight wim is a

global constant for imputed data to reflect the confidence over imputation for simplicity

[212]. Similarly, the observation model over constructed ratings R̂v
m for item v at time m

can be defined.

The exponential loss in the above observation functions is inspired by the formulation of

the energy function in Markov random field [36]. By using particle smoothing shown later,

this function will focus more on those particles that can reconstruct user preferences over

items more precisely. Similar to loss functions used in Section 3.3.2 in Chapter 3, other loss

functions, such as squared loss or absolute loss, have also been explored in the trails but

it is di�cult for them to filter out well-performed particles for the Top-N recommendation

task.

4.4 Inference and Learning

When the transition models of user preferences and item attractiveness are completely

given, the estimation problem reduces to a filtering problem. The particle filtering, which

can cope with nonlinear and non-Gaussian behaviors in temporal RSs, could be used to

inference the hidden states representing user preferences and item attractiveness over time

as shown in Chapter 3. When the structure of the transition models is known and the

corresponding states and observations are available in the training data, standard methods

such as maximum likelihood estimation could be used to learn model parameters. After

this pre-processing procedure of system identification, the estimation problem becomes

a filtering problem. In temporal RSs, neither of the above two cases can hold as there

is no ground truth available for the rich and diverse structures of the tendency of user

preferences and item attractiveness. Hence, model uncertainties introduced by removing

the structure assumptions in Section 4.3 must be considered during inference and learning.
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It is shown [160, 158] that the tendency of user preferences and item attractiveness can be

better reflected by recent observations than the historical data. Therefore, it is assumed

here that the model parameters are estimated by using current observations and previous

n� 1 observed users’ feedback. At time t, user latent factors Ut and item latent factors Vt

are forwardly estimated by particle filtering from time t� n+ 1. The particle smoothers

are then used to estimate the posterior distributions of these latent factors over such a

period. Although the time windowing technique is used here to reduce the influence of

historical data, the recursive mechanism of particle smoothing does not make the learning

procedure underestimate the importance of these historical data that do not fall within the

time window. To this point, it is the E-step and all the estimation is under the condition

that the model parameters are given and fixed as the estimated values from the previous

time window.

After obtaining the su�cient statistics with respect to the estimated posterior distribu-

tions in the E-step, the model parameters are updated in the M-step to maximize the

expected complete logarithm likelihood function. Similar to the discussion in Chapter 3,

optimization methods, such as the stochastic gradient ascent, tend to fit the model to

the imputed value as accurate as possible. As a unique imputed value is set to those se-

lected negative samples, this optimization approach can easily overfit the model and make

the predicted user preferences over unrated items indistinguishable. The experimental

results (not shown in this chapter) also verify this statement. In this regard, the inference

and learning procedures do not conduct the iterative procedure as the conventional EM

method does. As the one step optimization framework still aims to maximize the expected

complete log likelihood function at each time frame, the inference and learning procedures

developed under one step optimization framework are attempting to exploit the benefits

of imputation fully while avoiding its artifacts.

In summary, a method that combines an EM-like approach and particle smoothing is

developed to estimate the latent vectors and model parameters jointly at each time frame,

which blindly incorporates the model uncertainties. At time t (or the last frame in the t-th

time window), user and item latent vectors are forwardly estimated by particle filtering
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from time t � n + 1, where 1  n  t. Particle smoothing is then used to estimate the

posterior distributions of these latent vectors and model parameters within such a period.

For clarity, only the distributions of user latent vectors are shown. It is symmetric to

derive the distributions of item latent vectors.

4.4.1 E-step

On the E-step of the algorithm, the forward filtering stage is conducted at first. Let

✓ut = {Hu
t , µ

u
t , b

u
t ,⌃

u
t } and ✓vt = {Hv

t , µ
v
t , b

v
t ,⌃

v
t } denote model parameters of the transition

models at the current time window (t�n+1  m  t) for user u and item v, respectively.

Let ✓t denote the union of ✓ut and ✓vt at the t-th time window. The posterior distribution

of latent factors Uu
t and V v

t is

MY

u=1

NY

v=1

P (Uu
t , V

v
t |R1:t, ✓t). (4.7)

By alternatively estimating user and item latent vectors, each joint posterior distribution

over latent vectors is approximated as the product of marginal posterior distributions

P (Uu
t |R1:t) and P (V v

t |R1:t). For user u, its marginal distribution can be estimated as

follows,

P (Uu
t |Uu

t�1, V
v
t�1, R1:t, ✓t)

/
Z

P (Rt|Uu
t , V

v
t )P (Uu

t |Uu
t�1, ✓

u
t )P (V i

t |V v
t�1, ✓

v
t )dV

v
t

⇡
Z

P (Rt|Uu
t , V

v
t )P (Uu

t |Uu
t�1, ✓

u
t )�(V

v
t � V̄ v

t )dV
v
t

= P (Rt|Uu
t , V̄

v
t )P (Uu

t |Uu
t�1, ✓

u
t ), (4.8)

where V̄ v
t is the estimated value for item v’s latent factors from the previous iteration.

Particle filtering is used to approximate the posteriors, where transition and observation

functions are defined in Section 4.3. The posterior for user u then becomes point mass

distribution over S sampled latent vectors {Uu,(s)
t } and their weights {wu,(s)

U,t } where s =

1, . . . , S. Similarly, the marginal distribution for item v can be estimated as follows,

P (V v
t |V v

t�1, U
u
t�1, R1:t, ✓t) / P (Rt|V v

t , Ū
u
t )P (V v

t |V v
t�1, ✓

v
t ) (4.9)
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In order to estimate model parameters, it is also inevitable to have the marginal posterior

distribution over Uu
m and the marginal posterior distribution over V v

m for any time frame m

within the time window. By using particle smoothing, the posterior distribution for user u

is approximated as the point mass distribution over the latent vectors {Uu,(s)
m |s = 1, . . . , S}

obtained from particle filtering and their smoothed weights {wu,(s)
U,m|t|s = 1, . . . , S}, where

only the weights are modified by the smoothing. Let P (Uu
m+1

|Uu
m, ✓ut ) be the probabilistic

form of user u’s transition model defined in Section 4.3. Weights wu,(s)
U,m|t are backwardly

and recursively calculated from time frame t until time frame t� n+ 1 as follows,

wu,(s)
U,m|t =

SX

s0=1

wu,(s0)
U,m+1|t ⇥

wu,(s)
U,m P (Uu,(s0)

m+1

|Uu,(s)
m , ✓ut )

PS
q=1

wu,(q)
U,t P (Uu,(s0)

m+1

|Uu,(q)
m , ✓ut )

. (4.10)

The initial smoothing weight at time frame t is set as its filtering weight wu,(s)
U,t|t = wu,(s)

U,t .

There exist more sophisticated methods for smoothing, such as two filter smoothing [43].

These methods are not covered in this discussion because a concrete smoothing technique

is not the focus of this chapter.

As the resampling step is adopted in the forward filtering stage to mitigate the degeneracy

problem, if the identical particle propagation is used to approximate the posterior distri-

bution p(Uu
m|Rt�n+1:t, ✓ut ) in both numerator and denominator in Eq (4.10), the smoothing

weight can be simplified as follows,

wu,(s)
U,m|t =

SX

s0=1

wu,(s0)
U,m+1|t ⇥

P (Uu,(s0)
m+1

|Uu,(s)
m , ✓ut )

PS
q=1

P (Uu,(s0)
m+1 |Uu,(q)

m , ✓ut )
. (4.11)

This simplification can facilitate the vectorization and make the inference more e�cient

in the concrete implementation.

4.4.2 M-step

After gathering su�cient statistics of model parameters with respect to the posterior

distributions of user and item latent factors, model parameters ✓t for t-th time window is

re-estimated at each M-step to maximize the probability of generating the ratings in the

training data and blindly incorporating the uncertainties on the model structures.
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The objective function Recall that for each user u and item v the transition models

are given in Eq (4.3) and a similarly derived one respectively. The complete logarithm

likelihood function logP (Rt�n+1:t, Ut�n+1:t, Vt�n+1:t|✓t) at time t for the t-th time window

can be then calculated as follows,

logP (Rt�n+1:t, Ut�n+1:t, Vt�n+1:t|✓t)

⇡
tX

m=t�n+1

logP (Um+1

|Um, ✓Ut ) + logP (Rt�n+1:t|Ut�n+1:t, Vt�n+1:t)+

tX

m=t�n+1

logP (Vm+1

|Vm, ✓Vt )

=
tX

m=t�n+1

NX

u=1

logP (Uu
m+1

|Uu
m, ✓ut ) +

tX

m=t�n+1

MX

v=1

logP (V v
m+1

|V v
m, ✓vt ) + C,

(4.12)

where ✓Ut and ✓Vt denote the collections of model parameters over all the users and items,

respectively. The constant C represents all the terms irrelevant to model parameters ✓t,

and the observation function is given in the form of Eq (4.6). The first approximation is

due to the alternative estimation of user and item latent factors and the assumption that

there exist initial settings U
0

and V
0

.

Hence, the expectation of log-complete likelihood to be maximized can be expressed as

E ⇡
tX

m=t�n+1

⇣Z NX

u=1

logP (Uu
m+1

|Uu
m, ✓ut )P (Uu

m+1

, Uu
m|Rt�n+1:t, Vt�n+1:t, ✓

u
t )dU

u
m+1

dUu
m+

Z MX

v=1

logP (V v
m+1

|V v
m, ✓vt )P (V v

m+1

, V v
m|Rt�n+1:t, Ut�n+1:t, ✓

v
t )dV

v
m+1

dV v
m

⌘

=
tX

m=t�n+1

Z NX

u=1

logP (Uu
m+1

|Uu
m, ✓ut ) · P (Uu

m+1

|Rt�n+1:t, Vt�n+1:1

, ✓ut )·

P (Uu
m+1

|Uu
m, ✓uU )P (Uu

m|Rt�n+1:t, Vt�n+1:t, ✓ut )R
P (Uu

m+1

|Uu
m, ✓ut )P (Uu

m|Rt�n+1:t, Vt�n+1:t, ✓ut )dU
u
m

dUu
m+1

dUu
m

+
tX

m=t�n+1

Z MX

v=1

logP (V v
m+1

|V v
m, ✓vt ) · P (V v

m+1

|Rt�n+1:t, Ut�n+1:1

, ✓vt )·

P (V v
m+1

|V v
m, ✓vt )P (V v

m|Rt�n+1:t, Ut�n+1:t, ✓vt )R
P (V v

m+1

|V v
m, ✓vt )P (V v

m|Rt�n+1:t, Ut�n+1:t, ✓vt )dV
v
m

dV v
m+1

dV v
m, (4.13)
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where the irrelevant constants are omitted in the above equation for clarity. The first

approximation is also due to the alternative estimation of user and item latent factors.

The second equation exploits the following Bayesian equivalence,

P (Uu
m+1

, Uu
m|Rt�n+1:t, Vt�n+1:t, ✓

u
t )

=P (Uu
m|Uu

m+1

, Rt�n+1:t, Vt�n+1:t, ✓
u
t ) · P (Uu

m+1

|Rt�n+1:t, Vt�n+1:t, ✓
u
t )

=P (Uu
m+1

|Rt�n+1:t, Vt�n+1:t, ✓
u
t ) ·

P (Uu
m, Uu

m+1

|Rt�n+1:t, Vt�n+1:t, ✓ut )

P (Uu
m+1

|Rt�n+1:t, Vt�n+1:t, ✓ut )
(4.14)

By approximating the posterior distributions P (Uu
m|Rt�n+1:t, Vt�n+1:t, ✓uU ) and P (Uu

m+1

|

Rt�n+1:t, Vt�n+1:1

, ✓uU ) as described in the E-step, the maximization of Eq (4.13) over the

model parameters of users is equal to the minimization of the following function,

EU ⇡
tX

m=t�n+1

NX

u=1

SX

i=1

SX

j=1

kUu,(i)
m+1

� fu(U
u,(j)
m , ✓tu)k2 · w

u,(i)
m+1|t·

wu,(j)
m P (Uu,(i)

m+1

|Uu,(j)
m , ✓ut )

PS
q=1

wu,(q)
m P (Uu,(i)

m+1

|Uu,(q)
m , ✓ut )

, (4.15)

where fu(U
u,(j)
m , ✓ut ) is the evolution process for user u as shown in Section 4.3 but with

explicitly displayed model parameters ✓ut . The maximization of Eq (4.13) over the model

parameters of items can be similarly obtained.

Adaptive updating In conventional ELMs, the kernel parameters are selected ran-

domly and the output interconnection weights are obtained analytically to achieve an

extremely high learning speed. Hence, the M-step can be omitted and the developed

learning and inference algorithm is reduced to particle smoothing. However, under tem-

poral context, the static kernel parameters may not cover the proper regions in the latent

space to identify the system model correctly, because the latent vectors representing user

preferences and item attractiveness are constantly evolving. Therefore, it would be useful

to update all the weights and parameters dynamically in transition models.

By exploiting the accuracy of single layer forward radial basis function networks while

preserving the fast learning property of ELM, the developed updating procedure con-
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ducts the EM loop once and attempts to make the conventional ELM more adaptive and

generalization under temporal personalized recommendation context.

Specifically, instead of optimizing against these kernel parameters as much as possible, the

developed procedure relies on clustering methods and one step gradient descent technique

[88] to update these parameters dynamically.

The K-mean clustering is used for each user and item to regenerate L groups for the centers

of hidden kernels at each time step. It is tempted to use all the particles as the current

inputs to account the uncertainties existing in the model estimation. However, considering

the large number of particles with respect to the number of hidden kernels, the regenerated

centers are prone to be overwhelming by the current estimation and underestimating the

importance of historical data. Hence, the developed method clusters all the kernel centers

µu
m�1 from previous time m�1 and the expected latent vectors Ûu

m at current time m. By

this updating procedure, the transition models are able to adapt to the regions where the

posteriors of user preferences and item attractiveness have high probabilities. Similarly,

the covariance matrix of user u’s l-th kernel ⌃u
t is updated by one step gradient descent.

Let J = kUu,(i)
m+1

� fu(U
u,(j)
m , ✓ut )k2. By taking advantages of the concept of ↵-derivatives

[165], the gradient of EU in Eq (4.15) with respect to ⌃u
t is derived by using matrix-matrix

derivatives as follows,

@EU

@⌃u
t

=
tX

m=t�n+1

SX

i

SX

j

A(u, i, j)
@J

@⌃u
t

, (4.16)

where
@J

@⌃u
t

= B(u, i, j,m)[(Uu,(j)
m � µu,l

m )T⌃u�1

t ]T [(Uu,(j)
m � µu,l

m )T⌃u�1

t ], (4.17)

and

A(u, i, j) = wu,(i)
U,m+1|t

wu,(j)
U,m P (Uu,(i)

m+1

|Uu,(j)
m ), ✓ut )

PS
q=1

wu,(q)
U,m P (Uu,(i)

m+1

|Uu,(q)
m ), ✓ut )

, (4.18)

B(u, i, j,m) = (Uu,(i)
m+1

� fu(U
u,(j)
m , ✓ut ))

T · hul,t · (
1

2
exp{�1

2
 l(U

u
m, ✓ut )}), (4.19)

and

 l(U
u
m, ✓ut ) = (Uu

m � µu,l
m )T⌃u�1

t (Uu
m � µu,l

m ). (4.20)
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Let �ut = [Hu
t but ] denote the concatenation of interconnection weights and the user bias

term for the t-th time window. The parameter �ut over the time frames {t�n+1 : t} can

be analytically computed by maximizing the approximated expectation of log complete

likelihood function in Eq (4.15). The updated �ut can be computed as follows,

�ut =
tX

m=t�n+1

((
SX

i=1

SX

j=1

A(u, i, j) · Uu,(i)
m+1

·

0

@ �u
t (U

u,(i)
m )

1

1

A
T

)·

(
SX

i=1

SX

j=1

A(u, i, j) · (

0

@ �u
t (U

u,(i)
m )

1

1

A

0

@ �u
t (U

u,(i)
m )

1

1

A
T

+ �
⌃

IL+1

))�1), (4.21)

where IL+1⇥L+1

is an identity matrix, and the coe�cient �
⌃

is the coe�cient for the

Tikhonov regularization that works as the second regularization to mitigate the singular

and ill-posed problem because the input data are not only noisy but also dynamically

constructed at each time frame. Similarly, the model parameters of the dynamic system

for item v can be derived.

4.4.3 Prediction

As mentioned in Chapter 3, canonical particles [92] Ûu
t and V̂ v

t are utilized to represent

the total e↵ect of particles on the estimation for every latent vector at time t. To be

avoided the degeneracy problem [200], particles will also be resampled in proportional to

their weights. After resampling, the expectations of posterior distributions of Ut and Vt

are utilized as canonical particles. At time t, the expectations of posterior distributions

of user and item latent factors Ut and Vt are computed as Ûu
t =

PS
s=1

wu,(s)
U,t Uu,(s)

t and

V̂ v
t =

PS0

s=1

wv,(s)
V,t V v,(s)

t . Then, user u’s preference over item i at time t can be estimated

as Ûu
t (V̂

v
t )

T .
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4.5 Cold Start Problem in Learning Transitions

For ease of exposition, only users providing feedback at only one (the last) time frame T

in training data are taken into account. The case of the cold start transition problem for

items can be similarly derived. This problem is indeed di↵erent from both cold start user

problem and cold start item problem that have been heavily investigated in RSs. For some

users that are classified as cold start users, there is no feedback available. Conventional

collaborative filtering (CF) methods are thus unable to extract their preferences when the

methods do not resort to side or context information to reduce the sparsity. Similarly,

conventional CF methods have di�culty to cope with those items that do not receive any

feedback. However, for these users or items for which there is not enough information to

initialize their transition models, they do have provided or received feedback. The only

issue is that this feedback only exists in the latest time interval. Therefore, the problem

that some users or items that are only active in the last time interval in the training data

are named as the cold start transition problem.

In CF, the behaviors of cold start objects are typically regarded as being similar to normal

objects connected by similar side information [13]. Inspired by this idea of tackling the cold

start problems, “like-minded” users or similar items are also regarded as having similar

dynamics or dynamics learned during training in the cold start transition problem, i.e

collaborative tendencies.

4.5.1 Objects without cold start transition Problems

Let Rtr
1:T be training data that are ordered and grouped by their timestamps into T time

frames, and Rtr
1:T�1 is obtained by removing the last time frame from Rtr

1:T . Let {UT } and

{UT�1} denote a set of sampled user latent vectors learned from Rtr
1:T and Rtr

1:T�1, respec-

tively. For these users that do not have the cold start transition problems, these latent

vectors can be learned from the posteriors P (UT , VT |Rtr
1:T ) and P (UT�1, VT�1|Rtr

1:T�1).

The posterior distributions of model parameters {✓T } in the transition models for these
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user preferences are then given as follows,

P ({✓T }|{UT }, {UT�1}) /
NY

u=1

DY

d=1

P (Uu
d,T |Uu

d,T�1, ✓
u
T ) ·

NY

u=1

P (✓uT ), (4.22)

where D is the number of samples in the sampling set. The prior distribution P ({✓T })

for the model parameters is set to follow multivariate spherical Gaussian distribution to

function as the regularization terms to prevent the estimation from overfitting.

Sampled vectors should be paired to learn meaningful transitions. Each sample obtained

from P (UT�1, VT�1|Rtr
1:T�1) is used to initialize the procedure to obtain one corresponding

sample from P (UT , VT |Rtr
1:T ). Ideally, these latent vectors should be sampled from the

posteriors P (UT , VT |Rtr
1:T ) and P (UT�1, VT�1|Rtr

1:T�1) by methods such as MCMC [21].

However, considering the large number of users and items and the slow convergence rate

of MCMC, those latent factors are approximated by randomizing the initial condition of

AllRank method while leaving other components unchanged. As the number of samples

D is usually not large, users that do not have the cold start transition problem can learn

their initial transition models by using maximum a posterior estimation of their model

parameters, which is equivalent to minimize the regularized least squares between latent

vectors at T and their corresponding latent vectors transited from T � 1.

4.5.2 Objects with cold start transition Problems

Recall that for users that do have the cold start transition problem, their latent vectors UT

do exist. Let {UN(u)
T } be the set of latent vectors of user u’s closest neighbors without the

cold start transition problem, and ✓N(u)
T be the set of transition model parameters of these

users in the T -th time window. For user u that faces the cold start transition problem, its

initial parameters of the transition model can be estimated by maximizing the following
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joint posterior distribution,

P (✓uT , {Uu
T�1}|✓

N(u)
T , {Uu

T }, {U
N(u)
T }, {UN(u)

T�1 })

/P (✓uT , {Uu
T�1}, ✓

N(u)
T , {Uu

T }, {U
N(u)
T }, {UN(u)

T�1 })

=P ({UN(u)
T }|{UN(u)

T�1 }, ✓N(u)
T , ✓uT , {Uu

T�1}, {Uu
T }) · P ({Uu

T }|{Uu
T�1}, ✓

N(u)
T , ✓uT , {U

N(u)
T�1 })·

P ({UN(u)
T�1 }|{Uu

T�1}, ✓
N(u)
T , ✓uT ) · P (✓N(u)

T |✓uT , {Uu
T�1}) · P ({Uu

T�1}|✓uT ) · P (✓uT )

=P ({UN(u)
T }|{UN(u)

T�1 }, ✓N(u)
T ) · P ({Uu

T }|{Uu
T�1}, ✓uT )·

P ({UN(u)
T�1 }|{Uu

T�1}, ✓
N(u)
T , ✓uT ) · P (✓N(u)

T |✓uT , {Uu
T�1}) · P ({Uu

T�1}|✓uT ) · P (✓uT )

=P ({UN(u)
T }|{UN(u)

T�1 }, ✓N(u)
T ) · P ({Uu

T }|{Uu
T�1}, ✓uT ) · P ({UN(u)

T�1 }|{Uu
T�1})·

P (✓N(u)
T |✓uT ) · P ({Uu

T�1}) · P (✓uT )

/P ({Uu
T }|{Uu

T�1}, ✓uT ) · P ({UN(u)
T�1 }|{Uu

T�1}) · P (✓N(u)
T |✓uT )·

P ({Uu
T�1}) · P (✓uT ), (4.23)

where the proportion is the result of the decomposition of the full joint distributions by

Bayesian rules and the conditional independence of transitions.

Intuitively speaking, the conditional independence in P ({UN(u)
T }|{UN(u)

T�1 }, ✓N(u)
T , ✓uT , {Uu

T�1}, {Uu
T })

and P ({Uu
T }|{Uu

T�1}, ✓uT , ✓
N(u)
T , {UN(u)

T�1 }) reflects the transitional relations across two con-

secutive time frames. The conditional independence in P ({UN(u)
T�1 }|{Uu

T�1}, ✓
N(u)
T , ✓uT )

reflects the idea in CF that “like-minded” users behave similarly. The conditional in-

dependence in P (✓N(u)
T |✓uT , {Uu

T�1}) reflects the previous assumption that “like-minded”

users have similar tendencies that are captured by the model parameters in their dy-

namic systems. The marginal independence in the distribution P ({Uu
T�1}|✓uT ) can also

be derived from previous two conditional independence. This is also intuitive because

both previous latent factors Uu
T�1 and the model parameters ✓uT in the time window are

required to predict the current latent factors Uu
T . In other words, Uu

T�1 and ✓uT have

“explaining away” [36] phenomenon. Meanwhile, the conditional independence leading to

P ({UN(u)
T }|{UN(u)

T�1 }, ✓N(u)
T ) is also derived similarly. The last proportion is the result of

dropping the terms that are not relevant to the latent factors and model parameters of

user u that is under inspection. Figure 4.1 shows a portion of the graphic model relating

to this conditional independence in the T -th time window for users. The graphic model
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Figure 4.1: A portion of the graphic model for users in the t-th time window.

for items in the T -th time window is symmetric and omitted here for clarity. If there

is an edge linking from node {UN(u)
T } to node {Uu

T } in the graphic model, this Bayesian

network becomes fully connected and there are no conditional independence relations to

be exploited to simplify the computational complexity of the learning procedure. Because

all the user latent factors at time T , no matter whether the users su↵er from the cold start

transition problem or not, are able to be learned directly from the training data, the edge

linking node {UN(u)
T } and node {Uu

T } is released in the developed model.

According to collaborative tendencies, the transited user preferences from Uu
T�1 with ✓uT

should be close to user preferences Uu
T learned from data up to T . The distribution

P ({Uu
T }|{Uu

T�1}, ✓uT ) is thus defined as follows,

P ({Uu
T }|{Uu

T�1}, ✓uT ) =
DY

d=1

exp{�1

2
kUu,d

T � fu(U
u,d
T�1, ✓

u
T )k

2

}. (4.24)

As the latent factors of “like-minded” users should be close to each other in latent space,

the distribution P ({UN(u)
T�1 }|{Uu

T�1}) is defined as follows,

P ({UN(u)
T�1 }|{Uu

T�1}) =
DY

d=1

exp{�1

2

X

j2N(u)

(wujkUu,d
T�1 � U j,d

T�1k
2), (4.25)

where wuj denotes the similarity between users u and j that is computed based on their

historical ratings as in user-based CF with the Pearson’s correlation [115]. The neighbor-

hood of user u is also determined by wuj .
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Based on collaborative tendencies, the distribution P (✓N(u)
T |✓uT ) is defined as follows,

P (✓N(u)
T |✓uT ) = exp{�1

2

X

j2N(u)

(wujk✓uT � ✓
j
T k

2)}. (4.26)

The distributions P ({Uu
T }) and P (✓uT ) are defined to function as regularization terms to

prevent overfitting. They are defined as P ({Uu
T }) = exp{�1

2

PD
d=1

kUu,d
T k2} and P (✓uT ) =

exp{�1

2

k✓uT k2}, respectively.

Derivatives By using the ↵-derivative similar to Section 4.4.2, the gradients of these

parameters with respect to the logarithm of Eq (4.23) can be obtained. Because only

the interconnection weights Hu
T and the bias term buT in the transition models have an

analytical solution, Eq (4.23) is alternatively maximized over {Uu
T�1} and ✓uT via the

gradient descent method.

Let J
1

denote the logarithm function of P ({Uu
T }|{Uu

T�1}, ✓uT )·P ({UN(u)
T�1 }|{Uu

T�1})·P ({Uu
T�1}),

which contains all the terms relevant to latent factors. Similarly, let J
2

denote the loga-

rithm function of P ({Uu
T }|{Uu

T�1}, ✓uT )·P (✓N(u)
T |✓uT )·P (✓uT ), which contains all the terms re-

lating to model parameters to be inspected. Let (u, d, l) denote (Uu,d
T�1�µu

l )
T⌃u�1

(Uu,d
T�1�

µu
l ) for user u’s d-th sample in the sampled set for l-th kernel.

By using the ↵-derivative, the gradients of these parameters are computed as follows,

@J
1

@Uu,d
T�1

=(
LX

l=1

hul exp{�
1

2
 l(U

u,d
T�1, ✓

u
U )} · (�(U

u,d
T�1 � µu,l)T⌃u�1

))T ·

(Uu,d
T � fu(U

u,d
T�1, ✓

u)) +
X

j2N(u)

wuj(U
u,d
T�1 � U j,d

T�1) + Uu,d
T�1, (4.27)

and

@J
2

@µu,l
=(

DX

d=1

(hul · exp{�1

2
 l(U

u,d
T�1, ✓

u
U )}(U

u,d
T�1 � µu,l)T⌃u�1

)·

(Uu,d
T � fu(U

u,d
T�1, ✓

u))) +
X

j2N(u)

wuj(µ
u,l � µj,l) + µu,l, (4.28)
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and

@J
2

@⌃u
=

DX

d=1

(
LX

l=1

((Uu,d
T�1 � µu,l)T⌃u�1

)T · (Uu,d
T � fi(U

u
d,T�1, ✓

u))T ·

� 1

2
hul exp{�

1

2
 (u, d, l)} · ((Uu,d

T�1 � µu,l)T⌃u�1
))+

X

j2N(u)

wij(⌃
u � ⌃j) + ⌃u. (4.29)

Similar to the derivation in Section 4.4, the interconnection weights and the bias term in

the transition models have an analytical solution as follows,

[Hu bu] =(
X

j2N(u)

wuj [Hj bj ] +
DX

d=1

wuj(U
u,d
T [(�d(U

u
T�1))

T 1])·

(
DX

d=1

[(�u(Uu,d
T�1))

T 1]T [(�u(Uu,d
T�1))

T 1]� (
DX

d=1

wuj + 1)I)�1. (4.30)

where IL+1

is a L + 1 ⇥ L + 1 identity matrix. For clarity, the subscript t denoting that

these parameters belong to the t-th time window in all the above notations are ignored.

Analogously, the learning algorithm for items that su↵er from the cold start transition

problem can be derived.

4.5.3 Computational Complexity

By replacing the summations over smoothed particles in previous equations in previous

sections with smoothed canonical particles, those equations can be approximated to reduce

their complexity. Similar to the canonical particles for particle filtering, the smoothed

expectations for user u and item v at time m in the t-th time window are estimated as

Ûu
m|t =

PS
s=1

wu,(s)
U,m|tU

u,(s)
m|t , and V̂ v

m|t =
PS

s0=1

wv,(s0)
V,m|tV

v,(s0)
m|t , respectively.

Because PMF [197] is among the fastest state-of-the-art CF methods, its time complexity

is used as a reference here. The complexity of PMF is O(|R|⇤K 0 ⇤epoch), where |R| is the

number of ratings, K 0 is latent factor dimension in PMF and epochs is the number of itera-

tions used. The time complexity of PMF is linear with respect to |R|. The time complexity

of DynTranPF is dominated by computing the gradient of the covariance matrix, which is
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O(S⇤K3⇤L). Because {L,K, t}⌧ min(N,M), K 0⇤epoch ⇡ S⇤K2 and |R| ⇡ (M+N)⇤K,

the time complexity of DynTranPF is approximated as O(|R| ⇤L ⇤K 0 ⇤ epoch). This com-

plexity is still linear in terms of |R|. Similar to the analysis for DynTranPF, the time

complexity of LearnColdTran is O((N +M) ⇤D ⇤ L ⇤K3) ⇡ O(|R| ⇤K 0 ⇤ epoch) that is

also linear in |R|.

4.6 Experiments

In order to study the performance of the proposed methods in solving the cold start tran-

sition problem to flexibly and individually model user preferences and item attractiveness

in dynamic RSs, the experiments in this section are divided into two parts. The first part

focuses on the evaluation of the proposed method on the Top-N recommendation task,

and the second part aims to verify the e↵ectiveness of proposed methods of handling those

users and items having the cold start transition problem. For both parts, the proposed

methods are evaluated on the Movielens 100K (MovieLens) [1], HetRec [3] and Amazon

Video Games (VideoGames) datasets [4]. The datasets adopted in this part of experi-

ments are slightly di↵erent from the datasets adopted in the experiments conducted in

Chapter 3. The commonly used benchmark datasets in RSs, Movielens 100K and HetRec

datasets, are retained, which are about movie ratings. In order to explore the performance

of the proposed method for datasets with di↵erent characteristics, Netflix used in previous

experiments is replaced by VideoGames.

4.6.1 Protocol

Ratings are grouped based on the time frame in which their timestamps are. Ratings

before a predefined time instance are used as training data, and ratings after it are test

data. This setting is preferred over a random split of all the data. As in a real-world

deployment, it is infeasible to generate the prediction using information in future.

153



4. On Learning the Dynamics in Temporal Recommender Systems

Data Training periods for MovieLens, HetRec and VideoGames are September 1997

⇠ 1-st week of 1998, January 2007 ⇠ December 2007 and January 1999 ⇠ December

2011, respectively. Their testing periods are 2-nd week ⇠ 16-th week of 1998, January

2008 ⇠ December 2008 and January 2012 ⇠ December 2012, respectively. Compared

with the Hetrec dataset adopted in the experiments in Chapter 3, the training period of

HetRec dataset is set to a short period to reduce the computational power that is spent on

training. Meanwhile, to enable the proper training of transition models for users that do

not have cold start problems, the 1st week of 1998 is also included in the training period

of MovieLens dataset. Similar to the setup in Chapter 3, di↵erent time units are selected

to ensure that ratings in a time slot are not too sparse. For example, after removing these

users and items that give or receive less than 10 ratings, VideoGames has 480, 189 users

and 17, 770 items, which has the overall sparsity of 98.6% and the sparsity of 99.98% in

the last frame. With such units, the time window size n is set to 1 to avoid too much

intervention from historical data and rapidly react to sudden changes in the tendency.

Metrics Similar to experiments in Section 3.8.1 in Chapter 3, the metrics precision@k,

recall@k and Top-N hitrate recall [66] are utilized to assess the performance of the Top-N

recommendations. Meanwhile, items with maximum rating value are treated as relevant

items.

In a real world scenario, when the recommendation list itself becomes large, the list will

be obsolete since people prefer only top listed items [24, 206]. Hence, it is set to k = 10

for all the metrics. For all the sampling-based methods, the number of particles is set

to 1000 to balance their accuracy and scalability. For simplicity, the step sizes � for

user and item latent vectors in the proposal distribution in sampling methods are set

to be equal. Other parameters in sampling methods and other baseline methods are

separately tuned to achieve their best performance. Tuning is conducted under temporal

recall and the identical settings are used for other metrics. In order to make the comparison

fair, DynTranPF and FixTranPF adopt the same set of parameters. For clarity, only

parameters in DynTranPF are presented in the following. It is also set L = 10 and
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|N(i)| = 10 over all the datasets. Following experiments in Chapter 3, the imputed value

is set to rmiss = 1.95 and wim = 0.02. As mentioned in Chapter 3, the e↵ectiveness of

RSs with sparse datasets is usually not high [243]. Hence, the focus will be placed on the

relative improvement of algorithms instead of comparing their absolute performance.

4.6.2 Baseline Methods

The developed methods are compared with PMF, ST-PFUV [160], STKF [158], Fix-

TranPF, RandColdTran, DynTopPopular, DynPureSVD, and DynAllRank. Latent factors

in ST-PFUV and the developed methods are initialized by AllRank [212]. All the methods

are repeated 10 times with means and standard deviations reported. Self-training particle

filtering for MF (ST-PFUV) is selected to verify whether the explicit modeling and updat-

ing of dynamic systems in DynTranPF is able to improve the performance of temporal RSs.

It is also chosen to demonstrate the benefits of building the personalized and item-wise

transition models that impose no constraints on the structure of the temporal dynamics

of user and item latent factors. Note that ST-PFUV adopts the first-order multivariate

normal random walk as the transition model for all the users and items. ST-PTBM is

also presented in Chapter 3. However, because DynTranPF is developed to enhance the

flexibility of modeling the dynamics of ST-PFUV, ST-PTBM is not very closely related to

the developed method in this chapter and it is not compared in the following experiments.

FixTranPF is identical to DynTranPF except that transitions are fixed to the initial ones.

It is chosen to verify the benefits of dynamically updating personalized and item-wise dy-

namic systems in RSs. As will be shown later, due to the high data sparsity in data, it is

essential to adapt the dynamic systems to catch up the tendency of user preferences and

item popularity over time. Other baseline methods are those baseline methods used in the

experiments in Chapter 3. The discussion related to those baseline methods is omitted

here for clarity.

Analogues to the selection of baseline methods in Chapter 3, to confirm the necessity

of exploiting temporal information, PMF is also tested as the only static method in the
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following experiments. This method always predicts the ranking without updating model

parameters. In the second part of experiments, RandColdTran is identical to LearnCold-

Tran in Section 4.5 except that parameters for initial prediction are sampled from their

priors instead of learning from objects that do not su↵er from the cold start transition

problem.

4.6.3 Learning Dynamics

Recall that the training data are grouped into T time frames in Section 4.5.1. As neither

the cold start user problem nor the cold start item problem is the focus of this chapter,

the experiments in this section do not consider these problems.

MovieLens The dimensions of latent factors are K = 4 for DynAllRank, K = 13 for

DynPureSVD, K = 12 for PMF, and K = 4 for STKF. The number of selected negative

samples [160] is 30 times the number of users and items in sampling methods. Other

related parameters are set as the step size � = 0.2, K = 4 and regularization coe�cient

� = 0.1 in both DynTranPF and ST-PFUV, and �
⌃

= 0.1 in DynTranPF.

Results Table 4.1 shows the results of the compared methods under temporal accuracy

metrics. The low values in the table are due to the fact that few relevant items exist

for each user in a time frame. Compared with these baseline methods, DynTranPF has

the best performance. In particular, DynTranPF outperforms all other dynamic methods.

This result shows that the proposed method can e↵ectively construct personalized and

item-wise transition models and dynamically update the model parameters to improve the

temporal performance of RSs on the Top-N recommendation task. This can be ascribed

to the fine modeling and learning of temporal dynamics of user preferences and item

characteristics in the proposed method. All the improvements brought by DynTranPF

are statistically significant under both paired and unpaired t-tests [115] with p = 0.05.

Meanwhile, DynTranPF improves ST-PFUV over the temporal accuracy measurement by

11.31%, 5.01% and 16.07%, respectively. Recall that the developed method is tuned based
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Method prect(k) recallt(k) topt(k)
PMF 0.0555±0.0041 0.0910±0.0084 0.0632±0.0096
DynTopPopular 0.0818±0.0000 0.0988±0.0000 0.1238±0.0007
DynPureSVD 0.1028±0.0000 0.1975±0.0000 0.0605±0.0077
DynAllRank 0.0993±0.0038 0.1867±0.0158 0.1441±0.0141
STKF 0.0719±0.0000 0.1341±0.0000 0.1410±0.0042
ST-PFUV 0.1061±0.0024 0.2575±0.0087 0.1972±0.0081
FixTranPF 0.0809±0.0025 0.1751±0.0152 0.1447±0.0148
DynTranPF 0.1181±0.0039 0.2704±0.0091 0.2289±0.0090

Table 4.1: Results of the methods on the MovieLens dataset for temporal metrics
(mean±standard deviation, the best performance in italic font).

on the recall metric during training and applying the identical setting to precision and the

Top-N hitrate measurement.

Intuitively, the significant improvement brought by DynTranPF can be explained by three

reasons. Firstly, the dynamic adaption of the transition models for each user and item

at every time frame is capable of finely modeling the dynamics between user and item

latent factors across time frames that represent the tendency of user preferences and

item attractiveness. Secondly, as DynTranPF does not impose any assumptions on the

structure of the tendency of user preferences and item attractiveness, the personalized

and item-wise transition models are fully tailored to catch the diverse requirements of

the modeled dynamics. Finally, the uncertainty in the model has been explicitly and

e↵ectively taken into account by the developed inference and learning algorithms. The

improvement between DynTranPF and FixTranPF is also significant, showing the benefits

to updating the transition models adaptively while tracking the tendency, which also

blindly incorporates the uncertainties of model structures.

Meanwhile, it is obvious from Table 4.1 that all personalized and dynamic algorithms have

better performance than that of the static PMF method under all the temporal metrics.

This conclusion is expected because more and more information about users is gathered

as the time passes.

Comparison of temporal behaviors In order to further evaluate temporal behaviors of

DynTranPF, the average of accumulated improvement (AAI) over time defined in Section
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Figure 4.2: The average of accumulated improvement for DynTranPF on the MovieLens
dataset since the 2-nd week in 1998.

4.6 in Chapter 3 is used.

Figure 4.2 plots the AAI metric among DynTranPF, FixTranPF, DynPureSVD, DynAll-

Rank, ST-PFUV and STKF. Except the second month of the blue (dash-dotted) curve

(DynTranPF vs FixTranPF), all the curves in the figure are above zero, showing that

the developed method constantly outperforms baseline methods by taking advantage of

the tailored and adaptive modeling of personalized and item-size temporal dynamics in

user’s feedback. The magenta (dotted) curve (DynTranPF vs ST-PFUV) shows that

DynTranPF constantly improves ST-PFUV over time by flexibly modeling the tempo-

ral correlation between user preferences and item popularity and dynamically adjusting

the dynamical systems. In addition, the yellow (stared) curve (DynTranPF vs STKF)

shows that the temporal performance of RSs can be significantly improved by tracking the

tendency of item attractiveness and coping with non-Gaussian behaviors.

Because the baseline method ST-PFUV significantly outperforms other baseline methods,

the results of other baseline methods will be omitted in the following discussion for clarity,
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which does not influence the conclusion in the chapter. Note that the results of the devised

method FixTranPF will also be included for reference.

Hetrec Similar to previous experiments, DynTranPF has the best performance under

all the temporal metrics as shown below. The number of selected negative samples in

the two-phase sampling is set to 50. The related settings are �=0.2, K=4 and �=0.1 in

both DynTranPF and ST-PFUV, and �
⌃

=0.1 in DynTranPF. As mentioned before, these

parameters are incrementally tuned.

Method prect(k) recallt(k) topt(k)
ST-PFUV 0.0192±0.0007 0.1208±0.0027 0.0±0.0062
FixTranPF 0.0065±0.0003 0.0322±0.0014 0.0934±0.0029
DynTranPF 0.0206±0.0005 0.1309±0.0033 0.3278±0.0051

Table 4.2: Results of the methods on the Hetrec dataset for temporal metrics
(mean±standard deviation, the best performance in italic font).

Results Table 4.2 shows the results of these methods under temporal metrics. DynTranPF

significantly outperforms other methods in terms of all the temporal accuracy metrics. All

the improvement brought by DynTranPF is statistically significant for both unpaired and

paired t-tests [115] with p=0.05. It improves the temporal accuracy measurement over

that of ST-PFUV by 2.99%, 7.27% and 3.07%, respectively. Recall that the focus will

be placed on the improvement instead of the relative values and the developed methods

are tuned based on the recall metric during training and applying the identical setting to

precision and the Top-N hitrate measurement. This result verifies that DynTranPF can

e↵ectively construct the personalized and item-wise transition models over a long period.

Comparison of temporal behaviors Figure 4.3 plots the AAI among DynTranPF, Fix-

TranPF and ST-PFUV.

All the curves in the figure are above zero, showing that the developed method constantly

outperforms baseline methods over time. Compared with ST-PFUV, DynTranPF explic-

itly considers the temporal dependence among rich and diverse user preferences and item

attractiveness across time frames by constructing the dynamical systems. As there are no
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Figure 4.3: The average of accumulated improvement for DynTranPF on the Hetrec
dataset since January 2008.

constraints imposed on the structure of the transition model, they are absolutely person-

alized and item-wise transitions. Moreover, for these users and items that are inactive in

some time frames, the inertia of finely modeled dynamics in DynTranPF is more infor-

mative and discriminative than the random search conducted in ST-PFUV. In addition

to explicitly considering the uncertainties in model structures, the inference and learning

algorithm also aims to find a balance between exploitation and exploration in the latent

space. By contrast, ST-PFUV only searches the latent space randomly, and it is prone to

the divergence of particle filtering over a long period.

After doing some exploratory analysis on the Hetrec dataset, it is found that the slight de-

crease (maximum 0.0053% between the 11-th month and the 12-th month) of the tendency

of the red (circled) curve (DynTranPF vs DynAllRank) is due to the rapidly decreasing

of active users in the dataset over time (only 16.64% active users remained in the final

time frame). As there is less new information available at each time frame as the time

passes, all these methods are overinflunced by the historical data and they are attempt-
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ing to extract repeatedly transitional relations relating to the temporal importance of the

historical data. Therefore, under such a situation, this retrospective improvement made

by DynTranPF over DynAllRank and ST-PFUV has been reduced.

VideoGames The factor in the two-phase sampling is set to 20. The related settings

of parameters are �=0.2, K=4 and �=0.1 in ST-PFUV. For DynTranPF, the settings are

�
⌃

=0.001 and �=0.2, K=4, and �=0.1.

Results Table 4.3 shows the results for temporal accuracy metrics. DynTranPF achieves

the best performance for all metrics. The results show that DynTranPF works successfully

on a reasonably large and extremely sparse real-world dataset. Except for temporal hitrate,

all the improvement brought by DynTranPF is statistically significant for both unpaired

and paired t-tests with p = 0.05.

Method prect(k) recallt(k) topt(k)
ST-PFUV 0.0186±0.0002 0.1158±0.0008 0.3250±0.0023
FixTranPF 0.0143±0.0002 0.0885±0.0010 0.2552±0.0024
DynTranPF 0.0208±0.0009 0.1294±0.0011 0.3264±0.0006

Table 4.3: Results of the methods on the Amazon VideoGames dataset for temporal
metrics (mean±standard deviation, the best performance in italic font).

Comparison of temporal behavior

Except for the initial time frame, both of the curves are above zero in Figure 4.4, showing

that the developed method constantly outperforms baseline methods over time by tak-

ing advantage of the fine modeling of temporal dynamics in user preferences and item

attractiveness. The blue (dash-dotted) curve (DynTranPF vs FixTranPF) illustrates that

DynTranPF improves FixTranPF over time by dynamically updating the dynamical sys-

tems for user preferences and item popularity. This improvement verifies the benefits of

the developed online adaptive ELMs in DynTranPF. As mentioned in Section 4.3, it is

essential to update both the kernel parameters and interconnection weights in the ma-

chines dynamically to cope with the noisy user feedback and the artifacts introduced by

imputation at each time frame. Meanwhile, to tailor the dynamical systems to meet the
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Figure 4.4: The average of accumulated improvement on the VideoGames dataset since
January 2012.

specifications of each user and item, it is also necessary to dynamically incorporate the

uncertainties of model structures at each time frame as does in DynTranPF.

In addition to the benefits explained from DynTranPF vs FixTranPF, the red curve (Dyn-

TranPF vs ST-PFUV) also shows that the temporal performance of RSs can be signif-

icantly improved by using the personalized and item-wise temporal dynamics. This set

of fully tailored dynamical systems not only finely models the temporal information and

dynamic structures of user and item latent factors across time frames, but also functions

as a set of useful components by providing the tracking and prediction procedures with

the meaningful and specific inertia of user behaviors and item properties over these time

frames where users and items are inactive.
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4.6.4 Computational time

As a sequential approach, the proposed methods dynamically learn the model parameters

and track user and item latent factors. This approach does not change the computational

complexity of prediction. Thus, the total running times at each time frame (including both

training or retraining time and prediction time) are averaged to compare the e�ciency of

these methods. The algorithms are implemented in Matlab and run on a 4-core machine

with 2.50G Hz CPU and 32G memory. The running times of these methods under temporal

recall metric on the Hetrec and VideoGames datasets are listed in the first and third lines

in Table 4.4, respectively. Their running times under other temporal metrics have the

similar e↵ects and they are ignored for clarity.

As mentioned before, it is also straightforward to speed up DynTranPF by parallelizing

the Monte Carlo method and learning algorithm. The running times of these parallelized

versions (with 4 threads) are listed in the second and fourth lines in Table 4.4. A par-

allelized version of PMF is not implemented. The key observation in the table is that

DynTranPF can be greatly speeded up by parallelization. Therefore, it is reasonable to

expect the running time of DynTranPF is comparable with baseline methods when it is

deployed on more sophisticated machines. Note that PMF has been among the fastest

state-of-the-art CF methods.

Method PMF ST-PFUV DynTranPF-User DynTranPF
Hetrec time 0.0 0.0 0.0 0.0
Hetrec parallel - 41.8 115.3 191.8
VideoGames time 0.0 0.0 0.0 0.0
VideoGames parallel - 148.9 0.0 259.8

Table 4.4: The average running times on the Hetrec and VideoGames datasets (the unit
is second and the best performance in italic font).

4.6.5 Cold Start Transition Problem

This subsection focuses on the study of the e↵ectiveness of the proposed method to tackle

the cold start transition problem. Due to the properties of video games, the number
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of users and items with such a problem are quite stable over time in the VideoGames

dataset. Therefore, 5% of users are randomly marked as su↵ering from the cold start

transition problem in the VideoGames dataset. Meanwhile, items in the corresponding

tuples (user, item and the rating) become the candidates for items with the cold start

transition problem, which leads to 1.05% items having the cold start transition problem.

Table 4.5 summarizes the number of users and items that do not su↵er from the cold

start transition problem during the testing period in those three datasets adopted in the

experiments.

object MovieLens Hetrec VideoGames
user 530 1206 13175
item 1493 7497 17485

Table 4.5: The number of users and items that do not su↵er from the cold start transition
problem during the testing period.

Table 4.6, Table 4.7 and Table 4.8 demonstrate the performance of RandColdTran and

LearnColdTran on the 1-st time frame during the testing period. All the improvement

brought by LearnColdTran is statistically significant for both paired and unpaired t-tests

[115] with p = 0.05. The results verify that these users and items with the cold start

transition problem indeed have similar temporal patterns as their “like-minded” users and

similar items without such a problem, and LearnColdTran does benefit from collaborative

tendencies and collaborative observation models. They also verify that LearnColdTran

can generate accurate initial model parameters for these users and items su↵ering from

the cold start transition problem. For example, LearnColdTran improves the temporal

accuracy measurement over that of RandColdTran by 7.61%, 16.19% and 9.24% on the

VideoGames dataset, respectively. Recall that all the parameters are tuned under the

temporal recall metric.

Method prect(k) recallt(k) topt(k)
LearnColdTran 0.0709±0.0048 0.1502±0.0173 0.1124±0.0327
RandColdTran 0.0180±0.0016 0.0698±0.0039 0.0823±0.0050

Table 4.6: Results of methods on the MovieLens dataset for the 1-st time frame
(mean±standard deviation). The best performance is in italic font for each metric.
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Method prect(k) recallt(k) topt(k)
LearnColdTran 0.0247±0.0015 0.0936±0.0103 0.2505±0.0138
RandColdTran 0.0178±0.0010 0.0788±0.0062 0.2141±0.0158

Table 4.7: Results of methods on the Hetrec dataset for the 1-st time frame
(mean±standard deviation). The best performance is in italic font for each metric.

Method prect(k) recallt(k) topt(k)
LearnColdTran 0.0099±0.0002 0.0603±0.0028 0.2389±0.0077
RandColdTran 0.0092±0.0002 0.0519±0.0015 0.2187±0.0047

Table 4.8: Results for temporal metrics on the VideoGames dataset at the 1-st frame
(mean±standard deviation). The best performance is in italic font for each metric).

It is also useful to verify the benefits of a good initial transition for dynamically updating

transition models over time. Hence, the comparisons will be conducted on the temporal

performance of two versions of DynTranPF that are separately initialized by RandCold-

Tran and LearnColdTran. These methods are named as DynTranRand and DynTran-

Learn, respectively. Table 4.9, Table 4.10 and Table 4.11 illustrate their performance.

Compared with results in those three tables with those results in Table 4.6, Table 4.7 and

Table 4.8, even though the improvement has been reduced, a good initialization gener-

ated by LearnColdTran still leads to a superior temporal performance. This reduction

is not unexpected. As the time goes, users are providing more feedback while items are

receiving more ratings. Therefore, these users and items su↵ering from the cold start tran-

sition problem will be gradually getting over this problem. This is especially true for the

VideoGames dataset, where users and items with such a problem are randomly introduced

as a small portion of the total population. However, it is desirable for RSs to provide these

users su↵ering from the cold start transition problem with some reasonably satisfied rec-

ommendations when little feedback is available. Otherwise, these users may lose their

trust in the systems and depress the usage of them. Furthermore, if the problems of cold

start users or items are considered at the same time, the cold start transition problem may

exist in each time frame. Therefore, it is rational to expect that DynTranRand will fail

to generate appealing recommendations over time.
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Method prect(k) recallt(k) topt(k)
DynTranLearn 0.1098±0.0031 0.2319±0.0071 0.1971±0.0083
DynTranRand 0.1029±0.0028 0.2290±0.0097 0.1922 ±0.0083

Table 4.9: Results for temporal metrics on the MovieLens 100K dataset over all the time
frames (mean±standard deviation). The best performance is in italic font for each metric).

Method prect(k) recallt(k) topt(k)
DynTranLearn 0.0216±0.0005 0.1152±0.0029 0.2685±0.0069
DynTranRand 0.0193±0.0006 0.1053±0.0041 0.2614±0.0037

Table 4.10: Results for temporal metrics on the Hetrec dataset over all the time frames
(mean±standard deviation). The best performance is in italic font for each metric).

Method prect(k) recallt(k) topt(k)
DynTranLearn 0.0202±0.0002 0.1269±0.0010 0.3180±0.0017
DynTranRand 0.0196±0.0008 0.1220±0.0012 0.3026±0.0067

Table 4.11: Results for temporal metrics on the VideoGames dataset over all the time
frames (mean±standard deviation). The best performance is in italic font for each metric).

4.7 Summary

A novel probabilistic personalized and item-wise model has been presented to tackle the

cold start transition problem in learning the tendency of user preferences for RSs. To fully

adapt to the rich and diverse dynamical systems for various users and items, an online

adaptive ELM is developed to model the temporal and dynamic information intrinsic in

users’ historical feedback. By exploiting the historical feedback and temporal interac-

tions from “like-minded” users and similar items, a new inference and learning algorithm,

considering the model uncertainties for emulating the interested tendency, is also devel-

oped for the Top-N recommendation task over time. The algorithm tracks latent factors

representing user preferences and item attractiveness and adaptively updates model pa-

rameters to put more emphasis on the current trend. The cold start transition problem,

which is particularly outstanding in dynamic RSs, is solved by learning from collaborative

tendencies.

The proposed methods are evaluated on three real-world benchmark datasets under the

temporal extensions of accuracy metrics. The experimental results demonstrate that those
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methods significantly improve the recommendation performance over a variety of state-

of-the-art algorithms. The results confirm that those methods can e↵ectively model the

temporal dynamics of rich and diverse user preferences and item preferences. For users and

items that are inactive for some time frames, the experiments also verify that it is more

reasonable to assume the tendency follows the inertia of the modeled dynamics instead of

just randomly searching the latent space. The learning algorithm that dynamically updates

model parameters is shown to be able to handle the introduced model uncertainties and

e�ciently guide the propagation of latent factors. The experiments also illustrate the

advantages of temporal dynamic model over static ones and the benefits of tracking both

user preferences and item attractiveness instead of tracking merely user preferences. The

experimental results relating to the cold start transition problem also illustrates that the

proposed learning algorithm can accurately learn the missed transition systems by utilizing

knowledge from similar users and items.

Up to the current discussion, the research has focused on the modeling of temporal dy-

namics of latent factors, such as their transitional relations, to capture the tendency of

user preferences and item attractiveness. Nevertheless, the temporal dynamics of the vari-

ations of latent factors also convey rich and helpful information to reflect the tendency of

user preferences and item attractiveness in RSs, which will be the emphasis of the next

chapter.
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Chapter 5

Bayesian Wishart Matrix

Factorization

Existing methods to exploit temporal dynamics in RSs, such as the discussed methods

in Chapter 3 and Chapter 4, usually focus on the modeling of transitional relations of

user preferences and item attractiveness across time intervals. The temporal dynamics

of variations of user preferences and item attractiveness are largely neglected. However,

the fluctuation of dynamics also conveys meaningful information and should be worth

exploring. By modeling the temporal dynamics of those variations, many sudden changes

or local temporal e↵ects in the tendency of user preferences and item attractiveness could

be well modeled and properly controlled. Meanwhile, it is more interesting and challenging

to predict the preferences of those users that do have diverse preference patterns. Those

diverse behaviors of those users are also taken into account by modeling the temporal

dynamics of variations. Moreover, while modeling the temporal variations in a hierarchical

way, the temporal e↵ects can also be shared across time frames, which should be beneficial

to mitigate the problem of data sparsity in RSs. In order to achieve the desired properties

described above, a Bayesian MF-based CF method is developed to model the temporal

dynamics of variations among user preferences and item attractiveness from a totally

di↵erent algorithmic perspective.
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5.1 Introduction

Methods developed in Chapter 3 and Chapter 4 are based on the state space based ap-

proach, whose state space consists of latent vectors representing user preferences and item

attractiveness. This approach is a popular technique that exploits temporal information

to boost the performance of CF in RSs [80, 158]. Through the usage of state space and

the dynamic systems built on it, this approach not only has a solid theoretical ground but

also seamlessly exploits the temporal dynamics and the collaboration among entities over

time. The first order Gaussian random walk is usually adopted as the de facto dynamic

system in RSs due to its simplicity and a lack of the prior knowledge about user preference

and item attractiveness. Methods of this approach demonstrate a promising performance

according to the reported experiments.

Along other direction, some extra latent vectors have been used to take a specific care

of temporal and dynamic information in user feedback. Those methods enhance the ca-

pability of traditional models that only considers user preferences and item preferences

in a static way. Some particular constraints or conditions depicting the tendency of user

preferences and item attractiveness are then constructed in terms of the expected behav-

iors of those temporal latent vectors. For example, it is straightforward to extend the

static models with a temporal constraint that requires user latent factors vary smoothly

across two consecutive time frames. By optimizing the objective function of latent factors

with those temporal constraints, user preferences over items at various time frames can

be predicted.

It is a fundamental problem in data mining and machine learning to model the dependen-

cies among random variables or vectors. Therefore, the modeling of covariance matrices

receives many attentions because it is the simplest measure of dependency. Nevertheless,

this is not the case in existing RSs, which usually assume that covariance matrices are

nearly constant over time for simplicity. Under temporal context, those matrices are tradi-

tionally either empirically tuned or predefined in dynamic models [80, 158, 160] or simply

learned to fit some localized distributions that do not explore and share the temporal infor-
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mation across time frames. More importantly, it is more useful and challenging for RSs to

generate recommendations for those users that have diverse feedback patterns. However,

by imposing the universal and static assumption on those dependencies, existing methods

usually do not emphasize on modeling the temporal behaviors of such users. In summary,

the aspects relating to temporal dynamics of covariances have been largely neglected in

RSs.

In this chapter, the proposed method aims to fill out this gap by imposing priors to model

the temporal dynamics of variations of user preferences and item attractiveness in order to

improve the performance of RSs. The work introduces a novel and orthogonal dimension

that concerns the dynamic covariance matrices so that the performance of RSs can be

improved by relying on the modeling over this largely neglected direction, especially for

modeling the temporal behaviors of those users that do have diverse feedback patterns. In

addition to imposing the priors on the temporal dynamics of covariance matrices, it also

seems possible to have priors imposed on the transitional relations of user preferences and

item attractiveness at the same time. However, this approach may make the final model

too complex to apply to the real world scenarios for RSs. Therefore, this approach is not

considered in this chapter.

In the proposed method, the generalized Wishart process (GWP) [236] will be used to

model the priors to enable the static MF method [197] to handle the temporal and dy-

namic aspects of the evolving data. It also finely models the temporal dynamics of user

preferences for those users having diverse feedback pattern. The GWP process is a stochas-

tic process that defines a prior for covariance matrices over time. It alleviates the problems

of existing multivariate volatility models [28], such as poor scalability on the dimension of

covariances and a lack of generality of learning and inference procedures. This stochastic

process is a collection of positive semi-definite random matrices indexed by any arbitrary

input variable, and it is developed to model the index varying or dynamic covariances. For

simplicity, the index is referred to be time index. To the best of the authors’ knowledge,

the proposed method is the first work that integrates the priors over dynamic covariance

matrices into MF and then applies to the problem of dynamic recommendations.
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Specifically, the proposed method uses two sets of latent vectors to represent compactly

user preferences and item attractiveness at each time frame. The initial settings of those

latent vectors are learned by a probabilistic matrix factorization (PMF) method. Then,

the proposed system employs the GWP process as the priors for the dynamic covariance

matrices of user latent vectors and item latent factors, respectively. The changing of user

preferences and item popularity is thus modeled and controlled by temporal dynamics of

those covariances of latent vectors1. The temporal behaviors of those users that do have

diverse feedback patterns are also taken care of by the proposed method. By modeling

the temporal dynamics of those dynamic covariance matrices, the influences of tempo-

ral fluctuation and smoothness constraints, which are usually complicated and conflicted

among diverse users and items, can be flexibly modeled and e�ciently reconciled. Due

to the symmetry in the developed method, the temporal behaviors of those items that

do have received the diverse feedback are also taken into account. For the personalized

recommendation, a personalized list of predicted ratings on unseen items for each user is

generated based on the learned user and item latent vectors.

The main contributions of this chapter are [159]:

1) a novel Bayesian Wishart matrix factorization method is developed for RSs to model

the tendency of user preferences and item attractiveness e↵ectively via the direct

controlling of temporal dynamics of covariances of user and item latent vectors. The

developed method takes into account the temporal behaviors of those users and items

that have or receive diverse feedback;

2) an e↵ective and e�cient inference algorithm is developed for the proposed Bayesian

model by combining the collapsed Gibbs sampling method [21] and elliptical slice

sampling method [177];

3) it is experimentally shown that the proposed model and learning algorithm lead

to the improvement in the temporal performance of RSs for personalized rating

prediction on public benchmark datasets.

1Latent factors and latent vectors are used interchangeably in this chapter.
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This chapter is organized as follows. A brief discussion of the related work is presented

in Section 5.2. Section 5.3 briefly describes Bayesian MF method as the preliminary. The

proposed model is discussed in detail in Section 5.4. In Section 5.5, the inference algorithm

of the proposed model is covered. The performance of proposed method is compared with

a variety of baseline methods in Section 5.6. The summary is presented in Section 5.7.

5.2 Related Work

Before the award-winning method timeSVD++ [127, 128] is proposed, the temporal infor-

mation in user feedback has been largely ignored in the development of CF. After buck-

etizing the user feedback into time frames, timeSVD++ captures only the local changes

in user preferences over time. Compared with PMF, timeSVD++ introduces extra latent

vectors that are interpreted in a way to capture temporal behaviors within the specific

time frame. Temporal constraints are also added into the objective function for the opti-

mization problem. Unlike the proposed method, this method is not a Bayesian treatment

and faces complicated parameter tuning. Meanwhile, the prediction for users’ interests in

timeSVD++ is actually post hoc about what interests would have been in the past, rather

than what interests would be in the future.

Bayesian probabilistic tensor factorization (BPTF) [241] extends Bayesian MF (BMF)

[196] by introducing latent vectors on the time dimension to take care of the temporal

information. Unlike the proposed method that models both the temporal and dynamic

behaviors for each user and item, BPTF focuses on the overall e↵ects of temporal informa-

tion that are shared across all users and items. Meanwhile, like the popular timeSVD++

method, BPTF is also a binning-based approach [160]. Both of those methods predict

user interests at a time instance using all the collected data. That is, the prediction is

actually post hoc about what interests would have been in the past rather than in future,

which conflicts with real-world scenarios.

While retaining the normal-Wishart priors over latent factors as adopted in BMF, user
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latent factors are collapsed into user group latent factors in dynamic Bayesian probabilistic

matrix factorization [56] at every time frame. A hierarchical Dirichlet process (HDP) [223]

has been imposed over the grouping of users in BMF to share information across user latent

factors over various time intervals. The HDP prior then determines the membership of

every user at each time step. Nevertheless, the temporal dynamics of latent factors are

not modeled across time intervals in [56]. In contrast, the GWP processes employed in

the developed method explicitly models the temporal dynamics of variations of latent

factors across time intervals. In addition to only considering the local e↵ects captured

by user group latent factors, item attractiveness in [56] is assumed to be slowly changed

and item latent factors are thus assumed to be static and capture global e↵ects. Because

dynamic Bayesian probabilistic matrix factorization [56] is not a personalized approach to

recommendations and focuses mainly on the modeling of dynamic memberships of users,

this method is not compared in the experiments.

In addition, almost all of the existing methods that integrate temporal information into

MF impose an implausible assumption of constant variance or covariances among latent

vectors. This assumption neglects diverse dependencies among latent factors at each time

frame. Therefore, it in turns ignores the diverse patterns of mutual influences among

di↵erent characteristics of user preferences and item attractiveness. Moreover, this as-

sumption ignores the trends of those dependencies across time frames, which only imposes

some static and constant smooth constraints of the dynamics of those factors. It may

prevent the methods from handling the sudden and dramatic changes in user preferences

and item attractiveness over time. The proposed method releases this assumption by

explicitly modeling the temporal dynamics of variations of user and item latent vectors.

Furthermore, almost all of those methods require the exploitation of conjugate priors to

facilitate the inference procedure in the developed models. Although this requirement

reduces the computational complexity of inference, it may limit the applicability and flex-

ibility of adopted priors. However, by exploiting more sophisticated sampling approach,

the proposed method does not have this kind of limitation, which will be discussed in

detail in Section 5.5.

173



5. Bayesian Wishart Matrix Factorization

There have been some other studies on exploiting temporal dynamics to improve the

performance of RSs. However, those studies [158, 80, 160, 55] are mainly based on a state

space approach, which uses the dynamic system to capture the transitional relations of

latent vectors. For example, Kalman filtering method is used in [158, 80] only to track the

trends of user latent factors in RSs. Di↵erent from modeling the explicit feedback as in

the proposed method and BPTF, the Poisson distribution is exploited in dynamic Poisson

factorization [55] to model the binary (implicit) feedback of the observation function at

each time interval. Meanwhile, the method imposes the independent first order Gaussian

random walk over each factor of latent factors and it focuses on the modeling of transitions

of latent factors. The method in [160] releases the assumptions of linear and Gaussian

dynamic system for user preferences and static item attractiveness in [158, 80, 55]. It

designs an observation function that explicitly considers that user feedback is not missing

at random. Because those methods do not aim to extend the applicability of Bayesian-

based MF methods to temporal scenarios on explicit user feedback or they focus on the

modeling of transitions of latent factors, the performance of those methods is not compared

with the proposed method in the experiments in this chapter.

5.3 Preliminaries

Before discussing the proposed method, Bayesian matrix factorization (BMF) [196] will be

briefly described as the preliminaries. BMF introduces a Bayesian treatment of probabilis-

tic matrix factorization (PMF) [197], which has been widely used in RSs as a model-based

CF method. PMF su↵ers from the high model control complexity and only comes up

with a point estimation. Moreover, PMF may have a small degree of freedom to cap-

ture meaningful prior knowledge for latent vectors. This problem is particularly evident

in RSs, where a large number of users and items makes user preferences and item char-

acteristics very diverse. Therefore, BMF imposes the priors over both the means and

covariance matrices of those latent vectors to overcome these problems. It also exploits

the Gaussian-Wishart distribution as the prior to make its learning and inference stages
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tractable.

5.3.1 Model

Assuming N users and M items, let R 2 RN⇥M be a user-item preference matrix with

an entry ru,i representing the rating given by user u to item i. Rating ru,i is assumed

to be generated by a Gaussian distribution P (ru,i|Uu, Vi) conditioned on K-dimensional

vectors Uu and Vi, which are the u-th row and the i-th row from corresponding user and

item latent matrices U 2 RN⇥K and V 2 RM⇥K . Furthermore, those latent vectors are

assumed to be marginally independent while any rating ru,i is assumed to be conditionally

independent of the presence of latent vectors Uu and Vi for user u and item i [196]. In

addition to the latent vectors and ratings that are represented in PMF, ⇥U = {µU ,⇤U}

and ⇥V = {µV ,⇤V } are used to denote the means and covariances of user latent vectors

and item latent vectors, respectively.

Let ⌫
0

denote the degrees of freedom and W
0

be the K⇥K dimensional scale matrix. The

Wishart distribution W is defined as W(⇤|W
0

, ⌫
0

) = 1

C |�0|
(⌫0�D�1)/2exp(�1

2

Tr(W
0

�1⇤)),

where C is the normalization constant for this distribution and D is the number of

the dimensions of ⇤. For convenience, let ⇥
0

denote the hyperparameters {W
0

, ⌫
0

, µ
0

}.

Thus, the Gaussian-Wishart priors on the user latent factors are defined as P (⇥U |⇥0

) =

P (µU |⇤U )P (⇤U ) = N (µU |µ0

, (�
0

⇤U )�1) ⇤W(⇤U |W0

, ⌫
0

). Without any prior knowledge,

these parameters are usually predefined in the model [196]. For example, the degree of free-

dom ⌫
0

is usually set to K+1, the hyperparameter µ
0

is usually set to be a K-dimensional

zero vector and W
0

is set to be a K ⇥K identity matrix.

5.3.2 Inference

The MAP estimation of user and item latent vectors is traditionally used to train PMF

with user feedback as input. This inference procedure results in a point estimation and is

prone to overfitting. In order to overcome these issues, BMF integrates over all the possible
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values of model parameter values and hyperparameters and utilizes the Gibbs sampling

method [36] to learn those parameters and hyperparameters. By using conjugate priors,

these conditional posteriors can be analytically derived and thus easily sampled.

5.4 Dynamic Matrix Factorization with GeneralizedWishart

Processes

In this section, a dynamic MF method that integrates the GWP processes into MF is

discussed in detail. This integration enables the static method to exploit the temporal

and dynamic information on user feedback from a perspective that is usually neglected

in CF. For clarity and easy exposition, the explicit feedback from users is taken as input

in the following discussion. As shown in Section 5.5, the inference procedure for the

proposed model is very general because of no requirement of the usage of conjugate priors.

Therefore, it is straightforward to apply this model to other types of user feedback by

replacing the observation function in the model.

Unlike the traditional dynamic MF methods that impose the priors over the transitional

relations among latent vectors across various time frames, the proposed method exploits

temporal and dynamic information in RSs by modeling the temporal dynamics of covari-

ance matrices ⌃U (t) and ⌃V (t) for user latent vectors Ut and item latent vectors Vt over

time t. The proposed method finely models the relatively abrupt changes in temporal

behaviors within time frames and the relatively stable trends in user preferences and item

attractiveness in user feedback. This is because the method not only models the diverse

and various dependencies among latent factors within each time frame, but also imposes

flexible constraints over the dynamics of variations of latent vectors.

176



5. Bayesian Wishart Matrix Factorization

5.4.1 The Model

Let {ul|ul 2 RK , l = 1, . . . , ⌫} be a set of ⌫ independent and identical distributed (i.i.d.)

samples from a K-dimensional multivariate normal distribution N (0,W
0

) with covariance

W
0

. A Wishart distribution W with a K⇥K dimensional scale matrix W
0

and ⌫ degrees of

freedom can be constructed as the summation of the outer products of ul as WK(W
0

, ⌫) =
P⌫

l=1

uluTl .

Inspired by the above procedure to construct the Wishart distribution, the GWP process

for user latent factors can be constructed from some Gaussian processes. A Gaussian

process is a stochastic process where any finite collection of random variables sampled

from the process complies with a joint multivariate normal distribution. Let GP denote a

Gaussian process. The distribution of the function P (t), which works as the fundamental

component to construct the GWP process, is assumed to have a Gaussian process prior

as P (t) ⇠ GP (m(t), k(t, t0)). The function m(t) is a mean function over input t, and

k(t, t0) = cov(u(t), u(t0)) is the kernel function that models the covariance cov(·, ·) of P (t)

between time t and time t0. Let {Pl,d(t)|l = 1, . . . , ⌫, d = 1, . . . ,K} denote ⌫K independent

Gaussian process functions sampled from the Gaussian process GP (0, k(t, t0)). Due to the

property of independence, it is straightforward to have the vector of Pl,d(t) comply with a

multivariate normal distribution as (Pl,d(t1), . . . , Pl,d(tN )) ⇠ N (0,K), where K is N ⇥N

matrix with Kp,q = k(tp, tq).

Let P̂U,l(t) = (PU,l,1(t), PU,l,2(t), . . . , PU,l,K(t))T denote a vector of samples at time t of

the l�th degree of freedom for user latent factors. Let V denote a K ⇥ K-dimensional

scale matrix. For the GWP process, the means of the underlying Gaussian processes are

restricted to m(t) = 0. With an additional requirement that k(t, t) = 1, a GWP process

GWPU (⌫,V, k(t, t0)) for user latent factors Ut at time t is constructed as follows,

⌃U (t) =
⌫X

l=1

LU P̂U,l(t)P̂U,l(t)
T
LT
U ⇠WK(V, ⌫), (5.1)

where LU represents the lower Cholesky decomposition of the scale matrix V for user latent

factors such that LULT
U = V. The above construction ensures that the covariance matrix
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⌃U (t) of the GWP process for user latent factors has a Wishart marginal distribution

WK(V, ⌫) at every time t [236]. The parameters in the GWP process are also easily

interpretable. Intuitively, the scale matrix mainly works as the shape parameter while the

kernel function focuses on controlling the dynamics of how covariance matrix ⌃U (t) varies

over time. This kind of parametrization clearly separates the contributions between the

shape parameters and temporal dynamic parameters. In particular, the parameter LU

describes the expectation of ⌃U (t) for all t, the kernel parameter ✓P
U

in k(t, t0) controls

how the variation behaves over time and the degrees of freedom ⌫ expresses how flexible

the prior is allowed around the expectation of covariance matrix ⌃U (t).

The graphical model of Bayesian Wishart MF method (BWMF) is depicted in Figure

5.1. For clarity, only a slice of the graphical model at time t and t + 1 is illustrated.

Similar to the assumption made in BMF, user and item latent vectors are also assumed

to be marginally independent. Any rating ru,it in the t-th time frame is assumed to be

conditionally independent, given the latent vectors Uu
t and V i

t for user u and item i at

time t. Inspired by BMF, user latent factors at time t are modeled as multivariate normal

distribution as follows,

P (Ut|µU,t,⌃U (t)) = N (Ut|µU,t,⌃U (t)) =
NY

u=1

N (Uu
t |µu

U,t,⌃U (t)), (5.2)

where µU,t is mean vectors for user latent factors in the t-th time frame.

For user latent vectors, the covariance matrix ⌃U (t) in the t-th time frame is modeled as

the marginal distribution of the GWP process GWPU (⌫,V, k(t, t0)),

P (⌃U (t)|LU , ⌫, P̂ (t)) = �(⌃U (t)�
⌫X

l=1

LU P̂U,l(t)P̂U,l(t)
T
LT
U ), (5.3)

where � is the Dirac function. Without any prior knowledge, the prior distribution for LU

is defined as the spherical Gaussian prior as P (LU ) = N (LU |0,�LI), where �L 2 R+, and

I is a K ⇥K dimensional identity matrix. In the experiments, it is set �L = 1 to let it

behave as a vague prior.

Let PU = {P̂U,l(t)|l = 1, . . . , ⌫, t = 1, . . . , T} be the union of all the independent Gaussian

process function values in the GWP process GWPU (0,V, k(t, t0)) for user latent factors.
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Following the approach developed in [236], the prior distribution over the Gaussian process

function values PU can be defined after reordering the entries in PU . Let Pl,d,t denote one

entry in the TK⌫ dimensional vector PU . Specifically, after fixing the dimensions along the

degree of freedom and dimensionality, the entries of PU are ordered by running the time

steps t from 1 to T . Then, the dimension index d is increased from 1 to K. Finally, the

index l for degrees of freedom ⌫ is increased from 1 to ⌫. Let Pl,d,t denote one entry in the

TK⌫ dimensional vector PU . The pseudo code of the reordering procedure is expressed in

Algorithm 2. Then, the prior for PU can be defined by a multivariate normal distribution

for l:=1 to ⌫ do

for d:=1 to K do

for t:=1 to T do
Pl,d,t := Pl,d(t)

end

end

end

Algorithm 2: Reordering entries in PU to define the prior over P̂l(t).

as follows,

P (PU |✓P) = N (PU |0,KU,B), (5.4)

where KU,B is a TK⌫⇥TK⌫-dimensional block diagonal covariance matrix. The K⌫ block

matrices in KU,B are formed by the replication of the T -dimensional covariance matrix K

with Kt,t0 = k(t, t0).

Without any prior knowledge, a vague gamma prior is placed on the parameter ✓P
U

in

kernel function k(t, t0) as P (✓P
U

|↵P ,�P) = Gamma(✓P
U

|↵P ,�P), where ↵P and �P are

parameters for the Gamma distribution Gamma(✓P
U

).

At time t, a multivariate normal distribution with a Wishart prior is used as the prior of
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the mean vector µU,t to enable a fully Bayesian treatment as follows,

P (µU,t|µU,0,⌃U,0(t)) = N (µU,t|µU,0,⌃U,0(t)), (5.5)

P (⌃U,0(t)|⌫U,0,WU,0) = W(⌃U,0(t)|⌫U,0,WU,0). (5.6)

These distributions do not explicitly consider the temporal information across time frames.

Intuitively, they are designated to emphasize on the local e↵ects of latent vectors, which in

turn capture the local e↵ects of user preferences and item attractiveness. Although these

priors and hyper priors will introduce some extra degrees of freedom in the model, the

fully Bayesian modeling and the sampling approach used in the inference could alleviate

the severity of overfitting. Following the setup in [196, 145], the means and covariances

are accordingly set as µU,0 = 0 and WU,0 = I in the experiments.

Instead of using the prior as defined above, the common practice tends to use the distri-

bution of ⌃U (t) in Eq (5.1) as the prior for the covariance of µU,t. From the perspective

of the graphical model, this alternative configuration mimics the Gaussian-Wishart prior

in Bayesian MF method. However, due to the di↵erent generative processes for the co-

variance in those two models, if the alternative prior was used, the posterior distribution

of µU,t in the inference procedure cannot be properly approximated. In this regard, the

proposed model sticks to the multivariate normal distribution with a Wishart distribution

prior. According to the graphical model in Figure 5.1, the probability distributions and

priors relating to item latent factors can be derived in a symmetric way.

5.5 Inference

BWMF will predict user preferences over those unrated items at time t. Hence, the

goal of the inference is to obtain some proper estimations of user and item latent fac-

tors Ut and Vt at time t for the prediction. As a Bayesian method, those latent vectors

can be estimated from the posterior distribution P (U
1:t, V1:t|R1:t) given all the avail-

able feedback from the 1-st to the current t-th time frames. Let model parameters

⇥GWP = {LU , LV , ⌫, ✓P
U

, ✓P
V

, µU,1:t, µV,1:t} and ⇥ = {⌃U,0(t),⌃V,0(t)|t 2 [1, . . . , T ]}. Ac-
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cording to the construction of GWP process, the dynamic covariance matrices ⌃U (t) can be

marginalized into the composition of parameters ⇥GWP . Therefore, the posterior distribu-

tions for user and item latent vectors at various time frames can be marginally obtained

from the posterior distribution P (U
1:t, V1:t,⇥GWP ,⇥|R1:t). As shown in the graphical

model and the definitions in Section 5.4.1, the GWP processes introduce the non-conjugate

priors to the distributions of those latent factors. Hence, it is infeasible to compute this

posterior distribution analytically. The inference is thus approximated by applying the

collapsed Gibbs sampling method to the posterior distribution P (U
1:t, V1:t,⇥GWP ,⇥|R1:t).

Without resorting to conjugate priors, BWMF also enjoys the advantages of GWP pro-

cess on easily modeling user feedback that has diverse inherent natures. To be adapted

to various real-world scenarios, BWMF only needs to change the kernel function used in

the GWP process. The inference procedure is almost identical, apart from slightly mod-

ifying the concrete form of the kernel function and adjusting the specific parameters to

be sampled. In contrast, if the dynamic system, such as the Gaussian random walk used

in BTPF [241], cannot accurately reflect the inherent nature of user feedback, it is not a

trivial task to come up with a proper stochastic process to capture the changed scenarios

and develop an inference algorithm to learn its parameters.

5.5.1 The Overall Procedure

After initializing U
1:t, V

1:t, ⇥GWP , and ⇥, the sampling procedure cycles through the

following conditional posterior distributions by using collapsed Gibbs sampling. For each

posterior, elliptical slice sampling is applied when the conjugate prior does not exist. The

pseudo code for the overall procedure is shown in Algorithm 3, and its details will be
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discussed later.

P (PU |R,⇥, U, V,⇥GWP) / P (U |PU ,⇥, ⌫, LU )P (PU |✓P
U

, ⌫), (5.7)

P (✓P
U

|R, ✓P
V

, U, V,⇥, LU , LV , ⌫, µU , µV ,PU ,PV ) / P (PU |✓P
U

)P (✓P
U

), (5.8)

P (LU |R, ⌫,⇥, U, V, LU , LV , µU , µV , ✓P
U

, ✓P
V

,PU ,PV ) / P (U |PU ,⇥, ⌫, LU )P (LU ), (5.9)

P (µU |R,µV , LU , LV , ⌫,⇥, U, V, ✓P
U

, ✓P
V

,PU ,PV )

/ P (U |µU ,PU , ⌫, LU )P (µU |µU,0,⌃U,0), (5.10)

P (⌫|R,LU , LV , µU , µV ,⇥, U, V,PU ,PV , ✓P
U

, ✓P
V

)

/ P (U |PU ,⇥, ⌫, LU )P (V |PV ,⇥, ⌫, LV )P (⌫), (5.11)

P (⌃U,0|R,⇥,⇥GWP) / P (µU |µU,0,⌃U,0)P (⌃U,0|µU,0,WU,0), (5.12)

P (U |R,⇥, ⌫, LU , LV , µU , µV , V,PU ,PV , ✓P
U

, ✓P
V

) / P (R|U, V )P (U |PU , µU ,⇥, ⌫, LU ).

(5.13)

For clarity, the subscripts about time are omitted in the above equations. The left sides of

the proportion in the above formulas are derived by using Bayes’ rule and the conditional

independence from the graphical model shown in Figure 5.1. It is possible to define a

prior over the degrees of freedom ⌫ and the reversible-jump MCMC method [91] could be

used to obtain its posterior distribution. In the following inference procedure, it is fixed

to be ⌫ = K + 1 to let the prior as flexible as possible. This simplicity also reduces the

computational complexity of the inference procedure for the developed model.

5.5.2 Sampling the Gaussian Process Function Values PU

The posterior distribution of PU is proportional to two distributions. The first one is

the likelihood distribution P (U |PU ,⇥, ⌫, LU ) and the other is the prior P (PU |✓P
U

, ⌫). As

shown in Section 5.4.1, the prior P (PU |✓P
U

, ⌫) models a random vector that has a TK⌫-

dimensional multivariate normal vector with zero mean. This highly correlated prior makes

it di�cult to sample from the posterior distribution P (PU |R,⇥, U, V,⇥GWP). Following

the approach in [236], the elliptical slice sampling method [177], which is specially designed

to sample from the posterior with highly correlated Gaussian priors, is used to update
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Let U , V initialized by PMF, ⌫ = K + 1, µU = µV = 0, LU = LV = I and

⌃U,0 = ⌃V,0 = I

for s 2 #iterations in the Gibbs sampling do

for t 2 1 . . . T do
PU,s ⇠ P (PU |R,⇥, U, V,⇥GWP) using Algorithm 4

LU,s ⇠ P (LU |R, ⌫,⇥, U, V, LU , LV , µU , µV , ✓P
U

, ✓P
V

,PU ,PV ) based on the

modifications of Algorithm 4 as in Section 5.5.5

sampling LV,s similar to the above step

µU,s ⇠ P (µU |R,µV , LU , LV , ⌫,⇥, U, V, ✓P
U

, ✓P
V

,PU ,PV )

sampling µV,s similar to the above step

⌫s ⇠ P (⌫|R,LU , LV , µU , µV ,⇥, U, V,PU ,PV , ✓P
U

, ✓P
V

)

⌃U,0,S ⇠ P (⌃U,0|R,⇥,⇥GWP) / P (µU |µU,0,⌃U,0)P (⌃U,0|µU,0,WU,0)

Us ⇠ P (U |R,⇥, ⌫, LU , LV , µU , µV , V,PU ,PV , ✓P
U

, ✓P
V

)

sampling Vs similar to the above step

end

end

Generate prediction of Ru,i
t+1

using Eq 5.19
Algorithm 3: The sampling procedure of BWMF. The subscripts about time are omitted

for clarity.

jointly every element of PU . This sampling method also has no free parameter, which

reduces the burden to the model complexity control.

The likelihood distribution P (U |PU ,⇥, ⌫, LU ) for user latent factors over time can be
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derived as follows,

P (U |PU ,⇥, ⌫, LU ) =
TY

t=1

Z
P (Ut|µU,t,⌃t)P (µU,t|µU,0,⌃U )P (⌃t|LU ,PU , ⌫, ✓P

U

)dµU,td⌃t

=
TY

t=1

Z
P (Ut|µU,t,⌃

⇤)P (µU,t|µU,0,⌃U )dµU,t

=
TY

t=1

|⌃⇤(t)|�
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where ⌃⇤(t) =
P⌫

l=1

LU P̂l(t)P̂l(t)
T
LT
U , ⌃

�1
� (t) = N⌃⇤(t)�1 +⌃�1U , µ� = ⌃�(t)(⌃

�1
U µU,0 +

N⌃⇤(t)�1Ūt) and Ūt =
1

N

PN
u=1

Uu
t . The latent vector of user u at time t is denoted as Uu

t .

The second equation in Eq (5.14) is derived by exploiting the construction of GWP process,

i.e., P (⌃|LU ,P, ⌫, ✓P
U

) = �(⌃ � ⌃⇤(t)). In order to facilitate the numeric computation

involved, the logarithms of the likelihood and the prior are used in the elliptical slice

sampling in the implementation. As it is straightforward to obtain these logarithms, they

are omitted here for clarity.

The pseudo code for sampling the posterior distribution of PU is listed in Algorithm 4.

The ESS in the algorithm represents the elliptical slice sampling function, which can be

treated as an oracle machine here. The ESS function takes as inputs the candidate sample

xs and the likelihood function F (·). The constant SESS is set to be the number of samples

obtained from the sampling procedure. The pseudo code for sampling other posteriors

is omitted in the following discussion because they share the same template as shown in

Algorithm 4.

let F (U) = log(P (U |PU ,⇥, ⌫, LU )), P1

⇠ N (xs|0,KU,B)

for s:= 2 to SESS do
xs ⇠ N (x|0,KU,B) Ps+1

⇠ ESS(Ps�1, xs, F (·))

end

Algorithm 4: The sampling procedure of the Gaussian process function values PU .
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5.5.3 Sampling the Posteriors of ⌃U,0(t) and µU,t

As a multivariate normal distribution is imposed on µU,t as the prior, the posterior

P (⌃U,0(t)|R,⇥,⇥GWP) can be analytically obtained,

P (⌃U,0(t)|R,⇥,⇥GWP) = W(⌃U,0(t)|W ⇤
0

, ⌫⇤
0

), (5.15)

where (W ⇤
0

)�1 = W�1U,0 + (µU,t � µU,0)(µU,t � µU,0)
T and ⌫⇤

0

= ⌫U,0 + 1.

By utilizing the conjugate relation between the likelihood function P (U |µU,t,⌃⇤) and the

conditional distribution P (µU,t|µU,0,⌃U,0(t)), the posterior distribution P (µU,t|R, ✓L
U

, LU ,

⌫, µU,t, U, V,PU ) can be approximated as follows,

P (µU,t|R, ✓P
U

, LU , ⌫, U,PU ) / P (Ut|µU,t,⌃
⇤(t))P (µU,t|µU,0,⌃U,0(t)),

/ N (Ut|µU,t,⌃
⇤(t))N (µU,t|µU,0,⌃U,0(t))

= N (µU,t|µ⇤t ,⌃⇤+), (5.16)

where µ⇤t = ⌃
⇤
+

(t)(⌃�1U,0(t)µU,0 +N⌃⇤(t)�1Ūt) and ⌃⇤
+

(t) = (⌃�1U,0(t) +N⌃⇤(t)�1)
�1

.

5.5.4 Sampling User Latent Factors

The posterior distribution of user latent factors is proportional to the products of the

likelihood distribution P (R|U, V ) and the conditional distribution

P (U |PU , µU,t,⇥L
U

,⇥, ⌫, LU ). The likelihood distribution is analogously defined as the

observation function in PMF, where every rating ru,it given by user u to item i at time t

follows a Gaussian distribution with mean (Uu)TV i and a predefined standard deviation

�R.

The distribution P (U |PU , µU ,⇥L
U

,⇥, ⌫, LU ) can be approximated as follows,

P (U |PU , µU ,⇥L
U

,⇥, ⌫, LU ) /
TY

t=1

NY

u=1

P (Uu
t |µU,t,⌃U (t))P (⌃U (t)|PU , ⌫, LU ),

/
TY

t=1

NY

u=1

P (Uu
t |µU,t,⌃

⇤,t
U ), (5.17)
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where ⌃⇤,tU =
P⌫

l=1

LU P̂U,l(t)P̂U,l(t)
T
LT
U . According to the second proportion in the above

derivation, the conditional distribution can be finally approximated by a multivariate

normal distribution.

By exploiting the conjugate properties between the likelihood distribution and the approx-

imated conditional distribution in Eq (5.17), the sampling of the posterior can be further

simplified. This simplification further reduces the computational complexity and speed

up the sampling procedure.

P (Uu
t |R, ✓L

U

, ⌫, LU , µU,t,⇥, V,PU ) / P (R|U, V )P (Uu
t |µU,t,⌃

⇤,t
U ) = N (Uu

t |µ⇤(t),⌃⇤(t)),

(5.18)

where µ⇤(t) = [⌃⇤(t)](�R
PM

i=1

Iu,i(V i
t r

u,i
t )+⌃⇤,tU

�1
µU,t), ⌃⇤(t) = ⌃

⇤,t
U

�1
+�R

PM
i=1

Iu,i(V i
t V

i
t
T
).

The indicator function Iu,i equals to 1 when user u has rated item i, and 0 otherwise.

5.5.5 Sampling Other Parameters

The procedure to sample the posterior of the free parameter LU is similar to the sampling

procedure of the Gaussian process function values PU . Because a vague prior is imposed

on LU , the elliptical slicing sampling conducts a random searching in the parameter space.

In the experiments, the Gaussian kernel k(t, t0) = exp(�(t� t0)/↵2) is used for the kernel

function k. Hence, ✓L
U

= ↵U . This kernel models the e↵ects that the temporal influences

should reduce as the temporal distance increases. Note that it is possible to have a kernel

function k(t, t0) that changes from row to row to represent the di↵erent length-scale for

various dimensions in the latent space. However, due to the conditional independence in

the model, the likelihood function in the posterior P (✓L
U

|R,LU , ⌫,⇥, U, V,PU , µU,t) only

depends on PU . Therefore, the kernel function k(t, t0) in the model does not consider such

flexibility to avoid overfitting during the inference. Because the kernel function k(t, t0)

only employs one scalar parameter to control its scale, the Metropolis-Hasting MCMC

method [21] is used to obtain its samples from the posterior distribution.
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5.5.6 Prediction

The predictive distribution P (Ru,i
⇤,t+1

|R
1:t,⇥) of the rating Ru,i

⇤,t+1

for user u on its unrated

item i at the (t + 1)-th time frame is obtained by integrating out the model parameters

and hyperparameters in BWMF. This predictive distribution is also too complex to be

analytically derived. After obtained the sets of sampled user and item latent factors,

P (Ru,i
⇤,t+1

|R
1:t,⇥) can be approximated as follows,

P (Ru,i
⇤,t+1

|R
1:t,⇥) =

Z
P (Ru,i

⇤,t+1

|Uu
t+1

, V i
t+1

)P (Uu
t+1

, V i
t+1

|Uu
t , V

i
t )P (Uu

t , V
i
t |R1:t,⇥GWP ,⇥)

P (⌃U (t),⌃V (t)|LU , µU , ⌫,⇥)P (⇥U ,⇥V |⇥)d⌃U (t)d⌃V (t)dU
u
t+1

dV i
t+1

dUu
t dV

i
t d⇥GWP

⇠ 1

S

SX

s=1

P (Ru,i
⇤,t+1

|Uu,(s)
t , V i,(s)

t ) (5.19)

where S is the number of samples obtained from the Gibbs sampling. Meanwhile, to

reduce the computational complexity of prediction in BWMF, the above approximation

adopts P (Uu
t+1

, V i
t+1

|Uu
t , V

i
t ) = �(Uu

t+1

�Uu
t )�(V

v
t+1

�V v
t ). The estimated prediction Ru,i

⇤,t+1

can be thus approximated as 1

S

PS
s=1

((Uu,(s)
t )TV v,(s)

t ).

5.5.7 Computational Complexity

Recall that latent factors are Ut 2 RN⇥K and Vt 2 RM⇥K with K ⌧ min(N,M). The

complexity of personalized prediction in BWMF at each time frame in the recommendation

task keeps unchanged as O(KM) in PMF.

The complexity of computing P (U |PU , ✓, ⌫, LU ) is O(TN⌫K3), which is dominated by the

determinant operations (O(K3)) and inversion operations (O(K3)). By pre-computing

the inversion of ⌃⇤(t) in Eq (5.14), the complexity can be reduced to O(T (⌫K3 +NK2)).

Similarly, the complexities of computing P (µU,t|R, ✓P
U

, LU , ⌫,PU ) and P (U (i)
t |R,

✓L
U

, ⌫, LU , µU,t,⇥, V,PU ) are O(K3) and O(⌫K2 +K3 + |R̄U |K2), where |R̄U | represents

the average number of ratings for users. The inversion operations also dominate the

computation. In order to sample other parameters shown in Section 5.5.5, the complexity
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depends on the number of instances to be sampled and the complexity of computing

the acceptance ratio. Because the kernel parameter is a scalar, the number of samples

(including burning period) is set to be comparable to K in Metropolis-Hasting MCMC

method. Therefore, the complexity is O(CK3), where C is a tiny constant. As the

complexity of elliptical slice sampling is linear to the product of the number of samples

and the complexity of the input likelihood function, the overall complexity of the inference

method for BWMF is O(SESST (⌫K3+(N+M)K2)), which is linear in terms of the number

of users and items in the system. In the experiments, SESS is set to 2, which still complies

with the stochastic climbing of the input likelihood function in elliptical slice sampling.

The complexity of BWMF is thus O(T (⌫K3 + (N +M)K2)).

5.6 Experiments

BWMF is tested on public benchmark datasets including Movielens [1], Hetrec [3] and

Netflix [108]. MovieLens spans 32 weeks with integer rating from 1 to 5 while HetRec

spans 12 years with half mark rating from 1 to 5. These two datasets are selected to study

the performance of the proposed method for short and long periods of time. Netflix is

adopted to verify the performance of the proposed method on a reasonably large dataset.

Protocol Ratings are grouped based on the time frame to which a rating’s timestamp

belongs. Ratings before a predefined time instance are used as the training data, while

ratings after it are used as the test data. This setting is preferred over a random split

of all the data. As in a real-world deployment, it is infeasible to generate predictions

using any information in the future. The training periods for MovieLens, HetRec and

Netflix datasets are Sep. ⇠ Dec. 1997, Sep. 1997 ⇠ Dec. 2007 and 1-st ⇠ 15-th months,

respectively. Their testing periods are 1-st ⇠ 16-th weeks in 1998, Jan. 2008 ⇠ Dec. 2008

and 16-th ⇠ 27-th months, respectively. The di↵erent time units are selected to ensure

that ratings for each user in a time slot are not too sparse. Notice that all test periods

are after associated training periods mimicking a real-world scenario, i.e. predicting the

future.
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Based on this setup, MovieLens contains 530 users and 1493 items (93.3% overall sparsity

and 99.96% sparsity in the last time frame). HetRec contains 1775 users and 9228 items

(95.1% overall sparsity and 99.98% sparsity in the last time frame). Netflix has 480, 189

users and 17, 770 items, which has the overall sparsity of 98.84%. Following the protocol

adopted in [145], 4% of random samples of Netflix is used. The sampled dataset contains

20% users and 20% movies that were randomly selected from the whole pool. This leads

to a dataset with the overall sparsity of 98.6% and the sparsity of 99.98% in the last time

frame.

Metric The root mean square error (RMSE) [196, 158] is selected as the metric to

assess the performance of rating prediction. The RMSE metric is defined as RMSE =q
1

NM

PN
u=1

PM
i=1

(ru,i � r̂u,i)2, where r̂u,i is the predicted rating for user u on item i.

As mentioned before, it is more challenging to model those users in RSs that do manifest a

diverse rating pattern over items. Figure 5.2a, 5.2b and 5.2c demonstrate the histograms

of the standard deviations of users’ ratings in the training data from MovieLens, Hetrec

and Netflix datasets, respectively. As shown in those figures, most of the users do not

tend to give diverse rating values across items. Therefore, it should be more interesting

to investigate the temporal behaviors of RSs by only considering those users that do have

diverse feedback patterns. Hence, RMSE is restricted to those users that have large rating

variances in the training data such that their variances are among the top N% of the

whole users. This refined version of RMSE is denoted as TOP RMSE. In the experiments,

N is set to be 20, because the rating covariance is found to be roughly around 1.4 in all

of these three datasets under this setting. In order to measure the temporal performance

of RSs, the temporal extensions [160] of these two metrics are used, which are values of

those metrics measured at every time frame in the testing period.

Baseline methods The proposed method models the historical feedback from users to

predict the user preferences over items in the successive time frames, which extends the

Bayesian treatment of MF for CF method. In order to test the performance of BWMF,

the following methods are adopted as the baseline methods: Bayesian probabilistic ten-

sor decomposition (BPTF) [145] and Bayesian matrix factorization method (BMF) [196].
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(a) MovieLens dataset. (b) Hetrec dataset. (c) Netflix dataset.

Figure 5.2: The histogram of standard deviations of users’ ratings from training data.

However, BMF is a static CF method by design. By retraining it at each time frame with

all the data upto the time step, which is a common practice in the real-world deployment,

this method is enhanced by exploiting temporal information to make the comparison fair.

The dynamic extension of this method is named as dynamic BMF thereafter.

BMF is a state-of-the-art method for CF under the static assumption. Its dynamic ex-

tension represents the common practice in the real-world deployment. BPTF is the state-

of-the-art method for CF that explicitly takes into account the contribution of temporal

information during the modeling of the overall interactions between user preferences and

item attractiveness. By comparing with those two baseline methods, it is attempted to

answer the following questions regarding the proposed method:

1) Is systematically utilizing temporal priors more e�cient at modeling temporal dy-

namics in RSs than the commonly dynamic retraining of a static method?

2) Is it beneficial to impose the GWP process as the priors over the temporal dynamics

of variations of latent vectors during the process of MF, especially for those users

that have diverse rating patterns?

3) Is the improvement introduced by the proposed method significant?

4) Is it still beneficial to directly impose the priors on the temporal dynamics of varia-

tions of user and item latent vectors instead of on the transitional relations of those

latent vectors across consecutive time frames as the existing approaches do? How

about those users that have diverse rating patterns?
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5.6.1 Experimental Results

All the compared methods in the experiments are repeated 10 times and the means and

standard deviations of the results are reported. PMF with moderate regularization, which

inspired by the setup used in [196, 145], is used to initialize all of these methods. Note that

this setup will not influence the conclusions made in the experiments. PMF is also run 10

times with the identical training data and settings, and the run with the best performance

under temporal RMSE metric is used to fulfill the task of initialization. The temporal

behaviors of the compared methods are also studied and analyzed.

MovieLens dataset For user and item latent vectors, it is set to K = 4 for all the

compared methods. The standard deviation �R for rating is 0.5 for all those methods.

Results The first row in Table 5.1 shows the results of the compared methods under

temporal RMSE TOP and RMSE metrics. Among these results, BWMF has the best

performance. Its temporal RMSE is 0.9682 and temporal RMSE TOP 0.9988. For users

that have diverse rating patterns, the performance of BWMF improves that of dynamic

BMF by 2.07%. Note that it is very challenging to improve the performance of RSs on

personalized rating prediction from the recent state-of-the-art methods. The 1% improve-

ment is usually regarded as a significant improvement and is qualified to win the Netflix

Prize [125]. Meanwhile, for the measurement over all users, BWMF still performs bet-

ter than other baseline methods do. All of the improvement introduced by BWMF under

both metrics, except for the temporal RMSE over dynamic BMF, is statistically significant

under both paired and unpaired t tests with p = 0.05.

This improvement can be ascribed to the fine modeling and learning of temporal dynamics

of variations of user and item latent vectors, which in turn reflects the tendency of user

preferences and item attractiveness. The results also show that BWMF is more e↵ective

to model the user’s diverse preferences by controlling the fluctuation of latent factors via

dynamic covariance matrices. Nevertheless, both dynamic BMF and BPTF do not exploit

the dynamics in this direction.
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Method RMSE RMSE TOP Dataset
Dynamic BMF 0.9693 ± 0.0013 1.0199 ± 0.0041 MovieLens
BPTF 0.9901 ± 0.0078 1.0394 ± 0.0160
BWMF 0.9682 ± 0.0018 0.9988 ± 0.0110
Dynamic BMF 0.8123 ± 0.0005 1.0221 ± 0.0017 Hetrec
BPTF 0.8130 ± 0.0011 1.0242 ± 0.0034
BWMF 0.8099 ± 0.0006 1.0151 ± 0.0012
Dynamic BMF 0.8995 ± 0.0002 1.0688 ± 0.0003 Netflix
BPTF 0.8950 ± 0.0006 1.0650 ± 0.0008
BWMF 0.8876 ± 0.0007 1.0552 ± 0.0009

Table 5.1: Comparative results of methods under RMSE and RMSE TOP metrics. The
best performance is in italic font.

Temporal behaviors To further evaluate temporal behaviors of compared methods, the

average of accumulated improvement (AAI) over time is adopted [160]. Let the per-

formance of any two methods under RMSE in month t be RMSE
1

(t) and RMSE
2

(t),

respectively. The AAI in month t
1

is 1

t1

Pt1
t=1

(RMSE
1

(t) � RMSE
2

(t)) 2. The AAI

metric for RMSE TOP can be defined similarly.

Figure 5.3 plots the AAI among dynamic BMF, BPTF and BWMF for users that have

diverse rating patterns. Figure 5.4 plots the AAI among those methods for all the users.

Except in the 1-st week of the blue (dash-dotted) curve (BWMF vs dynamic BMF) in

Figure 5.4, all the curves relating to BWMF in both of Figure 5.4 and Figure 5.3 are

below zero. These curves show that BWMF constantly outperforms baseline methods by

utilizing the GWP process as the priors to finely model the temporal variations of latent

vectors, which reflect the temporal dynamics in user preferences and item popularity.

The improvement on BPTF can be partially explained by the priors that it adopts. The

priors designated to represent the transitional relations of latent vectors on temporal

dimension may be not flexible enough to cooperate with user and item latent vectors

to capture the diverse and dynamic user preferences. Compared with dynamic BMF in

Figure 5.3, the tendency of the yellow (stared) curve shows that BWMF is more e↵ective

2In contrary to common situations, the smaller the RMSE value is, the better the
method performs. Therefore, it is actually expecting that the AAI curve is below x-axis
if the first method in AAI metric is expected to perform better.
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Figure 5.3: The average of accumulated improvement over time for the compared methods
on the MovieLens dataset since the 1-st week in 1998. The time unit is week and the metric
is temporal TOP RMSE.

at exploiting the underlying temporal variations. This observation is further consolidated

by the blue (dash-dotted) curve in Figure 5.4. Meanwhile, the magenta (dotted) curve

in Figure 5.3, which is a comparison between BWMF and BPTF, shows that BWMF

also constantly outperforms the Bayesian method with priors to guide the transitions of

temporal latent factors. In addition, BPFT only focuses on the global temporal e↵ects

across all users and items. Unlike BWMF, this modeling approach makes BPTF not able

to catch up with the latest trend as time goes. This phenomenon is evident in Figure 5.3,

where crossings exist between the curves relating to dynamic BMF and BPTF and the

horizontal axis.

Hetrec dataset Similar to the experiments on MovieLens, the dimensions of user and

item latent vectors are also set to K = 4 for all the methods under investigation. However,

the standard deviation �R for rating is set to 1 for all those methods. According to the

experiments, this setting will lead all the compared methods to have a better performance

compared with the setting with �R = 0.5 that is used in MovieLens.
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Figure 5.4: The average of accumulated improvement over time for the compared methods
on the MovieLens dataset since the 1-st week in 1998. The time unit is week and the metric
is temporal RMSE.

Results The second row in Table 5.1 lists the results of the compared methods under

temporal RMSE TOP and RMSE metrics. Among these results, BWMF has the best

performance. Its RMSE is 0.8099 and RMSE TOP 1.0151. For those users that do not

tend to provide the constant feedback, BWMF still performs much better than dynamic

BMF. For example, for the TOP RMSE metric, BWMF outperforms dynamic BMF and

BPTF by 0.68% and 0.89%, respectively. All of the improvement introduced by BWMF

is statistically significant under both paired and unpaired t tests with p = 0.05.

Compared with experiments in the previous section, the improvement of BWMF over other

baseline methods on Hetrec is still significant but not as outstanding as the improvement

achieved on MovieLens. After doing some exploratory analysis, it is found that this

phenomenon may be ascribed to the fact that di↵erent rating scales are adopted in Hetrec

and MovieLens. Hetrec allows half marks given by users while MovieLens only allows

integer ratings. This half-mark rating system, to some extents, reduces the magnitude of

the errors when the predicted ratings do not comply with their ground truth.
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Temporal behaviors Similar to the previous experiments on MovieLens, the AAI metric

is used to take a closer inspection on the temporal behaviors for the compared methods on

Hetrec. Figure 5.5 plot the AAI among dynamic BMF, BPTF and the proposed BWMF

methods for users that have diverse rating patterns. Figure 5.6 plot the AAI among those

methods for all the users. Except for the 2-nd month at the beginning of the magenta

(dotted) curve, both of the (magenta dotted and yellow starred) curves representing the

similar comparison for TOP RMSE in Figure 5.5 are also below zero. Similarly, both of the

(red circled and blue dash-dotted) curves representing the comparison between BWMF

and other baseline methods are below zero in Figure 5.6. Those figures illustrate that

the developed method constantly outperforms the baseline methods under a long period.

Comparing Figure 5.6 to Figure 5.5, it is also shown that BWMF constantly performs much

better than other baseline methods for users that tend to have diverse rating patterns.

Compared with those in Figure 5.6, the curves in Figure 5.5 demonstrates much larger

fluctuation, which is an inherent nature of the larger variances from those users that have

diverse rating patterns 3.

Although dynamic BMF performs better than BPTF as shown in Table 5.1, it is not

easy to distinguish their performance over time as shown by the green (dash) curve in

Figure 5.6. Moreover, except for the initial time frames in Figure 5.5, dynamic BMF is

more capable of coping with users that have diverse rating patterns. The rationale behind

this observation can be ascribed to the modeling approach taken by BPTF. Even though

transitional relations are modeled in this Bayesian method, it only captures the temporal

e↵ects across all users.

Netflix dataset Netflix contains much more users and items than MovieLens and Het-

rec. The dimensions of user and item latent vectors are set to K = 10 for all the compared

methods to provide those models adequate degrees of freedom, which is tuned based on

the performance of PMF that is trained and tested with temporal RMSE metric using the

3According to the exploratory analysis, the standard deviation for the top 20% users
is about 1.44, which is the largest among the three datasets adopted in the experiments.
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Figure 5.5: The average of accumulated improvement over time for the compared methods
on the Hetrec dataset since January 2008. The time unit is month and the metric is
temporal TOP RMSE.

exact training data and test data as the compared methods. The standard deviation ↵

for ratings is also set to 1 for all those methods according to the trial experiments.

Results The last row in Table 5.1 shows the results of the methods under temporal

RMSE TOP and RMSE metrics. Among these results, BWMF has the best performance.

For example, its RMSE is 0.8876 and its RMSE TOP is 1.0552. Similar to previous ex-

periments, BWMF still outperforms other methods. For example, BWMF improves the

dynamic BMF by 1.27% for users that tend to have diverse rating patterns. This result

shows BWMF works successfully on a reasonably large and sparse real-world dataset. All

of the improvement introduced by BWMF is statistically significant under both paired

and unpaired t test with p = 0.05. Note that 10-dimensional timeSVD++ has a perfor-

mance of 0.8971 under RMSE and 20-dimensional timeSVD++ has 0.8891 under RMSE

(quoted from the paper), which is worse than the proposed BWMF method. Even though

the performance of timeSVD++ may be improved as its dimensions is growing, the ex-

perimental results of timeSVD++ are again obtained on predictions for users’ post hoc
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Figure 5.6: The average of accumulated improvement over time for the compared methods
on the Hetrec dataset since January 2008. The time unit is month and the metric is
temporal RMSE.

interests about what interests would have been in the past. Those experimental results are

much less convincing for modeling dynamics than experimental results obtained in this

chapter which are about what interests would be in the future.

Temporal behaviors Similar to previous experiments, the AAI metric is used to make

a closer inspection on temporal behaviors for the compared methods. Figure 5.7 plots

the AAI among dynamic BMF, BPTF and BWMF methods for users that have diverse

rating patterns. Figure 5.8 plots the AAI among those methods for all the users. All the

curves depicted in the figures are below zero and have smooth and steady traces, showing

that BWMF constantly outperforms the baseline methods under a relatively large dataset.

Compared with the corresponding figures in previous experiments, the curves in Figure 5.7

demonstrate fewer variations. This phenomenon in Figure 5.7 is just an inherent nature

of measurement metric, which measures the average performance, under a large number

of users.
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Figure 5.7: The average of accumulated improvement over time for the compared methods
on the Netflix dataset since the 16-th month. The time unit is month and the metric is
temporal TOP RMSE.

Discussion By comparing the results obtained using temporal RMSE TOP and RMSE

metrics on those three datasets, it is clear that BWMF can e↵ectively model user prefer-

ences over time, especially for those users that demonstrate more complicated patterns of

rating values. This conclusion is not unexpected to reach. In general, both dynamic BMF

and BPTF do not model the temporal dynamics of variations of latent vectors. While

modeling the interaction between user preferences and item attractiveness, the contribu-

tions from the covariances and temporal variations do not receive any special emphasis in

those two methods. BPTF does consider the temporal dynamics, but it only focuses on

modeling transitional relations of latent vectors. Although the priors are only imposed on

dynamic covariance matrices of latent vectors in BWMF, the inference procedure devel-

oped in the proposed method will pass the influences of these priors to the means of latent

vectors as shown in the inference procedure.

According to the above experimental results, BWMF is more e�cient at modeling temporal

and dynamic information for RSs, compared with the retraining approach conducted by

dynamic BMF. This result verifies that it is beneficial to impose the GWP processes as
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Figure 5.8: The average of accumulated improvement over time for the compared methods
on the Netflix dataset since the 16-th month. The time unit is month and the metric is
temporal RMSE.

the priors on the temporal dynamics of variations of user and item latent vectors during

the process of MF.

Meanwhile, the comparisons of experimental results between BTPF and BWMF demon-

strate that BWMF performs much better than the state-of-the-art method specially de-

veloped to extend temporal dynamics for model-based CF. Note that the performance of

BTPF is also worse than that of dynamic BMF on MovieLens and Hetrec. The results

show that BTPF does not perform well under the scenarios where the user feedback does

not tend to have periodic properties. Regarding Bayesian filtering, BTPF resembles more

to a smoothing method rather than a prediction method, which focuses more on what

interests would have been in the past rather than in future. The results also confirm that

it is feasible for CF to model directly temporal dynamics of the variations of user and

item latent vectors instead of modeling the transitional relations of those latent vectors

between consecutive time frames.

Also, unlike BMF and BTPF, BWMF does not barely rely on global latent parameters.
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Method Bayesian MF Bayesian PTMF BWMF
Hetrec 276.6 150.6 897.5
Hetrec parallel 127.6 41.1 551.9
Netflix 1040.8 667.6 6072.3
Netflix parallel 626.2 445.8 4635.4

Table 5.2: Average running times (implemented in Matlab and run on a 4-core machine
with 3.3G Hz CPU and 8G memory). The unit is second and the best performance is in
italic font.

The improvement of the performance of RSs over time can also benefit from the localization

of latent vectors within each time frame. Meanwhile, as shown in the graphical model of

BWMF, this design of localization does not prevent latent factors from sharing information

via the GWP process priors, which helps to mitigate the problem of data sparsity in RSs.

Computational time The running time at each time frame (including both training,

retraining and prediction time) is averaged to compare the e�ciency of the compared

methods. All of the compared methods are running on a standalone machine with 3 GHz

CPU and 8 GB memory. Bayesian BTPF is based on the mixed programming of Matlab

and C. The implementations of other two methods are based on pure Matlab without

optimization. The running times of these methods under RMSE on Hetrec and Netflix

are listed in the first and third lines in Table 5.2. Their running times under Movielens

have the similar e↵ects, and they are ignored for clarity. It is straightforward to speed up

BWMF by parallelizing the sampling procedure in terms of users and items. The running

times of these parallelized versions (with four threads) are listed in the second and fourth

lines in Table 5.2. The key observation is that BWMF can be speeded up by parallelization.

It is thus expected that the running time of the proposed method is comparable with that

of baseline methods on more sophisticated deployments. Meanwhile, the implementation

can be also speeded up by using C to optimize the concrete computation.
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5.7 Summary

A novel Bayesian Wishart matrix factorization model is developed to improve the perfor-

mance of RSs over time, especially for those users that do have diverse feedback patterns.

The developed model exploits the generalized Wishart process to identify and control the

temporal dynamics of variations of user and item latent factors, which in turn controls

the trend and fluctuation of user preferences and item attractiveness over time. The tem-

poral behaviors of those users with diverse feedback patterns are transparently taken care

of by the developed method. Meanwhile, a new learning and inference algorithm, which

combines the collapsed Gibbs sampling method and the elliptical slice sampling method,

is also developed for the model. The developed learning and inference algorithm does not

require the usage of conjugate priors.

The proposed model is evaluated on three real-world public benchmark datasets under the

temporal extensions of some widely used metrics for personalized rating prediction. The

experimental results illustrate that the proposed method not only outperforms a variety of

state-of-the-art methods, but also significantly improves the recommendation performance

over compared methods when it models the preferences of those users with diverse rating

patterns. The results also confirm that it is feasible to model the temporal dynamics of

variations of user and item latent vectors to handle the temporal and dynamic information

on user feedback.

Currently, the proposed method is developed to handle explicit user feedback. The im-

plicit feedback in RSs demonstrates its own characteristics and requires specific treatment.

Therefore, it is worth designing observation functions in BWMF that take into account

the implicit feedback in future. Meanwhile, inversion operations of matrices, which has the

major contribution to time complexity of BWMF, should also be optimized. For example,

the techniques involved in online updating, which are widely used in methods of online

updating approach in Chapter 2, could be exploited to achieve this kind of optimization.
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Chapter 6

Conclusion and Future Work

The goal of this research is to improve the performance of recommender systems (RSs)

under temporal context. The research work presented in this thesis aims to overcome the

outstanding problems of exploiting temporal dynamics in RSs. In order to solve those

identified problems in this research, methods have been developed and empirically studied

on a variety of public available benchmark datasets for RSs with significant performance

improvement, showing the contribution of this research.

6.1 Summaries

The summaries of the research in this thesis are highlighted in this section.

6.1.1 Tracking the Tendency of User Preferences and Item Attractive-

ness

The developed methods in Chapter 3 aim to solve the first three problems in existing

methods when exploiting temporal dynamics in RSs. In particular, these problems in

existing methods are listed as follows,
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• the tendency of user preferences is usually assumed to be linear and Gaussian;

• item characteristics or attractiveness is usually assumed to be static;

• the generative process for user feedback is usually assumed to be Gaussian dis-

tributed.

Those problems significantly reduce the performance of existing RSs.

A novel probabilistic temporal bilinear model is developed to solve the above problems and

improve the performance of RSs over time. The developed model exploits the temporal

and dynamic information in users’ historical feedback to model the tendency of both user

preferences and item attractiveness more finely. It simultaneously tracks latent factors

representing user preferences and item attractiveness for the Top-N recommendation. In

order to better capture the generative process of user preferences on items over time, an

observation function is also developed, which is proper for the Top-N recommendation

under temporal context. The designed observation function does not assume that user

feedback has to be Gaussian distributed. Meanwhile, this model enforces the temporal

interactions between user preferences and item attractiveness and dynamically adjusts

significance on di↵erent dimensions of user and item latent factors.

In addition to the three problems listed above, to simultaneously solve the problems of

data sparsity and scalability under temporal context, a novel two-phase self-training mech-

anism is developed to construct a small but delicate set of observations from missing data

dynamically. A new learning and inference algorithm combining a sequential Monte Carlo

method and the expectation maximization algorithm is also developed to take advantages

of temporal information and dynamic structure in the feedback.

The proposed method is evaluated on three real-world datasets, MovieLens 100K, Hetrec

and Netflix datasets, under the temporal extensions of accuracy metrics. The experimental

results demonstrate that the developed methods significantly improve the recommendation

performance over a variety of state-of-the-art methods, which confirms that the proposed

methods can e↵ectively and e�ciently learn and track both latent factors and model
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parameters over time. The experiments also illustrate the advantages of the temporal

dynamic model over static ones and the benefits of tracking both user preferences and

item attractiveness instead of tracking merely user preferences.

6.1.2 On Learning the Dynamics in Temporal Recommender Systems

The developed methods in Chapter 4 aim to solve the fourth and fifth problems in existing

methods when exploiting temporal dynamics in RSs. In particular, these problems are

listed as follows,

• the model structure to capture the tendency of user preferences and item attractive-

ness is either predefined or learned from a linear system;

• rather than using personalized and item-wise dynamic systems, a universal dynamic

model is commonly adopted across all users and items in the system.

A novel probabilistic personalized and item-wise model, namely DynTranPF, has been pre-

sented in Chapter 4 to tackle the cold start transition problem in learning the tendency of

user preferences for RSs. In order to fully adapt to the rich and diverse dynamical systems

for various users and items, an online adaptive extreme learning machine is developed to

model the temporal and dynamic information intrinsic in users’ historical feedback. For

the developed method, There are no constraints or assumptions imposed on the structure

of the temporal interactions between user preferences and item attractiveness. Meanwhile,

by learning and dynamically updating the personalized and item-wise dynamic systems,

the tendency of user preferences and item attractiveness can be finely modeled and flexibly

tailored to fit the individual scenario with respect to each user and item. By exploiting the

historical feedback and temporal interactions from “like-minded” users and similar items,

a new inference and learning algorithm, considering the model uncertainties for emulat-

ing the interested tendency, is also developed for Top-N recommendation over time. The

algorithm tracks latent factors representing user preferences and item attractiveness and

adaptively updates model parameters to emphasize on the current trend. The cold start
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transition problem, which is particularly outstanding in exploiting temporal dynamics in

RSs, is solved by learning from collaborative tendencies.

In summary, the improvement achieved by the developed method includes the follows,

1) the dynamic adaptation of the transition models for each user and item over time is

capable of finely modeling the tendency of user preferences and item attractiveness;

2) when data are sparse, user preferences and item popularity represented by latent

factors can be better guided by the inertia of learned transitions in the DynTranPF

method than simply randomly searching in some other existing methods;

3) because DynTranPF does not impose fewer assumptions on the structures of the

tracked tendency, the personalized and item-wise transition models can be fully

tailored to the diverse scenarios of the modeled dynamics. Finally, the uncertainty

in the model has been e↵ectively considered by the developed inference and learning

algorithm in DynTranPF. Instead of treating as predefined priors, model parameters

are adapted in accordance with the current observations along with latent factors.

The presented methods in Chapter 4 are evaluated on three real-world datasets, Movie-

Lens 100K, Hetrec and Amazon Video Games datasets, under the temporal extensions of

accuracy metrics. The experimental results demonstrate that our methods significantly

improve the recommendation performance over a variety of state-of-the-art algorithms.

The results confirm that the proposed methods can e↵ectively model the temporal dy-

namics of rich and diverse user preferences and item preferences. For users and items that

are inactive for some time frames, the experiments also verify that it is more appropri-

ate to assume the tendency follows the inertia of the modeled dynamics instead of just

randomly searching the latent space. The learning algorithm that dynamically updates

model parameters is shown to be able to handle the introduced model uncertainties and

e�ciently guide the propagation of latent factors. The experiments also illustrate the

advantages of the temporal dynamic model over static ones and the benefits of tracking

both user preferences and item attractiveness instead of tracking merely user preferences.
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The experimental results relating to the cold start transition problem also illustrates that

the proposed learning algorithm can accurately learn the missed transition systems by

utilizing knowledge from similar users and items.

6.1.3 Bayesian Wishart Matrix Factorization

The developed methods in Chapter 5 aim to solve the sixth or the last problem in existing

methods when exploiting temporal dynamics in RSs. In particular, this problem is,

• the temporal dynamics of variation of user preferences and item attractiveness are

largely neglected. Almost all of existing work on RSs focuses on the modeling of

temporal dynamics of average behaviors of user preference and item attractiveness.

A novel Bayesian matrix factorization model has been presented in Chapter 5 to model the

temporal dynamics of variations of user preferences and item attractiveness and improve

the performance of RSs over time, especially for those users that do have diverse feedback

patterns. The developed model exploits the generalized Wishart process to identify and

control the temporal dynamics of variations of user and item latent factors, which in turn

controls the trend and fluctuation of user preferences and item attractiveness over time.

The temporal behaviors of those users that do have diverse feedback patterns are trans-

parently taken care of by the developed method. Meanwhile, a new learning and inference

algorithm, which combines the collapsed Gibbs sampling method and the elliptical slice

sampling method, is also developed for the model.

The proposed model is then evaluated on three real-world datasets, MovieLens 100K,

Hetrec and Netflix datasets, under the temporal extensions of some widely used metrics

for rating prediction. Not only the experimental results illustrate that Bayesian Wishart

matrix factorization method improves the recommendation performance over a variety

of state-of-the-art methods, but also the proposed Bayesian Wishart model significantly

improves the recommendation performance over those methods when it models the pref-

erences of those users that tend to have diverse rating patterns. The results also confirm
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that it is feasible to model the temporal dynamics of covariance matrices of user and item

latent vectors in order to handle the temporal and dynamic information on user feedback.

6.2 Future Work

Based on the research work presented and discussed in previous chapters, several possible

directions are worth exploring in the future.

6.2.1 The Dynamic Systems

First, more sophisticated techniques could be exploited to represent and learn the dy-

namic systems of user preferences and item characteristics. For example, non-parametric

Bayesian approach, such as, Gaussian process is an immediate candidate for modeling the

dynamic systems of user preferences and item attractiveness. Although it is simple to

utilize the Gaussian process for scalar output, how to develop a Gaussian process with

multivariate output is still a novel field and there are only a few studies [20, 121, 122]

on it. Meanwhile, for the non-parametric Bayesian approach, it is necessary to retain

all the historical data in memory. It is also challenging to reduce both the time and

space complexity of the adopted non-parametric Bayesian process when applying it to

exploit temporal dynamics in RSs, considering the huge number of users and items in the

real-world deployment.

6.2.2 The Observation Models

It is also worth investigating the temporal behaviors of RSs for multiple aspects of items.

Instead of only generating an overall rating, many reviews rate items based on various cri-

teria. For example, the popular Zagat survey rates the performance of restaurants based

on four components: food, decor, services and cost. Therefore, the information in various

components of a rating could be exploited to design some proper observation functions
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for recommendation tasks that consider multiple recommendation criteria. Moreover, the

developed methods in Chapter 3, 4 and 5 can also be extended with observation functions

that explicitly take into account the objective functions or metrics used in learning to

ranking. For example, the NDCG metric can be directly used in Eq (3.5) to make the

observation functions capture user preferences for items in a ranking-oriented approach.

Note that the sampling mechanism in particle filtering does not require that the observa-

tion function should be di↵erentiable. However, considering the number of samples used in

particle filtering and the time complexity of NDCG metric applied to RSs, it may be still

necessary to properly approximate this metric to reduce the computational complexity of

RSs incurred by this kind of observation function.

6.2.3 The Cold Start Problems

Meanwhile, the problems of cold start user and cold start item are not taken into account

in the proposed methods. Another direction of future work could extend the developed

models with the ability to handle with those cold start problems [13]. For example,

techniques utilizing social networking in RSs, which are discussed in Chapter 2, could

be integrated into the proposed methods to provide them with the initial personalized

recommendations for users.

6.2.4 Exploiting Temporal Priors

Furthermore, it is expected that the computational complexity is extremely una↵ordable

for RSs, when considering the priors over both temporal dynamics of variations of latent

factors and the transitional relations of latent factors. Nevertheless, this issue also pro-

vides the researchers with the opportunity to develop exciting algorithms that exploit the

advantages of both priors.
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