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ABSTRACT 
Analysis of pipe tests to determine friction coefficients and their uncertainty is discussed. 
Optimisation methods are applied to finding the pipe diameter, friction coefficient, and fitting loss 
coefficient from a pipe test. A FORTRAN program implementing these methods is included. 
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INTRODUCTION 
Computation of total head loss due to friction (or surface resistance) and minor (or fitting) loss is 
necessary for the hydraulic design of water supply pipelines and networks. 

The reliability of the head loss estimates is affected by the uncertainty in the design values 
selected, in particular the value characterising the pipe material for the calculation of friction loss. 

Design values for computing friction loss and minor loss are derived from pipe tests by fitting 
assumed mathematical relations to the test data. In this report the Darcy-Weisbach equation is 
taken as the relation for friction loss, in conjunction with the Colebrook-White equation for 
finding the equivalent sand grain roughness, which is the design value specifying the pipe waU 
material. The assumed mathematical relation for minor loss uses a constant minor loss coefficient 
applied to the pipe velocity head. 

This report aims to: 
(i) Develop statistically proper, programmable methods for determining the equivalent sand 

grain roughness and its uncertainty from a pipe test where the pipe diameter is known. 
(ii) To show that the least squares minimisation method may be used for analysis of pipe 

test data where various combinations of pipe diameter, equivalent sand grain roughness 
and minor loss coefficient are required. 

A FORTRAN computer program implementing the proposed methods is included, together with the 
results of applying the program to both synthetically generated and published pipe test data. 

BASIC EQUATIONS 
Figure 1 shows the head loss components for steady flow of water under pressure in a circular 
pipe. The total head loss Hl may be expressed as: 

Hl = Hf + Hv (1) 

where Hf is the friction loss and Hv is the fitting loss, assumed concentrated at the end of the 
pipe length 1 being considered. 

The fitting loss is given by: 
H. (2) 

where Kl is the fitting "loss coefficient" and V the pipe mean velocity. Kl depends mainly on 
fitting shape, and to a lesser extent on pipe Reynolds Number, pipe roughness, proximity to other 
fittings, etc. Kl may be determined accurately as a ftmction of Reynolds Number and other 
factors [31], but for water supply calculations Kl is usually taken as a constant value for a 
particular fitting shape [2]. 
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For a prismatic pipe the friction loss Hf is equal to the drop in the Hydraulic Grade Line hf, 
given by the Darcy-Weisbach equation: 

hf = f — L V^ 
d 2g (3) 

The Darcy friction factor f depends on the Reynolds Number R and the pipe relative roughness 
—, where k is the "equivalent sand grain roughness", a linear measure of the roughness of the d 
pipe wall. The most popular expression relating f to R and — is the Colebrook-White equation 
[14]: 

1.0 
VF Elogio k 2.51 

3.7 d VF (4) 

The Colebrook-White equation works well for small (less than 300 mm dia.) water supply pipes, 
both new and aged. For larger conduits deviations from the Colebrook-White function are 
frequently reported, for example from tests on concrete pipes [38], concrete tunnels [18], coated 
steel pipes [6], [9], [30], steel lined tunnels [18], and unlined rock tunnels at low flow rates [34]. 
Barr [3], [4], has derived formulae to cover these deviations but the expressions require six 
coefficients while Equation (4) requires only the equivalent sand grain roughness k. 

For discussion of pipe test results the Moody Chart [32] provides the most convenient graphical 
representation of Equation (4). 

Equation (4) is imphcit in the friction factor f, but may be readily solved iteratively by 
"successive substitution" [43]: 

1.0 = -21ogio i+i 3.7 d + 2.51 
r V ^ (5) 

where fi, fi+i are f values for iterations i, i+1 respectively. To commence iterations fi may be 
taken as 1.0 or as f for a rough pipe, obtained by eliminating the 2.51 term in Equation (5). 

40 Puttmg V = in Equations (2) and (3), Equation (1) becomes: nd 
Ht = 8Q-

(6) 

When the pipe flow is wholly rough wall turbulent (on the far right of the Moody chart, Figure 4) 
the friction factor f takes on a constant value The minor loss coefficient K-̂  is also constant so 
some ambiguity in f and Kl values might be expected when Equation {,6) is used in procedures to 
analyse test results from a pipe operating as wholly rough wall turbulent flow and with minor 
losses. 
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Putting V = ^ ^ in the Reynolds Number ^ = ^ makes the friction factor f in Equations (4) 
and (5) a function of (Q, k, d, v), where v is the kinematic viscosity of water. 

Equation (6) may be re-arranged to make Q the dependent variable: 
' 0.5 

H l n^ gd^ Q = 
8 ( f ^ + KL) 

(7) 

When the pipe flow is smooth wall turbulent, or transitional from smooth wall turbulent to wholly 
rough wall turbulent, the friction factor f in Equation (7) is a function of Q, so Equation (7) is 
implicit in Q and requires an iterative solution. 

Tests on a pipe of known length L yield n sets of observations of discharge QQ, head loss HQ, 
and water temperature, from which the kinematic viscosity Vq may be found from tables. 
Equations (6) and (7) represent the assumed mathematical relations to be fitted to the test 
observations. A least squares minimisation procedure may be used to find the required pipe 
properties [10]. 

If Equation (6) is used the predicted head loss HL (QO) is found by using the observed discharge 
Qo in Equation (6). The residual head loss R is the difference between the predicted head loss 
and the observed head loss Hq. An adequate estimate of the pipe properties is assumed to occur 
when the sum of the squares of the residuals TR^ is a minimum for all n sets of test 
observations. 

For minimisation in terms of head loss the function to be minimised is therefore: 
2 

Ho, - H l ( Q o , ) F(k ,d ,KL) = S i=i = Z R f i=l (8) 

In Equation (8) F (k, d, Kl) indicates that one or more of k, d and Kl are unknown values. The 
term Hl (Qo,) is the head loss predicted by using Qo, in Equation (6), and Ri is the residual head 
loss. 

Minimisation in terms of head loss residuals is preferable to minimisation in terms of discharge 
residuals [Equation (9) below] for two reasons: 

(i) The least squares fitting procedure assumes that the dependent variable varies randomly 
about the fitted curve while the independent variable is known with negligible error 
[10]. As will be shown subsequently, the uncertainty in the head loss observation H^ 
is greater than the uncertainty in the discharge measurement Qo, so Ho should be taken 
as the dependent variable. 

(ii) The iterative solution required to find the predicted discharge QCH^) from Equation (7), 
for use in Equation (9), is avoided. 
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Altematively Equation (7) may be used for minimisation in terms of discharge where the function 
to be minimised is: 

2 
F(k,d,KL) = S i=i = Z R i i=i (9) 

Again F(k, d, Kl) indicates that one or more of k, d, and Kl are unknown. The term QCHq. ) is 
the discharge predicted by using Hq. in Equation (7) and Ri is the residual discharge. 

One method of minimisation requires the partial derivatives — and — for Equation (9) with 
the loss coefficient Kl = 0. The derivatives are: 

ak 
n 

= Z 2 i=l Qoi+C4C5 C4 
3.7d (10) 

ad 
n 

= 1 2 i=l 

where Co = 2g L 

Qoi+ C4C5 

0.5 

-Ci kd 
3.7 

0.5 
+ 1.5 C2 + 2.5CiC5d 1.5 (11) 

/I ^ ^ 2.51V , Ci = ( log ioe )y Co, C2 = 

3.7d d 

DETERMINATION OF DIAMETER d, EQUIVALENT SAND GRAIN ROUGHNESS k, 
AND LOSS COEFFICIENT K̂ ^ FROM PIPE TESTS 

Case 1: Given d, to Find k 
This is the most common case for analysis of both laboratory and field pipe tests. Any minor 
losses due to joints, or shght changes in alignment in installed pipes, are absorbed in selecting the 
k value so Kl is taken as zero. 

Minimisation in terms of head loss residuals has been adopted for the reasons discussed 
previously. In Equation (8) k is the unknown and the required value kg (global k) may be found 
by searching for the minimum of J^R? between stated limits ki and k^, using one of the 
minimisation procedures described in Appendix A. The search procedure is shown schematically 
in Figure 2(A). 

Note that only one set of observations of Qo, Hq, and Vq is required to calculate f and 1. and to 
then select — from the Moody Chart. Similarly only one set of observations is required for the 
least squares method outiined above, although as many sets as possible should be used to improve 
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the reliability of the k estimate. 

Case 2: Given d and k, to Find K^ 
This case is applicable to a pipeline of known d and k which has appreciable minor losses 
generated by non-prismatic components such as bends, partially closed valves, etc. The procedure 
finds a single KL value applicable over the range of test discharges 

A similar least squares method to that used for Case 1 is employed. The unknown variable in 
Equation (8) is now KL. 

The search procedure is shown schematically in Figure 2(B) where the search limits are KLJ to 
KLĴ  and the global minimum is KL .̂ 

Only one set of observations of Qo, Ho and VQ is required to find KL̂  but as many sets as 
possible should be used to assess the suitability of Equation (6) as a model for the HL-Q 
relation for the pipe. 

Case 3: Given d, to Find k and K^ 
This case might be applied to test results from a pipeline of known d but where k has changed 
with use and appreciable minor losses are suspected. 

Here the unknown variables in Equation (8) are k and KL so the minimum of a two-variable 
fimction is required. As shown in Figure 3, J^Rf as a ftmction of k and KL may be visualised 
as a three dimensional surface. The global minimum with values kg and KL̂  occurs at the lowest 
point of the valley line. 

Numerous techniques for optimising (i.e. finding the global minimum) of a multivariate function 
are known [25]. For the present report it has been decided to use a crude but readily visualised 
and easily programmed parametric search technique. The technique involves recursive appUcation 
of a procedure for minimisation of a one-variable ftmction and was first applied to analysing pipe 
test results by Stuckey [39], 

The search procedure is shown schematically in Figure 2 (C). The search is made between outer 
limits kl and kh. For each k value an inner search is made in the normal direction between limits 
KLI and Ki^ to locate the local minimum KL. At the global minimum the values kg and KL̂  
locate the global minimum value of . 

If Ik is the number of iterations required to search in the k direction, and IKL to search in the KL 
direction, then the total number of iterations is Ik x IK .̂ 
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The minimum number of sets of test observations required to find k and K L is n = 2. 

Case 4 : Find d and k 

This case might be apphed to test results from an old inaccessible pipeline to obtain an "effective 
diameter d" and "an effective sand grain roughness k" which best fits the test results. The 
unknown variables in Equation (8) are d and k. 

The search procedure is shown schematically in Figure 2 (D). The outer search is between limits 
kl and kh and the inner search between di and dh-

Smckey [39] solved this case using minimisation of the discharge residuals defined by Equation 
(9). 

Case 5 : Find d, k and K 

This case may be applied to test results from a pipeline with little information as to size, 
condition or presence of fittings. Case 5 may be applied as an alternative to Case 4. The sum of 
the squares of the residual head losses J^Rf indicates which solution is a better fit to the test 
data. 

This case requires searching at three levels, as shown schematically in Figure 2 (E). 

The procedure may be visualised as examining numerous three dimensional surfaces, each labelled 
with a K L = constant value, to find the surface which has the smallest local minimum value of 

The smallest local minimum becomes the global minimum with the required variable 
values Kl^, dg and kg. 

If the number of iterations required to search for KL, d and k is IK^, Id and respectively, then 
the total number of iterations to find the global minimum is iKL^IdXlk- The computer time 
required for a three-variable function makes this the practical limit of application of parametric 
searching methods for use on micro and mini computers. 

The minimum number of sets of test observations required to find d, k and K L is n=3. 

SELECTION OF A MINIMISATION PROCEDURE 

Two procedures for minimisation of a one-variable function are described in Appendix A. These 
have been applied to the synthetically generated pipe tests described below with the following 
results: 
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Minimisation by Bisection of the First Derivative Function 
This was tried for Case 4 problems, that is to find d and k, using Equation (9) as the function to 
be minimised, with Kl = 0 for this case. 

The outer search is between hmits ki and kh with the object of making — from Equation (10) 
OK. equal to zero by the method of bisection. For each k value during the outer search an inner 

d¥ search is made between di and dh to make — equal to zero by bisection. od 
The method performed satisfactorily 

in that the global minimum values kg and dg were correctly 
predicted. From Equations (Al) and (A2) in Appendix A, the number of iterations for 
convergence by bisection is about 0.7 times the number for a golden section search. The 3F 3F additional computer time required to evaluate the partial derivatives — and — appears to ok od 
outweigh the apparent saving in the lower number of iterations so minimisation by bisection was 
not pursued further. 

Minimisation by Golden Section Search 
This method was found to be reliable and to converge for Cases 1 to 5 of pipe test analysis, and 
has been adopted as the standard procedure. 

For Cases 3, 4 and 5, requiring two or more recursive applications of the golden section search 
algorithm, individually labelled subroutines have been used in the computer program as recursion 
is not implemented in some versions of FORTRAN. 

COMPUTER PROGRAM 
A computer program for solving pipe test Cases 1 to 5 is shown as Appendix C. The program is 
written in FORTRAN 77 and was used on a Digital Micro VAX II computer. 

« 
The program is developmental in that it was assembled using components from other programs to 
demonstrate the techniques described above. The program is not intended as an example of good 
or efficient programming. 

PROGRAM TESTING USING SYNTHETIC PIPE TEST RESULTS 
The program was tested by application to synthetic pipe test results generated by using Equation 
(6) to find head losses for at least ten equally spaced discharges. No attempt has been made to 
apply a random component to the head loss Ho values generated, although this could be done 
using the method described for generating random piezometric head values in the "Uncertainty in 
the Energy Gradient S" section below. The pipes selected cover the range of operation for typical 
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water supply pipes [21]. Some of the data is plotted on a Moody Chart, shown as Figure 4. 
Some very rough pipes, which would plot above the maximum f value on Figure 4, were also 
tested. 

The program predicted the unknowns for Cases 1 to 4 without fail. The only tests where any 
discrepancy occurred was in application of Case 5 to very rough pipes with minor losses 
approximately equal to friction losses. In these cases the predictions of d, k and K L values were 
improved by using discharge increments proportional to logio(Q). The test discharges were 

calculated by dividing logio (max. Q) - logio (min. Q) into the required number of increments 

and then taking the antilogs to find the discharges. This compresses the flowrates towards the 
lower end of the range. Some typical results are shown in Table 1 below : 

TABLE 1 : Case 5, Find d, k and KL , Very Rough Pipes 

Pipe : Cast Iron, Tuberculated, High Minor Losses 

d(mm) k(mm) KL 

Values used to generate data 
Predicted values, linear Q increments 
Predicted values, logio (Q) increments 

245.9 
245.04 
246.6 

10 
10.221 
9.826 

40 
31.81 
46.59 

Pipe : Cast Iron, Tuberculated, High Minor Losses 

d(mm) k(mm) Kl 

Values used to generate data 
Predicted values, linear Q increments 
Predicted values, logio (Q) increments 

245.9 
243.48 
244.95 

15 
16.058 
15.402 

100 
67.9 
87.54 

For all Case 5 apphcations shown in Table 1 the searches converged to give J^R? of zero, i.e. a 
head loss calculated using the predicted values of d, k and K L for a given discharge was equal to 
the test head loss for that discharge. The solution is therefore dependent on the discharge 
selection for the pipe tests. Minimisation using discharge as the working variable may improve 
the solution but this has not been tried. 

APPLICATION OF THE PROGRAM TO PUBLISHED PIPE TEST RESULTS 

The criteria for selecting pipe test results from the literature were, firstly, an adequate number of 
sets of Qo, Ho and v^ observations, and secondly, preferably more than two head measuring 
tapping points along the line. Several tapping points are required to estimate the uncertainty in 
the slope of the hydraulic grade line, as discussed later. In selecting the sets of test data from a 
particular source some obvious "outliers" [31] were arbitrarily rejected. 
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Some of the pipe test data selected are shown on the Moody Chart, Figure 5 and the program test 
results are shown in Table 2. The tests labelled "mean properties", "properties for min. k", and 
"properties for max. k" are explained in the section on estimation of the uncertainty in k below. 

Published k values were available for tests 5, 8 and 9, thus allowing comparison with k values 
from the Case 1 analyses. The published k values for tests 5 and 8 were obtained by the 
standard method of plotting (f,R) points on tiie Moody Chart and selecting by eye a — = 

d 
constant line of best fit. The published k value for test 9 was obtained by comparing a 
logarithmic plot of observed (Qo, HQ ) values witii that for new pipe. The known k value for the 
new pipe was increased to aUow for the increased head loss in the aged pipe being tested. The 
Case 1 analyses of tests 5, 8 and 9 gave k values ranging from 30% greater to 40% smaller than 
the published k values. The range of uncertainty in k for tests 5 and 9 was estimated from Case 
1 analyses of tests 6 and 7, and tests 10 and 11, respectively. For test 5 the k value was 
0.055 mm and the range of uncertainty was from 0.038 mm to 0.077 mm, to 95% confidence level. 
For test 9 the k value was 0.0269 mm and the range of uncertainty from 0.0 mm to 0.060 mm. 

The differences between published k values and those from the present method, and the wide 
range of uncertainty in the k values, suggests that a more critical view should be taken of 
published k values. 

The Case 3 analyses are based on Equation (6), which allows for both friction loss and fitting loss 
whereas the Case 1 analyses are based on Equation (3), which allows for friction loss only. 
Comparing the residual errors J^R? shows which model is the better fit to the pipe test data. An 
obvious reduction in J^R? occurs for tests 1, 2 and 3, showing that the Case 3 method gives a 
better fit. Slight reductions in J^R? occur for tests 8 and 9 but these could be truncation errors 
so no firm conclusion can be drawn. Introduction of fitting loss had no effect on tests 4 and 5. 

The Case 4 and Case 5 analyses provide the best test of the mathematical model, in particular in 
predicting the pipe diameter. A Case 4 analysis is based on Equation (3), for friction loss only, 
and estimates d and k for a set of pipe test observations Qo, H« and VQ. For the present analysis 
d is known for all of the prismatic pipes tested. The Case 5 results gave d values within 5% of 
the known values. The residual errors J^R? are smaller than those from Case 1, indicating that 
the d and k values from Case 4 provide a better fit to the pipe test observations than tiie known d 
and tiie k given by the Case 1 analysis. Some improvement in the mathematical model appears 
to be possible, particularly in Equation (5), used to estimate the friction factor f. For an "unseen" 
pipe the values for d and k predicted by a Case 4 analysis are "effective d" and "effective k". 

The Case 5 analyses are based on Equation (6), which includes friction and fitting losses, and 
estimates d, k and K L - The estimated d values are within 6% of the known values, except for 
test 1 witiiin 8%, and test 4, where d is overestimated by 32%. The effective d, k and KL values 
found by a Case 5 analysis gave a lower residual error ^ R f tiian that found using a Case 3 
analysis for most of the tests examined. 



TABLE 2: RESULTS OF ANALYSIS OF PUBUSHED PEPE TESTS 

Test 

No. 
Source Ref. 

No. 
Pipe Details Site 

No. 

DaU 

Sets 

No. 

Head 

Taps 

Publishec 

d(mm) 

Values 

k(mm) 

C 

k(mm) 

ase 1 

ZR? k(mm) 

Case : 

K. 

J 

ZR? d(mm) 

Case 4 

k(mm) ZRf d(mm) 

Ca: 

k(mm) 

56 5 

K„ 

1 Heywood, 

1925 

26 4 in. Galv. iron 

All 30 data sets 

Lab. 30 2 103.48 0.131 0.02289 0.016 0.57 0.01150 98.21 0.031 0.01184 111.77 0.0 1.53 0.01103 

2 Heywood, 

1925 

26 4 in. Galv. iron 

14 sets known temp. 

Lab. 14 2 103.48 0.131 0.02059 0.012 0.61 0.01072 97.62 0.025 0.01088 110.40 0.0 1.39 0.01054 

3 Heywood, 

1925 

26 2 in. Galv. iron 

16 sets known temp. 

Lab. 16 2 51.15 0.262 0.003075 0.10 1.3 0.00227 49.30 0.1262 0.002267 49.30 0.1262 0.0 0.002267 

4 Burke, 

1955 

9 Steel penstock, 

hot enamel coat 

Field 21 2 1289.0 0.060 0.159372 0.060 0.0 0.159373 1304.54 0.0892 0.158247 1698.0 0.0 3.07 0.15389 

5 Levin, 

1972 

30 Machined casting, 

cold bitumen spray, 

mean properties. 

Lab. 13 20 209.5 0.042 0.055 1.120746 0.055 0.0 1.120755 221.68 0.229 0.73428 221.68 0.229 0.0 0.73428 

6 Levin, 

1972 

30 As above, min. k 

prc^erties 

Lab. 13 20 209.08 0.038 1.58576 

7 Levin, 

1972 

30 As above, max. k 

properties 

Lab. 13 20 209.92 0.077 0.901908 

g Dudgeon, 

1983 

17 Steel, cement 

mortar lined 

Lab. 18 2 287 0.01 0.008 0.00661 0.0068 0.011 0.006603 286.86 0.007 0.0066033 289.66 0.004 0.223 0.006602 

9 Foster, 

1968 

23 Asbestos cement, 

mean properties 

Field 9 4 363.22 0.046 0.0269 0.0001916 0.0248 0.046 0.0001914 362.79 0.0236 0.0001909 362.79 0.0236 0.0 0.0001909 

10 Foster, 

1968 

23 As above, min. k 

properties 

Field 9 4 362.48 0 0.00136 

11 Foster, 

1968 

23 As above, max. k 

properties 

Field 9 4 363.96 0.060 0.00127 
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ESTIMATION OF THE UNCERTAINTY IN THE EQUIVALENT SAND GRAIN 
ROUGHNESS k FROM CASE 1 ANALYSES 
Levin [30] and Dudgeon [17] have combined the uncertainties of the other variables in Equation 
(3) to estimate the uncertainty in the friction factor f. This uncertainty in f only applies to the 
particular pipe tested whereas an uncertainty in k can be applied to any diameter pipe made of the 
same material. 

40 Replacing logio by loge and usingR = — i n Equation (4) gives: Tcdv 
1.0 

-2Ci ^ 
where Ci = logio (e). 

= loge k 2.5l7cdv 
3.7d (12) 

T ^ n g antilogs and re-arranging gives an expression fork : 
1.0 

k = 3.7d -2Ci 2.51 Tudv 
4 Q ^ (13) 

hf Using the energy gradient S = — and V = in Equation (3) gives f for use in 

(14) 

L — TCd̂  
Equation (13): 

^ ^ glad's 

The problem is to incorporate Ihe uncertainties in the independent variables, S, D, Q and v to find 
the uncertainty in the dependent variable k defined by Equation (13). Two methods have been 
tried, direct combination and statistical combination. 

Direct Combination of Uncertainties 
If tiie mean value of S is Smean then S may vary from »̂ low ~~ "̂ mean Cs to Shigh Smean 
where Cs is the uncertainty in S to some confidence level, say 95% [28]. Similarly d may vary 
from diow to dhigh. and so on. Possible combinations of Slow, Shigh» iiiow» ĥigh etc have been 
tried for data from several of the synthetic pipe tests described previously (with estimated 
uncertainties to find Siow, S^gh etc) and for data from Levin [30] (with published uncertainties). 
The combinations found to give the k extremes were: 

For minimum k: Siow» l̂iow» Qhigh, ĥigh 

For maximum k: Shigh, dhigh, Qiow, l̂ow 

When converted to equivalent f and R values the data sets for minimum and maximum k plot as 
lines "parallel" to the mean properties data set. This is shown for the test data fix)m Levin [30] 
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on Figure 5. 

Using Slow, diow etc, a Case 1 analysis is applied to find the estimate of the minimum k. 
Similarly for the maximum k estimate. This method has been used for test numbers 6, 7, 10, and 
11 in Table 2. 

Statistical Combination of Uncertainties 
Using the Simplified Method of combination of uncertainties [28], [35], the uncertainty in k due 
to uncertainties in the independent variables is: 

0.5 

ek = e .e S '-'S 0ded + egeq 

dk 

+ 6v ev (15) 

where 9s is the sensitivity coefficient for S, equal to — from Equations (13) and (14), and so on 
oS 

for the other variables. Finding the partial derivatives is tedious, so the partial derivatives have 
Ak been approximated by finite increments [28], that is 9s ~ where Ak is the change in k due to AS 

a small change AS in S. 

This method has been applied to results from a careful series of laboratory pipe tests by Levin 
[30]. A 1% change in variables was used to calculate approximate sensitivity coefficients 9 and 
values of uncertainties e were as published. Results for four sets of data are shown in Table 3 
below: 

TABLE 3. Results of Statistical Combination of Uncertainties 
Test data from Levin [30] for laboratory tests on 

cold bitumen sprayed pipe 
Q 

Qmax 
(9ses)' (9ded)' (9QeQ)2 (9vev)^ ek (mm) 

from Eqn. (15) 
OsCs 
(mm) 

1.0 3.11 E-10 1.09 E-11 1.45 E-11 4.26 E-16 1.834 E-2 1.76 E-2 
0.7 2.59 E-10 1.17 E-11 1.76 E-11 1.024 E-15 1.698 E-2 1.61 E-2 

0,392 1.87 E-10 1.21 E-11 2.75 E-11 3.06 E-15 1.504 E-2 1.37 E-2 
0.073 1.39 E-10 6.6 E-11 1.88 E-10 6.94 E-13 1.98 E-2 1.17 E-2 

The results in Table 3 indicate that the energy gradient term makes the greatest contribution to Ck, 
except at very low discharges where the discharge term is of equal or greater importance. The 
pipe diameter term is insignificant, except at very low discharges, and the viscosity term can be 
ignored. 
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For the upper two-thirds of discharges, at least, taking the S term only in Equation (15) gives an 
approximate ek = 9s eg, which is slightly less than e^ found by using all terms. 

Application of the statistical combination method at the design stage of a pipe test program 
should guide selection of measurement techniques and indicate areas where repetition of 
observations can reduce the uncertainty in k estimates. 

The statistical combination method can only be applied to one set of test data at a time so some 
means of combining the n estimates of the uncertainty ek values from n sets of data is required. 
On the other hand, the direct combination method above yields a "best fit" estimate of minimum 
k from the Case 1 analysis. 

Comparison of Uncertainties in k from the Direct Combination and the Statistical 
Combination Methods 
The mean uncertainty in k from the direct combination method has been taken as: 

ek = 0.5 ^max ^min. (16) 

where k^ax ^ ^ k^m are the results of Case 1 analysis for data sets for minimum k and maximum 
k respectively. 

The mean xmcertainty for n data sets using the statistical combination method has been taken as 
1 " the mean value ~ S k̂i • n i=i 

As expected [35], using the test data of Levin [30], the direct combination method gave a mean 
ek about 10% greater than the mean Ck using statistical combination for four of the data sets. 

The direct combination method is therefore shghtly conservative in estimating the uncertainty in k 
but is recommended for its simplicity and ability to give "best fit" estimates of k^b and k^^. 

ESTIIVIATION OF UNCERTAINTIES IN THE INDEPENDENT VARIABLES 

S, d, Q and v 
Measurement Methods for Pipe Tests 
A review of methods of measurement of pipe, flow and water properties is given in Appendix B. 
The uncertainties associated with measurement of these properties influence the uncertainty 
estimates for S, d, Q and v. 
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Uncertainty in the Energy Gradient S 
As shown in the section above, the uncertainty Cg in S probably has the predominant effect when 
finding the uncertainty e^ in L Estimating S and its uncertainty ê  is usually the most difficult 
task in analysing pipe test results, particularly for large diameter smooth pipes, or smaller pipes at 
low discharges, where the head loss is small and S is very small. 

For steady flow of an incompressible fluid in a prismatic pipe the energy line (and the parallel 
hydraulic grade line HGL) is theoretically linear, but even the most careful pipe tests produce a 
scatter of piezometric head values about a straight line. When tests are repeated at the same 
value of discharge the head observations at a particular cross-section show some random variation. 
Examples of piezometric head measurements for some laboratory and field tests are shown in 
Figures 6 and 7 respectively. 

The deviations of the observed piezometric head measurements from a straight line of best fit are 
often too great to be explained by combining the uncertainties in the measurements used to 
determine the piezometric head h, particularly with laboratory tests, for example Figure 6(A). It 
is suggested that S, and its uncertainty eg, be found by: 

(i) Adjusting the observations of the component variables used to find h to correct for any 
systematic errors, e.g. by cahbration of pressure gauges. 

(ii) Then treating the HGL observations as a statistical problem of fitting a straight line 
where "x is known without error and y can vary". In the present case x is the distance 
I along the pipe and y is the piezometric head h. The uncertainty e/ in / is usually 
negligible compared to the imcertainty eh in h. 

A least squares linear regression provides a simple means of fitting a straight line to the n sets of 
(/,h) data [1], [10], [33], [35]. This method assumes that the h values are normally distributed 
about the regression line with constant variance. 

The regression line is given by: 
h = a 4- b/ (17) 

n 
2 ( / - / ) ( h - h ) 

where b = (18) 
! ( / - / ) ' 

1 

and a = h - b / (19) 

In Equations (18) and (19) h a n d ! are mean values, given by h=— V h and 7=— Y/, 
n t n t 

res^ctively. The energy gradient S is then equal to - b and the line of best fit passes through 
( / , h). S values found using this method are shown on some of the HGL lines in Figures 6 and 
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7, together with the published value S .̂ 

Assuming the estimates of b from repeated measurements follow Student's t distribution for a 
small nimiber of observations n [10] [33], the uncertainty in b, to some prescribed confidence 
level, gives the uncertainty eg in the energy gradient: 

10.5 

Cs = tp 
E (h-ho X 1 

n 
5 : ( / - / r ( n - 2 ) 1 

(20) 

where tp is a coefficient from Student's t distribution, n is the number of sets of (/,h) 
observations, and h^ is the h value computed from the line of best fit for a given / value. 

The coefficients tp may be obtained from tables [35] or from a graph [10]. tp values for 
confidence levels appropriate for pipe test analysis are shown graphically on Figure 8. A 
confidence level of 95% indicates that S is likely to be in the range (S-Cg) to (S+Cs) for 95% of 
the time. 

In Figure 8 the abscissa is the number of degrees of freedom, equal to (n-2). At least three head 
tapping points are needed if an estimate of eg is required. Figure 8 (B) (the linear plot) provides 
guidance in selecting the minimum number of head tapping points required to keep tp (and hence 
eg) "reasonably low". For example, for a 95% confidence level six degrees of freedom, requiring 
eight tapping points, appears to be desirable. 

Equation (20) shows that Q^ is reduced by increasing the number n of head tapping points, which 
increases the value of the (n-2) term in denominator. 

Equation (20) also indicates that Cg is reduced by increasing the spacing of the head tapping 
points. This effect has been investigated by applying Equation (20) to synthetic pipe test data. 
For given d, k, v and tapping spacing A/, n sets of (/, h«) points on the HGL are calculated. The 
ho values are then perturbed by multiplying a perturbation Ah^ax by a random number between 
-1 .0 and +1.0. Results for two sets of data are shown in Figure 9. Increasing the tapping 
spacing A/ makes the energy gradient S approach the known value for the unperturbed HGL and 
decreases the uncertainty eg. 

Equation (20) suggests a possible measurement strategy might be to reduce eg by increasing the 
( l - l ) values, that is to concentrate the head tapping points at the upstream and at the downstream 
ends of the test section. There are two objections to this strategy: 

(i) There would be no check on the assumed linearity of the HGL over the intermediate 
section of pipe. An obstruction causing localised minor loss could go undetected [23]. 
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(ii) A statistical test would be required to show that the observations at each end were 
samples from the same population. 

Investigation of any non-linearity of the HGL, and a check on the assumption of constant variance 
of the h values, would require repetition of the h observations for the same discharge, preferably 
taking observations over several cycles with Q increasing and Q decreasing [1]. This is usually 
impractical for field tests, which have to fit in with operating schedules, but could be performed 
for laboratory tests with little additional cost. 

Uncertainty in Pipe Diameter d 
Measure;ment of d volumetrically by filling a length of pipe with water should give — < 0.5%, 
e.g. Levin [30] obtained = 0.2% for a 200 mm diameter pipe. 

Measurements by precision mechanical instruments such as micrometers should give — < 0.5%. 
Sufficient measurements should be taken to allow an elementary statistical analysis (see Appendix 
B). 

When a d value is taken from manufacturers' catalogues the allowable tolerance in manufacture 
should be recognised. The allowable tolerance — may range from 4.5% for small (75 mm 
diameter) pipes to about 1.0% for larger (6(X)nmi diameter) pipes [20]. 

Uncertainty in Discharge Q 
Orifice plates, Venturis and flow nozzles manufacmred, installed and operated according to 

eg 
standard codes should have — < 1.25% [22], [27], [28]. A pitot tube traverse, with appropriate 
corrections, should give < 1% [7]. Electromagnetic flow meters are claimed to give < 
1% [30]. Laboratory volumetric tanks give from 0.25% [38] to 0.5% [17], while volumetric 

^ Co gauging in natural reservoirs gives < 2% [9]. Q measurement by stream gauging gives ^ 
about 6% [28]. 

Uncertainty in Water Properties 
Providing the water temperature can be found within ±0.5°C, the uncertainty in density due to 
temperature variation can be neglected. The relative uncertainty in density is about 0.15%, 

P due to systematic uncertainty in published p values [22]. 

Dynamic viscosity |LI is much more sensitive to temperature change than density. A change in 
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temperature from 20 to 21°C wiU decrease |li by about 2.5%. The uncertainty e^ for a 
temperature uncertainty et = At may be taken as the mean of the \x deviation : 

e^ = 0.5 Ml-At - Mt+At (21) 
V̂ . . . . . . . IX Cm — " mo*7 t-nlrA-n oo A/-iiin1 —i—. The percentage uncertainty — in the kinematic viscosity v = may be taken as equal to as V p )Ll e e ^ < 5 -jl^, the criterion for ignoring the smaller value [28]. 

CONCLUSIONS 
1. It has been shown that least squares minimisation in terms of head loss residuals is a viable 

method for estimating the equivalent sand grain roughness k from a pipe test. The 
proposed method has a statistical basis and is preferable to the common method of drawing 
a line of best fit through plotted points on a Moody chart. 

2. The uncertainty in the k value may be derived by direct combination of the estimated 
imcertainties in the pertinent variables. The uncertainty in the energy gradient S appears to 
be the major source of uncertainty in k. The uncertainty in S can be reduced by increasing 
the number of head tapping points and by increasing the spacing between the points. 

3. Use of a total head loss relation (friction loss plus fitting loss) gave a better fit than friction 
loss only for some of the published pipe tests. This suggests that for some pipelines a Kl 
value, as well as a k value, should be specified. 

4. The proposed least squares minimisation techniques have been shown to permit adequate 
estimation of "effective" diameter, k and Kl design values when various combinations of 
these values are unknown. 

Of KM scur« a :^ , 
/ 

I I \ -1 ' ' ; - - il 

"s\ . y 
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APPENDIXA: MINIMISATION OF A ONE-VARIABLE FUNCTION 

Referring to Figure 10(A), the value of x^ is sought to define the single local minimum f(x^) 
known to occur in the range Xi to X2. The function f(x) may be "round bottomed" or "sharp 
bottomed" as shown. 

(i) Minimum by Bisection of First Derivative Function [25] 
If the first derivative fimction f^(x) can be found then it crosses the x axis at x ,̂ as shown 
in Figure 10(B). The method of bisection (or interval halving) [10] may be used to obtain 
the root x^ of f^x). The interval between Xi and X2 is bisected at X3 and the algebraic 
signs of f^xi ) and f^(x3), and f \x2) and f^(x3), compared. The curve crosses the x axis 
when the signs are opposite, i.e. between xi and X3 in Figure 10(B). The interval between 
xi and X3 is then bisected and the procedure repeated until the required interval of 
uncertainty Ax is reached. Each iteration (after the first) requires only one evaluation of 
f^(x) and the approximate number of iterations N required is: 

loge 
N = 

(Xi-X2)/AX 

10ge2 
(Al) 

(ii) Minimum by Golden Section Search [13], [25] 
This method is similar to the method of bisection in that the x interval containing the 
minimum is reduced by iteration. Each iteration reduces the interval from 5x to r5x, where 
r = 0 . 5 C ^ - l ) , the golden section ratio, which satisfies the equation r̂  = 1 - r . Referring 
to Figure 11 (B), if x^ is known to be between xi and X2, then for the first iteration f(x) is 
evaluated at X3 and X4. For the second and subsequent iterations only one determination of 
f(x) is required. The number of iterations N required to contain x̂  within an interval of 
imcertainty Ax is: 

-loge 
N = 

(x2-Xi)/AX 

loger 
(A2) 
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APPENDIX B : REVIEW OF MEASUREMENT METHODS FOR PIPE TESTS 

Measurement of Pipe Diameter d 
The diameter of pipes small enough to be easily handled may be measured volumetrically by 
filling a length of pipe with water [26], [30], [37]. With very smaU pipes care should be taken to 
remove air bubbles adhering to the walls by wiping [37]. For a small rough pipe the diameter 
obtained by water filling may be less than that measured by sharp ended calipers or greater than 
that measured with flat ended calipers [37]. 

For small pipes sample rings may be cut from the pipe for measurement by calipers [37]. For 
large pipes permitting access, a beam micrometer may be used [9]. 

In all cases sufficient measurements of d should be taken to permit calculation of the standard 
deviation and thence an estimate of the uncertainty in diameter ej to the required confidence level 
[28]. 
Measurement of Pipe Length L 
Distance between pressure tappings may be determined accurately by steel tape for laboratory tests 
or by survey traverse for field tests [23]. Uncertainty in pipe length is usually insignificant 
compared to imcertainty in the other variables, except for buried pipes where constmction records 
have been lost. 

Measurement of Pipe Elevation 
The elevation z of tapping points is required when the pressure head ^ is being measured to 
locate the HGL (see Figure 1). For laboratory tests care is taken to lay the pipe straight and level 
using precise survey levelling, except where cases of joint displacement or deflection are being 
investigated [38J. 
For field tests survey levelling from adjacent bench marts is used [23]. Taking pressure readings 
at zero discharge to deduct the pressure head ^ from a known static HGL has also been used 
[12], [23]. For very large pipes the surges produced by shutting a downstream control valve to 
give a static HGL may persist for several hours [12]. 
When the HGL is detected by piezometer mbes, or differential manometer, the indicated head loss 
is independent of the pipe slope so no elevation data is required. 
Measurement of Pressure 
The most common way of accessing the flow to measure pressure at a cross-section is to drill one 
or more holes through the wall of the pipe. The centre-lines of these wall tapping holes are 
normal to the pipe centre-line. For field tests on manufactured pipes a tapping band is required 
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so usuaUy only one hole per cross-section is used [9], [16], [23], [40]. For large tunnels and 
penstocks pressure tappings may be installed during construction specifically for pipe tests after 
commissioning [18], [42]. Vertical shafts used during construction have been used subsequently 
as piezometers for head loss tests [8], [34]. For laboratory tests one [24], [26], [29], [41], two 
[30], or four [15], [17] wall tapping holes per cross-section have been used. 

When two or morc tapping holes are used at a cross-section they are usually connected by a ring 
manifold to average the pressure, witii a single offtake to the pressure measuring device [5], [6], 
[17]. To avoid air accumulation at an obvert tapping, or blocking by debris of an invert tapping, 
tapping holes should preferably be located in sectors of the cross-section between 

+ — and - — rad. to tiie horizontal [5]. The angle between adjacent tapping holes should be 
4 4 

constant. 

Wall tappings overestimate the static pressure shghtly, and the error increases as the diameter of 
the tapping hole increases [19]. The detailed specifications for wall tappings for constriction 
meters should also be apphcable to pipe tests [27]. 

For manufactured pipes connected by flanged, socketed or sleeved joints the wall tappings are 
usually made a short distance upstream of the joint [17], [23], presumably to minimise flow 
interference from the joint upstream. 

The number of tapping cross-sections which have been used to define the HGL for friction tests 
varies from two to twenty. Some laboratory tests have used a sufficient number to make an 
adequate statistical estimate of the energy gradient and its uncertainty [30], [38]. Many 
investigators, however, while careful in measuring pressure, discharge, etc, have used only two or 
three taps [15], [17], [26], [29], [36]. For field tests two or three tapping cross-sections are 
common, occasionally more are used [23], [34], [40]. 

Alternative means of accessing the flow for pressure measurement include annular slots [37] and 
static pressure probes [36], [38]. Static pressure probes may have an advantage over wall 
tappings for very rough pipes, where presence of a roughness element close to the hole may affect 
the pressure, or for brittle pipes where fracture of the wall on drill breakthrough produces a 
conical hole. 

Devices used for measuring pressure include simple piezometric tubes [8], [17], [18], [30], [34], 
manometers and differential manometers [9], [18], [26], [29], [37], [38], Bourdon pressure gauges 
[16], [23], dead weight testers [6], [16], and pressure transducers [6], [41]. Distortion of pressure 
signals in plastic connecting tubes has been investigated by Carolus et al. [11]. 

Measurement of Discharge 

Laboratory tests have used volumetric tanks [17], [26], [38], constriction meters [15], pitot 
traverse [36], and electromagnetic flow meters [30]. Field tests have used orifice plates [23], 
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ventuii meters [9], [34], [41], volumetric tanks [16], stream gauging [8], salt-velocity and colour-
prism methods [9], and correlation of discharge with turbine power output [6], [18]. 

When standard designs for constriction meters are used the calibration coefficients are given by 
the relative standard code. 

Measurement of Fluid Properties 

The fluid properties required for water flow are density p and dynamic viscosity |x, both functions 

of water temperature. Unit weight y = pg is required for finding pressure head The 

kinematic viscosity v = is required for use in friction factor equations. 

Temperature read with a cheap mercury-in-glass thermometer has an uncertainty Ct of about 0.5°C. 
Temperature read by an industrial quality electronic thermometer has an et of about 0.1 [22]. 
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APPENDIX C : COMPUTER PROGRAM 
c PROGRAM PIPE.TEST 
c FIND DIAMETER, ROUGHNESS K & MINOR LOSS COEFFICIENT FROM PIPE TESTS 
C BY LOCATING MINIMUM LOGIO (SUM SQUARES RESIDUAL HEAD) 
C WITH GOLDEN SECTION SEARCH 
c 
c AUTHORS 
C T.R. FIETZ AND K.B. HIGGS 
C UNIVERSITY OF NEW SOUTH WALES, WATER RESEARCH LABORATORY 
c AUGUST, 198 9 
c 
C VARIABLES 
c 
c *=COMylON VARIABLE 
c *ANU(NP)=KINEMATIC VISCOSITY (M''2/S) (FROM PIPE TESTS) 
C ICASE=CASE NUMBER 
c =l,casen(l)='GIVEN DIA., FTND SAND GRAIN ROUGHNESS K' 
c =2,casen(2)='GIVEN DIA.& K, FIND MINOR LOSS COEFF' 
c =3,casen(3)='GIVEN DIA., FIND K & MINOR LOSS COEFF' 
c =4,casen(4)='FIND DIA. & K' 
c =5,casen(5)='FIND DIA., K & MINOR LOSS COEFF' 
c CASEN(5)=CASE DESCRIPTIONS 
c D=PIPE DIA. (MM FOR I/O, M FOR CALCNS.) 
c *DC=CURRENT DIA.(M) 
C DG=DIA. AT GLOBAL MIN. (MM FOR I/O, M FOR CALCNS.) 
c *DHIG=UPPER LIMIT OF DIA. FOR SEARCH (MM FOR I/O, M FOR CALCNS.) 
c *DINC=DIA. INCREMENT CONTAINING GLOBAL MIN. (MM FOR I/O, M FOR CALCNS.) 
c *DLOW=LOWER LIMIT OF DIA. FOR SÉARCH (MM FOR I/O, M FOR CALCNS.) 
C FC=CURRENT DARCY F 
C FNAME=SEQUENTIAL FILENAME FOR TEST DATA 
c FILE INCLUDES JOB,L,NP,Q(NP),H(NP),ANU(NP) 
c *G=GRAVITY 
c *H(NP)=MEASURED HEAD LOSS (FRICTION + MINOR LOSS)(M) (FROM PIPE TESTS) 
c *HN(NP)=ESTIMATED HEAD LOSS(M) (FROM GLOBAL SEARCH) 
C HC=CURRENT CALCULATED HEAD LOSS(M) 
C *JOB=PROJECT NAME 
c K=SAND GRAIN ROUGHNESS (MM FOR I/O, M FOR CALCNS.) 
C *KC=CURRENT K 
C K G = K AT G L O B A L M I N . (MM F O R I/O, M F O R C A L C N S . ) 
C * K H I G = U P P E R L I M I T OF K F O R SEARCH (MM F O R I/O, M F O R C A L C N S . ) 
C. * K I N C = K I N C R E M E N T C O N T A I N I N G G L O B A L M I N . (MM F O R I/O, M F O R C A L C N S . ) 
C * K L O W = L O W E R L I M I T OF K F O R S E A R C H (MM F O R I/O, M F O R C A L C N S . ) 
C * L E N = P I P E L E N G T H ( M ) 
c * M C = C U R R E N T M L C 
C M G = M L C A T G L O B A L M I N . 
C * M H I G = U P P E R L I M I T OF M L C F O R S E A R C H 
C * M I N C = M L C I N C R E M E N T C O N T A I N I N G L O C A L M I N . 
C * M L O W = L O W E R L I M I T OF M L C F O R S E A R C H 
c * N P = N O . O B S E R V A T I O N S F R O M P I P E TESTS 
c * N U = C U R R E N T K I N E M A T I C V I S C O S I T Y CM"2/S) 
C *PI=pi 
c *Q(NP)=FL0WRATE(M'^3/S) (FROM PIPE TESTS) 
C QC=CURRENT Q(M"3/S) 
c SUMSQS=LOG10 SUM SQUARES AT G L O B A L MIN. 
C 
c SUBROUTINE CALLS 
c 
C 
C 

CASE 1 - GIVEN DIA., FIND SAND GRAIN ROUGHNESS K 
KIP 

C AGOLD <- KSUMEH <- HLOSS <- YAOF 
C HLOSS <- YAOF 

CASE 2 - GIVEN DIA. & K, FIND MINOR LOSS COEFF 
MIP 
AGOLD <- MSUMEH <- HLOSS <- YAOF 
HLOSS <- YAOF 

CASE 3 - GIVEN DIA., FIND K & MINOR LOSS COEFF 
KIP 
MIP 
AGOLD <- MMID <- CGOLD <- MSUMEH <- HLOSS <- YAOF 
HLOSS <- YAOF 

CASE 4 - FIND DIA. & K 
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Appendix C: Computer Program (Contd) 
C DIP 
C KIP 
C AGOLD <- DMID <- CGOLD <- DSUMEH <- HLOSS <- YAOF 
C HLOSS <- YAOF 
c CASE 5 - FIND DIA., K & MINOR LOSS COEFF 
C DIP 
C KIP 
C MIP 
C AGOLD <- BIG <- BGOLD <- DMID <- CGOLD <- DSUMEH <- HLOSS <- YAOl 
C HLOSS <- YAOF 
c 

implicit realms (a-h,o-z) 
common /setl/ anu(40),q(40),h(40),hn(40),np 
common /set2/ g, len^ dc,. kc,mc, nu, pi 
real*8 len,k,kc,mc,nu 
dimension casen(5) 
character job*200,casen*40 
common /set3/ dlow,dhig, dine, klow, khig, kinc,mlow,mhig,mine 
real*8 dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
realms kg,mg 
character fname*15 
external ksumeh,msumeh,mmid,dmid,big 
g = 9.8d0 
pi = 3.141593d0 
casen(1)GIVEN DIA., FIND SAND GRAIN ROUGHNESS K 
casen(2)='GIVEN DIA. & K, FIND MINOR LOSS COEFF 
casen(3)='GIVEN DIA., FIND K & MINOR LOSS COEFF 
casen(4)FIND DIA. & K 
casen(5)FIND DIA., K & MINOR LOSS COEFF 
print *,'PIPE FLOW ANALYSIS PROGRAM' 

Q Qgij test data from disk ********************* 
c if getarg is not available, delete next line and remove c from next read 

call getarg(1,fname) 
print * 
print 'INPUT FILE NAME FOR TEST DATA:- fname 

c read 1,fname 
open (1,file=fname) 
rewind 1 
read(l,l) job 

1 format(a) 
readd,*) len 
readd,*) np 
if(np.gt.40) then 

print *,'WARNING - Program Dimensions Exceeded' 
print 'Number of Data Values=',np,', Dimensions Set to 40' 
stop 

endif 
readd,*) ( q (i) , h (i) , anu (i) , i=l,np ) 
close (1) 

C INPUT CASE DETAILS ************************** 
print * 
print job 
print * 

100 print CASE CASE' 
print 'NUMBER DETAILS' 
write(6,2) (i,casen(i),i=l,5) 

2 format(2x,i3,4x,a40) 
print * 
print *, 'INPUT CASE NUMBER ' 
read *,icase 

Q INPUT PIPE DETAILS ************************** 
if (lease.It.1.or.icase.gt.5) then 

print *,'Try again' 
goto 100 

endif 
if (icase.eq.1) then 

print 'INPUT PIPE DIA. IN MM. ' 
read *,D 
D = D / lOOOdO 
call kip (klow,khig,kinc) 
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Appendix C: Computer Program (Contd) 

elseif(lease.eq.2) then 
print 'INPUT PIPE DIA. IN MM. ' 
read 
D = D / lOOOdO 
print 'INPUT SAND GRAIN ROUGHNESS, IN MM. ' 
read 
K = K / lOOOdO 
call mip (mlow,mhig,ininc) 

elseif(lease.eq.3) then 
print 'INPUT PIPE DIA. IN MM. ' 
read *,D 
D = D / lOOOdO 
call kip (klow,khig,kinc) 
call mip (mlow,mhig,ininc) 

elseif(lease.eq.4) then 
call dip (dlow,dhig,dine) 
call kip (klow,khig,kinc) 

else 
call dip (dlow,dhig,dine) 
call kip (klow,khig,kinc) 
call mip (mlow,mhig,minc) 

endif 
Q ********************** FIND GLOBAL MINIMUM ********************* 

if(lease.eq.1) then 
de = d 
me = OdO 
call agold (klow, khig, kine, ksumeh., kg,sumsqs) 
dg = d 
mg = OdO 

elseif(lease.eq.2) then 
de = d 
kc = k 
call agold(mlow,mhig,minc,msumeh, mg,sumsqs) 
dg = d 
kg = k 

elseif(lease.eq.3) then 
de = d 
call agold(klow,khig,kinc,mmid, kg,sumsqs) 
dg = d 
mg = me 

elseif(lease.eq.4) then 
me = OdO 
call agold(klow,khig,kine^dmid, kg,sumsqs) 
dg = de 
mg = OdO 

e CASE 5 
else 

call agold(mlow,mhig,mine,big, mg,sumsqs) 
kg = kc 
dg = de 

endif 
^ *********** FIND % ERROR IN ESTIMATED HYD. GRAD. *************** 

do 200 i = l,np 
qe = q(i) 
nu = anu(i) 
call hloss(qe,dg,kg,mg, he) 
hn(i) = he 

^^^ ****i***************** PRINT RESULTS 
print * 
print * 
orint PROGRAM HEDl' 
^ . . ^ r ******* ****' 

print 
print * print 'JOB:-',job 
print * . , , / • X print *,'CASE TYPE:- ',icase,' ',casen (icase) 
print * 

print * 
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Appendix C: Computer Program (Contd) 
print PIPE test RESULTS' 
print **** X**,: -k-k-k-k-k-k* r 
if (icase.It.4) write(6,3) d-lOOCdO 

3 format{'INPUT PIPE DIAMETER ,f8 .2,' mm' ) 
if(icase.eq.2) write(6,4) k*1000G0 

4 format('INPUT SAND GRAIN ROUGHNESS ,f8.4,' mm') 
print * 
print Q head NU*1E6' 
print (L/S) (M) (M'^2/S) ' 
write(6,5) ( q(i)*1000d0, h(i), anu(i)*le6 ,i=l,np) 

5 format(f9.2,2x,f8.4, 2x, f8.2) 
print * 
print * 
print GLOBAL SEARCH DETAILS' 
print * ' -k-k-kkk-k k k k-k-k-k -k-k k: k k *-k r 

if (icase . eq. 4 . or , icase . ecr. 5) 
+ write(6,6) dlow*1000d0, dhig*1000d0, dinc*1000d0 

6 formatCDIA. FROM ',f9.1,' MM, TO ',f9.1, 
+ ' MM, IN INTERVAL ',f9.6,' MM') 

if (icase.ne.2) write(6,7) klow*1000d0, khig*1000d0, kinc*1000d0 
7 formatCK FROM ',f9.3,' MM, TO ',f9.3, 

+ ' MM, IN INTERVAL ',f9.6,' MM') 
if(icase.eq.2.or.icase.eq.3.or.icase.eq.5) 

+ write(6,8) mlow, mhig, mdnc 
8 format('MINOR LOSS COEFF. FROM',f9.3,' TO ',f9.3, 

+ ' , IN INTERVAL ',f 9.6) 
print * 

print * 
print GLOBAL MINIMU'M' 
Drint *,' kkkkk* kkkk-kk-kr 

if(icase.eq.4.or.icase.eq.5) write(6,9) dg*1000d0 
9 format('ESTIMATED PIPE DIAMETER =',fl0.2,' mm') 

if(icase.ne.2) write(6,10) kg*1000d0 
10 format('ESTIMATED SAND GRAIN ROUGHNESS=',f10.4,' mm') 

if(icase.eq.2.or.icase.eq.3.or.icase.eq.5) write(6,ll) mg 
11 format('ESTIMATED MINOR LOSS COEFF. =',fl0.3) 

write (6,12) 10.**sumsqs 
12 format('SUM SQUARES RESIDUAL H =',F14.10) 

print * 

print * 
print *,' ESTIMATED HEAD LOSS' 

-k ̂  r ********* *********A 
print * 
print *,' Q(L/S) HEAD(M) HEAD(M) PERCENT.' 
print *,' FROM FROM FROM GLOBAL ERROR IN' 
print *,' TESTS TESTS SEARCH HYD.GRAD.' 
do 30 0 i = l,np 

pe = (hn(i) - h(i)) / h(i) * lOOdO 
write(6,13) q(i)*1000, h(i), hn(i), pe 

13 format(f9.2,2x,f9.4,3x,f9.4,3x,f8.3) 
300 continue 

print * 

print * 
print *,' END OF PROGRAM' 
end 

Q *********** 
C SUBROUTINE DIP, INPUT DIA. RANGE & INCREMENT FOR SEARCH 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine dip (dlow,dhig,dine) 
real*8 dlow,dhig,dine 
print * 
print *, 'INPUT LOWER LIMIT OF DIA. FOR SEARCH, IN MM. ' 
read *,dlow 
dlow = dlow / lOOOdO 
print *, 'INPUT UPPER LIMIT OF DIA. FOR SEARCH, IN MM. ' 
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Appendix C: Computer Program (Contd) 
read *,dhig 
dhig = dhig / lOOOdO 
print INPUT DIA. INCREMENT TO CONTAIN GLOBAL MIN., IN MM., 

+ SUGGEST lE-5' 
read *,dinc 
dine = dine / lOOOdO 
end 

Q ********************************************* 
e SUBROUTINE KIP, INPUT K RANGE & INCREMENT FOR SEARCH Q ********************************************************** * * * * * * 

subroutine kip (klow,khig,kinc) 
real*8 klow,khig,kine 
print * 
print 'INPUT LOWER LIMIT OF K VALUE FOR GLOBAL SEARCH, IN MM.' 
read *,klow 
klow = klow / lOOOdO 
print 'INPUT UPPER LIMIT OF K VALUE FOR GLOBAL SEARCH, IN MM.' 
read *,khig 
khig = khig / lOOOdO 
print *, 'INPUT K VALUE INCREMENT TO CONTAIN GLOBAL MINIMUM, IN MM., 

+ SUGGEST lE-6' 
read *,kine 
kine = kine / lOOOdO 
end 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
e SUBROUTINE MIP, INPUT MLC RANGE & INCREMENT FOR SEARCH 
Q * i( ii: * ic ic i< ic * ii: * * ic i<-k *-k *-k-k-k-k-k-k-k ic-k-k-k •*: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine mip (inlow,inhig,mine) 
real*8 mlow,mhig,mine 
print * 
print *, 'INPUT LOWER LIMIT OF MINOR LOSS COEFF. FOR SEARCH ' 
read *,mlow 
print 'INPUT UPPER LIMIT OF MINOR LOSS COEFF. FOR SEARCH ' 
read *,mhig 
print 'INPUT MINOR LOSS COEFF. INCREMENT TO CONTAIN GLOBAL MIN., 

+ SUGGEST IE-6' 
read *,mine 
end 

e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C SUBROUTINE KSUMEH, FIND LOGIO(SUM SQUARES RESIDUAL H) 
e K INPUT, DIA. & MLC HELD CONSTANT 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine ksumeh (k9, sum) 
e K9=SAND GRAIN ROUGHNESS(M), INPUT 
e SUM=LOG10(SUM SQUARES), RETURNED 
e DC,MC,NP,NU,Q(*),H(*),ANU(*) COMMON 

implieit real*8 (a-h,o-z) 
eommon /setl/ anu(40),q(40),h(40) , hn(40) , np 
eommon /set2/ g,len,de,kc,me,nu,pi 
real*8 k9,len,kc,me,nu,m9 
sum = OdO 
do 10 i = l,np 

qe = q(i) 
hm = h(i) 
nu = anu(i) 
d9 = dc 
m9 = me 
eall hloss(qc,d9,k9,m9, he) 
sum = sum + (hm - he) ** 2 

10 eontinue 
sum = loglO (sum) 
end 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
SUBROUTINE MSUMEH, FIND LOGIO(SUM SQUARES RESIDUAL H) 
MLC INPUT, DIA. & K HELD CONSTANT 
^ ^ ^ ^ ^ y f V t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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subroutine msumeh (m9, sum) 

C M9=MIN0R LOSS COEFF., INPUT 
C SUM=LOG10(SUM SQUARES), RETURNED 
C DC,KC,NP,NU,Q(*) ,H (*) ,ANU(*) COMMON 

implicit real*8 (a-h,o-z) 
common /setl/ anu(40),q(40),h(40),hn(40),np 
common /set2/ g,len,dc,kc,mc,nu,pi 
real*8 k9,len,kc,mc,nu,m9 
sum = OdO 
do 10 i = 1,np 

qc = q(i) 
hm = h(i) 
nu = anu(i) 
k9 = kc 
d9 = dc 
call hloss(qc,d9,k9,m9, he) 
sum = sum + (hm - he) ** 2 

10 continue 
sum = loglO (sum) 
end 

Q ****************************************** 
C SUBROUTINE DSUMEH, FIND LOGIO(SUM SQUARES RESIDUAL H) 
C DIA. INPUT, K & MLC HELD CONSTANT 

subroutine dsumeh (d9, sum) 
c D9=DIA.(M), INPUT 
C SUM=LOG10(SUM SQUARES), RETURNED 
C HM=MEASURED HET^ LOSS (FROM PIPE TESTS) 
C HC=CALCULATED HEAD LOSS (FROM COLEBROOK WHITE) 
C KC,MC,NP,NU,Q(*),H(*),ANU(*) COMMON 

implicit real*8 (a-h,o-z) 
common /setl/ anu(40),q(40),h(40),hn(40),np 
common /set2/ g,len,dc,kc,mc,nu,pi 
real*8 k9,len,kc,mc,nu,m9 
sum = OdO 
do 10 i = 1,np 

qc = q(i) 
hm = h(i) 
nu = anu(i) 
k9 = kc 
m9 = mc 
call hloss(qc,d9,k9,m9, he) 
sum = sum + (hm - he) ** 2 

10 continue 
sum = loglO (sum) 
end 

c 
C SUBROUTINE HLOSS, FIND HEAD LOSS FOR GIVEN Q, DIA., K, NU & MLC 

subroutine hloss (qc,d9,k9,m9, he) 
C QC=FLOWRATE(M^3/S), INPUT 
c D9=DIA.(M), INPUT 
C K9=SAND GRAIN ROUGHNESS(M), INPUT 
C M9=MIN0R LOSS COEFF., INPUT 
C HC=CALCULATED HEAD LOSS(M), RETURNED 
C VC=VELOCITY(M/S) 
C REYN=REYNOLDS NO. 
C FC=CURRENT DARCY F 
C G, PI, NU, LEN COMMON 

implicit real*8 (a-h,o-z) 
common /set2/ g,len,dc,kc,me,nu,pi 
real*8 k9,m9,len,kc,mc,nu,kd 
kd = k9 / d9 
reyn = 4dO * qc / (pi * d9 * nu) 
if(reyn.It.2100) then 

fc = 64d0 / reyn 
else 

call yaof(kd,reyn, fc) 
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endif 
vc = 4ci0 * qc / (pi * d9 * d9) 
he = (fc * len / d9 + m9) * vc * vc / (2dO * g) 
end 

C S U B R O U T I N E D M I D , F I N D L O G I O ( S U M S Q U A R E S R E S I D U A L H) 
C K I N P U T , M L C H E L D C O N S T A N T 

subroutine dmid (k9, f9) 
C FIND LOCAL MIN.DIA FOR K9 INPUT, RETURNS LOGIO(SUM SQUARES RESIDUAL H) 
C K9=SAND GRAIN ROUGHNESS(M), INPUT 
c F9=LOG10(SUM SQUARES), RETURNED 
C DC,KC,MC,DLOW,DHIG,DINC COMMON 

implicit real*8 (a-h,o-z) 
common /set2/ g,len,dc,kc,mc,nu,pi 
real*8 k9,len,kc,mc,nu 
common /set3/ dlow, dhig, dine, klow, khig, kinc,mlow,mhig,mine 
real*8 dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
external dsumeh 
kc = k9 
call cgold(dlow,dhig,dine,dsumeh, dc,f9) 
end 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C S U B R O U T I N E B I G , F I N D L O G I O ( S U M S Q U A R E S R E S I D U A L H), M L C I N P U T 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine big (m9, g9) 
C FIND LOCAL MIN. K, THEN LOCAL MIN. DIA. FOR M9 INPUT 
c M9=MIN0R LOSS COEFF., INPUT 
C G9=LOG10(SUM SQUARES RESIDUAL H), RETURNED 
C DC,KC,MC,KLOW,KHIG,KINC COMMON 

implicit real*8 (a-h,o-z) 
common /set2/ g,len,do,kc,me,nu,pi 
real*8 m9,len,ke,me,nu 
common /set3/ dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
real*8 dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
external dmid 
mc = m9 
call bgold(klow,khig,kinc,dmid, ke,g9) 
end 

C S U B R O U T I N E M M I D , F I N D L O G I O ( S U M S Q U A R E S R E S I D U A L H) 
C K I N P U T , D I A . H E L D C O N S T A N T ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine mmid (k9, f9) 
C F I N D L O C A L M I N . M L C F O R K9 I N P U T 
c K 9 = S A N D GRAIN ROUGHNESS(M), I N P U T 
C F 9 = L O G 1 0 ( S U M S Q U A R E S R E S I D U A L H), R E T U R N E D 
C D C , K C , M C , M L O W , M H I G , M I N C C O M M O N 

implicit real*8 (a-h,o-z) 
common /set2/ g,len,de,ke,mc,nu,pi 
real*8 k9,len,kc,me,nu 
common /set3/ dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
real*8 dlow,dhig,dine,klow,khig,kinc,mlow,mhig,mine 
external msumeh 
kc = k9 
call c g o l d (mlow, mhig,mine,msumeh, me,f9) 
end 

c 
c 
c 

c 
c 
c 
c 
c 

SUBROUTINE YAOF, FIND DARCY F, TURBULENT PIPE FLOW **************************************************************** 
subroutine yaof (kd,reyn, fc) 
SOLUTION OF COLEBROOK-WHITE EQUATION BY YAO'S METHOD 
REF APPLE MANNZONEL, 5.10.85 

KD=PIPE RELATIVE ROUGHNESS, INPUT 
REYN=REYNOLDS NO., INPUT 
FC=DARCY F, RETURNED 
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Appendix C: Computer Program (Contd) 
implicit realms {a-h,o-z) 
real*8 kd 
z8 = kd / 3.7dO 
if (z8.le.OdO) then 
x7 = sqrt(0.02d0) 

else 
x7 = - IdO / (2dO*loglO (zB)) 

endif 
y7 = x7 * x7 

100 if (z8.It.OdO) z8 = OdO 
x8 = - IdO / (2dO*loglO (z8 + 2.51dO / (reyn * x7))) 
fc = x8 * x8 
if( abs ((fc - y7) / y7).It..OOOldO) goto 200 
y7 = fc 
x7 = x8 
goto 100 

200 return 
end 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C SUBROUTINE AGOLD, MIN. OF UNIMODAL FUNCTION BY GOLDEN SECTION SEARCH 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine agold (xlo^xhi,dx,funx, xmin,fxmin) 
C REF. CHENEY & KINCAID, P.462 
C XMIN AT FXMIN, MIN. PT. OF F(X), RETURNED 
C XMIN IN RANGE XLO TO XHI 
C DX=X INTERVAL CONTAINING XMIN 
C XMIN TOLERANCE = + OR - DX/2 
C FUNX=ENTRY NAME FOR SUBROUTINE GIVING F(X) 

implicit real*8 (a-h,o-z) 
external funx 
gsr = ( sqrt (5.dO) - IdO) * 0.5d0 
xO = xlo 
x3 = xhi 
itnum = 1 + log (abs(dx / (x3 - xO))) / log (gsr) 
x2 = xO + gsr * (x3 - xO) 
call funx(x2, y2) 
xl = xO + gsr * gsr * (x3 - xO) 
call funx(xl, yl) 
do 10 0 i = itnum 

if(y2.gt.yl) then 
x3 = x2 
x2 = xl 
y2 = yl 
xl = xO + gsr * gsr * (x3 - xO) 
call funx(xl, yl) 
else 
xO = xl 
xl = x2 
yl = y2 
x2 = xO + gsr * (x3 - xO) 
call funx(x2, y2) 
endif 

100 continue 
xmin = (xl + x2) * 0.5dO 
call funx(xmin, fxmin) 
end 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C SUBROUTINE BGOLD, MIN. OF UNIMODAL FUNCTION BY GOLDEN SECTION SEARCH 
C IDENTICAL WITH AGOLD 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

subroutine bgold (xlo,xhi,dx,funx, xmin,fxmin) 
implicit real*8 (a-h,o-z) 
external funx 
gsr = ( sqrt (5.dO) - IdO) * 0.5dO 
xO = xlo 
x3 = xhi 
itnum = 1 + log (abs(dx / (x3 - xO))) / log (gsr) 
x2 = xO + gsr * (x3 - xO) 
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Appendix C: Computer Program (Contd) 

call funx{x2, y2) 
xl = xO + gsr * gsr * (x3 - xO) 
call funx{xl, yl) 
do 100 i = l,itnum 

if{y2.gt.yl) then 
x3 = x2 
x2 = xl 
y2 = yl 
xl = xO + gsr * gsr * (x3 - xO) 
call funx(xl, yl) 
else 
xO = xl 
xl = x2 
yl = y2 
x2 = xO + gsr * (x3 - xO) 
call funx(x2, y2) 
endif 

100 continue 
xmin = (xl + x2) * O.SdO 
call funx(xinin, fxmin) 
end 

Q ************************************************************** 
C SUBROUTINE CGOLD, MIN. OF UNIMODAL FUNCTION BY GOLDEN SECTION SEARCH 
C IDENTICAL WITH AGOLD 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
subroutine cgold (xlo,xhi,dx,funx, xmin,fxmin) 
implicit real*8 (a-h,o-z) 
external funx 
gsr = ( sqrt (5.dO) - IdO) * O.SdO 
xO = xlo 
x3 = xhi 
itnum = 1 + log (abs(dx / (x3 - xO))) / log (gsr) 
x2 = xO + gsr * (x3 - xO) 
call funx(x2, y2) 
xl = xO + gsr * gsr * (x3 - xO) 
call funx(xl, yl) 
do 100 i = 1,itnum 

if(y2.gt.yl) then 
x3 = x2 
x2 = xl 
y2 = yl^ 
xl = xO + gsr * gsr * (x3 - xO) 
call funx(xl, yl) 
else 
xO = xl 
xl = x2 
yl = y2 
x2 = xO + gsr * (x3 - xO) 
call funx(x2, y2) 
endif 

100 continue 
xmin = (xl + x2) * O.SdO 
call funx(xmin, fxmin) 
end 

c 
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F IGURE 3 THREE DIMENSIONAL SURFACE FOR CASE 3, 
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R E Y N O L D S No. IR= 

1 POLYETHYLENE , k = 0- 003 mm K l = 0 

2 CONCRETE . GOOD, k = = 0- 03 mm K^ = 0 

3 CI UNCOATED, GOOD, k = 0 -15 mm K L = 0 

4 CI UNCOATED, POOR, k = 0- 6 mm ' K l = 0 

5 P O L Y E T H Y L E N E , k = 0 • 003 mm K l = 5 

6 CONCRETE, GOOD, k = = 0- 03 mm K l = 10 

7 CI UNCOATED, POOR. k = 0-6 mm K l = 40 

FIGURE 4 SYNTHETIC PIPE TESTS 



R E Y N O L D S No. iR = 
1.2 HEYWOOD, 4 in. GALV. 

3 HEYWOOD. 2 in. GALV. 

4 B U R K E , 4 -2 ft. E N A M E L L E D S T E E L PENSTOCK 

5 L E V I N , 210 mm COLD B I T U M E N S P R A Y E D , MEAN PROPERT I E S 

6 AS 5, MIN. k P R O P E R T I E S 

7 A S 5, MAX. k P R O P E R T I E S 

8 DUDGEON, ' 287 mm CEMENT L INED STEEL 

9 FOSTER , 15-in. A S B E S T O S CEMENT 

FIGURE 5 PUBLISHED PIPE TESTS 
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FIGURE 9 EFFECT OF TAPPING SPACING 



f ( X ) 

f (-x 'ROUND BOTTOMED' 
FUNCTION 

( A ) M IN IMUM OF O N E - V A R I A B L E FUNCT ION 

fHx 

f M x i ) 

f i ( x ) S H A R P BOTTOMED 

FUNCTION 

I T E R A T I O N L I T E R A T I O N 

( B ) M IN IMUM BY B I S E C T I O N OF F I R ST D E R I V A T I V E FUNCT ION 

F I G U R E 10 M IN IMUM OF A O N E - V A R I A B L E F U N C T I O N 
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FIGURE 11 MINIMISATION OF A O N E - V A R I A B L E FUNCTION 
BY GOLDEN SECTION SEARCH 




