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Abstract—.Fingerprinting is a technique that records vectors of 
received power from several transmitters, and later matches 
these to a new measurement to position the new user. This paper 
examines data used in earlier fingerprinting experiments in a 
WiFi network to characterize the eventual positioning errors. 
The implied relationship between real distance and “vector” 
distance between fingerprints is tested and found to be poor. 
However, because fingerprinting algorithms use nearest 
neighbour techniques, these nearby fingerprints were examined 
and found to be better behaved.  

I. INTRODUCTION 
Fingerprinting is a technique that has successfully been 

used for localisation in wireless networks. Unlike almost all 
other radio-navigation techniques, it is not geometrical. In 
other words the position solution does not rely on the angle to 
or distance from the transmitters. Instead, it requires a survey 
of signal strength vectors to be made ahead of the system’s 
use for localisation. When positioning, the user’s device 
records its own vector(s) of signal strength and matches it 
against the pre-recorded database of vectors. Location is then 
calculated based on good matches between the new and stored 
vectors. Deterministic [1] and probabilistic [2, 3, 4] algorithms 
have been used in WiFi [5] and mobile phone [6] networks. 
Orientation [7, 8] can be incorporated and WiFi applications 
can be implemented outdoors [9]. Several companies have 
already implemented systems based on received signal 
strength techniques, including Ekahau (www.ekahau.com), 
Skyhook (www.skyhookwireless.com), and Aeroscout 
(www.aeroscout.com).  

Many geometric positioning systems have been described:  

• Time-of-arrival (TOA) or trilateration systems, which 
record when a signal is received and subtract from it the 
time of transmit to give a distance to the transmitter. GPS 
is an example. 

• Time-difference-of-arrival (TDOA), where times of 
arrival from different transmitters are differenced. An 
example is Loran-C. 

• Angle-of-arrival (AOA), where angles are measured to 
transmitters and triangulation is used to solve for 
position, the classic surveying problem. 

In these geometrical systems, a term that relates the 
measurement error with the eventual positioning error can be 
evaluated using statistical techniques. This term is known as 
Dilution of Precision (DOP) and can be calculated for TOA 
[10], TDOA [11] and AOA [12] systems. It can be used in a 
number of ways. First, it can be used predictively, i.e. given a 
network of transmitters (e.g. satellites for GPS), a value for 
DOP can be calculated that indicates whether a sound (i.e. low 
error) position is likely to be able to be calculated at a 
particular location. Similarly, it can be used when designing a 
network to place transmitters in locations that can ensure good 
positioning over a region. Secondly, a calculation of DOP that 
accompanies a particular position calculation can give an 
indication as to how much confidence a user can have in that 
calculation. 

There has not been very much published in the area of 
estimating errors in fingerprinting systems. There are 
incomplete descriptions of how to estimate errors when using 
a probabilistic algorithm in [13] and [14]. In this paper, we 
investigate errors in deterministic fingerprinting systems, with 
the ultimate aim of evaluating something akin to DOP, noting 
all the while that because fingerprinting does not use 
geometry, an exact analogy to DOP cannot be achieved.  

II. DETERMINISTIC FINGERPRINTING BACKGROUND  
First, some explanatory terminology: 

• Access point (AP): These are the fixed transmitters 
from which power levels are measured. “Access point” is 
a term usually used in WiFi networks, but could also 
apply to a mobile phone base station for instance. 

• Reference Point (RP): The reference points are the 
known positions at which fingerprints are recorded and 
stored in a database for later matching with 
measurements made at unknown locations. 



• Test Point (TP): Points of at which fingerprints were 
recorded. These fingerprints are then input to various 
localisation algorithms to calculate location, which can 
be compared to the known TP location. 

• Received Signal Strength Indication (RSSI): The raw 
measurement from which the fingerprints are generated. 
Typically, this is a vector of signal strengths in dBm, 
with one element of the vector associated with each AP 
that can be received. 

When recording the database of fingerprints that are 
associated with RPs, many individual RSSIs are recorded, and 
these can vary significantly. A typical fingerprint is the 
average of the recorded RSSIs. The fingerprint can also 
include information about the distribution, either a histogram 
for each AP or a more simplified parameter such as variance.  

Once the database of fingerprints exists, a user device can 
calculate position if a fingerprint is recorded and “matched” to 
the database. This matching process usually consists of 
measuring a “distance” between the recorded fingerprint and 
each RP fingerprint in the database. To avoid confusion later, 
we will refer to this distance as the “vector distance” which 
has units related to dBm (as opposed to the “geometric 
distance” in m between the TP and an RP). Simple vector 
distance measures are Manhattan and Euclidean, the L1 and 
L2 norms. Other measures have been examined, such as the Li 
norms for i = 0.25 to 4, and Manhattan distance seems to give 
best results in an indoor WiFi application [15, p60] (which is 
handy because it is also easiest to calculate). Once this vector 
distance is calculated, an interpolation algorithm is used to 
provide location with respect to the RPs. “Nearest neighbour” 
simply selects the RP with shortest vector distance. A 
weighted average of nearest neighbours gives improved 
results as does the use of interpolation algorithms such as 
universal kriging [16].  

If the propagation environment in which the system 
operates is known, then absolute distance measurements can 
be predicted to the APs. However, the point of fingerprinting 
is that it does not require knowledge either of the AP location, 
or the characteristics of the environment. Only the 
consequences of that environment are measured, the RSSIs. 

III. ANALYSIS 

A. Measurements at Reference Points 
During the survey phase, where the RP fingerprint 

database is being created, the RSSI measurements are 
averaged. In a typical survey, these measurements include 
subsets facing in four directions. In early work, few 
measurements were taken, e.g. 12 [16]. Later we used 
software such as NetStumbler (for PC) and a pruned version 
for the PDA called MiniStumbler (for PDA) 
(http://www.netstumbler.com) to collect the RSSI data, which 
allowed hundreds of measurements to be easily taken, e.g. 180 
in each direction equating to one per second for 3 minutes [8, 
9].  

Using 180 samples gives a very good estimate of the 
mean, and due to the central limit theorem, that estimate has a 

“normal” distribution with standard deviation 4.13180 =  
times as small as that of the original distribution. 

There are two problems with this method, however, both 
relating to the propagation environment. Taking 
measurements in the four directions recognises the first of 
these: that the user’s body affects the RSSI. This can clearly 
be seen in Figure 1, where different levels are observed for the 
different directions. The only differences between “directions” 
are antenna orientation (and the assumption of a relatively 
isotropic antenna means this should not have a major effect) 
and the relative position of the user’s body, which blocks 
signal differently in each direction. This problem is in part 
addressed by treating the directional databases separately [8], 
so the variation of the RSSI, visible in Figure 1, is greatly 
reduced. The second problem is to do with ongoing variation 
in the environment – movement of people and furniture, 
opening/closing doors etc. This is an important cause of 
variation in RSSI, but it is not one we are considering yet. One 
solution may be to take the database RP readings over the 
course of a day or a week (obviously a far greater burden than 
to take the measurements “at once” over a few minutes). So, 
the first problem we avoid by using directional databases and 
the second we are leaving for the moment, leaving us with our 
fingerprint database of good RSSI estimates. 

 

 

Figure 1 RSSI measurements for a single AP facing in 
each of 4 directions – 180 measurements per direction 
 

Looking in more detail at the errors in the reference points, 
Figure 2 and Figure 3 show the distribution of variances that 
we measured in our earlier work [16, 8]. Making the 
(admittedly tenuous) assumption that power variance is the 
same at all RPs, the estimates of variance from these sets of 
samples are 13.8dBm2 for all directions and 9.0dBm2 for 
single directions. Means are taken from these distributions and 
used in fingerprints, as shown in Table 1.  

 



Experiment Power 
dist. 
variance 
(dBm2) 

Power 
samples 

Power 
vector 
element 
variance 
(dBm2) 

Power 
vector 
element 
s.d. (dBm) 

[16] 13.8 12 1.15 1.1

[8] 9.0 100+ 0.09 0.3

Table 1 Measurement variances for RPs in [16] and [8] 
 

B. Distance between Measured Power Vectors 
(Fingerprints) 
The next step of the process, during the active phase, is 

where a fingerprint is taken at an unknown location. For many 
users, it will not be possible to take 3 minutes of 
measurements in a single location. The test fingerprint can 
thus be expected to be less accurate than the database 
fingerprints, i.e. its estimate of average RSSI will have greater 
variance.  
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Figure 2 Histogram of all variances measured using 12 
power level measurements from 5 APs at 132 separate 

RPs [16] 
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Figure 3 Histogram of all variances measured in single 
directions (N, S, E, W) using over 100 power level 
measurements from 5 APs at 110 separate RPs [8] 

 

The Manhattan distance between a TP and RP can be 
written: 
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where N is the number of APs, i.e. the number of elements 
in the fingerprint vectors, RP is the RP fingerprint and TP is 
the TP fingerprint. If we make the simplifying assumption (not 
necessarily valid but it allows us to dismiss the absolute value 
in the sum) that the mean of RP(i)-TP(i) is sufficiently greater 
than either RP or TP standard deviation, then the variance of 
MH can be estimated as: 
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In other words, the MH variance is the sum of the 
variances of all the fingerprint elements, both RP and TP. In 
the case of [16], these numbers were the same, but large RP 
sample sizes can drive down that contribution to the error. As 
it was, the data of Manhattan distances measured in [16] had 
similar variances for both RPs and TPs – about 1.1 dBm2 (see 
Table 1), giving an overall variance of about 11 dBm2 
(because there are N = 5 APs), corresponding to a σMH = 
3.3dBm. If many more RP measurements are made, then the 
distance variance will be dominated by the TP variances, and 
would be effectively halved.  

C. Interpolation Algorithm 
The next step of the process is to use an interpolation 

algorithm to determine the TP position. Implicitly, this relies 
on a relationship between the measured vector distance (e.g. 
the Manhattan distance discussed above) and the geometric 
distance. Interestingly, to the authors’ knowledge, this 
relationship has not before been examined. There are plenty of 
studies into the relationship between geometric distance from 



an AP and the RSSI from that AP (e.g. see [17]). However, 
Figure 4 shows that the inferred relationship between the 
vector distance and the real distance is not as strong as we 
might like. By studying the Manhattan distance between the 
RP fingerprints used in [16] and comparing them with real 
distance, it can be seen that there is a definite trend, i.e. that 
they are related, and that a quadratic fit to the data seems good 
(a cubic fit being very similar). The sum-squared-error (SSE) 
of the quadratic fit gives a standard deviation of 15.7dBm. 
From the previous section, we expect only 3.3dBm of this to 
be due to variation in the power measurements at the RPs to 
produce the fingerprints. The remaining 12.5dBm must be 
accounted for in a different way: it is due to the power 
measurements varying much more erratically than would 
allow good prediction, due to signal fading and features such 
as walls between the RPs. 

The experiment leading to Figure 4 relied on “known” 
locations for real distance, so it is relevant to examine the 
spread in the vector (Manhattan) distance as an outcome of 
that experiment. However, when using fingerprinting, the 
fingerprints and the distances between them are measured and 
from them, the location is inferred. It is therefore also useful to 
look at the spread in the real distance that occurs around the 
quadratic fit. As can be seen in Figure 4, the quadratic has a 
maximum value below the maximum value of the distribution 
and hence differences between measured vector distances and 
those predicted by the quadratic fit cannot be made. Hence the 
linear fit was used to indicate a spread of 4.1m.  

This is significantly more than the errors noted in [16]. 
The reason for this is that while Figure 4 gives a good 
indication of how well Manhattan distance between RP 
fingerprints indicates real distance (not very well), the 
interpolation algorithms tend to match to nearest neighbours 
so behaviour of distant RPs is not relevant. 
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Figure 4 Distribution of Manhattan distances between 132 
RPS of [16] versus the real distance between the RPs. 

Linear (black), quadratic (green) and cubic (red) 
regressions are also shown 

 

The data of Figure 4 was analysed on a per-RP basis. The 
real nearest neighbour and that with the shortest Manhattan 
distance were found. For the 132 points in [16], only 26 
(19.7%) matched. This explains why the several-nearest-
neighbour algorithms work better than simple nearest 
neighbour. Figure 5 shows all nearest neighbour pairs (i.e. for 
a given RP, the nearest Manhattan distance fingerprint and the 
real nearest RP). Several things can be observed: the “worst 
mistake” made by the algorithm is less than 6 meters. Also, 
there is an example of two RPs 1.5 meters distant with 
fingerprints 80dBm apart! Numerical processing of the data 
shows that the error in the nearest neighbour measurement 
averages only 1.25m (note that this is the difference between 
the distance to the real nearest neighbour and the distance to 
the neighbour found by fingerprinting, not the distance 
between those two points), which is entirely consistent with 
the results in [16].  

D. “Disclaimer” on Units 
Throughout this discussion, units of dBm have been used. 

The validity of these units is not for discussion here, but it is 
worth making one point. Where dBm are differenced, the 
result should really be in dB. Where they are added, there isn’t 
a convention. When working on dBm-based fingerprinting, it 
is often easier to ignore the physical underpinning of the 
system and simply treat the fingerprints as unitless numbers. 
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Figure 5 Pairs of data points joining the “nearest 
neighbour” found by measuring Manhattan distance 

between fingerprints and the neighbour that is physically 
nearest 

 

IV. CONCLUSION 
Existing data from fingerprinting experiments has been 

used to help gain some insight into the nature of errors arising 
in this process. The overall relationship between real distance 
and “vector” distance – the distance between fingerprints is 
investigated and found to be relatively poor. However, where 
real distances are short between fingerprints, this relationship 



improves so that several-nearest-neighbour algorithms are able 
to supply reasonable results. 

Future work will include better characterization of the 
power statistics (for instance examination of the assumption of 
constant variance), examination of other vector distance 
measures such as Euclidean, examination of the effects when 
using a directional database, the effects of variation in the 
environment with time and development of an error prediction 
algorithm. 
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