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Abstract

Intelligent robots have been widely studied and investigated to replace, fulfilling a complex

mission in a hazardous environment. Lately, swarm robotics, a group of collaborative

robots, has become popular because it offers benefits over a single intelligent system. Many

strategies have been developed to achieve collective and decentralised control applying

evolutionary algorithms. However, since the evolutionary algorithm relies principally on

an individual fitness function to explore the solution space, achieving swarm robotics’

collaborative behaviour in a dynamic environment becomes a problem. This is due to

the lack of adaptation in most of the evolutionary methods. In order to thrive in such

environment, external stimuli and rewards from the environment should be utilised as

“knowledge” to achieve the intelligent behaviour currently lacking in evolutionary swarm

robotics. The aims of this research are: (1) to develop novel reward-based evolutionary

swarm learning using mechanisms of epigenetic inheritance; and (2) to identify an efficient

learning method for the epigenetic layer achieving a decision-making strategy in a dynamic

environment.

This research’s contributions are the development of reward-based co-learning algo-

rithm and co-evolution using epigenetic-based knowledge backup. The reward-based co-

learning algorithm enables the swarm to obtain knowledge of the dynamic environment

and override the objective-based function to evaluate internal and external problems. An

advantage of this is that the learning mechanism also enables the swarm to explore poten-

tially better behaviour without the constraint of an ill-defined objective function. Simu-

lated search-and-rescue missions using a swarm of UAVs shows that individual behaviour

evolves differently although each member has the same physical characteristics and the

same set of actions. As an addition to reward-based multi-agent learning mechanisms, epi-

genetics is introduced as a decision-making layer. The epigenetic layer has two functions:

there are genetic regulators, as well as an epigenetic inheritance (the epigenetic mecha-

nism). The first is the function of an epigenetic layer regulating how genetic information is

expressed as agent’s behaviour (the “phenotype”). Thus, utilising the regulatory function,

the agent is able to switch genetic strategy or decision-making based on external stimulus

from the aforementioned reward-based learning. The second function is that epigenetic

inheritance enables sharing of genetic regulation and decision-making layer between agents.

In summary, this research extends the current literature on evolutionary swarm robotics

and decentralised multi-agent learning mechanisms. The combination of both advances

the decentralised mechanism in obtaining information and improve collective behaviour.
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Chapter 1

Introduction

1.1 Research Background

Fulfiling a challenging and hazardous mission by applying intelligent robots to help or

replace humans entirely has been widely investigated. However, investigation on using

a group of simple robots has been less explored. Lately, swarm robotics, a group of

collaborative robots, has become popular because it offers benefits over a single intelligent

system (Şahin 2005). Firstly, it is more flexible because of the decentralised setting.

Secondly, because of the multi-agent setting, it is more scalable in size. Lastly, it is

more robust to failures because of collaborative manners. A decentralised strategy is the

foundational building block for a collaborative swarm. Generally, there are two main

approaches in designing a swarm strategy: behaviour-based design and automatic design

(Brambilla et al. 2013). However, building a swarm strategy is not without a challenge

because control decentralisation and cooperative behaviour are challenging to achieve,

especially to thrive in a dynamic environment caused by agents in the group and the

mission’s complexity.

Decentralised control can be achieved by utilising an evolutionary swarm (EA), an algo-

rithm in which artificial genetics represents a set of behaviours. Selection, recombination,

and mutation are operated on the genetics information to maximise each behaviour’s

fitness value. EA can be used in swarm robotics to attain collective behaviour of a self-

organising swarm (Francesca et al. 2012). However, the random mutation often yields

unpredictable behaviours when facing a dynamic environment (Yi et al. 2017). This

shortcoming raises because the ability to receive information from the environment is

lacking in EA. Thus, external stimulus from the environment should be used as “knowl-

edge” to develop a better strategy accordingly to counter this problem. Utilising external

stimulus to obtain a better action is known as learning mechanisms. Thus, to improve

evolutionary swarm capability, a novel learning strategy for evolutionary swarms is needed

to accomplish complex tasks and survive in a dynamic environment.

1
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Embedding learning mechanism into evolutionary algorithms will advance adaptability to

a dynamic environment. Moreover, there is evidence that genetics is adapting external

stimulus from the environment using epigenetic layers (Holliday 1987). The Epigenetic

layer is analogous to a decision-making layer for a gene to behave according to environmen-

tal stimulus. The regulatory function of epigenetics is developed through learning based

on its interaction with the environment (Wang, Liu, and Sun 2017). To establish the dy-

namics based on the interaction can be achieved through Reinforcement Learning (Sutton

and Barto 1998). Hence, investigating a novel collective strategy utilising the Epigenetic

layer is necessary to overcome the dynamic environment and advance the capability of

swarm robotics.

1.2 Aims

This thesis aims to incorporate epigenetic concept to evolutionary swarm and identify

efficient learning mechanisms in response to a dynamic environment. Thus, the objectives

of this research are:

1. To develop a novel evolutionary swarm learning incorporating epigenetic inheritance,

2. an to identify an efficient learning mechanism as a decision-making strategy for an

epigenetic layer response to a dynamic environment

1.3 Thesis Outline

Chapter 1 – Introduction - A brief introduction to the thesis.

Chapter 2 – Background and Current Swarm Robotics Design - This chapter

presents a review of the current practices in designing swarm robotics behaviour and the

emerging topic of epigenetic inheritance in evolutionary computation.

Chapter 3 – Reward-based Epigenetic Algorithm - In this chapter, reward-based

evolutionary computation is discussed. The formulation takes the direction of epigenetic-

inspired computation and focuses on accumulating external stimulus and making use of it

as knowledge to obtain better behaviours in the future.

Chapter 4 – Epigenetic Learning Framework - This chapter focuses on tackling the

dynamic swarm problem by proposing a novel computational process tailored explicitly

for a decentralised multi-agent system to comply with the complex problem, especially in

a dynamic environment setting.

Chapter 5 – Epigenetic Learning Swarm for Search and Rescue Mission - This

chapter aims to investigate the implementation of epigenetic swarm learning framework

in a search and rescue mission.
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Chapter 6 – A Bayesian Epigenetic Learning Swarm - This chapter investigates

the possibility of incorporating Bayesian search methods to presuppose a prior knowledge

or belief before exploring the dynamic problem.

Chapter 7 – Conclusion and Future Works - This chapter discusses how the thesis

answers all the aims and objectives. A discussion on possible future improvement and

works are presented.



Chapter 2

Background and Current Swarm

Robotics Design

This chapter presents a review of the current practices in designing swarm robotics be-

haviour and an emerging epigenetic inheritance topic in evolutionary computation. Some

sections of this chapter have been published in (Mukhlish, Page, and Bain 2018b). Firstly,

a review of swarm robotics and its proceedings are discussed to explore the current ca-

pability in this area (Section 2.1). Then, the swarm design approaches are discussed

(Section 2.2). The third topic is exploring an epigenetic-inspired method for robotics and

computation design. Its source of inspiration and works are reviewed in section (Sec-

tion 2.3). Several challenges in current swarm robotics design are presented (Section 2.4).

Lastly, discussions and summary are presented in Section 2.5 and 2.6

2.1 Fundamental of Swarm Robotics

Intelligent robots have been widely studied and investigated to replace humans, fulfilling

a mission in a hazardous or harsh environment. While developing a sophisticated robot to

tackle a task is a common approach, a multi-robot system is currently gaining popularity

(Spezzano 2019; Hamann 2018). Particularly in harsh and unpredictable environments,

where a single robot system might struggle and fail to survive. On the other hand, a

multi-robot system has a higher possibility of success in such condition through exploiting

collective and possibility of success in such condition through exploiting collective and col-

laborative behaviour. These two behaviours in a multi-robot system are the foundational

idea underlying a self-organising system known as swarm robotics.

4
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Swarm robotics aims to control a multi-agent system to collectively and collaboratively

tackle a task. Moreover, swarm robotics is firstly coined by Şahin as:

A novel approach to the coordination of large numbers of robots. . . [and] a study

of how a large number of relatively simple physically embodied agents can be

designed such that a desired collective behaviour emerges from the local inter-

actions among the agents and environment (Şahin 2005, pp. 3)

Developing a self-organising swarm was initially inspired by animals’ collective and collab-

orative behaviour. A simple individual such as ants shows a remarkably erudite collective

behaviour in finding a food source and manage to realise the shortest path from their

nest. This social behaviour was first observed by Forel (1874) and summarised by Wheeler

(1910), an authoritative researcher of Ants. Later, studies in biology showed that there is

exist a herd’s intelligence that emerges from individual behaviour (Camazine 2001; Couzin

et al. 2005; Ame et al. 2006).

Inspired by social animals, Reynolds (1987) proposed distributed behavioural models in

his seminal work. The author investigated that a flocking behaviour of a multi-particle

system, called (boids), can emerge naturally from simple rules at the individual level.

There are cohesion, separation and alignment as can be seen in Figure 2.1. The first is a

rule for a particle to move to the flock’s centre (average position). The second steer the

particle to avoid nearby particles. Moreover, the last is utilised to put all particles in the

same heading.

(a) Separation (b) Alignment (c) Cohesion

Figure 2.1: Three simple rules for flocking behaviour

Largely, based in the first instance on ants and birds’ behaviour models, algorithms have

been developed mimicking social animals’ behaviour and applied to artificial multi-agent

systems. The resulting mathematical formulation generally takes distributed and decen-

tralised approaches to collectively and collaboratively tackle various tasks (Bayindir 2016).
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Overall, self-organising swarm’s characteristics are:

• The group is at least partially autonomous in organising themselves,

• the environment of the swarm is dynamic due to the interaction within the group

and with the environment,

• each member has a limited sensory capability that can only reach the local area,

• each member has a communication distance that only transmits and received infor-

mation from nearby members within the group,

• each member may have access to swarms’ global behaviour,

• a self-organising swarm has a decentralised control system at the individual level; a

centralised controller is not present in the swarm system,

• and all members cooperate to tackle a given task collaboratively.

2.1.1 Various tasks undertaken by Swarm Robotics

With the versatility of swarm robotics, there are various tasks have been achieved. An

extensive review of swarm robotics tasks has been done by Bayindir (2016). The author

reviewed that the achievable tasks are not limited to aggregation, flocking, foraging, ob-

ject clustering, navigation, path formation, deployment, collaborative manipulation, task

allocation, and many more. In this Subsection, aggregation, flocking and foraging will be

overviewed to discuss a few application in the field.

2.1.1.1 Aggregation

Self-organised aggregation is one of the basic behaviours can be easily found in many ani-

mal species. This behaviour is defined as a tendency for individuals to group together and

takes benefits from the resulting group. When aggregating, the interaction between group

members can change the behaviour of the group as a whole. Based on these phenomena,

several studies proposed a various aggregation mathematical model. Particularly in swarm

robotics, to obtain aggregation in a decentralised manner, the following design methods

are commonly used:

• Application of virtual forces (artificial physics)(Mogilner and Edelstein-Keshet 1999;

Vanualailai and Sharma 2010; Fetecau 2011; Hackett-Jones, Landman, and Fellner

2012; Fetecau and Meskas 2013; Priolo 2013),

• stochastic control of robot behaviour (Kernbach et al. 2009; Schmickl et al. 2009),

• and artificial evolution (Trianni et al. 2003; Francesca et al. 2012; Gomes and Chris-

tensen 2013; Gauci et al. 2014).
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2.1.1.2 Flocking

Flocking behaviour is commonly found in a group of birds that are flying together. Other

behaviours that are similar to flocking can be found in fish schooling and grazing ungulates.

Similar to aggregation, a flocking behaviour also emerges from local interaction in the

group and changes the group’s behaviour as a whole. Swarm researchers’ typical approach

to replicate flocking behaviour is by keeping the group in compact formation while moving

together. To maintain the group shape, all agents have to measure their neighbours’

distance and relative orientation with limited sensing capabilities. However, a single or

groups of robots are not considered as a part of the flocking group when they are out of the

communication or sensing range of any member in the flock. This raises the assumption

that a group of agents is a subset of the flocking swarm if at least one agent is reachable

by the group and the swarm.

Flocking has a characteristic that allows the group to move collectively in one direction

which is lacking in aggregation (static). Alignment of the agents’ heading is the main

characteristic that shapes the flocking behaviour. From this characteristic, a flocking

model is formulated. For example, the flocking behaviour which was proposed by Reynolds

(1987) as discussed previously. Another way to achieve flocking is by endowing each agent

to sense or predict nearby agents’ movement. Once the neighbours’ movement are known,

aligning can be achieved by exploiting them to implement flocking, as can be found in

these research (Turgut et al. 2008; Fetecau 2011; Çelikkanat and Şahin 2010; Ferrante

et al. 2010; Ferrante et al. 2014; Virágh et al. 2014; Yasuda, Adachi, and Ohkura 2014).

The flocking is also still achievable in cases where the knowledge of neighbours’ heading

is not available or unnecessary (Hayes and Dormiani-Tabatabaei 2002; Baldassarre, Nolfi,

and Parisi 2003; Antonelli, Arrichiello, and Chiaverini 2010; Moeslinger, Schmickl, and

Crailsheim 2010; Ferrante et al. 2012).

2.1.1.3 Foraging

The foraging behaviour’s objective is to find items and bringing them to specific location.

This behaviour is mainly derived from ants’ explorative behaviour in spotting a food

source and exploitative behaviour in bringing the food to their nest. Some applications

can be done by swarm robotics utilising foraging behaviour are mining, waste cleaning,

search and rescue mission, and space exploration. The main characteristics of foraging

behaviour is communication between agent. Since foraging is considered as an exploring

behaviour, a type of communication can be an environmental modification (stigmergy),

direct communication (physical features) or a virtual memory (shared map).

Various studies have been done developing foraging behaviour for decentralised multi-agent

system for a single task. For example, multiple foraging robots using stochastic petri-

nets (Rongier and Liegeois 1999) and emergent bucket brigading methods (Ostergaard,

Sukhatme, and Matari 2001). The analysis studies also have been conducted in this area,

such as the effect of interfence between foraging agents (Lerman and Galstyan 2002). Later,
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the analytical and spatial foraging model for swarm robotics was proposed by Hamann

and Wörn (2007).

Extending the single foraging task, a multi-foraging behaviour is the emerging topic in

the area. Multi-foraging task is a behaviour of collecting multiple objects to the prede-

fiend “home” location (Campo and Dorigo 2007). The swarm can be deployed based on

allocation time or space. Most of the studies in multi-foraging tasks focuse on minimising

energy required to explore and retreive objects (Liu et al. 2007; Pini et al. 2013; Schroeder

et al. 2017).

2.2 Swarm Design

The studies of self-organised swarm robotics in developing collective behaviour to tackle

various tasks have been studied in more than two decades, as discussed in the previous

section. In the past decades, methods to apply decentralised control to achieve collective

behaviour has been reviewed by Brambilla et al. (2013). The author grouped them into

two class of design: behaviour-based and automatic design. The first is known as a

top-down approach since most of the mathematical models were built from the individual

formulation. The second models the swarm’s behaviour without explicit behaviour and the

strategy is developed automatically. These two approaches are discussed in the following

subsections.

2.2.1 Behaviour-based Design

The observations of social animals’ collective behaviour are mainly the source of inspiration

in a behaviour-based approach. Generally, the design routine comprises a cycle consists

of behavioural modelling, implementation, evaluation, and model improvement. In recent

decades, swarm researchers have proposed swarm behavioural design with this paradigm.

For example, Labella, Dorigo, and Deneubourg (2006) modelled the division of labour

from ants and applied it on swarm robotics to collectively retrieve an object in the envi-

ronment extending the mathematical foraging behaviour of ants proposed by Deneubourg

et al. (1987). Implementing a collective swarm behaviour to a group of simple robots

using a behaviour-based approach is attainable since the models comprise simple rules

(Bogue 2008). In this subsection, three forms of modelling approaches commonly used in

behaviour-based design will be discussed; a probabilistic approach, particles approach and

stigmergy.

2.2.1.1 Probability Finite State Machine

A probabilistic approach that is mostly used to model a class of behaviour was first

coined by Minsky (1967), the author proposed it as a Probability Finite State Machine

(PFSM). The model consists of states (internal or environmental condition), behaviours

and transitions. Each agent selects behaviours based on a probability value influenced by
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the environment or inner perception, including other agents’ presence. Then, the agent

is transitioned to the next state following a probabilistic threshold value. The value can

be constant or vary based on the selected behaviour at the previous state as illustrated

in Figure 2.2 and 2.3, respectively. A simple aggregation model investigated by Soysal

and Şahin (2005) is one of the example with a fixed threshold value. The second can be

found in a study of aggregation behaviour of a swarm of cockroach-like robots by Garnier

et al. (2009).

Figure 2.2: A state transition with a constant threshold value

Figure 2.3: A state transition with a varying threshold value

2.2.1.2 Particles and Virtual Physics Design

Considering each agent as a moving particle affected by a virtual potential force is a typical

virtual physic-based design. Usually, the force results from the particles’ states (position

and heading) and an artificial potential field. The resulting force summarises repulsive and

attractive forces, allowing each agent to sense any nearby entities and distinguish whether

they are robots, targets, or obstacles. Early application on this approach is in a seminal
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work by Khatib (1986), which discussed dynamic avoidance in a group of vehicles. The

study focuses on formulating a field of artificial forces from the presence of other vehicles.

Another notable study was conducted by Reynolds (1987). Later, this design approach

also can be found in physicomimetics frameworks (Spears et al. 2004) and a non-local

kinetic method for aggregation behaviour (Fetecau 2011).

2.2.1.3 Stigmergy

Another design is by using a virtual medium to share information, such as maps or per-

formance, between agents. The information-sharing of social animals, known as stig-

mergy, also inspires this particular approach. For example, ants share information using a

pheromones trail to create paths to food sources, and bees use dancing to tell the swarm

the direction to a nectar source. Several studies have mimicked animals’ foraging and

flocking behaviour using a characteristic of stigmergy (Labella, Dorigo, and Deneubourg

2006; Ranjbar-Sahraei, Weiss, and Nakisaee 2012).

These three models (PFSM, virtual physics, and stigmergy) are often used as a foundation

of swarm behaviour because of their generality. Later with parametric computation, the

model can be tuned automatically. Since both models are mostly represented by fixed

mathematical formulation, the global behaviour (swarm level) can be easily predicted.

However, a behaviour-based paradigm is restricted to a predefined problem to be solved.

2.2.2 Automatic Design

The automatic design aims to develop collaborative and collective swarm’s behaviour

without an explicit model defined beforehand. Evolutionary computation (EC) and rein-

forcement learning (RL) have been utilised to accomplish swarm robotics tasks automat-

ically (Brambilla et al. 2013). The implementations of both methods are discussed in the

following subsections.

2.2.2.1 Evolutionary Swarm Robotics

Evolutionary swarm robotics is a method to develop collective behaviours through the

recombination and mutation processes. Articial chromosomes represents individual be-

haviour of the swarm and the performance evaluation is derived from its fitness value in

accomplishing a task. The recurring improvement is mainly developed around the fittest

chromosome at each evolution using a genetic operators: crossover, mutation and selec-

tion. A new strategy from each evolution will replace a chromosome with the least fitness

value. Finally, the evolution ends when the fitness values meet the predefined criteria.

The evolutionary process is illustrated in Figure 2.4.
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Figure 2.4: Evolutionary Swarm Robotics

Evolutionary computation has a versatility and flexibility to be implemented on various

kind of problem and solve it in a reccursive manners (Eiben and Smith 2015). This

approach is also beneficial in the development of swarm’s collective behaviour despite of

the system’s non-linearities. Evolutionary approaches in swarm robotics have succesfully

demonstrated a collective behaviour such as foraging (Trianni et al. 2003; Francesca et

al. 2012; Gauci et al. 2014), flocking (Baldassarre, Nolfi, and Parisi 2003), path formation

(Kuyucu, Tanev, and Shimohara 2012), clustering (Hartmann 2005; Gauci et al. 2014),

collective object transport (Groß and Dorigo 2004, 2009), and task allocation (Tuci et

al. 2008).

2.2.2.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is an extended reinforcement learning method

in which the formulation is tailored for a multi-agent system setting (MAS). A notable

feature of MARL that uses the reinforcement learning principles is a trial-and-error inter-

actions with the environment, and in the MAS case, the other agents (Kaelbling, Littman,

and Moore 1996; Sen and Weiss 1999; Sutton and Barto 1998), as illustrated in Fig-

ure 2.5. In learning to choose a optimal action at each environmental state, each agent

utilises rewards from all states to develop a policy mapping a set of actions to all available

environmental states. Particular to MAS, the environmental state includes the presence

of other agents and the decision at each state has to be collective and collaborative.
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Figure 2.5: Multi-agent reinforcement learning

In a decentralised setting of swarm robotics, MARL mainly comprises four advantages.

First, all member of swarms learn the collective behaviour in a parallel setting. Second,

the agents shares their learnt best decisions with other agents along with the accumulated

knowledge from the interactions. Third, each agent can imitate or teach other agent in

the swarm. Last, when an agent fails to accomplished individual task, the other agent

will take over performing redundancy to the swarm. A review by (Busoniu, Babuska, and

De Schutter 2008) shows that multi-agent reinforcement learning has been implemented

and performed quite well in multi-agent systems. For example, a distributive learning

was investigated on a swarm robots localising a source of odour by Hayes, Martinoli, and

Goodman (2003) and on a stick pulling robots by Li, Martinoli, and Abu-Mostafa (2004).

Another application that is very popular in multi-agent reinforcement learning is RoboCup

Soccer (Stone, Sutton, and Kuhlmann 2005; Kalyanakrishnan and Stone 2007; Riedmiller

et al. 2009).

2.3 Epigenetic in Robotics and Computation

Evolutionary computation commonly uses a fitness function to evaluate solution candi-

dates in solving a problem. The function gives natural pressure for the computational

process to approach the optimal solution. The formulation needs to be well-defined and

suitable for solving the problem. However, it is often difficult to define a fitness function

that sufficiently represents dynamic and complex problems. Lehman and Stanley (2011)

stated that the process of approaching a solution based on fitness function does not nec-

essarily lead to the optimal solution, because it may not account the complexity of the

problem. This aspect is vital in a computational search problem, since each step taken on

the previous generation may be misguiding the search direction. So, a new paradigm to
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evaluate the solution in each generation is required to avoid misguidance.

2.3.1 From Darwinism to Lamarckism

Recurring improvement in evolutionary computation has been modelled using the Dar-

winian model. This model was adapted and implemented in computation known as Ge-

netic Algorithm (GA) (Goldberg 1989; Holland 1992). In this approach, a population of an

artificial genetic sequence, commonly represented by bit-string and called a chromosome,

is used as solution candidates. Each chromosome is evaluated using a fitness function to

check its performance when applied to the problem. Each search iteration in evolutionary

computation is known as the generation. After all chromosome’s performance in the first

generation is known, the selection process occurs. Two chromosomes are chosen in the

selection process; a fitness-based selection is commonly used to select two best performing

chromosomes. After the selection process, the two chromosomes then recombined through

the crossover process. This Recombination process is inspired by the mating process in

biology where progenies have the characteristics from both parents but generate a new

solution candidate. Although the sequence of genetics in the population may change, it

may reach a bounded search where innovation in the search direction is restricted by the

same genetic value. To continue to evolve and explore the search space, random muta-

tion is applied to the progenies. This random process gives heuristic search direction to

the computation. The mutation process is controlled by stochastic mutation rate as a

probability to flip a bit-value in each gene. The mutated progenies are then put back

into the population replacing the two least perform chromosomes. The new population

is now entering the second generation and repeats the same process from evaluation, se-

lection, crossover, mutation, to regeneration. The computation continues until one of the

candidate solutions reach a predetermined tolerance within the expected optimal solution.

From the previous passage, one operator that is used to explore the search space is random

mutation. However, random mutation is not sufficient when the fitness function does not

well-represent the problem. For complex and dynamic problems, the fitness function

may generate a non-optimal direction, because the fitness function tends to be fixed and

independent from the problem (Lehman and Stanley 2011). So, utilising random mutation

on ill-defined fitness function is deceptive for the search direction. Particular in a dynamic

environment, a fitness function is easily degraded because the formulation is gene-centric

and untouchable by the environmental changes. Hence, the evolutionary operators and

evaluation process should give open-ended improvement, environmentally aware, and offer

unbounded innovation.

Another model that is promising in this area is the Lamarckian models. Lamarck pro-

posed an evolution theory explaining that parental experience or adaptation is passed

down to the next generation and improves their survival rate (Mayr 1972). Later, in 1984,

Waddington showed that every gene has a layer regulating its expression (Waddington

2012). He defined it as Epigenetic, meaning “above gene”. This layer regulates a pheno-
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typic expression of a gene dependent on a stimulus, such as an environmental condition.

The epigenetic layer also decides how and where a gene grows into cells and become a

unique organ (ontogenesis). Then, the layer is inheritable to progenies passing down accu-

mulated experience to develop adaptation. By using the concept of epigenetic inheritance,

developmental robots and epigenetic-inspired computation were born.

Two body of works that apply an epigenetic mechanism of inheritance and development

are epigenetic-inspired computation and epigenetic robotics, also defined as developmen-

tal robotics or morphogenesis robotics. The latter aims to study the developmental pro-

cesses and architectural features in a restrictive environment (embodied machines). In

this study, a robot is designed to obtained new skills and knowledge through continuous

and open-ended learning. The former aims to develop genetic-based computation utilising

inheritable epigenetic properties obtained from interaction with the environment as an ex-

ternal stimulus. The interaction forms a regulatory function to select optimal behaviour

(phenotype) in response to the environment. In the following sections, both bodies of

works will be reviewed.

2.3.2 Epigenetic robotics

Epigenetic robotics is a research area where the robot’s cognitive development is the

main focus, as stated by Jin and Meng (2011). The development consists of two mech-

anisms, ontogenesis and epigenesis as can be find in natural organisms (Berthouze and

Ziemke 2003). Epigenesis is a learning process where the external stimulus is processed

to strengthen the epigenetic robot’s cognitive level. The first is a process of building a

new set of cognitive which takes step-by-step learning starting from a simple problem to

the complex one, mimicking a maturation process in postnatal development of natural

organisms. The combination of the two provides open-ended improvement, unbounded

innovation and environtmental awareness.

2.3.3 Epigenetic Computation

Epigenetic computation implements similar setting as evolutionary computation with an

addition of inheritable knowledge of gene regulation. Generally, external stimulus from the

environment is collected by an articial epigenetic layer to modify the corresponding gene’s

expression. The regulatory behaviour of the epigenetic layer consists of two mechanisms,

introducing or altering a specific expression for a specific external stimulus. Both of the

knowledge and regulatory function of epigenetic layer is passed down to the next generation

in the evolutionary process, following an inheritance concept in biology (Wang, Liu, and

Sun 2017). In summary, the general difference between genetic-based computation and

epigenetic-based computation is how each genetic composition is evaluated, the first uses

fitness test, while the second using external stimulus or feedback from environment, as

can be seen in Figure 2.6. Several works applying this methodology are discussed in the

following subsections.
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Figure 2.6: Flow diagram of genetic-based algorithm (left) and epigenetic-based algorithm
(right).

2.3.3.1 Epigenetic Tracking (ET)

Epigenetic Tracking (ET) is an extended model of “Cell Tracking” utilising evolutionary-

developmental techniques (Fontana 2007, 2008). In this work, evolution on genomes guides

the development of a single cell to a preferred shape. The model contains two cells cate-

gories, namely “driver” cells and “normal” cells. The first cell is instructed by a genome,

considered as developmental operators, to increase or induce apoptosis in the surrounding

area. Apoptosis is a genetically regulated process leading to cells’ death and triggered

by the presence or absence of specific stimuli. While increasing, the driver cell mostly

generates normal cells and driver cells around it. The area where proliferated around a

“mother cell”-a proliferating driver cells is called a development area. A decision-making

entity (genome) to increase or apoptosis depends on the cellular genetic type (CET) of

the driver cell, in this case, the “mother cell”. CET is an epigenetic memory that takes

different values across driver cells and represents the source of differentiation during de-

velopment. All driver cells know what type of cells they are and how their behaviour

has to achieve a global target shape. Furthermore, recent work has been done to apply a

distributed ET algorithm to generate shape formation in a self-organised swarm (Mishra,

Semwal, and Nair 2018).

2.3.3.2 Intra-generational Epigenetic Algorithm (EGA)

Periyasamy, Gray, and Kille (2008) proposed an inra-generational epigenetic algorithm

(EGA) which is an optimisation strategies utilising bio-molecules adaptive mechanisms.

This work focuses on dynamic adaptive mechanisms that are exercised by biomolecules

via epigenetic mechanisms. In the formulation, instead of using genetic sequence (chro-

mosome) as a computational entity, the organisation of genetics’ behaviour is used as

the computational units. The organisation as a candidate solution is a composite entity

that includes genetics combination, arrangement, interaction, and expression. Its struc-

ture and behaviour are embodied into computational entity analogous to bio-molecular

species. In exploring the candidate solution, an autocatalytic is chosen as an operator to
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bound biomolecules to obtain optimal internal organisation structure.

2.3.3.3 Epigenetic Programming (EP)

Tanev and Yuta Tanev and Yuta (2008) proposed a method to control gene expression

called Epigenetic Programming. The author applied a histone modification in strongly-

typed genetic programming (STGP). Each individual has a double-cell structure derived

from the respective chromatin structures in their approach. As results, individuals with

similar genotypic structures can express various phenotypic displays. The activation of

a specific expression is due to whether it is beneficial to solve a problem. In their work,

they introduced non-destructive operations to the individual; there are silencing and acti-

vation operators. Both operators help the individual to be preserved from the destructive

crossover impact. In general, their study shows that by applying the epigenetic concept

to genetic programming contributes to reducing more than 50% computational effort in a

dynamic problem such as evolving the behaviour of collaborative predator agents in the

predator-prey pursuit problem.

2.3.3.4 Epigenetic Algorithm (EpiAL)

Sousa and Costa (2011) proposed an epigenetic approach for artificial intelligence called

Epigenetic Algorithm (EpiAL). The author investigated the mechanism of regulating gene

expressions based on the dynamic of the environment. The gene expression is controlled

by an activation rule based on the acquired experience accumulated by epigenetic marks

similar to histone modification in the previous approaches. Each mark is attached to

the respective gene, so the regulatory function is inheritable to the next generation; this

mechanism is known as epigenetic inheritance. The result is that phenotypic regulations

are preserved along with the acquired knowledge through consecutive generations. This

approach is beneficial to adapt and cope with a dynamic environment by regulating each

corresponding gene’s expression. Thus, the key to developing a robust activation rule in

this approach is by gaining more experience from the environment.

2.3.3.5 The Epigenetic Algorithm (epiGA)

Evolutionary operators based on the histone mark embedded in genetic information known

as epigenetic mechanisms were proposed by Stolfi and Alba (2018). The operators are used

to replace natural evolution in the classic evolutionary algorithm. Rather than recombine

and modify genes based on fitness value and probabilistic approach, they utilise histone

information as a basis. The authors showed that it is possible to do selection and re-

combination based on the histone values on gene structures. Similar to the evolutionary

algorithm, their model is formulated as a search algorithm for solving complex optimisa-

tion problems. Moreover, the author also stated that their approach can be applied to

solve different type of problems by tailoring the right epigenetic mechanisms to explore

the solution space.
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2.4 Challenges

Despite the advantages of both approaches, there are several challenges in the design pro-

cess. As discussed in the previous section, a behaviour-based design is inspired mainly

by the social animals’ behaviours. There are two challenges for a behaviour-based design.

The first is that the behavioural model is formulated for a specific task. Thus, the mod-

elling process may be suffered in formulating complex behaviour. Secondly, the lack of

self-improvement in the behavioural model raises a problem in a dynamic environment. To

overcome these problems, the behavioural models are dynamically improved by applying

automatic-design on top of it. However, despite the potential of obtaining collectiveness

at the ongoing development of the swarm robotics area, up until now, swarm robotics sys-

tems with an automatic design have little been explored to tackle a real-world application

and are still limited to the in-silico research. This is because there several challenges in

applying a computational approach for the swarm system in a real dynamic environment.

2.4.1 Deception

Evolutionary computation and learning mechanisms which are utilised in developing swarm’s

behaviour often use the objective function as a performance evaluation. A problem arises

when a dynamic problem is introduced. The computational process may be directed into

a non optimal solution because of an ill-defined objective function, giving a deceitful so-

lution (Lehman and Stanley 2011). To counter this, the predifined formulation has to

consider the expected behaviour in the dynamic environmnet. However, as the problem

becomes more complex, the formulation also becomes more challenging.

2.4.2 Exploration and exploitation dilemma

Following the deceptive problem of an objective function, exploitation problem arises. The

recurring improvement in evolutionary computation is built around the fitness function,

selecting the fittest individual in the group. This means the computation exploits cur-

rent best solution to be developed further and disregard any inept solution. One way to

alternate the exploitation is by introducing exploration into the computational process.

Exploring a new solution or swarm behaviour is beneficial to open new possibility that may

ultimately reach an optimal solution. However, overdoing the exploration process raises a

dilemma problem. The behaviour of the swarm will be unstable if the agent perform more

exploration than exploitation and the challenge is more apprent in a multi-agent learning

system.

2.4.3 Non-stationary behaviour

A multi-agent setting of swarm allows all agent to evolve and learn in a parallel way at

the same time in the group. When an agent tries to learn a better behaviour, it has to

develop based on other agents’ current behaviour. The compensation made by an agent
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to improve itself may affect another agent’s learning process in the group. Therefore, each

agent in a learning swarm is faced with a moving-target or a non-stationary behaviour

problem. This phenomena leads to the risk of unstable behaviour. Hence, developing the

learning process of the learning swarm is challenging.

2.4.4 The curse of dimensionality

Since the learning swarm’s aim is to realise an appropriate behaviour in a given situation,

each agent has to map its individual behaviours to the expected environmental states. In

a dynamic characteristic of swarm, the computational process suffers from the “cures of

dimensionality” where the states grow exponentially as the complexity grow. For example,

the states grow may due to the increasing number of agents. Thus, the computation to

achieve behaviour for all states requires more computing resources.

2.5 Discussions

2.5.1 Sustaining behavioural diversity

A behavioural diversity should be maintained to overcome the problem of deception and

exploitation in an objective-based computation. Solution diversity offers an alternative

path for the computational process that may lead to better behaviour. Sustaining be-

havioural diversity has been proven to improve evolutionary computation efficiency in

exploring better solution (Goldberg 1989; Mahfoud 1997; Sareni and Krahenbuhl 1998;

Friedrich et al. 2008). An example of maintaining diversity is implementing a cluster

of solutions based on the distance between solution, typically calculated using Hamming

distance.

2.5.2 Novelty search

Exploring distant behaviours away from the currently available behaviours is one way to

overcome the deception problem. The explored behaviour may be unique and beneficial to

the solution space. The direction of exploration can use a novelty metric as suggested by

Lehman and Stanley (2011). The metric is used to measures the novelty of the explored

behaviour utilising the distance from the rest of the available behaviours. The novelty

metric is also utilised to map the sparseness of the behavioural solution space. Hence, by

applying a novelty search in the computational process of automatic design, the exploration

can be focused on the novel area, and similar behaviours can be group together.

2.5.3 Balancing exploration-exploitation

The exploration-exploitation dilemma can be overcome by balancing when to exploit and

when to explore. One way to proceed is by applying a stochastic event to the process, for
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example, an ε− greedy exploration method. An agent decides to exploit most of the time

with a probability of (1− ε) and with a small probability ε explores a new behaviour. An-

other probabilistic method can be used to balance the dilemma is a Boltzman distribution,

a “SoftMax” distribution function.

2.5.4 Achieving a Nash equilibrium

Achieving an equilibrium criterion proposed by Nash (1950) in the learning process of

a swarm behaviour can overcome the non-stationary behaviour problem. Bowling and

Veloso (2001) stated that there are two necessary properties for multi-agent learning. The

first is rationality: If an agent’s behaviour converges to a stationary point, then the rest of

the learning agents will converge to their best-suited behaviours. The second is converges:

The agent will converge to a stationary behaviour in respect of other rational agents.

2.5.5 Adaptation

Adaptation is a significant challenge in swarm robotics to thrive in a dynamic environ-

ment, especially in developing collective behaviours through evolutionary computation.

Incorporating the Lamarckian principle to the evolutionary swarm can provide adaptabil-

ity in a dynamic environment (Mukhlish, Page, and Bain 2018b, 2018a). The external

stimulus from the environment is perceived by a sensory component and a methylation

process to build a regulatory function. Then, the regulatory function selects the appro-

priate behaviour.
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2.6 Summary

In this chapter, the recent development of swarm robotics is presented with all the potential

and advantages of swarm robotics. An overview to design swarm robotics is also discussed,

and the summary of the current practices can be seen in Figure 2.7. Then, challenges

in developing swarm behaviour and the improvement direction are also discussed. The

discussion is mainly to open the possibility for future development and improvement for

swarm robotics design.

Figure 2.7: Classification of swarm robotics design

The future development of swarm design, especially the automatic design, should focus on

the dynamic environment intrinsic to the swarm system. The dynamic environment arises

several challenges discussed in this chapter such as deception, the exploration-exploitation

dilemma, non-stationary behaviour and the curse of dimensionality. Furthermore, to over-

come these challenges, future development has to consider the solution diversity and nov-

elty, the balance between exploration and exploitation, the properties of learning equilib-

rium in the Nash criterion, and the adaptation capability in a dynamic environment.



Chapter 3

Reward-based Epigenetic

Algorithm

In this chapter, reward-based evolutionary computation is discussed. The formulation

takes the direction of epigenetic-inspired computation and focuses on accumulating exter-

nal stimulus and using it as knowledge to obtain better behaviours in the future. There

are four main parts of the formulation: namely adaptation framework, genetical repre-

sentation, epigenetic mechanisms, and methylation process. The first is the foundation

underlying the proposed method. Then, the genetic model for a reward-based evolution-

ary algorithm is discussed. The third demonstrates how the experience can be inherited

to the next generation using epigenetic mechanisms. The epigenetic mechanisms utilise

the epigenetic factor to recombine and restructure the behaviours. The last is the methy-

lation process which is a process of how the external stimulus (reward) is propagated and

embedded into the epigenetic layer. After the formulation, performance tests and results

are discussed.

This chapter is organised as follows. The related works to the reward-based evolutionary

computation are presented in Section 3.1. Then, the adaptation framework of the proposed

method is investigated in Section 3.2. Thirdly, a novel genetic structure is proposed in

Section 3.3. The methylation process is derived in Section 3.4. The formulation is finalised

with the discussion of epigenetic mechanisms in Section 3.5. Finally, the simulation,

results, discussion, conclusions, and summary are presented in Section 3.6, Section 3.7,

Section 3.9, and Section 3.8.

21
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3.1 Related Works

3.1.1 Epigenetic-based Algorithm

The early formulation was conducted by Periyasamy, Gray, and Kille (2008). The authors

designed the algorithm based on the intra-generational epigenetic mechanism utilised by

biological molecules. This algorithm optimises the organisation of molecules forming a

cell, a set of solution to a given problem (combinatorial). Each molecule influences the

next arrangement, which meets environmental demands. Adaptation operators in this

algorithm are introducing (expressed) and eliminating (restrict) a cell molecule. These

alterations are affecting the dissemination of the available molecules. This epigenetic

strategy applies a different phenotype from the same genotype. Using both approaches,

the authors were able to develop a SwarmCell, an autopoietic system to understand disease

mechanisms at the sub-cellular level.

Similar works investigated that the regulatory structure, inspired by the epigenetic con-

cept, can handle a dynamic environment (Tanev and Yuta 2008; La Cava and Spector

2015; Stolfi and Alba 2018). A formulation for a single agent was proposed by Sousa and

Costa (2011) called as the Epigenetic Algorithm (EpiAL) illustrated in Figure 3.1. The

figure shows that the epigenetic layer selects a genetic code based on the stimulus mea-

sured by the agent’s sensor. The epigenetic layer in their work utilises a methyl value to

regulate the gene’s expression. The methyl value activates the underlying gene based on

the activation rule. Each time step, each gene’s methyl value is updated using activation

value perceived from the sensor operation.

Figure 3.1: Epigenetic algorithm conceptual model (Sousa and Costa 2011)

3.1.2 Epigenetic Operators

An epigenetic layer’s regulatory function is achieved from accumulating external stimulus

or inherited from the previous generation. The developmental process of building a gene

controlling is known as Epigenetic mechanisms (Stolfi and Alba 2018). The mechanisms
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utilise histone values which regulate long-term gene’s expression and also maintain the

genotype over a genetic development and recombination in the subsequent generations.

In all epigenetics operators, the histone value is preserved on each gene. Hence, the

epigenetic mechanisms can act as strategy exchange. There are seven epigenetic operators

in each evolutionary process which are discussed in Section 3.5, namely histone-based

gene selection, histone-based chromosome selection, crossover using histone mask, genomic

imprinting, gene mutation, regeneration, and gene silencing.

3.2 Adaptation Framework

In this section, the extended Epigenetic Algorithm (Sousa and Costa 2011) is proposed

in which the epigenetic layer is formulated to pick an action’s behaviour based on its

genetic code in response to the environmental measurement, as can be seen in Figure 3.2.

The main objectives are to map the behaviour (genetic code) to the environmental state

and improve the map through epigenetic operators as strategies recombination between

members of the swarm. The map (solution space) is managed and activated by a regulatory

function. Instead of always choosing a known optimal solution (greedy), the ε-greedy

activation rule is used as the regulatory function to explore and exploit the solution space.

Reward-based feedback or stimulus from the environment is used to update the methyl

value while avoiding the performance evaluation by the fitness of objective function. The

improved epigenetic algorithm consists of the sensory component, behaviour regulator and

learning mechanism.

Figure 3.2: Adaptation framework for epigenetic layer
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3.2.1 Sensory component

An environmental value can only be quantified using available sensors on board because

of the agent’s limited sensing capabilities. Generally, the sensor used by the agent is

designed to measure a certain unit, such as a proximity sensor with a limited range. Since

the knowledge of the environment is important to choose appropriate genetic’s expression,

the combination of measured values is often used to approximate the current state of the

environment. If an instance of environmental dynamics is defined as a true state, then

the state inferred from the sensory components at the current time step can be defined as

measured state, see Figure 3.2.

The measurement using a sensor array function can be done by designing a state recog-

nition analytically. However, it is challenging to craft a mathematical model of state

recognition when environmental complexity increases. To counter this, machine learning

is useful for predicting and observing a dynamic system (Pathak et al. 2017) or by in-

ferring the environmental state using a Bayesian estimator. To generate this possibility

automatically, the epigenetic layer concept should be improved by incorporating a learning

mechanism to determine the dynamics of the environment.

3.2.2 Behaviour Regulator

Behaviour regulator is a component of the adaptation framework that selects an appro-

priate behaviour for an action given the measured environmental state. The regulatory

function is derived from environmental knowledge. Such knowledge can be inferred from

the agent’s experience through the trial-and-error interaction with other agents and the

environment. The agent’s current decision is then modified with a recently acquired ex-

perience in the form of reward value and environmental state. The obtained rewards are

utilised to map the relationship between behaviours and environmental state, yielding an

adaptable and optimal decision making. The behaviour-state regulatory function can be

done by extending the EpiAL as depicted in Figure 3.2.

In the epigenetic layer, phenotypic expressions of a gene are regulated based on the his-

tone value, modified by methylation process. A gene with a higher histone value will be

expressed more likely than the one with a lower histone value. Histone value for a gene is

obtained from the accumulation of experience from the external stimulus or environmental

dynamics. The environment gives a response/stimulus after the gene performs in a partic-

ular state of the environment. Then, if the stimulus is positive feedback, the histone value

over the selected gene goes more substantial or apparent to the state, and this process

is known as methylate phase. On the contrary, the histone value becomes weaker or al-

tered when the stimulus is negative feedback. These methylation marks are then inherited

to the next generation as a knowledge inheritance through epigenetics operator, namely

selection, recombination, mutation, and regeneration.
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3.2.3 Learning Mechanism

The epigenetic framework’s learning mechanism is an experience backup process that

accumulates reward values and improves behaviours selection in a set of environmental

states. The experience acquired by each agent is done by applying an exploration and

exploitation process. ε− greedy is utilised to balance the process, where the exploitation

is likely to happen with a probability of 1 − ε. The exploration is done once in a while

with a small probability ε.

3.3 Genetical representation

3.3.1 Genetic Structure

Figure 3.3: The diagram of genetic structure.

In this subsection, a genetic structure for an agent is introduced. The formulation com-

prises of three sets that correspond to each other, there are gene-pool (denoted by G),

gene-families (denoted by G) and genotypes (denoted by G), with gene (denoted by g) as

the smallest entity. The genetic information in each agent is represented by a genotype

G(g) and a gene’s value V(g) in form of n-bits binary code. The set of genotypes consists

of several gene types that later is formalised as a sequence of solution (chromosome). A
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group of genes with the same gene type is clustered in a gene-family. Then, the gene-pool

contains all gene-families. Formally, all sets in the genetic structure are:

genotypes G = {G1,G2,G3, ...,GN} , (3.1)

gene-pool G = {G1,G2,G3, ...,GN} , (3.2)

gene-family Gn = {gn1 , gn2 , gn3 , ..., gnM} . (3.3)

Where gnm = Gn(m) = G(n,m) with genotype G(gnm) = Gn. To simplify the location index

of each gene in gene-family, index m is used where m ∈ {1, 2, 3, . . . ,Mn}. Moreover, Figure

3.3 illustrates the relationship between all the sets.

Binary values represent the genetic code because it allows a value modification by flipping

the bit code at a specific location. However, in binary code, the distance between the

decimal values is very large. For example, in a 4-bit representation, moving from integer

value 11 to 12, represented as 1011 and 1100 respectively, requires three flipping steps,

and this is inefficient from a computation standpoint. Another coding system preferred in

this case is Gray-code, a binary sequence with a distance of one “flip” between adjacent

integers. This cyclic properties can be seen in Table 3.1.

Table 3.1: Conversion from decimal value to Gray-code

Decimal Binary code Gray code Decimal Binary code Gray code

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

3.3.2 Chromosome Structure

A chromosome (C) consists of a sequence of genes with a different type from each gene-

family. A gene’s position in the chromosome follows the gene-family’s index n in G, Gn,

as can be seen in Figure 3.4, where each gnm ∈ Gn and m ∈ {1, 2, 3, . . . ,Mn}.

Figure 3.4: Chromosome structure.

A chromosome is a solution candidate containing decision variables to solve a given prob-
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lem. To explore and open a new direction to approach the solution, several solution

candidates are selected with a population L, as shown in Figure 3.5. The set of solution

candidates is denoted as chromosome-pool C where the member is defined as

C = {Cl | l = {1, 2, 3, . . . , L}} = {C1, C2, C3, . . . , CL} (3.4)

and the chromosome Cl with a complete notation is defined as

Cl = {lgnm | {n = 1, 2, 3, . . . , N}} = {lg1
m,

lg2
m,

lg3
m, . . . ,

lgNm} (3.5)

Figure 3.5: Chromosome-pool

3.3.3 Histone Layer

In the study of epigenetics, histone is a protein spooling around DNA and playing a role

in gene regulation. Generally, DNA sequences that are wrapped and packed by histone

are not expressed. On the other hand, the unpacked DNA sequences are expressed. By

taking this principle, histone’s behaviour is analogous to decision-making as which genes

are worth expressing based on their performance value. Let’s define a histone entity for

each gene, denoted as H(gnm) = hnm. As illustrated by Figure 3.6, histone values are

embedded in each gene in gene-pool. In a gene-family, a set of histones is denoted as:

H(Gn) = {hnm | m = {1, 2, 3, . . . ,Mn}} (3.6)



CHAPTER 3. REWARD-BASED EPIGENETIC ALGORITHM 28

Figure 3.6: Histone values at each gene’s location

For a chromosome, each selected gene is accomplished by the respected histone layer, see

Figure 3.7

Figure 3.7: Chromosome with histone values

Since now each chromosome has a set of histone values, let us denote the set of histones

for chromosome Cl as

H(Cl) = {lhnm | n = {1, 2, 3, . . . , N},m = {1, 2, 3, . . . ,Mn}} (3.7)

wheremn is a selection index from the chromosome’s perspective. Then, the overall histone

value of each chromosome can be calculated as an average value of all histone values in
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the chromosome, denoted as H and let us derive it as

H(Cl) , H̄(Cl) =

N∑
n=1

lhnm

N
(3.8)

3.4 Methylation Process

Interaction between agent and environment can take many forms. It can be a direct

feedback in the form of a fitness function or reinforcement function. The fitness function

accounts for the agent’s approximate performance given the environment, such as the

absolute squared error or time to finish a task. One may argue that the derivative of

the fitness function over each gene can be used to obtain a gradient-based update to

each gene’s histone value. However, formulating the contribution of each agent into a

fitness function is very challenging. If the number of genes in the chromosome increase,

then the numbers of dimensions and nonlinearities of the fitness function also increase.

Hence, for the methylation process, incremental and accumulated feedback in the form of

reinforcement is used rather than function-based feedback.

A reward is propagated and accumulated incrementally into a form of histone value, de-

noted as h at the gene level and H at the chromosome level. Since the histone value is

updated incrementally, we can represent the current approximation update as H̃. Then,

we can define the approximation error as the squared difference between final value H and

approximate value H̃,

δH =
1

2

(
H − H̃

)2
(3.9)

From equation (3.9), the approximation value H̃ will be equal to H when dδH
dH = 0. The

slight changes by each gene member lgnm over the approximation error is ∂δH
∂lhnm

. By using

partial derivative, the gradient error is derived as

∂δH
∂lhnm

=
∂δH

∂H̃
· ∂H̃
∂lhnm

= −2(H − H̃) · ∂

∂lhnm


N∑
n=1

lhnm

N


= −2(H − H̃)

N
(3.10)

Equation (3.10) is used as an update for the histone at the gene level lhnm. Because the

gene lgnm may be expressed on the other chromosomes, a small update is required for the
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approximate value H̃ to update incrementally. So, the update for histone at the gene level

is

h′ = h− η∂δH
∂h

= h+
2η

N
(H − H̃) (3.11)

Where η ∈ (0, 1] is a step-size incremental update and we can call it as methylation rate.

Since the reward is utilised to update the histone value, then the final value is equivalent

to the obtained reward H ≡ R. Then, equation (3.11) becomes

h′ ≡ h+
2η

N
(R− H̃) (3.12)

Mainly, if the reward is positive, +1, for example, the process is methylation. If a negative

reward is achieved, -1, then demethylation occurs. If the reward is zero, then the process is

a decaying process as happens in ageing cells. The overall methylation process is illustrated

in Figure 3.8.

Figure 3.8: Methylation Process

Finally, the approximate value at the next step is defined as an average value of all methy-

lated gene’s histone as

H̃ ′ =

N∑
n=1

lh′nm

N
(3.13)
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3.5 Epigenetic Mechanisms

The setting that is preferred in this research is a decentralised multi-agent system (swarm).

Each agent has its gene-pool, and later through epigenetic mechanisms will exchange its

strategy with other agents. Epigenetic mechanisms are used as operators to evolve and

develop new behaviour. All the processes in the evolutionary procedure considers all

histone values of a gene-family H(Gn) and chromosome-pool H(Cn) as a basis. Suppose a

population of a swarm is P and each agent has Lp chromosomes, with p is the index of

the agent. In the mating pool or available chromosome in the computational process is

illustrated in Figure 3.9 below.

Figure 3.9: All available chromosomes at swarm setting

3.5.1 Histone-based Gene Selection

The selection process for all gene members in a chromosome utilises all available genes and

histone values from the gene-pool. Each location (locus) of a chromosome is filled with a

gene from the respected gene-family. At the initial condition of the computation process,

the gene’s composition is selected randomly from the gene-pool. At the gene selection

process, the introducing (expressing a gene) follows exploration-exploitation rule using

epsilon greedy selection, εgene. The selection exploits the gene-family to obtain a gene

with maximum histone values with a probability (1− εgene), and explore the gene-family

with a probability of εgene following a normal distribution Pgenes ∈ U(0, 1) gives an equal

chance for all available genes in a gene-family to be selected. Thus, the selection process
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for each gene in chromosome Cl is formulated as:

lgnm =

arg max
g

H(Gn) , if εgene ≥ Pgenes

g ∈ Gn , otherwise
(3.14)

3.5.2 Histone-based Chromosome Selection

The chromosome selection process utilises histone values at the chromosome-pool H(Cp).

Firstly, each agent offers the best chromosome to the mating pool. Let us denote the set

of all chromosome’s average histone values for each agent is denoted as H(Cp). Each best

chromosome is selected by arg max
Cl

H(Cp) if the selection rate εchromosome is applied follow-

ing Pchromosomes ∼ U([0, 1]), the chromosome is selected randomly. Thus, the chromosome

offered to the mating pool is

Cp∗ =

arg max
C

H(Cp) , if εchromosome ≥ Pchromosomes

C ∈ Cp , otherwise.
(3.15)

Then, we have a set of chromosomes in the mating pool (C∗), all average histone values

H(C∗) and each chromosome’s genetic histone values H(Cp∗ ) are

C∗ = {C1
∗ , C

2
∗ , C

3
∗ , . . . , C

P
∗ }, (3.16)

H(C∗) = {H(C1
∗ ), H(C2

∗ ), H(C3
∗ ), . . . ,H(CP∗ )} (3.17)

and H(Cp∗ ) =
1

N

N∑
n=1

∗hnm. (3.18)

Then, each agent selects two chromosomes from the mating pool proportional to average

histones H(C∗). The probability of each chromosome to be selected is defined by

Pr(Cp∗ ) =
H(Cp∗ )
P∑
i=1

H(Ci∗)

. (3.19)

Finally, the two selected chromosomes are denoted by Ĉ1 and Ĉ2 with gene members as

follows:

Ĉ1 = {ĝ1
1, ĝ

1
2, ĝ

1
3, . . . , ĝ

1
N} (3.20)

Ĉ2 = {ĝ2
1, ĝ

2
2, ĝ

2
3, . . . , ĝ

2
N} (3.21)
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3.5.3 Crossover Using Histone Mask

Crossover or recombination between two chromosomes is a process of exchanging informa-

tion to get a new genetic sequence and yield a unique solution utterly different from its

origin or parents. From the chromosome selection, the corresponding histone sequence for

the selected chromsomes are

Ĥ1 =
{
ĥ1

1, ĥ
1
2, ĥ

1
3, ..., ĥ

1
N

}
(3.22)

and Ĥ2 =
{
ĥ2

1, ĥ
2
2, ĥ

2
3, ..., ĥ

2
N

}
, (3.23)

where their average histone values are

H̃
(
Ĉ1

)
≡ H̄

(
Ĉ1

)
=

1

N

N∑
n=1

ĥ1
n (3.24)

, and H̃
(
Ĉ2

)
≡ H̄

(
Ĉ2

)
=

2

N

N∑
n=2

ĥ2
n (3.25)

The chromosome recombination usually reconstructs a new chromosome by combining two

sequences at a predefined crossover point. Due to the presence of histone values, crossover

points can be specified for each gene by following a binary function

B

(
ĥn

)
=

1, if ĥn ≥ H̃
(
Ĉ
)

0, otherwise .
(3.26)

The sequence of value B
(
Ĥ

)
for both chromosomes is a histone mask. To keep the

better genes, crossover operation only happens on the locus that yield “0” from “OR”

operation between histone masks, see Figure 3.10. By using the crossover mask, two new

Figure 3.10: Crossover mask for recombination
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chromosomes are obtained, Ĉchild
1 and Ĉchild

2 . The crossover process is illustrated in Figure

3.11.

Figure 3.11: Crossover process using crossover mask

3.5.4 Genomic Imprinting

A genetic expression may depend on its origin, whether it is paternal or maternal. An

individual typically has two genes from its parent, with the same genotypes, and it only

expresses one gene. To apply the same effect, imprinting rate (εimprinting) with random pro-

cess Pimprinting ∼ U [0, 1] is introduced. The genomic imprinting is applied as an epigenetic

mechanism to alter a crossover at the specific location, as illustrated in Figure 3.12.

Figure 3.12: Genomic Imprinting process
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3.5.5 Gene Mutation

The mutation process comprises two steps. Firstly, a gene is mutated according to mu-

tation rate (µ) following a random process Pmutation ∼ U([0, 1]). Secondly, the binary

code is flipped following the same random process, changing incrementally based on the

gray-code representation. For example, from Table 3.1, decimal number 7 is represented

by grey-code as 0100, changing the decimal value to 8, 1100, only requires the first bit

to be flipped. On the other hand, with binary code, changing 7 to 8 requires all bits to

flip from 0111 to 1000. The mutation process is shown by Figure 3.13 and following the

formulation:

gene’s value V(gn)←−

V́(gn), if µ ≥ Pmutation
V(gn), otherwise

(3.27)

mutated value V́(gn) = {gn(k) ∈ B | µ ≥ Pmutation → ¬gn(k)} (3.28)

Figure 3.13: Mutation process.

3.5.6 Regeneration

The regeneration process replaces the chromosome in current chromosome-pool with a new

chromosome from the epigenetic recombination and modification. The process follows a

regeneration rate εregeneration based on the random process Pregeneration ∼ U([0, 1]) to

decide whether accept the new chromosome or explore the current gene-pool to construct

a new chromosome based on the gene selection in Subsection 3.5.1, the rule is defined as

Ĉregeneration =

Ĉmutated , if εregeneration ≥ Pregeneration
Ĉselection by (3.14) , otherwise.

(3.29)
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3.5.7 Gene Silencing

Silencing process is an epigenetic mechanism to “switching off” a gene in the gene-family

and preventing it from being selected or expressed in a solution space, chromosome-pool.

A gene with the least histone value compared to all genes in the gene-family is silenced

following a silencing rate (εsilencing) based on a random process Psilencing ∼ U [0, 1]. The

silenced gene in a chromosome then is replaced by exploring or exploiting the gene-family

based on the formulation in Subsection 3.5.1.

3.5.8 Summary of Epigenetic Mechanisms

The evolutionary learning algorithm consists of a genetic structure, a learning process,

and an evolutionary process. At first, all agents initialise a gene-pool based on decision

variables from the given problem. Then, the agent constructs a chromosome-pool to

set off initial solutions to the problem. In the next stage, the agent enters the learning

phase. The chromosomes are evaluated, and rewards are given by the environment (given

problem). Each time step, the obtained reward is backed up to the histone value through

methylation process. The learning process goes until the solution criteria is met. The

evolutionary process using epigenetic mechanisms is a process of exchanging strategy and

regeneration process. The mechanism involves histone-based operations such as selection,

crossover, imprinting and silencing. Lastly, the parameters of the evolutionary process

that need to be tuned are the gene and chromosome selection rate (εgene, εchromosome),

genomic imprinting (εimprinting), mutation rate (µ), silencing rate (εsilencing), regeneration

rate (εregeneration), and methylation rate (η). The evolutionary process can be seen in

Figure 3.14.

Figure 3.14: Evolutionary process of reward-based Epigenetic Algorithm
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3.6 Performance Tests

Optimisation test functions are utilised to investigate the performance of the proposed

evolutionary-learning algorithm. There are Sphere function, Levy function and Ackley

function. Each function as a specific characteristic from single optimal value to multi-

local minima. Parameters used for the performance test can be seen in Table 3.2

Table 3.2: Testing parameters

Parameters Value Parameters Value

Generation 1000 µmutation 0.1
Runs per Generation 10 ηmethylation 0.1

Number of Agent 3 εchromosome [0, 1]
n− bits 32 εregeneration [0, 1]

Sigmoid and hyperbolic tangent function are selected as a rewarding function based on

outputs difference between iterations. For sigmoid, see Figure 3.15a, the formulation is

R = sigmoid (fk − fk−1) , (3.30)

and the formulation of hyperbolic tangent,see Figure 3.15b is

R = tanh (fk − fk−1) . (3.31)

(a) Sigmoid function (b) Hyperbolic tangent function

Figure 3.15: Rewarding function
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3.6.1 Sphere function

Figure 3.16: Sphere function with d = 2

The sphere function is a bowl-shaped function with a global minimum, see Figure 3.16.

The function has a decision variables xi for all i = 1, 2, 3, . . . , d. The function is defined as

f (x) =

d∑
i=1

x2
i (3.32)

The equation (3.32) is evaluated on the hypercude xi ∈ [−10, 10] with d = 2. The result

with a hyperbolic tangent rewarding function is shown in Figure 3.17 and Figure 3.18 for

sigmoid rewarding function.
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Figure 3.17: The result of the sphere test function using hyperbolic tangent rewarding
function

Figure 3.18: The result of the sphere test function using sigmoid rewarding function
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3.6.2 Levy function

Figure 3.19: Levy function with d = 2

The Levy function is a standard function with a global minimum and many local minima,

see Figure 3.19. The function has a decision variables xi for all i = 1, 2, 3, . . . , d. The

function is defined as

f(x) = sin(πωi) +

d−1∑
i=1

(ωi− 1)2
[
1 + 10 sin2 (πωi + 1)

]
+ (ωd− 1)2

[
1 + sin2 (2πωd)

]
(3.33)

Where ωi = 1 + xi−1
4 , for all i = 1, 2, 3, . . . , d. The equation (3.33) is evaluated on the

hypercude xi ∈ [−10, 10] with d = 2. The result with a hyperbolic tangent rewarding

function is shown in Figure 3.20 and Figure 3.21 for sigmoid rewarding function.
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Figure 3.20: The result of the Levy test function using hyperbolic tangent rewarding
function

Figure 3.21: The result of the Levy test function using sigmoid rewarding function



CHAPTER 3. REWARD-BASED EPIGENETIC ALGORITHM 42

3.6.3 Ackley Function

Figure 3.22: Ackley function with d = 2

The Ackley function is a standard function with a global minimum and many local minima,

see Figure 3.22. The function has a decision variables xi for all i = 1, 2, 3, . . . , d. The

function is defined as

f(x) = −a exp

b
√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos (cxi)

)
+ a+ exp(1) (3.34)

The equation (3.34) is evaluated on the hypercude xi ∈ [−10, 10] with a = 20, b = 0.2, c =

2π and d = 2. The result with a hyperbolic tangent rewarding function is shown in

Figure 3.23 and Figure 3.24 for sigmoid rewarding function.
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Figure 3.23: The result of the Ackley test function using hyperbolic tangent rewarding
function

Figure 3.24: The result of the Ackley test function using sigmoid rewarding function
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3.7 Results and Discussion

The results show consistent performance over the testing functions. The utilisation of

reward-based feedback is used for the proposed algorithm to infer the test function’s

solution space. Then the reward is processed in the evolutionary process modifying histone

value in the epigenetic layer. The performance metric is obtained by applying a range of

selection ε-greedy rate (εchromosome) and regeneration ε-greedy rate (εregeneration) with

range value [0, 1].

The algorithm is tested using three functions. The results are presented in the form of a

two-dimensional parameter metric, selection rate and regeneration rate. The first is Sphere

function shown in Figure 3.18 and 3.17. The result using sigmoid reward function shows

that the total generation for each parameter pairs is not consistent across the metric, while

the hyperbolic tangent manages to show a convergence area. In the tangent one, the area

that shows a low regeneration number is in a range of selection rate at [0,0.6] pairs with the

regeneration at [0.4,1]. The result explains that in the selection process, the exploratory

behaviour improves the computation’s efficiency because each agent is exploring a new

solution once in a while. For the regeneration process, the agent performs better if the

strategy exchange is introduced in the process. In some area with the same regeneration

range, even though the selection rate is exploiting at range [0.6,1], the agent is able to

find an optimum solution rely only on regeneration operator. For the Levy function at

Figure 3.21 and Figure 3.20, the performance metric is similar with the sphere function.

The difference is in the convergence area, where the results show that the selection range

is less than the sphere’s results. This is due to the presence of local minima in the

function, so the selection rate has to provide more exploratory behaviour in the system.

As the problem getting more complex as in Ackley function, the parametric shows that

the algorithm can manage to avoid local minima and ultimately ends up in the optimum

point, see Figure 3.24 and Figure 3.23.

A rewarding function should be formulated accordingly to the problem. The value dis-

tribution of the rewards gives the computational process a current optimal direction ap-

proaching a better solution. Overall, the hyperbolic tangent rewarding function performs

better than the sigmoid one. This is because the tangent function offers a negative reward

(punishment) and suppress a non-optimal decision, while the sigmoid function outputs a

decaying process which takes times to suppress the non-optimal solution. The suppression

process is natural in methylation stage, as found in biology and known as demethylation.

The demethylation and methylation rate controls the histone values within a range of

punishment and reward value. Furthermore, the way rewarding process output reinforces

values to the learning agent has to be tailored and has to provide the stepping-stone,

ultimately leading to the goal.
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3.8 Summary

A reward-based epigenetic algorithm for a decentralised swarm is able to solve optimisa-

tion problems in a collective way. The rewarding function and epigenetic rates are the

operators to be tuned for the algorithm. The results show that as the problem becomes

more complex, the algorithm with appropriate rates and reward function performs to ob-

tain better behaviour or solution. The epigenetic layer demonstrates the benefit of the

methylation process, regulatory function, and inheritance process. Thus, the available

strategies in the swarm can be improve collectively and the genetic behaviour is improved

based on external stimulus following epigenetic concept.

3.9 Conclusion

In this chapter, a reward-based epigenetic algorithm is proposed. The method is inspired

by epigenetic concept such as histone modification, gene’s expression regulator and epi-

genetic inheritance. As conclusion, the utilisation of environmental knowledge is the key

to overcome a dynamic problem and an exploratory behaviour in finding solution offers a

better efficiency in the computating efforts. The proposed method contributes and opens

a possibility in achieving adaptation for evolutionary swarm robotics research area. Fi-

nally, the future reserch implementing a reward-based epigenetic algorithm is expected

to advance swarm robotics design improving the swarm’s adaptability, co-learning and

co-evolve behaviour.



Chapter 4

Epigenetic Learning Framework

The evolutionary algorithm utilising epigenetic inheritance is able to solve a nonlinear

problem as discussed in the previous chapter. The regulatory function of the epigenetic

layer is obtained by collecting rewards from the problem and turning them into histone

values which are utilised as an expression and alteration factors. Based on this, the

epigenetic inheritance gives an opportunity to backup reward from a dynamic environment

to the genetic level shaping the individual behaviour, which is the main topic of this

chapter. Partial of this chapter has been published in (Mukhlish, Page, and Bain 2020b).

In a robotics problem, a task is considered as an episodic problem because a starting and a

terminal point does exist. Developing a better behaviour for an episodic problem through

an epigenetic algorithm can be done by combining the concept of episodic reinforcement

learning with the methylation process on histone values. Since the episodic task consists

of numbers of states and actions, a genetic value can be altered or expressed based on its

histone value for a particular state-action pair. This approach expands the functionality

of histone as a counterpart of an agent’s experience or knowledge of the environment

(Mukhlish, Page, and Bain 2020a). Then, based on the experience backup, a decision-

making process is made. In this chapter, a novel decentralised multi-agent reward-based

epigenetic learning (DMARBEL) is proposed to open the aforementioned possibility and

apply swarm’s decision-making adaptability in a dynamic environment.

This chapter is organised as follow. Firstly, a concept of agent-environment interaction is

discussed in Section 4.1. Then, the addition of behaviour into an action is discussed in

Section 4.2. The formulation of reward and return is presented in Section 4.3. Fourthly,

the value function and policies of state, action and behaviour are investigated in Section

4.4. The following Section 4.5 and 4.6 discuss on the temporal learning and the experience

backup of the epigenetic layer. The regulatory function is discussed Section 4.7 and the

epigenetic operators are discussed in Section 4.8. Finally, simulation, results, conclusion,

and summary are then presented in the following Section 4.9, Section 4.11 and Section

4.10.

46
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4.1 Agent-Environment Interface

Robotics problems are always associated with interaction with an external environment.

The surrounding environment is playing a pivotal role in how the robot decides to overcome

any constraints. Any entity that can take action or decision is called an agent. Then, any

constraints external to an agent is called the environment. For example, if we consider

a robot includes all the physical features, then everything other than the robot is the

environment. Similarly, if we consider an algorithm as the agent, then the physical features

of the robot and everything other than the algorithm is the environment. In a swarm

system, an agent is defined as a single member of the group, so other members and

everything other than the member is an external environment. Selecting which one is an

agent and which is an environment is a key to formulating the learning problem as an

action is always taking into account of how the environment works.

A dynamic environment can be considered as a stochastic process from the agent’s perspec-

tive. The mathematical framework that is often used to model such a problem is Finite

Markov Decision Processes (MDPs), which is used as a basis to learn the environment

throughout this research. MDPs consists of agent’s decisions (actions) and environmental

feedback (states and rewards) in the form of Markov Chains. The agent chooses an action

a at each time step t and translate itself from current environmental state s to the next

state s′. The agent’s transition process from state s to the next state s′ after taking an

action a is denoted as Pa, the formulation is

Pa(s, s
′) = Pr(St+1 = s′ | St = s,At = a). (4.1)

,

Figure 4.1: A Markov decision process

Where S is a random variable for a state and A is a random variable for an action. The

equation (4.1) yields the probability of St+1 = s′ given the condition of St = s and At = a.

Then, the agent receives an immediate reward from the environment denoted by Rt+1

right after its arrival to the state s′. The transition is a Markovian process as illustrated

in Figure 4.1. The environment will receive agent’s action At and respond back with a

changed state St+1. Then, in the next time step, the next state becomes current state St
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for the agent. The interaction between agent and environment forms a cycle as illustrated

in Figure 4.2.

Figure 4.2: A cycle of agent-environment interaction in a MDP

St St+1 St+1 ST

At At+1 AT−1

Figure 4.3: States and actions sequence in one episode.

The transition process stops when the agent’s action does not change the environmental

state, known as a terminal state, denoted by ST . For example, the terminal state might

be a condition that restricts the agent, such as out of energy or crashed. Thus, with

the presence of the terminal condition, the process is considered as an episodic task.

Moreover, the number of states is finite, which makes the transition process is considered

as a Finite Markov Decision Process (FMDP). The episodic tasks experienced by an agent

is illustrated in Figure 4.3. Thus, the set of states is finite, resulting in a set of finite

actions and rewards, denoted as S, A and R respectively.

The episodic task is successfully done if the final goal, one of the terminal states, is reached.

The strategy solving the episodic task is considered to be optimal if the accumulated of

the obtained reward is maximised. The path an agent experienced is represented as a

sequence of S0, A0, R1, S1, A1, R2, . . . , ST . Each state St and reward Rt in the sequence is

a random variable with discrete probability distributions dependant only on the previous

environmental state St−1 and a chosen action At−1, recalling the MDPs definition (4.1).

Hence, there is exist a probability of the next state and reward (St = s′, Rt = r) occuring

at a time step t under the condition of the preceeding state and action pair (St−1 =

s,At−1 = a). The transition dynamics of the MDPs with a presence of immediate reward

Rt = r is defined as:

p(s′, r | s, a)
.
= Pr(St = s′, Rt = r | St−1 = s,At−1 = a) (4.2)
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For all states (s′, s) ∈ S, all rewards r ∈ R and all available actions in each state a ∈ A(s).

The distribution of p for each choice of an action a in a state s is∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, for all s ∈ S, a ∈ A (4.3)

The dynamics of MDPs (4.2) gives a restriction not on the overall process but on the

current event (St, Rt) and previous event (St−1, At−1), known as bootstrapping. Hence,

for each state, the solution for (4.2) must include information of all previous experiences.

If the final solution exists, then state has a Markov property or can be called a Markovian

state. Prior assumption of this property gives benefits to solve each step rather than the

overall process, which is a general way to solve episodic tasks.

4.2 Action and Behaviour

The term “action” is often interchangeably with “behaviour”. However, a distinction

between the two is made in the study “action, behavioural science, and the social science”:

An action is a meaningful activity with purpose and intent; A behaviour is an automatic

and reflexive activity (Bates, Loyall, and Reilly 1994). In biology, a broader definition

of behaviour is analogous to phenotypic1 plasticity. For example, an action may takes

characteristics, e.g., a walking action can take different pace such as slow, moderate or

fast. If behaviours of an action At = a at a state St = s is stated as Bt, with the particular

behaviour denoted as b, slight modification to equation (4.2) can be made as

p(s′, r | s, a, b) .
= Pr(St = s′, Rt = r | St−1 = s,At−1 = a,Bt−1 = b) (4.4)

and
∑
s′∈S

∑
r∈R

p(s′, r | s, a, b) =1 (4.5)

Where s ∈ S is all available states, a ∈ A(s) is all available actions at state s, and

b ∈ B(s, a), all available behaviours in state-action pair. The updated Markov Decision

Process consists of behaviour is illustrated by Figure 4.4 below.

Figure 4.4: A Markov decision process with behaviour

1. Phenotype is an expression of genetic information. Phenotypic behaviour depends on how a gene
behave in response of external stimulus.
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4.3 Reward and Return

A reward R is a special signal passing from the environment represents the purpose of

a goal. From the problem formulation above, reward Rt explains how good an agent’s

decision is in the environment at each time t, see Figure 4.5. The total rewards an

agent obtained in one episode is called a return, denoted as G, from the reward sequence

R0, R1, R2, . . . , RT . Informally, the agent’s objective is to select an optimal action at every

state, maximising the total amount of reward (return) it obtains. The utilisation of reward

to represent the idea of a goal to learn optimal action is the most distinctive features of

reinforcement learning.

Figure 4.5: A cycle of agent-environment interaction with reward and behaviour

Formally, maximising the return G in one episode is the objective of developing the agent’s

decision making. The total rewards from a time step t to a terminal time step T , a time

step at a terminal state in FMDP, is denoted as Gt and defined as

Gt
.
= Rt+1 +Rt+2 +Rt+3 + · · ·+RT . (4.6)

The total steps in (4.6) vary between episodes depending on the experience sequence until

a terminal state is reached. To avoid an infinite return value, a discounted approach can

be used reducing the effect of future reward with a discount rate γ, such as

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

Rt+k+1 (4.7)

A discount rate γ is in range of 0 ≤ γ ≤ 1. To follow the bootstrapping process in the

MDPs, Gt can be defined as a function of the next reward Rt+1 and return Gt+1, following
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(4.7). The relationship is derived by

Gt = Rt+1 + γ
(
Rt+2 + γRt+3 + γ2Rt+4 + . . .

)
= Rt+1 + γGt+1 (4.8)

4.4 Value Functions and Policies

Reinforcement learning algorithms formulises functions to quantify the performance of

agent’s strategy. Two common functions that have been known in RL algorithms are

state-value function v(s) and action-value function q(s, a). A state-value function explains

how good a state s is in respect to the agent’s strategy. The state-value is formulised as

an expected value of return results at a particular state. For particular state St = s , the

state-value function is derived as

vs(s)
.
= E[Gt | St = s] (4.9)

= E [Rt+1 + γGt+1 | St = s] by (4.8) (4.10)

=
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γE

[
Gt+1 | St+1 = s′

]]
(4.11)

=
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γvs(s

′)
]

(4.12)

Equation (4.11) is known as the Bellman equation. This equation expresses the relation-

ship between the current state and all successor states. It averages all possible successor

states and rewards by weighting each sum of reward and discounted state-value function

with its occurrence probability. For example, an initial state’s value v(S0) must be equiv-

alent to the discounted expected next state values E[v(S1)] plus the expected rewards

E[R1].

To take action and behaviour, a set of rules is defined as policy. A rule to take action as a

response to state is defined as an action policy πa. Formally, all available action for a state

s is defined as a ∈ A(s), and the policy is defined as πa(a | s). The policy for choosing

behaviour for action is defined as a behaviour policy πb. Similarly, all available action

for an action a is defined as b ∈ B(a), and the behaviour policy is defined as πa(b | s, a).

The total policy of an agent in taking a pair of behaviour-action as a response to a state

s can be defined as π(b, a | s). The relationship between the three policies is derived by

formulating the probability chain as

π(b, a | s) = π(a | s).π(b | a, s) (4.13)
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Then, the state-value function in respect of policy π (4.13) is derived as:

vπ(s)
.
= E [Gt | St = s] (4.14)

=
∑
a,b

π(b, a | s)
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γvπ(s′)

]
(4.15)

=
∑
a

πa(a | s)
∑
b

πb(b | a, s)
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γvπ(s′)

]
(4.16)

The formulation in (4.16) is a looking ahead process from state s to all possible successor

s′ by following policy πa and πb, as illustrated in Figure 4.6.

Figure 4.6: A backup diagram of vπ(s)

The state-value function vπ is useful to evaluate or predict the solution given by π and to

help find a better policy π′. Particularly, to find a better policy for selecting a behaviour,

a change in policy πb needs to be evaluated. Hence, a value function for behaviour in a

selected action at a particular state is needed, let us call it a behaviour-value function de-

noted as h(s, a, b). The calculation begins from the behaviour node onward, see Figure 4.7.

s, a, b
p(s′, r|s, a, b)

r
s′

Figure 4.7: A backup diagram oh hπ(s, a, b)

Instead of using next h(s′, a′, b′) as successor, v(s′) is used for simplicity. By following πb,

the function is derived as:

hπb(s, a, b)
.
= Eπb [Rt+1 + γvπ(St+1) | St = s,At = a] (4.17)

=
∑
s′

∑
r

p(s′, r | s, a, b)[r + γvπ(s′)] (4.18)

Similarly, to determine a better policy πa, an action-value function is required, let us

denote it as q(s, a). This function defines how good an action a in a particular state s.



CHAPTER 4. EPIGENETIC LEARNING FRAMEWORK 53

The action-value function is the expected value of all possible behaviour-values after taking

action a, each behaviour-value is already defined in equation (4.18). The illustration for

action-value function can be seen in Figure 4.8.

Figure 4.8: A backup diagram of qπ

The derivation of action-value function following policy πa is:

qπa(s, a)
.
= Eπa [hπb(s, a, b) | St = s,At = a] (4.19)

=
∑
b

πb(b | a, s)hπb(s, a, b) (4.20)

=
∑
b

πb(b | a, s)Eπb [Rt+1 + γvπ(St+1) | St = s,At = a,Bt = b] by (4.18) (4.21)

=
∑
b

πb(b | a, s)
∑
s′

∑
r

p(s′, r | s, a, b)[r + γvπ(s′)] (4.22)

To maximise the total reward, optimal action and behaviour policy must exist. Let us

denote the optimal action policy as πa∗ , the behaviour policy as πb∗ . Thus, the optimal

value functions exist and they are denoted as v∗, q∗ and h∗. A policy is said to be optimal

if it is better than or equal to all other policies. Formally, it can be defined as:

vπ∗(s)
.
= max

π
vπ(s)

.
= v∗(s) (4.23)

qπ∗(s, a)
.
= max

π
qπ(s, a)

.
= q∗(s, a) (4.24)

hπ∗(s, a, b)
.
= max

π
hπ(s, a, b)

.
= h∗(s, a, b) (4.25)

For all s ∈ S. Intuitively, the state-value yielding under optimal policy π∗ must equal to

expected return for the best action-behaviour pair from that state, and the action-value

under optimal policy must equal to the expected return for the best behaviour from that
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action:

q∗(s, a) = max
b∈B(s,a)

hπ∗(s, a, b) (4.26)

v∗(s) = max
a∈A(s)

qπ∗(s, a) = max
b∈B(s,a)
a∈A(s)

h∗(s, a, b) (4.27)

To obtain all optimal value functions, let us first derive h∗ as follows,

h∗(s, a, b) = max
π

hπ(s, a, b) (4.28)

= Eπ∗ [Rt+1 + γvπ(St+1) | St = s,At = a,Bt = b] (4.29)

= E [Rt+1 + γv∗(St+1) | St = s,At = a,Bt = b] (4.30)

=
∑
s′,r

p(s′, r | s, a, b)
[
r + γv∗(s

′)
]

(4.31)

Then, from (4.26), we can derive optimal value q∗ as:

q∗(s, a) = max
b∈B(s,a)

hπ∗(s, a, b) (4.32)

= max
b
E [Rt+1 + γv∗(St+1) | St = s,At = a,Bt = b] (4.33)

= max
b

∑
s′,r

p(s′, r | s, a, b)
[
r + γv∗(s

′)
]

(4.34)

Finally, we can derive v∗ as:

v∗(s) = max
a∈A(s)

qπ∗(s, a) (4.35)

= max
a

[
max
b
E [Rt+1 + γv∗(St+1) | St = s,At = a,Bt = b]

]
(by (4.33)) (4.36)

= max
a,b
Eπ∗ [Rt+1 + γvπ(St+1) | St = s,At = a,Bt = b] (4.37)

= max
a,b

∑
s′,r

p(s′, r | s, a, b)
[
r + γv∗(s

′)
]

(4.38)

Equation (4.27) shows how optimal action-value and behaviour-value functions can be

updated based on each next value as:

q∗(s, a) = max
b

∑
s′,r

p(s′, r | s, a, b)
[
r + γmax

a′
q∗(s

′, a′)

]
(4.39)

h∗(s, a, b) =
∑
s′,r

p(s′, r | s, a, b)
[
r + γmax

a′,b′
h∗(s

′, a′, b)

]
(4.40)
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(a) Optimal state-value v∗ backup diagram

(b) Optimal action-value q∗ backup diagram

(c) Optimal behaviour-value h∗ backup diagram

Figure 4.9: Optimal value function backup diagrams

An optimality diagram for each value function can be seen in Figure 4.9. Based on the

characteristic of finite MDPs, if the environmental dynamic p are known, each Bellman

equation (4.38), (4.39) and (4.40) can be solved yielding a unique solution. Moreover,

there are three methods to solve finite Markov decision problems: dynamic programming,

Monte Carlo methods and Temporal-difference learning. Each class of methods has its

advantages and disadvantages (Sutton and Barto 1998). The first, dynamic programming

methods require an accurate environmental model. Monte Carlo methods do not require

any environmental models, but not well-suited for step-by-step incremental computation.

Finally, Temporal-difference methods do not require an environmental model and are fully

incremental. The latter is of interest in this research since the model is often non-trivial

and the incremental computation is feasible to be merged with the iterative evolutionary

process from (Mukhlish, Page, and Bain 2020b).
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4.5 Temporal Difference Learning

Temporal-difference (TD) learning is a method to solve the finite Markov decision process

in reinforcement learning problems. The learning process does not require a model of the

environment’s dynamics. TD-methods’ updated estimates are acquired based on other

learned estimates, without waiting for an outcome. In this section, the prediction and

control problem are discussed in conjunction with of estimating vπ, qπ, hπ, πa, and πb.

4.5.1 Temporal Difference Prediction

In reinforcement learning, the prediction problem focuses on evaluation of a policy for a

given problem. Policy evaluation allows predictable transition to proceeding state after

taking an action and behaviour based on policy π from the preceding state as formulated

in (4.14). The complete evaluation is embedded in value function vπ. TD-methods use

experience from the environment to estimate vπ and solve the prediction problem. After

following a policy π and get some experience, TD-methods update their estimate of vπ.

Let us denote the estimate of vπ for a non-terminal state St as V (St). For example, one of

TD-methods such as a simple every-visit Monte Carlo method uses return Gt as a target

for V(St) estimating equation (4.14):

V (St)←− V (St) + α [Gt − V (St)] . (4.41)

Where α is a constant step-size parameter. However, since return Gt from (4.7) is used,

the total return will be available after the terminal state ST is reached. To bootstrap and

get the incremental process on a particular state St, a TD-method has to immediately

update the estimate at time step t + 1. With the definition of discounted return, see

equation (4.8), now the immediate update of the estimation becomes

V (St)←− V (St) + α [Rt+1 + γGt+1 − V (St)] , (4.42)

Since the actual target of V (St) is the return Gt, then incrementally, equation (4.42) can

be modified by bootstrapping actual return Gt+1 as estimated value V (St+1):

V (St)←− V (St) + α [Rt+1 + γV (St+1)− V (St)] , (4.43)

Equation (4.43) is called temporal difference, an updating method that uses the difference

between time step (temporal). In this case, the TD-method is called one-step TD or TD(0)

since the update is only for one time step. The pseudo-code for TD(0) in procedural form

is listed in Algorithm 4.1.
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Algorithm 4.1 Tubular TD(0) for estimating vπ

1: Input: the policy πa and πb to be evaluated
2: Parameter: step size α ∈ (0, 1], discount factor γ ∈ [0, 1]

3: initialise V (s) . For all s ∈ S and V (ST ) = 0
4: for all episodes do
5: S ← S0 . Initialise start state
6: for t← 1, T do
7: A← action given by πa(a|S)
8: B ← behaviour given by πb(b|S,A)
9: S′, R← Agent take action A and behaviour B

10: V (S)←− V (S) + α [R+ γV (S′)− V (S)]
11: S ← S′

12: if S == ST then
13: t← T
14: else
15: t← t+ 1
16: end if
17: end for
18: end for

4.5.2 Temporal-Difference Control

In this subsection, the TD(0) method is used to solve control problem by extending the

prediction formulation for vπ to estimate action-value qπ and behaviour-value hπ. The

estimation of action value Q and behaviour value H allow the policy to select action

and behaviour with better outcome. Firstly, let us recall that each episode consists of

alternating sequence of state, actions and behaviours, see Figure 4.10.

Figure 4.10: Alternating sequence of states, actions and behaviours in one episode

In prediction problem, transitions between state to state are examined to learn the state-

value. Thus, the transition between a sequence of state-action-behaviour to the next

sequence is examined to learn beahviour-value. Recall that the behaviour-value is an

expected return defined as

hπb(s, a, b) =
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γvπ(s′)

]
,

and if h has been learnt accurately, then the state-value can be obtained as:

v∗(s) = max
b∈B(s,a)
a∈A(s)

hπ∗(s, a, b)
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By following the equation (4.43), the update rule for H can be performed using the

definition in equation (4.17):

H ′(St, At, Bt)← H(St, At, Bt) + α

[
Rt+1 + γmax

a,b
H(St+1, a, b)−H(St, At, Bt)

]
. (4.44)

Since policy πb is being evaluated in the update rule, the general formulation is defined as

H ′(St, At, Bt)← H(St, At, Bt)+α [Rt+1 + γH(St+1, At+1, Bt+1)−H(St, At, Bt)] . (4.45)

Since the update rule for behaviour-value is already obtained, recall the relation between

action-value function and behaviour-values from equation (4.20),

qπa(s, a) =
∑
b

πb(b|s, a)hπb(s, a, b)

=
∑
b

πb(b|s, a)
∑
s′

∑
r

p(s′, r | s, a, b)
[
r + γvπ(s′)

]
and if q has also been learnt accurately, then the state-value can be obtained as:

v∗(s) = max
a

qπ∗(s, a)

q∗(s, a) = max
b
hπ∗(s, a, b)

Then, the update rule for action-value function is

Q′(St, At)←− Q(St, At) + α

[
max
b
H(St, At, b)−Q(St, At)

]
(4.46)

Because policy πa is being evaluated, then the general form is

Q′(St, At)←− Q(St, At) + α
[
H ′(St, At, Bt)−Q(St, At)

]
(4.47)

or

Q′(St, At)←− Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] . (4.48)

The updated values H ′ and Q′ now can be used to improve policy πa and πb. One way

to improve each policy is by applying greedy policy where the improved policies give a

probability of one for each strategy yielding maximum value of respective value functions.

If the greedy policy is applied, the action and behaviour selections are defined as:

Bt ←− arg max
b
H(St, At, b), πb(b|St, At)←

1, if b = B∗

0, if b 6= B∗,
(4.49)

At ←− arg max
a

Q(St, a), πa(a|St)←

1, if a = A∗

0, if a 6= A∗.
(4.50)
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Another policy is an ε−greedy, a policy will choose maximum strategy if the probabilities

of choosing, Pb and Pa, are greater than or equal a probability 1 − ε and will choose

randomly otherwise. If ε− greedy is preferred, then the policies are

Bt ←−

arg max
b
H(St,At, b), if Pb ≥ (1− ε)

B ∈ B(St, At), otherwise,
(4.51)

At ←−

arg max
a

Q(St, a), if Pa ≥ (1− ε)

A ∈ A(St), otherwise.
(4.52)

The pseudo-code of temporal difference control for estimating hπ and qπ is listed in Algo-

rithm 4.2 below.

Algorithm 4.2 TD control for estimating qπ, hπ

1: Parameter: α ∈ (0, 1], γ ∈ [0, 1], small ε > 0
2: initialise H(s, a, b), Q(s, a) arbitrarily . For all s ∈ S, a ∈ A(s), b ∈ B(s, a)

and H(ST , a, b) = Q(ST , a) = 0.
3: for all episodes do
4: S ← S0 . Initialise start state
5: A← action following πa from Q(S, a) . (e.g.,ε− greedy)
6: B ← behaviour following πb from H(S,A, b) . (e.g.,ε− greedy)
7: for t← 1, T do
8: S′, R← Agent take action A and behaviour B
9: A′ ← action following πa from Q(S′, a) . (e.g.,ε− greedy)

10: B′ ← behaviour following πb from H(S′, A′, b) . (e.g.,ε− greedy)
11: H(S,A,B)←− H(S,A,B) + α [R+ γH(S′, A′, B′)−H(S,A,B)]
12: Q(S,A)←− Q(S,A) + α [H(S,A,B)−Q(S,A)]
13: S ← S′;A← A′;B ← B′

14: if S == ST then
15: t← T
16: else
17: t← t+ 1
18: end if
19: end for
20: end for
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This generates a set of discrete actions that correspond to all states in the MDP. However,

a set of behaviour for delivering an action in particular state is not yet represented. Since

swarm or multi-agents is the main interest in this research, exchanging learned behaviours

between agents is one of the aims of the formulation. One method that allows the swarm

to communicate their behaviour or strategy is evolutionary computation. The experience

learned from previous formulation can be embedded into genetic information in form of

epigenetic layer which is discussed in the next section.

4.6 Experience Backup of Epigenetic Layer

Based on the previous section, because swarm robotics tasks are episodic, epigenetic func-

tions can be obtained by utilising an action and its chromosome, next state and next

reward. A sequence of state, reward, action, and chromosome are feedback to the learning

layer as reinforcement values. The interaction between epigenetic layer and the environ-

ment is illustrated by Figure 4.11. In the formulation, the agent’s behaviour Bt is replaced

with chromosome Ct.

Figure 4.11: Components of Epigenetic layer

4.6.1 Chromosome Structure

From the formulation above, behaviour b which is a varying expression of an action a is

analogous to a set of chromosomes CL in the chromosome-pool C which can be selected/-

expressed based on their histone values. Thus, a chromosome for a state s and an action

a is denoted as Cs,al and all available chromosome is defined as a chromosome-set C with

size L:

C(s, a) =
{
Cs,a1 , Cs,a2 , Cs,a3 , . . . , Cs,aL

}
. (4.53)
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In a MDPs, where number of states and actions are finite, if the number of states and

actions are donted by I and J respectively, then S =
{
si | i = {1, 2, 3, . . . , I}

}
and A ={

aj | j = {= 1, 2, 3, . . . , J}
}

. Furthermore, for all combination of states and actions, we

have I × J chromosome-sets and it redefines the chromosome-pool C as

C = {C(s, a) | s ∈ S, a ∈ A} , (4.54)

and the diagram illustrating the chromosome-pool can be seen in Figure 4.12.

Figure 4.12: Chromosome-pool for all states and actions

4.6.2 Histone Map

From the formulation above, an action a takes form or several expressions of chromosome

C ∈ C(s, a). The selection of chromosome C is based on histone value H. Recall that

all chromosomes in a chromosome-set C(s, a) have a set of quantitative value (histone){
H(Cs,a1 ), H(Cs,a2 ), H(Cs,a3 ), . . . ,H(Cs,aL )

}
, lets denote it as H(s, a). Then, all histones

values in a chromosome-pool C are

H(C) = {H(s, a) | s ∈ S, a ∈ A} (4.55)

with

H(s, a) =
{
H(Cs,al ) | l = {1, 2, 3, . . . , L}

}
. (4.56)
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A chromosome Cl has a set of genes
{
lg1
m,

lg2
m,

lg3
m, . . . ,

lgNm
}

and corresponding histone

value for each gene is
{
lh1
m,

lh2
m,

lh3
m, . . . ,

lhNm
}

. In order for a gene to have a phenotypic

plasticity, the histone value has to accommodate various states and actions. Thus, the

histone at gene level is represented as a matrix or a histone map hmn (S,A) for all s ∈ S
and all a ∈ A such as

H(gnm) = hmn (S,A) =



hnm(s1, a1) hnm(s2, a1) hnm(s3, a1) . . . hnm(sI , a1)

hnm(s1, a2) hnm(s2, a2) hnm(s3, a2) . . . hnm(sI , a2)

hnm(s1, a3) hnm(s2, a3) hnm(s3, a3) . . . hnm(sI , a3)
...

...
...

. . .
...

hnm(s1, aJ) hnm(s2, aJ) hnm(s3, aJ) . . . hnm(sI , aJ)


. (4.57)

Hence, the general equation for average histone value is

H
(
Cs,al

)
= H (S = s,A = a,Cl) =

1

N

N∑
n=1

lhnm (S = s,A = a) , (4.58)

where m is a position of each gene in corresponding gene-family Gn.

4.6.3 Methylation Process

Because both of methylation process and temporal-difference method utilise feedback from

environment, the reward propagation can be formulised to accumulate temporal update

and genetic methylation process by stacking them together. Since return Gt is used, then

the update rule for equation (3.12) is

lhnm(S,A)← lhnm(S,A) +
2η

N
(Gt −H (S,A,Cl)) (4.59)

and since the target of the behaviour value is Rt+1+γH(S′, A′, C ′), the incremnetal histone

update at gene’s level can be derived as

lhnm
′
(S,A)← lhnm(S,A) +

2η

N

(
Rt+1 + γH(S′, A′, C ′)−H (S,A,Cl)

)
(4.60)

with H ′(S,A,Cl) =
1

N

N∑
n=1

lhnm
′
(S,A). (4.61)

Where η is a methylation rate with 0 < η ≤ 1 and γ is a discount rate with 0 < γ < 1.

Since 2η
N is constant and η is small then we can assume that 0 < 2η

N < 1. Thus, the update

rate 2η
N can be abbreviated simply as η, with 0 < η < 1, and the update rule for each
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histone (4.60) becomes

lhnm
′
(S,A)← lhnm(S,A) + η

(
Rt+1 + γH(S′, A′, C ′)−H (S,A,Cl)

)
(4.62)

.

The methylation process in equation (4.62) is illustrated in Figure 4.13.

Figure 4.13: Methylation process for episodic task

Thus, the update rule for action value function is

Q′(S,A)← Q(S,A) + α
[
H ′(S,A,Cl)−Q(St, At)

]
(4.63)

4.7 Epigenetic Regulatory Function

From the previous subsection, the epigenetic value represented by histone value can be

derived from interaction with environment. The regulation function of epigenetic layer

selects chromosome on a policy πb, the policy replaced as πc to avoid confusion. The

policy can be a greedy policy where a chromosome with highest H̃ is selected:

Ct = arg max
c
H̃(St, At, Cc),∀c ∈ C(St, At) (4.64)

However, greedy policy is prone to local optima because of lacking in exploration. Explo-

ration allows the chromosome selection to look at other possibilities other than exploiting

the same solution every time. Hence, the balancing between exploitation and exploration is

needed. Exploration-exploitation policy allows the agent to explore new behaviour/chro-

mosome that may give a better reward rather than exploit current best solution. One

policy is of interest in the formulation is ε − greedy policy which most of the time the

agent chooses a chromosome C that has maximal estimated value H̃, but the agent in-

stead selects other available chromosomes at random with probability ε. Suppose CSt,At
∗

is a chromosome of an action At at a particular state St that gives maximal reward that

follows equation (4.64), then the policy is
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Ct =

arg max
c
H̃(St, At, c), ifPc ≥ (1− ε)

C ∈ C(S,A), otherwise
(4.65)

At =

arg max
a

Q(St, a), ifPa ≥ (1− ε)

a ∈ A(St), otherwise
(4.66)

Regulatory function is optimal if a value H∗ that is equal or better than H exists. It

implies that policy is improved as π′c ≤ πc. The procedure of methylation process and

regulatory function can be seen in Algorithm 4.3

Algorithm 4.3 Epigenetic regulator for estimating H̃πc ,H and Qπa

1: Parameter: α ∈ (0, 1], γ ∈ [0, 1], η ∈ (0, 1),small ε > 0
2: initialise Q(s, a) arbitrarily . For all s ∈ S, a ∈ A(s) and Q(ST , a) = 0.
3: initialise G,C,H(g), H̃(s, a, c) arbitrarily . For all g ∈ G,G→ G,

c ∈ C,C→ C(s, a)
4: for all episodes do
5: S ← S0 . Initialise start state
6: A← action following πa from Q(S, a) . (e.g.,ε− greedy)
7: C ← chromosome following πc from H̃(S,A, c) . (e.g.,ε− greedy)

8: H̃(S,A,C)← 1
N

N∑
n=1

Chnm(S,A)

9: for t← 1, T do
10: S′, R← Agent takes action A and chromosome C
11: A′ ← action following πa from Q(S′, a) . (e.g.,ε− greedy)
12: C ′ ← chromosome following πc from H(S′, A′, c) . (e.g.,ε− greedy)

13: H̃(S′, A′, C ′)← 1
N

N∑
n=1

C′hnm(S′, A′)

14: for each g in C do

15: Chnm(S,A)← Chnm(S,A) + η
(
R+ γH̃(S′, A′, C ′)− H̃(S,A,C)

)
16: end for

17: H̃(S,A,C)← 1
N

N∑
n=1

Chnm(S,A)

18: Q(S,A)←− Q(S,A) + α
[
H̃(S,A,C)−Q(S,A)

]
19: S ← S′;A← A′;C ← C ′

20: if S == ST then
21: t← T
22: else
23: t← t+ 1
24: end if
25: end for
26: end for
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4.8 Evolutionary Learning Mechanism

The evolutionary-learning algorithm consists of experience backup, exchanging strategies

and improving policies. Firstly, an agent interacts with the environment and get experience

in taking an action for each state with immediate reward given by the environment. The

experience is manifested into histone value through the methylation process for each gene.

This process is analogous to biological process in obtaining external stimulus and store

them into epigenetic layer. Then, genetic information along with their histone values are

exchanged at swarm/group level with other members. The exchange process utilises the

histone value as a basis. These processes include histone-based selection, histone-mask

crossover, genomic imprinting, mutation, gene silencing, and regeneration. Finally, after

new sequence of chromosomes are obtained by the agent, improving the policy based

on new histone values of the gene-pool and chromosome-pool is carried out. Then, the

process goes to the first step, experience backup, to evaluate and get new experience from

the environment. The overall process is recurring until the plausible optimal policies are

achieved. Figure 4.14 below illustrates the overall process of reinforcement evolutionary-

learning using epigenetic inheritance.

Figure 4.14: Diagram of evolutionary-learning algorithm using epigenetic layer
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4.9 Simulation and Result

The case that is used in this chapter is a flocking of UAVs following a path. The dynamic

used in the simulation based on the dynamic of small unmanned aerial vehicle (Beard

and McLain 2012). Each UAV in the swarm has three behaviours, namely point target

attraction, UAVs avoidance and altitude control. Point target attraction is a behaviour to

go to a given point in the environment based on distance and relative angle to the point

target. UAVs avoidance is a behaviour to avoid UAV in vicinity given the distance and

relative angle. Lastly, altitude control is a behaviour to retain height while searching the

area.

4.9.1 Flocking

4.9.1.1 Waypoint Tracking

Target points are arranged forming a set of waypoints for UAV. To follow the waypoints,

the UAV is moving to approach the course line between two points on the trajectory. The

UAV has to move to approach a line between two points by changing its heading and

altitude set point as depicted in 4.15.

Figure 4.15: Vector field for two waypoints

From the figure above, χ is the UAV’s heading and the course line heading is denoted

by χq. Far away from the waypoint path, the vector field is directed with an angle

χ∞. The course line has path’s origin denoted by r = {rn, re, rd} ∈ R3 and a unit vector

q = {qn, qe, qd} ∈ R3 as a direction indicates the disired of travel. The position of the UAV

is p = {pn, pe, pd} ∈ R3 and its projection on the course line is s = {sn, se, sd} ∈ R3. The
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position error is derived by calculating the vector between p and s as ep = {epx, epy, epz}.
The complete formulation to reduce the error position ep is by calculating desired altitude

hd as

hd(r,p,q) = −rd +
√
s2
n + s2

e

(
qd√

(q2
n + q2

e)

)
(4.67)

Then, the desired heading χd is

χd(t) = χq − χ∞
2

π
tan−1 (kpathepy(t)) (4.68)

with χq = arctan2(qe, qn) + 2πm

where m ∈ N → π ≤ χq − χ ≤ π

where kpath is a positive constant that influences the rate of the transition from χ∞ to

zero.

4.9.1.2 Repulsion Force

To avoid collision between UAVs, an avoidance behaviour is applied. UAVs in vicinity are

detected using proximity sensor shown in Figure 4.16. Repulsion force is calculated when

neighbouring UAV is inside of outer radius of the proximity sensor. On the other hand,

inner radius is used to detect a potential collision.

In order to avoid neighbouring UAV, relative position, as can be seen in Figure 4.17, is

used to calculate repulsion heading χr and repulsion altitude hr. First, the repulsion force

magnitude between agent i and j, defined as |Fr
ij |, is calculated as

|Fr
ij | =


0 , |Dij | > Router

Kr

(
Router−Rinner
|Dij |−Rinner

)
, Rinner < |Dij | ≤ Router

collide , |Dij | ≤ Rinner

(4.69)

WhereKr is a positive constant of repulsion rate and |Dij | is derived as a relative neighbour

position from the UAV. For the range of Rinner < |Dij | ≤ Router, the distance vector

between agent i and any nearby UAV denoted by j is defined as

Dij =

p
j
e − pie
pjn − pin
pjd − p

i
d

 (4.70)
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Figure 4.16: Perimeter of proximity sensor

Figure 4.17: Repulsion force from neighbouring UAV
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Then, the direction of the propulsion force is derived as a unit vector

f̂ rij = − Dij

|Dij |
(4.71)

So, the total repulsion force vector on agent i by neighbouring UAVs is obtained as

∑
Fr
i = Kr

FreFrn

Frd


i

= Kr

∑
j 6=i

FreFrn

Frd


ij

= Kr

∑
j 6=i
|Fr
ij | · f̂ rij

= Kr

∑
j 6=i

(
Router −Rinner

|Dij | −Rinner

)
· f̂ rij (4.72)

we can derive the desired heading for avoidance action

χr = π − arctan

(
Fre
Frn

)
(4.73)

Finally, the desired altitude is proportional to k̂-component of the Fr as

hr = KrFrd (4.74)

4.9.2 Velocity Alignment of Neighbours

The velocity alignment has been defiend as viscous friction-like interaction (Virágh et

al. 2014; Cucker and Smale 2007; Helbing, Farkas, and Vicsek 2000) as

Fv
ij = Kv

vj − vi
(max {rmin, |Dij |})2 (4.75)

Where Kv is the strength of the alignment and rmin defines a threshold to avoid division

by close-to-zero distances. Then, the total velocity alignment is

Fv = Kv

FveFvn

Fvd

 = Kv

∑
j 6=i

FveFvn

Fvd


ij

= Kv

∑
j 6=i

vj − vi
(max {rmin, |Dij |})2 (4.76)
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The resultant force is obtained as a sum of repulsion force and velocity alignment as

FR =

FRe

FRn

FRd

 = Kv

∑
j 6=i

vj − vi
(max {rmin, |Dij |})2 −Kr

∑
j 6=i

(
Router −Rinner

|Dij | −Rinner

)
· f̂ rij (4.77)

From equation (4.77), we can derive desired heading for each agent as

χR = arctan

(
FRe

FRn

)
(4.78)

and the desired altitude as

hR = hd(t) + FRd
(4.79)

4.9.3 Result

The mission of the swarm is to flock following a given pattern. These are a line pattern

with multiple waypoints without impacting with other agents. The states of each UAV are

the general information of its position relative to the path and other UAVs. The states

of each UAV are “start”, “far from path”, “near path”, “UAVs nearby”, and “crash”.

The position of the UAV, especially distance vector Dij is used to determine the distance

between UAVs and the position error ep is used to determine how close each UAV is to the

path. The thresholds for distance vector are 1 meter for Rinner and 200 meters for Router.

The tolerance for state “near path” is ep < 5 meters and “far from path” otherwise. The

actions for the UAV are “go-to path” and “Avoid UAVs”. Moreover, the actions or each

UAVs are defined as activity in response to change in its state, namely “go-to path” and

“avoid UAVs”, following flocking scenarios discussed in section 4.9.1.

The simulation consists of experience backup process, epigenetic mechanisms and policy

improvement. A number of episodes between processes are defined by evolution interval.

In this particular simulation, 10 episodes is selected for the evolution interval to give 10

episodes of experience for the swarm and then evolve afterwards. A complete simulation

parameters for the algorithm is listed in table 4.1 below.

Table 4.1: Simulation parameters

Parameters Value Parameters Value

Number of agents 3 Mutation rate 0.05

ε-greedy 0.75 Imprinting rate 0.01

Learning rate 0.1 Silence rate 0.05

Discount factor 0.1 Number of states 5

Methylation rate 0.1 Number of actions 2

Regeneration rate 0.75 Evolution interval 10 episodes

Histone selection rate 0.75
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4.9.3.1 Line Pattern

(a) Episode 1 (b) Episode 10

(c) Episode 20 (d) Episode 30

(e) Episode 40 (f) Episode 50
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(g) Episode 60 (h) Episode 70

(i) Episode 80 (j) Episode 90

Figure 4.18: Flocking following straight line: from episode 1 - episode 90, with evolution
interval 10 episodes.

From Figure 4.18, it can be seen the process in early stage of evolution and experience

backup to follow a straight line. The flocking pattern from episode 1 to 50 shows unstable

agent deviating from the course line. This is because the control parameters and the

regulatory function have not yet figured out a better policy in early stage. Look at the

development from episode 60 to 90, the following patterns show that the swarm flock

forming a straight pattern following the course line although there is an agent crash in the

middle of the way, see episode 60 where agent-3 is arrived in terminal state “crash”.
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(a) Episode 100 (b) Episode 200

(c) Episode 300 (d) Episode 400

(e) Episode 500 (f) Episode 600
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(g) Episode 700 (h) Episode 800

(i) Episode 900 (j) Episode 1000

Figure 4.19: Flocking following straight line: from episode 100 - episode 1000, with evo-
lution interval 10 episodes

Figure 4.19 above, the results are taken with 100 episodes interval to see the process of

evolution in a longer period. The evolution progress shows that the swarm follow the

straight waypoints, and the deviation showed in episode 500 and 800 explain that there is

a UAV that avoids the collision with another UAV. Hence the actual trajectory is deviated

and eventually fly back following the course line. The anomaly behaviour in episode 600

demonstrates that exploration behaviour is maintained to open the possibility of finding

better behaviour from the existing solutions.

4.9.3.2 Multiple Waypoints

With similar process as the straight-line trajectories, the next simulation includes multi-

ple waypoints resulting waypoints with different course heading. The result of the final

evolution can be seen in Figure 4.20.
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(a) Early Stage (b) Middle Stage (c) Final Stage

Figure 4.20: Flocking behaviour for multiple waypoints in multiple stages

4.9.3.3 Histone Values

It can be seen from Figure 4.21 and Figure 4.22 that the algorithm are improving the

histone values, and converge to a certain value. The epigenetic layer regulates the actions

selection based on its action-value functions derived from histone values. Then as results,

the agent selects action “go-to path” in a state “far from the path”. The agent selects

the action “go-to path” over “avoid” based on actions average histone value 1.5 and 0.5,

respectively. Thus, when the exploitation occurs, the agent will select “go-to path” at

state “far from the path”. By examining further, the action selection process is the same

for other states. Moreover, since the movement of member of the swarm are dynamic, the

histone values also changing overtime adapting to the current flying behaviour of the rest

of the swarm.

Figure 4.21: Histone values for best chromosome on “Go to path”
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Figure 4.22: Histone values for best chromosome on “Avoid UAVs”

Figure 4.23: Chromosome-set and histone values

At the chromosome level (see Figure 4.23), on the right-hand side, a number of chro-

mosomes for each state-action pair is 10, as defined in the simulation parameter. Each

chromosome has a genetic structure that consists of a set of genes with different genotypes.

Each gene corresponds to the gene-family in the gene-pool on the left-hand side of Figure

4.23. In the gene-pool metric, all the genes are positioned on the gene-family, x-axis, and

their decimal value, derived from gray-code, along the y-axis. A coloured dot represents

each gene’s histone, and the value is defined by the colour bar. The relationship between

chromosome-set and gene-pool is illustrated with the coloured histone value. As results,

it can be seen that, through exploration and exploration selection, each chromosome is

shaped differently. It shows that epigenetic learning successfully accumulates rewards to

histone values and propagates the information to gene-level and chromosome-level.
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4.10 Summary

This chapter investigated the possibility of learning the dynamic environment of swarm

robotics by extending reward-based epigenetic algorithm with reinforcement approach.

Thus, reinforcement evolutionary learning using epigenetic inheritance is proposed. The

formulation is done by combining the reward-based learning with a backup experience

for an episodic task as a recurring process. The proposed method successfully achieves

automatic swarm behaviour in a dynamic environment. This method utilises reward, tem-

poral difference and epigenetic inheritance to approximate optimal action and behaviour

policies. Moreover, the methylation process and the temporal update is successful in ac-

cumulating the experience into the epigenetic layer, and the epigenetic is also successful

in exchanging strategies between agents.

4.11 Conclusion

In this chapter, the results show that the evolutionary and learning process taking a

receding approach in developing better behaviour over episodes, the exploration charac-

teristics are maintained to open a possible novel behaviour that improves current optimal

behaviour. A more complex task such as multiple waypoints that require the flocks to

change heading together while maintaining the group is also demonstrated. The result

also showed that the proposed method is able to achieve plausible behaviour. For future

works, the improvement of the temporal difference backpropagation by applying TD(λ)

to accumulate and propagate the reward back several time-steps back, so the transition

between behaviour becomes smoother will be investigated.



Chapter 5

An Epigenetic Based Learning

Swarm for Search and Rescue

Mission

A Search and rescue (SAR) mission is the search to provide lifesaving support for people

in distress, avoiding the danger of loss of life (T. Stone 2018). For the victims in a dynamic

and harsh environment such as sea surface is challenging. The success of a SAR operation

depends on the pace of deploying the operation. The number of searchers available and

the search teams’ organisation will be a major factor in determining search area coverage.

The time required to search a vast area thoroughly is often critical when a number of

search assets are limited. A group of search assets is often required to cover a large search

area which is mainly the result of drifting, windage and a lack of certainty on the initial

incident location. To overcome this problem, currently, a number of manned search assets

are deployed using a predefined search pattern determined before the mission is initiated.

However, this deploying solution is not cost-effective, and risks search crews’ safety in a

harsh environment (Allard and McNeilage 2014). The idea of deploying unmanned aerial

vehicles would be preferable since the number of search assets is more flexible and results

in less cost and risk to human assets. Extensive reviews for search and rescue missions

using swarm robotics can be found in (Couceiro 2016; Tan 2016; Bakhshipour, Jabbari

Ghadi, and Namdari 2017).

In this chapter, the simulation setup is discussed. Firstly, the search and rescue mission

utilising swarm configuration is presented in Section 5.1. Then, the environmental dynamic

is discussed in Section 5.2. The following Section 5.3 investigates the searching behaviour

of each swarm member. Fourthly, a simulation setup and results are presented in Section

5.4 and Section 5.5, respectively. Finally, the summary and conclusion are presented in

Section 5.6 and Section 5.7.

78
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5.1 Search and Rescue Mission

In conducting a search mission, the SAR team follows several provisions summarised in

the IAMSAR (The International Aeronautical and Maritime Search and Rescue) manual

published by ICAO (International Civil Aeronautical Organisation) (Organization and

Organization 2016). This guideline explains several search techniques and preparations

are required to be implemented in mitigating accidents on land, sea and air. In the

following subsections, search patterns will be discussed.

5.1.1 Searching Technique on SAR Mission

Search assets, such as airplanes, which are mainly used to carry out the search mission

generally have sensors in the form of cameras, sonar, or radar that are attached to the

bottom of the fuselage facing downward. The sensors available on the fuselage are config-

ured to cover the search area below the search asset. The range and swath width of the

sensor can be seen on Figure 5.1. The width of the swath range is twice the sensor range

from the fuselage. The range of sensors using a camera and sonar depend on the altitude

of the search asset. The higher the altitude, the more data is received but the resolution

is reduced.

Figure 5.1: Sensor range and swath width

In a search mission, a swarm could be adopted as a search asset using existing search

techniques. For example, by using flocking behaviour, the swath width will be even greater

than single search asset as illustrated in Figure 5.2 below.
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Figure 5.2: Swath width of swarm on SAR mission

Then, search pattern can be developed and have a wider detection area by applying flocking

behaviour applying collision avoidance, alignment, attraction, and waypoints tracking.

5.1.1.1 Search Pattern

For the SAR mission, several search methods have been formulated by IMO standards

(Organization and Organization 2016). In this subsection, several possible configuration

of search patterns utilising swarm robotics are discussed.

5.1.1.2 Track Line Search

Track line search is a procedure used to perform searches by assets that follow a cruise

line or flight path, as illustrated by Figure 5.3. The detectable area along the search path

depends on the swath width of the search asset. The prediction of target’s position is

calculated in regard of cross wind or possible drifts.

Figure 5.3: Track line search

If the flocking behaviour of swarm is applied, the swath width of track line-search can be
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expanded by distributing member’s swath width. To maximise the detection capability,

the swath width is overlapped because the edge of sensor is the least sensitive and the

distortion around the corner may affect the measurement. The configuration can be seen

in Figure 5.4.

Figure 5.4: Swarm track line search

5.1.1.3 Swarm Creeping Line and Parallel Search

For a disaster happened in a fixed location, square search is preferred. Search techniques

that are specifically design for a fixed location are creeping line, parallel search and ex-

panding square search. The last is preferred for a disaster located on land, to search a flee

behaviour of victims from disaster point. Creeping line and parallel search are similar in

the configuration. The first is designated for a wide and long search area, while the second

is commonly used for a wide search area only and conducted by following the longest side

of the search area, both of the search methods are depicted by Figure 5.5 and Figure 5.6

respectively.

Figure 5.5: Parallel search
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Figure 5.6: Creeping line search

From the figures above, the distance between paths depends on the swath width of the

sensor to maximise the searchable area. The search path can be modified if there is a

possibility drift caused by sea waves, currents or wind. The waypoints are skewed based

on the speed of advance (SOA). The swath width configuration of square search for swarm

can be modified by overlapping the search path while maintaining the group or flock

integrity (Page, Armstrong, and Mukhlish 2019), see Figure 5.7.

Figure 5.7: Swarm search for creeping line

Besides moving together as a flock, the use of swarm system can also be done by allocating

the search area for each member as shown in Figure 5.8.
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Figure 5.8: Swarm search allocation for parallel line

5.1.1.4 Consensus-based Tasks Allocation

The next allocation is to allocate different assignments based on group’s consensus. For

example, for a search mission that is full of uncertainties caused by the possibility of

drifting victims by the sea currents, swarm robotics can be divided into several groups to

carry out different tasks in covering the search area. Division of tasks could be square

search team based on known datum and parallel search team based on ocean currents. The

number of members in the division of tasks can be determined based on contact frequency

of victims. The greater the probability or the detection rate at the allocated location, the

greater the number of members deployed to the task. The example of division of tasks

can be seen in the illustration in Figure 5.9.

Figure 5.9: Example of consensus-based swarm search
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5.2 Environmental Dynamic

The study case that is used in this work is a search and rescue mission over the ocean

using swarm of unmanned aerial vehicles (UAVs). Moreover, the simulation consists of

three components, namely UAV, Victim, and environment as depicted in Figure 5.10.

Environmental dynamic settings in this simulation are composed of sun, wind and sea

surface. These three components combined resulting a dynamic as follow. The Sun’s

radiance on the sea surface depends on position of the sun (zenith and azimuth angle),

sky condition (cloudy or clear), and sea surface reflectivity. Both sea surface reflection

value and sea wave’s direction are dependant to wind direction.

Figure 5.10: Area consists of UAVs, Victims and Environment

Wind’s dynamic is regarded as vector which has components of scalar value and direction

value described by:

W = f(w,ψ) (5.1)

Where w is the wind speed and ψ is the wind’s direction. The direction is normaly

distributed as f(ψ | µψ, σ2
ψ) with µψ is the main direction and δψ is a standard deviation

by crosswind.
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5.2.1 Sea Surface

In this simulation, sea surface has two components, namely reflective components and

sea surface current. The sea surface current is taken to be proportional to wind’s speed

and direction. On the other hand, reflective component of the sea surface is derived by

mathematical expression based on Fresnel’s formula and Snell’s law.

5.2.1.1 Sun Reflections

The real sea surface is inherently roughed with waves. The tempo-spatial features of the

changing sea surface determine the reflection of the incident radiance Li, which correspon-

dently shows a directivity feature. The rate of the reflected radiance Rr from a direction is

defined by using the Bidirectional Reflectivity Distribution Function (BRDF) (Ren, Liu,

and Chen 2006)

Rr(θr, φr, θi, φi) =
dLr(θr, φr)

Li(θi, φi)dωi
(5.2)

Where Lr(θr, φr) is the reflected radiance in the direction θr, φr, Li(θi, φi) is the incident

radiance in the direction θi, φi, ωi is the solid angle of the incident radiance. The instructive

view of the direction on a single wave facet is illustrated in

Figure 5.11: The instantaneous geometry on sea surface (Ren, Liu, and Chen 2006)

Then, because camera is commonly used to capture search area and most sensors used are

unpolarised, the specular reflectivity at the air-sea interface can be expressed as:

ρ(η,X )
|Rp|2 + |Rs|2

2
(5.3)

Where Rp and Rs are the reflected electromagnetic waves’ magnitudes relative to incidence

waves. According to the Fresnel’s formula, Rp and Rs are given by
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Rp =
η cosX − cosX
η cosX + cosX

(5.4)

Rs =
cosX − η cosX ′

cosX + η cosX ′
(5.5)

Where η is the seawater’s reflective value, X is the incidence’ angle, and X ′ is the refraction’

angle given by the Snell’s law as

sinX ′ = sinX
η

(5.6)

Although the real sea surface is featured as the roughness due to the inevitable waves,

it is considered as a superposition of numerous wave facets. The area can be treated as

a specular surface since the localised wave facet is so small. Accordingly, distribution

of the reflective (BDRF) of the rough sea surface can be formulated by applying the

specular reflectivity formula to each wave facet. Hence, the surface’s facet slope can be

approximated as a normal and isotropic distribution. The probability density function of

the slopes is defined as

P (zx, zy) =
1

2πζ2
exp

(
−
z2
x + z2

y

zζ2

)
(5.7)

Where zx and zy are any orthogonal slope components at the sea surface. The value ζ2

was founded to be proportional to the wind speed w at the range of 0-14 m/s (Ren, Liu,

and Chen 2006), following calculation

2ζ2 = 0.003 + 0.00512w

The instantaneous Li(θi, φi) is reflected to the direction θr, φr at the wave facet, the slope

of which is the function of parameters θi, φi, θr, φr,

zx = −sin θi cosφi + sin θr cosφr
cos θi + cosφr

(5.8)

zy = −sin θi sinφi + sin θr sinφr
cos θi + cosφr

(5.9)

Then, by using (5.3), the reflected radiance on the wave facet is transformed into
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Li(θi, φi)ρ(η,X ), where X is the incident angle defined as:

cosX =

√
1 + sin θi sinφr cos (φi − φr) + cosφi cosφr

2
(5.10)

The mean reflected radiance is obtained as incidence radiance reflected by specular reflec-

tivity times the sea surface’s slope distribution. The formulation is

dLr(θr, φr) = Li(θi, φi)ρ(η,X )P (zx, zy)dzxdzy (5.11)

By substituting (5.11)to (5.2) , the resulted BRDF reflectivity of the rough sea surface is

fr(θr, φr, θi, φr) =
ρ(η,X )P (zx, zy)dzxdzy

sin(θi)dθidφi
(5.12)

since

dzxdzy = |J|dθidφi

|J| =

∣∣∣∣∣∂zx∂θi
∂zx
∂φi

∂zy
∂θi

∂zy
∂φi

∣∣∣∣∣ = − 2 sin θi cos2X
(cos θi + cos θr)3

Equation (5.12) becomes

fr(θr, φr, θi, φi) =
ρ(η,X ) sin2X

πζ2(sin θi + cos θr)3
exp

(
−
z2
x + z2

y

2ζ

)
(5.13)

This equation is the resulted mathematical expression for BRDF reflectivity of the rough

sea surface, where ζ2 is defined by equation (5.8) as a function of wind speed.

5.3 Swarm of Search Assets

Unmanned aerial vehicles (UAV) used in this simulation is Aerosonde™, see Figure 5.12.

The UAV is chosen for the search and rescue simulation because it is capable of flying in

extreme weather condition (Shakhatreh et al. 2019). The dynamic used in the simulation

is based on the dynamic of small unmanned aerial vehicle with Aerosonde™specifications

(Beard and McLain 2012).
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Figure 5.12: Aerosonde™(Carey 2012)

5.3.1 Sensor Configuration

Each UAV is equipped with a camera capable of capturing image of the sea surface and

victim detection. However, the image quality obtained by the UAV is affected by the sun’s

reflection on the sea surface, see Figure 5.13. If the reflection is too high, victim detection

will suffer. Another factor affecting the image quality is the position of the camera relative

to the sea surface, in this case is relative to UAV’s altitude and the ground speed of the

vehicle (Mukhlish, Page, and Bain 2019).

Figure 5.13: Sun reflection captured by UAV’s camera

5.3.2 Search Behaviour

The search behaviour utilising swarm of UAVs is designed to maximise the total swath

width. In order to do that, the swarm has to be aligned perpendicular to the searching
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trajectory and maintain the distance between agents. Then the flock tracks the line

between waypoints. The forces acted on each agent are illustrated in Figure 5.14.

Figure 5.14: Forces of the collective tracking behaviour

There are four forces acted on each agent, namely tracking force, repulsion force, attraction

force, and alignment force. As discussed in previous Chapter 4, each agent has a proximity

sensor with certain range to detect nearby UAVs. From the detection, the repulsion force

is formulated based on nearby agent’s position while attraction, tracking and alignment

forces are formulated in regard of the centre position of the swarm. From the proximity

sensor’s measurement, the centre of the swarm can be calculated based on the average

value of all neighbours’ position, known as swarm’s centroid, calculated as average value

of nearby UAVs’ position.

pictr =
1

N

N∑
i=1

pi (5.14)

Where N is the number of nearby UAVs and p is a position vector. Since the repulsion

force is already discussed in previous Chapter 4, the formulations of the other forces are

discussed in following subsections.

5.3.2.1 Tracking Force

Tracking force is a force that defines the direction of the flock. A potential field force is

applied to define a force direction at any point around the path. In order to collectively

flocking along the path, a potential force at the swarm’s centroid is used as a tracking

force, see Figure 5.15.
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Figure 5.15: Tracking force of collective tracking

The swarm’s centroid is calculated by each agent based on the average position of its

nearby agents’ positions, see (5.14). Hence, each agent may calculate different centroid in

a presence of nearby UAVs, as depicted in Figure 5.16.

Figure 5.16: Tracking force caused by local centroid

When any UAVs are detected, then by following formulation (4.67) and (4.68) the tracking

force yields desired altitude and desired heading on the centroid as

htracking

(
r,pictr,q

)
= −rd +

√
c2
n + c2

e

(
qd√

(q2
n + q2

e)

)
(5.15)
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Then, the desired heading χd is

χtracking(t) = χq − χ∞
2

π
tan−1

(
kpathectry(t)

)
(5.16)

withχq = arctan2(qe, qn) + 2πm

where m ∈ N → π ≤ χq − χ ≤ π

Where the course line has origin of the path denoted by r = {rn, re, rd} ∈ R3 and a

unit vector q = {qn, qe, qd} ∈ R3 as a direction indicates the desired of travel. The

position of the centroid is pictr = {pctrn , pctre , pctrd} ∈ R3 and its projection is c =

{cn, ce, cd} ∈ R3, and the error is derived by calculating the vector between p and c

as ectr =
{
ectrx , ectry , ectrz

}
. And kpath is a positive constant that influences the rate of

the transition from χ∞ to zero. The tracking force is proportional to desired flocking

speed Vflock.

5.3.2.2 Attraction Force

Attraction force is applied to maintain the integrity of the swarm. When a nearby UAV

or more are in attraction radius, the attraction force points at the swarm’s centroid, see

Figure 5.17. Thus, all members are attracted to any nearby UAV.

Figure 5.17: Attraction force of collective tracking

The attraction force is vector from an agent to centroid from its perspective and propor-
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tional to the distance between centroid and agent’s position.

Fattr =

Kattr

(
pictr − pi

)
, if any UAVS nearby

0, otherwise
(5.17)

Where Kattr is a rate of attraction that defines the strength of the attraction force.

5.3.2.3 Alignment Force

To align the search direction of the swarm, all agents are required to align perpendicular

to the trajectory path. By utilising the swarm’s centroid, the projection of the centroid on

the path can be calculated. And based on the projection, an alignment line (dotted green

line in Figure 5.18) is formulated as a direction of each alignment force on each agent.

Figure 5.18: Alignment force of collective tracking

The alignment line is defined in regards of the centroid’s projection c = {cn, ce, cd} ∈ R3

and UAV’s projection s = {sn, se, sd} ∈ R3 on the trajectory line. Then the alignment

force is a vector from projection s to c and proportional to the distance between them as

Falign =

Kalign (c− si) , if any UAVS nearby

0, otherwise
(5.18)

Where Kalign is a rate of alignment that defines the strength of the alignment force. Then,

the desired heading of the UAV is calculated from resultant force acted on each UAV

FR =

FRe

FRn

FRd

 = Ftraj + Fattr + Falign + Frep (5.19)
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Since the heading direction of the UAV follows the earth axis, then only the lateral com-

ponent of all forces in (5.19) is applicable on the desired heading.

(
FRe

FRn

)
= Vflock

(
cosχd

sinχd

)
+Kattr

(
pie − pictre

pin − pictrn

)
+Kalign

(
pictre − sie
pictrn − sin

)

+Krep

∑
j 6=i

(
Router −Rinner

|Dij | −Router

)
· f̂ rij (5.20)

Then, the desired heading is obtained as

χR = arctan
FRe

FRn

(5.21)

The desired altitude follows the formulation in (5.15) and the desired flocking velocity is

calculated and only affected by the alignment force as

VR =

∥∥∥∥∥Vflock

(
cosχd

sinχd

)
+Kalign

(
pictre − sie
pictrn − sin

)∥∥∥∥∥ (5.22)
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5.4 Simulation Setup

Target points are arranged forming a set of waypoints for UAVs to search the environment,

the set of waypoints is calculated based on searching pattern given to the UAV, in this

simulation a line search and creeping line pattern are used, see Figure 5.4 and Figure 5.7.

The creeping line pattern is calculated dependent on the area size and swath width of the

vehicle as can be seen on Figure 5.1. Swath width in this case is the area covered by UAV’s

camera pointing downward and is dependent on the altitude of the UAV. The simulation

is conducted using computational software Matlab™, with following parameters in Table

5.1.

Table 5.1: Simulation parameters

Parameters Value Parameters Value

Number of agents 3 Mutation rate 0.05
ε-greedy 0.75 Imprinting rate 0.01
Learning rate 0.1 Silence rate 0.05
Discount factor 0.1 Number of states 8
Methylation rate 0.1 Number of actions 2
Regeneration rate 0.75 Evolution interval 20 episodes
Histone selection rate 0.75

The states consist of flocking behaviours, as discussed in Chapter 4, with the addition of

group status and victim detection. The actions consist of actions discussed in Chapter

4 with the addition of searching behaviours. The complete states, terminal states and

actions are listed in Table 5.2 below.

Table 5.2: States and actions

States Actions

start self-search
alone-near-path wandering
found-uav-near-path avoid-UAV
flocking-near-path flocking
alone-far-path flocking-and-search
found-uav-far-path
flocking-far-path
found-victim
collide (terminal)
crash (terminal)
finish (terminal)

The learning process goes through two phases, namely evaluation process and improvement

process. The evaluation process is a process of getting or sampling experience to make

sense of how the environment works. Then, after the experience is gained, the swarm enters

the improvement process. The improvement process consists of experience exchanging

based on the epigenetic mechanisms as discussed in previous chapters.
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5.5 Results

The search patterns used for the search and rescue are line search and creeping line search.

The swarm of UAVs evolves differently in each search pattern. For the line search pattern,

the path is shown in Figure 5.19.

Figure 5.19: Line search pattern

Since the problem parameters contain 8 states with three terminal states, the computa-

tionally worthy states are 5 states, namely start, far from path, near from path, UAVs

nearby, and victim found. The initial gene-pool and chromosome-pools has equal histones

values which are zero as depicted in Figure 5.20. The genetic population of all gene family

are the same at the beginning, but the composition of genetic selection for each chromo-

some in the chromosome pool are picked randomly. The Figure 5.20 below shows that the

dotted graphs on the left-side of each graph pair is the genetic population with the y-axis

is the bit values and the x-axis is the gene family index. The grid graph is a chromosome

set with y-axis is the chromosome index and the x-axis is the locus (gene’s location) in

respect to gene family index. The left-hand column represents the gene family and the

right-hand column represents the gene selected in the given genome, as defined in Chapter

4.
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(a) genepool of UAV-1 (b) genepool of UAV-2

(c) genepool of UAV-3

Figure 5.20: Initial genepool and chromosomepools for each UAVs

Search behaviour after 10 episodes of evaluation process and experiences in these episodic

windows can be seen in Figure 5.21. In the initial step, the trial of all available chromo-

somes is conducted. Initial beliefs of the histone values are built from the equal chance of

selection since the selection policy applies equal probability to all chromosomes.
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Figure 5.21: Search behaviour at episode-10

The histones values of each gene in the gene-pools and the chromosome-pools are obtained

as depicted in Figure 5.22. It can be seen that after 10 episodes several experiences

from each episode makes changes to the histone value through methylation process. And

notice the colour changing at the light blue and magenta. The magenta one is the better

performing gene, and the light blue is the least performing gene. Each agent explores and

exploit independently and develops a unique belief of its own genetic strategy. The search

behaviour of the swarm at episode-20 can be seen in Figure 5.23.

(a) genepool of UAV-1 (b) genepool of UAV-2

Figure 5.22: Episode 10 – Genepool and chromosomepool for each UAVs
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(c) genepool of UAV-3

Figure 5.22: Episode 10 – Genepool and chromosomepool for each UAVs

Figure 5.23: Search behaviour at episode-20

Then, after 20 episodes the differentiation between least and better performing genes

become more apparent as depicted in Figure 5.24. The strategy exchange happened after

the 10th episodes, and in the second window of evaluation (11th-20th episodes). It can

be seen in Figure 5.24 that the epigenetic mechanisms is yielding a new histone values

composition for each agent and promoting a better strategy from other agents.
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(a) genepool of UAV-1 (b) genepool of UAV-2

Figure 5.24: Episode 20 – Genepool and chromosomepool for each UAVs

(c) genepool of UAV-3

Figure 5.24: Episode 20 – Genepool and chromosomepool for each UAVs

In the next window, the swarm goes through the improvement process utilising the co-

evolving using Epigenetic inheritance. It can be seen in Figure 5.23 that the behaviour

of the swarm gets better after the first evolution after the 10th episode. They exchange

experience and genetic strategy utilising the epigenetic mechanisms. From Figure 5.21 and

5.23 , if we compare the behaviour of the swarm, it is evident that the following behaviour

and avoiding behaviours are getting better from episode to episode. Finally, after 200

episodes when the swarm done 20 improvement process or known as co-evolution process.

The behaviour of the swarm is obtained as can be seen in following Figure 5.25.
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Figure 5.25: Search behaviour at episode-200

The evolving decision making from episode to episode is summarised by how the histone

values changing over episode to episode (see Figure 5.26).

Figure 5.26: Histone values for line search
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With the same process, the swarm behaviour for creeping line search can be seen in Figure

5.27 and Figure 5.28.

Figure 5.27: Resulted behaviour for creeping line search in 1000 Episodes

Figure 5.28: Resulted behaviour for creeping line search with reduced swath width
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5.6 Summary

Search and rescue mission in this chapter is incorporated within a dynamic environment,

namely wind, sea surface and reflection. The detection process with camera on board

and affected by the sea reflection are also demonstrated. In this environmental setting,

the evolutionary-learning framework using epigenetic layer is moving toward improved

behaviour over each episode.

From the results, it is evident that the evaluation process and improvement process have

distinctive mechanisms. The latter provides the communication and exchange process to

improve each agent’s strategy and resulted in improve swarm group behaviour. The first

gives the swarm an ability to make sense of the dynamics of environment based on the

action it took from episode to episode and then bootstrapped all achievable reward or

feedback from the environment.

5.7 conclusion

The decentralised epigenetic learning for multi-agent system is successful in handling the

highly dynamic problem such as a search and rescue mission. The simulation shows that

the swarm can adapt to different search pattern, track line search and creeping line search.

The exchange process through epigenetic mechanisms for a highly solution dimensional

space (states = 11, actions = 5, and genotypes = 5), where the permutation problem

applied. However, the problem presented in this chapter cannot be observed directly,

because all simulations are done in one simulation software. Hence, for a more realistic

scenario, future research with separated agents such as swam cluster simulator or real

physical robots are necessary. This will develop the understanding of how well the strategy

exchange is in a real time problem.



Chapter 6

A Bayesian Epigenetic Learning

Swarm

This chapter presents a collective Epigenetic swarm Learning method that incorporates

a recursive Bayesian filtering swarm to search and track multiple targets autonomously.

The filtering method enables the learning process to stochastically update the target’s

probability density functions (PDFs). Since the targets’ distribution is considered a non-

linear problem, the filter method allows the proposed approach to handle the problem

in the presence of non-Gaussian noise (Bourgault, Furukawa, and Durrant-Whyte 2006).

In practical situations, a non-Gaussian signal frequently occurs because, in practice, the

perceived data from the environment have been found to deviate strongly from a Gaussian

characterisation.

6.1 Related Works

Search and tracking (SAT) have been studied for decades. The first search and rescue

mission was performed by the British Royal Naval Air Service In 1915. Early work by

Koopman (1980), which was firstly declassified in 1958, describes the primary issues in SAT

during World War II. The early work was utilising area coverage technique by considering

the search issue as an area coverage problem. Today, the proceeding works can be found

in the Australian Search and Rescue Manual. Another development in the field is the

introduction and utilisation of the probability of detection(L. D. Stone 1989b, 1989a; Yan

and Blankenship 1988; T. Stone 2018). Later, Bourgault, Furukawa, and Durrant-Whyte

(2004, 2003) formulated a Bayesian approach to search and tracking based on targets’ prior

and posterior distribution. Based on the Bayesian approach, a multi-vehicle search method

was investigated (Bourgault, Furukawa, and Durrant-Whyte 2006). Besides Bayesian tech-

niques, there are several filtering techniques to solve search and tracking problems such as

the extended Kalman Filter by Jazwinski (1997), Unscented Kalman Filter by Julier and

Uhlmann (2004), Gauss quadrature method by Ito and Xiong (2000), grid-based methods,

103
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and Monte Carlo of particle filter methods by Arulampalam et al. (2002).

6.2 Bayes Filter

Recursive Bayesian Estimation (RBE) is a probabilistic approach to estimate an unknown

probability density function (PDF). The estimation utilises measurements and a mathe-

matical model recursively. In general, RBE is also known as Bayes Filter. A prior and

posterior probabilities, which are known as Bayesian statistics, are used extensively as

a process model of the estimation. The recursive process consists of two main parts,

prediction and innovation.

RBE is used in robotics to estimate its state, such as position or orientation, based on the

sensor’s measurements. The estimation process allows an agent to conclude/deduce/infer

its state over time. To be able to do this, the agent uses the most recently acquired sensor

data to update their most likely state within an environment. For example, an agent starts

with certainty that it is at the true position (x, y). As the robot wanders the space, it

becomes less certain with its current true position. In this case, the agent can deduce its

position overtime by updating its certainty using Bayes filter.

Since the true state is observed by the sensor and also estimated using Bayesian estimation,

we can assume that the state is an unobserved Markov process, which means that the next

state is only affected by the current state, not from the previous experiences. By assuming

the process is Markovian, the Hidden Markov Model (HMM) can be used as a statistical

model with an observational process. In HMM, the unobservable true state is defined as

x, and there is another observable process z assumed to be dependent on x. For each

time instance k, HMM stipulates the conditional probability distribution of zk given the

history {xn ∈ X}n≤k, must not depend on {xn}n<k. The following Figure 6.1 presents a

Bayesian Network of an HMM.

Figure 6.1: Bayesian network of hidden Markov model (HMM)

Then, the probability of true state at time step k is xk given the previous state xk−1 is
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defined following a Markovian rule as

p(xk | xk−1,xk−2, . . . ,x0) = p(xk | xk−1) (6.1)

Since the observed state z at the k-th timestep depends on the state xk, so the probability

of observed state zk given the true states is defined as

p(zk | xk,xk−1,xk−2, . . . ,x0) = p(zk | xk) (6.2)

And the probability distribution of all states can be denoted as

p(x0, . . . ,xk, z1, . . . , zk) = p(x0)

k∏
i=1

p(zi | xi)p(xi | xi−1) (6.3)

When estimating the true state xk, the probability of interest is associated with the current

true state given the measurement up to the k − 1-th timestep, denoted by z̃1:k−1. The

probability distribution is then equal to the sum (integral) of the true state transition

probability from k − 1-th timestep to the k-th and the probability of the previous state,

to all possible xk−1.

p(xk | z̃1:k−1) =

∫
p(xk | xk−1)p(xk−1 | z̃1:k−1)dxk−1 (6.4)

The updated probability of interest is proportional to the product of the observed state

and the predicted state.

p(xk | z̃1:k) =
p(zk | xk)p(xk | z̃1:k−1)

p(zk | z̃1:k−1)
∝ p(zk | xk)p(xk | z̃1:k−1) (6.5)

The denominator, a probability of the predicted observed state is

p(zk | z̃1:k−1) =

∫
p(zk | xk)p(xk | z̃1:k−1)dxk−1, (6.6)

The numerator can be calculated and normalised since its integral must be unity. Hence,

with likelihood l(xk | zk) , p(zk | xk), the complete probability distribution of update is

p(xk | z̃1:k) =
l(xk | zk)p(xk | z̃1:k−1)∫

l(xk | zk)p(xk | z̃1:k−1)dxk−1
(6.7)
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6.3 Bayesian Estimation

6.3.1 Target, Agent, and Sensor Platform Models

Consider a target, denoted by t, is being searched for and being tracked. The motion is

discretely given by:

xt
k+1 = f t(xt

k,u
t
k,w

t
k) (6.8)

Where xt
k ∈ X t is the target’ state at time step k, ut

k ∈ Ut is the set of target’s inputs,

and wt
k ∈ Wt is the external perturbation on the target such as wind and sea current in a

search and rescue mission. The search asset is an autonomous agent, denoted by a. The

agent’s motion model is given by

xa
k+1 = fa(xa

k,u
a
k) (6.9)

Where xa
k ∈ X a represents the agent’s state and ua

k ∈ Ua represents the agent’s control

input.

The agent carries a sensor, denoted as s, with a limited coverage area as discussed in

Chapter 5. Since only camera used in the previous Chapter, the terms “sensor platform”

and “agent” are interchangeable. The probability of detection around the coverage area

of the sensor is defined in a range of 0 ≤ Pd(x
t
k | xs

k) ≤ 1. Hence, the observable area of

the sensor can be expressed as sX t
o = {xt

k | 0 ≤ Pd(x
t
k | xs

k) ≤ 1}. The observed state

model sztk ∈ X t is defined as

sztk =

shtk(x
t
k,x

s
k,

s vt
k), xt

k ∈ sX t
o

∅, xt
k /∈ sX t

o

(6.10)

Where avt
k represents the measurement’s noise and ∅ represents an event when target is

undetected in the observable region.

6.3.2 Recursive Bayesian Estimation

Following the Recursive Bayesian Estimation method, the estimation of target’s state xtk

can be predicted from the series of measurement event sz̃t1:k ≡ {szti | ∀i ∈ {1, . . . , k}} and

the set of sensor’s state x̃s
1:k ≡ {xa

i | ∀i ∈ {1, . . . , k}}. The target’s probability density

function at any time step k, denoted as p(xt
k | sz̃t1:k, x̃

s
1:k), is estimated recursively through

update and prediction stage.
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6.3.2.1 Update

The updating process computes the posterior probability density, denoted by p(xt
k |

sz̃t1:k, x̃
s
1:k), given a new measurement sztk and the target’s prior probability density p(xt

k |
sz̃t1:k−1, x̃

s
1:k). By applying (6.7), the update equation is defined as

p(xt
k | sz̃t1:k, x̃

s
1:k) =

l(xt
k | sztk,xs

k)p(x
t
k | sz̃t1:k−1, x̃

s
1:k)

p(sztk | sz̃t1:k−1, x̃
s
1:k)

=K l(xt
k | sz̃tk, x̃s

k)p(x
t
k | sz̃t1:k−1, x̃

s
1:k) (6.11)

with,

K =
1∫

l(xt
k | sztk,xs

k)p(x
t
k | sz̃t1:k−1, x̃

s
1:k)dx

s
k−1

Where l(xt
k | sztk,xs

k) represents the measurement likelihood given the information of the

current agent’s state defined by (6.10). Note that, at time step k = 1, the prior probability

density p(xt
k | sz̃t1:k−1, x̃

s
1:k) is initialised as p(xt

0).

6.3.2.2 Prediction

The prediction step computes the probability density of the target’s next state, denoted

as p(xt
k+1 | sz̃t1:k, x̃

s
1:k), given the target’s current probability density p(xt

k | sz̃t1:k, x̃
s
1:k) =

p(xt
0). The prediction equation is carried out by applying Chapman-Kolmogorov’s total

probability theorm as

p(xt
k+1 | sz̃t1:k, x̃

s
1:k) =

∫
p(xt

k+1 | xt
k)p(x

t
k | sz̃t1:k, x̃

s
1:k)dx

t
k (6.12)

Where p(xt
k+1 | xt

k) is a probabilstic Markov notation model defined by (6.8) which maps

the probability of transition from the current state xt
k to the next state xt

k+1.
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6.4 Bayesian Temporal Difference Learning

Based on the formulation in Chapter 4, learning is acquired by utilising reward at every

time step Rk and return Gk from the environment. And later, make use of the methylation

process to backup all the experience and infer the dynamics of the environment. The

objective of a Bayesian search is to infer the target’s states or the distribution of where

the targets can be found with the addition of environmental noise. We can consider the

observation dynamic (6.10) as a feedback from the environment to learn what to do us
k−1

at current agent’s state xs
k−1 after deducting the target’s next states x̃t

k:k+nk
from nk-th

prediction p(xt
k+nk

| sz̃t1:k, x̃
s
1:k).

The paths the agent will takes are the arguments that maximise given by the nk-th pre-

diction

x̂s
k:k+nk

= arg max
xt

p(xt
k+nk

| sz̃t1:k, x̃
s
1:k) (6.13)

If the reward is based on the belief of the the posterior distribution (6.11), then the reward

value is Rk , p(xt
k = x̂sk | sz̃t1:k, x̃

s
1:k). Hence the return value Gk

Gk = p(xt
k = x̂sk | sz̃t1:k, x̃

s
1:k) + γGk+1 (6.14)

Then, the control input of the agent’s motion can be replaced by action and behaviour

defined in the previous chapter

xa
k+1 = fa(xa

k, ak, bk) (6.15)

with Markov probability state transition

∑
xa
k+1

∑
r

p(xa
k+1, rk | xa

k, ak, bk) = 1 (6.16)

then, the update rule for behaviour-value function is:

H ′(xa
k, ak, bk)← H(xa

k, ak, bk) + α
[
Rk+1 + γH(xa

k+1, ak+1, bk+1)−H(xa
k, ak, bk)

]
(6.17)
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hence, the update rule for action-value function is:

Q′(xa
k, ak)←− Q(xa

k, ak) + α
[
H ′(xa

k, ak, bk)−Q(xa
k, ak)

]
(6.18)

6.4.1 Implementation

From the formulation above, the complete procedure of recursive bayesian and the expe-

rience backup for epigenetic learning can be seen in Algorithm 6.1. After the experience

has backed up, the epigenetic mechanisms is done as discussed in previous chapter.

Algorithm 6.1 Experience Backup for Recursive Bayesian Epigenetic Learning

1: for all k=1:N do
2: xs

k ← agent take action ask−1 and behaviour bsk−1

3: sztk ← agent observes target based on shtk(x
t
k,x

s
k,

svt
k)

4: if sztk is exist then
5: l(xt

k | sz
t
k,x

s
k) = 1− Pd(xt

k | xs
k) . Detected

6: else
7: l(xt

k | sz
t
k,x

s
k) = p(sztk | xt

k,x
s
k) . Not Detected

8: end if

9: p(xt
k | sz̃t1:k, x̃

s
1:k)←

l(xt
k|

sztk,x
s
k)p(xt

k|
sz̃t1:k−1,x̃

s
1:k)

p(sztk|sz̃
t
1:k−1,x̃

s
1:k)

. Bayes update

10: p(xt
k+1 | sz̃t1:k, x̃

s
1:k)←

∫
p(xt

k+1 | xt
k)p(x

t
k | sz̃t1:k, x̃

s
1:k)dx

t
k . Bayes prediction

11: x̂s
k:k+nk

= arg maxxt p(xt
k+nk

| sz̃t1:k, x̃
s
1:k) . Path planning

12: Rk ← p(xt
k = x̂sk | sz̃t1:k, x̃

s
1:k) . Current Reward

13: for each g in bk do

14: h(xa
k, ak, bk, g)← h(xa

k, ak, bk, g)+η
(
R+ γH̃(xa

k+1, ak+1, bk+1)− H̃(xa
k, ak, bk)

)
15: end for

16: H̃(xa
k, ak, bk)←

1
N

N∑
n=1

h(xa
k, ak, bk, g

n)

17: Q(xa
k, ak)←− Q(xa

k, ak) + α
[
H̃(xa

k, ak, bk)−Q(xa
k, ak)

]
18: ask−1, b

s
k−1 ← agent pick based on H and Q

19: end for
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6.5 Summary

A Bayesian technique that enables autonomous path planning for a search problem is

discussed in this chapter. Rather than define the search routine manually, it is possible

to utilise the experience and the prior belief to act accordingly. It has been shown that

the recursive Bayesian estimation (RBE) provides sufficient reward estimation in the form

of the probabilistic distribution of the search map. Since the belief of targets’ position

changing every time an agent moves, the states, action, and behaviour value function are

also changing dynamically. This gives a robust adaptation to the system.

The product of this approach is the belief distribution map, agent’s state and action

map, agent’s action and behaviour map. Co-evolving settings from the previous chapter

display the possibility to exchange and improve genetic information based on Epigenetic

inheritance. This covers the state-action and action-behaviour decision making matrices.

Furthermore, the joint distribution of the agent’s belief can also be exchanged.

6.6 Conclusion

The concept of combining updating and predicting the search is to obtain an immediate

reward for Epigenetic Swarm Learning is accomplished. The formulation shows that epi-

genetic learning aims to develop optimal behaviour in a dynamic state of the environment,

and the Recursive Bayesian Estimation aims to predict the future state that gives imme-

diate reward for the agent. One area that is of interest in applying the proposed method

is how well the swarm can exchange their belief and their regulatory function through

epigenetic inheritance. Thus, to see the real benefits of this approach, further research is

needed.



Chapter 7

Conclusion and Future Works

In this thesis, the formulation and the implementation of evolutionary learning swarm

robotics using epigenetic inheritance in the dynamic environment was investigated. This

thesis’s main contribution is to improve evolutionary swarm capability by proposing a

novel learning strategy using epigenetic inheritance. There are two frameworks proposed

in this thesis: (1) A reward-based epigenetic learning, and (2) A decentralised multi-agent

reward-based epigenetic learning. In general, both algorithms are able to deduct the

environmental dynamics by utilising external feedback or stimulus in the form of reward

or reinforcement.

This thesis begins with an investigation and overview of what is the current proceeding

of swarm robotics design. The challenges, along with necessary approaches to overcome

the challenges, are presented. The discussion leads to the topic in proposing a novel way

to apply adaptation to evolutionary swarm using the epigenetic concept. There are two

formulations done in this thesis. The first is the inclusion of stimulus data as the basis

for evolution for the evolutionary swarm and entirely abandoning fitness function. The

investigation shows that the artificial epigenetic function is beneficial to represent envi-

ronmental awareness in the evolution process. Moreover, by applying epigenetic inheri-

tance, experience and knowledge can be passed down to the next progenies. The proposed

method displays two activities, rewards accumulation and evolutionary improvement. A

methylation process allows each agent to craft regulatory functions based on the rewards

(co-learning), and the evolutionary improvement with histone-based operations provides

a medium to exchange strategies for the swarm (co-evolution). The reward-based epige-

netic algorithm opens a new possibility to improve swarm’s adaptability utilising external

stimulus from the environment.

The second is a decentralised epigenetic learning framework which is the extended reward-

based epigenetic algorithm. The second attempt is done by adding experience backup using

a temporal-different approach on top of the methylation process. In the formulation, the

genetic structure is tailored to comply with a dynamic environment. The product of this
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approach is the decision-making of selecting action and behaviour based on environmental

state, namely action policy and behaviour policy. In this approach, the regulatory function

activates genetic expression based on the selection of state and action pair. The results

in Chapter 4 and 5 show that the extended method can overcome the dynamic environ-

ment to prove that the epigenetic concept is beneficial to advance evolutionary swarm’s

adaptability. Thus, the epigenetic learning framework proceeds a new possibility to solve

swarm robotics tasks with high dynamic constraints through epigenetic concept.

There are several directions to take in the future to investigate and improve the capability

further. As been discussed in Chapter 6, the proposed methods can be extended with

another mechanism, Bayes filter. The core concept of artificial epigenetic learning and

inheritance are flexible to be extended with other state recognition methods, such as

artificial neural networks, fuzzy logic and Kalman filter. For the proposed method, the

simulated environment of this research is contained in one machine and program. Thus,

the cyclic process of the computation is constrained with limited threads at the same

random pooling. A viable option is to investigate each gene pool and chromosome pool

separately by deploying the decentralised algorithm to a cluster of machines/CPU. This

will open up more understanding of how the epigenetic layer is communicating with the

rest of the group. It is also essential to establish what is the best data framework to

transmit meaningful data between agents. Since temporal difference learning was chosen

as the reinforcement learning method, it is possible to apply a prediction N -step ahead

by applying the Monte Carlo method and backed up the experience to N -step backwards,

known as TD-λ. The implementation for a group of robots or homogeneous system requires

further study on how this approach would perform in a real situation.
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Program

Main.m

1 clear

2 clc

3

4

5 % opengl hardwarebasic

6

7 import ReBEL.ReBEL;

8 import testFunction.Sphere;

9 import testFunction.Levy;

10 import testFunction.Ackley;

11

12 genotypes = ["x1","x2"];

13

14 states = ["s1"];

15 actions = ["a1"];

16

17 nbits = 8;

18 minValue = -10;

19 maxValue = 10;

20 % minValue = -32.768;

21 % maxValue = 32.768;

22

23

24 agentsPopulation = 5;

25 genePopulation = 10;

26 chromosomePopulation = 5;

27 egreedyPolicy = 0.5;

28 methylationRate = 0.1;

29 epsilonSelection = 0.1;

30 imprintingRate = 0.1;

31 mutationRate = 0.1;

32 regenerationRate = 0.1;

33 silenceRate = 0.1;

34
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35 span = 0:0.05:1;

36 [X,Y] = meshgrid(span ,span);

37 optimalGeneration = zeros(length(span),length(span));

38 datax = 0;

39 for regenerationRate = span

40 datax = datax + 1;

41 datay = 0;

42 for egreedyPolicy = span

43 datay = datay + 1;

44 rebel = ReBEL(agentsPopulation ,genePopulation ,chromosomePopulation ,

genotypes ,states ,actions ,methylationRate ,nbits ,minValue ,maxValue ,

egreedyPolicy ,epsilonSelection ,imprintingRate ,mutationRate ,

regenerationRate ,silenceRate);

45

46 trial = 20;

47 sphere = Sphere(genotypes ,minValue ,maxValue ,nbits ,1);

48 rebel.setFunction(sphere ,trial ,"min");

49

50 % levy = Levy(genotypes ,minValue ,maxValue ,nbits ,1);

51 % rebel.setFunction(levy ,trial ,"min");

52

53 % ackley = Ackley(genotypes ,minValue ,maxValue ,nbits ,1);

54 % rebel.setFunction(ackley ,20,"min");

55

56

57 figure (2);

58 clf

59 legendString = strings(agentsPopulation ,1) + "agent -" + (1:1:

agentsPopulation)’;

60 % errorData = plot(zeros(generation ,agentsPopulation));

61 generationData = line(1,zeros(1, agentsPopulation),’LineWidth ’ ,1);

62 % trialData = line(1,zeros(1, agentsPopulation),’LineStyle ’,’:’,’

LineWidth ’ ,0.001);

63 titleText = title(sprintf (" generation - %d",0));

64 legend(legendString);

65 set(gca ,’Yscale ’,’log’)

66

67 i = 0;

68 % for i=1: generation

69 while true

70 i = i + 1;

71 fprintf(sprintf (" generation - %d, greedy policy = %f",i,

egreedyPolicy));

72 titleText.String = sprintf (" generation - %d",i);

73 [valueGeneration ,valueTrial ,isOptimal] = rebel.evaluate ();

74 rebel.evolve ();

75 for j=1: agentsPopulation

76 % initialStamp = (trial*(i-1) + 1);

77 % generationData(j).XData(end:end+trial -1) = initialStamp :(

initialStamp+trial -1);

78 % generationData(j).YData(end:end+trial -1) =

valueGeneration(j)*ones(1,trial);
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79 %

80 % trialData(j).XData(end:end+trial -1) = initialStamp :(

initialStamp+trial -1);

81 % trialData(j).YData(end:end+trial -1) = valueTrial(j,:);

82 generationData(j).XData(i) = i;

83 generationData(j).YData(i) = valueGeneration(j);

84 % trialData(j).XData(i) = i;

85 % trialData(j).YData(i) = mean(valueTrial(j,:));

86

87 end

88 % drawnow;

89 clc

90 % rebel.printResult

91 disp(isOptimal)

92 if isOptimal

93 disp("all optimal ")

94 currentGeneration = i;

95 break

96 end

97

98 if (i >=500)

99 disp("all optimal ")

100 currentGeneration = i;

101 break

102 end

103 currentGeneration = i;

104 end

105 optimalGeneration(datax ,datay) = currentGeneration;

106 figure (3)

107 clf

108 surf(X,Y,optimalGeneration)

109 end

110 end

111

112 rebel.printResult

+ReBEL/Agent.m

1 classdef Agent < handle

2

3 properties

4 genepool

5 chromosomepool

6 evolution

7 evaluation

8 end

9

10 methods

11 function this = Agent(genePopulation ,chromosomePopulation ,genotypes

,states ,actions ,methylationRate ,nbits ,min ,max ,egreedyPolicy ,

epsilonSelection ,imprintingRate ,mutationRate ,regenerationRate ,

silenceRate)

12 import ReBEL.geneticStructure.GenePool;
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13 import ReBEL.chromosomeStructure.ChromosomePool;

14 import ReBEL.Evolution;

15 import ReBEL.Evaluation;

16

17 if nargin > 0

18 this.genepool = GenePool(genePopulation ,genotypes ,states ,

actions ,methylationRate ,nbits ,min ,max);

19 this.chromosomepool = ChromosomePool(this.genepool ,

chromosomePopulation ,states ,actions);

20 this.evolution = Evolution(epsilonSelection ,imprintingRate ,

mutationRate ,regenerationRate ,silenceRate);

21 this.evaluation = Evaluation(egreedyPolicy);

22 end

23 end

24

25 function [chromosomeValues ,value] = evaluate(this ,func ,mode)

26 [chromosomeValues ,value] = this.evaluation.evaluate(this.

chromosomepool ,func ,mode);

27 end

28

29 function evolve(this ,otherChromosomes)

30 this.evolution.evolve(this.genepool ,this.chromosomepool ,

otherChromosomes);

31 end

32

33 function [chromosomes ,status] = getChromosomes(this)

34 [chromosomes ,status] = this.evolution.selection(this.

chromosomepool);

35 end

36 end

37 end

+ReBEL/Evaluation.m

1 classdef Evaluation < handle

2 %EVALUATION Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 egreedyPolicy

7 currentChromosome

8 currentState

9 currentAction

10 currentIndex

11 bestValue

12 end

13

14 methods

15 function this = Evaluation(egreedyPolicy)

16 this.egreedyPolicy = egreedyPolicy;

17 end

18

19 function [chromosomeValues ,value] = evaluate(this ,chromosomepool ,
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func ,mode)

20 [chromosomeValues ,histone ,index ,status] = this.getChromosome(

chromosomepool ,"s1","a1");

21 %calculate reward

22 value = func.calculate(chromosomeValues);

23 if mode == "min"

24 reward = minMode(this ,value);

25 elseif mode == "max"

26 reward = maxMode(this ,value);

27 end

28

29 this.setReward(reward);

30 end

31

32 function [chromosomeValues ,histone ,index ,status] = getChromosome(

this ,chromosomepool ,state ,action)

33 randomNumber = rand();

34 this.currentState = state;

35 this.currentAction = action;

36 if randomNumber < (1 - this.egreedyPolicy)

37 status = "exploit ";

38 [this.currentChromosome ,this.currentIndex] = chromosomepool

.exploit(state ,action);

39 else

40 status = "explore ";

41 [this.currentChromosome ,this.currentIndex] = chromosomepool

.explore(state ,action);

42 end

43

44 chromosomeValues = this.currentChromosome.values;

45 histone = this.currentChromosome.histones ();

46 % histone = this.currentChromosome.histones(state ,action);

47 index = this.currentIndex;

48 end

49

50 function reward = minMode(this ,value)

51 if isempty(this.bestValue)

52 this.bestValue = value;

53 reward = 1;

54 elseif this.bestValue == value

55 reward = 1;

56 else

57 reward = 0;

58 reward = this.relu(this.bestValue - value);

59 % reward = tanh(this.bestValue - value);

60 if reward > 0

61 this.bestValue = value;

62 end

63 end

64 end

65

66 function reward = maxMode(this ,value)
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67 if isempty(this.bestValue)

68 this.bestValue = value;

69 reward = 1;

70 elseif this.bestValue == value

71 reward = 1;

72 else

73 reward = 0;

74 reward = this.relu(value -this.bestValue);

75 % reward = tanh(value -this.bestValue);

76 if reward > 0

77 this.bestValue = value;

78 end

79 end

80 end

81

82 function setReward(this ,returnValue)

83 this.currentChromosome.methylation(this.currentState ,this.

currentAction ,returnValue);

84 end

85

86 function output = relu(this ,value)

87

88 output = max(0,value);

89 end

90 end

91 end

+ReBEL/Evolution.m

1 classdef Evolution < handle

2 %EVOLUTION Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 epsilonSelection

7 imprintingRate

8 mutationRate

9 regenerationRate

10 silenceRate

11 selectionChromosomes

12 end

13

14 methods

15 function this = Evolution(epsilonSelection ,imprintingRate ,

mutationRate ,regenerationRate ,silenceRate)

16 this.epsilonSelection = epsilonSelection;

17 this.imprintingRate = imprintingRate;

18 this.mutationRate = mutationRate;

19 this.regenerationRate = regenerationRate;

20 this.silenceRate = silenceRate;

21 end

22

23 function [chromosomes ,status] = selection(this ,chromosomepool)
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24 [chromosomes ,status] = ReBEL.evolutionaryOperator.

histoneBasedSelection(chromosomepool ,this.epsilonSelection);

25 this.selectionChromosomes = chromosomes;

26 end

27

28 function evolve(this ,genepool ,chromosomepool ,otherChromosomes)

29 %% selection

30

31 if rand < this.regenerationRate

32 % from this agent

33 % chromosomes1 = ReBEL.evolutionaryOperator.

histoneBasedSelection(chromosomepool ,this.epsilonSelection);

34 chromosomes1 = this.selectionChromosomes;

35 % from other agent

36 chromosomes2 = ReBEL.evolutionaryOperator.

proportionalTournament(otherChromosomes);

37

38 % crossover

39 [newchromosomes1 ,newchromosomes2] = ReBEL.

evolutionaryOperator.histoneBasedCrossover(chromosomes1 ,chromosomes2);

40 % genomic imprinting

41 [imprintedChildChromosomes1 ,imprintedChildChromosomes2] =

ReBEL.evolutionaryOperator.genomicImprinting(newchromosomes1 ,

newchromosomes2 ,this.imprintingRate);

42 % mutation

43 mutatedChildChromosomes1 = ReBEL.evolutionaryOperator.

mutation(imprintedChildChromosomes1 ,this.mutationRate);

44 mutatedChildChromosomes2 = ReBEL.evolutionaryOperator.

mutation(imprintedChildChromosomes2 ,this.mutationRate);

45 else

46 chromosomes1 = chromosomepool.exploreGenepool(genepool);

47 chromosomes2 = chromosomepool.exploreGenepool(genepool);

48 mutatedChildChromosomes1 = ReBEL.evolutionaryOperator.

mutation(chromosomes1 ,this.mutationRate);

49 mutatedChildChromosomes2 = ReBEL.evolutionaryOperator.

mutation(chromosomes2 ,this.mutationRate);

50 end

51 %regeneration

52 ReBEL.evolutionaryOperator.regeneration(genepool ,

chromosomepool ,mutatedChildChromosomes1 ,mutatedChildChromosomes2);

53 % cek integration

54 ReBEL.evolutionaryOperator.cekIntegration(chromosomepool ,

genepool);

55 % gene silencing

56 ReBEL.evolutionaryOperator.geneSilencing(chromosomepool ,

genepool ,this.silenceRate);

57 ReBEL.evolutionaryOperator.geneDeletion(chromosomepool ,

genepool);

58 % cek integration

59 ReBEL.evolutionaryOperator.cekIntegration(chromosomepool ,

genepool);

60
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61 end

62 end

63 end

+ReBEL/ReBEL.m

1 classdef ReBEL < handle

2 %REBEL Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 agents

7 evolution

8 evaluation

9 func

10 trial

11 mode

12 logisticFunction

13 end

14

15 methods

16 function this = ReBEL(agentsPopulation ,genePopulation ,

chromosomePopulation ,genotypes ,states ,actions ,methylationRate ,nbits ,min

,max ,egreedyPolicy ,epsilonSelection ,imprintingRate ,mutationRate ,

regenerationRate ,silenceRate)

17 import ReBEL.Agent;

18 this.agents = Agent.empty(agentsPopulation ,0);

19 for i = 1: agentsPopulation

20 this.agents(i,1) = Agent(genePopulation ,

chromosomePopulation ,genotypes ,states ,actions ,methylationRate ,nbits ,min

,max ,egreedyPolicy ,epsilonSelection ,imprintingRate ,mutationRate ,

regenerationRate ,silenceRate);

21 end

22 end

23

24 function setFunction(this ,func ,trial ,mode)

25 this.func = func;

26 this.trial = trial;

27 this.mode = mode;

28 end

29

30 function reset(self ,agentsPopulation ,genePopulation ,

chromosomePopulation ,genotypes ,states ,actions ,methylationRate ,nbits ,min

,max ,egreedyPolicy ,epsilonSelection ,imprintingRate ,mutationRate ,

regenerationRate ,silenceRate)

31 import ReBEL.Agent;

32 this.agents = Agent.empty(agentsPopulation ,0);

33 for i = 1: agentsPopulation

34 this.agents(i,1) = Agent(genePopulation ,

chromosomePopulation ,genotypes ,states ,actions ,methylationRate ,nbits ,min

,max ,egreedyPolicy ,epsilonSelection ,imprintingRate ,mutationRate ,

regenerationRate ,silenceRate);

35 end
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36 end

37

38 function [valueGeneration ,valueTrial ,isOptimal] = evaluate(this)

39

40 valueTrial = zeros(length(this.agents),this.trial);

41 for i = 1:this.trial

42 for j = 1 : length(this.agents)

43 [chromosomeValues ,value] = this.agents(j).evaluate(this

.func ,this.mode);

44 this.func.draw(j,chromosomeValues);

45 valueTrial(j,i) = value;

46 end

47 end

48

49

50 valueGeneration = zeros(length(this.agents) ,1);

51 isOptimal = false(length(this.agents) ,1);

52 for i=1: length(this.agents)

53 valueGeneration(i)= (this.agents(i).evaluation.bestValue);

54 if valueGeneration(i) == this.func.optimalValue

55 isOptimal(i) = true;

56 end

57 end

58 end

59

60 function printResult(this)

61 str_data = string ();

62 for i=1: length(this.agents)

63 for j=1: length(this.agents(i).chromosomepool.chromosomeSet.

chromosomes)

64 str_data = str_data + sprintf ("%d.%02d. ",i,j);

65 values = this.agents(i).chromosomepool.chromosomeSet.

chromosomes(j).values;

66 for k = 1: length(values)

67 str_data = str_data + sprintf ("%+.3f ",values(k));

68 end

69 str_data = str_data + sprintf (" %+.2f\t",this.agents(i)

.chromosomepool.chromosomeSet.chromosomes(j).averageHistone);

70

71 for k =1: length(this.agents(i).chromosomepool.

chromosomeSet.chromosomes(j).genes)

72 str_data = str_data + sprintf ("%s ",this.agents(i).

chromosomepool.chromosomeSet.chromosomes(j).genes(k).getCode ());

73 end

74 if this.func.calculate(values) == this.func.

optimalValue

75 str_data = str_data + sprintf (" Optimum ");

76 end

77 str_data = str_data + newline;

78 end

79 end

80 fprintf(str_data);
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81 end

82

83 function evolve(this)

84 import ReBEL.chromosomeStructure.Chromosome;

85 statesNum = this.agents (1).chromosomepool.getStatesNum ();

86 actionsNum = this.agents (1).chromosomepool.getActionsNum ();

87 swarmChromosomes = Chromosome.empty(statesNum ,actionsNum ,0);

88 status = string.empty(statesNum ,actionsNum ,0);

89

90 for i = 1 : length(this.agents)

91 [swarmChromosomes (:,:,i),status(:,:,i)] = this.agents(i).

getChromosomes ();

92 end

93

94 for i = 1 : length(this.agents)

95 status = ismember(this.agents ,this.agents(i));

96 this.agents(i).evolve(swarmChromosomes (:,:,~ status));

97 end

98 end

99 end

100 end

+ReBEL/+chromosomeStructure/Chromosome.m

1 classdef Chromosome < handle & matlab.mixin.Copyable & matlab.mixin.

CustomDisplay

2

3 properties (Access = private)

4 geneMember

5 chromosomeLength

6 state

7 action

8 end

9

10 methods (Static)

11 function chromosome = explore(genepool ,state ,action)

12 import ReBEL.chromosomeStructure.Chromosome;

13 import ReBEL.geneticStructure.Gene;

14 geneMember = Gene.empty (0,0);

15 chromosomeLength = length(genepool.genefamilies);

16 genotypes = genepool.genotypes;

17 for i=1: chromosomeLength

18 randomIndex = randi(length(genepool.genefamilies(genotypes(

i)).genes));

19 geneMember(i) = genepool.genefamilies(genotypes(i)).genes(

randomIndex);

20 end

21

22 chromosome = Chromosome(geneMember ,state ,action);

23 end

24

25 function chromosome = exploit(genepool)

26
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27 end

28 end

29

30 methods

31 function this = Chromosome(genes ,state ,action)

32 if nargin > 0

33 this.geneMember = genes;

34 this.chromosomeLength = length(genes);

35 this.state = state;

36 this.action = action;

37 end

38 end

39

40 function exploreGene(this ,index ,genepool)

41 randomIndex = randi(length(genepool.genefamilies(this.

geneMember(index).genotype).genes));

42 randomGene = genepool.genefamilies(this.geneMember(index).

genotype).genes(randomIndex);

43 while (this.geneMember(index) == randomGene)

44 randomIndex = randi(length(genepool.genefamilies(this.

geneMember(index).genotype).genes));

45 randomGene = genepool.genefamilies(this.geneMember(index).

genotype).genes(randomIndex);

46 end

47 this.geneMember(index) = genepool.genefamilies(this.geneMember(

index).genotype).genes(randomIndex);

48 end

49

50 function genotypes = genotypes(this)

51 genotypes = string.empty (0,0);

52 for i = 1:this.chromosomeLength

53 genotypes(i) = this.geneMember(i).genotype;

54 end

55 end

56

57 function genes = genes(this ,index)

58 if nargin > 1

59 genes = this.geneMember(index);

60 else

61 genes = this.geneMember;

62 end

63 end

64

65 function setGene(this ,index ,genes)

66 this.geneMember(index) = genes;

67 end

68

69 function action = getAction(this)

70 action = this.action;

71 end

72

73 function state = getState(this)
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74 state = this.state;

75 end

76

77 function values = values(this ,genotype)

78 values = double.empty(0,this.chromosomeLength);

79 if nargin <=1

80 for i=1: this.chromosomeLength

81 values(i) = this.geneMember(i).value;

82 end

83 else

84 [status ,index] = ismember(genotype ,this.genotypes);

85 if status

86 values = this.geneMember(index).value;

87 else

88 error (" genotype not found in this chromosome ");

89 end

90 end

91 end

92

93 function histones = histones(this)

94 histones = double.empty (0);

95 for i=1: this.chromosomeLength

96 histones(i) = this.geneMember(i).histone(this.state ,this.

action);

97 end

98 end

99

100 function histone = averageHistone(this)

101 histone = mean(this.histones ());

102 end

103

104 % function histones = histones(this ,state ,action)

105 % [stateNum ,actionNum] = size(this.geneMember (1).histone);

106 % if nargin <= 1

107 % if stateNum*actionNum ~= 1

108 % histones = double.empty(stateNum ,actionNum ,0);

109 % for i=1: this.chromosomeLength

110 % histones (:,:,i) = this.geneMember(i).histone;

111 % end

112 % elseif nargin <= 1 && stateNum*actionNum == 1

113 % histones = double.empty (0,0);

114 % for i=1: this.chromosomeLength

115 % histones(i) = this.geneMember(i).histone;

116 % end

117 % end

118 % else

119 % histones = double.empty (0,0);

120 % for i=1: this.chromosomeLength

121 % histones(i) = this.geneMember(i).histone(state ,action

);

122 % end

123 % end
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124 % end

125

126 % function histone = averageHistone(this ,state ,action)

127 % if nargin <= 1

128 % histone = mean(histones(this) ,3);

129 % else

130 % histone = mean(histones(this ,state ,action));

131 % end

132 % end

133

134 function methylation(this ,state ,action ,returnValue)

135 averageHistoneAtSA = this.averageHistone ();

136 % averageHistoneAtSA = averageHistone(this ,state ,action);

137 for i=1: this.chromosomeLength

138 this.geneMember(i).methylation(state ,action ,this.

chromosomeLength ,averageHistoneAtSA ,returnValue);

139 end

140 end

141

142 function chromosome = mutate(this ,k,mutationRate)

143 this.geneMember(k).mutate

144 end

145 end

146

147 methods (Access = protected)

148 function copyThis = copyElement(this)

149 copyThis = copyElement@matlab.mixin.Copyable(this);

150 copyThis.geneMember = copy(this.geneMember);

151 end

152

153 function propgrp = getPropertyGroups(this)

154 if ~isscalar(this)

155 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(this

);

156 else

157 propList = struct (...

158 ’genes’,this.geneMember ,...

159 ’histones ’,this.histones ,...

160 ’averageHistones ’,this.averageHistone ,...

161 ’state’,this.state ,...

162 ’action ’,this.action);

163 propgrp = matlab.mixin.util.PropertyGroup(propList);

164 end

165 end

166 end

167 end

+ReBEL/+chromosomeStructure/ChromosomePool.m

1 classdef ChromosomePool < handle & matlab.mixin.CustomDisplay

2 %CHROMOSOMEPOOL Summary of this class goes here

3 % Constructor: ChromosomePool(genepool ,chromosomePopulation ,states ,

actions)
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4 % Getter:

5 % - chromosomeSet(stateName , actionName)

6 % - chromosomeSet ()

7 properties (Access = private)

8 chromosomeSetMember

9 states

10 actions

11 end

12

13 methods

14 function this = ChromosomePool(genepool ,chromosomePopulation ,states

,actions)

15 import ReBEL.chromosomeStructure.ChromosomeSet;

16 this.actions = actions;

17 this.states = states;

18 stateNum = length(states);

19 actionNum = length(actions);

20 this.chromosomeSetMember = ChromosomeSet.empty(stateNum ,

actionNum ,0);

21 for i = 1: stateNum

22 for j = 1: actionNum

23 this.chromosomeSetMember(i,j,1) = ChromosomeSet(

genepool ,chromosomePopulation ,states(i),actions(j));

24 end

25 end

26 end

27

28 function chromosomeset = chromosomeSet(this ,state ,action)

29 if nargin <= 1

30 chromosomeset = this.chromosomeSetMember;

31 else

32 [status ,indexState] = ismember(state ,this.states);

33 if ~status

34 error ("state not found");

35 end

36 [status ,indexAction] = ismember(action ,this.actions);

37 if ~status

38 error ("state not found");

39 end

40 chromosomeset = this.chromosomeSetMember(indexState ,

indexAction);

41 end

42 end

43

44 function chromosomes = exploreGenepool(this ,genepool)

45 import ReBEL.chromosomeStructure.Chromosome;

46 statesNum = length(this.states);

47 actionsNum = length(this.actions);

48 chromosomes = Chromosome.empty(statesNum ,actionsNum ,0);

49 for i = 1: statesNum

50 for j = 1: actionsNum

51 chromosomes(i,j,1) = copy(Chromosome.explore(genepool ,
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this.states(i),this.actions(j)));

52 end

53 end

54 end

55

56 function [chromosome ,index] = exploit(this ,state ,action)

57 [chromosome ,index] = this.chromosomeSet(state ,action).exploit ()

;

58 end

59

60 function [chromosome ,index] = explore(this ,state ,action)

61 [chromosome ,index] = this.chromosomeSet(state ,action).explore ()

;

62 end

63

64 function genes = getGenes(this ,index)

65 import ReBEL.geneticStructure.Gene;

66 statesNum = length(this.states);

67 actionsNum = length(this.actions);

68 genes = Gene.empty(statesNum ,actionsNum ,0);

69 for i=1: statesNum

70 for j=1: actionsNum

71 for k=1: length(this.chromosomeSetMember(i,j).

chromosomes)

72 genes(i,j,k) = this.chromosomeSetMember(i,j).

chromosomes(k).genes(index);

73 end

74 end

75 end

76 genes = squeeze(genes)’;

77 end

78

79 function values = getStatesNum(this)

80 values = length(this.states);

81 end

82

83 function values = getActionsNum(this)

84 values = length(this.actions);

85 end

86

87 function values = getStates(this)

88 values = this.states;

89 end

90

91 function values = getActions(this)

92 values = this.actions;

93 end

94 end

95

96 methods (Access = protected)

97 function propgrp = getPropertyGroups(this)

98 if ~isscalar(this)



APPENDIX A. PROGRAM 129

99 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(this

);

100 else

101 propList = struct (...

102 ’chromosomeSet ’,this.chromosomeSetMember ,...

103 ’states ’,this.states ,...

104 ’actions ’,this.actions);

105 propgrp = matlab.mixin.util.PropertyGroup(propList);

106 end

107 end

108 end

109 end

+ReBEL/+chromosomeStructure/ChromosomeSet.m

1 classdef ChromosomeSet < handle & matlab.mixin.CustomDisplay

2 %CHROMOSOMESET Summary of this class goes here

3 % Detailed explanation goes here

4 % Constructor: ChromosomeSet(genepool ,chromosomePopulation ,state ,

action)

5 % Getter:

6 % - histones(index)

7 % - histones ()

8 % - chromosomes(index)

9 % - chromosomes ()

10 % - exploit ()

11 % - explore ()

12

13 properties (Access = private)

14 chromosomeMember

15 action

16 state

17 end

18

19 methods

20 function this = ChromosomeSet(genepool ,chromosomePopulation ,state ,

action)

21 import ReBEL.chromosomeStructure.Chromosome;

22 if nargin > 0

23 this.chromosomeMember = Chromosome.empty (0,0);

24 this.state = state;

25 this.action = action;

26 for i = 1: chromosomePopulation

27 this.chromosomeMember(i) = Chromosome.explore(genepool ,

state ,action);

28 end

29 end

30 end

31

32 function histones = histones(this ,index)

33 if nargin > 1

34 histones = this.chromosomeMember(index).averageHistone ();

35 % histones = this.chromosomeMember(index).averageHistone(
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this.state ,this.action);

36 else

37 chromosomeLength = length(this.chromosomeMember);

38 histones = double.empty(0, chromosomeLength);

39 for i=1: chromosomeLength

40 histones(i) = this.chromosomeMember(i).averageHistone ()

;

41 % histones(i) = this.chromosomeMember(i).averageHistone

(this.state ,this.action);

42 end

43 end

44 end

45

46 function chromosome = chromosomes(this ,index)

47 if nargin > 1

48 chromosome = this.chromosomeMember(index);

49 else

50 chromosome = this.chromosomeMember;

51 end

52 end

53

54 function [chromosome ,index] = exploit(this)

55 [~,index] = max(this.histones);

56 chromosome = this.chromosomeMember(index);

57 end

58

59 function [chromosome ,index] = explore(this)

60 chromosomeLength = length(this.chromosomeMember);

61 index = randi(chromosomeLength);

62 chromosome = this.chromosomeMember(index);

63 end

64

65 function methylation(this ,index ,returnValue)

66 this.chromosomeMember(index).methylation(this.state ,this.action

,returnValue);

67 end

68

69 function setChromosome(this ,index ,chromosome)

70 this.chromosomeMember(index) = chromosome;

71 end

72 end

73

74 methods (Access = protected)

75 function propgrp = getPropertyGroups(this)

76 if ~isscalar(this)

77 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(this

);

78 else

79 propList = struct (...

80 ’chromosomes ’,this.chromosomeMember ,...

81 ’histones ’,this.histones ,...

82 ’state’,this.state ,...



APPENDIX A. PROGRAM 131

83 ’action ’,this.action);

84 propgrp = matlab.mixin.util.PropertyGroup(propList);

85 end

86 end

87 end

88 end

+ReBEL/+epigeneticMechanisms/Crossover.m

1 classdef Crossover

2 %CROSSOVER Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = Crossover(inputArg1 ,inputArg2)

11 %CROSSOVER Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/Evolver.m

1 classdef Evolver < handle

2 %EVOLVE Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 epsilon_selection

7 eta_genomic_imprinting

8 mu_genetic_mutation

9 epsilon_regeneration

10 end

11

12 methods

13 function this = Evolver(e_selection ,eta_imprint ,mu_mutation ,

e_regeneration)

14

15 end

16 end

17 end
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+ReBEL/+epigeneticMechanisms/GeneSilencing.m

1 classdef GeneSilencing

2 %GENESILENCING Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = GeneSilencing(inputArg1 ,inputArg2)

11 %GENESILENCING Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/GenomicImprinting.m

1 classdef GenomicImprinting

2 %GENOMICIMPRINTING Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = GenomicImprinting(inputArg1 ,inputArg2)

11 %GENOMICIMPRINTING Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/Mutation.m

1 classdef untitled
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2 %UNTITLED Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = untitled(inputArg1 ,inputArg2)

11 %UNTITLED Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/Paramutation.m

1 classdef untitled

2 %UNTITLED Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = untitled(inputArg1 ,inputArg2)

11 %UNTITLED Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/Regeneration.m

1 classdef Regeneration

2 %REGENERATION Summary of this class goes here

3 % Detailed explanation goes here

4
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5 properties

6 Property1

7 end

8

9 methods

10 function obj = Regeneration(inputArg1 ,inputArg2)

11 %REGENERATION Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+epigeneticMechanisms/Selection.m

1 classdef Selection

2 %SELECTION Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 Property1

7 end

8

9 methods

10 function obj = Selection(inputArg1 ,inputArg2)

11 %SELECTION Construct an instance of this class

12 % Detailed explanation goes here

13 obj.Property1 = inputArg1 + inputArg2;

14 end

15

16 function outputArg = method1(obj ,inputArg)

17 %METHOD1 Summary of this method goes here

18 % Detailed explanation goes here

19 outputArg = obj.Property1 + inputArg;

20 end

21 end

22 end

+ReBEL/+evolutionaryOperator/cekIntegration.m

1 function cekIntegration(chromosomepool ,genepool)

2 %CEKINTEGRATION Summary of this function goes here

3 % Detailed explanation goes here

4 states = chromosomepool.getStates;

5 actions = chromosomepool.getActions;

6 statesNum = chromosomepool.getStatesNum;

7 actionsNum = chromosomepool.getActionsNum;
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8

9 for i=1: statesNum

10 for j=1: actionsNum

11 for k=1: length(chromosomepool.chromosomeSet(states(i),actions(j)).

chromosomes)

12 for l=1: length(chromosomepool.chromosomeSet(states(i),actions(j

)).chromosomes(k).genes)

13 genotype = chromosomepool.chromosomeSet(states(i),actions(j

)).chromosomes(k).genes(l).genotype;

14 status = ismember(chromosomepool.chromosomeSet(states(i),

actions(j)).chromosomes(k).genes(l) ,...

15 genepool.genefamilies(genotype).genes);

16 if ~status

17 error (" integrity failed ");

18 end

19 end

20 end

21 end

22 end

23 end

+ReBEL/+evolutionaryOperator/geneDeletion.m

1 function geneDeletion(chromosomepool ,genepool)

2 genefamilies = genepool.genefamilies;

3

4 for i=1: length(genefamilies)

5 if length(genefamilies(i).genes) > 20

6 genes = chromosomepool.getGenes(i);

7 [status ,index] = ismember(genefamilies(i).genes ,genes);

8 [value ,leastIndex] = min(status);

9

10 if ~value

11 genefamilies(i).deleteGene(leastIndex);

12 end

13 end

14 end

15

16 end

+ReBEL/+evolutionaryOperator/geneSilencing.m

1 function geneSilencing(chromosomepool ,genepool ,silenceRate)

2 states = chromosomepool.getStates;

3 actions = chromosomepool.getActions;

4 statesNum = chromosomepool.getStatesNum;

5 actionsNum = chromosomepool.getActionsNum;

6

7 genefamilies = genepool.genefamilies;

8

9 for i=1: length(genefamilies)

10 for j=1: statesNum

11 for k=1: actionsNum
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12 [~,indexMin] = min(genefamilies(i).histones(states(j),actions(k

)));

13 geneMin = genefamilies(i).genes(indexMin);

14

15 for l = 1: length(chromosomepool.chromosomeSet(states(j),actions

(k)).chromosomes)

16 geneChromosome = chromosomepool.chromosomeSet(states(j),

actions(k)).chromosomes(l).genes(i);

17

18 if (geneMin == geneChromosome) && (rand < silenceRate)

19 % explore new genes

20 chromosomepool.chromosomeSet(states(j),actions(k)).

chromosomes(l).exploreGene(i,genepool)

21 if geneMin == chromosomepool.chromosomeSet(states(j),

actions(k)).chromosomes(l).genes(i)

22 disp(" wrong ");

23 end

24 end

25 end

26 end

27 end

28 end

29

30

31

32 % for i=1: statesNum

33 % for j=1: actionsNum

34 % for k=1: length(chromosomepool.chromosomeSet(states(i),actions(j))

.chromosomes)

35 % for l=1: length(chromosomepool.chromosomeSet(states(i),actions

(j)).chromosomes(k).genes)

36 % gene = chromosomepool.chromosomeSet(states(i),actions(j))

.chromosomes(k).genes(l);

37 % [~,indexMin] = min(genepool.genefamilies(gene.genotype).

histones(states(i),actions(i)));

38 % [status ,indexLocation] = ismember(gene ,genepool.

genefamilies(gene.genotype).genes);

39 % if ~status

40 % error(" integrity failed ");

41 % end

42 % if indexMin == indexLocation

43 % gene.silence(states(i),actions(j));

44 % % explore new genes

45 % chromosomepool.chromosomeSet(states(i),actions(j)).

chromosomes(k).exploreGene(l,genepool)

46 % else

47 % gene.activate(states(i),actions(j));

48 % end

49 % end

50 % end

51 % end

52 % end
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53

54 end

+ReBEL/+evolutionaryOperator/genomicImprinting.m

1 function [imprintedChildChromosomes1 ,imprintedChildChromosomes2] =

genomicImprinting(childchromosomes1 ,childchromosomes2 ,imprintingRate)

2 geneLength = length(childchromosomes1 (1,1).genes);

3 imprintedChildChromosomes1 = copy(childchromosomes1);

4 imprintedChildChromosomes2 = copy(childchromosomes2);

5 [stateNum ,actionNum] = size(childchromosomes1);

6 for i = 1: stateNum

7 for j = 1: actionNum

8 for k = 1: geneLength

9 randomNumber = rand;

10 if randomNumber < imprintingRate

11 imprintedChildChromosomes1(i,j).setGene(k,

childchromosomes2(i,j).genes(k));

12 imprintedChildChromosomes2(i,j).setGene(k,

childchromosomes1(i,j).genes(k));

13 end

14 end

15 end

16 end

17 end

+ReBEL/+evolutionaryOperator/histoneBasedCrossover.m

1 function [childChromosomes1 ,childChromosomes2] = histoneBasedCrossover(

chromosomes1 ,chromosomes2)

2 parentChromosomes1 = copy(chromosomes1);

3 parentChromosomes2 = copy(chromosomes2);

4 childChromosomes1 = copy(parentChromosomes1);

5 childChromosomes2 = copy(parentChromosomes2);

6 [statenum ,actionnum] = size(parentChromosomes1);

7

8 for i=1: statenum

9 for j = 1: actionnum

10 histone1 = parentChromosomes1(i,j).histones;

11 histone2 = parentChromosomes2(i,j).histones;

12 averageHistone1 = parentChromosomes1(i,j).averageHistone;

13 averageHistone2 = parentChromosomes2(i,j).averageHistone;

14

15 booleanHistone1 = averageHistone1 <= histone1;

16 booleanHistone2 = averageHistone2 <= histone2;

17

18 maskBooleanHistone = booleanHistone1 | booleanHistone2;

19

20 childChromosomes1(i,j).setGene(maskBooleanHistone ,

parentChromosomes2(i,j).genes(maskBooleanHistone));

21 childChromosomes2(i,j).setGene(maskBooleanHistone ,

parentChromosomes1(i,j).genes(maskBooleanHistone));

22 end
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23 end

24 end

+ReBEL/+evolutionaryOperator/histoneBasedSelection.m

1 function [chromosomes ,status] = histoneBasedSelection(chromosomepool ,

epsilonSelection)

2

3 statesNum = chromosomepool.getStatesNum ();

4 actionsNum = chromosomepool.getActionsNum ();

5

6 states = chromosomepool.getStates ();

7 actions = chromosomepool.getActions ();

8

9 import ReBEL.chromosomeStructure.Chromosome;

10 chromosomes = Chromosome.empty(statesNum ,actionsNum ,0);

11 status = string.empty(statesNum ,actionsNum ,0);

12 for i = 1: statesNum

13 for j = 1: actionsNum

14 randomValue = rand();

15 if randomValue > (1 - epsilonSelection)

16 % exploit

17 chromosome = chromosomepool.exploit(states(i),actions(j));

18 chromosomes(i,j,1) = copy(chromosome);

19 status(i,j,1) = "exploit ";

20 else

21 % explore

22 chromosomes(i,j,1) = copy(chromosomepool.explore(states(i),

actions(j)));

23 status(i,j,1) = "explore ";

24 end

25 end

26 end

27 end

+ReBEL/+evolutionaryOperator/mutation.m

1 function [mutatedChildChromosomes] = mutation(imprintedChildChromosomes ,

mutationRate)

2 geneLength = length(imprintedChildChromosomes (1,1).genes);

3 mutatedChildChromosomes = copy(imprintedChildChromosomes);

4 [stateNum ,actionNum] = size(imprintedChildChromosomes);

5 for i = 1: stateNum

6 for j = 1: actionNum

7 for k = 1: geneLength

8 randomNumber = rand;

9 if randomNumber < mutationRate

10 geneticCode = imprintedChildChromosomes(i,j).genes(k).

getCode ();

11

12 mutantCode = geneticCode;

13

14 for lCode = 1: length(mutantCode)
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15 if rand() < mutationRate

16

17 if mutantCode(lCode) == ’0’

18 mutantCode(lCode) = ’1’;

19 else

20 mutantCode(lCode) = ’0’;

21 end

22

23 end

24 end

25

26 if ~strcmp(mutantCode ,geneticCode)

27 mutatedChildChromosomes(i,j).genes(k).setCode(

mutantCode);

28 end

29 end

30 end

31 end

32 end

33 end

+ReBEL/+evolutionaryOperator/proportionalTournament.m

1 function selectedChromosomes = proportionalTournament(chromosomes)

2 [stateNum ,actionNum ,agentNum] = size(chromosomes);

3 allHistones = double.empty(stateNum ,actionNum ,0,1);

4 for i = 1: agentNum

5 for j = 1: stateNum

6 for k = 1: actionNum

7 averageHistones = chromosomes(j,k,i).averageHistone ();

8 allHistones(j,k,i) = averageHistones;

9 end

10 end

11 end

12 import ReBEL.chromosomeStructure.Chromosome;

13 selectedChromosomes = Chromosome(stateNum ,actionNum ,0);

14 for i=1: stateNum

15 for j = 1: actionNum

16 histones = squeeze(allHistones(i,j,:));

17 % normalised histones range

18 if any(histones (:) < 0)

19 histones = histones - min(histones);

20 end

21 probabilities = histones ./sum(histones);

22 [sortedProbabilities ,index] = sort(probabilities);

23 randomNumber = rand();

24 previousProbability = 0;

25 for k = 1: agentNum

26 previousProbability = previousProbability +

sortedProbabilities(k);

27 if randomNumber < previousProbability

28 selectedChromosomes(i,j,1) = chromosomes(i,j,index(k));

29 break
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30 end

31 if k == agentNum

32 disp("not selecting any chromosomes ");

33 end

34 end

35 end

36 end

37 end

+ReBEL/+evolutionaryOperator/regeneration.m

1 function regeneration(genepool ,chromosomepool ,mutatedChildChromosomes1 ,

mutatedChildChromosomes2)

2

3 stateNum = chromosomepool.getStatesNum ();

4 actionNum = chromosomepool.getActionsNum ();

5 states = chromosomepool.getStates ();

6 actions = chromosomepool.getActions ();

7

8 for i=1: stateNum

9 for j=1: actionNum

10 chromosomeset = chromosomepool.chromosomeSet(states(i),actions(

j));

11 chromosomesethistone = chromosomeset.histones;

12 [sorted ,index] = sort(chromosomesethistone);

13 chromosome1 = mutatedChildChromosomes1(i,j);

14 chromosome2 = mutatedChildChromosomes2(i,j);

15 chromosomeHistone1 = chromosome1.averageHistone;

16 chromosomeHistone2 = chromosome2.averageHistone;

17 chromosomeset.setChromosome(index (1),chromosome1);

18 chromosomeset.setChromosome(index (2),chromosome2);

19 genepool.addChromosome(chromosome1);

20 genepool.addChromosome(chromosome2);

21 % if chromosomeHistone1 > sorted (1)

22 % chromosomeset.setChromosome(index (1),chromosome1);

23 % genepool.addChromosome(chromosome1);

24 % end

25 end

26 end

27 end

+ReBEL/+geneticStructure/Gene.m

1 classdef Gene < handle & matlab.mixin.Copyable & matlab.mixin.CustomDisplay

2 %GENE Summary of this class goes here

3 % Constructor: Gene(genotype ,states ,actions ,nbits ,max ,min)

4 % Getter:

5 % - histone(state ,action)

6 % - histone

7 % - value

8 % - genotype

9 properties (Access = private)

10 geneValue
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11 geneHistone

12 geneGenotype

13 geneSilence

14 end

15

16 methods

17 function this = Gene(genotype ,states ,actions ,methylationRate ,nbits ,

max ,min)

18 import ReBEL.geneticStructure.GeneValue;

19 import ReBEL.geneticStructure.GeneHistone;

20 import ReBEL.geneticStructure.Genotype;

21 import ReBEL.geneticStructure.GeneSilence;

22

23 if nargin > 0

24 this.geneValue = GeneValue(nbits ,max ,min);

25 this.geneHistone = GeneHistone(states ,actions ,

methylationRate);

26 this.geneGenotype = genotype;

27 this.geneSilence = GeneSilence(states ,actions);

28 end

29 end

30

31 function silence(this ,state ,action)

32 this.geneSilence.silence(state ,action);

33 end

34

35 function activate(this ,state ,action)

36 this.geneSilence.activate(state ,action);

37 end

38

39 function silenceStatus = getSilenceStatus(this)

40 silenceStatus = this.geneSilence.values;

41 end

42

43 function histone = histone(this ,state ,action)

44 if nargin <=1

45 histone = this.geneHistone.value();

46 else

47 histone = this.geneHistone.value(state ,action);

48 end

49 end

50

51 function setCode(this ,code)

52 this.geneValue.setCode(code);

53 end

54

55 function setHistone(this ,value ,state ,action)

56 this.geneHistone.setValue(value ,state ,action);

57 end

58

59 function output = value(this)

60 output= this.geneValue.value ();
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61 end

62

63 function genotype = genotype(this)

64 genotype = this.geneGenotype;

65 end

66

67 function binary = getBinary(this)

68 binary = this.geneValue.binary ();

69 end

70

71 function code = getCode(this)

72 code = this.geneValue.getCode ();

73 end

74

75 function methylation(this ,state ,action ,chromosomeLength ,

averageHistoneAtSA ,returnValue)

76 this.geneHistone.methylation(state ,action ,chromosomeLength ,

averageHistoneAtSA ,returnValue);

77 end

78 end

79

80 methods (Access = protected)

81 function copyThis = copyElement(this)

82 copyThis = copyElement@matlab.mixin.Copyable(this);

83 copyThis.geneValue = copy(this.geneValue);

84 copyThis.geneHistone = copy(this.geneHistone);

85 end

86

87 function propgrp = getPropertyGroups(this)

88 if ~isscalar(this)

89 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(this

);

90 else

91 propList = struct (...

92 ’Genotype ’,this.genotype ,...

93 ’Value’,value(this) ,...

94 ’Histone ’,this.histone);

95 propgrp = matlab.mixin.util.PropertyGroup(propList);

96 end

97 end

98 end

99 end

+ReBEL/+geneticStructure/GeneFamily.m

1 classdef GeneFamily < handle & matlab.mixin.CustomDisplay

2 %GENEFAMILY Summary of this class goes here

3 % Constructor: GeneFamily(population ,genotype ,states ,actions ,nbits ,

min ,max)

4 % Getter:

5 % - genes(index)

6 % - values

7 % - histones(state ,action)
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8 % -

9

10 properties (Access = private)

11 genotype

12 geneMembers

13 population

14 end

15

16 methods

17 function this = GeneFamily(population ,genotype ,states ,actions ,

methylationRate ,nbits ,min ,max)

18 import ReBEL.geneticStructure.Gene;

19 if nargin ~= 0

20 this.population = population;

21 this.geneMembers = Gene.empty(0, population);

22 this.genotype = genotype;

23 for i=1: population

24 this.geneMembers(i) = Gene(genotype ,states ,actions ,

methylationRate ,nbits ,min ,max);

25 end

26 end

27 end

28

29 function gene = genes(this ,index)

30 if nargin == 1

31 gene = this.geneMembers;

32 else

33 gene = this.geneMembers(index);

34 end

35 end

36

37 function registeredgene = addGene(this ,gene ,state ,action)

38 [status ,index] = ismember(gene.value ,this.values);

39

40 if ~status

41 this.population = this.population + 1;

42 this.geneMembers(end +1) = gene;

43 registeredgene = this.geneMembers(end);

44 else

45 this.geneMembers(index).setHistone(gene.histone(state ,

action),state ,action);

46 registeredgene = this.geneMembers(index);

47 end

48 end

49

50 function genotype = getGenotype(this)

51 genotype = this.genotype;

52 end

53

54 function values = values(this)

55 values = double.empty(0,this.population);

56 for i=1: this.population
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57 values(i) = this.geneMembers(i).value;

58 end

59 end

60

61 function silenceStatus = getSilenceStatus(this)

62 silenceStatus = double.empty(0,this.population);

63 for i=1: this.population

64 silenceStatus(i) = this.geneMembers(i).getSilenceStatus;

65 end

66 end

67

68 function deleteGene(this ,index)

69 this.geneMembers(index) = [];

70 this.population = this.population - 1;

71 end

72

73 function histones = histones(this ,state ,action)

74 [stateNum ,actionNum] = size(this.geneMembers (1).histone);

75 if nargin <= 1

76 if stateNum*actionNum ~= 1

77 histones = double.empty(stateNum ,actionNum ,0);

78 for i=1: this.population

79 histones (:,:,i) = this.geneMembers(i).histone;

80 end

81 elseif nargin <= 1 && stateNum*actionNum == 1

82 histones = double.empty (0,0);

83 for i=1: this.population

84 histones(i) = this.geneMembers(i).histone;

85 end

86 end

87 else

88 histones = double.empty (0,0);

89 for i=1: this.population

90 histones(i) = this.geneMembers(i).histone(state ,action)

;

91 end

92 end

93 end

94 end

95

96 methods (Access = protected)

97 function propgrp = getPropertyGroups(this)

98 if ~isscalar(this)

99 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(this

);

100 else

101 propList = struct (...

102 ’genotype ’,this.genotype ,...

103 ’genes’,this.geneMembers);

104 propgrp = matlab.mixin.util.PropertyGroup(propList);

105 end

106 end
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107 end

108 end

+ReBEL/+geneticStructure/GeneHistone.m

1 classdef GeneHistone < handle & matlab.mixin.Copyable

2 %GENEHISTONE Summary of this class goes here

3 % Constructor: GeneHistone(states ,actions)

4

5 properties (Access = private)

6 histone_value

7 methylationRate

8 states

9 actions

10 end

11

12 methods

13 function this = GeneHistone(states ,actions ,methylationRate)

14 this.states = states;

15 this.actions = actions;

16 this.histone_value = rand(length(states),length(actions));

17 this.methylationRate = methylationRate;

18 end

19

20 function value = value(this ,state ,action)

21 if nargin <= 1

22 value = this.histone_value;

23 else

24 [status ,stateIndex] = ismember(state ,this.states);

25 if status ~= 1

26 error ("no state founded ")

27 end

28

29 [status ,actionIndex] = ismember(action ,this.actions);

30 if status ~= 1

31 error ("no action founded ")

32 end

33

34 value = this.histone_value(stateIndex ,actionIndex);

35 end

36 end

37

38 function setValue(this ,value ,state ,action)

39 [status ,stateIndex] = ismember(state ,this.states);

40 if status ~= 1

41 error ("no state founded ")

42 end

43

44 [status ,actionIndex] = ismember(action ,this.actions);

45 if status ~= 1

46 error ("no action founded ")

47 end

48
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49 this.histone_value(stateIndex ,actionIndex) = ...

50 this.histone_value(stateIndex ,actionIndex) + ...

51 this.methylationRate *(value - this.histone_value(stateIndex

,actionIndex));

52 end

53

54 function methylation(this ,state ,action ,chromosomeLength ,

averageHistone ,returnValue)

55 [status ,stateIndex] = ismember(state ,this.states);

56 [status ,actionIndex] = ismember(action ,this.actions);

57 this.histone_value(stateIndex ,actionIndex) = ...

58 this.histone_value(stateIndex ,actionIndex) + ...

59 this.methylationRate *(2/ chromosomeLength)*((1+

chromosomeLength)*returnValue - averageHistone - chromosomeLength*this.

histone_value(stateIndex ,actionIndex));

60 end

61 end

62

63 methods (Access = protected)

64 function copyThis = copyElement(this)

65 copyThis = copyElement@matlab.mixin.Copyable(this);

66 end

67 end

68 end

+ReBEL/+geneticStructure/GenePool.m

1 classdef GenePool < handle

2 %GENEPOOL Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties (Access = private)

6 geneFamilyMember

7 allGenotypes

8 end

9

10 methods

11 function this = GenePool(population ,genotypes ,states ,actions ,

methylationRate ,nbits ,min ,max)

12 import ReBEL.geneticStructure.GeneFamily;

13 this.allGenotypes = genotypes;

14 this.geneFamilyMember = GeneFamily.empty (0,0);

15 for i=1: length(genotypes)

16 this.geneFamilyMember(i) = GeneFamily(population ,genotypes(

i),states ,actions ,methylationRate ,nbits ,min ,max);

17 end

18 end

19

20 function genefamily = genefamilies(this ,genotype)

21 if nargin <= 1

22 genefamily = this.geneFamilyMember;

23 else

24 [status ,index] = ismember(genotype ,this.genotypes);
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25 if status

26 genefamily = this.geneFamilyMember(index);

27 else

28 error (" genotype not found");

29 end

30 end

31 end

32

33 function genotypes = genotypes(this)

34 genotypes = this.allGenotypes;

35 end

36

37 function addChromosome(this ,chromosome)

38 for i=1: length(chromosome.genes)

39 gene = this.geneFamilyMember(i).addGene(chromosome.genes(i)

,chromosome.getState (),chromosome.getAction ());

40 chromosome.setGene(i,gene);

41 end

42 end

43 end

44 end

+ReBEL/+geneticStructure/GeneSilence.m

1 classdef GeneSilence < handle

2 %GENESILENCE Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 states

7 actions

8 values

9 end

10

11 methods

12 function this = GeneSilence(states ,actions)

13 this.states = states;

14 this.actions = actions;

15 this.values = false(length(states),length(actions));

16 end

17

18 function silence(this ,state ,action)

19 [status ,stateNum] = ismember(state ,this.states);

20 [status ,actionNum] = ismember(action ,this.actions);

21 this.values(stateNum ,actionNum) = true;

22 end

23

24 function activate(this ,state ,action)

25 [status ,stateNum] = ismember(state ,this.states);

26 [status ,actionNum] = ismember(action ,this.actions);

27 this.values(stateNum ,actionNum) = false;

28 end

29 end
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30 end

+ReBEL/+geneticStructure/GeneValue.m

1 classdef GeneValue < handle & matlab.mixin.Copyable

2 %GENEVALUE Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties (Access = private)

6 g_value

7 g_decimal

8 g_binary

9 g_grey

10 nbits

11 min_value

12 max_value

13 min_decimal

14 max_decimal

15 end

16

17 methods

18 function this = GeneValue(nbits ,min ,max)

19 if nargin > 0

20 this.nbits = nbits;

21 this.min_value = min;

22 this.max_value = max;

23

24 % calculating decimal constraints

25 this.min_decimal = 0;

26 this.max_decimal = 2^nbits - 1;

27

28 % set initial value on other properties

29 randomValue = min + (max -min)*rand();

30 this.g_decimal = val2dec(this ,randomValue);

31 this.g_value = dec2val(this ,this.g_decimal);

32 this.g_binary = dec2bin(this.g_decimal ,this.nbits);

33 this.g_grey = bin2grey(this ,this.g_binary);

34 this.g_binary = this.grey2bin(this.g_grey);

35 this.g_decimal = bin2dec(this.g_binary);

36 this.g_value = this.dec2val(this.g_decimal);

37 end

38 end

39

40 function value = value(this)

41 value = this.g_value;

42 end

43

44 function decimal = decimal(this)

45 decimal = this.g_decimal;

46 end

47

48 function binary = binary(this)

49 binary = this.g_binary;
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50 end

51

52 function grey = grey(this)

53 grey = this.g_grey;

54 end

55

56 function code = getCode(this)

57 code = this.g_grey;

58 % code = this.g_binary;

59 end

60 function setCode(this ,code)

61 this.g_grey = code;

62 this.g_binary = this.grey2bin(this.g_grey);

63 this.g_decimal = bin2dec(this.g_binary);

64 this.g_value = this.dec2val(this.g_decimal);

65 end

66 end

67

68 methods (Access = private)

69 function decimal = val2dec(this ,value)

70 decimal = ((this.max_decimal - this.min_decimal)/...

71 (this.max_value - this.min_value))...

72 *(value - this.min_value) + this.min_decimal;

73 decimal = round(decimal);

74 end

75

76 function value = dec2val(this ,decimal)

77 value = ((this.max_value - this.min_value)/...

78 (this.max_decimal - this.min_decimal))...

79 *( decimal - this.min_decimal) + this.min_value;

80 end

81

82 function grey = bin2grey(this ,binary)

83 n = length(binary);

84 grey = zeros(1,n);

85 grey (1) = binary (1);

86 for i = 2:n

87 grey(i) = xorChar(this ,binary(i-1),binary(i));

88 end

89

90 grey = char(grey);

91 end

92

93 function binary = grey2bin(this ,grey_code)

94 n = length(grey_code);

95 binary (1) = grey_code (1);

96

97 for i = 2:n

98 if grey_code(i) == ’0’

99 binary(i) = binary(i - 1);

100 else

101 binary(i) = flipChar(this ,binary(i -1));
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102 end

103 end

104

105 binary = char(binary);

106 end

107

108 % xor operator for char

109 function output = xorChar(~,a,b)

110 if (a == b)

111 output = ’0’;

112 else

113 output = ’1’;

114 end

115 end

116

117 function output = flipChar(~,a)

118 if (a == ’0’)

119 output = ’1’;

120 else

121 output = ’0’;

122 end

123 end

124 end

125

126 methods (Access = protected)

127 function copyThis = copyElement(this)

128 copyThis = copyElement@matlab.mixin.Copyable(this);

129 end

130 end

131 end

+ReBEL/+geneticStructure/Genotype.m

1 classdef Genotype < handle & matlab.mixin.Copyable

2 %GENOTYPE Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 name

7 end

8

9 methods

10 function this = Genotype(name)

11 this.name = name;

12 end

13 end

14

15 methods (Access = protected)

16 function copyThis = copyElement(this)

17 copyThis = copyElement@matlab.mixin.Copyable(this);

18 copyThis.name = copy(this.name);

19 end

20 end
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21 end

+testFunction/Ackley.m

1 classdef Ackley < handle

2 %LEVY Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 variables

7 g_value

8 g_decimal

9 g_binary

10 g_grey

11 nbits

12 min_value

13 max_value

14 min_decimal

15 max_decimal

16 optimalValue

17 fig

18 dots

19

20 a = 20;

21 b = 0.2;

22 c = pi/2;

23 end

24

25 methods

26 function this = Ackley(variables , minValue , maxValue , nbits ,

figureNum)

27 this.variables = variables;

28 this.nbits = nbits;

29 this.min_value = minValue;

30 this.max_value = maxValue;

31

32 % calculating decimal constraints

33 this.min_decimal = 0;

34 this.max_decimal = 2^nbits - 1;

35

36 % set initial value on other properties

37 optimal_value = zeros(length(variables) ,1);

38 this.g_decimal = val2dec(this ,optimal_value);

39 this.g_value = dec2val(this ,this.g_decimal);

40 this.g_binary = dec2bin(this.g_decimal ,this.nbits);

41 this.g_grey = bin2grey(this ,this.g_binary);

42 this.g_binary = this.grey2bin(this.g_grey);

43 this.g_decimal = bin2dec(this.g_binary);

44 this.g_value = this.dec2val(this.g_decimal);

45 this.optimalValue = this.calculate(this.g_value);

46

47 if length(variables) == 2

48 this.initShow(figureNum);



APPENDIX A. PROGRAM 152

49 drawnow;

50 end

51 end

52

53 function output = calculate(this ,variables)

54 output = -this.a*exp(-this.b*sqrt(sum(variables .^2)./ length(

this.variables))) - exp(sum(cos(this.c*variables))./ length(this.

variables)) + this.a + exp(1);

55 end

56

57 function initShow(this ,figureNum)

58 this.fig = figure(figureNum);

59 clf(this.fig);

60 X = repmat(this.min_value :0.5: this.max_value ,[ length(this.

variables) ,1]);

61 [x1,x2] = meshgrid(X(1,:),X(2,:));

62

63 y = -this.a*exp(-this.b*sqrt (((x1.^2) + (x2.^2))./ length(this.

variables))) - exp((cos(this.c*x1) + cos(this.c*x2))./ length(this.

variables)) + this.a + exp(1);

64 subplot (1,2,1);

65 surface(x1 ,x2 ,y);

66 xlabel ("x1");

67 ylabel ("x2");

68 zlabel ("f(x1 ,x2)");

69 ax = gca;

70 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1

0.5]);

71 ax.View =[50 ,15];

72

73 X = repmat(this.min_value :0.1: this.max_value ,[ length(this.

variables) ,1]);

74 [x1,x2] = meshgrid(X(1,:),X(2,:));

75

76 y = -this.a*exp(-this.b*sqrt (((x1.^2) + (x2.^2))./ length(this.

variables))) - exp((cos(this.c*x1) + cos(this.c*x2))./ length(this.

variables)) + this.a + exp(1);

77

78 subplot (1,2,2);

79 [C,h]= contour(x1 ,x2 ,y);

80 clabel(C,h);

81 xlabel ("x1");

82 ylabel ("x2");

83 zlabel ("f(x1 ,x2)");

84 ax = gca;

85 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1 1]);

86 hold on

87 this.dots = plot(zeros(length(this.variables) ,1),zeros(length(

this.variables) ,1),’Marker ’,’x’,’Color ’,’red’,’LineStyle ’,’none’);

88 end

89

90 function draw(this ,index ,values)
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91 this.dots.XData(index) = values (1);

92 this.dots.YData(index) = values (2);

93 drawnow;

94 end

95

96 end

97

98 methods (Access = private)

99 function decimal = val2dec(this ,value)

100 decimal = ((this.max_decimal - this.min_decimal)/...

101 (this.max_value - this.min_value))...

102 .*( value - this.min_value) + this.min_decimal;

103 decimal = round(decimal);

104 end

105

106 function value = dec2val(this ,decimal)

107 value = ((this.max_value - this.min_value)/...

108 (this.max_decimal - this.min_decimal))...

109 .*( decimal - this.min_decimal) + this.min_value;

110 end

111

112 function grey = bin2grey(this ,binary)

113 [m,n] = size(binary);

114 grey = zeros(m,n);

115 grey (:,1) = binary (:,1);

116 for j = 1:m

117 for i = 2:n

118 grey(j,i) = xorChar(this ,binary(j,i-1),binary(j,i));

119 end

120 end

121

122 grey = char(grey);

123 end

124

125 function binary = grey2bin(this ,grey_code)

126 [m,n] = size(grey_code);

127 binary (:,1) = grey_code (:,1);

128

129 for j = 1:m

130 for i = 2:n

131 if grey_code(j,i) == ’0’

132 binary(j,i) = binary(j,i - 1);

133 else

134 binary(j,i) = flipChar(this ,binary(j,i -1));

135 end

136 end

137 end

138

139 binary = char(binary);

140 end

141

142 % xor operator for char
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143 function output = xorChar(~,a,b)

144 if (a == b)

145 output = ’0’;

146 else

147 output = ’1’;

148 end

149 end

150

151 function output = flipChar(~,a)

152 if (a == ’0’)

153 output = ’1’;

154 else

155 output = ’0’;

156 end

157 end

158 end

159 end

+testFunction/Levy.m

1 classdef Levy < handle

2 %LEVY Summary of this class goes here

3 % Detailed explanation goes here

4

5 properties

6 variables

7 g_value

8 g_decimal

9 g_binary

10 g_grey

11 nbits

12 min_value

13 max_value

14 min_decimal

15 max_decimal

16 optimalValue

17 fig

18 dots

19 end

20

21 methods

22 function this = Levy(variables , minValue , maxValue , nbits ,

figureNum)

23 this.variables = variables;

24 this.nbits = nbits;

25 this.min_value = minValue;

26 this.max_value = maxValue;

27

28 % calculating decimal constraints

29 this.min_decimal = 0;

30 this.max_decimal = 2^nbits - 1;

31

32 % set initial value on other properties
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33 optimal_value = ones(length(variables) ,1);

34 this.g_decimal = val2dec(this ,optimal_value);

35 this.g_value = dec2val(this ,this.g_decimal);

36 this.g_binary = dec2bin(this.g_decimal ,this.nbits);

37 this.g_grey = bin2grey(this ,this.g_binary);

38 this.g_binary = this.grey2bin(this.g_grey);

39 this.g_decimal = bin2dec(this.g_binary);

40 this.g_value = this.dec2val(this.g_decimal);

41 this.optimalValue = this.calculate(this.g_value);

42

43 if length(variables) == 2

44 this.initShow(figureNum);

45 drawnow;

46 end

47 end

48

49 function output = calculate(this ,variables)

50 w = 1 + (variables - 1)./4;

51

52 term0 = sin(pi*w(1))^2;

53 term1 = (w(1:(end -1)) -1).^2;

54 term2 = 1 + 10*( sin(pi*w(1:(end -1)) + 1).^2);

55 term3 = ((w(end) -1).^2) .*(1 + sin(2*pi*w(end)).^2);

56 output = term0 + sum(term1 .*term2 + term3);

57 end

58

59 function initShow(this ,figureNum)

60 this.fig = figure(figureNum);

61 clf(this.fig);

62 X = repmat(this.min_value :0.25: this.max_value ,[ length(this.

variables) ,1]);

63 [x1,x2] = meshgrid(X(1,:),X(2,:));

64

65 dataW = 1 + (X - 1)./4;

66 [w1,w2] = meshgrid(dataW (1,:),dataW (2,:));

67 term1 = (w1 -1) .^2;

68 term2 = 1 + 10*( sin(pi*w1 + 1).^2);

69 term3 = ((w2 -1) .^2) .*(1 + sin(2*pi*w2).^2);

70 y = sin(pi*w1).^2 + term1.* term2 + term3;

71 subplot (1,2,1);

72 surface(x1 ,x2 ,y);

73 xlabel ("x1");

74 ylabel ("x2");

75 zlabel ("f(x1 ,x2)");

76 ax = gca;

77 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1 5]);

78 ax.View =[70 ,35];

79

80 X = repmat(this.min_value :0.01: this.max_value ,[ length(this.

variables) ,1]);

81 [x1,x2] = meshgrid(X(1,:),X(2,:));

82
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83 dataW = 1 + (X - 1)./4;

84 [w1,w2] = meshgrid(dataW (1,:),dataW (2,:));

85 term1 = (w1 -1) .^2;

86 term2 = 1 + 10*( sin(pi*w1 + 1).^2);

87 term3 = ((w2 -1) .^2) .*(1 + sin(2*pi*w2).^2);

88 y = sin(pi*w1).^2 + term1.* term2 + term3;

89 subplot (1,2,2);

90 [C,h]= contour(x1 ,x2 ,y);

91 visible = [10 ,20 ,30 ,40 ,50];

92 clabel(C,h,visible);

93 xlabel ("x1");

94 ylabel ("x2");

95 zlabel ("f(x1 ,x2)");

96 ax = gca;

97 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1 1]);

98 hold on

99 this.dots = plot(zeros(length(this.variables) ,1),zeros(length(

this.variables) ,1),’Marker ’,’x’,’Color ’,’red’,’LineStyle ’,’none’);

100 end

101

102 function draw(this ,index ,values)

103 this.dots.XData(index) = values (1);

104 this.dots.YData(index) = values (2);

105 end

106

107 end

108

109 methods (Access = private)

110 function decimal = val2dec(this ,value)

111 decimal = ((this.max_decimal - this.min_decimal)/...

112 (this.max_value - this.min_value))...

113 .*( value - this.min_value) + this.min_decimal;

114 decimal = round(decimal);

115 end

116

117 function value = dec2val(this ,decimal)

118 value = ((this.max_value - this.min_value)/...

119 (this.max_decimal - this.min_decimal))...

120 .*( decimal - this.min_decimal) + this.min_value;

121 end

122

123 function grey = bin2grey(this ,binary)

124 [m,n] = size(binary);

125 grey = zeros(m,n);

126 grey (:,1) = binary (:,1);

127 for j = 1:m

128 for i = 2:n

129 grey(j,i) = xorChar(this ,binary(j,i-1),binary(j,i));

130 end

131 end

132

133 grey = char(grey);
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134 end

135

136 function binary = grey2bin(this ,grey_code)

137 [m,n] = size(grey_code);

138 binary (:,1) = grey_code (:,1);

139

140 for j = 1:m

141 for i = 2:n

142 if grey_code(j,i) == ’0’

143 binary(j,i) = binary(j,i - 1);

144 else

145 binary(j,i) = flipChar(this ,binary(j,i -1));

146 end

147 end

148 end

149

150 binary = char(binary);

151 end

152

153 % xor operator for char

154 function output = xorChar(~,a,b)

155 if (a == b)

156 output = ’0’;

157 else

158 output = ’1’;

159 end

160 end

161

162 function output = flipChar(~,a)

163 if (a == ’0’)

164 output = ’1’;

165 else

166 output = ’0’;

167 end

168 end

169 end

170 end

+testFunction/Sphere.m

1 classdef Sphere < handle

2 properties

3 variables

4 g_value

5 g_decimal

6 g_binary

7 g_grey

8 nbits

9 min_value

10 max_value

11 min_decimal

12 max_decimal

13 optimalValue
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14 fig

15 dots

16 end

17

18 methods

19 function this = Sphere(variables , minValue , maxValue , nbits ,

figureNum)

20 this.variables = variables;

21 this.nbits = nbits;

22 this.min_value = minValue;

23 this.max_value = maxValue;

24

25 % calculating decimal constraints

26 this.min_decimal = 0;

27 this.max_decimal = 2^nbits - 1;

28

29 % set initial value on other properties

30 optimal_value = zeros(length(variables) ,1);

31 this.g_decimal = val2dec(this ,optimal_value);

32 this.g_value = dec2val(this ,this.g_decimal);

33 this.g_binary = dec2bin(this.g_decimal ,this.nbits);

34 this.g_grey = bin2grey(this ,this.g_binary);

35 this.g_binary = this.grey2bin(this.g_grey);

36 this.g_decimal = bin2dec(this.g_binary);

37 this.g_value = this.dec2val(this.g_decimal);

38 this.optimalValue = this.calculate(this.g_value);

39

40 if length(variables) == 2

41 this.initShow(figureNum);

42 drawnow;

43 end

44 end

45

46 function output = calculate(this ,variables)

47 output = sum(variables .^2);

48 end

49

50 function initShow(this ,figureNum)

51 this.fig = figure(figureNum);

52 clf(this.fig);

53 X = repmat(this.min_value :0.5: this.max_value ,[ length(this.

variables) ,1]);

54 [x1,x2] = meshgrid(X(1,:),X(2,:));

55 y = x1.^2 + x2.^2;

56 subplot (1,2,1);

57 surface(x1 ,x2 ,y);

58 xlabel ("x1");

59 ylabel ("x2");

60 zlabel ("f(x1 ,x2)");

61 ax = gca;

62 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1 10])

;



APPENDIX A. PROGRAM 159

63 ax.View =[70 ,35];

64 subplot (1,2,2);

65 [C,h]= contour(x1 ,x2 ,y);

66 clabel(C,h);

67 xlabel ("x1");

68 ylabel ("x2");

69 zlabel ("f(x1 ,x2)");

70 ax = gca;

71 set(ax ,’PlotBoxAspectRatio ’ ,[1 1 1],’DataAspectRatio ’ ,[1 1 1]);

72 hold on

73 this.dots = plot(zeros(length(this.variables) ,1),zeros(length(

this.variables) ,1),’Marker ’,’x’,’Color ’,’red’,’LineStyle ’,’none’);

74 end

75

76 function draw(this ,index ,values)

77 this.dots.XData(index) = values (1);

78 this.dots.YData(index) = values (2);

79 % drawnow;

80 end

81 end

82

83 methods (Access = private)

84 function decimal = val2dec(this ,value)

85 decimal = ((this.max_decimal - this.min_decimal)/...

86 (this.max_value - this.min_value))...

87 .*( value - this.min_value) + this.min_decimal;

88 decimal = round(decimal);

89 end

90

91 function value = dec2val(this ,decimal)

92 value = ((this.max_value - this.min_value)/...

93 (this.max_decimal - this.min_decimal))...

94 .*( decimal - this.min_decimal) + this.min_value;

95 end

96

97 function grey = bin2grey(this ,binary)

98 [m,n] = size(binary);

99 grey = zeros(m,n);

100 grey (:,1) = binary (:,1);

101 for j = 1:m

102 for i = 2:n

103 grey(j,i) = xorChar(this ,binary(j,i-1),binary(j,i));

104 end

105 end

106

107 grey = char(grey);

108 end

109

110 function binary = grey2bin(this ,grey_code)

111 [m,n] = size(grey_code);

112 binary (:,1) = grey_code (:,1);

113
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114 for j = 1:m

115 for i = 2:n

116 if grey_code(j,i) == ’0’

117 binary(j,i) = binary(j,i - 1);

118 else

119 binary(j,i) = flipChar(this ,binary(j,i -1));

120 end

121 end

122 end

123

124 binary = char(binary);

125 end

126

127 % xor operator for char

128 function output = xorChar(~,a,b)

129 if (a == b)

130 output = ’0’;

131 else

132 output = ’1’;

133 end

134 end

135

136 function output = flipChar(~,a)

137 if (a == ’0’)

138 output = ’1’;

139 else

140 output = ’0’;

141 end

142 end

143 end

144 end
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Çelikkanat, Hande, and Erol Şahin. 2010. “Steering Self-Organized Robot Flocks through

Externally Guided Individuals.” Neural Computing and Applications 19, no. 6 (Septem-

ber 1, 2010): 849–865. issn: 1433-3058, accessed October 10, 2019. https://doi.org/

10.1007/s00521-010-0355-y. https://doi.org/10.1007/s00521-010-0355-y.

Couceiro, M. 2016. “An Overview of Swarm Robotics for Search and Rescue Applications.”

https://doi.org/10.4018/978-1-5225-1759-7.ch061.

Couzin, Iain D., Jens Krause, Nigel R. Franks, and Simon A. Levin. 2005. “Effective

Leadership and Decision-Making in Animal Groups on the Move.” Nature 433, no.

7025 (February 3, 2005): 513–516. issn: 0028-0836, 1476-4679, accessed October 2,

2017. https://doi.org/10.1038/nature03236. http://www.nature.com/doifinder/10.

1038/nature03236.

Cucker, Felipe, and Steve Smale. 2007. “Emergent Behavior in Flocks.” IEEE Transactions

on Automatic Control 52, no. 5 (May): 852–862. issn: 0018-9286, accessed October 2,

2017. https : //doi . org /10 . 1109/TAC.2007 .895842. http : // ieeexplore . ieee . org /

document/4200853/.

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
http://link.springer.com/10.1007/s11721-012-0075-2
http://link.springer.com/10.1007/s11721-012-0075-2
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1007/978-3-540-74913-4_70
https://doi.org/10.1007/978-3-540-74913-4_70
http://link.springer.com/10.1007/978-3-540-74913-4_70
https://www.ainonline.com/aviation-news/defense/2012-03-16/us-chooses-aerosonde-other-uavs-isr-services
https://www.ainonline.com/aviation-news/defense/2012-03-16/us-chooses-aerosonde-other-uavs-isr-services
https://www.ainonline.com/aviation-news/defense/2012-03-16/us-chooses-aerosonde-other-uavs-isr-services
https://doi.org/10.1007/s00521-010-0355-y
https://doi.org/10.1007/s00521-010-0355-y
https://doi.org/10.1007/s00521-010-0355-y
https://doi.org/10.4018/978-1-5225-1759-7.ch061
https://doi.org/10.1038/nature03236
http://www.nature.com/doifinder/10.1038/nature03236
http://www.nature.com/doifinder/10.1038/nature03236
https://doi.org/10.1109/TAC.2007.895842
http://ieeexplore.ieee.org/document/4200853/
http://ieeexplore.ieee.org/document/4200853/


BIBLIOGRAPHY 164

Deneubourg, J.-L., Simon Goss, Jacques M Pasteels, D Fresneau, and J.-P Lachaud. 1987.

“Self-Organization Mechanisms in Ant Societies (II): Learning in Foraging and Di-

vision of Labor.” In From Individual to Collective Behavior in Social Insects, by

Jacques M Pasteels and J.-L. Deneubourg, 54:177–196. Eds. Experientia Supplemen-

tum. Basel, Switzerland: Birkhäuser.
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Kuyucu, Tüze, Ivan Tanev, and Katsunori Shimohara. 2012. “Evolutionary Optimization

of Pheromone-Based Stigmergic Communication.” In European Conference on the Ap-

plications of Evolutionary Computation, 63–72. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, April 11, 2012. isbn: 978-3-642-29177-7 978-3-642-29178-

4, accessed October 15, 2017. https://link.springer.com/chapter/10.1007/978-3-642-

29178-4 7.

La Cava, William, and Lee Spector. 2015. “Inheritable Epigenetics in Genetic Program-

ming.” In Genetic Programming Theory and Practice XII, edited by Rick Riolo,

William P. Worzel, and Mark Kotanchek, 37–51. Cham: Springer International Pub-

lishing. isbn: 978-3-319-16029-0 978-3-319-16030-6, accessed October 2, 2017. http:

//link.springer.com/10.1007/978-3-319-16030-6 3.

Labella, Thomas H., Marco Dorigo, and Jean-Louis Deneubourg. 2006. “Division of Labor

in a Group of Robots Inspired by Ants’ Foraging Behavior.” ACM Trans. Auton.

Adapt. Syst. 1, no. 1 (September): 4–25. issn: 1556-4665, accessed October 4, 2017.

https://doi.org/10.1145/1152934.1152936. http://doi.acm.org/10.1145/1152934.

1152936.

Lehman, Joel, and Kenneth O. Stanley. 2011. “Abandoning Objectives: Evolution Through

the Search for Novelty Alone.” Evolutionary Computation 19, no. 2 (June): 189–223.

issn: 1063-6560, 1530-9304, accessed October 2, 2017. http://www.mitpressjournals.

org/doi/10.1162/EVCO a 00025.

Lerman, Kristina, and Aram Galstyan. 2002. “Mathematical Model of Foraging in a Group

of Robots: Effect of Interference.” Autonomous Robots 13, no. 2 (September 1, 2002):

127–141. issn: 1573-7527, accessed October 11, 2019. https://doi.org/10.1023/A:

1019633424543. https://doi.org/10.1023/A:1019633424543.

Li, Ling, Alcherio Martinoli, and Yaser S. Abu-Mostafa. 2004. “Learning and Measuring

Specialization in Collaborative Swarm Systems.” Adaptive Behavior 12, nos. 3-4 (De-

cember 1, 2004): 199–212. issn: 1059-7123, accessed October 16, 2017. https://doi.

org/10.1177/105971230401200306. https://doi.org/10.1177/105971230401200306.

https://doi.org/10.1177/027836498600500106
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1177/027836498600500106
https://link.springer.com/chapter/10.1007/978-3-642-29178-4_7
https://link.springer.com/chapter/10.1007/978-3-642-29178-4_7
http://link.springer.com/10.1007/978-3-319-16030-6_3
http://link.springer.com/10.1007/978-3-319-16030-6_3
https://doi.org/10.1145/1152934.1152936
http://doi.acm.org/10.1145/1152934.1152936
http://doi.acm.org/10.1145/1152934.1152936
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00025
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00025
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1023/A:1019633424543
https://doi.org/10.1177/105971230401200306
https://doi.org/10.1177/105971230401200306
https://doi.org/10.1177/105971230401200306


BIBLIOGRAPHY 169

Liu, Wenguo, Alan F. T. Winfield, Jin Sa, Jie Chen, and Lihua Dou. 2007. “Towards

Energy Optimization: Emergent Task Allocation in a Swarm of Foraging Robots.”

Adaptive Behavior 15, no. 3 (September 1, 2007): 289–305. issn: 1059-7123, accessed

October 4, 2017. https://doi.org/10.1177/1059712307082088. https://doi.org/10.

1177/1059712307082088.

Mahfoud, S. 1997. “Niching Methods.” In Handbook of Evolutionary Computation, edited

by Thomas Bäck, David B. Fogel, and Zbigniew Michalewics, C6.1:1–C6.1:4. Bristol

; Philadelphia : New York: Institute of Physics Pub. ; Oxford University Press. isbn:

978-0-7503-0392-7.

Mayr, Ernst. 1972. “Lamarck Revisited.” Journal of the History of Biology 5 (1): 55–94.

issn: 0022-5010. JSTOR: 4330569.

Minsky, Marvin. 1967. Computation: Finite and Infinite Machines. Englewood Cliffs, NJ:

Prentice-Hall. isbn: 978-0-13-165563-8.

Mishra, Rahul Shivnarayan, Tushar Semwal, and Shivashankar B. Nair. 2018. “A Dis-

tributed Epigenetic Shape Formation and Regeneration Algorithm for a Swarm of

Robots.” In Proceedings of the Genetic and Evolutionary Computation Conference

Companion, 1505–1512. GECCO ’18. New York, NY, USA: ACM. isbn: 978-1-4503-

5764-7, accessed September 20, 2019. https://doi .org/10.1145/3205651.3208300.

http://doi.acm.org/10.1145/3205651.3208300.

Moeslinger, Christoph, Thomas Schmickl, and Karl Crailsheim. 2010. “Emergent Flock-

ing with Low-End Swarm Robots.” In Swarm Intelligence, edited by Marco Dorigo,

Mauro Birattari, Gianni A. Di Caro, René Doursat, Andries P. Engelbrecht, Dario
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“Evolving Aggregation Behaviors in a Swarm of Robots.” In Advances in Artificial

Life, 865–874. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. Ac-

cessed October 15, 2017. https://link.springer.com/chapter/10.1007/978-3-540-

39432-7 93.

Tuci, Elio, Christos Ampatzis, Vito Trianni, Anders Lyhne Christensen, and Marco Dorigo.

2008. “Self-Assembly in Physical Autonomous Robots-the Evolutionary Robotics Ap-

proach.” In ALIFE, 616–623. Accessed October 15, 2017. http://iridia0.ulb.ac.be/

IridiaTrSeries/IridiaTr2008-007r001.pdf.
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