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ABSTRACT 
A model to describe the low frequency dynamic and acoustic responses of a submarine hull 
subject to a harmonic propeller shaft excitation is presented. The submarine is modelled as 
a fluid-loaded, ring stiffened cylindrical shell with internal bulkheads and end caps. The 
stiffeners are introduced using a smeared approach. The bulkheads are modelled as circular 
plates and the end closures as truncated conical shells. The propeller introduces a harmonic 
axial force that is transmitted to the hull through the shaft. It results in excitation of the 
accordion modes only if the force is symmetrically distributed to the hull. Otherwise the 
excitation can be modelled as the sum of an axisymmetric axial force plus a moment 
applied to the edge of the hull to take into account the eccentricity of the force. This leads 
to excitation of the higher order circumferential modes that can result in high noise 
signature. Structural and acoustic responses are presented in terms of frequency response 
functions of the axial and radial displacements and directivity patterns for the radiated 
sound pressure. Results for the case of purely axisymmetric excitation and the case in 
which an eccentricity is introduced are compared. 
 

1 INTRODUCTION 
Vibration modes of a submerged hull are excited from the transmission of fluctuating 

forces through the shaft and thrust bearings due to the propeller rotation. These low 
frequency vibration modes of the hull can result in a high level of radiated noise. The focus of 
this work is to investigate the low frequency structural and acoustic responses of a submarine 
hull under axial excitation. Previous work has concentrated on the axisymmetric breathing 
modes associated with the zeroth circumferential mode number (n=0) [1]. However in reality, 
the excitation of the hull from the propulsion system is not perfectly symmetric, resulting in 
excitation of both the n=0 breathing modes and higher order circumferential modes (n≥1). 
The forced response of the structure is calculated by solving the cylindrical shell 
displacements in the form of a wave solution and the conical shell in terms of a power series. 
An analytical expression for the radiated sound pressure from the structure is presented and 
accounts for the contributions from both the cylindrical hull and the end caps. Once the radial 
displacement of the structure is determined, the sound radiation in the far field is evaluated by 
modelling the submarine as a slender axisymmetric body for which the closed form solution 
of the Helmholtz equation is possible. The radiating surface is considered continuous. The 
scattering from the curvature discontinuity at the junction between the cylindrical and conical 
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shells is neglected as well as the scattering at the external plates closing the conical shells. At 
low frequencies, these effects are considered negligible. 

2 DYNAMIC MODEL OF THE SUBMARINE HULL 
The submarine is modelled as a fluid loaded cylindrical shell with internal bulkheads and 

ring stiffeners. The hull is closed by means of end plates and truncated conical shells. The 
truncated cones are also closed at each end by circular plates. The model is illustrated in 
Figure 1. 

 
 
 

 
 
 
 

Figure1: Schematic diagram of the submarine. 

 
The main part of the submarine consists of a finite ring stiffened cylindrical shell closed 

at each end by two circular plates. The hull is partitioned into three parts by two equally 
spaced bulkheads. The ring stiffeners are modelled using smeared theory [2]. In Figure 2, u, v 
and w are the orthogonal components of displacement in the x, θ and z directions, 
respectively. a is the mean radius of the cylindrical shell and h is the shell thickness. 
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Figure 2: Coordinate system for a thin walled cylindrical shell. 

 
Variation to the differential equations of motion for thin cylindrical shells have been 

summarised by Leissa [3]. The equations of motion used here are those of Flügge as given by 
Rosen and Singer [4], and can be written in terms of a differential operator ijL  by  
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2 1/2[ / (1 )]Lc E ρ υ= −  is the longitudinal wave speed. E, ρ  and υ  are respectively the 

Young’s modulus, density and Poisson’s ratio of the cylinder. The external pressure loading p 
due to the fluid acting normally to the surface of the cylindrical shell can be approximated 
using an infinite model and expressed in terms of a fluid loading parameter LF  by [5] 
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where / La cωΩ =  is the non dimensional ring frequency. fρ  is the density of the fluid. nH  

is the Hankel function of order n and nH ′  is its derivative with respect to the argument. nrk  is 

the radial wavenumber [5]. The general solutions to the equations of motion can be written as 
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where ininin WUC ,,, /=  and ininin WVG ,,, /= . nk  is the axial wavenumber and n is the 

circumferential mode number. 
The end plates and bulkheads were modelled as thin circular plates in bending and in-

plane motion. The axial pu , radial pw  and circumferential pv  plate displacements are shown 

in Figure 3. hp is the plate thickness. 
 
 

 
 

Figure 3: Coordinate system for a thin plate. 
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Displacements for the end plates and bulkheads can be written as [6] 
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where pBk  is the plate bending wavenumber and pTk , pLk  are the wavenumbers for in-plane 

waves in the plate [6]. nJ , nI  are respectively Bessel functions and modified Bessel 

functions of the first kind. The coefficients An,i and Bn,i ( 1, 2i = ) are determined from the 
continuity equations at the cylinder/plate junctions. 

Dynamic modelling of the conical shells can be found in [7]. The displacement of the 
conical shell was described using a power series solution following the procedure presented 
by Tong [8]. Fluid loading was taken into account using a local cylindrical approximation 
and this method is shown to be reliable at low frequencies. The displacements and coordinate 
system for the conical shell are shown in Figure 4, where uc and vc are respectively the 
displacements of the shell’s middle surface along the xc and θc directions. wc is the 
displacement normal to the surface along the zc direction.  

 

 

 Figure 4: Coordinate system for a thin truncated conical shell. 

 
With the power series solution, the displacements can be expressed as follows 
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where the vectors , ,n n nu v w  are given by  
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nx  is a vector containing the eight unknown coefficients of the power series solution [7,8]. 

2.1 Propeller shaft excitation 
The propeller force is transmitted to the edge of the cylindrical section of the hull. The 

transmitted force can be modelled as an axisymmetric distributed load given by 0 / 2F F aπ=  

plus a moment 0M F e=  applied to the edge of the pressure hull, as shown in Figure 5. The 

eccentricity e accounts for the fact that the load is not perfectly symmetrically distributed 
from the propeller-shaft to the hull. The distributed load excites only the n=0 breathing 
modes while the moment excites all the circumferential modes (n ≥0). 

 

 
 

Figure 5: Distributed force and moment excitation of the hull. 

 

3 RADIAL DISPLACEMENT 
The dynamic response of the submarine for each value of the circumferential mode 

number n is expressed in terms of An,i and Bn,i ( i=1,2 for each circular plate), Wn.i ( i=1:8 for 
each section of the hull) and nx  for each piece of frustum of cone. The entire submarine is 

free-free. At the cylinder/plate junctions, continuity of displacements and equilibrium of 
forces/moments have to be satisfied. The whole structure consists of 3 cylindrical shell 
segments, 6 circular plates and 2 truncated conical shells. The boundary and continuity 
equations can be arranged in matrix form FBX = , where X  is the vector of unknown 
coefficients and F  is the vector containing the external fluctuating forces from the propeller. 
Once the unknown coefficients have been determined the radial displacement of the hull can 
be obtained. 
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4 FAR FIELD SOUND PRESSURE 
After the radial displacement of the structure has been determined, the far field sound 

pressure P can be evaluated following the procedure presented by Skelton et al. [10]. The 
submarine structure can be viewed as a slender body of revolution. The cylindrical coordinate 
systems are ( , , )r rr zθ  for the exterior body and 0 0 0( , , )r zθ  on the surface of the structure, as 

shown in Figure 6.   
 

 
Figure 6: Coordinate system for the far field point. 

 

The angle β  is defined by tan ( ) /r r ra z zβ = ∂ ∂ , where ar is the radius of the structure at 

location zr and 2Lh is the total length of the structure. The displacement normal to the surface, 
calculated solving the matrix =BX F  described in the previous section, can be written as 

 

0 0 0 0 0 0
0

( , , ) ( , )cos( )N N
n

W r z W r z nθ θ
=

=∑  (18) 

 
Considering a local approximation for the pressure near the surface of the body, the sound 
pressure in the far field can be calculated and expressed in polar coordinates by 
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fk  is the acoustic wavenumber and cf is the speed of sound in the medium. The integral in 

Eq. (21) can be calculated by separately considering the contribution of each section of the 
submarine corresponding to the conical and cylindrical shells. In this analysis, the surface is 
considered continuous. Scattering from the curvature discontinuity at the junction between 
the cylindrical and conical shells and between the cones and the external plates are neglected.  
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5 RESULTS 
Results are presented for submarine with the following data:  
Cylindrical shell: h = 0.04 m, a = 3.25 m, L = 45 m 
Conical end enclosures: 0.014ch = m, 1 0.50R = m, 2 3.25R =  m, /10α π=  rad 

Bulkheads and end plates: 0.04ph = m 

Material: -37800 kgmρ = , 12 -2=21 10  NmE −× , 0.3υ =  
The onboard equipment and ballast tanks are taken into account considering a distributed 
mass on the shell of -21500 kgm . The stiffeners have a rectangular cross-section of 0.08 m x 
0.15 m, are attached at the inside of the hull and evenly spaced by 0.5 m. Structural damping 
was introduced using a complex Young modulus by ( )1E E jη= − , where 0.02η =  is the 

structural loss factor. The submarine was excited with an axial force of unity amplitude 
( 0 1F =  N) on one side. An eccentricity of 0.5 m was considered. The structural results are 

presented in terms of the frequency response function (FRF) of the axial and radial 
displacements at the ends of the cylindrical section. The acoustic results are presented in 
terms of the maximum sound pressure defined by ( )max

0 2
max ( , )

r
rP p R

φ π
θ

≤ ≤
=  evaluated in the far 

field at 0θ =  and  r = 1000 m. 
 

5.1 Structural response 
Figures 7 to 10 present the frequency response functions (FRFs) of the axial and radial 

displacements at each end of the cylindrical shell corresponding to x=0 and L. These figures 
show that the moment excites the circumferential modes corresponding to n>0 and the 
resulting radial response is much higher than in the axisymmetric case. This is due to the fact 
that the breathing modes are mainly axial in nature while the higher modes have a stronger 
radial nature. In Figure 7, the main peaks occurring at 22.7, 44.5 and 68.1 Hz are the first 
three resonant frequencies of the submarine for the axisymmetric case (n=0 breathing 
modes). The small peaks occurring at approximately 9 and 36 Hz are due to the bulkheads 
and are more evident in Figure 9, which shows the radial displacement at each end of the 
cylindrical shell. As the axisymmetric modes are mainly axial, the radial response at the 
bulkhead natural frequencies is comparable with the response at the resonances of the 
cylindrical shell. In Figures 8 and 10, the peaks are associated with the natural frequencies of 
the higher circumferential modes. 
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Figure 7: FRF of the axial displacement (axisymmetric force excitation). 
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Figure 8: FRF of the axial displacement (force and moment excitation with e = 0.5 m). 
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Figure 9: FRF of the radial displacement (axisymmetric force excitation). 
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Figure 10: FRF of the radial displacement (force and moment excitation with e = 0.5 m). 



5.2 Acoustic response 
Figure 11 shows that considering an eccentricity of 0.5 m, the maximum sound radiation 

increases mainly in the range between 50 and 60 Hz. This is attributed to the strong radial 
response of the bending 

 modes in this frequency range. Circumferential modes corresponding to n>1 are not 
efficient sound radiators and hence do not contribute significantly to the far field pressure. 
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Figure 11: Maximum far field sound pressure, 0θ = , r = 1000 m. 

 

Figures 12 to 14 present the directivity patterns for the axisymmetric case (n=0) for the 
first three natural frequencies of the submarine. The contribution from the cylindrical shell is 
represented by the central lobes in the directivity patterns. For the first three resonances, there 
are one, two and three central lobes respectively. The side lobes are due to the contribution 
from the end cones. As expected, the end cones determine the maximum sound pressure since 
the axisymmetric modes are mainly axial modes with a little radial expansion. 
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Figure 12: Directivity pattern at the first n=0 natural frequency of 22.7 Hz. 
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Figure 13: Directivity pattern at the second n=0 natural frequency of 44.5 Hz. 
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Figure 14: Directivity pattern at the third n=0 natural frequency of 68.1 Hz. 

 

6 CONCLUSIONS  
An analytical model to study the structural and acoustic responses of a submerged vessel 

was presented. The excitation from the propeller shaft results in both an axisymmetric force 
excitation and a moment given by the eccentricity of the force. The axisymmetric force 
excites only the n=0 breathing modes while the moment excites higher order circumferential 
modes. For the given example, the sound radiation was shown to be affected by the moment 
particularly in the range of 50 to 60 Hz, where the acoustic response due to the bending 
modes is much higher than the acoustic response due to the breathing modes. 
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