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Abstract

Feedback control theory is aimed at controlling a system input to ob-
tain a desired output and making the system robust in the face of unmod-
eled dynamics and external disturbances. In real-word applications, most
physical and engineering systems exhibit nonlinear behaviour which in
general makes controller design difficult. One of the most appealing tools
in the field of nonlinear control design is the ”classical” dissipativity and
passivity theory which characterizes the dissipation of energy with respect
to a supplied energy rate from the outside environment. However, many
systems that dissipate energy in the physical sense don’t fall into this clas-
sical framework. For instance, flexible structures with colocated force ac-
tuators and position sensors are passive (dissipative) from the input to the
derivative of the output instead of the output as in the classical passivity
theory. Furthermore, it is not always straightforward to analyze the sys-
tem’s performance when the supply rate involves derivatives of the input
and output.

In this regard, negative imaginary systems theory has proven to be an
effective tool in the analysis and control design of linear time invariant
systems which are passive from the input to the derivative of the out-
put. Negative imaginary systems theory has become a well established
systems-theoretical tool which has been employed in a wide variety of
control applications including robust vibration control of flexible struc-
ture, atomic force microscopy, and nano-positioning systems.

In this thesis, we aim to generalize the negative imaginary systems the-
ory to a broad class of nonlinear systems. A formal definition will be given
for the negative imaginary property in the nonlinear domain by invoking
a new dissipativity notion with an appropriate work rate. This formula is
considerably more general than the existing classical dissipativity frame-
work. Flexible structures with colocated force actuators and position sen-
sors are dissipative according to this new definition.

Having defined the nonlinear negative imaginary property in a time-



domain dissipativity framework, we are able to extend some of the main
existing results on negative imaginary systems from the linear to nonlin-
ear domain. First, a Lyapunov-based approach will be used to establish
the stability robustness of a positive feedback interconnection of negative
imaginary systems in the linear case under a set of theoretical assump-
tions. Then, these assumptions will be adapted in the nonlinear setup to
establish the stability robustness analysis of a positive feedback intercon-
nection of nonlinear negative imaginary systems by making use of Lya-
punov stability theory and dissipativity techniques. The applicability of
this nonlinear stability result will be illustrated through an example of
nonlinear mass spring damper system. Furthermore, the nonlinear nega-
tive imaginary systems theory will be extended to the case of free motion.
It will be shown that, under suitable assumptions, a cascade connection of
an affine nonlinear system and single integrator will lead to a nonlinear
negative imaginary system (with integrator). Finally, this thesis is con-
cluded by a summary of current progress and a discussion of possible fu-
ture developments of the nonlinear negative imaginary systems theory.
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Chapter 1

Introduction

1.1 Background and Motivation

Feedback control systems are becoming an essential component in many

modern advanced technologies to achieve a high level of performance. For

instance, precision technologies such as atomic force microscopy, nanopo-

sitioning, micro-robotics and hard disc drives require high precision and

performance in controller design [13, 26, 49]. Also, large scale technolo-

gies such as electrical power systems, environmental systems such as ir-

rigation systems, and transportation systems such as road networks are

reliant on feedback control systems to achieve energy efficiency as well

as reliability [85]. However, designing a robust control system in face of

system uncertainties is still a major challenge for many control problems.

Furthermore, since most physical and engineering systems are inherently

nonlinear, the resulting feedback dynamical systems can exhibit a very

rich dynamical behavior. To meet this challenge, feedback control the-

ory provides a series of mathematical tools to for the analysis and design
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of feedback controllers that manipulate system inputs to obtain a desired

output of the system in the face of uncertainty and disturbances found in

the controlled system [12, 78, 117].

One of these appealing and effective tools is the passive systems the-

ory [50, 111] which provides systems-theoretic framework to analyze the

stability of the system based on energy-related considerations [17, 85]. A

dynamical system is said to be passive if it always dissipates energy, and

the energy supplied to the system, called the supply rate, is given by the

product of system input u and system output y. Typical examples of such

systems are mechanical systems with colocated force actuators and veloc-

ity sensors. A distinguished feature of the passive systems theory is that

the passivity properties of a system will keep the system internally sta-

ble. In particular, by the Passivity Theorem [3], an interconnection of two

passive systems is passive and,thus, stable in the absence of exogenous

inputs.

Other important mathematical tool is the dissipative systems theory in-

troduced by J. C. Willems [111,112] as a generalization of the passive sys-

tems theory. In the latter papers, a characterization of the dissipativity

property of a general nonlinear dynamical system was given to allow for

a more general supplied energies. Roughly speaking, in [111] a nonlinear

dynamical system with input u and output y system is said to be dissipa-

tive if there exists a so-called storage function, denoted V (x) where x is the

state of the system, and a supply rate function, denoted w(u(s), y(s)), such

that the following dissipation inequality

V (x(t)) ≤ V (x(0)) +
∫ t

0
w(u(s), y(s))ds (1.1)
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holds along all possible trajectories starting at x(0), and for all t ≥ 0. The

physical interpretation of the above dissipation inequality is that the in-

crease in the system’s stored energy over a given time interval is less than

or equal to the energy supplied to the system during this time interval.

The dissipation of energy in physical systems can be employed to establish

the robust stability of feedback interconnections of dissipative systems,

see [50]. It is worth noting that the definition of dissipativity/passivity of

a systems and related results continue to hold in the case where no energy

interpretation is available for the system.

In practical application, the dissipative/passive systems theory has been

used in a wide range of control design problems; see, for instance, [6, 10,

25,62]. However, many systems that dissipate energy in the physical sense

cannot be captured by the above classical definition of dissipativity. In

particular, a flexible structure with displacement outputs y and force in-

puts u is not dissipative in this sense; rather, it is dissipative with a supply

rate function ẏ(t)u(t); see [43]. As a matter of fact, the analysis and robust

control design of systems which are dissipative/passive from the input u

to the derivative of the output ẏ cannot in general be handled in a straight-

forward manner using the classical dissipative/passive systems theory; see

e.g., [5,44,82,86,87]. This motivated the need for a more general systems-

theoretical framework in order to allow for dissipative/passive dynamical

systems for which the supply rate function involves derivatives of the out-

puts and inputs.

In this regard, the negative imaginary (NI) systems theory [60, 90] has

emerged as a theoretical systems framework which complement the ap-

plicability of the dissipative/passive systems theory in the linear case.

Broadly speaking, for linear time-invariant (LTI) systems, if the system
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is passive from the input to the derivative of the output, then the system

is negative imaginary system. In recent years, NI systems have attracted

the attention of many researcher which has led to rich and fruitful results

in the field of control theory; see e.g. [42, 58, 60, 75, 90]. These NI results

have been applied in many control applications including, for instance,

the robust control of highly resonant flexible structures with colocated

position sensors and force actuators, nanopositioning in atomic force mi-

croscopy [14, 20, 71, 72, 90]. Also, NI systems theory has been employed

in the stability analysis of positive feedback loops in a similar way that

passivity theory does for negative feedback interconnections; see [42, 90].

In this thesis, taking into account the above mentioned factors, we seek

a natural nonlinear generalization of the negative imaginary notion and

the most general linear NI stability results. To achieve that, a generalized

NI definition will be given for a class of general nonlinear systems based

on the time-domain interpretation of the negative imaginary notion in the

linear case. This would lead to a more general dissipativity/passivity def-

inition than the classical one. Flexible structures with colocated force ac-

tuators and position sensors are dissipative according this new definition.

1.2 Objectives and Contributions

In this thesis, we aim to develop generalised energy methods for non-

linear robust stability analysis by building on the NI and passive sys-

tems theories and their physical interpretations. A generalization of the

NI property of LTI systems to the nonlinear setup will be adopted using

time-domain dissipativity framework. More explicitly, a general nonlin-

ear dynamical system will be defined to be nonlinear negative imaginary



1.2. Objectives and Contributions 25

if it is dissipative with respect to supply rate ẏ(t)u(t). This time-domain

definition is considerably more general than the classical definition of dis-

sipativity. We shall seek extension of the most general results from the

negative imaginary systems theory to a broader class of nonlinear dynam-

ical systems using the Lyapunov stability theory [47,57]. This in turn lead

to an extension of the applicability of ddissipative/passive systems theory

to allow for more general supply rates which involve derivatives of the

system output and input.

In summary, this thesis makes the following contributions:

• First, we will introduce a Lyapunov-based proof of the internal sta-

bility robustness of a positive feedback interconnection of LTI NI

systems in the multi-input- multi-output (MIMO) case. The feed-

back system comprises of a plant which is negative imaginary with

poles on the imaginary axis except at the origin, and a controller

which is strictly negative imaginary. The dc loop gain (the loop gain

at zero frequency) will be used to construct a candidate Lyapunov

function for the closed-loop and to provide a proof of internal sta-

bility.

• Next, a Lyapunov-based approach and an invariance principle will

be employed, under a set of mild theoretical assumptions, to guar-

antee the robust stability of a positive feedback interconnection of

general nonlinear negative imaginary systems. In order to handle

these general nonlinear systems, a generalization of the dc loop gain

in the nonlinear setting will be developed. This nonlinear stability

result will be shown to reduce to the case of a feedback interconnec-

tion of SISO LTI negative imaginary systems, where the plant may
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have poles on the imaginary axis except at the origin. To illustrate

this stability result, an example of a nonlinear mass-spring-damper

(MSD) system will be provided. It will be shown that the nonlinear

MSD system can be stabilized by a strictly negative imaginary con-

troller provided that a nonlinear generalisation of the dc loop gain is

still satisfied.

• Further, an extension of the definition of nonlinear negative imagi-

nary systems will be given, which allows for flexible structure sys-

tems with colocated force actuators and position sensors, and with

free motion. In this context, a cascade connection of nonlinear sys-

tems which is affine in the input and a single integrator will be

shown to be nonlinear negative imaginary (with integrator). This

is achieved by finding a nonnegative storage function of the cascade

system such that the dissipativity inequality (3.8) holds with supply

rate ẏ(t)u(t).

1.3 Structure of the Thesis

The structure of this thesis is as follows:

In Chapter 2, a literature review on the theoretical development of the

negative imaginary theory and its use in practical applications will be

given. In addition to this, we present background material on the class

of NI system and the main related results. Furthermore, we highlight two

classes of systems, namely the class of positive real (PR) systems and the

class of counter-clockwise (CCW) systems. Many of the existing results re-

lated to PR and CCW systems are closely related to that of negative imag-
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inary systems.

Chapter 3 introduces some necessary mathematical tools which will be

used throughout this thesis. Some basic results available from the Lya-

punov stability theory and dissipative/passive systems theory will be re-

viewed. These tools will be used in Chapter 4 and Chapter 5 to estab-

lish the robust stability of positive feedback interconnections of linear and

nonlinear negative imaginary systems, respectively.

In Chapter 4, a Lyapunov-based stability proof of a positive feedback

interconnection of LTI negative imaginary systems will be given. The

feedback system is composed of the plant which is assumed to be nega-

tive imaginary with poles on the imaginary axis and the controller which

is strictly negative imaginary. The dc loop gain of the feedback system will

be used to construct a candidate Lyapunov function and to provide proof

of the internal stability of the feedback system.

In Chapter 5, we introduce a time-domain definition of the NI property

for a general nonlinear system. Then, under a set of mild theoretical as-

sumptions, Lyapunov stability theory and an invariance principle will be

used to guarantee the robust stability of a positive feedback interconnec-

tion of nonlinear negative systems. A generalization of the dc loop gain

of the feedback system in the nonlinear setting will be developed. An il-

lustrative example will be presented to elucidate this nonlinear stability

result.

Chapter 6 addresses the extension of the nonlinear negative imaginary

notion to include the free motion case.

Chapter 7 is devoted to conclusions and possible future research direc-

tions on nonlinear negative imaginary systems theory.





Chapter 2

Literature Review and

Preliminaries

This chapter presents an overview of the theoretical aspects of the neg-

ative imaginary systems theory and their practical relevance. In addition,

we highlight the classes of positive real and counter clockwise systems and

their close relation to the class of negative imaginary systems.

2.1 Negative Imaginary Systems Theory: Back-

ground

Negative imaginary systems naturally arise in problems of robust vi-

bration control of flexible structures with colocated position sensors and

force actuators [14, 20, 60, 69, 71, 72, 90]. These systems are stable linear

systems with an equal number of inputs and outputs. For a stable LTI

system with transfer function matrix G(s), the NI property is defined by
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Figure 2.1: Nyquist plot of a typical negative imaginary transfer function
for positive frequencies

the requirement that j(G(jω) −G(jω)∗) ≥ 0 for all ω ∈ (0,∞). For a SISO

NI systems, the system has a phase-lag between 0 and −π, and hence the

Nyquist plot of G(jω) lies entirely below the real axis for all positive fre-

quencies; see Figure 2.1. The theory of negative imaginary systems has

proven itself as a powerful complement to positive real theory and passiv-

ity theory. In the SISO case, positive real systems have a phase shift in the

interval [−π2 ,
π
2 ] and therefore cannot have relative degree more than unity

whereas NI systems can have a relative degree up to two.

In recent years, negative imaginary systems theory has attracted a lot

of research interest which has led to a great deal of progress in the the-

ory. This includes extensions to non-rational systems [37–40], descrip-

tor systems [70, 114], controller synthesis for negative imaginary systems

[100–102,113], a notion of strongly strict negative-imaginary systems [61],

extensions to non-proper systems [65], and to infinite-dimensional sys-

tems [83]. Also, the class of NI systems has been shown to be closely re-
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lated to the class of linear port-Hamiltonian input-output systems [105].

Moreover, in [75], the NI framework has been further extended to the case

when the plant has free body motion where a new NI system definition

has been given to allow for poles at the origin.

Applications of NI theories have seen increasing adoption in various

control problems. For example, the NI systems theory has been applied in

vibration control of a flexible robotic arm [75], in flexible robot manipula-

tors [26], in ground and aerospace vehicles [49], in control of a DC servo

motor [102], in vehicle platooning [20] and in position control of a swing-

arm hard disk drive [64]. In addition, NI systems theory has been em-

ployed in nano-positioning control for atomic force microscopes (AFMs);

e.g., see [27–30, 34, 79, 81, 96]. Also, NI feedback control schemes such as

integral resonant control, and resonant feedback control have been used

in the robust vibration control of flexible structures [48, 76, 88].

Furthermore, the NI stability result provided in [60, 90] has been used

in a number of practical applications [1, 13, 14, 21, 33, 77]. For example in

[21], this stability result is applied to the problem of decentralized control

of large vehicle platoons. In [13, 77], the NI stability result is applied

to nano-positioning in an atomic force microscope. A positive position

feedback control scheme based on the NI stability result provided in [60,

90] is used to design a novel compensation method for a coupled fuselage-

rotor mode of a rotary wing unmanned aerial vehicle in [1]. In [33], an

IRC scheme based on the NI stability result is used to design an active

vibration control system for the mitigation of human induced vibrations

in light-weight civil engineering structures, such as floors and footbridges

via proof-mass actuators.
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2.1.1 Negative-Imaginary Systems

We now review some of the main definitions and related results in the

NI literature; see e.g, [58, 60, 89, 90] for detailed discussions.

Definition 2.1 (Negative Imaginary Systems [59,60]). A square real-rational

transfer function matrix G(s) is negative imaginary if the following conditions

are satisfied:

1) G(s) has no pole at the origin and in Re[s] > 0.

2) For all ω > 0 such that jω is not a pole of G(s), then j (G(jω)−G(jω)∗) ≥

0.

3) If jω0, ω0 ∈ (0,∞), is a pole of G(jω), it is at most a simple pole and

the residue matrix K0 = lims→jω0
(s − jω0)sG(s) is positive semi-definite

Hermitian.

Remark 2.1.

• If G(s) is SISO, then condition 2) in the above definition reduces to

the condition −2ImG(jω) ≥ 0.

• A linear time invariant system is NI if its transfer function is NI.

A stronger version of the NI property, namely the strictly negative imag-

inary (SNI) property is given in the next definition.

Definition 2.2 (Strictly Negative Imaginary [60,90]). A square real-rational

transfer function matrix G(s) is strictly negative imaginary (SNI) if:

1) G(s) has no poles in R[s] ≥ 0;
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2) j[G(jω)−GT (jω)] > 0 for ω ∈ (0,∞).

A linear time-invariant system is SNI if its transfer function matrix is

SNI.

2.1.2 The Negative-Imaginary Lemma

The negative imaginary lemma provides a state-space characterization

of NI systems in terms of a pair of linear matrix inequalities (LMIs). The

NI lemma is as follows.

Lemma 2.1. [73]. Let (A,B,C,D) be a minimal state-space realization of the

m×m real-rational proper transfer function matrix G(s), where A ∈ Rn×n,B ∈

R
n×m,C ∈ Rm×n,D ∈ Rm×m with D = DT . Then G(s) is negative imaginary if

and only if there exist matrices P = P T > 0, W ∈ Rm×m, and L ∈ Rm×n such

that the following LMI is satisfied:

 PA+AT P P B−ATCT

BT P −CA −(CB+BTCT )

 =

 −LT L −LTW

−W T L −W TW

 ≤ 0. (2.1)

Remark 2.2. The linear matrix equality (2.1) can be simplified to the fol-

lowing (see [60]),

AP + PAT ≤ 0, and B+APCT = 0.

2.1.3 The Strict Negative-Imaginary Lemma

The following lemma gives a state space characterization of strictly neg-

ative imaginary systems.
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Lemma 2.2. [115]. Let (A,B,C,D) be a minimal state-space realization of the

m×m real-rational proper transfer function matrix G(s), where A ∈ Rn×n,B ∈

R
n×m,C ∈ R

m×n,D ∈ R
m×m. Then G(s) is strictly negative imaginary if and

only if:

1) det(A) , 0, D =DT ;

2) there exists a matrix P = P T > 0, P ∈Rn×n, such that

AP −1 + P −1AT ≤ 0, and B+AP −1CT = 0

3) the transfer function matrix M(s) v

 A B

LPA−1 0

 has full column rank

at s = jw for any ω ∈ (0,∞) where LT L = −AP −1 − P −1AT . That is, rank

M(jω) =m for any ω ∈ (0,∞).

2.1.4 Robust Stability of Negative Imaginary Systems

The stability robustness of a positive feedback interconnection of NI

system is established in the following theorem:

Theorem 2.1. [42, 60] Assume G(s) is a negative imaginary system with no

poles at the origin and H(s) is a strictly negative imaginary system such that

G(∞)H(∞) = 0 and H(∞) ≥ 0. Then, the positive feedback interconnection of

G(s) and H(s) is internally stable if and only if

λmax(G(0)H(0)) < 1, (2.2)

where λmax(·) denotes the maximum eigenvalue of a matrix with only real

eigenvalues.
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+ G(s)

H(s) +

r1 u1 y1

r2u2y2

Figure 2.2: Feedback interconnection of NI systems.

The above NI stability result has been proved to remain valid for the

case in which the plant has purely imaginary poles except at the ori-

gin [42,115]. Also, necessary and sufficient conditions are provided in [75]

for the stability of positive feedback control systems where the plant is NI

with poles on the imaginary axis including the origin, and the controller

is strictly negative imaginary [75]. Moreover, the robust stability of in-

terconnected NI systems has been established for various sub-classes of

NI systems where the dc loop gain matrix information is adopted [15,61].

Also, the absolute stability of a Lur’e system with positive feedback where

the linear subsystem is NI is presented in [32]. Furthermore, the NI prop-

erty and related stability results for discrete-time LTI systems have been

considered; see [22, 38, 66].

2.1.5 Negative Imaginary Feedback Controllers

In many practical control applications, the aforementioned NI stability

theorem is applied to ensure the robustness stability of NI feedback con-

trol systems as shown in Figure 2.2. In particular, flexible structures with
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colocated force actuators and position sensors are typically modelled as

NI systems [90], and by Theorem 2.1, an SNI controller guarantees closed-

loop internal stability if the dc-gain condition (2.2) is satisfied. Next, we

review some examples where negative imaginary control schemes are ap-

plied to insure the internal stability of NI feedback systems.

2.1.6 Resonant Control

The resonant control scheme is used for the vibration control of flexible

structures with colocated force actuators and position sensors [91], [48].

In the MIMO case, resonant controllers typically take one of the following

two forms

C(s) =
M∑
i=1

−s2

s2 + 2ξiωis+ω2
i

αiα
T
i (2.3)

and

C(s) =
M∑
i=1

−s(s+ 2ξiωi)

s2 + 2ξiωis+ω2
i

βiβ
T
i (2.4)

where ωi > 0, ξi > 0 and αi , βi are m × 1 vectors. These controllers have

been shown to be SNI, see [90]. In light of Theorem 2.1, controllers of the

form (2.3), (2.4) can be used to robustly stabilize any NI plant provided

that the dc gain condition (2.2) is satisfied.

2.1.7 Positive Position Feedback

The positive position feedback (PPF) control strategy was introduced

in [36] for vibration suppression in flexible structures. In the SISO case, a
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positive position feedback controller takes the form

C(s) =
M∑
i=1

ki
s2 + 2ξiωis+ω2

i

, (2.5)

where ωi > 0, ξi > 0, and ki > 0. This controller has been shown to be

SNI using a Nyquist argument; see [90]. For the MIMO case, the positive

position feedback controllers of the form (2.5) can be extended to

C(s) = KT (s2I +Ds+Ω)−1K, (2.6)

where D > 0 and Ω > 0.

The PPF method has been implemented in a diverse range of control

applications to reduce vibrations in smart structures [19, 80, 93, 97, 99].

In [80], a PPF scheme has been used for vibration suppression of a flexi-

ble appendage by using embedded piezoceramic actuators. Also in [93], a

PPF strategy for multi-modal vibration control in a composite plate with

piezoelectric sensors and actuators has been applied, and in vibration con-

trol for a rotor-bearing system [19]. In [99] implemented PPF for single-

mode vibration suppression and for multi-mode vibration suppression of

a cantilevered beam. Moreover, the use of positive position feedback via

piezoelectric actuators to suppress multi-mode vibrations, while slewing

a single-link flexible manipulator has been investigated in [97].

2.1.8 Integral Resonant Control

Integral Resonant Control (IRC) is a simple and robust control scheme

for vibration control of smart structures with colocated sensors and actua-
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tors [7,92]. In the MIMO case, an integral resonant controller is a transfer

function matrix of the form

C(s) = [sI + Γ Φ]−1Γ , (2.7)

here, both Γ and Φ is positive-definite matrix. This controller has been

shown to be SNI, see [90]. In [90], the use of an integral resonant controller

to establish closed-loop internal stability for such systems has been shown

in the SISO case.

2.1.9 State-Feedback Controller Synthesis

In [90], Theorem 2.1 has been used to robustly stabilize a feedback con-

trol system in the presence of SNI uncertainties as shown in Figure 2.3. It

has been shown that applying a feedback control law to the nominal plant

so that the closed-loop system is NI and the DC-gain condition is satisfied,

then the stability robustness of the resulting feedback uncertain system is

guaranteed. Indeed, suppose the uncertain system shown in Figure 2.3 is

described by the following state equations

ẋ = Ax+B1w+B2u, (2.8)

z = C1x, (2.9)

w = ∆(s)z, (2.10)

where w is the disturbance entering the system and z is the output signal

vector of the system and ∆(s) is the plant uncertainty matrix. The matrix

∆(s) is assumed to be SNI and satisfies λmax(∆(0)) ≤ 1 and ∆(∞) ≤ 0.
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Nominal
Plant

∆(s)

Controller

w z

u y

∆(s)

Nominal
Closed Loop

Gcl(s)

w z

Figure 2.3: A feedback control system where the plant uncertainty ∆(s)
is stable strictly negative imaginary, and satisfies ∆(∞) ≥ 0 where the DC
gain condition is satisfied. If the controller is chosen so that the nominal
closed-loop transfer function matrix Gcl(s) is strictly proper and negative-
imaginary, then the closed loop system is robustly stable.

Applying a static state-feedback control law u = Kx, results in the fol-

lowing closed-loop uncertain system

ẋ = (A+B2K)x+B1w, (2.11)

z = C1x, (2.12)

w = ∆(s)z. (2.13)

The corresponding nominal closed-loop transfer function matrix is

Gcl(s) = C1(sI −A−B2K)−1B1. (2.14)

Now we have the following result which provides sufficient conditions

to ensure the stability robustness of the above uncertain system.

Theorem 2.2. [90]. Consider the uncertain system (2.8)–(2.10) and suppose
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that there exist matrices Y > 0,M, and a scalar ε > 0 such thatAY +YAT +B2M +MTBT2 + εI B1 +AYCT1 +B2MC
T
1

BT1 +C1YA
T +C1M

TBT2 0

 ≤ 0, (2.15)

C1YC
T
1 − I < 0. (2.16)

Then the static state-feedback control law u = MY −1x is robustly stabilizing

for the uncertain system (2.8)–(2.10).

For the sake of self-contained presentation, we introduce in the next

two section two important classes of systems which are closely related to

the class of negative imaginary systems, namely the class of positive real

systems and the class ofcounter clockwise systems. As a matter of fact, these

two class of systems represent the context from which negative imaginary

systems emerged, both chronologically and conceptually.

2.2 Positive Real Systems

Positive real systems play a major role in system and control theory [2,

4, 107]. In [46, 54, 67, 95, 109], the stability robustness of positive real

systems was studied. Here, we review some of the definitions of the PR

class of positive real LTI systems in addition to the main stability result.

Also, we highlight on the close relation between NI and PR systems.

2.2.1 Frequency-Domain and State-Space Representations

In the SISO case, PR systems have phase shift in the interval [−π2 ,
π
2 ] (see

Figure 2.4) and therefore cannot have a relative degree more than unity.
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Figure 2.4: Typical Nyquist plot of a positive real transfer function

We have the following two definitions for positive real and strictly pos-

itive real systems in the MIMO case.

Definition 2.3. [17] A rational transfer function matrix H : C→ C
m×m is

positive real if

1) H(s) is analytic in s ∈C : Re[s] > 0;

2) H(s) is real when s is real and positive;

3) H(s) + H(s)∗ ≥ 0 for all s ∈ s ∈C : Re[s] > 0. Here, H(s)∗ denotes the

complex conjugate transpose of H(s).

Definition 2.4. [17] The transfer function H(s) is called strictly positive real

(SPR) if H(s − ε) is positive real for some ε > 0.

Remark 2.3. In the SISO case, the frequency domain condition in Defini-

tion 2.3 reduces to ReH(s) > 0 for all Re[s] > 0.
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The state-space characterizations of PR and SPR transfer function matri-

ces are given in the next two lemmas which are known as positive real

lemma and Kalman-Yakubovich-Popov lemma, respectively.

Lemma 2.3 (Positive Real Lemma [2]). Let (A,B,C,D) be minimal state

realization of an m × m transfer function matrix H(s) with A ∈ R
n×n,B ∈

R
n×m,C ∈ R

m×n,D ∈ R
m×m. Then, H(s) is positive real if and only if there

exists real symmetric positive define matrix P , P ∈ R
n×n ,and real matrices

L ∈Rn×m, W ∈Rm×m, such that:

PA+AT P = −LT L;

P B−CT = −LTW ; (2.17)

D +DT = W TW.

Lemma 2.4 (Kalman-Yakubovich-Popov [2]). Let (A,B,C,D) be minimal

state realization of an m×m transfer function matrix H(s) with A ∈ Rn×n,B ∈

R
n×m,C ∈ R

m×n,D ∈ R
m×m. Then, H(s) is strictly positive real if and only

if there exists real symmetric positive define matrix P , P ∈ R
n×n , and real

matrices L ∈Rn×m, W ∈Rm×m, and a positive constant ε such that:

PA+AT P = −LT L− εP ;

P B−CT = −LTW ; (2.18)

D +DT = W TW.

2.2.2 Feedback Stability of Positive Real Systems

Here we introduce one of the main theorems concerning the stability

robustness of LTI positive real or strictly positive real systems when they
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are connected in negative feedback as shown in Figure 2.5 below.

H1(s)

H2(s) +

r1 + u1 y1

r2u2y2

−

Figure 2.5: Negative feedback interconnection of the positive real sys-
tems H1(s) and H2(s).

The following theorem is one of the different versions of the passivity the-

orem for stability of LTI positive real systems.

Theorem 2.3. [17]. Consider the negative feedback interconnection as shown

in Figure 2.5. Suppose that H1(s) is positive real and H2(s) is strictly positive

real. Then the feedback system is internally stable.

2.2.3 Relation between PR and NI Systems

Positive real systems have a close relation to negative imaginary sys-

tems. The following two lemmas highlight on this relation in the fre-

quency response domain.

Lemma 2.5. [115]. Let (A,B,C,D) be a minimal state-space realization of

a transfer function G(s) where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,D ∈ Rm×m and

G̃(s) := G(s)−D. Then G(s) is NI if and only if F(s) := sG̃(s) is positive real.

Lemma 2.6. [18]. Given a square proper positive real transfer function matrix

G(s), then R(s) := G(s)
s is negative imaginary.
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2.3 Counter-Clockwise Input-Output Systems

In many dynamical systems, such as systems with hysteresis, the output

tends to lag behind the input [5, 86], and in this case the corresponding

plot of the system input u(t) versus the system output y(t) will have a

counter-clockwise (CCW) orientation (see Figure 2.6). Dynamical systems

with such property are termed systems with counter-clockwise input-output

dynamics, or simply CCW systems. This property can be characterized us-

ing the classical Green’s theorem [103] in the way that the enclosed area A

is non-negative when the closed curve C has a counter-clockwise orienta-

tion.

u

y

A

C

Figure 2.6: Input/Output responses of a system with CCW dynamics.

Let us now consider a SISO system, which has periodic (input u(t) and

output y(t)) signals with a time period T and the curve (u(t), y(t)) has

counter-clockwise orientation as shown in Figure 2.6. The enclosed area A

is evaluated as,

0 ≤ A =
1
2

∫ T

0
udy − ydu =

1
2

∫ T

0
[ẏ(t)u(t)− u̇(t)y(t)]dt

=
∫ T

0
ẏ(t)u(t)dt − 1

2
u(T )y(T ) +

1
2
u(0)y(0).
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Since u(0) = u(T ) and y(0) = y(T ), the area A enclosed by the curve C is

given by:

A =
∫ T

0
ẏ(t)u(t)dt ≥ 0, ∀ T > 0. (2.19)

That means that the SISO system under consideration is CCW provided

that the signed-area encircled by the curve C is non-negative. Moreover,

by [5, Lemma 2.2], condition (2.19) was shown to be equivalent to

liminf
T→∞

∫ T

0
ẏ(t)u(t)dt > −∞, ∀ T > 0. (2.20)

Based on the above argument, the definition of the CCW property for

general nonlinear dynamical systems with bounded input and output ac-

cording was given as follows,

Definition 2.5. [5] A dynamical system Γ : u(t) 7−→ y(t), where u(t), y(t) ∈

R
m, is said to have counter-clockwise input–output dynamics if for every u(t)

such that the corresponding output y(t) is differentiable, the following inequal-

ity

liminf
T→∞

∫ T

0
ẏ(t)u(t)dt > −∞ (2.21)

holds.

It is worth noting that the CCW property of a dynamical system can also

be interpreted using the classical passivity theory: the system is passive

from the input to the time derivative of the output (instead of the output

in the passivity theory). In [5,86], convergence analysis of a positive feed-

back interconnection of CCW systems was investigated in a similar way to

that of a negative feedback interconnection of two passive systems.
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2.3.1 Equivalence of NI and CCW LTI systems

In the case of LTI systems, CCW input–output dynamic systems is pre-

cisely related to the phase-lag introduced by the system over the whole

range of possible frequencies (see Figure 2.7).

φ

φ =
π

4

φ =
π

2

φ =
3π

4

φ =
5π

4

φ =
3π

2

φ =
7π

4

Figure 2.7: Relationship between the orientation of the input-output map
and the phase angle φ = ∠G(jω) for linear systems (adapted from [86]).

This relation is made precise in the following theorem.

Theorem 2.4. [86] Consider the following LTI systems

ẋ(t) = Ax(t) +Bu(t), (2.22)

y(t) = Cx(t) +Du(t) (2.23)

with transfer function G(s) = C(sI −A)−1B+D, where A,B,C,D are constant
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matrices with suitable dimensions. Then the following statements are equiva-

lent:

• G(s) is negative imaginary

• A is Hurwitz and the LTI system is counter-clock wise.





Chapter 3

Mathematical Background

This chapter presents some of the mathematical tools which will be used

throughout the thesis. We review some of the basic concepts and results of

Lyapunov stability theory in addition to the main tools of the dissipativity

and passivity theory of nonlinear systems. These tools will be used in

Chapter 4 and Chapter 5 to analyze the stability properties of positive

feedback interconnections of linear/nonlinear NI systems. For detailed

accounts on the analysis and control of nonlinear dynamical systems, see

for example [47, 57, 107].

3.1 Stability Theory for Nonlinear Dynamical Sys-

tems

The stability of dynamical systems is one of the fundamental problems

studied in control systems theory [11,23,41,57,68]. In this section, we re-

view some technical tools which are utilized for investigating the stability
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of dynamical systems when its initial state is near an equilibrium state.

3.1.1 Basic Stability Notions

Consider the following autonomous dynamical system

ẋ(t) = f (x(t)), x(0) = x0 (3.1)

where x ∈Rn and f : Rn→R
n is a locally Lipschitz function. A point xe is

said to be an equilibrium point of (3.1) if f (xe) = 0. We shall state the main

definitions and theorems of stability of the equilibrium point (3.1) when

it is at origin of the space R
n, that is xe = 0. If the equilibrium point xe , 0,

the stability analysis still can be performed by shifting it to the origin via

a change of variables. The following definition characterizes the stability

properties of the equilibrium point xe = 0.

Definition 3.1 (Stability of an Equilibrium Point [57]). The equilibrium

point xe = 0 of (3.1) is

(i) stable (equivalently, Lyapunov stable) if, for each ε > 0, there is δ = δ(ε) >

0 such that

‖x(0)‖ < δ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0; (3.2)

(ii) unstable if it is not stable;

(iii) asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ⇒ lim
t→∞

x(t) = 0. (3.3)

The above Definition states that the equilibrium point xe of the system
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(3.1) is stable if all solutions which start nearby to xe (in an ε-neighborhood

of xe ) remain nearby (in a δ-neighborhood of xe ), otherwise it will be un-

stable. The equilibrium point is said to be asymptotically stable if it is sta-

ble and, furthermore, all solutions starting near to the equilibrium point

xe tend to xe as t→∞.

Lyapunov Stable

Unstable

Asymptotically Stable

δ

ε

x0 0 x1

x2

Figure 3.1: Visualization of the basic stability notions.

3.1.2 Lyapunov Stability Theory

In his seminal work entitled ”The General Problem of Stability of Motion”,

the Russian mathematician Aleksandr Mikhailovich Lyapunov introduced

a method to analyze the stability of nonlinear dynamical systems without

finding the system trajectories [68]. This approach depends on construc-

tion of a continuously differentiable positive definite function of the sys-

tem’s state, such a function is called a Lyapunov function. If the rate of
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x1

x2

V (x)

x(t)

Figure 3.2: Graphical illustration of Lyapunov functions.

change of the Lyapunov function along the system trajectories is negative,

this means that the system loses energy and will eventually come to rest.

Here, we review the main Lyapunov stability results needed for devel-

oping our results in Chapter 4 and Chapter 5. The Lyapunov idea is for-

malized in the next two (Lyapunov stability) theorems, in which sufficient

conditions for the stability of the equilibrium point xe = 0 are given.

Theorem 3.1 (Lyapunov’s Theorem [47]). Consider the system (3.1) with

an equilibrium point xe = 0. Let V : Rn→ R
n be a continuously differentiable

function such that

V (0) = 0 and V (x) > 0, x ∈Rn − {0}

V̇ (x) ≤ 0, x ∈Rn

then xe = 0 is stable. Moreover, if

V̇ (x) < 0, x ∈Rn − {0} (3.4)
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then xe = 0 is asymptotically stable.

The next theorem establishes the global asymptotic stability of the sys-

tem (3.1) by imposing an extra condition that V (·) is radially unbounded,

that is it satisfies V (x)→∞ as x→∞.

Theorem 3.2. [47] Consider the system (3.1) with an equilibrium point xe =

0. Let V : Rn→R
n be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, x ∈Rn − {0};

‖x‖ →∞⇒ V (x)→∞;

V̇ (x) < 0, x ∈Rn − {0}.

Then xe = 0 is globally asymptotically stable.

3.1.3 LaSalle Invariance Principle

The asymptotic stability of the system (3.1) is established by Theorem

3.1 when V̇ is negative definite along the trajectories of the system. It

often happens that V̇ is only negative semi-definite, not negative defi-

nite. In this case, LaSalle’s invariance theorem, is utilized to guarantee

the asymptotic stability of the system (3.1) and thus extends the appli-

cability of Theorem 3.1. The LaSalle’s invariance theorem is given in the

following theorem.

Theorem 3.3. [57] Consider the dynamical system (3.1). Let V : Rn→ R be

a continuously differentiable positive definite function such that V̇ (x) ≤ 0 in

R
n. Let E := {x ∈ Rn : V̇ (x) = 0} and let M be the largest invariant set in E.

Then, all the solutions of (3.1) are bounded and approach M as t→∞.
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We conclude this section by stating the next two corollaries which pro-

vide a generalization of Theorem 3.1and Theorem 3.2, respectively.

Corollary 3.1. [57] Let xe = 0 be an equilibrium point for the system (3.1).

Let V : Rn→R be a continuously differentiable positive definite function such

that V̇ (x) ≤ 0 in R
n. Assume that the set E := {x ∈ Rn : V̇ (x) = 0} contains no

invariant set other than the origin. Then, the origin is asymptotically stable.

Corollary 3.2. [57] Let xe = 0 be an equilibrium point for system (3.1). Let

V : Rn→R be a continuously differentiable, radially unbounded, positive def-

inite function such that V̇ (x) ≤ 0 in R
n. Assume that the set E := {x ∈ Rn :

V̇ (x) = 0} contains no invariant set other than the origin. Then, the origin is

globally asymptotically stable.

3.2 Dissipativity and Passivity Analysis

Another fundamental theoretical framework in the area of analysis and

design of control systems is the dissipativity and passivity theory [50,

110, 111]. This theory has been employed in many applications such as

large space structures [10], multi-agent systems [25], and cyber-physical

systems [6, 62]. In this section, we review some of the basic approaches

used to characterizing the dissipativity/passivity property for a nonlinear

dynamical system, described by the following state-space representation

affine in the input:

ẋ(t) = f (x) + g(x)u, (3.5)

y(t) = h(x) + k(x)u (3.6)
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where x,u, and y are from finite-dimensional real Euclidean spaces. The

involved function f (·),G(·),h(·), and k(·) are real-valued functions of x with

appropriate dimensions and f (0) = h(0) = 0. It is assumed that these func-

tion satisfy the standard conditions for the existence and uniqueness of

the solutions [50].

3.2.1 Dissipative Systems

The dissipation of energy is a very common phenomenon in many real-

world physical systems [17]. Typical examples of dissipative systems are

the electrical circuits, in which the supplied energy is partially dissipated

as heat in the resistors. The key mathematical foundation in develop-

ing dissipativity theory for general nonlinear dynamical systems was pre-

sented by J. C. Willems [110, 111] using input-output properties based

on energy-related considerations. In particular, Willems [110] introduced

the definition of dissipativity for general dynamical systems in terms of

a dissipation inequality involving two energy-like functions: the storage

function, which is the energy stored by the system and the supply func-

tion, which represents the energy entered to the system from the external

environment. The dissipation inequality implies that any increase in the

stored energy over a given time interval cannot exceed the external energy

delivered to the system during this time interval.

To begin with the definition in [111] of the dissipativity for the nonlinear

dynamical system (3.5), (3.6), we consider a function, called the supply

function, denoted by w(u(s), y(s)), with w : Rn ×Rn→R, satisfying

∫ t

0
|w(u(s), y(s))|ds <∞, ∀ t ≥ 0. (3.7)
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Definition 3.2 (Dissipative System, [111]). The nonlinear system (3.5),

(3.6) is said to be dissipative with respect to supply function w(u(t), y(t)) if

there exists a nonnegative real-valued smooth function called the storage func-

tion V (x) ≥ 0 such that that the following dissipation inequality holds:

V (x(t)) ≤ V (x(0)) +
∫ t

0
w(u(s), y(s))ds (3.8)

along all possible trajectories of the system starting at x(0), for all x(0), t ≥ 0.

The above definition of dissipativity requires existence of a possible stor-

age function such that (3.8) holds. In [111], it was shown that the storage

function is bounded from below by the available storage and from above

by the required supply, which are defined as follows,

Definition 3.3 (Available Storage [17]). The available storage Va(x) of the

system (3.5), (3.6) is given by

Va(x) = sup
x=x(0), u(·), t≥0

−
∫ t

0
w(u(s), y(s))ds (3.9)

where Va(x) is the maximum amount of energy which can be extracted from the

system with initial state x = x(0).

Definition 3.4 (Required Supply [17]). The required supply Vr(x) of the

system (3.5), (3.6) is given by

Vr(x) = inf
u(·), t≥0

−
∫ 0

−t
w(u(s), y(s))ds (3.10)

where Vr(x) is the is the required amount of energy to be injected in the system

to go from x(−t) to x(0).
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Both the available storage and required supply functions satisfy the dis-

sipation inequality (3.8). Moreover, the class of possible storage functions

is a convex set, and thus there exist a continuum of possible storage func-

tions ranging between the available storage and the required supply. This

is made precise in the following theorem:

Theorem 3.4. [111, 112] The system (3.5), (3.6) is dissipative in the sense of

Definition 3.2 if and only if the required supply satisfies Vr(x) ≥ −K > −∞ for

all x ∈ X and some K ∈ R. Moreover, 0 ≤ Va(x) ≤ V (x) ≤ Vr(x) for all x ∈ X

for dissipative systems.

The above approach of characterizing the dissipativity property of non-

linear systems assumes that a storage function exists. In [50], Hill and

Moylan introduced another definition of dissipativity for a dynamical sys-

tem where the existence of a storage function of the system’s state is not

required. More clearly, we have the following definition from [50].

Definition 3.5. The system (3.5), (3.6) is dissipative with respect to the supply

function w(u,y) if for all admissible u(·) and all t > 0

∫ t

0
w(u(s), y(s))ds ≥ 0. (3.11)

with x(0) = 0 and along the trajectories of the system.

Remark 3.1. It is worth noting that the above definitions of dissipativity

continue to hold in the case where no physical energy interpretation is

available.

We conclude this subsection by the following stability result of inter-

connected dissipative systems. Consider two nonlinear systems H1 and
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H2 of the form (3.5), (3.6), that are given by

ẋi(t) = fi(xi) + gi(xi)ui , (3.12)

yi(t) = hi(xi) + ki(xi)ui (3.13)

for i = 1,2, where f (0) = h(0) = 0. The two systems are assumed to be

connected in a negative feedback interconnection where u1 = −y2 and u2 =

y1. Also, it is assumed that the feedback system is well defined; that is,

I + k2(x2)kl(x1) to be nonsingular , ∀ x1,x2.

Then we have the following theorem from [51].

Theorem 3.5. Suppose that two subsystems H1 and H2 are dissipative with

respect to the supply functions

wi (ui , yi) = y>i Qiyi + 2y>i Siui +u>i Riui , i = 1,2,

where Q, S, and R are constant matrices with Q and R symmetric. Then the

negative feedback interconnection of H1 and H2 is stable (asymptotically sta-

ble) if the matrix

Q̂ =

 Q1 +αR2 −S1 +αS>2

−S>1 +αS2 R1 +αQ2


is negative semi-definite (negative definite) for some 0 < α ∈R.

3.2.2 Passive Systems

A notable special class of dissipative systems are the passive systems

[9, 17, 106]. The notion of passivity emerged from studying electrical net-
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works where passive components are known to be stable and form stable

feedback loops [4, 16]. Applications of passivity-based control methods

are found in robotics [84,98,106], systems biology [8], large-scale systems

analysis [50, 56], and chemical process control [116].

In the following, we briefly review some of the standard passivity defi-

nitions of the nonlinear dynamical system (3.5), and (3.6).

Definition 3.6 (Passive Systems [57]). The system (3.5), (3.6) is passive if

it is dissipative with supply function w(u(s), y(s)) = yT u; i.e., there exists a

storage function V (·) of the system’s state such that

V (x(t)) ≤ V (x(0)) +
∫ t

0
yT (s)u(s)ds, ∀ t ≥ 0. (3.14)

Definition 3.7 (Strictly Passive Systems [57]). The system (3.5), (3.6) is

strictly passive if it is dissipative with supply functionw(u(t), y(t)) = y(t)T u(t)−

ψ(x), and storage function V (x) with V (0) = 0, such that

V (x(t)) ≤ V (x(0)) +
∫ t

0
uT (s)y(s)ds −

∫ t

0
ψ(x(t))dt, ∀ t > 0, (3.15)

where ψ(x) is a positive definite function. If the equality holds with ψ(x) ≡ 0

then the system is said to be lossless.

Remark 3.2. For LTI system, the passivity property and the positive re-

alness are equivalent notions. In [57], it was shown that an LTI system is

passive (strictly passive, respectively) if and only if the system is positive

real (strictly positive real, respectively).

The following definition concerns the general supply function which is

useful to distinguish different types of strictly passive systems and will be

useful in the Passivity Theorems [51] presented at the end of this chapter.
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Definition 3.8 (General Supply Function). Consider the system (3.5), (3.6)

with supply function

w(u,y) = yTQy + 2yT Su +uTRu (3.16)

with Q = QT ,R = RT . If Q = 0, R = −εIm, ε > 0, S = 1
2Im, the system is said

to be input strictly passive (ISP), i.e.

∫ t

0
yT (s)u(s)ds ≥ β + ε

∫ t

0
uT (s)u(s)ds (3.17)

If R = 0, Q = −δIm, δ > 0, S = 1
2Im, the system is said to be output strictly

passive (OSP), i.e. ∫ t

0
yT (s)u(s)ds ≥ β + δ

∫ t

0
yT (s)y(s)ds (3.18)

If Q = −δIm, δ > 0, R = −εIm, ε > 0, S = 1
2Im, the system is said to be very

strictly passive (VSP), i.e.

∫ t

0
yT (s)u(s)ds ≥ β + δ

∫ t

0
yT (s)y(s)ds+ ε

∫ t

0
uT (s)u(s)ds. (3.19)

A fundamental property of passive systems is that the parallel and feed-

back interconnection of (strictly) passive systems is again (strictly) pas-

sive, see [17]. The next result, known as the Passivity Theorem, concerns

two connected passive systems H1 : u1 7→ y1 and H2 : u2 7→ y2 of the form

(3.5), (3.6) where H1 is in the feedforward path and H2 is in the feedback

path (i.e. u1 = −y2 and u2 = y1). The stability of the closed loop system of

different types of passive systems is summarized in the following theorem.

Theorem 3.6. [51] Assume that H1 and H2 are passive systems, then the
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feedback system is stable. Moreover, Asymptotic stability follows if, in addition,

any one of the following (nonequivalent) conditions is satisfied:

(I) One of H1 and H2 is VSP.

(II) Both H1 and H2 are ISP.

(III) Both H1 and H2 are OSP.

(IV) H1(−H2) is zero-state detectable, and either

• H2 is ISP, or

• H1 is OSP.

(V) H2H1 is zero-state detectable, and either

• H2 is OSP,

• H1 is ISP.





Chapter 4

Lyapunov-Based Stability of

Feedback Interconnections of

Negative Imaginary Systems

The work, reported in this chapter, has been partially published in the following article:

Ahmed G. Ghallab, Mohamed A. Mabrok, and Ian R. Petersen (2017), Lyapunov-based Stability
of Feedback Interconnections of Negative Imaginary Systems. IFAC-PapersOnLine 50 (1), 3424-
3428.

4.1 Introduction

The stability of the feedback interconnection of negative imaginary sys-

tems is established in [60,75,90,115]. However, the proofs of the stability

results which is used in [75, 115] have a shortcoming due to a matrix in-

vertibility issue for the case in which the plant has poles on the imaginary

axis. In [115], Theorem 5 establishes the internal stability of a positive

feedback interconnection comprising of a plant, with transfer function
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+ G(s)

H(s) +

r1 u1 y1

r2u2y2

Figure 4.1: Feedback interconnection of NI systems. The plant is NI with
transfer function G(s) and the controller is SNI with transfer functionH(s)

G(s), and a controller with transfer function H(s) (see Figure 4.1). How-

ever, the proof of Theorem 5 makes use of the following condition

det(I −G(jω)H(jω)) , 0, ω ∈ (0,∞)

which is not defined for values of the frequency ω corresponding to poles

on the imaginary axis. The same issue appears in the proof of Theorem 5

in [75].

In this chapter, we use a Lyapunov-based stability approach to provide

a correct proof of the result of [115]. We would like to remark that the

result of [94] does provide a correct proof in the case of plant poles on

imaginary axis but requires an extra condition in the definition of the NI

property that a certain residue matrix is positive-definite. That extra con-

dition is not required in our approach. We will consider the positive feed-

back interconnection of a linear NI system with a linear SNI system as

shown in Figure 4.1. Consider a minimal state-space representation for
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the NI transfer function G(s),

ẋ1(t) = A1x1(t) +B1u1(t), (4.1)

y1(t) = C1x1(t) +D1u1(t), (4.2)

where A1 ∈Rn×n,B1 ∈Rn×m,C1 ∈Rm×n,D1 ∈Rm×m.

Also, we consider a minimal state-space representation for the SNI trans-

fer function H(s),

ẋ2(t) = A2x2(t) +B2u2(t), (4.3)

y2(t) = C2x2(t) +D2u2(t), (4.4)

where A2 ∈Rn×n,B2 ∈Rn×m,C2 ∈Rm×n,D2 ∈Rm×m.

SinceG(s) is NI, Lemma 2.1 implies that there exists a symmetric matrix

P1 > 0, and a matrix L1 such that

A1P
−1
1 +AT1 P

−1
1 = LT1 L1;

B1 +A1P
−1
1 CT1 = 0, (4.5)

which leads to the set of equations

P1A1 +AT1 P1 = −P1L
T
1 L1P1;

BT1 P1 −C1L
T
1 L1P1 = C1A1;

C1B1 + (C1B1)T = (L1C
T
1 )T (L1C

T
1 ).

Also, sinceH(s) is SNI, Lemma 2.2 implies there exists a symmetric matrix
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P2 > 0, and a matrix L2 such that

A2P
−1
2 +AT2 P

−1
2 = LT2 L2;

B2 +A2P
−1
2 CT2 = 0, (4.6)

which gives the following

P2A2 +AT2 P2 = −P2L
T
2 L2P2;

BT2 P2 −C2L
T
2 L2P2 = C2A2;

C2B2 + (C2B2)T = (L2C
T
2 )T (L2C

T
2 ).

4.2 Preliminary result

The following lemma will be useful in establishing the Lyapunov-based

stability of the positive feedback interconnection of G(s) and H(s). We

show positive definiteness of a certain matrix which in turn will be used

in constructing a Lyapunov function candidate of the closed-loop system.

Lemma 4.1. Given a negative imaginary G(s) and strictly negative imaginary

H(s). Assume that G(∞)H(∞) = 0 and H(∞) ≥ 0. Let P1 and P2 be the corre-

sponding matrices defined in (4.5) and (4.6). Then, the matrix

 P1 −CT1 D2C1 −CT1 C2

−CT2C1 P2 −CT2 D1C2


is positive definite if and only if λmax(G(0)H(0)) < 1.
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Proof. We have

λmax(G(0)H(0)) < 1

⇔H(0)−1 −G(0) > 0

⇔H(0)−1 −D −C1P1C
T
1 > 0

⇔

 P1 −CT1
C1 H(0)−1 −D1

 > 0

⇔H(0)−1 −D > 0, and

P1 −C1(H(0)−1 −D1)−1C1 > 0

⇔ λmax[D1H(0)] < 1, and

P1 −C1(H(0)−1 −D1)−1[D2 + (H(0)−D2)]C1 > 0

⇔ λmax[D1C2P
−1
2 CT2 ] < 1, and

P1 −CT1 D2C1 −CT1 (I −H(0)D1)−1(H(0)−D2)C1 > 0

⇔ λmax[P
1
2

2 C
T
2 D1C2P

1
2

2 ] < 1, and

P1 −CT1 D2C1 −CT (I −C2P2C
T
2 D1)C2P2C

T
2 C1 > 0

⇔ P2 −CT2 D1C2 > 0, and

(P1 −CT1 D2C1)−CT1 C2(P2 −CT2 D1C2)−1CT2 C1 > 0

⇔

 P1 −CT1 D2C1 −CT1 C2

−CT2C1 P2 −CT2 D1C2

 > 0.

�
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4.3 Main results

In this section, we introduce the main result on the internal stability of

the positive feedback interconnection of G(s) and H(s) as shown in Figure

4.1.

Theorem 4.1. Assume that G(s) is negative imaginary with minimal realiza-

tion (6.2), (4.2) and H(s) is strictly negative imaginary with minimal realiza-

tion (4.3), (4.4) such that G(∞)H(∞) = 0 and H(∞) ≥ 0. Also, assume that

λmax(G(0)H(0)) < 1. Then, the positive feedback interconnection of G(s) and

H(s) as in Figure 4.1 is internally stable.

Proof. Let V1(x1) = xT1 P1x1 and V2(x2) = xT2 P2x2 and consider the function

V (x1,x2) = V1(x1) +V2(x2)− 2yT1 y2

=
[
xT1 xT2

] P1 −CT1 D2C1 −CT1 C2

−CT2C1 P2 −CT2 D1C2


 x1

x2


as a Lyapunov candidate for the closed-loop system. Note that it follows

from Lemma 4.1 that the function V (x1,x2) is positive definite. Now for

the closed loop system we have

V̇ (x1,x2) =
[
ẋT1 ẋT2

] P1 −CT1 D2C1 −CT1 C2

−CT2C1 P2 −CT2 D1C2


 x1

x2


+
[
xT1 xT2

] P1 −CT1 D2C1 −CT1 C2

−CT2C1 P2 −CT2 D1C2


 ẋ1

ẋ2


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= xT1 P1ẋ1 + ẋT1 P1x1 − 2ẋT1C
T
1 D2C1x1 − 2ẋT2C

T
2 C1x1

− 2ẋT1C
T
1 C2x2 + ẋT2 P2x2 + xT2 P2ẋ2 − 2xT2C

T
2 D1C2ẋ2

= (xT1A
T
1 +uT1 B

T
1 )P1x1 + xT1 P1(A1x1 +B1u1)

+ (xT2A
T
2 +uT2 B

T
2 )P2x2 + xT2 P2(A2x2 +B2u2)

− 2(ẏT1 − u̇
T
1 D

T
1 )D2(y1 −D1u1)

− 2(ẏT2 − u̇
T
2 D

T
2 )(y1 −D1u1)

− 2(ẏT1 − u̇
T
1 D

T
1 )(y2 −D2u2)

− 2(ẏT2 − u̇
T
2 D

T
2 )D1(y2 −D2u2)

= xT1 (AT1 P1 + P1A1)x1 + xT2 (AT2 P2 + P2A2)x2

+ 2uT1 B
T
1 P1x1 + 2uT2 B

T
2 P2x2

− 2ẏT1 D2y1 − 2ẏT2 y1 + 2ẏT2 D1u1 + 2u̇T2 D
T
2 y1

+ 2ẏT1 D2u2 + 2u̇T1 D
T
1 y2 − 2ẏT2 D1y2 − 2ẏT1 y2

= −xT1 P1L
T
1 L1P1x1 − xT2 P2L

T
2 L2P2x2 − 2ẏT2 y1 − 2ẏT1 y2

+ 2uT1 (BT1 P1 −C1L
T
1 L1P1)x1 − 2uT1 C1L

T
1 L1P1x1

+ 2uT2 (BT2 P2 −C2L
T
2 L2P2)x2 − 2uT2 C2L

T
2 L2P2x2

= −xT1 P1L
T
1 L1P1x1 − xT2 P2L

T
2 L2P2x2 − 2ẏT2 y1 − 2ẏT1 y2

+ 2uT1 (C1A1x1 +C1B1u1)− 2uT1 C1B1u1
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+ 2uT2 (C2A2x2 +C2B2u2)− 2uT2 C2B2u2

− 2uT1 C1L
T
1 L1P1x1 − 2uT2 C2L

T
2 L2P2x2

= −xT1 P1L
T
1 L1P1x1 − xT2 P2L

T
2 L2P2x2 − 2ẏT2 y1 − 2ẏT1 y2

+ 2uT1 ẏ1 − 2uT1 C1B1u1 − 2uT1 C1L
T
1 L1P1x1

+ 2uT2 ẏ2 − 2uT2 C2B2u2 − 2uT2 C2L
T
2 L2P2x2

= −(L1P1x1 −L1C
T
1 u1)T (L1P1x1 −L1C

T
1 u1)

− (L2P2x2 −L2C
T
2 u2)T (L2P2x2 −L2C

T
2 u2)

where we used the feedback equations u1 = y2 and u2 = y1, and

2uTi CiBiui = uTi (CiBi + (CiBi)
T )ui = uTi CiL

T
i LiC

T
i ui .

Define ỹi = LiPixi −LiCTi ui , for i = 1,2. Then,

V̇ (x1,x2) = −ỹT1 ỹ1 − ỹT2 ỹ2 ≤ −ỹT2 ỹ2 ≤ 0. (4.7)

This implies that the closed loop systems is at least Lyapunov-stable; i.e.,

the closed loop system poles can only be the closed left half of the com-

plex plane. We now show that the closed loop system matrix has no eigen

values on the imaginary axis. The closed loop matrix for the systems is

Ă =

 A1 +B1D2C1 B1C2

B2C1 A2 +B2D1C2

 .
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Suppose that this matrix has an eigenvalue on the jω-axis. Then there

exists a nonzero x =
[
xT1 xT2

]T
such that

 A1 − jωI +B1D2C1 B1C2

B2C1 A2 − jωI +B2D1C2


 x1

x2

 = 0,

for ω ∈R. So, we have

(A1 − jωI +B1D2C1)x1 +B1C2x2 = 0, (4.8)

and

B2C1x1 + (A2 − jωI +B2D1C2)x2 = 0. (4.9)

Then, we have

(jωI −A1)x1 −B1y2 = 0, (4.10)

and

(jωI −A2)x2 −B2y1 = 0, (4.11)

where we used the state-space equations (4.2), (4.4) and the equations u1 =

y2 and u2 = y1.

Integrating (4.7), we get

−V (0) ≤ V (t)−V (0) ≤ −
∫ t

0
ỹT2 (s)ỹ2(s)ds. (4.12)

Then ∫ t

0
ỹT2 (s)ỹ2(s)ds ≤ V (0), (4.13)

which implies

ỹ2 = L2P2x2 −L2C
T
2 u2 = 0. (4.14)
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Combining (4.11), (4.14) in a matrix equation form we get

 A2 − jωI B2

L2P2 −L2C
T
2


 x2

u2

 = 0.

Since the matrix on the left has full rank for ω ∈ (0,∞), it follows that

x2 = u2 = 0 and hence y1 = y2 = 0. This implies C1x1 = 0,x1 , 0; i.e.,

(A,C) is non-observable, which contradicts the minimality of the system.

Therefore, Ă is semistable (i.e. jω < spec(Ă), for nonzero ω ∈R).

Now suppose that the matrix Ă has an eigenvalue at the origin (ω = 0).

From (4.10) we have

C1x1 = −C1A
−1
1 B1y2 = (G(0)−D1)y2.

This implies

y1 −D1u1 = (G(0)−D1)y2,

and then

y1 = G(0)y2. (4.15)

Similarly, from (4.11) we have

y2 =H(0)y1. (4.16)

Combining (4.15) and (4.16) we get

y1 = G(0)H(0)y1. (4.17)

Note that, from (4.11), if y1 = 0 we get x2 = 0, since A2 is asymptotically
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stable and hence invertible. Also, we have y2 = C2x2 +D2u2 = 0, and from

(4.10) we have x1 = 0 since A1 has no have eigenvalue at the origin. That

leads to (x1,x2) = 0 which is not allowed, thus y1 must be nonzero. How-

ever, (4.17) contradicts with the DC gain condition λmax(G(0)H(0)) < 1.

Therefore, we have shown by contradiction that the closed loop system

does not have eigenvalues on the imaginary axis. From that, we conclude

that the feedback interconnection of G(s) and H(s) is internally stable.

�

The next corollary shows that the result in [115] for the internal stability

of positive feedback interconnections of NI systems is still correct.

Corollary 4.1. Given a NI transfer function matrix G(s) and a SNI transfer

function matrix H(s) and assume that G(∞)H(∞) = 0 and H(∞) ≥ 0. Then,

the feedback interconnection of G(s) and H(s) is internally stable if and only if

λmax(G(0)H(0)) < 1.

Proof. This result follows from Theorem 1 and the necessity part of The-

orem 5 of [115] for which a correct proof has already been given in [115].

�

4.4 Concluding Remarks

In this chapter, a positive feedback interconnection of NI system with

transfer function G(s) and SNI system with transfer function H(s) is con-

sidered. A Lyapunov-based approach has been used to give a correct

proof of the internal stability of the closed-loop system. A Lyapunov
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function has been constructed by making use of the dc loop gain con-

dition λmax(G(0)H(0)) < 1. The time derivative of this function has been

shown to be negative semi-definite. Then the dc loop gain condition has

been employed again to show that the closed-loop system matrix doesn’t

have poles on the imaginary axis which proves the internal stability of the

closed-loop system.



Chapter 5

Extending Negative Imaginary

Systems Theory to Nonlinear

Systems

The work, reported in this chapter, has been partially published in the following article:

Ahmed G. Ghallab, Mohamed A. Mabrok, and Ian R. Petersen (2018), Extending Negative Imag-
inary Systems Theory to Nonlinear Systems. IEEE Conference on Decision and Control (CDC),
pp 2348-2353.

5.1 Introduction

Many nonlinear systems that dissipate energy in a physical sense do not

fall into the classical dissipativity framework. For example, certain sys-

tems with hysteretic behaviour are dissipative with supply rate ẏ(t)u(t);

that is, the derivative of the system output is involved in the supply rate

ẏ(t) instead of the output y(t) as is the case in the classical dissipativity /

passivity. Also, flexible structures with colocated force actuators and posi-
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tion sensors are passive/dissipative relative to the input and the derivative

of the output. For more details see [43, 44, 86, 87].

Generally speaking, the classical passivity and dissipativity theory does

not apply in a straightforward manner in the analysis and design of dissi-

pative (passive) control systems where the supply rate involves derivatives

of the input and outputs [5, 86]. In particular, systems which are passive

from the input u to the derivative of the output ẏ do not satisfy the sector

condition for the classical passivity property. Adding to this, the presence

of nonlinearities in these systems may lead to difficulties in analyzing sys-

tem’s performance.

In this regard, negative imaginary systems theory has been proven as

an effective tool in the analysis and design of control systems for the class

of LTI systems which are passive (positive real) from u to ẏ; e.g. see [58,

60, 90, 115]. The negative imaginary property can be interpreted in terms

of dissipativity for the class of LTI systems, by saying an LTI NI system

is dissipative/passive between the input and the derivative of the output.

This time-domain definition of the NI property can be generalized to the

general nonlinear case.

In this chapter, we extend the negative imaginary systems theory to non-

linear systems using a time-domain dissipativity framework. This enables

us to extend some of the existing results from the linear negative imagi-

nary systems framework to a broader class of nonlinear systems. In par-

ticular, the asymptotic stability of a positive feedback interconnection of

nonlinear negative imaginary systems will be established under suitable

assumptions using technical tools from Lyapunov and dissipativity theo-

ries.
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5.2 Characterization of Nonlinear Negative Imag-

inary Systems

In this section, we characterize the negative imaginary property by us-

ing a time-domain dissipativity framework. We start by looking at the

linear case and then generalize the notion to a broader class of nonlinear

systems. Consider the following SISO negative imaginary system:

ẋ(t) = Ax(t) +Bu(t), (5.1)

y(t) = Cx(t) (5.2)

where x ∈ R
n,u ∈ R, y ∈ R, A ∈ R

n×n,B ∈ R
n×1, and C ∈ R

1×n. The NI

system (5.1), (5.2) can be characterized in terms of dissipation inequality

according to the following lemma.

Lemma 5.1. Suppose that (A,B,C) is minimal. Then, the system (5.1), (5.2)

is NI if and only if there exists a nonnegative function V such that

V̇ (x(t)) ≤ ẏ(t)u(t) (5.3)

for all t ≥ 0, where V = 1
2x

T P x, and P = P T > 0 satisfies the following LMI:

 PA+AT P P B−ATCT

BT P −CA −(CB+BTCT )

 ≤ 0. (5.4)

Proof. We have

V̇ (x(t)) ≤ ẏ(t)u(t)

⇔
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1
2
xT (PA+AT P )x+ xT P Bu ≤

uTCAx+
1
2
uT (CB+BTCT )u

⇔

1
2

[
xT uT

]PA+AT P P B−ATCT

BT P −CA −(CB+BTCT )


xu

 ≤ 0.

This completes the proof .

�

Next, we aim to generalize the linear negative imaginary property by in-

troducing a class of nonlinear dissipative systems known as the class of

nonlinear Negative Imaginary systems. Consider the following general non-

linear system

ẋ = f (x,u) (5.5)

y = h(x) (5.6)

where f : Rn ×R→ R
n is a Lipschitz continuous function and h : Rn→ R

is a class C1 function.

Definition 5.1. The system (5.5), (5.6) is nonlinear negative imaginary if

there exists a nonnegative function V : Rn→R of class C1 such that

V̇ (x(t)) ≤ ẏ(t)u(t), (5.7)

for all t ≥ 0. Here, the function V (·) is called the storage function.

For the purpose of designing a stable control system involving nonlin-
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ear NI systems, we introduce a subclass of nonlinear NI systems called

marginally strict nonlinear NI systems following a similar argument as

in [55].

Definition 5.2. The system (5.5), (5.6) is said to be a marginally strictly

nonlinear NI system if the dissipative inequality (5.7) is satisfied, and for all

u(·) and x(·) such that

V̇ (x(t)) = ẏ(t)u(t) (5.8)

for all t > 0, then limt→∞u(t) = 0.

We have also the following definition that gives a nonlinear analog to

the strictly negative imaginary property of LTI systems.

Definition 5.3. The system (5.5), (5.6) is said to be a weak strictly nonlinear

NI system if it is marginally strict nonlinear NI and globally asymptotically

stable with u(t) = 0.

5.2.1 Relation between Nonlinear CCW Systems and Non-

linear NI Systems

Systems with the negative imaginary property are closely related to sys-

tems with the counter clockwise (CCW) input-output property. In [5, 86],

a dynamical system with input u and output y has a counter-clockwise

property if

liminf
T→∞

∫ T

0
ẏ(t)u(t)dt > −∞, (5.9)

for each bounded pair (u(t), y(t)). The CCW property is defined for both

the linear and nonlinear case. In the linear case, it has been shown for LTI

systems that the CCW property is equivalent to the negative imaginary
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property [86]. In the nonlinear setup, we introduce the following lemma

on the relation between the negative imaginary property and the CCW

property.

Lemma 5.2. If the system (5.5), (5.6) is nonlinear NI, then it is CCW.

Proof. If the nonlinear system (5.5), (5.6) is nonlinear Negative Imaginary,

then there exits a nonnegative function V (·) such that

V̇ (x(t)) ≤ ẏ(t)u(t), (5.10)

for all t ≥ 0. Integrating both sides of (5.10) from 0 to T , we obtain

V (x(T ))−V (x(0)) ≤
∫ T

0
ẏ(t)u(t)dt. (5.11)

Since V (x(T )) ≥ 0, we conclude that

liminf
T→∞

∫ T

0
ẏ(t)u(t)dt ≥ V (x(0)) > −∞. (5.12)

�

Remark 5.1. The converse of this lemma has not been yet investigated as

pointed out in [5], and is left here for potential future work.

5.3 Stability of Interconnected Nonlinear NI Sys-

tems

Here, we use a Lyapunov-based technique and an invariance principle

to investigate the stability robustness of a positive feedback interconnec-
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+ H1

H2 +

u1 y1

u2y2

Figure 5.1: Feedback interconnection of nonlinear NI systems H1 and H2.

tion of two nonlinear Negative Imaginary systems H1 and H2 (see Figure

5.1) represented by

H1:

 ẋ1 = f1(x1,u1)

y1 = h1(x1)
and H2:

 ẋ2 = f2(x2,u2)

y2 = h2(x2)
(5.13)

where hi : Rn → R is a C1 function with hi(0) = 0, fi : Rn × R → R
n is

continuous and locally Lipschitz in xi for bounded ui , and where fi(0,0) =

0.

5.3.1 Open-Loop System Result

We seek here to develop a nonlinear generalization of Lemma 4.1 in

Chapter 4 which has been used (in the linear case) to find a Lyapunov

function candidate of the feedback system comprising of NI and SNI sys-

tems. We consider the open-loop interconnection of systems H1, and H2

as shown in Figure 5.2. A Lyapunov function will be constructed for the

purpose of investigating the robust stability of the feedback system shown

in Figure 5.2.
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H H
u1 y1 u2 y2

21

Figure 5.2: Open-loop interconnection of nonlinear NI systems H1 and
H2.

Before stating our lemma, we make the following assumptions on the

open-loop interconnection of H1 and H2.

Assumption 1. For any constant ū1, there exists a unique solution (x̄1, ȳ1)

to the equations

0 = f1(x̄1, ū1), ȳ1 = h1(x̄1) (5.14)

such that ū1 , 0 implies x̄1 , 0 and the mapping ū1 7→ x̄1 is continuous.

Assumption 2. For any constant ū2, there exists a unique solution (x̄2, ȳ2)

to the equations

0 = f2(x̄2, ū2), ȳ2 = h2(x̄2). (5.15)

Also, ū2 , 0 implies x̄2 , 0 and the mapping ū2 7→ x̄2 is continuous.

Assumption 3. h1(x̄1)h2(x̄2) ≥ 0, for each x̄1, x̄2 as defined in Assumptions

1 and 2.

Assumption 4. There exits a constant 0 < γ < 1 such that for any ū1 and

with ȳ2 defined as in Assumption 2 the following sector bound condition:

ū1ȳ2 ≤ γū2
1 (5.16)

holds.

Lemma 5.3. Referring to the open-loop interconnection as in Figure 5.2, sup-

pose that H1 is nonlinear NI with storage function V1(x1) > 0, and H2 is weak
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ū

ȳ
2

1

ȳ2 = γū1

Figure 5.3: Graphical representation of the sector bound condition (5.16).

strict nonlinear NI with storage function V2(x2) > 0. Assume that the Assump-

tions 1 to 4 are satisfied. Then the function W (x1,x2) defined as

W (x1,x2) := V1(x1) +V2(x2)− h1(x1)h2(x2), (5.17)

is positive definite.

Proof. We have W (0,0) = 0. Fix any x1,x2 , 0, and

consider the following discrete iterations {ū[k]
1 }, {x̄

[k]
1 }, {ȳ

[k]
1 }, {ū

[k]
2 }, {x̄

[k]
2 },

such that

ū
[1]
1 := h2(x2), and

ū
[k+1]
1 :=

1
γ
ȳ

[k]
2 , k = 1,2,3, . . .

We have two cases:
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Case 1) if ū1 = h2(x2) = 0, then

W (x1,x2) = V1(x1) +V2(x2) > 0,

since (x1,x2) , 0 and V1(·),V2(·) are positive definite.

Case 2) if ū1 = h2(x2) , 0, then (5.16) implies ū[k]
1 ū

[k+1]
1 ≤ (ū2

1)[k], that is;

ū
[k]
1 (ū[k+1]

1 − ū[k]
1 ) ≤ 0.

When ū[k]
1 ≥ 0 and ū[n+1]

1 − ū[k]
1 ≤ 0 , that is; ū[k+1]

1 ≤ ū[k]
1 , then the sequence

{ū[k]
1 } converges to zero. On the other hand, if ū[k]

1 ≤ 0 and ū[k+1]
1 − ū[k]

1 ≥

0 , that is; ū[k+1]
1 ≥ ū[k]

1 , it follows that {ū[k]
1 } converges to zero. By the

continuity of the map ū1 7→ x̄1, we conclude that x̄[k]
1 → 0. Hence, ȳ[k]

1 →

0, and since ȳ1 = ū2, the iteration {ū[k]
2 } should converge to zero. By the

continuity of the map ū2 7→ x̄2, we have also x̄[k]
2 → 0.

Now we seek to find a lower bound for the function W . Each subsystem

of the open loop interconnection satisfies

V̇i(xi(t)) ≤ ẏi(t)ui(t) (5.18)

For any constant inputs ui(t) ≡ ui and integrating (5.18), we get

Vi(xi(t))− hi(xi(t))ui ≥ Vi(ξi)− h(ξi)ui , (5.19)

for all xi , ξi ∈ R
n. Let u1 = ū

[1]
1 := h2(x2) and ξ1 = x̄

[1]
1 in (5.19) for the

system H1. Then

V1(x1)− h1(x1)h2(x2) ≥ V1(x̄[1]
1 )− h1(x̄[1]

1 )h2(x2).
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It follows that

W (x1,x2) ≥ V1(x̄[1]
1 )− h1(x̄[1]

1 )h2(x2) +V2(x2).

Let u2 = ū
[1]
2 = h1(x̄[1]

1 ) and ξ2 = x̄
[1]
2 in (5.19) for the system H2. Then we

get

V2(x2)− h2(x2)h1(x̄[1]
1 ) ≥ V2(x̄[1]

2 )− h2(x̄[1]
2 )h1(x̄[1]

1 ).

This leads to

W (x1,x2) ≥ V1(x̄[1]
1 ) +V2(x̄[1]

2 )− h1(x̄[1]
1 )h2(x̄[1]

2 ).

From Assumption 3, we have three cases: Case i) h1(x̄[1]
1 ) = 0 and h2(x̄[1]

2 ) ,

0. We have

W (x1,x2) ≥ V1(x̄[1]
1 ) +V2(x̄[1]

2 ) ≥ V1(x̄[1]
1 ) > 0,as x̄[1]

1 , 0.

Case ii) h1(x̄[1]
1 ) , 0 and h2(x̄[1]

2 ) = 0. In this case,

W (x1,x2) ≥ V1(x̄[1]
1 ) +V2(x̄[1]

2 ) ≥ V2(x̄[1]
2 ) > 0,as x̄[1]

2 , 0.

Case iii) h1(x̄[1]
1 )h2(x̄[1]

2 ) > 0. In this case,

W (x1,x2) ≥ V1(x̄[1]
1 ) +V2(x̄[1]

2 )− h1(x̄[1]
1 )h2(x̄[1]

2 )

= V1(x̄[1]
1 ) +V2(x̄[1]

2 )− 1
γ
h1(x̄[1]

1 )h2(x̄[1]
2 )

+ (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 ).

Let u1 = ū[2]
1 = 1

γ h2(x̄[1]
2 ) and ξ1 = x̄[2]

1 in (5.19) for the system H1. Then we
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get

V1(x̄[1]
1 )− 1

γ
h1(x̄[1]

1 )h2(x̄[1]
2 ) ≥ V1(x̄[2]

1 )− 1
γ
h1(x̄[2]

1 )h2(x̄[1]
2 ),

which in turn leads to

W (x1,x2) ≥ V1(x̄[2]
1 )− 1

γ
h1(x̄[2]

1 )h2(x̄[1]
2 ) +V2(x̄[1]

2 )+

+ (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 ).

Let u2 = ū
[2]
2 = h1(x̄[2]

1 ) and ξ2 = x̄
[2]
2 in (5.19) for the system H2. Then we

get

V2(x̄[1]
2 )− 1

γ
h2(x̄[1]

2 )h1(x̄[2]
1 ) ≥ V2(x̄[2]

2 )− 1
γ
h1(x̄[2]

1 )h2(x̄[2]
2 ),

which leads to

W (x1,x2) ≥ V1(x̄[2]
1 ) +V2(x̄[2]

2 )− 1
γ
h1(x̄[2]

1 )h2(x̄[2]
2 )

+ (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 ).

Repeating the above process, we obtain

W (x1,x2) ≥ V1(x̄[k]
1 ) +V2(x̄[k]

2 )− 1
γ
h1(x̄[k]

1 )h2(x̄[k]
2 )

+ (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 ),

Letting k→∞, we conclude that

W (x1,x2) = V1(0) +V2(0)− 1
γ
h1(0)h2(0)

+ (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 )

= 0 + (
1
γ
− 1)h1(x̄[1]

1 )h2(x̄[1]
2 ) > 0.
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Therefore, the function W is positive definite for all nonzero x1,x2. This

completes the proof.

�

Remark 5.2. The aforementioned Assumptions 1 to 4 reduce to the equiv-

alent conditions of Lemma 4.1 in Chapter 4. To show this, for the open

loop systems as in Figure 5.2, consider the case where H1 and H2 are two

LTI NI systems represented by

Hi :

 ẋi = Aixi +Biui

yi = Cixi ,
(5.20)

where G1(s) and G2(s) are transfer functions for the systems H1 and H2,

respectively. We can see that Assumptions 1 and 2 hold trivially. Also,

Assumption 3 amounts to the condition G2(∞) > 0. The sector bound con-

dition (5.16) reduces to the DC-gain condition λmax(G1(0)G2(0)) < 1 which

can be seen from the following

ū1ȳ2 ≤ γū2
1 ⇒ ū1ȳ2 < ū

2
1 as γ < 1

⇒ ū2

ȳ2
−
ȳ1

ū1
> 0

⇒ G2(0)−1 −G1(0) > 0

⇒ λmax(G1(0)G2(0)) < 1.

5.3.2 Closed-Loop System Stability

The next result establishes the asymptotic stability of the positive feed-

back interconnection of the nonlinear NI systems H1 and H2, as shown in

Figure 5.1. The stability of the feedback system is investigated using a Lya-
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punov function candidate constructed in Lemma 5.3. The proof follows

along similar lines to proof of Theorem 3 in [52] on the absolute stabil-

ity of a feedback interconnection of a weak strict positive real system and

nonlinear passive system. The corresponding closed-loop system of H1

and H2 can be represented with the following state space representation:

ż(t) := %(z(t)), z(t) :=

x1(t)

x2(t)

 ∈R2n (5.21)

where % : R2n→R
2n is locally Lipschitz and %(0) = 0.

Theorem 5.1. Consider the positive feedback interconnection of systems H1

and H2 as in Figure 5.1. Suppose that the system H1 is nonlinear NI and

zero-state observable, and the systemH2 is weak strict nonlinear NI. Moreover,

suppose that Assumptions 1 to 4 are satisfied. Then, the equilibrium point

z = 0 of the corresponding closed-loop system (5.21) is asymptotically stable.

Proof. Consider the function W (x1,x2) as a Lyapunov function for the

closed loop system (5.21). Differentiating W with respect to t and noting

that y1 = u2 and y2 = u1, we get

Ẇ (x1,x2) = V̇1(x1) + V̇2(x2)− ẏ1u1 − ẏ2u2 ≤ 0.

The above inequality follows since the systems H1 and H2 are nonlinear

NI, and the dissipation inequality V̇i(xi) ≤ ẏiui holds for i = 1,2. Hence,

the closed-loop system of H1 and H2 is at least Lyapunov stable.

Next we show the asymptotic stability of the closed-loop system. Since the

systemH2 is weak strict nonlinear NI, the system ẋ2 = f2(x2,0) is a globally

asymptotically stable. By using the result of [35], we have limt→∞x2(t) =
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0 which in turn leads to limt→∞ y2(t) = 0. For trajectories along which

Ẇ (x1,x2) = 0, we have

V̇2(x2)− ẏ2u2 = 0. (5.22)

Thus, limt→∞u2(t) = 0 as H2 is weak strict NI.

Now, letΩ(z0) be anω-limit set of a trajectory z(t, z0) with Ẇ (z) =W (x1,x2) =

0. We show that Ω(z0) = {0}; i.e., this set is a singleton. For any α ∈Ω(z0),

we write

α =

α1

α2

 ∈R2n. (5.23)

Since x2(t) → ∞, α2 = 0. The limit set Ω(z0) is an invariant set of the

system (5.21). In other words, z(t,α) ∈ Ω(z0) for all t ≥ 0. Then, α2 = 0

implies z2(t,α) ≡ 0 and

ż1(t,α) = f1(z1(t,α), 0), 0 ≡ h(z1(t,α)). (5.24)

Since the system H1 is zero-state observable, we conclude that z1(t,α) ≡ 0.

Thus, we see α = 0 and Ω(z0) = {0}. Hence, by Lemma 4.1 of [57], z(t, z0)

approaches Ω(z0) = {0} as t→∞. We have W (z(t, z0)) ≡W (z0)→ 0, as t→

∞ and henceW (z0) = 0. It follows from the positive definiteness ofW that

z0 = 0. It is concluded that any bounded trajectory z(t) satisfying Ẇ (z) ≡ 0

is the trajectory z(t) ≡ 0. Now from the Lasalle invariance principle, any

bounded trajectory z(t) tends to the origin. Therefore, the origin z = 0 is

asymptotically stable.

�
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5.4 Illustrative Example: Nonlinear Mass-Spring-

Damper System

To illustrate the applicability of the above nonlinear NI stability result,

we consider an example of nonlinear mass-spring-damper (MSD) system

as shown in Figure 5.4. We aim at designing a controller using Theorem

5.1 to robustly stabilize the MSD system.

m y
β

k

Figure 5.4: Nonlinear Mass-Spring-Damper System

In this spring-mass-damper system, the system is assumed to be non-

linear and obey the force law

f = k(x+ x3) (5.25)

where f is the force applied to the spring and x is the displacement of the

spring. Using Newton’s second law, the dynamic equation of the mass-

spring-damper system is described by

mẍ+ βẋ+ k(x+ x3) = f (t) = u(t) (5.26)

where m is the mass, β is the damper constant, k is the spring stiffness, x
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is the position of the mass and f is the force acting on the mass. Define

states x1 = x, x2 = ẋ, we obtain the following nonlinear state-space system ẋ1 = x2;

ẋ2 = −km ((x1 + x3
1))− β

mx2 + u(t)
m .

(5.27)

The output y of the considered mass-spring-damper system is the dis-

placement x, that is

y =
[
1 0

]x1

x2

 .
Thus, the state space representation for the mass-spring-damper system

is given by

ẋ =

ẋ1

ẋ2

 =

 x2

−k
m (x1 + x3

1)− β
mx2 + u(t)

m

 ; (5.28)

y =
[
1 0

]x1

x2

 (5.29)

where the input of the system is the force f and the output is the dis-

placement x. A natural Lyapunov function candidate for the mass-spring-

damper system is the total energy of the system, given by

V (x(t), ẋ(t)) =
1
2
mẋ2 + kx(x+ x3). (5.30)

The time derivative of this function along the system’s trajectories satisfies

V̇ (x(t), ẋ(t)) ≤ ẏ(t)u(t). (5.31)

That is, the above mass-spring-damper system is nonlinear NI with a pos-
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itive definite storage function V (x, ẋ). Now suppose the system is con-

trolled with the SISO integral resonant controller

C(s) =
Γ

s+ Γ Φ
(5.32)

where Γ ,Φ are positive constants. The transfer function C(s) is strictly

negative imaginary [90]. We first check the assumptions of the open-loop

interconnection required by Theorem 5.1. From the state equation (5.28)

(setting β =m = 1 for simplicity), when ẋ = 0, we get

x̄2 = 0 (5.33)

x̄3
1 + x̄ − ū

k
= 0 (5.34)

ȳ = x̄1 (5.35)

Using the discriminant method to solve the cubic equation, since we have

∆ = −4− 27
( ū
k

)2
< 0, (5.36)

and therefore equation (5.33) has one real solution. Using Cardano’s cubic

formula, we find the equation has a unique real root which is

ȳ = x̄ = f (ū) =
3

√
ū
2k

+

√
1

27
+
ū2

4k2 +
3

√
ū
2k
−

√
1

27
+
ū2

4k2 (5.37)

then we have

ȳc =
1
Φ
f (ū) =

3

√
ū
2k

+

√
1

27
+
ū2

4k2 +
3

√
ū
2k
−

√
1

27
+
ū2

4k2 (5.38)
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f (ū) 1
Φ

ū ȳ ūc ȳc

Figure 5.5: Open loop system (’c’ refers to the controller )

Using a plotting tool, we can choose a value for the controller parameter

Φ (for varying values of k) such that the sector bound condition

ūȳc ≤ γū2 (5.39)

is satisfied for 0 < γ < 1 as shown in Figure 5.6.

Figure 5.6: Sector bound condition (5.39) is satisfied.

5.5 Concluding Remarks

This Chapter generalizes the notion of negative imaginary systems to

general nonlinear systems using a time-domain dissipativity framework
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and appropriate supply rate. The stability robustness of a positive feed-

back interconnection of nonlinear negative systems has been established.

To achieve that, an open-loop connection of the subsystem has been con-

sidered to construct a Lyapunov function candidate for the closed-loop

system. Then the time derivative of the constructed Lyapunov function

has been shown to be negative semi-definite and by using the Lasalle in-

variance principle the asymptotic stability has been proved. This stability

result has been shown to capture the result of the internal stability of a

positive feedback interconnection of a negative imaginary plant with a

strictly negative imaginary controller.



Chapter 6

Nonlinear Negative Imaginary

System Theory for Systems with

Free Motion

6.1 Introduction

The modelling of flexible structures with free body motion lead to mod-

els with poles at the origin. These systems arise in a number of practi-

cal applications including rotary cranes [45], dual-stage hard disk drives

[31,63,104], robotics and flexible manipulators [24,88], and rotating flex-

ible spacecraft [53]. The notion of linear negative imaginary systems was

extended in [74, 75] to include free body dynamics by allowing for up to

two poles at the origin. This NI extension and related results allow for the

analysis and feedback control of flexible structures with colocated force

actuators and position sensors and with free body motion [75].

The main purpose of this chapter is to generalize some of the existing
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results on linear negative imaginary systems with poles at the origin to

the nonlinear setting. In particular, we seek to extend the nonlinear nega-

tive imaginary notion presented in Chapter 5 to allow for the notion of a

nonlinear negative imaginary systems containing a pure integration.

6.2 Preliminaries

Here, we recall the generalized definition of linear NI systems which al-

lows for poles at the origin and the related generalized negative imaginary

lemma. Consider the following LTI system:

ẋ(t) = Ax(t) +Bu(t), (6.1)

y(t) = Cx(t) +Du(t) (6.2)

where the matrices A ∈ Rn×n,B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. Assume

that the system and has the m ×m real-rational proper transfer function

G(s) := C(sI −A)−1B+D.

Definition 6.1. [75] A square real-rational transfer function matrix G(s) is

negative imaginary if the following conditions are satisfied:

1) G(s) has no pole in Re[s] > 0.

2) For all ω > 0, such that jω is not a pole of G(s), and j (G(jω)−G(jω)∗) ≥

0.

3) If jω0, ω0 ∈ (0,∞), is a pole of G(jω), it is at most a simple pole and

the residue matrix K0 = lims→jω0
(s − jω0)sG(s) is positive semi-definite

Hermitian.
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4) If s = 0 is a pole ofG(s), then lims→∞ s
kG(s) for all k ≥ 3 and lims→∞ s

2G(s)

is positive semi-definite Hermitian.

The following lemma in [71], which is known as the generalized negative

imaginary lemma, gives a state-space characterization of linear NI systems

with free body motion.

Lemma 6.1. [71] Let (A,B,C,D) be a minimal realization of a transfer func-

tion G(s). Then G(s) is NI if and only if D = DT and there exist matrices

P = P T ≥ 0, W ∈ Rm×m, and L ∈ Rm×m such that the following linear matrix

inequality is satisfied

 PA+AT P P B−ATCT

BT P −CA −(CB+BTCT )

 =

 −LT L −LTW

−W T L −W TW

 ≤ 0. (6.3)

Next, we seek to establish a time-domain dissipativity characterization of

the notion of a linear NI system with free body motion.

Lemma 6.2. Suppose that the system (6.1)-(6.2) (with D = 0) is controllable

and observable. Then, G(s) is negative imaginary if and only if there exists

matrix P as in LMI (6.3) such that along the trajectories of the system, the

function V (x) = 1
2x

T P x satisfies

V̇ (x(t)) ≤ ẏ(t)u(t), ∀ t ≥ 0. (6.4)

Proof. Differentiating the function V with respect to the time t, one has

V̇ (x(t)) =
1
2
xT (PA+AT P )x+ xT P Bu.
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Substituting into the dissipation inequality (6.4), we get

1
2
xT (PA+AT P )x+ xT P Bu ≤ uTCAx+

1
2
uT (CB+BTCT )u.

In a matrix form, the above inequality is equivalent to

1
2

[
xT uT

]PA+AT P P B−ATCT

BT P −CA −(CB+BTCT )


xu

 ≤ 0.

By Lemma 2.1, the proof is complete.

�

6.3 Nonlinear Negative Imaginary System with

a Single Integrator

In this section, we seek to establish a nonlinear generalization of the

notion of NI systems with a pole at the origin. We consider a cascade

interconnection of an input affine nonlinear system and a single integrator

(as shown in Figure 6.1) represented by:

Σ :


η̇ = f (η) + g(η)ξ;

ξ̇ = u;

y = h(η),

(6.5)

where η ∈Rn and u ∈R is the scalar control input. The functions f : Rn→

R
n, g : Rn→R

n, h : Rn→R, are continuously differentiable, f (0) = 0, and

g(η) , 0 for all η.
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∫
η̇ = f (η) + g(η)ξ

y = h(η)
u ξ y

Figure 6.1: Cascade interconnection of an input affine nonlinear system
with an integrator.

We want to show that the system (6.5) is nonlinear negative imaginary

system, according to Definition 5.1 of Chapter 5, by finding a nonnegative

storage function of the system states, denoted V (η,ξ)), such that

V̇ (η,ξ) ≤ ẏ(t)u(t) = ∇h(η)[f (η) + g(η)ξ]u, ∀ u,ξ,η, (6.6)

that is,

∂V
∂η

(f (η) + g(η)ξ) +
∂V
∂ξ

u ≤ u∇h(η)f (η) +u∇h(η)g(η)ξ, ∀ u,ξ,η.

Rearranging the terms of the above inequality, it follows that this inequal-

ity is equivalent to the inequalities

∂V
∂η

[f (η) + g(η)ξ] +u[
∂V
∂ξ
−∇h(η)f (η)−∇h(η)g(η)ξ] ≤ 0, ∀ u,ξ,η.

Then, ∀ t ∈ [0,∞), the function V satisfies V̇ ≤ y(t)u(t) if and only if

∂V
∂ξ

= ∇h(η)[f (η) + g(η)ξ], and (6.7)

∂V
∂η

[f (η) + g(η)ξ] ≤ 0, (6.8)

are satisfied ∀ ξ,η.

Now, we aim to find conditions on the functions f ,g and h for which

the conditions (6.7), (6.8) are satisfied and which ensure at the same time
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that the function V (η,ξ) is positive definite. Integrating both sides of (6.7)

with respect to ξ, one has

V (η,ξ) = V̄ (η) +∇h(η)f (η)ξ +
1
2
∇h(η)g(η)ξ2. (6.9)

The variable V̄ (η) can be freely chosen such that the function V (η,ξ) is

nonnegative and ensure at the same time that the inequality (6.8) holds.

Thus, we make the following assumption:

Assumption 5. ∇h(η)g(η) > 0, and (∇h(η)f (η))2−2∇h(η)g(η)V̄ (η) ≤ 0, ∀η.

From this assumption, we can choose

V̄ (η) =
(∇h(η)f (η))2

2∇h(η)g(η)
. (6.10)

Differentiating both sides of (6.9) with respect to η, gives

∂V
∂η

=
∂V̄
∂η

+∇2h(η)f (η)ξ +∇h(η)∇f (η)ξ +
1
2
∇2h(η)g(η)ξ2 +

1
2
∇h(η)∇g(η)ξ2

=
∂V̄
∂η

+ (∇2h(η)f (η) +∇h(η)∇f (η))ξ +
1
2

(∇2h(η)g(η) +∇h(η)∇g(η))ξ2

= α + βξ +
1
2
γξ2,

where we define

α =
∂V̄
∂η

= ∇V̄ ,

β = ∇2h(η)f (η) +∇h(η)∇f (η) = ∇(∇h(η)f (η)),

γ = ∇2h(η)g(η) +∇h(η)∇g(η) = ∇(∇h(η)g(η)).



6.3. Nonlinear Negative Imaginary System with a Single Integrator 101

Substituting this into (6.8) we get

(α + βξ +
1
2
γξ2)(f (η) + g(η)ξ) ≤ 0, ∀ ξ,η,

and by rearranging the terms, we obtain

αf (η) + ξ[βf (η) +αg(η)] +
1
2
ξ2(γf (η) + 2βg(η)) +

1
2
ξ3γg(η) ≤ 0, ∀ ξ,η.

Thus the coefficient of ξ3 must be set to zero; that is, γg(η) = 0. So, we

need the following assumption.

Assumption 6. ∇(∇h(η)g(η))g(η) = 0,

To this end, we get

αf (η) + (βf (η) +αg(η))ξ + βg(η)ξ2 ≤ 0, ∀ ξ,η

Simplifying we get
η̇T (∇h)T βη̇
∇hg

≤ 0. (6.11)

Thus, one further assumption is needed here as follows:

Assumption 7.

(∇h)T β ≤ 0, ∀ η.

Based upon the above arguments, we have the storage function

V (η,ξ) =
(∇h(η)f (η))2

2∇h(η)g(η)
+∇h(η)f (η)ξ +

1
2
∇h(η)g(η)ξ2. (6.12)

which is a non-negative function and satisfies the dissipative inequality

V̇ (η,ξ) ≤ ẏ(t)u(t) for all t ≥ 0. Thus the cascade system as shown in Figure

6.1 is nonlinear negative imaginary.
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Now, we summarize this conclusion in the next theorem.

Theorem 6.1. Consider the nonlinear system (6.5). Assume that the following

assumptions:

1) ∇h(η)g(η) > 0;

2) ∇[∇h(η)g(η)]g(η) = 0;

3) (∇h)T∇(∇h(η)f (η)) ≤ 0,

are satisfied for all η. Then the system (6.5) is nonlinear negative imaginary

with the nonnegative storage function

V (η,ξ) =
(∇h(η)f (η))2

2∇h(η)g(η)
+∇h(η)f (η)ξ +

1
2
∇h(η)g(η)ξ2. (6.13)

Example 6.1. In this example, we show that the cascade connection of a posi-

tive real system with an integrator is nonlinear negative imaginary. Consider

the following LTI system


η̇(t) = a η(t) + b ξ;

ξ̇ = u;

y(t) = c η(t),

(6.14)

where η ∈ R
n,u ∈ R, y ∈ R, and a,b,c are real constants. The positive real

subsystem has a transfer function of the form

G(s) =
cb
s − a

. (6.15)

The transfer function G(s) is positive real if cb > 0 and a < 0. We can see that
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the assumptions of Theorem 6.1 are satisfied. Then, we have

V (η,ξ) =
1
2
∇h(η)f (η)2

g(η)
+∇h(η)f (η)ξ +

1
2
∇h(η)g(η)ξ2

=
1
2
ca2

b
η2 + c a η ξ +

1
2
c b ξ2,

as the storage function, which has a time derivative evaluated as

V̇ (η,ξ) ≤ a
2c
b
η η̇ + c a η̇ ξ + c a η ξ̇ + c b ξ ξ̇

=
ac
b

(aη + bξ)η̇ + c(aη + bξ)ξ̇ =
ac
b
η̇2 + c η̇ ξ̇ ≤ c η̇ ξ̇.

Hence, that the system (6.14) is nonlinear negative imaginary.

�

Example 6.2. Consider the following positive real system

G(s) =
s+ 1

s2 + s+ 1
(6.16)

which has the following state-space representation

A =

 −1 −1

1 0

 , B =

 1

0

 , C =
[

1 1
]
, D = 0. (6.17)

This state-space realization can be put in the form of (6.5) where

f (η) = Aη, h(η) = Cη, g(η) = B. (6.18)

We can see that,

∇h(η)g(η) = CB = 1 > 0, ∇[∇h(η)g(η)]g(η) = 0,
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and

∇h∇(∇h(η)f (η))
[

1 1
] 0

−1

 = −1 ≤ 0.

This shows that the assumptions of Theorem 6.1 are satisfied, and hence the

system (6.16) is nonlinear negative imaginary.

�

Example 6.3. Consider the following nonlinear system

Σ :



η̇1 = η2;

η̇2 = −η3
1 − η2 + ξ;

ξ̇ = u;

y = η2,

(6.19)

which has the form of system (6.5) where

f (η) =

 η2

−η3
1 − η2

 , g(η) =

 0

1

 , and h(η) =
[

0 1
] η1

η2

 .
We have

∇h(η)g(η) =
[

0 1
] 0

1

 = 1 > 0, and ∇[∇h(η)g(η)]g(η) = 0,

and

∇h∇(∇h(η)f (η)) =
[

0 1
] −3η2

1

−1

 = −1 ≤ 0.

By Theorem 6.1, we conclude that the system (6.19) is nonlinear NI.

�
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6.4 Stability Analysis

In this section, we investigate the stability robustness of a positive feed-

back interconnection of system H1 (of the form (6.5)) and system H2, re-

spectively represented by

H1:


η̇1 = f1(η1) + g1(η1)ξ

ξ̇ = u1

y1 = h1(η1)

and H2:

 η̇2 = f2(η2) + g2(η2)u2

y2 = h2(η2)

(6.20)

where all the functions involved are sufficiently smooth.

+
∫

η̇1 = f1(η1) + g1(η1)ξ
y1 = h1(η1)

ξ

η̇2 = f2(η2) + g2(η2)u2
y2 = h2(η2) +

u1 y1

u2y2

Figure 6.2: Feedback interconnection of nonlinear NI systems H1 and H2.

In the feedback system shown in Figure 6.2, the systemH1 is assumed to

be nonlinear negative imaginary (with integrator); that is, by Theorem 6.1,

there exists a continuously differentiable function non-negative function

VH1
(η1,ξ) of the form (6.13) such that

V̇H1
(η1,ξ) ≤ ẏ1(t)u1(t), ∀t > 0. (6.21)

The system H2 is assumed to be nonlinear negative imaginary (without

integrator); that is, from Definition 5.1, there exits a continuously differ-



106 6.4. Stability Analysis

entiable positive definite function VH2
(η2) such that

V̇H2
(η2) ≤ ẏ2(t)u2(t), ∀t > 0. (6.22)

The stability robustness of the feedback interconnection of systems H1

and H2 (as shown in Figure 6.2) can be established in a similar way to that

of Theorem 5.1. However, the proof of Theorem 5.1 is established using

positive definite storage functions for the subsystems. From Theorem 6.1,

the system H1 is nonlinear NI with a storage function VH1
(η1,ξ) evaluated

as,

V (η1,ξ) =
(∇h1(η1)f1(η1))2

2∇h1(η1)g1(η1)
+∇h1(η1)f1(η1)ξ +

1
2
∇h1(η1)g1(η1)ξ2

=
1
2

( (∇h1(η1)f1(η1))2
√

2
√
∇h1(η1)g1(η1)

+
1
√

2

√
∇h1(η1)g1(η1)ξ

)2

+
1
4

(∇h1(η1)f1(η1))2

∇h1(η1)g1(η1)
+

1
4
∇h1(η1)f (η1)ξ2.

Thus, to ensure that the function VH1
(η1,ξ) is positive definite, the follow-

ing additional assumption is made.

Assumption 8. ∇h1(η1)f1(η1) , 0, ∀η1 , 0.

Now in order to state the stability theorem for the above feedback sys-

tem, we represent the feedback interconnection of H1 and H2 by the fol-

lowing well-defined state-space representation:

ż(t) := %(z(t)), z(t) :=


η1(t)

ξ(t)

η2(t)

 ∈R
2n+1, (6.23)
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where % : R2n+1→R
2n+1 is assumed to be locally Lipschitz and %(0) = 0.

Theorem 6.2. Consider the positive feedback interconnection of systems H1

and H2 as in Figure 6.2. Suppose that the system H1 is nonlinear NI and

zero-state observable, and the systemH2 is weak strict nonlinear NI. Moreover,

suppose that the Assumptions 1 to 4 of Theorem 5.1 and Assumption 8 are

satisfied. Then, the equilibrium point z = 0 of the corresponding closed-loop

system (6.23) is asymptotically stable.

Proof. The proof of this theorem is based on the same ideas as the proof

of Theorem 5.1 in Chapter 5.

�

6.5 Concluding Remarks

In this chapter the notion of nonlinear negative imaginary systems has

been extended to the case of free motion. A cascade connection of an

input affine nonlinear system and a single integrator has been considered.

Under suitable assumptions, this cascade connection has been shown to

be a nonlinear negative imaginary system. Also, we have investigated the

stability robustness of a positive feedback interconnection where the plant

is nonlinear NI system with integrator and the controller is weak strict NI

system. The stability proof in this case can be derived in a similar way to

that of Theorem 5.1.





Chapter 7

Conclusion and Future Work

In this thesis, notion of the negative imaginary systems has been gener-

alized from the linear case to the nonlinear case. This has been achieved

by introducing a time-domain definition of the NI property in terms of

dissipativity theory with an appropriate supply rate. A Lyapunov-based

approach has been presented to prove the internal stability of a positive

feedback interconnection comprising of a linear negative imaginary sys-

tem and a linear strictly negative imaginary system. Next, this linear sta-

bility result has been generalized to establish the stability robustness of a

positive feedback interconnection where the plant corresponds to a non-

linear negative imaginary system and the controller corresponds to a weak

strict negative imaginary system.

The notion of nonlinear negative imaginary systems has been further

extended to include the case of free motion. Under a set of assumptions,

a cascade connection of a nonlinear system, affine in the input, has been

shown to be nonlinear NI. Finally, we established the stability robustness

of a positive feedback system where the plant is nonlinear NI with an in-
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tegrator and the controller is a weak strict nonlinear Negative Imaginary

system. Here is a summary of some of the possible future research direc-

tions which can extend the results in this thesis:

• The work in this thesis mainly focuses on nonlinear negative imagi-

nary systems in the single-input-single-output case. It is worth ad-

dressing the case of multi-input-multi-output systems and related

stability results.

• The Assumptions 1 and 2 of Theorem 5.1 can be weakened to in-

clude more general nonlinear systems where the steady-state solu-

tions may not be unique such as in the case of a typical hysteretic

system.

• Also, the results presented in Chapter 5 and 6 can be used for fu-

ture investigation on the analysis and synthesis of nonlinear nega-

tive imaginary networked systems. For example, the work in [108]

can be extended to nonlinear NI networked systems to investigate

output feedback consensuses problems.

• Furthermore, the results of Chapter 5 can be generalized to the class

of dissipative systems with more general supply rates than the ones

considered in this thesis. For example, dissipative systems with quadratic

supply rates which involves derivatives of the inputs and outputs of

the system can be considered.

• Finally, as most real-world application are inherently nonlinear, an-

other possible future research area could involve applying the non-

linear negative imaginary framework developed in this thesis to real-

world applications for which the negative imaginary property natu-
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rally arises such as, for instance, robotics and flexible link manipu-

lators [24].
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