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Abstract 
A software architecture is composed of a collection of 

design decisions. Each design decision helps or hinders 
certain Non-Functional Requirements (NFR). Current 
software architecture views focus on expressing 
components and connectors in the system. Design 
decisions and their relationships with non-functional 
requirements are often captured in separate design 
documentation, not explicitly expressed in any views. This 
disassociation makes architecture comprehension and 
architecture evolution harder.  

In this paper, we propose a UML profile for modeling 
design decisions and an associated UML profile for 
modeling non-functional requirements in a generic way. 
The two UML profiles treat design decisions and non-
functional requirements as first-class elements. Modeled 
design decisions always refer to existing architectural 
elements and thus maintain traceability between the two. 
We provide a mechanism for checking consistency over 
this traceability. An exemplar is given as a way to 
demonstrate the feasibility of our approach.   
 
1. Introduction 

A software architecture is defined as “the structure or 
structures of the system, which comprise software 
elements, the externally visible properties of those 
elements, and the relationships among them”[3]. Most 
Architecture Description Languages (ADL), including 
graphical views supported by these ADLs, reflect this 
definition by focusing on expressing components, 
connectors, properties on them and relationships among 
them [10]. However, such views of architecture are not 
suitable for all situations. Firstly, as systems become 
larger, more decentralized and continue to change, a 
prescriptive structural architecture has difficulty in 
supporting flexibility and evolvability [12]. In such 
situations, an architecture can be expressed as design 
decisions focusing on quality-centric architectural rules in 
addition to structural prescription. Secondly, structural 
descriptions of an architecture alone do not necessarily 

aid architecture activities which need to capture design 
decisions and the rationale behind the structural 
components and connectors. Thus, viewing an 
architecture directly as a set of NFR/FR-affecting design 
decisions and treating them as first- class entities has been 
seen as the logical next-step of software architecture 
research [4, 17].  This has attracted more fundamental 
research into design decisions [2, 11]. However, the 
ability to capture design decisions and their relationship 
with NFRs in architecture descriptions and views is still 
lacking. Most of such information is currently captured in 
separate free-text documentations [5] or content 
management systems [1].  Such a disconnect has a 
number of problems: 
 
1) As an architecture evolves, synchronization between 
semi-formal architecture views and text-based 
documentations is costly. 
2) Switching between architecture views and external 
documentation for architecture comprehension is  
inefficient. 
3) Architecture decisions are often cross-cutting. One 
decision relates to multiple architectural elements. 
Expressing this outside architecture views is  difficult. 
4) The rigor and friendliness to automated analysis of 
unstructured textual descriptions is problematic. 

 
In this paper, we propose a new UML profile for 

modeling design decisions as first-class entities. The 
profile allows the capturing of design decision using the 
Object Constraint Language (OCL) [14]. It supports the 
specification of design rules and constraints by referring 
to critical participating elements. A consistency checker is 
developed to check traceability between design decisions 
and related architectural elements.  
The rationale behind each architecture decision is mostly 
about achieving certain NFRs. This relationship between 
design decisions and  NFRs is modeled using specialized 
dependency notations in UML. The dependency 
semantics are modeled after the Goal-oriented 
Requirement Language (GRL) notation [8]. The 



relationships effectively reflects the rationale behind each 
design decisions. 

 
There exist many attribute-specific, purposely built 

UML profiles for modeling certain NFRs. These existing 
profiles can be used directly in our approach. However, 
we propose a new UML profile for modeling NFRs in a 
generic but extensible way. Our generic NFR profile only 
acts as a simple alternative if 1) no appropriate NFR  
profiles exist or 2) NFRs are mainly captured for 
documentation purposes rather than formal analysis 
purposes. The profile is modeled after the six-element 
framework for non-functional scenarios proposed by the 
SEI [3]. 
 
We consider this work important because: 

 
1) It is an attempt to model cross-cutting design 

decisions directly in UML views. 
2) It semi-formally captures design rationale as 

relationships between design decisions and NFRs rather 
than  textual explanation. 

3) Using UML also enables automated analysis, e.g. 
consistency checking or NFR coverage checking.  

 
The rest of the paper is organized as follows. Section 2 

describes some of the related work in this area and several 
approaches for expressing cross-cutting features on UML 
diagrams. Section 3 outlines the design principles behind 
our approach with some examples. A real world exemplar  
is used to demonstrate our approach in section 4. We 
discuss limitations and conclude our paper in section 5.  
 
 
2. Background and Related work 
 
2.1 UML and OCL 

UML is a general purpose modeling language. 
Extension mechanisms exist for customizing it for new 
usages. In our approach, we use profiles as the extension 
mechanism for modeling design decisions. This includes 
stereotypes for classifying model elements and defining 
new types of model elements, properties for specifying 
the characteristics of a particular model element and 
tagged values for describing keyword-value pairs of 
model elements, where keywords are attributes.  Concepts 
and constructs in design decisions are mapped to UML 
using these mechanisms.  

Furthermore, we can use OCL to express constraints 
that specify conditions. These conditions that must be 
satisfied (or regarded as true) for the model elements can 
be used to express particular design rules or constraints. 
 

2.2 Expressing design decisions as cross-cutting 
concerns 

One challenging issue for modeling design decisions is 
about expressing cross-cutting concerns on a design 
surface, as design decisions usually relate to more than 
one architectural elements spread across different places 
and different abstraction levels. There is some work [6] 
focusing on different ways of expressing pattern usage on 
top of an existing architecture that is applicable to our 
approach. 
 
2.2.1 Venn Style annotation 
 

This type of notation for identifying patterns in design 
diagrams is based on the Venn diagrams [18]. An 
example of these is shown in Figure 1.  
 

 
Figure 1. Venn Diagram-Style Annotation 
(Reproduced from [6]) 
 

In the example we can observe that the participants of 
a cross-cutting entity (pattern, in this case) are identified 
using the shaded or dotted methods. This notation works 
fine as long as there are not many patterns or 
participations of the same element in many patterns.  
However, the overlapping regions start to get messy and 
hard to identify. Another major disadvantage of this 
approach is that it does not show the relationships 
between participating elements, which is critical to 
defining design decisions.  
 
2.2.2 UML Collaboration Notation 

An improvement over Venn-Style annotation has been 
proposed to solve some of these problems. The notation 
used is called parameterized collaboration diagrams [15]. 
The advantage of using this notation is that the dashed 
lines (with names) are used to associate the patterns with 
their participating classes, thus solving the shading 
problem as shown in Figure 2. However, it also raises 
other problems such as too many dashed lines will lead to 
cluttered diagram. More importantly, cross-cutting 



information is mixed with design elements, making it 
hard to identify and potentially polluting design diagrams. 

 
Figure 2. UML Collaboration Notation (Reproduced 
from [6]) 
 
2.2.3 Tagged Annotation 

In order to address the cluttering problem,  a notation 
called “tagged annotation” is introduced. This idea makes 
use of the UML built-in extensibility mechanisms, 
especially on the tagged values which are used to extend 
the properties of a model element. For each given class 
and its attributes and operations, tagged values are created 
to hold cross-cutting concern related information. In 
addition, patterns and participant names associated with a 
class is also placed into a new compartment of the class 
effectively a first-class entity. An example is shown in 
Figure 3. The main advantage of this notation is that it 
gives much better scalability than other notations without 
losing its readability and captured information.  However, 
information regarding one cross-cutting concern can still 
spread across the whole diagram. 
 
 

 
Figure 3.  Tagged Annotation with New 
Compartments (Reproduced from [6]) 
 

Our approach follows the tagged annotation approach 
in spirit but creates a separate entity for design decisions 
in order to aggregate all related information in one place. 
We also provide a consistency checker to facilitate 

analysis across design decision entities and architectural 
elements. 
 
2.3  Modeling Non-functional Requirements and 
Design Rationale 
Many attribute-specific, purposely built NFR UML 
profiles exist such as “NoFun” [7] and the OMG 
performance and scheduling profile [13].  We encourage 
the reuse of such profiles with our design decision 
approach. However, these profiles are usually analysis-
focused and attribute-specific. In order to express NFRs 
from a range of quality attributes, multiple such profiles 
have to be used, which is often overkill for expressing 
NFRs simply for documenting purposes. For 
demonstrating the design decision profile, we designed a 
new generic extensible UML profile for NFR, modeled 
after the 6-element framework from the SEI [3]. 
Issues of design decision representation have been 
addressed in the design rationale modeling work [16].  
Design rationales are modeled as first-class entities. 
However, a design decision is simply viewed as one or 
more architecture elements. Although these architecture 
elements implicitly embody certain design decisions, 
architecture elements alone do not express these decisions 
clearly. Architecture decisions are much richer as we will 
see in the next section.  
 
3 UML profiles for design decisions and 
NFRs 
3.1 A UML profile for design decisions 

We can identify some important aspects of a design 
decision [4]:   

 
• Decision: A general design decision can be expressed 
in OCL, textual formats and any other appropriate domain 
specific dialects. 

• Design rules: These define rules which need to be 
followed by components within a system. A rule simply 
describes a particular way of doing something. In the 
profile, OCL or other dialects can be used to capture 
design rules. Rules are important since they provide a 
more flexible way of regulating architecture quality 
properties than structural prescriptions in certain 
situations such as Ultra-Large-Scale systems [12]. 

• Design constraints: Other than design rules, a design 
decision may contain constraints which specify what the 
system may or may not do. Similar to above, OCL will be 
used as an expression syntax for design constraints. 

• Participating elements: Participating elements are 
architectural elements to which a design decision refers 
to. It essentially extracts the context part of the 
decision/decision rules/decision constraints expression in 
OCL. 



• Rationale: Rationales can be captured descriptively in a 
separate tag along the relationships to NFRs expressed 
using UML extension mechanisms. 

 
od NFR

«stereotype»
DesignDecision

- Participating_elements:  Set
- design_constraints:  Set
- design_rules:  Set
- design_rationale:  Set
- decision:  Set
- description:  String

«metaclass»
Class

«extends»

 
Figure 4. UML profile for design decisions 
 
 

Figure 4 shows the stereotype DesignDecision along 
with its attributes as described early. It is not necessary 
for modelers to fill in all the tag values for all the design 
decision classes except for the decision one.  Additional  
meta-attributes can be added to this design decision meta-
model, in order to suit specific needs from architects.  

 
od NFR

«stereotype»
Support

constraints
{ClientDependency::DesignDecision[*]}
{SupplierDependency::NFR[*]}

«metaclass»
Realisation

«extends»

 
Figure 5. Stereotype ‘Support’ 
 

Figure 5 shows one of the stereotypes for modeling 
relationships between decision decisions and NFRs. A 
design decision can support/break/help/hurt NFR. One 
decision can affect multiple NFRs. 
 
3.2 A UML profile for NFRs 

According to [3], a NFR can be expressed in scenarios. 
A scenario could be expressed in forms such as 
unstructured text or template-based formats such as the 6-
element framework: stimulus, source of stimulus, 
environment, artifact, response and response measures.  

 
 

od NFR

«stereotype»
NFR

- source_of_stimulus:  String
- stimulus:  String
- environments:  String
- response:  String
- stimulated_artifact:  String
- response_measure:  String
- scenario:  String

«metaclass»
Class

«stereotype»
Reliability

- mean_time_to_failure:  float
- accuracy:  Pecentage
- precision:  Percentage

«stereotype»
Perfomance

- response_time:  float
- latency:  float
- throughput:  float
- util ization:  Percentage
- response:  String

«stereotype»
Modifiability

- no_dependent:  int
- no_dependency:  int
- transit_average_impact:  Percentage
- effort:  boolean

«stereotype»
Security

- no_of_users:  int

«stereotype»
Scalability

- productivity:  String
- response:  String
- response_time:  float
- scalabi lity:  String
- throughput:  float

«extends»

 
Figure 6. UML profile for NFR

 
 

 

We capture this in an extensible UML profile as shown in 
Figure 6. The super-class NFR stereotype captures the six 
elements along with a description. Attribute-specific 
stereotypes inherit and can be further extended to include 

attribute specific entities, especially response-measures. 
For example, a modifiability NFR includes response 
measures such as number of dependents, transit average 
impact and effort. 



 
  
 

 
 

3.3. Profile usage 
The profiles are expected to be used by architects and 

developers. Relevant stakeholders who would like to 
analyze these models to meet their business requirements 
are also expected to use this profile.  These profiles are 
specified in XMI-compatible XML format. Some UML 
modeling tools, such as Enterprise Architect can import 
this XML file and allow the modeler to use them in their 
modeling environment.  Modelers may add additional 
elements to the profile to suit their requirements in any 
meta-modeling environment. Other than adding additional 
elements on the meta-level models, modelers may also 
add optional tags on the instance level to best suit their 
requirements. Separate packages for each type of quality 
attributes are recommended for better readability. 
 

4. Case Study 
We use a real world generic caching service [9] as a 

case study to demonstrate the feasibility of the profiles. 
 
4.1 Generic Caching Service 

Many applications need to support tens of thousands of 
concurrent users. In order to gain high quality levels of 
scalability and performance, resource caching is a 
mechanism often used. A number of NFRs related to 
performance are shown in Figure 7: 

 
 
 
 

cd Performance

«Perfomance»
Cache_performance

tags
environments = under normal conditions
latency = on average: 5ms/request
response = transfer the data within certain time
response_time = on average: 40 requests/sec
source = comes from user interface
stimulus = cl ient requests

«Perfomance»
Overloading_cache

tags
environments = under overloaded conditions
latency = on average: 7ms/requests
response = transfer the data within certain time
response_time = on average: 20 requests/sec
source = comes from user interface
stimulus = client requests

«Perfomance»
Background_Thread

tags
environments = under normal conditions
response = removes expiring cached objects
response_time = on average: 10 objects/sec
source = cache manager
stimulus = creates and runs in the background

 
Figure 7. Performance NFRs 

 
Other NFRs, such as reliability and scalability are 

shown along with the design decisions in Figure 8 and 
Figure 9. 

In the cache manager class, there are three decisions. 
The first decision refers to the size of the cache, in this 
example it’s 500. The second decision refers to one of the 
attributes within the cache manager class which specifies 
whether the LRU algorithm has been used. The third 
decision refers to the setting of the priority of the thread 
which runs in the background for purging expired objects.  

Most of the decisions are also expressed in a free text 
form, for example, “placeholder for enhancing caching 
service through a new algorithm” which corresponds to 
the decision “cache.CacheManager, newAlgorithmLRU = 
true”. The main reason for this is that the limitations of 
OCL. 

In Figure 9,  the design decision class “supports” one 
of the performance NFR and “breaks” another 
performance NFR depending on the conditions expressed 
within the NFR. The design decision “supports” the 



“cache_performance” NFR under normal conditions but 
“breaks” it under overloaded conditions.  

Some of the design decisions are listed below: 
 
• Methods putObject() and getObject() have been 
implemented in the CacheManager class in order to 
place/extract objects to/from the cache. 

• Cached objects can determine when they expire through 
the isExpired() method. 

• A background thread that runs under low priority is 
implemented by the attribute threadCleanerUpper in the 
CacheManager to satisfy this requirement. 

• Code can be added to the threadCleanUpper to search 
out the LRU cached objects, and hence this service can be 
enhanced later through the use of the LRU algorithms for 
purging cached objects. 

 
 
 

 
cd Design Decisions

«DesignDecision»
Cache_Manager

tags
decision = cache.CacheManager, cacheHashMap.size() = 500
decision = cache.CacheManager, newAlgorithmLRU = true
decision = cache.CacheManager, threadCleanerUpper.setPriority = low
description = placeholder for enhancing caching service through new algorithm
description = use a backend low priorty cache purging thread; sets the initial capacity of the Cache to 500; 
Participating_elements = cache.CacheManager

«Modifiabil ity»
Modifability::System_modifiability

tags
effort = low
environments = under normal conditions
source = stakeholders
stimulus = schema changed (new attributes/operations added)

«Reliabil ity»
Reliability::Reliability_of_cache

tags
accuracy = 99.9% working properly
environments = under normal conditions
mean_time_to_failure = on average: 2000 hours
source = the system
stimulus = Failure to produce a correct output

«Scalabil ity»
Scalability::Cache_scalability

tags
environments = under normal conditions
response = process requests
response_time = on average: 5ms
scalabil ity = Able to increase its cache size
source = the system
stimulus = server requests
throughput = 100 tps

:CacheManager

+ getCache(Object) : Cacheable

(from Interactions)

«Perfomance»
Performance::Background_Thread

tags
environments = under normal conditions
response = removes expiring cached objects
response_time = on average: 10 objects/sec
source = the system
stimulus = system creates

«Support»

«Support»

«trace»

«Support»
«Support»

 
Figure 8. Design decisions related to CacheManager 

 



cd Design Decisions

«Perfomance»
Performance::Cache_performance

tags
environments = under normal conditions
latency = on average: 5ms/request
response = transfer the data within certain time
response_time = on average: 40 requests/sec
source = comes from user interface
stimulus = client requests

«Perfomance»
Performance::Ov erloading_cache

tags
environments = under overloaded conditions
latency = on average: 7ms/requests
response = transfer the data within certain time
response_time = on average: 20 requests/sec
source = comes from user interface
stimulus = cl ient requests

«DesignDecision»
Decision_performance

tags
decision = cache.Database, webServer.users->size() <=10000
description = the database only supports up to 10000 users
Participating_elements = cache.Database

«Breaks»

«Support»

 
Figure 9 Decision related to database performance 
 
 
5. Conclusion 

In this paper, we propose a UML profile for modeling 
design decisions and an associated UML profile for 
modeling non-functional requirements in a generic way. 
The two UML profiles treat design decisions and non-
functional requirements as first-class elements. Modeled 
design decisions always refer to existing architectural 
elements and thus maintain traceability between the two. 
We are currently validating the profile in two ways:  

1) We are applying the approach in real projects to 
validate its effectiveness. 

2) We are seeking expert opinions to evaluate its 
expressiveness, intuitiveness, clarity and scalability. 
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