
UML Profiles for Design Decisons and Non-Functional
Requirements

Author:
Zhu, Liming; Gorton, Ian

Publication details:
2nd International Workshop on Sharing and Reusing architectural Knowledge -
Architecture, Rationale, and Design Intent (SHARK/ADI 2007)
0-7695-2951-8 (ISBN)

Event details:
2nd International Workshop on Sharing and Reusing architectural Knowledge -
Architecture, Rationale, and Design Intent (SHARK/ADI 2007)
Washington DC, USA

Publication Date:
2007

DOI:
https://doi.org/10.26190/unsworks/396

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38538 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/396
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38538
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

UML Profiles for Design Decisions and Non-Functional Requirements

Liming Zhu1,2,Ian Gorton3

1Empirical Software Engineering Program, National ICT Australia Ltd.
2School of Computer Science and Engineering, University of New South Wales

Liming.Zhu@nicta.com.au
3Pacific Northwest National Laboratory, USA

ian.gorton@pnl.gov

Abstract
A software architecture is composed of a collection of

design decisions. Each design decision helps or hinders
certain Non-Functional Requirements (NFR). Current
software architecture views focus on expressing
components and connectors in the system. Design
decisions and their relationships with non-functional
requirements are often captured in separate design
documentation, not explicitly expressed in any views. This
disassociation makes architecture comprehension and
architecture evolution harder.

In this paper, we propose a UML profile for modeling
design decisions and an associated UML profile for
modeling non-functional requirements in a generic way.
The two UML profiles treat design decisions and non-
functional requirements as first-class elements. Modeled
design decisions always refer to existing architectural
elements and thus maintain traceability between the two.
We provide a mechanism for checking consistency over
this traceability. An exemplar is given as a way to
demonstrate the feasibility of our approach.

1. Introduction

A software architecture is defined as “the structure or
structures of the system, which comprise software
elements, the externally visible properties of those
elements, and the relationships among them”[3]. Most
Architecture Description Languages (ADL), including
graphical views supported by these ADLs, reflect this
definition by focusing on expressing components,
connectors, properties on them and relationships among
them [10]. However, such views of architecture are not
suitable for all situations. Firstly, as systems become
larger, more decentralized and continue to change, a
prescriptive structural architecture has difficulty in
supporting flexibility and evolvability [12]. In such
situations, an architecture can be expressed as design
decisions focusing on quality-centric architectural rules in
addition to structural prescription. Secondly, structural
descriptions of an architecture alone do not necessarily

aid architecture activities which need to capture design
decisions and the rationale behind the structural
components and connectors. Thus, viewing an
architecture directly as a set of NFR/FR-affecting design
decisions and treating them as first- class entities has been
seen as the logical next-step of software architecture
research [4, 17]. This has attracted more fundamental
research into design decisions [2, 11]. However, the
ability to capture design decisions and their relationship
with NFRs in architecture descriptions and views is still
lacking. Most of such information is currently captured in
separate free-text documentations [5] or content
management systems [1]. Such a disconnect has a
number of problems:

1) As an architecture evolves, synchronization between
semi-formal architecture views and text-based
documentations is costly.
2) Switching between architecture views and external
documentation for architecture comprehension is
inefficient.
3) Architecture decisions are often cross-cutting. One
decision relates to multiple architectural elements.
Expressing this outside architecture views is difficult.
4) The rigor and friendliness to automated analysis of
unstructured textual descriptions is problematic.

In this paper, we propose a new UML profile for

modeling design decisions as first-class entities. The
profile allows the capturing of design decision using the
Object Constraint Language (OCL) [14]. It supports the
specification of design rules and constraints by referring
to critical participating elements. A consistency checker is
developed to check traceability between design decisions
and related architectural elements.
The rationale behind each architecture decision is mostly
about achieving certain NFRs. This relationship between
design decisions and NFRs is modeled using specialized
dependency notations in UML. The dependency
semantics are modeled after the Goal-oriented
Requirement Language (GRL) notation [8]. The

relationships effectively reflects the rationale behind each
design decisions.

There exist many attribute-specific, purposely built

UML profiles for modeling certain NFRs. These existing
profiles can be used directly in our approach. However,
we propose a new UML profile for modeling NFRs in a
generic but extensible way. Our generic NFR profile only
acts as a simple alternative if 1) no appropriate NFR
profiles exist or 2) NFRs are mainly captured for
documentation purposes rather than formal analysis
purposes. The profile is modeled after the six-element
framework for non-functional scenarios proposed by the
SEI [3].

We consider this work important because:

1) It is an attempt to model cross-cutting design

decisions directly in UML views.
2) It semi-formally captures design rationale as

relationships between design decisions and NFRs rather
than textual explanation.

3) Using UML also enables automated analysis, e.g.
consistency checking or NFR coverage checking.

The rest of the paper is organized as follows. Section 2

describes some of the related work in this area and several
approaches for expressing cross-cutting features on UML
diagrams. Section 3 outlines the design principles behind
our approach with some examples. A real world exemplar
is used to demonstrate our approach in section 4. We
discuss limitations and conclude our paper in section 5.

2. Background and Related work

2.1 UML and OCL

UML is a general purpose modeling language.
Extension mechanisms exist for customizing it for new
usages. In our approach, we use profiles as the extension
mechanism for modeling design decisions. This includes
stereotypes for classifying model elements and defining
new types of model elements, properties for specifying
the characteristics of a particular model element and
tagged values for describing keyword-value pairs of
model elements, where keywords are attributes. Concepts
and constructs in design decisions are mapped to UML
using these mechanisms.

Furthermore, we can use OCL to express constraints
that specify conditions. These conditions that must be
satisfied (or regarded as true) for the model elements can
be used to express particular design rules or constraints.

2.2 Expressing design decisions as cross-cutting
concerns

One challenging issue for modeling design decisions is
about expressing cross-cutting concerns on a design
surface, as design decisions usually relate to more than
one architectural elements spread across different places
and different abstraction levels. There is some work [6]
focusing on different ways of expressing pattern usage on
top of an existing architecture that is applicable to our
approach.

2.2.1 Venn Style annotation

This type of notation for identifying patterns in design
diagrams is based on the Venn diagrams [18]. An
example of these is shown in Figure 1.

Figure 1. Venn Diagram-Style Annotation
(Reproduced from [6])

In the example we can observe that the participants of
a cross-cutting entity (pattern, in this case) are identified
using the shaded or dotted methods. This notation works
fine as long as there are not many patterns or
participations of the same element in many patterns.
However, the overlapping regions start to get messy and
hard to identify. Another major disadvantage of this
approach is that it does not show the relationships
between participating elements, which is critical to
defining design decisions.

2.2.2 UML Collaboration Notation

An improvement over Venn-Style annotation has been
proposed to solve some of these problems. The notation
used is called parameterized collaboration diagrams [15].
The advantage of using this notation is that the dashed
lines (with names) are used to associate the patterns with
their participating classes, thus solving the shading
problem as shown in Figure 2. However, it also raises
other problems such as too many dashed lines will lead to
cluttered diagram. More importantly, cross-cutting

information is mixed with design elements, making it
hard to identify and potentially polluting design diagrams.

Figure 2. UML Collaboration Notation (Reproduced
from [6])

2.2.3 Tagged Annotation

In order to address the cluttering problem, a notation
called “tagged annotation” is introduced. This idea makes
use of the UML built-in extensibility mechanisms,
especially on the tagged values which are used to extend
the properties of a model element. For each given class
and its attributes and operations, tagged values are created
to hold cross-cutting concern related information. In
addition, patterns and participant names associated with a
class is also placed into a new compartment of the class
effectively a first-class entity. An example is shown in
Figure 3. The main advantage of this notation is that it
gives much better scalability than other notations without
losing its readability and captured information. However,
information regarding one cross-cutting concern can still
spread across the whole diagram.

Figure 3. Tagged Annotation with New
Compartments (Reproduced from [6])

Our approach follows the tagged annotation approach
in spirit but creates a separate entity for design decisions
in order to aggregate all related information in one place.
We also provide a consistency checker to facilitate

analysis across design decision entities and architectural
elements.

2.3 Modeling Non-functional Requirements and
Design Rationale
Many attribute-specific, purposely built NFR UML
profiles exist such as “NoFun” [7] and the OMG
performance and scheduling profile [13]. We encourage
the reuse of such profiles with our design decision
approach. However, these profiles are usually analysis-
focused and attribute-specific. In order to express NFRs
from a range of quality attributes, multiple such profiles
have to be used, which is often overkill for expressing
NFRs simply for documenting purposes. For
demonstrating the design decision profile, we designed a
new generic extensible UML profile for NFR, modeled
after the 6-element framework from the SEI [3].
Issues of design decision representation have been
addressed in the design rationale modeling work [16].
Design rationales are modeled as first-class entities.
However, a design decision is simply viewed as one or
more architecture elements. Although these architecture
elements implicitly embody certain design decisions,
architecture elements alone do not express these decisions
clearly. Architecture decisions are much richer as we will
see in the next section.

3 UML profiles for design decisions and
NFRs
3.1 A UML profile for design decisions

We can identify some important aspects of a design
decision [4]:

• Decision: A general design decision can be expressed
in OCL, textual formats and any other appropriate domain
specific dialects.

• Design rules: These define rules which need to be
followed by components within a system. A rule simply
describes a particular way of doing something. In the
profile, OCL or other dialects can be used to capture
design rules. Rules are important since they provide a
more flexible way of regulating architecture quality
properties than structural prescriptions in certain
situations such as Ultra-Large-Scale systems [12].

• Design constraints: Other than design rules, a design
decision may contain constraints which specify what the
system may or may not do. Similar to above, OCL will be
used as an expression syntax for design constraints.

• Participating elements: Participating elements are
architectural elements to which a design decision refers
to. It essentially extracts the context part of the
decision/decision rules/decision constraints expression in
OCL.

• Rationale: Rationales can be captured descriptively in a
separate tag along the relationships to NFRs expressed
using UML extension mechanisms.

od NFR

«stereotype»
DesignDecision

- Participating_elements: Set
- design_constraints: Set
- design_rules: Set
- design_rationale: Set
- decision: Set
- description: String

«metaclass»
Class

«extends»

Figure 4. UML profile for design decisions

Figure 4 shows the stereotype DesignDecision along
with its attributes as described early. It is not necessary
for modelers to fill in all the tag values for all the design
decision classes except for the decision one. Additional
meta-attributes can be added to this design decision meta-
model, in order to suit specific needs from architects.

od NFR

«stereotype»
Support

constraints
{ClientDependency::DesignDecision[*]}
{SupplierDependency::NFR[*]}

«metaclass»
Realisation

«extends»

Figure 5. Stereotype ‘Support’

Figure 5 shows one of the stereotypes for modeling
relationships between decision decisions and NFRs. A
design decision can support/break/help/hurt NFR. One
decision can affect multiple NFRs.

3.2 A UML profile for NFRs

According to [3], a NFR can be expressed in scenarios.
A scenario could be expressed in forms such as
unstructured text or template-based formats such as the 6-
element framework: stimulus, source of stimulus,
environment, artifact, response and response measures.

od NFR

«stereotype»
NFR

- source_of_stimulus: String
- stimulus: String
- environments: String
- response: String
- stimulated_artifact: String
- response_measure: String
- scenario: String

«metaclass»
Class

«stereotype»
Reliability

- mean_time_to_failure: float
- accuracy: Pecentage
- precision: Percentage

«stereotype»
Perfomance

- response_time: float
- latency: float
- throughput: float
- util ization: Percentage
- response: String

«stereotype»
Modifiability

- no_dependent: int
- no_dependency: int
- transit_average_impact: Percentage
- effort: boolean

«stereotype»
Security

- no_of_users: int

«stereotype»
Scalability

- productivity: String
- response: String
- response_time: float
- scalabi lity: String
- throughput: float

«extends»

Figure 6. UML profile for NFR

We capture this in an extensible UML profile as shown in
Figure 6. The super-class NFR stereotype captures the six
elements along with a description. Attribute-specific
stereotypes inherit and can be further extended to include

attribute specific entities, especially response-measures.
For example, a modifiability NFR includes response
measures such as number of dependents, transit average
impact and effort.

3.3. Profile usage
The profiles are expected to be used by architects and

developers. Relevant stakeholders who would like to
analyze these models to meet their business requirements
are also expected to use this profile. These profiles are
specified in XMI-compatible XML format. Some UML
modeling tools, such as Enterprise Architect can import
this XML file and allow the modeler to use them in their
modeling environment. Modelers may add additional
elements to the profile to suit their requirements in any
meta-modeling environment. Other than adding additional
elements on the meta-level models, modelers may also
add optional tags on the instance level to best suit their
requirements. Separate packages for each type of quality
attributes are recommended for better readability.

4. Case Study
We use a real world generic caching service [9] as a

case study to demonstrate the feasibility of the profiles.

4.1 Generic Caching Service

Many applications need to support tens of thousands of
concurrent users. In order to gain high quality levels of
scalability and performance, resource caching is a
mechanism often used. A number of NFRs related to
performance are shown in Figure 7:

cd Performance

«Perfomance»
Cache_performance

tags
environments = under normal conditions
latency = on average: 5ms/request
response = transfer the data within certain time
response_time = on average: 40 requests/sec
source = comes from user interface
stimulus = cl ient requests

«Perfomance»
Overloading_cache

tags
environments = under overloaded conditions
latency = on average: 7ms/requests
response = transfer the data within certain time
response_time = on average: 20 requests/sec
source = comes from user interface
stimulus = client requests

«Perfomance»
Background_Thread

tags
environments = under normal conditions
response = removes expiring cached objects
response_time = on average: 10 objects/sec
source = cache manager
stimulus = creates and runs in the background

Figure 7. Performance NFRs

Other NFRs, such as reliability and scalability are

shown along with the design decisions in Figure 8 and
Figure 9.

In the cache manager class, there are three decisions.
The first decision refers to the size of the cache, in this
example it’s 500. The second decision refers to one of the
attributes within the cache manager class which specifies
whether the LRU algorithm has been used. The third
decision refers to the setting of the priority of the thread
which runs in the background for purging expired objects.

Most of the decisions are also expressed in a free text
form, for example, “placeholder for enhancing caching
service through a new algorithm” which corresponds to
the decision “cache.CacheManager, newAlgorithmLRU =
true”. The main reason for this is that the limitations of
OCL.

In Figure 9, the design decision class “supports” one
of the performance NFR and “breaks” another
performance NFR depending on the conditions expressed
within the NFR. The design decision “supports” the

“cache_performance” NFR under normal conditions but
“breaks” it under overloaded conditions.

Some of the design decisions are listed below:

• Methods putObject() and getObject() have been
implemented in the CacheManager class in order to
place/extract objects to/from the cache.

• Cached objects can determine when they expire through
the isExpired() method.

• A background thread that runs under low priority is
implemented by the attribute threadCleanerUpper in the
CacheManager to satisfy this requirement.

• Code can be added to the threadCleanUpper to search
out the LRU cached objects, and hence this service can be
enhanced later through the use of the LRU algorithms for
purging cached objects.

cd Design Decisions

«DesignDecision»
Cache_Manager

tags
decision = cache.CacheManager, cacheHashMap.size() = 500
decision = cache.CacheManager, newAlgorithmLRU = true
decision = cache.CacheManager, threadCleanerUpper.setPriority = low
description = placeholder for enhancing caching service through new algorithm
description = use a backend low priorty cache purging thread; sets the initial capacity of the Cache to 500;
Participating_elements = cache.CacheManager

«Modifiabil ity»
Modifability::System_modifiability

tags
effort = low
environments = under normal conditions
source = stakeholders
stimulus = schema changed (new attributes/operations added)

«Reliabil ity»
Reliability::Reliability_of_cache

tags
accuracy = 99.9% working properly
environments = under normal conditions
mean_time_to_failure = on average: 2000 hours
source = the system
stimulus = Failure to produce a correct output

«Scalabil ity»
Scalability::Cache_scalability

tags
environments = under normal conditions
response = process requests
response_time = on average: 5ms
scalabil ity = Able to increase its cache size
source = the system
stimulus = server requests
throughput = 100 tps

:CacheManager

+ getCache(Object) : Cacheable

(from Interactions)

«Perfomance»
Performance::Background_Thread

tags
environments = under normal conditions
response = removes expiring cached objects
response_time = on average: 10 objects/sec
source = the system
stimulus = system creates

«Support»

«Support»

«trace»

«Support»
«Support»

Figure 8. Design decisions related to CacheManager

cd Design Decisions

«Perfomance»
Performance::Cache_performance

tags
environments = under normal conditions
latency = on average: 5ms/request
response = transfer the data within certain time
response_time = on average: 40 requests/sec
source = comes from user interface
stimulus = client requests

«Perfomance»
Performance::Ov erloading_cache

tags
environments = under overloaded conditions
latency = on average: 7ms/requests
response = transfer the data within certain time
response_time = on average: 20 requests/sec
source = comes from user interface
stimulus = cl ient requests

«DesignDecision»
Decision_performance

tags
decision = cache.Database, webServer.users->size() <=10000
description = the database only supports up to 10000 users
Participating_elements = cache.Database

«Breaks»

«Support»

Figure 9 Decision related to database performance

5. Conclusion

In this paper, we propose a UML profile for modeling
design decisions and an associated UML profile for
modeling non-functional requirements in a generic way.
The two UML profiles treat design decisions and non-
functional requirements as first-class elements. Modeled
design decisions always refer to existing architectural
elements and thus maintain traceability between the two.
We are currently validating the profile in two ways:

1) We are applying the approach in real projects to
validate its effectiveness.

2) We are seeking expert opinions to evaluate its
expressiveness, intuitiveness, clarity and scalability.

5. Acknowledgements

National ICT Australia is funded by the Australian
Government's Department of Communications,
Information Technology, and the Arts and the Australian
Research Council through Backing Australia's Ability and
the ICT Research Centre of Excellence programs.

[1] M. A. Babar, I. Gorton, and B. Kitchenham, "A
Framework for Supporting Architecture Knowledge and
Rationale Management," in Rationale Management in
Software Engineering, 2006.
[2] F. Bachmann, L. Bass, and M. Klein, "Deriving
Architectural Tactics: A Step Toward Methodical
Architectural Design," Software Engineering Institute
CMU/SEI-2003-TR-004, 2003.
[3] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 2 ed.: Addison-Wesley, 2003.

[4] J. Bosch, "Software architecture: the next step,"
in 1st European Workshop on Software Architecture
(EWSA), 2004.
[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J.
Ivers, R. Little, R. Nord, and J. Stafford, Documenting
software architectures : views and beyond. Boston:
Addison-Wesley, 2003.
[6] J. Dong, "UML Extensions for Design Pattern
Compositions," Journal of Object Technology, vol. 1, pp.
151-163, 2002.
[7] X. Franch, "Systematic Formulation of Non-
Functional Characteristics of Software," in 3rd
International Conference on Requirements Engineering
(ICRE), 1998.
[8] L. Liu and E. Yu, "Designing Information
Systems in Social Context: A Goal and Scenario
Modelling Approach," Information Systems, vol. 29,
2003.
[9] J. Lurie, "Develop a Generic Caching Service to
Improve Performance,
http://java.sun.com/developer/technicalArticles/ALT/cach
ingservices/," 2002.
[10] N. Medvidovic and R. N. Taylor, "A
Classification and Comparison Framework for Software
Architecture Description Languages," IEEE Transactions
on Software Engineering, vol. 26, pp. 70-93, Jan, 2000.
[11] M. Moore, R. Kazman, M. Klein, and J. Asundi,
"Quantifying the value of architecture design decisions:
lessons from the field," in 25th International Conference
on Software Engineering (ICSE), 2003.
[12] L. Northrop, R. Kazman, M. Klein, D. Schmidt,
K. Wallnau, and K. Sullivan, "Ultra-Large Scale Systems:
The Software Challenge of the Future," 2006.
[13] OMG, "UML Profile for Schedulability,
Performance and Time, v1.0."
[14] OMG, "UML 2.0 Object Constraint Language
(OCL) Specification," 2004.
[15] J. Rumbaugh, I. Jacobson, and G. Booch, The
unified modeling language reference manual, 2nd ed.
Boston: Addison-Wesley, 2005.
[16] A. Tang and J. Han, "Architecture
Rationalization: A Methodology for Architecture
Verifiability, Traceability and Completeness," in 12th
Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS),
2005, pp. 135-144.
[17] J. Tyree and A. Akerman, "Architecture
Decisions: Demystifying Architecture," in IEEE
Software. vol. 22, 2005, pp. 19-27.
[18] J. Vlissides, "Notation, Notation, Notation.” " in
C++ Report. vol. April, 1998, pp. 48-51.

