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STATEMENT 

The contents of this thesis are entirely my own 
work except where otherwise indicated. 

ABSTRACT : Mathematical models are a valuable tool for predicting the behavior of aquatic systems. 
However, many of the parameters required by these models are not known with certainty. Reliability analysis 
provides a means of including uncertainties in the modelling process. Prediction limits of the model response 
can be established when the uncertainties involved in the analysis are taken into account. These prediction 
limits can have a significant influence on the decision making process. 

A number of new reliability techniques for estimating the uncertainty of a hydraulic system are 
demonstrated. These include the point estimate method and an exact random field generator, which is used 
to produce realizations required in Monte Carlo simulation. Hypothetical examples and a case study are used 
to assess the performance of these techniques with other well known reliability methods. First-order analysis 
and the point estimate method were found to be suitable for simple problems. Monte Carlo simulation 
combined with the embedding circulant matrix approach, for generating spatially correlated random fields, 
is robust, efficient and provides results that are physically plausible for complicated multi-dimensional 
problems. 

The behavior of the freshwater lens on Bonriki was chosen as the case study. A simple groundwater 
model was used to model the behavior of the freshwater lens. In the groundwater model, the permeability 
of the aquifer was considered as a spatially correlated model parameter with uncertainty. Measured data was 
used to establish the statistical properties of the permeability of the aquifer on Bonriki. The model was used 
to assess the impact of increasing the rate of freshwater extraction from the lens and reducing the amount 
of vegetation on Bonriki on the sustainability of the freshwater lens. Various reliability techniques were 
considered for estimating the prediction Umit of the thickness of the freshwater lens for various management 
strategies. Only Monte Carlo simulation was suitable. The results for the case study show that managers who 
base their decisions on deterministic model results alone, may compromise the freshwater lens and jeopardize 
the survival of the inhabitants on the atoll. The stochastic-deterministic modelling approach also suggests that 
the removal of the vegetation may not provide the additional freshwater yield anticipated. There is a high 
probability that the freshwater lens could be compromised because of the uncertainty in the model 
parameters. 
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Chapter L 

Introduction 
Water resources are threatened by the encroachment and the increasing demand placed on this resource 
by human beings. For example, an expanding metropolis may encroach flood prone areas thereby 
increasing the risk of damage and loss of life. Mathematici models can be used to predict the 
behaviour and consequences of these natural events and to predict the consequences of new or 
increased demands on water resources. A reasonable compromise between the acceptable risk of 
failure and utilization of the water resources may be achieved with accurate predictions. 
1.1 Modelling techniques in water resources 
The tendency in water resources problems has been to use increasingly more complex models based 
on the presumption that they will provide greater accuracy. The accuracy of the model response is not 
directly proportional to the model complexity. Model accuracy is also influenced by uncertainties in 
the modelling process. 
Uncertainty in the modelling process may arise from; (z) natural or inherent uncertainty which is due 
to the random variability of the hydrological processes, {ii) the use of a simplified equation to describe 
a complex physical process which is known as model uncertainty and {Hi) parameter uncertainty which 
is due to parameters in hydraulic and hydrologic models that cannot be quantified exactly. 
Uncertainties arising from (/) can be included in the model formulation. However, uncertainties arising 
from {ii) and {Hi) are generally ignored in the modelling process. Decision makers involved with water 
resources problems are usually provided with a single model response, obtained using a sample set 
of model parameters. As such, the model response only represents a single sample from a number of 
possible outcomes. Reliability analysis provides a means of quantifying the range of possible outcomes 
for the predicted model response by including uncertainties in the modelling process. Prediction limits 
of the model response can be established if the range of possible outcomes is known. 
The credibility of models can be greatly enhanced if the prediction limits of the model response can 
be quantified. This can be important in; (/) model selection, {ii) decision-making and {Hi) the 
collection of data. 
As hydrological models become larger and more complex, the number of parameters increase, as well 
as the amount of data needed to estimate these parameters. The availability and quantity of suitable 
data generally decreases with increasing model complexity. Consequently there is greater uncertainty 
in complex models compared to their simpler counterparts. Therefore, it is necessary to balance model 
complexity against parameter uncertainty. 
The range of model responses which are acceptable for the problem under study can affect the choice 
of a model. Large model prediction limits may be consistent with parameter uncertainty propagating 
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through the model. If the influence of these uncertainties on the predicted model response is ignored, 
a suitable model may be prematurely rejected. Once a model has been chosen, the appropriate data 
required by the model can be collected. 

Prediction limits of the model response can be established when the uncertainties involved in the 
analysis are taken into account. These prediction limits can be used to quantify the risks associated 
with various management strategies. Generally, only parameter uncertainty is considered in a problem. 

1.1.1 Uncertainty models 

Uncertainty in water resources problems has traditionally been analyzed using single-random-variable 
models. 

The random variation of the Manning coefficient rj in space is represented by a single random variable 
in the single-random-variable model as illustrated in Figure 1.1 for an open channel flow problem. 
This approach implies that all realizations of the parameter t/ are the same everywhere, although the 
exact magnitude of the realization remains random. If the realizations of rj at section 1 is r̂ i, the values 
of Y) at all other sections will also be equal to r/j. 

^^,77777777777,777^77777777777^' 

Figure 1.1 Variation of Manning's coefficient in the single-random-variable model 

This is erroneous, since if the model is correct, the value of rj for the entire channel can be determined 
with absolute certainty by measuring the value of the parameter rj, using a single sample taken 
anywhere in space. This is contrary to the expectation that rj would vary from one location to another. 

The use of the single-random-variable model generally results in a gross overestimation of the 
prediction limit of the model response, since it ignores the variance reduction due to spatial averaging 
(see, for example Zoppou and Li [1993]). 

A more realistic approach is to apply a random field model to the problem, as shown in Figure 1.2. 
In this model, the value of parameter rj at different locations is treated as an independent or as a 
spatially correlated random variable. 
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Figure 1.2 Variation of Manning's coefficient in the random field model 

1.1.2 Methods of reliability analysis 
Techniques for estimating the influence of parameter uncertainty on a model's response include; 
{i) first-order analysis, (//) point estimate method, (Hi) Monte Carlo simulation, (iv) using the Mellin 
transform and (v) using stochastic equations. 
The model input variables are positively correlated in many water resources problems. Zoppou and 
Li (1993) have shown that ignoring the spatial correlation between the random variables has a 
significant influence on the predicted model response. Only the first-order analysis and the point 
estimate method can readily accommodate correlated random variables. 
The Mellin transform is only applicable to problems where the random variables are independent. The 
use of stochastic equations require the use of complicated and numerically intensive techniques for 
their solution. For these reasons they are considered to have littie practical value (Li and 
McLaughlin [1991]). 
The application of Monte Carlo simulation is relatively straightforward if the random variables are 
independent. Values for the random variables are sampled at random from independent probability 
distributions. Monte Carlo simulation is not an appropriate method for determining the effect of 
uncertainties on a model's response unless realizations of correlated random variables can be generated 
efficientiy. 
There are a number of algorithms for generating spatially correlated random variables in one-, two-
and three-dimensions. A number of these algorithms are described in this thesis and are used to predict 
the prediction limits of the response of one- and two-dimensional hydraulic models. 
The Monte Carlo simulated model response is compared with the predicted model response determined 
using the first-order analysis and a new point estimate method. Data collected on Bonriki, an island 
on Tarawa atoll in the Pacific Ocean, was used as the case study for the comparison. 
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1.2 Bonriki island 
Water resources do not exist for many coral atolls found in the Pacific and Indian Oceans. The main 
source of potable water comes from rainfall collection systems and groundwater. The major advantage 
of groundwater is the large storage volumes that are achieved in comparison to any manmade reservoir 
that could be contemplated on many atolls. Therefore, on small islands the groundwater is an 
important resource. 
Groundwater on the islands of an atoll normally occurs in the form of a thin lenticular shaped 
freshwater body called a lens which rests upon saline water beneath the island. The formation which 
contains groundwater and through which it flows is known as the aquifer. 
The quality of the freshwater in the aquifer can be impaired either by intrusion of seawater into the 
aquifer or by the contamination of the lens from sewerage, stormwater runoff, fertilizers, pesticides 
and industrial effluent. The greatest threats to the freshwater lens on many small islands are over-
abstraction of groundwater which can decrease the size of the fi-eshwater lens on heavily populated 
islands and pollution. The groundwater must be managed effectively to avoid depleting the resource. 
Some freshwater lenses have been modelled mathematically in order to effectively manage the 
groundwater resource. Mathematical modelling of the lens enables the quantitative assessment of the 
effect of various influences on the freshwater lens. The behaviour of the lens on Bonriki was modelled 
mathematically using an unsteady groundwater flow model based on the Ghyben-Herzberg relationship. 
This model was used to estimate the thickness of a freshwater lens on Bonriki. 
The parameters in the model are not known with certainty. The prediction limits of the thickness of 
the freshwater lens was estimated by considering the permeability of the aquifer as a model parameter 
with uncertainty. Therefore the permeability, which is a measure of the aquifer medium to allow the 
movement of fluid under a pressure gradient, is treated as a spatially correlated random field. First-
order analysis, Monte Carlo simulation and the point estimate method were used to estimate the 
prediction limits of the thickness of the freshwater lens for various extraction rates and vegetation 
cover. 
The prediction limits of the model response can be used to estimate the sustainable yield of the 
freshwater lens. The sustainable yield is a subjective quantity and is defined as the rate at which 
freshwater may be extracted from the lens without compromising its renewability. 
1.3 Objectives of the study 
The major objective of this study is to demonstrate a number of new reliability techniques for 
estimating the uncertainty of a hydraulic system. This includes the point estimate method which is used 
to calculate the statistical moments of the model response and an efficient random field generator 
which is used to produce correlated realizations required in Monte Carlo simulation. The results of 
these models are compared to the classical first-order analysis of the model response. 
There have been a number of original contributions to the vast knowledge on reliability analysis of 
water resources problems. These include: 

(/) The first practical illustration using a case study of an exact method for generating 
correlated random fields. 
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(//) Demonstrating the application of the new point estimate method for estimating the 
moments of the response of a hydraulic and hydrological model. 

(iii) This study is one of the very few applications of reliability theory for estimating the 
prediction limits of a freshwater lens on an island in a coral atoll. 

These aspects alone are a significant contribution to the advancement of reliability theory in water 
resources problems. 

1.3.1 Outline of the thesis 

The sources of uncertainty, their influence on a model's response and their importance in the 
modelling process are discussed in Chapter 1. The fundamental difference between the single-random-
variable and the random field models is also described. Several techniques for quantifying the effect 
of uncertainties on a model response are briefly described in this chapter. The case study used to 
demonstrate and compare these techniques is introduced in this chapter. 

The data collected on Bonriki is described in Chapter 2. The unsteady groundwater flow model 
describing the behaviour of the freshwater lens on Bonriki is described in Chapter 3. The sharp 
interface single aquifer model and the solution method used in the model is described in detail in this 
chapter. In addition, the data collected on Bonriki which is required by the model and the model 
calibration results are also described. 

The first-order analysis, Monte Carlo simulation and point estimate methods are discussed in Chapter 
4. Methods for estimating the covariance structure of the data are also described in this chapter. 

Methods for generating spatially correlated random fields, including an exact random field generator 
is described in Chapter 5. A comparison based on efficiency, ease of use and applicability of the 
generators is discussed in this chapter. Hypothetical one- and two-dimensional problems have been 
used to facilitate this comparison. The exact random field generator and the point estimate method are 
described in detail because they are relatively new techniques with very few applications in water 
resources. Other techniques are well known and have been used in many water resources problems, 
therefore these techniques are only briefly described. 

The statistical properties, mean, variance and covariance structure of the measured permeability on 
Bonriki are established in Chapter 6. 

Prediction limits of the freshwater lens on Bonriki are estimated in Chapter 7 using the first-order 
analysis, the point estimate method and Monte Carlo simulation for a number of extraction rates and 
vegetation cover. The exact random field generator, described in Chapter 5 is used to produce 
realizations of the permeability of the aquifer used in Monte Carlo simulation. The efficiency, 
accuracy and applicability of the reliability techniques is also discussed in this chapter. 

The performance of the reliability techniques in the one-dimensional problem and in the case study 
is discussed in Chapter 8. The practical aspects of applying the three reliability analysis techniques 
is also reviewed using the case study. The usefulness of reliability analysis as a management tool is 
also discussed. Further research directions are also recommended. 



Chapter 2. 

The freshwater lens on Bonriki 

There are four main groups of islands forming the Republic of Kiribati in the Pacific Ocean, see 
Figure 2.1. The total land area is only 710 square kilometres while the islands cover over 5 million 
square kilometres. In 1980 there were 58,000 inhabitants in the Republic. 

New Zealand 

Figure 2.1 Location of the Republic of Kiribati 

Tarawa atoll located at 1°30'N, 173°00'E is one of 33 island groups within the Republic of Kiribati. 
It has the largest population of any of the island groups with a population of 20,150. Tarawa is a 
typical atoll comprised of a ring of islands and fringing reefs enclosing a central seawater lagoon, see 
Figure 2.2. The atoll consists of over 24 islands with a total surface area of 30.6 square kilometres. 

The series of islands have formed on top of a rim of an old volcano which rises 4,000 metres from 
the ocean floor, although on the western side they are entirely submerged. The lagoon coincides with 
the original crater and is rarely more than 20 metres deep. The land areas are flat and low-lying, with 
a maximum height above mean sea level of approximately 4 metres. 

The majority of inhabitants reside on the islands on the southern rim, known as South Tarawa. The 
islands on the eastern rim. North Tarawa are uninhabited. 
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Figure 2.2 Location of Bonriki island on Tarawa atoll 

The soil on these islands is very porous, consisting mainly of coral and sand. Only babai (taro), 
coconuts and pandanus are the major crops because the layer of soil is thin. 

The average daily minimum temperature is 25°C. Temperatures below 23°C are rare. Maximum 
temperatures are high, averaging between 31 to 33°C, but seldom rise above 34°C. Irregularities in 
the temperature on atolls are small because the sea temperature is almost constant throughout the year. 

Relative humidity is high, ranging from 70-80% throughout the year. The lowest humidity, which is 
seldom below 55%, occurs during September to November. The highest humidity occurs between 
December and May. 

No tropical cyclones have occurred in Kiribati due to the close proximity of Kiribati to the equator. 
Winds seldom exceed gale force. When seas are rough, large waves do not reach the land because the 
islands are protected by their surrounding coral reefs. Wind directions are often variable during the 
wetter part of the year (December to May), however, winds between north and east are the most 
frequent. South-easterlies are more frequent during the drier part of the year (June to November) 
(Burgess [1987]). 

Approximately 60-65% of the annual rainfall occurs between December and May and 35-40% occurs 
between June to November (Burgess [1987]). January is normally the wettest month and October is 
the driest month. The average annual rainfall on Tarawa is approximately 2000 millimetres which is 
typical of many of the atolls in Kiribati. 
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2.1 Aquifers on atoll islands 

The main source of potable water for many coral atolls comes from groundwater in the aquifer system 
below the surface of the island. A basic conceptual model of the aquifer system of an atoll island is 
shown in Figure 2.3. 

Aquifers on atoll islands vary substantially in their composition and also in their hydraulic properties 
such as permeability and porosity. 

EvapotranspircOion 

Unconaolidaud 
Holocene 
sediments 

(low permeability) 

Pleistocene 
limestone 

(high permeability) 

Rain/aU 

Lagoon 

10-20m 

300-1000m 

Figure 2.3 Form of the freshwater lens beneath atoll islands 

The upper aquifer which usually consists of Holocene-age unconsolidated sand, gravel and silt has 
moderate permeability. The lower aquifer is comprised of Pleistocene-age sediments that have 
undergone diagenetic change during numerous episodes of eustatic sea level changes. These limestones 
form a more permeable aquifer than the overlying Holocene sediments. 

2.2 Freshwater lens on atoll islands 

Groundwater on an atoll island normally occurs in the form of a thin lenticular shaped freshwater body 
called the lens, see Figure 2.3. The freshwater lens on an island floats on seawater due to the 
differences in density between sea and fresh water. The upper surface of a freshwater lens is the water 
table and the lower surface is a boundary between the freshwater and seawater. The lower boundary 
is not sharp but is a transition zone of brackish water. 
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Within the island, the upper surface of the unconfined freshwater lens is domed, being higher in the 
center of the island than at the margins. This gives the lens a head which is the reason why water 
flows horizontally from the island's interior to its periphery. 
The lens cross-section is often asymmetric with the deepest part skewed towards either the ocean or 
lagoon depending on the relative permeability of the sediments. 
The central depression in the island plays an important role in the water balance of the island. Water 
tends to concentrate in the depression and recharges the lens during wetter periods of the year. During 
the dry season water is lost more rapidly from this area by evaportranspiration because the water table 
is closer to the surface. The groundwater is more accessible to plant roots if there is a depression in 
the island. Direct evaporation of the water surface is also greater if there is a pool in the depression. 
Tidal range can be important because it influences the thickness of the transition zone. Semidiurnal 
tidal and recharge fluctuations have the effect of inducing mixing. The piezometric surface of the 
freshwater lens fluctuates up and down with the tides. A consequence of this is that the interface is 
not a sharp discontinuity. Instead there is a brackish transition zone. The width of the transition zone 
can be as thick, if not thicker, than the thickness of the freshwater above it. The transition zone 
between freshwater and seawater is narrow on Tarawa, where there is a relatively high recharge 
compared to other atolls (Daniell [1983]). 

2.3 Ghyben-Herzberg ratio 
The earliest work on the dynamics of coastal aquifers was done by Ghyben (1888) and 
Herzberg (1901). They established a steady-state relationship between the shape of the freshwater-
seawater interface and its position based on the density difference between these waters. 
By assuming static conditions at the sharp seawater-freshwater interface, hydrostatic equilibrium gives 

PsSK = PfShf + Pf(h^ + h ) 
where h^ is the depth of the seawater-freshwater interface below mean sea level, g is the acceleration 
due to gravity, h^is the height of the water table above sea level, p̂  is the seawater density and /oyis 
the freshwater density. 
Re-arranging 

Pf 
Ps - Pi 

The density of seawater is usually 1.025, therefore ĥ  = AOhj. This is known as the Ghyben-Herzberg 
ratio. To illustrate the significance of the Ghyben-Herzberg ratio, consider a cone of depression 
formed about a pumping well in fresh water. An inverted cone of seawater will rise into the 
freshwater. The seawater rise of approximately 40 times the freshwater drawdown may occur. This 
can significantly affect the quality of the freshwater in the vicinity of the pumping well. The 
construction of horizontal galleries for extracting the groundwater are commonly used to avoid this 
problem. 



Chapter 2. The freshwater lens on Bonriki 2 .5 

2.4 The size of a freshwater lens 

The size of the freshwater lens on atoll islands depends on; (/) recharge, {ii) width of the island, 
(iii) permeability, (zv) porosity, (v) evapotranspiration and {vi) abstractions. 

The size and shape of the freshwater lens is essentially a balance between what comes in and what is 
lost from the lens. This can be expressed mathematically as 

R=P-I-E-As 
where R is the recharge, P is the precipitation, I is the interception, E is the evaporation and 
evapotranspiration and As is the change in soil storage. 

Rainfall is the sole source of recharge to the lens. The amount and type of vegetation on an island, 
as well as man-made modifications to the surface of the island, influence the proportion of rainfall 
reaching the lens as recharge. A small proportion of the rainfall reaching the ground is also held above 
the water table in the capillary zone. 

Interception, which includes all retention of water by vegetation before it gets to the ground, can be 
as much as 15% on islands and is particularly high where there are coconuts. Evaporation and 
evapotranspiration also depend on vegetation. Coconuts have high transpiration rates with estimates 
suggesting 70-130 litres per tree per day. This compares with human consumption of water ranging 
between 20-350 litres per person per day on similar islands to 1000 litres per day in some tourist 
resorts (Falkland [1991]). 

The long-term recharge to the freshwater lenses on Tarawa from rainfall is estimated to be about 35 % 
of the rainfall in areas with good vegetation cover. This can increase to 50% of the rainfall in cleared 
areas (Falkland [1992]). As a general rule, recharge is generally less than 50% of rainfall. 

Using the conservation of mass, the simple water balance can be established for the lens given by 

R = O + Q ^ AV 
where O is the abstraction rate, Q is the outflow at the lens circumference and AV is the change in 
the volume of the lens. 

The effect of abstractions on the volume of the lens can be estimated if the outflow is known using 
equation (2.2) and equation (2.1) to estimate the recharge. The Ghyben-Herzberg ratio can be used 
to estimate the position of the freshwater-seawater interface if the surface area of the lens is known. 

The solution of equations (2.1) and (2.2) is relatively straight forward for steady state conditions. 
However, under transient conditions it is more convenient to develop and solve a numerical model 
describing the behavior of the lens. The numerical model can be used to estimate the sustainable yield 
from a freshwater lens for various management strategies. 
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2.5 Sustainable yield of a lens 

Sustainable yield is the volume of water which can be safely abstracted from the lens without 
deleteriously affecting the long term viability of the aquifer. Mink (1976) defines the sustainable yield 
as the volume rate of water that can be withdrawn from an aquifer continuously without affecting the 
quality of the water being withdrawn. 

The sustainable yield can be approximately equal to the average annual recharge for inland aquifers. 
However, in coastal and small island groundwater bodies this is not true, since part of the recharge 
is required to maintain the freshwater lens. If all the recharge was withdrawn, there would be no 
freshwater to flow through the lens to prevent the intrusion of sea or brackish water from below. 
Mink (1976) suggests that it is common in thin lens situations to extract only 25% of the recharge. 
Hunt and Peterson (1980) used this criterion as a means of estimating the sustainable yield of the 
freshwater lens on Kwajalein atoll in the Marshall Islands. They also considered local destruction of 
the freshwater lens that can be caused by inappropriate pumping methods resulting in upconing of the 
underlying transition zone. Chidley and Lloyd (1979) indicated that a value of 25 to 30% of the 
recharge was an appropriate extraction rate for the lens on Grand Cayman Island in the Caribbean Sea. 

Griggs and Peterson (1989) modelled the freshwater lens on Laura, an island on the Majuro atoll, 
Marshall Islands, Pacific Ocean. They showed that extracting an equivalent of 20% of the mean annual 
recharge had a minor influence on the long term sustainability of the freshwater lens. Extracting 40% 
of the mean annual recharge caused major upconing of the lens, whilst an extraction rate of 60% of 
the mean annual recharge resulted in the destruction of the lens. 

Falkland (1994) defines sustainable yield as 17-20% of the mean annual recharge for freshwater lenses 
on small coral islands, such as those found on South Keeling atoll in the Cocos (Keeling) Islands, 
Indian Ocean. Sustainable yield varies from island to island but is probably 20-30% of recharge, 
which is approximately 6-12% of the rainfall. 

There are numerous factors which influence what yield is sustainable. It is as much a social problem 
as a hydrologic one (Wentworth [1951]). Sustainable yield is a subjective quantity. Establishing the 
sustainable yield of the freshwater lens on Bonriki will not be attempted in this study. Instead, the 
probability density function of the lens thickness will be estimated for different pumping rates and 
vegetation cover using an unsteady flow model based on the Ghyben-Herzberg ratio. This information 
can be used to estimate the probability of the lens thickness not meeting certain management 
constraints. 
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2.6 Bonriki island 

Bonriki is a small island of 154 hectares, located on the south western comer of the Tarawa atoll, see 
Figure 2.2. The major features on Bonriki are the airfield, see Figure 2.4 and naturally growing 
coconut trees which cover 80% of the island's surface. Coconuts are the major crop for the residents 
of Tarawa. 
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The climate of Tarawa, particularly the rainfall pattern, is affected by the El Nino Southern Oscillation 
phenomenon. Burgess (1987) illustrated the correlation between the annual rainfall at Tarawa (Betio) 
and the Southern Oscillation Index, which is an indicator of the severity of the El Nino Southern 
Oscillation activity. It was found that the annual rainfall on Tarawa is usually above normal when the 
Southern Oscillation Index is negative and below normal when the Southern Oscillation Index is 
positive. 

The mean annual rainfall at Tarawa, recorded at Betio meteorological station for the period 1947-
1980, was 1976 millimetres, which is similar to the amount of rainfall observed on many Pacific 
atolls. 

The freshwater lenses on Biota and Bonriki are used to provide a significant proportion of the potable 
water for South Tarawa. The freshwater lens on Bonriki contributes approximately 70%, Buota 20% 
and the remaining freshwater is from lenses from other islands and roof catchments. The government 
declared a large portion of the lands owned by the Bonriki people as a water reserve because the 
groundwater on Bonriki is an important resource for Tarawa (van Trease [1993]), thereby restricting 
development and population on the island. The population on Bonriki was only 848 in 1985 with the 
majority of the residents of Bonriki located in a single village in the south-eastern comer of the island. 

Groundwater is extracted from 17 infiltration galleries on Bonriki. Pumps attached to each gallery 
have a nominal pumping rate of 55 cubic metres per day. The effect of intensive pumping of fresh 
water from the lens has had a detrimental effect on vegetation on the island with the production of 
coconuts decreasing dramatically (van Trease [1993]). It is thought that this decline has resulted from 
an increase in salinity of the groundwater due to seawater intrusion. 

There has been extensive monitoring of water levels and salinity in the aquifer on Bonriki due to the 
importance of the freshwater lens on Bonriki to the residents on Tarawa. A total of sixteen bores over 
the period 1980-1993 have been used for this purpose. The monitoring program showed that the 
freshwater lens on Bonriki can be as deep as 29 metres. In addition, the thickness of the Holocene 
limestone is uniform with a thickness varying between 15 and 22 metres. DHC (1982) concluded by 
using some of this data, that in the long term, the extraction of freshwater from the lens on Bonriki 
should not be greater than 30% of the recharge. 
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Modelling the thickness of the 
freshwater lens on Bonriki 

The behavior of freshwater lenses beneath small islands is usually modelled using either the dual 
aquifer model or the traditional sharp interface single aquifer based on the Ghyben-Herzberg 
relationship. Important differences between the various models that have been used are given by 
Underwood et al (1992). 

3.1 Lens models 

Models based on the Ghyben-Herzberg relationship depend upon the long-term balance between 
recharge and outflow of freshwater from around the perimeter of the lens. The primary mechanism 
for loss of freshwater in the dual aquifer model is degradation by downward mixing into the transition 
zone. Models based on the Ghyben-Herzberg relationship are two-dimensional in plan. The dual 
aquifer models, such as SULTRA (Saturated Unsaturated TRAnsport) (Voss [1984]), are two-
dimensional in the vertical plane. Three-dimensional models are available, for example HST 3D (Kipp 
[1987]) and the quasi-three-dimensional model SHARP (Essaid [1990]). Recent application of the HST 
3D model to the aquifer system on the Pacific island of Nauru by Ghassemi et al. (1990) failed to 
produce physically meaningful results. Difficulties were also encountered in implementing the model 
as a two-dimensional cross-sectional model. 

Since this study is interested in the long term behaviour of a lens, an unsteady single aquifer model 
based on the traditional Ghyben-Herzberg relationship is used. The computational effort required for 
multiple simulations necessary for this study, prohibits the use of more sophisticated du i aquifer 
models. For example, Ghassemi et al. (1990) found that the SULTRA model with 127 x 33 nodes 
to discretize the Nauru island aquifer system, required 10 hours, 145 minutes and 18 minutes of 
execution time on a VAX 11/785, VAX 8700 and FACOM VP-100 (Fujitsu) supercomputer systems 
respectively. Approximately 1000 time steps of 15 days each were used to simulate a 41 year period. 
This is the time required for the simulation of a single realization. In a Monte Carlo simulation for 
example, lOO's of simulations are required. The computational time required to perform the simulation 
required for the reliability analysis considered in this thesis would be prohibitive. 

Vacher (1988) suggests that the Ghyben-Herzberg relationship is valid for small islands with very 
permeable and highly recharged aquifers. Chapman (1985) argues that the Ghyben-Herzberg 
relationship is appropriate for modelling the behaviour of a shallow freshwater lens. Therefore, the 
simpler less computationally intensive sharp interface single aquifer model, based on the Ghyben-
Herzberg relationship has been adopted in this study. 
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3.1.1 Theory of the sharp interface single aquifer models 
The following assumptions are made in the single aquifer sharp interface model: (/) A sharp interface 
occurs between the freshwater and seawater boundary at the base of the lens, (ii) The freshwater lens 
is unaffected significantiy by the ebb and flood of the tide. This implies that the sea is tideless and not 
affected by barometric variations. {Hi) The aquifer is isotropic but nonhomogeneous. (zv) The pressure 
distribution in the lens is hydrostatic. This is equivalent to assuming that the groundwater velocity is 
horizontal, (v) All natural flow from the freshwater lens to the surrounding seawater occurs at the 
perimeter of the lens. (vO A Ghyben-Herzberg type of relationship holds. The depth below a datum 
of the interface between saltwater and freshwater is some fixed ratio, a times the height of the water 
table above sea level, even in the dynamic situation, {vii) Flow is laminar and Darcy's Law applies. 
{viii) The groundwater system is treated as a single layer aquifer system. 
It is possible to derive a simple unsteady flow model describing the behaviour of a freshwater lens 
based on the Ghyben-Herzberg relationship with these assumptions. 
Consider the element of dimensions Ax by Ay shown in Figure 3.1, where A/ is the time interval, x 
and y are distance dimensions, q is the flow rate through the elemental volume, t tiie time, R is the 
recharge rate per unit area, a is the Ghyben-Herzberg ratio and h is the height of the water table 
above sea level. 

dh — At dt 
h 

ah 

a -zr- At dt 

Ax X dx 

Figure 3.1 Advection and turbulent diffusion in a fluid element 

To derive the equation governing the flow through an aquifer, consider the mass balance of freshwater 
flowing through an element of the aquifer during the time increment A/. During Ar the continuity 
equation for the element is 

A5 = A/(A^ + Ai?) 
which simply states that over a time increment A/ the change in lens storage A5 is equal to the inflow 
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minus the outflow from the element. 

The net inflow into the element during At is 

Aq = -^Ax - ^Ay. 
dx dy 

The net outflow due to recharge during At is 

AR = RAxAy. 

The change in storage of freshwater during At is 

A 5 = + a)^AxAyAt 
ot 

where is the effective porosity or storage coefficient. 

From the equation of continuity 

i8(l + a)^AxAy = -^Ax - ^Ay + RAxAy. (3 .1) 
dt dx dy 

If it is assumed that Darcy's Law applies to the flow, it follows that for flow in the ;c-direction 

q^ = - ( 1 + a)Kh^Ay 
dx 

where K is the permeability or the hydraulic conductivity. The quantity T = (1 4- a)Kh is known as 
the transmissivity. Substituting Darcy's equation into equation (3.1) yields the following equation of 
motion for the system under the assumptions given above. 

^ . = 0. (3.2) 
dt (1+ a) 

3.1.2 Solution of the equation of motion 

The numerical solution of equation (3.2) generally involves replacing the partial derivative in this 
equation by finite differences. The first two terms in equation (3.2) represent the net inflow into a 
node. For node i these terms can be approximated by 

^ C^ihj - h)/Ax/Ay 
j'i 

where k is the number of nodes adjacent to node i and Q = (1 + + Kj)(hi + hj)/4. Therefore 
equation (3.2) can be approximated by 

d loi^''] 
dx dx dy dy 

- h) + R,AxAy - ^,(1 -K ci)AxAy^ 
>1 

^^ = 0. (3.3) 

Equation (3.3) is written for each node in the computational domain. Using matrix notation, the 
system of equations can be written as 

[M]{H} = - {R} 
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or 

m -
= [B]-'IM]{H} ^ [By'{R} 

in which [A/] is a /? X p matrix, the coefficients of which are the coefficients Q or their sum on the 
diagonal, [fi] is a diagonal p x p matrix, with i8f(l + a)AxAy as the coefficients, {R} is a column 
vector with coefficients RiAxAy, is the vector of known height of the water table above sea level, 
{dH/dt} is the unknown derivatives and p is the number of computational nodes. The inverse of the 
diagonal matrix [5] is simply a diagonal matrix with l/(ft(l + a)AxA}') as the coefficients. 

A suitable approximation is required for the temporal derivative. A forward difference scheme will 
produce an explicit finite difference scheme which is relatively simple to solve. Adopting a backward 
finite difference scheme will produce an implicit finite difference scheme. Implicit schemes have some 
desirable properties such as they are unconditionally stable and theoretically there is no restriction on 
the time step that can be employed. However they are more difficult to solve, generally requiring an 
iterative procedure for their solution (see, for example Prickett and Lonnquist [1971]). An explicit 
scheme is used in this study to approximate the temporal derivative. Therefore 

{HY^^ = {HY + + [5 ]^^} ' ) 
where the superscript t At refers to the unknown values on the current time level and t to the known 
values on the previous time level. The unknowns {HY^^ can be solved directly, however there is a 
limitation on the size of the time step A/ that can be used, de Marsily (1986) showed that the 
restriction on the time step is given by 

P. fi. (1 + a)AxAv 
Ar < mm ^ ^ ^ 

The time step depends on the grid size and the properties of the lens. 

3.2 Bonriki lens 

The single lens model described above requires as input the; (/) lens geometry, (ii) Ghyben-Herzberg 
ratio and at each node the {in) permeability, (iv) porosity, (v) extraction and (vf) recharge. 

A number of these parameters have been determined from measurements at a set of boreholes drilled 
on Bonriki. Initially two boreholes were drilled on Bonriki (BHl and BH2) in September to November 
1980. These boreholes were subsequently renamed BN3 and BN18 respectively. This was followed 
by nine new boreholes drilled in November and December 1980, (BNl to BN9). The location of these 
boreholes are shown in Figure 3.2. The co-ordinates of the boreholes on Bonriki are given in 
Table 3.1. 

Only six of these boreholes were drilled through the freshwater zone and into the transition zone 
(BNl, BN2, BN4, BN5, BN7 and BN9). All but BN4 were cased with slotted PVC (plastic) pipe. No 
permanent casing was installed in borehole BN4. The remaining boreholes (BN3, BN6 and BN8) were 
drilled to about 70% of the depth of the fi-eshwater zone. Between March and June 1985 seven new 
boreholes were drilled on Bonriki (BNll to BN17). All sixteen boreholes have been used to monitor 
the salinity of the water in the lens. In the period July to August 1983 remedial works consisted of 
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removing the existing monitoring system and the PVC casing, redrilling of boreholes and reinstallation 
the monitoring system. A new borehole BNIO, was drilled near BNl and fitted with a monitoring 
system. The original shallow boreholes BN3, BN6 and BN8 were backfilled with sand and abandoned. 

Table 3.1 Co-ordinates of the boreholes on Bonriki 

Borehole Tarawa Grid Tarawa Grid 
Number Easting Northing 

BNl 53067 32290 
BN2 52979 32140 
BN3 52933 32035 
BN4 52782 31947 
BN5 52614 31698 
BN7 52667 32754 
BN9 52519 32505 

BNIO 53049 32323 
B N l l 53189 31547 
BN12 52958 31740 
BN13 52610 32646 
BN14 52509 32849 
BN15 52818 32375 
BN16 52695 32270 
BN17 52600 31860 
BN18 52670 32400 

A cross-section of the island through boreholes BNl, BN2, BN3, BN4 and BN5 is shown in Figure 
3.3 and 3.4. Selected salinity profiles (2500, 1000 and 25000 fiS per centimetre) of the water in the 
lens recorded on the 12/03/1985 and 26/02/1989 in these boreholes are also plotted in Figures 3.3 and 
3.4 respectively. These limits coincide with the freshwater limit, 2500 fiS per centimetre, the mid-
point of the transition zone, 25000 ^S per centimetre, which is based on the assumed value of 
50000 fjiS per centimetre for seawater. Standardized potable water has been defined as water up to an 
electrical conductivity of 2500 fiS per centimetre. This is based on the WHO (1971) standard and is 
equivalent to 600 milligrams per litre of chloride ion concentration. 

The results in these figures reveal that the freshwater lens varies in both space and time. This 
observation was confirmed by Falkland (1992) using a more comprehensive data set. The water table 
is about 1.5 to 2.5 metres below the ground surface. 

The lens is asymmetric, with the deepest part of the lens located towards the lagoon. This could be 
attributed to any of the following: (/) Higher permeability on the ocean side due to the fractured 
limestone sequences being closer to the surface. This allows the lens to drain more rapidly to the sea. 
(ii) Increased recharge in this area due to the clearing of coconut trees near the runway. (Hi) The 
majority of the extraction from the lens occurs on the ocean side. 

In 1989 the measured thickness of the freshwater lens was greater than that recorded in 1985. The 
thickness of the freshwater lens in 1985 corresponds to a period of below average annual rainfall on 
Bonriki. Prior to 1989 above average rainfall occurred on Bonriki. 
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MambcriKg BonhoU 

500 metres Tarawa Lagoon 

Figure 3.2 Location of the monitoring boreholes on Bonriki 

The nonconformity between the less permeable Holocene and more permeable Pleistocene limestone 
is also shown in these figures at selected boreholes. The thickness of the Holocene limestone seems 
to be uniform with a thickness varying between 15 and 22 metres. 

Vacher (1988) suggests that to correctly model islands with transition zones which occupy a large 
fraction of the thickness of a freshwater lens, it is necessary to use a variable density advective-
dispersion model. These models include seawater flux into the transition zone. From Figures 3.3 and 
3.4 the transition zone does not occupy a large portion of the lens thickness in comparison to other 
atolls (see also Daniell [1983]). Therefore, models based on the simpler Ghyben-Herzberg ratio are 
appropriate in this case. 
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M 

BN3 BN4 BN3 BN2 BKl 

Figure 3.3 Cross-section through bores BNl to BN5, Bonriki, showing electrical conductivity 
contours in fxS per centimetre of the freshwater lens recorded on the 12/05/1985 

BNS BN4 BN3 BN2 BNl 

Figure 3.4 Cross-section through bores BNl to BN5, Bonriki, showing electrical conductivity 
contours in /x5 per centimetre of the freshwater lens recorded on the 26/02/1989 
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3.2.1 Lens geometry 
The boreholes on Bonriki were used to determine the hydraulic properties of the aquifer, to monitor 
the salinity in the water in the lens and to establish the lens thickness and its shape. 
The boundaries of the freshwater lens were established by comparing the surface resistivity with the 
conductivity readings in the boreholes. Contours of the lens thickness, defined by the conductivity 
reading of 2500 fiS per centimetre, are shown in Figure 3.5. 

Pacific Ocean 

Besistivity probe and interpreted 
freshwater lens thickness 
Freshwater lens thickness in metres 

N 

Tarawa Lagoon 
500 metres 

Figure 3.5 Contours of the thickness of the freshwater lens estimated from 
resistivity probe measurements 

The stored volume of potable water is large in comparison to the surface area of the island, which is 
154 hectares. Assuming that 30% of the total volume of the lens is extractable freshwater, there is 
approximately 6 x 10*̂  cubic metres of potable water on Bonriki. In practice however, this volume of 
freshwater is not available, as it would significantly deplete the freshwater lens and may adversely 
affect the quality of the remaining freshwater. 
The area enclosed by the 10 metre contour of the lens thickness is considered as the extraction area 
of the lens. The approximate surface area of the lens is 76 hectares (Volker et at. [1985]). It is within 
this area that freshwater may be safely extracted and is of potable quality. 
The location of the boundary nodes and the extraction points used in the model are illustrated in 
Figure 3.6. A total of 22 x 15 nodes were used in the model to define the freshwater lens and 



Chapter 3. Modelling the thickness of the freshwater lens on BonriJd 3.9 

boundary nodes on Bonriki. The distance between each node is 100 metres in both principle directions. 

The freshwater-seawater interface is generally taken to be the mid-point of the transition zone for the 
application of models based on the Ghyben-Herzberg relationship. The initial thickness of the 
freshwater lens is taken as the depth to the mid-point of the transition zone for this study. This 
corresponds to 25000 nS per centimetre in the transition zone. The influence of the initial lens 
thickness on the final model results is negligible for this study . 

I 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

100 metres 

Boundary Nodes Exnactum Nodes 

Figure 3.6 Bonriki island boundary and extraction nodal layout 

3.2.2 Ghyben-Herzberg ratio 

The Ghyben-Herzberg constant a should only depend on the relative density of freshwater and 
seawater. Although it may also depend on temperature, it should be in the range 36 to 40. However, 
values of the Ghyben-Herzberg constant that have been used in various studies, vary between 20 to 
40. Lloyd et al. (1980) and Falkland (1983) have used a value as low as 20 for a. They argue that 
this delimits the lower limit of the freshwater. 

The appropriate demarcation between freshwater and seawater in the single aquifer sharp interface 
model is the mid-point of the transition zone (Chapman [1985]). This is also consistent with the 
assumptions made in deriving the equations governing the behaviour of the single aquifer sharp 
interface model, equation (3.2). Therefore, a constant value of 40 was used for the Ghyben-Herzberg 
constant, a in the analysis, as representative of the ratio of the height of the water table above mean 
sea level to the depth below mean sea level to the mid-point of the transition zone. 
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3.2.3 Porosity 

Porosity is the ratio of voids to the total volume of a sediment. Effective porosity, or specific yield 
is that proportion of the voids through which flow actually occurs. It is generally 10-30% and is 
always less than the total porosity, which is characteristically 40-60% (Woodroffe [1989]). 

No insitu tests for the determination of porosity of the aquifer on Bonriki exists, however laboratory 
analysis showed a typical value would be 40% (Daniell [1983]). 

3.2.4 Permeability 

Permeability is a measure of the ability of the aquifer medium to allow the movement of fluid under 
a pressure gradient with appreciable velocity. It depends on the stratification, consolidation, 
arrangements of grains, size distribution and porosity of the aquifer medium. Unconsolidated Holocene 
sediments tend to show permeabilities of 1 to 10 metres per day (Lloyd et al. [1980]), whereas the 
permeability of the underlying Pliesocene limestones is likely to be around 1000 metres per day 
(Hunt [1979]). Coral-rich Holocene sediments often have intermediate permeabilities of approximately 
200 metres per day (Lloyd et al. [1980]). Permeability cannot be effectively estimated from core 
samples. It can however be measured from test wells using pumping experiments. 

Little information is known about the variation of permeability with depth and lateral extent on 
Bonriki. Insitu falling head and constant head tests were performed at selected boreholes on Bonriki 
to estimate the permeability of the aquifer. These tests were performed in the deepest boreholes on 
Bonriki, (BNl, BN2, BN4, BN5, BN7 and BN9 shown in Figure 3.2). Permeability tests of the 
aquifer were obtained at approximately 3 metre depth intervals. The results of these tests can be found 
in Murphy (1981). 

The permeabilities obtained for the constant head (pump out) tests were higher than for the falling 
head tests. Falkland (1983) considered the falling head test results more reliable than the constant head 
results. The constant head tests require water to be pumped out, which can dislodge particles of loose 
material in the borehole, thus increasing the size of the voids in the aquifer and yielding higher 
permeability values. This form of testing may also cause upconing of the transition zone and seawater 
in the vicinity of the pump. Therefore, large scale pump tests are not considered appropriate on atolls. 

Falling head tests involve pumping water into the borehole at very low rates. The rate of pumping is 
not considered to be sufficient to disturb the aquifer medium during the test. The rate at which water 
drops in the borehole is used to calculate the permeability of the aquifer. 

Several tests were performed for a number of depths below the ground surface at many of the 
boreholes. The fall in water level over a time interval was used to estimate the permeability for a 
particular depth. This may have been performed for a number of time intervals. There are 178 
measurements of permeability from 6 boreholes. These have been summarized in Table 3.2. A, B and 
C denote different pump tests performed at the indicated depth. The numbers in the square brackets 
are the permeabilities estimated over a number of time intervals for each pump test. These results will 
be used to estimate the mean, variance and correlation structure of the permeability of the aquifer. 
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Table 3.2 Measured permeabilities in various bores on Bonriki 

Bore 
Hole 

Number 
Depth in 
metres Permeability in metres per day 

BNl 
5.2 to 6.0 
8.2 to 9.0 

14.2 to 15.0 

A[9.1,8.4,3.2,13.9,6.6,10.2,9.3]:B[4.3,12.0,7.2,9.8,8.0,8.91 
A[12.1,4.1,16.2,9.4,11.6,14.01:B[9.0,16.1,10.5,13.1,11.9,11.81 

Ar7.0,14.7,12.3.7.6] 

BN2 

5.9 to 6.4 
8.9 to 9.4 

14.75 to 15.55 
20.25 to 21.05 
23.25 to 24.05 

A[2.0,1.2,2.3,0.01:B[1.9,2.0,2.0,2.8,1.3]:C[2.7,2.8,2.8,2.9,2.91 
A[5.8,2.1,1.51:B[8.0,3.8,2.21 

A[9.7,7.01:B[20.4,9.0,9.5,7.9,10.8,7.2,9.0,6.21 
A[11.3,17.8,17.1,16.4,16.9,22.1,26.51:B[14.7,12.1,12.9,16.4,16.7,18.1,25.8,26.21 

A[9.4,6.7,10.0,3.6,6.6,4.1,2.9]:B[8.6,11.7,7.8,6.9,4.1,2.11 

BN4 

2.7 to 3.55 
5.8 to 6.3 

10.05 to 10.55 
14.85 to 15.35 
23.25 to 24.05 

A[3.5]:B[3.91 
A[3.5]:B[4.11 

A[4.7,4.6,4.21:B[5.3,1.3,5.6,5.91 
A[12.11:B[15.21 

A[17.5,15.8,16.9,5.61:B[10.2,14.0,13.8,20.81:C[8.7,11.4,13.41 

BN5 

9.15 to 9.65 
11.25 to 12.05 
14.25 to 15.05 
17.25 to 18.05 
20.25 to 21.05 
23.25 to 24.05 

A[6.9,18.91:B[7.2,7.41 
A[18.51:B[18.51:C[16.41 

A[18.5,12.2]:B[14.8,12.7]:C[14.8,13.1] 
A[9.9,10.01:B[13.0,9.7]:C[10.7,8.91 

A[13.6,11.7]:B[12.3,11.71:C[11.3,11.71 
A[24.5,20.21 :B[24.5,20.21: C[24.5,18.21 

BN7 8.10 to 8.9 A[19.9,29.31:B[19.9,29.31:C[26.5,25.1] 

BN9 

5.2 to 6.0 
8.2 to 9.0 

11.2 to 12.0 
20.2 to 21.0 
23.2 to 24.0 

A[12.2,9.61:B[15.2,11.11:0(12.2,9.61 
A[10.2,7.21:B[10.2,6.91:C[8.7,7.21 

Ar7.6,7.91:B[7.6,8.31:C(8.6,8.31 
A[33.1,22.8] :B[26.5,26.61 :C[22.1,20.01 
A[26.7,40.21:B[44.4,40.21:C[44.4,35.7] 

The results from the falling head pump tests indicate that the permeability of the Holocene sediments 
vary between 0 to 20 metres per day, while much greater values, in excess of 44 metres per day, were 
found in the Pleistocene limestones. These values were confirmed by laboratory analysis of collected 
samples (DHC [1982]). 
Permeability tends to increase with depth, however there is significant variation in permeabilities with 
location, depth and for multiple tests at a particular depth. 



Chapter 3. Modelling the thickness of the freshwater lens on Bonriki 3.12 
3.2.5 Extraction rate 
Groundwater is extracted from 17 infiltration galleries located between 1.0 and 2.0 metres below the 
ground surface on Bonriki. The location of these galleries are shown in Figure 3.7. 

500 metres Tarawa Lagoon 

Figure 3.7 Lxx:ation of the pumping wells and galleries on Bonriki 

Pumps attached to each gallery have a nominal pumping rate of 55 cubic metres per day. The 
construction of horizontal galleries for extracting the groundwater are commonly used to avoid 
upconing of seawater into the freshwater lens. 
The predicted demand from the lenses on South Tarawa is approximately 750 cubic metres per day 
(Volker et al. [1985]). It is possible to satisfy this requirement from the freshwater lens on Bonriki. 
If this volume of freshwater is withdrawn uniformly from the lens area it would be equivalent to a net 
withdrawal rate of approximately 360 millimetres per year. This represents 18% of the annual rainfall 
on Bonriki, see Figure 3.8. 
The galleries are distributed over the whole island. Therefore, constant extraction of the freshwater 
is assumed to occur uniformly over the entire area of the lens. A constant pumping rate is assumed 
for several important reasons: (i) It is undesirable to vary the pumping rate because it can have a 
detrimental effect on the performance of the aquifer. A variable pumping rate may increase the 
likelihood of dislodging particles in the aquifer, (ii) Water restrictions are imposed on many islands. 
All the water that is extracted is generally utilized and the volume required necessitates pumping 
continuously, (iii) A variable pumping rate may promote mixing between freshwater and seawater 
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thereby increasing the mixing zone and reducing the available potable water. 
3.2.6 Recharge 
Recharge is a major factor influencing the sustainability of the freshwater lens. It can be estimated 
using a number of techniques. A water balance was used by Falkland (1992) to determine the recharge 
on Bonriki during the period 1954 to 1991. The water balance is simply the net input to the lens from 
rainfall, major sources of evaporation and storage in the soil. Sources of evaporation include; 
(/) plants, iii) roots, {Hi) the soil capillary zone and (/v) roots which transpire water directly from the 
freshwater lens. The recharge on Bonriki was estimated by assuming 80% tree cover, which is the 
existing vegetation condition on Bonriki. The recharge to the freshwater lens on Bonriki was calculated 
by considering all these sources. The recharge and corresponding annual rainfall during the period 
1954 to 1991 is depicted in Figure 3.8. 

~i—I—I—I—I—I—\—I—I—I—I—I—I—I—\—I—I—\—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—r 1954 1959 1964 1969 1974 1979 1984 1989 
Year 

Figure 3.8 Annual recharge and rainfall on Bonriki during 1954 to 1991, for 80% vegetation cover 
(after Falkland [1992]) 

The rainfall record was obtained from the meteorological station on Betio. Whilst the average annual 
rainfall is of the order of 2,000 millimetres, there is considerable variation from year to year. The 
highest recorded annual rainfall recorded during this period is 3843 millimetres and the lowest is 
647 millimetres. 
There is considerable variability in the recharge rate. Falkland (1992) found that as expected, there 
was a strong correlation between rainfall and recharge. The peak recharge rates coincide with periods 
of above average rainfall. Negative recharge coincides with periods where the evaporation from the 
sources described above exceeds the precipitation, resulting in a depletion of the water from the lens. 
When dry years follow wet years where the water table is high, there is a net loss of water from the 
lens by deep-rooted vegetation and evaporation. 
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The estimated recharge during the pericxl 1954 to 1991 for 40% and 20% of the vegetation cover is 
shown in Figures 3.9 and 3.10 respectively. It is obvious from these figures that the recharge increases 
with 
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Figure 3.9 Annual recharge and rainfall on Bonriki during 1954 to 1991, for 40% vegetation cover 
(after Falkland [1992]) 

decreasing vegetation cover. A management strategy for increasing the sustainability of the freshwater 
lens is to reduce the amount of vegetation on Bonriki. 

3.3 Calibration of the model 
Despite the amount of data collected on Bonriki, Falkland (1992) found it necessary to calibrate the 
sharp interface single aquifer model. The single aquifer sharp interface model was calibrated by 
assuming that the recharge, shown in Figure 3.8, occurred uniformly over the entire area of the lens 
with no extraction due to pumping occurring. A computational time step. A/ = 30 days, which 
satisfies the stability criterion given by equation (3.4) and a value of 40 was used for the Ghyben-
Herzberg ratio, a. Tlie model parameters mean effective porosity and mean permeability were adjusted 
until there was a reasonable agreement between the simulated and observed lens thickness at borehole 
BN4. 
No pumping was assumed because actual pumping from the freshwater lens on Bonriki commenced 
in 1987. The effect of pumping on the lens thickness is observed to occur several years after pumping 
commences. The duration of pumping was not considered sufficient on Bonriki to influence the 
thickness of the lens. 
Borehole BN4 was chosen because the best data sets were available for this borehole. The data 
included the depth to the mid-point of the transition zone over the period from 1981 to 1990 
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Figure 3.10 Annual recharge and rainfall on Bonriki during 1954 to 1991, for 20% vegetation 
cover (after Falkland [1992]) 

(beginning of 1981, 1985, 1986, 1988, 1989 and 1990) as shown in Figure 3.11. 
The results from the calibrated model for the period 1954-1992 and the recorded lens thickness at 
borehole BN4 are also shown in Figure 3.11. There is close agreement between the modelled 'no 
pumping' curve with the recorded lens thickness. 
The calibration parameters were the mean effective porosity jS = 0.4 and the permeability 
K = 14 metres per day. Falkland (1992) also verified the calibrated values of specific yield and 
permeability with measurements of salinity at a number of other boreholes on Bonriki. 
There is an apparent contradiction with the use of the Ghyben-Herzberg relationship which is a steady 
relationship in an unsteady flow model. The Ghyben-Herzberg relationship has been used in unsteady 
flow models by Chidley and Lloyd (1977), Anderson (1976), Hunt (1979), Llody er al (1980), 
Ayres and Vacher (1983) and Vacher (1988). However, Herman et al. (1986) suggests that it may 
not be appropriate to base models of atoll islands on the Ghyben-Herzberg relationship because the 
horizontal flow assumption may be violated by tidal influences. It is acknowledged that models based 
on the Ghyben-Herzberg relationship are not appropriate if the short term behaviour of the lens is of 
interest because the Ghyben-Herzberg model depends on the long term balance between recharge and 
outflow of freshwater from the extraction and circumference of the island (Woodroffe [1989]). 
Ghassemi (1994) suggests that for the large time step used, the model results may be considered as 
steady over the interval M. The calibration results shown in Figure 3.11 suggest that the use of the 
Ghyben-Herzberg relationship in an unsteady flow model is valid for the time scale considered in this 
study. 



Chapter 3. Modelling the thickness of the freshwater lens on Bonriki 3.16 

FumpUii raus (m^day) 
0.0 (no pnHvtug) 

• BN4 mtmitoraig data 

1—I—I—I—I—I—I—1—1—I—1—I—I—I—I—\—I—I—I—r 
1954 1959 1964 1969 1974 

Ye«r 

1979 
1 I I I I I I r 

1984 1989 

Figure 3.11 Observed and simulated lens thickness at borehole BN4 on Bonriki, for various 
pumping rates and 80% vegetation cover, during the period 1954-1992 

Values of the aquifer properties permeability and porosity and the estimated recharge for Bonriki are 
consistent with those used for other atoll islands. Values for these parameters for other atoll islands 
can be found in Table 3.3. 
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Table 3.3 Atoll island aquifer characteristics from the Holocene 
(adapted from Underwood et al. [1992]) 

AtoU 
bland Source Permeability 

(m/d) 
Meanirement 

Type 
Effective 
Porosity 

Ixm 
Thickness 

(tn) 

Maximum 
Thickness 

of the Lens 
(m) 

Estimated 
Recharge 

Rate 
(m/yr) 

South Keeling Falkland (1994) 5-50 3-10 15 0.85 

Tonga 
Tongatapu 

Hunt (1979) 1296 field pump test 20 0.43 

Nauru Ghassemi et al. 
(1990) 

900 0.3 4.7 (average) 
(potable) 
up to 7.0 

0.54 

Enewetak 
Enjebi 

Herman et al. 
(1986) 

60 (Holocene) 
6000 (Pleistocene) 

0.3 15 (Holocene) 
200 

(Pleistocene) 

Enewetak 
Enjebi 

Wheatcrafi and 
Buddemaer{\9%\) 

54 
30-75 

60 

fieU pump tests 
lab-permeameter 

0.2 12-15 16-22 0.50 

Tarawa 
Buota 

Lloyd et al. (1980) 4.5 (average) 
2.9-7.3 

pumping test 0.1-0.15 5-10 15-23 1.30 

Pingelap 
Deke 

Ayers and 
Vacher (I9i6) 

0.01-0.44 
(0.11 average) 

1.0-10.0 

in situ penneameter 
reef-plate cores 
Holocene cores 

0.15 (reef) 

0.25 
(Holocene) 

15-25 

17-24 

14-22 (potable) 1.78 

Majuro 
Laura 

Anthony (1987) (3.4 average) 
60 (upper 
sediment) 

60-600 (lower 
sediment) 

grain-size analysis 

gram-size analysis 

Giristmas 
Banana 
Village 

Falkland (I9i3) 5.5 
2-39 

in situ penneameter 0.4 6-12 (potable) 0.12 

Tarawa 
Bonriki 

Falkland (1992) 14 in situ penneameter 0.4 10-24 29 0.7 

Kwajalein 
Kwajalein 

Hunt and 
Peterson (1980) 

56-223 
60-175 

pump tests 
lab-permeameter 

6-12 14-18 (potable) 1.17 

Cocos 
Home Island 

Jacobson (1976) 15 (poteble) 0.50 

Grand Cayman 
Island 

Chidley and 
Lloyd (1977) 

27.4 (average) 10-15 0.28 

Bikini 
Eneu 

Underwood 
(personal data) 

35-70 lab-permeameter 8 (potable) 



Chapter 4. 

Reliability analysis 

There are a number of techniques for estimating uncertainties in a model response. These include the 
use of; (0 the Mellin transform (Epstein [1948], Park [1987] and Tung [1990]), (//) stochastic 
equations (Unny [1984], Zielinski [1988], Tumeo and Orlob [1989] and Leduc et al. [1986, 1988]), 
(Hi) first-order analysis (Sagar [1978], Dettinger and Wilson [1981], Scavia et al [1981], Malone et 
al. [1983], Ang and Tang [1984], Townley and Wilson [1985] and Unlii [1994]), (iv) the point 
estimate method (Evans [1967,1972], Rosenblueth [1975], Li and Lumb [1985], Harr [1989], Yen and 
Guymon [1990] and Zoppou and Li [1993]) and (v) Monte Carlo simulation (Freeze [1975], Smith and 
Freeze [1979a,b], Malone et al. [1983], Jones [1990] and Unlu [1994]). 

First-order methods were first used for water resources problems by Tang and Yen (1972). 
Subsequently they have been applied to the design of; (/) sewers by Tang et al. (1975) and by Yen 
and Tang (1976), (ii) culverts by Yen et al. (1980) and by Tung and Mays (1980) and (Hi) levees by 
Tung and Mays (1981), Tung (1988) and Cesare (1991). It has been used; (i) in flood warning 
predictions by Yen and Tang (1977) and by Melching et al. (1991), (//) for selecting rainfall-runoff 
models and (Hi) by Melching and Yen (1986) to establish the influence of sewer slope on the capacity 
of a sewer. First-order analysis was used by; (0 Tung (1987) to establish the uncertainty of the United 
States National Weather Service rainfall frequency atias, (ii) Chadderton et al. (1982) to provide a 
measure of uncertainty in a dissolved oxygen deficit model and (Hi) Jaffe and Parker (1984) for the 
analysis of uncertainty in a simple first-order decay water quality model. 

There are many examples of the use of Monte Carlo simulation in water resources problems. These 
include: (i) Surges and Lettenmier (1975) who analyzed the accuracy of a simplified Streeter-Phelps 
equation for dissolved oxygen and biochemical demand using both the Monte Carlo simulation and 
first-order second moment analysis, (ii) Scavia et al. (1981) who estimated the variance of a non-linear 
lake eutrophication model using Monte Carlo simulation and first-order second moment analysis. (Hi) 
Garen and Burges (1981) who used both Monte Carlo simulation and first-order second moment 
analysis to determine the uncertainty in the results obtained from the Stanford Watershed model due 
to model input uncertainty, (iv) Huang (1986) who established the reliability of a trapezoidal open 
channel design to convey discharge controlled by sluice gates using both Monte Carlo simulation and 
first-order second-moment analysis, (v) Jones (1990) who used Monte Carlo simulation to estimate the 
statistical moments of the head in a confined groundwater flow in an aquifer subject to different 
pumping rates, (vi) Malone et al. (1983) who used Monte Carlo simulation, first-order analysis and 
the stochastic equation approach to analyze the effect of uncertainty of the phosphorous loading term 
on the long term phosphorous levels in Lake Washington. 

There are few examples of the application of the point estimate method to water resources problems. 
These include: (0 Yen and Guymon (1990) who developed a probabilistic model of the water table 
elevations in an aquifer, (ii) Unlii (1994) who used the point estimate method to establish the 
exceedence probability of contaminants in soil and groundwater downstream from a waste pit. (Hi) 
Zoppou and Li (1993) who used the point estimate method to estimate the confidence limits of the 
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predicted water level in a backwater mcxiel. 

Although the Mellin transform is well known, there are very few applications of the Mellin transform 
to water resources problems. Recently these have included; (i) Tung (1989) for estimating the 
uncertainty of travel time in open channel routing which was estimated using kinematic wave theory 
and (ii) Tung (1990) for the analysis of uncertainty of flood travel time and storm water drain design 
(see also Zoppou and Li [1992]). 

4.1 The Mellin transform 

The mean, variance and higher statistical moments of the model response can be obtained using the 
Mellin transform. The technique has a number of limitations: (z) The model response must be an 
explicit function of the random variables, which is not always possible, (if) The Mellin transform may 
not exist or is readily available for some functions (Park [1987]). (Hi) The random variables are 
independent, (iv) The model response Y = fiX) must have the multiplicative form 

1=1 
in which X = (x^^jy-y^d is a vector of random variables and are constants. Clearly the 
problems considered in this thesis do not satisfy these conditions. Hydraulic and hydrologic problems 
that do satisfy these conditions can be found in Zoppou and Li (1992). 

In practice, random variables encountered in hydraulics and hydrological problems are not 
independent. Random variables closer to each other tend to have similar properties rather than if they 
were farther apart. This is true for many spatial random variables encountered in water resources 
modelling. Therefore, only those techniques which are capable of handling correlated random variables 
will be considered. With the exception of the Mellin transform, all the above techniques are applicable 
to problems with correlated random variables. 

4.2 Stochastic equations 

Stochastic differential equations can be obtained by adding white Gaussian processes to each of the 
random variables in the deterministic equations used in the model. The use of Gaussian white noise 
to describe the uncertainty in the random variables facilitates the solution of the resulting equations. 
The equations can be transformed into a system of Ito differential equations (see, for example 
Zwillinger [1989]). The solution of the Ito differential equation is a Markov process and the joint 
probability density function of the random variables can be found using the Fokker-Plank equation 
(see, for example Zwillinger [1989]). 

Alternatively, the mean and variance of the model response can be estimated from the Ito lemma in 
stochastic calculus. This is commonly referred to as the moment equation approach. The moment 
equation approach is not practical for large problems (Li and McLaughlin [1991]). 

The perturbation method is another approach for deriving stochastic equations in which each random 
variable in the governing equations is expanded into a deterministic component and a fluctuating 
component. The deterministic component may be considered as the central tendency or the mean and 
the fluctuation, the variance or variation about the mean. This perturbation expansion of the governing 
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equations results in a system of stochastic equations. The stochastic equations are solved providing 
estimates of the mean and variance of the model response. These two moments do not entirely 
describe the distribution of the model response, except in the case of two parameter distributions such 
as the normal distribution. 
Tumeo and Orlob (1989) employed the perturbation technique to estimate tiie first two moments of 
a biochemical oxygen demand and oxygen deficit model of the Sacramento River. Satish and 
Zhu (1994) described a stochastic analysis of a two-dimensional steady state ground-water flow model 
of a leaky aquifer using the perturbation based boundary element method. Zielinski (1988) developed 
a stochastic river water quality model based on the Streeter-Phelps model. The model was used to 
predict the dissolved oxygen in the Thames River, Ontario. The stochastic differential equations were 
derived using the moment equation approach. Leduc et al (1986) used the Fokker-Plank equation to 
estimate the probability density function of a biochemical oxygen demand model and the moment 
equation approach to estimate the mean and variance of the model response. A stochastic biochemical 
oxygen demand model was developed by Leduc et al (1988) for the Waterloo Pollution Control Plant. 
Leduc et al. (1988) used the moment equation approach to develop stochastic equations for this 
problem. 
The basic assumption in the perturbation analysis is that the important information about the random 
variables of interest can be provided by the mean and variance. Therefore, in many stochastic equation 
methods, Gaussian distributions are assumed for the random variables (Tumeo and Orlob [1989]). The 
use of stochastic differential equations only provide estimates of the first two moments of the model 
response in many applications. This severely restricts the description of the model response to two 
parameter distributions. There is generally no closed form solution to stochastic differential equations. 
Complicated and numerically intensive algorithms are usually required (see, for example Satish and 
Zhu [1994]). The stochastic equation approach is an approximate technique. Alternative reliability 
techniques are capable of providing comparable results at a fraction of the computational effort. For 
example, Zoppou and Li (1994) used the point estimate method and produced results comparable to 
the analytical solution at a fraction of the computational effort required by the boundary integral 
stochastic model formulation of Satish and Zhu (1994). 
The perturbation method and Monte Carlo simulation will generally not give the same results. The 
differences would be small only if the variability of the random variables is small (Li and 
McLaughlin [1991]). The Monte Carlo simulation is not limited by the small perturbation assumption 
or the assumption of Gaussian white noise description for the uncertainty in random variables. 
Li and McLaughlin (1991) emphasize the fact that numerical limitations have greatiy restricted the 
application of stochastic methods to real-world problems. Numerical methods for solving stochastic 
groundwater problems need to be made much more efficient if they are to have any practical value 
(Li and McLaughlin [1991]). Other approaches used in reliability analysis are currentiy preferred. 
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4.3 First-order analysis 
First-order analysis is useful in obtaining approximations of the mean and variance of the model 
response. The basis of the first-order analysis is a truncated Taylor series expansion of the function 
Y = such that E\f{X)] = (Hahn and Shapiro [1967], Garen and 
Burges [1981] and Yen et al [1986]) and 

^ xp^a^a .̂ (4.1) ^ ^ rtY .M. u fir a .a u y 1-1 >1 dX: 
df 
bx. 

in which /x, is the mean value of parameter ;c„ is the standard deviation of the parameter k is 
the number of random variables and p̂  is the correlation coefficient between and Xj. 
If the random variables x, are uncorrected, then 

= E 
i » l 

df 
dx. 

These relationships are exact if the f u n c t i o n i s linear. Wood (1976) pointed out that in a nonlinear 
system, as watershed models generally are, first-order analysis may give incorrect values for the mean 
model response because/(£[;c]) E[flx)]. The left side of the inequality represents the standard 
modelling procedure, whereas the right hand side represents the desired result. These two values can 
be significantiy different in situations where the model response is highly nonlinear. If the model 
response is not linear then the variance of the random variables must be small to obtain reasonably 
accurate results from first-order analysis (Yen and Guymon [1990]). 
The approximation of the mean model response in first-order analysis involves running a model with 
the mean values of the parameters, whereas the variance of the model response requires the evaluation 
of the derivatives in equations (4.1) or (4.2). 
Analytical expressions for the derivatives of complex models are usually impossible to derive. The 
derivatives can however be approximated convenientiy using finite differences. The standard finite 
difference approach involves incrementing each parameter of the model one at a time by some small 
amount Ax^, and observing the change in the model response AY. The partial derivative of the model 
response with respect to the model parameter is approximated by A17Ax,. 
Garen and Burges (1981) used a centered scheme involving the average of two perturbations x̂  + Ax, 
and X, - Ax„ of each parameter to obtain a better estimate of the partial derivatives. 
For a bivariate function/(jcj), where k = 2, the 2^-1-1 model e v a l u a t i o n s - I - Ax,̂ ,̂), 
fiji^ - Ax,/XY), fijix^tiy + Ay) and fiji^^fiy - Ay) required by first-order analysis could be reduced to 
k -F- I, fiji^.^y), + Ax,fly) and /(m̂ĈAS- ^y)- However, there is some loss of accuracy if the 
partial derivatives for each parameter are approximated by the less accurate forward differences (see, 
for example Yen et al. [1986]). 
Equations (4.1) or (4.2) can be used to estimate the model response variance once the partial 
derivatives for all parameters have been estimated. Approximate prediction limits of the model 
response can be estimated by assuming that the model response is described by a two parameter 
probability distribution. 
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First-order analysis is generally the simplest and involves significantly less computational effort than 
other reliability techniques involving correlated random variables. 
There is another approach used by water resources managers for establishing the sensitivity of a model 
response to variations in the model parameters. This is commonly referred to as sensitivity analysis. 
This usually involves perturbing each model parameter independently and observing the response of 
the model response to the perturbation. 
The first-order analysis can be considered intuitively to be a weighted sensitivity analysis with the 
sensitivity coefficient A / ( A : , ) / A X , weighted by the variance of A:,. This weighting coefficient is important 
in reliability analysis. Although the process may be insensitive to a perturbed parameter, the sensitivity 
coefficient multiplied by its variability, measured by ô  , may have a significant influence on the 
outcome of the process. Although this is similar to first-order analysis, it treats each parameter 
independently and it fails to account for the correlation between the parameter values (Townley and 
Wilson [1985]). In addition, it ignores the effect of the variability of the model parameter on the 
model response. Therefore, simple sensitivity analysis is an inadequate technique for estimating the 
effect of uncertainty in the model parameters on the model response. 

4.4 Point estimate method 
Point estimate methods refer to those methods which enable the statistical moments of a random 
function Y =j{X) to be calculated using the values of Y =j{X) at a specified set of values of X. Point 
estimate methods may be more convenient than other reliability techniques, as neither the calculation 
of derivatives nor the explicit formulation of the function Y = flX) is required (Li and Lumb [1985]). 
The latter is very difficult to attempt for complex models that are used in hydrology and hydraulics. 
The point estimate method developed by Evans (1967,1972) is of limited use because it assumes that 
the random variables are independent. Rosenblueth (1975,1981) developed a two-point estimate 
method for correlated random variables. The joint probability density of AT in this method is assumed 
to be concentrated at points in the 2* hyperquadrants of the space defmed by X. The expected value 
of y = fiX) is obtained by summing the product of f{X) and the probability content of X for all X in 
the 2* hyperquadrants. Rosenblueth's method involves 2* evaluations of fiX). As the number of 
evaluations increases exponentially with k, the method becomes computationally prohibitive when k 
is large. 
The exact expected value can only be obtained in Rosenblueth's point estimate method if the first- and 
second-order statistical moments of the random variables are known and Y = flX) is a quadratic 
polynomial expressed in the general form (Li [1991]) 

Y = AX) - ^ - i^y ^ - - /̂ y) 
I i V 

where fXi is the mean value of ;c„ fi = for ^ function of k variables and and c^ are 
coefficients. 
Taking expectation on both sides of equation (4.3), then 
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' » 

where is the standard deviation of jc, and is the correlation coefficient between and Xj. 

= it can be shown that 
1 1 

I 2 p.O q^O j.O 

W = E - E 1 / 1 - 1 ) ^ , - . . ( - l ) ' , . . , ( - ! » (4.6) 

where 17= 1 if ^ + r is even and = -1 if ^ + r is odd. 

Substituting equations (4.5) and (4.6) into equation (4.4) yields the two-point estimate method 
developed by Rosenblueth (1975) for multivariate functions. The procedure described by equations 
(4.5) and (4.6) is not an efficient way for obtaining the different terms in equation (4.4) as it requires 
a total of 2* evaluations offiX). 

The modified point estimate method by Harr (1989) is an extension of Rosenblueth's 2-point estimate 
method. Although more efficient than Rosenblueth's method, it only provides estimates of the expected 
value and standard deviation and is only applicable to independent random variables. 

A relatively new point estimate method was developed by Li (1992) which has the same order of 
accuracy as Rosenblueth's two-point estimate method for multivariate functions, but it is more efficient 
because it requires fewer evaluations o{f{X). 

The more efficient new point estimate method can be obtained using the following procedure. 

Define = According to equation (4.3),/(at^) can be expressed as 

m = M ^ ^Mi - ^ f'Mi -
Since ̂ (x,) is a quadratic function in jc„ application of the two-point estimate method developed by 
Rosenblueth (1975) for a univariate function to equation (4.7) will yield the exact expectation off^x). 

Therefore, 

where jc,"̂  = /x,- + x; = /x, - a,. Summing equation (4.8) for all z, then 

M ^ E v ? = (1 - m^) ^ 
I ^ i 

Equation (4.9) gives the first two terms on the right hand side of equation (4.4). To obtain the last 
term in equation (4.4), it is necessary to calculate the coefficient Cij. It can be shown that 
Cij = b'̂ J{X)lbxfiXj for a quadratic function. This derivative can be approximated by the following finite 
difference formula 
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^ f^:^;) - m ) - f\(x;) ^ m ^^ ^^^ 

Substituting the results of equations (4.9) and (4.10) 
into equation (4.4), the following formula is obtained. 

= - . f ^ - ) ] . (4-11) 
^ ^ ^ i i<j 

where 

Pi = ^ Pj,' P = H Pi ^^ Pu = 1 ^y definition. j i 
Higher-order statistical moment of f(X) can be computed using 

E i m - y^n = Em'] - E m f 
E[.(m - = mx)'] - 3mx)]E[flx)'] ^ 2E[m'] (^^-i^) 

E[{f{X) - fx)'] = mx)'] - + 6E{f{X)']mx)'] - ^m^v 
with E[f[X)'' ]] obtained from equation (4.11) and where a = iE[x - fif])'^, 0 = E[(x - and 
C = ^ ( x - fiYVa'. 

If the random variables are independent, equation (4.11) can be simplified to the following point 
estimate method which only requires 2k + 1 evaluations o f f i X ) . 

mX)] = (1 - k ) f j i ) ^ ^ / (^Dl . (4.13) ^ i 
Equation (4.11) requires {k^ 3k 2)12 evaluations of Y = fiX) as compared to 2* evaluations for 
Rosenblueth's two-point estimate method. The proposed second-order point estimate method is more 
efficient than Rosenblueth's method for > 3, but not as efficient as the first-order analysis. It is as 
accurate as Rosenblueth's two-point point estimate method. With a moderate number of variables it 
is potentially more efficient than Monte Carlo simulation in many practical problems. It provides an 
exact expected value for a quadratic polynomial and an exact variance for a linear polynomial. 
Equation (4.11) assumes that only the mean and variance of jc, are known. If higher statistical moments 
are known for x̂ , then the following fourth-order accurate expression is more accurate than equation 
(4.11). 

E [ m = (1 - ¥ ^ 4 
^ ^ ' (4.14) 

+ E - Pi ^ i i<j 
in which 

Xi = /X. x ; = /I,. + a,-a.. 
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= , oj- = 1 (4.15) 
- a " ) a-{oc' - a" ) 

and oj® = 1 - 0)"̂  - 0)-. 

The coefficients are estimated using 

In equation (4.11) = 1. 

= — ^ - and a- = " ' V^^ ' ^^ . (4.16) 
2 7 

Equation (4.15) is more accurate than Rosenblueth's method because the former gives an exact 
expected value of a fourth-order multivariate polynomial, while the latter can only give an exact 
answer for a multivariate quadratic polynomial. It will provide exact variance for a second-order 
polynomial and exact skewness and Imrtosis for a linear function. 

There is no need to generate realizations for the random variables in the point estimate method. The 
correlation structure of the process is considered explicitiy in equation (4.11). No assumption has been 
made about the distributions of the random variables in deriving equation (4.11). It is applicable to 
both Gaussian and non-Gaussian random variables. 

The point estimate method is very efficient for a moderate number of random variables. For problems 
with a large number of random variables and for higher-dimensional problems, the number of function 
evaluations may be prohibitive. In addition, the point estimate method may not provide accurate 
estimates of the statistical moments if the model response is highly nonlinear (Yen and 
Guymon [1990]). Estimates of the expected value and standard deviation of the model response may 
not be sufficient to characterize it for highly nonlinear problems. 

The point estimate method only provides approximations of the moments of the model response. It is 
necessary to assume or fit a suitable distribution to these moments if the prediction limits are required. 

4.5 Curve fitting 

The exact probability density of the model response is difficult to determine. However, if the moments 
of the model response are available, it is possible to fit a distribution to these moments and the 
prediction limits of the model response can be inferred from the fitted distribution. This procedure is 
known as curve fitting, see Figure 4.1. 

Only the statistical moments of the model response are estimated in the first-order analysis, the point 
estimate method, the method of moments, perturbation and the Mellin transform (for independent 
random variables). The first-order analysis only provides estimates of the mean and variance of the 
model response. Therefore, only two parameter distributions can be fitted. Generally the normal 
distribution is chosen. For many hydraulic and hydrologic models these two moments may not be 
adequate to describe the model response. This is particularly true if the model response is nonlinear, 
which may result in a skewed distribution for the model response. Higher-order moments are required 
in this case. It is possible to estimate these moments using the point estimate method and the Mellin 
transform. These moments can be used to fit more general distributions which include the normal 
distribution to the model response. 
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moments using the point estimate method and the Mellin transform. These moments can be used to 
fit more general distributions which include the normal distribution to the model response. 

{ variance sktmess kurtosis 
mean variance skemess baiosis 

Y-f(X) 

Cot^idence limits 

Figure 4.1 Estimating the probability density function for the model response, 
Y using higher-order moments 

The probability density functions of many continuous probability distributions can be described as 
solutions of the differential equation (Kendall et at. [1987]) 

dx b^ + b^ + bjK' 
(4.17) 

Solving this equation will produce the probability density function ̂ (a:) for the random variable ;c. The 
parameters (/ = 0, 1, 2, 3) are functions of the first four statistical moments of the distribution. 
The distributions defined by equation (4.17) can be classified according to the nature of the roots of 
its denominator. 
The Pearson family of frequency curves, which is defined uniquely by the first four statistical 
moments, are derived from this differential equation. Twelve types of distributions can be described 
by Pearson distributions, for example, the Pearson Type HI distribution is equivalent to the Gamma 
distribution. The Pearson Type I, II and VI distributions are forms of the Beta distribution and the 
normal distribution is a member of the Pearson family. Solomon and Stephens (1978) showed that the 
Pearson distribution gives an excellent approximation to the long tail of a distribution when the first 
four moments are known exactly. 
The relationship between the numerous distributions within the Pearson family can be established given 
the skewness and kurtosis (see, for example Li and Lumb [1985]). 
Another family of curves attempts to transform one distribution to a more convenient distribution. 
Johnson curves attempt to transform the distribution to normality. There are three types of Johnson 
curves (Johnson [1949]); 

(0 SL (the lognormal system), where the standardized normal variable is given by 
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Z ^ i + 6ln X - f for i < X, 

(ii) Su (unbounded system), where the standardized normal variable is defined by 

z = f + dsinh -1 X - I and X 
{Hi) Sg (bounded system), where the standardized normal variable is expressed as 

X - ^ z = t + 8ln for { < ;c < f + X. { + X - ;c 
The parameters 6, and X are chosen so that z is approximately normal. 
The most appropriate transformation depends on the skewness and kurtosis (see, for example Kendall 
et al. [198'^). Hill et al. (1976) developed an algorithm for fitting Johnson curves given the first four 
statistical moments of a probability density function. 

4.6 Monte Carlo simulation 
Monte Carlo simulation involves executing the hydraulic or hydrological model repeatedly, with each 
run containing a new set of randomly sampled parameters. The results from a large number of runs 
are combined to provide an approximation of the probability distribution of the model response, which 
may provide some insight into the model's behaviour. 
Once the distribution of each independent variable is established in the Monte Carlo simulation, a 
pseudo-random number is generated for each dependant variable and a sample value for the model 
response Y = fiX) is determined. 
Suppose that m samples are simulated, then using the law of large numbers, the probability distribution 
for Y = jiX) can be estimated and the probability that the model response is less than some limit Z 
is given by 

p. = Pr{Y ^fiX) < Z) = l i m l 
m - o o m 

where k is the number of trials in which Y = fiX) < Z. pj is commonly known as the probability of 
failure of the hydraulic system. 
Establishing the number of samples required to define a density function of the model response in 
Monte Carlo simulation is very difficult and considered an art by Burges and Lettenmaier (1975). 
Very large samples are required in some problems. This increases with increasing variance and 
skewness of the distribution. Scavia et al. (1981) used 1,(XX) samples in their Monte Carlo simulation 
of a lake eutrophication model which contained seven parameters. Huang (1986) used 2,(XX) samples 
in the Monte Carlo simulation of flow in a trapezoidal channel controlled by sluice gates. There were 
eleven independent variables in their study. Wallis et al (1974) found that for skewness coefficients 
greater than five, 1(X),(XX) samples were inadequate to describe the tails of the distribution beyond the 
99.9% probability level. Monte Carlo simulation can be computationally expensive when the 
probability of failure of the hydraulic system is small (Yen et al. [1986]). Burges and Lettenmaier 
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The sample size is problem dependent. An adequate sample size can be established by estimating the 
probability density function of the model response for a number of sample sizes and by selecting a 
sample size which produces very little improvement in the estimated probability density function. 
However, this may not ensure that an optimum sample size has been selected. Robinson and Maul 
(1991) observed a false plateau in the estimated risk associated with the geological disposal of 
radioactive wastes using Monte Carlo simulation and various sample sizes. They were able to obtain 
an analytical solution for this problem using the Laplace transform. Without the analytical solution, 
the sample size in the region of the false plateau may have been interpreted as the converged result. 
The sample size was increased by at least an order of magnitude in order to produce an acceptable 
estimate of the true risk associated with the disposal of the radioactive waste. Unfortunately an exact 
solution to a problem is seldom available. Therefore, it may be necessary to use an independent 
reliability method to verify the parameters and the results used in another. 
All the methods described in this chapter may yield similar estimates of average values of the model 
response, however variance estimates can be quite different. Scavia et al. (1981) point out that the 
first-order analysis estimates the variability about a single sample from the population, while Monte 
Carlo simulation estimates the variance of the population, or the expected variability in the system. 
They further suggest that Monte Carlo simulation represents the truth and can be used to check the 
accuracy of other reliability techniques. Another major advantage is that unlike other reliability 
techniques, knowledge of the form of the probability density function for the model response, 
Y = fiX) is not required. 
Monte Carlo simulation is a powerful technique and intuitively appealing (see, for example 
Schweppe [1973]). Fewer assumptions are made in Monte Carlo simulation in comparison to other 
reliability methods. It is a very flexible method that can be applied to solve a wide variety of 
problems. 
A deficiency of the Monte Carlo method is that the probability density function of the independent 
variables must be known or assumed. This may not be possible if there is insufficient data to establish 
these distributions. However, this problem also arises in other methods. 
The model input parameters are usually positively correlated in many water resources problems. 
Zoppou and Li (1993) have shown that ignoring spatial correlation between the random variables has 
a significant influence on the predicted model response. Standard Monte Carlo simulation techniques 
are not capable of incorporating correlations between the random variables because they rely on 
random sampling from independent probability distributions. Unless realizations of correlated spatially 
random variables can be generated, Monte Carlo simulation cannot be used to determine the effect of 
uncertainties on a model's response. The next chapter has been devoted to the generation of spatially 
correlated random fields. 
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Generation of spatial random fields 
Consider a spatially variable quantity x, which is a function of spatial co-ordinate t, where t is the 
one- two- or three-dimensional location vector. The function Ac(t) is not known everywhere, but is 
generally estimated from available data. However, the data is one sample from an infinite collection 
of possible data sets. The ensemble of these infinite data sets or functions defines a spatial stochastic 
process. 
Instead of specifying all possible functions ;c(t), it is more convenient to define the ensemble by 
statistical moments. It is possible to reconstruct the spatial function ;c(t) with these statistical moments. 
Random field generators provide a means of using the statistical information of a spatial stochastic 
process to generate the spatial function jc(t). The grid of generated spatially random values is known 
as a random field and the individual values are known as realizations. A random field generator can 
produce a large number of unique random fields, each having equal likelihood of occurrence, which 
can be used in Monte Carlo simulation. 
Aquifer properties are usually described on a rectilinear grid in space in many groundwater models. 
In practice however, aquifer characteristics are usually measured over a limited region on a 
nonuniform grid. A major advantage of random field generators is that they provide a means of using 
statistical information gathered for a random variable at a few sites to generate values for that spatially 
random variable on a uniform grid. 
Current approaches to generating random fields usually involve the generation of a Gaussian random 
field. To fully define a Gaussian random field only the mean at each point and the covariance function 
at each pair of points is required. Assuming a Gaussian process considerably simplifies the stochastic 
problem (Hasofer [1993]). 

5.1 Second-order stationary process 
The first two statistical moments of a Gaussian random field are defined as the mean (first moment) 
which gives the expected value at any point t 

£[x(t)] = 
and the covariance function (second moment) between the values x(ti) and ^(tj), located at t, and X^ 
respectively, is given by 

7(t„t2) = mxH,) - -
The covariance represents the degree of linear association of the random variable at two different 
locations t j and t^. 
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When ti = t2 then 

7( tpg = a^(t) 

which is the variance. The relationship 

TCtpt̂ ) 
P(t„t2) = 

a(ti)a(t2) 
is the correlation coefficient between ;c(ti) and 

The term correlation function is often used synonymously with covariance function, however they are 
different. Covariance is an established statistical term and correlation is a normalized quantity within 
the range -1 < p(ti,t2) < 1. 

These moments are not known in practice and must be deduced from the data or from previous 
experience. Stationarity and isotropy are simplifications which assist in estimating statistical moments 
from the measured data. 

Stationarity assumes that the mean and variance are constant and the correlation between any two 
observations and jc(t2) depends only on their relative location in space, tj - tj. This can be 
expressed mathematically as 

E[x(t)] = /X and £T(x(tj) - - /x)] = 

Isotropy assumes that the covariance function depends only on the separation distance and not on the 
direction of the separation vector. Therefore, 

E[(x(i,) - - /x)] = - t^l) 

in which | t j - t j | is the separation distance. If these conditions are satisfied then the stochastic process 
is called a second-order stationary process. 

5.2 Covariance functions 

The covariance function should decrease to zero for large separation distances because spatial random 
variables in water resources problems tend to have similar properties if they are closer together than 
farther apart. 

Several covariance functions have been used in water resources modelling (see, for example Bras and 
Rodriguez-Iturbe [1976a,b]). They include the following one-dimensional covariance functions; 

(0 Exponential Junction 

7(V) = a^exp 

{ii) Quadratic exponential or Gaussian Junction 

y(V) = a^exp 
y2 
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(iii) Whittle or Bessel Junction 

(iv) Power model 

liV) = 

(v) Spherical model 

yiV) = \ 

(vi) Hole-effect model 

7 W = c^^K, 

0 

forO < V < V, 
V > K 

1 - I Z . i J l 
2 V, 2 V,' 

0 

forO < V < V, 
V > K 

7(V) = a" 1 - exp 

where, a > 0 is an arbitrary constant, V is the separation distance 11, - ij \ between the random 
variables in the random field, VQ > 0 is the correlation distance also known as the integral scale, K^ 
is a first-order modified Bessel function of the second kind and a is the standard deviation. 
A plot of the above covariance functions can be found in Figure 5.1. These curves were produced 
using Vo = « = 1-Oj 0 < V < 100 and a = 1. Other examples of covariance functions can be 
found in Vanmarcke and Grigoriu (1983). 
The correlation distance reflects how the relationship between values of the random variable depends 
on distance. A large value of Vq implies that the random variable is correlated over a large spatial 
extent. The random variables become perfectly correlated = 1, as Vq and the random field 
model degenerates into the single-random-variable approach. 
The most commonly used covariance function used in water resources problems is the exponential 
function. This is not because data in water resources problems have been found to exhibit exponential 
covariance properties. Instead it is chosen because it is a simple covariance function to evaluate. Bras 
and Rodriguez-Iturbe (1976a,b) recommend the use of the Bessel type or the single exponential type 
covariance function and caution the use of the quadratic exponential covariance function. 
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Figure 5.1 Well known correlation functions used in hydrology 

5.3 Generation of Gaussian realizations 
The problem is how to generate realizations with a given probability distribution and covariance 
structure efficientiy. There are a number of techniques suitable for generating the realization of a 
homogenous stationary Gaussian scaler random process, which attempt to preserve the covariance 
structure. These include; (0 matrix decomposition, (ii) spectral, (Hi) the nearest neighborhood 
approach, (iv) turning bands and (v) the circulant embedding approach. 
5.3.1 Matrix decomposition 
A it-dimensional multivariate normal distribution, with mean n = covariance matrix 
Z), has the joint density function given by Larson (1973) as 

m = D - 1 / 2 exp [-(X - nYD-^X - m)] 

where X = the random variables, |Z)| is the determinant of D, k is the number of 
realizations required and the superscript T denotes transpose. 
Since the covariance matrix is symmetric and positive-definite, it can be written as Z) = BB^, where, 
Bisdik X k lower tridiagonal matrix. If Z^ = are iid iV(0,l) distributed variables, then 
X can be represented as (Fishman [1978]) 

X = BZ + II. 
The decomposition of Z) can be performed by standard techniques such as the bordering technique 
(George and Liu [1981]), which is also known as Cholesky decomposition. After B is computed, then 
from equation (5.1) 
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No approximations have been assumed in generating realizations of A:,. Matrix decomposition via 
Cholesky factorization is exact and does not require stationarity. It is only necessary are evaluate the 
covariance D and it is applicable to problems of any dimension. The only restriction are computational 
resources. The number of floating point operations required by this method for one-dimensional 
problems are and the storage requirement is 0(1^). The prohibitively large storage requirements 
of matrix methods for moderate values of k prevent their generalized use. This is particularly valid 
for two- and three-dimensional problems. For example, the current best algorithms for 
triangularization of a correlation matrix (see for example Dietrich [1993]) required to generate a 
random field on a two-dimensional rectangular grid x require at least 0(p^<f) floating point 
operations. Even with a modest grid size the computational resources are very demanding. For this 
reason multi-dimensional simulations are usually generated by alternative methods. 
Matrix decomposition has been used recentiy by Touran and Wiser (1992) to estimate the total cost 
variance of a construction project. It has also been used in a Monte Carlo simulation model of one-
dimensional groundwater flow in a nonuniform homogeneous media by Freeze (1975). The three 
parameters; (/) hydraulic conductivity, (ii) porosity and (Hi) compressibility were considered as 
correlated and normally distributed, however they were not spatially correlated. 
5 .3 .2 Spectral method 
A stationary process can also be described by its mean, variance and spectral density function. The 
normalized spectral density function is the Fourier transform of the correlation function, which is 
mathematically equivalent (see for example Box and Jenkins [1976] and Chatfleld [1989]). Therefore, 
the spectral representation of a homogeneous and isotropic random field provides a means of 
generating sample functions of that field when its' spectral density function is known. 
The one-dimensional random field can be generated using the classical spectral method described by 
Rice (1954) and improved by Shinozuka and Jan (1972). Other methods have been proposed by 
Shinozuka (1971) and Mejia and Rodriguez-Iturbe (1974). 
Mejia and Rodriguez-Iturbe (1974) derived the following equation for the generation of a spatial 
random process using spectral theory 

^(t) = 
2 ^ 1/2 

'n' m>l 
in which t represents a vector of co-ordinates (ti,t2,...,ld) in y^ is an ^/-dimensional random 
variable CVmi,>'m2»---Jmd) uniformly distributed on a unit surface in ^/-dimensional space R ,̂ is a 
random variable whose distribution is the radial spectral distribution Junction, G(o)) corresponds to 
the isotropic correlation function of x(t), (f>„ is a uniformly distributed random angle between 0 and 
2x, (t^ • y j denotes the vector inner product and N' is the finite number of harmonics. 
Mejia and Rodriguez-Iturbe (1974) have shown that the above process is homogeneous and isotropic 
as Â ' ^ oo. It is also a Gaussian process with zero mean, unit variance and as Â ' oo it has a 
correlation function with radial spectral distribution corresponding to G(w). 
A general family of isotropic random process is characterized by the correlation function (Mejia and 
Rodriguez-Iturbe [1974]). 
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p(t) = 2 
s-dn 

It 
l2V„J ^s-dn t r 2 

- 1 (5.3) 

in which K is the mcxiified Bessel function of the second kind, d is the dimension of the process, 5 
is the degrees of freedom, Vq is the correlation distance and | t | = (ti^ + + ... + t/)^^. 
The spectral density of equation (5.3) is given by 

y(co) = 4} + o^'viy 
where a is a constant and co is some point on R'. 
The radial density function is related to the spectral density by (Mejia and Rodngueze-Iturbe [1974] 
and Bras and Rodngueze-Iturbe [1985]) 

T(d/2) 
therefore 

GXo)) = a 03 d-l 
1 + (oĴ V )̂ 

When s = {d+l)/2 then p(V) = exp{-\V\/VQ), which is the classical exponential decaying correlation 
function. It can be used in one- two- or three-dimensions. For a process varying over an area d = 2, 
then 

GXw) = 
1 + (oî Vl) T3/2 for 0 < CO < oo 

and 
G(a)) = 1 - 1 

1/2 
for 0 < 0) < oo. 

1 + (oPvl) 
For d = 1, the radial density function for a one-dimensional or line process is given by 

1 GXc,) = for 0 < w < oo. 
1 + (oi'Vl) 

which is the derivative of the radial spectral distribution function 

G(a)) = for 0 < oj < oo. 

A major advantage of the correspondence between the radial spectral distribution and a given 
correlation function is that it allows sampling the random variable oj by the inverse method. 
Generating uniformly distributed values between 0 and 1 and their substitution for G(a)) results in a 
series of co values belonging to the population defined by the radial spectral density and distribution 
function. 
A set of commonly used isotropic correlation functions are; (i) single exponential, (ii) quadratic 
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exponential and (Hi) Bessel form. The corresponding radial spectral density functions and distributions 
for tiiese and other correlation functions are given by Mejia and Rodriguez-Iturbe (1974) and 
Mantoglou and Wilson (1982). 
For a two-dimensional space, d = 2, y^ is equally distributed on the unit circle, therefore 

= (Cose^, Sine J 
where d„ is uniformly distributed between 0 and 2T. 
Equation (5.2) becomes 

1/2 X^ = X(X„X2) = x : + x^Cosej + 0 J (5.4) 
m - l 

where and <!>„ are chosen from a uniform distribution over the range 0 to 2x so that and <l>„ are 
J/(0,2ir) distributed. The random variable (j)„ must be sampled from the radial spectral distribution 
function corresponding to a selected spatial correlation function p(;c,,X2). 
The random variable is given by 

= 

2 
1 . 1 - 1 1 - ^^^J - 1 

for a two-dimensional process and 

'̂ m = 

1/2 

(5.5) 

for a line process. 
Generated values of x(t,,t2) through equation (5.4) are samples of a stationary and isotropic two-
dimensional process in the variables t̂  and tj. The spatial correlation of the generated values approach 
equation (5.3) as the number of harmonics goes to infinity. Bras and Rodriguez-Iturbe (1976a) suggest 
that the influence of N' is not crucial provided it is larger than 50. 
The generation of a two-dimensional random field is a seven-step process; 

(0 choose N' > 50, 
(ii) generate N' values of G from t/(0,l), 
(in) calculate N' values of from equation (5.5), 
(zv) generate N' values of from J/(0,27r), 
(v) generate N' values of from f/(0,27r), 
(W) calculate the realizations x^ from equation (5.4), and 
(vii) repeat steps (vi) to (vii) for i = 1,2,...,/;7 = 1,2,...,7. 



Chapter 5. Generation of spatial random fields 5 . 8 

It is possible to generate a random process using these simple steps in the ^ space defined by tj = y 
and t j = X. For a one-dimensional process, = 1 and 7 = 0. 

A more detailed development and explanation of the generation algorithm can be found in Bras and 
Rodriguez-Iturbe (1985^ 

It is reported by Mantoglou and Wilson (1982) that in terms of accuracy and cost Shinozuka and Jan's 
method is superior to the methods described by Shinozuka (1971) and Mejia and Rodriguez-
Iturbe (1974). 

Shinozuka and Jan (1972) propose the following equation 

N' 

m*l 
in which the Cosine amplitudes = (/(a);t)Aw)̂  are derived from the correlation function/(M). 

In the above equation are independentiy random angles uniformly distributed between 0 and 2t, 
(jj^ = (k - l/2)Aaj and = -I- fioj for ^ = 1,..., Â ' and N' is the number of harmonics chosen. 
The discretization frequency Ao? = Q/N' and Q is the maximum frequency at which the spectrum is 
truncated. The frequency is a small random frequency added in order to avoid periodicity and is 
uniformly distributed between -Aci)72 and Aa)72, where Aw' is a small frequency such that 
A(j}' < Aq). Shinozuka and Jan (1972) obtained reasonably accurate results with Aw' = Aw/20 and 
N' = 50 when simulating a line process. 

Both the correlation and spectral density functions of the simulated process converge as (l/N'f to the 
true correlation function and the target spectral density function respectively. The improvement in 
convergence from (1/A '̂)'̂  for (5.2) to (l/N'f for (5.6) results in a significant reduction in computer 
resources. 

A major advantage of the spectral methods is that they are not restricted to evenly spaced observations 
and they can be extended to multi-dimensional applications. However, spectral methods are 
approximate and are only asymptotically exact. The use of the spectral method requires careful 
analysis and fine tuning of parameters if spurious features in the resulting realizations are to be 
avoided, as was shown in a recent study by Black and Freyberg (1990). Furthermore, the method 
requires explicit knowledge of the spectral density function of the covariance function. 

5.3.3 Nearest neighborhood approach 

This approach is fully described by Whittle (1954) and Bartlett (1975). The domain is discretized into 
rectangles. A simple linear equation is used to express the dependence of the realization in a rectangle 
with realizations in surrounding rectangles. The correlation between adjacent rectangles is imposed 
by a moving average or an autoregressive model. 

The first-order nearest-neighbor autoregressive relation in two-dimensions can be written as (Smith 
and Freeze [1979b]) 

in which Xij is the generated realization for the rectangle located at ij, Zy is an iid N{0,1) distributed 
variable, 01 is an autoregressive parameter expressing the degree of spatial dependence of x̂ j on its 
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two neighboring values Xij.̂  and in the direction (la^l < 1) and is the degree of spatial 
dependence of x^ on its two neighboring values in the x direction, and < 1), see 
Figure 5.2. 

^ij+1 

'i-u 'ij 

'ij-1 

Figure 5.2 Schematic illustration of the nearest neighbor grid, first-order model 
(after Smith and Freeze [1979b]) 

A single value x^ applies everywhere within the rectangle iAx x JAy and equation (5.7) is assumed 
to be valid for the entire field for a statistically homogeneous process. 

The stochastic process model for the entire set of p blocks (/ rows and J columns) can be written as 
a system of p linear equations 

X = WX + Z 

where the matrix W is a spatial lag operator of scaled weights w .̂ These scaled weights are defined 
by 

Wju = Wu/r 

where k = 1,2,...,;?; / = 1,2,...,/?; it /, with w j = if rectangles k and I contiguous in the 
y direction, w j = a^ if rectangles k and / are contiguous in the ;c direction, w^ = 0 otherwise and 
r is the total number of contiguous rectangles surrounding rectangle k. The scaling r is required to 
preserve statistical homogeneity in the generated sequence. The matrix W defines the relationship 
between the rectangles. 

Solving for vector X, equation (5.8) yields 

X = (I - W)-'Z 

in which / is an identity matrix. 

(5.9) 

For a p rectangular system, a/? x banded matrix I -W must be inverted once during the simulation 
and the storage proportional to p is required. 

Tompson et al (1989) and Bellin et al (1992) suggest that the nearest neighbor method may not 
produce a stationary process and it is difficult or impossible to specify a desired covariance structure 
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a priori. The reason for this is that there is no explicit use of an correlation structure in the derivation 
of equation (5.9). King and Smith (1988) show that a stationary random field is only generated using 
the nearest neighbor method when a < 1/2 in the one-dimensional case and for a < 1/4 in the two-
dimensional case. Although it is possible to preserve the covanance structure in the principal 
directions of the grid, there is some doubt that it will be preserved on the diagonal. 
The nearest neighborhood approach has been applied to groundwater flow and transport problems by 
Smith and Freeze (1979a,b) and Smith and Schwartz (1981). 
5.3.4 Turning bands 
An alternative approach for the synthesis of multi-dimensional processes is the turning bands method 
developed by Matheron (1973). 
Instead of simulating the two- or three-dimensional field directly, several line processes are generated 
each using a one-dimensional covariance function that corresponds to the desired two- or three-
dimensional field covariance function. A weighted sum of the corresponding values of the line 
processes is assigned to each point in the random field. 
Let A represent the two-dimensional field where generated realizations with a given covariance 
structure is required at discrete points, see Figure 5.3 
The steps are as follows; 

(/) choose an arbitrary origin 0 in the two-dimensional computational domain 
(ii) generate lines such that the corresponding direction vectors u are uniformly distributed 

on the unit circle, 
(Hi) the angle formed between a line i and a fixed x axis is uniformly distributed between 

0 and 2T, 

(iv) along each line z, generate a second-order stationary line process having zero mean and 
covariance function 7i(f)» where f is the coordinate on line 

(v) onto line /, orthogonally project those points of the field where the realizations are 
required. Assign to these points the corresponding value of the one-dimensional 
process. For example, in Figure 5.3, if Â  is a point of the region with the location 
vector t^, then the assigned value from line i will be z,(fM)» where m̂ = ' ^ is the 
projection of the vector t^ onto line i, u, the unit vector in line i and t̂ ^ • u, represents 
the inner product of the vectors t^ and u„ 

(v/) synthesize M independent line processes using as the covariance function so that 
at every point N of the region there are M assigned values = ' u^), where 
1 = 1, and 
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Figure 5.3 Schematic representation of a random field and turning bands lines, i 
(after Mantoglou and Wilson [1982]) 

(vi'O finally, assign to the point N the value given by 

= t, = • u,) 
y/M 

as the realizations of the two-dimensional random field. 
Either the fast Fourier transform (FFT) technique (Brooker [1985] , Miller and Borgman [1985] ) or 
the traditional spectral method (Shinozuka and Jan [1972] , Mantoglou and Wilson [1982] ) can be used 
to generate the line process. Mantoglou and Wilson (1982) adopted the approach of Shinozuka and 
Jan ( 1 9 7 2 ) to generate the line processes. Tompson et al. (1989) used the fast Fourier transform. 
Bellin et al. ( 1992) used both. 
Equation (5.6) can be used to generate the line process. However, a relationship is required between 
the spectral density function of the line process and the radial spectral density function of the two-
dimensional process. 
Mantoglou and Wilson (1982) proved that the spectral density function of the line process along the 
turning bands line is given by one-half the radial spectral density function of the two-dimensional 
process multiplied by the variance. Therefore, fiw) = (T^G'(W)/2, which can be used to derive the 
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Spectral density function of the line process for various two-dimensional covariance or correlation 
functions, given the radial spectral density function G'(w). 
The simulated covariance approaches the theoretical covariance as M increases (Brooker [1985]). 
Mantoglou and Wilson (1982) found that A/ = 16 provides a very accurate approximation of the 
process and that Af = 4 - 16 is sufficient for almost all applications in two-dimensions. Tompson et 
al. (1989) suggest that at least 100 or more randomly orientated lines are required to alleviate the 
distortion effect associated with the appearance of line-like patterns in the simulated three-dimensional 
random fields. For a rectangular grid with spacing Ax, Ay the origin of the turning bands line is 
chosen so that Af < min(Ax,Ay) (Mantoglou and Wilson [1982]). Evenly spaced lines are preferred 
in practice because of their rapid convergence. The direction of the M lines therefore, are simply a 
rotation of lir/M radians from the previous line process with the angle of the first line, = 0. 
Mantoglou and Wilson (1982) found that for Q = 40/Vo and N' = 100, both the variance and 
correlation were preserved at large distances relative to the correlation length or integration scale when 
equation (5.6) was used to generate a two-dimensional random field. 
Mantoglou and Wilson (1982) claim that turning bands is much more efficient than matrix 
decomposition or the nearest neighborhood approach. The costs are those of generating line 
simulations and appropriately projecting the resulting one-dimensional simulations onto the sampling 
grid. If M lines are used with each containing n intervals, the total cost will be 0(pql) + Mc{n), 
where c(n) is the cost of generating a single line realization. Compared to the exact matrix 
factorization method, the spectral and turning band methods have much more modest computational 
requirements. 
The turning bands method for simulating isotropic Gaussian processes is approximate because it 
depends on the application of the central limit theorem. That is, the correlation structure of the 
ensemble of realizations approach the required structure only if enough lines are generated. It can only 
be applied to processes with stationary and radially symmetric correlation functions. 
Turning bands has been used extensively in groundwater flow and transport problems in a porous 
medium. Rubin et al. (1992) used this method to produce two-dimensional realizations of the 
permeability of an aquifer. Delhomme (1979) used the method of turning bands to generate two-
dimensional realizations of transmissivity for an aquifer. Bellin et al. (1992) used turning bands to 
generate transmissivity in a two-dimensional solute transport in porous medium. Ababou (1991) used 
turning bands to generate conductivity values in a three-dimensional groundwater flow model. 

5.3.5 Circulant embedding approach 
The theoretical basis of a random field generator based on the properties of the circulant matrix will 
be described in detail for the simulation of a one-dimensional stationary Gaussian process on a fine 
rectangular grid in [0,1]̂ ^ C R', where d = I for one-dimension. 
(a) ONE-DIMENSIONAL Realizations 
Consider a stationary Gaussian process X = (XiyX2,...yX^ with zero mean and symmetric covariance 
function y(x) = o^p(x). Stationarity and equally spaced sampling ensures that the covariance matrix 
D has the following Toeplitz form 
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D = 

''2 

''S 

2̂ ''l '-2 

''2 ''l ''O 

'•4 3̂ 2̂ '•1 Ĉ 

where r,. = 7(Aa:'), = 5, Ax is the grid spacing and the diagonal elements have common elements. 

If a symmetric matrix B could be found such that 

D = B^B = B^ 

then by multiplying fi by an uncorrelated random vector Z of independent identically distributed {iid) 
variables which are A (̂0,1) distributed, X = BZ would be distributed as N(0,D) because 

E[X] = E[BZ\ = BE[Z] = 0 
and 

E[XX^ = ElBZZ'^B'] = BE[ZZ']B'^ = BIB"^ = BB^ = B^ = D. 

The existence of B must be established. 

(5.10) 

(5.11) 

For a symmetric positive-definite matrix A, an orthogonal matrix Q and a diagonal matrix A exists 
such that 

A = QAQ^ 

where columns of Q are eigenvectors of A and A = diag(Xo,Xi»---,Vi)) where X, is the eigenvalue 
associated with the eigenvectors. Because A is positive defmite, all X,s are positive and 

Matrix B may now be defined as 

B = QX^^Q" 

because 

B^ = = QA'^'WQ'^ = QAQ" = A. 

So if A is symmetric and positive-definite B exists. 

The computational effort required for the calculation of the complete set of eigenvalues and 
eigenvectors of a large matrix is greater than that required for the decomposition of the covariance 
matrix in the matrix decomposition method. Fortunately there are more computationally efficient 
methods of calculating the matrix B, which is the square root of the covariance function D. 

Davis (1987) uses a polynomial of degree 8 to approximate the function where 

m = on [0,XJ 
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where, = (aj\j), = 0.07961, Oj = 3.504, a^ = -16.32, a^ = 63.22, a^ = -156.5, a^ = 240.6, 

= -220., 07 = 112.5, flg = -24.002 and X„ is an upper bound for the largest eigenvalue of D. 
This is not an exact procedure and it requires storing the matrix Z)̂ .̂ Therefore, this approach is 
computionally expensive for a large number of points. 
An alternative technique, called the circulant embedding approach has been recently developed by 
Wood and Chan (1994) utilizing the fast Fourier transform which is exact, very efficiency and avoids 
storing large matrices. In their approach, the Toeplitz covariance matrix Z> can be embedded into a 
m X m matrix C, where m - for some integer g, and m > 2k, so that the first k x k elements in 
C given here by 

C = 

is equal to D and the matrix C is called a circulant matrix. 
As stated by Brockwell and Davis (1991), a real symmetric circulant matrix may be decomposed so 
that 

C = 
where A = diag{Xo,Xi,...,Vi} is the diagonal matrix of eigenvalues of C, g = {^yj is a complex 
matrix with elements 

1 .exp 
m 

-2'Kijk 
m j,k = 0,l , . . . ,m-l (5.12) 

where = -1 and g ' is the conjugate transpose of Q. If > 0 for 0 < ; < m-1, then from 
Proposition 2.1 of Wood and Chan (1994) C^ = gA^'^g is also real and symmetric, where 

and C^ are symmetric, non-definite square roots of A and C 
respectively. 
If a vector Z of iid variables with A (̂0,1) distribution can be generated, then from (5.10) and (5.11) 

X = CZ = 
is distributed as A^(0,C). 
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The problems are how to evaluate the matrices in (5.13) efficiently and avoid storing large matrices 
for moderate values of m. This is achieved using the efficient fast Fourier transform. 
The discrete Fourier transform of the sequence a of complex numbers is given by 

m - l 

daiH) = E ^J^P j'O 
-Irijk 

m k = 0 , l , . . . , /n- l . 
If the dimension of the circulant matrix is highly composite, that is m is of the form for integer 
values of the fast Fourier transform can be evaluated very efficiently. 
Using Proposition 4.5.1 of Brockwell and Davis (1991) the eigenvalues of C, = d^ij), 
j = 0,1,... ,m-l, where the c-sequence is the first row in C, can be evaluated efficiently using the fast 
Fourier transform. Therefore, there is no restriction in this method on the covariance function and 
only the first row of C needs to be stored. 
To generate the complex normal vector g'Z, iid random variables RQ, j = 1,2, 
n = l,2,...,/w/2-l which are A (̂0,1) distributed are required. Set Sq = Ti = 0, S„r2 = T^n = ^ 
and S„ = = r„ = = for 1 < /z < m/2-1. Using the orthogonal properties 
of the relevant trigonometric functions and Proposition 2.3 (Wood and Chan [1994]), it is possible to 
establish that Q*Z = S iTin distribution, where S = T = {To,Tu...J„.if ^nd the 
superscript T denotes transpose. Therefore, Qt^'^QZ is equal in distribution to m^'^Qa, where 
a = and aj = + for j = 0,l , . . . ,m-l. Finally, from (5.12) pre-
multiplying the vector a by the matrix m^'^Q is equivalent to calculating the discrete Fourier transform 
djin) of the sequence a. From the transformed w-vector which has a A (̂0,C) distribution, extract a 
subvector of length n, which will have N{0,D) distribution. 
The steps can be summarized as follows; 

(/) apply the fast Fourier transform to the c-sequence to obtain X,, 
{ii) generate Sj and 7}, 
{Hi) calculate a^ and 
(iv) apply the fast Fourier transform to the c-sequence. 

The required realizations Y{X) = ) , . . . , w i l l have //(0,Z)) distribution. 
The only conditions required for this approach to be valid are; (/) the mesh of the sampling grid has 
equal spacing, (ii) the random field is stationary, and {in) the embedding matrix C is non-negative 
definite. 
The approach fails if C is not non-negative definite. If the covariance function has bounded support, 
then C will be non-negative definite and the method can always be implemented. Covariance functions 
with the property 7(V) = 0 when V > VQ are said to have bounded support on [0,Vo]- The power, 
hole-effect and spherical covariance functions are examples of bounded supported covariance 
functions. These covariance functions will always produce non-negative embeddings. Dietrich and 
Newsam (1993) found that the exponential decay and the hole effect covariance functions also produce 
non-negative embeddings. They showed that the required embedding is always non-negative definite 
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whenever the sampling grid covers the correlation length scale. This is not true for the Gaussian 
covariance function. The Gaussian and Whittle covariance functions have infinite support. 
More generally, non-negativeness of C can often be achieved by making m sufficiently large (see 
Proposition 2.2 of Wood and Chan [1994]). Otherwise the method can be modified to produce an 
approximate stationary Gaussian field (Wood and Chan [1994]). However, to achieve full efficiency 
of the fast Fourier transform, m should be of the form 2*. 
If simulations are required over a grid that is regular but has an irregular boundary, it is always 
possible to embed the irregular shaped grid in a larger finely spaced rectangular grid and apply the 
circulant embedding approach on a larger finely spaced grid. 
The circulant embedding approach was first described by Davies and Harte (1987) for the one-
dimensional case and later, extended independently by Dietrich and Newsam (1993) and Wood and 
Chan (1993) for multi-dimensions. As far as the author can establish, this technique has never been 
implemented in water resources problems, with the exception of Zoppou et al. (1994). Algorithms for 
generating both one- and two-dimensional stationary Gaussian random fields using the above method 
can be found in Chan and Wood (1994). 
(b) MULTI-DIMENSIONAL REALIZATIONS 

The derivation can be generalized for any dimension d where for = 1, the resulting covariance 
matrix is Toeplitz. For two-dimensions, d = 2 and D is block Toeplitz. For higher dimensions, 
d > then D is nested block Toeplitz. The embedding matrix C has a corresponding block circulant 
structure. 
The number of floating point operations required for the method is essentially the cost of the fast 
Fourier transform of the covariance function values on the extended sampling grid followed by one 
further fast Fourier transform of an appropriately weighted random vector. This represents an overall 
operational count of 0{m log2(m)) floating point operations per realization for (^-dimensional simulation 
with 0(rn) storage, where m is the dimension of the embedding matrix. The computational 
requirements of the approach are comparable to those of the spectral method using the fast Fourier 
transform. 
Unlike turning bands or the spectral method, this approach yields realizations whose ensemble displays 
exactly the desired field correlation structure, provided that the embedding matrix is non-negative. The 
fast Fourier transform is used for computational efficiency. There is no restriction on the covariance 
function and the technique can cope with k > 50,(X)0 grid points in many cases, even on a relatively 
modest computer. 

5.4 Generation of one-dimensional realizations 
A hypothetical one-dimensional study is used to illustrate the use of a number of the above schemes 
for the generation of a one-dimensional random field. The one-dimensional example consists of a 
simple backwater analysis in an open channel. The prediction limits of the simulated water surface 
profile are obtained using the Monte Carlo simulation with; (/) the matrix decomposition method, 
(ii) the spectral method and (Hi) the circulant embedding approach to generate the spatial random field. 
The prediction limits for the model response obtained using Monte Carlo simulation with these random 
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field generation techniques were compared with the prediction limits obtained by the point estimate 
method and first-order analysis for both accuracy and computer resources. 

The following elliptic equation is solved in the backwater model 

^ . = 5 C (5.14) 
dx Ag dx ® ^ 

in which A is the cross-sectional area, Q is the discharge, SQ is the channel bed slope, Sf the fnction 
slope and h is the water depth in the channel. The friction slope is defined by the empirical Manning 
equation given by 

- T T o ^ A 

where W is the wetted perimeter and rj is the Manning resistance coefficient. 

The backwater equation is nonlinear and requires an iterative procedure for its solution. Details of the 
iterative scheme that was used can be found in Henderson (1966, p. 143). 

The water level h(ri) at fixed distances along the channel, can be treated as a function of the Manning 
resistance coefficient t;(x). For simplicity, all other parameters are assumed deterministic. In this 
problem, the model response Y ^fy), represents the backwater profile obtained by solving equation 
(5.14). 

The random variation of i;, at different locations, x, was described by a random field model. The 
exponential correlation function defined by 

p(V) = exp -2 |V| (5.15) 

is used for the correlation function of the Manning resistance coefficient, where V is the separation 
distance between the two sections and the integration scale VQ has been arbitrarily set to 30.5 metres. 

The backwater profile in a trapezoidal channel described in Henderson (1966, p. 126) is considered. 
The channel has a base width of 6.1 metres and side slopes 1.5H:1V, is laid on a slope of 0.001 and 
carries a discharge of 28.32 cumecs. The channel terminates in a free overfall and therefore critical 
flow occurs at this point. The critical depth y ,̂ is equal to 1.17 metres. The channel is divided into 
63 segments, each being 7.62 metres in length Ax. 

A value of the random variable rj is given at each cross-section. Therefore, there is a total of ^ = 64 
random variables. The Manning resistance coefficients have a mean value of 0.025 and a coefficient 
of variation u^p.̂  =15% and is considered to be normally distributed. 

A modest 2145 function evaluations Y = firj), are required for the point estimate method, compared 
to 1000 used in the Monte Carlo simulation and only 129 function evaluations for first-order analysis. 
In the spectral method, given by equation (5.2) Â ' = 100 and the dimension of the circulant matrix, 
m > 2k = = 256 was used in the circulant embedding approach. These values were chosen to 
ensure that the circulant matrix was highly composite and non-negative definite. 

For illustrative purposes, the 95% prediction limit for the model response shown in Figures 5.4 for 
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first-order analysis and the point estimate method was obtained by assuming that Y = firj) is normally 
distributed. The 95% prediction limits for Monte Carlo simulation, also shown in Figure 5.4 were 
obtained from the 1000 model simulations. There is very little difference for practical purposes 
between the model response simulated using all the above methods. 

First-order analysis proved to be an accurate and efficient method for estimating the mean and 
variance of the model response. This is despite the fact that the backwater model is nonlinear. The 
first-order analysis has produced results that are comparable to all the other methods. Therefore, it 
is not unreasonable to assume that for this simple problem the model response is linear. The first-order 
analysis produced the largest model variances. It may not have produced accurate results with larger 
values for the coefficient of variation of the Manning resistance coefficient. As pointed out by Yen 
and Guymon (1990), first-order analysis is only accurate for linear problems where the coefficient of 
variation of the random variables is small. 
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Figure 5.4 Mean and 95% prediction limits of the backwater model response using 
several reliability techniques 

The difference in the variance of the model response predicted by the first-order, point estimate 
method and Monte Carlo simulation is relatively insignificant compared to the variance reduction due 
to adopting a random field model. 

Using the first-order analysis and assuming a traditional single-random-variable approach produced 
the mean and 95% prediction limits shown in Figure 5.5 for the backwater model. Also shown in this 
figure is the predicted model response assuming a random field model. Similar results were obtained 
using other reliability techniques. 
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Figure 5.5 Mean and 95% prediction limits of the backwater model response using 
single-random-variable and random field models in first-order an^ysis 

The random field model produces significantly smaller variance estimates in comparison to the 
traditional single-random-variable approach. This illustrates the importance of selecting an appropriate 
model for establishing the influence of spatially random variables on the response of a model. 
The large variance in the model response reflects the effect of assuming that the value of a random 
variable can be determined with absolute certainty by a single sample. In nature large values are 
usually accompanied by low values. The result is that these extreme values are averaged or smoothed 
in space. The single-random variable model is not a realistic representation of the spatial averaging 
observed in nature, whereas the random field model is a more realistic description of the natural 
process. Therefore, the use of the random field model results in realistic confidence limits of the 
model's response when compared to the single-random-variable model. 
To check that the methods used to generate the random fields have produced realizations that have the 
desired correlation structure, the correlation coefficient was estimated using 

Pin) = 

k-n 

- j - E i'ii - -K-n-1 (5.16) 

where n is the lag and k is the number of observations. 
The correlation function estimated using (5.16), with the realizations generated by the spectral method, 
matrix decomposition and circulant embedding approach, have been plotted against the exact 
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where n is the lag and k is the number of observations. 
The correlation function estimated using (5.16), with the realizations generated by the spectral method, 
matrix decomposition and circulant embedding approach, have been plotted against the exact 
correlation coefficient, given by equation (5.15) in Figure 5.6. The values for the estimated correlation 
function are the average values obtained using 1000 realizations of the one-dimensional field. Although 
there seems to be a significant difference between the estimated and exact correlation coefficient, this 
is attributed to the fact that only when L/Ax oo and the number of realizations approaches oo will 
the estimated correlation function approach p(V). Therefore, all the methods for producing spatial 
random fields have produced realizations that preserve the desired correlation structure. 
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Figure 5.6 Exact and correlation function approximated using 1000 realizations of a 
stationary line process generated using various methods 

The relative computational effort for generating the one-dimensional realizations using the spectral 
approach, matrix decomposition and circulant embedding approach are given in Table 5.1. 

Table 5.1 Relative computational time required to generate 1000 realizations 
of a one-dimensional, 64 node random field 

Method Relative Computational Time Method (seconds) 
spectral 8.2 

matrix decomposition 1.0 
circulant embedding approach 3.4 

The matrix decomposition method like the circulant embedding approach are exact and there is no 
restriction on the covariance function that can be used. The circulant embedding approach required 
more than three times the computational effort than the matrix decomposition method. However, the 
matrix decomposition method is restricted to one-dimensional problems due to prohibitive storage 
requirements needed for higher dimensional problems. The use of the spectral method required more 
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the preferred method for generating the realizations required in the Monte Carlo simulation. This may 
not be the case for higher dimensional problems or problems with more random variables. The 
circulant embedding approach may be more appropriate in this case. 

The first-order analysis was the most efficient method in this simple problem, followed by the point 
estimate method then followed by Monte Carlo simulation. A reason for this is that all the methods 
for generating the realizations required by the Monte Carlo simulation were greater than that required 
to calculate the backwater profile. Even though the point estimate method required more than twice 
the number of model evaluations than Monte Carlo simulation, it was also more efficient. Monte Carlo 
simulation may be more efficient than the point estimate method for more complicated hydrological 
or hydraulic models or problems with more random variables. However, it is unlikely that Monte 
Carlo simulation will be more efficient than first-order analysis. 

The choice of reliability models depends on the accuracy and the type of results required. First-order 
analysis seems to be an accurate method for this problem. First-order analysis may not provide 
accurate results in highly nonlinear problems or problems where the variance of the random variables 
is large compared to their mean. Therefore, first-order analysis is the preferred method for relatively 
simple problems in one-dimension followed by the point estimate method. However, it would be 
prudent to verify the first-order analysis with one of the other reliability methods. 

5.5 Generation of two-dimensional realizations 

The circulant embedding approach, spectral method, matrix decomposition and turning bands have 
been used to generate a 16 x 16 random field with the two-dimensional correlation function 

p(t,,t,) = exp[-{\x, - + " )'2l/y) = ^ = 0'p>'2) ^ ^ 

and ^ = 0, a = 1 and / = 1. This correlation function will always result in a non-negative circulant 
matrix. The random field produced using the circulant embedding approach with m = is shown in 
Figure 5.7. The random field produced using the spectral method with N' is illustrated in Figure 5.8 
and the random field generated using the matrix decomposition method is shown in Figure 5.9. Using 
Af = 20 and N' = 100 in turning bands produced the random field shown in Figure 5.10. 

The one-dimensional covariance function, given by equation (5.16) was calculated using the 
realizations generated by the spectral, matrix decomposition and circulant embedding methods. The 
one-dimensional correlation function was calculated for the 100 random fields generated by each 
method and the average correlation function was plotted against the exact correlation coefficient, given 
by e in Figure 5.11. Equation (5.17) corresponds to the simple correlation model in one-
dimension. The results in Figure 5.11 will confirm whether the random field generators have produced 
realizations with the desired correlation structure. 
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Figure 5.7 Realizations of a two-dimensional, 16x16 stationary process simulated using circulant 
embedding approach with m = 

Figure 5.8 Realizations of a two-dimensional, 16x16 stationary process simulated using spectral 
method with N' = 100 
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Figure 5.9 Realizations of a two-dimensional, 16x16 stationary process simulated using matrix 
decomposition method 

Figure 5.10 Realisations of a two-dimensional, 16x16 stationary process simulated using turning 
bands with M = 20 and iV' = 100 
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Given the relative small sample size of 100 in this example, for practical purposes all the methods for 
producing spatial random fields have produced realizations that preserve the desired correlation 
structure. 

Figure 5.11 Exact and correlation function approximated using 100 realizations of a two-
dimensional, 16x16 stationary process generated using various methods 

The relative computational effort required by these methods to produce the 16 x 16 random field are 
given in Table 5.2. 

Table 5.2 Relative computational time required to generate 100 realizations 
of a two-dimensional, 16x16 random field 

Method Relative Computational Time Method 
(seconds) 

spectral 2.3 

turning bands 66.0 

matrix decomposition 1.0 

circulant embedding approach 2.1 

The spectral, matrix decomposition and the circulant embedding approach require similar 
computational effort compared to turning bands. The excessive computation^ time required by turning 
bands is not surprising in view of the computational effort required to generate the line realizations, 
see Table 5.1. The spectral, matrix decomposition and circulant embedding approach are relatively 
efficient. Although the circulant embedding approach is not as efficient as the matrix decomposition 
method, the computer resources required are modest when compared to the matrix decomposition 
method. It also has modest computing requirements when compared to the spectral or turning bands 
method. The computer resources required by the matrix decomposition method would be prohibitive 
for larger two-dimensional problems such as the freshwater lens problem. 

This simple comparison does not establish the best method for generating random fields. Realistically 
a more thorough investigation should involve establishing the computational time required by each 
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method for numerous single and two-dimensional grid sizes. Plotting the execution time against the 
grid size for each method would give a quantitative indication of the relative efficiencies of these 
methods. The most cost effective method is that which has the smallest gradient. Unfortunately, such 
a comparison may not provide an accurate assessment of the performance of the various random field 
generators. A reason for this is that it depends on the competency of the programmer and the 
numerical algorithms that are required in some of the schemes may dramatically influence the 
efficiency of the overall scheme. For example, it may be more efficient to use fast Fourier transform 
or the circulant embedding approach rather than the spectral method for generating the line realizations 
in the turning band method (see, for example Cressie [1993]). There are however other compelling 
arguments for selecting one of the random field generators over others. 

Black and Freyberg (1990) suggest that the use of arbitrary tests will not necessarily result in the 
choice of an appropriate generator. There may be instances in which parameter changes in these 
generators may improve results for one test but may have a detrimental impact in an application. 
Therefore, it is preferable to use the most accurate generator with the least number of parameters, 
which may not be the most efficient generator. Other factors that may influence the choice of a 
random field generator are the complexity of the model, the type of problem being considered and its 
general applicability. 

The matrix decomposition method is simple to implement, exact and there is no restriction on the type 
of correlation function. Even though for this hypothetical problem this method seems to be the most 
efficient, modest grid sizes and storage requirements make this method computationally prohibitive. 

The spectral method is an approximate method. It uses the central limit theorem, or for practical 
reasons it simplifies the correlation function. 

Turning bands is also an approximate method. This method is limited by the forms of the correlation 
function. However, turning bands is the only method where realizations on a non-uniform grid can 
be generated. 

From Table 3.2 there is a large range of measured permeabilities within a borehole and for different 
pumping tests at the same depth in a borehole. The variability in the measured permeability at each 
borehole excludes the use of conditional realizations for this problem. In addition, the computational 
grid used in the groundwater model is uniform, see Figure 3.6. 

Brooker and Stewart (1993) compared the correlation function of data simulated using several two-
dimensional random field generators for various square grids. Although they recommend the use of 
the turning band method, they found that for very small correlation distances the turning bands failed 
to produce a reasonable fit to the theoretical exponential covariance function. In their case, Af = 50 
line processes were used in the turning bands. Their comparison did not include the circulant 
embedding approach. 

The circulant embedding approach is simple to implement and can be used to generate multi-
dimensional realizations. It is exact if the circulant matrix is non-negative and there is no restriction 
on the form of the correlation function. It can also generate a large number of arrays of realizations 
efficiently. It is the preferred method for generating random fields in multi-dimensional problems. 

Based on the above observations, the circulant embedding approach method will be used to generate 
the two-dimensional random field of permeabilities required by the sharp interface single aquifer 
model. 
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Statistical description of the data on Bonriki 
Chidley and Lloyd (1977) found that the spatial variations in recharge and permeability are likely to 
be far more significant than temporal variations in recharge in determining the behaviour of the 
freshwater lens. Byers and Stephens (1983) and Gotway (1994) consider permeability as a critical 
parameter in modelling the behaviour of an aquifer. Therefore, the permeability will only be 
considered as a spatial random variable. 
There have been 178 permeability measurements made on Bonriki in six boreholes at a number of 
depths and in some instances at the same depth (see Table 3.2). The permeability varies by an order 
of magnitude between 0 and 44 meters per day, which is not unusual. Byers and Stephens (1983) 
report that it may vary by several orders of magnitude. This data will be used to estimate the statistical 
moments and correlation structure of the permeability. 

6.1 Mean and standard deviation 
No assumption is made about the marginal probability density function of the random variables in the 
first-order and point estimate method. Only the statistical moments of the random variables are 
required. The measured permeabilities were treated as independent for the calculation of these 
statistical parameters. This increases the size of the data set and should provide a more reliable 
estimate of the marginal probability density function of the measured data. Using all the measured data 
the mean of the permeability fjĉ  = 12.1702 metres per day, the standard deviation ô - = 8.4050 
metres per day, the skewness v^ = 0.1040 and the kurtosis = 0.0305. The mean value for the 
permeability is only slightly different from the model calibrated value of K = 14 metres per day 
obtained by Falkland (1992) (see Section 3.3). The standard deviation of the permeability is large in 
comparison to its mean value. This violates the assumption made in the first-order analysis and may 
have a significant influence on the accuracy of its' estimate of the variance of the model response. 
The random field generators however, assume that the marginal probability density function of the data 
is Gaussian. A histogram of the recorded permeability data shown in Figure 6.1 indicates that the data 
is highly skewed and does not resemble a Gaussian distribution. This can be confirmed using a simple 
diagnostic plot (see Ang and Tang [1984], p. 279). To test the validity of assuming that K is N{fi,a) 
distributed, F^X,) = F̂ XWi) = w, have been plotted in Figure 6.2, where M, is a uniform distributed 
variable and F^ is the cumulative density function with probability density function X. A valid 
hypothesis will result in a uniform distribution. Figure 6.2 demonstrates that is not uniformly 
distributed. Therefore, the permeabilities K is not normally distributed. 
Many previous studies have found that the permeability of aquifers is highly skewed and that the 
normal distribution was not an appropriate description of the data. By transforming the data into the 
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Figure 6.1 Histogram of measured permeability on Bomiki 
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Figure 6.2 Transformation of measures values of K to uniform variates, w, 
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natural logarithm (In) or logarithm (logio) domain it was observed that the measured permeability fitted 
a normal distribution more accurately than the original data (Gotway [1994]). Byers and 
Stephens (1983) accept the hypothesis that ln(K) is normally distributed in their measurements of K 
in fluvial sands in Socorro, New Mexico. 
Assuming that ln(K) is normally distributed, the following mean and variance of the /^-transformed 
permeabilities were obtained; = 2.2579, = 0.7535 for Â  = 177. Although 178 permeability 
measurements were made, a value of zero was obtained at one site. This value was removed from the 
data set. Visual inspection of the histogram of ln(K) illustrated in Figure 6.3 shows that these values 
resemble a Gaussian distribution more closely than the original data. However, the distribution is now 
skewed to the right. To assess the hypothesis that ln(K) is normally distributed, the histogram of 
M, = C/[0,1] = is plotted in Figure 6.4, where F^ is the cumulative normal probability 
density function. The histogram of w, will not be uniformly distributed for the null hypothesis. Neither 
the measured values or the /^-transformed values from the results shown in Figure 6.2 and 6.4, satisfy 
the normality assumption. Similar results were observed by Sudicky (1986) for the measured 
permeability in a sand aquifer at Borden, Ontario. Gotway (1994) found that the permeability 
measured from Culebra dolomite in eastern New Mexico was not log,o-normally distributed. 
Logarithms to the base 10 were used because the permeabilities vary by eight orders of magnitude, 
which is claimed by Gotway (1994) to be typical of permeabilities of aquifers. Alternative 
transformations such as the Box-Cox transformation could be used (Box and Cox [1964]). Kernel 
filtering estimators could also be used to transform the data. 
Kernel filtering estimators are fully non-parametric in that no assumption as to the underlying 
probability density is explicitly made. 
Define 

Fix) = - I N X , < X ) (6.1) Wi-i 
which is simply the frequency curve of the raw data set containing n points. A continuous empirical 
distribution ftinction can be estimated from n observations X, using 

n 

F(x) = —T K{(y - X,)/w} dy (6-2) 
L 

in which w is the window size, k is a bounded compactly supported kernel function which satisfies 
00 00 

' K(X) dx = 1 and x K(X) dx = 0. 
J - 0 0 

This is essentially a smoother version F(x). F(x) can approximate a different distribution by adjusting 
the window size w. The correct window size is established by testing the hypothesis that F(x) has 
C/(0,1) distribution. 
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Figure 6.3 Histogram of the //i-transformed measured permeability on Bonriki 
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Figure 6.4 Transformation of ln{K) to uniform variates, w, 
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There are a number of kernel functions that can be used. For example, the triangular kernel is given 
by 

K(X) = 

and the Epanechnikov kernel is given by 

1 - |;c| \x\ < 1 
0 \x\ > I 

K(X) = 

The rectangular kernel function is given by 

K{X) = 

0.75(1 - x^) 

0 

< 1 

0.5 

0 

a: < 1 

;c > 1. 

(6.3) 

A family of kernels which contain many of the kernels used in practice is (H^dle [1990]) 
= C„(l - x ' r 

Table 6.1 contains values of a and for the most common cases. 

Table 6.1 Kernels from the family k^ after H^dle (1990) 

Kernel a 
Uniform (Rectangular) 0 1/2 

Epanechnikov 1 3/4 
Quartic (Bi-weight) 2 15/16 

Tri-weight 3 35/32 
Gaussian 00 

The kernel estimate is sensitive to the choice of the bandwidth w. The bandwidth or smoothing 
parameter determines the roughness or smoothness of the estimated function. Smaller bandwidths 
result in fewer data points contributing to the estimate at any point and hence a rougher estimator is 
produced. Larger bandwidths however, allow averaging over a larger data space, resulting in a 
smoother estimator. As the bandwidth increases, bias increases and variance decreases. Moon and 
Lall (1994) suggest that the sensitivity to the bandwidth is perhaps an order of magnitude more 
important than the kernel choice. They used kernel estimators for flood frequency analysis. 
The choice of kernels is generally based on the degree of differentiability required and the 
computational effort involved (Silverman [1986] and Hardle [1990, p. 137]). The Epanechikov kernel 
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has been used in this study. 

Assuming that the measured permeabilities are indq)endent, F{x) was estimated using equation (6.1). F(x.) 
was obtained using the Epanechnikov kernel in equation (6.2) for different values of the window w. 
Plots of F(x) and F(x) are shown in Figures 6.5 and 6.6 for /^-transformed permeabilities and K 
using w = 5/n and w = lOO/n respectively. 
The simple diagnostic plots used above have been used to verify that the transformed data is normally 
distributed. Normality has been satisfied if F(x) = F̂ Xw,) = w, are C/(0,1) distributed. Plots of w, for 
the kernel filtered data shown in Figures 6.5 and 6.6 are shown in Figures 6.7 and 6.8 respectively. 
These figures indicate that the kernel filter chosen has produced uniformity in the results. These results 
were obtained using trial and error by adjusting w in the kernel function K so that F{x) approximates 
a uniform distribution. 

The values of F(x.) shown in Figures 6.5 or 6.6 provide a convenient means of transforming the 
realizations produced from a Gaussian random field generator into realizations that have the desired 
covariance structure and the marginal probability distribution of the measured data. This is achieved 
by; 

(/) estimating F(x) using a suitable kernel function and window size w, 

(//) adjusting w until F{x) approximates a uniform distribution, 
(z/'O generating a Gaussian random field with the desired covariance function and 

realizations having a marginal probability density function that is A (̂0,1) distributed, 

(iv) calculating Fj/y^ = Fi/w.) = F{x,) for each realization y^ in the random field and 
(v) obtaining the realizations X„ which have the same marginal probability density function 

and covariance structure of the measured data by performing the inverse transformation 
X, = F - \ x ) = r ^ F ^ , ) ) . 

Instead of numerically inverting equation (6.2) in step (v) above, tabulated values of F(x) and X, 
provide a simpler means of performing the inversion. 

The empirical distribution function F{x), for either K or ln(K) filtered values could be used. Since 
the data indicates that permeability values of zero are possible, these values cannot be obtained using 
the /n-transformed data. Therefore, K filtered values were used in this study. 
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Figure 6.5 CDF of ln(K) and filtered values of ln(K) using nw = 5 
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Figure 6.6 CDF of K and filtered values of K using nw = 100 
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Figure 6.7 Transformation of filtered values of ln(K) using /iw = 5 to uniform variates, u^ 
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Figure 6.8 Transformation of filtered values of K using nw = 100 
to uniform variates, Ui 
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6.2 Correlation structure of the permeability 

Spatial random variables are not independent in practice. Random variables closer to each other tend 
to have similar properties when compared to those that are further apart. This is true for many spatial 
random variables encountered in water resource modelling. 

Establishing the spatial correlation structure of the permeability data measured on Bonriki will be 
considered. 

The sample size of the order of 10̂  is required for a two-dimensional correlation function. A more 
practical approach is to assume a separable correlation structure. 

P(tpt2) = p A ^ y - P A ' ^ 
for the permeability where p̂  and Py are the correlation functions in the x and y co-ordinate directions 
respectively. With this correlation function structure, it is only necessary to estimate the correlation 
function in each principle direction separately using fewer samples. It has been suggested that a 
minimum of 20 to 50 samples are required to give a reliable estimate of the correlation function for 
a one-dimensional correlation function (see, for example Joumel and Huijbregts [1978]). The problem 
can be further simplified by assuming that p̂  = p .̂ Therefore, only a single correlation function and 
integration scale needs to be estimated. 

Rodriguez-Iturbe et al. (1986) established the spatial correlation structure of rainfall data recorded in 
the Upper Guaire basin in Venuzuela. Forty-four storms were recorded at seven nonuniformly spaced 
rain gauges in their data set. The correlation structure of the data was estimated by calculating the 
correlation coefficient between the mean rainfall from the 44 storm events recorded concurrently at 
the seven rainfall gauges. This resulted in twenty-one values which were used to estimate the 
correlation structure of the data. This is a useful technique if the distance between sites is not regular 
and if at each site a number of regularly sampled values are known. Alternatively, the data is grouped 
into distance classes for sites that are not regularly spaced. The correlation distance is the mid-point 
of the class with each class having at least one data value. The correlation coefficient can be estimated 
from this regularly spaced data using equation (5.16). The major advantage of this approach is that 
this method utilizes ^ of the available information to estimate p. 

A combination of both of these approaches was applied to the data measured on Bonriki, where the 
number of sites is small and the permeability at each site is not sampled at regular depth intervals (at 
the same frequency) at each site, see Table 3.2. This is not a criticism of the data collected on 
Bonriki. The monitoring program on Bonriki was developed to satisfy certain objectives, which did 
not include the estimation of the correlation structure of the permeability. 

Using the data in Table 3.2, the average permeabilities were calculated for a number of depth 
intervals. These values and their corresponding depth intervals are given in Table 6.2 for the six 
monitoring boreholes. The correlation coefficient was calculated between pairs of boreholes which had 
at least three or more values at corresponding depth intervals. This excluded the use of the 
permeabilities at borehole BN7, where only one value was available. Using the remaining data, a total 
of ten values of the correlation coefficient were obtained at the four remaining boreholes. The 
correlation distance is equal to the distance between each pair of boreholes. The distance between each 
pair of boreholes given in Table 6.3 were estimated using the data in Table 3.1. 
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Table 6.2 Average permeabilities at each borehole for various depth ranges 

Depth Permeability in borehole 
interval (metres per day) 
(metres) BNl BN2 BN4 BN5 BN7 BN9 

5-6 8.5 2.1 3.8 11.7 
8-9 11.7 3.9 4.5 10.1 25.0 8.4 

10-12 8.1 
12-15 10.4 9.7 13.7 14.4 
20-21 18.1 12.1 25.2 
>21 6.5 13.5 22.0 38.6 

Table 6.3 Distances between boreholes in metres 

Borehole BN2 BN4 BN5 BN7 BN9 
BNl 153 422 694 93 355 
BN2 269 541 55 202 
BN4 272 324 67 
BN5 596 339 
BN7 257 

This provided an estimate of the correlation structure of the permeability over a distance of 67 to 
694 metres. 
The above approach is strictly not valid for aquifer properties. It is expected that there would also be 
a correlation structure with depth. The approach used by Rodriguez-Iturbe et al. (1986) assumes that 
each storm events are independent and stationary with time. This is not the case for permeability. It 
would be reasonable to expect that the permeability is correlated with depth as well as space. 
Therefore, the stationarity with depth is violated. This is complicated by the possibility that the 
vertical correlation structure may be more complex than the horizontal structure. Byers and Stephens 
(1983) found that there is a greater variability in permeability in the vertical than the horizontal 
direction. Permeability showed a less easily interpreted spatial structure, with different correlation 
lengths and more complex functional forms of the correlation in the vertical than in the horizontal 
direction. 
The ten estimated correlation values have been plotted in Figure 6.9 assuming that stationarity with 
depth exists. 
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Figure 6.9 Variation of the exponential correlation function with correlation distance VQ and 
correlation of the permeability data on Bonriki 

There seems to be no discemable trend in the estimated correlation structure with distance. A 
negative correlation value was obtained between boreholes BNl and BN5. Therefore, there is 
insufficient data to establish the correlation structure of the permeability using the data measured on 
Bonriki. 
A suitable monitoring strategy for estimating the spatial correlation structure of the data can be 
suggested based on the difficulties encountered in estimating the correlation structure of the data 
measured on Bonriki. The monitoring boreholes should be drilled on a uniform grid and the number 
of boreholes should be significantiy increased. The permeability should be measured at the same 
frequency and depth in each bore. 
Since it is not possible to obtain an estimate of the correlation structure of the permeability of the 
aquifer on B o n ^ , the correlation structure will be assumed. 
Several correlation functions that have been used in water resources modelling have been used to 
describe the correlation structure of permeability in an aquifer. Amongst these are; (see, Table 6.4) 
(0 Exponential function, (//) Quadratic exponential or Gaussian function, {Hi) Whittle or Bessel 
function, (iv) Power model, (v) Spherical model and (vi) Hole-effect model. Bras and Rodriguez-
Iturbe (1976b) recommend the use of the Bessel type or single exponential type correlation functions 
and caution the use of the quadratic exponential correlation function. 
The simple exponential correlation function 

p(V) = exp 

has also been adopted in this study and was based on previous studies on atolls where the covariance 
of the permeability has been established from measured data or assumed, see Table 6.4, 
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The integration scale, Vq is also required to define the correlation function. The correlation distance 
should be chosen to reflect the relationship between values of the random variable along the channel. 
A large value of VQ implies that the random variable is correlated over a large spatial extent, resulting 
in a smooth variation in property. Conversely, a small correlation distance implies a rapid spatial 
fluctuation. As VQ the random variable becomes perfectiy correlated p = 1, and the random 
field model degenerates into the single-random-variable approach. If the correlation function is 
assumed to be exponential in form, the integral scale or correlation scale may be determined 
graphically as the lag value that corresponds to a correlation equal to the inverse exponential decay 
constant, l/e » 0.368 (Byers and Stephens [1983]). For alternative correlation functions, values of 
p can be plotted on a graph similar to that shown in Figure 6.9 for the exponential correlation 
function. For a given or assumed correlation function, the value of integration scale VQ, can be 
determined from the graph which best fits the data. 

Since there is insufficient data to establish the form of the correlation structure of the permeability 
data, it is also not possible to estimate the correlation distance. Previous studies do not provide any 
insight into typical values for the correlation distance, see Table 6.4. However, it is unrealistic to 
assume that the permeability should be treated as an independent random variable so that p = 0, or 
as a perfectiy correlated random where p = 1. Without any other convincing argument, it is assumed 
that the correlation distance is 100 metres. This corresponds to the grid spacing used in the model so 
that Vo = Ax = Ay. 

Table 6.4 Correlation functions and correlation scale used to characterized 
permeabilities in aquifers in previous studies 

Aquifer Source Correlation 
Function 

Correlation 
Scale 
(m) 

Soil 
Type 

Normandry 
Bathonian 

Deihomme 
(1979) 

spherical different ranges 

Borden 
Ontario 

Sudicky (1986) exponential 2.8 horizontal 
0.12 vertical 

sands 

Socorro 
New Mexico 

Byers and 
Stephens (1983) 

approx. 
exponential 

fluvial sands 

Bet Dagan 
Israel 

Russo and 
Bresler (1981) 

spherical 2-12 

Las Cruces 
New Mexico 

Sisson and 
Wierenga (1981) 

exponential 0.12 sands 
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Reliability analysis of the freshwater lens 

The behaviour of the freshwater lens for various management strategies can be examined using the 
sharp interface single aquifer model and the data described in the previous chapters. The various 
management strategies may involve different extraction rates and vegetation cover on the island. For 
example, the behaviour of the freshwater lens will be examined for the extraction rates 750, 1175 and 
1500 cubic metres per day with 80%, existing, 40% and 20% vegetation cover. The consequences of 
various management strategies and the performance of different models and modelling approaches will 
be assessed using the predicted lens thickness at borehole BN4 over the period 1955 to 1992. 

7.1 Estimating the expected value and standard deviation of the model response 

First-order analysis, Monte Carlo simulation and the point estimate method could be used to calculate 
the expected and standard deviation of the model response for a given extraction rate and vegetation 
cover. The performance and applicability of these techniques will be examined by estimating the 
expected value and standard deviation of the thickness of the freshwater lens at borehole BN4 for the 
existing vegetation cover and an extraction rate of 750 cubic metres per day. 

Estimates of the permeability, which are considered as random variables, are required at each 
computational node in the sharp interface single aquifer model. Since there are (22)(15) = 330 
computational nodes defining the aquifer, then there are 330 random variables for this problem. 

Using central differences to estimate the partial derivatives in equation (4.1), 1 + 2(22)(15) = 661 
model evaluations (or 331 for backward or forward differences) are required in first-order analysis. 

A sample size of 1(X)0 was used in the Monte Carlo simulation. An approximation of the probability 
density function of the model response is required in this problem. The problem encountered with the 
use of Monte Carlo simulation by Robinson and Maul (1991) is not appropriate to the problem 
considered here. Therefore, the size of the sample is not as critical as it would be if an estimate of 
the probability of failure of the system is required. Other sample sizes were also used. Larger sample 
sizes did not provide significant changes in the estimated probability density function of the model 
response that would justify the additional computational effort required. 

The circulant embedding approach was used to generate the two-dimensional realizations of 
permeabilities required by the single aquifer model in Monte Carlo simulation. The dimension of the 
circulant matrix is m = 2̂^ in the circulant embedding approach. The computational effort required to 
generate a single realization of the random field is only a fraction of the time required to solve the 
equations describing the behaviour of the freshwater lens. The solution of the unsteady groundwater 
flow model required 30 times the computational effort than that required by the circulant embedding 
approach to generate the random field of permeabilities required by the model. Therefore, the 
computational effort required by Monte Carlo simulation is approximately twice that required by first-
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order analysis. However, it provides an approximation of the probability density function of the model 
response. First-order analysis and the point estimate method only provide estimates of the statistical 
moments of the model response. Curve fitting techniques are required to estimate the probability 
density function of the model response using these statistical moments. 
In the point estimate method, (418^ + 3(418) + 2)12 = 87990 model evaluations are required. This 
is far in excess to the number of model evaluations that are required in Monte Carlo simulation or 
first-order analysis. The point estimate method requires considerable more computing resources than 
either the first-order analysis or Monte Carlo simulation. Therefore, the point estimate method is an 
inappropriate method for this problem because of the number of simulations required. 
Only first-order analysis and Monte Carlo simulation are capable of providing estimates of the 
expected value and standard deviation of the model response efficientiy. The expected lens thickness 
at borehole BN4 predicted by using first-order analysis and Monte Carlo simulation are shown Figure 
7.1. First-order analysis estimates the variability about a single sample from the population. Monte 
Carlo simulation provides an approximation of the true expected value of the model response. 
However, the expected values predicted by both methods for practical purposes are very similar. 
The variance of the model response estimated using first-order analysis and Monte Carlo simulation 
is shown in Figure 7.2. First-order analysis has significantiy overestimated the variance of the model 
response for this problem. Accurate results for the variance are not unexpected using first-order 
analysis since the model response is not linear and the variance of the permeability is large in 
comparison to its mean. 
Monte Carlo simulation provides an estimate of the probability density function of the model response 
which is based on a physical model. The probability density function of the model response is shown 
in Figure 7.3 and 7.4 for 1980 and 1990 respectively. These are typical of the histograms of the model 
response for other years. It is a symmetrical model response and all the predicted model responses are 
physically plausible. 
First-order analysis has produced prediction limits of the lens thickness that are physically unrealistic. 
The expected model response plus or minus two or three estimated standard deviations of the model 
response, produces unrealistic values for the thickness of the freshwater lens. This is a major 
advantage of Monte Carlo simulation, where the groundwater model produces physically plausible 
results. This is another reason why first-order analysis is only valid when the coefficient of variation 
of the random variables is small. Estimating the variance of the model behaviour by extrapolating the 
model results that have been perturbed about the mean model response ignores physically unrealistic 
results. First-order analysis is not an appropriate method for estimating the confidence interval of the 
model response for this problem. 
Based on the above observations, the predicted expected value and prediction limits of the lens 
thickness for various management strategies will be estimated using only Monte Carlo simulation. The 
circulant embedding approach will be used to generate the realizations of the permeability required 
by the sharp interface single aquifer model. 



Chapter 7. Reliability analysis of the freshwater lens 7.3 

1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 
Mean 

Figure 7.1 Estimated expected lens thickness using first-order analysis and Monte Carlo simulation 
for 80% vegetation cover and an extraction rate of 750 m^/day 

1955 1960 1965 1970 1975 1980 19B5 1990 
Year 

Figure 7.2 Estimated standard deviation of the lens thickness using first-order analysis and Monte 
Carlo simulation for 80% vegetation cover and an extraction rate of 750 m^/day 
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Figure 7.3 Frequency distribution of the predicted lens thickness at borehole BN4 during 1980 
for an extraction rate of 750 mVday and 80% vegetation cover using Monte Carlo simulation 
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Figure 7.4 Frequency distribution of the predicted lens thickness at borehole BN4 during 1990 
for an extraction rate of 750 mVday and 80% vegetation cover using Monte Carlo simulation 
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1 2 Sustainable yield from the freshwater lens 
As indicated in Section 2.6, sustainable yield is a subjective quantity. Falkland (1994) defines it as 
the extraction rate that will not cause the thickness of the lens on Bonriki to fall below 5 metres. The 
thickness of the lens refers to the freshwater interface where the electrical conductivity of the water 
is 2500 per centimetre. An arbitrary limit on the thickness of 10 metres has been chosen in this 
study. This arbitrary criterion will be used to demonstrate how a numerical model can be used to assist 
in making sound management decisions. The sustainable yield will be defined as the extraction rate 
for which the predicted lens thickness does not fall below 10 metres at any time over the period of 
record. If the lens thickness falls below 10 metres, the long term sustainability of the freshwater lens 
is considered to have been compromised. 
The behaviour of the freshwater lens can be predicted using either a deterministic or stochastic-
deterministic approach. The implications of adopting these approaches will also be considered. 

7.2.1 Deterministic modelling approach 
The random variables are assumed to be known with certainty in a deterministic model. Usually the 
mean values for the random parameters are used in the model. This is equivalent to estimating the 
expected value of the model response using first-order analysis. As was shown in Figure 7.1, the 
expected value of the model response estimated using Monte Carlo simulation is very similar to the 
expected value estimated using first-order analysis. Therefore, the discussion regarding the 
deterministic modelling approach is based on the expected model response estimated using Monte 
Carlo simulation. 
The estimated expected thickness of the freshwater lens for extraction rates of 750, 1175 and 
1500 cubic metres per day with 20%, 40% and 80% vegetation cover are shown in Figures 7.5 to 7.7. 
There figures show that increasing the extraction rate and the vegetation cover reduces the thickness 
of the freshwater lens. An extraction rate of up to 1175 cubic metres per day is sustainable for the full 
range of vegetation cover considered when the subjective criterion that the sustainability of the 
freshwater lens is not compromised when the thickness of the freshwater lens falls below 10 metres 
is used. 
Figure 7.7 illustrates that the lens thickness falls below 10 metres when the extraction rate is 1500 
cubic metres per day with the existing vegetation cover. This extraction rate is sustainable if the 
vegetation cover is reduced. There is a tradeoff between increasing the extraction rate with the loss 
of production in coconut products due to the reduction in vegetation on the island. 
The deterministic model provides managers with a tool to investigate the influence on the thickness 
of the freshwater lens of various management strategies. More informed decisions can be made by 
managers using this tool. 
The results shown in Figures 7.5 to 7.7 assume that all model parameters are known with certainty 
and the model is exact. This is far from reality. The model response is not known exactiy because the 
model parameters are not known with certainty. Figures 7.3 and 7.4 illustrate that there is a wide 
range of possible outcomes, with each outcome having a different probability of occurrence. The width 
of the probability density function of the model response is a reflection of the amount of uncertainty 
in the model parameters and the sensitivity of the model to these uncertainties. A wide range of 
possible outcomes may have an influence on the decision making process. 
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Figure 7.5 Predicted expected lens thickness for 20%, 40%, 80% tree cover and an extraction rate 
of 750 mVday using Monte Carlo simulation 
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Figure 7.6 Predicted expected lens thickness for 20%, 40%, 80% tree cover and an extraction rate 
of 1175 m^/day using Monte Carlo simulation 



Chapter 7. Reliability analysis of the freshwater lens 7.7 

0 I I I I I I I I I I I I I I I I I I I—I I r I I — i — n — I I I I I I I I I — r -

1 9 5 5 1 9 6 0 1 9 6 5 1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 

Year 

Figure 7.7 Predicted expected lens thickness for 20%, 40% and 80% tree cover and an extraction 
rate of 1500 mVday using Monte Carlo simulation 

The stochastic-deterministic modelling approach will be used to incorporate the influence of 
uncertainties in the model parameters on the model response. The way these uncertainties may 
influence the decision making process is also considered. 
7.2.2 Stochastic-deterministic approach 
The 1, 50 and 99 percentiles of the lens thickness were obtained from the 1000 model simulations used 
in Monte Carlo simulation. These percentiles have been plotted in Figures 7.8 to 7.16 for different 
extraction rates and vegetation covers considered in this study. 
The width of the prediction limit seems to increase with decreasing vegetation cover or increasing lens 
thickness. This suggests that the width of the confidence limit is proportional to the thickness of the 
freshwater lens. This was observed for all the considered extraction rates 750, 1175 and 1500 cubic 
metres per day. 
It could be argued that the uncertainties in K might be considered as equivalent to the reduction in the 
vegetation on the island when the results in Figure 7.5 are compared with those obtained in Figure 
7.9. For example, the results in Figure 7.9 suggest that the uncertainties in the permeabilities are 
equivalent to reducing the vegetation by between 40% to 20% of the surface of the island. Similar 
observations could be made for other extraction rates. 
As with the deterministic modelling approach, the results in Figure 7.14 indicate that maintaining an 
extraction rate of 1500 cubic metres per day with 80% vegetation cover will compromise the viability 
of the freshwater lens. Therefore, this and larger extraction rates are not sustainable for the existing 
vegetation cover. 
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Figure 7.8 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 750 mVday and 80% vegetation cover 
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Figure 7.9 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 750 mVday and 40% vegetation cover 
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Figure 7.10 The expected, 1% and 99% prediction limits of the lens thickness using Monte 
Carlo simulation for an extraction rate of 750 m /̂day and 20% vegetation cover 

Unlike the deterministic modelling approach shown in Figure 7.7, an extraction rate of 1500 cubic 
metres per day and 40% vegetation cover is not sustainable if uncertainties in the model parameters 
are considered. The stochastic-deterministic model results in Figure 7.15 suggests that there is a high 
probability that the lens thickness will fall below 10 metres, resulting in the freshwater lens being 
compromised. There is no doubt that from Figures 7.7 and 7.14 that an extraction rate of 1500 cubic 
metres per day with the existing vegetation cover is not sustainable. From the results obtained for the 
stochastic-deterministic model, shown in Figures 7.8 to 7.10 the conclusion drawn for the 
deterministic model results, shown in Figure 7.5 are also valid. An extraction rate of 750 cubic metres 
per day is sustainable for all vegetation covers. This is not the case for an extraction rate of 
1175 cubic metres per day. The deterministic model implies that this extraction rate is sustainable for 
all vegetation covers. However, the results in Figure 7.11 and 7.12 suggest that this extraction rate 
is sustainable only if there is 40% or less vegetation cover on the island. The freshwater lens is 
compromised for 80% vegetation cover. 
The situation improves by reducing the vegetation to 40% of the surface area of the island. However, 
based on the arbitrary criterion, an extraction rate of 1500 cubic metres per day is not sustainable. The 
extraction rate of 1500 cubic metres per day with 20% vegetation cover is sustainable. 
There is a possibility that the freshwater lens may be compromised with 40% vegetation cover. A 
rational management decision can be made on whether the risks associated with compromising the 
security of the freshwater lens outweigh the benefits of the extraction rate of 1500 cubic metres per 
day with 40% vegetation cover. Alternatively, the vegetation could be further reduced to 20% of the 
surface area of the island. The freshwater lens in this case is never compromised. There is however 
a tradeoff in the extra security gained by requiring that the vegetation cover be reduced to 20%, that 
is there will be a loss in coconut production. There are also the additional costs associated with 
increasing the number of pumping galleries on the island. Currentiy there are 17 infiltration galleries 
each having a nominal pumping rate of 750 cubic metres per day. This provides a maximum yield of 
only 935 cubic metres per day. At least 22 galleries would be required for an extraction rate of 1175 
cubic metres per day and 28 for 1500 cubic metres per day. 
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Figure 7.11 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 1175 m /̂day and 80% vegetation cover 

1955 1960 1965 1970 1975 1980 1965 1990 
Year 

Figure 7.12 The expected, 1% and 99% prediction limits of the lens thickness using Monte 
Carlo simulation for an extraction rate of 1175 mVday and 40% vegetation cover 
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Figure 7.13 The expected, 1% and 99% prediction limits of the lens thickness using Monte 
Carlo simulation for an extraction rate of 1175 mVday and 20% vegetation cover 

If the uncertainty in the permeability is ignored, the extraction rate of 1500 cubic metres per day with 
80% vegetation cover only would be considered as not sustainable. This would be the conclusions 
drawn from a deterministic modelling approach which is the only modelling result generally available 
to managers. Uncertainties in the model parameters are not considered. Decision makers who base 
their decisions on these results alone may compromise the freshwater lens and jeopardize the survival 
of the inhabitants on Tarawa. 
The decision making process can be refined by incorporating the uncertainties in the modelling process 
and placing prediction limits on the model response. The results from the stochastic-deterministic 
model suggests that the removal of the vegetation may not provide the additional yield anticipated. In 
addition, there is a high probability that the freshwater lens could be compromised because of the 
uncertainty in the model parameters. 
These results illustrate the importance the influence of uncertainties in the model parameters have in 
the decision making process. 
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Figure 7.14 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 1500 mVday and 80% vegetation cover 
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Figure 7.15 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 1500 mVday and 40% vegetation cover 
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Figure 7.16 The expected, 1% and 99% prediction limits of the lens thickness using Monte Carlo 
simulation for an extraction rate of 1500 m'/day and 20% vegetation cover 
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Conclusions and recommendations 

A number of techniques for incorporating parameter uncertainty in a model's response have been 
examined using hypothetical examples and a case study. The consequences of ignoring these 
uncertainties on the decision making process has been demonstrated using a case study. 

The importance of adopting a single-random-variable and the random field modelling approach for 
establishing the influence of spatially random variables on the response of a model has also been 
demonstrated. The random field model is the most appropriate for many water resources problems. 
The single-random-variable model overestimates the variability of the model response. 

The reliability techniques that have been considered in this study include; (/) first-order analysis, 
(ii) point estimate method and (Hi) Monte Carlo simulation. 

First-order analysis is generally the simplest and involves significantiy less computational effort tiian 
other reliability techniques involving correlated random variables. First-order analysis is exact if the 
model response is linear. If the model response is nonlinear then reasonably accurate results are 
obtained only when the coefficient of variation of the random variables is smadl. 

The point estimate method is not as efficient as first-order analysis. With a moderate number of 
variables it is potentially more efficient than Monte Carlo simulation in many practical problems. It 
gives an exact expected value of a fourth-order multivariate polynomial, exact variance for a second-
order polynomial and exact skewness and kurtosis for a linear fonction. There is no need to generate 
realizations for the random variables in the point estimate method and the correlation structure of the 
process is considered explicitiy in the method. Very few assumption have been made about the 
distributions of the random variables in the point estimate method. It is applicable to both Gaussian 
and non-Gaussian random variables. The point estimate method is suitable for problems with a few 
random variables such as one-dimensional problems. For higher dimensional problems, the point 
estimate method is computationally expensive. In addition, the point estimate method may not provide 
accurate estimates of the higher-order statistical moments if the model response is highly nonlinear. 

First-order analysis and the point estimate method only provide estimates of the statistical moments 
of the model response. If the prediction limits are required curve fitting techniques are required to 
estimate the probability density function of the model response using these statistical moments. 

Monte Carlo simulation provides an approximation to the distribution of the model response. It is a 
powerful technique and intuitively appealing. It is a very flexible method that can be applied to solve 
a wide variety of problems. There are a number of techniques for generating the random field with 
the desired statistical properties required in Monte Carlo simulation if the random variables are 
spatially correlated. These include; (i) matrix decomposition, (ii) spectral, {Hi) the nearest 
neighborhood approach, (iv) turning bands and (v) the circulant embedding approach. 
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Current approaches to generating random fields usually involve the generation of a stationary Gaussian 
process. The non-parametric Kernel filtering can be used with stationary Gaussian random field 
generators to produce realizations for any distribution. This was demonstrated using measured data 
in the case study. 
Matrix decomposition via Cholesky factorization is exact and does not require stationarity. The 
prohibitively large storage requirements of matrix methods, for moderate number of random variables, 
prevent their generalized use. Even with a modest grid size the computational resources are very 
demanding. Multi-dimensional simulations are usually generated by alternative methods for this 
reason. 
A major advantage of the spectral method is that it is not restricted to evenly spaced observations and 
it can be extended to multi-dimensional applications. However, the spectral method is approximate and 
is only asymptotically exact. The use of the spectral method requires careful analysis and fine tuning 
of parameters if spurious features in the resulting realizations are to be avoided. Furthermore, the 
method requires explicit knowledge of the spectral density function of the covariance function. 
The nearest neighbor method may not produce a stationary process and it is difficult to specify a 
desired covariance structure a priori. Although it is possible to preserve the covariance structure in 
the principal directions of the grid, there is some doubt that it will be preserved on the diagonal. 
The turning bands method for simulating isotropic Gaussian processes is also an approximate method 
because it depends on the application of the central limit theorem. Although it is only necessary to 
generate line processes in this method, it is restricted to particular forms of the covariance function. 
The circulant embedding approach produces realizations with exactly the desired covariance structure. 
It can handle large problems efficiently and for practical problems there is no restriction on the 
covariance function that can be used. The only conditions required for this approach to be valid are; 
(0 the sampling grid is regular, (//) the random field is stationary, and (Hi) the embedding circulant 
matrix is non-negative definite. 
Non-negativeness of the circulant matrix can often be achieved by making the matrix sufficiently large. 
Otherwise the method can approximate a stationary Gaussian field. The circulant matrix should be 
highly compact to achieve full efficiency of the fast Fourier transform. 
For the one-dimensional backwater profile problem considered, the circulant embedding approach 
required more than three times the computational effort required by the matrix decomposition method. 
The spectral method is the most expensive means of generating the random fields. Therefore, for this 
and similar one-dimensional problems, the matrix decomposition method is the preferred method for 
generating the realizations required in the Monte Carlo simulation. This may not be the case for higher 
dimensional problems or problems with more random variables. The circulant embedding approach 
may be more appropriate in this case. 
For simpler problems, where the model response seems to be linear, the point estimate method, first-
order analysis and Monte Carlo simulation produce very similar results for the expected model 
response and for the 5% and 95% prediction limits. 
Estimating the prediction limits of the thickness of a freshwater lens on Bonriki was chosen as the case 
study. The permeability of the aquifer, which is required by the groundwater model used to simulate 
the behaviour of the lens, was treated as a random variable. 
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Neither the measured permeabilities on Bonriki nor the /^-transformed values satisfy the normality 
assumption. The non-parametric Kernel filtering estimators were successfully used to obtain normality 
in the data. 

Despite the amount of permeability data recorded on Bonriki, it was not possible to establish the 
correlation function or the correlation distance for the data. These were however, assumed. 

Based on the difficulties encountered in estimating the correlation structure of the data measured on 
Bonriki, a suitable monitoring strategy for estimating the spatial correlation structure of the data has 
been suggested. The monitoring boreholes should be drilled on a uniform grid and the number of 
boreholes should be significantly increased. The permeability should be measured at the same 
frequency and depth in each bore. 

First-order analysis, point estimate method and Monte Carlo simulation were used to estimate the 
prediction limits of the freshwater lens. 

The circulant embedding approach was used to generate the two-dimensional realizations of 
permeabilities required by the sharp interface single aquifer model in Monte Carlo simulation. The 
computational effort required to generate a single realization of the random field is only a fraction of 
the time required to solve the equations describing the behaviour of the freshwater lens. The 
computational effort required by Monte Carlo simulation is approximately twice that required by first-
order analysis. 

The point estimate method requires considerable more computing resources than either first-order 
analysis or Monte Carlo simulation. Therefore, the point estimate method is an inappropriate method 
for this problem because of the number of simulations required. 

Despite the fact that first-order analysis estimates the variability about a single sample from the 
population and Monte Carlo simulation provides an approximation of the true expected value of the 
model response, the expected values predicted by both methods for practical purposes are very similar. 
However, first-order analysis significantly overestimated the variance of the model response for this 
problem and has produced prediction limits of the lens thickness that are physically unrealistic. First-
order analysis is not an appropriate method for estimating the confidence interval of the model 
response for this problem. Only Monte Carlo simulation produced physically plausible results. 

The choice of reliability models depends on the accuracy and the type of results required. First-order 
analysis is the preferred method for relatively simple problems in one-dimension followed by the point 
estimate method. Both techniques are recommended for practical problems where the response of the 
model is approximately linear. However, it would be prudent to verify the first-order analysis with 
one of the other reliability methods. Monte Carlo simulation should be used for highly nonlinear 
problems. 

The results of the case study suggest that Monte Carlo simulation is robust, efficient and provides 
results that are physically plausible. It should therefore be considered as the most reliable method for 
estimating the prediction limits of a model response. 

Monte Carlo simulation only was used to estimate the prediction limits of the thickness of the 
freshwater lens for various management strategies. A management strategy for increasing the 
extraction rate of freshwater from the lens is to reduce the amount of vegetation on Bonriki. Increasing 
the extraction rate and the vegetation cover reduces the thickness of the freshwater lens. By using the 



Chapter 8. Conclusions and recommendations 8 .4 

subjective criterion that the sustainability of the freshwater lens is not compromised when the thickness 
of the freshwater lens falls below 10 metres, an extraction rate of up to 1175 cubic metres per day 
is sustainable for the full range of vegetation cover considered. Both the deterministic and stochastic-
deterministic modelling approach indicate that maintaining an extraction rate of 1500 cubic metres per 
day with 80% vegetation cover will compromise the viability of the freshwater lens. Therefore, this 
and larger extraction rates are not sustainable for the existing vegetation cover. The deterministic 
model indicates that the situation improves by reducing the vegetation to 40% of the surface area of 
the island. The extraction rate of 1500 cubic metres per day with 20% vegetation cover is sustainable. 

Unlike the deterministic modelling approach, an extraction rate of 1500 cubic metres per day and 40% 
vegetation cover is not sustainable if uncertainties in the model parameters are considered. The 
stochastic-deterministic model results indicate that there is a high probability that the lens thickness 
will fall below 10 metres resulting in the freshwater lens being compromised. An extraction rate of 
750 cubic metres per day is sustainable for all vegetation covers. This is not the case for an extraction 
rate of 1175 cubic metres per day. The deterministic model implies that this extraction rate is 
sustainable for all vegetation covers. However, the results from the stochastic-deterministic model 
suggest that this extraction rate is sustainable only if there is 40% or less vegetation cover on the 
island. The freshwater lens is compromised for 80% vegetation cover. 

If the uncertainty in the permeability is ignored, the extraction rate of 1500 cubic metres per day with 
80% vegetation cover only would be considered as not sustainable. This would be the conclusion 
drawn from a deterministic modelling approach, which is the only modelling result usually available 
to managers. Uncertainties in the model parameters are not considered. The decision making process 
can be refmed by incorporating the uncertainties in the modelling process and placing prediction limits 
on the model response. The results from the stochastic-deterministic model suggests that the removal 
of the vegetation may not provide the additional yield anticipated. In addition, there is a high 
probability that the freshwater lens could be compromised because of the uncertainty in the model 
parameters. Decision makers who base their decisions on deterministic models alone may compromise 
the freshwater lens and jeopardize the survival of the inhabitants on Tarawa. 

The results for the case study illustrate the importance uncertainties in the model parameters have in 
influencing the decision maldng process. 

Future work should involve including uncertainties from other model parameters such as rainfall and 
porosity in the analysis and the use of more sophisticated groundwater models to predict the behaviour 
of the freshwater lens. Attempts should be made to obtain improved estimates of the covariance 
structure of the permeability. 

Finally, a framework for the assessment of the influence of uncertainty in the modelling process has 
been demonstrated using hypothetical studies and a case study. 
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