
A P2P Networking Simulation Framework For Blockchain
Studies

Author:
Wang, Bozhi

Publication Date:
2022

DOI:
https://doi.org/10.26190/unsworks/1628

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100028 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/1628
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100028
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A P2P Networking Simulation Framework

For Blockchain Studies

Bozhi Wang

A thesis in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

June 2021

I

II

III

I

Abstract

Recently, blockchain becomes a disruptive technology of building distributed applications

(DApps). Many researchers and institutions have devoted their resources to the

development of more effective blockchain technologies and innovative applications.

However, with the limitation of computing power and financial resources, it is hard for

researchers to deploy and test their blockchain innovations in a large-scape physical

network.

Hence, in this dissertation, we proposed a peer-to-peer (P2P) networking simulation

framework, which allows to deploy and test (simulate) a large-scale blockchain system with

thousands of nodes in one single computer. We systematically reviewed existing research

and techniques of blockchain simulator and evaluated their advantages and disadvantages.

To achieve generality and flexibility, our simulation framework lays the foundation for

simulating blockchain network with different scales and protocols. We verified our

simulation framework by deploying the most famous three blockchain systems (Bitcoin,

Ethereum and IOTA) in our simulation framework.

We demonstrated the effectiveness of our simulation framework with the following three

case studies: (a) Improve the performance of blockchain by changing key parameters or

deploying new directed acyclic graph (DAG) structure protocol; (b) Test and analyze the

attack response of Tangle-based blockchain (IOTA) (c) Establish and deploy a new smart

grid bidding system for demand side in our simulation framework.

This dissertation also points out a series of open issues for future research.

II

Acknowledgement

There are numerous people offered help during my candidature in UNSW Sydney and

CSIRO Data 61, and this dissertation would not have been possible without their

contributions.

First of all, I am beholden to my primary academic supervisor, Dr. Shiping Chen for his

support and guidance throughout my PhD study. It is August 2017 that we first met, and

since then he gave me great freedom in terms of research, provided me all kind of resources,

while spent generous amount of time in supporting and guiding me.

In addition, I am grateful for my secondary supervisor Dr. Lina Yao for her advice and

supporting, no matter in work or life. Her supporting include also sharing computing

resources like a group shared GPU-accelerated computing server Dr. Strange which

tremendously speed up my experiments.

The teammates in Lina’s group: Xiang Zhang, Chaoran Huang, Lei Bai and Zhe Liu gave me

many help in my PhD study though we worked in different fields, especially Xiang Zhang,

who encouraged me in some dilemma.

I would also thank my cooperators and other co-authors: Sinkuang Lo, Qin Wang and

Fangfei Zhang for the work produced and joy shared together. For COVID-19, some work

has been delayed, but I'm very happy that we've come through these difficulties together.

My friends are also very supportive, especially: Ziyi Tao, Xinyi Yu and Yichun Hu.

Finally, while the most, this dissertation is dedicated to my parents, Wei Wang and Xiaotao

Song for their love, support and encouragement. They have given me freedom to explorer

since childhood, trained me to think individually, and unconditionally supported me. They

are also the source of my power, driving me pursuing my goal.

III

Abbreviations

AMI Advanced Metering Infrastructure

B2B Business to Business

B2C Business to Consumer

BESS Battery Energy Storage System

BFT Byzantine Fault Tolerance

BTC Bitcoin

C2B Consumer to Business

C2C Consumer to Consumer

CA Certificate Authority

CA Contract Account

CEMS Community Energy Management System

DAG Directed Acyclic Graph

DApps Decentralized applications

DPoS Delegated Proof of Stake

DS Double Spending Attack

ECC Elliptic Curve Encryption Algorithm

EOA Externally Owned Account

EVM Ethereum Virtual Machine

GMT Greenwich Mean Time

HAN Home Area Network

HB Hybird Attack

HEMS Home Energy Management System

IoT Internet of Things

IoTA Internet of Things Application

LTC Litecoin

MCMC Markov Chain Monte Carlo Algorithm

IV

NAN Neighborhood Area Network

P2P Peer to Peer

PBFT Practical Byzantine Fault Tolerance

PKI Public Key Infrastructure

PLC Power Line Carrier

PoE Proof of Existence

PoS Proof of Stake

PoW Proof of Work

PRC Remote Procedure Call

PS Parasite Attack

PV Photovoltaic

QoB Quality of Blockchain

QoS Quality of Service

SDN Software Defined Networking

SDT Secure Distributed Trading mechanism

SegWit Segregated Witness

SHA Secure Hash Algorithm

SPV Simplified Payment Verification

TCP/IP Transmission Control Protocol/Internet Protocol

TPS Transaction per second

TTP Trusted Third Party

Tx Transaction

UI User Interface

USDT Understanding Tether

UTXO Unspent Transaction Outputs

WAN Wide Area Network

V

List of Figures

Figure 1. PBFT protocol.. 9

Figure 2. Proof of Work procedure .. 10

Figure 3. Block structure .. 14

Figure 4. Hash pointer chain .. 16

Figure 5. Basic blockchain structure .. 27

Figure 6. Transaction propagation flow in normal blockchain network 29

Figure 7. Transmission method ... 32

Figure 8. Network delay ... 32

Figure 9. Detail of miner node and block in bitcoin demo .. 33

Figure 10. Network module distributes message .. 42

Figure 11. Information processing module ... 43

Figure 12. Mining time distribution (10 days in April 2020) .. 46

Figure 13. Uncle block .. 48

Figure 14. Smart contract example .. 48

Figure 15. Private chain genesis block .. 49

Figure 16. IOTA simulation result (solid-confirmed, dotted-unconfirmed) 51

Figure 17. QoS Metrics for a Blockchain Network .. 55

Figure 18. Blockchain information in node 0 .. 57

Figure 19. ABS ... 58

Figure 20. Mempool Size I .. 58

Figure 21. Mempool Size II ... 59

Figure 22. Mempool Size III .. 59

Figure 23. Transaction Commit Time .. 60

Figure 24. Total block number .. 60

Figure 25. Orphaned block number (96 hours) ... 61

Figure 26. System workflow .. 65

file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400747
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400748
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400750
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400751
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400752
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400753
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400755
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400756
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400757

VI

Figure 27. DAG model structure ... 66

Figure 28. Simulation result (print by Neo4j) .. 72

Figure 29. TPS (thread=1) ... 72

Figure 30. Average transaction finish time (thread=1) .. 73

Figure 31. Network performance (Miner number=20) .. 73

Figure 32. Average transaction finish time (Miner number=20) .. 74

Figure 33. TPS (Miner number=20) ... 75

Figure 34. Average transaction finish time (User number=1000, Miner number=20) 75

Figure 35. Tangle structure ... 78

Figure 36. Testing results I .. 96

Figure 37. Testing results II ... 97

Figure 38. Testing results III .. 99

Figure 39. Testing result IV .. 100

Figure 40. System architecture ... 106

Figure 41. Energy trading workflow .. 107

Figure 42. Power usage types ... 112

Figure 43. Power generation types ... 112

Figure 44. Total power usage with default settings ... 113

Figure 45. User power usage with different user number ... 113

Figure 46. Grid power usage with different user number ... 114

Figure 47. User power needs with different generate user percentage 114

Figure 48. Grid power usage with different generate user percentage 115

Figure 49. Average cost with different settings .. 115

file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400769
file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400777

VII

List of Tables

Table 1. Simulation settings.. 45

Table 2. Bitcoin network comparison result .. 46

Table 3. Ethereum comparison result ... 49

Table 4. Bitcoin network default settings ... 56

Table 5. User B Account ... 66

Table 6. New DAG structure simulation parameter .. 71

Table 7. User action ... 86

Table 8. Atomic behaviors .. 87

Table 9. Attack Strategies .. 89

Table 10. Configurations on goals ... 94

Table 11. Key parameters in power grid simulation .. 111

Table 12. Australia power price hourly .. 112

file:///C:/Users/wangb/Desktop/thesis/Bozhi%20PhD%20dissertation-v4.docx%23_Toc87400800

VIII

Table of Contents

Abstract ... I

Acknowledgement .. II

Abbreviations ... III

List of Figures .. V

List of Tables .. VII

Chapter 1

Introduction... 1

1.1 Motivations ... 1

1.2 Contributions ... 4

1.3 Dissertation Organization ... 5

Chapter 2

Background ... 6

2.1 Consensus Protocols ... 8

2.1.1 Practical Byzantine Fault Tolerance ... 8

2.1.2 Proof of Work ... 9

2.1.3 Proof of Stake ... 11

2.1.4 Tangle .. 12

2.2 Blockchain Networks ... 12

2.2.1 Bitcoin .. 13

2.2.2 Ethereum .. 19

2.2.3 Other Cryptocurrencies ... 22

2.3 Blockchain Classification .. 23

2.3.1 Public Blockchain ... 23

2.3.2 Consortium Blockchain .. 24

2.3.3 Private Blockchain ... 24

2.4 Summary ... 25

Chapter 3

Simulator Model .. 26

3.1 Blockchain Structure ... 26

3.2 Simulation Model ... 29

3.2.1 Application Layer ... 30

3.2.2 Network Layer .. 31

3.2.3 Data Layer .. 33

3.3 Functions Summary ... 35

3.4 Related Work ... 36

3.5 Summary ... 38

Chapter 4

Blockchain Deployment .. 40

IX

4.1 Bitcoin .. 40

4.1.1 User Node .. 40

4.1.2 Network Module .. 42

4.1.3 Miner Node ... 43

4.1.4 Bitcoin Demo Verification ... 45

4.2 Ethereum ... 47

4.3 IOTA .. 50

4.4 Limitations .. 51

4.5 Summary ... 52

Chapter 5

Use Case 1. Blockchain Performance Improvement .. 54

5.1 Parameter Change ... 55

5.1.1 Metric Definition .. 55

5.1.2 Simulation and Results .. 56

5.1.3 Summary .. 61

5.2 New DAG Structure ... 61

5.2.1 Related Work .. 61

5.2.2 Model and Structure .. 64

5.2.3 Consensus and Algorithm .. 68

5.2.4 Analyze and Results .. 71

5.2.5 Summary .. 76

Chapter 6

Use Case 2. IOTA Security Analysis ... 77

6.1 Related Work ... 80

6.2 Reconstruction of Tangle .. 81

6.3 Attack Strategies... 85

6.3.1 Layer0: Unit Actions .. 85

6.3.2 Layer1: Atomic Behaviors ... 86

6.3.3 Layer2: Combined Attack Strategies ... 87

6.4 Experiment Design ... 89

6.4.1 Parameters and Notations ... 89

6.4.2 Key Principles .. 90

6.4.3 Implementation Logic .. 91

6.4.4 Implementation Goals.. 93

6.5 Testing Results Analysis ... 95

6.6 Summary .. 102

Chapter 7

Use Case 3. Smart Grid Simulation ... 103

7.1 Related Work .. 104

7.2 Implementation Technology ... 104

7.2.1 Communication Protocols ... 104

7.2.2 Metering Infrastructures ... 105

7.2.3 Smart Contract .. 105

X

7.3 Structure and Deployment in Simulator .. 106

7.4 Results and Discussion .. 110

7.5 Summary .. 116

Chapter 8

Conclusion .. 117

8.1 Summary .. 117

8.2 Future Work .. 119

Bibliography ... 122

1

Chapter 1

Introduction

For the past few years, people could do almost everything on the Internet. However, most

of the online transactions from person to person relied on large intermediaries, such as

email services, banks and telecommunications operators, which brought increasing

problems to centralized systems. For example, our privacy was under infringement; sending

money overseas took days and cost a lot. Things started to change in 2008, when Satoshi

Noakmoto published the paper “Bitcoin: A Peer-to-Peer Electronic Cash System”[1]. The key

technology of Bitcoin, called Blockchain, shows the strength in the future Internet of

enabling decentralization to become a new paradigm for large-scale distributed systems.

Blockchain is a peer-to-peer distributed ledger database, which consists of connected data

blocks. The connection pointer between blocks is the Header Hash, which is processed by

cryptographic hash function that protects the transactions in every block and the

connections between blocks[2]. Thus, none of the historical transaction can be changed

without invalidating a chain of Header Hash. While TCP/IP[3] is the communicating protocol

between computers, Blockchain is the trust mechanism and cooperation protocol. The

unique features offered by blockchain, such as decentralization, immutability and reliability,

enable people to conduct transactions without relying on a trusted third party. From

cryptocurrency[4] to cross-border payment, distributed storage[5], and supply chain

management[6], more and more fields are going to take blockchain as the fundamental

technology[7].

1.1 Motivations

2

Before Blockchain being widely adopted in other areas, a number of issues need to be

solved. First, the current mining (PoW[47]- Proof of Work) mechanism of Blockchain are

wasting a large amount of computing power on computation that is necessary for PoW but

meaningless and costly, which is quite power inefficient: It was reported that the Bitcoin

network consumes about 73 TWh per year, i.e., on average using 640 KWh per transaction.

Second, every node in the network has a complete ledger. As time passing by, the ledger

will become larger and larger[8]. And when a miner verifies a transaction, it requires to track

all the historical transactions recorded on the blockchain, making the performance issue

worse. At the same time, its scalability is poor: Each block can store 1 MB data, which means

the system throughput is limited by the size of its block. Then, though Blockchain is an

anonymous system, all the transactions are publicly available, which may cause privacy

issue.[9] Also, in the current Bitcoin network, a common security strategy is to wait six blocks

to confirm the transactions in the last block, which lasts around one hour. During this time,

the forks will be cut. Lastly, the system could withstand double spending attack only if the

number of honest nodes is more than 51 percent, which significantly limits the adoption

and applications of the current Blockchain technologies.

To meet the needs of the development of various applications, several decentralized

applications (DApps) platforms have been published[10], such as Ethereum[48] and Fabric[96]. In

Ethereum, anyone can “upload” DApps to Ethereum and these DApps will always run as

programmed. This enables people to develop varieties of decentralized financial

applications without any single organization or person controlling them. The running

program employs a native cryptocurrency called Ether (ETH) which is mined in the way

similar to Bitcoin is. The consensus mechanism used in Ethereum is proof of work (PoW),

and will become proof of stake (PoS)[11] in the coming future. Fabric is the other famous

DApps platform that provides a modular and extendable architecture. While Ethereum uses

anonymous authentication, Fabric supports digital certificate identity authentication form.

Also, unlike ETH, there is no general token in Fabric since it mostly focuses on consortium

blockchain that used within a group of semi-trust organizations. Fabric is based on several

consensus with Practical Byzantine Fault Tolerance (PBFT)[46] being the main one.

3

In addition to the DApps platform, a lot of new ideas burst out to address the issues in

Bitcoin blockchain. One is to use DAG (Direct Acyclic Graph)[12] aiming at improving the

performance and scalability of Blockchain. Tangle structure[24], proposed by IOTA, is one of

the leading DAG-based projects. Tangle has properties of high throughput: transactions

can be in parallel attached to the network from different directions and verified by previous

transactions without serious congestion; high performance: newly arrived transactions are

confirmed by the previous two transactions via a tiny Proof of Work (PoW) mechanism, in

which the computer consumption can be ignored when compared to traditional PoW; low

cost: no transaction fees are charged to fit for situations such as IoT and edge computing.

However, Tangle structure confronts potential threats on the fork of subgraphs due to the

multi-directional expansive network. Specifically, Tangle works on delayed confirmation

and partial consistency in multiple directions, instead of an instant confirmation in BFT-style

consensus. Uncertainty and reversibility caused by the gap between delayed confirmation

and instant confirmation makes the network vulnerable to attack. Existing chains are also

threatened by miners who own insurmountable computing power to send massive

transactions. Newly issued transactions are unpredictably attached to different subgraphs

without global reconciliation. As a result, no leading subgraph is formed to maintain stability.

The forks frequently happen and the system confronts the risk of parasite chain attack and

double-spending attack. In addition, so far there is too limit research conducted to confirm

the idea that DAG-based chain outperforms Block-based chain.

With regard to the current blockchain research and development, there remains gaps

between development and deployment of new consensus protocols and applications. As

the mining part of blockchain needs a lot of power, the cost of blockchain usage stays high,

which also hinders the research and development of blockchain. Researchers requires

enough fund and computing power to set up a private chain or to deploy on the real chain

to test their new ideas. However, all blockchains are distributed, cannot be controlled by a

single person, and are also hard to change. It is difficult for researchers to change key

parameters of main chain and investigate the effects of changes. Also, it is almost

impossible to reproduce certain special issues in a real blockchain, such as vulnerability

4

attacks like transaction attack, network attack and so on. Therefore, we need an approach

to test new ideas in different scopes and sizes of blockchain networks with few costs and

impacts on the existing real blockchain networks. Simulation is a good way out. It doesn’t

cost much, and could find out any tiny change in the system.

Current blockchain simulation still have many limitations. Most simulators are packed, users

can only change some settings that defined by the coder. The consensus part is usually

invisible as well. Some simulators mainly focus on network performance. The users cannot

observe the changes in blockchain during the simulation time.

Therefore, we want to establish a blockchain simulation framework to solve the problems

described above.

1.2 Contributions

In this dissertation, we establish a P2P networking simulation framework, called ChainSim.

With this simulation framework, we realize the following characteristic:

Simplicity Blockchain is a mix of many different technologies, such as hash calculate,

database, BFT, Consensus, Merkle tree, etc. It is hard to understand how everything works.

Our simulation framework will be modular and users can only focus on specific parts.

Cost efficitive and efficient Our simulator can afford more than 30000 nodes working

together in one single computer. That may lower the cost of blockchain research. The real

time cost for the same simulation time is in an acceptable range. When the number of

nodes is in thousand orders of magnitude, the real time takes less than one tenth of the

simulation time, which shows great efficiency.

Extensibility Due to the feature of Blockchain, the parameters are hard to change. Using

our simulator could help find out the best settings of the system before deployment. In

addition, we can deploy blockchains based on different consensus protocols in the

5

simulator. Meanwhile, it can test the performance of the system when facing different

events.

Through the framework we have developed, we try to solve the problems existing in the

previous simulator. We deconstruct the whole blockchain and then modularize it, which

turns out that Chainsim is applicable to a variety of blockchains, including Bitcoin, Ethereum

and IOTA. After verifying the correctness and effectiveness of the simulation framework, we

have more exploration on blockchain based on it. We try to improve the performance of

blockchain by both basic settings and new consensus algorithm. We also replicated

different kinds of attacks in IOTA network and tested its network response. Finally, we

propose a smart grid model, which shows that Chainsim can be widely used at the

application level.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the main

technologies in blockchain, including consensus protocols, several main blockchain systems

and blockchain classification. Chapter 3 presents a P2P blockchain simulation framework

which can run in one single personal computer. Then we deploy three different blockchain

with this framework in Chapter 4. In Chapter 5, we try to improve the performance of

blockchain by changing key parameters and researching new ways of consensus. In Chapter

6 we build a set of attack tests to test DAG-based blockchain. Chapter 7 presents the

applications of our framework by simulating a power grid application based on blockchain.

We conclude this dissertation in Chapter 8.

6

Chapter 2

Background

In a distributed system, multiple hosts form a network cluster through asynchronous

communication. In such an asynchronous system, state replication is required between

hosts to ensure that each host reach a consensus. However, error information may spread

in the system due to the host communication failure, performance degradation, and

network congestion. Therefore, in order for all hosts to reach a safe and reliable state

consensus, it is necessary to define fault-tolerant protocols in the unreliable asynchronous

network. The most original fault-tolerant problem is called Byzantine Generals Problem.

Byzantine Generals Problem[13] was raised by Leslie Lamport in the 1980s. Because of the

great distance between the stations, Byzantine Generals had to rely on messengers to

deliver messages. When war happens, generals must make a unified plan of action. But

there are traitors among the generals, who want to destroy the consistency of loyal

generals' actions by influencing the designation and dissemination of the action plan.

Therefore, the generals must master a predetermined method to reach agreement, so that

traitors cannot interrupt the plan made by loyal generals and all loyal generals can reach

an agreement. The essence of Byzantine Generals Problem is to find a way for generals to

build consensus on battle plans in an untrusted environment with traitors.

The problem of Byzantine Generals can be described as follows: a general sends an order

to the other N-1 generals, so that 1) all loyal generals who receive the order would obey

the order; 2) if the general who transmits the order is loyal, then other loyal generals would

abide by the order. Lampiort's[14] research on Byzantine Generals shows that when the

number of traitors m is less than 1 / 3 of the total number of generals n, through

synchronous communication, the generals can reach an agreement. If the communication

7

is tamper proof and verifiable, a solution can be found whatever the number of traitors is

(at least two loyal generals). In asynchronous communication, however, Fischer-Lynch-

Paterson theorem proves that as long as one traitor exists, there is no solution to Byzantine

general problem.

In the distributed system[15], especially in the blockchain network, the environment is similar

to that of Byzantine Generals. There are normal servers (loyal generals), faulty servers, and

destroyer servers (traitor generals). The core of consensus algorithm is to form consensus

on network state among normal nodes. Byzantine Fault refers to the fault that any observer

shows different states from different angles. In a distributed system with Byzantine Faults,

the Consensus Problem is to find an algorithm and protocol to satisfy the following three

attributes:

⚫ Agreement: All non-fault processes must agree with the same value.

⚫ Validity: If all non-fault processes have the same initial value, the value they agree with

must be the same initial value.

⚫ Termination: Each non-fault process must determine a value.

According to Fischer-Lynch-Paterson theory[16], in the distributed system of asynchronous

communication, as long as any process has Byzantine Fault, it is impossible to find a

consensus algorithm that can meet the above requirements at the same time. In practice,

due to a wide range of application scenarios and goals, various consensus algorithms are

designed. For private chain and consortium blockchain, there are strong requirements for

Agreement and Validity, so consensus algorithm with strong consistency is generally used.

The public chain usually uses the consensus algorithm with Eventual Consistency as the

limitation of Agreement and Validity is not that strict. These algorithms have their own

advantages and limitations though.

Next, we will introduce several common consensus protocols in blockchain in detail.

8

2.1 Consensus Protocols

2.1.1 Practical Byzantine Fault Tolerance

The original Byzantine fault-tolerant system lacks practicability because it needs to

demonstrate its theoretical feasibility. In addition, it needs additional clock synchronization

mechanism, and the complexity of the algorithm increases exponentially with the increase

of nodes. Practical Byzantine Fault Tolerance (PBFT)[17] system reduces the complexity of

Byzantine Agreement from exponential level to polynomial level, which makes it possible

to use Byzantine Agreement in distributed system.

PBFT is a Byzantine system of state machine, which requires all nodes to take the same

action and maintain a state together. In PBFT, the part supporting the daily operation of

the system is completed by the consistency protocol. Consistency protocol requires that

the requests from clients have to be executed in a certain order on each service node. This

protocol divides server nodes into two types: master node and slave node, in which there

is only one master node. In the protocol, each server node works under the same

configuration information. The master node is responsible for sorting the clients’ requests,

and the slave node executes the requests in the order provided by the master node. A

consistency protocol may include the following stages: request, pre-prepare, prepare,

commit, reply, etc.

PBFT systems usually assume that the number of faulty nodes is m, and the number of

nodes in the whole server is 3M + 1. Each client’s request needs to go through five stages,

through twice interaction between two nodes to reach a consistency, then execute the

client’s request. Because the client can't get any information about the running status of

the server from the server, whether the master node in PBFT has an error can only be

detected by the server. If the server fails to complete the client's request for a period of

time, the master node replacement protocol will be triggered.

9

The figure shows a simplified PBFT protocol communication mode, C is client, N0~N3 means

service node, especially, N0 is a master node, and N3 is a faulty node. The basic process of

the whole protocol is as follows:

1) The client sends a request M to activate the service operation of the master node

2) When the master node receives the request M, it starts the three stages of protocol and

broadcasts the request to each slave node

2.1) Pre-prepare: The master node assigns a sequence number N to the request, constructs

PRE-PREPARE messages with sequence number assignment message N and client

request message M, broadcasts PRE-PREPARE message to each slave node.

2.2) Prepare: Receive PRE-PREPARE messages from nodes and broadcast PREPARE

messages to other service nodes.

2.3) Commit: After each node verifies N and M in the received message, it broadcasts the

COMMIT message, executes the received M and responds to the client.

3) The client waits for responses from different nodes. If M+1 response are the same, the

response is the result of the operation.

Figure 1. PBFT protocol

PBFT is used in many cases. In blockchain, it is generally applicable to private chain and

consortium blockchain that require strong consistency.

2.1.2 Proof of Work

Proof of Work (PoW) is a confirmation that the working node has done a certain amount

10

of work. The main characteristic of the PoW system is the asymmetry of computation. The

working node needs to do some difficult work to get a result. The verifier can easily check

whether the working node has done the corresponding work through the result.

In Bitcoin, a block consists of a block head and a transaction list contained in the block. The

size of the block head is 80 bytes. This block head is the input string used for bitcoin PoW.

The PoW requirement is: link an integer string called nonce after this string, do SHA256

hash operation on the connected string. If the hash result starts with n zeros, the verification

passes. In order to achieve the goal of Proof of work, we need to continuously increase the

nonce value and perform sha256 hash operation on the new string. Generally speaking, the

larger the n value is, the more hash operations need to be completed. Because of the

pseudo-random property of the hash value, it needs 2^16 attempts to find hash values

with four leading 0. The mathematical expectation of this number of calculations is the

amount of PoW required.

Figure 2. Proof of Work procedure

We take consensus accounting in bitcoin network as an example to illustrate the process of

consensus accounting based on PoW:

11

a) The client generates new transactions, broadcasts them to the whole network, and

requires the transaction to be recorded.

b) Once each node receives the request, it will put the received transaction information

into a block.

c) Each node tries to find a Proof of Work with enough difficulty in its own block.

d) When a node finds a Proof of Work, it broadcasts to the whole network.

e) When all transactions contained in the block are valid and have not existed in historical

blocks, other nodes agree with the validity of this block.

f) The other nodes accept the block and extend the chain by creating new blocks with

defining the current block as the previous block.

Through the above accounting process, the transaction information required by the client

is written into the blockchain of each accounting node, forming a distributed high

probability consistent ledger.

The PoW of bitcoin is a Probabilistic Byzantine Agreements, has low efficiency of consensus.

When dishonest computing power has a certain scale, it cannot guarantee that most blocks

are provided by honest nodes. But in the bitcoin network, it improves the security of the

network by skillfully using the miner reward mechanism.

2.1.3 Proof of Stake

As PoW consumes a lot of resources, people have proposed some alternatives to PoW, and

Proof of Stake (PoS) is one of them. In PoS based cryptocurrency, the creator of the next

block is selected by random selection and various combinations of wealth or age. Peercoin's

Proof of Stake system combines randomization with the concept of "coin age", a number

derived from the product of the number of coins multiplied by the number of days the

coins have been held. Coins that have been unspent for at least 30 days begin competing

for the next block. Older and larger sets of coins have a greater probability of signing the

12

next block. However, once a stake of coins has been used to sign a block, it must start over

with zero "coin age" and thus wait at least 30 more days before signing another block. Also,

the probability of finding the next block reaches a maximum after 90 days in order to

prevent very old or very large collections of stakes from dominating the blockchain. This

process secures the network and gradually produces new coins over time without

consuming significant computational power.

2.1.4 Tangle

In order to solve the problem of parallel verification of blockchain, consensus protocols

based on DAG (Directed acyclic graph), such as Tangle, have been produced. Different from

the traditional chain structure, tangle uses directed acyclic graph, which in essence allows

or even encourages blockchain forking.

In Tangle, the node that needs to initiate the transaction walks along the DAG randomly

through the algorithm, selects the path and checks, then links the new transaction to the

tail, which indirectly checks the old transaction. Although Tangle stores the data in DAG

mode, the path selected each time is still a chain, and the transaction verification is still

processed as a single chain. When the transaction frequency is very low, the DAG actually

degenerates into a chain. In the selection of walking path, giving more weight to the old

nodes who get more confirmation is essentially to encourage new transactions to choose

the longest chain for verification. The path of each transaction is not fixed, and multiple

transactions can be carried out simultaneously. When the transaction is very frequent,

almost unlimited TPS can be obtained through forking. The more nodes involved, the

higher the TPS. Iota based on tangle has become the first choice of IOT blockchain due to

its high throughput and no handling charge.

2.2 Blockchain Networks

13

2.2.1 Bitcoin

The concept of bitcoin was first proposed by Nakamoto on November 1, 2008. On January

3, 2009, bitcoin Genesis block was born. Different from traditional currency, bitcoin does

not rely on specific currency institutions. It is generated by a large number of calculations

based on specific algorithms. Bitcoin uses the distributed database composed of many

nodes in the whole P2P network to confirm and record all transactions, and uses

cryptography design to ensure the security of all aspects of currency circulation. This system

enables anyone on earth to exchange money and transfer value through the Internet

without any third-party organization. Bitcoin has not invented any new technologies and

algorithms, and the technologies involved, including proof of work, time stamp, public key

system and so on, are already mature. Bitcoin solves the ownership problem of digital assets

without trusted third party through the combination of these technologies. Broadly

speaking, the collection of these technologies and ideas is what we call blockchain.

Essentially, Blockchain is a peer-to-peer distributed ledger database, which consists of

connected data blocks. The connection pointer between blocks is the Header Hash

processed by cryptographic hash function that protects the transactions in every block, as

well as the connected blocks. Thus, any of the historical transaction cannot be changed

without invalidating a chain of Header Hash.

Data block

14

Figure 3. Block structure

In Bitcoin system, one block is created about every ten minutes. Transactions happening in

the Bitcoin system are saved in the blocks. A block contains a Header and a Body, as shows

in Figure 3. The Header contains metadata of the block, such as Version, Prev-block

pointing to the previous block, Timestamp, Nonce, Bits, Merkle-root etc. The body mainly

includes the details of the transactions in the structure of Merkle Tree. These transactions

form a publicly global ledger in Blockchain system, where the transactions recorded in the

ledger could be queried by anyone who can access Internet. Every transaction is signed by

a digital signature of the sender to ensure they are unforged and not duplicated. The Merkle

Tree with all the transactions has a unique Merkle-root calculated by the Hash procedure,

which is recorded in the Header.

Merkle tree

Merkle tree is a kind of data structure, which has all the characteristics of tree structure.

Merkle binary tree is used in bitcoin blockchain system. Its main function is to quickly

summarize and verify the integrity of the block data. It will group the data in the block for

hash operation and recursively generate new hash nodes. Finally, only one Merkle root is

15

left in the header. Each hash node always contains the hash values of two adjacent data

node. The key advantage of using Merkle tree in bitcoin system is that it greatly improves

the operation efficiency and scalability of the blockchain. Merkle tree supports Simplified

Payment Verification (SPV), that is, it can verify transaction data without running a complete

blockchain network node. So that the block header only needs to contain the root hash

value without encapsulating all the underlying data, which makes the blockchain run

efficiently on smart phones and Internet of things devices.

Time stamp

Time stamp refers to the total number of seconds from 0:00:00 Greenwich mean time (GMT)

on January 1, 1970 to now. It is usually a character string that uniquely identifies the time

of a certain moment. In the bitcoin system, the node with accounting right needs to stamp

the time stamp in the Header when linking blocks, which is used to record the writing time

of the current block. The time stamp of each subsequent block will enhance the PoW of the

previous time stamp, forming a time increasing chain. Time stamp makes the data in the

blockchain easier to trace, and can also be used as an important parameter of Proof of

Existence. It can confirm that certain data must exist at a certain time. This ensures that the

blockchain database cannot be tampered with and forged. It also makes blockchain

technology can be applied to notarization, intellectual property registration and other time

sensitive areas.

Mining

The Block is created through mining process, which is an exhaustive random number

algorithm. During this process, the miners package the hash value of the previous block

and all the transactions have happened in the latest ten minutes, and find a value for Nonce

to calculate a hash value with 256bits. The mining process is aimed to find the value of

Nonce that makes the hash value meets some requirements, such as having a certain

number of zeros in the first bits. The miner, who successfully find such a value, gets the

16

right to write the new block to the blockchain by broadcasting the new block to the Bitcoin

other nodes to verify.

Figure 4. Hash pointer chain

The system has a competition mechanism for miners to compete for the right of writing,

which calls Proof of work. During the process, the more computing power a miner spends,

the larger possibility the miner can get the right. If the new block is successfully added into

the blockchain, the miner will get some reward. Also, it is possible for two different miners

to find new blocks almost at the same time. The two blocks might be verified and accepted

by a subset of the Bitcoin network, which form a fork. In such a case, the other miners need

to choose the fork which with larger number of blocks (implying heavier work).

Through the mining process, the transactions from different users are written in the

blockchain, which is hosted on every single node within the network. So we can get a

distributed and high reliable and consistent global ledger.

UTXO transaction mode

UTXO means Unspent Transaction Outputs, it is the basic unit of bitcoin trading. Except for

the genesis block, there are several inputs (Tx_in) and several outputs (Tx_out) for

transactions (Tx) in all blocks. There is no input for the transaction to reward miners who

mined new block. In bitcoin system, the input of a transaction must be the unused output

of another transaction, and the input also needs the private key corresponding to the last

output address to sign. At present, the UTXO in the whole blockchain network will be stored

in each node. Only the transactions that meet the conditions of UTXO and digital signature

17

are legal. Therefore, new transactions in the bitcoin system do not need to trace the whole

transaction history to confirm whether the current transaction is legal.

Hash function

Hash function has an important application in bitcoin system, that is, the original data is

encoded into a specific length string composed of numbers and letters and then recorded

in the blockchain. The data processed by hash function is unidirectional, and it is almost

impossible to calculate the original input value through the processed output value. Even if

the input value of hash function is only one byte different, the result of output value will be

completely different. In bitcoin system, SHA256 hash function is usually used to identify and

store data uniformly.

Difficulty

In the bitcoin blockchain system, there is a 256-bit target value which is used to adjust the

difficulty of mining. The mining process is to constantly modify the nonce value in the

header then hash the block information until the hash calculation result is smaller than the

target. The mining difficulty increases when the target decreases. The target value is

adjusted every two weeks to keep the mining time at about ten minutes.

Encryption algorithm

In addition to hash algorithm, there is also an asymmetric encryption algorithm for

transaction encryption in bitcoin, namely elliptic curve encryption algorithm (ECC).

Asymmetric encryption algorithm is the existence of a bunch of mathematically related keys,

using one key to encrypt data information, only using another key can decrypt the

information. These keys are called public key and private key respectively. We obtain the

bitcoin address through the public key, and the private key represents the control right of

these bitcoins.

18

Characteristic

Bitcoin network has the following characteristics:

Decentralization The storage, transmission and verification of blockchain data are based

on distributed system structure, and the whole network does not rely on a centralized

hardware or management organization. All participating nodes in the public chain network

can have the same rights and obligations.

Reliable database The database of bitcoin system adopts distributed storage, and any

participating node can have a complete copy of the database. Unless more than half of the

computing power in the system can be controlled, the modification of the database on the

node is invalid. The more nodes involved in the system, the higher the security of the

database. Due to the time stamp of data storage, the time dimension is added to the data,

which has high traceability.

Collective maintenance The data blocks in the system are maintained by all the nodes with

accounting ability in the whole system. The damage or loss of any node will not affect the

work of the whole system.

Safe and trustworthy Blockchain technology uses asymmetric cryptography to sign

transactions, so that transactions cannot be forged. At the same time, hash algorithm

ensures that the transaction data cannot be easily tampered with. Finally, with the help of

the PoW of each node of the distributed system and other consensus algorithms to form a

strong computing power to resist the attack of the destroyer, it ensures that the blocks in

the blockchain and the transaction data in the block cannot be tampered and forged, which

has high security.

Pseudo anonymous Bitcoin system uses the address linked with the user's public key as

the user identification. It doesn't need the traditional Public Key Infrastructure (PKI) based

Certificate Authority (CA) to issue digital certificate to verify the identity. Bitcoin system uses

the address linked with the user's public key as the user identification. It doesn't need the

19

traditional PKI based CA digital certificate to verify the identity. By running consensus

algorithm in the whole network, the trust between nodes is established. Users only need to

disclose their addresses, not their real identities. At the same time, users can change their

addresses constantly. Therefore, the transaction in bitcoin network is not related to the

user's real identity, only to the user's address, and has the pseudo anonymity of transaction.

2.2.2 Ethereum

Since the emergence of bitcoin in 2008, the existence of digital currency has been gradually

accepted by people. People also began to think and develop the commercial application

based on bitcoin. However, with the expansion of applications, people find that the design

of bitcoin is only suitable for virtual currency scenarios. Due to the existence of non-Turing

completeness, the lack of saved state account concept and the resource waste and

efficiency problems caused by PoW mining mechanism, it is not applicable in many

blockchain scenarios. Ethereum came into being in this situation.

Ethereum is a platform and also a programming language, including digital currency Ether

and EtherScript used to build and publish distributed applications. Ether is not only a

decentralized currency to ensure that the currency supply is not controlled by one party,

but also Ethereum provides a complete programming language environment. It is a multi-

layer, cryptography based open-source technology protocol. In Ethereum, smart contract

can be written to realize the development of decentralized application. The smart contract

deployed on Ethereum runs on Ethereum Virtual Machine (EVM) and interacts with the

underlying blockchain through EVM and Remote Procedure Call (PRC) interface.

EVM

Ethereum virtual machine is the running environment of smart contract in Ethereum.

Anyone can upload programs and let them execute automatically, while ensuring that the

state of the program is always publicly visible. These programs run on the blockchain in

20

strict accordance with the EVM definition. Anyone can create logic for ownership,

transaction format and state transition function.

Account

Ethereum has two types of accounts, one is Externally Owned Account (EOA), the other is

Contract Account (CA). EOA is a general user account, which is controlled by the private

key. The address of the EOA is determined by the public key. CA is a special programmable

account. Contracts are stored on the Ethereum blockchain. It is a collection of code and

data. Contracts are code controlled and activated by the messages sending by EOA. The

address of CA is calculated by the address of the contract creator and the transaction

volume sent by this address. The status of EOA is balance, while the status of CA can be

balance, code execution and contract storage. The status of Ethereum network is the status

of all accounts, which is changed by the transactions of each block, and a consensus is

formed in the whole network. The interaction between users and Ethereum blockchain

needs to be realized through the transaction between accounts.

Transaction

The transaction of Ethereum can be created by EOA or CA, and the transaction can contain

data. If the recipient of the transaction is a CA, the CA can respond. A transaction usually

contains the signature of the sender, the address of receiver, the balance of Ether, data,

STARTGAS and GASPRICE。

Gas

Each transaction on Ethereum will be charged a certain amount of gas. The purpose of

setting gas is to limit the amount of work required for transaction execution. Startgas is the

largest gas consumed in this transaction. Gasprice is the gas price to be paid to miners in

each calculation step, which is set by the transaction creator. If there are gas remaining at

21

the end of execution, these gases will be returned to the sending account. If the consumed

gas exceeds the startgas, the out of gas exception will be triggered. All current state

changes will be rolled back.

PoW

Ethereum's PoW is similar to bitcoin, called Ethash. It dynamically adjusts the difficulty to

find a new block in the whole network every 15 seconds. Ethash adds memory difficulty to

PoW, that is, every 30000 blocks need a new DAG data to calculate the target hash. This is

equivalent to a window of about 125 hours, called epoch. A new miner needs to generate

this DAG before it starts mining.

In addition, Ethereum encourages miners to mine uncle blocks. Uncle block refers to the

block that meets the difficulty condition but is not confirmed, also known as Stale. For

example, miners A and B mined blocks that met the standards almost at the same time, but

due to the network delay, block a was confirmed by consensus, and block B became a stale.

Since Ethereum generates blocks much faster than bitcoin, stale is more likely to occur. In

bitcoin, there is no reward for mining stales. In Ethereum, miners who generate uncle blocks

and miners who include uncle blocks in their chain can be rewarded. Uncle blocks are the

historical blocks which are up to 6 blocks away from the current connected blocks, and each

block can link up to two uncle blocks. This makes it more difficult for attackers to catch up

with a main chain with uncle blocks, which effectively enhances the security.

DApps

DApps is similar to traditional web application, which is composed of user interface (UI) as

front-end and smart contracts as back-end business logic. The difference is that its logic

can only run on the blockchain instead of the server host, and its client code runs on

browsers and/or mobile Apps Mist.

DApps has the following characteristic:

22

⚫ DApps data is encrypted and stored on the blockchain.

⚫ DApps decentralized operation through network nodes. It can run on users' personal

devices and does not rely on a central server to deliver messages or a central database

to record data.

⚫ DApps participant information is safely stored and can be used for transactions and

sales without intermediaries

⚫ DApps must be open source and autonomous. It can be freely packaged and

generated by users, and the signature marks the ownership. Its publication is not

subject to any institutional restrictions.

2.2.3 Other Cryptocurrencies

In recent years, in addition to bitcoin and Ethereum, a large number of cryptocurrencies

based on blockchain have emerged. We choose a few of them for a brief introduction.

Litecoin

Litecoin (LTC)[19] is a cryptocurrency that was designed to provide fast, secure and low-cost

payments by leveraging the unique properties of blockchain technology. The

cryptocurrency was created based on the Bitcoin (BTC) protocol, but it differs in terms of

the hashing algorithm used, hard cap, block transaction times and a few other factors.

Litecoin has a block time of just 2.5 minutes and extremely low transaction fees, making it

suitable for micro-transactions and point-of-sale payments.

IOTA

Iota (Internet of things application) is a new type of distributed network. It is to help solve

some scalability problems in bitcoin and other cryptocurrencies. At present, blockchain

based systems like bitcoin and Ethereum have limited transaction efficiency. It uses a unique

23

method to verify transactions, which is called Tangle. Instead of using chain structure,

Tangle uses DAG (Direct Acyclic Graph) structure. It has the advantages of zero transaction

cost, fast transaction confirmation, unlimited scalability, which makes it an ideal choice for

massive data exchange needed by the Internet of things. It is widely regarded as a major

innovation after bitcoin and Ethereum.

Tether

Tether (USDT)[18] is a stable-value cryptocurrency that mirrors the price of the U.S. dollar.

The token’s peg to the USD is achieved via maintaining a sum of dollars in reserves that is

equal to the number of USDT in circulation. Tether is usually used to hedge against

fluctuations in the cryptocurrency market. Each Tether coin is linked to one dollar, so

keeping money in Tether can protect it from market volatility. For this reason, most bitcoin

transactions are completed in Tether, it is the bridge of cryptocurrency transactions.

2.3 Blockchain Classification

According to the classification of users participating in the blockchain, the blockchain can

be divided into three types: Public Blockchain, Consortium Blockchain and Private

Blockchain[20]. Bitcoin and Ethereum described above both belong to the public Blockchain.

Next, we will introduce these three kinds of blockchains.

2.3.1 Public Blockchain

The Public Blockchain is open to the public, users can participate anonymously without

registration, and can access the network and blockchain without authorization. It is also

known as Permissionless Blockchain. Nodes can freely choose whether to participate in the

network. The blocks on the Public Blockchain can be viewed by anyone, and anyone can

also send transactions or participate in consensus. Public Blockchain ensures that

24

transactions cannot be tampered with by cryptography. At the same time, it also uses

cryptography verification and economic incentives to build consensus in an unfamiliar

network environment, thus forming a decentralized credit mechanism. The consensus

mechanism in the Public Blockchain is generally PoW or PoS. The influence of users on

consensus formation directly depends on the resources they have in the network. The Public

Blockchain is generally suitable for virtual currency, public oriented e-commerce, Internet

Finance and other B2C, C2C or C2B application scenarios.

2.3.2 Consortium Blockchain

Consortium Blockchain[21] refers to that the nodes participating in the blockchain are

selected in advance, and there are usually good network connections and other cooperative

relationships between the nodes. It is a kind of blockchain that needs to register license,

also known as Permissioned Blockchain. Read and write permissions and bookkeeping

permissions on the blockchain are formulated according to the consortium rules. It can

determine the degree of openness to the public according to the application scenarios.

Because there are few nodes participating in consensus, the Consortium Blockchain

generally does not use the mining mechanism of PoW, but uses consensus algorithms such

as PoS, PBFT or RAFT. The transaction confirmation time and the number of transactions

per second in Consortium Blockchain are quite different from those in Public Blockchain,

and the requirements of security and performance are also higher than those in Public

Blockchain. Consortium Blockchain is suitable for B2B scenarios such as inter agency

transaction, settlement or clearing. The R3 Corda supported by more than 40 banks and

the Hyperledger project supported by Linux foundation both belong to the Consortium

chain architecture.

2.3.3 Private Blockchain

There is only a limited range of nodes in the Private Blockchain[22], such as the users of a

specific organization. The access and usage of data have strict authority management.

25

Similar to Consortium Blockchain, it is also a Permissioned Blockchain. The value of Private

Blockchain is to provide a secure, traceable, tamper proof, automatic computing platform,

and also to prevent attacks on data. The application scenarios of Private Blockchain are

generally internal applications, such as database management, audit and so on. It also

supports information registered by the government and supervised by the public. At

present, many private blockchains work in the way of attaching to existing blockchains such

as bitcoin, and record system snapshot data to bitcoin system regularly. The typical

application is Eris Industries.

2.4 Summary

In this chapter, we have a detailed understanding of different consensus protocols and

some existing blockchains. Based on these information, we will establish our peer-to-peer

blockchain network model in the next chapter.

26

Chapter 3

Simulator Model

The blockchain is essentially a distributed ledger database over a peer-to-peer network.

Instead of storing all ledgers in a centralized server or cluster, the distributed structure of

the blockchain allows all nodes in the network to store all data in the chain synchronously.

At the same time, the generation of distributed data blocks are subject to a specific

consensus algorithm and protocol executed on each peer node. These blocks form a

cryptographic account book which is under time sequence and hard to be changed.

Through the blockchain technology, any network users who do not know each other can

rely on the data on the blockchain to make transactions without any centralized trustworthy

institutions.

In order to simulate the entire blockchain network on a single personal computer, we plan

to establish a simulation structure which meets the need of different blockchain. At present,

the application of most blockchain technologies is similar to bitcoin, and most of them are

based on the extension of bitcoin structure. Therefore, the simulator model would be

constructed based on the structure of bitcoin.

3.1 Blockchain Structure

We deconstruct the structure of bitcoin and then divide the basic structure of the blockchain

into three layers: network layer, data layer and application layer, as shown in Figure 5.

27

The network layer mainly implements the information transmission and network delay in

P2P network. Blockchain is a distributed system based on TCP / IP communication protocol

and peer-to-peer network. Unlike the traditional distributed system, it does not rely on

centralized server nodes to forward messages, but each node participates in the forwarding

of messages. Therefore, in the blockchain, P2P network has higher security than the

traditional network - any node attacked will not affect the whole network. All nodes store

the state information of the whole system.

The data layer, in other words, miner layer, mainly contains the public ledger, consensus

algorithm and corresponding blockchain protocol. Blockchain is a distributed database

system that block can only be appended and cannot be changed. It is a kind of distributed

ledger. Users can query the ledger anytime and anywhere in the public chain. In the

blockchain network, nodes use consensus algorithm to maintain the consistency of the

ledger database in the network. At the same time, the blockchain uses cryptographic

signature and hash algorithm to ensure that the database cannot be tampered with and

forged, and the data can be traced back.

The application layer, which is equivalent to the user layer, mainly focuses on the transaction

generation and business logic such as smart contracts. We use blockchain instead of

traditional transaction registration and settlement system. Through the point-to-point

distributed timestamp server of blockchain, the electronic transaction proofs are generated

Figure 5. Basic blockchain structure

28

and recorded according to the time order, so that the problem of double payment can be

solved and the settlement cost can be reduced. Meanwhile, it can reduce the maintenance

cost of the ledger. In addition, the blockchain platform is able to provide a programming

environment for users to write smart contracts. Through smart contracts, trading rules can

be transformed into contracts that automatically executed on the blockchain platform. The

implementation of this contract does not rely on a trusted third party, nor is subject to

human intervention. Theoretically, as long as it is deployed, the contract will be executed

automatically, and the results can be publicly checked on the blockchain, ensuring the

fairness and transparency of the contract. The smart contract of blockchain lays the

foundation for programmable currency and programmable finance.

Thus, the blockchain structure has the following characteristics.

Decentralization The storage, transmission and verification of blockchain data are based

on distributed system structure. The whole network does not rely on a centralized hardware

or management organization, and all participating nodes have the same rights and

obligations.

Reliable database The database of the blockchain system adopts distributed storage, and

any participating node can have a complete copy of the database. Unless more than half

of the computing power in the system is controlled, the modification of the database on

the node would be invalid. The more nodes involved in the system, the higher the security

of the database is. Blockchain data is also stored with a time stamp, which adds a time

dimension to the data and provides high traceability.

Open source programming Blockchain system is usually open source, and the code is

highly transparent. The blockchain platform also offers a flexible script code system to

support users to create advanced smart contracts, currencies and decentralized applications.

Collective maintenance The data blocks in the system are maintained by all the nodes with

accounting function in the whole system. The damage or loss of any node will not affect

the operation of the whole system.

29

Safe and trustworthy Blockchain technology uses asymmetric cryptography to sign

transactions, so that transactions cannot be forged. Also, hash algorithm is adopted to

ensure that the transaction data cannot be easily tampered with. Finally, the security of the

block is guaranteed by the consensus algorithm such as PoW in the whole distributed

system.

3.2 Simulation Model

In order to simulate the whole process of blockchain operation, we define message as the

main unit to connect different layers. The message is created in application layer. The data

layer processes the content of the message. And the message is transmitted between

different nodes through the network layer. The order of message propagation in blockchain

is shown in Figure 6.

a) The user node generates a new transaction. It packages the transaction and other

necessary information into a message. Then the user node sends the message to the

network module.

Figure 6. Transaction propagation flow in normal blockchain network

30

b) The network module adds delay to the message and distributes it.

c) After receiving a message with a transaction included, the miner node puts it into the

mempool.

d) The miner node competes the right of recording the new block. If the node wins, it

packages the transactions as a block and sends the block to the network module.

e) The network module adds delay to the message and distributes it. (For the network

module, step 2 and step 5 are totally the same)

f) After receiving a message with a block included, the miner node processes it according

to the consensus algorithm or blockchain protocol.

In order to save computing power and speed up the simulation, we removed the encryption

and decryption processes (including hash operations) of transactions and blocks in the

simulation demos mentioned in this article, and replaced all this kind of operation with a

random time-passing in a certain range. Nonetheless, this delay can be reverted to

cryptographic operations as needed later on.

Next, we will introduce the three layers of blockchain simulator according to the consensus

process of message.

3.2.1 Application Layer

The application layer is the first step of the entire message consensus process. The user

node is the module with the largest amount and the simplest function in our simulation

system. Its main functions include generating transactions, sending transactions, and

receiving information on transaction progress. Each user node maintains a local ledger,

which contains historically completed transactions and transactions that have not been

confirmed in the blockchain.

In our simulation, the user node will continuously send transactions to the network module

at a random time interval, which can be configured as a simulation parameter. After the

31

user node sends a transaction, the node's procedure will be in sleep mode until the

historical transaction confirmation message is received or the next transaction is ready to

be created. Under our simulation framework, the system supports more than 30,000 nodes

working simultaneously with an ordinary laptop (hardware/software) configuration, which

will be specified later in the paper.

Message is the most basic unit of information in the entire simulation system. A simple

message usually includes: timestamp, user ID, transaction ID, sending mode, message size,

specific transaction information. The sending mode is usually broadcast to all miner nodes.

The specific transaction information is usually related to the blockchain protocol. For

example, in the Bitcoin demo, the specific transaction information includes: timestamp,

sender ID, receiver ID, token number, and other text information. In the Ethereum demo,

we further expand the text information so that it can send smart contracts or call smart

contracts, which will be introduced thoroughly in Chapter 4.

In a blockchain system with currency, we usually hang the tokens when a transaction is sent

but unconfirmed. These tokens cannot be used again before receiving the confirmation

message, but the node can still send a new transaction with the remaining tokens. In

contrast, we can set some user nodes not to hang these tokens, in order to test the impact

of the double spending attack.

There are two kinds of messages that the user node may receive. One is confirmation

message. This kind of message may include the result of your smart contract call and

whether your historical transaction is accepted or declined. The user node may remove the

hanging tokens or reset these tokens’ status. The other one is successful transfer message.

This message means someone paid to you and this transaction has already been accepted.

We add these tokens into node’s account. Each node will update its own ledger.

3.2.2 Network Layer

In order to more efficiently achieve different transmission methods and network delays, we

32

transfer all the messages in the system that need to be transmitted through the network,

no matter the message is an independent transaction, a block or a request, through a

network module. The transmission method may be unicast, broadcast, multicast, or gossip.

Figure 7. Transmission method

When the network module receives a message, it will check the transmission method first.

The transmission method will determine the transmission speed, also the number of

message targets if the target nodes are not included in the message or transmission

method is just broadcast. It will split a single message containing N target nodes into N

single messages, and each message will be sent to a single node. Then the network module

determines the network delay of each message by the transmission method and the

distance between sending node and target node. This delay value will be added to the

message and sent to the information receiving module of the target node.

As shown in Figure 8, when the node's information receiving module receives a new

message, it will determine the specific time that the node receives the message header

according to the timestamp and delay time in the message, and insert it into the waiting

Figure 8. Network delay

33

queue in chronological order. When the receiving module is under the status of ‘idle’, it

starts to receive the first message in the waiting queue which current time has already

exceeded the header receiving time. Then the information receiving module calculates the

transmission delay according to the current node's transmission speed and message size.

The receiving module will remain the status ‘busy’ during the delay time. Once the complete

message finishes receiving, it will be appended to the storage space of the node and start

to receive next message. If there is no new message received currently, the module remains

the status ‘idle’. This whole procedure works similar to the way that the sender sends a

header with almost no size, the receiver receives the header after a delay caused by distance,

no matter how busy it is at that time, and then the receiver starts to get the complete

message one by one in order.

3.2.3 Data Layer

The work of the data layer is mainly completed by the miner nodes. The miner node is the

Figure 9. Detail of miner node and block in bitcoin demo

34

part with the largest workload and the most complicated work in the entire simulation

framework. It mainly includes an information receiving module (which actually belongs to

network layer), an information processing module and a consensus module.

As mentioned in last section, the information receiving module arranges the external

information in time sequence, checks whether this message is received completely and

whether it enters the storage space of this node at the current moment.

The information processing module will further process the message. These messages

include various information.

Transaction Check whether the transaction is new. If it is, put the transaction in mempool.

The transaction may include token transfer, a smart contract or a contract call.

Block Check the block height. If the block height is lower than the current mining block

height, just record this block. If equals, verify this new block. A valid block will be written to

the node's chain, switch the state of the block before 6 blocks to be ‘confirmed’, and send

a stop command to the consensus module to stop current mining. If higher, send a request

to other miner nodes to get the blocks lost.

Request Check the blocks on the chain of this node, then make a response.

Response If the blocks in the response are valid and have filled the lost blocks of the node,

write these blocks to the node’s chain, switch the state of historical blocks, and send a stop

command to the consensus module to stop current mining.

The work of the consensus module is mainly based on different blockchain protocols. For

example, in Bitcoin case, the consensus module will follow the most recent block to mine

the new block. We use a random mining time to represent the hash operation, making the

consensus module remain the status ‘busy’ during this mining time. If at the end of the

mining time, the stop command sending by the information processing module has not

been received, it is deemed that the miner node has successfully mined a new block. The

node will package a series of transactions in mempool into a block, record this block in the

node's chain, and send it to the network module with all the remaining miners being the

35

target. In one block, it usually contains the following information: current block ID, current

block height, previous block ID, timestamp, miner ID, block size, the number of transactions,

and complete transaction information. In order to save computing power, we did not

encrypt and complicatedly verify the content of the block, so there is no Nonce, Bits and

Merkle-root in the simulation block header, and the simulator will give the block a unique

block ID as its current block ID. Each miner node maintains a complete public ledger. In

different miner nodes, there may be slight differences in this public ledger. But from the

systematic view, there still exists consensus between these ledgers. The main design idea is

to use a calculated range of time to replace the hash calculate(mining) part. This range may

be affected by the difficulty of blockchain and the mining hashrate of current node. We can

also replace this range with a different distribution of mining time in reality.

3.3 Functions Summary

According to our ChainSim simulation framework described above, ChainSim can provide

the following functionality and capability.

High number of nodes support in one personal computer During historical experiment,

simulator can easily afford more than 30k nodes. The cost of high number of nodes is just

more real time for the same simulation time.

Flexible transmission mode ChainSim can define its transmission mode as unicast,

broadcast, multicast, anycast or any special transmission method we want to set. We can

also change the transmission speed for different nodes, which can help us to investigate

the influence of network status.

Variable basic parameters We can change the basic parameters of the blockchain, such as

block size, mining difficulty, miner computing ability, etc.

Diverse protocols Based on the overall p2p module, we can achieve diverse consensus

methods and blockchain protocols by defining node behavior. Under the same consensus

36

protocol, we can also define different nodes to have different functions. For example, we

can set different nodes as fair miner or selfish miner, which can be used to reproduce

various blockchain attacks.

Time-sequence and event-driven In ChainSim we can observe the status of any node at

any simulation time, also we can observe the response of the whole network after some

special command with no need to stop simulation at that time.

3.4 Related Work

Rajitha et al.[26] used architectural performance modelling and the same incident

management exemplar for this approach provided by Weber et al.[28] to measure the latency

arising from the Blockchain-related factors, such as the configuration of the number of

confirmation blocks and inter-block times. Their management system shows that

predictions of median system level response time with a relative error mostly under 10%.

Their approach could be used in the design of blockchain-based systems. They modelled

the resource and performance characteristics of a local node as a whole, which means they

ignore the consensus algorithm (such as mining). In our research, the consensus is the core

of the blockchain, which may highly influence the performance and the security. On the

other hand, their idea of development based on modular modeling is very similar to ours,

which also supports the re-use of constructed models and components.

Gobel et al.[29] developed two Blockchain simulators, based on the DESMO-J simulation

framework[30]. They studied the effect of communication delay in Bitcoin Blockchain under

a ‘selfish-mine’ strategy. First, they use a simplified Markov model that tracks the

contrasting states which includes a small amount of dishonest(selfish) miners to establish

that the use of block-hiding strategies, such as selfish-mine, which may cause the increase

of orphan blocks. Then they use a spatial Poisson process model to study values of Eyal and

Sirer’s parameter γ , to find out the proportion an honest miner mine a block which previous

37

block is mined by an honest miner. Finally, they use discrete-event simulation to study the

behaviour of a network of Bitcoin miners, which includes selfish-mine action under a

network with communication delay between miners. Their study found out that if dishonest

miners are exist, the performance of both honest and dishonest miners will become worse,

the system also can monitor the production of orphan blocks to find out the behavior of

selfish-mining. We haven’t mention selfish miner yet, we could consider it in the further

research.

Grevais et al.[47] provided a complete Bitcoin simulator written by NS2. They introduce a

novel quantitative framework to analyze the security and performance implications of

various consensus and network parameters of PoW blockchains. They find some method

to fight against or limit double-spending and selfish mining under their framework, by

changing the basic settings such as network propagation, different block sizes, block

generation intervals, information propagation mechanism, and the impact of eclipse attacks.

Under their framework, they can find a balance between performance and security in

Blockchain Network. Compared with our simulator, their simulator is kind of complete but

facing the problem on the number of nodes. All the simple node’s location and its network

delay should be defined individual. And it simulates the procedure of mining as well, which

cost a lot of performance. When the node number rises, the simulator takes a bad respond.

Goswami[40] discuss the factors that make Block-chain largely non-scalable. They provide

the simulator written by java. This research delves into the scalability issue of blockchains

and provides a comparative analysis of several blockchain parameters with real time data.

It delves into the factors that make block chains largely non-scalable. This is done by the

simulation of blockchain. It then addresses the various mechanisms that can be employed

to resolve this limitation through measuring the differences between the simulator and real

time scenarios. Their simulator which simulated the PoW work without node

communication, just finish the work in one client. It’s effective but getting troubles in

combination with real network.

Maher et al.[31] organized their simulator in three layers: incentive layer, connector layer and

38

system layer. The connector layer is the core part of the simulator, which includes the

consensus algorithm, mostly PoW in this paper. They allow simulating a large number of

nodes to study the behavior of the nodes and the incentive mechanisms. But they have

already defined and locked the working mode of the miners which means miners are all

assumed to be honest. They must append as many transactions as they can in one single

block and the transactions that offer the highest fees must be included first. They also add

an extra new vote mechanism to resolve fork instead of upgrading the copy of the chain by

the miner himself.

Lyubomir et al.[32] design their simulator to explore important characteristics and metrics of

the network, reason about interactions between nodes, and compare different scenarios in

an intuitive way. It shows the simulation time usage comparison as the transaction number

changes. It can also simulate large amounts of nodes in one single personal computer. In

their simulator, they mostly focus on the transaction sending and network response to

replicate the parallel and concurrent nature of the network. But as a blockchain simulator,

instead of a network simulator, it weakens the consensus part, which is more important in

blockchain.

Yusuke et al.[33] produce a simulator which can simulate the block transmission with good

accuracy. They conduct two experiments which clarify the influence of neighbor node

selection algorithms and relay networks on the block propagation time. In their simulator,

they ignore the transactions generator, which always equals to users, just starting the

simulation from block level. To speed up the simulation time, they simulate all the messages

as 0 byte except the block message. As they try to change the transmission protocol to

decrease block propagation time, they set an unchangeable consensus PoW as well.

3.5 Summary

In this chapter, we deconstruct the classical blockchain structure and analyze the blockchain

39

workflow with message as the basic unit. Based on the information above, we build our

blockchain simulation architecture Chainsim. Then we compare our simulation model with

some other blockchain simulation tools, which highlight the generality and efficiency of

Chainsim. In next chapter, we will deploy three different blockchains in the simulation

architecture to prove the correctness and effectiveness of Chainsim.

40

Chapter 4

Blockchain Deployment

To investigate the correctness and effectiveness of ChainSim, we implement three different

blockchain protocols: Bitcoin, Ethereum and IOTA, then deploy and test using our ChainSim.

4.1 Bitcoin

Bitcoin is known to be the most classic blockchain which most consensus in different private

blockchains is based on. We will next introduce in detail how we implement bitcoin under

our simulation system.

4.1.1 User Node

User nodes mainly produce new transactions, update the historical transaction status, and

are hardly affected by blockchain protocols. When initializing nodes, we give each node a

balance to generate subsequent transactions. Each user node contains two ledgers. One

includes the confirmed transactions associated with current user node, no matter the

current node is the sender or the receiver of the transaction. With this ledger, we can trace

the whole process of balance change. The other ledger contains all the transactions send

by current node. These transactions include an extra status which indicates whether this

transaction is confirmed.

There are two key parameters we can change in this case study: user number and the

transaction interval. With these two parameters, we can realize different load of the system,

41

which is always calculated as transaction per second (TPS). During our research, in a normal

system, since all the user nodes have little difference, if these two strategy results in a similar

TPS, the simulation result will be the same between high user nodes number, long interval

and low user nodes number, short interval. This result will be detailed shown in part 5. With

our ChainSim, we can test the network status and the blockchain response when the system

is light load or overload.

In each user node, two modules are working at the same time. Message generation module

is used to produce new transactions. A transaction contains the following information:

timestamp, sender ID, receiver ID, token number and other information. In our simulation

we choose a receiver ID randomly and then randomize token number in the range of

available token. After the transaction is created, record this new transaction in the second

ledger, define the status as unconfirmed, hang these tokens from the available token

balance. These hanging tokens cannot be used in future transactions until its status changes.

Then we package the transaction as a message, which includes timestamp, user ID,

transaction ID, sending mode, message size, and transaction information. Instead of using

the original encryption, we make the module remain the status ‘busy’ for a short period of

time, so the timestamp will be different from the timestamp in transaction. We also give the

transaction a unique ID to distinguish different transactions in the miner node. The sending

mode is usually broadcast to all miner nodes. After packaging, we send the message to

network module, and keep the user node the status ‘idle’ for an interval. The range of

interval is defined by simulation setting.

The transaction processing module is used to update historical transaction status. The user

node may receive the following messages:

Transaction confirmed Record the transaction in the first ledger. Set the transaction status

in second ledger as confirmed. Remove the tokens from hanging tokens.

Transaction rejected Set the transaction status in second ledger as rejected. Remove the

tokens from hanging tokens and add these tokens to available token balance.

42

Transaction received Record the transaction in the first ledger. Add the tokens in this

transaction to available token balance.

Message generation module and transaction processing module work independently. They

jointly maintain the ledgers of this node.

4.1.2 Network Module

In the bitcoin demo, the main transmission mode is Gossip. The Gossip process is initiated

by a seed node. A seed node sends a message to its neighbor nodes in the network. The

neighbor nodes that receive the message will repeat the process until all nodes in the

network have received the message.

In ChainSim, the first seed node’s work is finished by the consensus module, and the

message expansion of Gossip is included in the miner’s information process module. In

both parts they will send a message with a list of target nodes to the network module. Then

network module will distribute it to its goal.

In network module, there is an address book for every single node, including both user

nodes and miner nodes. We can set a speed for information transmission in the network

cable. Then this speed and the distance between two nodes will be used to calculate first

step delay. The second step delay is calculated in the miner’s information receiving module,

which uses the transmission speed and the size of the message. The transmission speed

can be set by each node individually. With these settings we can set some nodes as high-

speed network with remote location, slow speed network with close location, etc.

Figure 10. Network module distributes message

43

4.1.3 Miner Node

The information processing module are divided into three pieces according to the received

information:

Transaction Transactions will be verified first. If the transaction is new and valid, it will be

put into mempool and wait to be packaged in a new block.

Block The module will first check whether this block is an unreceived block. If it is, compare

the height of this block with the block that consensus module is currently mining. Then

spread this block to several other nodes by sending it in Gossip mode.

⚫ Lower: Just record this block and do nothing.

⚫ Equal: Verify this block. If valid, record this block in the blockchain. Then remove all the

transactions in the new block out of the mempool. After that, find the sixth block

forward the new block along the chain and then confirm it. Finally, give the consensus

module a command to stop current mining and start a new mining after this new block.

⚫ Higher: Which means either this block is invalid or current node has not received past

Figure 11. Information processing module

44

few new blocks. The node will send a request to several nearby nodes to get the blocks

between current mining height and the new block height.

Request Most requests are block synchronization requests from other nodes. Once received,

the node will check its blockchain and send the block information back directly. In some

cases there will be requests from user nodes to check their transaction status, we didn’t

include it to reduce the network flow.

The consensus module is under the status ‘busy’ at most of the time though, it actually

hibernates in our case. When the processing module gives the command of stop mining,

the mining block height is added first. Next, a mining time is generated randomly from a

range. We obtain this range by calculating the distribution of real blockchain. We can

change the calculating difficulty by changing this distribution. Then the module keeps

hibernate. If the mining time is up and it has not received the command to mine the next

block, we define that this node has successfully mined a new block. A block may include

following information: previous block ID, timestamp, number of transactions, complete

transaction information. To package a block, we choose some transactions from the

mempool. We can set different strategies to choose transactions, such as choose half

transactions with no fees and half transactions with highest fees. In this section, we just

choose the transactions which have waited for the longest time. How the strategy may

influence the bitcoin network will be discussed in future research. Also, if there are enough

transactions in mempool, the miner node is more likely to fill the entire block. We set a size

limit for the block. The total size of transactions and block head information will not exceed

this limit. During block generation, we record the ID of the previous block which is linked

to the new block, and then record current time as timestamp. The miner will write the new

block on its own chain. Before we send the block to other miners, we record some extra

information in the message. We give the new block a unique ID to distinguish different

blocks in the miner node and write the block ID, the block height and the miner ID in the

message. For message transit, we also record the total size of the whole block and set the

transmission mode as gossip. The message will be sent to the network module. Then it will

45

start a new round of mining.

4.1.4 Bitcoin Demo Verification

To verify the correctness of our ChainSim, we compared the simulation results with that of

real bitcoin network. All the simulations run on the single personal computer as shown.

Computer parameter

OS: Windows 10 64 bit

CPU: Inter® Core™ i7-7700 CPU @ 3.60GHz

Memory: 16G

Programming language: Python 3.6.0

IDE: JetBrains PyCharm 2019.2.5

Then we decide some parameters for ChainSim bitcoin case before simulation. Some of the

parameters have distribution rely on real network, we only show its range in Table 1.

Table 1. Simulation settings

Parameters Default Parameters Default

Simulation time 24h Miner number 2000

Block size 1MB Transaction size [0.4,2]KB

User number 1000 Mining time [0,30]min

Transaction interval [100,1000]s Node transmission speed [5,100]Mbps

We counted all the block information in ten days from the network, then analyzed the

distribution of mining time, as shown in Figure 12. The mining time in simulation is

generated randomly according to this distribution.

46

Figure 12. Mining time distribution (10 days in April 2020)

After simulation, we get the results shown as follows1.

Table 2. Bitcoin network comparison result

Parameters Simulation Real network

Avg block time 548s 524s

Avg block size 0.96MB 1.13MB

Transaction per second 3.43 3.26

Transaction per block 1640 1836

Mempool size Depends on time

Median confirm time 520s 370s(with fee)

After comparison, we can find that most of the simulation results are in an acceptable error

range, as the real network data is also changing every day.

1The real blockchain data gets from the following web in April 2020:

https://www.blockchain.com/charts

https://bitinfocharts.com/

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

20

40

60

80

100

120

140

160

180

P
e
rc

e
n

ta
g

e

C
o

u
n

t

Time range

count

percent

https://www.blockchain.com/charts
https://bitinfocharts.com/

47

But there are still some differences between real bitcoin network and simulation, which are

mostly affected by miner strategy. We limited the block size to 1 MB. In current bitcoin

network, SegWit (Segregated Witness) can be chosen by miners to expand block size up to

4MB, which turns out the average block size to be 1.13MB or even higher. For mempool

size, it is changing all the time in one day. It may be influenced by a sudden congestion of

transactions. So it turns out to be incomparable in long time stable simulation. For median

confirm time, it is totally caused by strategy and can be further researched. In current

simulation, we set all the transactions with no fee, so the miner chooses transactions fairly

depend on time. If the user node set a fee in one transaction, how much fee should it

contain to make the miner more likely package its transaction first, how many percent of

transactions with no fee will one miner package in its block, all these questions can be

discussed under our ChainSim.

To quantify the efficiency of the simulation, we define a middle size bitcoin network with

2000 miners and 20000 users. To simulate the blockchain network of this scale for 24 hours

may take 3 hours of real time, which not only saves computing power, but also saves time.

In summary, ChainSim shows great ability in simulating a bitcoin network with basic block

data and network performance. It is also a great tool for users and miners to find out a

better strategy efficiently.

4.2 Ethereum

Since Ethereum still uses the PoW consensus protocol, and has not modified to PoS

consensus yet, Ethereum and Bitcoin has little difference in terms of the operating structure

and simulation ideas of the consensus protocol. Based on the Bitcoin simulation case, we

made the following two important corrections according to Ethereum unique features.

48

Uncle block If a direct sub-block within 7 layers of the main chain is received, it will no

longer be discarded directly, but will be placed in the candidate uncle block. If a new block

is mined, miner can add up to two uncle blocks in the current block. When the height

difference exceeds 6 layers, or the uncle field of other blocks already contains this uncle

block, the block will be removed from the candidate uncle block.

Smart contract As mentioned above, each individual transaction contains some transaction

information. We add an identifier to these transactions to distinguish whether this

transaction is for currency exchange, building a smart contract or calling a smart contract.

In order to use a single program to run the entire blockchain, smart contracts need to be

written in Python syntax instead of Serpent syntax, so that operations such as calling the

network module to send tokens to an account can be performed. The entire contract is

stored in the transaction information field in a string format. When a miner node receives

a request to create a new smart contract account, it will create a separate storage space for

the smart contract, decode the string contract and keep the program running, or wait to

receive the transaction to call the smart contract. When all the gas in the contract is used,

an error status will be reserved in the storage space of the contract, and a new transaction

that calls the contract will be fed back with an error.

Figure 13. Uncle block

Figure 14. Smart contract example

49

Since Ethereum provides tools for building a private chain, in order to verify the

effectiveness of this simulation model, we built a private chain for comparison. The genesis

block of private chain is saved in a json document as shown in Figure 15. Then we generate

4 miner nodes that keep mining empty blocks to test the chain performance.

We compared the simulation results with the real chain and those with the private chain

under the same scale and data volume. The comparison results are as follows:

Table 3. Ethereum comparison result

Parameters Simulation Real network

Avg block time 14s 13.4s

Transaction per second 9.42 9

Uncle rate 6.82% 6.16%

Avg block time(private) 14.2s 13.8s

Uncle rate(private) 1.31% 1.03%

As shown in Table 3, all the results are similar between simulation and real network. The

significant difference is that as we only deploy 4 miners in the private chain comparison,

uncle rate of the network reduces in a high level, but is still almost the same between private

chain and simulation.

Given the impact of transaction incentives on miners choosing transactions to include in

blocks, it is not uncommon for Ethereum to have empty blocks in the main chain due to

Figure 15. Private chain genesis block

50

the permission of not full (or even empty) blocks. This simulator can also be used as a tool

for researching the optimal harvesting strategy of Ethereum miners.

4.3 IOTA

Unlike the previous two chain-structured blockchains, IOTA is a DAG (directed acyclic

graph)-structured blockchain. We hope to verify the scalability of our framework through

the IOTA demo. We also test some user behavior attacks against IOTA using this demo,

which will be shown detailly in part 6.

In IOTA, its consensus method is named tangle. Instead of separating the process of making

transactions by local users and achieving consensus by online miners, tangle integrates

these processes into one step. In the IOTA network, the identities of users and miners

overlap, whenever you wish to send a transaction or need to complete a certain amount of

proof of work. So we deploy IOTA in our framework with all the nodes working as miner

nodes. Then we divide the work content of these nodes in IOTA into the following two parts.

Send a transaction

When the user node attempts to send a transaction, it randomly selects two transactions as

the parent transaction from the previous parent transaction pool (the storage space of the

DAG structure) based on a special selection strategy called the weighted random walk. Then

it executes certain proof of work, package important information into a bundle, and send it

to the network module to broadcast it to all nodes.

Receive a transaction

The user node receives a new bundle and verifies the validity of the transaction in the

bundle. If it passes the verification, the transaction is added to the transaction pool. The

51

weight of the parent transaction is superimposed according to the weight and attenuation

ratio of this transaction. Then iteratively accumulates the parent transaction weight of the

parent transaction. When the weight of a transaction reaches a certain threshold, it is

deemed that the transaction has been confirmed.

Figure 16. IOTA simulation result (solid-confirmed, dotted-unconfirmed)

As IOTA doesn’t provide some detailed settings nor working status analysis, we don’t

compare simulation results and real network results. We only shown a simple IOTA

simulation result in Figure 16. We choose to reconstruct IOTA, including defining the key

parameters of its selection strategy, removing the Coordinator and testing its attack

response. These will be discussed in part 6.

4.4 Limitations

52

In Chainsim, we can deploy various protocols, but it still has its own limitations.

First, we need to understand the workflow of the protocol then deconstruct it. After

deconstruction, we can write code according to node classification and function

classification. Users who do not know enough about blockchain protocols can only deploy

blockchains by modifying key parameters depending on existing simulation models, which

will be shown in Chapter 5. Secondly, there is a lot of redundancy in the network module

of Chainsim. The message will be sent to the network receiving module of all nodes, and

then the network receiving module determines whether the node processes this message

according to the information records in it. When the number of messages in the system is

fixed, the bigger node number, the slower the system runs, which may cost a longer real

time for simulation. Then in this dissertation, we use a fixed time to replace the encryption

and decryption process, and use a label to identify whether the information is valid, so as

to replace the complex verification process. These processes can be deployed in Chainsim

when they are needed. Finally, the hash operation in PoW is replaced by a random time

according to a certain distribution. We can but do not recommend deploying hash

operations in Chainsim. This may cause the real time it spends close to the number of nodes

multiplied by the simulation time, which lose the significance of single machine simulation.

In future research, we will provide more complete modular platform including encryption

and authentication for lightweight users, try to reduce system redundancy and improve

simulation speed.

4.5 Summary

In this chapter, we deploy three types of blockchain protocols demo under our framework.

The simulation results show that our simulator could simulate the blockchain accurately and

effectively in one single computer. Also, it can change different parameters and strategies

to realize different kinds of attack in blockchain. ChainSim can be used by either researcher

53

to test and evaluate their new consensus protocols, or blockchain foundations to predicate

and plan their resources for their blockchains before deployment.

In next chapter, we will try to improve the performance of blockchain by changing

parameters and testing new protocols.

54

Chapter 5

Use Case 1. Blockchain Performance

Improvement

Blockchain is a peer-to-peer distributed ledger database, which consists of connected data

blocks. The connection pointer between blocks is the Header Hash processed by

cryptographic hash function, which protects the transactions in every block, as well as the

block connection. Thus, any of the historical transaction cannot be changed without

invalidating a chain of Header Hash.

As TCP/IP is the communicating protocol between computers, Blockchain is a trust

mechanism and a cooperation protocol. With its unique capabilities, it enables people to

establish trust and make transactions without relying on a trusted third party.

In Bitcoin, the system uses Proof of Work[27] (PoW) to ensure that all the transactions have

been approved. The miner must do a lot of hash-calculating (which has a variable difficulty

to ensure each block to be mined in about 10 minutes) to compete the right of setting its

block on the chain. And the mechanism suggests that users should wait at least six blocks

before their transactions have been confirmed, which last almost an hour. During this time,

the forks will be cut. With this consensus, the system could withstand double spending

attack when the number of honest nodes is more than 51 percent.

With the increasing need on Blockchain, several issues in the protocol prohibit Bitcoin from

many applications:

Poor scalability Each block can store 1 MB data, which means the system throughput is

limited by the size of its block.

55

High latency The average confirmation time is more than 100 minutes, which seems too

long for some situations.[33]

Power inefficient It was reported that the Bitcoin network consumes about 73 TWh per

year, i.e. using on average 640 KWh per transaction.[35]

In this part, we will try two different ways to resolve these limitations. In part 5.1, we will

change the key parameters of bitcoin and observe its influence on the whole network. In

part 5.2, we will introduce a new structure of DAG blockchain.

5.1 Parameter Change

In this section, we collect and define some metrics for QoS of Blockchain. We hope to verify

through this section that our simulator has effective response to different basic parameters

settings.

5.1.1 Metric Definition

First, we define some metrics and use these metrics to measure the quality of the Blockchain

system. The role of these metrics in Bitcoin blockchain network is shown in Figure 17.

Figure 17. QoS Metrics for a Blockchain Network

TBN (Total Block Number) is the number of blocks that have been mined in a specific time

56

period. It directly related to simulation time. BCT (Block Commit time) is the average time

needed to commit a block to the main chain since being created, which is approximately

equals to 6 times of mining time. Block Size includes the header and some transactions,

and is limited by 1000000B (defined by Bitcoin source code). ABS (Average Block Size) is

the average block size in MB. It is an indicator that shows whether the block is filled. TPB

(Transactions per Block) is the average number of transactions per block contains. One

transaction needs to use the storage 4 times the simple message. After the

update ’Segregated Witness’[25] on 8/24/2017, the extra 3 times does not calculate in Block

size, which expand TPB. Transaction size range and transactions per seconds are the

settings we want to change to measure the performance, which turns to be ATS (Average

Transaction Size) and TPD (Transactions per day) after statistics. TCT (Transaction

Confirmation Time) shows how long one transaction is accepted in average, MS (Mempool

Size) shows the waiting list of transactions.

In the system sight, we want the block to be filled (ABS as large as possible, TPB as many

as possible), so we can transport more information at the same time. In client’s view, TCT is

the most important QoB, i.e. the less TCT is, the more effective the Blockchain network.

5.1.2 Simulation and Results

There are several parameters we can change during simulation:

Table 4. Bitcoin network default settings

Parameters Description Default

SIM_TIME The amount of time that simulation runs. 24H

NUN_OF_NODES The number of nodes in simulation. 512

MINGING_TIME The rank of time that a block could be mined. [8, 10] min

BLOCKSIZE The limited size of a single block. 1000000B

TRANSAC_SIZE The rank of size that a single transaction could be. [100, 2000] B

57

The time in the simulation is calculated in 0.1s, and the transaction is in 1 Byte.

The parameters above configure how the simulator runs. In the real Bitcoin network, most

of these parameters are fixed or limited. But we can change these parameters in our

framework to find out how they affect the Bitcoin network.

With this simulator, we can get some important information about the Blockchain in each

node. Due to Blockchain’s working method, every node gets a similar but not the same

chain. Once we consider the network delay, the chain on different nodes may have a few

differences which may show in the commitTime in block information. One Blockchain in

node 0 created with default settings shows below. The first diagram in Figure 18 shows the

first few blocks in the network including Master Block, the second diagram shows the latest

blocks including some Blocks haven’t been committed yet.

Figure 18. Blockchain information in node 0

We do some simulations with different settings. The result shows below.

58

Figure 19. ABS

In Figure 19, when the number of transactions per day and the block size remain unchanged,

only if the average transaction size is up to about 1000B, will transactions fill the block to

the full. When the transaction size is small, more transactions could be recorded in one

block. Once there are not enough transactions, the block won’t be filled any more. In real

system, mining a block costs a lot, so we want the block to contain as much information as

possible. But when the transaction size is too big, due to the limited size of transactions

that each block can contain, more and more transactions will be piled up in the Mempool.

The confirmation time of the transaction will also be lengthened.

Figure 20. Mempool Size I

0

2

4

6

8

10

12

100~2000 100~200 100~500 100~1000 200~500 200~1000

A
ve

ra
g

e
B

lo
ck

S
iz

e
 (

B
yt

e
)

x 100000

Transaction Size (Byte)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ra

n
sa

ct
io

n
s

Simulation Time(h)

100~200

100~500

100~1000

200~500

200~1000

Transaction Size

(Byte)

59

Figure 21. Mempool Size II

Figure 22. Mempool Size III

Figure 20 shows the details in one day that when the processing capacity of the block is

stable, mempool size keeps in a low level. The transactions do not need to wait for a long

time to be set in a block. Similar in Figure 21, when the transaction per second increases,

the mempool size may keep in a low level before the block is filled. Once filled, as shown

in Figure 22, the mempool size will go straight high, which means the system will become

more and more redundant. Just like in Figure 23, the transaction commit time rises with

time. In the real network, the transaction number depends on various events, which have

peak and off-peak time, this may cause unexpected peek in commit time and mempool

size.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ra

n
sa

ct
io

n
s

Simulation Time(h)

1~5

1~3

1~2

Transaction Per

Second

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
ra

n
sa

ct
io

n
s

x 10000

Simulation Time(h)

1.4~3.3

2~3

2~5

Transaction

Per Second

60

Figure 23. Transaction Commit Time

Figure 24. Total block number

In Figure 24, the number of miner nodes has little impact on the Blockchain performance.

In our simulation, the node number could be up to 20000. Actually, the increase of node

number will provide the system with more computing power, which may cause a shorter

mining time. Once the mining time is out of range, the system will increase the difficulty of

calculation, which finally keeps the mining time in the given range. As we jump the mining

part and set a range for the mining time, the increase of miner number won’t influence our

simulation in general. But it may bring higher possibility for nodes to create an orphaned

block as shown in Figure 25.

0

1

2

3

4

5

6

7

8

9

10

3 6 9 12 15 18 21 24 36 48 72 96

T
ra

n
sa

ct
io

n
C

o
m

m
it

T
im

e
(h

)

Simulation Time(h)

157

158

159

160

161

162

163

4 8 16 32 64 128 256 512 1024

T
o

ta
l
B

lo
ck

N
u

m
b

e
r

Total Node Number

61

Figure 25. Orphaned block number (96 hours)

5.1.3 Summary

As the results shown in 5.1.2, we can find out that our metrics are effective in QoS of

Blockchain, and we can get a clear view on performance of the Blockchain. Our simulation

shows that different parameters change the behavior of the whole network. In the future

usage, we can figure out more groups of appropriate parameters that show good

performance in both clients’ and miners’ view before the deployment of new blockchains.

5.2 New DAG Structure

DAG (Direct Acyclic Graph) is one of the ideas which aims at improving the performance

and scalability of Blockchain. However, new DAG-based chains have different chain

structure and consensus protocols, which may bring different performance and scalability.

In addition, so far little implementation has been published to confirm the assumption that

DAG-based chain outperforms Block-based chain.

In this part, we will introduce a new DAG-based blockchain model. Then we will deploy this

model in our simulation framework to test its performance and scalability.

5.2.1 Related Work

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512 1024

O
rp

h
an

e
d

B
lo

ck
N

u
m

b
e
r

Total Node Number

62

In this section, we review and discuss current well-known research to improve blockchain

performance with DAG as follows:

IOTA IOTA[24] (Internet of Things Application) is a new kind of blockchain. IOTA’s ledger data

structure uses DAG, instead of a chain, where the atomic data element is an individual

transaction, instead of a block, with aim to support massive transaction data from IOT. It

uses unique method to verify transactions, called Tangle. Tangle is the distributed account

book of IOTA based on DAG structure, rather than a continuous chain structure, adding

blocks regularly. Through DAG and Tangle, IOTA is expected to support high transaction

throughput (through parallel validation) and avoid miners and transaction fee. In Tangle,

each node represents a transaction. The initiator of the transaction has to approve 2 past

transactions, and point his own transaction to these two transactions. And also, a little PoW

has to be done in case of network attacking. With this design, the duty of verify transactions

has been moved from the traditional miners to everyone who wants to use this system.

With the continuous development of Tangle, more participants will initiate transactions, the

whole system will become securer, the confirmation time will be shortened, and the

transactions will be completed faster and faster. The main advantage of IOTA is its high TPS,

no miners and transaction fee and extensible. But it still has some problems. IOTA is easy

to be attacked at low TPS. It must have enough transactions before it can work properly. In

addition, if you want to make your transaction more reliable in other user’s view, you should

verify the transaction created by trusted node, called Coordinator, which may make the

whole system kind of centralized.

Nano/RaiBlocks Nano[65] uses a block-lattice (DAG-based) structure. Each account has its

own blockchain (account-chain) equivalent to the account’s transaction/balance history.

Each account-chain can only be updated by the account’s owner; this allows each account-

chain to be updated immediately and asynchronously to the rest of the block-lattice,

resulting in quick transactions. Each transaction is split into "paid" and "received" payments,

which are recorded by the payer and the payee respectively. A set of corresponding receipt

and payment records constitute a complete transaction entry. Nano uses DPoS(Delegated

63

Proof of Stake) to keep the system reliable. Verifier nodes track the state of the entire

network by storing block chains for each address. When a published transaction conflicts

with the internal state of the verifier node, conflicts or "bifurcations" occur. To resolve the

conflict, the node initiates the voting process by notifying other nodes of the conflict. The

voting process takes place in a predefined period of time, and each node votes on what it

considers to be the correct network state. In order to speed up the processing of small

transactions, Nano uses UDP protocol to conduct transactions. Nano's biggest technical

advantage is zero transaction fee and instantaneous transfer, low system energy

consumption, low network broadband and storage requirements. But at the same time,

transactions without handling fees may not stimulate the initiative and enthusiasm of nodes.

The maintenance of all-node accounts in block chains requires a great deal of effort from

miners. Bitcoin uses the PoW consensus mechanism to reward miners with Bitcoin and

handling fees. Nano does not have any incentive mechanism, which makes the calculation

power limited and make bad response to a large-scale system attack. Also may lead to the

centralization of computing power.

Byteball Byteball[52] does not have a concept of block either. Each new transaction

references one or more transactions earlier (parental transactions) by including and signing

their hashes. As more transactions are added, the number of confirmations you receive will

also increase like snowballing. The link in the transaction forms a DAG. Byteball added a

main chain, which creates partial ordering between transactions. When a double spending

occurs, an earlier transaction is considered valid. The cost of saving a transaction in a

Byteball database is equal to the size of the data stored. Some of the transaction fee is

payed to the parent transaction owner, the others are getting by witnesses. The first kind

of incentive mechanism makes the users are more likely to choose a recent transaction to

be its parent, which will make the DAG structure convergent. The advantage of Byteball is

its unlimited message size and its safety. But which confused researchers is its “witness”

seems to be a signal of centralization, and also limits the expansion capability and its

confirm speed.

64

5.2.2 Model and Structure

In this section, we present a simplified DAG-based blockchain model to study DAG’s

improvement on Blockchain performance.

Overall architecture/assumptions

A Directed Acyclic Graph (DAG) is a finite directed graph with no directed cycles. DAG is in

a topological order, and has a sequence of the vertices such that every edge is directed

from earlier to later in the sequence.

In the traditional DAG-based blockchain network, transactions do not have logical

relationship between each other. Most of them need a monitor/main chain or other ways

to generate their parent node randomly and keep the chain convergence, which limits the

concurrency of the network.

In our research, we found that the transactions are basically connected by the source of

these tokens. We can make DAG as a storage structure in different verifiers. As in one

transaction the tokens have certain accessible source, the miners can easily get consensus

with each other. A simple DAG structure is shown in Figure 27.

After comparison, we choose to use pBFT(Practical Byzantine Fault Tolerance) consensus

and make some changes to it. In order to get consensus, we want to use two kinds of

character, which are named as Verifier and Collector. Each verifier node is responsible for:

(a) verifying and voting each transaction; and (b) constructing and storing the DAG leger

with the verified transactions. One of the collectors counts these votes and takes

corresponding action based on the voting results. The overall architecture and consensus

process are shown as below.

Workflow

65

Figure 26. System workflow

⚫ A user (Alice) creates a transaction, hangs on the tokens she wants to exchange, claims

the source of these tokens and packages other information.

⚫ A verifier receives the transaction, verifies its validity, records it into the ledger and

sends the result to the collector.

⚫ A collector is selected from a group of collectors, e.g., using the Aglorand Sortation

algorithm, which collects the results from each verifier. Once reach the threshold, make

responses to all the verifiers, sending users and receiving users.

⚫ All verifiers update the status after collecting the validation results from the collector.

⚫ The user (Alice) either take the hanging tokens back to Alice or successful send it out.

The receiving user (Bob) write the new tokens into its own account.

Block/Transaction

In our structure, one block contains one transaction, they are equivalent to some degree.

The transaction is created/sent by the users, and the block is created by the verifier. This

structure may help us to package the transactions in the future research.

Ledger

Each Verifier has a ledger (Figure 27). It contains every transaction in the whole network.

Due to the network delay, the transactions may arrive the verifier in different order, but it

66

will produce a same DAG structure, which realize the concurrency of Blockchain.

Account/User

A user is the basic unit of the system. They create transactions and then send them to the

Verifier. As shown in Tab I, every user maintains their own account/wallet.

Table 5. User B Account

Tx No. From Token Balance Hanging

2 Genius 100 0 100

5 A 120 0 120

6 C 50 40 10

Verifier

Verifier is the main part of this structure. All the verifiers are individual and could not

communicate with each other. It verifies all the transactions and vote its validity. Also, it

Figure 27. DAG model structure

67

should maintain its own ledger (Figure 27), which may influence its future verify work.

Collector

The collector is the part we use to reach consensus. In our structure, we use a pBFT like

consensus. The collector realizes the function of “primary node (leader)”. In order to realize

decentralization, collector is not a single unit. In our structure, verifier and collector might

be the same server/computer. When a transaction is created, it will do some calculating

using its time stamp and some other details to randomly decide a verifier to be the collector

of this transaction. The detailed cryptology method and its proof will be shown in the future

research. In this case, we just random the collector so the verifier has the same opportunity

to become a collector.

The collector does not receive the detail of the transactions. It just counts the verify results

from the verifier. A threshold is set in the system. In this paper, the threshold for ‘accept’ is

50% and 30% for ‘reject’. Once reach the threshold, it will make responses to all the verifiers

and the sending/receiving user.

On the other hand, because of our structure, the transactions create by different users are

independent, the verifier and the collector can deal with different transactions at the same

time. Therefore, we create multithreading for both verifier and collector to increase the

performance of this model further.

There are three status in both account and ledger. ‘Hang’ is the basic status. Once a

transaction is created, the tokens it wants to use will be hanging on. These hanging tokens

could not be used in case of double spending. In verifier it means the verifier has already

received this transaction and made its own vote, but it hasn’t received the response from

the collector yet. In this status, any new transactions want to set this transaction as its parent

will be vote as ‘Reject’. ‘Accept’ and ‘Reject’ are the status voting by the verifier and

responding by the collector. If ‘Accept’ the transaction will be finished, the hanging token

will be taken away and the receiver will get a message to collect the tokens. If ‘Reject’ the

68

hanging token could be take off, but this transaction will still be recorded in the ledger.

Simple DAG ledger has been shown in Figure 27. In Tx1~Tx3, Genius give User A, B, C 100

token each. In Tx4 and Tx6, User C pay for A and B 50 tokens each, these tokens are from

Tx3. In Tx5, User A wants to pay 120 tokens for User B, but A cannot get enough token from

a single historical Tx, so the source of Tx5 become Tx1 and Tx4. In Tx7, the issue is similar.

It shows another status of the transaction, ’Hang’, which means the transaction hasn’t finish

yet.

5.2.3 Consensus and Algorithm

In this section, we deployed the DAG structure we have mentioned in 5.2.2 in our simulation

framework. Our simulator is working with three processes.

User Process

⚫ Create a new transaction based on own account. Hang on the tokens have been used.

Send the transaction to the Verifiers.

⚫ Receive the message from Collector. Deal with the hanging tokens. Update the account.

Algorithm 1 User Process

1: // Create Tx

2: Tx.token ← token

3: while token>0 do

4: if account[i].balance>0 then

5: if account[i].balance>token then

6: account[i].hanging ← token

7: account[i].balance ← account[i].balance – token

8: token ← 0

9: else

10: account[i].hanging ← account[i].balance

11: token ← token – account[i].balance

12: account[i].balance ← 0

13: end if

14: Tx.parent append i

69

15: end if

16: i ← i + 1

17: end while

18: Broadcast Tx

19: // Receive message from Collector

20: if Tx is “Accepted” then

21: j ← 0

22: while j < len(Tx.parent) do

23: account[Tx.parent[j]].hanging ← 0

24: j ← j+1

25: end while

26: else

27: j ← 0

28: while j < len(Tx.parent) do

29: account[Tx.parent[j]].balance ←

account[Tx.parent[j]].balance + account[Tx.parent[j]].hanging

30: j ← j+1

31: end while

32: end if

33: // Receive token

34: account append Tx

Verifier Process

⚫ Receive the transaction, add it to waiting list.

⚫ Deal with the waiting list, until reach the max thread or the waiting list is empty. Each

message takes 1ms to complete.

⚫ Verify the transaction from users. Write it into the ledger. Send the result to the

Collector.

⚫ Check the message from Collector. Change the status in the ledger.

Algorithm 2 Verifier Process

1: // Receive message

2: waitlist append message

3: while waitlist is not empty and thread < Maxthread do

4: message ← pop waitlist

5: // Message from user

70

6: Tx ← message

7: Ledger append Tx

8: Verify Tx.parent

9: if Tx is legal then

10: send Tx “Accept” to Collector

11: else

12: send Tx “Reject” to Collector

13: end if

14: // Message from Collector

15: Update Ledger[message.id] and Ledger[message.id].parent by message

16: end while

Collector Process

⚫ Receive the message, add it to waiting list.

⚫ Deal with the waiting list, until reach the max thread or the waiting list is empty. Each

message takes 1ms to complete.

⚫ Count the votes.

⚫ Once reach the threshold, response to the User and Verifiers. Stop this vote.

Algorithm 3 Collector Process

1: // Receive message

2: waitlist append message

3: // Count Vote

4: while waitlist is not empty and thread < Maxthread do

5: vote ← pop waitlist

6: id ← vote.id

7: if voting[id] is not existing then

8: create voting[id]

9: end if

10: if voting[id] is not closed then

11: if vote is “Accept” then

12: voting[id].accept ← voting[id].accept + 1

13: else

14: voting[id].reject ← voting[id].reject + 1

15: end if

16: if voting[id].accept or voting[id].reject reach threshold then

17: Broadcast voting[id] Result

71

18: Close voting[id]

19: end if

20: end if

21: end while

 There are several parameters we can change during simulation:

Table 6. New DAG structure simulation parameter

 With this simulator, we can get some important information about the ledger in each

node. Due to our structure’s working method, every node gets a similar but not the same

ledger (causing by different receiving time). When it is shown as DAG, all the legers are the

same except the status in each single transaction.

5.2.4 Analyze and Results

We conduct simulations using different settings, and the result shows below.

Figure 28 shows part of the DAG ledger in verifier. The arrow means Pay By, the circle means

one transaction and the number inside is its id. It shows that the ledger in verifier works

well as a DAG structure.

Parameters Description Default

SIM_TIME The amount of time that simulation runs 30s

NETWORK_DELAY
The amount of time spent on network for

each transaction

[20,50] ms

USER_NUM The number of Users 1000

MINER_NUM The number of Verifier/Collector 5

THREAD_NUM
Number of concurrent threads of each

verifier/collector

[1,2,4,8]

WORK_DELAY
The time for verifier/collector to deal with

one message.

1 ms

72

Figure 28. Simulation result (print by Neo4j)

Figure 29. TPS (thread=1)

350

400

450

500

550

600

5 10 20 50 100

T
ra

n
sa

ct
io

n
P

e
r

S
e
co

n
d

Miner Number

50

100

500

1000

2000

5000

User Num

73

Figure 30. Average transaction finish time (thread=1)

In Figure 29 and Figure 30, we can find that with the increasing miner number, the

performance of the network keeps stable. Only when the network scale is very small (user

number is lower than the miner number), the performance will be influenced, which means

our structure is very balanced and not affected by the number of miners. The more miner

increases the security of our network, which shows great decentralization and reliability.

Figure 31. Network performance (Miner number=20)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5 10 20 50 100

lo
g

(A
ve

ra
g

e
T

ra
n

sa
ct

io
n

Fi
n

is
h

T
im

e
)(

s)

Miner Number

50

100

500

1000

2000

5000

User Num

0

1

2

3

4

5

6

7

8

0

100

200

300

400

500

600

700

50 100 500 1000 2000 5000

A
ve

ra
g

e
T

ra
n

sa
ct

io
n

Fi
n

is
h

T
im

(s
)

T
ra

n
sa

ct
io

n
P

e
r

S
e
co

n
d

User Number

TPS average tran finish time

74

In Figure 31, as the user number increases, the TPS remains the same and the waiting time

of users become much longer (from less than 0.2s to more than 7s).

Figure 32. Average transaction finish time (Miner number=20)

In Figure 32, we increase the thread of miners, which improves the handling capacity of one

single miner. When the transaction is saturated, the more threads will highly improve the

performance of the network, which lowers the waiting time more than 3 times.

In Figure 33, when the scale of network increases, the TPS is limited by the thread of the

miner. As the verifier thread and the collector thread are both 8(16 which is the average

thread of current PC), the TPS of the network could reach 4000, which indicates a great

performance.

In Figure 34, we can find that the waiting time is influenced more by the verifier thread than

by the collector thread, which means we can pay more attention to verifier thread in the

future deployment.

0

1

2

3

4

5

6

7

8

1 2 4 8

A
ve

ra
g

e
T

ra
n

sa
ct

io
n

Fi
n

is
h

T
im

(s
)

Verifier/Collector Thread

50

100

500

1000

2000

5000

User Num

75

Figure 33. TPS (Miner number=20)

Figure 34. Average transaction finish time (User number=1000, Miner number=20)

Based on these results, we make the following observations:

⚫ Our DAG-based structure is feasible, effective and realizable.

⚫ Miner number doesn’t influence the performance of the network. Our structure is

stable.

⚫ Increasing the scale of the network does not affect the TPS, however it will make the

1

2

4

8

2.6

2.8

3

3.2

3.4

3.6

3.8

50 100 500 1000 2000 5000

Verifier/

Collector Thread

Lo
g

(T
ra

n
sa

ct
io

n
P

e
r

S
e
co

n
d

)

User Number

1

2

4

8
0

1

2

1 2 4 8

C
o

ll
e
ct

o
r

T
h

re
a
d

A
ve

ra
g

e
T

ra
n

sa
ct

io
n

Fi
n

is
h

T
im

e
(s

)

Verifier Thread

76

time for one transaction finished much longer than expect, but still under 10 seconds.

⚫ The performance of the network is limited by the handling capacity of the miner. As

we need 1 ms to deal with one transaction, the TPS is nearly 500 per thread.

5.2.5 Summary

In this part, we propose a new model and a simple consensus protocol on DAG-based

blockchain. We also use our simulation framework to test different configurations of our

model. The results confirm that our model is able to reach a considerable good

performance and it is reliable and effective in different scales of network. As in our DAG

structure one user cannot spend one token twice (double spending) or spend the token

that it doesn’t own, the transactions in the waiting list are not relevant to each other, which

means the verifiers can conduct the validation work in parallel without waiting for each

other. The limitation of the performance is changed from the blockchain structure to the

handling capacity of miners, and the performance is still not influenced by the scale of

network. It promises a better extendibility, portability and performance than IOTA and Nano

in different cases. The next step of our work is to reduce transit traffic by packaging the

transactions as a block and may use ballot encryption or Algorand[39] to elect the collector.

77

Chapter 6

Use Case 2. IOTA Security Analysis

In current time, more and more specific situations, such as IoT, micropayments, and edge

computing, requires high properties on scalability, performance, and cost-efficiency.

Therefore, Directed Acyclic Graph (DAG) is designed to fundamentally improve the

bottleneck of a traditional blockchain system. Unlike singly linear-chain topology in

traditional blockchains, DAG-based blockchain removes the limitation of blocks, by

expanding the network through a directed acyclic graph. Newly generated transactions,

without being packaged into blocks, directly establish the network in some directions by

confirming the parent transactions, in order to get a higher probability to be confirmed by

the next transactions. Through several iterative rounds, the main graph is formed with a low

probability to be reversed.

Tangle structure is proposed by IOTA[24], one of the pioneers of DAG-based projects, to

overcome the original bottlenecks including poor throughput on concurrency, low

efficiency on performance, and high-cost on transaction fees. Tangle is formed via the

continuously issued transactions, and employs the block-less data structure for transactions

rather than traditionally block-based blockchain. It regards the transaction as the smallest

elements, and all kinds of atomic operations are competed within the series of transactions,

including token transferring, witness validation, path extending and so on. It possesses the

properties on:

High throughput Transactions can be attached to tangle from different directions without

serious congestion.

High Performance Newly arrived transactions are confirmed by the previous two

78

transactions via a tiny Proof of Work (PoW) mechanism, where the computer consumption

can be ignored with comparison to traditional PoW.

Low cost Transaction fees in tangle-based blockchain is zero to suit for the high frequent

situations including IoT, micro payment and edge computing.

Here, we clarify the following DAGs inspired by the architecture and properties of tangle as

tangle-based blockchains.

However, tangle-based blockchains confront the potential threats on the forks of

subgraphs in different directions. Following the specified tip selection mechanism, tangle

forms a multi-directional expansive network to improve the scalability[45]. More specifically,

tangle achieves the delayed eventuality and partial consistency based on the previously

confirmed transactions on each direction, instead of an instant eventuality like BFT-style

consensus[46]. The gap between delayed eventuality and instant eventuality leaves the

possibility of uncertainty and reversibility for attackers[47], the same as other probabilistic

protocols such as PoW[1][48]. And the existing chains are always threatened by miners who

Figure 35. Tangle structure

79

own insurmountable computing power or equally the users who can send multiple and

continuous transactions. Therefore, newly issued parallel transactions are unpredictably

attached to different subgraphs without control, and there is no leading subgraph to

maintain a stable structure. The forks, as a result, are always along with the leading

subgraph, under the risk of parasite chains attack and double-spending attack[49].

In order to solve the contradiction, an additional centralized Coordinator is embedded in

tangle (e.g. IOTA project) to maintain the ordered sequences. All transactions selected by it

are immediately considered to be confirmed with 100% confidence. Milestones are

periodically sent to nodes by the Coordinator, to reach the consensus across multiple

subgraphs for stability and record snapshots by removing useless branches. Nodes

accordingly rebuild the Merkle tree which contains the Coordinator’s address to verify the

milestone. This makes tangle inherently a centralized system. IOTA official claims to cancel

this centralized coordinator in the future. However, problems still exist without the

Coordinator, no matter what scale it can reach. Tangle will spread into different directions

in form of subgraphs under its inherent mechanism. We aim to provide comprehensive

analyses on such difficulties. Our contributions are summarized as follows.

Deconstruction of tangle We abstract the features of tangle-based blockchain from the

basic actions to the meshed graph network, and deconstruct current tangle projects like

IOTA into components including generation of transactions, bundle as a unit, and selection

algorithms. Our deconstruction lays the foundation of the following constructions and

evaluations.

Construction of attack strategy We define three actions as the basic benchmarks to

construct our attack strategies layer by layer. The bottom layer (Layer0) describes the role

of each basic action. The middle layer (Layer1) presents the possible behaviors made up by

actions. And the top layer (Layer2) provides the attack strategies made up by multiple

behaviors.

Evaluations of attacks We evaluate the attacks through multiple metrics to discuss the

potential influences, including: 1) Different proportions of behaviours at the same attack

80

strategy; 2) Different attack strategies at the same parameter configuration; 3) Different

parameter configurations at the same strategy.

The rest of this part is organized as follows: Detailed related works are reviewed in 6.1. The

constructions of our attack strategies are expanded in 6.2. Based on that, the

implementation is shown in 6.3, followed by evaluations in 6.4. Finally, 6.5 concludes our

contributions and future work.

6.1 Related Work

DAG[50], as a primitive in mathematics and computer science, is a finite directed graph with

no directed cycles. Deeply rooted in the graph theory, DAG-based structure can be applied

to various areas including data processing networks, genealogy and version history, citation

graphs, data compression, etc. Currently, researchers and developers are trying to bring the

DAG into a blockchain, to address the bottleneck on scalability and performance. GHOST[51]

as the backbone selection protocol instead of sidechain protocol in the earlier time provides

a prototype of the current DAG structure combined with blockchain. Driven from the classic

PoW mechanisms which choose the longest chain, GHOST protocol selects the chain who

holds the maximum sub-trees[52][53][54][55]. GHOST greatly improves the throughput comparing

to the PoW while holding the same block size. Inspired by GHOST, several blockchains

replace the subtree structure into graph structure and redesign the whole consensus

mechanism and network topology. Rather than focusing on the consensus at the block level,

DAG prioritizes consensus at the transaction level in a separate mechanism. The

transaction-based structure is inherently suitable for the micro-services, and tangle-based

blockchains also inherit the advantages. Although DAG is a competitive player, there are

still many technical problems. IOTA provides many strategies for the designation and

protection, which are detailedly and explicitly described in[1][24][56][57][58].

Several improvements by researchers are proposed to strengthen the potential weakness

81

of tangle. Cullen[49] proposes a matrix model to analyzes the efficacy of IOTAs core MCMC

algorithm, and present the improvement to resist parasite chain attacks. The matrix model

clarifies the formulation for H, to provide the explicit definition in the MCMC algorithm.

Ferraro[59] proposes a modified tip selection algorithm to make all honest transactions

eventually be confirmed. The hybrid selection algorithm achieves the balance between

biased preference for honest tips and high probability for older transactions. Gewu Bu[59]

modifies the tip selection mechanism, called G-IOTA, by choosing three verifying

transactions at one time instead of two. Through the proposed algorithm, G-IOTA can

tolerate several attacks.

Besides tangle, there are also many other DAGs. Byteball[52] proposes the consensus based

on a total order within DAG. The uni-direction is achieved by selecting the main chain, to

gravitate towards units issued by commonly recognized reputable witnesses.

Spectre[60][61][62][63] aims to establish the DAG structure based on concurrent and parallel block

creation. It utilizes a recursive voting procedure where every block submits a vote for every

pair of blocks. Accepted transactions are confirmed according to the votes. Hedera[65]

develops hashgraph consensus algorithm as the underlying model. Inspired by BFT

consensus, hashgraph sets the 2/3 as the threshold, where successful confirmation of newly

generated transactions requires less more than twothird witnesses from their ancestors.

Nano[65] designs a lowlatency cryptocurrency built on block-lattice data structure, where

each account has its blockchain. Users, in charge of their accounts, update their blockchains

asynchronously and keep track of account balances rather than transaction amounts. All of

the above-mentioned DAG-based blockchains offer a high scalability and low/no

transaction fees.

6.2 Reconstruction of Tangle

Tangle represents a permission-less network, providing the environment for data shared

by all participants. In this section, we deconstruct the architecture of tangle-based

82

blockchains into three related components, which separately answers the question on how

to generate a transaction, why we need to bundle the transactions, and how to select the

parent transactions for verification. Based on that, we abstract the key features as the

foundation to construct the attack strategies.

Tangle bases on DAG where the vertex represents transaction and the edge represents

verification relationship. Instead of the separation process between making transactions by

local users and achieving consensus by online miners, tangle integrates these processes

into one step. Whenever the transaction is generated and attached to tangle, the consensus

is simultaneously launched. Newly generated transactions are continuously attached to the

network as the participants’ increase, which inevitably forms subgraphs in different

directions. In order to prevent the network split into the isolated subcliques, tip selection

algorithm is essential to lead the main graph in one direction, maintaining the stability. Here,

we provide the skeleton to show how tangle forms and works, with the following

procedures.

Generate a transaction

To generate a transaction, some key fields are required to be clarified including index,

address, bundle, trunkTransaction and branchTransaction. The index is linearly increased

along with the growth of transactions. The address, as the unique identity of each

transaction, is generated via cryptographic sponge function, with the input including

subseed, index and security level. Subseed is an 81-tryte derived from seed and index under

Keccak-384: hash (seed + index). It should be noted that each address can be only spent

once. If the address is used for the second time, it becomes poorly secure with high risk,

due to the exposure of private subsided. Therefore, once the user withdraws the tokens

from one address, it immediately creates a new address and the index counted 1. To achieve

a compete round of withdraw/deposit cycle, multiple pairs of private keys and addresses

are necessary. As a consequence, it leads to the concept of bundle.

The transactions are the smallest components serving for further construction in tangle.

83

Each token transferring and transaction verification are based on the newly generated

transaction. All the trends of the network are caused by the behaviours of the transactions.

Therefore, we focus on the transactions and analyse the probable behaviours it may happen.

The transaction can be used as an honest approver or a malicious approver for the previous

transactions. We define three basic actions to build up the behaviors of a transaction in 6.3.

Packaged transactions as Bundle

Bundle, as the basic unit for money transferring, is a top-level construction that links the

related transactions into one clique. The bundle itself cannot be broadcast while a collection

of individual transactions is broadcast. All transactions can be regarded as part of the

bundle, and the metadata is recorded on every single transaction (in trytes format) instead

of the virtual bundle. In other words, a bundle can be reconstructed from the transaction

collection at any time through the fields of bundle hash, index, trunkTransaction and

branchTransaction.

The bundle is the smallest unit serving for money transferring. There are no real entities in

the network, and all the steps are proceeding through transactions. Collective transactions

inherently share the same seeds from one node, so that we can regard the bundle as a

separate vertex in the network. Packaging a collective transaction into one bundle

guarantees the security level in an open environment. We abstract the key features of

bundle, such as PoW, parent selection, etc. and apply them into transactions for simplicity

in a closed testing environment, as shown in 6.3.

Tip selection algorithm

Tip means the newly generated transactions that have not been validated. Tip selection

represents the selection strategies of newly generated transactions. The strategy provides

the principle of selecting two tips, and it decides the direction of the graph as shown in

Figure 35. As mentioned above, transactions in tangle are organized in bundles, and the

tail transaction is selected by the approver through the trunkTransaction field for final

consistency. The trunkTransaction field connects different transactions in the same bundle.

84

Each transaction with a higher index can trace back to a lower index. The branchTransaction

field inside bundle is slightly different, all of the transactions are filled with same string,

except for the field of initial and tail transactions. The initial and tail transactions are

generated by tip selection mechanism, as the connection between different bundles.

There are three kinds of Tip selection mechanisms provided in: Uniform Random,

Unweighted Random Walk and Weighted Random Walk. Note that the Markov Chain

Monte Carlo Algorithm (MCMC) is based on a weighted random walk. For the higher

probability of being selected, several matrices are proposed for better evaluation. height (h)

represents the length of the longest path, equal to the path from genesis to the current

transaction. depth (d) means the longest reverseoriented path, equal to the path from

current transaction to a certain tip. The cumulative weight (cw) is counted as the number

of transaction v being verified both directly and indirectly. cw reflects the probability of a

tip being selected by the random walk algorithm. α is the configurable parameter to control

the effectiveness of cw in MCMC. When α converge towards 0, tip selection becomes

uniformly random, while towards 1, tip selection becomes deterministic.

Tip selection describes how a newly generated transaction selects its parents. No matter

which detailed mechanism the node chooses, the selection processes are all based on the

variants of the random algorithm. The algorithm guarantees a tip can select in the large

range without strict rules. We divide the selection algorithm in a general way shown in 6.3.

Mapping to simulation

Based on the deconstruction of tangle, we conclude three insights as the guidelines for our

attack simulations in tangle network. Then, we capture the key features on how to

reconstruct our attack strategies.

Structure The simulation is based on UTXO model proposed by Bitcoin. The UTXO model

is naturally fit for the DAGs since there is no account in DAG, and UTXO is responsible for

the beginning and end of each transaction to guarantee the correctness of the balance.

Basic unit the simulation employs the transaction directly as the smallest unit instead of

85

bundle. Since in a closed environment, the key-exposure problem can be ignored. The

transaction-based exchanging provides us a flexible reconstruction.

Topology The simulation follows the original pattern of tangle: every newly generated

transaction verifies another two-parent tip by selection mechanism. The selection

mechanism refers to various factors such as cumulative weight, level difference and

operating time as discussed in the definition 1.

Tip selection mechanism We capture the three most influential factors in tangle including

cumulative weight, level difference, and operation time. Newly generated transactions

select parent tips according to their joint influence by equations 1.

Attack strategy construction We build the three typical attacks faced by tangle, containing

PS, DS, and HB. The attacks are based on the smallest actions layer by layer, which can be

referred in the next section.

6.3 Attack Strategies

In this section, we provide three main attack strategies: Parasite Attack (PS), Double

Spending Attack (DS) and Hybrid Attack (HB). Each strategy represents a family of concrete

attacks that inherit the same foundations. To make it clear, we start from the smallest units

to progressively establish a practical attack. We construct the strategies by three layers:

layer0 for unit actions, layer1 for atomic behaviors and layer2 for combined attack strategies.

Note that, all of the actions and behaviors defined below refer to the malicious node since

the honest node can only conduct the definitely honest transactions and behaviors.

Therefore, only the malicious/dishonest nodes have multiple combinations. Here we

provide the details.

6.3.1 Layer0: Unit Actions

86

We define the smallest unit actions in the bottom layer, denoted as layer0, the describe the

actions a node can select. It can be regarded as a binary selection at each unit action, and

the combination of unit actions make up an atomic behavior in layer1. More specifically, we

list three-unit actions as the metrics, including:

Action A The unit action A represents whether a newly generated transaction is 1) valid [𝐴1]

or 2) invalid [𝐴2].

Action B The unit action B represents whether a newly generated transaction is attached

to the parent tips 1) by the random selection mechanism [𝐵1] or 2) by selecting the

transactions which are issued by same nodes/entities with itself [𝐵2]. Here we call B2 as

selfish selection.

Action C The unit action C represents whether a newly generated transaction is selected

from 1) the pool with valid transactions [𝐶1] or 2) the pool with invalid transactions [𝐶2]. We

denote the first one as Valid Pool and the second as Invalid Pool

From the definitions of unit actions, we can see that each action can be represented as a

binary selection. We use 1 to represent the independent selections of the first line 𝑋1

where 𝑋 ∈ {𝐴, 𝐵, 𝐶}. And we use 0 to represent the independent selections of the second

line 𝑋2 where 𝑋 ∈ {𝐴, 𝐵, 𝐶}. Here, we summarize the possible selections in Table 7.

Table 7. User action

Action A Action B Action C

Valid Tx [A1] Random Selection[B1] Valid Pool [C1]

Invalid Tx[A2] Selfish Selection[B2] Invalid Pool[C2]

Seen from Table 7, we can see that each unit action sets are made up by two possible

choices to describe the instant state. We denote this process as a binary selection for

simplicity and clarity. It should be noted that selfish selection means a newly generated

transaction and the parent transaction is issued by the node with the same identity

(honest/malicious).

6.3.2 Layer1: Atomic Behaviors

87

Layer1 is a collective set of various behaviors made up by the different combinations of unit

actions. The behavior is used to completely present how to generate a transaction at the

initial stage. The behaviors are atomic for the construction of attack strategies and are

closely related to the category of attack types. Here, we summarize the feasible atomic

behaviors in Table II. Note that, every single behavior covers the unit actions A, B, and C,

and we employ the binary selection 0 and 1 to distinguish the combination of unit actions.

Table 8. Atomic behaviors

Binary Selection Action Combination Feasibility Index

111 (A1,B1,C1) Y a

110 (A1,B1,C2) Y b

101 (A1,B2,C1) Y c

100 (A1,B2,C2) N -

011 (A2,B1,C1) Y d

010 (A2,B1,C2) Y e

001 (A2,B2,C1) Y f

000 (A2,B2,C1) N -

From Table 8, we can see that there are 8 possible atomic behaviors. Take 101 - (𝐴1, 𝐵2,

𝐶1) as an example, it means the behaviour that: A malicious node generates a valid

transaction, being selfishly attached to the parent tips from the invalid pool. These

behaviors can be achievable in the simulation without logic error, denoted as the 𝑌 in

Feasibility column. On the contrary, the behaviors 100 is infeasible, since there is no invalid

transaction in the network if the malicious nodes only send valid transactions. And the

behaviors 000 is infeasible since for a malicious node, selfishly attaching process from the

invalid pool is equal to the random selection from the invalid pool, so that 000 is equal to

010. Therefore, only 6 of them are feasible, and we mark them with the index from 𝑎 to 𝑓.

6.3.3 Layer2: Combined Attack Strategies

Based on the behaviors in layer1, we construct the attack strategies in layer2. We categorize

three types of attacks, including Parasite Attack (PS), Double Spending Attacks (DS) and

Hybrid Attacks (HB). The parasite attack means an attacker secretly creates a subtangle with

the high weight for the profit. It may reverse the main tangle when the newly generated

88

transactions are widely distributed. Double spending attack means an attacker continuously

spends the same transaction more than one time. The attack splits tangle into two branches

so that one can spend a coin multiple times in these different branches.

We define PS and DS are pure attacks without mutual overlaps, and HB are the attacks

including overlapping behaviors, such as 𝑓 (Detailed explanation in the later paragraph).

Before the construction of attack strategies, we provide the decision principle, denoted as

Φ, on how to categorize the attacking types. After looking through the whole logic, we

conclude four stages of decision process shown in the Equation 1.

 Confusion behavior − stage1
Send the invalid Tx − stage2
Verify the invalid Tx − stage3

Overlapping behavior − stage4

] ⇒ Φ (1)

For the stage1, the confusion behavior means the malicious node pretends to act as an

honest node, such as the behavior 𝑎: A malicious node sends a valid transaction, being

randomly attached to the parent tips from the valid pool. We cannot obtain any useful

knowledge to distinguish whether the transaction is issued by an honest or malicious node.

stage2 represents the malicious node sends valid transactions or not, the related behaviors

in layer2 are (𝑑, 𝑒, 𝑓). stage3 refers to the parent tip selection, and the related behaviors

are (𝑏, 𝑒) . stage4 provides the overlapping behaviors including (𝑐, 𝑓) . Therefore, the

general decision principle 𝛷 is shown in Equation 2. The symbol”-” means do not exist.

 𝛷 ∶ (𝑎, −)|(𝑑, 𝑒, 𝑓, −)|(𝑏, 𝑒, −)|(𝑐, 𝑓, −) (2)

From the 𝛷, we provide the concrete decision principle for the PS, DS, and HB, which are

separately denoted as 𝛷[PS], 𝛷[DS] and 𝛷[HB] as in the Equation 3. The key principle of

PS is to selfishly select the parent transactions, while the key of DS is to send/verify the

invalid transactions. But there are some overlapping behaviors in the strategy and some

logic errors. Therefore, we provide each attacking type by the specified decision principles.

The detailed principle is listed in the second column of Table 9.

 { 𝛷 | 𝛷[𝑃𝑆], 𝛷[𝐷𝑆], 𝛷[𝐻𝐵] } (3)

89

Attacking Types Decision Principle
Confusion

Behavior

Feasible

Behavior
Attack Strategies

 (a,-)|(d,e,f,-)|(b,e,-)|(c,f,-)

Parasite

Attack(PS)
(a,-)| - | - |(c) a c,f c,ac(2)

Double

Spending(DS)
(a,-)|(d,e)|(b,e)|- a b,d,e,f e,ae,bd,de,abd,ade,bde,abde(7)

Hybrid

Attack(HB)
(a,-)|(d,e,f)\(b,e)|(c,f) a f

ce,bf,ef,cef,bcf,bef,bce,def,cde,bdf,bcd,a

ef,acef,abf,abcf,ace,abef,abce,adef,acde,a

bdf,abcd(22)

Based on the decision principles for each attacking type, we back to the reason why the

behavior 𝑓 is an overlapping behavior. The behaviors 𝑓 means: A malicious node sends

an invalid transaction, being selfishly attached to the parent tips from the valid pool. On the

one hand, 𝑓 selfishly selects its parent tips, satisfying the condition of PS (𝛷[PS]). On the

other side, 𝑓 sends an invalid transaction to the network, satisfying the condition of DS

(𝛷[DS]). Therefore, 𝑓 is an overlapping behavior applied in the hybrid attacks (𝛷[HB]).

6.4 Experiment Design

6.4.1 Parameters and Notations

In this subsection, we define the notations used in our implementations and tests. Actually,

there two types of parameters in the system, the first are binary parameters, such as (𝐴1,

𝐴2) as discussed in 6.3, used for the construction of attacks. Since the transactions are

atomic in the simulation, we ignore the duplicated introductions. The second is the

continuous parameters such as operating time, number of total transactions and so on.

They are used for adjusting the configurations during the simulations to obtain the results.

The related continuous parameters are denoted below.

The parameters include total transactions T, the honest transaction H, the invalid

Table 9. Attack Strategies

90

Transaction F, the interval between two newly generated transaction D, the time of PoW I,

the height of block h, simulation operating time 𝒯 , level difference ℒ and cumulative

weight 𝒲. Besides, there are derived parameters: strategy space 𝕊, transaction generation

speed 𝑇 /(𝐷 + 𝐼), the ratio of invalid transaction and the total transaction 𝑅𝑎𝑡𝑖𝑜(ℱ) =

 𝐹/𝑇 and the ratio between differentbehaviors in one strategy 𝑅𝑎𝑡𝑖𝑜(ℬ) = 𝑥 ∶ 𝑦 ∶ 𝑧 ,

where 𝑥𝑦𝑧 is depended on the initial settings when launching the attacks.

6.4.2 Key Principles

The growth of a DAG is based on the continuously increasing transactions. The old

transactions will get weighted, also denoted as cumulative weight (cw), whenever the newly

generated transactions are attached. There are two sides need to be considered: the

configuration of the unit weight and the methods to select the parent tips. For the first side,

the unit weight of every single transaction randomly varies from 1 to 4, to provide a better

simulation for the real scenario. For the second side, a parent selection mechanism is

required to take the key metrics into consideration which contains the cumulative weight,

operation time, level difference (Level represents the transactions with the same height).

Here, we present the definition of these three metrics.

Level difference Denoted as ℒ, level represents the transactions that identified the same

height. Level Difference is the distance of height between current tips and the selected

parent transactions.

Cumulative weight Denoted as 𝒲, the weight is calculated as an accumulated value each

time the newly generated transactions attached. The unit weight of each transaction varies

from 1 to 4. And the cumulative weight is the sum of the weights from its attached

transactions.

Operation time Denoted as 𝒯 , the operation time represents the executed time of a

transaction since it generated. A transaction will be discarded when times out.

Definition 1 (Mechanism for Tip Selection).

91

𝑝 = 3 ∗ |15 − 𝒲| +
100

5ℒ
− 1.5

𝒯
60 (𝑝 ≥ 0)

 𝑤ℎ𝑒𝑟𝑒, 𝓌[1] = 𝓌𝑐 (ℒ = 1)

 𝓌[𝑖] = 0.8𝓌[𝒾 − 1] (ℒ = 2 − 6)

 = 0.9𝓌[𝒾 − 1] (ℒ = 7 − 16)

 = 0.01𝓌[1] (ℒ = 17 − 29)

 𝒲 = 𝒲 + 𝓌[ℒ]

where ℒ is height difference, 𝒲 is cumulative weight, 𝓌 represents individual

round weight, and 𝓌𝑐 is current weight. 𝑝 represents tip selection probability.

From the definition 1, we can see that the selection probability 𝑝 is mainly influenced by

three factors: ℒ, 𝒲 and 𝒯. ℒ varies inversely with the 𝑝, which means a tip tends to be

impossibly selected as the level difference increases. 𝒲 is an iterative algorithm within

three intervals according to ℒ. The equation at different intervals has a different decay rate.

The tips need to be smoothly decayed with a small level difference (which means near to

the latest transaction) while be sharply decayed at the high difference. 𝒯 is used to prevent

the tip from being suspended for too long.

Definition 2 (Decision for Invalid Transaction). A newly generated transaction will be

discarded, as 𝑇𝑥 = ⊥, when triggering the conditions:

{𝑇𝑥 = ⊥ | ℒ > 30 || 𝒲 < 30 ∩ 𝒯 > 1000𝑠}

where ℒ is the height difference, 𝒲 is the cumulative weight. 𝒯 represents the

operating time.

From the definition 2, we can see that a newly generated transaction will be decided as

invalid when exceeding the thresholds either on the specified level difference (30) or on the

operation time (1000 s). Our simulations and evaluations of the attack strategies only

consider valid transactions.

6.4.3 Implementation Logic

92

Our implementation is based on the basic logic of tangle-based blockchains and the

reconstruction of the attack strategies. We provide detailed workflows including receiving

the transactions from peer nodes, generating/sending new transactions, and launching the

attack strategies.

Launch the attack strategy

• Configure all the initial parameters including total transactions, 𝑅𝑎𝑡𝑖𝑜(ℱ), 𝑅𝑎𝑡𝑖𝑜(ℬ),

and operating time 𝒯.

• Select the attack types based on strategies from the behaviors and the actions (see in

6.3).

• Set different 𝑅𝑎𝑡𝑖𝑜(ℱ), 𝑅𝑎𝑡𝑖𝑜(ℬ) for the test goals (see in 6.4.4).

• Launch the atttack transactions by Send New Transactions and Receive New

Transactions.

• Collect the results for evaluation and analysis. (See in 6.4).

Receive the transactions

• Listen to the peer nodes to receive the transactions, with up to 𝓃 transactions per

second.

• Put the valid transactions into the valid pool and the invalid transaction into the invalid

pool for the verification.

• Calculate the maximum height of the current DAG.

• Count the cumulative weight 𝒲 for the parent transactions through weight iteration

in Definition 1.

• Remove the timeout/expired transactions from the transaction pool according to the

Definition 2 and change the current status of the transaction.

93

Send new transactions

• Generate transactions with fixed parameters including height, weight, timestamp.

• Select two parent tips to verify according to tip selection mechanism in Definition 1.

• Launch the PoW verification for attach tips.

• Broadcast the transaction for times.

6.4.4 Implementation Goals

Goal I The first goal aims to test the influence of hybrid attacks (HB) across different

strategies. The initial configurations include the attack strategies of each type. More

specifically, we randomly select three typical strategies: 𝑎𝑐𝑒, 𝑎𝑏𝑒, and 𝑎𝑑𝑒. There are three

testing sets (Set1, Set2, Set3) in this section. The main variables include different Ratio(F)

and the attack strategies 𝕊 with corresponding 𝑅𝑎𝑡𝑖𝑜(ℱ). Table 10 presents the detailed

variables of this testing.

Goal II The second goal is going to test the influence of the different 𝑅𝑎𝑡𝑖𝑜(ℱ) of the

same strategy. The initial configurations include the attack strategies of each type. We

randomly select three typical strategies: 𝑎𝑐𝑒, 𝑎𝑏𝑒, and 𝑎𝑑𝑒. There are three testing sets

(Set4, Set5, Set6) in this section. The main variables include total transactions 𝑇 and

different 𝑅𝑎𝑡𝑖𝑜(ℱ). Table 10 presents the detailed variables of the testing.

Goal III The third goal is aimed to test the influence of the different 𝑅𝑎𝑡𝑖𝑜(ℬ) of the same

strategy. The initial configurations include the attack strategies of each type and the ratio

of behaviours behind the strategy. More specifically, we randomly select three typical

strategies: 𝑎𝑐𝑒, 𝑎𝑏𝑒, and 𝑎𝑑𝑒. The ratio of behaviors is 6 : 2 : 2. The total interval time 𝐷 +

𝐼 is made by PoW time of each transaction I and the interval time between two transactions

𝐷. There are three testing sets (Set7, Set8, Set9) in this section. The main variables include

total transactions 𝑇 and the different 𝑅𝑎𝑡𝑖𝑜(ℱ). Table 10 presents the detailed variables

of the testing.

94

Table 10. Configurations on goals

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ) Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ)

 Testing Set 1 HB Testing Set 2 HB

100 20% bd 5:5 100 20% ade 4:3:3

100 20% be 5:5 100 20% abe 4:3:3

100 20% - - 100 20% abd 4:4:3

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ) Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ)

 Testing Set 3 HB Testing Set 4 PS/DS

100 20% e - 100 10% * 8:1:1

100 20% abcd 4:2:2:2 100 10% * 6:2:2

100 20% abdf 4:2:2:2 100 10% * 4:3:3

- - - - 100 10% * 6:3:1

- - - - 100 10% * 6:1:3

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ) Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ)

 Testing Set 5 PS/DS Testing Set 6 PS/DS

100 20% * 8:1:1 100 30% * 8:1:1

100 20% * 6:2:2 100 30% * 6:2:2

100 20% * 4:3:3 100 30% * 4:3:3

100 20% * 6:3:1 100 30% * 6:3:1

100 20% * 6:1:3 100 30% * 6:1:3

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 ℱ Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 ℱ

 Testing Set 7 Testing Set 8

20 10% * 2 20 20% * 4

50 10% * 5 50 20% * 10

100 10% * 10 100 20% * 20

200 10% * 20 200 20% * 40

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 ℱ Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝑅𝑎𝑡𝑖𝑜(ℬ)

 Testing Set 9 Testing Set 11

20 30% * 6 20 10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

8:2

50 30% * 15 50 8:2

100 30% * 30 100 8:2

200 30% * 60 200 8:2

Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝕊 𝑅𝑎𝑡𝑖𝑜(ℬ) Total Node 𝑅𝑎𝑡𝑖𝑜(ℱ) 𝑅𝑎𝑡𝑖𝑜(ℬ)

 Testing Set 10 Testing Set 12

100 10% ac 9:1 100 10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

10%, 20%, 30%

9:1

100 10% ac 8:2 100 8:2

100 10% ac 7:3 100 7:3

100 10% ac 6:4 100 6:4

100 10% ac 5:5 100 5:5

100 10% ac 4:6 100 4:6

95

6.5 Testing Results Analysis

0

1000

2000

3000

4000

5000

6000

7000

Confirmed Invalid
Transaction

Confirm Time Abandaned Invalid
Transaction

Abandaned Valid
Transaction

O
u

tp
u

ts

Hybrid Strategies

Ratio of (F) --- 9:1

bd(55)

ac(55)

0

1000

2000

3000

4000

5000

6000

Confirmed Invalid
Transaction

Confirm Time Abandaned
Invalid

Transaction

Abandaned Valid
Transaction

O
u

tp
u

ts Hybrid Strategies

Ratio of (F) --- 8:2

ade(433)
abe(433)
abd(433)

96

Figure 36. Testing results I

Result I

In the simulation I, we set eight attack strategies {𝕊| 𝑏𝑑, 𝑏𝑒, 𝑎𝑐, 𝑎𝑏𝑒, 𝑎𝑑𝑒, 𝑎𝑏𝑑, 𝑒, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑𝑓},

the corresponding 𝑅𝑎𝑡𝑖𝑜(ℬ) of each strategy, and three 𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%} as the

input parameters. The outputs contain confirmed invalid transactions, confirm time,

abandoned invalid transactions and abandoned valid transactions. Detailed data and other

outputs can be referenced from the raw results.

From the Result I in Figure 36, we can find the trend caused by different factors. (1) For the

same strategies, no matter how it is made up, such as 𝑎𝑑𝑒,𝑒 and 𝑎𝑏𝑐𝑑, the confirmed

invalid transactions are increasing with the number of malicious nodes in a positive

correlation. The confirm time varies in a range of 200-800s. The abandoned transactions

significantly increase with the number of malicious nodes. (2) For the different hybrid

strategies, 𝑅𝑎𝑡𝑖𝑜(ℱ) has different influences on them. Several strategies are sensitive to

the changes like 𝑎𝑏𝑒, 𝑏𝑒. (3) The abandoned invalid transactions and valid transactions

increase at the same time along with the modifications of 𝑅𝑎𝑡𝑖𝑜(ℱ) where malicious nodes

have a significant influence.

0

500

1000

1500

2000

2500

3000

3500

4000

Confirmed
Invalid

Transaction

Confirm Time Abandaned
Invalid

Transaction

Abandaned
Valid

Transaction

O
u

tp
u

ts

Hybrid Strategies

Ratio of (F) --- 7:3

e

abcd(4222)

abdf(4222)

97

Figure 37. Testing results II

0

20

40

60

80

100

120

811 622 433 631 613

R
at

io
 o

f
(C

o
n

fi
rm

e
d

In
va

li
d

)/
(T

o
ta

l
In

va
li
d

)

T
ra

n
sa

ct
io

n
s

Ratio of (B)

Ratio of (F) --- 9:1

ade

abe

abd

0

20

40

60

80

100

120

811 622 433 631 613

R
at

io
 o

f
(C

o
n

fi
rm

e
d

 I
n

va
li
d

)/
(T

o
ta

l

In
va

li
d

)
T

ra
n

sa
ct

io
n

s

Ratio of (B)

Ratio of (F) --- 8:2

ade

abe

abd

0

20

40

60

80

100

120

811 622 433 631 613R
at

io
 o

f
(C

o
n

fi
rm

e
d

 I
n

va
li
d

)/
(T

o
ta

l

In
va

li
d

)
T

ra
n

sa
ct

io
n

s

Ratio of (B)

Ratio of (F) --- 7:3

ade

abe

abd

98

Result II

In the simulation II, we set three attack strategies {𝕊 | 𝑎𝑏𝑒, 𝑎𝑑𝑒, 𝑎𝑏𝑑} , three

𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%, 20%, 30%}, and five 𝑅𝑎𝑡𝑖𝑜(ℬ): {ℬ |8: 1: 1, 6: 2: 2, 4: 3: 3, 6: 3: 1, 6: 1: 3}

as the input parameters. The outputs are the ratio between invalid transactions and total

transactions.

From the Result II in Figure 37 we can find that (1) For the 𝑅𝑎𝑡𝑖𝑜(ℱ) on the same strategies,

such as 𝑎𝑑𝑒 (the blue column in the histogram), invalid transactions will significantly

increase along with the malicious nodes. The trend is determinate for such situations. (2)

For the different strategies, we can find that the 𝑅𝑎𝑡𝑖𝑜(ℱ) has different influences on them.

𝑎𝑑𝑒 varies monotonously with the ratio, while the other two have a peak value at a certain

ratio. (3) The attack is sensitive to some behaviors such as 𝑏 . Invalid transactions in

strategies containing 𝑏 (𝑎𝑏𝑒, 𝑎𝑏𝑑) are significantly that without 𝑏.

Result III

In the simulation III, we set three attack strategies {𝕊 | 𝑎𝑏𝑒, 𝑎𝑑𝑒, 𝑎𝑏𝑑} as the basic testing

strategy with initial 𝑅𝑎𝑡𝑖𝑜(ℬ): {ℬ | 6 ∶ 2 ∶ 2} . There are three

𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%, 20%, 30%} and four sets of total nodes {𝑇𝑥 | 20, 50, 100, 200} as the

input parameters. The outputs are the ratio between confirmed invalid transactions and

total transactions. The ratio provides a direct and visualized relationship.

From the Result III in Figure 38, we can find (1) For the same strategy, such as 𝑎𝑑𝑒 (the

blue column in the histogram), the trend of ratio is relatively stable under different

𝑅𝑎𝑡𝑖𝑜(ℱ). (2) The ratio maintains stable when the 𝑅𝑎𝑡𝑖𝑜(ℬ) increases. This also means the

ratio of invalid with total transactions varies slightly with the malicious nodes. The number

of malicious nodes has little influence on the ratio. (3) For the different strategies, some

strategies like ade are sensitive to variations than others like 𝑎𝑏𝑒, 𝑎𝑏𝑑. The results show a

significant difference in these strategies.

99

Figure 38. Testing results III

0

20

40

60

80

100

120

20 50 100 200

R
at

io
 o

f
(C

o
n

fi
rm

e
d

In
va

li
d

)/
(T

o
ta

l
In

va
li
d

)

T
ra

n
sa

ct
io

n
s

Total Nodes

Ratio of (F) --- 9:1

ade

abe

abd

0

20

40

60

80

100

120

20 50 100 200R
at

io
 o

f
(C

o
n

fi
rm

e
d

 I
n

va
li
d

)/
(T

o
ta

l

In
va

li
d

)
T

ra
n

sa
ct

io
n

s

Total Nodes

Ratio of (F) --- 8:2

ade

abe

abd

0

20

40

60

80

100

120

20 50 100 200

R
at

io
 o

f
(C

o
n

fi
rm

e
d

 I
n

va
li
d

)/
(T

o
ta

l

In
va

li
d

)
T

ra
n

sa
ct

io
n

s

Total Nodes

Ratio of (F) --- 7:3

ade

abe

abd

100

Figure 39. Testing result IV

0

10

20

30

40

50

60

70

80

90

91 82 73 64 55 46

R
at

io
 o

f
 V

al
id

/T
o

ta
l

T
ra

n
sa

ct
io

n
s

Ratio(B)

Ratio of (F) = 8:2 | Total Nodes = 100

ac

0

10

20

30

40

50

60

70

80

90

20 50 100 200

R
at

io
 o

f
 V

al
id

/T
o

ta
l

T
ra

n
sa

ct
io

n
s

Total Nodes

ac | Ratio of (F) = 8:2

Ratio of (F) - 10%

Ratio of (F) - 20%

Ratio of (F) - 30%

0

10

20

30

40

50

60

70

80

90

10% 20% 30%

R
at

io
 o

f
 V

al
id

/T
o

ta
l

T
ra

n
sa

ct
io

n
s

Ratio of (F)

ac | Total Nodes = 100

Ratio of (B) - 9:1

Ratio of (B) - 8:2

Ratio of (B) - 7:3

Ratio of (B) - 6:4

Ratio of (B) - 5:5

Ratio of (B) - 4:6

101

Result IV

In the simulation IV, we set only one attack strategies {𝕊 | 𝑎𝑐} as the basic testing strategy.

The first test initializes 100 total nodes, 𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%} and provides six

𝑅𝑎𝑡𝑖𝑜(ℬ){ℬ | 9: 1, 8: 2, 7: 3, 6: 4, 5: 5, 4: 6} . The second test sets three

𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%, 20%, 30%} , 𝑅𝑎𝑡𝑖𝑜(ℬ){ℬ | 8: 2} and four sets of total nodes

{𝑇𝑥 | 20, 50, 100, 200} . The third setsinitializes 100 total nodes,

𝑅𝑎𝑡𝑖𝑜(ℱ): {ℱ | 10%, 20%, 30%} and 𝑅𝑎𝑡𝑖𝑜(ℬ){ℬ | 9: 1, 8: 2, 7: 3, 6: 4, 5: 5, 4: 6} as the

input parameters. The outputs are the ratio between valid transactions and total

transactions. The ratio provides a direct and visualized relationship. The test set focus on

the selfish strategy ac.

From the Result IV in Figure 39, we can find (1) the valid transactions maintains relatively

stable under different 𝑅𝑎𝑡𝑖𝑜(ℬ). (2) The ratio is stable whenever the 𝑅𝑎𝑡𝑖𝑜(ℱ) increases

or the total nodes increase. This means the ratio of valid with total transactions varies slightly

with the malicious nodes and the number of malicious nodes has little influence. (3) The

changes of 𝑅𝑎𝑡𝑖𝑜(ℬ) and 𝑅𝑎𝑡𝑖𝑜(ℱ) have slight influence on the ratio results. All above-

mentioned results show that the selfish results only related to the selfish behavior instead

of its combination or strategy. The DAG will maintain stable under the selfish behaviors.

Summarized results

The above-mentioned tests on tangle-based attacks provide us some enlightening points.

(1) The DAG can maintain stable in case of selfish behaviors no matter how it made up or

how many selfish nodes exist. (2) The attacks (DS, PS, HB) are sensitive to the 𝑅𝑎𝑡𝑖𝑜(ℬ),

which means how to make up a strategy is influential to the attack effect. (3) The successful

attacks (ratio of Confirmed Invalid Transaction / Total Invalid Transaction) maintain stable

under different 𝑅𝑎𝑡𝑖𝑜(ℱ), which means the increasing malicious nodes will significantly

increase the absolute number of transactions instead of probability. (4) Tangle-based

structure is sensitive to the binary actions in Layer0, the actions are deterministic for the

102

final success.

6.6 Summary

Tangle, as one of the earliest DAG-based blockchain structure, offers references of chain

building for future researchers. Various DAG-based blockchains without block structure are

influenced by the concept of tangle. We abstract the principles of tangle-based blockchain

from the basic actions to the meshed graph network, including removing the structure of

blocks, verifying multiple previous transactions, and configuring tip selection algorithms.

Then, according to the above features, we define three actions as the basic benchmarks to

construct our attack strategies layer by layer. We provide three types of attack strategies,

containing parasite attack, double spending attack, and the hybrid attack. Each attack

strategy is made up by multiple behaviors, where the behaviors are made up by different

actions. We further evaluate these attacks through metrics and provide 14 sets of testing

results. The evaluations cover the influence of both the binary selection of actions and the

changeable parameters of configuration. We present a comprehensive discussion on the

attacks towards tangle-based blockchain based on our constructions and evaluations. The

results show the trends under different strategies and configurations. Our reconstruction

and revaluations on attacks provide a paradigm for both attack and defense of tangle-

based blockchains. In the future, we will provide a general model for other blockchain/DAG

structures.

103

Chapter 7

Use Case 3. Smart Grid Simulation

The incorporating of distributed energy systems and advanced network, e.g., advanced

metering infrastructure, solar panels, and residential battery energy storage system make it

possible for individuals generate, store and transfer energy among demand side[67][68].

Modern buildings have large flexibility to implement self-supply in a daily life with the

prevalence of distributed renewable energy resources (e.g., rooftop solar panel and wind

turbine). The neighboring energy trading enables energy transfer and transaction in

neighborhood to achieve greater economic benefits[69]. In order to support individual

energy trading market, the traditional approach is to develop a centralized trusted third

party (TTP) to control collection and exchange of entire transmission data[70]. However, great

amounts of work have indicated the weakness behind. For instance, the unified and

centralized management of trading networks are similar to other centralized computing

solutions, which leads to a series of privacy and security challenges[71]. The electricity

consumption behaviors of users and trading price ranges are easily eavesdropped by

attacking the control center[72]. Also, it is difficult to adapt large-scale utilization of

renewable energy in the unified management[73]. In order to solve these issues, several

decentralized energy management solutions attract more and more attention.

However, most of the issues have not been addressed yet. There still remains a gap between

theory and application. The sheer volume of data and limited computing resources make it

difficult to meet demand and work properly. Also, although the concept of decentralized

system has been developed, the bid trade mechanism among local producers and

consumers is still being ignored. In the neighborhood trade event, individuals would bid

simultaneously, so the detailed regulation need to be provided in bid operation.

104

Based on above discussions, in this part we propose an efficient and secure distributed

trading mechanism (SDT) that enables residential individuals to trade energy in a distributed

manner. SDT is adopted in the smart contract to ensure confidentiality, authenticity,

incontestability and integrity of shared information. We deploy the SDT in our simulation

framework and analyze different scales of residential users from generation sides, to

research whether those homes and businesses will become smarter and more self-sufficient,

as we install solar, battery and proposed smart contract based trading system.

7.1 Related Work

In Li’s study[74], proposed a new type of network innovation architecture of Software Defined

Networking (SDN) based on blockchain computing. By separating all control commands

and operations of energy internet, the system becomes more flexible. Blockchain helps

Peer-to-Peer (P2P) interactions in the electricity market and reduces the threshold of local

retailer participation[75]. Yorozu[76] study the conversion problems between virtual currency

and real currency when traded in a blockchain. A credit-based payment scheme can be

established to enable users manage and transfer energy coins.

7.2 Implementation Technology

7.2.1 Communication Protocols

In practice, there are three types of communication protocols can be applied to implement

the developed scheduling algorithm: Wide Area Network (WAN), Neighbor- hood Area

Network (NAN), and Home Area Network (HAN).

A Wide Area Network (WAN) is the network that cover large geographical areas and is used

to connect the CEMS and the grid utility. For example, the smart contract receives the

105

forecasting peak load information from the utility using WAN. NAN provides support for

communication between Smart Contract and home energy management system (HEMS).

Several wireless standards, such as IEEE 802.11, IEEE 802.15 and IEEE 802.16, can be used

in NAN. HAN is used in homes and buildings to facilitate communication between HEMS

and enable controllable home energy resources. Several protocols, including WiFi,

HomePlug Green PHY, Zigbee, Bluetooth and IEEE802.11n, can be used to support the HAN.

7.2.2 Metering Infrastructures

The proposed model could be implemented via an advanced metering infrastructure (AMI)

system installed with smart meters for data processing, energy management and

communication between the Smart Contract and HEMS. The Integration of smart meters

enhances facilitation of decentralized generation and provide the capability of bidirectional

communication. When trading occurs, smart meters of multiple HEMSs would predict

individual energy consumptions according to numerous historical data profiles collected

from smart meter, and then transfer the redundant/ required load to HEMS and calculate

the expected price to Smart Contract. After receiving different prices from a number of

residents, the Smart contact can be coordinately employed to control and monitor the

paired trading of customers. We assume that smart meters analyze the real-time user

behaviors, solar penetration and demand response once an hour. In the view of

implementation of smart meters, Power Line Carrier (PLC) technology, Broadband Power

Line, Bluetooth based energy meter, WIFI, RS0232/485, and WiMAX are highly efficient for

automation of data in smart meter applications.

7.2.3 Smart Contract

Smart contract is a kind of protocol which aims to spread, verify or execute the contract

independently. When Bitcoin was born, people found that blockchain could provide a

trusted execution environment for smart contract. Ethereum first realized the integration of

blockchain and smart contract. Smart contracts allow trusted transactions, which are

106

traceable and irreversible, without a third party. The purpose of smart contract is to provide

a security method easy to program and realize, and also to reduce other transaction costs

related to the contract. It packages logic, rules, processing steps and protocols between the

two parties, and is called only when certain conditions are met.

7.3 Structure and Deployment in Simulator

The SDT trading prototype considered in this paper comprises multiple autonomous

residential buildings which actively respond demand side management signals and utilize

user-side energy. There is a regional smart contract which performs entire energy

management in trading and transforming. The control architecture of the proposed system

is shown in Figure 40. In the residential end, some smart buildings are equipped with a

rooftop PV solar source and a battery energy storage system (BESS). The BESS is used to

accommodate the solar power and provide power for home using. It may also store the

extra solar panel, or get cheap power from the grid for future usage. Smart meter is installed

in every home, taking the role of a communication agent between the smart contract and

the home.

Figure 40. System architecture

A home energy management system (HEMS) is deployed in the smart home, managing

home energy resources, including the solar penetration data, some electrical appliances

and BESS. It communicates with the smart meter, home energy resources, and the smart

107

contract, and also interacts with the user. When the trading happens, the HEMS collects the

information about forecasted personal power usage, the real-time pricing data from grid,

and real-time personal solar generation data.

When residential trading happens, the HEMS obtain the biding information from the

regional smart contract. Simultaneously, it forecasts load consumption profile in the next

stage duration and submits the forecasting excrescent/missing load profiles to SDT model

for selling/buying. Based on this, the smart contract sets up an optimal energy management

model to determine the proper selling/buying strategy, optimizing the amount of individual

value and shifting system peak demand.

In simulation level, our model works in the flow shown in Figure 41.

Figure 41. Energy trading workflow

Following the system schematic presented in 7.2, in this section[77] we firstly illustrate the

generic SDT trading models; then, we formulate the proposed HEMS model with different

kinds of operational dependencies due to living habits, which are considered as an

additional constraint of the SDT based real-time trading model.

Generic classification of resident users

Consider residential units with N controllable users and denote the set of users as𝛺 ,

i.e.|𝛺| = 𝑁 . The controllable users are further categorized into following sets based on

their operational characteristics:

108

𝛺1: Set of users operating with power in the range of [𝑃𝑎
𝑚𝑖𝑛, 𝑃𝑎

𝑚𝑎𝑥], 𝑎 ∈ 𝛺1, but without the

energy generation ability. Besides that, a disutility function is applied to measure the

dissatisfaction of the user on deviating from a nominal operating point. Typical users in this

set consume but not generate electricity.

𝛺2 : Set of users generating power in the range of [𝑃𝑎
𝑚𝑖𝑛, 𝑃𝑎

𝑚𝑎𝑥], 𝑎 ∈ 𝛺2 and having a

prescribed energy consumption that must be completed in a specific time range. Typical

users in this class equip battery energy storage system (BESS) and generate electricity that

can supply itself and other residents.

Residential Photovoltaic Solar Power Model

Power output from PV solar panel is related to solar radiation, panel’s surface area, and

energy conversion efficiency of the panel, expressed as:

 𝑃𝑡
𝑝𝑣

= 𝐴 ⋅ 𝜎 ⋅ 𝑟𝑡 (4)

Where 𝑃𝑡
𝑝𝑣 denotes solar power output at time t (kW); 𝐴is the surface area of the PV solar

panel (m2) and 𝜎defines the energy conversion efficiency of the PV solar panel (%); 𝑟𝑡is the

solar radiation at time t (kW/m2).

SDT based Energy Trading Model

Denote the energy consumption schedule for each controllable user as:

 𝑷𝑘 = [𝑃𝑘,1, 𝑃𝑘,2, . . . , 𝑃𝑘,𝑇] ∀𝑘 ∈ Ω (5)

The power consumption schedule of N controllable appliances can then be represented as

a matrix with 𝑁 × 𝑇 dimensions, where the entry 𝑃𝑎,𝑡 represents the power consumption

of appliance a at time interval t. The net-power consumption of the home can be

correspondingly represented as:

109

 𝑷̃ℎ = [𝑃̃1
ℎ, . . . , 𝑃̃𝑡

ℎ, . . . , 𝑃̃𝑇
ℎ] (6)

 𝑃̃𝑡
ℎ = 𝑃𝑡

𝑚𝑟 + ∑ 𝑃𝑘,𝑡

𝑖∈𝛺

− 𝑃𝑡
𝑝𝑣

 𝑡 = 1: 𝑇 (7)

where 𝑃𝑡
𝑚𝑟 is the must-run home load at time t (W).

Objective:

The objective of proposed SDT trading model in this study is to realize the energy self-

arrangement of the demand side. All bid strategies will be decided and recorded in the

smart contract and the selling/buying prices will be arranged from high to low.

𝑝𝑆 = 𝜆 ∑(𝑃̃𝑡
ℎ)

𝑇

𝑡=1

+ 𝜇 ⋅ √∑(𝑝𝑆1 + 𝑝𝑆2 + 𝑝𝑆3+. . . 𝑝𝑆𝑛−1

𝑇

𝑡=1

) (8)

Where 𝑝𝑆denotes the selling price determined by the smart contract.

There are two components in model (8). The first is the redundant energy generated by the

users, 𝛺2 ,at time t; the second is the average biding price. 𝜆 and 𝜇 are different

weighting coefficients.

𝑝𝐵 = 𝛽 ∑(𝑃𝑡
𝑘)

𝑇

𝑡=1

− 𝜈 ⋅ √∑(𝑝𝐵1 + 𝑝𝐵2 + 𝑝𝐵3+. . . 𝑝𝐵𝑛−1

𝑇

𝑡=1

) (9)

Where 𝑝𝐵denotes the buying price determined by the smart contract.

The first component is the user requirement energy at time t; the second is the average

buying price. 𝛽 and 𝜈 are different weighting coefficients.

Mandatory constraints:

The SDT energy trading model is subjected to following constraints:

1) Operational constraints of users in 𝛺2, i.e. an BESS in this study. The operation of the

BESS must satisfy following constraints:

110

 𝐸𝑡+1
𝑒𝑠𝑠 = {

𝐸𝑡
𝑒𝑠𝑠 + 𝛥𝑡𝜂𝑐𝑃𝑡

𝑒𝑠𝑠 − 𝐸𝑡
𝑒𝑠𝑠𝜂𝑙𝛥𝑡 𝑃𝑡

𝑒𝑠𝑠 > 0

𝐸𝑡
𝑒𝑠𝑠 − |𝑃𝑡

𝑒𝑠𝑠|𝜂𝑑𝛥𝑡 − 𝐸𝑡
𝑒𝑠𝑠𝜂𝑙𝛥𝑡 𝑃𝑡

𝑒𝑠𝑠 ≤ 0
, 𝑡 = 1: 𝑇 − 1 (10)

𝑆𝑂𝐶𝑡

𝑒𝑠𝑠 =
𝐸𝑡

𝑒𝑠𝑠

𝐸𝑒𝑠𝑠,𝑟𝑎𝑡𝑒
 𝑡 = 1: 𝑇

(11)

 |𝑃𝑡
𝑒𝑠𝑠| ≤ 𝑃𝑒𝑠𝑠,𝑟𝑎𝑡𝑒 𝑡 = 1: 𝑇 (12)

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡
𝑒𝑠𝑠 < 𝑆𝑂𝐶𝑚𝑎𝑥 𝑡 = 1: 𝑇 (13)

 𝑆𝑂𝐶𝑡
𝑒𝑠𝑠 ≥ 𝑆𝑂𝐶𝑑𝑠𝑟 𝑡 = 𝑇 (14)

Eqs. (10) and (11) model the variation of energy stored in the BESS; constraint (12) specifies

the BESS’s maximum charging/discharging power; constraint (13) ensures that the BESS’s

SOC is maintained within an allowable range; constraint (14) ensures that the SOC level of

the BESS is larger or equal to a pre-specified threshold at the end of the day.

2) Bidding ranking constraints of users in 𝛺2 in this study. Smart contract arranges the

selling/buying price as follows:

 𝑝𝑡
𝑆1 > 𝑝𝑡

𝑆2 > 𝑝𝑡
𝑆3 >. . . > 𝑝𝑡

𝑆𝑛, 𝑡 = 1,2. . . 𝑇 (15)

 𝑝𝑡
𝐵1 < 𝑝𝑡

𝐵2 < 𝑝𝑡
𝐵3 <. . . < 𝑝𝑡

𝐵𝑛, 𝑡 = 1,2. . . 𝑇 (16)

The smart contract will arrange selling price from low to high and buying price from high

to low, and pair each of them following this sequence. For example, smart contract will pair

𝑝𝑡
𝑆1and 𝑝𝑡

𝐵1 first and pair others as so on.

User node sends a request to smart contract to ask for power. When receiving the request,

the smart contract starts a bidding and asks for offer. Other user nodes who have capacity

to provide power will reply an offer to the contract. The smart contract will also ask the

power grid for its power price. Then the smart contract will collect these offers and make

decision.

7.4 Results and Discussion

111

There are several parameters we can change in simulation:

Table 11. Key parameters in power grid simulation

Before simulation, we get some data of power usage from government publicity. Figure 42

shows the average hourly power usage of 15 different users in 11/2012, NSW. We set these

15 users’ data as 15 types of user power usage input.

After investigation, the most popular home use power generator is 5kW. So we set a default

power output as 5kW. Figure 43 shows the average hourly power generation of 3 different

users with a 5kW power generator. in 11/2012, NSW. We set these 3 user data as 3 types

of user power generation input. To fit the generation capacity of the users and meet the

need of settlement, we give each user a 5000Wh power storage ability to store the power

they have generated. The users are disabled to store the power they get from the power

grid, but can be activated in the future research.

Since the number of users will be set to more than 15, each user will randomly select one

of these 15 types as its input. It is similar to the input selection of user power generation.

To differentiate the same type users, we set a random settlement interval (ST) instead of an

hourly interval. The settled power is calculated as:

Parameters Description Default

SIM_TIME The amount of time that simulation runs 24h

Ω The number of users 60

Ω2/Ω
The percentage of users who have the ability to generate

power

20%

P pv Power output from PV solar panel 5000W

P_STORAGE The power storage ability of each user. 5000Wh

ST The settlement interval between two transactions [45,75]

112

𝑃𝑘,𝑇

𝑠 = 𝑃𝑘,𝑇 ∗
𝑆𝑇

60
, 𝑃𝑘,𝑇

𝑠,𝑝𝑣
= 𝑃𝑘,𝑇

𝑝𝑣
∗

𝑆𝑇

60
 (17)

This settlement interval will also help us to reduce the network congestion.

Figure 42. Power usage types

Figure 43. Power generation types

The price of power in November from Energy AU is shown as below.

Table 12. Australia power price hourly

Time(h) 0~7 7~14 14~20 20~22 22~24

Price(AUcent/kwh) 17.7 27.71 54.11 27.71 17.7

The solar feed-in tariff is about 10 cents/kWh

With the definition shown above, we get the following results:

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
e
r

U
sa

g
e
(W

h
)

Time(h)

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
e
r

G
e
n

e
ra

ti
o

n
(W

h
)

Time(h)

113

Figure 44. Total power usage with default settings

Figure 44 shows the power usage of the system under default settings. The user usage line

means the quantity of power that users need from the system, which has already subtracted

the power generated and used by themselves. The grid usage line means the quantity of

power the grid has provided to the users. The gap between the two lines is the power

transacted through the bidding system.

Figure 45. User power usage with different user number

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

T
o

ta
l
P

o
w

e
r

U
sa

g
e
()

W
h

Time(h)

user usage

grid usage

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ve

ra
g

e
P

o
w

e
r

U
sa

g
e
 (

W
h

)

Time(h)

15 users

30 users

60 users

120 users

300 users

114

Figure 46. Grid power usage with different user number

As shown in Figure 45, when the number of user increases, the average power that each

user needs from the system keeps stable. On the other hand, in Figure 46, the average

power that grid provides to each user decreases at the middle of the day. It means that the

more users, the transactions are more likely to be completed between users, and our system

will be more activated. Our system illustrates great scalability.

Figure 47. User power needs with different generate user percentage

Figure 47 shows that when the percentage of users who have power generation capacity

increases, the power each user need from the system will decrease since 9am.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
ri

d
 P

o
w

e
r

U
sa

g
e
 p

e
r

U
se

r(
W

h
)

Time(h)

15 users

30 users

60 users

120 users

300 users

no_gen

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
e
r

N
e
e
d

s
p

e
r

u
se

r(
W

h
)

Time(h)

0%

10%

20%

30%

40%

50%

60%

70%

Generate User

Percentage

115

Figure 48. Grid power usage with different generate user percentage

As shown in Figure 48, as the percentage rises, the power grid provides decreases in a high

level, which means that we can utilize this to help the grid to conduct peak load shifting at

noon. But we can also find out that when the percentage is more than 50%, the generation

capacity exceeds electricity consumption, which means that some power is wasted. This

may be solved by giving the users a higher power storage capacity.

Figure 49. Average cost with different settings

In Figure 49, we can find out that, as the percentage rises, the daily power cost has been

decreasing, no matter whether the user have power generation capacity or not. Ω2 can

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
ri

d
 P

o
w

e
r

U
sa

g
e
 (

W
h

)

Time(h)

0%

10%

20%

30%

40%

50%

60%

70%

Generate User

Percentage

-500

0

500

1000

1500

2000

2500

3000

3500

4000

10% 20% 30% 40% 50% 60% 70%

d
ai

ly
 c

o
st

(c
e
n

t)

gen user percentage

no_gen_cost
(with system)
gen_cost
(with system)
no_gen_cost
(no system)
gen_cost
(no system)

116

even earn money when the percentage is up to 70%. When percentage is over 30%, Ω1 in

our system can spent less money than Ω2 in traditional power system. It shows that our

system can help users to reduce their spent in power usage.

7.5 Summary

In this section, we illustrate an efficient and secure distributed trading mechanism. We

introduce the model and then deploy it in the simulation framework to test its feasibility.

The result shows that our SDT is stable and extendable. It also can help to shift the load and

the peak of power usage and reduce users’ cost. As traditional blockchain calculation needs

a lot of power, in the future, we want to find out a way to do the verification work using

power grid bidding system instead of smart contract.

117

Chapter 8

Conclusion

In this dissertation, we mainly build a blockchain simulation model based on P2P network.

Firstly, we summarize, compare and discuss the existing blockchain technologies. Secondly,

we deploy three main blockchains in the simulator and verified them. Then, we improve the

performance of the blockchain in two different ways. Finally, we implement two application

scenarios of blockchain in the simulator.

8.1 Summary

Blockchain simulation model deployment

In the past few years, blockchains have been one of the most attractive emerging

technologies. Many researchers and institutions have devoted their resources to the

development of more effective blockchain technologies and innovative applications.

However, with the limitation of computing power and financial resources, it is hard for

researchers to deploy and test their blockchain innovations in a large-scape physical

network. In this paper, we design a peer-to-peer blockchain simulation framework to

address this challenge. Our framework provides a foundation and skeleton to simulate as

large as thousand-nodes P2P blockchain network with a single computer. This dissertation

presents the basic structure and simulation mechanism of us proposed structure, and

showcase its capabilities and usefulness. With our simulation framework, researchers can

test their new consensus protocols, reproduce a subtle security attack and evaluate its risks

118

with a large number of nodes under heavily transaction loads.

Blockchain performance improvement

Parameters change In this dissertation, we focus on selection and definition of key

performance metrics to quantify Quality of Blockchain (QoB). We aim to demonstrate the

proposed idea by using an existing simulation tool to duplicate a simplified Blockchain

Proof of Work (PoW) protocol with different parameters and observations. Our case study

shows that it is possible and practical to use a simulation approach to study Blockchain

networks with different network sizes.

New DAG blockchain structure This dissertation explores an approach to improving

Blockchain performance using Directed Acyclic Graph (DAG). We propose a new DAG-

based Blockchain model. Then we use the simulation system to evaluate the performance

of the DAG-based Blockchain. Our simulation results show that DAG is able to improve the

Blockchain performance to some degree, though there are still physical bottlenecks

(network bandwidth and CPU processing time) that needs to overcome by adding more

resources and improving parallel processing capability.

IOTA attack

Tangle-based blockchains become one of the most promising structures in current DAGs.

It improves the scalability by directly verifying the previous transactions in parallel instead

of the blocks. However, this performance gain may bring potential security risks if not being

designed well. In this dissertation, we construct three types of attacks and corresponding

evaluations, including parasite attack (PS), double spending attack (DS) and hybrid attack

(HB), to test the security of tangle-based blockchains. To achieve that, we deconstruct the

tangle-based projects (e.g. IOTA) into fundamental components to explore the underlying

principles. And then, we define three basic actions as the bottom benchmarks to build up

the attack strategies layer by layer. Based on that, we provide comprehensive analysis to

119

evaluate the different attacks in multiple dimensions. To the best of our knowledge, this is

the first study to provide a comprehensive security analysis towards tangle-based

blockchains.

Smart grid simulation

Intelligent smart metering facilities and two-way communication infrastructures enable

residential buildings to actively generate and trade energy in demand side. However,

traditional centralized power management mode causes information exchange suffering

from unreliability and lack of privacy. In this dissertation, we propose a privacy-preserving,

efficient and robust distributed energy exchange scheme supported by the smart contract.

An efficient bidding model is first proposed for demand side to achieving peer-to peer

trading of electricity in the real-time market. The entire exchanges of data are implemented

on the smart contract to guarantee information safety and traceability with decentralized

scheme. The proposed solution achieves reliable and stable trading objects under the

premise of information security. Finally, we conduct a systematic and comprehensive

applicability analysis of the proposed mechanism, and further confirm that the system can

be practically used in home energy management system.

8.2 Future Work

We have mentioned some future directions in previous chapters. Here we discuss possible

future work more detailly to extend the current research.

Blockchain simulation model

In this paper, we introduce a blockchain simulator based on P2P network. The basic

simulation model is now open source on GitHub. However, there are still some problems in

the existing simulators. The network module of the existing simulator is divided into two

120

parts - message distribution module and message receiving module. The message

distribution module is parallel to the miner / user node - in other words, it can be

considered as a single node that completes the message distribution. The message

receiving module exists inside each node, and is at the same level as the consensus module

of the node. In our research, the message receiving module first receives all the messages

in the network, and then determines whether the message can enter the network of current

node. At low network load, this method has no impact. However, when the number of

messages in the network is too large, the simulation time will increase exponentially. In the

future research, we can further optimize the existing simulation model, in order to send the

message to the corresponding node directly through the message distribution module.

With this improvement, we can make the simulator closer to the real network situation.

Blockchian performance improvement

In Chapter 5.1, we modify the block size, block time and other basic parameters to improve

the network performance of bitcoin. Since bitcoin is not modifiable in reality, the

improvement of blockchain performance is more used to establish Consortium Blockchain

or Private Blockchain. We can further modify the basic parameters of the blockchain

according to the requirements of node number, network load and safety, so as to get the

most efficient specific blockchain.

In Chapter 5.2, we propose a DAG-based blockchain. It requires less computing power for

general user nodes, and is more suitable for consortium/private blockchain systems with

multiple known centres. In our blockchain structure, we can more clearly trace the flow

direction of each transaction with high security. In the future research, we will do more

research on the election mechanism of collectors to ensure that the blockchain will not be

controlled by a few nodes.

In the future research, there are two kinds of blockchain application scenarios. One is that

the system has a lot of computing power to ensure network security. We can build the

blockchain by modifying the existing blockchain settings. In another scenario, the system

121

has a large number of users and requires low transaction cost and real-time performance.

We can build the blockchain depends on our DAG consensus.

In Chapter 6, we set up the attack test for iota. This set of tests can also be applied to the

new built consortium/private blockchain to ensure that the blockchain has resistance to

different network attacks.

Based on our simulation model, in addition to the research on establishing blockchain in

the future, we will also help existing miners and users to study better mining strategies.

Since we can simulate the behaviour of different miners and users, the following questions

can be explored through large amounts of calculations: how transaction costs set by users

affect confirmation time of transaction; how transaction costs included in the transaction

affect the overall network when miners pack blocks; and how to make a balance between

getting more fees and reducing transaction commit time for low fee users.

Smart grid simulation

In Chapter 7, we build a smart contract based on power grid price adjustment system. As

we all know, a lot of hash operations are required in the process of blockchain mining. In

order to obtain more computing power, miners need to consume a lot of electric energy.

In future research, we hope to change the way blockchain reaches consensus. There can be

local division in the power grid itself, and the blockchain will reach consensus in the region

first, and then send the results of local consensus to the whole network for verification. In

this way, we can make use of the surplus power in the power grid for mining, and realize

peak load shifting by transferring the consensus area.

122

Bibliography

[1] Nakamoto, Satoshi, ”Bitcoin: A peer-to-peer electronic cash system." Bitcoin.–URL:

https://bitcoin. org/bitcoin. pdf 4 (2008).

[2] Lin, Iuon-Chang, and Tzu-Chun Liao. "A survey of blockchain security issues and

challenges." IJ Network Security 19, no. 5 (2017): 653-659.

[3] Forouzan, Behrouz A. “TCP/IP protocol suite”. (2002).

[4] Scott, Brett. “How can cryptocurrency and blockchain technology play a role in

building social and solidarity finance?”. No. 2016-1. UNRISD Working Paper (2016).

[5] Shafagh, Hossein, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.

"Towards blockchain-based auditable storage and sharing of IoT data."

In Proceedings of the 2017 on Cloud Computing Security Workshop (2017):45-50.

[6] Saberi, Sara, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen. "Blockchain

technology and its relationships to sustainable supply chain

management." International Journal of Production Research 57, no. 7 (2019): 2117-

2135.

[7] Pilkington, Marc. "Blockchain technology: principles and applications." In Research

handbook on digital transformations. (2016).

[8] Pervez, Huma, Muhammad Muneeb, Muhammad Usama Irfan, and Irfan Ul Haq. "A

comparative analysis of DAG-based blockchain architectures." In 2018 12th

International Conference on Open Source Systems and Technologies (2018):27-34.

[9] Conti, Mauro, E. Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. "A survey on security

and privacy issues of bitcoin." IEEE Communications Surveys & Tutorials 20, no. 4

(2018): 3416-3452.

[10] Antonopoulos, Andreas M., and Gavin Wood. “Mastering ethereum: building smart

123

contracts and DApps.” (2018).

[11] Li, Wenting, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. "Securing

proof-of-stake blockchain protocols." In Data Privacy Management, Cryptocurrencies

and Blockchain Technology (2017):297-315.

[12] Handley, Simon. "On the use of a directed acyclic graph to represent a population of

computer programs." In Proceedings of the First IEEE Conference on Evolutionary

Computation. IEEE World Congress on Computational Intelligence (1994):154-159.

[13] Lamport, Leslie, Robert Shostak, and Marshall Pease. "The Byzantine generals

problem." In Concurrency: the Works of Leslie Lamport (2019):203-226.

[14] Lamport, Leslie. "The weak Byzantine generals problem." Journal of the ACM

(JACM) 30, no. 3 (1983): 668-676.

[15] Foster, Ian, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. "Grid services for

distributed system integration." Computer 35, no. 6 (2002): 37-46.

[16] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. "Impossibility of

distributed consensus with one faulty process." Journal of the ACM (JACM) 32, no. 2

(1985): 374-382.

[17] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance and proactive

recovery." ACM Transactions on Computer Systems (TOCS) 20, no. 4 (2002): 398-461.

[18] ”Tether: Fiat currencies on the Bitcoin blockchain”. https://tether.to/wp-

content/uploads/2016/06/TetherWhitePaper.pdf

[19] Reed, Jeff. "Litecoin: An introduction to litecoin cryptocurrency and litecoin mining."

(2017).

[20] Lai, Roy, and David LEE Kuo Chuen. "Blockchain–From public to private." In Handbook

of Blockchain, Digital Finance, and Inclusion, Volume 2 (2018):145-177.

[21] Li, Zhetao, Jiawen Kang, Rong Yu, Dongdong Ye, Qingyong Deng, and Yan Zhang.

https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

124

"Consortium blockchain for secure energy trading in industrial internet of things." IEEE

transactions on industrial informatics 14, no. 8 (2017): 3690-3700.

[22] Pongnumkul, Suporn, Chaiyaphum Siripanpornchana, and Suttipong Thajchayapong.

"Performance analysis of private blockchain platforms in varying workloads." In 2017

26th International Conference on Computer Communication and Networks

(2017):1-6.

[23] Popov, Serguei, Olivia Saa, and Paulo Finardi. "Equilibria in the Tangle." Computers &

Industrial Engineering 136 (2019): 160-172.

[24] Popov, Serguei. "The tangle." White paper 1 (2018): 3.

[25] Lombrozo, Eric, Johnson Lau, and Pieter Wuille. "Segregated witness (consensus

layer)." Bitcoin Core Develop. Team, Tech. Rep. BIP 141 (2015).

[26] Yasaweerasinghelage, Rajitha, Mark Staples, and Ingo Weber. "Predicting latency of

blockchain-based systems using architectural modelling and simulation." In 2017 IEEE

International Conference on Software Architecture (2017):253-256.

[27] Jakobsson, Markus, and Ari Juels. "Proofs of work and bread pudding protocols."

In Secure information networks (1999):258-272.

[28] Weber, Ingo, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and

Jan Mendling. "Untrusted business process monitoring and execution using

blockchain." In International Conference on Business Process Management

(2016):329-347.

[29] Göbel, Johannes, Holger Paul Keeler, Anthony E. Krzesinski, and Peter G. Taylor.

"Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of

propagation delay." Performance Evaluation 104 (2016): 23-41.

[30] Page, Bernd, and Wolfgang Kreutzer. "Simulating discrete event systems with UML

and JAVA." (2006): 441-441.

[31] Alharby, Maher, and Aad van Moorsel. "Blocksim: a simulation framework for

125

blockchain systems." ACM SIGMETRICS Performance Evaluation Review 46, no. 3

(2019): 135-138.

[32] Stoykov, Lyubomir, Kaiwen Zhang, and Hans-Arno Jacobsen. "Vibes: fast blockchain

simulations for large-scale peer-to-peer networks." In Proceedings of the 18th

ACM/IFIP/USENIX Middleware Conference: Posters and Demos (2017):19-20.

[33] Aoki, Yusuke, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, and Kazuyuki Shudo.

"Simblock: A blockchain network simulator." In IEEE INFOCOM 2019-IEEE Conference

on Computer Communications Workshops (2019):325-329.

[34] https://www.blockchain.com/charts/avg-confirmation-time

[35] https://digiconomist.net/bitcoin-energy-consumption

[36] King, Sunny, and Scott Nadal. "Ppcoin: Peer-to-peer crypto-currency with proof-of-

stake." self-published paper, August 19 (2012): 1.

[37] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and

Rajkumar Buyya. "CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms." Software: Practice

and experience 41, no. 1 (2011): 23-50.

[38] Decker, Christian, and Roger Wattenhofer. "Information propagation in the bitcoin

network." In IEEE P2P 2013 Proceedings (2013):1-10.

[39] Gilad, Yossi, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

"Algorand: Scaling byzantine agreements for cryptocurrencies." In Proceedings of the

26th Symposium on Operating Systems Principles (2017):51-68.

[40] Goswami, Sneha. "Scalability analysis of blockchains through blockchain simulation."

(2017).

[41] Li, Chenxing, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. "Scaling

nakamoto consensus to thousands of transactions per second." arXiv preprint

arXiv:1805.03870 (2018).

https://www.blockchain.com/charts/avg-confirmation-time
https://digiconomist.net/bitcoin-energy-consumption

126

[42] Abd-El-Malek, Michael, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and

Jay J. Wylie. "Fault-scalable Byzantine fault-tolerant services." ACM SIGOPS

Operating Systems Review 39, no. 5 (2005): 59-74.

[43] Bentov, Iddo, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. "Proof of activity:

Extending bitcoin's proof of work via proof of stake [extended abstract] y." ACM

SIGMETRICS Performance Evaluation Review 42, no. 3 (2014): 34-37.

[44] Gervais, Arthur, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. "Tampering

with the delivery of blocks and transactions in bitcoin." In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security (2015):692-

705.

[45] Kogias, Eleftherios Kokoris, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,

and Bryan Ford. "Enhancing bitcoin security and performance with strong consistency

via collective signing." In 25th security symposium (2016):279-296.

[46] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance and proactive

recovery." ACM Transactions on Computer Systems (TOCS) 20, no. 4 (2002): 398-461.

[47] Gervais, Arthur, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,

and Srdjan Capkun. " On the security and performance of proof of work blockchains

" In Proceedings of the 2016 ACM SIGSAC conference on computer and

communications security (2016):3-16.

[48] Wood, Gavin. "Ethereum: A secure decentralised generalised transaction

ledger." Ethereum project yellow paper 151, no. 2014 (2014): 1-32.

[49] Acharya, Anasuya, Manoj Prabhakaran, and Akash Trehan. "CellTree: A New Paradigm

for Distributed Data Repositories." IACR Cryptol. ePrint Arch. 2019 (2019): 516.

[50] “Dag,” https://en.wikipedia.org/wiki/Directed acyclic graph (2019).

[51] Sompolinsky, Yonatan, and Aviv Zohar. "Secure high-rate transaction processing in

bitcoin." In International Conference on Financial Cryptography and Data Security

127

(2015):507-527.

[52] Churyumov, Anton. "Byteball: A decentralized system for storage and transfer of

value." https://byteball. org/Byteball. pdf (2016).

[53] Sompolinsky, YL Yonatan, and A. Zohar. "Serialization of proof-of-work events:

Confirming transactions via recursive elections." IACR Cryptology ePrint Archive.

[54] Nguyen, Quan, Andre Cronje, Michael Kong, Alex Kampa, and George Samman.

"Stairdag: Cross-dag validation for scalable bft consensus." arXiv preprint

arXiv:1908.11810 (2019).

[55] Nguyen, Quan, and Andre Cronje. "ONLAY: Online Layering for scalable

asynchronous BFT system." arXiv preprint arXiv:1905.04867 (2019).

[56] Kusmierz, B. "The first glance at the simulation of the Tangle: discrete model." IOTA

Found. WhitePaper (2017): 1-10.

[57] Kusmierz, Bartosz, Philip Staupe, and Alon Gal. "Extracting tangle properties in

continuous time via large-scale simulations." Working Paper (2018).

[58] Nagaitsev, S., A. Valishev, V. V. Danilov, and D. N. Shatilov. "Design and Simulation of

IOTA-a Novel Concept of Integrable Optics Test Accelerator." arXiv preprint

arXiv:1301.7032 (2013).

[59] Ferraro, Pietro, Christopher King, and Robert Shorten. "IOTA-based directed acyclic

graphs without orphans." arXiv preprint arXiv:1901.07302 (2018).

[60] Sompolinsky, Yonatan, and Aviv Zohar. "Accelerating bitcoin’s transaction

processing." Fast money grows on trees, not chains (2013).

[61] Lewenberg, Yoad, Yonatan Sompolinsky, and Aviv Zohar. "Inclusive block chain

protocols." In International Conference on Financial Cryptography and Data Security

(2015):528-547.

[62] Sompolinsky, Yonatan, Yoad Lewenberg, and Aviv Zohar. "SPECTRE: Serialization of

128

proof-of-work events: confirming transactions via recursive elections." Cryptology

ePrint Archive, IACR 1159 (2016).

[63] Sompolinsky, Yonatan, Yoad Lewenberg, and Aviv Zohar. "SPECTRE: A Fast and

Scalable Cryptocurrency Protocol." IACR Cryptol. ePrint Arch. 2016 (2016): 1159.

[64] Baird, Leemon. "The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault

tolerance." Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep (2016).

[65] LeMahieu, Colin. "Nano: A feeless distributed cryptocurrency network." https://nano.

org/en/whitepaper (2018).

[66] E. IO, “Eos. io technical white paper,” https://github. com/EOSIO/Documentation

(2017).

[67] Gai, Keke, Yulu Wu, Liehuang Zhu, Meikang Qiu, and Meng Shen. "Privacy-preserving

energy trading using consortium blockchain in smart grid." IEEE Transactions on

Industrial Informatics 15, no. 6 (2019): 3548-3558.

[68] Zhang, Yan, Rong Yu, Shengli Xie, Wenqing Yao, Yang Xiao, and Mohsen Guizani.

"Home M2M networks: Architectures, standards, and QoS improvement." IEEE

Communications Magazine 49, no. 4 (2011): 44-52.

[69] Logenthiran, Thillainathan, Dipti Srinivasan, and Tan Zong Shun. "Demand side

management in smart grid using heuristic optimization." IEEE transactions on smart

grid 3, no. 3 (2012): 1244-1252.

[70] Yang, Zijian, and Lin Wang. "Demand Response Management for multiple utility

companies and multi-type users in smart grid." In 2016 35th Chinese control

conference (2016):10051-10055.

[71] Aitzhan, Nurzhan Zhumabekuly, and Davor Svetinovic. "Security and privacy in

decentralized energy trading through multi-signatures, blockchain and anonymous

messaging streams." IEEE Transactions on Dependable and Secure Computing 15, no.

5 (2016): 840-852.

129

[72] Niyato, Dusit, Lu Xiao, and Ping Wang. "Machine-to-machine communications for

home energy management system in smart grid." IEEE Communications Magazine 49,

no. 4 (2011): 53-59.

[73] Lu, Xin, Lingyun Shi, Zhenyu Chen, Xunfeng Fan, Zhitao Guan, Xiaojiang Du, and

Mohsen Guizani. "Blockchain-based distributed energy trading in energy Internet: An

SDN approach." IEEE Access 7 (2019): 173817-173826.

[74] Li, Yinan, Wentao Yang, Ping He, Chang Chen, and Xiaonan Wang. "Design and

management of a distributed hybrid energy system through smart contract and

blockchain." Applied Energy 248 (2019): 390-405.

[75] Jacobs, I. S. "Fine particles, thin films and exchange anisotropy." Magnetism (1963):

271-350.

[76] Yorozu, T., M. Hirano, K. Oka, and Y. Tagawa. "Electron spectroscopy studies on

magneto-optical media and plastic substrate interface." IEEE translation journal on

magnetics in Japan 2, no. 8 (1987): 740-741.

[77] Luo, Fengji, Kong, Weicong, Ranzi, Gianluca, and Dong, Zhao Yang. ‘Optimal Home

Energy Management System With Demand Charge Tariff and Appliance Operational

Dependencies’. IEEE Transactions on Smart Grid 11, no. 1 (2020): 4–14.

[78] Koay, B. S., S. S. Cheah, Y. H. Sng, P. H. J. Chong, P. Shum, Y. C. Tong, X. Y. Wang, Y.

X. Zuo, and H. W. Kuek. "Design and implementation of Bluetooth energy meter."

In Fourth International Conference on Information, Communications and Signal

Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings

of the 2003 Joint, vol. 3 (2003):1474-1477.

[79] Son, Young-Sung, Topi Pulkkinen, Kyeong-Deok Moon, and Chaekyu Kim. "Home

energy management system based on power line communication." IEEE Transactions

on Consumer Electronics 56, no. 3 (2010): 1380-1386.

[80] Lee, P. K., and L. L. Lai. "Smart metering in micro-grid applications." In 2009 IEEE

130

Power & Energy Society General Meeting (2009):1-5.

[81] Tasdighi, Mohammad, Hassan Ghasemi, and Ashkan Rahimi-Kian. "Residential

microgrid scheduling based on smart meters data and temperature dependent

thermal load modeling." IEEE Transactions on Smart Grid 5, no. 1 (2013): 349-357.

[82] Young, Matt. “The technical writer's handbook: writing with style and clarity”.

University Science Books (2002).

[83] Weingartner, Elias, Hendrik Vom Lehn, and Klaus Wehrle. "A performance comparison

of recent network simulators." In 2009 IEEE International Conference on

Communications (2009):1-5.

[84] Pazmiño, Juan Eduardo, and C. K. S. Rodrigues. "Simply dividing a Bitcoin network

node may reduce transaction verification time." The SIJ Transactions on Computer

Networks & Communication Engineering (CNCE) 3, no. 2 (2015): 17-21.

[85] Nicole, R. "Title of paper with only first word capitalized, J." Name Stand.

Abbrev (1987).

[86] Memon, Raheel Ahmed, Jian Ping Li, and Junaid Ahmed. "Simulation model for

blockchain systems using queuing theory." Electronics 8, no. 2 (2019): 234.

[87] Kosba, Ahmed, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.

"Hawk: The blockchain model of cryptography and privacy-preserving smart

contracts." In 2016 IEEE symposium on security and privacy (2016):839-858.

[88] Göbel, Johannes, and Anthony E. Krzesinski. "Increased block size and Bitcoin

blockchain dynamics." In 2017 27th International Telecommunication Networks and

Applications Conference (2017):1-6.

[89] Fairley, Peter. "Blockchain world-Feeding the blockchain beast if bitcoin ever does go

mainstream, the electricity needed to sustain it will be enormous." IEEE Spectrum 54,

no. 10 (2017): 36-59.

[90] Eyal, Ittay, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. "Bitcoin-ng:

131

A scalable blockchain protocol." In 13th symposium on networked systems design

and implementation (2016):45-59.

[91] Christidis, Konstantinos, and Michael Devetsikiotis. "Blockchains and smart contracts

for the internet of things." Ieee Access 4 (2016): 2292-2303.

[92] Chen, Chen, Zhuyun Qi, Yirui Liu, and Kai Lei. "Using virtualization for blockchain

testing." In International Conference on Smart Computing and Communication

(2017):289-299.

[93] Buterin, Vitalik. "A next-generation smart contract and decentralized application

platform." white paper 3, no. 37 (2014).

[94] Bu, Gewu, Önder Gürcan, and Maria Potop-Butucaru. "G-IOTA: Fair and confidence

aware tangle." In IEEE INFOCOM 2019-IEEE Conference on Computer

Communications Workshops (2019):644-649.

[95] Augot, Daniel, Hervé Chabanne, Thomas Chenevier, William George, and Laurent

Lambert. "A user-centric system for verified identities on the bitcoin blockchain."

In Data Privacy Management, Cryptocurrencies and Blockchain Technology

(2017):390-407.

[96] Androulaki, Elli, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart et al. "Hyperledger fabric: a distributed operating

system for permissioned blockchains." In Proceedings of the thirteenth EuroSys

conference (2018):1-15.

[97] Kuo, Tsung-Ting, and Lucila Ohno-Machado. "Modelchain: Decentralized privacy-

preserving healthcare predictive modeling framework on private blockchain

networks." arXiv preprint arXiv:1802.01746 (2018).

[98] Zhang, Aiqing, and Xiaodong Lin. "Towards secure and privacy-preserving data

sharing in e-health systems via consortium blockchain." Journal of medical

systems 42, no. 8 (2018): 1-18.

132

[99] Gai, Keke, Yulu Wu, Liehuang Zhu, Meikang Qiu, and Meng Shen. "Privacy-preserving

energy trading using consortium blockchain in smart grid." IEEE Transactions on

Industrial Informatics 15, no. 6 (2019): 3548-3558.

[100] Crosby, Michael, Pradan Pattanayak, Sanjeev Verma, and Vignesh Kalyanaraman.

"Blockchain technology: Beyond bitcoin." Applied Innovation 2, no. 6-10 (2016): 71.

[101]Gabison, Garry. "Policy considerations for the blockchain technology public and

private applications." SMU Sci. & Tech. L. Rev. 19 (2016): 327.

[102]Zheng, Zibin, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.

"Blockchain challenges and opportunities: A survey." International Journal of Web and

Grid Services 14, no. 4 (2018): 352-375.

[103]Huh, Seyoung, Sangrae Cho, and Soohyung Kim. "Managing IoT devices using

blockchain platform." In 2017 19th international conference on advanced

communication technology (2017):464-467.

[104]Taskinsoy, John. "Blockchain: moving beyond bitcoin into a digitalized

world." Available at SSRN 3471413 (2019).

[105]Koutmos, Dimitrios. "Return and volatility spillovers among

cryptocurrencies." Economics Letters 173 (2018): 122-127.

[106]Valdeolmillos, Diego, Yeray Mezquita, Alfonso González-Briones, Javier Prieto, and

Juan Manuel Corchado. "Blockchain technology: a review of the current challenges of

cryptocurrency." In International Congress on Blockchain and Applications

(2019):153-160.

[107]Veronese, Giuliana Santos, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung,

and Paulo Verissimo. "Efficient byzantine fault-tolerance." IEEE Transactions on

Computers 62, no. 1 (2011): 16-30.

[108]Sukhwani, Harish, José M. Martínez, Xiaolin Chang, Kishor S. Trivedi, and Andy Rindos.

"Performance modeling of PBFT consensus process for permissioned blockchain

133

network (hyperledger fabric)." In 2017 IEEE 36th Symposium on Reliable Distributed

Systems (2017):253-255.

[109]Schiper, André. "Early consensus in an asynchronous system with a weak failure

detector." Distributed Computing 10, no. 3 (1997): 149-157.

[110]Aspnes, James. "Randomized protocols for asynchronous consensus." Distributed

Computing 16, no. 2-3 (2003): 165-175.

[111]Wu, Jie. “Distributed system design”. (1998).

[112]Marzullo, Keith, and Susan Owicki. "Maintaining the time in a distributed system."

In Proceedings of the second annual ACM symposium on Principles of distributed

computing (1983):295-305.

[113]Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed system."

In Concurrency: the Works of Leslie Lamport (2019):179-196.

[114]Wilkes, Maurice V., and Roger M. Needham. "The Cambridge model distributed

system." ACM SIGOPS Operating Systems Review 14, no. 1 (1980): 21-29.

[115]Gasser, Morrie, Andy Goldstein, Charlie Kaufman, and Butler Lampson. "The Digital

distributed system security architecture." (1989).

[116]Dolev, Danny. "The Byzantine generals strike again." Journal of algorithms 3, no. 1

(1982): 14-30.

[117]Lamport, Leslie, and Michael Fischer. Byzantine generals and transaction commit

protocols. Vol. 66 (1982).

[118]Rabin, Michael O. "Randomized byzantine generals." In 24th Annual Symposium on

Foundations of Computer Science (1983):403-409.

[119]Shipley, Bill. "A new inferential test for path models based on directed acyclic

graphs." Structural Equation Modeling 7, no. 2 (2000): 206-218.

[120]Shrier, Ian, and Robert W. Platt. "Reducing bias through directed acyclic graphs." BMC

134

medical research methodology 8, no. 1 (2008): 1-15.

[121]VanderWeele, Tyler J., and James M. Robins. "Four types of effect modification: a

classification based on directed acyclic graphs." Epidemiology 18, no. 5 (2007): 561-

568.

[122]Benč ič , Federico Matteo, and Ivana Podnar Žarko. "Distributed ledger technology:

Blockchain compared to directed acyclic graph." In 2018 IEEE 38th International

Conference on Distributed Computing Systems (2018):1569-1570.

[123]Bentov, Iddo, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. "Proof of activity:

Extending bitcoin's proof of work via proof of stake [extended abstract] y." ACM

SIGMETRICS Performance Evaluation Review 42, no. 3 (2014): 34-37.

[124]Gaži, Peter, Aggelos Kiayias, and Dionysis Zindros. "Proof-of-stake sidechains."

In 2019 IEEE Symposium on Security and Privacy (2019):139-156.

[125]Li, Wenting, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. "Securing

proof-of-stake blockchain protocols." In Data Privacy Management, Cryptocurrencies

and Blockchain Technology (2017):297-315.

[126]Saleh, Fahad. "Blockchain without waste: Proof-of-stake." The Review of financial

studies 34, no. 3 (2021): 1156-1190.

[127]Raval, Siraj. Decentralized applications: harnessing Bitcoin's blockchain technology. "

O'Reilly Media, Inc.", (2016).

[128]Cai, Wei, Zehua Wang, Jason B. Ernst, Zhen Hong, Chen Feng, and Victor CM Leung.

"Decentralized applications: The blockchain-empowered software system." IEEE

Access 6 (2018): 53019-53033.

[129]Benč ič , Federico Matteo, and Ivana Podnar Žarko. "Distributed ledger technology:

Blockchain compared to directed acyclic graph." In 2018 IEEE 38th International

Conference on Distributed Computing Systems (2018):1569-1570.

[130]Vukolič , Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT

135

replication." In International workshop on open problems in network security

(2015):112-125.

[131]Bentov, Iddo, Ariel Gabizon, and Alex Mizrahi. "Cryptocurrencies without proof of

work." In International conference on financial cryptography and data security

(2016):142-157.

[132]King, Sunny. "Primecoin: Cryptocurrency with prime number proof-of-work." July

7th 1, no. 6 (2013).

[133]Sankar, Lakshmi Siva, M. Sindhu, and M. Sethumadhavan. "Survey of consensus

protocols on blockchain applications." In 2017 4th International Conference on

Advanced Computing and Communication Systems (2017):1-5.

[134]Kuo, Tsung-Ting, Hyeon-Eui Kim, and Lucila Ohno-Machado. "Blockchain distributed

ledger technologies for biomedical and health care applications." Journal of the

American Medical Informatics Association 24, no. 6 (2017): 1211-1220.

[135]Chen, Guang, Bing Xu, Manli Lu, and Nian-Shing Chen. "Exploring blockchain

technology and its potential applications for education." Smart Learning

Environments 5, no. 1 (2018): 1-10.

[136]Angraal, Suveen, Harlan M. Krumholz, and Wade L. Schulz. "Blockchain technology:

applications in health care." Circulation: Cardiovascular quality and outcomes 10, no.

9 (2017): e003800.

[137]Cole, Rosanna, Mark Stevenson, and James Aitken. "Blockchain technology:

implications for operations and supply chain management." Supply Chain

Management: An International Journal (2019).

[138]Hackius, Niels, and Moritz Petersen. "Blockchain in logistics and supply chain: trick or

treat?." In Digitalization in Supply Chain Management and Logistics: Smart and Digital

Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg International

Conference of Logistics , Vol. 23 (2017):3-18.

136

[139]Kshetri, Nir. "1 Blockchain’s roles in meeting key supply chain management

objectives." International Journal of Information Management 39 (2018): 80-89.

[140]Li, Ruinian, Tianyi Song, Bo Mei, Hong Li, Xiuzhen Cheng, and Limin Sun. "Blockchain

for large-scale internet of things data storage and protection." IEEE Transactions on

Services Computing 12, no. 5 (2018): 762-771.

[141]Dai, Mingjun, Shengli Zhang, Hui Wang, and Shi Jin. "A low storage room requirement

framework for distributed ledger in blockchain." IEEE Access 6 (2018): 22970-22975.

[142]Chen, Yi, Shuai Ding, Zheng Xu, Handong Zheng, and Shanlin Yang. "Blockchain-

based medical records secure storage and medical service framework." Journal of

medical systems 43, no. 1 (2019): 1-9.

[143]Yang, Zhe, Kan Yang, Lei Lei, Kan Zheng, and Victor CM Leung. "Blockchain-based

decentralized trust management in vehicular networks." IEEE Internet of Things

Journal 6, no. 2 (2018): 1495-1505.

[144]Mengelkamp, Esther, Benedikt Notheisen, Carolin Beer, David Dauer, and Christof

Weinhardt. "A blockchain-based smart grid: towards sustainable local energy

markets." Computer Science-Research and Development 33, no. 1 (2018): 207-214.

[145]Dorri, Ali, Salil S. Kanhere, and Raja Jurdak. "Towards an optimized blockchain for IoT."

In 2017 IEEE/ACM Second International Conference on Internet-of-Things Design

and Implementation (2017):173-178.

[146]Longo, Francesco, Letizia Nicoletti, Antonio Padovano, Gianfranco d'Atri, and Marco

Forte. "Blockchain-enabled supply chain: An experimental study." Computers &

Industrial Engineering 136 (2019): 57-69.

[147]Mengelkamp, Esther, Benedikt Notheisen, Carolin Beer, David Dauer, and Christof

Weinhardt. "A blockchain-based smart grid: towards sustainable local energy

markets." Computer Science-Research and Development 33, no. 1 (2018): 207-214.

[148]Mylrea, Michael, and Sri Nikhil Gupta Gourisetti. "Blockchain for smart grid resilience:

137

Exchanging distributed energy at speed, scale and security." In 2017 Resilience Week

(2017):18-23.

[149]Gao, Jianbin, Kwame Omono Asamoah, Emmanuel Boateng Sifah, Abla Smahi, Qi Xia,

Hu Xia, Xiaosong Zhang, and Guishan Dong. "GridMonitoring: Secured sovereign

blockchain based monitoring on smart grid." IEEE Access 6 (2018): 9917-9925.

[150]Li, Xiaoqi, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. "A survey on the

security of blockchain systems." Future Generation Computer Systems 107 (2020):

841-853.

[151]Park, Jin Ho, and Jong Hyuk Park. "Blockchain security in cloud computing: Use cases,

challenges, and solutions." Symmetry 9, no. 8 (2017): 164.

[152]Khan, Minhaj Ahmad, and Khaled Salah. "IoT security: Review, blockchain solutions,

and open challenges." Future Generation Computer Systems 82 (2018): 395-411.

[153]Zhang, Rui, Rui Xue, and Ling Liu. "Security and privacy on blockchain." ACM

Computing Surveys (CSUR) 52, no. 3 (2019): 1-34.

[154]Halpin, Harry, and Marta Piekarska. "Introduction to Security and Privacy on the

Blockchain." In 2017 IEEE European Symposium on Security and Privacy Workshops

(2017):1-3.

