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Chapter 1 

Overview 

This chapter gives an overview of the rest of the work. In this work we 

present logics for reasoning about finite dimensional quantum systems. Our 

approach is operational. Our objective is to formalize the basic probabilis

tic language of practicing quantum physicists. The examples, which express 

many of the fundamental notions of quantum theory, including superposi

tion, entanglement, separability and state tomography show that the lan

guages developed here are expressive enough. The main applications are to 

the new and exciting area of quantum computation and information( QCI). 

The role of logic in the study of foundations and structure of mathematics 

is well established over the last century. Since the emergence of computer 

science and artificial intelligence as scientific disciplines over the last half 

century logic has assumed a preeminent role. The importance of the study 

of formal systems or logics may be understood from two perspectives, both 

having roots in mathematical logic. First, it is often the case that a com

puter is abstractly modeled as a device for processing symbols( or strings of 

symbols). The archetypal Turing machine is a case in point. However, any 

such machine must be programmed with a definite system of rules so that 

the next move is unambiguous. We are of course restricting ourselves to de

terministic machines. A formal system or theory in logic may also be thought 

of as a rule based system for deriving certain well-defined strings( the for-

1 



2 CHAPTER 1. OVERVIEW 

mulas) as theorems. In fact, the formal system approach( Post) [Smu96] is 

an abstract formulation of the notion of computation it is equivalent to the 

other approaches ( Church, Turing, Kleene ... ). This approach is also inti

mately related to the notion of a proof, the object of study of a branch of 

logic known as proof theory. The most familiar form of proof theory is the 

axiomatic approach that underpins most of mathematics. There are other 

approaches( sequent calculus [Ebb96) and natural deduction [Da194). In this 

work we follow the axiomatic approach. The second perspective on the pre

eminence of logic may be understood from a simple example. Suppose that 

we have a single lift in a multi-storeyed building. We would like to optimize 

energy costs of running the lift. We would also require that no user has to 

wait for unduly long periods. Besides there may be host of safety issues. 

How do we tackle a host of possible scenarios? How do we formulate our 

specifications so that we may test them against some protocol for running 

the lift? How do we formulate and analyze the protocol itself? Like any 

branch of algebra, say, it would be very advantageous to take a symbolic 

approach so that the state of the lift may be represented in some symbolic 

way, well defined sets of symbols representing possible abstract states of the 

lift and users, the action of the user (or/ and the lift operator) defined as 

operations on the symbols representing the state and so on. We are con

structing a formal model of the system lift+users. Naturally, we cannot 

expect to incorporate everything. For example, the full dynamics of the lift! 

We are abstracting some idealized scenarios from the complex behaviour. 

What we keep will depend upon the aspects we are interested in. To reason 

about the lift+users system in this restricted sense we must of course, have 

some well-defined correspondence among the various symbols and concrete 

states and behaviours. That is, we have a semantics for our formal system. 

The study of semantics of logical systems is as old as mathematical logic. 

This is the main thrust of model theory. 

The simplistic example above does not do justice to the importance and 
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power of the formal approach which was motivated by the study of foun

dations of mathematical reasoning. Since the computer and information 

revolution the formal approach has been applied with great success to hard

ware verification, analysis of programmes, protocols to name a few. The 

present work aims to develop and apply these techniques to Quantum Com

puting and Quantum Information(QCI). In the following paragraphs I give 

an overview of each of the subsequent chapters. 

Quantum computing overlaps both physics and computing. The present 

work is addressed to computer scientists and physicists. To provide them 

with background material for the two disciplines I have incorporated two in

troductory chapters. The first gives an introduction to logic and some of its 

applications in computer science. I also give a short synopsis of complexity 

theory. We start with the simplest and the most basic of all logics: proposi

tional logic. Next we consider its extensions. First order logic or predicate 

calculus has a special place in mathematical theories since most mathemat

ical concepts are formulated in the language of first order logic. Moreover, 

since the logics developed in the later chapters of this work are extensions of 

first order logic I devote a section to it. This is followed by a review of some 

probabilistic logics. Here the primary focus is on the logics developed by 

Fagin, Halpern, Meggedio and 'Tuttle [FHM90, HT93]. The reason is that 

I share i;heir view that a probabilistic theory must deal with real numbers 

and polynomial expressions( contrast the linear case in the references cited 

above) to do justice to the rich concepts in mathematical probability theory

for example, conditional probability and Bayesian inference. It is an often 

repeated cliche that quantum theory is inherently probabilistic. Therefore 

in the spirit of the works cited the logics presented here extend a first order 

theory. However, unlike the classical case it is not a theory of reals that 

is extended but a theory of complex field considered as an extension( in 

the algebraic sense) of real (closed)fields. The other logics discussed in the 

next chapter are modal logics which may be considered as another exten-
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sion of propositional logic. I mainly discuss logics which are of importance 

in compute science. After a brief introduction to general modal logic I give 

short sketches of temporal, dynamic and epistemic logics. I only indicate 

some of their applications in various areas of computer science- hardware 

verification, protocol analysis and programme correctness- citing some of 

the vast literature for more material. In the next section I discuss the other 

approaches to formalizing quantum computation and protocols. The most 

elegant approach among these is the categorical semantics of Abramsky and 

Goecke [AC04a]. Some other approaches like the dynamic logic approach 

[BS04], the logics of Mateus and Serandas [MS04b] and their relation to the 

present work are also discussed. I also give a sketch of so-called quantum 

logic which is quite different from the approaches mentioned. It is the oldest 

approach [BvN36] toward understanding the formal structure of quantum 

theory. 

The Chapter 3 gives a brief introduction to Quantum Theory. This is 

addressed to the readers from computer science. I only state the relevant 

mathematical structure emphasizing the probabilistic aspects. There is very 

little physics in the chapter as there are many excellent texts on quantum 

theory. However, I follow the pragmatic approach in the interpretation of 

the mathematical formalism. This means that the "observable" probabil

ities are given primary importance. I also discuss composite systems and 

their tensor product structure. Measurement is an important issue in quan

tum theory. I discuss only a restricted class of measurements (projective 

measurements). This is sufficient for our purposes. In the spirit of quantum 

computation unitary operators or matrices are discussed at some length. 

These are quantum analogues of classical (logic) gates. Note that we deal 

only with finite dimensional quantum systems which are essentially the ones 

used for building quantum gates. 

The Chapter 4 lays the foundation of the logics developed in this work 

(MP03b]. As I have mentioned, the latter are all extension of a first order 
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theory. That first order theory is called IRC. It is a theory of algebraically 

closed fields considered as an algebraic extension of a real closed field. In 

presenting quantum theory we require real numbers for probabilities and 

expectation values and complex numbers because the probabilities are func

tions of states which are elements of some complex Hilbert space. The theory 

IRC is dealt with in detail. It is theory with equality which has predicate 

R for real terms, and for such terms there is predicate < which is a linear 

order. I prove two of its most important properties: quantifier elimination 

and completeness. I also establish an algorithm for efficient translation of a 

formula in IRC to a formula in the real closed field such that one is satisfiable 

if and only if the other is. It is convenient to introduce some defined sym

bols for square root and complex conjugation since many of the formulas in 

quantum circuits and protocols involve square roots. The importance of the 

theory IRC lies in the fact that our strategy for verification and synthesis of 

quantum circuits is to reduce them to equivalent formulas in IRC. There are 

two advantages in doing this. First we use the properties of IRC in deducing 

those of the logics developed for quantum circuits and protocols. Second it 

gives us a concrete algorithm for verification and synthesis of the latter. 

In section 4.3 the syntax and semantics of the basic language is presented. 

We note that in this chapter we deal with quantum systems in a finite 

dimension n. Thus the language is called .Cn ( P, m). The language has three 

types of distinguished symbols: 

1. Basis symbols. We use symbols b, c, d sometimes with subscripts to 

represent ( orthonormal) bases in a Hilbert space Hn of dimension n. 

Associated with each basis symbol b are n basis variables written as 

bo, ... , bn-1• The basis variable bi is interpreted as the projector on 

to the subspace generated by the ith vector in the basis corresponding 

to b. We allow propositional connectives V and -, over basis variables 

to construct basis formulas. In general, a basis formula corresponds 

to a subspace in the Hilbert space Hn, 
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2. Matrix symbols. For each pair of bases we have n2 variables { miili, j = 
0, ... , n - I} of IRC. These are interpreted as the ( ij)th entry of the 

unitary matrix connecting the bases corresponding to band c. 

3. Probability operator. For each basis formula B, the expression 

P(B) is called an atomic probability term. It is interpreted as a real 

number( more generally as an element of a real closed field). A general 

term of Cn(P, m) is obtained by substituting the atomic terms of the 

form P(b) and mij(b, c) for variables in a multivariate polynomial in 

IRC. Thus, we admit quite general (nonlinear) expressions in proba

bility and matrix terms. If <I> is such a general term then the atomic 

formulas of Ln(P, m) are of the form <I> = 0 or <I> > 0. A general 

formula is a boolean combination of atomic formulas or quantification 

over some of its variables (of JRC). I emphasize that quantification is 

allowed over IRC variables only. The interpretation is that a formula 

like P(B) = x expresses that the probability of the outcome to be in 

the subspace corresponding to B is equal to x. 

As stated above the formulas of Cn(P, m) are interpreted in a complex 

Hilbert space of dimension n. Actually, they may be interpreted over only 

n-dimensional vector space with an inner product over some model K of 

JRC. For convenience we call members of K, complex and real numbers( 

where appropriate). The probability formulas are interpreted in a state. A 

state here means a pure state in contrast to the mixed states considered in 

the next chapter. 

Several examples illustrating the use of the logic are presented. Impor

tant concepts including superposition and uncertainty principle and state 

tomography are expressed as formulas in the language. I also write formulas 

for most single qubit gates. The more complex examples like 2-qubit gates, 

Grover search algorithm and teleportation are dealt with in the next chapter 

after the introduction of tensor product. 

Next we deal with axiomatization. We call the resulting theory Axn(P, m). 
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The axiomatization is presented in two parts. In 4.4.2 a fragment of Ln(P, m) 

which consists of all formulas without the matrix operator mij(b, c). Thus 

we have only terms containing the probability operator. We call the result

ing theory Axn(P). Although, of restricted expressiveness Axn(P) is the 

closest parallel to the probabilistic logic of Fagin, Halpern et. al. mentioned 

above. It contains only the basis axioms and the probability axioms. Some 

immediate consequences of the axiomatization are first derived which are 

useful for reduction algorithms presented later. We have the nontrivial re

sult that any formula of £n(P, m) consistent with the probability and the 

basis axioms is satisfiable. This result is used in proving the completeness 

of Axn(P) in Theorem 7. Next we show that the decision problem for sat

isfiability of a formula in Axn(P) is NP-complete. We add next axioms 

for the transformation matrix operator mij (b, c). Essentially these express 

that transformation relations connecting any two bases in the given Hilbert 

space form a matrix group, viz, the group of unitary matrices. The most 

complicated axiom is MP k which asserts that the probability assignments 

be consistent with the transformation relations. As we see later this axiom 

is essential, for there may be probability assignments for different bases and 

transformation matrices connecting them that are consistent with all other 

axioms of Axn(P, m) but still the formula is not satisfiable in any quantum 

state. We prove later that the number of bases k for which we require to 

check satisfiability is n'2 - 1. This is a nontrivial result since the number of 

possible bases has cardinality 2No (that of the continuum) and secondly the 

number n2 -1 is optimal. As in the case of £n(P) I give efficient algorithms 

for reducing a formula of £n(P, m) to an equivalent formula in ~C. The 

equivalence is in the sense of satisfiability. These results serve two purposes. 

First, they are used to prove the completeness of £n(P, m) by reducing to 

the case of ~C. Second, they provide us with concrete methods for settling 

questions of satisfiability in quantum systems. These algorithms form the 

basis for the algorithmic verification tools being developed as an extension 
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to this work. Thirdly, we use the reduction theorems and the known results 

for complexity in real closed fields to obtain upper bounds on the complex

ity of the satisfiability problem in finite dimensional quantum systems. The 

chapter concludes with an alternative language and its semantics for dealing 

with quantum computation. The language £n(P, m) and its extensions in 

the following chapters are expressive enough to express all known quantum 

circuits and protocols. But the translation is not "intuitive" in the sense 

physicists and computer scientists view quantum circuits. Thus a "quan

tum circuit" like its boolean analogue is function from the input states to 

the output states. It is usually composed of some basic "gates". That is, 

we view gates as operations on states. This is the dynamic view- state 

changing over time- as opposed to the static view where the state remains 

constant but viewed from changing perspective( the bases!). To facilitate 

the dynamic view I present another language with new kinds of syntactic 

operators. Corresponding to a unitary matrix U we have an operator [U) 

acting on the probability formulas. For many purposes it is sufficient to 

have only one basis symbol b and a general formula is obtained by oper

ating probability formulas over b with operators (U], [VJ, ... -the "gates". 

We observe some similarities with dynamic logics [Gol92, Har79) which are 

used to reason about programmes. We see important examples of the for

mulas in this language in the next chapter. However, the language £n(P, m) 

and its extensions are more expressive and often more convenient to reason 

with. The equivalence of the two is demonstrated by embedding them in a 

larger theory. Thus, we may avoid giving the axiomatization for the new 

languages. The complexity bounds are also same. 

The Chapter 5 extends the logics in the preceding chapters by adding 

new operators for tensor product and measurement [Pat05). Given two vec

tor spaces S and T of dimension m and n respectively, over the same field 

one can define the tensor product S x T. It is a vector space of dimension 

mn. If S and T also have a scalar product defined, making them Hilbert 
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spaces then there is natural extension of the scalar product to S@T. These 

constructions from linear algebra are briefly sketched in the chapter on quan

tum theory 3. The important point is, that if a Sand Tare the state spaces 

of two quantum systems then S @T is the state space of the joint composite 

system. Even in classical computing we have to consider the states of such 

composite system. For example the set of states of two bits is the cartesian 

product Bx B where B = {O, 1} is the boolean algebra of two elements. 

Since the set of states of a quantum system must be linear vector space we 

have the tensor product in this case. As a consequence, besides the states 

which behave like classical product states we have entangled states which are 

linear combinations of product states. Entanglement is one of the intriguing 

features of quantum systems and a rich source for powerful practical appli

cation. From a logical point of view the problem we are faced with is the 

following. We start with the languages Cm(P, m) and Cn(P, m) in dimen

sion m and n respectively. Suppose we do not restrict the number copies of 

the corresponding quantum systems. This implies that we take the tensor 

product of arbitrary copies of Hn and Hm, In general, a formula could have 

subformulas referring to more than one dimension. This will clearly cause 

problems in the interpretation. Moreover, we will also have ordering issues 

since the tensor product is not commutative. The first problem is solved 

by stipulating that the probability formulas, whose interpretation depends 

upon the state, refer to a fixed dimension, say n. But the basis formulas 

over which the probability operators act may be tensor product of bases of 

lower dimension. Hence, all bases occurring in the formula are required to 

have dimensions which are factors of n. With these restrictions we define 

the language Cn(P, m, t, M, S) where t is the tensor product symbol, Mand 

S are symbols for two types of measurement. 

Section 5.1 gives the syntax and semantics of the logic for the anguage 

Cn(P, m, t, M, S). The t-operator is introduced as the basis terms appear

ing in the formulas are classified as irreducible and product bases. The 



10 CHAPTER 1. OVERVIEW 

t-operator is defined for any two basis terms. We recall that associated to 

basis symbols in dimension n there are n basis variables. In the case of the 

product basis the ordering of the basis variables are, by definition, inherited 

from that of its factors. This is defined unambiguously and is important 

in subsequent sections. Next, I introduce two operators for measurement: 

the. first one is the standard formalization of projective measurement as 

introduced by von Neumann [BvN36]. The second is a special kind of mea

surement called selective measurement. Here the measuring agent selects a 

particular outcome (if recorded) others being discarded. This operator can 

be dispensed with by expressing it in terms of other operators. But we retain 

it because certain formulas appear more intuitive by its use. The semantics 

of £(P, m, t, M, S) is trickier than the language Ln(P, m) considered in the 

previous chapter. The reason is, because of the tensor product we may have 

bases of different dimensions in the same formula. Probability terms and 

formulas with measurement operator are the terms whose semantics depends 

on the state which is usually assumed to be given in some fixed dimension, 

possibly unknown. Therefore, by definition all probability terms are in some 

fixed dimension n and matrix terms are unrestricted. Thus in matrix terms 

we may have bases in dimensions different from n. They are interpreted 

accordingly. The terms t(bn1 , cn2 ) is interpreted as the tensor product of 

the bases corresponding to bn1 and cn2 • Instead of arbitrary vector space we 

interpret the formulas in en with the standard tensor product. With this 

stipulation the interpretation of matrix terms is almost identical to that in 

the Chapter 4. However, the notion of state is broadened to include "mixed" 

states or density matrices. Informally, a "mixed" state reflects our degree 

of uncertainty about the quantum state. I explain this concept briefly in 

Chapter 3. The probability terms are evaluated in mixed states. The rea

sons for this generalization is explained in 5.1. Next, I give the semantics 

of measurement operators which have some similarities to Kripke [Gol92] 

semantics of modal logics. 
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In section 5.2 some examples of formulas in Ln(P, m, t, M, S) are given. 

These are some of the important gates in quantum circuits. The more 

complex examples are deferred till the next chapter. Next we present an 

axiomatization of the for the language Ln ( P, m, t, M, S). The resulting the

ory is called Axn(P, m, t). The new axioms pertain to the tensor operator 

and the measurement operator. The axioms for the t-operator are some

what complicated. This is because there is no natural isomorphism relating 

tensor product of the same spaces but in different ordering. But as we fix 

our interpretation in en, Axn(P, m, t) it inherits some features typical to 

these spaces and these are formalized in the axiomatization. As in 4 we 

prove some important model theoretic and complexity results. We essen

tially adopt the same strategy as in the preceding chapter to accomplish 

this. Thus we reduce a formula of Ln(P, m, t, M, S) to an equivalent (in 

the sense of satisfiability) formula of IRC. I prove a theorem which gives 

an efficient algorithm for this reduction. This result is then used to prove 

completeness and decidability of Axn(P, m, t). It is also instrumental in 

deriving upper bounds for the complexity of the decision problem of sat

isfiability. The algorithm may also be used for higher-level simulation of 

quantum circuits and protocols. 

In Chapter 6 we discuss alternative applications. In particular, I include 

three of the best known quantum algorithms: teleportation, Grover search 

[Gro96], and phase estimation (Shore algorithm). I start with an alternative 

language Ln(P, t, M, S, U) which which is intuitively better related to quan

tum circuits and protocols. We have already discussed this in the context of 

Ln(P, m). The teleportation and Grover algorithm are written as formulas. 

It is shown that the Grover algorithm may be written as formulas but also 

the question of their existence in some fixed dimension. The phase estima

tion algorithm requires introduction of a defined predicate for n th roots of 

unity. With the use of the reduction algorithm 12 it can be shown that the 

equivalent IRC formula Grover algorithm formula G is O(IGl2). Hence, as 
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each of the basic matrix operation in the algorithm can be done in fixed 

time the classical simulation of G requires O(n) steps, a well known result. 

However, the phase estimation algorithm (which is the key step in Shor 

factorization algorithm) is a different matter. However, it can be verified 

(classically) if the number of qubits is not too large. The chapter concludes 

with a discussion on implementation issues. 

In the final chapter I make some concluding remarks. I discuss some work 

regarding knowledge in quantum systems (MP03a] which was not included 

in this work. The directions of future work and other issues are discussed. 



Chapter 2 

Introduction 

This chapter gives an introduction to several logics connected with the cur

rent investigation. Many of these logics will be very familiar to computer 

scientists but readers from physics background may be unfamiliar with some. 

The subject of logic is a broad one. From the philosophers of antiquity to 

the modern revival initiated by mathematicians like Boole, Cantor, Frege, 

Peano and philosophers like Russel and Wittgenstein the issues and meth

ods of logic span a wide spectrum. However, they are all concerned with 

the central theme: "what assertions may be reasonably considered to be 

true and how to arrive at such truths" . Here we must distinguish between 

empirical truths that are the concern of experimental sciences and formal 

truths which are generally relational. This roughly means that given some 

assertions which are accepted to be true what are we seek/deduce the re

lations amongst these which are also true. Thus the statement "the orbits 

of the planets in the solar system are elliptical" is an accepted empirical 

truth but the assertion "the orbits of the planets are elliptical or they are 

not elliptical" is a logical truth. Here the significant object is the connec

tive "or" which combines two assertions and the negation "not". It does 

not matter what the individual assertions are and we could replace them 

by any symbol say, a and the statement "a or not a" is a logical truth. 

Logic is concerned with the truth of the relations among the individual or 

13 
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atomic statements. Clearly, we need a more precise language than a natural 

language like English in which phrases like "or", "not", "necessity", "for 

all" are unambiguously defined. An essential part of any language is the 

alphabet- the set of symbols- and the formation rules (the grammar) which 

tell us which strings of alphabet constitute legitimate objects ( e.g terms, 

sentences) of the language. These formation rules must be such that we can 

always decide in finite number of steps whether a given string is a specific 

type of object of the language. The language and the distinguished sets of 

objects constitute the syntax of the logic. We usually reason with some class 

of syntactic objects which may be assigned truth values. These are called 

propositions, sentences, formulas, statements etc. in different contexts. Ab

stractly, we say that we have a distinguished class of strings- which we 

call formulas- for definiteness and whose formation rules are unambiguously 

given. The object of a logical theory is the study of these formulas. 

There are two aspects to the study of formulas in a logic. The first 

is purely syntactic or structural. Among the symbols of a language there 

are some distinguished ones called logical constants. First there are the 

propositional connectives /\, V, =>, and-,_ Then there are the quantifiers 

V and 3. Among the set of formulas we define a subset called the axioms. 

We also have a set of inference rules. Further, the axioms are divided into 

two groups logical axioms and nonlogical axioms. The logical axioms and all 

inference rules capture our intuitive understanding of the logical constants. 

All theories have the logical axioms and rules in common. It is in the 

treatment of the logical axioms and rules that classical approach ( the most 

common approach) and the intuitionistic approach differ. First let us briefly 

review the classical approach (also called formal approach). By definition 

all axioms are theorems of the logic. Then one uses the rules to derive 

new theorems from the ones already proved . Any formula obtained by 

applying these rules is a theorem and the steps in the derivation is a proof 

of the theorem. We note that a proof is an effective procedure in the sense 
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that given the axioms, rules and the steps in the proof we can verify the 

purported proof is indeed one. Implicit in this statement is the fact that a 

proof involves finitary reasoning. In other words, a proof may in principle 

be verified by purely mechanical means, for example by a Turing machine. 

Note that in this approach we are not concerned with the meaning of the 

formulas or sentences. We treat them as purely symbolic objects. This 

branch of logic is called proof theory. The particular approach to proof 

theory with axioms and proof rules is called the axiomatic method [Chu56]. 

It is the most prevalent approach in modern mathematics. 

However, there are other approaches to proof theory. The closely re

lated systems of natural deduction and sequent calculus were influenced by 

the ideas of the intuitionistic school [Dru77]. The difference between the 

intuitionistic and the classical school is in their views on what constitutes 

a proof. According to the intuitionists a proof must be constructive in the 

following sense. A proof of A V B is anything that is either a proof of A 

or proof of B. In other words, we must have an effective means of demon

strating a proof of A or proof of B. Thus, the formula A V -,A ( the law of 

excluded middle), which is a theorem in classical mathematics, cannot be 

taken for granted unless we have an effective means of proving A or -,A, For 

example, if A(n) is the statement that n is a prime then A(n) V -,A(n) is 

acceptable as a theorem in the theory of natural numbers for given any n 

we have effective means showing that it is either a prime or not. Similarly, a 

proof of :3xB(x) if we have an effective means which will yield an individual 

n such that there is proof B(n). By this criterion many proofs of classical 

mathematics are not acceptable. The most well known among them are- the 

two related systems natural deduction [Dal94] and sequent calculus [Ebb96]. 

I quote Drummet ( cited above) on natural deduction: 

A natural deduction system is a formalization of logic in which 

no formulas are axiomatically assumed as valid, but there are 

only rules of inference. To compensate for lack of axioms it is 
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permitted to introduce any formula as hypothesis at any stage. 

The inference rules of these proof systems are different for classical and 

intuitionistic logics. In this work we will be primarily concerned with the 

axiomatic approach. 

The second apect of logic is to give interpretation or meaning to the ob

jects of the language. The language of the logic is called the object language. 

Clearly, we cannot interpret the object language in itself. The interpretation 

is an abstract process involving an element of intuition. We may interpret 

in some metalanguage, for example, a natural language like English. Or we 

could interpret one object language in another. In mathematical logic the 

interpretation is done in the language of sets. Once interpreted the sen

tences of the object language can be given truth values. Evidently, we must 

demand that the axioms must be true and that the rules of derivation be 

such that any sentence derived from true sentences must itself be true. This 

branch of logic is called model theory [Hod97] or semantics. Unlike a proof 

the truth of a sentence may not be finitely decidable. 

The imprecise discussion above is intended to give a general overview of 

the study of logic. In the following sections we discuss several logics which 

illustrate the general discussion and also give background to the logics de

veloped in subsequent chapters. I also discuss other approaches to formal 

reasoning about quantum systems which is the primary concern of this work. 

The structure of this chapter is as follows. In the first section I discuss the 

simplest and the most basic of all logics, namely, propositional or boolean 

logic. A brief overview of the syntax and semantics is given along with an 

axiomatization. Then I discuss two possible extensions. The first is known 

as predicate calculus or first-order logic. It is the most important logic for 

mathematics. Most( but not all) mathematical concepts in mathematical 

logic can be expressed as sentences in first-order logic. Moreover, the logics 

presented in this work are interpreted in a first-order theory. I review the 

proof theory and model theory of first-order logic. Most results are stated 
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without proof. The reader may consult standard textbooks like Shoenfield 

[Sho67) for proofs. We also discuss decidability and complexity of the basic 

decision problems like satisfiability and validity. Fundamental concepts like 

soundness, completeness and consistency are also discussed. I also include 

subsections on two other possible extensions of propositional logic, namely, 

modal logic and quantum logic. Modal logic is included because a par

ticular approach to reasoning about quantum computation is the dynamic 

logic approach and the latter is a type of modal logic. Quantum logic was 

developed to formalize the declarative content of quantum theory so that 

it is consistent with the predictions of the latter. It is a generalization of 

ordinary propositional logic so as to capture the peculiarity of quantum sys

tems. Next, we discuss some applications in hardware and protocol analysis. 

These wide-ranging applications of the logical method was one of the main 

motivations for this work. 

In the next section we review probabilistic logics. The primary focus is on 

the logic developed by Fagin, Halpern, and others [FHM90, HT93]. In this 

we work we adopt the basic philosophy of this approach- that probabilities 

are real numbers and reasoning about probabilities should include reasoning 

about real numbers. The first order theory of real closed fields plays an 

important role here. The probabilities that arise in quantum theory have 

more structure, as they are given by complex "amplitudes". We discuss the 

probabilistic logic of Fagin et. al. on several occasions. The reason is to 

bring out the similarities and differences in the reasoning of classical and 

quantum probabilities. 

The next section is devoted to a survey of some of the alternative ap

proaches to logical formulations for reasoning about quantum systems. The 

three approaches that are discussed in some detail are the categorical se

mantics of Abramsky and Goecke [AC04a], the dynamic logic approach of 

Bal tag and Smets [BS04], and the logic developed by Mateus and Sernades. 

The last approach is close to the present one. We also discuss some of the 
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advantages and disadvantages of the current approach. 

The last section gives a short review of computational complexity theory. 

The first question we ask about a function on integers is whether it can 

be computed. Then for the class of computable functions we may try to 

quantify the cost or complexity of computing a member of this class. This 

is important from a theoretical as well as a practical point of view. The 

characterization of complexity of functions and predicates is the subject of 

computational complexity theory. 

2.1 Classical Logics 

What we call "classical logic" consists of propositional logic and first order 

logic. These are the most widely used logics and form a major part of what 

is called mathematical logic. Propositional logic, also known as Boolean 

logic, sentential logic or propositional calculus is the simplest. We present 

it first. 

2.1.1 Propositional Logic 

The symbols of the logic consist of the following. 

1. Propositional variables: The symbols p, q, r etc. will denote proposi

tional variables. Thus, we assume we have set S of propositional or 

Boolean variables. 

2. Logical Symbols: We have two logical symbols -, (negation) and V( 

disjunction). We also use two other logical symbols, t\( conjunction) 

and =>( implication), but these are defined in terms of the first two. 

The formulas of the logic are defined recursively as follows. 

1. Any propositional variable p is a formula. 

2. If A and Bare formulas then so are -,A and AV B. 
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3. Any formula is obtained by the above operations. 

A formula such as p is called an atomic formula. We also call formulas 

propositions. The prescription for the construction of a formula may be 

succinctly expressed in the BNF formalism as follows 

A :: pl,AIA VB 

This simply means that an expression A is a formula if it is a proposi

tional atom denoted by p, or it is a negation of a formula already constructed 

or disjunction of two formulas. 

Let Fm be the set of formulas. Let Pv be the set of propositional 

variables. Any mapping V : Pv ➔ F2, where F2 is a set with 2 elements, is 

called a valuation. For definiteness we take F2 = {O, l}. One may consider 

all the propositions mapped to 1 as "true". We extend now the valuation 

function V to all formulas as follows by induction on . the length of the 

formulas 

V(,(A)) = 1 iff V(A) = 0 

V(A VB) = 1 iff at least one of V(A), V(B) is 1. 

Note that this definition gives an effective way of evaluating the value of 

any formula( for a given valuation). In fact, given a formula we can obtain 

its truth value for all possible valuations since a formula is of finite length 

and has finitely many propositional variables. For each possible assignment 

the formula has a unique truth value. Here is a simple example. Let F = 
p V ,q V ,r, then its truth table is 

p q r F 
0 0 0 1 
0 0 1 1 
0 1 0 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
0 1 1 0 
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A formula which takes the value 1 for all possible valuations is called a 

tautology. Informally, it means that it is true for all valuations. The formula 

p V -,p is a tautology. If a formula evaluates to true for some valuations of 

the truth values it is called satisfiable. Thus a formula is unsatisfiable if 

and only if it evaluates to 0 for all valuations of its variables. The two 

basic problems of propositional logic are satisfiability and validity. These 

two problems are dual in the sense that a formula A is valid if and only 

if -,A is unsatisfiable. A valuation V and the rules for valuation of any 

formula essentially constitute the semantics of propositional logic. We may 

also interpret the logic in any nonempty set S. Thus, an interpretation 1r 

is a map from Pv -+ 28 , the set of subsets of S. This map is extended to 

the set of formulas Fm as follows. Assuming A and B are already defined 

define 1r(A VB) = 1r(A) U 1r(B) and 1r(-,A) = S - 1r(A)( the complement 

of 1r(A) in S). An interpretation defines a valuation at each point x E S. 

For let XT: S-+ F2 denote the characteristic function of T C S, defined by 

xr(x) = 1 iff x E T. Then for a fixed x E S, p -+ Xn-(p)(x) is a valuation. 

Each such point x is a world and p is true in this world iff x E 1r(p). If 

the cardinality of the set S is greater than or equal to that of Pv then 

all valuations can be obtained as interpretations. We note that the set of 

formulas of a propositional logic form a Boolean algebra if we add the two 

propositional constants T and J_ which evaluate to 1( true) and 0( false) 

respectively and identify any two formulas A and B for which A <=> B is 

valid. The operations of Boolean algebra are defined by AV B, -,A, and 

A/\ B = -,(-,A/\ -,B) [BS69]. This is the Lindenbaum algebra of( classical) 

propositional logic. The connective /\ is defined in terms of the primary 

connectives V and -,_ To make Fm a Boolean algebra we have to state 

some axioms for the connectives. Informally, they state that the two binary 

operations V and /\ are commutative, associative and distributive over each 

other, both are idempotent, the elements T(..1_) satisfy T /\a= a(..l_ Va= a) 

and a V -,a = T(a /\ -,a = ..1_). Thus, a Boolean algebra is a set with two 
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binary operations V, /\ and unary operation ' ( we use the standard notation 

for set complement) such that 

l. a V b = b V a a I\ b = b I\ a (commutative) 

2. a V (b V c) = (a V b) V c a I\ (b I\ c) = (a I\ b) I\ c {associative) 

3. a V (b I\ c) = (a I\ b) V (a I\ c) a I\ (b V c) = (a V b) I\ (a V c) 

(distributive) 

4. a I\ a= a Va = a (idempotent) 

5. a I\ J_ = 0, a I\ T = a, a V .l = a, a VT = T (identity) 

6. a Va'= T, a I\ a'= J_ (complements) 

This axiomatization is a variant of Stone's axiomatization. In the language 

of Boolean algebras V is called the join and /\ the meet of two elements. In 

the literature, T and J_ are often written as 1 and 0 respectively. Quantum 

logic, which deals with quantum propositions is not a Boolean algebra. The 

axiom that fails is the distributive axiom as we will see. But I mention two 

important examples. 

1. The set of subsets of a set S. The join is given by set union and the 

meet by set intersection. The constant J_ corresponds to the empty 

set and T to the whole set. If ACS, then A' is the complement of A. 

2. Let F2 = {O, 1} be the two element set mentioned above. Let 1 /\ 1 = 
1 V 0 = 1, 1 V 1 = 1, 1 /\ 0 = 0 /\ 0 = 0 and 1' = 0, 0' = l. The 

other operations are defined by commutative property. It is easily 

verified that F2 is a Boolean algebra. An important fact is that any 

Boolean algebra B can be homomorphically mapped to F2 [BS69]. A 

homomorphism is a mapping H that preserves all the operations, that 

is, H(aVb) = H(a)VH(b),H(a/\b) = H(a)/\H(b), and H(a') = H(a)'. 

Let us call this the F2-property. Any such mapping from the Boolean 

algebra of formulas is precisely a valuation. 
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We have had a discussion about the semantics, including the algebraic 

aspects, of propositional logic. Let us now focus our attention on the ax

iomatics. In any logical theory an axiomatic approach involves the following: 

set of formulas called the axioms of the theory and some rules of deduction. 

Recall that a formula is a member of subset Fm of strings, from the set 

of all strings of the alphabet. An axiom usually defines a set of strings of 

Fm with some specific structure. A rule on the other hand prescribes how 

new formulas{ called theorems) may be obtained from old ones. Thus, in

formally, rules give us the allowed structural manipulations of formulas. We 

have already seen an example of axioms above in the definition of Boolean 

algebra. We now consider the axiomatization of propositional logic. First, 

define some new connectives in terms of the old ones. 

The connective => is called the implication. Its truth table is 

p q p=> q 
0 0 1 
0 1 1 
1 1 1 
1 0 0 

We also define the logical equivalence p {::} q = (p => q) I\ (q => p) and 

the exclusive "or", EB, pEBq = (p/\ ,q) V {,pV q). The exclusive "or" is same 

as addition modulo 2. A possible axiomatization of propositional logic is 

to modify the axioms of Boolean algebras, replacing= with{::}. However, I 

adopt the axiomatization of Shoenfield (Sho67) since these will form a part 

of the first order theory. The axioms are all instances of the formulas 

Propl ,AVA 

Prop2 A=> B VA 

Prop3 AVA=>A 

Prop4 AV (B V C) =>{AV B) V C 
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Prop5 (A:=:,. C) :=:,.((,A:=:,. B) :=:,.CV B) 

We also have one inference rule. 

Modus Ponens Infer B from A and A =} B 

These axioms and inference rules are not identical to those of Shoenfield, 

but the later can be derived from them. I have avoided the contentious "cut" 

rule [Dal94). A theorem of propositional logic is either an axiom or a formula 

which is derived from other theorems using the inference rule/s. 

Definition 1 An axiomatization of a logic is said to be sound if every the

orem is valid. 

We also note that these are properties which relate the axiomatization 

with semantics. Hence these notions cannot be expressed in the language 

of the logical theory, the object language, itself. It must be stated in a 

metalanguage like English. See Church [Chu56) for a good discussion of this 

point. We come back to these and other related features after we introduce 

first order logic. We only mention that the axiomatization of propositional 

logic presented above is sound and complete. 

2.1.2 Modal Logics 

The first extensions of propositional logic that we consider are called modal 

logics. A modal logic is an extensions of propositional logic [ Gol92). Hence 

the language L of a modal logic has all the symbols of propositional logic 

discussed above. Further we have a new logical symbol □, called a modal 

operator. A formula is defined recursively as follows: 

1. All propositional variables are formulas. These are the atomic formu

las. 

2. If A and B are formulas then so are AV B, ,A, and DA. 

3. Any formula is constructed as above. 
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The operator D was motivated by the desire to formalize linguistic no

tions such as "necessity", "perpetuity" etc. Informally, we say that DA is 

true means that A is necessarily true. However, in computer science, the 

modal operator has different interpretations. We will see some examples of 

these. First, the semantics of modal logic. Let :F = { S, R} be a pair such 

that S is a set( the set of worlds or states) and R is binary relation, called 

the transition relation, on S. The pair :F is called a . Let FmL be the 

set of formulas of L. A function V : FmL x S -+ F2 is called a valuation. 

Intuitively, a formula A is true at a state s E S iff V(A, s) = 1. We write 

this as 

s I= A 

The valuation V is not arbitrary except on Pv, the set of atomic formulas. 

Given an arbitrary function V : A x S -+ F2, we extend it to a function 

V : FmL x S -+ F2 as follows. 

V(A VB, s) = max(V(A, s), V(B, s)) 

V(,A, s) = 1 - V(A, s) 

V(□A, s) = IJ V(A, t) (IJ denotes the product) 
{tl sRt} 

In other words, A V B is true at a state s iff at least one of A and B is 

true, ,A is true at s iff A is false there and DA is true at s iff it is true 

at all the states related to s, that is all {tl (s, t) E R}. This semantics 

was proposed by Kripke [Kri59, Kri63]. We see that only the truth value 

of boxed formulas are dependent on the worlds that are different from but 

related to the current state. Compare it with the valuation of formulas in 

propositional logic. The truth value of a proposition depends only upon the 

current state. Properties of modal logics depend strongly upon the relation 

R. We mention two important cases. 

1. R is an equivalence relation. The corresponding modal logic is called 

Ss. An important subclass of this class are the epistemic logics or 
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logics of knowledge. In this case the set S has well-defined structure 

capturing the states of the system under consideration. 

2. R is the graph of a function R : S ➔ S. Then the corresponding frame 

is called functional. We will encounter an example of functional frame 

later. 

A formula A is valid in a class C of frames if it is true for all valuations and 

frames in C. It is possible to axiomatize most modal logics. The axioms 

often capture the frame property. For example, for Ss, the frames are based 

on equivalence relations. First define the operator 

◊A= ,D,A 

Note that ◊A is true at a state s if there is state s1 such that sRs' and 

s' p= A. Now the axioms for Ss are 

l. 

DA => A reflexivity 

2. 

A => D◊ A symmetry 

3. 

DA => ODA transitivity 

Thus, for example, any formula of the form DA => A is valid in all reflex

ive frames, and conversely if we require that all such formulas be valid then 

the frame must be reflexive. Similarly functional frames are characterized 

by the schema ◊ A {::} DA. 

Modal logics have proved very useful in the formal modeling of sequen

tial hardware, program verification, and protocol analysis among others. I 

discuss some simple examples. First, we observe that it is easy to extend 

the definitions above so we may include several modal operators, □1 , D2, • • • 

with respective relations R1, R2, · · ·. 
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2.1.3 Circuits and Hardware 

A classical or Boolean circuit is a combination of logic elements or gates 

[Vo198]. It is simply a function of Boolean variables and may therefore 

be adequately described by a Boolean or propositional formula. However, 

if a circuit contains timing elements( "clocks") or storage elements which 

have "memory" like flipflops then a Boolean formula no longer describes 

such sequential circuits. We need a more expressive language. Modal logics 

such as CTL( computational tree logic) and LTL( linear time logic) can 

handle such circuits efficiently. Such circuits can be thought of as transition 

systems. Informally, a transition system gives the possible next state of the 

system from the present state. Typically, the state of the system is given 

by the value of all the registers, that is, a set of Boolean or propositional 

variables. There may be more than one next state. A typical modal operator 

is denoted by X, the next time operator. A formula Xp is true in the current 

world if p is true in all possible "next worlds". As an example,consider the 

modulo-8 counter which is expressible in a language with at least three 

propositional variables, {po,P1,.P2}- Then, the formula 

is a constraint describing the ideal behaviour of the counter at any point of 

time. The reader may refer [CBG+92] or [KG99] for more on formal verifi

cation of hardware. I have emphasized the word ideal because in any real 

system there is nonzero probability that the components behaviour deviates 

from the ideal. How do we incorporate these probabilities in a language? 

One possibility is to use the probabilistic extension of CTL called PCTL. 

Roughly, PCTL formulas are CTL formulas with probabilities attached 

[BKR94]. We do not go into the details because we are soon going to dis

cuss an alternative logic for dealing with probabilities. 
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2.1.4 Program Verification 

A simple program consists of declaration, assignment and control state

ments. The control statements may be branching type or iterative. In 

propositional dynamic logic( PDL) [HK00], there are two kinds of expres

sions besides the logical symbols: formulas and programmes. For each pro

gramme a, [a] is modal operator acting on formulas. Thus, if A is formula 

then so is [a]A. Intuitively, this means that after the programme a, the 

formula A holds. The programmes such as a have a structure too, built 

from atomic formulas [HK00, Gol92]. The language consists of two distinct 

components: programmes and formulas. The programmes are built from 

simple atomic programmes and conditional test A?, which means informally 

"test the formula A" for truth. The formulas of the language are the usual 

propositional formulas and expressions of the form [a]A, where a is pro

gramme and A is formula. The intended meaning is the following. The 

formula [a]A is true iff after the execution of the programme a, A is true. 

Again, we will not go into the details since it will take us too far afield. 

We only observe that one of the logics developed has some resemblance to 

PDL, where various quantum operators play the role of programmes. 

There is an alternative and older approach to programme analysis devel

oped by Tony Hoare [Hoa85]. It is based on the notion of predicate transfor

mation. The programme state is given by a first order predicate( see below) 

and the statements of the logic are in the form {P}S{Q}, where P and Q 

are predicates pertaining to the programme states respectively before and 

after the programme S executes successfully( with termination). 

2.1.5 Protocol Analysis 

This is a broad and relatively new area. First, the word protocol is used in 

many different areas, e.g., concurrent computation, networks, and cryptog

raphy to name a few. We will just focus on cryptographic protocols where 

the issue of security is paramount. The first significant application of logic to 
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formalizing the interactions among agents participating in a cryptographic 

protocol was the paper [BAN90]. The authors used modal operators to cap

ture notions like "belief'. Although it consisted of simple and intuitive rules 

it could be used to discover serious flaws in key distribution protocols. Cryp

tographic protocols are often analyzed using the notions of computational 

hardness. Thus a protocol is secure if it can be shown that it is compu

tationally "hard" to break it. For example, factorizing a large number is 

computationally hard. However, as Burrows et. al. [BAN90] and others 

[Low96] showed even in the early days, that there are subtle attacks which 

can circumvent the computational barrier. These attacks are mostly discov

ered by a careful formal analysis. More recently Abadi [AR02] and Rogaway 

showed how the two views of security( computational and formal) may be 

reconciled. In many classes of protocols involving interacting agents the in

formation state or knowledge and belief of agents plays an important role. 

Knowledge and belief have been successfully modeled as modal operators 

[FHMV95]. I mention it here because quantum cryptographic protocols is an 

important branch of Quantum Information Science. There is a crucial dif

ference between knowledge in quantum and classical systems [MP03a]. This 

area is still being developed and we only touch upon it in the concluding 

section. 

2.2 First order logic 

The language of first order logic with equality consists of three disjoint sets, 

X, 'P, and £. Elements of the first set X are called variables and those of 'P 

are pairs of the form (!, n) or (p, n), n a nonnegative integer. The integer 

n is called the 'arity' of a function f or predicate p. We further assume 

that the set of function symbols, denoted by f, g, h, fi, • · · and the set of 

predicate symbols denoted by, p, q, r,Pi, · · · are disjoint. We also suppress 

the arity since in most cases it is clear from the context. The variables 

will be denoted by the letters x, y, z, y,, Xi · · ·. The logical symbols are 
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{V, ., A, ⇒,{::}, 3, = }. We also have the defined symbol\/= ,3,. There are 

two kinds of expressions in the logic, terms and formulas, defined below. 

1. Every variable is a term. If t1, · · · , tn are terms and f is a n-ary 

function symbol then f (t1, · · · , tn) is a term. The 0-ary functions are 

called constants. 

2. Let t1, · · · , tn be terms. Then any expression of the form ti = tj is an 

atomic formula. If p is an n-ary predicate symbol then p(t1, · • • , tn) 

is an atomic formula. We now define composite formulas recursively. 

If F1 and F2 are formulas and x is variable then 

are formulas. 

We next discuss the semantics of first order logic. The formulas of first 

order logic are symbolic expressions which acquire meaning only when in

terpreted in some domain of discourse. The domain of discourse is some 

set. At this stage, we take a set to be a primitive notion without further 

elaboration. Let £, be denote a first order language. A structure S for £, 

consists of the following: 

1. A nonempty set S called the domain or universe of S. The members 

of S are called the individuals of the structure S. 

2. For each n-ary function symbol f of£, an n-ary function fs from S 

to S. Note that it follows from this definition that a constant denotes 

some fixed individual in a structure. 

3. For each n-ary predicate symbol p of £, an n-ary relation Ps in S. 

We recall that an n-ary relation in a set S is a subset of the set 

s X S· .. X s . ..___., 
n factors 
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An interpretation 1r of ,C in a structure is a map which assigns to each vari

able x in ,Can individual 1r(x) of S. In most of this work we will assume the 

set of symbols representing variables is countable. Then an interpretation 

is simply a sequence of individuals of S. Hence, unless the universe is finite 

there are uncountably many interpretations. Now we can define the notion 

of "truth". Once variables are assigned some value( an individual) the for

mulas are like propositional formulas. We define this recursively starting 

from atomic formulas. For a formula A we write 

S,1rl==A (2.1) 

to indicate that A is true or A holds for the interpretation 1r. Below, 

t, t1, t2, · · · , tn are terms. 

1. 

That is, t1 and t2 denote the same individual. Note that 1r(t) is 

defined in the structure once the variables are assigned. This follows 

from the recursive definition of a term and the fact that all function 

symbols have a fixed meaning in the structure. For example, suppose 

f is unary function and x a variable, then 1r(f(x)) = 1r(f)(1r(x)). 

2. For an n-ary predicate p, 

3. 

4. 

S, 1r I= -iA iff not .C, 1r I= A 

That is, it is not the case that ,C, 1r I= A. 

S,1r I= A1 V A2 iff 

S, 1r I= A1 or ,C, 1r I= A2 or both 

(2.3) 

(2.4) 

(2.5) 
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5. 

6. 

S, 1r I= :lxA(x) iff S, 1r[x-+ a] I= A(x) for some a ES (2.6) 

Here 1r[x -+ a] is another interpretation which agrees with 1r for all 

syntactic variables except possibly x, and 1r[x -+ a](x) = a. This 

corresponds to Tarski's semantics and notation [Tar56]. The variables 

within the scope of a quantifier :3 or V are called bound variables, a 

variable which is not bound is called free. Substitution is an important 

syntactic concept and we write A(t/x) to denote that the term t 

is substituted for a free occurrences of a variable x. One must be 

careful in substitutions because an arbitrary substitution may cause a 

free variable to be captured. We will assume the renaming of bound 

variables so that they are always distinct from free variables. 

S,1r I= VxA(x) iff S,1r[x-+ a] I= A(x) for alla ES (2.7) 

I do not give the semantics of the rest of the connectives since they can be 

defined in terms of the ones already given. A formula is valid in a structure 

if it is true for all interpretations. A formula is valid if it is valid in all struc

tures. A formula is satisfiable in a structure if there is some interpretation 1r 

in which it is satisfiable. It is satisfiable if it is satisfiable in some structure. 

For closed formulas (formulas without free variables) the notions of validity 

and satisfiability are independent of interpretations. Note also that if x is 

the only free variable in A(x) then satisfiability of A(x) is equivalent to that 

of :lxA(x) and validity to that of VxA(x). 

2.2.1 Axiomatics 

The axioms and rules of a first order theory are divided into two classes. The 

axioms and rules belonging to the first class are called logical axioms and 

rules and are common to all theories. The second class consists of nonlogical 

axioms and actually defines the structure. The theory of groups differs from 
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the theory of vector spaces in that they have different nonlogical axioms. 

We state the logical axioms below (Sho67]. 

1. All the axioms of propositional logic. 

2. Substitution:A(t/x) => 3xA. 

3. Identity x = x. 

4. Equality: 

X1 = YI A··· A Xn = Yn => f(x1, · · · , Xn) = f(Yl, · · · , Yn) 

X1 = YI A··· A Xn = Yn => p(x1, · · · , Xn) => p(y1, · · · , Yn) 

In this axiom f and p are respectively, any function or predicate sym

bol. 

The rules of inference are given next. 

1. Modus Ponens: From A and A=> B infer B. 

2. 3-introduction: If x is not free in A, infer 3x(B => A) from (B => 
A). 

There are no nonlogical inference rules. A first order language along with 

a set of formulas for the nonlogical axioms is called a first order theory. 

Examples of first order theory are: theory of groups, the theory of fields, 

the theory of natural numbers. We discuss the theory of real closed fields 

and algebraically closed fields in section 4.2. The reader may refer to (Sho67] 

for more examples and details. 

A theorem in a first order theory T is either an axiom or a formula derived 

from existing theorems by the inference rules. A model for T is a structure 

in which every nonlogical axiom is valid. We note that all the logical axioms 

are valid in any structure. We have two properties of formulas, derivability 

as theorem and validity. We should expect that all theorems must be valid. 
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A theory is called sound if all its theorems are valid in every model of T. 

Note that this may be vacuously true since T may not have any model! 

However we always have 

Theorem 1 If T is a theory then every theorem is valid in every model of 

T. 

A theory is called consistent if it is not the case that A and ,A are both 

theorems for some formula A. 

Theorem 2 A theory is consistent if and only if it has a model. 

The proofs of these theorems and some others stated below may be found in 

(Sho67] or any other text on mathematical logic. The theorem 2 is deep and 

fundamental theorem of mathematical logic. It is equivalent to the following 

completeness theorem. A formula may be valid in some models and still not 

provable in a theory. 

Theorem 3 A formula A of a theory T is theorem if and only if it is valid 

in every model. 

The two preceding theorems are equivalent in the sense that one implies the 

other. They are called completeness theorems. A formula A in a theory T 

is decidable if A or ,A is a theorem of T. Otherwise it is undecidable. The 

theory T is complete if every closed formula in T is decidable. Examples 

of complete theory are: the theory of algebraically closed fields and the 

theory of real closed fields. Peano arithmetic is incomplete (Sho67]. This is 

Godel's famous incompleteness theorem. For a theory which is known to be 

decidable, for example, the theory of real closed fields, a natural question is 

the complexity of the decision procedure. Informally, this means the time or 

space taken by a Turing machine to execute the procedure. It is expressed as 

function of some positive integer giving a measure of the size of the formula. 

The usual measure is its length, defined to be the total number of symbols 

appearing in the formula. 
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2.3 Logics for reasoning about probability 

2.3.1 Probability Theory 

Many classical and almost all quantum systems have inherent uncertainties. 

Given that the system is in some state the next state may not be deter

ministically predicted. Often, we can assign positive real numbers ::; 1 to 

the various alternatives which are called the probabilities of these alterna

tives. We will not go into the debate about the subjective/objective nature 

of the probabilities. For us it suffices to note that operationally we have 

effective procedures for consistent assignment of the probabilities and that 

in a large number of trials the relative frequencies of the alternatives tend 

to the assigned probabilities. The widely accepted form of mathematical 

probability is the axiomatic method of Kolomgorov [Kol56). Probability 

theory is founded on the notion of a measure space. In fact, probability by 

definition is a measure. Thus a probability space is a triple {S,M,µ}, with 

the following properties. 

l. S is set and M C 28 is a a-algebra of sets. A a-algebra is generaliza

tion of Boolean algebra that is closed under countable unions. 

2. µ : M ➔ JR+ is a function into nonnegative real numbers which satis

fies the following: 

µ(S) = 1 and if A1, A2, ... , EM is a countable collection of pairwise 

disjoint sets then 

n n 

The last property is called countable additivity. If it holds for finite 

collections only then the corresponding property is called finite addi

tivity. We will require finite additivity only. 

Note that a µ induces a finitely additive measure on any Boolean subalgebra 

ofM. 
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Again, I will not go into the details. See [Fel57] for a vintage but still 

relevant introduction or [Wil91] for a more recent one. However, our primary 

interest is not probability theory per se but formal reasoning about systems 

which obey probabilistic laws. 

In the previous chapter we have seen that formal reasoning helps us 

represent, analyze and synthesize complex interactive systems, both physi

cal( e.g. hardware) and abstract( e.g. concurrent programs). In such formal 

modeling we have to often make abstractions or idealizations about the be

haviour. The representation of a transistor as a logical _operator is such 

an abstraction. In case the system's development in time or evolution is 

not completely deterministic there are two possibilities: we assume nonde

terministic behaviour, that is the various alternative "worlds" or events 

cannot be assigned probabilities in any reasonable way, or the develop

ment is stochastic. It is the second possibility which is relatively more 

difficult to model, both conceptually and technically, that concerns us in 

this work. Several authors have attempted to formalize probabilistic rea

soning [AH94, Bac90, Car50, Nil86, FHM90]. Only few of the large body 

of literature is cited and the reader may explore the references in them. 

Nilsson's paper is perhaps the first one intended for applications. In Nils

son's logic one assigns probabilities to consistent valuations of propositional 

variables. This is also the semantics of a logic developed in [FHM90]. We 

briefly present the latter. 

Recall from section 2.1.1 that every valuation may be generated by a 

map 1r from the set of atomic formulas to a set N of subsets of some set S. 

We may restrict N so that the map is onto. The Boolean algebra B ~ 28 

generated by N is homomorphic to the Boolean algebra generated by the 

atomic formulas, that is, the set Fm of formulas. We assume that there is a 

probability measureµ defined on B. We only require finite additivity of the 

measure (in contrast to o--additivity) since in most cases extension to a full 

measure is possible [Hal50]. Then, we say that the probability of an atomic 
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formula q is given by 

P(q) = µ(1r(q)) 

The probability is easily extended to all formulas. A general atomic formula 

is of the form 

where the Ci and k are integers. This is satisfied in the probability structure 

X = {S,M,1r,µ}, written as, 

X F 41 iff c1µ(1r(</>1)) + · · · + enµ(rr(</>n)) ~ k 

A general probability formula is a Boolean combination of atomic formulas. 

Note that the measure space X is quite arbitrary. We will see that in the 

case of the logic of quantum probabilities this is not the case. This logic is 

axiomatized as follows. 

1. Taut. All instances of propositional tautologies 

2. Mod. Pon. From A and A ⇒ B infer B. 

3. All instances of valid formulas about linear inequalities. 

4. Pl. P(</>) ~ 0 

5. P2. P(T) = 1 

6. P3. P(</> I\ ,'lj;) + P(</> l\'lp) = P(</>) 

7. P(</>) = P('lj;) if</>{:} 1/; is a propositional tautology. 

The axioms of linear inequality are given in the papers cited above [FHM90, 

HT93]. The theory of linear inequalities is finitely axiomatized and is a 

complete theory for the axiomatization. Hence, for our purposes it suffices 

to take all valid formulas of the theory of linear inequality as axioms. It 

was shown there that this logic is sound, decidable, and complete. The 

complexity of the decision procedure for satisfiability is NP-complete. The 
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authors then extend the logic to deal with conditional probabilities. In this 

case, linear formulas are no longer adequate. The authors therefore con

sider a logic which is interpreted in a first order theory of real closed fields( 

RCF) [Sho67]. We describe their system briefly. The atomic formulas of the 

language Cc are obtained as follows. Let J(x1, · · · ,xn) be a multivariate 

polynomial with integer coefficients. Substitute probability formulas P( <Pi) 

uniformly for some occurrences of Xi, Denote the resulting expression by 

<I>. Then <I> ~ 0 is an atomic formula of Cc, Compound formulas may be 

obtained as in any first order theory. The semantics is similar to the lin

ear case. This theory may be recursively axiomatized. Since there are now 

variables ranging over some RCF we have to include the axioms of RCF. A 

decision procedure for the logic of Cc is obtained by systematic reduction 

to corresponding formulas in RCF. The latter is known to be a complete 

and decidable theory hence the axiomatization of .Cc is complete and de

cidable. The present work follows the approach of [FHM90, HT93]. In the 

later chapters we refer to these works on several occasions. 

2.4 Other Approaches to Reasoning about Quan
tum Probabilities 

There have been several approaches to develop a "logical structure" of quan

tum mechanics starting with Birkhoff and von Neumann's pioneering work 

[Bv N36]. They coined the term "quantum logic" . In the decades follow

ing that work there was some significant development in this area. More 

recently, intense activity in the new and rapidly developing area of quan

tum computation and information has motivated logicians and computer 

scientists to take fresh interest in developing a logic for complex quantum 

protocols in the spirit of classical computer science. We will review most of 

these approaches and its relation to our approach. 
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2.4.1 Quantum Logic 

Quantum logic was proposed by Birkhoff and von Neumann (BvN36). Since 

then this field has grown with some significant contribution from many re

searchers. See Piron's book (Pir76) for development up to 1970's. More 

recently, Rawling and Selesnick (RS00) reviewed orthologics, a generaliza

tion of minimal quantum logics and gave some applications to quantum 

computation. We have seen that the algebraic semantics of propositional 

logics correspond to Boolean algebras, a distributive complemented lattice. 

Stone's representation theorem (Sto36) states that any Boolean algebra is 

isomorphic to a field of subsets of a set. A field of subsets of X is a set of 

subsets that contains X and is closed under complementations and inter

sections. The set X is actually the set of ultrafilters. An ultrafilter is a set 

of true propositions that is closed under conjunction and implication and is 

maximal in the sense that for any proposition a, either a or ,a belongs to 

it. We have already seen an informal construction of this. 

Let us analyze a realization of Boolean algebra in the context of classical 

physics. Here we follow the discussion given in Chapter 1 of Bub's book 

(Bub97]. The classical description of a physical system is given by points 

( q, p) in the phase space where q and p are the positions and momenta of 

the particles in the system. Thus each point ( q, p) is a state of the system. 

We will not go into the details but it is sufficient to consider q and p as real 

vectors inn dimensions. An observable like energy is a real function f(q, p). 

A typical classical proposition is f(q, p) > 0. We take only a finite number 

of such propositions. We may also rewrite this as J(q, p) E (0, oo). Thus, 

given an observable and a set of subsets on the real line the propositions 

are assertions about membership at some point in time. The actual truth of 

these propositions is of course determined by the dynamics of the system. 

But what we are interested in is the various logical relationships among 

the propositions. It is clear that ordinary propositional logic is adequate to 

deal with such relationships. Even when we have incomplete information we 
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may assign probabilities in the standard way because the set of propositions 

forms a Boolean algebras. 

In the quantum case, we do not have a phase space description and 

the indeterminacy is not due to incomplete information but it is inherent. 

We may still talk of a particular state lying in some region( more precisely 

a subspace) but there is "incompatibility" between different propositions. 

Heisenberg's celebrated uncertainty principle is a statement of such incom

patibility. Therefore, in building the quantum analogue of propositional 

logic we consider as our basic model the subspaces of a Hilbert space rather 

than subsets. The Boolean operation meet /\ corresponds to intersection 

of subspaces and complementation to orthogonal complement,..l, of a sub

space. The join may be derived as AV B = (A.LI\ B.1).1. The resulting 

lattice, called an ortholattice, is not distributive. The quantum probabilities 

are given by a very different prescription( see chapter 3). Ortholattices have 

many properties quite different from Boolean lattices. Classical probabilities 

are defined on a Boolean lattice( more generally, on a a-algebra). Quantum 

probabilities are defined on an ortholattice. We refer to [Pir76] for a good 

account. But we mention three important theorems. 

1. Piron. Every ortholattice can be realized as an ortholattice of sub

spaces of a Hilbert space. [Pir76] 

2. Gleason. The only probability measures definable on the ortholat

tice of quantum propositions in dimension~ 3 are the ones given by 

quantum theory. [Per95] 

3. Kochen-Specker If the dimension is ~ 3 it is not possible to make 

consistent truth assignments in all the Boolean sublattices of an or

tholattice. [Per95] 

I have stated these theorems somewhat imprecisely avoiding some tech

nical restrictions. The point is that, when we want to reason about quantum 

probabilities then Gleason's theorem restricts us to the measures generated 
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by Trp where p is a state( see chapter 3). In this work, we do not study the 

origins of quantum probability. Rather, we take the structure of quantum 

probabilities for granted and study the problem of representing this in a 

formal framework. Therefore, unlike classical probabilistic logics where we 

have considerable freedom with the choice of measures the above trace mea

sure must be implicit in logics for quantum probability. We may not assign 

simultaneous truth values all to quantum propositions but we may do so to 

any particular Boolean sublattice and assign simultaneous probabilities to 

incompatible propositions. This does not mean that we consider simulta

neous measurement of incompatible observables possible, but that choice of 

the alternatives is always possible. Statements like, "if I am to measure A 

I get result x with probability 1/2 and if I measure B instead I get result 

y with probability 1/3" is perfectly legitimate. This is the starting point 

of our logic: to avoid the complicated reasoning with quantum logic and 

provide an operational framework formally capturing the kind of reasoning 

used by practicing experimental physicists. 

2.4.2 Exogenous Quantum Propositional Logic{EQPL) 

Mateus and Sernadas proposed a propositional type of logic called exoge

nous quantum propositional logic(EQPL) [MS04b, MS04a]. They introduce 

a "classical" propositional basis which is the substructure for the Hilbert 

space quantum superstructure. More precisely, a set of propositional con

stants qB = { qk} forms the basis of the classical logic. Let V be the set 

of valuations on qB . Form the free complex vector H space with V as the 

basis. The space H is simply the set of mappings of V ➔ C with point wise 

addition and multiplication by scalars and introduce the standard scalar 

product. We will assume qB to be finite for simplicity. A Nilsson type 

probability structure is introduced on the Boolean algebra of valuations but 

the probabilities are restricted to be quantum probabilities. New connectives 

are introduced whose semantics depends on global satisfaction(e.g. A false 
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unless true for all valuations from a given set of valuations). The other con

structs are a kind of implication and tensor product. There are also real and 

complex terms. The authors also provide a weakly complete axiomatization 

of the logic. 

Let us look at the propositional substructure. Each valuation is simply 

a sequence of 0's and l 's. That is, it is an indexing of some basis. In the 

logics developed in the current work this indexing is implicit. We do not 

directly refer to the states, rather probabilities in different "propositional 

bases" and the unitary operations connecting them. Although, EQPL is 

without quantifiers new connectives and the extra structures have to be in

troduced to make it expressive enough. Moreover, the language is restricted 

to qubits. That is, the irreducible systems have dimension 2. Thus the 

Kochen-Specker no-go theorem is circumvented. The logics in the present 

work describe quantum systems in arbitrary dimension n ( qunits instead 

of qubits!!). Finally, the operational nature of our work makes it easier to 

implement as a simulation. 

2.4.3 Logic of Quantum Programmes 

The ideas of a quantum programming language originated in the work of 

Knill [Kni96] who proposed a set of conventions for writing quantum al

gorithms in pseudocode. These conventions essentially followed the imper

ative programming paradigm. Informally, in the imperative paradigm a 

programme is a set of instructions defining the sequential transformations 

of a global state, where a state is a tuple of values taken by a set of vari

ables. Most common programming languages like C, FORTRAN and Java 

are examples of imperative language. Several quantum programming lan

guages within this framework were made [098, SP00, BCSOl]. Of these, only 

the language qGCL( quantum guarded command language) had a seman

tics. The language qGCL can also be regarded as a specification language. 

The languages developed in the present work can be considered higher level 
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languages for formal reasoning about quantum systems in general. As such, 

with a few additions we may use the latter for reasoning about quantum pro

grammes. In this regard we mention that Baltag and Smets developed a logic 

for quantum programmes (BS04] in analogy with classical PDL. They intro

duce two formal constructs corresponding to "quantum tests" and unitary 

operations. Both these operations induce binary relations on set of program 

states defined as sets of quantum states. The authors develop Kripke-type 

semantics with these binary relations as accessibility relations. We mention 

that such Kripke frames can be introduced in the present framework if we 

modify the definition of states. 

A totally different approach to programming is provided by the func

tional paradigm. In this approach a programme is a series of computation 

of functions. Since a function, in the mathematical sense, is a rule of as

signment between an input set and an output set, the functional approach 

may be viewed as a "black box" transformations of the input to some output 

encoded in the functions. Examples of functional languages are Lisp and 

Haskell. Functional languages have clean and elegant semantics. The most 

complete and elegant work in this approach is that of Selinger [Sel04]. In this 

work Selinger proposes a typed language whose constructs are represented 

by flow charts. The basic programming construct- functional application, 

selection, looping and procedures are represented by certain atomic dia

grams for the corresponding flow charts. Composite flow charts are built 

out of these by well defined rules. This high level language is interpreted in 

certain monoidal categories Q (see below). First one starts with a category 

V whose objects are tuples of matrices considered as a vector space in an 

obvious way and the morphisms are complex linear maps on the latter. The 

category V admits a tensor product structure. The category Q is a sub

category of V with the same objects but whose morphisms are restricted to 

those morphisms {in V) which are completely positive. All known quantum 

algorithms can be represented by a corresponding flow chart. Selinger's Ian-
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guage incorporates classical and quantum operations. This is done through 

static typing. 

2.4.4 Categorical Semantics 

The categorical semantics developed independently by Abramsky and Co

ecke [AC04a, AC04b] and Selinger [Se105] is an elegant and abstract formu

lation of quantum theory in a categorical framework. The type of category 

that seems to capture most of the features of quantum mechanics are the 

strongly compact closed categories. It will take us too far afield to give all the 

necessary definitions of such categories. We only give an informal discussion 

of its properties. First, we start with a symmetric monoidal category which 

is essentially a category with a unit object I and a product like the tensor 

product which is associative and symmetric in a natural sense [Mac71]. We 

denote the product by ®· Compact closed categories come equipped with 

a contravariant functor*, that corresponds to the notion of dual space in 

the category of vector spaces. The *-functor is also required to induce some 

natural bijections. For compact closure it is required that 

(A® B)* -+ A*® B* 

Further it is required there be a unit and a counit which are morphisms 

between the unit object and A*® A. In vector spaces the unit roughly cor

responds to a resolution of the identity operator. Strong compact closure 

requires that the *-morphism extends to a covariant functor among the du

als. The main example is the category of finite dimensional Hilbert spaces 

in which the scalar product induces a conjugate linear isomorphism between 

the space and its dual. The authors also require the notion of coproducts, 

corresponding to direct sums in vector spaces, to give a categorical formu

lation of quantum mechanics. The notion of unitary morphism is derived 

from * using strong compact closure. Scalars are identified as morphisms of 

the unit object and the notion of coproduct is used to introduce bases. The 

probability rule( Born rule) can also be derived in this setting. The fact 
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that teleportation is actually some commutative diagrams in these abstract 

categories is very interesting but not surprising, if we carefully look at the 

teleportation protocol. 

Selinger [Sel05] constructs a functor from strong compact closed category 

to a category which abstracts the properties of the category Q described 

above. The arrows representing the morphisms in the various categories can 

be represented as labeled diagrams. One may identify some of the diagrams 

with certain flow charts, thus completing the circle. 

The categorical formulation is elegant and interesting, but it is also quite 

abstract. Does it mean that there are other concrete settings for quantum 

mechanics? Also there is the contentious issue of projective formulation of 

quantum mechanics, the state is given only up to a multiple of complex 

number of modulus 1, that is the states live in a projective space. I under

stand that work on modifications in the categorical framework to deal with 

the projective case is in progress. I also note that a generalization of the 

logic presented in the present work is naturally interpreted in the categorical 

framework. 

The aim of the current work is to formalize the operational basis of 

quantum theory. We accept the fundamental concepts of the theory: prob

ability, unitary operations, projective measurement and tensor product at 

their face value as understood by practicing physicists. We take the conven

tional Hilbertian axiomatic approach to mathematics, most of which can be 

formulated in a first order framework. It is true that many of the operations 

in vector spaces with tensor products is best formulated in categorical lan

guage. However, our aim was to give concrete algorithms for a large class of 

decision problem in finite dimensional quantum systems. Since the proba

bility expressions are nonlinear( even more so in the projective formulation) 

and also since, in general, we have to deal with not just unitary matrices but 

their individual entries, a reduction to decision problems in real and com

plex numbers seemed natural. The later theories are very well investigated 
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and many algorithms exist( though not very efficient due to the very nature 

of the problems). As a dividend we get several complexity bounds. I have 

also experimented with some simple implementations of the algorithms in 

MatLab. In this work, we give an axiomatization of the logic and prove some 

general properties like quantifier elimination, completeness and decidability. 

The proof theory needs further investigation. 

2.5 A Short Introduction to Complexity Theory 

In this section we review the notions of computability and efficient com

putability. The first is connected with the decision problem: Given a subset 

A of E find a method which decides in finite number of steps whether an 

individual belongs to A or prove that no such method exists. This is the de

cision method for A in E. In the first case when we have a decision method 

we say that A is decidable. Similarly, we have the decision problem for func

tions: Given a function f : A ➔ B find a method which produces f(a) for 

any input a E A or prove that no such methods exists. In the former case we 

say that f is computable and in the latter f is uncomputable. The decision 

problem for functions is a generalization of the decision problem for sets. We 

observe that the elements of the relevant sets for which we pose the decision 

problem must be concrete objects like strings of letters from an alphabet. 

We must also state precisely what are the "steps" in the above definitions. 

For example, we can not include "consult a fortune-teller" as a step! 1 These 

steps will define what constitutes an effective procedure or computation. We 

will use the Turing machine model. However, other models are possible but 

they are all equivalent as far as computability is concerned [Pap94]. 

A Turing machine T is informally defined as follows [HU79]. It consists 

of a tape on which input and output are printed. It has finite number of 

states. It can "read" symbols from an an "alphabet". These symbols are 

divided into two categories: the tape symbols and the input symbols. The 

1We may, however, consult oracles for decidable problems for theoretical comparisons. 
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tape is divided into squares and the "read-head" of the machine reads one 

symbol at a time. A Turing machine can change its state, move the head one 

square left or right, or write a symbol on the square it is scanning. These 

transitions depend both on its current state and the symbol just scanned. 

The tape is of infinite extent to the right but there is a leftmost square. 

There is a unique initial state and a set of states designated as final state. 

The input string is left justified on the tape and the machine starts operating 

with its head in the leftmost square and in the initial state. If it reaches 

one of the final states we say that T halts by accepting. We also allow that 

for some combinations of states and symbols there is transition to a special 

"rejecting" state . In that case we say that T halts without accepting. 

More formally a Turing machine is a tuple: 

where 

T = {Q, E,I',b.,qo, #, Z,F} 

Q is a finite set of states including a special state Z rejecting, 

r is a finite set of tape symbols, 

# E r is the special symbol for blank, 

E C r - { #} is the set of input symbols, 

b.: Q x r---+ Q x r x {L, R} 

is the transition or next move function 

qo is the initial state, 

F C Q - { Z} is the set of final states, 

The symbols L and R are the instructions to move to left or right respec

tively. The "rejecting" state is used so that b. is a function. Alternatively, 

we could use partial functions and require that the domain of b. is only a 

subset of Q x r. We also suppose that the rejecting state is a halting state. 

The set r is also called the tape alphabet and the set E the input alpha

bet. The set of all strings or finite sequences of symbols from any alphabet 
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A is denoted by A*. The language accepted by the Turing machine T is 

the set Lr C :E* such that for any input string x E Lr the machine halts 

in an an accepting state. We can now formulate the decision problems as 

computations of some Turing machine. A Turing machine may be used to 

compute functions of natural numbers. We say that a Turing machine T 
computes a function f of k arguments if for any input in the domain of f, 
T halts on an accepting state after printing the value of the function for the 

given arguments on its tape. Similarly, we can use a Turing machine T for 

decision problems on E*. We say that it decides Lr if it halts on all inputs. 

That is, given x E :E* we can decide if x E Lr if the machine halts with 

acceptance, otherwise x (/. :E*. 

The number of moves of the Turing machine{ when it halts) for an input 

x is denoted by t(x). It gives an estimate of the time taken by the machine 

for the input x. Similarly, we define s(x) as the number of tape square used 

by the machine during the computation. The computation time and space 

of T are defined by 

T(n) = max{t(x) I for all input strings of length n} {2.8a) 

S(n) = max{s(x) I for all input strings of length n} {2.8b) 

The Turing machine(TM) described above is a deterministic machine be

cause the transition relation b. is a function. Suppose, we now allow nonde

terministic transitions to sets of states. That is, b. : Q x r -+ 2Q x r x { L, R} 

where 2Q is power set-the set of subsets-of Q. We now define t(x) and s(x) 

as the minimum over all possible paths of the computation determined by 

the transition relation. Then the computation time and space are defined 

as above- maximum over all inputs of a given length. If a function can be 

computed by a nondeterministic Turing machine (NDTM) whose compu

tation time T(n) is bounded by a polynomial in n then we say that the 

function belongs to the class NP. Alternatively, we characterize the corre

sponding language as NP. For example, we could consider the language L 
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as formulas of propositional logic in conjunctive normal form and require 

that such string( a CNF formula!) is accepted by an NDTM if and only if 

the formula is satisfiable. It can be easily shown that this language is in 

NP. Similarly, we define P as the set of languages whose computation time 

for a TM is bounded by some polynomial. No TM is known whose compu

tational time is polynomially bounded for the language L above. There is a 

class of languages called NP-complete languages (NPC) defined as follows: 

L1 E NPC if and only if Li E NP and any other language L' E NP is 

polynomial time reducible to L1. That is, there is map g : L' ➔ L which 

is in P such that any x E L1 is decided by the machine T i:ff g(x) E L' 

is decided by T'. By the famous theorem of Cook(HU79] states that the 

language L for the satisfiability problem is NP-complete. 

We often speak of problems rather than languages. Thus we say that 

the satisfiability problem is in NP meaning that it can be encoded in a 

language recognized by some NDTM whose computation time bounded by a 

polynomial in the length of the input. Moreover, we often do not construct 

the detailed machine and its transition and argue at a higher level with 

familiar operations like multiplication and addition of numbers. Implicit in 

this argument is the understanding that we can always go to the low level 

operations if needed. There are some problems for which no polynomial 

algorithm for a TM is known but which are believed not to be in NP but 

not NP-complete. The most well-known example is the problem of factoring 

a large integer. 



Chapter 3 

Quantum Theory 

The most complete description of a physical system, according to quantum 

theory, is given by its state-a unit vector in a Hilbert space. However, this 

is strictly true for a 'pure' system. Consider a physical system S, say an 

electron. Often we may be interested only some attributes. Thus, for the 

electron we may wish to consider only its spin in a particular direction and 

ignore other attributes like energy or position. Then S refers to the electron 

as an object with spin only. This is especially true in quantum computing 

since attributes like spin, polarisation etc. take a finite number of values. 

Associated with S is a Hilbert space, that is a complex vector space with an 

inner product. We shall restrict ourselves to finite-dimensional spaces ( corre

sponding to attributes like spin) which are adequate for quantum computing 

and information. The state is often associated not with a single system but a 

large collection of (possibly imaginary) identical systems called an ensemble. 

This is because we have only probabilistic information from our observations 

of S. But how do we describe an ensemble with electrons in two different spin 

states? Even for a single electron we may only have incomplete information 

about its state. This situation is described by generalising the notion of 

state. Henceforth, a state will mean a general state ( often called a 'mixed 

state' or 'density matrix'). The special case is called a pure state. 

Postulate 1 Associated to S is a finite dimensional complex Hilbert space 

49 
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{ H, ()} called the state space. The dimension n is determined by the system. 

We identify H with en with standard inner product; if la) = (x1 ... xn), 1,8) = 

(Y1 ... Yn) then (al.B) = L XiYi where (al is the conjugate vector (x1, · · · , Xn)

The inner product satisfies (al.81 + .82) = (al.81) + (al.82) and (al.B) = (.Bia) 

and (ala) 2:: 0. The quantity ~ la) II = J(ala) is called the length of la). If 

it is 1 then a is called a unit vector. Note that the length or more generally 

(al.B) is invariant w.r.t. multiplication of la) and I.B) by arbitrary complex 

numbers of modulus 1. 

With this notation we extend Postulate 1. 

Postulate 2 The pure states are represented by a unit vector, determined 

up to a scalar multiple of modulus 1. Moreover, each such vector is realizable 

as a state. 

Thus la) and I.B) represent the same state iff la) = eic I.B) c real. 

A basis b = { a1, · · · , an} of H is a linearly independent set of vectors 

such that every vector in H is a (unique) linear combination of the lai) 's. It is 

orthonormal iff (ailaj) = 8ij where 8ij = 1 if i = j and 0 otherwise. From 

any set of n linearly independent vectors we can construct an orthonormal 

basis. It is the set of orthonormal vectors which correspond to the classical 

notion of states. Their occurrence in any test can be considered as mutually 

exclusive events. Henceforth basis will mean an orthonormal one. 

Postulate 3 Any orthonormal basis represents a realizable maximal test. 

Let n be the maximum number of different outcomes possible in a given 

system for any test. For example we may test for value of the z-component 

of spin of an electron or polarisation of a photon. We imagine we have a 

large number of similarly prepared systems called an ensemble and we test 

for the values of different measurable quantities like spin etc. 

For a spin-1/2 system we always get a maximum of 2 outcomes ('up' and 

'down') for any test. So n = 2. This number is a property of the system 
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and according to the postulate equals the dimension of the state space. In 

general, we postulate that for an ensemble in an arbitrary state, it is always 

possible to devise a test that yields the n outcomes corresponding to an 

orthonormal basis with definite probability. 

We note that if H is a Hilbert space with inner product ( , ), then 

H is isomorphic to the dual space of linear functionals (i.e. complex val

ued functions) on H. Thus for each la) let (al denote its image under 

this isomorphism, called the dual. Then ( (al) (I.B)) = (al.B) by definition. 

Further(la) (.Bl)(I,)) ~ ((.BI,)) la) is a linear operator on H. Let £(1-l) de

note the space of linear operators on H. An operator A E £(1-l) is hermitian 

if (alA.B) = (Aal.B) for all la) and I.B). An operator U is called unitary if 

(U alU ,B) = (al.B) for all la) and I.B) . In matrix notation let Bt denote the 

transposed conjugate of a square matrix B. Then B is hermitian if B = Bt 

and U is unitary if u-1 = ut. In particular a unitary operator is invertible. 

The set of hermitian and unitary operators on H are denoted by L(H) and 

U(H) respectively. The former is a real vector space and the latter a group. 

They play a crucial role in quantum theory. For any unit vector lvi) the 

operator lvi) (vii is hermitian and satisfies P 2 = P i. e. it is a projection op

erator (projecting onto 1-dim subspace generated by lvi) )s. Also Tr(P) = 1 

where Tr where the trace Tr is the sum of the diagonal elements of a square 

matrix, which is independent of the representation. For a pure state repre

sented by lvi) then the projection lvi) (vii is called the state of the system. 

A general state p is defined to be a convex combination of pure states: 

We consider p representing a system for which knowledge of the state is 

uncertain and the probability of it being in state lvii) (viii is Pi· In general a 

state p E L(H) is a positive definite ((vilPlvi) ~ 0 for all lvi)) matrix with 

Tr(p) = 1. The state is pure iff it is of the form lvi)(vil for some unit vector 

lvi). We continue to call lvi) the state in this case. 

Postulate 4 If the system is prepared in state p and a maximal test corre-
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sponding to a basis b = { I.Bi) I i = 1, · · · , n} is performed, the probability that 

the outcome i will occur is given by Pi= Tr(I.Bi)(.Bil p) and the corresponding 

state will be I.Bi). 

Since one of the outcomes must occur, LPi = l. In the relative fre

quency interpretation of probability this means that if we have an ensemble 

of N systems and perform a maximal test corresponding to {I.BJ)} then if the 

frequency of outcome corresponding to I.Bi) is~, we have Pi= limN➔oo N· 
If it is only known that a test is performed but not its outcome then the 

post-test state p = LiPi1Pi is "mixed". We may think the probabilities of 

outcome of a test depends on two kinds of uncertainties: the first ( classical) 

arising out uncertainty about state and the second (quantum) from the in

herent uncertainty in quantum systems. If the original state is pure, a then 

Pi= l(al.Bi)l2 -

Ifthe system is known to be in one of the states in a basis {I.Bi)}, say l.81), 

then Pl = 1 and Pi = 0 for i i= l. That is, we can predict the outcome with 

certainty for this maximal test. This is the case that corresponds to the clas

sical theory. However, if we choose a different maximal test corresponding 

to a different basis then the outcomes become random. 

Let {laJ) I j = 1, · · · , n} be an orthonormal basis. Suppose the state of 

the system is lai)- Let {I.Bi) Ii = l • · · , n} be another orthonormal basis. 

Then if we do a maximal test with respect to {I.Bi)} then the probabil

ity of obtaining result I.BJ) is PiJ = l(ail.BJ)i2. This can also be written as 

Tr((lai) (ail)(I.Bi) (.Bil)) where the trace Tr is the sum of the diagonal ele

ments of a square matrix, which is independent of the representation. 

The PiJ are called the transition probabilities. Let U = (uiJ = (ail.BJ)) 

be a matrix. Then U is unitary. It is the matrix which expresses the change 

of basis and PiJ = luiJ 12. We thus see that the transition probability matrix 

is doubly stochastic, i.e., LiPiJ = LJ PiJ = l. But an arbitrary doubly 

stochastic matrix {for example appearing in classical Markhov processes) 

may not correspond to transition probability matrix in quantum theory be-
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cause it may not satisfy Pij = lui112 for some unitary U = (ui1). Such 

matrices (pij) are called orthostochastic. Thus the Pij must satisfy some 

relations. We thus see an important difference with classical probability 

theory. We cannot make arbitrary probability assignments (satisfying of 

course the usual probability constraints) but the probabilities must satisfy 

certain nonlinear inequalities. This is also true of the probabilities Pi intro

duced earlier. 

The state of a system can change by two kinds of operations. The first 

is measurement which is a generalization of the concept of maximal tests. A 

(projective) measurement is a set of projection operators {PmJ such that 

Li Pm; = In, the identity operator in dimension n. The { mi} are the 

possible outcomes of the measurement. The probability for ith outcome is 

Pi= Tr(Pm;P), If the outcome is known to be mi then the postmeasurement 

state is Pi = P;;;P. Sometimes we know only that a measurement has been 

done not its outcome. Then the state after the measurement is LiPiPi = 

Li Pm;P· We observe that for a state p the map Trp(Pi) = Tr(pPi) defines a 

probability on the set of orthonormal projections { Pi}, The second operation 

is unitary evolution. Simply put it means that if p is the state then after 

an operation by a unitary matrix Uthe state is U pu-1 . The physical basis 

of this operation is more subtle and I refer to standard texts on quantum 

theory. I only mention that the "quantum gates" are unitary operations. 

Given two systems 81 and 82 with state spaces H1 and H2 resp. the 

combined system has the state space H1@ H2 which is the vector space of 

linear combinations Li ci(lai} @ I.Bi}), lai} E H1 and I.Bi} E H2, Ci complex 

such that for any number c (cla})@ l,8} =la}@ (cl,8}) = c(la}@ l,B}). If 

{lai}}~1 and {l,81}}j=l are bases for H1 and H2 resp. then {lai}@l,81}} form 

a basis for H1 @ H2. The inner product is defined by (al @ (,BI I,} @ 115} = 
(al-y)(,81<5}. Thus H1 @ H2 is a Hilbert space of dimension mn. We can 

extend to tensor product of operators on H1 and H2. Let T1 {resp. T2) be 

an operator on H1{resp. H2). Since the product vectors {la}@ l,8}} form a 
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basis of the space H1 ®H2. We define T1 ®T2(la)®l,8)) = T1 la)®T2 l,B) and 

extend by linearity. In terms of matrices, the tensor product of a an m x n 

matrix and p x q matrix is a matrix of order mp x nq, defined as follows 

which, of course, corresponds to the matrix representation of the operators. 

Let 

b1q) 

~ then 
bpq 

auB 

A@B= 

If {PmJ and {PnJ are two measurements on S1 and S2 resp. with outcomes 

{ mi} and { nj} then { Pmi ®Pni} constitutes a measurement on the combined 

system S1 + S2 with outcomes {mini}. Further if the composite system is 

in a product state P1 ® p2 then the pr~bability of outcome minj = P?)P)2) 

where p~i) {resp. P;2)) is the probability of outcome mi (resp. nj) if we 

choose to measure only S1 {resp. S2). This is a consequence of Tr(A®B) = 
Tr(A)Tr{B). If the state is not a product state or a convex combination of 

product states then it is said to be entangled. For details the reader may 

consult books on quantum theory mentioned earlier. 



Chapter 4 

Logics for Quantum 
Probability 

This chapter is central to the whole work. In this chapter I present the log

ics for reasoning about quantum systems specifically designed for quantum 

computation and information QCI. 

4.1 Introduction 

In any probabilistic theory one has to deal with real numbers. Hence for 

the general formalization of such theories we have to include a formal pre

sentation of real closed field RCF. In the case of quantum theory however, 

the situation is somewhat more complex. Quantum probabilities are given 

by the squared modulus of complex numbers depending on the quantum 

state. That is, the probability measure is state dependent in a definitive 

way and the state is a complex vector. Thus any formalization of quantum 

probabilities would require a formal theory of the pair: real closed field and 

its algebraic closure (complex field). I present one such formalization and 

prove some model theoretic properties crucial to the main logic presented in 

this chapter. 
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4.2 The theory JRC 

In this section we develop a theory which incorporates the theory of real 

closed fields and their algebraic closures, an algebraically closed field. The 

theory of real and algebraically closed fields have been well studied, both 

from model theoretic [Hod~7] and algorithmic viewpoints [BPR03]. In fact, 

a large part of model theory is the formal study of such fields. In the 

context of quantum theory we need complex numbers because the states are 

. defined as unit vectors in a complex Hilbert space and real numbers because 

probabilities must be real non-negative numbers. Further, since probabilities 

arise out of complex state vectors, we have to use the fact that the field of 

real numbers is a subfield of complex numbers. The aim of this section 

is to formalize this structure. The formal treatment of the corresponding 

structures may be found, ·for example, in van der Waerden's classic text on 

algebra [Wae53]. But we would also like to develop the proof theory and 

study some of its properties. The basic idea is the formalization of standard 

construction of the complex numbers as pairs of real numbers. The resulting 

theory is called IRC. The theory has models other than the field of complex 

numbers. We note that the complex field as an extension of real fields is 

the standard approach to introduction of complex numbers. Our aim is to 

formalize this approach and study some general and algorithmic properties 

of the models. 

The nonlogical symbols of the first order language LRC are given below. 

I assume the standard logical symbols including equality [Sho67]. 

1. Function Symbols: The function symbols include the usual binary 

symbols '+' and '•' in the infix notation. We also have the defined 

symbol z for complex conjugate of z. 

2. Predicate Symbols: It is understood that IRC is a theory with equal

ity with the usual axioms and rules for equality. The only nonlogical 

symbols are '<' and 'R'. The former is written in infix notation and 
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R is a unary predicate, the intended interpretation of R that the cor

responding term is real. We also use xn as a shorthand for ~ and 

s # t for -,(s = t). 

3. Constant Symbols: The four principal constants are 0, 1, -1 and i. 

For convenience, I include, for each positive integer k, symbols k-1 for 

the inverses, and for each pair of given positive integers ( n, k) the kth 

roots n 11k, k # 0. The constant n112 will be written .,fii,. 

Note that one may define all but .the principal constants within the 

theory. For example 2 is a symbol for 1 + 1. Similarly, we define all positive 

integers as constants. It is important that we have an efficient representation 

of the integers since the size of the input depends on this representation. 

First the positive integers are defined as follows. The standard procedure 

is to represent them as 1 + 1 + • · • + 1( unary representation). However, it 

is more efficient to represent them as a k-ary expansion, where k > 1 is a 

positive integers such that all integers up to and including k are assumed to 

be defined. For example, for k = 2 we first define 2 = 1 + 1. Then consider 

the binary expressions 

ao · 1 + a1 • 2 + a2 • (2 · 2) + a3 • (2 · 2 · 2) + · · · 

This is a term of JRC. In the complexity theory of real or algebraically closed 

field we often have to deal with multivariate polynomials with integer( or 

rational) coefficients. The size of the polynomial may then defined to be 

proportional to the sum of the bit lengths of the coefficients (BKR86]. 

The inverses and roots of the positive integer constants may be elimi

nated as defined constants. I explain briefly the notion of extension of a 

theory by definition (Sho67]. Suppose we have two theories T and T' whose 

languages are identical except that T' has an extra k-ary function symbol 

f and an extra axiom 

(f(x1, · · · , Xk) = Y <=> :lyD(x1, · · · , Xk, y))I\ 

D(x1, · · · ,xk,Y) = D(x1, · · · ,xk,Y1) =} y = y' 
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where D is a formula of T in which no variables other than x1, · · · , Xk and y 

are free. The formula on the right simply asserts the existence of a unique y 

for given x1, • • • , Xk such that D is true. Then, T' is a conservative extension 

of T [Sho67]. This means that any formula in the language of T that is 

provable in T' is also provable in T. Moreover, due to the above formula 

and results on equivalent formulas [Sho67] any formula containing f can be 

replaced by a formula which does not contain it, that is, a formula T. As 

constants are treated as 0-ary function symbols the defining formula for a 

constant is of the form (3yD(y)) A D(y') => y = y'. 

The axioms of the theory IRC are as follows. First the field axioms. 

FLl (x+y)+z=x+(y+z) 

FL2 x+0=x 

FL3 x+(-l·x)=0 

FL4 x+y=y+x 

FL5 (x · y) · z = x · (y · z) 

FL6 x· 1 =x 

FL7 X 'f' 0 =} 3y(x · y = 1) 

FL8 x-y=y·x 

FL9 x · (y + z) = (x · y) + (x · z) 

FLlO 0#1 

Next the axioms of a real field and for the defined symbols. 

Rl R0ARl 

R2 Rxy => R(x + y) A R(x · y) 

R3 x < y <=} Rx A Ry A 3z(Rz A z i= 0 A y = x + z2) 

For each positive integer n and k, 

R4 (Rx1x2 . .. Xn Ax? + x~ + ... + x~ ~ 0) => A Xi = 0 

Del n/k-k = n 

De2 nl/k ?:'.: 0 A (n1fk)k = n 

De3 i2 + 1 = 0 
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I use shorthand Rx1x2 ... Xn for Rx1 I\ Rx2 I\ ... I\ Rxn, -x for (-1) · x. 

The standard notation and the binding rules for addition and multiplication 

are used throughout. Del and De2 simply express the obvious property of 

the notation for fractions and roots respectively. Rl and R2 capture the 

fact that the reals form a subring of the complex numbers. It will soon be 

shown that it is actually a subfield. The formula R3 is the defining axiom for 

< and R4 expresses the fact that O can not be expressed as a sum of squares 

unless all summands are zero. I have omitted the transitive property of "i" 

since it can be derived from the other axioms (see below). The following 2 

axioms express the notion of complex numbers as pairs of reals and the fact 

that the complex field is algebraically closed. Note that term of RC with 

exactly one variable is a polynomial in that variable and a general term may 

be considered as polynomial with "variable" coefficients. 

CR 3xy(Rx I\ Ry I\ z = x + i · y) 

For each positive integer n we have 

AC Yn =/ 0 ==> 3x(yn · xn + Yn-l · xn-l + ... + Yl · x + Yo = 0) 

Some simple con~equences of the axioms of JR(C are given by 

Lemma 1 The following are theorems of JR(C For each positive integer n 

Rx1x2 ... Xn ==> x? + ... + x~ =/ -1 (4.1) 

(x + i · y = x' + i · y' I\ Rxyx1y1) # x = x' I\ y = y' (4.2) 

Rx I\ x =I O ==> 3y(Ry I\ x · y = l) (4.3) 

Rx==> 3y(Ry I\ (x = y2 V -x = y2)) (4.4) 

\:/xyz(x < y /\ y < z ==> x < z) (4.5) 

Moreover, ,Ri and if a is variable free term which does not contain i then 

Ra. 
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Proof: I sketch informal proofs. The first formula follows from the fact 

that 1 = 12 (FL6) and Rx1x2 ... Xn I\ x~ + ... + x; = -1 {::>, Rx1x2 ... Xn I\ 

x~ + ... + x; + 1 = 0. Hence, from R4 for all i, Xi = 0 and 1=0. The last 

formula contradicts FLlO. The definition of real fields is usually in given in 

the form of formula 4.1. 

The second formula formalizes the notion that the 'real' and 'imaginary' 

parts of a complex number are unique. It will be sufficient to show that 

0 = x + i · y I\ Rxy =} x = 0 I\ y = 0. The latter follows immediately from the 

fact that x + i • y = 0 =} x = -i • y which in turn implies that x2 + y2 = 0 

(using De3). Hence from R4 it follows that x = y = 0. 

Now for the third formula it follows from FL7 and CR that z =ft 0 =} 

:lxy(Rxy/\z·(x+i·y) = 1). From this we deduce that (z•x-1)2+(z•y) 2 = 0 

and thus from R4, Rz I\ z =ft 0 implies that Rx I\ z · x = l. The advantage 

of R4 over the usual 4.1 [Sho67] is that with the former we have to only 

postulate that the reals form a subring and the fact that they also constitute 

a subfield can be deduced from the rest. 

The formula 4.4 can be inferred as follows. From CR and AC it follows 

that :lxy(Rxy/\z = (x+i·y) 2). Expanding the right side z = x2-y2+2•i·x·y. 

If Rz then 2 • i • x • y = 0. This follows from arguments similar to those 

used above. Hence x = 0 Vy = 0 and the assertion follows. The transitivity 

relation 4.5 is easily derived from the identity a2 +b2 = [(a-b)2 +(a+b) 2]/2. 

Using De3 we get -.Ri. Next, note that the formula x > 0 I\ y > 0 =} 

x · y > 0. This follows easily from R3 and the field axioms( we simply note 

that (xy) 2 = x2y2. The fact that for any non-zero term the inverse is unique 

is a simple consequence of the field axioms. Hence, it follows from Del and 

Eq.(4.3) that R(n/k) and R(n1fk) follows from De2. The general case for 

a variable term without i will follow by induction from R2. D 

The fact that the real elements form a real closed field is expressed by 

the following lemma. First, we introduce the defined function symbol z ➔ z 
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for complex conjugation and the axiom 

De5 Rxy ⇒ (z = x + i · y <=> z = z = x - i · y) 

Note that, (z1 + z2) = z1 + z2 and (z1 · z2) = z1 · z2. 

Lemma 2 For each odd positive integer n, the formula 

RF Rxox1 ... Xn I\ Xn -=/- 0 =} 3y(Ry I\ Xn · yn + ... + x1 · y + xo = 0.) 
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is a theorem of lRC. In other words, every polynomial of odd degree with real 

coefficients has a real root. 

Proof: To prove this first observe that a polynomial of degree n over 

any algebraically closed field has exactly n roots (counting repetitions). The 

standard elementary proof [Wae53] can be formalized using only the field 

axioms FLl through FLlO and AC. We need AC to show that for any 

polynomial p(x) = YnXn + ... + Yo, Vx(p(x) = 0) <=> l\iYi = 0. This can 

be proved by induction on n. Thus, Vx(p(x)) = 0) :::::} Vx(p(x) + 1 -=/- 0. 

Hence AC implies that Yn = 0 and the assertion follows by induction. As 

a consequence, we have: two polynomials are equal iff all the coefficients 

are equal. In particular, two polynomials of different degree can not be 

equal. It follows from the division algorithm that, if a is a root of a poly

nomial p(x) then x - a divides p(x). Then one proves that a polynomial 

of degree n has at most n roots. For example, the formula for degree=2 is 

Vy2y1yo3x1x2Vx(y2x2 + y1x + Yo <=> x = x1 V x = x2). Now using complex 

conjugation defined above it follows that if z = x + i • y then Rz <=> z = z. 
This may be seen as follows. In one direction, z = z implies y = 0 and z = x 

and hence Rz. Conversely, from the identity ((z2 - x2 + y2)2 + 4x2y2 = 0) 

and Rz we have 4x2y2 = 0. Hence, x = 0 or y- 0. But, if x = 0 then z = iy 

and z2 + y2 = 0 which implies z = x = 0. If p(x) has real coefficients then 

p(z) = 0 <=> p(z) = 0. That is nonreal roots come in distinct pairs. Hence if 

n is odd, then a real polynomial of degree n has a real root. We note that 

the informal arguments above can be formalized. □ 

The next lemma is useful. 
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Lemma 3 The relation < is a total linear order on values satisfying R. 

That is, it is irreflexive, asymmetric, and transitive and the following for

mula is a theorem of RC. 

Rxy=}x<yVx=yVy<x (4.6) 

Proof: The formula ,(x < x) (irreflexivity) is a theorem. It is deduced 

from x = x + z =} z = 0 and R3. Using the formula 4.4 and R4 we deduce 

Rxy =} 3z(Rz I\ z2 = x2 + y2 ) 

Transitivity (x < y/\y < z =} x < z) is an easy consequence of this and R3. 

The formula x < y =} ,(y < x) (assymetry) is a consequence of transitivity 

and irreflexivity. 

Observe that Rxy =} x < y <=> x - y < 0 is a theorem. Hence, to prove 

4.6, it is sufficient to prove Rx =} x < 0 V x = 0 V O < x But this follows 

from 4.4 and the axiom R3. D 

A theory T is said to admit elimination of quantifiers if for any formula 

A in T there is an open (i e. quantifier free) formula B such that A<=> B 

is provable in T. Recall that a formula F in T is consistent iff ,F is not 

a theorem and the theory is consistent if there is a consistent formula. A 

theory T is a complete theory if every closed formula A is decidable. That 

is, A or ,A is a theorem. Complete theories have many pleasant properties 

[Sho67]. Some of them are listed below for latter use. 

1. For any two models of a complete theory T the same formulas are 

valid. 

2. To prove that a formula F is a theorem it suffices to show its validity 

in any model. 

Actually, each of the above properties characterizes complete theories. As 

a consequence of the second property we may use any method to prove the 
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validity of some a formula in some model. For example, since the theory of 

real closed fields RCF is complete we may use analytical tools ( e.g. differ

entiation and integration) in the field of real numbers to prove that some 

formula of RCF is valid for real numbers. Then we are guaranteed that it 

is a theorem of RCF. 

The first principal result of this section is the following. 

Theorem 4 The theory JR.C admits elimination of quantifiers. It is a com

plete theory. 

Proof: To prove the theorem one may follow the standard techniques 

used in [Sho6?]- However, a shorter proof is possible. First observe that since 

the field of complex numbers is a model of JR.C it is consistent. Further, the 

atomic formulas of the theory are p(z1, ... , Zn) = 0 and q(z1, ... , zm) < 0 

where p and q are polynomials whose coefficients are variable free terms in 

JRC. Let RCF be the theory of real closed fields whose axioms are FLl

FLlO, Rl-R3, and RF. Using CR the first set of formulas are equiva

lent to a pair of formulas in RCF. That is, there are real terms t1 and t2 

in the latter such that p(x1, ... , Xn) = 0 <=? :3x1 · · · XnYl · · · Yn l\i (zi = 
Xi + iyi I\ RXiYi) I\ t1 (x1 · · · XnYl · · · Yn) = 0 I\ t2(x1 · · · XnYl · · · Yn = 0). We 

may construct t1 and t2 as follows. Each coefficient in p is a term built out of 

the constants of JR.C. The only constant which is not real is i. We substitute 

Zi = Xi +iyi and write p = t1(x1 · · · XnYl · · · Yn) +it2(x1 · · · XnYl · · · Yn) using 

i2 = -1 with t1 and h real. Hence from the fact that RCF admits quan

tifier elimination we conclude that so does RC. The second type of atomic 

formulas q < 0 implies Rq by R3. By extracting the (unique) real and imag

inary parts q1 and q2 of q we see that it is equivalent to a pair of formulas 

Q1 < 0 and q2 = 0. The only point we have to consider here is that JR.C has 

some extra constants. For example, consider the real constants n/k, k # 0. 

First, the constants k may be replaced by terms which represent the integer 

k. As k > 0 and it is easily shown that the multiplicative inverse is unique 

we can prove n/k = n · k- 1• Similarly, the constants defining the positive 
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real roots n 1/k may be eliminated. Thus, if k is odd by the real closure (see 

RF) 3x(Rx I\ x > 0 I\ xk = n), since n is a positive. The identity, 

xk -yk = (x -y)(xk-ly + xk-2y + ... + yk-1) 

can be used to show that the root x is unique. If k is even, then we write 

k = k'2r, k' odd , and first show the existence of a unique positive real num

ber x 1lk' as above. Then by successive application of R3 we get a unique x 

such that x > 0 I\ xk = n. Hence, the constants n 1/k may be eliminated by 

the theorem on extension by definition (see Ch.3 of [Sho67]). We conclude 

that any formula of IRC is equivalent to a finite set of formulas in the the

ory RCF. The latter, is known to be complete [Sho67]. Hence, IRC admits 

elimination of quantifiers and is complete. □ 

Finally, we introduce a defined function symbol for square root. The 

problem is, for every complex number other than O there are two square 

roots and we must make a consistent choice. Let 

D(x, z) ~ x2 = z I\ (x + x) > 0 v ((x + x) = 0 I\ (-i) • (x - x) ~ 0). (4.7) 

The formula D simply expresses that x is a square root of z and if its real 

part is not zero then x is the root with positive real part, otherwise in case 

roots are pure imaginary, choose the one which is positive real multiple of i. 

Lemma 4 The following are theorems of IRC. 

3xD(x,z) 

and 

D(x, z) I\ D(x', z) => x = x' 

Proof: The proof is outlined below. The standard notation 1-r A mean

ing that A is a theorem of the theory T. Since we are dealing with theory 

IRC throughout this section, it is not mentioned below. That is, all the 

formulas are theorems of !RC. 
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1. f- 3x(x2 = z). Follows easily from AC 

2. 

3. 

f- x2 = (-x)2 

This is an easy consequence of (-x) (-x) + (-x)(x) = (-x )(-x + x) = 
(-x)0 = 0 and the formulas x 2 + (-x)(x) = x(x + (-x)) = 0, using 

the axioms FL2-FL9. 

f--(x+x) >0 V ((-x)+(-x)) >0V 

((x + x) = 0 I\ (-i)(x - x) ~ 0 V ((-i)((-x) - (-x))) ~ 0 

This formula follows from the fact that x + x and (-i)(x - x) are real 

and the lemma 3. From the above formulas it follows that: 

4. f- 3xD(x, z) 

The second formula of the lemma expresses the uniqueness of the chosen 

square root. The uniqueness of ../x is a consequence of the fact except for 

z = 0 only 2 square roots x and -x are possible for 

x 2 = y2 {:} (x + y)(x - y) = 0 {:} x = y V x = -y. (4.8) 

D 

It now follows that if one adds a function symbol ✓ and the defining 

axiom y'z = x {:} D(x, z) then the resulting theory -call it (temporarily) 

~C✓ is essentially equivalent to ~C. In model theoretic language, for any 

model M of ~C there is (unique) model M' of ~C✓ which is obtained from 

M by the addition of the square root function. We continue to call the 

extended theory ~C instead of ~C ✓- In the proof of the Theorem 4, I used 

a standard technique in the algebraic theory of complex numbers: splitting 

a complex term into real and imaginary parts. One can apply this to the 
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satisfiability problem in IRC. For any formula F, the length of the formula, 

IFI is the number of symbols in F. An algorithm for the reduction of F into 

F' is outlined in the proof of the next lemma which is the second principal 

result of this section. 

Lemma 5 For any formula F of IRC there is formula F' of RCF such that 

F satisfiable if and only if F' is satisfiable. Moreover, IF'I is of polynomial 

order in IFI. 

Proof: We define a map T : Fm(JRC) -+ Fm(RCF) from the set 

of formulas of the theory IRC to the theory RCF. We further introduce 

a map t(JRC) -+ t(RCF) x t(RCF) from the set of terms of JRC to a 

pair of terms of RCF denoted by t-+ (Tr(t), Ti(t)). Intuitively, Tr(t) and 

11(t) are respectively the real and imaginary parts of the term t. The 

terms of t are constructed by recursive application of the function symbols 

' +' and'.'. We assume that all constant terms have been reduced to the 

form a + ib where a and b are rational integers. It would be convenient 

to first reduce the given JRC formula to a standard form. Thus, define the 

function N : Fm(JRC) -+ Fm(JRC) as follows. First, an auxiliary function 

t(!RC) -+ t(IRC). We denote this map by t-+ ht and define 

h _ {t if t is a variable or constant 
t - Zt is a new variable not in F, otherwise 

Let F(t) be atomic, that is, of the form F(t) = 0 or F(t) < 0 or Rt. If 

t = t1 o t2, where a is either + or · or - and neither t1 nor t2 is a variable 

or constant then let 

If one of them, say t1, is a variable ( or constant) and t2 is not 
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Similarly for the case of t2. It follows that if both are variables, say t = z oz' 

then N(F(z oz')) = F(z oz'). It is clear that the recursive application 

of N yields an ~C formula such that the terms of each atomic subformula 

of the image N(F) is of the form F'(t) where t = co z or t = z oz', c a 

constant and z, z' variables. We call such terms elementary. Moreover, the 

length of N(F) is linear in IFI- It is also clear from equality axioms that F 

is satisfiable(valid) if and only if N(F) is satisfiable(valid). Moreover, in the 

case of satisfiability, if an elemantary formula A(z), with a free variable z is 

true in some interpretation then N(A)(z) is true in the same interpretation. 

Note that all the new variables introduced are existentially quantified. We 

extend N to general formulas as follows. 

1. If F is of the form F1 /\ F2 then we let N(F) = N(F1) /\ N(F2). Now 

F 1/\F2 is true in some interpretation iff F1 and F2 are true in the same 

interpretation. If F1 and F2 are true for some interpretaion then the 

corresponding N(F1) and N(F2) hold in the same interpretation. The 

converse also holds. Hence, by induction N(F1) /\ N(F2) is satisfiable 

if and only if F1 /\ F2 is satisfiable. 

2. If F = ,F' then from the definition of N for atomic formulas and using 

induction we can show that N(F') = 3zt1 ••• ZtkF'(zt1, ... , Ztk) I\ (t1 = 
Zt1 I\· · · I\ tk = Ztk). Where Zt1 , ••• , Ztr are the new variables introduced 

for the terms appearing in F. We let 

That is, the new formulas introduced are not negated. IfF is satisfiable 

then F' is not valid. Hence, by induction N(F') is not valid and the 

right hand side of the above equation is satisfiable. 

3. If F = 3zF' then N(F) = 3zN(F'). Similarly for the universal quan

tifier. Again it is obvious that F is satisfiable if and only if N(F) is 

satisfiable. 
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Next, we define T. First define T for elementary terms 

T(k) = (k, 0), and T(i) = (0, 1), k an integer 

T(z) = (zr, Zi), T(t1 + t2) = (Tr(t1) + Tr(t2), Ti(t1) + Ti(t2)), (4.9) 

T(t1 · t2) = (Tr(ti)Tr(t2) - 'n(t1)'n(t2), Tr(t1)Ti(t2) + Ti(t1)Tr(t2)) 

where t1 and t2 are variables or constants. 

Let F be an atomic formula whose terms are elementary. Then F must 

be of the form t = 0, t > 0 or Rt. We define T(F) in each case. 

T(t = 0) = Tr(t) = 0 I\ 'n(t) = 0 T(t > 0) = Tr(t) > 0 I\ Ti(t) = 0 
(4.10) 

T(Rt) = Ti(t) = 0 

The general case is easily handled by induction. Assume first that F contains 

only elementary terms. 

1. If F = F1 /\ F2 then T{F) = T{F1) /\ T(F2)-

2. IfF = ,F1 then T{F) = ,T(F1). The definition of T has not involved 

any quantification over new variables( so far!). 

3. If F = :3zF' then let T(F) be obtained as follows. If the variable z oc

curs in F then let T{F) = :3zrziT(F') where T(z) = (zr, Zi)- Similarly 

we define T{F) for universally quantified formulas. 

Finally, for a general formula F we define 

T(F) = T{N(F)) 

Since N(F) consists of elementary terms only T(N(F)) is already defined. 

Moreover, as N(F) = F if the latter consists of elementary terms only the 

two definitions of T in this case are consistent. 

We may easily show by induction that T{F) is satisfiable if and only if F 

is satisfiable. Next, to deal with the square root symbol we use the defining 

formula 4. 7 for the square root function to reduce a formula F in IR.C to a 
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an equivalent formula F 1 free of square roots. Then we follow the steps in 

the above algorithm to obtain F1. 

The proof is complete D 

Note that we could have used the usual ansatz for converting a complex 

equation to a pair of real equation to define the function T. That is, replace 

each complex variable z by x + iy for a pair of real variables x, y. But 

then the size of the resulting formula may be exponential. Take the simple 

example of the equation zn = l. But the current reduction algorithm has a 

drawback that we introduce several auxiliary variables increasing the time 

complexity of the decision problem. It can be modified so that the number 

of auxiliary variables is minimized. 

Theorem 5 The satisfiability of a formula in A in IRC may be decided in 

exponential space. If A is quantifier free then satisfiability may be decided 

in polynomial space. 

The theorem may be proved using the complexity bounds derived by 

Ben-Or, Kozen and Reif [BKR86] for a general formula, and Canny [Can88] 

for the quantifier free case. I conclude this section with some remarks. Since 

the theory IRC is a complete theory if a formula of IRC is valid in any model 

then it is valid in all models and hence a theorem of IRC. Conversely, if 

a formula is not satisfiable in some model then it is not satisfiable in any 

model. The field of complex numbers considered as an algebraic extension 

of the field of real numbers is a model of IRC. In the subsequent sections the 

elements of any model of IRC is referred to as complex numbers. From the 

above remarks it is seen that any statement using such reference is actually 

a statement about any model of IRC. 
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4.3 A Logic for Quantum Probability 

This chapter is devoted to a logic for reasoning about quantum probabilities 

in a fixed dimension. This means that we treat the system as a whole and 

ignore the internal structure of its components. A simple physical example 

would be the hydrogen atom. One may consider, for example, the spin states 

of the whole atom ignoring the fact that it is composed of an electron and a 

proton. Another simplistic example is the 2-qubit system. One simply treats 

it as a single 4-dimensional system. We need the basic language for a fixed 

dimension to build more complex languages for composite systems in the 

next chapter. The section is divided into several subsections. The first two 

deal with syntax and semantics followed by a subsection on examples. The 

last two subsections deal with axiomatics and decidability and complexity 

properties of the logic. 

4.3.1 The Language .Cn(P) and .Cn(P, m) 

Quantum theory is modeled in separable Hilbert space. As emphasized at 

the outset this work will be restricted to finite dimensional Hilbert spaces 

which model quantum systems with finite number of possible outcomes. 

Possible extensions to infinite dimensional systems will be discussed in con

cluding sections of the next chapter. In this section I present two languages 

which describe quantum systems in a fixed dimension n. These languages 

serve two purposes. First they form the basis for the full logic and secondly 

provide the necessary tools and techniques for studying formal properties of 

the extended language to be introduced in the next chapter. 

Let n be a fixed natural number called the dimension. The symbols 

b,c,d, etc. will stand for basis variables. Sometimes I use b1, b11 , bi for 

basis variables. However, for reasons made clear below subscripts are never 

used to refer to basis variables. Occasionally, I use the ungainly notation like 

b(n), to emphasize the dimension. Associated to each basis variable b is a set 

{bo, b1, ... , bn-il of symbols called the basis components. This association 
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is fixed. Semantically the basis variables correspond to an orthonormal 

basis in a Hilbert space of dimension n and basis components correspond to 

the vectors in the basis in some ordering. It will be assumed that a basis 

specification comes with an ordering prescription. The intuition behind this 

notation reflects the (idealised) measurement of a physical system. Recall 

that a measurement of some attribute of a quantum system is always with 

reference to a basis of the ambient Hilbert space of the system or part 

thereof. The basis could be explicit or implicit. The measurement statistics 

correspond to the probability distributions predicted by the theory. Thus 

let { ao, a2, ... , an-1} be a basis in the Hilbert space H. The outcome of a 

measurement in this basis would yield a result corresponding to one of the 

a/s. These outcomes are mutually exclusive and repeatable in the sense that 

if the result of a measurement in the basis yields ao, say, then a subsequent 

measurement in the same basis is certain to yield ao. This is a typical 

classical situation. Thus as long we confine to a single basis the classical 

situation prevails. Thus for a generic basis variable b define basis formulas 

orb-formulas as follows: 

1. Each bi is a b-formula. 

2. If a and a' are b-formulas then so is a Va'. 

3. If a is a b-formula then ,a is also one. 

4. Any b-formula is constructed as above. 

Note that by definition basis formulas always refer to one basis. Thus, for 

example, bo V 0 c2 is not a basis formula. Therefore, the interpretational 

problems of quantum logic (see e. g. [Bub97]) do not arise. The semantics 

of these connectives will be given in the next section. For example, ,b0 

corresponds to the subspace orthogonal to that ofbo. Define as usual a/\(3 ~f 

,(,a V ,(3). Intuitively, bo V b1 would correspond subspaces spanned by 

vectors corresponding to bo and b1. The use of the boolean connectives is 
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justified by the fact that the set of subspaces of a Hilbert space generated 

by direct sum from a set of mutually orthogonal 'atomic' subspaces is closed 

under complementation, sums, and intersections. 

A probability term is an expression of the form P(a) where a is a b

formula for some basis variable b. A linear probability atom is an expression 

of the form 

ao · P(ao) + ... + ak · P(ak) < c or 

ao · P(ao) + ... + ak · P(ak) = c 

where each ai is an integer, c is an integer, and each ai is a bi-formula for 

some basis variable bi. Sometimes, I use the predicate ::;, but it must be 

remembered that tI ::; t2 stands for (tI < t2) V tI = t2, However, we 

note that it suffices to start with the predicate ::; only. The formulas of 

the language Cn(P) are all the boolean combinations of linear probability 

atoms i.e., each linear probability atom is a formula of Cn(P), and if <PI and 

</J2 are formulas of Cn(P) then so are -,</J1, and <PI I\ </J2. The constructions 

<PI V </J2, <PI ⇒ </J2, </J1 <:::> </J2 may be defined in this language as usual. 

Expressions such as X < Y, X = Y, where X, Y are linear combinations 

of probability terms are also definable in this language. Thus, X = Y is 

defined as X :s; YI\ Y :s; X and X < Y as X :s; YI\ -,(Y :s; X). 

For the language Cn(P, m), we add transition matrix or amplitude terms, 

which are expressions of the form ffiij {b, c), where i, j E { 0, ... , n - 1}. The 

reason for this nomenclature is that they give rise to transition probability 

terms T(bi, c3) which are introduced as defined expressions by the equation 

Intuitively, transition probabilities are a kind of conditional probability, ex

pressing the probability that a measurement in basis c will have outcome 

satisfying c3, given that the current state is described by bi, However, 

the transition probabilities cannot be assigned arbitrarily, they arise out of 
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certain linear relationships that exists between the bases. More precisely, 

these relationships are but the unitary transformations from one orthonor

mal basis to the other which we call the transition matrix. The transition 

probabilities are the squared modulus of the appropriate entries of the cor

responding unitary matrix( see Chapter 2). Thus the unitary matrices are 

more fundamental than the transition probabilities although only the later 

can be directly 'measured'. As stated earlier the present approach to formal 

reasoning about quantum system is motivated by the view that the goal of 

any theory is to give a reasonable explanation of observed phenomena. In 

a quantum system the observed quantities are the probability distributions

both absolute and transitional. Thus for each pair of basis symbols b and 

c, mij(b, c) is a symbol. If we view Cn(P, m) as a multi-sorted logic then 

mij {b, c) are function symbols from the sort representing basis variable to 

those of JRC. The intuition behind the these notation is clear: mij {b, c) rep

resent the elements of the unitary matrix connecting the bases corresponding 

to b and c. Further, as explained in Chapter 2, a unitary transformation 

may also be viewed as an evolution operator characterizing the dynamics of 

the system. There are many subtleties and only some of these are touched 

upon in the aforementioned chapter. The reader is urged to a perusal of 

literature on quantum theory (e.g [Per95], [dE76], [Got03] to name a few). 

The language Cn ( P, m) is defined as extension of the language £R«:: of the 

previous section. Consequently, Cn(P, m) inherits the symbols (both logical 

and nonlogical) of JRC, in particular, the predicate R standing for real terms 

and the quantifiers. Usually, x, y, z etc. (possibly with subscripts) will stand 

for variables in JRC. Note that we now have two types of variables: basis 

variables for Cn(P) and the variables of JRC. Sometimes, I use abbreviation 

"type" for real variables especially in conjunction with quantifiers. Thus, if 

cI>(x1, ... , Xn) is a formula with free variables (x1, ... , Xn) then 

:lx1 ... Xn : JR( cI>(x1, ... , Xn)) stands for 

:lx1 ... Xn(Rx1 ... Xn I\ cI>(x1, ... , Xn)) 
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Similar syntactic constructs apply to the universal quantifiers. Note that 

this notation reflects the multi-sorted approach we mentioned earlier. I use 

the standard notation for polynomials in several variables. These are the 

terms of RC. If p, q, r etc. are such polynomials then the atomic formulas of 

RC are of the form 

R(p), q = 0, and r > 0. 

Given an atomic formula ofRC the atomic formulas of Cn(P, m) are defined 

by replacing (uniformly) some of the variables in the RC-formula by prob

ability terms, transition probability terms and unitary terms. The unitart 

terms are constructed from mij(b, c). For example, let x~x~ + 5x1 + xi - 1 

be a polynomial expression then 

is an atomic formula. 

4.3.2 Semantics of .Cn(P, m) 

We now present the semantics for the language .Cn(P, m)( and consequently 

for the sublanguage .Cn(P)). It is interpreted in the theory RC. However, 

although there are no explicit modal operators there are some similarities 

to Kripke semantics [Gol92] for modal logics. The probability formulas are. 

interpreted with respect to a specified collection of states. 

A structure for .Cn(P, m) is an n-dimensional Hilbert space Hover any 

model of RC. Recall that RC is the theory of a real closed field and its 

unique algebraic extension by i = ..;=I. A state within this structure is 

a unit vector 1/; in H. An interpretation of .Cn(P, m) in a structure H is 

function 1r, such that 

1. for each basis variable b, 1r(b) is an orthonormal basis 1/;o, ... , 1Pn-1 of 

H; (we write 1r(b)i for 1Pi) 

2. for each complex variable X, 1r(X) is a complex number. 
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3. for each real variable x, 1r(x) is a real number; in the context oflR.C this 

means that Rx holds. Equivalently, if one treats JR.C as a multi-sorted 

logic then one could assign different sets of variables for complex and 

real sorts. Sometimes the latter approach is more convenient. Thus, 

saying that a term t is of sort real is equivalent to the formula Rt. 

If M = (mij) is an n x n unitary matrix and B = 'l/Jo, ... , 1Pn-l is a se

quence of vectors of H, we write MB for the sequence of vectors 'lj;~, ... , 'l/J~- 1 , 

where 'l/Ji = Ef;;a1mik1Pi-1 If Bis an orthonormal basis of H then so is MB. 

Next extend the interpretation 1r to terms t of various sorts as follows. Given 

the term t, a state 'lj; and an interpretation 1r, we define the interpretation 

[t]1r,,t, oft with respect to 1r and 'lj; as follows. Basis variables are interpreted 

as bases: 

1. 

[b]1r,?/J = 1r(b), 

when b is a basis variable. 

For a basis variable b we interpret b-formulas as projection operators on 

H ( these may also be understood as representing the subspaces of H onto 

which they project): 

2. 

where 'lj;' = 1r(b)i- Note that the fact that an orthonormal basis is 

determined up to multiples of complex numbers of unit modulus is 

already taken into account in the above interpretation since projection 

operators are invariant with respect to such multiples. Explicitly, if a 

is a complex number of modulus 1, and la) is a unit vector then 

(ala))((ala) = la)(al 

1This is the standard convention for transformation of basis [NCO!] 
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this is the projection operator projecting onto sum of the subspaces 

of H that are the images of the projectors [a:1],r,,t, and [a:1],r,,t, which 

could be written as the product of these projectors. 

is the projection operator projecting onto the orthogonal complement of the 

image of H under [a],r,,t,• Terms of RC including the unitary matrix entry 

terms ffiij(b, c), are interpreted as complex numbers: 

5. [x],r,,t, = rr(x), when x is real or complex variable; 

6. [k],r,,t, = k, when k is an integer; 

7. 

Recall that [a:],r,,t, is a projection operator onto some subspace S de

fined by the interpretation of the constituent basis variables of a and 

hence [a:],r,,t,('lf') is the projection of 'If' on S. 

8. [mij(b, c)],r,,t, = Cij, where M = (cij) is then x n (unitary) complex 

array such that Mrr(b) = rr(c); Thus if rr(b) = {lao), ... , la:n-1)} and 

rr(c) ={I.Bo), ... , I.Bn-1)} then Cij = (ail.Bj), 

9. [T(bi, Cj}],r,,t, = Tr([bi],r,,µ[cj],r,,t,) = lmij(b, c)l2. 

10. [X · Y],r,,t, = [X],r,,t, · [X],r,,t, 

11. [X + Y],r,,t, = [X],r,,t, + [Y],r,,t, 

To give semantics to formulas of Cn(P, m), we define a relation of satisfaction 

of a formula </J at a state 'If' in a structure H, with respect to an interpretation 

rr, denoted by H, rr, 'If' F </J. The definition is by the following: 
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l. H, 1r, 'l/J p X ~ Y if[XJ71",1/J ~ [Y]71",1/J and H, 1r, 'l/J p R(X) if R([X]71",1/J) 

in IRC. 

2. H,1r,'l/J p ,cp if not H,1r,'l/J p cp; 

3. H,1r,'l/J p </J1 /\ </J2 if H,1r,'l/J p </J1 and H,1r,'l/J F </J2; 

4. H, 1r, 'l/J p :lx(cp) if there exists a complex number c such that H, 1r[c/x], 'l/J p 
cp; 

A formula <P of £n(P, m) is satisfiable (in then-dimensional Hilbert space 

H) if there exists an interpretation 1r and a state 'l/J such that H, 1r, 'l/J p <P. 

A formula cp is valid (in H) if H, 1r, 'l/J p <P for all interpretations 1r and 

states 'l/J. I now prove a lemma which will be useful for bringing formulas 

to a standard form. Let p(x1, ... , xk) be a real polynomial. We define a 

probability atom as a formula in £n(P, m) obtained by replacing the Xi 

by probability terms P(</Ji[bj]). Here <Pi[b] is a basis formula in the basis 

variable b. Now for a basis variable b let 1r(b) = {ao, ... ,an-1}. Then 

1r(bi) is the projection operator lai)(ail- It is clear from the definitions that 

1r(,bi) = lao)(aol + .. • + lai-1)(ai-1I + lai+1)(ai+1I + • • • + lan-1)(an-1I

The interpretation of ,bi is the projection operator onto the orthogonal 

complement of the subspace spanned by ai. Similarly the interpretation 

of bi V bj is the projection operator Pa.; + Pa.;. The upshot is that any 

b-formula can be written as a sum of distinct projection operators: cp <=> 

Vjbir Conjunction of two b-formulas is interpreted as the projection onto 

the intersection of corresponding subspace. Again it is clear from definitions 

that if P(bi) = Xi and P(bj) = Xj (if: j) then P(bi Vbj) = Xi +xi· In other 

words in a maximal measurement with respect to some basis the events are 

mutually exclusive. Since we can reduce any basis formula to a disjunction 

over distinct basis variables the above additive property implies that each 

P(cp) may be replaced by terms like I:k P(bik). Hence replacing it in the 

probability atom p(xi/ P(</J1), ... , Xk/ P(cpk)) we get 
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Lemma 6 Given polynomial p(x1, ... , Xk) and th_e probability atom ~ = 
p(xif P(</)1), ... , Xk/ P(</Jk)) in .Cn(P, m) there is a polynomial q(y1, ... , Ym) 

such that p(xif P(</J1), ... , xk/ P(</Jk)) > 0 iff q(yif P(bA), ... , Ym/ P(b~_1)) > 
0 where {b1, ... , br} are the distinct basis variables used in the formula. 

Proof: Let b1, ... , br be the distinct basis symbols appearing in~- Let m = 
n-r. Without loss of generality one may assume that the variables for which 

distinct substitutions ( of basis variables) are made are x1, ... , Xr respec-

tively. For each variable Xi choose a set of new variables {Y(i-l)n+l, Y(i-l)n+2, ... , Yin}

From the discussion above each basis formula <Pi is of the form b)1 Vb)2 V ... V 

b).. Replace Xi by {Y(i-l)n+j1 + Y(i-l)n+h + ... + Yi(n-l)+j.} in the polyno-

mial p(x1, ... , xk) and let q(y1, ... , Ym) be the resulting polynomial. Hence, 

1r(p(xif P(</)1), ... , Xk/ P(<Pk))) is equal to q(yif P(bA), ... , '!Im/ P(b~_1) and 

the lemma follows. □ 

4.3.3 Examples 

In this subsection I give some examples of formulas .Cn(P, m) which express 

important physical concepts. The restrictions on the language to a fixed 

dimension put limitations on the expressiveness of the logic. Nevertheless, 

someimportant and interesting notions of quantum theory and in particular, 

quantum computation can be expressed. 

Superposition: A vector Ja) is a superposition of two vectors I.Bo) and 

l.81) if it is a linear combination of the two, i.e., Ja) = c1 I.Bo) + c2 J.B1) 

for some complex numbers c1, c2. Consider the formula T(bo, b0 V b~) ~f 

T(bo, bo) + T(bo, b~) = 1. If 1r{bo) = Ja), 1r(bo) = I.Bo) and 1r(b~) = l.81) 

then H,1r,'ljJ F T(bo,bo VbD = 1 iff Tr(la) (al (I.Bo) (.Bol + l.81) (.811)) = 1. 

This is equivalent to l(.Bola)J2 + l(.B1Ja)J2 = 1, which is true iff the state Ja) 

is a superposition of the states l.81) and l.82). That is, the formula expresses 

that "[bo]71' is a vector in the subspace spanned by [bo]71' and M]/'. 
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Phase Relations: Let b0 , ••• , bk be k+l bases. Then the following formula 

states a relation between b0 and the b-7, for j = 1 ... k. 

MPk Vx1 .. . xn: ~-(/\f:a1 P(b?) = x; => 
3zo ... Zn-l : C{/\":;.a1 lzil = 1 /\ 
/\J=l /\f;a1 P(bl) = IE~=lmir(b-7, b0 )xrzrl 2)) 

Recall that if { ao, a1, ... , an- l} is a basis and a quantum system is in a state 

f3 = Lf;l Ciai then a measurement in the a-basis yields ai with probability 

lcil 2• The probability distributions thus give the modulus of the coefficients 

but if we measure in some other basis then the phases come into play, hence 

the name. The above formulas simply state the following. Given a state 

of the system and a set of bases along with their (unitary) transformation 

relations-in fact a single basis [b0],r and the unitary matrices connecting it to 

all other bases in the set will suffice-the relation amongst the probabilities are 

given by the formulas MPk. Conversely, if given probability distributions 

with respect to a given set of bases then the above set of formulas express 

that there is a state, i. e. a vector in Hilbert space which generates the 

distribution according to the laws of quantum mechanics. A formula that is 

closely related to MPk is the one that follows the proposition below. 

Proposition 1 The formula MP k is valid for all k ~ 1. 

Proof: Let 1r be any interpretation and 11} any vector in Hn. If 

[P(b?)]1r,l'IJ,) = 1r(xi)2 , then we may write 11} = Lf=1 Ci7r(xi)1r(b0)i, where 

the Ci are complex numbers with lcil = 1. Define 1r(zi) = Ci- We can then 

calculate the probabilities with respect to other bases as follows: 

from which it can be seen that MPk holds. D 

Quantum State Tomography: Suppose we are given a collection of iden

tically prepared systems (an ensemble), which corresponds to an unknown 
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quantum state. Quantum state tomography (QST) addresses the problem 

of determining this unknown state. By measuring the ensemble in a single 

basis, we may determine a probability distribution over the outcomes asso

ciated to the basis elements. This distribution does not suffice to determine 

the state of the system. However, we may also divide the original collection 

of systems into subcollections and subject each subcollection to maximal 

measurement corresponding to an appropriately chosen orthonormal bases. 

We get sets of probability distributions. For an appropriately chosen set 

of measurements, this set of distributions suffices to determine the state 

uniquely. The following formula expresses this fact. 

Let u be the sequence of variables ut where 1 ::; i,j, k::; n. 
3u[ l\ 1-5.i,j,k'5.n mij{b, ck) = ufj =} Vz1 ... Zn( 

l\1-5.i,k'5.n P{cf} = I I:j ufjzjJP{bj}l2 

=} AiP{bD = II:jmij{b,b'}zjJP{bj}l 2 } ]. 

This formula is valid. It expresses the fact that there is a "pattern of 

inter-relation" ( the unitary transformation relating them) between a set of 

bases b and c1, c2, .•• en, captured by the values u, such that for any vector 

'lj;, the probabilities of measurements associated to a set of bases related in 

this pattern provide sufficient information to calculate the probabilities of 

measurements with respect to any other basis b'. Note that by the discussion 

of the formula MP k above, it is always possible to find complex numbers 

z1, ... Zk such that 

(4.11} 

is satisfied. Thus the universally quantified formula in the conclusion is never 

true vacuously. The formula therefore expresses that given an appropriately 

related set of bases b and c1 , c2 , ••. en, it is possible, given any basis b', to 

calculate the values P{bD from the values ufj, P{bi}, P( cf) and fflij{b, b'}. 

We do this by first solving the equation (4.11} for the phase values z1, ... , Zn, 

and then computing P{bD as I I:j mij{b, b'}zjJP{bj}l2 • 
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Uncertainty Relations: We say that bases band b' are complementary 

if nT(bi, b/) = 1 holds for all i, j = 1 ... n. Let n = 2. Then the formula 

/\i2T(bi, b/) = 1 /\ P(b1) = xr I\ P(b2) = x~ ⇒ 
(x1 - x2) 2 ~ 2P(bj )' ~ (x1 + x2)2 

expresses an uncertainty relation. For example if x1 = 1 then there is no 

uncertainty in the result for a maximal test with respect to the b-basis. But 

then we get the probability for both results in the b'-basis equal to one half. 

Thus, there is maximum uncertainty in an information theoretic sense. 

Quantum Gates: 

The familiar 'not' gate is also called X (or Pauli-X in honour of W. Pauli 

who used them first in his analysis of electron spin). It can be expressed in 

terms of transition probabilities because its entries are real. To express other 

quantum gates ( unitary matrices) uniformly we have to use the notation for 

(unitary) transformation of basis. Below, I give the formulas corresponding 

to some of the important unitary gates. Later I write this in an equivalent 

form that is more akin to the circuit model favoured by quantum computing 

community. The notation for the gates below are standard [NCOl] and will 

be used later. The gates below are all 2 dimensional, that is, all the formulas 

are in £2(P, m). I also suppress the basis variables. Thus mij stands for 

mij(b, c) for some basis variables. 

1. Pauli-X Gate 

def 
X = moo = m11 = 0 /\ mo1 = m10 = 1 

2. Pauli-Y Gate 

Y def O . = moo = m11 = /\ mo1 = -m10 = i 

3. Pauli-Z Gate 

def 
Z = moo = -mu = 1 /\ mo1 = m10 = 0 
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4. Hadamard Gate 

H ~f moo= -m11 = l/sqrt2 I\ mo1 = m10 = l/sqrt2 

5. Phase Gate 

Ph ~ moo = 1 /\ m11 = i I\ mo1 = m10 = 0 

6. rr/8 Gate 

rr/8 ~moo= 1 /\ m11 = (1 + i)./2 /\ mo1 = m10 = 0 

These are some of the most· frequently used gates. Another useful gate is 

the controlled-NOT gate C. It is a 4 dimensional gate and thus a formula of 

.C4(P, m). One can write it in the present formalism. But it would be more 

meaningful and intuitive in the tensor formalism to be introduced later. 

The Hadamard gate, phase gate, pi/8 gate and the controlled-NOT gate 

constitute an universal set of gates in the sense that any unitary operation 

on any number of qubits may be approximated by these gates. This is 

significant because the unitary gates play the role of logic operations( e. 

g. AND, OR, NOT, XOR) of classical circuits. Where as in the former 2 

gates like OR and NOT constitute a universal basis the uncountable infinity 

of unitary gates can only be approximated by a given finite set of gates. 

Another point to be noted is that the constants used in the definition of 

these gates are expressible in JRC. 

4.4 Axiomatization 

I now present axiomatizations and prove completeness results for the lan

guages .Cn(P) and .Cn(P, m). Although the former has very limited expres

sive power I deal with it separately for three reasons. First, because of its 

close correspondence with logics for classical probabilistic reasoning. Sec

ondly, it provides us with some techniques for proving results about the 

properties of the logic. Finally, it helps us understand the 'quantum' char

acteristics of .Cn(P, m) and further extensions in the next chapter. 
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4.4.1 Axiomatizing .Cn(P) 

The axiomatization of Ln(P) consists of a number of parts, each dealing 

with one of the syntactic constructs of the language. 

The first fragment of the axiomatization deals with the boolean logic of 

the b-formulas. As this is slightly richer than propositional logic, we identify 

for each basis variable b a fragment of the proof theory that deals only with 

b-formulas. The axioms of this fragment can be taken to be any complete 

axiomatization of propositional logic over the atomic formulas b1, ... , bn, 

with, e.g., Modus Ponens as the proof rule, plus the following axioms that 

capture the fact that we are dealing with an n-dimensional Hilbert space. 
def { } Let Jn = 0, ... , n - l . 

Bl bo V ... Vbn-1 

B2 -,(bi/\ bj) for i =/=- j and i,j E Jn 

We say that a b-formula </; is a b-tautology, and write h </> if it is a 

tautology of ordinary propositional logic or it can be derived from the above 

axioms alone by propositional reasoning. Note that these definitions isolate 

reasoning about b-formulas from reasoning about c-formulas when b and c 

are distinct. It is convenient to introduce propositional constants T and ..L = 
-, T along with axiom T. Then the two axioms above are equivalent to 

bo V ... V bn-1 {:} T 

and 

Next, we have some axioms capturing the properties of the probability 

operator. The following axioms correspond very closely to the axioms Wl

W4 of Fagin et al. [FHM90], but with the difference that we need to be 

careful to respect the syntactic constraints on probability terms. In the 

following, we require that there is some basis term b such that </;, </>1 and </>2 

are b-formulas: 

Pl O s; P(</>) s; 1 
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P2 P(</>) = 1 if</> is a b-tautology(i.e. h </>) 

P3 P(</>1 /1. </>2) + P(</>1 /1. -i</>2) = P(</>1) 

P4 P(</>1) = P(</>2) if </>1 {:} </>2 is a b-tautology 

Note that in P2 and P4, we deal with b-tautologies where Fagin et al 

have tautologies of propositional logic. Fagin et al note that in their ax

iomatization, there is no axiom corresponding to the fact that probability 

measures are countably additive. This does not make their axiomatization 

incomplete, because the countable additivity is not expressible in the logic. 

In our logic, we also do not have a countable additivity axiom, but the reason 

is somewhat simpler: the only measurable properties with respect to a ba

sis denoted by b are those corresponding to the 2n inequivalent b-formulas. 

Semantically, these formulas correspond to the linear subspaces generated 

by subsets of the n basis vectors. But, for infinite-dimensional quantum 

systems one must somehow incorporate countable additivity. Two possible 

courses are: 1) infinitary logic, i. e. admit (countably) infinite conjunctions 

and disjunctions or 2) replace axiom P3 by an infinite set of axioms. We 

leave the infinitary case for future study. 

In addition to the above axioms, we 'also need a set of axioms that capture 

reasoning about linear inequalities. That is, we need to be able to derive 

formulas such as (2P(</i1) s 3 /1. 4P(</>2) s 1) => P(</>1) + 2P(</>2) s 2, the 

validity of which follows just from the meaning of these operations on real 

numbers, rather than the meaning of the probability terms. Hence we have 

the following set of axioms 

LinlnEq All instances of valid formulas about linear inequalities 

for integer constants ai and c. Here, the Xi are to be instanttiated by 

probability atoms. 2 There is a however, a small difference between our 

2The theory of linear inequality can be recursively axiomatized. I refer the reader to 
Fagin et al. [FHM90]. There are seven axioms on linear inequality. Note that we define 
t ~ c for -t ~ -c, x = y <=> x ~ y A y ~ x and t < c = (t ~ c) A -,(t = c). Then the 
axioms are: 

11. X ~ X 

12. a1X1 + ... + akXk ~ a1x1 + ... + akXk + OXk+I 
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notation and that of FHM. In the latter the basic predicate is " ~ " and the 

relations of equality and " >" are defined using the basic relation. We have 

opted to work in language with equality and the basic relation " <". The 

advantage of FHM is that in the simple case of linear probability formulas 

there is a simple axiomatization of linear equality formulas which does not 

require the full axiom system of real closed fields. It follows from FHM that 

such an axiomatization is complete. 

A basic formula or a linear probability formula, like the one above, in 

.Cn(P) is obtained by replacing the variables in a formula of LJNEQ by prob

ability atoms P(</J). In the case of FHM-logic the construction is identical 

but <p is required to be propositional formula. 

As an illustration of axiomatization I make several simple deductions 

in Axn(P). These results are useful for later purposes. The deductions are 

informal but could be easily formalized. First, fix some notation. Uppercase 

roman letters A, B, C (possibly with subscripts)etc. will be used as metavari

ables over basis formulas {b-formulas). Sometimes I write A[b] to indicate 

the particular basis symbol {rather the components bi) used in A. Bold 

uppercase letters A, B, C etc. will represent metavariables denoting linear 

probability atoms i.e. formulas of the form Li kiP(Ai) ~ a with integer con

stants a, ki. Uppercase greek letters will stand for general formulas of the 

language under consideration, in the present case .Cn(P). Write '1>[b1 , ... , bi] 
to indicate that b1 , ... bi are among the basis variables that occur in ff>. Let 

x denote metavariables which denote n variables xo, ... , Xn-1 in RC. Call 

13. a1x1 + · · · + akXk :$ c => ait x1 + · · · + aik Xk :$ c if j1, ... , jk is a permutation of 
{1, ... , k} 

14. a1x1 + · ·+akXk :$ c/\a;x1 + · •+a1cxk :$ c' => (a1 +a;)x1 + · ·+(ak+aUxk :$ c+c' 

15. a1x1 + · · · + akXk :$ c <=> da1x1 + · · · + dakXk :$ c for integer d > 0 

16. (t :$ c) V (t ~ c) where t is a term. 

17. (t :$ c) => t < d for c < d. 

Call this theory LmQ• In this theory equality is a defined predicate. Since the axiom 
system will be soon replaced the richer theory lRC in which the axioms of linear inequality 
are theorems we omit futher discussion on this theory. 
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these vector variables. Bold lowercase roman letters will denote vector vari

ables such that the above correspondence between the 'vector' and 'compo

nents' always holds. For example, xk will stand for the n-tuple of variables 

(x~, ... , x~_1). Let <P[x1 /b1, .... xk /bk] denote the formula in RC obtained 

by substituting zj for every occurrence P(b{), 0 ::; i ::; n - 1 and 1 ::; j ::; k. 

The motivation is a systematic reduction of formulas in .Cn(P) and Cn(P, m) 

to formulas of RC. 

Dl. Let <P be the formula bi1 V bi2 V ... V bi1:. Then 

( 4.12) 

where {j1,J2, · · · Jn-k} is the complement of {i1,i2, · · · ik} in {O, 1, ... n-

1}. 

It follows from Bl and distributive laws that 

-,<j) # -,<j) I\ (b1 V ... V bn) 

# (-,bi1 /\ ... /\ -,bi1:) /\ (b1 V ... V bn) 
n 

{:} V ((-,bi1 /\ • • • /\ -,bik) /\ bj) 
j=l 

Now by B2, we have that f-- bj =} -,bi for i #- j. It follows that each term 

(-,bi1 /\ ... /\ bi1:) /\ bj is provably equivalent to bj if j E { i1, ... , ik} and 

provably equivalent to ..l otherwise. This yields the result. 

D2. For two disjoint subsets I and J of {1, 2, • · · , n} we have 

(V bi) /\((V bi)# ..l 
iE/ iEJ 

This is an easy consequence of B2 and the distributive laws. 

D3. If f--b -,<j) then f-- P(<j)) = 0. 
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This is obtained by taking </J1 to be any b-tautology and </J2 equal to </Jin 

P3. Noting that by P4 we have I- P(</J1 /\ 'ljJ) = P('lj)) for any b-formula 'lj), 

we obtain I- P(</J) +P(,</J) = P(</J1). By P2, we have I- P(</J1) = 1 Similarly, 

by P2, if ,</J is a b-tautology also, we have I- P( ,</J) = 1. It follows that 

I- P(</J) = 0. Note that we use the axioms of the theory LinlnEq which also 

yield the familiar laws equality. 

D4. If </J = bi1 Vbi2 V ... Vbi,. and 'ljJ = bj1 Vb32 V ... Vbjm then I- <p/\'lj) {:} br1 V 

br2 V ... Vbr, where {r1, r2, · · · , rs} = {i1, i2, · · · , ik}n{j1,h, · · · , im}-

The proof uses the distributive laws and B2. 

D5. For every b-formula <p there exists a b-formula 'ljJ of the form bi1 Vbi2 V 

... V bi,. such that 1-b </J {:} 'ljJ. 

The proof is by induction on the construction of </J. We assume that </J is 

expressed using disjunction and negation only. The base case, of a formula 

of the form bi, is trivial. Then use of D 1 and the tautology </J V </J {:} </J proves 

D5. 

For the proof, 

P((</J V 'ljJ) I\ </J) + P((</J V 'ljJ) I\ ,</J) = P(</J V 'ljJ) 

Using P4, the first term in this equation is provably equal to P(</J). Similarly, 

if h ,( <p I\ 'ljJ), then the second term is equal to P( 'ljJ). This shows I- P( <p) + 
P('lj)) = P(</J V 'ljJ) when h ,(</J /\ 'lj)). We apply this fact, together with B2, 

to obtain the result, using D6 and induction. 

The language Cn(P) captures reasoning about quantum systems in a 

fixed basis and is thus very restricted in expressing assertions about quan

tum probabilities. Our reason for such an axiomatization is firstly, to study 

the fragment of Cn(P, m) that closely corresponds to the classical case. Sec

ondly, the simpler structure of this fragment simplifies the task of studying 



88 CHAPTER 4. LOGICS FOR QUANTUM PROBABILITY 

its properties which prove useful later. Although the language .Cn(P) is of 

very restricted expressive power it is instructive to go through the proofs

first, because of the close analogy with classical probabilistic logic. The 

axioms Pl-P4 are identical to the classical axioms. The only difference are 

the axioms Bland B2 which capture a kind of 'internal structure' of the ba

sis variable b. The second reason, when we extend the logic so as to include 

correlations amongst the probability distributions corresponding to different 

bases, is to bring forth the distinction between the classical and the quan

tum case. I first give a brief account of the classical case. I loosely follow 

[FHM90), and assume some familiarity with the basic definitions of measure 

theory. (I confine this discussion to the case when the basic propositions are 

measurable.) 

Let <P be the set of primitive propositions. For simplicity assume <P to 

be the finite set {p1,P2, ... ,Pm}- A probability structure is a pair consisting 

of a measure space (S,S,µ) and a function M : <P -+ 28 , where Sis a 

set, S is a Boolean ring of subsets of S closed under complementation and 

countable unions, and µ is a measure on 3. We also assume that each 

M(pi) is measurable. The set M(pi) is to be understood as the subset of 

Son which event Pi occurs (or Pi is true). The probability assigned to the 

basic proposition Pi in a probability structure is written W(pi), and defined 

to be the value µ(M(pi)). 

A formula <p ( expressing a boolean combination of linear inequalities over 

probability terms) is defined to be satisfiable in the classical theory if there 

exists a probability structure with respect to which <p is true. The com

pleteness proof proceeds by constructing a probability structure satisfying 

a given consistent formula </J. In particular, in this construction, one has 

a large degree of freedom in the choice of the measure space ( S, 3, µ), as 

well as the interpretation function M. This freedom is used to advantage 

in the completeness proof. It is first shown that the formula </J is equiva

lent to a formula </J' in which the basic probability terms are of the form 
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W(li I\ ... I\ lm) where each li is either Pi or -,Pi· A set of 2m real variables 

x1, ... , x2m are introduced to correspond to these terms. Replacing these 

terms in q/ by their corresponding variables, and conjoining the constraints 

Xi ~ 0 and 1::1 Xi = l, we obtain a consistent formula </J" concerning just 

the real variables x1, .. . , x2m. Any values of the Xi satisfying these may be 

be used to construct a probability structure satisfying </J" and the correspon

dence formulas W(li I\ ... Alm)= Xi, and hence </J. We refer to FHM for the 

details. 

The arguments for the quantum case (for both .Cn(P) and .Cn(P, m)) 

follow a similar structure, in that we first reduce the construction of a model 

for a given consistent formula to the problem of finding a set of real values Xi 

that correspond to a set of probabilities. However, once we obtain the values 

Xi we are somewhat more constrained in the way we construct a model. 

Our probabilities arise not from a completely undetermined measure space, 

but from vectors and bases in the ( essentially unique) Hilbert space Hn of 

dimension n. Instead of constructing a measure space, we need to construct 

a vector and a set of bases that give rise to the values Xi through the inner 

product. 

4.4.2 The Case of .Cn(P) 

We first deal with completeness for the language .Cn(P). 

Lemma 7 For every atomic formula <I> of .Cn(P), with basis variables amongst 

b 1, ... , bm, it is possible to construct in time O(l<I>I • n) an atomic formula 

<I>* of the form 1:r=l I:j::J CjkP(bJ) ::; d, where the Cjk and d are integers, 

such that f-- <I> <=> <I>*. 

Proof: Since <I> is an atomic formula, it has the form I:j=l ajP(Aj) ::; d, 

where the ai and d are integers. Let b be the basis symbol such that Aj 

is a b-formula. By D5, there exists a set { i1, ... , ir} such that h Aj <=> 

bi1 V bi2 V ... V bir. Using D1 and D4, the computation of this set can be 
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done in time O(IAil · n), following the inductive construction of Aj. By D6 

and the axiom P4, we have P(Aj) = I:;=l P{bi.)- Using reasoning about 

linear inequalities, we can now (in time O(IAI · n) substitute the right hand 

side of these equations equations in <I>, collect terms of the form aP(bj) with 

the same basis term bj into a single term of this form, and add coefficients 

Cjk = 0 for those j such that the corresponding bj does not appear. This 

turns <I> into a basic formula of the required form. Call <I>* the canonical 

form of <I>. □ 

First, a simple but useful fact about the group of unitary matrices. 

Lemma 8 Given any two unit vectors la) and 1,8) there is a unitary trans

formation U such that Ula) = l,8). That is, the action of unitary group on 

the unit sphere (the set of points in en given by vectors of unit length) is 

transitive. 

Proof: This is easily seen as follows. Construct two bases B00 = {la)0 = 
la), la)i, ... , la)n_1} and Be = {l,8)0 = l,8), l,B)i, ... , I.B)n_1} say by the 

Gramm-Schmidt technique [Gre75]. Then, 

n-1 

l,B) j = I:)ail,Bj )ai = L Uijai. 

i=O i 

That is, Uij ~ (ail,Bj) is the unitary matrix we seek. One can visualise this 

in real 3-dimensional space. A rotation which carries la) to l,8) will suffice 

because rotation matrices are real unitary matrices. D 

Theorem 6 Let x 1 = {xA,x½, ... ,x~_1}, ••• , xk = {x~,x~, ... ,x~_1} be 

k real vectors with non-negative components xf such that I:f ~l xf = 1 for all 

1:::;; j:::;; k then there is a state la) and k bases B1 ={,BJ, ... ,,BA_1}, ... , Bk= 

{,B~, ... , ,B~_ 1} with the following property: 
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Proof: Let y{ = ~ for all O ~ i ~ n - l and 1 ~ j ~ k. Choose an 

orthonormal basis B1 = {,BJ, ... , ,B~_i} arbitrarily and let 

Jaj) = I: Y!..Bl. 
i 

The vectors Jaj) satisfies 

But we want a single vector a that satisfies the above equation. But 

we have now freedom to choose different bases. The idea is simple. Start 

with a1. The basis B1 has the required probabilities x} with respect to a1 

and the vector Jai) has the probabilities xj with respect to the same basis 

B1. Note that for any unitary operator U and any two vectors Ja) and J,B), 

((aJUt)(J,B)) = ((aJ)UJ,B)) by definition of an unitary operator. That is, 

the inner product of the vectors ut Ja) = u-1 Ja) with ,B equals the inner 

product of a with U J,B). This is a rather trivial consequence of the unitarity 

of U and the properties of the inner product. Let Uj be a unitary operator 

which talces Ja1) to Jaj), i. e. Uj Ja1) = Jaj)- The lemma 8 shows that such 

an operator exists. Then, 

((ajJ)(J.Bt)) =((a1JU]HJ.Bt)) = 

((a11)(UtJ.Bt)) = y{. 

Now, let Bj be the basis {uj-l .BJ, ut .BL ... , uj-1 .B~-1 for j = 2, ... , k. 
Then, Ja)= Ja1) and the bases B1, ... , Bk satisfy the conditions of the the

orem. D 

Lemma 9 For every formula <I> in Cn(P) containing the basis variables 

b1 , ... , bk there is a formula <I>'[xA, •.. , x~_1, ..• , x~, ... , x~_1] in LrnEQ such 

that <I> is satisfiable iff <I>' is satisfiable. 
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Proof: First we introduce some notation which will prove useful later. 

Let xo, ... , Xn-1 be n variables. We use the vector notation x which repre

sents this collection of n variables. Define the formula 

Prob(x) = /\ Xi ~ 0 /\Lxi = 1 ( 4.13) 

Now, let <I> be an atomic formula. Then from the previous lemma there 

is a formula <I>* = Ef=1 Lj,:J Cj1P(b~) ~ d where ~ stands for either the 

relation 11 =" or 11 <" such that <I>{::} <I>* is provable in the theory of Cn(P). 

Let be the formula obtained by replacing the the probability term P(b}) by 

the IRC-variables xj. Let 

m n-1 

<I>'= (L L CjtX~ ~ d) I\ (/1.iProb(xi)) = <I>"(x)Prob(x) 
j=lj=O 

where the left conjunct in the first equation is obtained by substituting 

P(b~) = x~ in <I>*. Now, if <I> is satisfiable then there is a quantum state 

11/J) and bases Bi= {a}li = O,··· ,n -1} such that if l(a)l'l/J)l2 = a} then 

I:~1 Lj,:J Cija} ~ d. Thus, the assignment xj = a} satisfies <I>'. Conversely, 

if <I>' is satisfiable then there exist numbers a} such that for each i, a} ~ 0 and 

E~1 Lj,:J Cija} ~ d. By the theorem 6 it is then possible to construct bases 

Bi= {a)lj = O,··· ,n-1} such that l(a)l'l/J)l 2 = a}. But this implies that 

<I> is satisfiable. For non-atomic formulas we construct <I>' by the following 

rules. If <I> = <P1 V<P2 then first let Phi" = <I>1V<I>~, and <I>' = <I>" (x)/1.Prob(x) 

where x is the succinct notation denoting the collection of all relevant vector 

variables. Similarly, if <I>= -,cpl then <I>'= -,q,1(x) /1. Prob(x). The general 

case follows by an easy structural induction. D 

Let AXn(P) be the axioms and rules of inference given above. Then we have 

the following: 

Theorem 7 AXn(P) is a sound and complete axiomatization of Cn(P). 

Proof: The fact that the axiomatization is sound follows from the fact 

that any n-dimensional complex Hilbert space, is a model for Cn(P). The 
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verification of validity of the axioms and the inference rules is easy. 

Now, completeness is equivalent to the following: a formula W in the 

theory is satisfiable if it is consistent. By definition w is consistent if ,W 

is not a theorem. Suppose that W is not satisfiable. Write W in disjunctive 

normal form. Let <I>[b1, ... , bk] be an atomic subformula of w. Let <I>' be 

the corresponding formula in £1NEQ constructed in lemma 9 and let w" be 

the formula obtained from \JI by replacing atomic formulas <I> by <I>". Let 

w' = w" /\Pro b. We omit the variables from these formulas for convenience. 

It follows that \JI is satisfiable if and only if w' is satisfiable. Suppose w' 
is not satisfiable then ,\JI' must be valid. This implies that Prob =} ,\JI" 

must be a valid valid formula of £1NEQ Now substitute probability atoms 

(P(b)) for x}). Then from the probability axioms Pl-P4, Prob is provable. 

Since all formulas obtained by substituting probability terms in any valid 

formula of £,INEQ are provable by definition we conclude that w' and hence 

,\JI" (bi /xi) is provable. But the latter is equivalent to ,\JI( see the previous 

lemma) by construction. We infer that ,\JI is a theorem of Axn(P) and W 

is inconsistent. □ 

Remark. The proof of the completeness theorem 7 for AXn(P) consists of 

two parts. The first part is identical to the reasoning in [FHM90] for classical 

probabilistic logic. The purpose of the second part- the 'quantum' part- is 

to show that given a consistent set of 'classical' probability distributions 

it is always possible to find a state and orthonormal bases which yield the 

former. As we shall see in the next section the true quantum behaviour 

emerges when one fixes the relations among the bases. 

The next theorem further highlights the similarity and differences be

tween the classical probabilistic logic and Cn(P). The estimates of com

plexity are given as functions of the length of the formulas. 

Theorem 8 Satisfiability of a formula of Cn(P) in n-dimensional Hilbert 

space (with n ~ 2) is NP-complete. 
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Proof: The restriction on dimension is clear since the 1-dimensional 

case is trivial. In order to show that the decision problem in the theorem 

is NP-hard first we show that SAT can be reduced in polynomial time to 

an instance of satisfiability in Cn(P). For any propositional formula A we 

construct a formula A* in Cn(P). Let A be formula with k propositional 

variables {P1, ... ,Pk}- Let b1, ... , bk be k basis symbols. Define A* recur

sively as follows: 

Pi= P(b&) = 1 

(,a)*= ,(a*) 

We now show that a E SAT iff a* is satisfiable. It is easily seen that if 

a* is satisfiable then so is a. For, suppose that Hn, 1r, 1/J F a*. Then it 

is immediate that the assignment V : {p1, ... ,Pm} ➔ {O, 1} defined by 

V(pi) = 1 iff Hn, 1r, 1/J F Pi is a satisfying assignment for a. Conversely, 

suppose that a is satisfiable, and let V be a satisfying assignment. We 

construct a vector 1/J in Hn and an interpretation 7r of the basis symbols 

b 1 , ... , bm such that Hn, 7r, 1/J F a*. For this, let Bo = 1/Jo, ... , "Pn-1 be any 

orthonormal basis of Hn. Let Bi be the sequence of vectors obtained by 

swapping 1/Jo and "Pi in Bo. Clearly, Bi is also an orthonormal basis. By 

definition, (1/Jol1/Ji) = 0, i =/:- O. We now take 1/J = 1/Jo, and define 7r as follows: 

for each i = 1 ... m, we let 1r(bi) = Bi if V(pi) = 1 and 1r(bi) = Bo otherwise. 

It is now straightforward to check that Hn, 1r, 1/J F Pi iff V(pi) = 1, from 

which it follows that Hn, 7r, 1/J F a*. 

To show that the decision problem is in NP we may assume without loss 

of generality that the given formula 4> is in conjunctive normal in Cn(P). By 

Lemma 7, the formulas q>* and hence !l>*(y1, ... , yk) may be constructed in 

time O(lcpl • n), as may the formula Prob(y1, ... , yk). Hence we also obtain 

the formula w = !l>*(y1, ... , yk) t\ Prob(y1, ... , yk) in time O(lcpl · n). Using 

Lemma 9 we show that cp is satisfiable iff !l>*(y1, ... ,yk)t\Prob(y1, ... ,yk) is 

satisfiable. The latter is a boolean combination of linear constraints. Thus 
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each atomic subformula /3 in <}* (y1 , . .. , yk) is a linear constraint of the form 

I::ij yj ~ d where Cij and dare integers. Now use a non-det determine truth 

assignments to the f3's which make<}* true. For each such truth assignment 

we have a set of linear constraints /3 which have to be satisfied along with 

Prob(y1, •.. , yk). It follows from the fact that linear programming is in 

PTIME [Kha79] [Kar02] that satisfiability of such formulas is in NP. Thus, 

satisfiability of <pin .Cn(P) is also in NP. D 

The same complexity was obtained in [FHM90] for their logic of classical 

probabilities. The part of the proof for classical probability distribution, 

however, is different from the one in [FHM90]. I summarise the present 

approach. First, identify the different basis variables b3 in the formula and 

treat each one as representing a different classical probability distribution. 

Test for satisfiability of these distributions separately. If one can find the 

(classical) probability distributions then the quantum counterpart can be 

constructed. We could do this because the distributions are independent. 

What if there are correlations? This is where the unitary matrices relating 

the bases and the corresponding transition or conditional probabilities come 

in. 

4.4.3 Axiomatizing .Cn(P, m) 

To capture the properties of the probability operator P, the axiomatization 

contains the axiomatization of b-formulas used above, and the probability 

axioms Pl-P4. As seen above the situation is not very different from the 

classical picture. 'Irue quantum behaviour emerges when one incorporates 

the relation between two bases. This is expressed by the operators mij(b, c). 

Call it the transition matrix or amplitude for the bases band c. The axioms 

for the transition matrix follow. It is assumed that each axiom actually 

represents n2 formulas- one for every pair { ijlO ~ i, j ~ n - 1 }. 

Ml mij (b, c) = ffiji( c, b) 
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M2a mij(b, b) = 1 if i = j 
M2b mij(b, b) = 0 if i =/- j 

M3 flij(b,d) = Er=lmik(b,c)mkj(c,d) 

Axiom set Ml expresses the fact that the the transformation matrix is 

unitary. This can be deduced in conjunction with the other axioms. M2a 

and M2b capture the fact that the identity transformation is given by the 

unit matrix of order n and M3 expresses that given three bases b, c and 

d the transition matrix m(b, d) is the matrix product of transition matrices 

m(b, c) and m( c, d). It thus follows from the axioms Ml-M3 that the n x n 

matrix whose elements are given by flij(b, d) is unitary. Recall that the 

transition probability terms, 

are defined over atomic components. 

This relation between the transition probability and transition amplitude is 

a distinguishing characteristic of quantum systems. It is also the source of 

interference effects. See [Fey63) for an excellent discussion. We interpret 

T(bi, Cj) as the conditional probability of a maximal test in the c basis 

yielding the state Cj if the initial state of the system is bi;hence, the following 

axiom. 

Tl P(bi) = 1 ⇒ P(cj) = T(bi, cj) 

But there is a problem with the interpretation ofT(bi, Cj) as conditional 

probability. Consider the following situation in classical probability theory. 

Suppose there are two set of events A = { a1, ... , ak} and B = { b1, ... , bk} 

such that the probability of the (atomic) event ai is p( ai) and the conditional 

probability of the event bj after the occurrence of ai is p(bjlai)- Then the 

probability of the event bj is given by, p(bj) = LiP(bjl~)p(ai), However, 

in the quantum case P ( c j) =/- Li T (bi, c j) P (bi) . Rather there are certain 

quadratic relations which depend upon the state. One can no longer treat 

the probabilities with respect to different bases as we did in the last section. 
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To ensure that probability assignments to different bases can be ascribed to 

some state, i. e. the probabilities are actually quantum probabilities a final 

axiom is required. This is the formula MPk of Section 4.3.3. I repeat it 

here for the sake of convenience. 

MPk Vx1 ... Xn(Rx1 · · · Xn I\ (/\f;a1 P(b?) = xl:::} 

:lzo ... Zn-1 (/\f;01 lzil = 1 /\ 
/\J=l /\f;a1 P(b{) = II:~=1mri(b-1, b0)xrzrl2))) 

This is the most complicated axiom: one for each positive integer k. Actu-

ally, it is sufficient to require that MPk hold up to a finite k depending on 

the dimension n. Then it holds for all k. This fact will be proved later. 

Let Axn(P, m) denote the theory resulting from the above axiomatiza

tion of Cn(P, m). Recall that it is an extension ofRC and hence one may use 

the properties of the latter for pure RC formulas. In a probabilistic logic real 

numbers are necessarily an integral part. Hence, any axiomatization must 

incorporate axioms dealing with real numbers. However, quantum proba

bilities arise out of complex amplitudes. Recall the recipe for constructing 

a formula of Cn(P, m). A general term in RC is obtained by substituting 

terms of the form R, t 1 , or simply t in the multivariate polynomial in 

{uili=l, ... ,r}, 

where ak1 •.. kr are constants of RC and t 1 is free of the defined function 

symbols(, J). For any term t, if t ~ 0 or t < 0 is a formula then substitute 

probability terms P(cp), m-terms, and defined terms like the transition prob

ability terms T(bi, c3) uniformly for some of the variables Xi. One obtains 

an atomic formula of Cn(P, m). It is clear that a formula of RC is also a 

formula of Cn(P, m). Several properties of RC were proved in Section 4.2. 

I remind the reader that probabilistic statements about quantum systems 

are usually about relations among real and complex numbers. That is, some 

formulas in RC. It is natural that we look for a systematic reduction of for

mulas in Cn(P, m) to those of RC. As the first step we prove the following. 
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Let the length of a formula <p, denoted by l'PI, be the number of symbols 

appearing in the formula. 

Lemma 10 Let cl> be a formula of .Cn(P, m) containing the basis variables 

b 1, ... , bm. Then it is possible to construct in polynomial time a formula cl>* 

such that I- cl> {:} cl>* and all atomic subformulas of cl>* are of the form p = 0 

where p is a polynomial with constant coefficients over terms of the form 

P(bD, or ffiij(b1, br) or their conjugates with 1 ~ r ~ k and 1 ~ i,j ~nor 

a formula of ~C. 

Proof: From the remarks preceding the lemma cl> is constructed by ap

propriate substitution of probability terms, matrix terms, etc. for variables 

in a term of ~C which may contain the square root function. First, elim

inate the square roots by the defining formula D (see Equation 4.7). This 

elimination process can be done in polynomial time. Thus, one may assume 

that that cl> is square root free. It suffices to show that each atomic sub

formula w of cl> is equivalent to a formula w* of the required form. First, 

we eliminate < and > by adding x2 for some new real variable x. For ex

ample, t > 0 is provably equivalent to 3x(Rx /1. t = x2). Next, note that 

by the arguments of Lemma 7, all probability terms P('y), with"/ a br for

mula, are provably equivalent to a sum of terms of the form P(bD. Also 

all transition probability terms T(bi, b.i) can be reduced to transition ma

trix terms and hence, it suffices to consider only matrix terms: mij (br, b8 ). 

Using M3, we may express the terms ffiij(b8, br) as a sum of terms of the 

form mik{b8 ,b1) •mjk{b1,br). By Ml, the terms mik(b8 ,b1) are equal to 

ffiki(b1, b8 ). 

The result of these transformations is to show that w is equivalent to a 

formula composed from real and complex variables and terms of the form 

P(bD and mij(b1, br) using addition and multiplication. D 

The intuition of the preceding lemma is the following. If there are r basis 

variables then each pair gives rise to corresponding matrix terms. There are 
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thus, r(r - 1)/2 sets of matrix terms. We choose some basis arbitrarily, 

say, b1 and consider only transformation matrices mij (b1, bk). All other 

transformation matrices can be generated from these. Of course, in some 

actual implementation of the algorithms for the reduction some heuristics 

for this choice would be useful. 

Before giving the proof of completeness of the axiomatization Axn ( P, m) 

let us discuss informally the ideas behind the proof. First, we assume that 

a consistent formula cl> of .Cn(P, m) containing the basis symbols b1, ... , bk 

is given. Our goal is to find an interpretation of the basis variables as basis 

components and a unit vector( the state) in Hn with respect to which cl> is 

satisfied. Using Lemma 10, it suffices to show that cl>* is satisfiable. For 

1 s j s k and O s i S n - l, let x1 be variables, such that Ra:1 is true( 

intuitively a:1 are real variables). For each 1 S j S k and O S i, r S n - l, 

let y{r be a variable. Write x1 for the s xt ... x~_ 1 and 

write y for the sequence of variables Ylr• Note that x and y are not variables 

of the object language or IRC but only a shorthand notation for a sequence 

of variables. Let 0 be the substitution that puts P(b{) for each x{, and 

substitutes mir(b1, bi) for each Wr· 

Lemma 11 Given a set of basis variables b1 , ... , bk, there is a formula <I> 
of IRC with free variables amongst x, y such that 

1. l<I>I is of polynomial order in l(x,y)I, 

2. if rr is an interpretation of the real and complex variables x and y that 

satisfies <I>, then there exists a vector I~) of Hn and an extension of 1r 

to an interpretation for the basis symbols b1, ... , bk in Hn, such that 

(a) [P(b{)]1r,l1/J) = 1r(x{) for l S j S k and l Si Sn, and 

{b) [mir(b1, bi)]1r,l1/J) = 1r(Wr) for l S j S k and l Si, r Sn. 

3. I- <I>0, 
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Proof: Write xi for the sequence of variables x{, ... , x?i. Recall that 

Prob(xi) is the formula 

n-1 

/\~'20/\L~=l 
i i=0 

Let Prob(x1, ... , xk) stands for /\J=l Prob(xi). Further, for eachj = 1 ... , k, 

define Uni tary(yi) to be the formula 

n-ln-ln-1 

I\ I\ L Y!s · 1/rs = dir 
i=0 r=O s=O 

Define Phase(zo,---,Zn-1,x,y), where the Zi are variables, to be the 

formula 
n-1 k n-1 n-1 

/\ (lzil = 1) /\ /\ /\ I L Y!rzrMl 2 = ~- (4.14) 
i=0 j=2i=0 r=O 

We now take cI>(x, y) to be the conjunction of the formulas Prob(xi) /\ 

Unitary(yi), for j = 1 .. . k, with theformula:3zo, ... ,Zn-1(Phase(zo, ... ,Zn-1,x,y)). 

Clearly lcI>(x,y)I is of polynomial order in l(x,y)I- In fact, lcI>(x,y)I = 
O(k -n2 ) and for fixed n lcI>(x, y)I = O(l(x, y)I). So the first condition of the 

lemma is satisfied. 

We next show that the second condition is satisfied. Let -rr be an as

signment of real and complex numbers to the variables x and y such that 

cI>(x,y) is satisfied. Moreover, we let -rr assign complex numbers to the 

variables zo, ... , Zn-1 such that the formula Phase(zo, ... , Zn-1, x, y) is sat

isfied. The fact that such an assignment is always possible follows from the 

transitive action of the unitary group (see Theorem 6). In other words the 

formula :3zo ... Zn-1Phase(zo, ... , Zn-1, x, y) is satisfiable. Now extend the 

interpretation (continue to call it -rr) for b1, ... , bk in Hn and the vector l"P) 

in Hn as follows. For -rr(b1) take any orthonormal basis 11:1), ... , 11:n)- For 

the remaining bases bi, with 2 ~ j ~ k, define 

n-1 
-rr(~)i = L-rr(Y!r) · 1t:r) -

r=O 
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We take 
n-1 

l'l/!) = L 7r(zr) · J7r(x;) ·!Er). 
r=O 

This is a unit vector because, by assumption, we have that ll7r(zr)II = 1 

and I:;;,:J 7r(xt) = 1. The intuition behind the above formula is that we 

express the state as a unit vector represented in the basis b 1 , the squared 

amplitude of the coefficients are the probabilities and the phases are the 

complex numbers Zi of modulus 1. 

We show that the two parts of condition (2) of Lemma 11 are satisfied. 

The second part is immediate from the definition of the 7r(b-7)i- For the first 

part, note that 

[P(b{)]1r,l,J,) 
= 11(7r(b{)l'l/!)F 

= I I:;;,:J 7r(yfr) · 7r(Zr) · ~ 12 

=7r(xi) 

where the last step follows from the fact that 7r satisfies Phase (z1 , ... , Zn, x, y). 

The third condition I- ip0 is a consequence of the axioms for the prob

ability operator and transformation matrix. By D6 and Pl, P2, we have 

that I- Prob(xi)0 for each j = 1 ... k. It follows from Ml and M4 that 

I- Unitary(yi)0 for each j = 1 ... k. By the axiom MPk we have l-

:lz1 ... ZnPhase(z1, ... , Zn, x, y)0. Thus, each of the conjuncts of cI>0 is deriv

able, so this formula itself is derivable. D 

The lemma is the first step toward reducing the problem of satisfiability in 

.Cn(P, m) to that in IRC. There are two primary reasons for this reduction: 

first, it will be used to prove important properties of the former, second 

it will allow us to use decision methods for real closed field (see [BKR86], 

[Can88], [BPR03]). 

Lemma 12 With the above notation let 4> be formula of .Cn(P, m) with basis 

variables b1, ... , bm. Let the formula cI>(x, y) in IRC be constructed with x 
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def -
and y as above. Then there is a ~C-formula <I>" such that <I>' = <I>"/\ <I>(x, y) 

is satisfiable iff <I> is satisfiable. The algorithm for translating <I> into <I>' is 

in PTIME(l<I>). 

Proof: First, note that the formula ~(x,y) can be always constructed, 

it depends only on the basis variables appearing in <I>. Hence, we have to 

deal with <I>" only. We will define <I>" recursively. 

1. <I> atomic. Since <I> is atomic it must be obtaibed fromp(z1, z2, ... , zk) = 
0 or p(z1, z2, ... ,zk) < 0 or R(p(z1, z2, ... ,zk)), by substitutingP(ef>i[bk;]) 

for some Zi- We also allow the substitution of matrix symbols mi;(bi, b-1) 
for some of the variables Zi- Now, we assume that the basis formulas 

are in the canonical form: ef>i = bJ; V ... V bJ;. Moreover, from Lemma 

10 we may confine to matrix symbols of the form IDij {b1, b-1), that is 

transformations from some arbitrary but fixed basis. Recall that the 

"vector" variable xi is used to denote a set of n variables correspond

ing to the basis components b]. Thus, we obtain <I>" by making the 

following substitutions in the polynomial p: 

(a) For mkz{bi, b-1) substitute Lr Y1rYlrj. The intuition is that if 

Ui(Uj) represent the transformation matrices from the basis b1 

to the basis bi{oi) then UiUJ is the corresponding transformation 

from bi to b-1. 

(b) Convert the basis formula into canonical form as disjunction over 

the basis variables. 

(c) If a basis formula {in canonical form) is ef>[bi] = Vkbt then substi

tute Lk x;k for P(ef>). The intuition for this substitution is that: 

P(4>) = Lk P(b].1:) (formally, I- P(4>) = Lk P(b].1:); see D6). 

In this algorithm for constructing <I>" we take the obvious pre

caution that variables used in the substitution are different from 

those in the original formula <I>. 
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( d) If <I> is a formula of RC then <I>" = <I>. 

2. If <I> is ,<T>1 for some formula <l>1 then <I>" = ,<T>'{. 

3. If <I> is <I> 1 /\ <l>2 for then <I>" = <I>'{ I\ <I>~ • 

4. If <I> is :lx<T> then <I>" = :lx<T>". 

Next we show that <I> is satisfiable if and only if <I>' = ~ /\ <I>" is satisfiable. 

We prove this using the recursive construction above. A formal proof may 

be given by induction on the structure of formulas. It is left to the reader. 

We only remark that the satisfiability of <I> = :lx<T>1 is equivalent to that of 

4>1. 

We show now that <I> is satisfiable if and only if <I>' is satisfiable. The 

proof is essentially an application of Lemma 11. The formula <I>' is ~ /\ <I>'. 

The subformula ~ assigns variables to the probability terms of the P(b{) 

and matrix terms ffiij(b1 , bk) and by the Lemma mentioned above it is sat

isfiable. Any assignment of real and complex numbers to the variable in ~ 

that satisfies the probability and unitary constraints yields an interpretation 

1r of the probability and matrix terms. To be precise this interpretation is 

given as follows. The basis b1 may be taken to be any set of orthonormal 

vectors. The other bases~ are then given by 1r(b1) = Lt 1r(yfj1r(bt)). The 

state is given by 'l/; = Lj 1r(.Jxj)1r(b}). Now substituting these values in <I> 

gives an interpretation of the ~C formula <I>". Hence, <I> evaluates to true 

in the state 'l/; if <I>" does. The converse is straightforward. We simply take 

the give interpretation of the probability terms P(b1) and the matrix terms 

ffiij(b1 , bk) as interpretation of Xj and Yt respectively. The proof is com

plete. D 

From the two preceding lemmas the following theorem can be inferred. 

Theorem 9 AXn(P, m) is a sound and complete axiomatization for the lan

guage .Cn(P, m). 
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Proof: Soundness of AXn(P, m) is a straightforward verification that the 

axioms are valid in any structure. Given a formula of <I> of .Cn(P, m) let 

<I>' = <I> /\ <I>" be the formula constructed in the previous lemma. Suppose <I> 

is unsatisfiable. Then from the last lemma <I>' is unsatisfiable. Let 

ijk lr 

be the formula which simply assigns appropriate variables to probability 

and matrix terms. Recall that the new variables x~ and yfm in \[I and <I>' are 

different from those in <I>. Then, as a simple consequence of equality axioms 

and MPk we have \[I ⇒ <I> is derivable. Moreover, from D6, the definition 

of <I>" and equality axioms it follows that \[I I\ <I> ⇒ <I>' is derivable. This 

can be proved formally by structural induction. As <I>' is unsatisfiable -,<}' 

is a valid formula of ~C. Hence, it is derivable because ~C is a complete 

theory. It follows that 1I, ⇒ -,cp is a theorem. Since the variables appearing 

in \[I are distinct from those in <I> it follows from the repeated application of 

3-introduction rule of first order logic [Sho67] that 

=i 1 k 1 k,T, n.. 
:::iX ••• X y ... y 'I' ⇒ -,'¥ 

is a derivable. Here the expression 3x1 ... xkyl ... yk is a compact notion 

for existential quantification over all relevant variables x~ and y;8 appearing 

in w. But 3x1 ... xky1 ... ykw is an instance of an axiom of a theory with 

equality. Hence, -,<} is derivable. That is <I> is not consistent. The theorem 

is proved. D 

In the above proofs axiom MPk plays crucial role. As stated, this is an 

infinite schema, one for each positive integer k. It will be shown below that 

it is sufficient to take k up to a finite number( depending on the dimension). 

But I first demonstrate that the axiom is necessary by an example. 

Example 

Let the dimension n = 2 and define unitary matrices 
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U1 = ~ ( ! ~ ) and U2 = ~ ( ~ ~ l ) . 

Then the following probability and unitary assignment is unsatisfiable. 

P(b8) = 1/2 /\ P(bij) = 1/3 /\ P(b5) = 3/4 f\ 
(/\ (mij(b0, b1) = U1 (ij) I\ mij(b0, b2) = U2(ij))) 
ij 

This can be verified by an easy calculation. Although it is impossible 

to satisfy the above formula for three bases with the given unitary trans

formations it is possible to satisfy any two of them. However, for any finite 

collection of basis symbols with any given unitary transformations if the 

probability assignments are satisfiable for any three bases then the whole 

collection is jointly satisfiable. This will follow as a special case (in dimen

sion 2) of Theorem 10 below. 

Theorem 10 Let the formula 

MPk = 'Vx1 ... Xn(Rx1 · · · Xn I\ (/\f;01 P(b?) = x;) ⇒ 
:lzo ... Zn-1 (/\f:l Jzil = 1 /\ 
/\j=l /\f:l P(b{) = II:~=lmir(bi, b0)xrzrl 2)) 

be an axiom for all positive integer k::; n 2 - n + 1, n the dimension. Then 

for all k it is a theorem of AXn(P, m). 

Proof: First, if k::; n2 - n + 1 then the formula MPk is an axiom. We 

show that for larger k, the formula also follows. Let k ~ n2 - n + 1. Then, 

to prove the theorem it suffices to show that the 

I- MPk implies I- MPk+1 

We first show the validity of a formula Fk of lllC. Recall that we use the vec

tor notation yr as a shorthand for a group of variables Yij, i, j = 0, ... , n-1 
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(see Lemma 11). For k+l such variables {y1, ... , yk} define first the formula 

n-1 k+l n-1 

Ek,r = 3zo ... Zn-1( A lzil = 1 A ( · A Axt= IE~,:Jy{rxrzrl2)) and 
i=O i=lJ#ri=O 

n-1 k+ln-l 

Ek= 3zo ... Zn-1( A lzil = 1 A ( A Axt= IE~,:Jy{rxrzrl2)) 

i=O i=li=O 

Now define Fk as 

k+l k 

Fk = (/\ R:z?o · · · xL1 /\ ( A ~)x-1)2 = 1 /\ Unitary(yi)) /\ A Ek,r) => Ek 

i i=l i r=l 
(4.15) 

Suppose we have shown that Fk is a theorem of RC. Substitute Mi for yi 

where Mi is shorthand for the collection of matrix terms mir(b-7, b0), similar 

to the definition of yi. Then 

k 
n-1 

I\ P(b{) = (x{) 2 => (/\(L)x{) 2 = 1 /\ Unitary(Mi)) A 
i=O i i 
i=l 

n-1 k+l n-1 

3zo .. • Zn-1( I\ lzil = 1 A A A (Axt= IE~,:Jmir(b0 , ~)xrzrl2 )) => 
i=O r i=lJ#r i=O 
n-1 k+l n-1 

3zo .. ,Zn-1(/\ lzil = lf\ /\(/\ xt = IE~,:Jmir(b0 ,~)xrzrl 2))) 

i=O i=l i=O 
( 4.16) 

The formula is a theorem of Axn(P, m) if Fk is a theorem since we may 

infer f- A=> B from f- B. The formula simply asserts that if the probability 

assignments P(bi) = (x-1) 2 satisfy the quantum probability condition( the 

subformula on the right of second implication) for every k-subset of k + 1 

unitary matrices then the condition is satisfiable for all the k + 1 matrices. 

Now, from the probability, equality and unitary axioms it follows that 

k 
n-1 

A P(b{) = (x-1) 2 => /\(i:,(x-1) 2 = 1) /\(/\ Unitary(Mi)) 
i=O i i i 
i=l 
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Suppose also that I- MPk. Then by simple substitutions in MPk we get 

f\ P(b{) = (x{) 2 =} 

iJ 
n-1 k+I n-1 

3zo ... Zn-1( I\ lzil = 1 /\ I\ I\ ( /\ x} = IE~::Jmir(~, b 0)x~zrl2 )) 

i=O r j=l,j-f-r i=O 

Combining the preceding two formula, and from the fact that formula 4.16 

and MP k are theorems it follows by the detachment rule( see [Sho67]) 

that I- MPk, Hence to prove the theorem it suffices to show that Fk is 

a theorem for k 2'.: n2 - n + 1. Let us briefly discuss the formula Fk in 

the context of quantum probability. A formula like 3zo ... Zn-1 /\f;:l lzil = 
1 /\ (/\k+l /\n-1 i 1~n-l.J 12) t th · t f " h " j=I i=O xj = L,r=O YirXrZr asser s e ex1s ence o p ases Zi 

of a state vector. Recall that a state is a unit vector in an n-dimensional 

complex vector space. Choose any basis {ao, ... , On-1}- Then the state W 

can be written as w = Li CiOi- Write the complex coordinates as Ci = XiZi 

where ICil = Xi- The probability of getting the ith outcome in a measure

ment in the a-basis is xf Let mir (b0 , ~) = W.r = 1'1r · eif3fr, with 1'1r 2'.: 0 

be the polar form of the entries of the unitary matrix. Denote this unitary 

matrix by Uj and let Uo denote the n x n unit matrix. For this proof it will 

be convenient to use the column matrices for vectors. Thus let, 

be the unknown vector whose existence we have to ascertain. The first set 

of equations with respect to the basis, say b 0 , fixes the modulus lei I = x?
It is convenient to write in polar form. Thus Ci = x?ei8i( Zi = ei8i) for some 

real arguments Oi to be determined. The formulas Fk yield equations in the 

variables Zi- Thus, for each k we have, 

I LYtcil2 = (xf)2 , i = 0, ... ,n-1 
j 
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For each k th basis corresponding to bk provides a set of n - I equations. 

Call this set the block Bj. To show that the desired formula is valid, we 

need to show that a set of equations in the unknwons Zi has a solution. Let 

'!4r = Pl.reif3f, in polar form. Then the set of equations to be satisfied by 

Zi = eiO; is given by, 

I Lp{iei(f3t;+O,)r~l2 = (x{)2, 
s 

where 1 ~ i, r ~ n and 1 ~ j ~ k. This equation can be written as 

Writing the right side of the above equation as <d, we rewrite it as 

'E1<s11ip{ir~r~(cos(f3{i - f3!i) cos(Bz - 08 ) 

- sin(/3{i - f3!i) sin(Br - Bs)) = <d,. 

(4.17) 

(4.18) 

If one treats cos(Bz - 08 ) and sin(B1 - 08 ), for 1 ~ l < s ~ n, as inde

pendent variables then (4.18) represents a set of linear equations. How

ever, these variables are quadratically constrained by the relations cos2 (01 -

08 ) + sin2 (01 - 08 ) = l and the (quadratic) relations among cos(Bz - 08 ) and 

sin(B1 - 08 )) and cos(Bz), cos(Bs) sin(Bz), and sin(08 ). Thus despite the ap

pearance of transcendental functions cos(Bz - Bs), the equations (4.18) is a 

set of algebraic (in fact quadratic) equations. 

There are n(n -1)/2 variables each of type cos(Bz -08 ) and sin(Bz -08 ), 

thus a total of n(n-1) variables. Note that the 'diagonal' terms are missing 

from the left side. Let us generalise slightly and assume that there are 

n - I more variables p11, ... Pn-1 n-1 whose coefficients are O in the above 

equation. The reason for this step will become clear in the next chapter 

when I generalise the interpretation to "mixed" states. The present proof 

goes over almost verbatim to the general case. 

We have assumed that Fk holds fork ~ n2 - n + I bases. As we have 

seen above there is a block Bj of n - I equations corresponding to each 
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basis. Hence, for k > n2 - n + 1, of the k possible blocks any subset of 

n(n - 1) + 1 equation has a solution. Now suppose that the entire set of 

equations does not have a solution. I prove a contradiction. Since there are 

n(n - 1) + n - 1 = n2 - 1 variables in the blocks, the maximum possible 

rank of the coefficient matrix is :::; n 2 - 1 (actually it is :::; n2 - n in the 

present case because the last n - 1 columns are zero). Adding a block to an 

existing set of blocks, the rank of the corresponding coefficient matrix either 

remains equal to the rank of matrix of coefficients of A or it increases by at 

least l. Moreover, any particular block of equations has rank n -1 because 

the coefficient matrix in this case is given by a set of n - 1 projection oper

ators la1}(a1I, ... lan-1}(an-1I and they are independent. Hence, starting 

with n - l independent equations with respect to the first block add a new 

block if the addition of the latter increases the rank. That is, suppose we 

already have a set Sr of blocks, say Sr = {Bo, ... , Br} then add Br+ 1 if the 

addition increases the rank. Otherwise, the set of equations corresponding 

to Br+l are linearly dependent on the blocks already in Sr and we discard 

it. Let rank(Sr) denote the rank of the coefficient matrix of the equations 

in Sr. By this construction rank(Sr) ~ n - 1 + r - 1 = n + r - 2 Since 

the maximum possible rank is n2 - 1, r :=; n(n - 1) and Sr is consistent 

by assumption. Continuing this process two things can happen before all k 

blocks are exhausted. 

Case l. The rank remains less than n( n - 1) and all k blocks are exhausted. 

In this case r < n2 - n + 1 and by assumption the system Sr has a solu

tion. The discarded blocks must be all consistent with this solution because 

an arbitrary block Br+l is linearly dependent upon Sr and Sr LJ Br+l is 

consistent (as r + 1 :::; n2 - n + 1). 

Case 2. The rank becomes equal to the maximum value n(n - 1) for some 

Sr, r :=; k. Then, since r < n(n - 1) + 1 the system Sr has a solution and 

due to the maximality of rank this solution is unique. Now, let Bp be Bq 

two blocks not in Sr and consider the set of equations W1 = Sr LJ Bp and 
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W2 = Sr LJ Bq. Since r < n( n - 1) + 1 then both W1 and W2 have a solution 

and by the uniqueness of solution it is the common solution of the system Sr. 

As Bp and Bq are arbitrary, there is a (unique) solution to the whole set. D 

I have stated this result as a theorem because I feel that it is of significance 

for physics as well as the logic of quantum probabilities. It shows that to 

determine whether a set of numbers can have arisen as the probabilities 

associated to a set of k bases in n-dimensional Hilbert space, it suffices to 

check the probabilities associated to every subset of size n2 - n + 1. 

Corollary 1 In the present case where quantum states are required to be 

pure the above bound on k can be improved to n2 - 2n + 1. 

Proof: In the proof of the theorem n - 1 extra variables were added 

but the actual maximum rank was n2 - n. By an argument very similar to 

above one obtains the corresponding bound n2 - 2n + 1. D 

As for the language C.n(P), one can also obtain from the completeness 

proof some complexity bounds for C.n(P, m). 

Theorem 11 Satisfiability of a formula in C.n(P, T) can be decided in expo

nential space. If the formula is quantifier free and the number of square root 

symbols is bounded by some fixed number then satisfiability can be decided 

in polynomial space. 

Proof: We note that similar reasoning to that above shows that q/(x, y)/\ 

~ is satisfiable iff cp is satisfiable( see Lemma 12). This formula may be con

structed in time polynomial in l</JI. Thus, the satisfiability problem reduces 

to that for JR.(C. The theorem then is a simple consequence of the Theorem 

5. D 
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4.5 Alternative Formulations 

There are two equivalent descriptions or pictures of dynamic evolution of 

a quantum system [Per95]. The Schroedinger picture is that of the state 

evolving in time and the observables or equivalently the bases representing 

observables fixed. The second view is called the Heisenberg picture in which 

the state is fixed and the bases of observables evolving in time. The evolu

tion operator in both cases are certain unitary operators. Of course, both 

views are equivalent and it is easy to change from one to the other. The 

logical framework developed so far corresponds to the Heisenberg picture: 

a formula is evaluated at a state in different bases which are connected by 

unitary transformations. Such a choice of basis is motivated by the loose em

piricist view that the properties of a quantum system are inferred from the 

data obtained by measurement in different bases. The quantum computing 

community however, usually work with the Scroedinger picture. 

There is also a third intermediate picture called the interaction pic

ture. The choice of the picture is dictated by the problem under consid

eration. For example, for quantum state tomography the language corre

sponding to Heisenberg picture - that is .Cn ( P, m) developed in the previous 

sections- is more natural. To describe the behaviour of quantum circuits 

the Schroedinger picture is preferred. We like to think that the quantum 

gates transform the state of the qubits under observation. In this section 

I develop alternative formulations of the language which correspond to the 

other pictures. These will prove useful as the description language of quan

tum computing. 

First note that although we have relation of equality among complex (and 

real) terms there is no such relation among basis terms. However, by ex

ploiting the (unitary) transformation relations among bases we can add a 

relation ~ which behaves like equality. Thus, for basis variables b and c in 
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Cn(P, m) define: 

b~c{:} /\ ffiij (b, C) = Oij. (4.19) 
i,jE{O, ... ,n-1} 

Here, I have introduced the useful Kronecker symbol Oij which is equal to 

0 if i # j and 1 if i = j. For example if n = 2 the above expression is a 

shorthand for moo(b, c) = 1 /\ mo1(b, c) = 0 /\ m10(b, c) = 0 /\ mu(b, c) = 1. 

This is of course the unit matrix. I also use the following syntactic notation. 

Let cI>[b] be a formula with probability and other terms over b-formulas. It 

may contain basis variables other than b-formulas for example in the unitary 

or transition probability terms. Let cI>[c/b] represent the formula obtained 

from cI>[b] by replacing every occurrence of b-formula by the corresponding 

c-formula in cI>[b]. For example, if cI>[b] is P(bo) = xo I\ P(b1) = x1 /\ 

(/\ijffiij(b,d) = Xij) then cI>[c/b] is P(co) = xo/\P(c1) = x1/\(/\ijffiij(c,d) = 
Xij)- Now fix the dimension n and the corresponding Hilbert space en with 

the standard inner product over which the formulas below are interpreted. 

Proposition 2 Let 1r, 'I/; F b ~ c then for any formula cI>[b] we have, 

7r' 1/) F cI>[b] iff 1r' 'Ip F cI>[ C /b]. 

Proof: The proposition is obvious since in any interpretation the basis 1r(b) 

is identical to 1r( c) as the transformation matrix is the unit matrix of order 

n. 2 □ 

Define now an extension of the language Cn(P, m). First, introduce the 

following notation: U, V, W, U' etc. (possibly with subscripts) be symbols 

representing unitary matrices of dimension n. Call these unitary symbols. 

Sometimes, the dimension is explicit as u(n). Thus associated with each 

unitary symbol U there are n2 variables( of IRC) written Uij. We assume 

that we have a well-defined set of unitary symbols. We also require that 

if U is a unitary symbol and b is a basis then Ub is also a basis. Let 
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.Cn(P,m, U) be the language obtained by this extension of .Cn(P,m). We 

use collective quantification over these variables-effectively quantifying over 

unitary matrices. Thus, VU<f! stands for quantification over all JRC variables 

Uij• Now fix the notation for the "constant" gates X, Y, Z, H defined in the 

last section. Indeed, the definition of these gates involve only constants from 

JRC. For every basis symbol b and unitary symbol U, Ub will denote a basis 

with basis components denoted by (Ub)i or simply Ubi and add the axiom 

Un Ai mij (b, Ub) = Uij 

to Axn ( P, m). Let Axn ( P, U, m) denote the modified theory. It is easy 

to see that Axn(P, m, U) is a conservative extension Axn(P, m). From the 

axiom Un and unitary matrix axiom M3 it follows that the Uij consti

tute a unitary matrix. Now fix a basis symbol, say, b. Let .Cn,b(P, m, U) 

be the subset of formulas of TAxn(P, U, m) obtained by restricting to the 

basis symbol b. This convention is reminiscent of the ubiquitous "computa

tional basis" of quantum computing. Now the state is supposed to change. 

As discussed above this is the "Schroedinger picture" . Since there is only 

one basis symbol "transition probability" and the transformation matrices 

ffiij do not have much use. We have only probability or P-terms. As be

fore the language .Cn,b(P, m, U) language is an extension of JRC; so all the 

symbols of JRC are available. The probability terms are of the form P(cp) 

where now we have now the restriction that cp contains only the basis sym

bol b. Given a polynomial relation p(x1, ... , xk) ~ 0 a probability atom is 

obtained by replacing some of the variables in the relation by probability 

terms P(cp), P(cp'), P(cp") etc. with the requirement that the only basis ap

pearing in the probability formulas is b. The interpretation of the formulas 

is as before. A general probability formula is built from probability atoms 

and JRC-formulas by using logical connectives and quantifiers over variables 

from JRC. We note that the full language .Cn(P, m, U) can be considered as 

an extension of .Cn,b(P, m, U). Note also the following: 

In the axiomatization of .Cn(P, m) we stipulate that all formulas of 
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.Cn(P, m, U) where some basis symbol b is replaced by symbols of the Ub 

is also an instance of the corresponding axiom. Add the formula Un as an 

axiom and let Axn(P, m, U) be the corresponding theory. 

Lemma 13 Axn(P, m, U) is a conservative extension of Axn(P, m). That 

is, any formula of .Cn(P, m) that is a theorem in Axn(P, m, U) is also a 

theorem in Axn(P, m). 

Proof: Axn(P, m, U) has only one extra axiom namely Un. Call the 

theory with the same language as Axn ( P, m, U) but without the axiom Un 

Ax~(P, m, U). Then, a closed formula Fis a theorem of Axn(P, m, U) if 

and only if V ⇒ F is a theorem of Ax~ (P, m, U) where V is a conjunction 

of instances of Un. Now for each appearance of a symbols of the form Ub 

in V introduce a new basis symbol bu in .Cn(P, m). Here the superscript 

U is just an index. Let V 1 = Aij(mij(b, bu) = Uij• Then V 1 ⇒ F1, where 

F 1 is obtained by substituting bu for Ub is provable in Ax~(P, m, U), as it 

is a substitution instance of V ⇒ F. Suppose F is a formula in .Cn(P, m). 

Then F and F 1 are identical. Since Fis closed by :3-introduction rule [Sho67] 

:3Uij V' ⇒ f is theorem. Since ~j(b, c)"= mij(b, c) for any band c, F is a 

theorem of Ax~(P, m, U). A similar argument shows that the instances of 

axioms of Ax~(P, m, U) with basis symbols of type Ub may be eliminated 

and we are left with a proof in Axn(P, m). D 

We further extend .Cn,b(P, m, U) as follows. If U is a unitary symbol 

and cI> is formula of .Cn(P, U) then [U]cI> is also a formula. The interpre

tation [U]cI> is as follows. I suppress the fixed Hilbert space H. First, we 

stipulate that in any interpretation 1r, 1r(U) is to be interpreted as a unitary 

matrix. As stated above, corresponding to any unitary symbol U, we have 

n2 associated symbols Uij which are interpreted as complex numbers, just 

like mij• 
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Here the notation means the following. First Let 1r(b) = { ao, ... , On-1 be 

the interpretation of b and let 1/; = I: CiOi, Then 

U-1.,, def "U( ") 
'I' = ~ JZ CjCt.i. 

ij 

Let Cn ( P, U) denote the fragment of Cn ( P, U, m) consisting of all formulas 

not containing any terms involving ffiij and only one basis symbol b. The 

restriction to one basis symbol is important because U acts on the coefficients 

of the state vector expressed in the basis corresponding to b. We may also 

wish to express transformation of bases. This is achieved by the symbols Ub. 

Intuitively, Ub is the basis obtained by applying the unitary transformation 

U to all vectors in the basis b. They are all semantically equivalent in the 

following sense. 

Lemma 14 Let Cn(P, m, U) be the extension of Cn(P, m) by the addition 

of the unitary symbols and interpretations as above. For all interpretations 

for which Un is valid, 

is valid. 

[U]<I>[b] <=> <I>[Ub] <=> I\ ffiij(b, c) = Uij => <I>[b/c] 
ij 

Proof: Let 1r(b) = { ao, ... , On- I} be the interpretation of the basis symbol 

b. Then, since ffiij(b,c) = U(ij), 1r(c) = {,80, ... ,,Bn-1} with .Bi= U'l/;i = 
I:k U(ki)1Pk· Now it is clear that the lemma has to be proved only for 

probability atoms. Moreover, since Aijffiij(b, c) = Uij => Ub ~ c is valid 

and the second assertion follows from interpretation of Ub and Proposition 

2. I prove the equivalence of the first two. I prove the validity of the formula 

when <I> is a probability atom in Cn(P, m) first. <I> is obtained by substituting 

probability terms for the variables in some polynomial. From the lemma 6 it 

suffices to prove that the proposition true when the polynomial substitution 

is of the formp(yo/P(bo), ... ,yn-i/P(bn_i)). Now, from 4.3.2 
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[P([U]bi)]n,1/1 = [P(bi)]1r,U-l,j, = l(ai1u-1 '1/;)l 2 = l(ailUt'l/;)12 

= l(ail L U(jk)cjak)l2 = l(LjU(ji)ajl L Ckak)l 2 

~ k 

= [P((Ub)i)]n,1/1 

Intuitively, the formulas above simply express the fact that the valuation of 

P((Ub)i) at 'I/; is same as the valuation of P(bi) at u-1'1/;. Now the propo

sition is obvious since we may switch from one valuation to the other. □ 

As we will see in the next chapter the new language £n ( P, U) will prove 

very useful for quantum circuits. The reason for proving the equivalences 

in the preceding lemmas is that we do not have to prove to properties like 

completeness and decidability separately for the different languages. 



Chapter 5 

Logics for QCI 

In this chapter I extend the logics developed in the previous chapter to 

incorporate notions like tensor product and measurement. The extended 

logic is expressive enough to deal with quantum circuits as a special case. 

Yet, it preserves the desirable properties like completeness and decidability. 

There is also some generalization in the interpretation of the formulas. The 

language Cn ( P, m) of the previous chapter was restricted to a fixed dimen

sion n. This is adequate for expressing properties of single indecomposable 

quantum systems. But if the system is composed of parts which are quan

tum systems of smaller dimensions then the states of the whole system are 

described by the tensor product of states of the parts. A simple classical 

analogue is a two bit system. The states of this system are given by the 

cartesian product of the states of individual systems. Consequently, any lo

cal operation on one bit does not affect the state of the other bit. However 

the state space of a two qubit quantum system has the more complicated 

structure of a tensor or direct product space. This is briefly discussed in the 

chapter on quantum theory. 

The other important physical concept that is dealt with is that of mea

surement. In classical theory the notion of measurement is implicit in the 

final 'reading' of the output. It is also implicit that the act of observing 

or reading the output does not affect the state of the latter or influence 

117 
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future behaviour. This ideal assumption is of course perfectly justified since 

the disturbance introduced by the reading process is so small that it does 

not affect the state. For example, the high/low states of a switch may be 

distinguished by a few millivolts and a reading apparatus like an accurate 

voltmeter introduces an error of only few microvolts. But it is in the very 

nature of objects in the quantum scale that the act of measurement usually 

introduces an irreversible change which is manifested as a random change 

in the state. The theory of measurement is an important and deep aspect 

of quantum theory. However, for the present purposes the simple pragmatic 

approach outlined in Chapter 2 will suffice. An outline of the chapter follows. 

Section 5.1.1 deals with the syntax and semantics of the language. New 

symbols for tensor product and measurement are introduced. Only these 

new constructs are described in detail. However, for the semantics, the 

notion of state is generalised to mixed states. In the last chapter the formulas 

were interpreted in "pure" states. The motivation for the generalization to 

mixed states will be explained in this section. I also present the equivalent 

'variants' of the language corresponding to the Schroedinger and interaction 

pictures. (see 4.5). 

In Section 5.1.3 some examples from quantum computation and information

the main motivation for developing the logic- are presented. In particular, 

application to formal reasoning about quantum circuits are dealt with ex

tensively. An algorithm for writing any combinational quantum circuit as 

a formula in the the language is given. As another application a nontrivial 

complexity bound of quantum complexity hierarchy [BV97] is proved using 

different techniques. Further applications to the quantum complexity the

ory are discussed. Applications to important algorithms are discussed in the 

next chapter. 

In the final section (5.3) I give a sound and complete axiomatization. 

Some complexity theorems are proved. As a corollary one obtains yet an

other proof of the complexity upper bound mentioned above. In the conclu-
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sion, I discuss some possible extensions of the language and further devel

opments. 

5.1 Syntax and Semantics of Cn(P, m, t, M) 

5.1.1 Syntax 

In the previous chapter a language Cn(P, m) for quantum probabilities in a 

fixed dimension n was developed. However, a composite system is described 

as the (tensor) product of smaller systems. That is, different dimensions 

may have to be considered. To capture this I extend the language ,C,(P, m) 

by first introducing a new syntactic object for tensor product. Notice that 

the dimension is not explicitly mentioned. 

As before symbols a, b, c, d etc. will stand for basis variables. These are 

"irreducible" basis symbols in contrast to another "composite" type intro

duced below. Sometimes I write b(n) to indicate that the dimension is n. We 

will also identify certain fragments of C(P, m) with Cn(P, m) in a precise 

sense described below. As in the previous chapter, associate with each bin 

Cn(P, m) a set of symbols {bi}f,;a1. Thus a subscript always denotes "com

ponents" of b. Semantically, basis variables represent orthonormal bases in a 

Hilbert spaces and the components represent projections on the corr~spond

ing vectors in a basis. But unlike the previous chapter the Hilbert space 

has more structure: the tensor structure. The basis variable b(k) will be 

interpreted in a Hilbert space of dimension k, usually Ck with the standard 

scalar product. Recall that the probability operator P is defined over b

formulas constructed out of basis components of a basis variable b. Thus, if 

bis a basis variable then bi are b-formulas over b. If <I> and '11 are b-formulas 

over one basis symbol then so are ,<I> and <I> /\ '11. As I will be dealing with 

several basis variables in possibly different dimensions it is convenient to call 

the collection of basis formulas as B-formulas. There is a further extension 

of B-formulas by a tensor operation to be explained soon. 

By definition, every B-formula is constructed out of a single basis vari-
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able. Thus bi /\ Cj is not a B-formula. Sometimes we write <Pb for a 

B-formula in basis variable b. Semantically, B-formulas represent projec

tions on subspaces generated by a basis. Physically, they correspond to the 

events/propositions generated by choice of atomic events -the possible out

comes of a maximal test i. e .. a measurement whose number of outcomes 

is maximum possible( equal to the dimension of the quantum system). Dif

ferent choices of basis will yield different event structures. Each one gives 

rise to a boolean lattice on which the probability operator is defined. I note 

that these ideas roughly correspond to the notion of manuals [FR78] which 

is more general but complicated. 

I briefly review the syntax of the language .Cn(P, m) for completeness. 

For B-formulas <P, a probability atom is an expression of the form Ei kiP(<Pi) ~ 

c where ki and c are integers. Typical examples are formulas of the type 

P(<Pi) = 1 and kP(<Pi) ~ 1 where k is a positive integer. The formulas of 

the language Cn(P) are all the boolean combinations of linear probability 

atoms. 

For the language .Cn(P, m), add transition matrix terms, which are ex

pressions of the form m(b, c) for basis variables b and c. Associated to 

m(b, c) are a set of n2 terms mij(b, c) of complex sort. Recall that b and c 

represent two orthonormal bases in a Hilbert space. Then, ffiij (b, c) repre

sents the entries of the unitary matrix taking transforming the basis repre

sented by b to that of c . .Cn(P, m) also incorporates the first order language 

.CRc discussed in 4.2. For a pair of 'atomic' basis terms bi and Cj define 

the transition probability term T(bi, Cj) ~ lmij(b, c)l2. Given a formula in 

.CRc i. e. polynomial equation or in-equation (possibly with quantifiers and 

predicates denoting real nature of some variables) p(y1, y2, ... , Yk) ::; 0 an 

.Cn(P, m) atom is obtained by replacing some variables uniformly by expres

sions P(<Pi) and mij(b, c). Thus ./3P(b1 /\ b2)2 + T(b1, ca)3 -1/2::; 0 is an 

atom. 

Recall that the tensor product of an m-dimensional and n-dimensional 
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vector space is an mn-dimensional vector space. That is, the tensor product 

connects spaces of different dimension. The basis symbols and formulas in 

Cn(P, m) pertain to a fixed dimension n. Hence, to introduce the tensor 

product we need to consider the collection of basis symbols which will be 

interpreted in spaces of different dimensions. Thus, for each n call the 

collection of basis symbols and formulas in Cn ( P, m), the B-terms of sort 

n. That is, the set of B-expressions is the union of B-formulas and basis 

symbols b, c etc. in some dimension. 

For each positive integer N and every nontrivial factorization N = mn( 

m and n -:/- l) we extend the set of basis terms as follows. Suppose the 

extension of Bm and Bn is already defined and denoted by the same symbols. 

Then for each pair pair of basis symbols (X(m), x(n)) E 8fflxBn we introduce 

symbols t(x(m), x(n)). This process must stop when we reach a prime factor. 

Let Tmn be the set of all such symbols for all possible pairs (X(m), x(n)) then 

we extend the basis terms BN by adding symbols of the form t(X(m),x(n)). 

We continue to call the extended set BN. However, we distinguish the 

original set of basis symbols by calling them irreducible. The terminology 

is self explanatory since the new class of bases is to interpreted as tensor 

product( or simply) product bases. Identify t(bim), et)), 0 ::; i ::; m-1, 0 ::; 

j::; n - l, as a basis component of t(b(m),c(n)) such that t(bim),ct)) = 
t(b(m),b(n))in+j• Let Jk = {0,1, ... ,k- l}. For every pair of integers m,n 

we define the map 

9mn: Jm X Jn-+ lmn given by 9mn(i,j) =in+ j. 

It is invertible with inverse 

g;;(k) = (r1(k), ro(k)) ~f ([k/n], k mod n) (5.1) 

where [x] is the greatest integer ::; x, t(b(m), c<n))k = t(br1 (k), Cro(k) ). Call 

this identification tensorial decomposition of t(b(m), c(n)) The map 9mn in

troduces an ordering in the set lmn• Recall that associated to each basis 
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symbol b inn-dimension, are n symbols bo ... bn-1 denoting bMis compo

nents. For the (compound) bMis term t(b(m), b(n)) in dimension mn the cor

responding basis components are required to be ordered as an array of pairs 

(i,j), i = 1 ... m, j = 1 ... n by the tensorial decomposition. This ordering 

is simply the 'dictionary' ordering of the pairs. Note that if mn = m'n' then 

the map 9m'n' introduces a different ordering. However, the map g;;Jn,9mn 

is a bijection between the two orderings. We extend the operator t to all 

basis formulas by requiring that 

We define similar formulas for the second argument. The negation of a ba

sis formula is the complimentary formula. That is, if cI> is a disjunction of 

basis atoms then ,cl> is a disjunction of atoms which are indexed by the 

set complimentary to the set of indices in cI> (see the deductions in Section 

4.4.1). But the set of indices depends on the dimension. The set of in

dices for the tensor product is {O, ... , mn - 1} and these are ordered by 

the map 9mn above. Hence, the conjunction with the term t(T, cI>2) picks 

up the components constituting cI>2. Note that, these formulas capture the 

linearity of tensor product with respect to each factor. We can now recur

sively define the syntax for the product of more than two basis symbols. 

Thus, t(t(bm, bn), bP) is basis symbol in dimension mnp. We have the cor

responding ordering defined by the map 9mnp = 9mn,p · 9mn in the set Jmnp 

induced by the triplet (m, n,p). The map 9mnp is unambiguous due to the 

"associative' property 

9mn,p · (9mn, idp) = 9m,np · (idm, 9np). 

Here idp is the identity map on Jp, It is straightforward to extend these 

definitions to arbitrary products. Letting, N = n1 · · · nk = n~ · · · n~ we see 

that the map g-,1 , 9n1, .. nk induces a bijection between the two orderings. 
n1 ···nk 
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At this point it is instructive to consider the possible interpretations of the 

logic with tensor product notation. If one aims to interpret the theory in its 

full generality one needs to consider a Hilbert space of dimension n for each 

natural number and that there is a corresponding set of B-expressions for 

each n. These, sets are required to be mutually disjoint. The only formulas 

in C(P, m) whose valuation is state dependent are the probability formulas. 

Since we want to consider only formulas pertaining to copies of an arbitrary 

but fixed single system the dimension of the state space remains fixed. The 

quantum system may be be composed of several subsystems e. g. multiple 

qubits. But none of these constituent parts are destroyed nor new ones 

added during the period of interaction and observation. Note however, that 

we do not rule out operations performed only on a part of the system. As 

explained in Chapter 2 this may be considered as an operation on the whole 

system. Hence, although we allow basis symbols of all sorts (=dimensions), 

the only formulas which will have a proper physical interpretation are the 

homogeneous formulas- defined as formulas in which the probability formu

las pertain to an arbitrary but fixed dimension. For example, the formula 

P(b1) > 1/2/\P(t(bi, b2)) > 1/3 is not a homogeneous formula since it refers 

to spaces of different dimension- one for b and the other for t(b, b). This 

restriction on the formulas may be somewhat dissatisfying. Although they 

may be satisfactorily interpreted in an appropriate Hilbert space the latter 

does not constitute the state space of quantum systems under consideration. 

A deeper reason for keeping the inhomogeneous formulas is the following. 

If one were to deal with physical systems of quantum field theory (more 

precisely a second quantized theory) which allow particle creation and an

nihilation, then we may require the full generality of the language. But for 

our purposes it is sufficient to restrict to homogeneous probability formulas. 

Thus, a probability term refers to some fixed dimension determined by the 

basis terms over which it is defined. We are therefore in a situation similar 

to the previous chapter but the difference is that the basis terms appearing 
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in the formula may be from a composite or product basis. Since the trans

formation matrix terms are interpreted independently of the state there is 

no restriction on them. Call the new language C(P, m, t, M, S). Note the 

absence of dimension. 

For quantum computation and information ( QCI) we do not need even 

this restricted structure because then one deals with qubits or the more 

esoteric qunits (n-dimensional quantum systems). Therefore, we only re

quire the tensor powers of a fixed Hilbert space. For example, in case of 

qubits the space is C2 with the standard inner product. For generality, 

fix some positive number d ~ 2 as the base dimension. The basis sym

bols now will refer to spaces of dimension sk. For example, if d = 2, and 

b, c are basis symbols in 2 dimension then t(t(b, c), b) will denote a (prod

uct) basis in 23 = 8 dimensions. Call the restricted language £d(P, m, t) = 

Uk Cdk(P, m, t) for a fixed positive number d(d=2 mostly). A B-expression 

like t(b0,b1, ... ,bk) stands for t(b0,t(b1, ... t(bk-l,bk))); that is, I assume 

implicit right associativity. Note an interesting consequence of recursive ap

plication of tensorial decomposition: t(b0, b1, ... , bn)k = t(bsn(k), ... , bso(k)), 

where so(k) = ro(k), s1(k) = ro(r1 (k)), ... sn(k) =::: ro(rr(k)) is the represen

tation of k in base d( with each nonnegative integer ~ ~ - 1 represented 

by n '"dits" ', padded by O's if necessary). 

The final syntactic constructs are the operators for measurement. In 

quantum theory it is convenient to classify measurements into two groups. 

The first group consists of the detection type measurement. This kind of 

measurement is referred to when we have the system in some state which 

may be unknown and we empirically calculate the probabilities based on 

our measurements in some bases. If the state is known beforehand then 

one may compute the a priori probabilities. But to have certain knowledge 

of the state one has to prepare the system in that state. This preparation 

process constitutes the second kind of measurement. Usually, we do this 

by starting with an unknown state and then 'filtering' the system through a 
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selective device. Recall that when we make a maximal test a large number of 

systems is passed through a a measuring device which separates the systems 

into orthonormal states in a basis. For example, in a 2 dimensional spin-

1 /2 system one may choose a basis corresponding to the two spin states 

in, say, z direction. If a beam of electrons is passed through a device like 

the Stern-Gerlach apparatus then it splits in two beams corresponding to 

the two states [Per95]. The selection or preparation is done by choosing a 

particular basis state in the measuring device and ignoring the rest. This 

classification of separating measurements into two categories is somewhat 

artificial as the same physical measurement could be termed a detection 

or selection depending on the context. In the case of quantum protocols 

too it becomes important to formally distinguish the two measurements. 

For example, in the two party teleportation protocols one agent, say Alice, 

performs the measurement and notes the outcome while the other agent Bob 

only knows that a particular measurement has been done. Therefore, Alice 

and Bob's description of the post-measurement situation will differ. I shall 

come back to the teleportation example later. 

It is clear from the preceding discussion that we should distinguish the 

two 'types' of measurement. First, define the syntactic operator corre

sponding to ( detection type) measurement in a more general setting. Let 

X be a basis variable in dimension m. It may be an atomic or compos

ite type. Let {s1, ... ,sr} be a partition of the set {l, ... ,m} such that 

sk = { i1, i2, ... , ik}. Consider the set of basis formulas :F = { <p81 •.. , <l>sr} 

with <l>sk = Xi1 V · · · V Xik. Call :F a complete set of basis formulas. In

tuitively, the </>i constitute a set of mutually exclusive events that is com

plete in the sense that one of them must occur in a quantum measure

ment in the X basis. For every such complete set :F and for any for

mula 1lJ in Cm(P, m, t, M, S), MF(w) is a formula. The intuition is that 

MF corresponds to a quantum measurement which yields one of the of 

the subspaces represented by the </>is. An important special case is when 
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:F = {Xo, ... , Xm-1}. The corresponding measurement is called a maximal 

test because its outcomes provide the maximum possible information about 

the system. In this case we simply use the notation Mx for the measurement 

operator corresponding to the basis X. The operator for the selection type 

measurement will be denoted by Sq, for a b-formula rp. Like M it is applied to 

any formula w in .C(P, m, t). The intuition is, Sq,('11) holds in a state repre

sented by rp. The exact meaning will be clarified when I treat the semantics 

of the formulas. It is important to note that the measurement operators 

are applied to homogeneous formulas and the definition of homogeneity is 

extended to corresponding formulas with measurement operators. 

Let C(P, m, t, M, S) be the boolean combinations of probability formu

las (possibly with t-operator), transition probability formulas, and measure

ment formulas. The special case of the language in which the dimension are 

restricted to tensor powers of a base dimension r I call it ,CT(P, m, t, M). We 

finally have the four most important attributes of quantum systems: prob

ability (unconditional), unitary operation and transition probability, tensor 

product for composite systems, and measurement. 

5.1.2 Summary of Syntax 

Let us summarize the syntax of the language. Let Sk = { m1, ... , mk} 

be distinct positive integers such that for each mi we have atomic basis 

symbols of that "sort". Intuitively, mi signifies the dimension of the Hilbert 

space. Sometimes we indicate the dimension explicitly by writing mi as a 

superscript. Thus, b(2) is a basis symbol in 2 dimensions. Let m be a fixed 

positive integer and { a1, a2, ... , ar lai E Bk} be finite sequences such that 

their product is m. Then, 

is a composite basis symbol in dimension m. Note that, for convenience 

of notation I do not introduce the grouping of the symbols. Thus in the 
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(temporary) generic notation t(ba1 , ba2 , ••• , bar) is generic notation for ar

bitrarily grouped t-operators over the relevant basis symbols. For example, 

if r = 3 it may denote t( t(ba1 , ba2 ), ba3 ). or t(ba1 , t(ba2 , ba3 )). The "compo

nents" of such basis symbols is given by the ordering map g defined above. 

We assume that the atomic dimensions mi are fixed at the outset. For every 

integer n = m{1 • • • m{k let Bn denote the basis terms of sort ( dimension) 

n. Let B = LJ Bn denote the disjoint union. The probability operator P 

and the operator mij for transition matrix are applied to the terms in Bn, 

Let xt), x:(n), xtn) . . . 0 :=:; i :=:; n - l denote basis terms in Bn, We 

remember that if x(n) is a compound term, i.e. a product of basis terms 

of lower dimension, and the components inherit the ordering induced by 

the latter. Let D, D', D" be basis formulas corresponding to the above bases. 

Let q(x1, . .. , Xr) be a multivariate polynomial. Then an atomic formula is 

obtained by substituting P(D), P(D'), P(D") uniformly for some of the vari

ables in the formula q(x1, ... , Xr) ~ 0. We may also substitute matrix terms 

mij(X,X'). A general formula of sort n is defined recursively. Thus, if <I>1 

and <I>2 are formulas then, <I>1 /\ <I>2, ,<I>1, Mx<I>1, and Sx<I>1 are formulas. 

Let Fmn denote the formulas of sort n thus obtained. Then the set of for

mulas of ,C(P, m, t, M, S) is given by Un Fmn, Note that, we have ensured 

that all formulas are homogeneous, that is they belong to some dimension 

n. Note also that to simplify notation we do not make explicit mention of 

the "atomic" dimensions m 1, m2, .... 

5.1.3 Semantics 

In the previous chapter the language ,Cn(P, m) was interpreted in a Hilbert 

space- the state space of a quantum system. The main features of the 

semantics of last chapter are summarized below. 

1. The basis symbols are interpreted as orthonormal bases in the Hilbert 

space. 

2. The real and complex variables are interpreted as usual in the field of 
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complex numbers considered as an algebraic extension of the field of 

reals. 

3. The matrix terms are interpreted as unitary transformation matrices 

between the bases. 

4. The atomic probability formulas are interpreted as expressing the 

probability of the basis terms in a given state. 

Only the probability formulas are state dependent. The notion of state 

used in the last chapter was that of pure state. This notion is an ideal

ization that assumes that we have complete information about the nature 

of the system. However, in the case of composite system, possibly inter

acting with external environment, often one can only access part of the 

system. Sometimes we even lack the knowledge of what constitutes the sys

tem! Therefore, henceforth, the probability formulas will be evaluated in 

mixed states. Mixed states or density matrices are explained in the chapter 

on quantum theory. Here I only remark that mixed states reflect a 'classical 

uncertainty' about the state and this is captured by a classical probability 

distribution. We may consider classical probabilities over (pure) quantum 

states and avoid the density matrix formalism. The main reasons for adopt

ing the density matrix semantics are as follows. 

1. The pure states are a special type of density matrix. Thus, corre

sponding to a vector lw) we have the density matrix lw)(wJ. An ar

bitrary density matrix is a convex linear combination of pure state 

density matrices. That is, any density matrix may be written as 

:Eixi l1Pi)(1Pil such that Xi ~ 0 and :Exi = 1. We have a uniform 

interpretation of formulas. 

2. The simple formula P(bo) = 1 is satisfiable only at a pure state. So 

we may characterize pure states by such a formula. In other words the 

set of pure states is definable [Sho67]. 

---~ ------·---
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3. A pure state assumes the ideal situation of an isolated system. In some 

instances it is not reasonable to make this assumption. For instance, 

when the quantum system is coupled to its environment which is in

completely known. Then the only states that can be attributed to the 

system are mixed or density matrix states. 

4. The semantics of the measurement operators given below is simple 

and elegant in terms of density operators. Some of the interesting 

consequences will be discussed. 

As before a structure for Cn ( P, m) is made up of the n-dimensional 

complex Hilbert space Hn = en with the standard inner product. Let 

L(Hn) be the space of linear operators on Hn. The vectors of Hn, written 

as la) are n x 1 matrices with components Zi- The dual (al is a row vector 

with entries Zi- A basis will continue to mean an orthonormal basis. Two 

subsets of L(Hn) are of special interest: Cn, the space of hermitian operators 

and Un the group of unitary operators. For a square matrix A of order n, Aij 

will denote its i/h entry and Tr(A) = Li Ai,i• A state is an operator p E Cn 

with Tr(p) = 1 and Lij Xip(ij)x1 ~ 0 for all real vectors x = (x1, ... , xn)T, 

where AT is the transpose of the matrix A. It is positive semidefinite with 

trace 1. The interpretation of basis symbols and complex and real variables 

are identical to the last chapter and I repeat it briefly for completeness. 

An interpretation of Cn(P, m) in a structure Hn = en is function 1r, such 

that for each basis variable b, 1r(b) is an orthonormal basis 'I/Jo, ... , Wn-1 of 

H; (we write 1r(b)i for Wi and occasionally suppress the I) notation). If 

M = (mij) is an n x n unitary matrix and B = 'I/J1, ... , 'I/Jn is a sequence 

of vectors of H, we write MB for the sequence of vectors '1/J~, ... , 'lj;~, where 

Wi = :Ef=1mikWi· If Bis an orthonormal basis of H then so is MB. To give 

semantics to formulas of Cn(P, m), we define a relation of satisfaction of a 

formula <pat a state pin a structure H, with respect to an interpretation 1r, 

denoted by H, 1r, p p <p. The definitions are straightforward and the reader 

may refer to the last chapter for details. The only point of departure is that 
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the formulas are interpreted in general mixed states. Since, so far only the 

probability formulas are state dependent only those are affected. A formula 

<p of .Cn(P, T) is satisfiable (in the n-dimensional Hilbert space H) if there 

exists an interpretation 7f and a state p such that H, 1r, p F <p. A formula 

<p is valid (in H) if H, 1r, p F <p for all interpretations 1r and states p. We 

extend the interpretation 1r to terms t of various sorts as follows. Given the 

term t, a state p and an interpretation 1r, we define the interpretation [t]1r,p 

of X with respect to 1r and p as follows. Basis variables are interpreted as 

bases: [b]1r,p = 1r(b). 

If b is a basis variable, we interpret b-formulas as projection operators 

on Hn: [bi]1r,p = l1P')(1P'I, where 'lp1 = 1r(b)i; and [a1 /\ a2]1r,p = [a1]1r,p · 

[a2]1r,p (this is the projection onto the intersection of the subspaces of H 

that are the images of the projectors [a1]1r,p and [a1]1r,p)- [-,a]1r,p = [a];,p 

is the projection operator projecting onto the orthogonal complement of the 

image of H under [a]1r,p• The transformation matrix terms, ffiij(b, c), are 

interpreted as complex numbers: [mij(b, c)]1r,p = Uij, where U = (uij) is 

the unitary matrix such that U 1r(b) = 1r( c); The interpretation of the two 

probability terms are: 

[P(a)]1r,p = Tr([a]1r,p • p), and 

Here Tr denotes the trace operator. Recall that the trace of an operator 

is the sum of diagonal elements of a matrix representing the operator. It 

is independent of the representation. For a pure state this interpretation 

coincides with the one given in the last chapter. 

The intended interpretation of the t-operator is as a tensor product. It 

connects spaces of different dimension. If we are to allow unrestricted tensor 

product then in contrast to the interpretation of Cn(P, m) the Hilbert space 

can not be fixed. Thus, let 
00 

H=LHn 
n=l 
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The sum is the direct sum of Hilbert spaces, i. e. HinHj = {O} for i =I= j and 

by definition the vectors in H are finite sums of vectors from the component 

subspaces Hi. If a = I: ai and /3 = I: /3i are two vectors in H, with 

ai, /3i E Hi then define the inner product (al/3) = Li(ail/3i) in H. We 

observe that there is a natural injection i : Hn-+ H where x E Hn is mapped 

to the vector in H which has all but the nth component zero. Hence, we 

identify Hn with its image under this map. 

Unlike the spaces considered so far His infinite dimensional. Although, 

it is not required in what follows H is actually a Hilbert space. There is one 

technicality required of H to demonstrate this fact viz. that H is complete 

in the sense that every Cauchy sequence in H converges to a limit in the 

topology induced by the inner product defined in H. The proof is not too 

difficult but I omit it since I do not use the completeness property in the 

subsequent analysis. I only remark that H has a resemblance to Fock space

an important infinite dimensional space in quantum field theory. 

We now equip each subspace Hn = en with the standard scalar product. 

Thus, if a = (YI, . .. , Yn)T and /3 = (z1, ... , Zn)T then 

< a,/3 >= LYiZi 
i 

We next define the tensor product of two matrices. Let 

a~n) (b~1 · · · 
: and B = : ... 

llmn bp1 

be two matrices of order m x n and p x q respectively. Then the tensor or 

Kronecker product [MM92] of A and Bis an mp x nq matrix given by (in 

block form) 

(
auB 

A@B= : ... 

am1B · · · 
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The tensor product of two vectors a and /3 as above is then given by 

a@/3= 

We use a concrete vector space and tensor product for convenience. 

The formulas that we consider are homogeneous. That is, the probability 

operator Pacts on basis formulas of some fixed dimension as earlier. How

ever, the basis formulas themselves may be tensor product of basis terms 

of lower dimension. For formulas in dimension n, the states at which they 

are interpreted are elements of 11.n, density matrices of order n. Define the 

interpretation of basis terms- both atomic and composite- as follows. 

1r(t(b(m), c<n)) = 1r(b(m)}@ 1r( c<n)) and 

1r(t(b~m),ct))) = 1r(b~m)) @1r(ct)) 

These equations express that if1r(b(m)) = {lao), ... , lam-1)} and1r(c(n)) = 
{l/3o), ... , l/3n-1)} are two bases in Hm and Hn respectively then 1r(t(b(m), c(n)) 

is the basis in Hmn consisting of the vectors {lai) @ l/3j}}- Recall the 

notation of Section 5.1.1. By definition, t(b(m), c<n))k = t(br1 (k), Cro(k))

That is one specifies an ordering of the mn basis components as pairs 

{ro(k) = k mod n, r1(k) = [k/n]}. This ordering is consistent with the 

fact that (a@ /31-y@ 8) = (al-y)(/318). This simple observation has deep 

physical and computational implication: the probabilities in a product state 

is the product of probabilities with respect to the factors. But if the state 

is not a product state but a more general entangled state then this is no 

longer true. In the classical domain too product states are used to describe 

a complex system in terms of components- for example concurrent systems. 

There we usually take the state space of the larger system as the cartesian 
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product of the individual systems. A consequence of this view is that the 

states of the individual systems can be altered independently. Some indi

vidual actions may change the global state but local actions leave all states 

other than the one where action is applied unaffected. In quantum systems 

the state space of a composite system are given by a tensor product space. 

A product state like Ja) ® l,B) behaves like classical product states in the 

sense that knowledge of the component states completely determines the 

global state. This is no longer true in an entangled state. Local action on 

an individual component can affect the state of others. This is crucial in 

many quantum cryptographic protocols which I discuss in the next chapter. 

Note that terms involving (unitary) transition matrices are independent 

of the state pat which they are interpreted. Further, if mij(b(m), c<m)) = Uij 

and ffiij(b'(n),c'(n)) = Vij then mik,jt(t(b(m),b,(n)),t(c(m),c'(n))) = UijVkl· 

Thus, if U = ( Uij) V = ( Vij) are the the transformation matrices of the 

above bases then the transformation matrix W of tensor products of bases 

is the tensor product of U and V. I will discuss some examples in the next 

section to illustrate these constructions. 

Finally, for measurements 

k 

H, 11", P I= M<1>1 , ... ,<f>k (w) iff H, 11", L 7r( </>i)P7r( <Pi) I= w. (5.2) 
i=l 

Recall that the measurement operator is defined with respect to a complete 

set of B-formulas {1P1, ... ,"Pk} i.e. formula Mb(w) is true at a state p iff '11 

is true in the post-measurement state I:i 7r(</>i)P7r(</>i)- Let us take a closer 

look at the semantics of this operator in an important special case when the 

measurement is maximal. Then, the 'projection' terms <Pi are I-dimensional 

projectors onto the subspaces spanned by the basis components. In other 

words, the measurement is with respect to {bo, ... , bn-1} inn-dimensions. I 

write the corresponding operator simply as, Mb. Writing the interpretation 



134 CHAPTER 5. LOGICS FOR QCI 

7r{bi) = lai)(ail, the post measurement state is 

n-1 

L lai)(ail P lai)(ail = L( (ailPlai)) lai)(ail = LPi lai)(ail 
~o i i 

where Pi = Li(ailPlai) is the probability that the outcome of the mea

surement is ai. That is, the post measurement state of an ensemble is 

the "weighted average" of the possible outcomes. If we have a large num

ber of copies of the system, all prepared in the same state, then a maxi

mal measurement or test will roughly distribute the ensemble among the 

n possible outcome states with fraction Pi in state ai, It is easy to vi

sualize a parallel classical picture. Suppose, we have a boolean algebra 

{B, EB, ·} with generators x1, ... , Xn, Let z be another boolean variable which 

is set equal to Xi with probability Pi• For example, letting i = 6 we could 

toss a 'loaded' dice with probability of i showing up equal to Pi, i = 1, ... , 6. 

Then, we can write z as a formal sum P1X1 + ... + PnXn, If z' = PiXl + 
... + p~ Xn is another such variable then define z EB z' = Lij PiPj ( Xi EB x j) 

and similarly for z • z'. It is easy to verify that this definition is consistent 

with the joint probability distributions, that is, z EB z' equals Xi EB Xj with 

probability PiPJ· Of course, this is not a boolean operation. The quantum 

case is much more subtle and I will not pursue this analogy further. A mea

surement of the type Mb defined above is called a maximal measurement 

or test. In principle, it is always possible to extend any measurement to a 

maximal one provided one has complete information about the state space 

of the system. This assumption is not realistic in some cases, for example, 

when we have to model the "environment" as part of the system. I will, 

however, make this assumption in the present chapter as it would make the 

axiomatization simpler. Hence, a measurement will mean a maximal mea

surement in this chapter. I note that this assumption is not at all restrictive 

as far as quantum computation is concerned [NCOl]. 
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The semantics of the operator for selective measurements is slightly more 

complicated. It is given by, 

H, 1r, p F Sqi(w) iff 

H, 1r, 1r(</>)p1r(</>)/[P(</>)]p F wand [P(</>)]p =/- 0 

Informally, the selection operator picks up those systems in the ensemble 

whose post-measurement state lies in the subspace denoted by the basis 

formula q,. Obviously, this is not possible if the ensemble is in a state 

orthogonal to </> since then the probability P(</>) of obtaining a state in </> 

is 0. Recall that an arbitrary basis formula </>[X] in the basis symbol X( 

perhaps with tensor operators), can be written as a disjunction over basis 

components Xi. Thus, let </>[X] = Xi1 V ... V Xik· Then, 

H, 1r, pp= Sqi(w) iff 

H, 1r, 1:[P(Xi,)]11',ptr(Xi,)/[P(</>)]71',P F wand [P(</>)]71',P =/- O. 
r 

In particular, 

H,1r,p F Bxi(w) iff 

H, 1r, 1r(Xi) F W and [P(Xi)]71',P =/- 0. 

The semantics of Sqi(W) captures the notion of selection or filtration of a 

state or a subspace of the state space. Thus, Sqi(W) is true at a state if 

after the measurement, the outcome is found to be in the the subspace K 

generated by the vectors 1r(Xi,). As explained above after the measurement 

when the outcome is found to be in the subspace K, the state is given by a 

weighted sum over the basis vectors spanning K. The weights are precisely 

the conditional or relative probabilities assigned a posteriori to these basis 

vectors. If the pre-measurement state happens to be orthogonal to the 

subspace represented by </> then selection of a state in </> is not possible. The 

irreversible effect of a measurement is briefly discussed in the chapter on 
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quantum theory. As in the case of the general measurement M, I restrict to 

a special type of selective measurements Sx; which corresponds to selecting 

or filtering states not subspaces. We have seen that in the case of ensembles 

one can give a reasonable explanation of post-measurement state. What if 

we have only a single or a small number of copies of the system and not an 

ensemble? A measurement in some basis will yield a definite result, not a 

mixed state. But imagine that between two observers Alice and Bob, Alice 

is performing measurements on a single quantum system S. Suppose that, 

Bob knows what measurement has been performed, that is, the basis chosen 

by Alice for the measurement, but does not know the outcome. Then, he can 

only assert that the post-measurement state is a mixed state as above. This 

is subjective probability as opposed to the objective probability based on 

the frequency /ensemble interpretation. This sort of subjective probability 

comes into play in the quantum cryptographic protocols. Note also that 

Alice who knows the outcome of the measurement has definite information 

about the state. Hence, the operator capturing Alice's epistemic state is 

the selection operator Bx;• More about this point in the next chapter. We 

conclude this chapter with a simple but interesting result. 

Lemma 15 Let L denote the either of the measurement operators above. 

Let~ and~, be two (homogeneous) formulas of same dimension. Then the 

following are valid. For L = M,p1,p2 ••• ,pk 

L( ~ I\ ~') # L~ I\ L~' and L( ,~) # ,L~ 

For L = S,p the corresponding formulas are 

L(~ I\~')# L~ I\ L~' and P('ljJ)-:/ 0 ⇒ L(,~) # ,L~ 

Moreover, from the validity of ~ we may infer the validity of L~ if 

L = M,p1,p2 ... ,pk. Also the validity of~ and P('ljJ) # 0 implies that S,p(~) is 

valid. 
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Proof: The second statement of the lemma is trivial. For by definition, 

n, p F LifJ iff 7r, Lp F ifJ where 

k 

Lp = L n(<fai)pn(</Ji) for L = M{<P;} and 
i=l 

Lp = n(</J)pn(</J)/[P(</J)l1r,p for L = s<P 

Since Lp is a state validity of ifJ implies that of LifJ. 

For the first statement note the following. Once all the variables and ba

sis symbols occurring in a formula are assigned values by the interpretation 

7r then they are like propositional formulas to be evaluated at some state. 

Let us keep the interpretation n fixed. Then L acts like a modal operator 

with Kripke semantics [Gol92]. We simply define a relation~ among states 

by requiring p ,.._, p' iff p' = Lp for£= Mw1'1/J2···'1/Jk· For£= s(p, p ,.._, p' iff 

Tr(pn(</J)) -1- 0 and p' = Lp. We thus see that 

1r p F 'P iff p ~ p' implies 1r p1 F 'P 

Now, Lis a function on the states. That is, the corresponding Kripke frames 

are functional. For functional frames the above formulas are valid (see the 

reference above) and the theorem is proved. 

□ 

5.2 Examples 

5.2.1 Quantum Gates 

In this section we discuss some simple examples mainly drawn from quantum 

computation. The language used to write.C2(P, m, t, M, S) as the qubits are 

2-dimensional quantum systems. The formulas given for the gates are the 

definition of some unitary operators acting on on quantum systems com

posed 2-dimensional subsystems. These basic gates will be used in the next 



138 CHAPTER 5. LOGICS FOR QCI 

chapter where the main applications are given including formulas for com

plex circuits built from these gates. I also add the usual circuit symbols 

used in quantum computing. 

1. Pauli-X Gate 

2. Pauli-Y Gate 

3. Pauli-Z Gate 

4. Hadamard Gate 

5. Phase Gate 

6. 1r/8 Gate 

T~ ( ~ ~) 

Since the U-operators on a probability formula <I> are interpreted as u-1 

acting on the state, the gates presented here are adjoint ( or transposed 

conjugate) of the standard forms[NCOl]. Except for the phase gate they 

are identical to standard form since Pauli and Hadamard gates are both 

unitary and hermitian. These are single qubit gates. To get two entangled 

qubits that produce truly non-classical states we need multiple qubit gates. 

I present below some of the standard ones as a formula in .C-2(P, m, t, M, S) 

and the corresponding matrix. I use the notation defined in equation5.l. 

The pictorial representation is also given. 
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1. CNOT Gate Let us compare the representation of the 2-qubit CNOT 

gate in the two languages. It is a 4 x 4 matrix. The formula in terms 

of basis transformation matrix mij is 

In the matrix notation it may written as follows. I also put the stan

dard circuit symbol for the gate. 

C= (
1000) 0 1 0 0 
0 0 0 1 
0 0 1 0 

Intuitively, the CNOT gate works as follows. If the top qubit (called 

the control) is in the state IO) then the second qubit (the target) is 

unaffected. If the control is in state II) then the target is inverted. In 

other words 

100) -+ 100), 101) -+ IOI) 

110)-+ 111), 111)-+ 110) 

(5.3) 

(5.4) 

Note that the control is not affected. It is easy to translate the for

mula C into the corresponding matrix C. I have discussed before the 

interpretation of the functions Ti. The tensor product bases induce an 

ordering viz. the lexicographic ordering on the product space. In the 

context of 2-dimensional spaces this is the natural ordering with the 

numbers written in binary provided we follow the convention that all 

the binary strings representing numbers are of the same length. The 

functions ro ( i), r1 ( i), ... are the bits in that representation of i, r0 ( i) 

being the least significant bit. For the C-NOT gate The first delta 

function represents a formula expressing that in this representation 

the first qubit is unchanged and the second one flips if the the first 

qubit is 1. I further elaborate on this point with the Toffoli gate below. 



140 CHAPTER 5. LOGICS FOR QCI 

2. Toffoli Gate. This is a 3-qubit gate defined as follows. 

Tof = fflij(t(b, b, b), c) = Or2(i)r2(j)Or1(i)r1(j)" 

[c5ri (i)l 0r2(i)l (1 - 0ro(i)ro(j)) + 0r1 (i)OOro(i)ro(j) + 0r2(i)0°ro(i)ro(j)] 

The corresponding matrix T is 8 x 8. The rows and columns of the 

matrix are ordered from 0 to 7 written in binary e. g. 5 = 011 = 
r2(5)r1(5)ro(5). In the matrix below the row and column indices are 

written at the top and the left of the matrix respectively. 

000 001 010 011 100 101 110 111 

000 1 0 0 0 0 0 0 0 
001 0 1 0 0 0 0 0 0 
010 0 0 1 0 0 0 0 0 
011 0 0 0 1 0 0 0 0 
100 0 0 0 0 1 0 0 0 
101 0 0 0 0 0 1 0 0 
110 0 0 0 0 0 0 0 1 
111 0 0 0 0 0 0 1 0 

Then it is easy to read out the matrix elements from the formula. It is 

clear that a formula, whose size is linear in the dimension of the space 

concerned, can always be found to represent any given unitary matrix. 

This fact will be more formally stated later. Let us now deal with a 

more complex gate. 

3. Controlled-U. Let Ii) and lj) be m-qubit and n-qubit states respec

tively in the computational basis. They are vectors in respective di

mensions M = 2m and N = 2n. The integers i and j are written as 

binary strings of length m and n respectively. Let U be a unitary op

erator of order N. The controlled-U operation CN -U is then defined 
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as 

Ii) lj) ~ Ii) lj) if i -# M - 1 

IM - 1) lj) ~ IM - 1) U lj). 

141 

Only in the case when the control qubits are in the state IM - 1), that 

is, if all the individual qubits constituting the control system are in 

state 11), is the operator U applied to the target system. Otherwise, 

the whole system is left unchanged. The matrix for the gate is 

It is now a simple matter to write it in £2(P, m, t, M, S). 

f\(mij(b, c) = CN-U(ij)) 
ij 

The C N - U gate is an operator in dimension MN. Recall that the 

functions ri, i = 0, 1 in this context are defined as ro(i) = i (mod N) 

and r 1 ( i) = [i / N]. The controlled operations, although quite simple 

in appearance, carry one of the most powerful resources of quantum 

systems - entanglement. The single qubit operations can be efficiently 

simulated by a classical Turing machine. Hence, we need at least 

one 2-qubit operation to reach non-classical states. This can be done 

by the controlled operations. In fact, just the controlled-Not(CNOT) 

gate along with single qubit gates suffices to approximate an arbitrary 

unitary operator. 

5.2.2 Characterization of states 

The notion of entanglement is crucial to many quantum algorithms and pro

tocols. Consider a composite quantum system consisting of two subsystems 

of dimension N. The dimension of the entire system is N 2 . A pure state 

p = la) (al is called a product state if it can be written as 
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otherwise it is an entangled state. For mixed states the situation is bit more 

complex. A mixed state is defined to be separable if it can be written as a 

convex combination of product states. Thus, a separable state 

P = LPi l'lf'i}('l/Jil, Pi~ 0 and LPi = 1 
i i 

and each pure state l'l/Ji} is a product state. Let us write formulas charac

terizing these different types of states in n-qubit system. 

1. Pure state. P(bo) = 1 This formula is satisfiable only at pure states. 

2. Pure product states. Similarly the formula P(tn(bo)) = 1 is satis

fiable only at pure product states. 

3. Separable states. 

3ipN3xj((pi ~ 0 I\ LPi = 1)/\ 
i 

(P(t(bi, ci)o) = Pi I\ P(X3) = x1) ⇒ x3 = L T(t(bi, ci)o, X1)Pi 
i 

The subscripts on the quantifier indicate that the quantification is over 

all the variables with subscripts ranging over a finite set. The range of 

the subscript j is the set { 0, ... , N 2 - 1}. Now a general mixed state 

can be written as 

p = LPi l'l/Ji}('l/Jil 
i 

The state p is separable if there is such representation such that each 1Pi 
is a product state. The above formula is satisfiable only at a separable 

state. 

5.3 Axiomatization 

In the preceding sections we developed the syntax and semantics of the 

languages ,C(P, m, t, M, S). We now turn our attention to the proof theory 
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and questions of complexity. In a loose sense, £,(P, m, t, M, S) is an extension 

of the language Cn(P, m) whose axiomatization was presented in the last 

chapter. In the latter case the dimension{=n) is fixed. But now, since 

we have to deal with tensor product, several dimensions may be involved. 

Therefore, the dimension is explicitly stated in the formulas wherever there 

is possibility of ambiguity. Further, the axioms of last chapter are assumed 

for each dimension n > 0. However, there are some significant differences 

even in the case of fixed dimension since the states in which the formulas 

are now interpreted are general 'mixed states' or density matrices instead of 

the pure states used in the last chapter. Consequently, I state all the axioms 

of the last chapter and indicate which ones are modified. But the intuitive 

meanings are discussed only in the case of modified axioms. It would be 

convenient to group them under different headings. There are two kinds of 

basis terms. The atomic basis variables and the composite basis expressions 

built out of the atomic variables. In case of the latter, the atomic basis 

variables appearing in the product basis terms determine the dimension and 

the ordering of the composite bases. For example, t{b(m), b(n)) represents a 

composite basis in dimension mn( see 5.1.1). The symbols X, Y, Z, • • • will 

denote basis expressions of either type. Sometimes, the dimension will be 

indicated explicitly. Hence, X~k), ... , xi~1 will denote the basis components 

for the expressions of dimension k. 

1. Boolean axioms for basis variables 

For every basis expression X in dimension n 

B(n)1 Xo V ... V Xn-1 

B(n)2 -,{Xi /\ Xj) for i =j:. j and i,j E Jn 

As before we say that a X-formula <p is a X-tautology, and write f--x <p 

if it is a tautology of ordinary propositional logic or it can be derived 

from the above axioms alone using propositional logic inference rules. 

Next, the probability axioms. 
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2. Probability Axioms 

Pl O ~ P(<J,) ~ 1 

P2 P(<J,) = 1 if q, is a X-tautology 

P4 P(<J,1) = P(<J,2) if </,1 {::} </,2 is a X-tautology 

3. Unitary operator axioms For a pair of basis expressions X, Y of 

same dimension we have the following axioms for unitary transforma

tion. 

Ml mij{X, Y) = mji{Y, X) 

M2a mij{X, X) = 1 if i = j M2b mij{X, X) = 0 if i =/- j 

M3 ffiij{X, Z) = Ei::~mik{X, Y)mkj{Y, z) 

Again the unitary operators contain information about the dimension 

n, that is, their order as a matrix is unambiguous. All integer con

stants i, j etc. are assumed to vary in the range {O, n-1 }. They are not 

variables in the object language. The difference due to the more gen

eral interpretation in "mixed states" appears in the the axiom MPk 

{see subsection 4.4.3). This is the basic consistency axiom. Intuitively, 

the axiom requires that the probability assignments be consistent with 

quantum theory. 

MPk 'ixo ... Xn : R(/\~1 P(x?) = Xi => 
3z11z12 • • • Znn {/\f=l Zii = Xi I\ 'iy1 • • • Yn (Lij YiZijYj ~ 0) I\ 

AJ=l Af=l P(xl) = E~,s=l ffiir(X 0 , Xi)zrsffiis(X0 , xi))) 

This is the most complicated axiom scheme. It simply states that 

given probability distribution of k bases {b1 , ... bk} along with the 

transformation matrices there is a state p = (Zij) which gives rise to 



5.3. AXIOMATIZATION 145 

these distributions. This is valid for all k in an n-dimensional quantum 

system. This can be proved with little modification to adapt to the 

density matrix semantics as in the last chapter 1. In dimension n one 

requires that MP k be satisfied for all k ~ n2 - n + 1. Then it is 

satisfied for all positive integers k. A similar result was proved in the 

last chapter 10 and since that proof can be be quite easily adapted to 

the density matrix semantics we omit it here. But observe a difference 

with the case where states are required to be pure states. In that case 

MP~ is required to be satisfied only for k ~ n2 - 2n + 1. This was 

observed in Corollary 1. 

4. The axioms of tensor operator come next. 

Tensorl t(t(x(m), y(n)), z(p)) ~ t(x(m), t(x(n), z(Pl)) 

Tensor2 P(t(x(m), y(n))o) = 1 =} 

P(t(x'(m) yi(n)) ·) = P(t(X'(m~ Tn)) · P(t(Tm y'(n)_ )) 
' J r1(J)' ' ro(J) 

Tensor3 mi3(t(x(m), y(n)), t(x'(m), y1(n))) = 

ffir1 (i),r1(j)(X, X') · mro(i),ro(j)(Y, Y') 

Recall that the notation b ~ c is a shorthand for Aijffiij(b, c) = dij• 

The first axiom expresses the associativity of the tensor product. Note 

that both sides have the same dimension. Similarly, the intuition be

hind the second axiom Tensor2 is the fact that if the system is in a 

(tensor) product le/>) 11/J) state then the probability distribution of the 

states in lo:i) l,83) in a complete measurement in some other product 

basis {lo:i) l,83)} equals the product of the distributions corresponding 

to measurement of the component systems. Classically, this is a very 

familiar situation. If we have separate trials of two independent ex

periments then the sample space of the combined experiments is the 
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product space of the individual spaces and the joint distribution is 

the product of the individual distributions. Note also that there is no 

special significance of the index O in Tensor 2. It can be replaced 

by any index i and be shown provably equivalent to the original ax

iom. We simple use a unitary matrix to interchange the basis vectors 

corresponding to indices and use Tensor3. The intuitive meaning of 

Tensor3 is similar. If U(ij) = mij(b, c) and V(ij) = mij(b', c') are 

the respective transformation matrices then the transformation matrix 

connecting the product bases t(b, b') and t( c, c') is the tensor or direct 

product U x V. 

The final axiom for the tensor operator deals with the commutation 

property of tensor product. Thus, we want to relate t(b(m), c<n)) and 

t(c(n), b(m)). First, note that both are interpreted as basis vectors in 

the Hilbert space cmn. There is a definite transformation matrix pm,n 

relating them. If A is any m x m matrix and B is a n x n then 

pm,n(A ® B) = (B ® A)pn,m 

Any basis in cm may be viewed as a unitary matrix of order m, 

the basis vectors representing the columns [HJ91]. Thus, the above 

equation represents the relation between the bases 7r(t(c(n), b(m))) and 

7r(t(b(m), c(n))) 

Hence, for a consistent interpretation we have to incorporate this in 

the next axiom. The matrix pm,n of order mn may be described as 

follows [HJ91]. Let Imn be the identity matrix of order mn. We write 

the elements of P[;,n as 

Pr'J•n = Pr7(~ro(i),ri (j)ro(j), 0 S::; r1 ( i), r1 (j) S::; m - 1 and 

0 s; ro(i), ro(j) s; n - l 

We have encountered the functions ro and r 1 before. They simply 

introduce an ordering in the set { 0, ... , mn - 1}. Explicitly, for O S::; 
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k::; mn-1, ro(k) = k mod n and r1(k) = lk/nJ. Intuitively, we order 

the indices 0, ... , mn - l as an m x n matrix. Dually, we may also 

order them as an n x m matrix. Let r~(k) = k mod m and r1(k) = 
lk/mJ be the corresponding functions. Let O ::; k ::; mn - l. Then 

the (r1(k),ro(k))th row is same as the (r1(k),r~(k))th row of Imn• 

Explicitly, 

P m,n_ i: i: 
ij,kl - ui,r0(nk+l)uj,r~ (nk+l) 

Now we write the axiom relating the bases. 

Tensor4 l\ij mij(d, t(b(m), c(n))) = Vij 

l\ij mij ( d, t( c(n), b(m))) = Uij =} 

3vij Unit(Vij) /\ (/\ L Pt:_,nVklUlrP;]m = L VilUlj) 
ij klr l 

The unitary matrix V(ij) = Vij simply connects an arbitrary basis 

to the standard basis. The permutation matrix connects the bases 

7r(t(b, c)) and 7r(t(c, b)) when expressed in the standard basis. We 

will not use this axiom much as mostly products in definite order will 

be used in tensor product terms. However, we require this axiom for 

proving completeness of the axiomatization. 

5. Next we come to the measurement axiom. Recall that there are two 

operators which are associated with measurement. The first is the 

measurement operator Mx, where X is a basis symbol( atomic or 

product). 

Measurel /\i P(bi) = Xi => /\i(Mb(P(cj) = I:k T(bk, Cj)xk)). 

First, we note that the measurement corresponds to a complete mea

surement. Recall that, by definition, the transition probability term 

T(bk, Cj) = lmkj(b, c)l2. I refer to the chapter on basics of quantum 

theory for the intuition behind the axiom. The post-measurement 

state of an ensemble then becomes a mixture (see the discussion on 
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semantics of measurement). For selective measurements Sb; we have 

the axiom schema 

The intuitive meaning is clear: if the observer "selects" a post mea

surement state corresponding to bi the the probability of obtaining a 

state corresponding to bi in a subsequent measurement is 1. This is, 

of course, provably equivalent to asserting that the post measurement 

is bi. But a state corresponding to bi can be selected if and only if 

the probability of that state is not 0. If it is 0, then the set of states 

in which Sb; (qi) is satisfiable is empty. This is expressed by saying 

that the unsatisfiable formula ..l holds. Note that in the last two ax

ioms concerning measurement we only require that they be satisfied for 

atomic bases. We will deduce the corresponding formula for product 

bases as a theorem. Denote by L either of the measurement operators. 

Then the axiom schema for boolean combinations is: 

Measure2 L(qi1 /\ qi2) {::} L(<l>1) /\ L(<l>2) 

M-easure3a Mb ( ,<l>) {::} ,Mb ( <l>) 

Measure3b P(bi) #- 0 =} Sb; ( ,<l>) {::} ,Sb; (qi) 

We have seen in Section 5.1.3 that in the density matrix semantics of 

the language £(P, m, t, M, S) the measurement operators behave like 

modal operators whose Kripke frames are functional. The last two 

axioms reflect this. They are not true in the state based semantics. 

Moreover, we have the following inference rule. 

Consl. From <l> infer Mb <l>. 

Cons2. From <l> and P(bi) #- 0 infer Sb;<l>. 

Let Ax (P, m, t, M, S)be the theory resulting from the above axiomatization 

of £(P, m, t, M, S). We must keep in mind that it is an extension of the the

ory JRC. So, as in the last chapter (see Section 4.4.3) we reduce a formula of 

the language into an equivalent formula of JRC. There are several benefits of 
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this reduction. First, we deduce properties (completeness, decidability, etc. 

)of Ax (P, m, t, M, S)from those of JRC. As there are several new syntactic 

operators one has to modify the proofs of the similar results in the last chap

ter. However, as we shall see the modifications are quite straightforward. 

Therefore, many of the details will not be repeated. Second, the resulting 

formula of JRC can easily be further reduced to an equivalent formulas of real 

closed fields. We have a decision methods for the later. So, the combination 

of the two algorithms provides us with an algorithm for problems concern

ing interesting aspects of QCI. This can be, in principle, implemented in a 

computer/Turing machine. Which brings us to the questions of complexity. 

Several complexity bounds will be derived and the practical aspects of the 

implementation will be discussed. 

First I prove an important result on reduction of formulas in £(P, m, t, M, S) 

to formulas in JRC. We have seen that in the last chapter this was extensively 

used to prove completeness results, devise decision procedures and find com

plexity bounds. In the last chapter we dealt with languages in some fixed 

dimension n. One could then introduce for a basis symbol b, n complex 

variables representing a vector. Similarly, for matrix symbols we require at 

most n 2 variables. As a consequence for each formula of~ of Cn(P, m) we 

could write an equivalent formula of JRC whose length was of polynomial 

order in l~I( see 12). The situation is more complicated for the languages 

in the present chapter. The reason is the presence of tensor product bases. 

For example, if b is interpreted as a basis in 2 dimension then tk(b), is a 

basis in 2k dimensions. Thus we have to introduce 2k variables for the cor

responding basis and the JRC formula may become e:~ponentially large. We 

have to be more careful in formulating the reduction algorithm. The next 

theorem gives such an algorithm. It requires some restrictions which are 

stated below. First we recall the fo_llowing facts. The atomic formulas of the 

language are obtained by substituting probability terms and matrix terms 

in the relations p(z1, z2, ... , zk) 2:: 0. The probability terms are of the form 
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P(w(X]), where w is a basis formula in the basis variable X which may be 

atomic or a tensor product term. 

1. The probability formulas P(w[X]) are homogeneous. 

2. The general tensor term is built out of some fixed irreducible basis 

symbols {b1, ... , bk} which have dimensions n 1 +1 ~ n2+l · · · ~ nk+l 

and the basis variables in a product term appear such that this order is 

preserved. Thus, in a term t(bi1 , bi2 , ••• , bir) we have i 1 ~ i2 ~ · · · ir. 

Here irreducible means that they are not product bases and that no 

basis symbol appears whose dimension is factor of any dimension ni+ 1. 

That is, these dimensions are minimal. In QCI usually all the ~ = 1. 

This assumption simplifies the proof of the theorem. It is also the 

natural situation in the physical context. If we want to talk of a 

composite system consisting of state space 1-lm and 1-ln respectively, 

then the state space of the composite system is 1-lm ® 1-ln or 1-ln ® 1-lm

For the description and analysis of the composite system the two spaces 

are perfectly equivalent. If m = n the question is irrelevant. 

Theorem 12 Given a formula qi of C(P, m, t, M, S), satisfying the above 

conditions, a formula qi' of JR(C can be constructed whose length is bounded by 

polynomial in the lqil such that qi is satisfiable if and only if qi' is satisfiable. 

Proof: The algorithm for constructing qi' out of a given formula qi in 

C(P, m, t, M, S) is given below. 

1. Scan qi for all basis expressions. This includes the expressions appear

ing in the measurement operators. I use the notation X, Y, Z, ... to 

denote basis symbols- both irreducible and composite. The "compos

ite" basis symbols are the tensor operator terms. Let b 1 , ... , br be 

the irreducible basis symbols, with respective dimensions { n1 + 1, n2 + 

1, ... , nr + 1} which are minimal in the following sense: there is no 

basis term of dimension k which is a divisor of any ni + 1. The reason 
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for this distinction will become clear below. Let Bip = {X1, ... ,xr} 

be the set of basis expressions that appear in <I>. Note that the dimen

sion of Xi's may be exponentially large. Let B~ C Bip be the set of 

basis symbols that appear in probability terms. By our assumption 

of homogeneity they have common dimension, say N. Further, we as

sume that the first s( Sr) of the Xi's are in B~. There is no loss of 

generality due to this assumption as it is not difficult to modify the 

following construction and analysis in the general case. Now, Xi may 

be an atomic basis symbol or a product. 

2. Now scan for the indices of components of each of the basis expressions 

X, that is terms of the form Xi, 0 sis dim(X), that appear in <I>. 

We also record the appearance of the component indices i, j of the 

matrix symbol mi3(X, Y). Let Tx be the set of all such component 

indices of the basis expressions X appearing in <I>. The dimension of 

each of the basis expression is known. For integer k let 

Rk = LJ {Txldim(X) = k} 
XE/P 

Similarly, let Bx be the set of components of basis expression that 

appear in the probability terms. Clearly, Bx C Tx for every basis 

variable X and Bxi is nonempty only if j s s. 

3. Let mk = IRkl and Tk = min{mk + l<I>l,k}. The integer k must be of 

the form (n1 + l)i1 • • • (nr + l)ik. Let Lk be a set of cardinality rk such 

that Rk c Lk ~ {O, ... , k - l }. We also require that for a product 

basis Z = t(X, Y), if k E Tz, then r1(k) E Tx and ro(k) E Ty since 

by definition t(X, Y)k = t(Xr1(k), Yra(k))-

4. Now we introduce a distinguished class of basis symbols zj for each 

irreducible dimension n3 + l appearing in the formula <I> and the cor-
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responding "vector" variables 

z{; 1 ~ j ~ r and O ~ i ~ nj 

Each such vector variable is actually a collection of variables ( of ~q 
such that z{ consists of nj + l variables, zfo, ... , zfn.. Intuitively, the 

1 

vectors zi, for fixed r, will constitute a basis in cnr+ 1 . The collection 

of variables corresponding to zi will be denoted by { zro, ... , zf n. } . 

For each i E Lk and each irreducible basis variable X of dimension 

k introduce a "vector" variable Xi of ~C of dimension rk. Below, we 

use the shorthand Xi for rk variables {Xijli,j E Lk}. For each basis 

symbol X( of dimension k) let Bs(X) be the following 

i lELk 

The intuition behind the formula Bs is a necessary and sufficient con

dition that the vectors Xi can be extended to an orthonormal basis. 

Similarly, let Bs(zr) denote the relation expressing orthonormality 

amongst the vectors { Zo' ... ' z~.}. 

5. Recall that the basis variables are sorted according to their dimension 

k. Assume that the new variables Xij introduced also carry the cor

responding dimension rk. We can achieve this easily by introducing 

different sets of variables in each dimension. Note that a vector vari

able x} is introduced for the basis component Xj that appears in <P. 

Further, for each dimension kk' corresponding to composite or prod

uct bases of dimension k and k' in <P we introduce the ~C-terms as 

follows. First, we treat zkk" as the product basis t( zk' zk'). For any 

product basis component t(X(k), y(k'))i we introduce ~C-terms xfm 

·xmn _ Xm yn 
i = r1 (i)r1 (j) ro(i)ro(j) (5.6) 

It follows that we have terms zfn = z;_r:(i)riUl~o(i)roU) corresponding 

to the distinguished basis z(kk'). 
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Recall that given m,n, ro(i) = i mod n and r1(i) = l*J for O ~ i ~ 

mn-1. We are simply introducing the semantics of the tensor product 

into the formula. Let <I>1 be the conjunction of all the formulas Bs(X), 

X an irreducible basis expression. Then l<I>1I = O(l<I>l2). 

6. Now for the matrix terms. Unlike the probability terms the matrix 

terms may involve basis variables in lower dimension. The special ba

sis variables z{ that we had introduced may be visualized as the stan

dard basis in dimension Tj- Let X be an irreducible basis variable in 

dimension k = (ni1 + l)ii • · • (nir + l)ir. The right hand side is unique. 

Introduce, new variables {uij(zk,X), 0 ~ i,j ~ rk}- Note the range 

of i,j. Although, the dimension of zk( and X) as basis expression 

in the object language C(P, m, t, M, S) is k, the vectors representing 

them have dimension rk. We continue to write Uij as a function over 

the original expressions. Intuitively, these variables represent the en

tries of the unitary matrix relating the bases corresponding to zk and 

X. 

Unk(Z, Y) = ( /\ ( L Ui!Uil = 1)) /\ (/\ (L Ui!Ujl = 0)) (5.7) 
iELk lELk i#j l 

These are the unitary conditions saying that the variables Uij, l ~ 

i,j ~ rk are the entries of a unitary matrix of order Tk ~ 2l<I>I. The 

important point to note is that we need to consider a matrix of order 

at most rk only. Thus, even if k is large we need not examine extension 

to order k. 

7. Next, we introduce a formula expressing the unitary transformation 

connecting the bases in <I> to the distinguished bases introduced above. 

Thus, for each pair of vector variables ( zf, y j) for basis components Zf 
and Yj resp. in dimension k and Y irreducible introduce the formula 

H(Zf, Yj) = I\ Yil = L Ur1(Zk, Y)zjr (5.8) 
j,lELk rELk 
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The intuition is that the vectors {zf} and Yj form bases in ([7k and 

Uij ( zk, Y) is the unitary matrix connecting them. 

8. Note first that, general tensor terms like t(<PI, </J2), where <PI[b] and 

</J2 [ c] are basis formulas over some basis variables b and c respectively, 

can be reduced to a disjunction over terms of the form t(bi, Cj)- This 

follows from the basic relation t( <PI V </J2, 'lj)) = t( <PI, 'lj)) Vt( </J2, 'lj)). Hence, 

I assume that these reductions have been done. We will deal with 

negated expressions later. 

9. By assumption the probability formulas are homogeneous of dimension 

N. Hence, they are evaluated at some state in c,N. This number 

N may be of exponential order in the length of cI>. Therefore, we 

do not introduce variables for all the N possible components. Let 

N' = min{2mN, N} and LN be a set of N' integers containing RN 

such that LN ~ {O, ... , N - 1}. Let {sijl i,j E LN} be N'2 variables 

of JRC indexed by the integers from LN. Let LN = {kI, ... , kN'} in 

some ordering of LN. Define the formula 

Stq, ::::3v11 VI2 · · · v N' N' ( L VikVjk = 8ij) /\ 

i,jELN 

3rj L VilSkikm Vmj = 8ijTj /\ Tj ~ 0/\ 
lm 

{ < 1 if N' < N 

~ Tj = l if N' = N 

(5.9) 

The last line of the above formula actually represents two formulas 

corresponding to the two possibilities. The formula Stq, is true for 

some interpretation of the variables Sij if and only if they form a 

nonnegative definite matrix of order N' since the unitary matrix Vij 

diagonalizes Sij such that the diagonal entries are nonnegative and 

their sum is at most 1. 

10. We make a further assumption on the form of basis formulas that they 
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are expressed either as a disjunction over non-negated basis variables 

or as a negation of such formula. From the semantics of the basis 

formulas we know that any formula can be expressed as a disjunction 

but for efficiency it is useful to admit the negated form also. For 

example, suppose we know that the system is in some state which is 

orthogonal to the first 2 basis vectors in a space of dimension N. Then, 

it is more efficient to express it as the formula P(,(b1 Vb2)) = 1. If we 

had stuck to the first form we have to write it as disjunction over all 

but the first two components. Now define a map a for the probability 

terms P(A), A a basis formula, that appear in cl> . The image of a is 

in the set of JR(C terms generated by the variables we have introduced 

above. Let w, '111, '112, be boolean formulas over relevant basis variables 

such that '111, '112 are in non-negated disjunctive form and let '1112 be 

the formula defined as the disjunction of all the basis variables common 

to W 1 and W 2 · Then, define 

a(P(Xi)) = L XijBjkXik 
j,kELN 

(5.10) 

a(P(w1 v '112)) = a(P(w1)) + a(P(w2)) - a(P('1112)) (5.11) 

a(P(,w)) = 1 - a(P(w)) a(P(T)) = 1 and a(P(l.)) = 0 {5.12) 

The motivation for the above formula for a(P(Xi)) is clear. If Xi are 

basis vectors for Xi in dimension N' and p = (sij) is a {mixed) state 

then a(P(Xi) = Tr((xitxi)P) is the probability of a maximal test in 

basis X yielding the result Xi. 

11. Let cl>" be the formula which is the conjunction ofall Bs(X), Unk(Z, Y), 

H(Xi, Yj) and Stq; constructed above. From the construction we con

clude that lcI>"I = O(lcI>l3). The cube appears because the number 

of new matrix variables appearing in cl>" is bounded by a number 

b = O(lcI>l 3 ) and there are at most lcI>I such variables. Now construct 

a formula W = 7( cl>) as follows. First, let cl> be a "bare" formula, 
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that is, without the measurement operators. Then, by definition, .P is 

constructed by substituting probability terms P( <p) and matrix terms 

mi;(X, Y) for some of the variables in a formula F of nu::. We write 

.P = 17(F) for this substitution. For each occurrence of P(</J) substitute 

the JR.C term a(P(</J)). 

For the matrix terms first we construct terms corresponding to mij ( zk, Y) 

where Y is a basis symbol in dimension k. If Y is irreducible in di

mension k then substitute 

u;k(x, Y) = L uij(zk, X)Uik(zk, Y) 
i 

for mi;(X, Y). Let Y = t(Y', Y") be a product basis, where k = 
k' k" and dim(Y') = k', dim(Y") = k", . Then assuming we have 

constructed uij(zk, Y') and uij(zk, Y") we define 

Uij ( zk, Y) = Ur1 (i),r1 (j) ( zk', Y)uro(i),ro(j) ( zk", Y) 

This way we obtain JRC-variables uij(zk, Y), i,j E Lk for all basis 

symbols appearing .P, substitute uij(X, Y) in F. Denote the RC

formula so obtained by -y(.P). Then .P1 = .P" /\ -y(.P). From the 

construction we have I.P'I = O(I.Pl3). Note also that .P" expresses 

the conditions of unitarity, orthonormality among bases, conditions 

on the density matrix( state). It depends on .P only in the choice of 

variables. 

We prove next that .P is satisfiable if and only if .P1 is satisfiable. Suppose 

.P' is satisfiable. Then, for each variable x appearing in .P' there is some 

complex number 7r(x) such that if the latter are substituted in .P' then the 

resulting formula is true. To prove that .P is satisfiable we have to find 

bases and unitary matrices connecting them in complex Hilbert spaces of 

appropriate dimension. 

1. Now, we deal exclusively in dimension N. All probability formulas 

are to be computed in this dimension by homogeneity. We have 
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assumed that <I> is a "bare" formula, that is, without the measure

ment operators. Also assume that <I> is atomic. Then, by definition, 

there is some polynomial relation p(z1, ... , Za) ~ O(~ 0) such that <I> 

is obtained by substituting probability terms or transformation ma

trix terms uniformly for the variables Zi- By assumption <I>' is sat

isfiable. Thus, there is an interpretation 1r such that the complex 

numbers 1r(Xij), 1r(Zij) and 1r(Uij(X, Y), satisfy <I>" and ;(p). Recall

ing that Xi corresponds to the basis variable Xi we define the ma,p 

;(Xi) = Xi and ;{mij(X, Y)) = Uij(X, Y). Now extend the interpre

tation function 1r as follows. Suppose X, Y denote bases in dimension 

k. Then 1r{Xi) is the projection operator on to the ith vector in the 

basis corresponding to X. Instead of the projection operator it is con

venient to write the corresponding vector a E (Ck written as a complex 

vector. Thus 1r{X) = a}a is a matrix of order k. Below we simply 

write the entries of a as 1r{Xi)j. For X an irreducible basis symbol let 

1r(Xi) ~ 1r(;(Xi)j) = {1r(Xij) if j ~ Lk (5.13) 
= 0 otherwise 

1r(mij(X, Y)) ~ 1r(;(mij(X, Y))) = {1r(uij(X, Y))_if i,j E Lk 
= 8ij otherwise 

(5.14) 

Assuming that 1r(X) and 1r(Y) already defined in dimensions k and k' 

we extend it to the product basis t(X, Y) by 

(5.15) 

Similarly, we extend 1r to the matrices relating the special basis zk to 

all other bases. It is convenient to use matrix notation. Thus we let 

M(X, Y) be the matrix whose entries are given by 1r(mij(X, Y)). Let 

dim(X) = k and dim(Y) = k' Then, 

1r(M(zkk'' t(X, Y))) = 1r(M(Zk, X)) ® 1r(M(zk'' Y)) (5.16) 
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Note that, strictly speaking, 1r does not apply to matrices. The above 

formula is a compact representation of -rr(mij(zkk', t(X, Y))). The 

right hand side is the tensor product of matrices. For arbitrary bases 

X, X' in dimension k 

(5.17) 

Where At is the hermitian( transposed) conjugate of the matrix A. 

Now we consider the state at which the formulas are evaluated. Define 

p, the density matrix state, as follows. First, let 

Then 

L -rr(Sii) = a 
iELN 

{
-rr(Sij) if i,j E LN 

Pij = J~7,r, Oij if N > N' and i or j /=LN 

Oij if N = N' 

(5:18) 

The above construction and the fact that «I>" is satisfiable for the in-

terpretation 1r makes the following facts clear. 

(a) First we observe that the above interpretation 1r actually extends 

to all the basis and unitary symbols appearing in «I>. 

(b) If Zij = t(Xi, Yj) is a product basis symbol then 

We show that the interpretation is consistent with that of the 

tensor product of bases. Let the dimension of the bases X and 

Y be k and k' respectively. Any component in the product basis 

t(X, Y)m is of the form t(Xi, Yj) where i = r1(m) and j = ro(m). 

Hence, if m E Rkk' then i E Rk and j E Rk'. Since the compo

nents of the basis variables Xi (Yj) are already defined by the 

equations 5.15 as xii'(resp. Yjj') for i' E Rk(resp. j' E Rk'). But 

these equations define the basis variables t(Xi, Yj} as the compo

nents of the tensor product of the bases Xi and Yj. 



5.3. AXIOMATIZATION 159 

(c) For X irreducible, 7l'(Xi) and 11'(Xj) are unit vectors in Ck( k 

dimension of X) that are orthogonal for i #- j. This is true as 

the vectors Xi and Xjare already orthogonal because of the for

mula Bs and we have only added zeros. Since the tensor product 

of orthonormal vectors yields orthonormal vectors we see that 

11'(t(Xi, Yj))) and 11'(t(Xi,, Yj,)) are also orthonormal for products 

of orthonormal vectors Xi, Xi, and Yj, Xj,, respectively. 

(d) Similarly 11'(M(X, Y)) are unitary matrices for the following rea

son. First, Uij(Z, X) constitute a unitary matrix because of the 

formulas Unk, Since the tensor product of two unitary matrices 

is unitary 11'(M(Z, t(X, Y))) is also unitary. 

(e) The matrix p is non-negative definite with trace 1 due to the 

formula Stq,. 

( f) The formulas H express that 71' ( mij ( Z, X)) are indeed the entries 

of the unitary matrix connecting the bases 11'(Z) and 11'(X) for 

X irreducible. Moreover, similar formulas hold for the prod

uct bases t(X, Y). This follows from the fact that 11'(zkk' = 
11'(Zk) @11'(zk')) by definition and the fact that in any interpreta

tion 11'(M(t(zk' zk'' t(Xk, yk'))) = 11'(M(Zk, X))@11'(M(zk', Y)). 

For arbitrary bases X and X' in the same dimension k we have 

the correct transformation relation due to the equations 5.17. 

Note that the completion of the matrices by O's in the off-diagonal 

terms and l 'sin the diagonal ensures that the formulas Unk, G, H, Stq, 

continue to hold, even for the indices not in some Lk. This is most 

easily seen if we imagine that the matrices are initially defined for the 

first k' ::; k rows and columns and then extended by putting l 's in the 

diagonal and O's elsewhere to complete it to a matrix of order k. In 
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the block partitioned form it appears as follows. 

A 

0 0 

0 0 

0 0 

0 0 

1 0 

0 

0 1 

Here A is the matrix originally constructed using the indices provided 

in <P. Actually, the indices will not have the ordering implied in the 

above picture. However, a routine but tedious argument shows that 

the above statements are correct. In general, if we call the extended 

matrix of order k, A' then the matrix A is a principal submatrix of 

A. A principal submatrix is obtained by deleting some rows with in

dices from a given set and also deleting columns with the same indices 

(MM92]. The concept of the principal submatrix is important for the 

proof below. 

Finally, we consider the interpretation of probability terms. Let X be 

a basis symbol in dimension N and that P(Xi) appears in <I>. Then, 

the interpretation of P(Xi) in the state p is given by (see 5.1.3) 

N-1 

1rp(P(Xi)) = L XijSjkXik 
j,k=O 

Now by our definition 1r(Xi)j = 0 for all j ff_ Lf Hence, we are 

only left with the terms whose indices are in L~. But this is precisely 

a(P(Xi)). For a general probability term, P(a) where a is a basis 

formula we reduce it to the atomic case by the equations 5.11 and 

5.12. We see that the maps a and, give the correct interpretation for 

probability and matrix terms respectively. Therefore, if 4>1 is satisfiable 

then so is 4>. We observe that any interpretation 1r of the variables 
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in <I>' can be extended to an interpretation of the corresponding basis 

and matrix terms of <I> and that the state p can be defined from the 

interpretation. Moreover, if <I>' evaluates to true for the interpretation 

1r then the extension of 1r makes <I> true at the state p. In particular if 

<I>' is valid( true for any interpretation) then so is <I>. 

Next we prove the converse. That is, if an atomic formula <I> is satis

fiable then so is <I>'. This part is somewhat more involved. Since <I> is 

satisfiable we must have an interpretation 1r of the basis variables and 

the matrix terms such that <I> is satisfiable. We define the extension of 

1r to an interpretation of the variables introduced in the construction 

of <I>'. We continue to call this extension 1r since these variables do not 

appear in <I>. We let 

1r(zf) = Ei 

where Ei is the ith vector in the standard basis in dimension k. Now 

fix a dimension k appearing in the formula. Let X 1, ... , Xik be the 

irreducible basis symbols that appear in <I>. The vectors 1r(Xj) the 

jth vector in the basis Xi has dimension k. We want to construct a 

corresponding vector x1 in dimension rk ::; k and an extension of 1r to 

interpret xf with the following properties. 

(a) 1r(xf) are unit vector of erk and 

. . k 
1r(~r) = 1r(Xl)r, r E R and 

(1r(xf)l1r(x{)) = iik 

Here we use the standard inner product in (CTk. The above rela

tions express the fact that rk-dimensional vectors {:xi, ... '~k_1} 

form an orthonormal basis and for the indices which lie in Rk the 

interpretation is same as the given one for the corresponding ba

sis variable in <I>. The reader may recall that Rk is the set of 

indices in dimension k which appear in <I>. 
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(b) 
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This is the crucial condition. It states that the relation between 

the bases X, Y is given by the interpretation 1r for the matrix 

symbols ffiij(X, Y) when the indices i,j E Rk. 

(c) Once we have interpreted the irreducible vectors the tensor prod

uct of any of these vectors satisfies appropriate relation by the 

construction. 

(d) Finally, we have a density matrix p' in erk such that 

Sij = P~j and 1r(P(XJ)) = L p'1m1r(Xilx;m) 
lmELk 

That is, for the indices appear in in <P the "probabilities" in erk 

corresponding to the basis vectors xj are identical to those of XJ. 

From the above construction it is clear that the formula <Ii' is satis

fiable when <P is. The fact that such a construction is possible is a 

consequence of the Lemma 16 which follows. Since we have shown 

satisfiability by extending the given interpretation 1r of <Ii, if <P is valid 

( that is, true for any 1r) then so must be <Ii'. 

The case when <P is not an atomic formula follows easily by induction. 

If <P is of the form <P1 V <P2, let <Ii' be <Pi V <I>2 = ( <I>f /1. 1 ( <P1)) V 

( <P~ /1. 1 ( <P2)). If <Ii' is satisfiable then at least one of the formulas <Pi 

or <I>2 must be satisfiable. Hence, <I>1 or <I>2 must be satisfiable by the 

induction hypothesis. Similarly, if <P = ,<P1 then let <Ii' = <I>f /1. ,,( <P1). 

Now, if <P is not satisfiable then <1> 1 must be valid and conversely. 

Consequently, ,<1>1 is satisfiable iff <I>f /1. ,,( <I>1) is satisfiable. If <P = 
3x<I>1 then there is some interpretation 1r such that <I>1 is true for 1r, 

which includes an interpretation of x as well. Let <P = Mx(<I>1), where 

X is some basis term (irreducible or composite). Suppose, <I>i has 

been constructed. Write it as <Pi[P], making the dependency on the 
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collection of RC terms representing the quantum state, explicit. Then 

qi' is qi~ [p'] where 

p'(jk) = LPi'YXifYXik where 
i 

Pi= L ,(Xi)jp(jk)'-y(Xi)k-
jk 

The Pi are the probabilities of the basis term Xi in state p. The sec

ond formula is precisely the trace formula for probability. The first 

formula is the post-measurement distribution of the states. The terms 

aXijaXik are the components of the projection operator correspond

ing to the state a(Xi)-

If qi is Sxi qil then, qi' is qi~ [p'] with 

From the above construction and the semantics of measurement opera

tors it is clear that qi is satisfiable iff qi' is satisfiable. □ 

Lemma 16 Let B1 = {aL ... , a~J, B2 ={at ... , a~2 }, ••• , Bk= {at ... , a~k} 

be vectors of unit length in en. Suppose we are given the following data. 

1. In each of the sets Bi distinct vectors are orthogonal. This implies, in 

particular that a ~ n. 

2. 

3. A positive semidefinite matrix p such that 

Tr(la))(a;I p) = P] 
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Let m = min{(a = a1 + a2 + · · · + ak),n}. Then there are k bases BI= 
{.Bj 11 ::; j ::; m }, i = 1, ... , k in cm and a positive semidefinite matrix p' of 

order m such the 

(.Bj I .B~) = c;t, i =/= j, and j ::; ai and r ::; a1 

Tr(I.Bj)<.BJI /) = pj, j::; r 

Proof: First we note that if m = n then we simply take Bi = Bi, We 

therefore assume that m = a < n. The subspace spanned S spanned by the 

vectors aj has dimension at most a. Let 'Yl, ... , 'Yk be an orthonormal basis 

in Sand let 
m 

i - "' i O'.j - ~Xjr'Yr 
r=l 

We now define vectors .Bj E cm by 

Then 

.Bi - i jr - Xjr 

m m 

(a}la~) = (L x}s'Ysl L X~t'Yt) = L x}sx~s = (.Bjl.B~) 
s=l t=l s 

(5.19) 

In particular .Bj, and .B; are orthogonal for j =I= r. Hence they can be ex

tended to a basis. The first assertion of the lemma is proved. 

To prove the second observe that any positive definite operator on en 
may be written as 

LPi l1/Ji)(1/Jil, Pi ~ 0 and LPi = 1 
i i 

The operators l1/Ji)(1/Jil correspond to pure states. Hence, if we can find for 

any unit vector 1/J E en a vector 1/J' E cm such that 

then the lemma would be proved. Write 1/J = 1/J1 + 1/J2 where 1/J1 E S and 

1/J2 E Sj_, the subspace normal to S. Then, (a}l1/J) = (a}l1/J1). Since, 1/J1 ES, 
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it can be written as linear combination of 'Yi· Thus if 1/J = Li Yi'Yi let 1/J' be 

the column vectors with Yi· We then have, (a~l1/J) = (.BJl1/J') The lemma is 

proved. 

D 

The construction given in Theorem 12 provides an algorithm for reducing 

a formula of £(P, m, t, M, S) to a formula of ~C. Hence using the results of 

[BKR86] and [Can88] we deduce, as in the last chapter, the following result. 

Theorem 13 A formula of £(P, m, t, M, S) can be decided in exponential 

space. If it is an existential formula then it can be decided in polynomial 

space. 

We note that the two preceding theorems hold for general formulas of 

quantum theory, not just quantum circuits. However, in quantum computa

tion one builds circuits using unitary operators( gates) of some fixed sizes. 

Then it is easy to see that the length of the ~C-formula <I>' of Theorem 12 

is O(l<I>l2). Moreover, it is also clear that, in this case the time complexity 

is O ( I <I> I). Hence, the Grover algorithm which is O ( v'N) using quantum cir

cuits can be classically simulated in time O(N). The complexity result is in 

terms of the length of the formula. In general, the length of the formula may 

be of exponential order in the number of" qubits", or the atomic bases. This 

is the case in case of the Shor algorithm which we discuss in the next chapter. 

We next prove completeness of the axiomatization of £(P, m, t, M, S). 

Theorem 14 The theory Ax(P,m, t, M, S) is sound and complete. 

Proof: The axioms of £(P, m, t, M, S) are valid for any interpretation. This 

is a straightforward but tedious verification. We have discussed this in the 

remarks following the axioms. It is also the case that the inference rules 

are validity preserving in any model. The proof of completeness is more 

involved but it is similar to the fixed-dimensional case dealt with in the 
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last chapter(see lemmas 10, 11, and 12). Consider first a "bare" formula( 

without measurement operators) 4>. Recall that it is homogeneous, that is, 

all probability terms refer to a fixed dimension. Hence, as in Lemma 12 we 

can construct RC-formulas 4>11 and ~ such that 4> is satisfiable iff 4>11 /\ ~ is 

satisfiable. We recall that construction below. 

Given a formula 4> of £(P, m, t, M, S) we construct a formula ~ as in 

Lemma 11. The construction is similar to the one given in Theorem 12. We 

do not assume any ordering of the atomic basis variables. Moreover, since 

we are only interested here in proving completeness we ignore complexity 

issues and give the construction in the full Hilbert space. Let 4> contain 

basis formulas built from basis expressions X 1, X 2 , ..• , Xk of which the 

first s are assumed to be bases appearing in the probability terms. Hence, 

they have dimension N. By assumption, the formula 4> is homogeneous in 

dimension N. It may contain basis terms of some dimension k dividing N. 

Now imitating the construction in Theorem 12 we construct a formula Was 

follows. Let p1 < ... < Pm be the primes dividing N. Let b1, ... , bm be 

new basis symbols such that bi has dimension Pi• For each, irreducible basis 

expression X of dimension a in 4>, let U x be the formula 

Ux = /\ fflij(t(tii (b1), .•• 'tim(bm)), X) = Xij 
i,j 

where a = p~1 • • • p~ 

Let us use the matrix notation for concise representation. Thus, we let U x 

denote the above matrix whose entries are given by Ux(ij) = mij(za,x), 

where za = t( ti1 (b1), ... , tim (bm)). We then let w1 be the formula which is 

the conjunction of all U x, X E 4>. It is easy to see that 4> is satisfiable if 

and only if 4> /\ w 1 is. For, if 4> is satisfiable choose an interpretation 1r which 
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satisfies it and choose bases b1, b2 , • • • which are different from the bases 

appearing in the interpretation. We continue to call the extended interpre

tation 1r. Then 

1r(Za) = {1r{bi)®i1) ® ... ® {1r{bm)®im) and 

mij(za,x) = (1r{Zf)l1r{Xj)) 

{5.20) 

(5.21) 

satisfies '111. The introduction of these distinguished bases makes the book

keeping easier. We may therefore reason with tI> /\ '111 in place of tl>. We 

continue to call the former formula tI>. 

For each such basis bi appearing in tI> we introduce vector variables x; for 

the basis components b;. Recall that the vector variable x; is a shorthand 

for a collection of variables x;k, j, k E {O, ... ,Pi - 1 }. We denote the 

collection of basis components { x;} by xi. For convenience, we suppress 

the dimensions in the summation and other indexed formulas. Now each 

dimension M corresponding to some basis variable appearing in tl>, is of the 

form p{1 • • • pf.r. Let us denote the corresponding tensor product basis by 

Here (x1 )®Ji is the basis consisting of all j1-fold tensor product of vectors x;. 

We recall the definition of tensor product of two vectors X E cm and y E en. 

(
Xl) (Yl) ( X1Y1) x2 Y2 X1Y2 

x= . , y= . x®y= . . . . . . . 
Xm Yn· XmYn 

Note that associativity of the tensor product is implicit. We write the special 

bases (x1)®h ® {x2)®h ® · · · ® (xr)®j, introduced above as X{j1, ... ,jr)

Moreover, since the integers m1, ... , mr are assumed to be relatively prime, 

the integers ni, the dimension of the basis variables appearing in tI> are 

uniquely expressed as product of the mi's. Thus we simply write X{ni)

Note that X{j1, ... , ir) is a collection of "vector" lll<C terms in a particular 
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order. Thus, the first one is the vector term 

j1 times ir times 

Recall that N = p;1 • • • p~r. Let O :::; a ::; N - 1 be an integer. Let 

Pj = NfpY. Then, Pi and Pi are relatively prime. Write a mod Pi in m1 

basis as a;1 mpl ti + · · · + a}p1 + a5. Now replace N by Pi = pt2 • • • p~r , 

Pl by p2 and continue as above. We get a sequence of positive integers 

{ a5, ... , aft, a5, ... , a?2 , ••• , a~, ... , a[r }. This is the representation of a in 

the multibasis {p1, ... ,Pr}. Let xa(N) = x\ @ · · · x\ @ • · ·@ X~r @ X~r . 
¾ ~I O ~ 

Intuitively, the ordered collection xa(N) constitute the (tensor) product ba-

sis in c,N. The intuition that the collection of vector variables xi constitute 

a basis is expressed by the following formula 

Bs = /\ L x~1x:n1 = Ojm 
ij l 

(5.22) 

The formula expresses that for each i the set of vectors x~ constitute a basis 

in C,Pt. Then the "tensor terms" X(ji, •.. , ir) constitute a basis. 

Next, let J C {1, ... , k} be the set of indices such that Xi is irreducible. 

For each basis symbol Xi, i E J of dimension ni appearing in <I> introduce 

JRC-variables Y]i, 0 :::; j, l ::; ni - 1 . Intuitively, Y]k represent the unitary 

matrix that transforms the basis X(ni) to the basis represented by Xi. We 

assume that the ni's are ordered so that n1 :::; n2 :::; • • · :::; nk = N. We write 

the variables Y]i collectively as yi. Let 

Un(Yi) = /\ LY[jY:nj = 81m (5.23) 
lm j 

be the familiar unitarity conditions. Next introduce N 2 variables p = 
{Pij, 0 :::; i, j :::; N - 1} corresponding to the state( density matrix) and 

the formula 

St= LPii = 1 /\ f\ \/xiXj(XiPijXj) 2:: 0 
i ij 

(5.24) 
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Now for each vector variable Xj (N) 0 ~ j ~ N - l we introduce "probability" 

variables Pj and the formula 

Prob(p) = j\(pj ~ 0) I\ LPj = l (5.25) 
j j 

We consider probability variables in N-dimension only because by assump

tion cI> is homogeneous and all probability formulas pertain to this dimension. 

Besides the probability variables for the distinguished variables we introduce 

variables QJ for the probability term P(X;) appearing in probability formu

las. Let 

w = j\(Prob(qi) /\ Un(Yi)) /\ (Prob(p) /\ Bs /\ St)/\ 
i 

j\(pj = Pjj) f\(qJ = LY]kPklYJz) 
j ij kl 

(5.26) 

Now introduce new basis symbols dj for each j E {n1,n2, ... ,nk}- Intu-

itively, we are introducing product bases for each of the dimensions appear

ing in cf>. Let If> be the IRC-formula constructed as follows. We now introduce 

IRC variables z;i, 0 ~ j, l ~ ni for each of the basis expression Xi appearing 

in cf>. dim(Xi) = ni. If Xi is irreducible then let 

F(Xi) = f\ zj1 = yj1 
jl 

Otherwise, Xi is of the form t(Xi1 , Xi2 ). Then, ~ = ni1 ni2 • Define, 

Note that in the above formula it is implicit that each index j(l) is decom

posed as j1jo(lilo) where Ji = r1(j) = lj/ni2 J and i2 = j mod ni2 - Let If> 

be the conjunction of '11 and all F(Xi) constructed above. Let 11>0 be the 

formula of £(P, m, t, M, S) obtained from If> by the following substitutions. 

1. For Pj substitute P(df) and for qj substitute P(X3). Note that Xi 

must be basis in dimension N. 
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2. Substitute mj1(di,Xi) for z;1 and also put mj1(d8 ,X8 } for yJ1 ifs E J. 

The first observation is that ii.,0 is provable in Ax(P,m, t, M, S). The proof 

is similar to Lemma 11. We start with the subformula of iii0 pertaining 

to dimension N. This is a consequence of probability axioms, unitarity 

axioms and MPk. In fact, a similar assertion was proved in the lemma 

mentioned. The extra complication is the possible presence of matrix terms 

in dimensions less than N. If Xi is irreducible then we have instances of 

identity axiom mjt(di,Xi) = mj1(di,Xi) since the same substitution occurs 

for Y]t and z;1• If Xi is of the form t(Xi1, Xi0 ) then ni = ~ 1 nio and the 

corresponding subformula of ii.,0 is 

mjt(di, t(Xi1' xio)) = mj1(t(di1, dio), t(Xi1 'xio)} 

= mr1 (j),r1 (!) ( di1, xi1 )mro(j),ro(!) ( dio, xio) 

But this is an instance of Tensor 3. 

Next, we consider the formula <I>. By assumption it is without meas1,1re

ment operators. Hence, it is obtained by substituting probability terms and 

matrix terms for some variables in an RC-formula G. We construct from <I> 

another RC formula <I>" as follows. 

1. We assume the basis formulas are in canonical form. For probability 

terms P(Xf1 V Xf2 V· · ·V X!m substitute in <I>, the term (qf1 +· · ·+qfm}, 
keeping in mind that dim(X 8 ) = N. 

2. For matrix terms mji(Xa, Xb) we substitute the following 

m1m(Xi,Xj) ++ Z:z!1z1m 
s 

The intuition behind the above formula has been explained before. If 

zi = (zfm) represents the matrix taking the basis di to Xi and similarly 

zj the matrix relating di to XJ ( since ~ = nj, by construction di is 

identical to dJ) then, zit zj is the transformation matrix relating Xi 

and XJ. 
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We can now show that <I> is satisfiable iff <I> /\ <I>" is satisfiable. This is 

similar to the analysis in Theorem 12. I omit the details. We may now 

use arguments almost identical to those in Theorem 9 to show that <I> is 

satisfiable iff it is consistent. 

Now consider first formulas with a single measurement operator. Assume 

that Mb(<I>) is consistent. Then let Xi be the bases in the formula including 

product bases. If <I> is not satisfiable then, since it is a bare formula we 

must have I- -,qi_ Hence from Measure3, I- -,Afb<I>. The formula Mb<I> is 

inconsistent, a contradiction. Hence we may assume that <I> is consistent. 

Let X 1, ... , Xk be the basis terms appearing in <I>. Now, let Xi be new real 

variables not appearing in <I>. Let r = /\iP(bi) = Xi. Then, since clearly 

r is consistent so is the formula <I> /\ r. Suppose, Mb (<I>) is not satisfiable. 

Then Mb(<I>) /\ r is also unsatisfiable. By assumption, Mb(<I>) is consistent. 

Then, Mb(<I>) /\ r is also consistent. From, Measurel it follows that 

I- Mb(<I>) /\I'=* Mb(<I>) /\(1\(Mb(P(Xf) = L,T(Xf, bk)xk))). 
ij k 

Since by hypotheses the left hand side of the implication sign is consis

tent, so is the right side. By Measure2 and Measure3 the right hand 

side is Mb(<I> /\ (/\ijP(Xf) = Lk T(Xf, bk)xk)) and it is unsatisfiable since 

Mb(<I>) is. Arguing as above we may assume that the bare formula <I> /\ij 

((P(Xf) = Lk T(Xf, bk)xk)) is consistent . Hence it is satisfiable. Write 

Lk T(Xf, bk)xk = A{. Let 

rr,p I= 4> /\ (/\ij((P(Xf) = L,T(Xf, bk)xk))) 
k 

Let <I>' = <I>[P(Xf )JA{], that is, the formula obtained from <I> by the sub

stitution of the terms A{ for P(X;). Then from the substitution rule of 

equality 

rr, p I= <I>' 

Recall the semantics of measurement operator( see 5.2). Thus, 

rr,p F Mb(<l>) iff1r,L,1r(bk)p1r{bk) F 4> 
k 
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Let 7r(bk) = lak}(akl and p' = 7r(bk)P7r(bk) = Lk lak} (aklPlak} (akl = 

Lk 11"p((P(bk))) lak}(akl• Then, 7rp' (P(Xl)) = Lk 7rp((P(bk)))l(akl7r(X/)}12 = 

Lk 11"p((P(bk)))T(X{, bk). This means that, for a given interpretation of 7r of 

basis terms and all other variables, 7r, p I= Mb (<I>) i:ff 7r, p' I= <I> i:ff 7r, p I= <I>'. 

But we have just observed that 11",p I= <I>'. Hence Mb(<I>) is satisfiable. 

A similar proof can be given for the operator for selective measurements. 

In the final part of the above proof, where it was shown that formulas 

of the form Mb(<I>) are satisfiable if consistent it was assumed that <I> is a 

bare formula. But from the proof it is easily seen that with hardly any 

modification satisfiability can be proved for consistent formulas with arbi

trary number of measurement operators. Further, instead of a maximal test 

where all the N(=dimension) outcomes are expected, we can generalise to 

non-maximal tests( see Subsection 5.1.1 for the definitions). 

The proof of the theorem is complete. □ 

In this chapter we developed the semantics and axiomatization of 

.C(P, m, t, M, S), a language which incorporates all the fundamental con

structs of quantum theory. In the next chapter we introduce a related lan

guage which is more intuitive for expressing important quantum algorithms 

and protocols. The language .C(P, m, t, M, S) appears to be richer and we 

conjecture that it is possible to express any assertion of quantum theory of 

a given finite dimensional system. 



Chapter 6 

Applications 

This chapter is on applications. In the last chapter some simple examples 

were presented. To deal with complex circuits and protocols we introduce 

a new language C(P, t, M, S, U) to confirm to the circuit model of quantum 

computation. This language is interpreted in the language C(P, m, t, M, S) 

of last chapter. Actually, we modify C(P, m, t, M, S) slightly by changing 

notation. Next, we use the language C(P, t, M, S, U) to express formulas for 

quantum circuits and algorithms. We give a general algorithm for quantum 

circuits including its probabilistic 'output'. In the final section we present 

formulas for the three important milestones of quantum computing and in

formation: Grover search algorithm, phase estimation algorithm (Shor's al

gorithm), and quantum teleportation. We also present a formula that asserts 

the existence of a Grover circuit. Therefore, in principle, we could decide 

questions of existence of circuits with given specifications, at least in small 

dimensions. This is the first step toward design of new quantum algorithms. 

6.1 An alternative formulation 

In this section some extensions to the logics presented in the last chapter is 

given. The reasons for such extensions are as follow. 

1. It is more convenient to use alternative logics for dealing with differ-

173 
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ent classes of problems. These would correspond to fragments of the 

extended logic. 

2. When we deal with axiom systems and corresponding theories the ex

tensions turns out to be conservative [Sho67). Hence, many properties 

of the fragments follow once we prove them for the larger theory. It 

saves the labour of separate proofs. 

3. The fragments roughly correspond to alternative pictures of quantum 

theory. 

First, I define everything in a larger language C(P, t, m, U, M). Then I con

sider different fragments of the theory. Semantically, these fragments cor

respond to equivalent physical pictures. In the Chapter 4 I had described 

an equivalent alternative formulation of the logic that corresponds to the 

Schroedinger picture [Per95)( see Section 4.5), as opposed to the Heisen

berg picture that is implicit in the formulation so far. Briefly, the former 

views the state as dynamically changing and the bases/coordinate systems 

fixed while in the Heisenberg picture the state is fixed and the coordinate 

systems carry the dynamics. In either case the change is mediated through 

unitary transformations. The Schroedinger view is more popular amongst 

the quantum computing community although elegant formulation of mod

els of quantum compute using the Heisenberg picture has been considered 

before[Got99). Throughout this section we assume that there is exactly one 

atomic basis symbol b of some arbitrary but fixed dimension m. The other 

basis terms that may appear in the formulas are generated from this basis 

symbol via the tensor operator. The quantum systems we wish to describe 

by this restricted formalism are the ones we encounter in quantum comput

ing and information. For example, a system with many qubits is described 

by an atomic basis symbol in dimension 2. 
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Recall from 4.5 the definition of equivalent bases: 

n-l 

b ~ c <=> /\ mij {b, c) = Oij 

i,j=0 

175 

and the fact that in a formula, basis terms may be uniformly replaced by the 

corresponding term in an equivalent basis. We adopt the notation of Section 

4.5: let U, V, W, U' etc. (possibly with subscripts) denote new symbols repre

senting unitary matrices of arbitrary dimension. Sometimes, the dimension 

is explicit as u(n). Thus associated with each unitary symbol U in dimension 

n there are n2 variables of ~C written as U(ij), i,j = 0, ... , n - 1. In the 

new notation, for every unitary variable U and basis term b in dimension n, 

Ub will denote a basis term. The intuition is that, since we are considering 

only orthonormal bases, they will always be connected by a unitary matrix. 

Thus, the interpretation of U X is that 

1r,p I=/\ mij{b, Ub) = U(ij). 
ij 

{6.1) 

The components of U X will be denoted by (U X)i. Note that, it is easy to 

translate into the language £(P, m, t, M, S) by simply treating U X as a new 

basis symbol and adding the formula 6.1. Since we have one atomic basis 

symbol b all other basis terms built from tensor operations on this single 

basis and its images under unitary operators. Thus, b and its components 

are such terms and if X is such a term then so are t{b, X) and t( X, b). 

All product basis terms are of this type. A general basis term is either a 

product term as above or constructed from another basis term Y by applying 

some unitary symbol U of appropriate dimension and is denoted by . UY. 

The interpretation of UY is exactly as above. The number of t-operators 

appearing in a basis term is called the t-degree of the term. 

To summarize, we have three kinds of symbols representing bases. The 

basis symbols and terms are defined recursively: 

1. bis a basis symbol and bi, i = 0, ... , m - 1 are basis terms. 
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2. If X and Y are basis symbols and U is a unitary symbol of appropriate 

dimension then t(X, Y) and U X are basis symbols. The corresponding 

terms are written as t(X, Y)i and (U X)i. 

The dimensions and the basis components are unambiguously defined as be

fore. For example, Ubi is to be interpreted as l{U1r{b)i))({U1r{b)i)I, remem

bering that if 1r{b) =No, ... ,,,Pn-1} then U1r{b) = {,,P~, ... , 'lj,~_i} with 'lj,~ = 
Ei U(kj)'lj,k. The important point to keep in mind is that we have only one 

primitive basis symbol b in the modified language. The probability terms 

are defined over basis terms constructed from this symbol. Again, we con

sider homogeneous formulas, that is, formulas in which all basis terms have 

the same t-degree. A general formula is obtained by replacing some of the 

variables in a multivariate polynomials with probability terms. This is ex

actly as defined earlier but with one stipulation: the probability terms are 

constructed over basis terms in some fixed dimension. Thus, for example, 

let basis terms have the form 

Then we could have a probability formula 

But formulas over different dimension are not mixed (see the preceding sec

tion for a discussion) . The tensor opera tor t is interpreted as before. 0 bserve 

the crucial associative property of the tensor product. In general, 

1r(t(X, t(Y, Z))) = 1r(t(t(X, Y), Z)) 

Hence, when we generate product basis terms by iteration of a single atomic 

basis term b, due to the associative property we infer that 1r{t{b, t{b, t{b · · · )))) 

is identical to 1r{X) for any product basis X obtained by rearrangement of 

the t-operator in t{b, t{b, t{b • • • ))). We write tn{b) for the latter if there are 

n, t-operators in the expression. 
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We introduce one more extension. If <I> is a probability formula and 

U is a unitary variable then [U]<I> is a formula of C(P, m, t, M, S, U). The 

semantics of [U]<l> is given by 

The notation [[U]J-1 p(1r{b)] expresses the operation of the unitary matrix 

u-1 , whose entries are the variables U(ij), on p expressed in the basis 

1r{tn{b)) where n is the number oft-operators appearing in the formula. We 

will often drop the square brackets unless we want to emphasize that the 

syntactic operator [U] depends on the interpretation. Since the formulas 

are assumed to be homogeneous this is unambiguous. The dimension of the 

bases is M = mn. Thus, if U = U(ij) and 1r{b) = {ao, ... ,aM-d is a basis 

in and p = 17P) ('lj!I is a pure state with 'l/J = Li Xiai then 

[[U]J-1'l/J[b] = l<P) = L U(ij)xiO!j and 
i 

This action of a unitary matrix on a vector representing the basis component 

reduces to ordinary matrix multiplication of a column vector by an n x n 

matrix when the basis symbol b is interpreted as the standard basis. In 

the case of mixed states represented by a density matrix p expressed in 

the standard basis U acts( by linearity) as p ----+ U pu- 1 . However, I re

emphasize the point that it is the transformation relations (among basis 

or vectors) which are important not the assigned numerical values i.e. a 

particular interpretation. Laws of quantum theory, being valid formulas, are 

of course independent of such interpretations. This essential independence 

of the theory from choice of basis/coordinate system extends to all physical 

theories. 

As was the case in 4.5 one can write semantically equivalent formulas 

without the unitary symbols to replace those containing them. But we 

need some new notation first. Let tn{b) be tensor product of n bases in 
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the above notation. The interpretation is, as usual, in the space cmn. Let 

S = {s1, ... , sk} and Ube a unitary matrix oforder mk then define V = U[S] 

to be matrix of order mn that acts on the first k factors s1, ... , Sk factors 

of the basis tn (b) leaving the rest unchanged. To write an explicit formula 

let Si= i,i = l, ... ,k for simplicity. Let i = Tn-1(i) .. ·ro(i) andj 

Tn-1(j) .. · ro(j) the base-m representation of the integers i and j, 

V(i,j) = V(rn-1(i) .. . ro(i),rn-1(j) .. . ro(j)) 

= {U(rk-1(i) ... ro(i),_rk-1(j) ... ro(j)) if i,j :s; k 

II18r1 ( i)ri (j) otherwise 

The general case may be handled by permuting the indices in the set S to 

bring them to the first k factors and then applying U followed by the inverse 

permutation. This notation will become clear when I deal with specific 

examples. The point is, the matrix U induces the operator U[s1, .. . , sk] on 

the larger space cn1 @ .•. cnk which acts as unit operator on all but the 

factors at s1, ... , sk, This is important from the practical point of view. 

For example, suppose that we have a system consisting of 100 qubits. A 

general unitary operator on this space has order 2100! To design such a 

unitary 'gate' we have to entangle 100 qubits, a task far beyond current 

technology. However, it is an important result that any such gate can be 

approximated by 2-qubit and single qubit gates. The challenge is to design 

an efficient circuit which approximates the desired circuit. To continue with 

discussion on notation, the interpretation of the operator [U[s1, ... , sk]] on 

probability formulas 4> requires that the state be expressed in a product 

basis. Otherwise, it does not make sense. Hence, for formulas of the form 

4>[t(b1, b2, ... , bk)] and for every subset SC {1, ... , k }, [U[S)]4> is a formula 

of £,(P, m, t, M, S, U) interpreted as follows 

1r,p F [U[S)]4>[t(b1 ... bk)] iff 

u-1[S)p[1r(t(b1 ... bk))l F qi 

(6.2) 

(6.3) 
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These definitions require some explanation. First, recall that the no

tation p[1r(t(b1 ... bk))) means that p is expressed in the basis given inside 

the brackets i.e. 1r(t(b1 ... bk)). Let 1r(br) = {la:o} ' ... 'ia:~r-1)}, 1:::; r:::; k. 

Then the basis 1r(t(b1 ... bk)) consists of vectors of the form {la:}i) ® ... ® 

la:t), where the components {j1, ... ,jk} vary over appropriate range i.e. 

0 :::; ir :::; nr. It is convenient to drop the tensor product symbol ® from the 

formalism. This will be often adopted in the subsequent formulas. First, 

suppose that p is a pure state 11/!}(1/!I- The state vector 'lj! can be written as 

1P = L CjJ, ... ,jk ia:)i) ... la:Jk). 
j1 , ... ,jk 

The operator u-1[8] acts on the coefficients Cj1, ... Jk transforming the set 

of indices contained in S and leaving the rest unchanged. As a simple 

illustration, let S = {l, 2}. Then, only the first two indices are affected. 

The matrix U is of order m2. Write the entries of U as U(j1j2, lil2). Then, 

Cj1 , .•• Jk -+ L U(j1h, lib)cji , ... ,jk 

iih 
(6.4) 

The action of U on a general (mixed) state operator extends by linearity. 

Explicitly, let V 11/![b)} denote the action of a unitary matrix Von the vector 

'l/J defined with respect to the basis 1r(b) for some interpretation. Then the 

action of Von the density operator lw}(1/!I is given by 

V. (11/![b)}('lj![b)I) = V(l'l/J[b)}('lj![b)l)V-1. 

This action reduces to matrix multiplication when the basis variable b is 

interpreted as the standard basis. The point is, the unitary matrices of 

interest are constant numerical matrices like the single qubit gate defined 

in the last chapter but the basis variable can represent any orthonormal 

basis in the appropriate Hilbert space. Therefore, the transformation are 

defined with respect to the later. Now a density operator p can be written 

as P = Pl l1/!1}(1/!1I +•••+Pr 11/!r}('l/Jrl with Pl + ... +Pr= l. Then V · (p) = 
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Li Pi V · (l,,t,i) (,,t,il). The special type of unitary operations defined above can 

be written directly by giving the entries explicitly (Eq.6.4). We may treat 

the new notation U[S] as "syntactic sugar" which expands to the latter. But 

notation U[S] is a succinct representation telling us which parts are affected. 

Now we define probability atoms by substituting probability terms in 

some multivariate polynomial as before. A probability formula is a Boolean 

combination of probability atoms. We write cp[Y] for a probability formula 

over basis expression Y. 

Lemma 1 7 Let S C J k = { 1, ... , k}. Let cp be a probability formula over 

the product base tn(b). Then the formula 

is valid in £( P, m, t, M, S, U). 

Proof: The lemma is almost immediate from the definitions. We observe 

that for any basis term Xi 

This is proved first in the case when p = l,,t,)(,,t,I is a pure state. Thus let 

1r(Xi) = lai) (ail- Then by definition 1r(U X)i = U lai} = Lk Uki lak) = I.Bi), 

say. If ,,t, = L Ci lai} then 

Hence 

where l,,t,') = u-1,,t,. But l(,,t,'lai)l2 = Tr(U · pail) and the conclusion of the 

lemma holds in the case of pure state. The general case follows by linearity 

since the trace operator is linear. D 
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The lemma is a formalization of a simple but important notion. As far 

as the probabilities are concerned we may take one of the two alternative 

views. We may consider the state as fixed and the measurement is done 

with respect to the basis {I.Bi)} = lai)}, Alternatively, we may view the 

state transformed by the operator u-1 . The probability distributions re

main same. The equivalence of the two approaches are rooted in the basic 

paradigm of quantum mechanics: it is the probabilities which are the direct 

outcomes of measurement. The state is not directly observable. 

For convenience I summarize the languages discussed so far, along with 

their salient features in a tabular form( see the following table). The lan

guage £(P, m, t, M, S, U) is very general and as seen from the lemma several 

fragments of the language are equally expressive. The reason for considering 

£(P, m, t, M, S, U) is precisely this. Because it is an expansion of all these 

fragments one can easily demonstrate equivalences. Note that, by definition, 

they are all interpreted in the same structure, viz. the infinite dimensional 

Hilbert space of the preceding chapter. The language £(P, m, t, M, S, U) 

roughly corresponds to the interaction picture of quantum theory (see the 

chapter on quantum theory). The fragment £(P, m, t, M, S) corresponds to 

the Heisenberg picture. In contrast, the fragment £(P, t, M, S, U) consisting 

of the probability, tensor, and measurement operators and unitary symbol 

corresponds to the Schroedinger picture. The meaning of the word "opera

tor" is overloaded. On one hand it is meant to represent syntactic constructs 

like the operator t on basis symbols or the operator M on formulas. On the 

other hand, these are interpreted as algebraic operators on appropriate al

gebraic structures. Note also that the measurement operators are common 

to all pictures. The reason is, it is implicit in the present analysis that mea

surement is to be imagined as a classical operation of 'reading the pointer 

value' on a classical apparatus. That is, although this device interacts with 

the quantum system to give the pointer reading, the interaction is outside 

the domain of analysis. We only know that we get definite readings with 
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Language Operators Quantum 
Picture 

£(P, m, t, M, S, U) probability, trans- Interaction 
formation matrix, 
tensor operator, 
measurement, se-
lection, unitary 

£(P, m, t, M, S) probability, trans- Heisenberg 
formation matrix, 
tensor operator, 
measurement, se-
lection 

£(P, t, M, S, U) probability, ten- Schroedinger 
sor operator, 
measurement, 
selection, unitary 

£(P,m) probability, trans- Heisenberg 
formation matrix 

Table 6.1: Summary of languages 

probability distributions given by quantum theory. This view is a watered 

down version of the operational viewpoint of quantum theory which avoids 

the intricacies and pitfalls of quantum measurement theory. Of course, this 

simplistic version does not stand up to rigorous analysis. I refer the reader 

to the literature (e. g. [Per95], [BLM91]) for more sophisticated analysis. 
' 

The logics developed in this work are motivated by quantum computing 

and information (QCI). In the framework of QCI we consider several copies 

of some quantum system. Usually, it is some 2-dimensional systems called 

qubits. Hence, the above formalism with one atomic basis symbol is ade

quate. The fragment that we will adopt for discussing several examples of 

QCI consists of this basis symbol, the tensor operator t, the probability oper

ator P, and the operators [U) over probability formulas for a unitary symbol 
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U, and the measurement operators. We call this language Cn(P, t, M, S, U), 

when the atomic basis symbol is of dimension n. I summarize the semantics 

below. 

1. Let n be a positive integer. Since the formulas are homogeneous a 

typical formula oft-degree k is interpreted in a space of dimension nk. 

Let Hn = en with standard inner product. Then, Cn(P, t, M, S, U) is 

interpreted in the space: 

The inner product in Hn ® Hn has the following property. If lai) = 
I.Bi)® bi) for i = 1, 2 then (a1la2) = (.B1I.B2)b1l,2). 

2. There is only one basis symbol, say b, of dimension n. Now the unitary 

variables are interpreted as matrices of indicated dimension. Thus, in 

[U]ll>[t(b, b)], where q> is a probability formula over the product basis 

t(b, b) = t2(b), U is interpreted as an n2 x n2 matrix. 

Observe that, because the formulas are homogeneous, the extended logic 

is similar to the one presented in last chapter for quantum systems of fixed 

dimension but without tensor product. We will have more about this point 

later. In the next subsection I use the language £2(P, t, M, S, U) to express 

quantum circuits as formulas. 

6.2 Quantum Circuits 

Informally, a quantum circuit transforms a given input quantum state into 

some desired output state. The input is a quantum system of a a finite 

set of qubits. The desired transformation is then a unitary operation. But 

this statement is about as informative as saying that an m-input and n

output Boolean circuit is a function {O, l}m --+ {O, l}n. In the case of 

the Boolean circuits one starts with a finite set or a finite family of gates 

( boolean functions) and tries to build more complex functions or circuits. 
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The 'gates' in the quantum case are some basic unitary operations like the 

ones considered in the previous subsection. But there are some subtleties 

and novelties in the quantum case. Some of these is discussed below. 

First, I give a brief overview of the classical theory of circuit complexity 

(Vol98]. An n-ary boolean function is function { 0, 1 }n --+ { 0, 1}. A family 

of boolean functions is a sequence f = (r) such that r is an n-ary boolean 

function. For example, if An{x1, ... , Xn) ~ Xt, ••. A Xn is the n-input AND 

operation then (An), n = 12, ... constitute a family of boolean functions. A 

boolean basis B is a finite set consisting of boolean functions or families of 

Boolean functions. 

Definition 2 A boolean circuit is a tuple 

C = (V,E,B,a,/3,w,In,Out) 

The pair (V, E) is a finite directed acyclic graph, with vertices V and edges 

E, B is a Boolean basis and a : E-+ N is an injective function. In and Out 

are two finite sets of Boolean variables, /3 : V-+ B LJ IN, and w-+ Out are 

two functions. Further, the following conditions must be satisfied. 

1. If v E V has in-degree 0, then f3(v) is a 0-ary boolean function (i. e. a 

boolean constant from BJ or f3(v) E In. 

2. If v E V has in-degree k > 0, then f3(v) is a k-ary boolean function 

from B. 

3. Let n and m be the cardinality of the set In and Out respectively. For 

every i, 1 ::; i ::; n there is at most one node v E V with indegree such 

that f3(v) = Xi E In. 

4. For every i, 1 ::; i ::; m there is at most one node v E V with outdegree 

0 such that w( v) = Yi E Out. There is a special symbol * E Out such 

that if w(v) is not some Yi then it is*· 
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The sets In and Out contain the input and output variables respectively. 

If v has in-degree ko and out-degree k1 then v is said be a gate with fan-in 

ko and fan-out k1. An edge e = ( u, v) E E is called an input wire of v and 

output wire of u. If (3 ( v) = Xi for some i then v is an input gate. If w ( v) =I= * 

then v is an output gate. For a fixed node v the function a induces an 

ordering of the vertices which have edges into v. Let the cardinality of In 

and Out be m and n respectively. We say that the circuit C with m inputs 

and n outputs computes the function 

Jc: {O, l}m--+ {O, l}n 

defined recursively as follows. If v is an input node then the fanin k = 0. 

Given (a1, ... ,am) E {O, l}m define Valv(a1, ... ,am)= ai for an input node 

v with (3(v) = Xi. If v is not an input node let it have fanin k and let 

v1, ... , v k be the nodes corresponding to the edges directed into v, such that 

a(v1) < ... < a(vk)- Then, 

where (3(v) is a boolean function f. Let Wi be the unique output node with 

w(wi) = Yi· The function Jc computed by the circuit is defined by 

Definition 3 The size of a circuit is the number of nodes in the circuit. 

The depth of circuit is the length of a longest directed path. 

The definition of quantum circuits is similar to the classical except in two 

crucial aspects. The quantum "gates" are unitary operators and hence in

vertible. This implies that the 'fanin' and 'fanout' degrees of a node that 

is not an input/output are equal. The second difference will be explained 

after the following: 

Definition 4 A U-basis is a finite set of unitary matrices. 
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Note that U-basis contains no family of circuits. Now, for the second 

point of difference between classical and quantum circuit theory. A func

tion Jc computed by a classical circuit C may be written as a composition 

of circuit functions corresponding to the basis. That is a general function 

f: {0, l}m ➔ {0, l}n is obtained exactly as composition of some basis func

tions. As both the domain and range are finite sets it is possible to have a 

finite circuit basis. In the case of quantum circuits the functions computed 

are unitary operators mapping en ➔ en. The cardinality of the set of 

unitary operators is 2Na, the cardinality of the real axis. A finite basis is 

thus ruled out since a finite basis will generate at most a countable set of 

operators. What one may hope to accomplish with a finite basis is to ap

proximate, within any prescribed error margin, any given unitary operator 

with a finite basis. A formal definition will be given shortly. 

First, the reason why a U-basis is required to be finite. A general unitary 

operation on n qubits involves entangling the qubits. Entanglement of more 

than 10 qubits poses enormous technical problems and more than, say, 1000 

qubits may prove to be impossible due to decoherence effects. In any case, 

it has been demonstrated that a 2-qubit gate and a finite number of single 

qubit gates are adequate to approximate an arbitrary unitary operator. 

Definition 5 Let H be a Hilbert space and A a linear operator on H. Given 

a real number£ > 0, a linear operator B on H is £-close to A if E(A, B) < £, 

where 

E(A,B) = sup{HA- B) l'lf') 1111 l'lf') II= 1} (6.5) 

The term E(A, B) is called the error in the approximation of A by B. The 

function A ➔ sup{ll(A - B) l'lf') 1111 l'lf') I = 1} is a norm on the set of oper

ators on H [HJ90]. Hence, E(A, B) may be viewed as a distance between 

the matrices A and B. One may also use other matrix norms to define ap

proximations. But in a real experimental situation in regard to a quantum 

systems we usually deal with probability distributions. Suppose, we have an 

n-dimensional quantum system S and want to verify a claim that a unitary 
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operator B approximates A within an error bound less than 10-6 . If we 

have efficient algorithms for computing entries of A and B then an error 

estimate is easy. But if we do not have such knowledge and want to use 

our ensemble of quantum systems to test the claim, then a direct approach 

would be to prepare copies of S in some initial states chosen from a ba

sis B and apply A to half of the copies and B to other half. A complete 

measurement in B would yield probability distributions corresponding to A 

and B applied to the initial state. Therefore, it would be useful to define 

approximation directly in terms of probability distributions. After all, the 

unitary operators have to be realized in a real physical situation and such 

that their application have observable consequences consistent with the the

ory. A simple example will illustrate my point. The unitary operator eia In 

for real a multiplies every vector by a phase eia. We do not distinguish 

between a state I~) and eia I~) since the probability distributions in the two 

situations are identical. Therefore, no measurement can possibly detect that 

a unitary operation has been performed. A deeper reason for this invariance 

follows from the fundamental principle that shifting the origin of the time 

coordinate cannot have any observable consequence in an isolated system. 

The operator corresponding to this constant translation of time coordinate 

is precisely of the form eiain. Setting a= 1r we get the operator -In, This is 

identical to the identity operator as far as the probability distributions are 

concerned. But according to the definition 5, since ll(Jn - (-In)) I~) II = 2 

the two operators are not even close! 

I therefore, propose below an alternative definition in terms of probabil

ity distributions. In the following U and V are unitary operators on some 

Hilbert space H of dimension n. 

Definition 6 Given E: > 0, two unitary operators U and V are said to be 

E:-approximate {t:-app in short) if for every unit vector I~) 
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Note that 

The first inequality is an instance of Cauchy-Schwartz inequality and the 

equality follows from the fact that U and V are unitary operators and hence 

norm preserving. Consequently, the first inequality in 6.6 always holds. For 

any two unitary matrices U and V on a Hilbert space H and 'fjJ E H, let 

(6.7) 

We first note that if U' = eixu, for some real x, then D,p(U', V) = D,p(U, V). 

In particular, D,p(U, U') = 0. This implies that two unitary operators differ

ing only by a phase factor are arbitrarily close. Let us define an equivalence 

relation on the set of unitary operators, 

u ~ U' iff U' = eixu for some real X 

Let Un be the set of equivalence classes. From the above discussion we see 

that D,p is well defined on Un. Let 

D(U, V) = max{ Jn,p(U, V)lll'l/JII = 1} 

Then we have the following 

Theorem 15 For any vector 'ljJ EH, D is a metric on Un. 

I omit the proof since it is not essential to later developments (see (Pat06]). 

Also note that the definition of €-approximation for two unitary operators 

may be recast as 

D(U,V) <./i 

First, I prove that this definition for approximating one unitary operator 

by another is equivalent to the standard definition 5 , provided we make a 

minor modification stated below. Call two unitary operators U and V €

close up to a phase, if there is a complex number eia, a real such that when 

V is replaced by eiav equation 6.5 holds. 
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Theorem 16 If two unitary operators U and V are e-app then they are 

c..j£ close up to a phase for some c > 0, independent oft: and the dimension 

of the space. Conversely, if they are t:-close then they are t:2 approximate. 

Proof: Let the unitary operators U and V be e-approximate. First some 

immediate consequences of the definition: 

Let 11/J) EH and put I</>) = vtu 11/J) = W' 11/J). Let B = {ai}f~l be any 

basis. Since Li l(ail</>)12 = 1, putti~g 11/J) = Oi in equation 6.6 we get, for 

o::;i::;n-1 

0::; 1 - l(ailW'lai)l2 < t: ⇒ L l(ajlW'lai)l 2 < t:S (6.8) 
j,f:l=i 

Also note that 1(1/JIUtVl1/J)I = 1(1/JIUtVl1/J)I ~ 1(1/JIVtUl1/J)I-
Now we choose a special basis. An operator A is called normal if AAt = 
At A. Hermitian and unitary operators are normal. It is a standard result 

in linear algebra that there is an orthonormal basis such that each basis 

vector is an eigenvector of the normal operator A [HJ90). Call this the 

diagonalizing basis. Since W' is unitary it possesses such a diagonalizing 

basis, say {,Bi}~-1. It is easy to see that eigenvalues of any unitary operator 

lie on the unit circle in the complex plane. Hence, let 

W' I.Bi)= eiO\ I.Bi), i = 0, ... ,n -1. 

Using e-iOo V instead of V in the approximation we get a new operator 

W = e-i9ovtu = e-i9oW'. It follows immediately that 

WI.Bo) = I.Bo) and (6.9) 

WI.Bi) = i<9:-9o) I.Bi) = eiO; I.Bi) for i = 1, ... , n - 1. (6.10) 

For any vector 11/J) = I:f::°l Xi I.Bi), 

(1/JIWl1/J) = L lxil2eiO;, 0o = 0. 
i 

(6.11) 
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As U and V are .s-app it follows that 

1 -1(1PIWl'l/J)l 2 = 1 - I L lxil 2eiO;l 2 = 
i 

= 1 - (L lxil 2 cos(0i)) 2 + (L lxil 2 sin(0i)) 2 < .s 
i i 

(6.12) 

Now apply the above relation to a unit vector 14>) = xo lao) + Xi lai), i -:/- 0. 

First, lxol 2 + lxil 2 = 1 and the other coefficients are zero. Recall that 0o = 0. 

l(<t>IWl</>)1 2 = (lxol 2 + lxil 2 cos(0i))2 + +(lxil 2 sin(0i))2 

= lxol 4 + lxil4 + 2lxol2 lxil 2 cos(0i) = 1 - 2lxol 2lxil 2 (1 - cos(0i)) 
(6.13) 

To derive the last equality we use lxol 2 lxil 2 = 1. By hypothesis l-l(<t>IWl</>)12 < 
.s. Hence, the above equation implies 

(6.14) 

This relation must hold for any choice of xo and Xj as long as they satisfy the 

constraint lxol 2 + lxil 2 = 1. In particular, it must be true for the maximum 

value 1/4, of lxol 2 lxil 2 . Hence, 

1 - cos(0i) < 2.s. (6.15) 

Now, let l'l/J) = Li Xi I.Bi) be an arbitrary unit vector. According to the 

definition 6.5 the error in approximating U by another unitary operator V 

'.s- close' to it is 

E(U, V) = max ll(U - V) l'l/J) II 

= max (('l/Jl(U - v)t(U - V)l'l/J)) 112 

= max (2(1- Re(('ipl1/tUl'l/J)))) 112 

= v'2max (1 - Re(('l/JIWl'l/J))) 112 

n-1 

= v'2max (1 - (L lxil 2 cos(0i))) 112 

i=O 

= v'2max (L lxil 2{1 - cos(0i))) 112 

i 

(6.16) 
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Hence, using the estimate 6.15 we get 

E(U, V) = hmax(L lxiJ2(1 - cos(0i))) 112 < 2v'€L lxil2 = 2y'€ 
i i 

The first statement of the theorem is proved. To prove the second statement 

assume that E(U, V) < c:. Then, from the equations 6.16 it follows that 

1 - Re( ('ljJIWl'ljJ)) < c:2 /2. Therefore, 

1 - l('1jJIWl'1jJ)l 2 = 1- (Re(('ljJIWl'ljJ))) 2 - (Im(('ljJIWl'ljJ)))2 

:::;1 - (Re(('ljJIWl'ljJ}))2 = (1 + Re(('ljJIWl'ljJ)))(l - Re(('ljJIWl'ljJ))) 

:::; 2(1 - Re(('ljJIWl'ljJ))) < c:2 

(6.17) 

The theorem is proved. D 

We thus see that the present definition of unitary approximation, based 

on observable probability distributions, is weaker( 0( y'e) than the standard 

one. The reason is in the definition of c:-app involves the square of amplitudes 

('ljJIWl'ljJ). It is also clear that the verification of two definitions, c:-close 

and c:-app has the same classical complexity. However, in a hypothetical 

quantum computer we may simulate the unitary operation W as follows. 

Recall that W = vtu. Suppose we are given two circuits C1 and C2 which 

implement unitary operators U and V respectively. Now, prepare ensembles 

in some basis as input and apply them to the output nodes of C2 and the 

resulting output at the input node of C2 is applied to C1 's input nodes and 

a measurement in the same basis is done at the latter's output nodes. Do 

these for different independent bases. If the probability distributions satisfy 

the condition for c:-approximation we are done. The definition 6 fits in 

neatly with the logics developed in this work. Its usefulness will be further 

demonstrated in the developments of quantum circuits below. 

Definition 7 A quantum circuit or Q-circuit, for short, like its classical 

counterpart is defined as a directed acyclic graph with the nodes labeled by 
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unitary gates from some U-basis. More precisely, let Tn = {x1, ... , Xn} and 

Sn = {y1, ... , Yn} be two sets of boolean variables. Then a Q-circuit with n 

inputs is a tuple, 

Here, (V, E) is a finite directed acyclic graph, a : E -+ { 1, ... , n}, U B is a 

U-basis, MB is a set of measurement operators, F: {O, l}n -+ C and Gk : 

{O, l}k -+ C, /3: V-+ UB U {x1, ... , Xn}, and w: V-+ {y1, ... , Yn} U { *} U 

MB such that the following are satisfied. We write, F(x1, ... , xn) and G(y1, ... , Yk) 

for the two functions. 

1. If a node has non-zero in-degree and out-degree then they are equal. 

2. First we define the level of node in v E V. If it has in-degree O then 

its level l(v) is zero otherwise it is the length of the longest path from 

some input node. Then, for nodes at a fixed level a is injective when 

restricted to edges going into those nodes. 

3. If a node v E V has in-degree 0, then {3(v) E {x1, ... ,xn}- If it has 

in-degree k > 0 then {3(v) E UB is a unitary operator of order k. 

4. There is exactly one node with {3(v) = Xi. Similarly, there is exactly 

one node w with w(w) = Yi· However, there could be several nodes 

with w(w) =ME MB, Each such measurement Mis actually a col

lection of projection operators (we consider only such measurements) 

{IIi} such that Li Ili = 1. 

5. 

IF(x1, ... , Xn)l 2 = 1 and 
x1 , .. ,,xn=0,1 Yl , .. ,,yn=0,1 

If there are no measurements and the function w is onto then 

YJ, .. ,,yn 
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The function a induces an ordering among the vertices which have edges 

going into given vertex v. The function Fis the input function that assigns 

to each value of the boolean tuple a complex number such that the above 

equation is satisfied. That is, it defines a unit vector in C2n. Similarly, the 

family of functions { G j} define a basis in which the final readout is carried 

out. The condition that in-degree ( if not zero) be equal to outdegree reflects 

the fact that all gates are reversible. The function w labels the outputs which 

are measured. It is assumed that the operators I2, the identity operator of 

order 2 belongs to U B so that we may add a node which is labeled by a gate 

that leaves the input unaffected. For simplicity, I have assumed that all 

possible n outputs are measured. Let us now define the function computed 

by the Q-circuit before the final measurements. This is done recursively on 

the levels. Define 

Let v1, ... , Vk be nodes at level r and let Viji, ... , Viji be the nodes that 

precede vi. Let f3(vi) = Ui, Recall that for a unitary operator operator of 

order m :-=:; n and {i1,.,,,im} ~ {1, ... ,n} the notationU[i1,,,.,im) means 

that U is applied to the qubits at { i1, ... , im}, Then, 

Cr(xi, ... , Xn) =U1[a(v1, V1j1 ), .•• , a(vi, V1jJ) · · · Uk[a(vk, Vkj1 ), ... , a(vk, Vkjk)] 

Cr-1(x1, ... ,xn) 

Let m be the highest level. Then the function computed by C is given by 

Figure 6.2 gives the diagram of the teleportation circuit with measure

ment at the end. We will discuss teleportation later. 

The size and depth of a Q-circuit is defined as for the classical circuit. 

The number of nodes (gates) in the circuit is its size and the depth is the 

length of a maximal path from the input to the output nodes. From the 

above definitions the maximum level of a circuit equals its depth. All the 

gates are reversible. Let us focus on a special class of classical circuits. 
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11/J) --------1H1-----+------1rl-._ 

IO) Hf-----e.........fif+------41>-------11---1rl-._ 

I o) ----+H----------1 11/J) 

Figure 6.1: Quantum teleportation circuit with measurement at the end 

Recall that a classical gate is a function g : { 0, l}m ~ ( { 0, 1 }n. The gate 

g is called reversible if it is a bijective or invertible function. It is a well 

known result that any boolean circuit can be efficiently constructed using 

reversible gates only. We may have to use some auxiliary bits and read 

the output at some of the nodes only. For example the Fredkin gate is 

reversible, conservative and universal [FT82]. If we include all the auxiliary 

bits then a circuit comprised of reversible gates computes a bijective function 

g: {0, l}n ~ {0, l}n, for some n equal to the number of inputs (and the 

number of outputs). The set of all such invertible functions constitute a 

group G. A finite set of invertible functions is universal if it generates G. 

Since G is finite we always have a finite set of generators. Analogously, in 

the quantum case the relevant group is the group of unitary matrices of 

some fixed dimension. It has uncountably many elements. Hence it cannot 

be finitely generated. Therefore, with a finite set of unitary matrices (the 

U-basis) we can only approximate an arbitrary unitary matrix. That is, an 

arbitrary unitary matrix of order 2n (n-input circuit) can be approximated 

as a product of matrices from the U-basis. Some examples of U-bases are 

UB1 = {H, S, C, T} 

U B2 = {H, S, C, Tof} 

(6.18) 

(6.19) 

Note that the gates in the above case are 1 qubit( H, S), 2-qubit(C), or 

3-qubit(Tof). When such gates are applied to n ;:=: 3 qubits it is implicit 
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that the other qubits are unchanged which is pictorially represented by a 

'quantum wire'. A wire is therefore, a unit matrix. 

6.2.1 Formulas for Quantum Circuits 

In this subsection the developments of the preceding sections are used to 

write formulas for quantum circuits. The most convenient language for the 

task is £2 ( P, t, M, S, U). Broadly, there are three stages in the construction 

of a quantum circuit. The steps in the following algorithm for translating a 

quantum circuit into a formula of the language corresponds to these. Assume 

we are given some U-basis UB. We are going to construct a circuit with n 

inputs. 

Algorithm 1 {Representing Q-circuits as formulas) We use the no

tation in Definition 7. 

1. We recall that the notation tn(b) is a shorthand for the basis t(b(b(· • • ))). 

The formula for the initialisation is simply 

(6.20) 

This corresponds to the input gates. That is, the formula corresponding 

to level O is defined. Note also that from the semantics of the language 

tn(b)o can be interpreted as the first vector of any (ordered} basis. 

2. Next we define formula for the level 1. 

Let ( vt, vt ... , v}1 ) be the nodes at level 1 and let /3( vJ) = Ujl), 1 ::::; 

j ::::; i1. Further, if e}1 , e}2 , ... , e}ri be the edges directed into ( vJ) 
let SJ = {a(e}1), ... ,a(e}r),j = l, ... ,ii}. Then, {St, ... ,S}1 } are 

disjoint subsets of Jn = { 1, ... , n} 

The formula corresponding to output of level 1 is 

<l>1 = [Uf)t[Sil] ... [ugH[S}J](j\(P(tn(b);) = x;)) 
j 

(6.21) 
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Here, the index j, as usual, indicates basis components. The operator 

corresponds to ut = u-1 instead of U because then the latter operates 

on the state. The meaning of the syntactic operator [Ut] is as follows. 

Recall that [U] is a an ordered collection of variables U(ij). Then, 

[Ut]<I> is a shorthand for [V]<I> /\ (Ai V(ij) = (U(ji)). The second 

conjunct is a formula of JR.C. The range of j is as yet unspecified as 

are the real variables Xj. This range corresponds to the qubits on which 

the final observation/measurement is made. 

3. Suppose <Pk is the formula corresponding to the output of the circuit 

at level k and let {Sf, ... , s:k} be disjoint subsets of Jn such that Sf 
is the range of the mapping a when applied to the edges going into the 

gate ut at level k. Then, 

(6.22) 

An important point to be noted is that the matrices u?)[Sf], i = 
1, ... , Tk in level k commute among themselves. Therefore, the order

ing of the matrices in a fixed level does not matter. Let <I> be the final 

formula after all the levels, i. e. , when the output nodes have been 

reached. 

4. The final step is a measurement (if necessary) in some basis Vb, usu

ally the computational basis. In that case, the unitary operator V is 

the unit operator. Otherwise, the function w specifies the measurement 

basis. However, in all the examples that we deal with it the measure

ment is done in the computational basis b. For simplicity, we will 

assume this. I assume that measurement is deferred till the end. This 

does not change the statistics of relevant qubits [NC01}. The circuit C 

is represented by 

C ~f In /\ <I> /\ X, (6.23) 

where X is a formula of JR.C. We do not specify X at this stage and 

allow it to be any formula of JR.C. However, in a concrete situation 
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it express some relation among the IRC-terms that appear in <I>. Intu

itively, X would express relations among the probabilities and entries 

of the transition matrix. 

Several observations regarding the algorithm are in order. 

1. A quantum circuit may be considered as the approximation of a uni

tary matrix V oflarge order(~ 2n) by gates from the U-basis ( usually 

single or 2-qubit gates). A classical circuit computes a boolean func

tion {O, l}n ➔ {O, l}m whereas a quantum circuit computes a function 

]Rn ➔ ]Rn before any measurements. The formula representing a cir

cuit computes precisely this function. However, the formula in fact 

expresses more. The output of a quantum circuit is not a determin

istic real or boolean vector but random vector. If we consider the 

outcomes of final measurements we can only talk about probabilities. 

The formula given by the above algorithm actually gives the proba

bility distribution as the result of applying the unitary gates in the 

circuit. I will further illustrate this when we discuss concrete cases. 

2. The measurement operator at the final stage of the algorithm is often 

not necessary precisely because it is the last operation. What is of 

interest is the probability distributions of the outcomes- the states in 

the measurement basis. These probabilistic predictions are adequately 

described by the probability operator. The actual circuit consists of 

the unitary operations. The probability operator captures assertions 

about the behaviour of the circuit. In the rest of the section it is 

assumed that formulas for quantum circuit are without measurement 

operators unless stated otherwise. 

3. As mentioned earlier, the logics developed in this work express much 

more than conventional quantum circuits. For example, it is possible 

to do universal quantum computation using measurements as basic 

resource [Nie03]. Behaviour of such models can also be expressed in 
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the logics developed. Besides, the measurement operators enable one 

to express some sequential circuits. I will come back to this point later. 

4. The unitary operators are the basic building blocks of Q-circuits. We 

have symbols [U] for an operator in the logic which abstracts away the 

essential properties of unitary operators, somewhat resembling modal 

operators corresponding to atomic programs in dynamic logic [Har79]. 

The operator [U] has associated with it n2 operators [U(ij)] of complex 

sort in dimension n. Unfortunately, this reference to individual entries 

cannot be avoided as the probabilities depend directly on them. This 

is included in the RC formula X. For example, we always have the 

unitarity condition 

L U(ij)U(ik) = 8jk 

i 

The matrices/gates corresponding to the U-basis given above (the 

Pauli matrices, Hadamard matrix, CNOT-gate etc. ) will be treated 

as defined constants. 

Two special type of formulas corresponding to different aspects of the 

behaviour of circuits are given below. 

Circuit Equivalence 

Suppose we want to capture the fact that two quantum circuits have iden

tical behaviour with respect to all inputs. Recall that a quantum circuit 

without measurements is a composition of unitary operations and hence it

self a unitary operator. Further, I restrict to qubit circuits and hence the 

dimension is 2k if the number of qubits is k. We introduce the following 

formula for a given a quantum circuit C. From the developments of the 

previous section a circuit C (without measurement) is of the form 



6.2. QUANTUM CIRCUITS 199 

Where, q> is a probability formula and X is a formula of IR<C. Let Cu denote 

the 'unitary' part of G. That is, Gu= [Ui] ... [Uk]- That is, 

Then et is the expression [U!] ... [Ui]. One may visualize et as Gu reversed, 

that is, the output nodes of C are the input nodes of et and vice versa. Of 

course, to preserve the reversible nature of Q-circuits all output nodes of C 

must be used, including the ancillary 'garbage' qubits. This notation will 

prove very useful for expressing circuit behaviour. We should consider two 

circuits C and C' equivalent if and only if for any probability formula <I>, 

DI\ D' ==> ([Gu]<I> {:} [G~]<I>), 

is valid. Here, D (resp. D') are JRC-formulas that include definitions of the 

unitary operators in C (resp. G'). It is intuitively obvious that this must be 

the case since the unitary operators corresponding to C and C' transform 

any given state into the same state. Assuming that both are k input circuits, 

in the language .C2(P, t, M, S, U) this is elegantly captured by the validity 

of the following: 

(6.24) 

It is clear that this formula follows from equivalence of C and C' since they 

must be the same unitary operator. Conversely, if formula 6.24 is valid 

then it must be true for any interpretation 7T of the basis of basis b in 2 

dimensions. Now for every such interpretation tk(b) is interpreted as the 

product basis. Since the formula is assumed to be valid it must be true in 

every state. The left side of the implication in exactly one conjunct, say 

P(tk(b) )i = 1, is true at the state 1r(bin-i)@ · · ·@ 1r(bi0 ), where in-1 · · · io is 

the binary representation of the integer i (possibly padded with 0's). Thus, 

evaluating the formula successively at the basis states it is clear that et G~ 

acts as the unit operator on basis states and hence all states. The validity of 
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Figure 6.2: Equivalent circuits 

formula 6.24 will be taken as the definition of equivalence of two circuits C 

and C'. Verification of equivalence of two circuits then reduces to verifying 

if the matrix product et C' reduces to the unit matrix. 

Here is an example. The 3-qubit Toffoli(Tof) gate can be implemented 

using the Hadamard(H), phase(S), the 1r/8(T), and CNOT(C) gates. 

f\ P(t3(b)i) = 1 => 
i 

[Tojf)[H[3]](C[2, 3]](Tt[3]](C[l, 3]] 

[T[3]] [ C[2, 3)[Tt [2]]T[3)[H[3]] [ C[l, 2]] [Tt [2]] [ C[l, 2]](T[l ]] [ 8[2]] (P( t3 (b )i)) = : 
(6.25) 

The figure 6.2.1 is the circuit digram showing this equivalence. The boxed 

circuit is the Toffoli gate, which happens to be its own inverse, and the 

circuit on the right of the box is its equivalent. Of course, verifying exact 

circuit equivalence of two circuits on a classical computer is simply a matter 

of multiplication of matrices. In general for an n-qubit circuit the number 

of basic computations (addition and multiplication) may be of the order 

exp(n), since the order of the matrices is 2n. But with a quantum computer 

it can be done in O(n) steps with provided we can implement all the gates 

exactly. 

Approximate Equivalence 

The equivalence of two circuits discussed above is exact. Far more interesting 

is the notion of circuit approximation or approximate equivalence Definition 

6. Two circuits C and C' with k inputs are defined to be c-approximate, 

for some given c ~ 0 if the following formula is valid. First, let us fix some 
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notation. Recall that in a formula [U]4>, the operator [U] is interpreted as 

an ordered collection of variables. In the context of a quantum circuit we 

assume that all the unitary operators( =gates) are from a given collection, 

the unitary base. Therefore, we may freat [U] as collection of variable free 

terms of ~C. More accurately, 

1r, p J= [C]4> iff 1r, p J= [U1] · · · [Uk]4> /\ De 

where De is an ~C-formula which specifies the entries Ui(lm) of the unitary 

operators. That is, it substitutes ~C terms for the variables corresponding 

to [Ui]-

(6.26) 

In the above formula tk(b) can be interpreted as a k-fold tensor product 

of the basis 1r(b) where 1r is an interpretation in 2 dimensions. Therefore, 

.to ensure that some probability formula be valid in all bases we have to 

transform the product basis to an arbitrary basis. The formula 6.26 is 

indeed equivalent to the formula 6.6 for circuit approximation. The proof is 

formalized below. 

Proposition 3 Let C and C' be two circuits with k inputs and let Cu ( resp. 

CU denote the corresponding unitary operators. If the formula 6.26 is valid 

then for any state 11/J) E (C2 )®k 

is true. 

Proof: The formula 

F = [U](P(tk(b)o) = 1) =} [C!l[C~l[U](P(tk(b)o) > 1 - c) 

is valid iff it holds for all interpretation 1r of the basis symbol b, and the 

variables Xij and for all states p. Write 1r(bo) = ao, 1r(b1) = a1. To simplify 
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notation, if ak-1 ... ao be the unique binary representation of length k, for 

an integer i, 0 ~ i ~ 2\ let Ii) denote the vector la:ak_i) ® ... ® la:a0 ). 

As long as the atomic basis vectors a:o, 0:1 are clear from the context this 

notation is unambiguous. Now 

1r,p F [U](P(tk(b)o) = 1) ⇒ [C!][C~][U](P(tk(b)o) > 1- e:) 

implies 

Now, ut · p F P(tk(b)o) = 1 iff ut · p = IO) or p = U IO)(OI ut. This simply 

means that, p is the pure state obtained by applying the unitary U to IO). 

Let '1/J = U IO). Then, from the semantics of the probability operator P it 

follows that 

utcuc~t · (IO)(OI) F P(tk(b)o) > 1 - t: iff 

o ~ 1 - l('I/JICuc~tl'I/J)l 2 < e: 

Any vector l'I/J) can be reached by a unitary 'rotation' of the vector IO). Since 

the formula 6.26 is assumed to hold for any unitary operator Uthe propo

sition is proved. D 

6.3 Quantum Algorithms 

In this section we discuss the representation of some of the most important 

algorithms in quantum computation and information. First, observe that we 

can generalize the notion of circuit approximation, formula 6.6 by demanding 

it be true only for some particular inputs, say IO). Explicitly, let la:) be a 

fixed state. Define two circuits to be t: approximate in state la:) if 
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The Grover circuit (Gro96) G is an example of this sort of approximation. 

I discuss the circuit below. 

The Grover algorithm 

In the language £ 2(P, t, M, S, U), the formula representing the Grover search 

circuit (Gro96) G is 

G =P(tn+1(bo)) = 1 /\ µ(V, H, Oq) * 
[V[Sn]Oq]k[H[l)] ... [H[n)][HX[N + l))(P(tn+1(b)ao V tn+1(b)a1) > 3/4) 

(6.28) 

Strictly we should call it the the Grover theorem since it is an assertion 

about the probabilistic output of the circuit. It is a quantum search algo

rithm. It works as follows. Given a number a in the range (0, N], and an 

oracle which 'recognises' the number, the algorithm transforms a fiducial 

quantum state IO} into the state la} with probability> 1/2 in time O(.Jlii)( 

=the number of calls to the the oracle). The oracle's function is to transform 

a particular state( la}) leaving the others unchanged. Let us see some plau

sible implementation of the oracle in the classical context. Let us suppose 

we want to solve the satisfiability of a boolean formula F of n variables by 

brute search through a solution space. It is a very well-known NP-complete 

problem. Whatever the algorithm, the verification of an alleged solution can 

be done in polynomial time, given that the length of the formula is bounded 

by some polynomial in n. Thus, we have an oracle Turing machine which 

takes as input a number xo between O and 2n and answers whether xo, writ

ten as binary string of length n, is a truth assignment such that F evaluates 

to true. One may assume that the oracle performs this verification in a 

single step( 0(1)). This assumption does not affect the essential feature of 

the problem since we only have to multiply the number of times the oracle 

is called with an appropriate estimate of the actual time the oracle takes to 

get the final complexity. The details about the oracle are unimportant as 

long as we are assured that a polynomial time oracle exists. Coming back to 
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the search problem we simply assume that the classical oracle "recognises" 

the number a. That is, Oc is a boolean function {0, l}n ➔ {0, 1}, such that 

That is Oc(x) = 0 for all x except a for which it is 1. 

The Grover algorithm G, makes use of a quantum version of such an 

oracle. In more detail let, N = 2n and a E [0, N] be given. Let B = 

{10), ... , IN - 1)} be the computational basis for a system of n qubits. Re

call that, when a nonnegative integer i in the interval [0, N - 1] is written 

as a binary string of length n, Ii) is the vector which is the tensor product 

of the corresponding states of the individual qubits. For example, if n = 3, 

12) = 1010} = I0)@ II)@ I0). So far, the situation is identical to the classical 

description. The quantum nature of the system emerges when we admit 

states which are superposition of classical states. The quantum oracle is a 

unitary operator Oq of order 2N = 2n+l such that, 

Oq Ix) lr) = Ix) lr + Oc(x)). {6.29) 

· Here, Ix) and lr) are n-qubit{ dimension=2n) and single qubit vectors re

spectively. The matrix Oq is 2N x 2N given by 

Oq(ij) = c5r1(i)r1(j)[c5ro(i)ro(j){l - c5r1(i)a) + {1 - c5ro(i)ro(j))c5r1(i)a] 

Here ro{i) = i mod 2 and r1{i) = [i/2], the greatest integer ::; i/n. The 

Grover circuit is first described informally[NC0l]. Although, popularly 

known as Grover algorithm it really is a circuit with probabilistic output. 

1. Prepare an initial state IO)®(n+l). 

2. Apply H®n to the first n qubits( reading from right) and HX to the 

last. Recall that H is the Hadamard matrix and X is the Pauli-X 

gate, both of order 2. The notation IO)®(n+l) stands for the (n + 1)

fold tensor product of I0). Similarly, H®n is then-fold tensor product 

of the matrix H. Simply put, we apply H to each of the first n qubits 

and HX to the last. 
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3. Let Iv-,) = ffi L~c/ Ii) be the state which is an equal superposition 

of all the states in computational basis. As I have explained above 

the numbers i are written as binary strings of length n and Ii) is the 

product of the corresponding single qubit states. Equal superposition 

implies a measurement in the computational basis will yield the results 

Ii) with equal probability( =1 / N). Define the operator 

V = 2 lv-,)(v-,1- IN. 

which is a reflection about the plane perpendicular to Iv-,). Its matrix 

with respect to the computational basis is given by 

V(ij) = 2N-1 - 6ij, 

that is, V has off-diagonal entries 2N-1 and diagonal entries 2N-1 -1. 

Now apply Oq to the output of step 2 and then V to the first n qubits. 

Call this combined application of Oq followed by V the Grover operator 

G. 

4. Measure the output la) after ,IN applications of G. 

Assertion. The result of the measurement in the computational basis will 

yield la) with probability ~ ¾ for N > 200. These bounds can be improved 

depending on the number of iterations but for the present they suffice for 

the purpose of illustration. 

Now apply Algorithm 1 to construct a formula for the Grover theorem. 

We write theorem instead of circuit because the formula actually expresses 

the probabilistic predictions of the circuit, that is, the assertion above. Let 

us construct the circuit in line with the circuit construction algorithm given 

in the section. 

1. The initial state is specified with certainty or in other words with 

. probability 1. There are n + 1 qubits including one ancillary qubit. 

In= P(tn+l(b)o) = 1. 
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The basis is the ( n + 1 )-fold tensor product basis of the 2-dimensional 

basis denoted by b. The unitary base consists of the operators H, V, and Oq. 

All the operators are their own inverses since they are hermitian. 

2. The Hadamard operator H is applied to first n qubits and X H applied 

to the last. 

[H[l]] ... [H[nll[H · X[n + l]]cI>, 

where H-X is the product of the matrices Hand X and the unspecified 

formula cI> is the probabilistic assertion. 

3. Apply Oq followed by V to the first n qubits. Repeat this k = [v'N] 

times. Let Sn= {1, ... , n}. 

[H[l]] ... [H[n]][H · X[n + 1]] [V[Sn]Oq] ... [V[Sn]Oq] cI> 

k times 

4. The formula cI> asserts that the probability of obtaining la} is ~ 3/4. 

Hence cI> is simply, 

P(t(tn(b)a, T)) ~ 3/4. 

There are a couple of points worth noting. The first is that we do not 

require that an actual measurement be performed, only the probability 

of a particular outcome if such a measurement were to be performed. 

The second point is that, since we started with n + 1 qubits and mea

sure only the first n, the state of the last qubit is immaterial. 

5. Putting it all together, the formula for Grover theorem is given by 

G =P(tn+1{bo)) = 1 /\µ(V,H,Oq) ⇒ 

[V[Sn]Oq]k[H[ll] ... [H[nll[HX[N + l]]{P(tn+l{b)ao V tn+1{b)ai) > 3/4) 
{6.30) 

Note the difference in the probability term P(tn+l(b)ao vtn+1(b)a1 from that 

given above. We are only interested in the first n qubits, the last one being 
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an ancillary qubit. Hence, P(tn+l(b)ao vtn+1(b)ai) = P(t(tn(b)a, bo Vb1)) = 
P(t(tn(b)a, T)). This conforms to our stipulation that the probability formu

las must be homogeneous. Here, the formula µ(V, H, Oq) is an ~JC-formula 

specifying the matrices V, H, and Oq. Let Ua be the unitary transformation 

of order 2n which swaps the vectors IO) and la) and leaves the other basis 

vectors unchanged. 

Ua IO) = la) and Ua la) = IO). 

The operator Ua is different from the oracle as the latter is only a recognizer 

while the former actually transforms into the desired state. It is the exact 

operator we are looking for. Let Ge denote the composition of the unitary 

operators in the formula 6.28. That is, 

[Ge]= [V[Sn]Oq]k[H[l]] ... [H[nl][HX[n + ll]. (6.31) 

Then write the formula G as, 

G = P(tn+1(b)o) = 1 ⇒ [Ua[Snl][Ge](P(tn+l(b)ao V tn+1(b)a1) > 1 -1/4). 

(6.32) 

Note the following. The operator Ua is defined as a numerical matrix. Thus, 

given a positive integer a, and an ordered basis B in a 2n-dimensional Hilbert 

space Ua permutes the first and the (a+ l)th elements of B. We can also 

quantify over a and since O S a < N this is actually bounded quantification. 

It follows from the formula 6.27 for approximation of a circuit in some fixed 

state that, the Grover algorithm is actually an approximation algorithm. 

The Grover circuit Ge approximates the operator Ua in state IO}. It is clear 

that, a fixed state approximation like the Grover algorithm can be verified 

in time T(N), which is a of polynomial order in N. We will come back to 

the complexity issues in a later section. 

Let us explore further the expressivity of the logics to see whether we can 

go beyond mere verification. Suppose we do not have knowledge of Grover's 

clever algorithm. But we do have the oracle Oq. This requires an extra 
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ancillary qubit. That is, we start with the initial state 

10 ... 0) I0) 

in the space (C2)®n@C2. Since the 'database' of N = 2n items is supposed 

to be unstructured the initial complete shuffling of the first n qubits, so 

that all the states are equiprobable, is reasonable. Moreover, assume that 

the oracle Oq's action to distinguish state la) from the rest is implemented 

using the ancillary qubit and the application of the Pauli-X gate as above. 

Now consider the existence of operators V. For simplicity, I put quantifiers 

over unitary operators with implicit understanding that they quantify over 

all the variable entries in the corresponding matrix. Thus, the formula 

3VUn(V) 

is a shorthand for 

3xoo ... Xn-1 n-1 t\i,J2o (V(ij) = Xij t\ L XikXjk = 0ij) 
k 

I will consistently use this notation in what follows. Now consider the for

mula 

(Ptn(bo)) = 1A3Vi ... Vk([ViOq] ... [VkOq][H[l]] ... [H[nl][HX[n + 1]] 

(P(tn+1(b)ao V tn+l(b)a1) > 1/2)). 
(6.33) 

If the closed formula is satisfiable we know the existence of a circuit which 

transforms the state I0) to the state la) with probability > 1/2 and using 

only k = 0( Jn) oracle calls. The appearance of Oq along with the V/ s is 

reasonable since at each stage we query the oracle if the search has succeeded. 

We can do better. We query, 

3V(P(tn+1(bo)) = lt\[VOq] ... [VOq][H[l]] ... [H[n]][HX[n + 1]] 

k times (6.34) 

(P(tn+l(b)ao V tn+l(b)a1) > 1/2)). 
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That is, whether there is one matrix which, if applied k times in conjunction 

with the oracle, does the job. The point is, the logics developed in this work 

are all decidable. So both the formulas can be decided. The last chapter 

gives an algorithm for the general decision procedure. Although, the com

plexities are rather high, one can still implement these in small dimension 

(say ~ 26 = 64). However, we may use the inherent symmetry to try rea

sonable guesses. Since the circuit, if it exists, must work for a state la) with 

any number O ~ a ~ N the matrix V must treat all the states in the basis 

{10), 11), ... , IN - 1)} on equal footing. If we then assume that the matrix 

V has all off-diagonal entries equal to some number and the diagonal entries 

equal to some other number then we get back the Grover circuit. It is then a 

matter of verification whether the circuit works. One may then combine the 

Grover circuit and the formula 6.33 to verify whether the former is the best. 

In principle, these questions can decided in a given dimension although not 

efficiently. The general algorithm is a systematic reduction of the formulas 

of the languages developed here to that of real closed fields. As stated ear

lier, this is unavoidable in any probabilistic logic of reasonable expressivity. 

However, the best existing algorithms for real closed fields are exponential 

in the number of variables. A deeper question would be, whether there 

are quantum algorithms for real closed fields that perform better than the 

classical algorithms including probabilistic and approximation algorithms. 

Quantum Phase Estimation and the Shor Algorithm 

Perhaps the most widely known fact about quantum computing is Shor's 

algorithm for factoring a large number(Sho94]. I will not go into the intri

cate details of the algorithm since there are very good accounts of it (NC0l]. 

Shor's factoring algorithm is based on a quantum algorithm for finding the 

order of a number x modulo a number N coprime to it, that is the least 

positive number r such that xr = l mod N. This, in turn, is based on 

estimation of phase of the eigenvalues of a unitary operator given the corre

sponding eigenvector and unitary operators corresponding to finite Fourier 
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transformation. We remind the reader that the eigenvalue of any unitary 

operator U is of the form eix, x real . The number x, determined up to a 

multiple of 21r is called a phase of U. 

F( ) ~ def 
a =a== such that 

N-l 

Yi = L e21fijk/N Xk, 

k=O 

The quantum or finite Fourier transform is a unitary operator [NCOl]. The 

inverse is given by 

N-l 

Xj = p-l (a)j = L e-21fijk/N Yk· (6.35) 
k=O 

To express the QFT in nu:: one must be able to write the N th roots of unity 

in JRC. This can be done in a very general setting [Zi103]. However, for 

the present purpose we need only a restricted expressiveness. Explicitly, for 

each constant integer N > 2 with N =/:- 4,define a new constant as follows. 

First consider the formulas 

AN(x) ~ xN = l /\ Im(x) > 0 /\ Vy(yN = l /\ Im(y) > 1 => Re(x) ~ Re(y)). 

(6.36) 

Intuitively, we can see it as follows. The Nth-roots of unity are distributed 

uniformly on the unit circle. The number 1 is always a root. Starting from 

the real axis if one moves counterclockwise along the circle the first root one 

encounters in the first quadrant is the unique number that satisfies AN. 

One can prove the following within the theory JRC. 
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Lemma 18 For every positive integer N > 2 the following are theorems of 

IRC 

3x(AN(x)) and AN(x) = AN(Y) =} x = y. (6.37) 

Proof: Since !RC is complete we may only prove the validity of the formula 

in some model. The proof is easy, using properties of sine and cosine func

tions. D 

The predicates AN(x) define a primitive N th root x of 1. One can then 

generate all other roots by taking successive powers of x. It is then clear 

that if we extend the theory IRC by adding a new constant w N for each 

positive integer N along with the following axioms. 

w1 = 1 w2 = -1 w4 = i 
Vx(x = WN {=} AN(x)), N # 1, 2 or 4. 

(6.38) 

(6.39) 

For the special values of N, viz. 1,2 and 4, the roots (including the primitive 

roots) lie along one of the axes and these are already defined within the 

(unextended) IRC. 

Lemma 19 The formula 

N_l ( _ k) X - =} Vk-5.N X - WN 

is a theorem of IRC. 

In Section 4.2 it was shown that IRC is a complete theory. Consider the 

closure F of the above formula. As IRC is a complete theory F or -,F must 

be a theorem. Hence, if F is true in one model it must be true in all 

models and therefore a theorem. We now consider the complex plane C 

as a model of IRC. The Nth roots of unity in C are given by e21rik/N = 
cos (21rk / N) + sin (21rk / N), k = 0, ... , N - 1. It is intuitively clear that 
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WN = e21ri/N in the complex plane and generates all the Nth roots of unity. 

The closed formula F is true and the lemma follows. 

Extending the theory JR(C by adding the new constants and the formulas 6.38 

as axioms is an extension by definition [Sho67]. Hence, any formula con

taining the new constants can be replaced by an equivalent formula without 

them. I continue to call the extended theory !RC. Let F be a unitary matrix 

of order N defined by 

(6.40) 

Now we are in a position to write the formula for the phase estimation 

algorithm. The algorithm for phase estimation is quite simple. Suppose we 

are given a unitary operator U of orders and an eigenvector lu} of U with 

eigenvalue u'. The eigenvalues of a unitary operator have modulus 1. That 

is, 

U lu} = u' lu} = e21ricp,,_ lu} 

for some real 'Pu• The phase estimation algorithm gives an estimate of the 

phase 'Pu. It is outlined below. 

Assume we are given a unitary matrix U and one of its eigenvectors lu} 

as above. Assume also that we have access to an oracle or "black box" 

which performs controlled-Ui operations for integers j in some given range. 

Recall that in a controlled operation there are some control qubits and some 

target qubits of appropriate dimension (see 5.2.1). If the controls are in some 

particular state the operation U is performed on the target qubit otherwise 

it is left unchanged. 

Let c = 2-n and m = 2n. An easy calculation shows that for n > 2, 

m = n + flog2(2 + lEJl, where f x l denotes the least integer greater than or 

equal to x. Prepare m control qubits in the initial state IO} in dimension 

M = 2m, that is, a m-qubit state all initialised to IO}. As before, I assume 

that the integers are all written as binary strings of length m. Thus 0 

represents a string of m zeros. The initial state of the system is then IO} lu}. 
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1. Use appropriate Hadamard gates to transform the control qubits so 

that the resulting state of control + target is, 

M-1 

~ ~ li)lu). 

2. Next apply the oracle for controlled-UJ operations. The resulting state 

is 
M-1 

_1_ L e21rijcp,, jj) lu) . 
y'M j=O 

3. Apply the inverse QFT to the control system( the first m qubits). Let 

the state obtained be 

lei3) lu) . 

4. A measurement in the original computational basis yields a state Is) 

such that 1s2-n - <pi < E. with probability 1 - 1:.. • 

The proof of the last statement can be found in [NCOl]. It is also demon

strated there how the controlled-UJ operations can be implemented effi

ciently. The algorithm in the present form cannot be expressed in the lan

guages developed here. The reason is, the phase is the exponent in the 

eigenvalue u = e21ricp,,. Hence, <pu = ln u/ (21ri). But the logarithm function 

is multiple valued. Therefore, it is much simpler to give the estimate directly 

in terms of the eigenvalue u itself. First I prove a simple but useful lemma. 

Lemma 20 For real x, y and O < 1:. < 1/2, 

Ix - YI < c => leix - eiyl < E. 

leix - eiyl < c => Ix - YI (mod 21r) < V21:. 

Proof: The following estimate for the cosine function is well-known 

and can easily be proved using the simple formulas f(x) ~ 0 => J; f(x) ~ 
0 and - 1 ~ cos x ~ 1. 

x2 x4 x2 
- - - < 1 - COS X < -2 24 - - 2 (6.41) 
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Since 

leix - eiyl = J2(1 - cos (x -y)), 

the hypotheses Ix - YI < c implies 

leix - eiyl = J2(1 - cos (x - y)) ~ J2(x - y) 2 /2 < £ (6.42) 

Conversely, 

leix - eiyl = J2(1 - cos (x - y)) < £ 

=> J(x - y) 2 (1 - (x - y) 2
) < £ (6.43) 

12 

Since 1 - cos (x - y) < c2 /2, the assumption that c ~ 1/2 implies that 

cos (x - y) > 3/4. From elementary properties of the cosine function it 

follows that Ix -yl (mod 27r) < 71"/4. Since the phase is determined only up 

to a multiple of 271", we must have Ix - YI (mod 27r) < 7r/4 < 1. Therefore, 

(1- (x~~l 2 (mod 27r)) > 1/2-and the second statement of the lemma follows. 

□ 

Of course, we can get much better bounds but y'2 will suffice. Using the 

Lemma 20 one can now write the formula for the phase estimation algorithm. 

Phase Estimation Formula 

1. Let a positive integer n > 2 be given and m = 2n. The initial state is 

IO) lu). The vector IO) is an m-qubit state and lu) is an s-qubit state. 

The formula expressing that the initialization of the system is IO) lu) 

is, 

In= V[m,m + 1, ... ,m + s - l](P(t(tm(b)o, t 8 (b)o)) = 1) (6.44) 

The operator V is arbitrary. It acts only on the last s qubits and 

rotates the vector represented by t8 (b )o to the vector lu). Given this 

vector and the basis represented by tn+s (b) , the entries of a corre

sponding matrix can be written. It is not unique. Since we only need 

its effect on the vector 7r(t8 (b)o) we need only specify the first column 

of the matrix leaving the rest unspecified ( as variables). 
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2. The fact that lu) is an eigenvector of U can be elegantly expressed by 

the formula 

In/\ U[m,m + 1, ... ,m + s - l]In. 

This formula is true only in case both In and U[m, m + 1, ... , m + s -

l]In are true. That is, in the state p which satisfies the following. If 

we write the interpretation of b as the computational basis and the 

state lu) is the vector obtained by applying V to tn{b)o then, in a 

measurement in the appropriate basis, the 'event' IO) lu) is certain in 

the state p and U · p. This can only happen if the application of U 

gives rise to a state which is a multiple of the original state p. Note 

that In is true for a pure state only. 

3. Apply the Hadamard operator on each of the control qubits. This is 

the randomization operation. As in the case of Grover algorithm the 

operation may be expressed as 

H[O]H[l] · · · H[m - 1]. 

The formula on which these operators act is yet to be specified. I will 

come to it last. 

4. Apply next the CN-Ui operations to the target qubits. The corre

sponding operator in the language is 

[CN-(Ut)i[m, m + 1, ... , m + s - 1 ]]. 

It is assumed that the operator U is given. 

5. Now apply the inverse Fourier transform pt to the control qubits. The 

operator is 

F[O, ... ,m -1]. 

In these two operations the operators in the formula are the inverse ( = 
hermitian conjugate) operators since they will again be inverted when 

applied to the state vector. 
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6. Finally, we come to the formula to which the above operators are ap

plied. As in the case of Grover algorithm this is the assertion that the 

algorithm produces the desired approximation with high probability. 

This is the trickiest part. First define the phase operator in the space 

(C2)®m and for M = 2m, 

Ph(jk) = Ojkwt (6.45) 

The matrix for Ph is diagonal. In the computational basis it simply 

sends lj) ➔ e21rij/M lj). The specification of phase estimation algo

rithm asserts that the output state of the control qubits is such that a 

measurement in the computational basis yields with high probability 

an eigenstate of Ph whose eigenvalue approximates the eigenvalue of 

the original operator U. That is, if we write the successive composi

tion of all the operators in the algorithm as a circuit C (recall that a 

quantum circuit is also a unitary operator) then Ph composed with C 

approximates UV. One can express this as formula for circuit approx

imation but in rather cumbersome way. I follow a different approach. 

Let S = 28 • In what follows it would be convenient to use bounded 

quantifiers over the positive integers. This can, of course, be avoided 

by replacing the bounded quantifiers by appropriate disjunction (for 

:3) or conjunctions (for V). We now write the formula for phase esti

mation. 

µ(U, V, H, CN - U, F) I\ In=> [U[m, m + 1, ... , m + s - l]]In/\ 

(:lxV(i < S)(L U(ik)V(kO) = xV(iO) I\ lxl2 = 1)/\ 
k 

\l(j < M) I\ (Ix -JNi < 1 => 

[H[O] · · · H[m-l]CN-(Ut)i[m, ... ,m+s-l]]F(P(t(tm(b))j, T) > 1-t:))) 
(6.46) 
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Let us take a close look at the formula. First, consider the subset of 

vectors defined by the subformula In /\ (U(m, m + 1, ... , m + s - l))In 

for some interpretation 1r of the basis variable b. Let 1r(tn(b)i) = lai)

Clearly In is true in a state p iff Tr(p lao) (aol) = 1. This is possible iff 

p = iao)(aol@ V iao)(aol vt. Similarly, (U[m,m + 1, ... ,m + s - l))In is 

true in the state I a 0 ) ( a 0 I @ uvt I a 0) ( a 0 I vt ut. These two states must coin

cide which is possible iff uvt lao) = xvt iao) for some x such that lxl = 1. 

That is, vt lao) is an eigenvector of U with eigenvalue x. Then, x = e21ri<f, 

for some real <f>. The formula 3yV(j < M)wN(Y) I\ (Ix - yil < 1/N ⇒ 

[H[O] · · · H[m - l)CN-(Ut)i[m, ... , m + s - l]]F(P(t(tm(b));, T) > 1 - c)) 

then asserts that there is a primitive Nth root of unity WN such that if JN 

is close to x then after the application of the inverse Fourier transform pt 

with high probability ( > 1 - c) we obtain the state state 1r(tm(b)); when 

we measure the first m bits. In other words, j / N is an estimate of the phase 

</>. 

The phase estimation algorithm described above is the basis of important 

algorithms for two important problems: finding the order of an element in 

a commutative group and the related factorization of a number ( the famous 

Shor algorithm) (NCOl). I will not deal with these in the present work but 

conclude this section with the remark that it is possible to implement the 

controlled-Ui operations efficiently. 

Quantum teleportation 

In the examples considered above I have not used the measurement operators 

Mx and Bx;• They can be used to express circuits in which measurements, 

not unitary gates, are used as the primitive unit of computation(Nie03). 

They are also necessary in the discussion of quantum protocols (NCOl). For 

example, in the teleportation protocol Alice and Bob share a qubit each 

of an entangled pair. Then Alice applies a unitary transformation to her 

share of the pair and another qubit in unknown state and then performs a 

measurement. Due to entanglement Bob's qubit gets affected. By applying 
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unitary transformations depending on Alice's measurement outcome Bob 

can change the state of his qubit to that of the unknown one. Since the qubits 

are entangled Bob's qubit gets affected by the measurement. Alice knows the 

outcome of the measurement. The corresponding formula is given below. Let 

A~ H[l]C[l, 2]0[2, 3]H[2](P(t3(b}o)) = 1 and B ~f P(t(T, T, bo}) = l. 

<I>= [U](P(t(bo, T, T)} ~ 1} =>(SooA => [U]B) /\ (So1A => [U][X]B)/\ 

(S10A => [U][Z]B) /\ (S10A => [U][ZX]B) 
(6.47) 

This formula is quite easy to understand actually. Alice has qubits 1 and 

2 and Bob has the third. Alice and Bob start with the entangled pair 

2 and 3, which is achieved by applying C[2, 3]H[2]. Then Alice applies 

H[l]C[l, 2] and the four alternatives correspond to the four outcomes of a 

measurement in the computational basis. after running the protocol the 

state of the third qubit (Bob's) is identical to that of the unknown qubit 

they started with. Although this formula is valid it does not capture the 

actual knowledge or information that the agents have at each stage. Some 

preliminary work in this direction may be found in [MP03a) where knowledge 

and temporal operators are introduced. Let cI>(V) be the formula obtained 

from cI> by replacing H[l)C[l, 2] by V a "unitary" variable. We may ask 

whether 3VcI>(V[l, 2]}. That is, whether there exist unitary operation on 

Alice's qubit such that "teleportation" takes place. In fact it can be verified 

quite easily by a simple procedure. We may formulate and verify more 

complicated questions. The point is, since the theory is decidable it is not 

too hard to devise algorithms to answer such questions. Alternatively, it is 

in principle possible to utilise theorem provers like PVS or Isabelle using the 

axiomatization in the preceding chapters. 
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Conclusion 

In this chapter we make some concluding remarks and discuss future prospects. 

In the preceding chapters we presented logics for dealing with a variety of 

problems in quantum theory, especially, quantum computation and informa

tion. The examples of chapters 4 and 5 and the applications in the chapter 

6 show that the logics can be used to represent and analyze important con

cepts in quantum theory and nontrivial algorithms and protocols in quantum 

computing. Let us summarize the salient features of the work. 

1. A first order theory liC, incorporating the theory of real closed fields 

and its algebraic closure. Proof that it is a complete theory allowing 

elimination of quantifiers. 

2. Syntax and semantics for the language £n(P, m), extending liC. It 

is language for reasoning about probabilities in quantum systems of 

dimension n, 

3. The axiomatization of Ln ( P, m) and proof of some important features 

of the axiomatization: soundness, completeness, and decidability. 

4. Derivation of some complexity results and bounds. 

5. Syntax and semantics of the language £(P, t, M, S, U), which extend 

the languages £n(P, m) by incorporating tensor product and measure-

219 
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ments. The semantics extended to the general mixed states. Examples 

of important sets of quantum states definable in the language. 

6. Axiomatization of £,(P, t, M, S, U) and proof of soundness, complete

ness, and decidability of the resulting theory. 

7. Development of efficient algorithms for satisfiability. derivation of 

some complexity bounds. Characterization of quantum circuits that 

can be efficiently simulated. I feel that this is an interesting devel

opment giving a descriptive characterization of the quantum circuits 

whcich can be efficiently simulated. 

8. Syntax and semantics of a related language £2(P, t, M, S, U) with ap

plication to quantum circuits. 

9. Applications to important quantum algorithms and protocols: Grover 

search algorithm, Shor algorithm and the quantum teleportation pro

tocol. We may also mention that certain questions about the synthesis 

of quantum algorithms have been demonstrated to be decidable. 

Some of the problems which are not addressed are discussed below. I 

aim to address these very interesting issues in future. 

1. Expressive power of the language(s): How expressive is the language 

C(P, t, M, S, U)? I conjecture that it is as expressive as the standard 

Hilbert space language for quantum systems whose dimensions are 

bounded in the sense that they do not have concepts like "in all di

mensions n". Since we do not have quantification over integers which 

are treated as constants. 

2. We may introduce a new sort of variables for natural numbers and 

include some axiomatization of the latter. By Godel's famous theorem 

on the incompleteness of arithmetic the rsulting theory is no longer 

decidable. However, one could look for decidable fragments of the 
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logic, that is, class of formulas which are decidable. This could help 

us in our search for new quantum algorithms. 

3. Independence of the axioms of the theories of £n(P, m) and £(P, t, M, S, U). 

4. Practical implementation of the algorithms. Although simple frag

ments of the logics have been implemented in Matlab efficient imple

mentation of the full language poses interesting challenges. 

5. We have focussed on quantum systems composed of subsystems of 

fixed dimension ( "qunits"). One could generalize to arbitrary finite 

dimensional subsystems. Such a language is possible and in fact is 

discussed in Chapter 5 but the semantics and axiomatization becomes 

more involved mainly because the ordering factors in a tensor product 

is a nontrivial issue. Moreover, such languages dealing with "all" finite 

dimensional vector spaces is more naturally interpreted in a categorical 

setting, for example, the category of finite dimensional Hilbert spaces 

which is a compcat closed category [AC04b]. 

6. One could also generalize in another direction, namely, quantum sys

tems with infinite dimensional Hilbert space. A finite dimensional 

quantum system is an idealization and really does not exist in nature. 

The semantics of infinite dimensional systems is in some sense simpler 

since we do not have to keep track of dimensions. But the axiomatiza

tion poses difficult challenges. One possibility is to consider languages 

allowing countably infinite conjunctions and disjunctions (infinitary 

logics). 

7. It is possible to extend the languages to deal with quantum crypto

graphic protocols [NC0l] and quantum games [EW00]. 

We have already made some progress in regard to the last two items. As 

mentioned earlier, we have implemented some algorithms for simple quan

tum circuits in MatLab. Specifically, we have "verified" the probabilistic 
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output of some quantum circuits in small dimensions. The results are en

couraging but it is still very early to report. There are also problems of 

optimization which have not been addressed. The algorithms presented 

here are efficient but not necessarily optimal. 

We have made some progress on the problems of dealing with complex 

quantum cryptographic protocols. In this regard we introduced the notion 

of "quantum knowledge" [MP03a]. However, in applying these notions to 

concrete protocols one encounters problems of a physical and philosoph

ical nature. Issues like-what is a reasonable model for an adversary? are 

quantum probabilities objective( as limits of frequency of occurrence) or sub

jective? - come up. These issues seem to depend on the context. We have 

made some progress in this direction. It appears useful to extend the logics 

with temporal modal operators and knowledge seems to play an important 

role. 
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