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Abstract

Data proliferation makes big data analysis a challenging task. One way to address

the issue is to utilize the parallel systems but it is cost consuming. Meanwhile, it has

been shown that approximation method with probabilistic guarantee is su�cient in

many real applications. It is lightweight, fast and quality-guaranteed. In this thesis,

we apply sampling and sketching techniques to obtain high-quality approximation

results for four important queries.

Firstly, we study the gapped set intersection size estimation problem. Given

two integer sets and a gap parameter �, two elements are deemed as a match if their

numeric di↵erence equals � or is within �. We first distinguish two subtypes of the

estimation problem: the point gap estimation and range gap estimation. Then we

propose optimized sketch to tackle the two problems e�ciently and e↵ectively with

theoretical guarantees. We also demonstrate the usage of our proposed techniques

in mining top-K related keywords e�ciently.

Secondly, in response to the emerging call to a fast data visualization, we study

the order preserving estimation problem that can retain important data charac-

teristics. We focus on the population mean as our primary estimation function.

By dynamically allocating the failure probability, we propose two e↵ective query

processing strategies that can preserve the estimated order to be correct with prob-

abilistic guarantees.
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Finally, motivated by the demand of analyzing large graphs, we investigate two

related concepts in social networks, which are influence maximization and closeness

centrality. In order to accelerate the process of influence maximization problem, we

bring the order of samples into the RIS framework and derive early stop conditions

to accelerate the seed set selection procedure. Furthermore, we provide a cost-

e↵ective method to find a proper sample size to bound the quality of the returned

seed set. For closeness centrality, we extend the concept to a set of nodes. We

aim to find a set of k nodes that has the largest closeness centrality as a whole.

We show that the problem is NP-hard, and prove that the objective function is

monotonic and submodular. Hence a greedy algorithm can return a result with

1�1/e approximation ratio. In order to handle large graphs, we propose a sampling

based approach. We reduce the cost of computing shortest path distances from the

sampled nodes to the other nodes by selecting the nodes incrementally. In addition,

optimization techniques are developed to further reduce the cost of updating nodes’

closeness centralities.
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Chapter 1

Introduction

The ever-increasing amount of data is prevalent and arises in many forms, for exam-

ple, activity data from GPS locations and social network activities, bioinformatics

data from genetic sequences and business data from customer behavior trackings.

Consequently, data proliferation makes big data analysis a challenging task. One

way to address the issue is to develop massive storage architectures and parallel

systems such as MapReduce to compute the results. However, this approach may

be cost consuming. Meanwhile, it has been shown that approximation method with

probabilistic guarantees is su�cient in many real applications. It is lightweight, fast

and quality-guaranteed. In this thesis, we apply sampling and sketching techniques

to obtain high-quality approximation results on various types of queries. The ad-

vantage of data synopses is that they can use very little space and supply fast

approximate answers to the queries. Therefore, we can achieve a balance among

result quality, data characteristics and resource constraints.

The thesis studies how to design lightweight and fast approximation algorithms

for large datasets over four queries. Specifically, for integer sets, we define the

gapped set intersection size estimation problem, and demonstrate the usage of

1



2 Chapter 1. Introduction

our proposed techniques in mining top-K related keywords e�ciently. In order

to generate fast data visualization while retaining crucial data characteristics, we

study the order preserving estimation of population averages. For graph data, we

investigate the problem of fast solving influence maximization problem, and how

to e�ciently identify a set of nodes which has the largest closeness centrality as a

group.

In Section 1.1, we briefly describe the motivations of the problems, the chal-

lenges faced and the general ideas of our approaches. Section 1.2 summarizes the

contributions of this thesis for each problem studied. Thesis organization is pre-

sented in Section 1.3.

1.1 Motivations and Our Approaches

1.1.1 On Gapped Set Intersection Size Estimation

In information retrieval, the search engine needs to intersect the positional inverted

lists of query keywords to answer a multiple keyword phrase query. A state-of-the-

art query processing method, svs, performs binary intersection using a heuristic

order that is purely based on the length of the inverted lists [CM10]. This heuristic

is not e↵ective when search keywords are not very selective (e.g., “to be or not

to be”). It is possible that a pair of query keywords with the positional constraint

imposed by the phrase query will result in very small intermediate result size (e.g.,

“be” followed immediately by “or”). Hence, if we can estimate its cardinality

accurately and e�ciently, we may find a better inverted list intersection order to

process such queries. Motivated by the example, we define and study the problem

of gapped set intersection size estimation (abbreviated as GSISE). Therefore, above

application is modeled as a gapped set intersection size estimation problem with a
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point gap constraint of 1.

Given two sets SA and SB, set intersection SA \ SB is to find all the common

elements from two sets. A common case is that all elements in the set are integers

(e.g., document IDs or positions in an inverted index). Hence, the common element

pair (a, b) satisfies b � a = �, where a 2 SA, b 2 SB and � = 0. We generalize

the set intersection on integer sets to allow for “gaps” (i.e., � > 0). We define two

primitives: the point gap constraint corresponds to a fixed gap of �, and the range

gap constraint corresponds to a gap of size no larger than �.

For the proposed queries, we are interested in methods that can estimate these

gapped set intersection size e�ciently and accurately. For the estimation problem

with point gap constraints, we propose a basic method that reduces the problem

to the standard set intersection size estimation problem, which can be solved using

the state-of-the-art sketch technique. However, the index space is linear to the

maximum query gap allowed. We improve it by judiciously selecting a subset of

sketches to construct, and this reduces our sketch size from O(N) to O(
p
N). The

space cost of our approach is proved to be asymptotically optimal, while the time

complexity remains the same. For the estimation problem with the range gap

constraint, a baseline method is to reduce the problem into multiple estimation

problems with di↵erent point gap constraints, and this requires estimation time

linear to the gap size. We propose an extension of the bottom-k sketch to multiset

and an unbiased estimator for inner product. We achieve an accurate and fast

estimation method that is independent of the gap size. We also demonstrate the

usage of our proposed techniques in mining top-K related keywords e�ciently by

integrating with an inverted index.
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1.1.2 E↵ective Order Preserving Estimation Method

Data visualization is widely adopted to communicate information clearly and ef-

fectively. It enables data analysts to visually see the underlying dataset, so they

can grasp important trends or identify new patterns. However, the large amount

of data in many real applications may consume a very long time to produce such

visualizations. We observe that it is possible to use sampling method to solve the

problem by capturing vital characteristics of the original data while typically con-

suming much less resources. One of the most widely used characteristics is the

population mean, which is the average value of a group of numeric data. The

methods and criteria for a reliable population mean estimation are well developed

in both statistical inference and computer science areas. However, when it comes

to several groups of data, it has long been neglected that an order estimation on

the population means is of equal importance. Motivated by the observation, we

study the order preserving estimation (OPE) problem. Given k groups of numeric

data with unknown distribution along with � 2 (0, 1), OPE returns an order esti-

mate on the group average with a probabilistic guarantee 1 � �. We consider the

total sample size as the cost function in our algorithm design, as we notice that

the o✏ine sample processing time is less concerned with the rapid development of

modern computing ability. Instead, the sample size becomes a critical factor to

be restrained. For example, the I/O cost of obtaining data from external or dis-

tributed storage is very high. Or in most clinical trials of new drugs, the number

of human subjects is usually very limited due to the risk or ethical issues. In both

cases, it is not a↵ordable to get as many samples as we want.

We use progressive sampling method to tackle the problem. Specifically, we

design two stop functions, named Interval Separation and Pairwise Comparison.

They utilize the relation among current sample means to make judicious decisions,
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in order to output a correct result while using as little samples as possible. We

also propose a heuristic sample strategy to assign new sample points adaptively.

Specifically, Interval Separation reduces order estimates to separating the under-

lying confidence intervals. Due to tail inequality, all true means can be bounded

within their confidence intervals with high probabilities. Thus as long as the inter-

vals do not overlap, the order can be guaranteed. Next in the Pairwise Comparison

method, we first show that minimizing the sample size in OPE is NP-hard by re-

ducing from TSP problem on tournament graphs. In order to compute the failure

probability, we introduce the prefix downsample technique to equalize the sample

size between adjacent sample groups.

1.1.3 A Novel Scalable Method for Influence Maximization

As a key problem in viral marketing, influence maximization has found many im-

portant applications in real life. Given a positive integer k, it aims to find a set

of k users in a social network, which can make the largest of adoption or cascade

of information. For example, a company would like to promote its new product

by choosing some influential users. By o↵ering some incentives, the company ex-

pects that the influential users can propagate the product information through

their social networks, which leads to a large adoption of the new product finally.

Recently, Borgs et al. [BBCL14a] develop an elegant framework, called reverse

influence sampling (RIS) to solve the influence maximization problem. [BBCL14a]

conducts an in-depth theoretical analysis of the sample size needed to bound the

e↵ectiveness. However, due to the large constant factor in the sample size, it does

not work well in practice. Tang et al. [TXS14] propose TIM that improves the

sample complexity and show that the sample size required is at least �/OPT ,

where OPT is the influence spread of the optimal seed set, and � is an equation
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related to the error parameters. Later in [TSX15], the authors propose IMM, which

is the state-of-the-art method. It utilizes the martingale technique to further reduce

the sample size and reuse the samples. IMM shows that the sample size required

is �⇤/OPT , where �⇤ is smaller than �.

Although IMM o↵ers good performance in solving the influence maximization

problem, it still remains much room for improvement in term of e�ciency and

scalability. IMM needs to get a tight lower bound of OPT to determine a tight

sample size which causes a heavy overhead. Because it needs to iteratively double

the sample size and select k nodes in the current samples to refine the lower bound

of OPT . The cost cannot be neglected when k and n are large. In a nutshell,

three approaches [BBCL14a, TXS14, TSX15] based on RIS can be implemented in

a two-phase framework: 1) determine a sample size, 2) select k nodes based on the

samples. Approach in [BBCL14a] is ine�cient due to the large sample size, while

TIM and IMM are limited by the heavy overhead in the first phase. Consequently,

instead of trying to obtain a tight sample size, we aim to accelerate the second

phase over a reasonable large sample size.

We consider to bring the order of samples into the RIS framework to improve

the performance. We propose a bottom-k sketch based RIS framework, which can

achieve possible early termination without enumerating all the samples. However,

in the worst-case scenario, if there are not enough (i.e., less than k) nodes that

can meet the framework’s requirement, we still need to materialize all the samples.

Thus in order to guarantee the e�ciency and the result quality, we develop a quick

sample size estimation approach based on the small world property. Specifically, we

provide a cost-e↵ective method that e�ciently obtains a lower bound of OPT . By

feeding our lower bound into the sample size equation in IMM (i.e., �⇤/OPT ), we

can obtain a su�cient sample size required. Also, we develop several optimizations



Chapter 1. Introduction 7

to accelerate the generation of sample order and the processing of the worst-case

scenario.

1.1.4 Maximum Closeness Centrality Group Identification

As a subject of broad and current interest, social networks have been widely studied

for decades. A social network is usually represented as a graph G = (V,E) where V

denotes the set of nodes and E denotes the set of edges. Centrality, which measures

the importance of a node in a social network, has been a fundamental concept

investigated in the social networks. There are di↵erent measurements of centrality

developed for various purposes, such as closeness centrality [Bav50], betweenness

centrality [AGW15], eigenvector centrality [BL15a], etc. We focus on the classic

closeness centrality, which is defined as the inverse of the average distance from a

node to all the other nodes in the social network. The distance between two nodes

is calculated by the shortest path distance. The smaller the average distance of

a node is, the more important or more influential the node will be. To find the

influential nodes (users) in a social network, many research e↵orts have been made

to find the k nodes with the largest closeness centrality [EW01, OCL08, OLH14].

However, in many real applications, such as team formation, we may need to find

a set of k users which has large closeness centrality as a group, instead of returning

the k independent users in the top-k ranking. Such observation motivates us to

extend the definition of closeness centrality for a single node to a set of nodes as

a whole. Specifically, the closeness centrality of a set S of nodes is defined as the

inverse of the average distance from S to the nodes in G. And the distance from

S to a node u 2 V is defined as the minimum distance from u to the nodes in S.

The maximum closeness centrality group identification problem is to find a set of

k nodes in the social network with the largest closeness centrality.
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The challenges of the problem lie in two aspects. First, we show that the

problem is NP-Hard. Fortunately, we prove that the objective function is monotonic

and submodular. It means we can obtain a result with 1�1/e approximation ratio

by adopting a greedy framework. Second is that we still need the information of

the all pairs shortest path distances even for the simple greedy algorithm, which

is prohibitive to compute (O(|V |3) time) and to store (O(|V |2) space) when the

graph is large. In order to scale to large graphs, we propose a sampling based

approach by extending the traditional sampling method for estimating the closeness

centrality of a single node. In addition, we develop a strategy to identify the nodes

incrementally. Then we utilize the selected nodes to reduce the cost of computing

the distances from the nodes to the samples. To further accelerate the process, we

develop optimization techniques to reduce the update cost for the less important

nodes.

1.2 Contributions

We propose e�cient techniques to deal with four important problems by utilizing

sampling and sketching techniques. For each of these queries, we briefly describe

our contributions.

On Gapped Set Intersection Size Estimation.

• To the best of our knowledge, this is the first work to formally define the

point and range gapped set intersection size estimation problems, which can

be used as primitive operations in a wide spectrum of applications.

• We design space and time e�cient sketch and estimation methods for both

types of estimation tasks. Our estimates are unbiased and have theoretical

guarantees.
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• We demonstrate the application of our technique for approximately mining

top-K related keywords from large document collections. Our technique is

especially useful in this application scenario where an exact solution requires

orders of magnitude larger space and time.

• Comprehensive experiments on the ClueWed09 dataset demonstrate the e�-

ciency and accuracy of the proposed methods.

E↵ective Order Preserving Estimation Method.

• We design the Interval Separation stop function by reducing the order esti-

mates to separating the confidence intervals dynamically.

• We introduce the prefix downsample technique in the Pairwise Comparison

stop function, and prove that minimizing the sample size in OPE is NP-hard.

• In order to output a correct result while using as little samples as possible, we

propose a heuristic sample strategy to assign new sample points adaptively.

• We conduct empirical evaluations on both synthetic and real datasets to

demonstrate the e↵ectiveness of our proposed methods.

A Novel Scalable Method for Influence Maximization.

• We propose the BKRIS framework, which accelerates the RIS framework by

involving the order of samples based on bottom-k sketch.

• We propose an e�cient method to derive a su�cient and reasonable large

sample size by using the small world property.

• We provide novel techniques to optimize the generation of sample order and

to e�ciently handle the worst case.
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• We experimentally evaluate BKRIS on 10 datasets, and show that we can

achieve up to 2 orders of magnitude speedup compared with the state-of-

the-art approach IMM under both IC model and LT model.

Maximum Closeness Centrality Group Identification.

• We propose a sampling approach by extending the traditional sampling

method for the single node closeness centrality estimation.

• We develop an algorithm to incrementally select nodes, in order to reduce

the cost of computing the distances from the nodes to the samples.

• We develop optimization techniques to reduce the update cost for the less

important nodes.

• Through experiments on real world social networks, we verify the e�ciency

and e↵ectiveness of the proposed techniques.

1.3 Organization

This thesis is organized as follows.

• Chapter 2 provides a survey of the related work.

• Chapter 3 describes our techniques for estimating gapped set intersection size

and its application.

• Chapter 4 presents our algorithms for e↵ective order preserving estimation.

• Chapter 5 presents our novel scalable methods for the influence maximization

problem.



Chapter 1. Introduction 11

• Chapter 6 presents our approaches for e�cient maximum closeness centrality

group identification.

• Chapter 7 concludes our research and provides several possible directions for

future work.



Chapter 2

Related Work

In Section 2.1, we introduce the related work of approximation methods for set

queries. In Section 2.2, we describe the existing techniques about influence maxi-

mization problem. Finally, we present the related techniques of closeness centrality

in Section 2.3.

2.1 Approximation Methods for Set Queries

In this section, we first introduce the basic sampling schemes and accuracy measure-

ments in 2.1.1, then survey several key approximation methods that are applicable

to set queries in 2.1.2.

2.1.1 Basic Sample Schemes and Concentration Inequalites

We categorize some basic sample schemes from high-level statistical aspects. We

also describe the variables for quantifying the estimation accuracy and the concen-

tration inequalities for measuring the error bound.

Random sample with replacement and random sample without replacement are

two sampling schemes of simple random sample. Conceptually, simple random

12
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sample is a basic type of sampling, as it usually serves as a component of other

more complex sampling methods.

Random sample with replacement. Given a finite population of size N , each

data point can be identified by a unique key. Let U = {1, 2, · · · , N} be the set

of these keys. Then in order to extract a sample of fixed size n logically, we can

repeat the following steps n times.

• Generate a random number i 2 [1, N ] uniformly.

• Retrieve the i-th point from the data then add it to the current sample set.

The obtained sample can be denoted by a vector (s
1

, s
2

, · · · , sN) 2 NN , where si

is the number of times that point i is included in the sample, and N = {0, 1, 2, · · · }.

Besides, the sample size n can be greater than the population size N . A basic query

type associated with random sample with replacement is the population average

AVG. Denote by Xi the value of point i, the estimator for AVG is 1

n

P
i Xisi, which

is simply the average of the sampled values. It is an unbiased estimator as the

expectation of the estimator is equal to the statistics to be estimated. In terms

of sampling process, we can consider it as performing a sequence of independent

trials over the random variables. A property of the random variables is called

independent identically distributed (i.i.d.). It is an important assumption in the

statistical analysis as it can facilitate the derivations hence enables us to focus

on the essential information from the underlying data. The advantage of with-

replacement sample is that it is the only type of sampling where a sample of size

n can be viewed as a sequence of trials on n i.i.d. random variables. As will be

shown later in this section, much of classical statistical analysis such as central

limit theorem or concentration inequalities will apply straightforwardly to such a

case. However, a disadvantage of random sample with replacement is that it may
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cause higher variance than the without-replacement scheme when given the same

sample size.

Random Sample without Replacement. A major di↵erence between with-

replacement and without-replacement sampling is that the latter only allows each

point to appear once in the sample. To extract a sample of fixed size n logically,

we can repeat the following steps n times.

• Generate a random number i 2 [1, N ] uniformly.

• Retrieve the i-th point from the data then add it to the current sample set,

if it has not been added before.

The obtained sample can be denoted by a vector (s
1

, s
2

, · · · , sN) 2 {0, 1}N ,

where si is an indicator variable with value 1 if point i is included in the sample,

otherwise si is defined as 0. Under the process, the largest sample size will be the

size of population. In such case, we obtain the entire population as a sample thus

can answer queries accurately. Note that in the with-replacement sample scheme,

the variance can still be greater than 0 when the sample size is N . The reason

is that it allows a point to appear more than once in the sample. Intuitively, it

results in less information included in the sample of a fixed size, which explains

why without-replacement scheme usually achieves lower variance.

Stratified Sample. To further reduce the variance in the without-replacement

sampling, we can use the stratified sampling method. The idea is to divide the

dataset into several strata, and perform random sampling within each stratum

independently. It provides a natural way to reduce the variance for simple random

sample, as we can construct strata with internally well-concentrated values even if

the data set tends to be heterogeneous. In the database literature, stratification

is applied in [HS92] to increase the accuracy of join size estimation. [CDN07] uses
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query workload information to divide the data into strata in order to maximize the

query accuracy. From the statistical point of view, one of the classic results in the

stratified sampling theory is the Neyman allocation [Ney34]. Given a fixed total

sample size, it allocates sample size for each stratum in order to minimize the total

variance.

Recently, the authors in [KBP+15] design a visualization system that preserves

the visual property of ordering population means. The authors improve the round-

robin stratified sampling method, and prove the near optimality in the total sample

size. However, an important assumption for the near optimality is that it does not

consider the inactive intervals to be back to active. The correctness of the order

estimation is based on the reasonable estimates at each sample round. Specifically,

for a newly added sample point, the updated confidence interval contains the true

mean with probability more than 1 � �/k, where k denotes the total number of

groups. As all true means are bounded by their confidence intervals, ordering them

correctly reduces to separating the underlying intervals. The merit is its simplicity

for understanding. Nevertheless, it does not seem to be tight enough empirically.

For the accuracy measurements, bias and variance are essential statistics. In the

study of statistical inference, bias and variance can provide instructive information

on the quality of an estimator [CB02]. In the machine learning literature, the bias-

variance tradeo↵ is used to analyze a learning algorithm’s expected generalizaiton

error [AMMIL12]. However, in many real applications, the users may prefer answers

described by a confidence interval [Ney37] with probabilistic guarantees. Given

parameters ✏ and � specified by the user, a confidence interval can be interpreted

as “the probability of true answer deviating from the estimate is upper bounded

by �”. There are numerous ways to construct a confidence interval, such as central

limit theorem and its variants, and di↵erent forms of concentration inequalities.
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In this thesis, we use concentration inequalities as our primary tool to analyze the

quality of an estimation as it generally does not have assumptions on the underlying

data distribution.

Concentration Inequalities. Basically, concentration inequalities are designed

to give a sharp prediction of the query by bounding the estimation errors with a

given probability. The requirements of higher-order moments will lead to sharper

bounds on the concentration probabilities. Concrete examples are from Markov in-

equality with first moment existence to Hoe↵ding bound with the existence of the

moment generating function. Markov’s inequality applies when a random variable

is non-negative and has bounded expectation. If the random variable also has a

finite variance, Chebyshev’s inequality can be adopted. But none of the them can

give us an exponentially decreasing bound as Hoe↵ding bound [Hoe62]. The Hoe↵d-

ing bound provides a sharper bound, yet it requires the independence assumption.

Historically, it is closely related to Cherno↵ bound [Che52], Bersntein inequality,

and McDiarmid’s inequality [McD89], etc. For the case where the independence

does not hold, Serfling considers the impact of the sample ratio and introduces a

general concentration inequality for sampling without replacement in [Ser74]. As

the sample size approaches the population size, Serfling’s bound leads to large im-

provement, which coincides with the intuition for our without-replacement sample

analysis discussed previously. Recently, Bardenet et al. [BM15] propose an empiri-

cal Bernstein-Serfling bound for practical applications which works with sampling

without replacement with an unknown variance.

2.1.2 Hash based Techniques for Set Queries

Set query is a fundamental problem in many areas. Due to its importance, the

problem has been investigated for quite a while in the field of databases. Among
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various query types, we mainly focus on estimation methods for intersection size

and Jaccard similarity in this thesis. There are plenty of literature focusing on

exact set intersection problem [DLM00, DK11]. The algorithms working on sorted

set are mostly used [SWL11]. By applying linear merge of two sorted set SA

and SB, the set intersection can be finished in O(|SA| + |SB|) time by iterating

over each element of the sorted sets. However, when the set sizes are unbal-

anced, the method is ine�cient. In [HL72], authors propose a set intersection

approach requiring O(|SB| + log

0

B@
|SA|+ |SB|

|SA|

1

CA) when |SA| ⌧ |SB|. There are

also work further improving the performance by utilizing hashing and adaptive

methods [BLLS09, BLL06].

Hash-based algorithms are widely adopted to estimate the intersection size and

Jaccard similarity [Coh97, BCFM98, BHR+07, CK07, PSW14]. They utilize vari-

ous hash functions to keep repeated items in order to achieve consistency over di↵er-

ent or distributed observations. First proposed in [Coh97] in the form of k-mins, the

technique is used to estimate the size of reachability set and the transitive closure.

Meanwhile, Broder et al. [Bro97, BCFM98] independently invent MinHash tech-

nique for Jaccard similarity estimation. Then the authors in [CK07, CK08, CK09]

further refine the k-mins technique and propose the bottom-k sketch. Bottom-k

can be categorized as a kind of hash-based sampling method, and is very e↵ective

in answering set queries. There are several methods with di↵erent names that share

the same concept, e.g., MinHash [BCFM98] and KMV [BHR+07].

In the derivation of bottom-k and many sum-based estimation, Horvitz-

Thompson (HT) estimator [DGH52] is a key component. The estimation is an

unbiased sampling based method. After specifying the predicate, HT estimator

essentially returns a sample sum, each of which is processed using the sampled

values satisfying the predicate and the corresponding inclusion probabilities. The



18 Chapter 2. Related Work

inclusion probability refers to the probability of a data point being included in the

sample. The idea is similar to the intuition of the indicator variables. Its advan-

tage is that we do not need to know queries when sampling. However, there are

cases where the inclusion probability is unknown during the estimation phase, thus

the HT estimator cannot be obtained directly. [CK08] uses conditional probability

to calculate the inclusion probability. Combined with weighted sampling without

replacement, it is able to get the rank-conditioning adjusted weight. Another case

that the HT estimator would fail is when the predicate cannot be expressed in the

form of function of sums, such as MAX and MIN queries. Estimating extreme values is

a di�cult task as the dataset may have arbitrary data distributions. It is generally

impossible to design an e↵ective estimator without knowing some domain knowl-

edge. Authors in [WJ09] propose sampling based methods for estimating extreme

values by learning certain prior information under the Bayesian framework. They

use previously observed queries to make a guess about the type of current query.

There are also papers focusing on Jaccard similarity between multisets. A

simple extension of similarity measure from set to multiset has been shown in

[HGI00]. Given a multiset, they consider creating a new set with distinct elements

for each copy of a given element (face value) in the multiset. Specifically, if fx is

the number of occurrences of face value x in the multiset, we will replace x by the

pairs {(x, i) | 1  i  fx}. After the transition, MinHash on set can be generalized

to the multiset above. However, the time complexity of generating such a hash

function grows linearly in the total weights of face values. In addition, the method

would fail when the weight is required to be real values.

To deal with the problem of e�ciency, authors in [GP06] propose a method

with a log fx running time. Instead of generating all the hash values of each copy,

they adopt the idea of inverse sampling to skip certain copies. The specific quantile
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function they use is derived from geometric distribution, as the distribution can

simulate the waiting time of occurrence of an event. The intuition is that certain

hash values happen to be the waiting time that we would like to skip. What we

really need is the hash values that interleave between the waiting times. After

generating the smallest hash value of each face value, the algorithm returns the

minimum one along with the corresponding active index as the MinHash signature

for the multiset.

Later in [MMT07] the authors solve the case of real value weights and give an

algorithm to return consistent weighted MinHash in expected constant time. They

describe two properties that a correct method should possess in order to return a

right Jaccard similarity between weighted set, uniformity and consistency, respec-

tively. Uniformity comes in two aspects. Given a face value x and its weight fx,

each copy of x should have equal probability of being sampled as a representa-

tive. The second aspect is throughout the weighted set therein. The probability

of each representative being sampled as the weighted MinHash is proportional to

its weight. Consistency is very important in reducing the estimation variance. It

guarantees that similar items can be sampled as signatures simultaneously hence a

hash collision can be detected.

Io↵e [Iof10] further improves the complexity of [MMT07] to a worst case con-

stant time. The method avoids to generate the sequence of active index, but

instead to study their distribution. A sequence can be uniquely determined given

the reccurence relation of the sequence. Under such strategy, the method is able

to generate only two random variables to extract the active index in each bucket,

hence reduces the time complexity to the worst-case constant time.

For the standard MinHash technique, the number of random permutations k =

O( 1p
✏), where ✏ is the expected relative error. Thus more permutations will reduce
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the variance of the estimator. Based on this observation, Li et al. [LK10] introduce

the idea of building meta-sketch based on the standard MinHash, in order to save

space cost per single permutation. Instead of keeping all 64 (or 32) bits of each

hashed value, the algorighm stores the lowest b bits. Since when the similarity is

high, few bits of each hashed value are enough to determine the resemblance. In

other words, there exists information redundancy in hashed value to be compared.

The method of [LK10] is to trade redundancy for permutations when space is

limited. Mitzenmacher et al. [MPP14] deal with the redundancy in another way.

Rather than crudely keeping the lowest b bits for each hashed value, the authors

apply a random hash function on top of the standard MinHash, and obtain a bit

vector of length n. Each position of the bit vector records the parity of the number

of items that have been hashed into the position. The technique can be considered

as a special case of the bloom filter. It uses one hash function with the odd feature

where the usual OR is replaced by XOR. By using such hierarchical structure, the

information in the original MinHash is retained as a whole. Although the methods

in [LK10] and [MPP14] can achieve small variances while keeping a constant space

cost, there remain several issues. Both methods would fail if the similarity is

low and the techniques in [MPP14] can only deal with a similarity estimation

between two sets. To deal with a low Jaccard similarity, ATLAS [ZLG11] modifies

the standard “intersection then union” composition of MinHash and uses them

inversely as “union then intersection” to generate the candidate set.

2.2 Influence Maximization

In this Section, we review the related work of influence maximization. In Sec-

tion 2.2.1, we present the existing techniques for answering influence maximization
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problem. In Section 2.2.2, we describe the methods related to query-based influ-

ence maximization, in which the selected seed sets will be di↵erent when the input

query changes.

2.2.1 Influence Maximization

As a key problem in viral marketing, influence maximization problem has

been widely studied in the literature [DR01, RD02, CWW10, CYZ10, GLL11b,

BBCL14a, TSX15, TXS14, CDPW14b, BL15b]. Given a social network G and a

positive integer k, influence maximization aims to find a set of k nodes, which can

maximize the expected influence spread under a certain di↵usion model M. Since

the information is propagated through close friends, families and co-workers, etc.,

the promotion strategy is shown to be more e↵ective than the traditional media

channels, such as TV and newspaper advertisements [CWY09].

The influence maximization problem is formally defined in [KKT03]. The paper

introduces two di↵usion models to describe the information propagation, which are

independent cascade model and linear threshold model. The two models empha-

size di↵erent features for information propagation and are widely adopted. The

independent cascade model emphasizes that the influence between friends are in-

dependent. It means the probability of u
1

influencing u
2

does not depend on u
1

and u
2

’s friends. While the linear threshold model works in a di↵erent manner, it

emphasizes that for a user u, if most of his friends are influenced by certain ideas

(e.g., watching NBA), u will adopt this idea as well. The details of the two models

are presented in the following.

Independent Cascade Model. The input of independent cascade model is a

directed graph G = (V,E), where each edge eu,v is associated with a probability

Pr [u, v] within [0, 1]. It denotes the influence from u to v, i.e., each user u can
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influence its out-going neighbour v with probability Pr [u, v]. Given a set S of

nodes, let Si denote the set of nodes activated at time i. The influence propagation

works as follows.

• At time 0. Only nodes in S
0

= S are active, while the other nodes are

inactive.

• At time i. Each node u in Si�1

will try to influence each inactive neighbour

v with probability Pr [u, v]. If a node is activated, it will stay active for the

subsequent iterations.

• The propagation repeats above steps until there is no node can be activated,

i.e., St = ;, where t = 0, 1, 2, · · · .

Linear Threshold Model. The input to the linear threshold model is also a

directed graph G = (V,E). Di↵erently, each edge eu,v is associated with a weight

w(u, v), and w : V ⇥ V ! [0, 1]. If there is no edge between two nodes, the weight

is set to 0. For a node u 2 V , let Nin(u) be the set of u’s in neighbours. Then for

each node u 2 V , the weights of edges should fulfill the following equation.

X

v2Nin(u)

w(v, u)  1.

Let Si denote the set of nodes activated at time i, then the influence propagates

for a set S of nodes work as follows in the linear threshold model.

• At time 0. Only nodes in S
0

= S are active, while the other nodes are

inactive. For each node u, we generate a random number tu from [0,1],

denoting the probability of u being influenced.

• At time i. If the sum of its active neighbours’ edge weights is greater than
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tu, i.e.,
X

v2
S

0ji�1

Si�1

\Nin(u)

w(v, u) � tu,

then the node is activated and it will stay active for the subsequent iterations.

• The process terminates if there is no node can be further activated.

Finally, for both di↵usion models, i.e., the independent cascade model and the

linear threshold model, the influence spread is calculated as the expected number

of nodes that can be influenced by using the above procedure, i.e., E[
P

i2[0,t] Si].

In the seminal paper [KKT03], the authors study the influence maximization

problem by adopting the two models. In addition, the authors show that both

di↵usion models can be generalized and they are equivalent after the generalization.

Under both di↵usion models, the influence maximization problem of finding k nodes

is NP-hard. Fortunately, the objective functions are monotonic and submodular.

Kempe et al. [KKT03] propose a greedy algorithm that iteratively selects the node

with the largest marginal influence. The algorithm is simple yet can return a

result with 1 � 1/e � ✏ approximation ratio. The ✏ error is involved as it uses the

Monte Carlo simulations to compute the influence spread, which is proved to be a

#P-Hard problem under both models [CWW10, CYZ10].

However, the performance of the greedy algorithm is not satisfactory, because it

needs to run a large number of Monte Carlo simulations. Due to the importance of

the problem, there is numerous follow-up work that aim to improve the e�ciency

of the näıve greedy method. A major limitation in the näıve greedy algorithm is

that it needs to update the influence spread for each node in each iteration. While

for most of the nodes, their influences are quite small hence they would not be

selected into the final seed set. If we are able to reduce the number of influence

calculations, the e�ciency could be greatly improved. In [LKG+07], the authors
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propose a lazy-forward method called CELF, which is based on the idea that if

a node u’s marginal influence is greater than v’s influence, then v can be pruned

from the current iteration. Thus the method can calculate the influence spread

only when necessary. According to the experiment results, the proposed method

achieves 700 times speedup compared with the näıve method. [GLL11b] proposes

the CELF++ method, which further accelerates the query processing by pruning

the insignificant nodes. It reduces the cost of CELF by 35% � 55% according to

the experiment evaluations.

Even though CELF++ significantly reduces the cost, it still cannot process

large graphs e�ciently. Hence, some heuristic methods are developed to improve

the performance. In [KS06], a shortest path based heuristic is provided, as well

as an e�cient update method. In [CWY09], Chen et al. propose an algorithm to

reduce the computation for the case where each edge has identical probability. In

addition, the authors propose a heuristic degree discount based method to e�ciently

return a set of nodes. In [CWW10], the authors propose a tree-based heuristic for

the independent cascade model, in which the influence propagation between two

nodes only goes through the path with the largest probability. Based on this

heuristic, it develops the MIIA and MIOA structures for each node u, which are

two tree structures rooted at the node u. MIIA(u) assembles all the nodes that

can influence u, while MIOA(u) assembles all the nodes that can be influenced by

u. Through MIOA(u), we can approximate the influence spread of u in polynomial

time. In addition, e�cient update algorithm is proposed to find a set of k nodes.

By using the similar idea, [CYZ10] applies the tree based structures to solve the

influence maximization problem under the linear threshold model.

Unfortunately, as the size of social networks grows, these heuristic methods are

still not able to process very large graphs. In addition, due to the approximation
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of the influence calculation, they cannot o↵er theoretical guarantees held by the

näıve greedy algorithms. To bridge the gap between e�ciency and e↵ectiveness,

Borgs et al. [BBCL14a] propose a new sampling framework, i.e., reverse influence

sampling (RIS). Based on the two probabilistic influence propagation models, a

social network G can be considered as a set of graph distributions, where each

instance is generated following the propagation procedure. For example, in the

independent cascade model, each instance g is generated by removing each edge

with probability 1 � Pr [u, v]. The idea of the RIS model is that given a set of

randomly sampled instance-node pairs, if a set S can reach the sampled node

frequently, it means S will have larger influence. Given a set of randomly sampled

instance-node pairs with size ✓, the authors show that Equation 2.1 is an unbiased

estimation of influence spread.

Î(S) = n⇥ F (S)

✓
, (2.1)

where n = |V | is the total number of nodes in G, Î(S) is an unbiased estimation

of S influence spread, and F (S) denotes the number of sampled nodes that can be

reached by S. Given the estimator and a set of samples, we can greedily select the

node with the largest marginal coverage. Then the method can return a result with

1 � 1/e � ✏ approximation ratio, where ✏ is decided by the sample size. Since the

computation time is determined by the sample size, the main problem is to derive

a proper sample size. In [BBCL14a], the authors only consider the theoretical

analysis where the sample required is computed as the number of edges visited. It

renders a large constant factor in the sample size equation. [TXS14] reduces the

sample size of the RIS model and makes it work in practice. Tang et al. [TSX15]

further improve the performance of [TXS14] by utilizing the martingale technique

hence manage to reuse the samples. As shown in [TSX15], if the sample size satisfies

Equation 2.2, it can return a result with 1� 1/e � ✏ approximation ratio and the
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success probability is at least 1� n�l.

✓ =
2n((1� 1/e) · ↵ + �)2

OPT · ✏2 , (2.2)

where OPT is the influence spread of the optimal seed set. ↵ and � are defined as

follows:

↵ =
p

l log n+ log 2

� =

s

(1� 1/e)(log

✓
n

k

◆
+ l log n+ log 2).

2.2.2 Query-based Influence Maximization

For the general influence maximization problem in the previous section, the re-

turned seed sets will be identical when the input k is given. It means that it is

not target specified. However, for di↵erent purposes of promotion in real applica-

tions, the selected seed set should be di↵erent. To meet this requirement, di↵erent

variances of influence maximization problems are proposed. Apart from the input

social network and the selected seed set size k, users are allowed to input other

parameters. Based on di↵erent parameters (i.e., purpose of promotion), the final

returned seed set will be di↵erent. We denote these variances as query-based influ-

ence maximization. In this section, we review two major types of variances, i.e.,

topic-aware influence maximization and location-aware influence maximization.

Topic-Aware Influence Maximization. In topic-aware influence maximization

model, the topic information is taken into consideration when computing the prop-

agation probability of each edge. The topic-aware influence maximization prob-

lem is introduced in [BBM12], where the probability over each edge varies when

the input topics are di↵erent. Specifically, each edge is associated with a vector

P = {P
1

, P
2

, · · · , PZ} of size Z. For each dimension, it represents a topic and
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denotes the user’s influence over this topic. A query q = {q
1

, q
2

, · · · , qZ} is also a Z

dimension vector with
P

qi  1, where qi denotes the importance of topic i in the

promotion. Given query q, the propagation probability of the edge is computed as

follows.

Pr [e, q] =
ZX

i=1

Pi · qi.

After calculating the probability of each edge, the topic-aware influence max-

imization problem transfers into general influence maximization problem. There

are many papers [ABBB14, WC14, CFL+15] focusing on processing the topic-aware

influence maximization problem e�ciently. If the query vectors’ distributions are

similar, the selected seed sets will be close to each other. Based on this motivation,

in [ABBB14, WC14], the authors propose algorithms that utilize the information

over some pre-sampled queries. [ABBB14] stores a set of results for certain sampled

query vectors. Given a query, it first selects a set of results whose sampled query

vectors are close to the input query. Then it merges these results and selects k nodes

from it. Then closeness between two vectors is measure by the KL-divergence. The

approach is very e�cient, as it only needs to select from a very small set of nodes.

However, it o↵ers no guarantee for the quality of output results. [WC14] proposes

two algorithms, namely Best Topic Selection (BTS) algorithm and Marginal influ-

ence Sort (MIS) algorithm, to generate the results from pre-computed seed sets.

BTS and MIS can provide results with bounded approximation ratio based on two

assumptions over the input data. The drawback of above two papers is that they

either have no guarantee or have to make additional assumptions on the input data.

To improve the e�ciency without assumptions while providing guaranteed results,

[CFL+15] extends the MIA model and comes up with a best-first search algorithm.

It can provide a result with 1� 1/e approximation ratio under the MIA model.

In the above topic-aware influence maximization problem, the topic information
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is conveyed through the probability of edges. While in some real applications,

people tend to use keywords to represent their preferences, i.e., topics. In [LZT15],

the authors consider a target-based influence maximization problem, where each

user is associated with a set of keywords, and the input query is also a set of

keywords. The importance of each user is calculated as the TD-IDF score between

the query keywords and the user’s keywords. Then the problem is defined as a

weighted influence maximization problem. The authors extend the RIS model

to handle online queries e�ciently. Through carefully analyzing the sample size

required, the authors propose a disk-based index that can answer the online query

with 1� 1/e� ✏ approximation ratio with high probability.

Location-Aware Influence Maximization. With the advancement of location-

enabled device, each user is associated with a location in 2-dimensional space.

Apart from the topic factor, users’ location information become increasingly im-

portant for conducting a location-aware promotion. For example, to promote a

local store via online social network, the selected seed sets are expected to be

di↵erent when the promoted stores vary.

[LCF+14] is the first work considering users’ location information in influence

maximization problem. Specifically, users input a query region as the promoted

area, and it tries to find a seed set that can maximize the influence only to the users

in the query region. To meet the online requirement, the paper extends the MIA

model, and develops three search algorithms by using di↵erent index structures.

However, it is not an easy task to select a good query region to promote a local

store. Since if the query region is too large, the selected seed set may influence a

lot of users who are far away from the local store. Hence they may not come to the

store due to the distance issue. While If the query region is too small, the number

of users influenced might be very limited. Thus the result may not be satisfied.
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It is more natural to consider the input as promoted location itself. In [ZPC+15],

the authors consider that each user has a set of check-ins. Given a query location

(i.e., promoted store), it aims to infer the probability of each edge based on users’

check-in history. For users who are more likely to attend the query location, the

probability on the edge will be large. [WZZL16] considers the importance of the

distance between each user and the query location. Users that are close to the

query location will have high chance to attend. Based on this motivation, the

paper proposes a distance-aware influence maximization model, which assigns each

user a weight based on its distance to the query location. The authors also extend

the MIA model for influence approximation and develop three pruning strategies

to significantly reduce the searching space.

2.3 Graph Centrality

As a key concept in the social networks, centrality has been widely used to measure

the importance of nodes in a social network. A social network is represented as

a graph G = (V,E), where V is the set of nodes and E is the set of edges where

n = |V | andm = |E|. Many centrality metrics [WKF94, Fre78, Bra01] are proposed

for di↵erent considerations to measure the importance of a node. For example,

Google’s PageRank is a variant of the eigenvector centrality. In this section, we

review the techniques of computing nodes’ closeness centralities and top-k closeness

centrality computations.

2.3.1 Compute Closeness Centrality

The concept of closeness centrality is first formalized in [Bav48, Bav50] for the

strongly connected graphs. As shown in Equation (2.3), it is defined as the inverse
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of the average distance of a given node to all the other nodes in the graph.

c(v) =
n� 1P

u2V d(v, u)
, (2.3)

where d(u, v) is the shortest path distance from v to u. There are also variant

definitions of the closeness centrality, such as the definition in Equation (2.4),

which considers an unconnected graph as the input.

c0(v) =
(|Vc|� 1)2

(n� 1)
P

u2Vv
d(v, u)

, (2.4)

where Vv denotes the set of nodes that can be reached by v in G. In this thesis, we

mainly focus on classic closeness centrality.

For di↵erent definitions of closeness centrality, we can compute the central-

ity of a node by running a single source shortest path query from the node. A

major problem in calculating the closeness centrality is the scalability issue for

large graphs, especially when we want to compute the closeness centrality for mul-

tiple nodes. Thus, many papers adopt sampling based methods to approximate

the closeness centrality. For classic closeness centrality, the main problem is to

compute the average of distance from the node to all the other nodes. Thus we

can use the average distance to a set of sample nodes to estimate the closeness

centrality [Ind99, Tho01, EW01], i.e.,

ĉs(v) =
(n� 1)⇥ l

n⇥
P

u2L d(v, u)
, (2.5)

where L denotes a set of sampled nodes and l = |L| is the sample size. It is easy to

verify that 1

c(v) = E[ 1

ĉs(v)
]. By applying Cherno↵ bound, we can derive the quality

of the estimation as shown in Equation (2.6).

Pr[| 1

c(v)
� 1

ĉs(v)
| � ✏�]  2

n2l ✏2

l logn (

n�1

n )

2

, (2.6)

where � is the diameter of the graph, i.e., � = max {d(u, v)}.
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In [Coh00], the authors adopt a pivot based method to approximate the shortest

path distance. By extending the idea, we can derive a pivot based method to

estimate the closeness centrality of a node. Suppose we randomly sample a set P

of nodes, for each node p 2 P , we compute its closeness centrality c(p) by running

a single source shortest path algorithm from it. Given a node v, to estimate its

closeness centrality, we first find its nearest pivot pi. Then we can use 1

c(pi)
to

approximate 1

c(v) . As we can see, 1

c(v) 2 [ 1

c(pi)
�d(v, pi), 1

c(pi)
+d(v, pi)]. Nevertheless,

in [CDPW14a] the authors show that with high probability the estimation 1

c(pi)
+

d(v, pi) is within a factor of 3 of the true value 1

c(v) . In addition, when the number

of pivots equals l, it is likely that the distance between pi and v is one of the logn
l

closest distances from v. Then the following equation holds with high probability.

1

c(v)
� (1� log n

l
) · d(pi, v).

However, the sampling based estimation is sensitive to the graph distribu-

tion, while the pivot based method may have a large error. To bridge the gap,

in [CDPW14a, CCK15, Coh14], the authors propose a hybrid estimator by comb-

ing the two estimators together. Specifically, it aims to estimate the distance sum

S(v) from v to all the nodes, i.e., S(v) =
P

u2V d(v, u). It first samples a set of

nodes, and computes the distance between the samples to the other nodes. To

estimate the closeness centrality of v, it firstly identifies the closest sample pv to

v. Based on d(v, pv), it divides the nodes in V \ {v} into three disjoint partitions,

given an input parameter ✏ > 0.

• L(v, pv) consists of the set of nodes whose distances are no greater than d(v,pv)
✏

from pv.

• HC(v, pv) consists of the sampled nodes whose distances are greater than

d(v,pv)
✏ from pv.
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• H(v, pv) consists of the set of nodes that does not belong to the samples but

the distance are greater than d(v,pv)
✏ from pv.

Based on the three partitions, the authors estimate the sum of distance from

nodes in each partition to v. For nodes in HC(v, pi), the distance sum can be

easily calculated, since their distance from v can be obtained exactly. For nodes

in L(v, pi), it uses the samples in this partition to estimate the sum distance. For

nodes in H(v, pi), it uses the pivot based method to estimate the sum of distance

from v. Specifically, the estimation is formalized in Equation (2.7).

Ŝ(v) =
|L(v, pv)|

|L(v, pv) \ P |
X

u2L(v,pv)\P

d(v, u)+
X

u2HC(v,pv)

d(v, u)+
X

u2H(v,pv)

d(pv, u). (2.7)

The authors show that the estimation has a bounded guarantee.

The error analyses for Equation (2.5) and (2.7) are for the estimation of a single

node’s closeness centrality. To bound the error for the estimation of all the nodes,

we can apply the union bound and derive the sample size required.

2.3.2 Top-k Closeness Centrality

In this section, we review the techniques for finding top-k nodes with the largest

closeness centrality score.

Exact Methods. To find the exact top-k result, näıvely we can run all pairs

shortest path algorithm and compute the closeness centrality for each node. Finally

k nodes with the largest closeness centralities are returned. The Floyd-Warshall

algorithm [CSRL01] solves the all pairs shortest path problem based on dynamic

programming, which requires ⇥(|V |3) time and ⇥(|V |2) space. The Floyd-Warshall

algorithm is more suitable for dense graphs. For sparse graphs, [Joh77] proposes an

approach by running Dijkstra’s algorithm from each node. The time complexity is
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O(|V ||E|+ |V |2 log |V |) and the space complexity is O(|V |2). Based on the output

of the algorithms, we can construct the shortest path for each pair of nodes. Since

for top-k closeness centrality problem, only the distance between each pair of nodes

is required, we can only store the pairwise distance to reduce the space cost.

The above two methods for all pairs shortest path computation are limited

when the graph size is large. To accelerate the computation, we can leverage the

shared information during computation. For example, suppose node v
1

has only

one out going neighbour v
2

. If we have computed the closeness centrality of v
2

or

run the Dijkstra’s algorithm from v
2

, we can directly get the closeness centrality

of v
1

based on the result of v
2

, rather than computing the closeness centrality for

v
1

from scratch. By adopting the idea of information sharing, [TKC+14] considers

the multi-source breath first search (BFS) problem. Note that when the weight of

each edge equals 1, we can compute the closeness centrality of a node by running

a BFS from the node. In [OLH14], the authors provide a more e�cient method

that targets on the top-k closeness centrality problem. In addition to considering

the shared information among computation, it can also e�ciently derive the upper

bound of a node’s closeness centrality. Based on the bound, it can prune the nodes

with small closeness centralities and reduce the computation cost. In [BBC+16], the

authors consider an unweighed graph, and leverage the derived upper bound of a

node’s closeness centrality to significantly prune the node from exact computation.

Approximate Methods. A limitation of the exact methods of computing top-

k closeness centrality is the scalability issue. To accelerate the search while still

providing a bounded approximate result, some research are conducted to develop

approximate methods in order to solve the top-k problem. The top-1 node is

the node with the largest closeness centrality, which is also known as 1-median.

In [Ind99, Tho01], the authors use the sampling based estimation method, i.e.,
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Equation (2.5), to measure the closeness centrality of a node. In addition, it pro-

poses a near linear time algorithm to find the top-1 node. Okamoto et al. [OCL08]

further extend the sampling framework to e�ciently find the top-k nodes. Specifi-

cally, it combines the approximation algorithm with the exact method to derive an

algorithm of better time complexity.

Di↵erent from the problem introduced above, we consider a set of k nodes as a

group instead of ranking them individually. We aim to find the set of k nodes which

has the largest group closeness centrality as a whole. In [ZLTG14], the authors

study the group closeness centrality maximization problem for an unweighed graph

as well. For node v and a graph G with diameter of d, it utilizes the FM-sketch Li

to compute the number NLi of nodes that have distances from v no greater than i,

i 2 [1, d]. Then it approximates the distance sum of v to all the nodes as follows.

Ŝ(v) =
X

i2[1,d]

i⇥ (NLi �NLi�1

)

The accuracy of the estimation is decided by the size of FM-sketch. However,

the techniques proposed are for the case when the weight of edge is 1, while our

method is suitable for arbitrary weight setting.



Chapter 3

On Gapped Set Intersection Size

Estimation

3.1 Overview

Set intersection size estimation is a fundamental operation in many areas, such as

information retrieval, DBMS and data mining, etc. However, it is observed that

only defining � = 0 in intersection size estimation is not enough, which we call the

relation as equality set intersection. In some situations, it is more reasonable to

define b� a = � where � > 0, or � 2 [0, g).

In this chapter, we generalize the set intersection on integer sets to allow for

“gaps” (i.e., � > 0). We define two primitives: the point gap constraint corresponds

to a fixed gap of �, and the range gap constraint corresponds to a gap of size

no larger than �. We are interested in methods to estimate these gapped set

intersection size e�ciently and accurately. This problem has many applications.

For example, in sentiment analysis we extract di↵erent types of events, including a

mention of a product, and an occurrence of sentiment (e.g., the word “fantastic”).

35
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We are usually interested in events that occur in a close vicinity. For instance, the

positions of their occurrences in a document are within � [HC05] or the timestamps

of their occurrences in tweets are within � [SEMP14]. We can model this as a

gapped set intersection size estimation problem with a range gap constraint of �.

Motivated by the examples, we define and study the problem of gapped set in-

tersection size estimation (abbreviated as GSISE). For the estimation problem with

point gap constraints, we propose a basic method that reduces the problem to the

standard set intersection size estimation problem, which can be solved using the

state-of-the-art sketch method. However, the index space is linear to the maximum

query gap allowed. We improve it by judiciously selecting a subset of sketches to

construct, and this reduces our sketch size from O(N) to O(
p
N). The space cost

of our approach is proved to be asymptotically optimal, while the time complexity

remains the same. For the estimation problem with the range gap constraint, a

baseline method is to reduce the problem into multiple estimation problems with

di↵erent point gap constraints, and this requires estimation time linear in the gap

size. We propose an extension of the bottom-k sketch to multiset and an unbiased

estimator for inner product, we achieve an accurate and fast estimation method

that is independent of the gap size. To demonstrate the use of our estimation meth-

ods, we consider the problem of finding highly correlated keywords from a large

document collection. We design a new query processing method based on index-

ing the hash values in our sketches. Finally, we perform large-scale experimental

evaluation using 500 million documents from the ClueWeb09 data collection and

demonstrate the accuracy and e�ciency of our proposed methods.

Contributions. The contributions of this chapter are summarized as follows.

• To the best of our knowledge, this is the first work to formally define the

point and range gapped set intersection size estimation problems, which can
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be used as primitive operations in a wide spectrum of applications.

• We design space and time e�cient sketch and estimation methods for both

types of estimation tasks. Our estimates are unbiased and have theoretical

guarantees.

• We demonstrate the application of our technique for approximately mining

top-K related keywords from large document collections. Our technique is

especially useful in this application scenario where an exact solution requires

orders of magnitudes larger space and time.

• Comprehensive experiments on the ClueWed09 dataset demonstrate the e�-

ciency and accuracy of the proposed methods.

Organization of the chapter. The rest of the chapter is organized as follows.

Section 3.2 defines the problem formally and introduces several useful techniques.

Section 3.3 elaborates the estimation framework for point query and range query,

together with their theoretical properties. Section 3.4 presents algorithm to top-K

related keywords mining application. The experimental results are reported and

analyzed in Section 3.5. We conclude the chapter in Section 3.6.

3.2 Background

In this section, we define two estimation problems, introduce existing work on esti-

mating the size of set intersection using sketch, and finally list important notations

used in the chapter.
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3.2.1 Problem Definition

Given two sets SA and SB, their intersection is defined as {(a, b) | eq(a, b), a 2

SA, b 2 SB}, where the predicate eq(a, b) checks if a equals b. We can generalize

the set intersection by considering other meaningful predicates. Specifically, with

a gap parameter � � 0, we consider the following two predicates:

• PointGap�(a, b), which returns true if and only if b� a = �.

• RangeGap�(a, b), which returns true if and only if 0  b� a  �.

We call set intersection with these two new predicates collectively gapped set in-

tersection. They are denoted as SA \=� SB (named point gapped set intersection)

and SA \� SB (named range gapped set intersection), respectively. Obviously, the

standard set intersection is a special case of both types of gapped set intersection

where � = 0.

In this chapter, we study space and time-e�cient methods to estimate the

results size of these two types of gapped set intersection. Motivated by the appli-

cations we aim at, we consider sets whose elements are integers.

Definition 3.1 (GSISE). Given two sets SA and SB, and a gap parameter � 2

[0, N ] where N is a predefined maximum gap value. The Point and Range Gapped

Set Intersection Size Estimation Problem is to estimate |SA \=� SB| and |SA \�

SB|, respectively. They are abbreviated as point estimation and range estimation

hereafter.

Example 3.1. Let SA = {1, 3, 4, 7} and SB = {2, 5, 6, 8}, and � = 2. Under the

point gap constraint, SA \=2 SB = {(3, 5), (4, 6)}. Hence its size is 2. Under the

range gap constraint, SA \2 SB = {(1, 2), (3, 5), (4, 5), (4, 6), (7, 8)}. Hence its size

is 5.
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Discussions. In the above definitions, we only need to consider � � 0. This is

because SA \=� SB = SB \=�� SA (this also holds for range gapped set intersection

too).

Many other types of interesting gapped set intersections can be defined using

our point and range gapped set intersection as primitives. For example, consider

the predicate RangeWithin�1,�2(a, b) with two range parameters 0  �
1

< �
2

, which

checks if �
1

 a � b  �
2

. It is easy to see that its query result is exactly the

di↵erence of two range gapped set intersection, i.e., (SA \�
2 SB) \ (SA \�

1 SB).

In a similar fashion, we can derive point gapped set intersection based on range

gapped set intersection, and vice versa. Nevertheless, we still consider them as two

separate primitives, as each of them can model di↵erent applications respectively,

and we will propose related but di↵erent estimation methods and optimizations for

them.

3.2.2 Bottom-k Sketch

The state-of-the-art method to estimate the size of set intersections is the bottom-

k sketch [CK07, CK08, CK09]. It is a lightweight sketch that supports e�cient

update.

We use sk(SA) to denote the bottom-k sketch for a set SA, which is a set of

k hash values. To construct the sketch, we apply a random hash function h to

every element a 2 SA, and keep the k minimum hash values. We also assume the

codomain of h is su�ciently large such that we can safely assume that there is no

collision.

An important property of the bottom-k sketch is that it is closed under set

union operation. Specifically, we can directly compute the bottom-k sketch of the

union of two sets from their respective bottom-k sketches. The resulting sketch is
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called short combination sketch [CK09]: scs(sk(SA), sk(SB)) = {v | v 2 sk(SA) [

sk(SB), v < min(sk(SA)
(k), sk(SB)

(k))}, where the notation S(k) denotes the k-th

smallest value in the set S.

To estimate the intersection size of two sets SA and SB from their respective

sketches, we compute

t =
|sk(SA) \ sk(SB) \ scs(sk(SA), sk(SB))|

min{sk(SA)
(k), sk(SB)

(k)}
. (3.1)

[CK09] proved that t is an unbiased estimator of |SA \ SB| that can be com-

puted e�ciently. Besides, it is shown to have smaller variance compared with the

Minhash [BCFM98] method.

3.2.3 Notations

Table 3.1 lists notations frequently used in the chapter.

Table 3.1: Summary of Notations

Symbol Explanation

Sid a set of integers

Mid a multiset; each element has its multiplicity

S

+d
id a shifted set by distance d

{d
1

, d

2

, . . .} the index of a multiset generated by merging the set shifted by d

1

, d
2

,
. . .

S

(i) or M (i)
i-th smallest value in the set S or the multiset M

N the maximum gap

� the gap parameter; � 2 [0, N ]

k number of hash values in a bottom-k sketch

sk(S) bottom-k sketch of the set S

msk(M) multiset bottom-k sketch of the multiset M

rus range union sketch of msk(MA) and msk(MB)
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3.3 Estimation Methods for Gapped Set Inter-

section Size

In this section, we introduce solutions to point and range estimation problems. The

näıve index structure and our intuition are explained in Section 3.3.1, followed by

technique details of GSISE methods in Section 3.3.2 and 3.3.3.

3.3.1 A Baseline Method for Point Estimation

Point estimation is a challenging problem due to the following reasons:

• Almost all the set intersection size estimation methods are based on random

hash functions. Therefore, given a gap value �, and two di↵erent hash values

h(x+ �) and h(y), it is almost impossible to infer if x+ � is equal to y.

• While locality sensitive hash functions [I+98] do preserve locality probabilis-

tically, the intersection size is highly sensitive to the point gap threshold. It

is often the case that |SA \=� SB| and |SA \=�+1 SB| di↵er substantially. For

instance, in Example 3.1, |SA \=0 SB| is 0 while |SA \=1 SB| is 3. Therefore,

even a small approximation in the gap may result in a large estimation error.

Therefore, we first propose a baseline method, which reduces the point esti-

mation problem to a standard set intersection size estimation problem, which in

turn can be solved using the state-of-the-art method, such as the method based on

bottom-k sketches.

Our reduction is based on the notion of shifted sets. Given a set SA =

{a
1

, a
2

, . . . , an} and integer parameter d, we define the shifted set with shift d

as follows: S+d
A = {ai + d | ai 2 SA}.
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Given the maximum gap size N , we compute N + 1 bottom-k sketches by

shifting SA: the i-th bottom-k sketch is built for the shifted set S+i
A (0  i  N).

To perform the estimation for SA \=� SB, we retrieve the sketches of S+�
A and

S+0

B , and perform the estimation using the bottom-k estimation procedure (i.e.,

Eq. (3.1)).

Table 3.2: The Random Hash Function h

x 0 1 2 3 4 5 6 7 8

h(x) 0.47 0.26 0.32 0.84 0.74 0.79 0.22 0.42 0.95

x 9 10 11 12 13 14 15 16 17

h(x) 0.48 0.68 0.89 0.16 0.63 0.37 0.53 0.15 0.21

Example 3.2. Table 3.3 shows the sketches built by the baseline method for two

sets SA and SB, where the bottom-k sketch size is 3 and maximum gap N is 9.

To perform the point estimate for � = 5, we load sk(S+5

A ) and sk(S+0

B ), the

estimate according to Eq. (3.1) is 1/min(0.48, 0.79) = 2.08. The actual point gapped

intersection size is 2.

Table 3.3: N +1 bottom-k Sketches Built for SA = {1, 3, 4, 7} and SB = {2, 5, 6, 8}
using the Hash Function in Table 3.2. N = 9.

shift Sketches for SA Sketches for SB

0 sk(S+0

A ) = {0.26, 0.42, 0.74} sk(S+0

B ) = {0.22, 0.32, 0.79}
...

...
...

5 sk(S+5

A ) = {0.16, 0.22, 0.48} sk(S+5

B ) = {0.42, 0.63, 0.68}
...

...
...

9 sk(S+9

A ) = {0.15, 0.16, 0.63} sk(S+9

A ) = {0.21, 0.37, 0.53}

Obviously, this baseline method achieves the same accuracy guarantee as the

standard bottom-k sketch [BHR+07, CK07, PSW14], and the estimation time is

O(k). The main problem is its space complexity of O(N · k) for each set, which is

not optimal.
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3.3.2 Improved Point Query Estimation

In this subsection, we seek to improve the space complexity per set from N · k to
p
N · k, while still maintaining the same O(k) estimation time. We also show that

this space complexity is asymptotically optimal with an approximation ratio of
p
2.

We observe that we can generate sketches for a judiciously chosen subset of all

possible shifted sets, to ensure that can still find two appropriate sketches for two

sets to perform the point estimation for any � 2 [0, N ].

Let � := d
p
Ne. For a set SA, we generate 2� sketches for SA shifted by i 2 I,

where

I = {0, 1, 2, · · · ,�� 1} [ {i · � | i 2 [1,�]} (3.2)

Algorithm 1 describes the estimation procedure. Lines 2–5 compute the correct

o↵sets (also called indices) of the sketches of SA and SB. Then Line 6 performs the

estimation with the corresponding bottom-k sketches.

Algorithm 1: PointQueryOnlineEstimation

Input : �: query gap. N : maximum gap.

Output: An estimate of |SA \=� SB|

� d
p
Ne;1

if � (mod �) = 0 and � 6= N then2

iA  �+ �; iB  �;3

else4

iA  d�/�e · �; iB  d�/�e · �� �;5

return Bottom-k-Estimate (sk(S+iA
A ), sk(S+iB

B ))6

Example 3.3. Continue the previous example. � = d
p
Ne = 3. In our improved
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method, the following sketches are generated for every set S

sk(S+0

i ), sk(S+1

i ), sk(S+2

i ), sk(S+3

i ), sk(S+6

i ), sk(S+9

i ).

For point estimation with � = 5, we compute iA = 6 and iB = 1 according to

Algorithm 1. Then we load sk(S+6

A ) and sk(S+1

B ) and perform the estimation.

The correctness of Algorithm 1 depends on two facts:

• Gapped set intersection size is shift-invariant as shown in Lemma 3.1, and

• 8� 2 [0, N ], we can always locate the iA and iB from the index set (Equa-

tion (3.2)) such that iA � iB = �.

Lemma 3.1. 8d, |SA \=� SB| = |S+d
A \=� S+d

B |.

The improved method has aO(
p
N ·k) space complexity per set, O(k) estimation

time, and the same estimation quality guarantees as the bottom-k sketch.

Asymptotic Space Optimality and Approximation Ratio

We show that our improved method is asymptotically space optimal in this reduc-

tion framework. To facilitate the analysis, a computational model is formalized

below in Definition 3.2.

Definition 3.2. Given set G = {0, 1, 2, · · · , N}, where N is the maximum gap

predefined. We want to find an integer set P with minimum cardinality, such that

8g 2 G, there exist i, j 2 P satisfying i� j = g.

Property 3.1. The lower bound of |P | is ⌦(
p
N).

Proof. First there are no duplicate elements in P , otherwise |P | cannot reach the

minimum since it is allowed to choose two identical elements from P to get 0 2 G.
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Now that all elements in P are di↵erent, we can construct a mapping f from i� j

to G \ {0}. It is easy to see the lower bound will be achieved when the mapping is

bijective. Hence, the number of all possible choices of i�j is
�|P |

2

�
. Since

�|P |
2

�
� N ,

we have |P | = ⌦(
p
N).

Corollary 3.1. The number of sketches constructed in our improved method is

within a factor of
p
2 of the optimal solution.

3.3.3 Range Estimation

Basic Method for Range Estimation

Our basic method for range estimation is to reduce a range estimation to multiple

point estimations, due to the following equivalence.

Theorem 3.1. SA\�SB =
S�

i=0

(SA \=i SB). In addition, 8i 6= j, ({SA\=iSB})\

({SA \=j SB}) = ;.

Theorem 3.1 reveals that the range gapped set intersection results can be par-

titioned into disjoint subsets, each is the result of a point gapped set intersection.

Taking the cardinality on both sides of the equation and we have the following

Corollary.

Corollary 3.2. |SA \� SB| =
P�

i=0

|SA \=i SB|.

Corollary 3.2 enables us to sum up � + 1 point estimation results to answer a

range estimation. While this does not increase the space complexity, the estimation

time is linear in the range �. When � is large, the estimation time grows quickly,

which is not desirable.
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Merge of Shifted Sets

We introduce several essential concepts, which enable us to present an observation

using an example. This relates the range estimation to the problem of estimating

the inner product of multisets, each obtained by merging shifted sets in a particular

pattern.

We define a multisetM as a set of elements, each associated with its multiplicity,

i.e., M = {a
1

:m
1

, a
2

:m
2

, . . . , an :mn}. elems(M) returns all the elements in the

multiset M , i.e., {a
1

, a
2

, . . . , an}. The multiplicity of an element e in M is denoted

as cntM(e). Note that a set is just a special case of a multiset where all the

multiplicities equal 1.

Let U be the universe of all elements. Each multiset can be implicitly cast into

a |U |-dimensional vector where the dimension values are the multiplicities of the

corresponding elements (default to 0). Hence, we can define the inner product of

two multisets as

hMA,MBi =
X

e2elems(MA)\elems(MB)

cntMA(e) · cntMB(e).

Now, we can illustrate an important observation that leads to our improved

range estimation in Example 3.4.

Example 3.4. Consider the same instance in Example 3.3 and we want to estimate

SA \� SB. Table 3.4(a) enumerates for all possible � 2 [0, 8] the shifted SA and

SB that will be used for set intersection with point gap �. For example, the cell

with green background is for � = 5; it is associated with S+6

A and S+1

B . This means

|SA \=5 SB| = |S+6

A \ S+1

B |.

Now consider the range gapped set intersection with � = 5. Corollary 3.2 shows

that the result size |SA \5 SB| equals the sum of the size of 6 point gapped set

intersections, with the gap constraint between 0 and 5. By looking at Table 3.4(a),
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Table 3.4: Illustration of Shift Sets Used for Point/Range Estimation for � 2 [0, 8]

(a) Shifted Sets (Illustrating
� = 5)

S

+9

A 8 7 6

S

+6

A 5 4 3

S

+3

A 2 1 0

S

+1

B S

+2

B S

+3

B

(b) Merged Shifted Sets (Illustrating � = 7)
U

i2{3,6,9} S
+i
A 8 7 6 S

+9

A
U

i2{3,6} S
+i
A 5 4 3 S

+6

A
U

i2{3} S
+i
A 2 1 0 S

+3

A
U

i2{1,2,3} S
+i
B

U
i2{2,3} S

+i
B

U
i2{3} S

+i
B

we can see the latter is equivalent to hMA,MBi, where

MA = (S+3

A ] S+6

A ), MB = (S+1

B ] S+2

B ] S+3

B )

Note that we need to use multiset union (also called merge in this chapter, de-

noted as ]) and the inner product, as there may be potential duplicate elements.

Obviously, if we can estimate the inner product of multisets, then we can perform

one estimation rather than six point estimations.

By considering all possible � values in Example 3.4, we can observe the pattern

where multiple shifted sets are merged. To simplify the notation, we use the set

of shift values as an identifier (or index) for the merged multiset, i.e., if M =

S+i
1

A ] S+i
2

A . . . ] S
+ij
A , then we say M ’s index is {i

1

, i
2

, . . . , ij} and it uniquely

identifies M .

Let � = d
p
Ne, and i � 1.

• For shift values within [1,�], we need to merge its su�xes, i.e., generating

indices {i, i+ 1, . . . ,�}, for 1  i < �.
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• For shift values within [�,�2], we need to merge its prefixes, i.e., generating

indices {�, 2�, . . . , i · �}, for 1 < i  �.

Estimating the Inner Product of Two Multisets

As motivated in Example 3.4, we need to estimate the inner product of two mul-

tisets. While there are many alternative methods (such as Tug-of-War [AMS96]

and Count-Min [CM04] sketches), we observe that the input multisets are always

those shifted sets generated for the point estimation task, which means each of

them has already its bottom-k sketch built or maintained. Therefore, we develop

an estimator by extending the bottom-k sketch as follows.

Firstly, we define our multiset bottom-k sketch for a multiset obtained

by merging multiple shifted sets, each with its own bottom-k sketch. Let S =

{S
1

, S
2

, . . . , Sn} denote a set of shifted sets, each with its bottom-k sketch sk(Si).

Let M = ]ni=1

Si. M ’s multiset bottom-k sketch, denoted by msk(M), is obtained

by a truncated merge of the sketches, i.e.,

1. first merging sk(Si) into a multiset M 0, and

2. then keeping only the k smallest elements and their multiplicities in M 0.

Figure 3.1 illustrates the relationship between a multiset bottom-k sketch and its

constituent bottom-k sketches.

{S
1

, S

2

, . . . , Sn} M

{sk(S
1

), sk(S
2

), . . . , sk(Sn)} msk(M)

merge (i.e., ])

truncated merge

bottom-
k sketch

multiset
bottom-k
sketch

Figure 3.1: From bottom-k Sketches to a Multiset bottom-k Sketch
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Given two multiset bottom-k sketches msk(MA) and msk(MB), their range

union sketch, denoted by rus(msk(MA),msk(MB)), is a multiset that contains

all the hash values in elems(msk(MA)) ] elems(msk(MB)) that are smaller than

min(msk(MA)(k),msk(MB)(k)), as well as the sum of their multiplicities inmsk(MA)

and msk(MB). Given msk(MA) and msk(MB), we propose an unbiased estimator

of hMA,MBi, as shown in Theorem 3.2. Furthermore, it can be shown that, by

using the range union sketch, our method takes advantage of all the information

available in msk(MA) and msk(MB) to arrive at the best possible estimation.

Theorem 3.2. Given two multiset bottom-k sketches msk(MA) and msk(MB), let

rus\ = elems(msk(MA)) \ elems(msk(MB)) \ elems(rus(msk(MA),msk(MB))),

then

t̂r =

P
e2rus\

�
cntmsk(MA)

(e) · cntmsk(MB)

(e)
�

min{msk(MA)(k),msk(MB)(k)}
. (3.3)

is an unbiased estimator of hMA,MBi.

Proof. Define adjusted multiplicity for each e 2 elems(MA) \ elems(MB) to be:

ae =

8
>><

>>:

cntmsk(MA)

(e)·cntmsk(MB)

(e)

rus(l)
, if e is sampled in rus\

0 , otherwise.

(3.4)

where rus(l) = min{msk(MA)(k),msk(MB)(k)}, i.e., it is the l-th smallest hash

values in rus. Then we can write t̂r as
P

e2rus\
cntmsk(MA)

(e)·cntmsk(MB)

(e)

rus(l)
. The expec-
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tation is

E
⇥
t̂r
⇤
= E

"
X

e2rus\

cntmsk(MA)

(e) · cntmsk(MB)

(e)

rus(l)

#

=
X

e2elems(MA)\elems(MB)

E [ae]

=
X

e2elems(MA)\elems(MB)

cntmsk(MA)

(e) · cntmsk(MB)

(e)

=
X

e2elems(MA)\elems(MB)

cntMA(e) · cntMB(e).

The last step is because rus keeps complete multiplicity information for each un-

derlying set element included in rus. Complete means if element e is sampled in

rus\, it holds that cntmsk(M)

(e) = cntM(e). Since we are doing consistent uniform

sampling in elems(MA) [ elems(MB). Therefore, E
⇥
t̂r
⇤
= hMA,MBi.

Furthermore, by setting k to an appropriate value, we can achieve a probabilistic

guarantee for t̂r, as shown in Theorem 3.3.

Theorem 3.3. Let µ = hMA,MBi. For any given ✏ and ⇢, by setting k =

min{max{k
1

, k
2

}, max{|elems(MA)|, |elems(MB)|}}, where k
1

satisfies Eq. (3.5)

and k
2

= (|elems(MA)|+2)N
µ · 2+✏

✏2 ln 4

⇢ , we can guarantee that Pr
⇥
|t̂r � µ|  ✏µ

⇤
� 1�⇢.

Proof. We first define two propositions (a) and (b). Let Xi = ai · k
(|elems(MA)|+2)N

and ei be the corresponding element, ai as defined in Eq. (3.4), and k
1

and k
2

as

defined in the Theorem.

• Proposition (a): When k � k
1

, Pr [Xi > 1]  ⇢
2

.

• Proposition (b): When k � k
2

, Pr
⇥
|t̂r � µ| � ✏µ

⇤
 ⇢

2

.

If both of them are proved, then when k � max{k
1

, k
2

}, we know that

Pr
⇥
|t̂r � µ| � ✏µ

⇤
 ⇢ based on the Union Bound.
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Proof of Proposition (a).Without loss of generality, we assume |elems(MA)| >

|elems(MB)|. Given ⇢, let k
1

be solution to Eq. (3.5):

Z k
|elems(MA)|+2

0

tk�1(1� t)|elems(MA)[elems(MB)|�k

B(k, |elems(MA) [ elems(MB)|� k + 1)
dt  ⇢

2
, (3.5)

where B(k, |elems(MA) [ elems(MB)|� k + 1) is the Beta function. It also holds:

Pr [Xi > 1]

= Pr


cntmsk(MA)

(ei) · cntmsk(MB)

(ei)

msk(MA)(k)
>

(|elems(MA)|+ 2)N

k

�

 Pr


msk(MA) <

k

|elems(MA)|+ 2

�
.

(3.6)

The last step is because cntmsk(MA)

(ei) · cntmsk(MB)

(ei)  N . Besides, when k > k
1

,

Eq. (3.5) is equivalent to:

Pr


msk(MA)

(k) <
k

|elems(MA)|+ 2

�
<

⇢

2
. (3.7)

Since we are doing uniform random sample in the space of elems(MA)[elems(MB),

where msk(MA)(k) is the k-th order statistics therein.

Thus from Eq. (3.6) and (3.7), we know when k > k
1

, Pr [Xi > 1]  ⇢
2

.

Proof of Proposition (b). Now that we can guarantee Xi 2 [0, 1] almost surely

by proving Proposition (a), we can define X =
P

Xi and apply the Cherno↵ bound

to X.1

Let k
2

= (|elems(MA)|+2)N
µ · 2+✏

✏2 ln 4

⇢ . When k > k
2

, we have

2 exp

✓
� ✏2

2 + ✏

µk

(|elems(MA)|+ 2)N

◆
 ⇢

2
.

1Since bottom-k belongs to sampling without replacement strategy, it will cause neg-

ative associations between each sample value [DR96]. Nevertheless, according to [DR96],

Cherno↵ bounds are still applicable to sums of random variables with negative associa-

tions.
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According to the Cherno↵ bound, we have

Pr
⇥
|t̂r � µ| � ✏µ

⇤

 2 exp

✓
� ✏2

2 + ✏
· µk

(|elems(MA)|+ 2)N

◆
 ⇢

2
.

Then from Union Bound, it guarantees that when k � max(k
1

, k
2

),

Pr
⇥
|t̂r � µ| � ✏µ

⇤
 �.

Improved Range Estimator

In our improved methods, given a maximum gap N , let � = d
p
Ne. We generate

three categories of sketches:

• Category I: �+ 1 bottom-k sketches for shifts i 2 {j� | 0  j  �}

• Category II: ��1 multiset bottom-k sketches with indices {�, 2�}, {�, 2�, 3�},

· · · , {�, 2�, . . . ,�2}.

• Category III: ��1 multiset bottom-k sketches with indices {�,��1}, {�,��

1,�� 2}, · · · , {�,�� 1, . . . , 1}.

Table 3.4(b) illustrates Category I sketches on the right-hand side, Category II

sketches on the left-hand side, and Category III sketches on the bottom side, for

the running example.

For any range [0, �], it can always be decomposed to at most two sub-ranges.

For example, Table 3.4(b) illustrates that [0, 7] is decomposed into

• [0, 5]. This corresponds to SA\5SB, and can be answered by estimating the

size of h
U

i2{3,6} S
+i
A ,
U

i2{1,2,3} S
+i
B i.

• [6, 7]. This corresponds to SA \[6,7] SB, and can be answered by estimating

the size of hS+9

A ,
U

i2{2,3} S
+i
B i.2
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Algorithm 2: DecomposeRange

Input : �: query gap. N : maximum gap.

Output: An array of indices pairs.

� d
p
Ne;1

if � < � or (� + 1) mod x = 0 then2

iA  {i · � | i 2 [1,max(d�/�e, 1)]};3

iB  {�� i | i 2 [0, � � b�/�c · �]};4

return {(iA, iB)}5

else6

ilA  {i · � | i 2 [1, b(� + 1)/�c]};7

ilB  {i | i 2 [1,�]};8

if � = N then9

irA  N ;10

irB  0;11

else12

irA  � · d(� + 1)/�e;13

irB  {�� i | i 2 [0, � mod �]};14

return {(ilA, ilB), (irA, irB)}15
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Algorithm 3: RangeQueryOnlineEstimation

Input : �: query gap. N : maximum gap.

Output: t̂r: an estimate for SA \� SB.

arr  DecomposeRange(�) ;1

t̂r  0;2

for each (iA, iB) 2 arr do3

Retrieve SA’s sketch based on the index of iA into msk(MA) and retrieve4

SB’s sketch for iB into msk(MB);

t̂r  t̂r + Estimate(msk(MA),msk(MB)); /* Perform estimation5

using two multiset bottom-k sketches based on Theorem 3.2 */;

return t̂r6

We use Algorithm 3 to perform a range estimation with the gap constraint �.

In Line 1, it calls the DecomposeRange (�) to decompose the range [0, �] into one

or two parts, utilizing the multiset bottom-k sketches. The returned results are

one or two pairs of indices to these sketches. Lines 3–5 retrieve the corresponding

sketches and perform the estimation based on Eq. (3.3) in Theorem 3.2.

The space complexity of the sketch for the range estimation is O(
p
N · k). And

the time complexity for the estimate is O(k). Thanks to Theorem 3.3, by setting

the proper k, our estimation has at most ✏ relative error with probability at least

1� ⇢.

Example 3.5. We run Algorithm 3 for the same running example given be-

fore. Given � = 7, we want to estimate |SA \7 SB|. Line 1 decomposes [0, 7]

into two parts of indices, which is arr = {({3, 6}, {1, 2, 3}), ({9}, {2, 3})}. For

({3, 6}, {1, 2, 3}), Line 4 retrieves msk(S+3,6
A ) = {0.22 : 1, 0.42 : 2, 0.48 : 1} and

2We deem a bottom-k sketch as a special multiset bottom-k sketch where the multi-
plicities are all set to 1.
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Table 3.5: Multiset bottom-3 Sketch

indices msk(MA) msk(MB)

{9} {0.15 : 1, 0.16 : 1, 0.63 : 1} {0.21 : 1, 0.37 : 1, 0.53 : 1}
{2, 3} {0.22 : 2, 0.42 : 1, 0.48 : 1} {0.42 : 1, 0.48 : 1, 0.68 : 1}

...
...

...

{3, 6} {0.22 : 1, 0.42 : 2, 0.48 : 1} {0.16 : 1, 0.37 : 1, 0.48 : 1}
{1, 2, 3} {0.22 : 2, 0.32 : 1, 0.42 : 1} {0.22 : 1, 0.42 : 2, 0.48 : 2}

msk(S+1,2,3
B ) = {0.22 : 1, 0.42 : 2, 0.48 : 2} from Table 3.5. Then Line 5 calculates

t̂r according to Theorem 3.2. It returns t̂r to be (1 · 1 + 2 · 2)/0.48 = 10.42. Similar

steps go for the second part indexed by ({9}, {2, 3}), while there is no matching for

this part. Finally, the algorithm returns t̂r to be 10.42. The actual |SA \7 SB| is

11.

3.4 Applications

The proposed methods have many important applications, e.g. top-K related key-

words mining, query optimization for search engine, and system troubleshooting in

log analysis. In this section, we present the details of e�cient mining top-K related

keywords from a document collection.

Let V be the vocabulary of the document collection. For ease of illustration,

we concatenate all documents into one single document D with suitable padding

of out-of-vocabulary keywords. For each keyword v 2 V , we create a set Sv, which

consists of all the positions in D where it occurs. Let query SQ be a set of positions.

For any given keyword v, we can measure its correlation with the query by counting

the number of occurrences of v in a �-vicinity of any position in SQ. The top-K

related keywords problem is to find the K keywords in V that has the highest

correlation.
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Solving the problem exactly requires either intersecting all keywords in V or

retrieving the �-vicinity centered at positions in SQ. Neither method scales well

with large document collections.

To solve the problem approximately, we can apply range estimation to estimate

the correlation, then return the K keywords with largest estimated size. Neverthe-

less, this method is still time consuming, as it is linear to vocabulary size |V|.

We observe that most of the keywords set do not have a significant gapped

intersection size with the query, hence it is highly likely that their sketches share

no common hash value with the sketch of the query. It is thus desirable to consider

only those keywords that share at least one hash value in their appropriate multiset

bottom-k sketches with the bottom-k sketch of the query.

Therefore, we propose to build an inverted index, which maps (hashValue, index)

to a keyword v. Intuitively, by probing the inverted index with every hash value

in SQ’s sketch, we can obtain a list of candidate keywords. Due to the range

decomposition, we also have the additional constraint that the indices of these

shared hash values must agree with those calculated for the current � (i.e., returned

by DecomposeRange).

Algorithm 4 gives the pseudocode for the algorithm. Initially the candidate set

Cand is empty (Line 1). In Line 2, we obtain one or two pairs of indices, indexing

into SQ’s and a potential candidate set’s multiset bottom-k sketches. We iterate

over all the pairs. For each pair of indices, we use iA to retrieve the sketch of

SQ, and use Line 5–6 to retrieve all keywords such that their sketches with index

value iB share the same hash value (i.e., e in the code). This step is aided by the

precomputed inverted index as a simple index lookup. Finally, we perform range

estimate between SQ and the set of each candidate keywords and return the largest

K keywords.
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Algorithm 4: TopKRangeEstimation

Input : SQ: sets of query positions; �: query gap; K: top-K; I: the

inverted index that maps hash values (and sketch’s indices) to a

keyword.

Output: Top-K keywords based on their estimated

intersection size with SQ

R ;; Cand ; ;1

arr  DecomposeRange(�) ;2

for each (iA, iB) 2 arr do3

Retrieve SQ’s multiset bottom-k sketch whose index value is iA into MQ;4

for each element e 2 elems(msk(Mq)) do5

Cand Cand [ I[(e, iB)]; /* A list of keywords will be6

returned by looking up the index I */;

for each keyword v 2 Cand do7

R R [ (v,RangeQueryOnlineEstimation(SQ, Sv, �));8

return the K largest entries in R in terms of the estimated intersection size9
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The algorithm issues at most 2k�2 index lookups, and performs |Cand| number

of range estimations, where |Cand| is the size of the candidate set. Finding the

top-K entries from R and sorting them take O(K logK) time. Therefore, the total

estimation time is O(|Cand| · k +K logK).

In our implementation, we also perform the following optimizations. For every

keyword returned from the index lookup (Line 6), we can accumulate its partial

inner product with the query’s sketch (i.e., the numerator of Eq. (3.3)). It can

be shown that the numerator’s value will be correctly calculated after the loop of

Lines 3–6 ends. Therefore, the RangeQueryOnlineEstimation function only needs to

do O(1) computation to get the range estimation for each candidate.

Table 3.6: Inverted Index for top-K Related Keyword Mining

Key List of Keywords

(0.15, {9}) SA

(0.16, {3, 6}) SB

(0.16, {9}) SA

(0.21, {9}) SB

(0.22, {1, 2, 3}) SA, SB

(0.22, {2, 3}) SA

(0.22, {3, 6}) SA

. . . . . .

Example 3.6. Using the same example, we can build the inverted index as shown

in Table 3.6.

Consider the top-1 related keyword query for A with � = 5. DecomposeRange

gives us one pair of indices ({3, 6}, {1, 2, 3}). This means we are concerned with

the query’s sketch indexed by {3, 6} and the candidate’s sketch indexed by {1, 2, 3}.

We load the query sketch msk(S+3,6
A ) = {0.22 : 1, 0.42 : 2, 0.48 : 1}. We is-

sue three lookups with keys: (0.22, {1, 2, 3}), (0.42, {1, 2, 3}), and (0.48, {1, 2, 3}).

These lookups find matches SB, which is added to the candidate set. Finally we per-
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form range estimation between the query and the candidates then return the top-1

keyword.

3.5 Experimental Evaluation

In this section, we present the results of a comprehensive performance study to

evaluate the e�ciency and e↵ective- ness of the proposed techniques.

3.5.1 Experiment Setup

We use the following algorithms for point and range estimation.

• GSISE-k is our proposed point (range) estimation method and k determines

the size of a single bottom-k sketch.

• PointSum-k is our basic range estimation methods by summing up multiple

point estimation results.

• Exact calculates the exact answer for point and range estimation, respectively.

We use the following algorithms for the top-K related keyword query.

• TopK is the hash table based top-K range estimation method proposed in

Section 3.4.

• Exact
topk

is the exact algorithm for top-K range estimation. The algorithm

is conducted by scanning the whole dataset, finding each occurrence of the

query keyword, and bookkeeping the count of every other keyword that occurs

within the � neighborhood. Finally, it returns the K keywords with highest

number of occurrences.
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The dataset we use is a subset of the ClueWeb containing 500 million English

web pages from the ClueWeb09 collection.3 We remove infrequent keywords and

keep the 100k most frequent keywords. We build the positional inverted index for

these keywords, and treat each inverted list as a set. We then build three sets of

sketches on these sets, i.e., point sketch, range sketch, and top-K sketch for the

respective estimation problems.

The complete original positional index requires more than 2 days to construct

using Hadoop on a cluster of 20 PCs, and the final index is stored on the HDFS

of the Hadoop cluster. Without compression, the overall index consumes around

1TB space, which is impossible to load into a single commodity PC’s memory.

For point sketch, the index size is 160GB. For range sketch and topK sketch, the

index size is 240GB, respectively. Thus the sketch is small enough to fit into our

testing environment with 256GB RAM. Therefore, the experiments conducted on

the sketches are memory-based, while exact algorithms that processes inverted lists

or scanning documents have to use disk I/Os.

Estimation Workload. We randomly select 100 pairs of keywords to perform

point and range estimation with di↵erent parameter settings on their corresponding

sets. We set maximum gap N = 100. k varies between 1,000 to 100,000 (default).

The query gap � varies between 20 and 100.

We measure the running time and relative error for point and range estima-

tion methods. We measure recall and extended recall for TopK methods. Recall

is defined as AK/K, where AK is the number of exact top-K results returned by an

algorithm that outputs K results. The extended recall is defined by AL⇥K/K, where

AL⇥K is the number of exact top-K results returned by an algorithm that outputs

L⇥K results, L is the extension rate. All measurements shown are averaged over

3
http://lemurproject.org/clueweb09.php
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100 queries.

The experiment parameter settings of the evaluated algorithms are listed in

Table 3.7, where the default parameters are highlighted in bold.

Table 3.7: Parameter Settings

Parameters Setting (Defaults are in bold)

maximum gap 100
top-K 1, 10, 100
bottom-k 1000, 5000, 10000, 15000, 20000
query gaps 20, 40, 60, 80, 100
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Figure 3.2: Experiment Results of Point Query

3.5.2 Point Estimation

In Figure 3.2(a), we show the point estimation time by varying query gaps. Com-

pared with the exact algorithm, the sketch based method is more than 2 order of

magnitudes faster. Query gaps do not a↵ect the estimation time and exact time.
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As both exact and estimation methods rely on intersection algorithm of complexity

O(k) to find common elements. GSISE-1k, GSISE-5k, GSISE-10k, GSISE-15k, and

GSISE-20k spend 0.38, 1.66, 3.47, 5.03 and 6.92 milliseconds to perform one estima-

tion. The trend is linear. Average length of inverted list size is around 2.5 million,

which is 125 times of GSISE-20k’s sketch size. Meanwhile, Exact algorithm uses

892ms to calculate exact answer, which is 892/6.92 = 128 times of GSISE-20k’s

estimation time. When dataset size increases, exact results will need longer time,

while the sketch estimation time is immune to the increasing dataset size.

In Figure 3.2(b) and figure 3.2(c), we show how the relative error decreases

while the bottom-k sketch size is increasing. When gap is 80, the relative error

drops from 1 to 0.4 with k changing from 1000 to 20, 000. By further increasing k

up to 100, 000, the relative error reduces to less than 0.19. Based on the analysis in

section 3.2.2, the relative error is inverse proportional to the square root of bottom-

k size. Despite the fluctuation, relative error is not a↵ected by the di↵erent query

gaps, the fluctuation is caused by di↵erent intersection sizes at di↵erent gaps. In

our experiments, gap 40 has slightly more intersections than gap 100, which reflects

that gap 40 has slightly less relative error than gap 100.

3.5.3 Range Estimation

From Figure 3.3(a) to 3.3(c), we present range query estimation results.

• Time. Figure 3.3(a) shows that our GSISE range estimation method has the

best performance compared to other methods. For example, GSISE-20k is 128

times faster than Exact and 108 times faster than PointSum-20k when gap is

100. Similar to point estimation, GSISE is stable with di↵erent gaps. Accord-

ing to Algorithm 2, any range query can be decomposed into at most two

estimation queries, and the e�ciency of estimation only relies on k. PointSum
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Figure 3.3: Experiment Results of Range Query

performs individual point estimations for each gap and uses the summation

as the estimation result. Thus the processing time of PointSum is linear to

the query gap. When gap is 20, 40, 60, 80 and 100, the processing time of

PointSum-20k is 109.0, 213.1, 302.7, 410.6, and 508.0 milliseconds, which is

linearly increasing with respect to gap.

• Relative Error. As shown in Figure 3.3(b), when query gap increases, the

relative errors of all methods decrease. This is because larger range gap tends

to result in larger intersection size. According to Theorem 3.3, it is equivalent

to using a larger k.

It is noted that PointSum achieves slightly lower relative error than range

estimation given the same k setting. The reason is that PointSum utilizes

all values in the point shifted sketch for estimating, which is equivalent to

merging without truncating at k-th hash value. As opposed to the truncated

merge operation applied to GSISEr index, PointSum will consume up to more
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than � times space.To be more specific, in Figure 3.3(b), when query gap is

100, the range sketch required for GSISE-20k is 2⇥ 20k, while for PointSum,

the cost is 20 ⇥ 20k. However, the PointSum-20k only decrease the error by

less than 0.05. Considering the tremendous performance gain in e�ciency

and storage, the tiny sacrifice in relative error can be ignored.

Figure 3.3(c) shows similar trend as Figure 3.2(c). Larger k will lead to

smaller relative error. The relative error decreases rapidly at the initial in-

creasing of k, then flattens after k > 10, 000. PointSum has smaller rela-

tive error than GSISE methods, however, the relative errors are almost the

same when k is large. Interestingly, the storage cost of PointSum-1k of gap

100(20⇥1k = 20k) and of GSISE-10k of gap 100(2⇥10k = 20k) are the same,

so are the relative error of PointSum-1k of gap 100 and GSISE-10k, which are

0.267 and 0.266, respectively.

3.5.4 Top-K Related Keywords Mining

The experiment results of top-K problem are presented in Figures 3.4(a) to 3.4(i).

• Time. In Figures 3.4(a), 3.4(d) and 3.4(g), we investigate the response time

by varying K of top-K from 1 to 100. In general, we can see that the average

query processing time is under 25 milliseconds, which is quite small compared

to Exact
topk

. In fact, as we use large web page corpus, the Exact
topk

algorithm

must run on the cluster in a batch mode for the given queries, which takes

6 hours to scan through the original documents in order to output top-K

results. In each figure, by increasing the query gaps from 20 to 100, we observe

that the query processing time increases slightly. This is due to the processing

of top-K range estimation needs to count the number of common sketch values



Chapter 3. On Gapped Set Intersection Size Estimation 65

in the hash table. Larger query gap will result in larger intersection size, which

means more common sketch values when looking up the hash table. Same

reason goes for the increasing query processing time when k increases.

• Recall. We show the recall of our algorithms in di↵erent top-K settings

in Figures 3.4(b), 3.4(e) and 3.4(h). We can observe that the recall grows

with the increase of k. Larger k incurs smaller relative error, consequently

improves the recall of the top-K algorithms. Furthermore, it is observed that

query gap has no influence on the recall, which shows great stability over

di↵erent query gap settings.

• Extended Recall. As shown in Figure 3.4(a) and Figure 3.4(g), the pro-

cessing time of returning top 1 result and top 100 results are similar. This

gives us the motivation of measuring extended recall. Figures 3.4(c), 3.4(f)

and 3.4(i), present the extended recall. The extension rate is up to 4. In Fig-

ure 3.4(c), when extension rate is larger than 3, the recall of GSISE-15k and

GSISE-20k both reach 90%. In other figures, all GSISE-20k experiments can

reach more than 80% of recall when extension rate is 4. GSISE-1k performs

inadequate even when extension rate reaches 4.

In summary, our top-K estimation algorithm shows substantial performance

advantage over exact methods in e�ciency. Meanwhile, the recall of our

algorithms can reach around 90% with slight extension of returned top-K

results.

3.6 Conclusions

In this chapter we formally define the GSISE problem, for both point and range

gap constraints. We propose space and time e�cient estimation methods, based
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on bottom-k sketches and its extension to multisets. In addition, our estimation

methods provide the probabilistic quality guarantees. We also apply our technique

to the problem of finding top-K related keyword, by combining our estimation

technique with the use of an inverted index. Our experiments using half a bil-

lion documents empirically verify the e↵ectiveness and e�ciency of the proposed

methods.
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Figure 3.4: Experiment Results of Top-K Query



Chapter 4

E↵ective Order Preserving

Estimation Method

4.1 Overview

Statistical method is essential for analyzing the massive data that arises in many

applications. A synopsis of a large dataset captures vital properties of the original

data while typically consuming much less resources. One of the most widely used

properties is the population mean, which is the average value of a group of numeric

data. The methods and criteria for a reliable population mean estimation are well

developed in both statistical inference and computer science areas. However, when

it comes to several groups of data, it is long neglected that an order estimation on

the population means is of equal importance, since many applications require to

know data trends or more specifically the relationships among variables [CGHJ12,

SWQ+14, IBS08]. Motivated by above observations, we study the order preserving

estimation (OPE) problem in this chapter. Given k groups of numeric data with

unknown distribution along with � 2 (0, 1), OPE returns an order estimate on the

68
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group average with a probabilistic guarantee 1 � �. With the rapid development

of modern computing ability, the o✏ine sample processing time is less concerned

in many applications. Instead, the sample size becomes a critical factor to be

restrained. For example, the I/O cost of obtaining data from external or distributed

storage is very high. Or in most clinical trials of new drugs, the number of human

subjects is usually limited due to the risk or ethical issues. In both cases, it is not

a↵ordable to get as many samples as we want. Therefore, we consider the total

sample size as the most important parameter in our algorithm design.

The state-of-the-art method [KBP+15] guarantees to output a correct order and

is proved to be near optimal in the total sample size. Nevertheless, an important

assumption for the near-optimality is that it does not allow the inactive confidence

intervals to become to be active again. The assumption a↵ects the logical strengths

of the proof. Because the crude elimination of sampling outliers is unrealistic in

real applications. Even though the assumption could be ignored without impairing

the theoretical soundness, [KBP+15] tends to examine more samples than needed,

which means their sample complexity upper bound is conservative empirically.

Contribution. Our improvements have two aspects, stop condition and sample

strategy, respectively. We design two stop functions, named IntervalSeparation and

PairwiseComparison. They utilize the relation among current sample means to make

judicious decisions, in order to output a correct result while using as little samples

as possible. We also propose a heuristic sample strategy to assign new sample

points adaptively. Specifically, IntervalSeparation reduces order estimates to sepa-

rating the underlying confidence intervals. Due to tail inequality, all true means

can be bounded within their confidence intervals with high probabilites. Thus as

long as the intervals do not overlap, the order can be guaranteed. Next in the

PairwiseComparison method, we first show that minimizing the sample size in OPE
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is NP-hard by reducing from TSP problem on tournament graphs. In order to

compute the failure probability, we introduce the prefix downsample technique to

equalize the sample size between adjacent sample groups, where the unequal sample

size is due to the proposd sample strategy.

The rest of the chapter is organized as follows: Section 4.2 defines the problem

and gives an overview of our algorithm framework. Section 4.3 introduces the

interval separation algorithm and proves its correctness. Section 4.4 analyzes the

pairwise comparison algorithm and the prefix downsample technique, along with

the sample strategy. Section 4.5 shows our experimental results and Section 4.6

concludes the chapter.

4.2 Background

We first formulate the problem of order preserving estimation, then give an overview

of our proposed framework.

4.2.1 Problem Definition

An important concept used in our algorithms is the confidence interval. Given ✏, � 2

(0, 1), for an estimated sample mean µ̂, let its confidence interval be [µ̂�✏, µ̂+✏] with

confidence level 1��. It means that the population mean µ belongs to [µ̂� ✏, µ̂+ ✏]

with at least 1� � probability, which is denoted by Pr [|µ� µ̂|  ✏] � 1� �.

In this chapter, we use the empirical Bernstein-Serfling inequality proposed in

[BM15] to derive robust and tight confidence intervals.

Definition 4.1 (Order Preserving Estimation). Given k groups g
1

, g
2

, · · · , gk of

numeric values where the values in gi are bounded by [ai, bi]. Denote the group

population mean of elements in gi as µi =
1

|gi|
P

e2gi e. Given � 2 (0, 1), an order
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preserving estimation for the group mean returns an order estimate on µi for i 2

[1, k], s.t. the order is correct with at least 1 � � probability. Correct order means

if the population means satisfy µi > µj, the sample means also have µ̂i > µ̂j for all

i, j 2 [1, k].

As justified in Section 1.1, the sample size is a major concern in various ap-

plications. In order to meet the ultimate user requirements, we model OPE as an

minimization problem. The goal is to minimize the sample complexity. In such

case, we consider the total sample size as the dominant factor in our analysis.

Definition 4.2 (Minimization Problem for OPE). Let ni be the number of samples

taken from group i before the algorithm terminates, OPE aims to minimize
Pk

i=1

ni,

which is the total sample complexity of all the k groups.

To achieve the minimization goal, we need to relate the sample complexity
Pk

i=1

ni to the user specified failure probability � in the randomization framework.

Therefore we adopt the empirical Bernstein-Serfling inequality for sampling without

replacement [BM15], along with the union bound as our primary tools to solve the

problem. The superiority lies in the fact that they does not make assumptions on

the data distribution. As a consequence, OPE can return a correct order for any

data distribution with a high probability.

4.2.2 Framework of OPE

In this section, we give an overview of our algorithms, followed by the intuition of

our improvements.

The user issues a query about the order of k groups. An e�cient sample

strategy is designed to incrementally get random samples and update sample

means. We use random sample without replacement throughout the chapter, which
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will lead us to the population mean when the sample size equals population size.

In the meantime, a stop function computes an order estimate and decides if it

satisfies the probabilistic guarantee hence can stop. Above process is repeated until

the stop condition is satisfied. The procedure is summarized in Algorithm 5.

Algorithm 5: OPE
Input: Data from g

1

, g
2

, · · · , gk, �.

Output: Order estimates µ̂
1

, µ̂
2

, · · · , µ̂k on the group means.

n 1;1

Draw n samples from gi to produce initial sample mean µ̂i, i 2 [1, k];2

F  StopFunction; /* Estimate an order and compute the stop3

function */;

while F > � do4

Get new samples according to SampleStrategy then update µ̂i;5

F  StopFunction; /* Update order and stop function */;6

return Estimated order7

Our key observation is that some groups are easy to be ordered correctly, as

their population means have large di↵erence. We call it easy case which only needs

few samples to get a correct order. If relating easy case to the stop function, it

will result in a small failure probability �i as the order estimate is unlikely to be

incorrect. On the contrary, hard case refers to ordering the groups with small

di↵erences among their population means. It will cause large �i hence consuming

a large amount of samples for a correct result. Therefore, we need to design a

judicious sample strategy that can assign random samples adaptively, as well as

e↵ective stop functions that can allocate �i dynamically. We will materialize Stop-

Function in Algorithm 5 as IntervalSeparation (Section 4.3) and PairwiseComparison



Chapter 4. E↵ective Order Preserving Estimation Method 73

(Section 4.4). SampleStrategy is introduced at the end of Section 4.4. Table 4.1

lists the notations frequently used throughout the chapter.

Table 4.1: Summary of Notations

Symbol Explanation

g group to be ordered
k number of groups
µ population mean
µ̂ sample mean
✏ error parameter of the confidence interval
� failure probability of the confidence interval
N population size
n sample size
a minimum of a given group
b maximum of a given group

4.3 Interval Separation Method

We first give the intuition of IntervalSeparation, then define the stop function in

Section 4.3.1 followed by its proof of correctness in Section 4.3.2.

Intuition. To order group gi and gj, we can examine the confidence intervals

of their population means µi and µj. If both µi and µj are within respective

confidence intervals with high probabilities, and the two intervals do not overlap,

we can output an order that is probabilistic correct. When it comes to k groups,

the idea is interleaving the interval boundaries {x
1

, · · · , xk�1

} with k sample means

that are ordered decreasingly, then deriving the total failure probability based on

the union bound.
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4.3.1 IntervalSeparation Stop Function

We will order the sample means decreasingly before evaluating the stop function

f
min

. The ordered means are denoted by µ̂
1

, · · · , µ̂k. To keep the notation clean,

we use µ̂i as the i-th largest sample mean in the rest of Section 4.3, instead of

the sample mean of i-th group used previously. As shown in Equation (4.1), we

first define function f , then minimize it in terms of x = {x
1

, · · · , xk�1

}, where

xi 2 (µ̂i+1

, µ̂i), and use f
min

as the stop function. If f
min

is no greater than the

user specified �, the algorithm are safe to stop. f
min

in Equation (4.1) will replace

Line 3 and Line 6 of Algorithm 5. The stop condition is to decide if f
min

exceeds

� at each round. Determining f
min

is equivalent to finding the root of @f
@xi

between

xi 2 (µ̂i+1

, µ̂i). Since the closed-form expression for the root is unavailable, we use

binary search to get an approximate result.

f(x) = 5
k�1X

i=1

2

4exp

0

@�
 
�̂i
p
2⇢ini +

p
2ni(⇢i�̂2

i + 2ri(µ̂i � xi))

2ri

!
2

1

A

+ exp

0

@�
 
�̂i+1

p
2⇢i+1

ni+1

+
p

2ni+1

(⇢i+1

�̂2

i+1

+ 2ri+1

(xi � µ̂i+1

))

2ri+1



!
2

1

A

3

5 ,

f
min

= minf(x), subject to xi 2 (µ̂i+1

, µ̂i),

(4.1)

where for each group gi, �̂i is the sample standard deviation, µ̂i is the sample mean,

ni and Ni are the sample and population size, ri = bi � ai,  = 7

3

+ 3p
2

, and:

⇢i =

8
>><

>>:

1� ni�1

Ni
, if ni  Ni

2

.

(1� ni
Ni
)(1 + 1

ni
) , if ni >

Ni
2

.

4.3.2 Analysis

We prove the correctness of IntervalSeparation in Theorem 4.1.
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Theorem 4.1. Replacing Line 3 and Line 6 of Algorithm 5 with Equation (4.1)

can return a correct order with at least 1� � probability.

Proof. Given a group of size N , assume each sample Xi is bounded by [a, b], then

we know the sample mean µ̂ = 1

n

Pn
i=1

Xi, and the population mean µ = E [µ̂].

Given ordered sample means µ̂
1

, · · · , µ̂k, let xi 2 (µ̂i+1

, µ̂i), and define ✏i = |xi�µ̂i|.

According to the empirical Bernstein-Serfling Inequality [BM15], for the upper side

of gi, we have

Pr [µi  xi]  5 exp

0

@�
 
�̂i
p
2⇢ini +

p
2ni(⇢i�̂2

i + 2ri(µ̂i � xi))

2ri

!
2

1

A .

Analogously, for the lower side of gi+1

,

Pr [µi+1

� xi]  5 exp

0

@�
 
�̂i+1

p
2⇢i+1

ni+1

+
p

2ni+1

(⇢i+1

�̂2

i+1

+ 2ri+1

(xi � µ̂i+1

))

2ri+1



!
2

1

A .

Above derivations are applicable to all the boundaries xi where i belongs to

[1, k � 1]. Due to the continuity of f and the union bound, the correctness is

concluded by

Pr

"
k�1_

i=1

�
xi 2 (µ̂i+1

, µ̂i)
�
#
� 1� f

min

� 1� �.

Remember that a confidence interval has two ingredients ✏ and �. It can be inter-

preted as Pr [error is within ✏] � 1� �. Given k groups, the methods in [KBP+15]

fix all the �i to be �
k , and derive the associated interval [µ̂i � ✏i, µ̂i + ✏i] then test

if there are overlaps among di↵erent intervals. The di↵erence between IntervalSep-

aration and that in [KBP+15] is that we do it inversely. To be specific, we first

place x as interval boundaries that satisfy the nonoverlapping condition. Then we

compute the associated �i and define
Pk�1

i=1

�i as f(x). Next we test if there exists
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x such that f
min

is no greater than the given �. It is equivalent to allocating �i

dynamically. The advantage is that it assigns less �i to the easy cases while more

�i to the hard cases for an early termination.

4.4 Pairwise Comparison Method

We first give the intuition of PairwiseComparison. Then we illustrate the steps for

doing prefix downsample between adjacent groups with di↵erent sample sizes and

explain its necessity. After that we define the stop function and prove it is NP-hard

to solve the OPE minimization problem in Definition 4.2.

Intuition. Suppose we have values µa, µb and µc and want to order them decreas-

ingly. A natural way is to show µa � µb > 0 and µb � µc > 0. Then it must have

µa > µb > µc according to the transitivity of the greater than relation. We ap-

ply this simple yet e↵ective idea with probabilistic constraint and propose the stop

function for PairwiseComparison. At first glance, the idea may seem straightforward

to apply. However, there are several issues if we would like a theoretical guarantee

while making the sample size as small as possible.

• We need to determine an order as the input to the stop function.

• The complexity of finding the order with minimum output value is NP-hard.

4.4.1 Prefix Downsample

This section considers prefix downsample method that can be maintained e�ciently

as the samples update. The sampling method we use is random sample without

replacement.
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Definition 4.3 (Prefix Downsample). Given a group, denote its sample as an or-

dered 1 set S = {X
1

, X
2

, · · · , Xn}, where n is the sample size. A prefix downsample

of size m is defined as Spre = {X
1

, X
2

, · · · , Xm}, which is the first m elements of

S.

Given S and the corresponding Spre, prefix downsample mean is the sample

mean of m samples in Spre, while full sample mean refers to the standard sample

mean of S. It is easy to see that both of them are unbiased estimators of the

population mean. Lemma 4.1 shows that a prefix downsample of S is a correct

random sample for evaluating the stop function.

Lemma 4.1. Given a random sample S, any prefix Spre of size m is a valid prefix

downsample that can be used for evaluating the stop function.

The proof is immediate by showing Spre is also a valid random sample for the

same population. Let population size be N , sample size |S| be n, downsample size

|Spre| be m. Then the probability of an element e appearing in the downsample is

Pr [e 2 Spre] =
n

N
· m
n

=
m

N
,

which is equal to the probability of sampling m points directly from the population.

As a result, any prefix of sizem < n is also a random sample of the same population

hence can be used to evaluate the stop function. Next we consider how to apply

prefix downsample between two groups and define the relation “>pre” between

them.

Definition 4.4 (Binary Relation “>pre” and “�pre”). Given two groups gi and gj

with sample size ni and nj, denote their full sample means as µ̂i and µ̂j. Let the

1The order is induced from progressive sampling without replacement process. I.e.,

Rank(Xi) < Rank(Xj), if i < j.
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prefix downsample size m be min(ni, nj) for both groups. Then it holds µ̂i >pre µ̂j

if the prefix downsample mean of gi is greater than that of gj. In addition, we use

µ̂i �pre µ̂j to denote the di↵erence between the prefix downsample means of gi and

gj.

Prefix downsample is designed to equalize the sample size between adjacent

groups to be compared in Equation (4.4), in order to apply the empirical Bernstein-

Serfling inequality. To be more specific, assume the adjacent groups are gi and gj.

We will define µ̂i �pre µ̂j as an individual random variable to apply the inequality.

It means the sample size of gi and gj must be identical due to the requirement of

empirical Bernstein-Serfling inequality. Therefore, we need to find out the criteria

for extracting a correct downsample that makes the most of available samples

and can be maintained e�ciently as S updates. Although we can use any size m

prefix in terms of the algorithm correctness, we deem m = min(ni, nj) as the most

e↵ective one. Since it manages to take advantage of all the sample information in

the adjacent groups with sample size ni and nj, respectively.

4.4.2 PairwiseComparison Stop Function

Before introducing the stop function h, we need to define candidate order as the

input to the function.

Remember in the IntervalSeparation section, we need to arrange all the sample

means as an ordered set as the input to the stop function. However, in the Pair-

wiseComparison, the procedure can not be finished directly. We name the order

by candidate order, and show that finding the candidate order with smallest stop

function h value is NP-hard.

Candidate Order. Given k groups and an arbitrary order g
1

, g
2

, · · · , gk, 2 gi
2Same as before we use gi as the group with rank i in a candidate order in the rest of
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denotes the i-th rank in the order, and adjacent groups refer to (gi, gi+1

), i 2

[1, k � 1]. If it holds µ̂i >pre µ̂i+1

for all i 2 [1, k � 1], we say that g
1

, g
2

, · · · , gk is

a candidate order.

We prove in Lemma 4.2 the existence of a candidate order.

Lemma 4.2. There exists at least one candidate order in OPE.

Proof. We finish the proof by mathematical induction. Let the number of groups

n = 2, due to prefix downsample, we can calculate two sample means µ̂
1

and

µ̂
2

. Suppose µ̂
1

>pre µ̂
2

, then the candidate order is g
1

, g
2

. Thus for n = 2 the

statement is true.

Assume for n = k, there exists a candidate order g
1

, g
2

, · · · , gk, which is

µ̂
1

>pre µ̂2

>pre · · · >pre µ̂k.

In the induction step, we exhaust all the possible relations between µ̂k+1

and the

candidate order g
1

, g
2

, · · · , gk. Then we show that there must exist a construction

for a valid candidate order in all the relations.

For n = k+1, if µ̂k+1

>pre µ̂1

, we can form a candidate order gk+1

, g
1

, g
2

, · · · , gk.

If µ̂k >pre µ̂k+1

, we can form a candidate order g
1

, g
2

, · · · , gk, gk+1

.

We now consider the case when µ̂
1

>pre µ̂k+1

and µ̂k+1

>pre µ̂k. If µ̂k+1

>pre µ̂2

,

we can form a candidate order g
1

, gk+1

, g
2

, · · · , gk.

When µ̂
2

>pre µ̂k+1

, if µ̂k+1

>pre µ̂
3

, we can form a candidate order

g
1

, g
2

, gk+1

, g
3

, · · · , gk.

Repeat the process until we assume µ̂i >pre µ̂k+1

, where i 2 [1, k � 1]. As we

know µ̂k+1

>pre µ̂k, then a candidate order is formed by g
1

, g
2

, · · · , gk�1

, gk+1

, gk.

Therefore the statement also holds when n = k + 1. To conclude, there exists

at least one candidate order in OPE.

Section 4.4 in order to keep the notation clean.
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Now suppose we have a candidate order with full sample means µ̂
1

, · · · , µ̂k, we

can define the stop function h for PairwiseComparison in Equation (4.2) . h will

replace Line 3 and Line 6 of Algorithm 5. The stop condition is to decide if h

exceeds � at each round.

h =
k�1X

i=1

5 exp

0

@�
 
�̂i
p
2ni⇢i +

p
2ni (⇢i�̂2

i + 2ri|µ̂i �pre µ̂i+1

|)
2ri

!
2

1

A, (4.2)

where for each group gi, we use µ̂i as the sample mean, ni and Ni as the sample

and population size, and:

⇢i =

8
>><

>>:

1� ni�1

min(Ni,Ni+1

)

, if ni  min(Ni,Ni+1

)

2

.

(1� ni
min(Ni,Ni+1

)

)(1 + 1

ni
) , if ni >

min(Ni,Ni+1

)

2

.

(4.3)

ri = (bi + bi+1

)� (ai + ai+1

),  = 7

3

+ 3p
2

, and �̂i is the sample standard deviation

of µ̂i �pre µ̂i+1

.

Our observation is that determining whether the algorithm can stop is equiv-

alent to deciding if there exists a candidate order with h  �. Nevertheless, it is

NP-hard to solve the decision problem. It is because a given group gi may have

di↵erent prefix downsample means when downsampling with gi�1

and gi+1

, due to

di↵erent downsample size min(ni�1

, ni) and min(ni, ni+1

).

Given sample set Si, full sample size ni, full sample mean µ̂i and �, the desicion

problem for PairwiseComparison in OPE is defined as {
⌦
(Si, ni, µ̂i)ki=1

, �
↵
: There

exists a candidate order on the k groups, such that it holds h  �}.

Theorem 4.2. PairwiseComparison in OPE is NP-hard.

Proof Sketch. We will reduce from a known NP-hard problem “Traveling-Salesman

Problem on Tournament graph (TSPT)”to prove the NP-hardness of OPE. The

reduction can be summarized as follows. Without loss of generality, let ni be arbi-

trary integers satisfying n
1

< n
2

< · · · < nk. For each vertex Vi in a tournament
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graph G, the reduction algorithm transforms it to group gi in OPE. Then the

cost function cij between Vi and Vj in TSPT is normalized and equated to Equa-

tion (4.5). The sample set Si hence µ̂i can be easily constructed from the equation.

Finally the directed edge eij is transformed to “>pre” relation between µ̂i and µ̂j.

This process can be done in polynomial time.

Consequently, we can use TSP algorithms to accelerate the process of finding

the candidate order required.

4.4.3 Analysis

We prove the correctness of PairwiseComparison in Theorem 4.3.

Theorem 4.3. Replacing Line 3 and Line 6 of Algorithm 5 with Equation (4.2)

can return a correct order with at least 1� � probability.

Proof. Given a candidate order with full sample mean µ̂i for i 2 [1, k], we examine

the confidence interval of µ̂i�pre µ̂i+1

. According to the empirical Bernstein-Serfling

inequality [BM15], given ✏i 2 [0, µ̂i �pre µ̂i+1

], it has

Pr [µi � µi+1

> µ̂i �pre µ̂i+1

� ✏i] � 1� �i. (4.4)

The expression for �i is

�i = 5 exp

0

@�
 
�̂i
p
2ni⇢i +

p
2ni (⇢i�̂2

i + 2ri✏i)

2ri

!
2

1

A . (4.5)

When ✏i decreases from µ̂i �pre µ̂i+1

to 0, �i will increase monotonically. In order

to achieve an early stop, we will let ✏i be µ̂i �pre µ̂i+1

. Fit into Equation (4.4), we

know

Pr [(µi � µi+1

> µ̂i �pre µ̂i+1

� ✏i) ^ (✏i = µ̂i �pre µ̂i+1

)] �

1� 5 exp

0

B@�

0

@
�̂i
p
2ni⇢i +

q
2ni
�
⇢i�̂

2

i + 2ri(µ̂i �pre µ̂i+1

)
�

2ri

1
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2
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Apply union bound to all the k � 1 pairs of adjacent groups hence the correctness

is concluded

Discussion about the proof of correctness. The intuition of our solution is

that we would like to dynamically assign the failure probability �i when using the

union bound, rather than fix each portion to be �
k . As a consequence, based on

the observation µ̂i �pre µ̂i+1

> 0, we push ✏i to the maximum value allowed for

concluding that µi � µi+1

is also greater than 0. One may question the validity

of defining the probability of µi � µi+1

> 0, as they are not random variables.

However, the randomness originates from Equation (4.4), followed by assigning ✏i

to be µ̂i �pre µ̂i+1

. Specifically, Pr [µi � µi+1

> 0] is equivalent to

Pr [(µi � µi+1

> µ̂i+1

�pre µ̂i+1

� ✏i) ^ (✏i = µ̂i �pre µ̂i+1

)] .

Sample Strategy. We introduce our heuristic sample strategy in this section. As

the data distribution is unknown to the algorithm, we cannot predict the gain of

each sample. Therefore, we adopt the heuristic method to choose the next group

to sample from, based on the failure probabilities at current sample round. The

intuition is that if the population means of two groups are very close, it will need

more samples to separate them than to separate the groups with large di↵erence

between their means.

Since our goal is to minimize the sample compelxity instead of the number of

rounds the sampling proceeds, we will use the most conservative sampling scheme,

i.e. at each round, add one more sample to one of the k groups. Although such

method may incur more evaluation cost compared with sampling in a batch mode,

it guarantees the algorithm can stop as soon as the success probability is satisfied

without consuming unnecessary samples. Specifically, the strategy will randomly

choose the next sample from the group that introduces the most failure probability
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among all the groups at current round. The proposed sample strategy considers

the distribution of all the groups’ failure probabilities at current round. Large

failure probability implies small di↵erence between sample means, hence it is harder

to get the correct order with a high confidence than the groups with far sample

means between them. Moreover, the sample means of the groups with small failure

probability are stable enough to draw a correct order. Therefore, we spend the rest

samples on the groups with large failure probabilities.

4.5 Experiments

In this section, we present the results of a comprehensive performance study to

evaluate the e↵ectiveness of the proposed techniques in this chapter.

4.5.1 Experiment Setup

In this chapter we focus on reducing the total sample size required by OPE. Thus

we report the sample ratio of the proposed methods by varying di↵erent parameters

on both real and synthetic datasets.

Algorithms. We compare our methods with state-of-the-art algorithm IFOCUS

in [KBP+15]. It stops sampling from a group as long as its confidence interval

disjoints with all the other groups. To summarize, the algorithms evaluated in this

section are listed below.

• IFOCUS. The state-of-the-art approach in [KBP+15].

• SEP. The Interval Separation method presented in Section 4.3.

• COMP. The Pairwise Comparison method introduced in Section 4.4.
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Datasets. We use both real and synthetic datasets. For real datasets, we use

the flight records in [Dat09]. We utilize the “ActualElapsedTime” attribute, which

denotes the actual travel time for each flight. The attribute represents the market-

ing preference of the flight company (e.g., short-haul fight or long-haul flight). We

use two years’ data, 2004 and 2005, which contain 7 million records for each, with

19 and 20 flight companies, respectively. For the synthetic datasets, we generate

data from two distributions, uniform (Uniform) and mixture of truncated normal

(MixNormal). For each group, we generate 1 million records. For Uniform we ran-

domly select a mean from [0,50] and a data range from [70, 100]. For MixNormal,

we select a set of truncated normal distributions in the following manner. Firstly

we generate a number from {1, 2, 3, 4, 5} indicating the number of truncated normal

distributions that comprise the group. For each of the truncated normal distribu-

tion, we randomly select a mean from [0,100] and a variance from [1,16].

Workloads. In the experiments, we evaluate the methods by varying the failure

probability � from 0.05 to 0.2 with 0.05 as the default value. The number of groups

k increases from 5 to 20 with 20 as the default value. For each setting we run 100

rounds and report the average performance.

Implementation Environment. All experiments are carried out on a PC with

Intel Xeon 2.30GHz and 96G RAM. The operating system is Redhat. All algorithms

are implemented in C++ and compiled with GCC 4.8.2 with -O3 flag.

4.5.2 Real Data Experiments

In Figure 4.1, we report the sample ratio on the real datasets by varying � from

0.05 to 0.2. As can be seen, the proposed algorithms, SEP and COMP, require less

samples than IFOCUS and can achieve up to 80% reduction in the total sample

size. The gain of COMP is more significant on Data 2004 compared with SEP.
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Figure 4.1: Performance Evaluation on Real Datasets by Varying �

In addition, we notice that IFOCUS is not sensitive to �. By increasing �, the

sample size does not change much. This is due to the sample size upper bound

in the IFOCUS algorithm explained in [KBP+15]. While for our proposed algo-

rithms, increasing � will make the sample size decrease. This is reasonable as due

to the definition of �, the correctness requirement relaxes with the increase of �.

Hypothetically, any reported order is deemed to be correct when � equals 1 (fail

probability is 100%). If the algorithm is sensitive to �, the user is able to make a

trade o↵ between the sample size and the accuracy by tuning �. For the correctness

of the reported order, IFOCUS always returns the correct order by consuming a

large sample size. While for our algorithms, they report wrong orders only when �

equals 0.2. However, the percentage of incorrect orders is less than 3%, which still

satisfies the requirement of � = 0.2 setting.

4.5.3 Synthetic Data Experiments

We will report the performance of the proposed methods on synthetic data by

varying the number of data groups k. � equals 0.05 for all the cases. As shown in

Figure 4.2, by increasing k, the sample size increases for all the algorithms. This

is because when k increases, we need more samples to bound the correctness of
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Figure 4.2: Performance Evaluation on Synthetic Datasets by Varying k

the returned order, which is easy to verify from the stop functions (4.1) and (4.2).

IFOCUS increases much faster than the algorithms proposed in this chapter. The

sample size needed for Uniform is much smaller than that of MixNormal, since uni-

form distribution is much easier to infer than normal distribution. COMP requires

less samples than SEP, which coincides with the trend on the real datasets. For

the accuracy, all the algorithms satisfy the probabilistic guarantee, and IFOCUS

always achieves 100% accuracy. This is because IFOCUS consumes more samples

than the proposed methods. SEP and COMP have lower accuracy because of the

hard cases, which refers to certain groups with very close population means. Due

to our dynamic allocation of � and the sample strategy, we will assign more samples

to the hard case. This may lead to the case that we stop sampling from certain

groups as long as they satisfy the success probability, even though the order is not

correct. It also shows that the proposed algorithms are more sensitive to �, thus it

is able to use less samples while still satisfy the probabilistic guarantee.

4.6 Conclusion

In this chapter we propose two e↵ective stop functions along with a heuristic sample

strategy to solve the order preserving estimation problem. In the design of an
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e↵ective stop function, we allocate the failure probability �i dynamically based

on the current observed sample means. Given the total allowed �, it amounts to

allocating small portions of � to the easy case while save the rest for the hard case.

For the sample strategy, we prioritize the hard case to assign more samples, rather

than give all the groups the same amount of samples. By conducting empirical

evaluations on both synthetic and real datasets, we demonstrate the e↵ectiveness

of our proposed methods.



Chapter 5

A Novel Scalable Method for

Influence Maximization

5.1 Overview

As a key problem in viral marketing, influence maximization has found many im-

portant applications in real life. Given a positive integer k, it aims to find a set

of k users in a social network, which can make the largest of adoption or cascade

of information. For example, a company wants to choose some influential users to

promote its new product. By o↵ering them some free samples or discounts, the

company may expect these influential users can propagate the information about

the product through their social network, from friends to friends, and finally lead

to a large adoption of the new product.

Kempe et al. [KKT03] first formalize the influence maximization problem. In

this seminal paper, it defines two models, independent cascade (IC) model and

linear threshold (LT) model, to simulate the influence spread. In addition, the au-

thors prove that the problem is NP-Hard under both di↵usion models, and develop

88
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a general greedy framework which returns a seed set with 1 � 1/e � ✏ approx-

imation ratio, where ✏ is the error generated by using Monte Carlo simulation

to estimate the influence spread. The general greedy algorithm is known to be

ine�cient in practice. However, considering the importance of the problem and

the limitation in e�ciency of the general greedy algorithm, it motivates a lot of

follow-up works [LKG+07, CWY09, CWW10, CYZ10, GLL11b, GLL11a] which

try to improve the performance under both models. However, these algorithms

either sacrifice the e↵ectiveness, i.e., influence spread, or cannot scale well to very

large graphs and large k. Also, there are some papers try to define di↵erent dif-

fusion models, like the continuous time independent cascade model [GBS11]. In

this chapter, we focus on the IC model and LT model, which are the most widely

studied models in the literature. Under both models, the social network G can be

considered as a distribution of a set of graph instances.

Recently, Borgs et al. [BBCL14a] develop an elegant framework, reverse influ-

ence sampling (RIS) to solve influence maximization problem. The intuition of

the RIS framework is that given a randomly selected node v in G and a randomly

selected instance g from G under a certain propagation model, let Rg(v) denote the

the set of nodes that can reach v in g. Then a set of nodes is more likely to have

larger influence if it has higher probability to overlap with Rg(v). Each Rg(v) is

called a random reverse reachable set, i.e., a sample. The procedure of generating

a sample can be divided into two phases: 1) sample a node v, 2) materialize the

sample in a sampled instance g to get Rg(v). The cost of the second phase is usu-

ally much larger than the first phase. To solve the influence maximization problem

under the RIS framework, we first select a set R of samples and then iteratively

select the node with largest marginal overlapping size with R. This greedy strategy

can return a result with 1� 1/e� ✏ approximation ratio, where ✏ is decided by the
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number of samples selected.

Nodes in G

v1 v2v3 v4

u1 u2 u3 un...

...v97v98 v99 v100
(b) Ordered Samples 

Nodes in G

v1 v2 v3 v4

u1 u2 u3 un...

... v98 v99 v100v97
(a) Original Samples

Figure 5.1: Motivation Example of Accelerating Nodes Selection

Consequently, the sample size directly determines the e�ciency and e↵ectiveness

of the framework. In [BBCL14a], Borgs et al. conduct an in-depth theoretical

analysis of the sample size needed to bound the e↵ectiveness. However, due to the

large constant factor in the sample size, it does not work well in practice. Tang et

al. [TXS14] improve the sample complexity and show that the sample size needed

is at least �/OPT , where OPT is the influence spread of the optimal seed set and

� is an equation related to k and the error parameters. In addition, the authors

provide several approaches to get a tight lower bound of OPT , which makes the

RIS framework work well in practice and outperforms the previous studies. Tang

et al. in [TSX15] propose the IMM method which is the state-of-the-art approach

for influence maximization problem in both IC model and LT model. It utilizes

the martingale technique to further reduce the sample size needed and reuse the
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samples. IMM shows that the sample size needed is �⇤/OPT , where �⇤ is smaller

than �. In addition, it provides an iterative approach to obtain a lower bound of

OPT which is asymptotically tight without sacrificing the performance guarantee.

Although IMM o↵ers strong performance in solving the influence maximization

problem, it still leave much room for improvement in term of e�ciency and scal-

ability. In IMM, to determine a tight sample size, it needs to get a tight lower

bound of OPT , which is a heavy overhead of the algorithm. This is because it

needs to iteratively double the sample size and selects k nodes in the current sam-

ples to refine the lower bound of OPT . The cost cannot be neglected when k and

n are large. In hence, the three approaches [BBCL14a, TXS14, TSX15] based on

RIS can be implemented in a two-phase framework: 1) determine a sample size,

2) select k nodes based on the samples. Approach in [BBCL14a] is ine�cient due

to the large sample size, while TIM and IMM are limited by the heavy overhead

in the first phase. In this chapter, instead of trying to obtain a tight sample size,

we aim to accelerate the second phase over a reasonable large sample size, which is

much more e�cient to obtain, to speedup the processing. Following is a motivating

example about how to speedup the second phase.

Example 5.1. Given a set of samples, it corresponds to a bipartite graph, where

the edges denote the reachability relationship between nodes u in G to the sampled

nodes vj. Suppose we sample 100 samples. Figure 5.1(a) is the corresponding

bipartite graph based on the samples. Then u
1

is the first nodes selected since it

covers the most number of samples. u
3

is the second node selected since it has the

largest marginal coverage.

Assume we have an oracle that assigns a total order to the samples. The order

can provide the property that if a node covers more samples ranked in the front,

it is more likely to have larger influence. Formally, the oracle provides a coverage
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requirement r. It guarantees that if we go through the samples based on the order,

the node first covers r samples will be the node with the largest coverage with high

probability. As shown in Figure 5.1(b), we sort the samples in Figure 5.1(a) based

on the oracle and r equals 2. Then we materialize the samples one by one based

on the order. After materializing 2 samples v
3

and v
98

, we find that u
1

is the first

node covering 2 samples. Thus we can select u
1

as the first node. For the following

samples, we remove them if they are covered by the nodes already selected. For

example, we discard the samples v
1

and v
99

when materializing them since they can

be reached by u
1

. For the following nodes selection, it equals the case of selecting

the first one. For example, u
3

is the next one selected, since it covers v
97

and v
4

.

Based on the oracle, we can achieve possible early termination in nodes selection

without materializing all the samples. Therefore, even if we cannot get a tight

sample size needed, we can still run fast.

Contributions. Based on the motivating example, we bring the order of samples

into the RIS framework to improve the performance. We propose a bottom-k

sketch based RIS framework (BKRIS), which utilizes the bottom-k sketch to serve

as the oracle in Example 6.3. In the worst-case scenario, if there are not enough

(i.e., less than k) nodes that can meet the oracle’s requirement r, we still needs to

materialize all the samples. So to guarantee the e�ciency and the result quality,

we develop a quick sample size estimation approach based on the small world

property. Specially, we provide a cost-e↵ective method that e�ciently obtains a

lower bound of OPT . By feeding our lower bound into the sample size equation

in IMM (i.e., �⇤/OPT ), we can obtain a su�cient sample size needed. Also, we

develop several optimizations to accelerate the generation of sample order and the

processing of the worst-case scenario. We conduct extensive experiments on 10 real

world social networks on the IC model and the LT model. For both models, BKRIS
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achieves constantly speedup, up to two orders of magnitude, compared with IMM.

In summary, our contributions are as follows.

• We propose the BKRIS framework, which accelerates the RIS framework by

involving the order of samples based on bottom-k sketch.

• We propose an e�cient method to derive a su�cient and reasonable large

sample size by using the small world property.

• We provide novel techniques to optimize the generation of sample order and

to e�ciently handle the worst case.

• We experimentally evaluate BKRIS on 10 datasets, and show that we can

achieve up to 2 orders of magnitude speedup compared with the state-of-

the-art approach IMM on both the IC model and the LT model.

Road Map. The rest of the chapter is organized as follows. We briefly intro-

duce the problem to be studied and the related techniques used in Section 5.2.

In Section 5.3, we introduce the BKRIS framework, and describe the techniques

developed. We demonstrate the e�ciency and e↵ectiveness of proposed framework

in Section 5.4 on 10 real social networks. Lastly, we conclude the chapter in Sec-

tion 5.5.

5.2 Background

In this section, we first formally introduce the influence maximization problem

studied as well as the di↵usion models utilized. Then we introduce the related

techniques employed in this chapter. Table 5.1 summarizes the notations frequently

used throughout the chapter.
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Notation Meaning
G a social network

V (E) the set of nodes (edges) of G
n(m) the number of nodes (edges) in G
u, v a node or user in V
hu, vi a directed edge from u to v
S a selected seed set S ✓ V

�(S) the influence spread of set S
R a random reverse reachable (RR) set
R a set of RR set
bk parameter k in bottom-k sketch

Table 5.1: Summary of Notations

5.2.1 Problem Definition

We consider a social network as a directed graph G = (V,E), where V represents

the set of nodes (users) and E denotes the set of edges (relationships between users)

in G. Let |V | = n and |E| = m. Given an edge hu, vi 2 E, we say v is an outgoing

neighbour of u and u is an incoming neighbour of v.

Di↵usion Model. There are many models to simulate the influence propagation

in a social network. In this chapter, we focus on the independent cascade (IC)

model and the linear threshold (LT) model, which are most widely adopted by

existing researches [CFL+15, LZT15, BBCL14a, CDPW14b, CYZ10]. Note that

the techniques proposed in this chapter are based on the RIS framework, thus they

can be easily extended to support all the di↵usion models that are supported by

the RIS framework, such as the continuous time independent cascade model.

IC Model. In the IC model, each edge hu, vi has an independent probability

P(u, v) 2 [0, 1], indicating the probability that u can influence v. The influence

di↵usion process of a node set S works as following three steps.

• At timestamp 0, only the nodes in S
0

= S are active, while all the other

nodes are inactive.
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• Let Si denote the set of nodes that are activated at timestamp i. At times-

tamp i+1, each node u 2 Si attempts to activate each of its inactive outgoing

neighbour v with probability P(u, v).

• Once a node becomes active, it remains activated for subsequent iterations.

The procedure terminates when there are no more nodes can be activated,

i.e., St = ;, where t = 0, 1, 2, . . .

The influence spread �(S) of S is defined as the expected number of nodes

activated by the above procedure, i.e., �(S) = E[
Pt

i=0

Si].

LT Model. Di↵erent from the IC model, the LT model is to simulate the case

that a node is more likely to be influenced if most of its in neighbours are influ-

enced. In the LT model, each edge hu, vi is associated with a weight w(u, v) and
P

u2Nin(v)
w(u, v)  1, where Nin(v) is the set of in neighbours of v. Given a set S

of nodes, the first and the third steps of the LT model are the same as that in the

IC model. In the LT model, the second step works as follows.

• Let Si denote the set of nodes that are activated at timestamp i. At times-

tamp i+ 1, a node v 2 V \ [
0jiSj is activated if

P
u2[

0jiSj
w(u, v) � �v.

Similarly, the influence spread of S is the expected number of nodes activated

in the whole procedure.

Problem Statement. Given a social network G, a constant integer k and a

probabilistic di↵usion model M, the problem of influence maximization is to find

a set S⇤ of k nodes in G which has the largest influence spread, i.e.,

S⇤ = argmax
S✓V

{�(S)||S| = k}

S⇤ is called a seed set and each node u 2 S⇤ is a seed. In this chapter, we study

the case where M is set to IC model or LT model.
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Problem Hardness. As shown in [KKT03], the influence maximization prob-

lem is NP-Hard in the IC and LT models, and Chen et al. [CWW10, CYZ10]

have proved it is #P-Hard to calculate the influence spread of a seed set in both

models. Fortunately, the influence spread function �(S) satisfies the following two

properties.

• Monotonic property. For S, T ✓ V and S ✓ T , we have �(T ) � �(S).

• Submodular property. For S, T ✓ V , S ✓ T and u 2 V ^u /2 S [T , we have

�(S [ {u})� �(S) � �(T [ {u})� �(T ).

Based on these two properties, we can iteratively select the nodes with maximum

marginal influence until k nodes have been found. It will return a result with an

approximation ratio of 1� 1

e , if the influence spread is exactly calculated.

5.2.2 Preliminaries

In this section, we first introduce the bottom-k sketch, and then we revisit the RIS

based approaches.

Bottom-k Sketch

In this section, we briefly introduce the bottom-k sketch [CK07], which is used

in our BKRIS framework to obtain the statistics information for early stopping.

Bottom-k sketch is designed for estimating the number of distinct values in a mul-

tiset. Suppose N distinct points are uniformly distributed over (0, 1), then the

expected distance between any two adjacent points is 1

N+1

⇡ 1

N . Given a multiset

A = {v
1

, v
2

, · · · , vn} and a truly random hash function h, each distinct value vi in

the set A is hashed to (0, 1) and h(vi) 6= h(vj) for i 6= j. The bottom-k sketch

consists of the k smallest hash values, i.e., LA = {h(vi) | h(vi)  Lk
A ^ vi 2 A},
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where Lk
A is the k-th smallest hash value of the set. If |A|  k, we directly store all

the elements in A and we can exactly calculate the number of distinct value. So if

A > k the number of distinct value can be estimated with Equation (5.1).

D̂ = (k � 1)/Lk
A (5.1)

D̂ is an unbiased estimator. Based on the analysis in [BHR+07], the expected

relative error of the estimator is
p

2/⇡(k � 2) and the coe�cient of variation of

the estimation is no more than 1/
p
k � 2, which means the estimation converges

fast with the increase of k. To distinguish from the value k used in influence

maximization problem, hereafter in this chapter, we use bk to denote the parameter

k in the bottom-k sketch.

The RIS based Approaches

Before introducing the RIS framework, we fist clarify some concepts for the ease of

explanation.

Graph Distribution. The social network G under a probabilistic di↵usion model

M can be treated as a graph distribution G = {gi}. Each instance gi in the

distribution corresponds to a deterministic graph generated following the di↵usion

model M. In the IC model, gi is generated by flipping a coin on each edge hu, vi,

which is survived with probability P(u, v). In the LT model, for each node v 2

gi, we keep one living edge of its incoming neighbour or ; with probability 1 �
P

u2Nin(v)
w(u, v).

Definition 5.1 (Reverse Reachable Set). Given an instance gi from G and a node

v, the reverse reachable (RR) set is the set of nodes that can reach v in gi.

Definition 5.2 (Random Reverse Reachable Set). An RR set is a random reverse

reachable set if gi is randomly sampled from G and v is randomly selected from all
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the nodes V .

In the chapter hereafter, we use RR set to denote random RR set for short if

there is no ambiguity. The intuition of the RIS framework is that given a set R of

RR sets, if a set of nodes appears in R frequently, it is more likely to have large

influence spread. In addition, it is shown in [BBCL14b, TXS14] that Equation (5.2)

is an unbiased estimation of �(S) for both IC and LT models, where F (S,R) is the

number of RR sets in R covered by S.

I(S) = n⇥ F (S,R)

|R| (5.2)

Therefore, we can generate a large number of RR sets and find the seed set that

covers the maximum number of RR sets. Based on this intuition, the RIS framework

can be summarized in Algorithm 6.

Algorithm 6: RIS Framework

Input : G : a social network; k : number of seeds

Output: S : the seed set with size k

R ;; S  ; ;1

// Phase 1

Estimate a su�cient sample size ✓ ;2

Generate RR set and insert into R until |R| = ✓ ;3

// Phase 2

while |S| < k do4

Identify node v that covers the most number of RR sets in R ;5

S  S [ {v};6

Remove all the RR sets from R covered by v ;7

return S8
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The RIS framework consists of two phases. In the first phase, it tries to obtain

a sample size ✓ that will be large enough to guarantee the approximation ratio

for good estimation and returns a set R with ✓ RR sets. In the second phase it

goes through k iterations, each time it adds the node with the maximum marginal

coverage to the seed set.

In the three representative works [BBCL14a, TXS14, TSX15], the authors are

all trying to fix the first phase, i.e., reduce ✓, while the second phase is identical.

Borgs et al. [BBCL14a] use the number of edges visited when generating RR sets as

the measure of sample su�ciency, but it has a large constant factor in the equation

and does not work in practice. TIM/TIM+ [TXS14] concludes that ✓ should be

at least �/OPT to bound the performance. It also develops several approaches

to obtain a tight lower bound of OPT to get a small sample size. IMM [TSX15]

is the state-of-art method, which uses martingale to further reduce the size of �

and reuse the samples. So it can incrementally generates RR sets and estimate

a tighter lower bound of OPT until the stop condition is satisfied. Then it adds

enough samples to R instead of sampling ✓ RR sets from the beginning. IMM

significantly outperforms TIM/TIM+ in practice.

5.3 Bottom-k Based RIS Framework

In this section, we first introduce the motivation and the general framework of the

BKRIS method. Then we describe the details of each component in the framework.

5.3.1 Motivation and General Framework

As stated in Section 5.2.2, the three representative works are focusing on developing

novel techniques to reduce the sample size. However, even though IMM can reuse
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the samples and significantly reduced the sample size compared with TIM/TIM+,

the overhead of IMM is still large when k increases. As shown in Figure 5.2, we

report the processing time of phase 1, phase 2 and the total time for the IMM

method on four datasets by varying the seed set size k on the IC model. The

experiment setting can be referred to Section 5.4 for more details. We can see the

phase 1 of IMM becomes the bottleneck of its algorithm when k is large, and limits

its scalability.
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Figure 5.2: Overhead Evaluation for IMM

Motivated by the results, we may wonder if the overhead issue can be compro-

mised, if we can quickly determine a reasonable large sample size and use the oracle

in the motivating example. Thus it leads to our BKRIS framework. The BKRIS

framework can also be divided into two phases as stated in Algorithm 7.

Quick Sample Size Estimation. Di↵erent from that of IMM, the aim of our
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Algorithm 7: BKRIS Framework

Input : G : a social network; k : a positive integer.

Output: S : the seed set with size k

✓  QuickSampleSizeEstimation(G, k) ;1

S  IncrementalSeedsSelection(G, ✓, k) ;2

first phase is to quickly estimate a su�cient sample size ✓. The su�ciency of the

sample size is defined as follows. If we conduct the RIS nodes selection algorithm

with ✓ samples, it should return a seed set with 1 � 1/e � ✏ approximation ratio

with high probability. To fulfil the target, we develop an e�cient algorithm which

returns an exact lower bound of OPT and feed into the equation in IMM, i.e.,

�⇤/OPT .

Incremental Seed Selection. In the seed selection phase, we incrementally

materlize samples in a priority order and build the bipartite graph. We add a new

node to seed set when its sketch information fulfils the requirement. We also o↵er

several optimizations to accelerate the order generation process and reduce the cost

for the worst-case scenario.

5.3.2 Quick Sample Size Estimation

In this section, we present an e�cient approach to obtain a su�cient sample size ✓

for the IC model and the LT model.

Sample Size Requirement. According to the motivating example in Section 5.1,

given the oracle, we can find the seed set without materializing all the samples.

It seems that the sample size is not a big issue. We can simply set OPT to k in

the sample size equation �⇤/OPT used by IMM. However, if there are only k0 < k

nodes meet the oracle’s requirement after going through all the samples, we still
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needs to use the greedy algorithm to find k�k0 nodes under the RIS framework. In

this case, we still need to materialize all the samples, thus the sample size ✓ should

fulfil the following three requirements.

• The sample size cannot be too large. Otherwise, it will run slow in the worst

case, like the approach in [BBCL14a].

• The sample size should be su�cient. The su�ciency here means the sample

size should not be smaller than ✓ = �⇤

OPT = 2n·((1�1/e)·↵+�)2

OPT ·✏2 [TSX15] (↵, �

are functions of l, k, n). Otherwise, we cannot claim that the algorithm will

return a close influential seed set compared with the IMM method.

• The sample size should be computed e�ciently, otherwise it will become the

bottleneck of the whole algorithm. So we cannot use the method in IMM and

TIM, in which retrieving a good sample size takes the most part of the cost.

Intuition. To meet the above requirements, we should e�ciently obtain a lower

bound of OPT and feed into the equation used by IMM. Note that, we just use

the sample size equation in IMM, while our contribution here is providing a cost-

e↵ective method to obtain a lower bound of OPT .

In this chapter, we utilize the small world heuristics, that is we try to obtain

the lower bound by exploring limited steps of a set of k nodes. This property is

widely used by many heuristic approaches to solve influence maximization problem.

In particular, we only use 2-hop neighbours of k nodes to guarantee the e�ciency

of the algorithm. When the diameter (i.e., the longest path of the graph) of the

social network is small, it is still time consuming to calculate the exact influence

of k nodes in 2-hop neighbours under the IC model and the LT model. Thus we

explore the k nodes in BFS manner, i.e., we visit the nodes layer by layer and each
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node will visit its out going neighbours once. This strategy is fast but it will lead

to a slight drop compared with the exact influence to the 2-hop neighbours. So it

is a lower bound of the influence of the k nodes, and it is clearly a lower bound

OPT .
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Figure 5.3: Example of Sample Size

Obtain Lower Bound of OPT in the IC Model. The details of the method

on the IC model is presented in Algorithm 8. The input of the algorithm includes

a social network G and a selected node set S with k nodes. Initially, we set the

activated probability prob[u] of all the nodes equal 0, except the nodes in S, whose

probability is set to 1 in Line 1 and Line 2. H
0

and H
1

are two queues. H
0

stores

the nodes in the zero layer, i.e., the node set S. H
1

stores all the nodes that visited

in the first layer of S. c is a counter that stores the total influence calculated

with initial value as k. In Line 3, we mark all the nodes in H
0

as visited and the

other nodes as unvisited. The mark is used to avoid pushing the same node into

H
1

multiple times. Then we start to visit the nodes in H
0

one by one and push

the node visited in the first layer into H
1

in Line 12. For each popped node u,

we visit its each neighbour v 2 N(u). The cumulated influence on v is calculated

as (1 � prob[v])P(u, v)prob[u], where (1 � prob[v]) is the probability that v is not

activated by other nodes, and P(u, v)prob[u] is the probability that u activates v
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based on u’s current probability prob[u] and influence from u to v. So the cumulated

influence is the influence gain that brings from u to v. After processing the nodes

in H
0

, we continue the process on the nodes in H
1

until H
1

is empty. Based on the

definition of the IC model, the algorithm returns a lower bound of �(S), so it is

also a lower bound of OPT .

Algorithm 8: LowerBound
Input : G : a social network; S : a set of k nodes.

Output: A lower bound of �(S) (IC Model)

for each u 2 V do prob[u] 0 ;1

for each u 2 S do prob[u] 1 ;2

mark nodes in H
0

as visited and the other nodes as unvisited ;3

H
0

 S; H
1

 ;; c k ;4

while H
0

6= ; or H
1

6= ; do5

if H
0

6= ; then6

u H
0

.pop() ;7

else8

u H
1

.pop() ;9

for each v 2 N(u) do10

if v is not visited and u is popped from H
0

then11

push v into H
1

;12

mark v as visited ;13

c+ = (1� prob[v])P(u, v)prob[u] ;14

prob[v]+ = (1� prob[v])P(u, v)prob[u] ;15

return c16
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Example 5.2. Figure 5.3 is a small graph with probability (or weight for the LT

model) on each edge. With k equal 3, u
1

, u
2

and u
3

are the selected nodes. Initially

H
0

= {u
1

, u
2

, u
3

} and prob[ui] = 1 for i = 1, 2, 3. After exploring the first layer, v
1

,

v
3

and v
4

are pushed into H
1

and marked as as visited. prob[v
1

] = 0.2+ (1� 0.2)⇥

0.3 = 0.44, prob[v
3

] = 0.5 and prob[v
4

] = 0.3. When exploring the second layer, we

will encounter v
2

and v
3

. If we encounter v
2

first, prob[v
2

] = (1� 0)⇥ 0.5⇥ 0.5 =

0.25. If we encounter v
3

first, prob[v
3

] = 0.5+(1�0.5)⇥0.3⇥0.1 = 0.515 and then

the activating probability of v
2

will be prob[v2] = (1�0)⇥0.5⇥0.515 = 0.2575. Thus,

di↵erent visiting order will lead to slight drop on returned lower bound. However, it

guarantees the algorithm will run fast, which is the major concern in our framework

Obtain Lower Bound of OPT in the LT Model. For the LT model, the

Algorithm 8 stills hold, except that we need to change the probability of the edge

into the weight of the edge, and change Line 14 and Line 15 with the procedure

in Algorithm 9. It is easy to verify the correctness of the algorithm based on the

definition of LT model. Same as the problem in IC model, the algorithm may not

return the exact influence spread in 2-hop neighbours. Hence it returns a lower

bound of �(S) and OPT .

Algorithm 9: LowerBound(LT Model)

if prob[v] = 1 then continue ;1

c+ = P(u, v)prob[u] ;2

prob[v]+ = P(u, v)prob[u] ;3

Example 5.3. As shown in Figure 5.3, v
1

, v
3

, v
4

are on the first layer. prob[v
1

] =

0.5, prob[v
3

] = 0.5, prob[v
4

] = 0.3 after visiting the first layer. If we first visit v
2

in the second layer, then prob[v
2

] = 0.25, prob[v
3

] = 0.53 after visiting the second

layer.
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Choose the Nodes. To select a set of k nodes to feed into Algorithm 8, we use the

degree based heuristic method. The reason we do not use the simple degree discount

approach introduced in [CWY09] is that when the degree of nodes is large, degree

discount will incur more update cost and need to do k times selection operation to

obtain the final k nodes. It will be more cost when k is large. Therefore, we use

the degree heuristic to select the k nodes with the largest degree. Specially, we use

the unordered partial sorting approach [Hoa61], as we don’t care about the order

of these k nodes.

Discussion. The algorithm for obtain a lower bound of OPT runs in O(m + n)

time and the quick selection approach runs in O(n) time on average, so the time

complexity of sample size estimation is O(m+ n).

5.3.3 Incremental Seed Selection

In this section, we introduce the incremental seed selection method by using the

bottom-k sketch. Given sample size ✓, we aim to find k seeds that cover the most

samples. In addition, we introduce several optimizations to accelerate the searching

process and reduce the space. We start by introducing the procedure for selecting

the first seed, then extend it to select k seeds.

Select the First Seed

Given the sample size ✓, we randomly select ✓ nodes {(i, v)|i = 1, 2, · · · , ✓} from

G, where i is used as the id for this sample in case we sample the node v multiple

times. Note that, we do not materialize the sample here. So for each sample the

sample cost is O(1) currently. For each node in G, we maintain a counter initialized

with 0. For each sample (i, v), we randomly generate a hash value h(i, v) 2 (0, 1),

and sort the samples in increasing order of their hash value. We process the sample
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one by one in order. Let (i, v) be the current sample. We first retrieve the RR set

R(i, v). For each node u 2 R(i, v), we increase the counter of u by 1. When a node’s

counter reaches bk, which is the statistics pre-defined, we return it as the first seed.

If there is no node’s counter reaching bk after processing all the samples, we return

the one with the largest counter as the first seed. According to Lemma 5.1, the

above procedure is correct based on bottom-k sketch estimation.

Lemma 5.1. The procedure of selecting the first seed is correct based on bottom-k

sketch estimation.

Proof. Suppose u
1

is the node selected by the procedure after processing sample

(i, v
1

), which means the sketch size of u
1

reaches bk first and the bk-th hash value

equal h(i, v
1

). bk�1/h(i, v
1

) is an unbiased estimation of u
1

coverage on the sample.

Continue processing the following samples, if another node u
2

’s counter reaches bk

after processing sample (j, v
2

). We have h(j, v
2

) > h(i, v
1

) since we process samples

according to the order of their hash value. So the estimation size of u
1

is larger

than u
2

, and the lemma is correct

v1
h(1, v1) = 0.33

v2
h(2, v2) = 0.5

v3
h(3, v3) = 0.2

v4
h(1, v4) = 0.55

v3 v1 v2 v4

u1 u2 u3

0.2 0.33 0.5 0.55

Figure 5.4: Example of Seed Selection
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Example 5.4. As shown in Figure 5.4, the sample size ✓ equals 4 and nodes v
1

�v
4

are sampled. We generate four hash values for them as listed. bk is set as 2. The

bipartite graph shown in figure is the case if we have materialized all the samples’

RR sets, and the samples are sorted by their hash values. We process the sample

one by one in the order of their hash values. The samples linked with solid line

denote that we materialize their RR sets, while the samples with dotted line are

not materialized. As we go through the sample in order, u
1

is the first sample

with counter reaching bk, so it is selected as the first seed with estimation size

(2� 1)/0.33 = 3. If we continue checking samples, u
2

will be the second node with

counter reaching bk. u
2

’s bk-th hash value is 0.5 which is larger than that of u
1

0.33. So u
1

should be the first seed to be selected.

The Coe�cient of Variation of the estimation no more than 1/
p
k � 2. So the

estimation converges fast with bk, and we can obtain the node with the largest

coverage with high probability if bk is chosen properly. Thus if k equals 1, we can

terminate the algorithm when a node’s counter reaches bk. In this case, we save

the cost of constructing the bipartite graph and the cost of doing linear scan to

find the node with the largest coverage.

Optimization of Sample Order Generation. Based on the selection procedure,

in our problem, we only aim to select the first seed instead of estimating the

influence of a node, so we only care about the order of the samples based on their

hash values. It is easy to verify that if the hash values of samples are removed

and only sample order is kept, the procedure of selecting the first seed is still

correct. Hence, we can replace the Strategy 1 in Figure 5.5 with a random shu✏e

of the selected samples, i.e., Strategy 2 in the figure. The FisherYates shu✏e

algorithm [FY38] needs to generate ✓ random values and runs in O(✓) time, which

reduces the cost of sorting samples.
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Sample Size Ɵ

Ready Samples

Generate Samples One by One

Generate Samples and Hash

G
enerate Sam

ples

Shuffle Samples

Sort Sam
ples

Strategy 1

Strategy 2

Strategy 3

Figure 5.5: Sample Order Generation

However, the sample size ✓ can be very large in real applications, especially

when k increases. Moreover, in sample size estimation phase, we do not aim to

obtain a tight lower bound of OPT . According to Strategy 2 in Figure 5.5, we still

need to generate 2 ⇤ ✓ random variables: ✓ for getting samples and the other ✓ for

shu✏ing the samples. Even it runs in linear time, it is still memory consuming, in

particular, we may even not go through all the samples eventually. According to

Lemma 5.2, the Strategy 2 is equal to Strategy 3 in Figure 5.5, i.e.,, we only need

to sample a node when needed instead of sampling ✓ nodes in advance.

Lemma 5.2. The data distribution returned by the sample-shu✏e strategy equals

the data distribution returned by the directly sampling strategy.

Proof. To prove the distribution of this two procedures are equal, it is equivalent

to proving the probability of any node falling on the same position in the ordered

sample is the same. Put it another way, the probability of generating the same

ordered samples is identical. Given a node v 2 V and a position pi of the ordered

samples where 1  pi  ✓. Let P
2

(v, pi) and P
3

(v, pi) be the probability of a sample

node v falling on the position pi based on Strategy 2 and Strategy 3, respectively.

Strategy 2. Since it is sample with replacement, v can appear in ✓ multiple times.
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The probability that v appears in ✓ i times is shown in Equation (5.3).

P i(v) =

0

B@
✓

i

1

CA (
1

n
)i(1� 1

n
)✓�i (5.3)

Suppose the node v appears in the samples i times, then the probability of v

appearing in pi equals to i
✓ . Since for a random shu✏e, the probability of each

sample appears in any position is equivalent. Thus we have:

P
2

(v, pi) =
✓X

j=1

Pj(v)⇥ j

✓

=
✓X

j=1

0

B@
✓

j

1

CA (
1

n
)j(1� 1

n
)✓�j ⇥ j

✓
=

1

n

Procedure 3. Since each sample is independent with others, any node appears in pi

with equal probability. We have P
3

(v, pi) =
1

n .

P
2

(v, pi) = P
3

(v, pi), so the lemma is correct.

Based on Lemma 5.2, we only need to generate samples when needed, instead

of using O(✓) space in advance. In this case, we save both the space and time for

generating the order of sample.

Select Subsequence Seeds

Based on the idea of selecting the first seed, we can easily extend it for selecting

k seeds. The general idea is that for each node u we maintain a list records the

samples u can reach so far and a counter for the list. After identifying the first

node u0, for the other nodes, we remove the samples covered by u0 and reduce their

counters accordingly. For each following sample (i, v), if its RR set contains the

nodes in the found seeds, we just discard it. In this case, the remaining condition is

equivalent to selecting the first seed. Algorithm 10 describes the details of selecting

k seeds.
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The input of the Algorithm 10 consists of a sample size ✓, a social network G and

the required seed set size k. The algorithm can be divided into two procedures. The

first one is bottom-k based seed selection and the second is a clear-up procedure

to deal with the case when we cannot select k seeds by using the first procedure.

In Line 1 and Line 2, we initialize the variables for the algorithm. q is a counter

that counts the number of RR sets sampled. L(u) records the samples that u

reaches so far and C(u) is its corresponding counter. When q is smaller than ✓ and

|S| is smaller than k, we continue retrieving samples. Line 4 and Line 5 can be

combined into one process, i.e., when we try to obtain the RR set of a sample, if

we meet a node in S, we discard this sample and go to the next iteration. This is

a safe discard, since the sample is covered by S. Otherwise, we update the counter

and the list of u in the RR set in Line 6. If a node’s counter reaches bk, we select

it as the next seed and remove all the nodes covered by it from other nodes’ lists

in Line 8–13. When we cannot select k seeds after the first procedure, it goes to

the clean-up phase, which is simply to select the nodes one by one based on the

nodes counters in Line 16. After selecting a node, it also needs to update the list

and counter for the other nodes in Line 17–20.

Example 5.5. Following Example 5.4, we assume k = 2 in this case. After pro-

cessing the second samples, the counter C(u
1

) of u
1

reaches bk and selected as the

first seed. After updating, the counter of u
2

is equal to 0. Then we process the third

sample v
2

. Since u
1

is in its RR set, we stop retrieving its RR set when we meet

u
1

, and continue to the next iteration. After processing the last sample, the counter

of u
3

is 1 < bk, so we go to the clean-up procedure. Finally, u
3

is selected as the

second seed, since it has the largest counter among the rest nodes.

Optimization of Clean-up Procedure. If we cannot select k seeds in the first

phase, we have to go to the clean up procedure. Since we need to do k � |S|
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iterations to select the seeds with maximum counter among n nodes, which is time

consuming when n and k � |S| are large. As the counters of nodes are updated in

each iteration, a simple sort is not working. However, the reason we go into the

clean-up procedure is that none of the node’s counter reaches bk, which means the

counters of the rest nodes are all smaller than bk. Thus we can only maintain bk

lists from 0 to bk� 1, each list stores the nodes with their counter equal to the list

number. Then we only need to go through the list from number bk� 1 to 0 to find

the rest seeds. The optimized clean up method is described in Algorithm 11.

By scanning the n nodes once, we partition the nodes into bk lists in Line 2

according to their counters. Then we go through these lists from with large counter

to small. If the current list is not empty, we obtain a node from the list and add it to

the seed set from Line 5 to Line 8. Then we update the counters of nodes and move

them to the new list with list number equal their counters in Line 14. The process

terminates when |S| is equal to k. The movement can be fast if implemented with

linked list. It can run faster if we maintain bk arrays of size n when enough memory

is available.

Example 5.6. We replace the clean-up procedure in Example 5.5 with the optimized

one. After going to the optimized clean-up, we first scan the nodes, and create two

lists: L
1

= {u
3

} and L
0

= {u
2

}. Then we obtain the next seed from list L
1

.

Discussion. The expected time complexity of the seed selection phase is equal to

O(✓|R|) in the worst case, when we need to materialize all the samples to find the

seed set, where |R| is the expected size of an RR set. According to Algorithm 10, in

each iteration it is identical the case to find the nodes with the largest coverage (i.e.,

largest marginal coverage), so the returned seed set can guarantee a small error in

sample coverage compared with the results from directly doing RIS algorithm on

the same sample size, when bk is well chosen.
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5.3.4 Summary

Since in the sample size estimation phase, we develop an exact lower bound of

OPT without any approximation and feed into the equation in [TSX15] to get the

sample size ✓. If we conduct the RIS method directly on ✓ samples, it should return

a seed set with 1� 1/e� ✏ approximation ratio with 1� n�l probability, according

to the analysis in [TSX15]. In the second phase, based on sample size ✓, it returns

a set of k nodes with competitive performance on sample coverage and its success

probability proportional to bk. So combine the two phase together, the BKRIS

algorithm can return a seed set of k nodes with 1 � 1/e � ✏ � ✏
1

approximation

ratio with probability 1 � n�l, where ✏
1

= O(1/
p
bk) is the error involved by the

bottom-k sketch. As shown in the experiment, the influence spread of the returned

seed set converges fast with bk, and we set bk = 16 by default in the experiments.

5.4 Experiments

In this section, we present the results of a comprehensive performance study on

the IC model and the LT model to evaluate the e�ciency and e↵ectiveness of the

proposed techniques in this chapter.

5.4.1 Experiment Setup

Algorithms. We compare our algorithm with the IMM algorithm [TSX15] which

is the state-of-the-art method for both the IC model and the LT model. The

parameters ✏ and l on the IMM method are set to 0.5 and 1, respectively, which is

the default setting in [TSX15]. ✏ and l is set to the same value in our algorithm.

The bk statistics is set as 16 by default, and we also investigate the impact of bk

in the empirical study.
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Datasets. To demonstrate the e↵ectiveness and e�ciency of our method, we con-

duct experiments on 10 real world social networks. The details of the datasets are

reported in Table 6.2, and we provide a short name for each dataset. The Nethept

dataset is obtained from [TSX15], and all the other 9 datasets are downloaded from

SNAP 1. The largest dataset used in the experiments is Friendster (FR), which has

more than 1.8 billion edges.

Di↵usion Model and Work Load. We demonstrate the performance of the

proposed algorithms on the IC model and the LT model then compare with the

IMM method. For the IC model, the probability on each edge hu, vi is set as

1

indeg(v) , where indge(v) denotes the number of incoming edges of the node v. For

the LT model, the weight of each edge hu, vi is set as 1

indeg(v) . These are widely used

setting in literatures [CWY09, CYZ10, TSX15]. We vary the seed set size k form

10 to 5000, with 5000 as default to demonstrate the scalability of the evaluated

methods. To verify the algorithms’ e↵ectiveness, we conduct 10,000 round Monte

Carlo simulations on each returned seed set to calculate its influence spread. On

each setting and dataset, we run each algorithm five times and take the average as

the final results.

Implementation and Environment. The source code of the IMM method is

obtained from the authors. For our algorithm, we use the same basic data structure

as IMM for the fairness of the comparison. All experiments are carried out on a

PC with Intel Xeon 2.30GHz and 96G RAM. The operating system is Redhat. All

algorithms are implemented in C++ and compiled with GCC 4.8.2 with -O3 flag.

1
https://snap.stanford.edu/data/
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5.4.2 Parameter Tuning

In this section, we present the results on the tuning of the parameter bk in our

algorithm. Experiments are conducted on two datasets, Epinions and Gowalla, for

the IC model and the LT model. As analyzed previously, the influence spread of

BKRIS should converge rapidly with the increase of bk. We vary bk from 4 to 64

in the experiments.

We first present the results on the IC model. The response time and the influ-

ence spread are reported in Figure 5.6. Note that BKRIS-X represents the BKRIS

algorithm whose bk is set to X. In Figure 5.6(c) and 5.6(d), as the increase of

bk, the response time grows. From Figure 5.6(a) and 5.6(b), we can find that the

e↵ectiveness of BKRIS converges fast with bk. When bk reaches 8, the drop of the

performance becomes less significant. In Figure 5.7, similar observation is reported

from the experiments for the LT model. Thus, in the following experiments, we set

bk to 16.

5.4.3 Results on the IC Model

In this section, we present the experiment results conducted on the IC model.

Results on all the Datasets. We first conduct the experiments on all the 10

datasets. For the ease of comparison on di↵erent datasets, we report the e↵ective-

ness ratio and speedup ratio of two algorithms. In particular, the e↵ectiveness

ratio and speedup ratio of IMM are defined in Equation 5.4, and that of BKRIS

are always set to 1.

E↵ectiveness ratio =
influence spread of IMM

influence spread of BKRIS

Speedup ratio =
response time of IMM

response time of BKRIS

(5.4)

In Figure 5.8, we evaluate the e↵ectiveness ratio on 10 datasets with k to be
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5,000. We also report the influence spread of BKRIS, which is marked on the top

of bar of BKRIS. The e↵ectiveness ratio of IMM is rather close to 1 for most of

the datasets, and the only noticeable gap is from Patent dataset, on which the

influence spread of BKRIS and IMM is 270,492 and 278,900, respectively. This

shows that two methods have the similar performance in terms of influence spread.

Nevertheless, Figures 5.9 reports that BKRIS outperforms IMM on running time

by a wide margin, up to two orders of magnitude speedup, on all datasets. The

running time (in second) of BKRIS on each dataset is marked on the top of the

corresponding bar. These results suggest that BKRIS is superior to IMM because

BKRIS can achieve the similar influence spread with much less running time. Take

the largest dataset FR as an example, IMM takes 3664.97 seconds to identify the

seed set, while BKRIS only uses 36.66 seconds to achieve the same influence spread.

Results on Selected Datasets. We also report more results on six selected

datasets with di↵erent scales. In particular, Nethept and Gowalla represent the

small graphs, Youtube and Patent represent the medium graphs, and Orkut and

Friendster represent the large graphs. The influence spread and response time

are reported in Figure 5.10 and 5.11 by varying k from 50 to 5000. As shown in

Figure 5.10, two algorithms achieve the similar influence spread except there is a

slight drop on the Patent dataset. However, BKRIS significantly outperorms IMM

under all the settings, achieving the speedup of up to two orders of magnitude.

5.4.4 Results on the LT Model

In this section, we report the experiment results conducted on the LT model.

Results on all the Datasets. In Figure 5.12 and 5.13, we report the e↵ectiveness

ratio and speedup ratio on the 10 datasets under the LT model with k to be

5000. We place the influence spread and response time of BKRIS on the top of
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its corresponding bar. Similar to the results reported for the IC model, on the LT

model the e↵ectiveness ratio is almost 1 for all the datasets, except a slight drop

on the Patent dataset. However, BKRIS achieves more than 2 orders of magnitude

speedup compared with IMM. It is observed that, under the same setting, the

algorithms have longer response time compared with their performance on the IC

model. This is because in order to generate a random RR set for a chosen node,

we need to flip a coin for each relevant edge in the IC model while this is imposed

to each relevant node in the LT model.

Results on Selected Datasets. In this set of experiments, we report the perfor-

mance of two algorithms on the selected datasets used in the IC model by varying k

from 10 to 5000. The results are reported in Figure 5.14 and 5.15. Same as the IC

model, BKRIS runs much faster than IMM regarding all k values and meanwhile

can achieve almost the same influence spread. It is noticed that in Figure 5.14(d),

the di↵erence of influence spread on the Patent dataset becomes smaller compared

with the results on the IC model, but BKRIS still maintains significant speedup

over IMM. In Figure 5.15(f), it only takes 0.55 seconds for BKRIS to return 50

seeds, while IMM uses 28.93 seconds.

5.4.5 Summary

Our comprehensive experiments clearly demonstrate the superiority of BKRIS com-

pared to the state-of-the-art technique IMM on two popular influence models. Par-

ticularly, among the 10 real network datasets, BKRIS consistently reach the similar

influence with IMM, while runs up to two orders of magnitude faster. It is also

observed that BKRIS is more scalable towards the k value and the size of the net-

work, which makes BKRIS more applicable to handling big network data emerging

in the era Big Data.
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5.5 Conclusion

In this chapter, we investigate the influence maximization problem. As we study,

the state-of-the-art method [TSX15] still has limitations in scalability in both k

and dataset size. In this chapter, we provide a more e�cient solution, BKRIS,

which integrates the bottom-k sketch with the RIS framework. Particularly, we

bring the order of the samples into the RIS framework, which enables us to achieve

possible early termination before materializing all the samples. In addition, we can

incrementally identify seed set, which avoids the cost of linear scan k times to find

the seeds. To bound the quality of returned seeds, we propose an e�cient heuristic

approach to obtain a lower bound of OPT . We also propose several optimizations

to deal with sample order generation and the worst case processing. We conduct

extensive experiments on 10 real social network datasets. Compared with IMM,

we can achieve up to 2 orders of magnitude speedup.
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Algorithm 10: IncrementalSeedSelection

Input : ✓ : RR set sample size; G : a social network; k : a positive integer.

Output: a seed set of size k

S  ;; q  0 ;1

for each u 2 V do L(u) ;; C(u) 0 ;2

// Bottom-k based Seed Selection

while q  ✓ and |S| < k do3

Sample a random RR set Ri ; /* retrieve Ri is stopped when4

meeting a node in S */;

if Ri \ S 6= ; then continue ;5

for each u 2 Ri do L(u) L(u) [ {i}; C(u) + + ;6

for each u 2 Ri do7

if C(u) = bk then8

for each j 2 L(u) do9

if Rj is not visited then10

Mark Rj as visited ;11

for each u0 2 Rj do C(u0)�� ;12

S  S [ {u}; break ;13

q ++ ;14

// Clean-Up

while |S| < k do15

S  S [ u with the largest C(u) ;16

for each j 2 L(u) do17

if Rj is not visited then18

Mark Rj as visited ;19

for each u0 2 Rj do C(u0)�� ;20

return S21
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Algorithm 11: CleanUpOptimization

for i from 0 to bk � 1 do Li  ; ;1

for u 2 V \ S do LC(u)  LC(u) [ {u} ;2

p bk � 1 ;3

while |S| < k do4

if Lp = ; then5

p�� ; continue ;6

u Lp.pop() ;7

S  S [ {u} ;8

for each j 2 L(u) do9

if Rj is not visited then10

Mark Rj as visited ;11

for each u0 2 Rj do12

C(u0)�� ; ;13

move u0 to LC(u0
)

;14

Dataset n m
Nethept (NE) 15,229 62,752
Epinions (EP) 75,879 508,837
DBLP (DB) 317,080 2,099,732
Gowalla (GO) 196,591 3,801,308
Youtube (YT) 1,134,890 5,975,248
Patent (PA) 3,774,768 16,518,948
Pokec (PO) 1,632,803 30,622,564

Livejournal (LJ) 4,847,571 68,993,773
Orkut (OR) 3,072,441 234,370,166

Friendster (FR) 65,608,366 1,806,067,135

Table 5.2: Summary of Datasets
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Figure 5.6: Tuning bk on the IC Model
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Figure 5.7: Tuning bk on the LT Model
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Figure 5.8: E↵ectiveness Ratio on the IC Model (the influence spread of BKRIS is
marked on the bar)
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Figure 5.12: E↵ectiveness Ratio on the LT Model (the influence spread of BKRIS
is marked on the bar)

 0.1

 1

 10

 100

NE EP DB GO YT PA PO LJ OR FR

S
p

e
e

d
u

p
 R

a
tio

BKRIS
IMM

0
.0

3
4
s

0
.1

2
5
s

0
.6

8
8
s

0
.5

5
9
s

0
.6

2
4
s

1
.4

9
0
s

2
.9

6
3
s

4
.3

7
2
s

1
2
.3

4
s

3
0
.1

1
s

Figure 5.13: Speedup Ratio on the LT Model (the response time of BKRIS is
marked on the bar)



126 Chapter 5. A Novel Scalable Method for Influence Maximization

 4000

 8000

 12000

 16000

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(a) Nethept

 60000

 90000

 120000

 150000

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(b) Gowalla

 200000

 400000

 600000

 800000

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(c) Youtube

 100000

 200000

 300000

 400000

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(d) Patent

 400000

 800000

 1.2x106

 1.6x106

 2x106

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(e) Orkut

 3x107

 4x107

 5x107

 6x107

 7x107

 0  1000  2000  3000  4000  5000

In
flu

e
n

ce
 S

p
re

a
d

k

BKRIS
IMM

(f) Friendster

Figure 5.14: Influence Spread on the LT Model
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Chapter 6

Maximum Closeness Centrality

Group Identification

6.1 Overview

As a subject of broad and current interest, social networks have been widely studied

for decades. A social network is usually represented as a graph G = (V,E) where

V denotes the set of nodes (users) and E denotes the set of edges (relationships

among users). Centrality, which measures the importance of a node in a social net-

work, has been a fundamental concept investigated in the social networks. There

are di↵erent measurements of centrality developed for various purposes, such as

closeness centrality [Bav50], betweenness centrality [AGW15], eigenvector central-

ity [BL15a], etc. In this chapter, we focus on the classic closeness centrality, which

is defined as the inverse of the average distance from a node to all the other nodes

in the social network. The distance between two nodes is calculated by the shortest

path distance. The smaller the average distance of a node is, the more important

or more influential the node will be. To find the influential nodes (users) in a social

128
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network, many research e↵orts have been made to find the k nodes with the largest

closeness centrality [EW01, OCL08, OLH14]. However, in many real applications,

such as team formation, we may need to find a set of k users which has large close-

ness centrality as a group, instead of returning the k independent users in the top-k

ranking. In this chapter, we extend the definition of closeness centrality for a single

node to a set of nodes. Specifically, the closeness centrality of a set S of nodes is

defined as the inverse of the average distance from S to the nodes in G. And the

distance from S to a node u 2 V is defined as the minimum distance from u to the

nodes in S. The maximum closeness centrality group identification problem is to

find a set of k nodes in the social network with the largest closeness centrality.

The challenges of the problem lie in two aspects. First, we show that the

problem is NP-Hard, thus there is no polynomial time solution unless P=NP. For-

tunately, we prove that the objective function is monotonic and submodular. It

means we can obtain a result with 1�1/e approximation ratio by adopting a greedy

framework. Second is that we still need the information of the all pairs shortest

path distances even for the simple greedy algorithm, which is prohibitive to com-

pute (O(|V |3) time) and store (O(|V |2) space) when the graph is large. There

are some e�cient index such as the network structure index techniques [RMJ07].

It partitions the graph into zones and approximates the shortest path distance

between two nodes by using their distances to the same zone. However, this ap-

proximation o↵ers no guarantee for the quality of the returned distance. In order

to scale to large graphs, we propose a sampling based approach by extending the

traditional sampling method for estimating the closeness centrality of a single node.

In addition, we bring order into the samples, such that the nodes can be identified

incrementally. Then we utilize the selected nodes to reduce the cost of computing

the distances from the nodes to the samples. To further accelerate the process, we
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develop optimization techniques to reduce the updating cost for the less important

nodes. Through experiments on real world social networks, we verify the e�ciency

and e↵ectiveness of the proposed techniques.

The rest of the chapter is organized as follows. Section 6.2 formally intro-

duces the problem studied in this chapter as well as the greedy algorithm based

framework. Section 6.3 presents the proposed sampling based algorithms. We

demonstrate the e�ciency and e↵ectiveness of the proposed techniques on four real

social networks in Section 6.4 and conclude the chapter in Section 6.5.

Notation Meaning
G a social network

V (E) the set of nodes (edges) of G
k number of selected nodes

n(m) the number of nodes (edges) in G
u, v a node or user in V
S a selected seed set with S ✓ V

c(S) closeness centrality of S
ĉ(S) estimation of c(S)
L a set of samples with |L| = l

Table 6.1: Summary of Notations

6.2 Background

We formally define the problem of maximum closeness centrality group in this

section. Then we analyze the properties of the objective function and introduce our

greedy algorithm based framework. Table 6.1 summarizes the notations frequently

used throughout the chapter.
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6.2.1 Problem Definition

We consider a social network G = (V,E) as an undirected connected graph, where

V denotes the set of nodes, and E denotes the set of edges. |V | = n and |E| = m.

For each edge, we assign a weight to it, denoting the distance between the two

nodes. For nodes u, v 2 V , the distance d(u, v) between the two nodes is calculated

as the shortest path distance and d(u, u) = 0. Then the classic closeness centrality

of a node u is defined by the inverse average distance from u to the nodes in G.1

By extending the classic closeness centrality for a single node, we can define the

closeness centrality for a set of nodes as follows.

Definition 6.1 (Closeness Centrality for a Set of Nodes). Given a social network

G and a set S (S ✓ V ) of nodes, the closeness centrality of S is denoted by c(S),

which is measured by the inverse average distance from S to all the nodes in G,

i.e.,

c(S) =
nP

v2V d(S, v)

where d(S, v) = min{d(u, v)} for u 2 S.

Problem Statement. Based on Definition 6.1, we define the maximum closeness

centrality group identification (MCGI) problem as follows. Given a social network

G and a positive integer k, the MCGI problem aims to find a set S⇤ of k nodes

that has the largest closeness centrality, i.e.,

S⇤ = argmax
S✓V

{c(S) | |S| = k}. (6.1)

The selected node set is call seed set and each node in the set is called a seed.

According to Lemma 6.1, the MCGI problem is NP-Hard.

1Note that there are di↵erent variants of the definition of closeness centrality, in this

chapter we focus on the classic closeness centrality.
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Lemma 6.1. The maximum closeness centrality group identification problem is

NP-Hard.

Proof Sketch. The correctness of Lemma 6.1 can be proved by reducing from

a known NP-hard problem “k-means clustering problem in the Euclidean

space” [ADHP09]. The polynomial time reduction can be summarized as follows.

Each object in the k-means clustering corresponds to a node in the social network.

The k centers in the k-means clustering problem correspond to the selected k nodes.

The Euclidean distance between objects corresponds to the shortest path distance

between nodes in MCGI. Even if we can compute the shortest path distance in

constant time, the hardness of the problem still remains the same.

6.2.2 Objective Function Analysis

According to Lemma 6.1, we know that there is no polynomial time solution for

the MCGI problem. Fortunately, based on Lemma 6.2, the closeness centrality

function for a set of nodes shown in Definition 6.1 has the following two properties.

• Monotonicity. Given any two sets S, T ✓ V with S ✓ T , a function f(x) is

monotonic, if f(S)  f(T ).

• Submodularity. Given any two sets S, T ✓ V with S ✓ T and v 2 V \ T , a

function f(x) is submodular, if f(S [ {v})� f(S) � f(T [ {v})� f(T ).

Lemma 6.2. The closeness centrality function for a set of nodes is monotonic and

submodular.

Proof. Assume there are two sets satisfying S, T ✓ V with S ✓ T .

• Monotonic. Since the shortest path distance from a set S of nodes to a single

node v is decided by the minimum distance from nodes in S to v, we have
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d(S, u) � d(T, u) for u 2 V . Thus we have
P

u2V d(S, u) �
P

u2V d(T, u),

which means c(S)  c(T ). Consequently the monotonic property is correct.

• Submodularity. Given two nodes u, v, where v 2 V \ T and u 2 V , we

divide the proof into two conditions. (1) If d(T, u) > d(T [ {v}, u), it means

the distance from u to v is smaller than that of u to any node in T , so is for S.

Then we must have d(T [{v}, u) = d(S[{v}, u) = d(v, u). In hence, we have

d(S[{v}, u)�d(S, u)  d(T [{v}, u)�d(T, u). (2) If d(T, u) = d(T [{v}, u),

it means u is closer to nodes in T . Thus we have d(S [ {v}, u) � d(S, u) 

d(T [ {v}, u)� d(T, u) = 0. Then 1

c(S[{v}) �
1

c(S) 
1

c(T[{v}) �
1

c(T )

holds. Thus

the submodular property holds based on the definition of closeness centrality.

6.2.3 Greedy Algorithm Framework

Since the objective function is monotonic and submodular, we can utilize the greedy

algorithm to iteratively select the node with the largest marginal gain (i.e., the node

will increase the closeness centrality of the set most by adding it). According to

the proof of Nemhauser et al. [NWF78], for submodular monotone functions, any s

prefix of the greedy sequence has the centrality score that is at least 1�(1�1/s)s �

1�1/e of the optimal score, which means the greedy algorithm provides a bounded

approximation to the optimal solution of the NP-hard problem. Therefore, through

k iterations it can return a set S of k nodes with 1� 1/e approximation ratio, i.e.,

c(S) � (1 � 1/e)c(S⇤), where S⇤ is the optimal result. The details of the greedy

algorithm framework are shown in Algorithm 12.

In Algorithm 12, S maintains the set of nodes already selected in the previous

iterations. M is a matrix that stores the distance d(S [ {u}, v) (v 2 V ) for each
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Algorithm 12: GreedyFramework

Input : G : a social network, k : a positive integer.

Output: S : a set of k nodes

S  ; ;1

M  all pairs shortest path distances ;2

Score {c(u) | u 2 V };3

while |S| < k do4

v = argmaxw2V \S Score[w] ;5

S  S [ {v} ;6

for each u 2 V \ S do7

for each w 2 V do8

if d(u, w) > d(v, w) then9

M [u, w] = d(v, w) ;10

Score[u] c(S [ {u}) ;11

return S12

node u. Score is a vector that maintains the closeness centrality of adding u to S,

i.e., c(S [ {u}) for each node u 2 V . And Score[u] equals c(u) at the beginning.

After initialization, we iteratively select the node with the largest marginal gain

from V \S in Line 5. After selecting the node v with the largest marginal gain, we

add it to S and update the distance matrix M as well as the Score value for each

node u 2 V \S from Line 7 to 10. The procedure is repeated until we find k nodes.

Example 6.1. As shown in Figure 6.1, the weight of each edge is marked on

the edge. Initially, we compute the all pair shortest path distance: d(v
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Figure 6.1: Greedy Algorithm

each node is calculated: c({v
1

}) = 4/3, c({v
2

}) = 4/5, c({v
1

}) = 4/5, c({v
1

}) = 4/5.

Thus v
1

is the first node selected.

Analysis. The space complexity of Algorithm 12 is O(n2), since we need to store

the all pairs distances in M . To compute the all pairs shortest paths, we can use

the Floyd-Warshall algorithm which needs O(n3) time. Note that we can also use

other algorithms to compute the all pairs shortest paths but it is not the major

concern in this chapter. In the node selection phase, we need O(kn2) time to select

the k nodes as we need to update the distance matrix and the marginal gain for

all the unselected nodes after each iteration.

6.3 Sampling based Algorithms

Although the greedy approach in Algorithm 12 can return a result with a bounded

approximation ratio, i.e., 1 � 1/e, it su↵ers from serious limitations when scaling

to large graphs. As analyzed previously, it needs O(n2) space to store the all pairs

distances, which is prohibitive for large graphs. If we do not store the all pairs dis-

tances in memory and only compute them on the fly when needed, the computation
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time is still not a↵ordable for large graphs. Moreover, we need considerable amount

of time to update the marginal gain for each node in each iteration. Therefore, we

propose two sampling based approaches to make it possible to scale to large graphs

in this section.

6.3.1 Baseline Sampling Method

To make it possible for processing large graphs, a natural consideration is to utilize

the sampling techniques. It is able to obtain a high quality result by accessing

only a small part of the graph’s information. In the previous works, sampling

based approaches are developed to estimate the closeness centrality of a single

node, or to identify the top-k closeness centrality nodes. The idea of estimating

the closeness centrality of a single node u can be summarized as follows. We first

randomly sample several nodes L without replacement from V . Then we calculate

the shortest path distances from u to all the samples v 2 L. Next we use the

average distance from u to all the samples as an estimation of the average distance

of u to all the nodes. The estimator is presented in Equation (6.2).

ĉ(u) =
lP

v2L d(u, v)
(6.2)

The sample size l = |L| is usually much smaller than n in order to get a good

estimation. Through this way, we can quickly estimate the closeness centrality of

a node with theoretical guarantee [CDPW14a, CCK15, Coh14]. Motivated by the

idea, we can use the average distance from a set S of nodes to all the samples as

the estimation of the average distance of S to all the nodes. It can be formally

expressed in Equation (6.3).

ĉ(S) =
lP

v2L d(S, v)
(6.3)
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where L denotes the sample set of size l. It is easy to verify 1/ĉ(S) is an unbiased

estimation of 1/c(S), i.e., 1/c(S) = E [1/ĉ(S)].

Based on the estimator, we can modify Algorithm 12 to apply the sampling

technique and solve the MCGI problem. The idea is to use the estimated closeness

centrality and marginal gain to replace the exact calculated value in the greedy

framework. To be more specific, we first sample l nodes from V . For the distance

matrix M , it stores the distances from each node u 2 V to all the samples, i.e.,

d(S [ {u}, v) (v 2 L). Initially, it only stores the distances from all the nodes to

the l samples. This can be done by running a single source shortest path algorithm

from every sample. Similarly, Score[u] stores ĉ(S [ {u}). Then we iteratively

select k nodes with the largest marginal gain based on the sampling method. The

pseudo-code is omitted due to the space limitation.

Example 6.2. As shown in Figure 6.1, suppose the sample size is v
4

is the sam-

pled node. We first compute the distance from other nodes to v
4

and compute the

estimated closeness centrality, i.e., ĉ(v
1

) = 1, ĉ(v
2

) = 1/2, ĉ(v
3

) = 1/2. While the

estimated influence for v
4

is +1, since the distance to itself is 0.

Analysis. The space cost is O(nl) for the baseline sampling algorithm, since

only the distances from all the nodes to the l samples are maintained. In order

to compute the initial matrix M , we can run l times single source shortest path

algorithm (e.g., Dijkstras algorithm) which requires O(l(m + n log n)) time. We

also need O(kln) time to select the k nodes. Due to the sampling techniques, the

result will have 1� 1/e� ✏ approximation ratio, where ✏ is the error introduced by

sampling. From previous studies [Ind99, Tho01, EW01] we know the estimation

procedure converges quickly with the sample size l. Thus both space and processing

time are reduced compared with Algorithm 12.
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6.3.2 Order based Sampling Method

Although the baseline sampling algorithm can greatly reduce the space cost and

time complexity, there is still room for improvement.

• The first limitation is that it strictly separates the shortest path distance

calculation phase and the node selection phase. As introduced later, we can

further reduce the cost if incrementally doing the sampling and the seed

selection.

• The second limitation is that after selecting a node, it needs to update the

marginal gain for all the nodes, which is costly when n is large. Since most of

the nodes are insignificant, i.e., with small closeness centrality, we can save

time if we can avoid updating their marginal gain.

Based on the observations, we present two optimized techniques to further re-

duce the cost of baseline sampling algorithm.

Incremental Sampling and Node Selection. Incremental sampling is aiming

to tackle the first limitation. Before introducing the details techniques, we first

explain the motivation. Suppose we plan to sample l samples in total, based on the

first l0 < l samples nodes, we already select some nodes into S (using l0 samples).

Then we can use these selected nodes (seed set) to reduce the calculation cost

of shortest path distances for the rest l � l0 samples. Following is a motivating

example.

Example 6.3. As shown in Figure 6.2, assume k = 2, l = 10 and the weight of

each edge is 1. We first sample 5 samples and adopt the 5 samples into the baseline

sampling framework, and we select the first seed v
4

. In hence currently S = {v
4

}.

Next, we examine the rest 5 samples to find the second seed. Suppose v
3

is the next



Chapter 6. Maximum Closeness Centrality Group Identification 139

2 3

1 4…... …...

8

9

0

5

6

7

…
...

…
...

Figure 6.2: Motivating Example of Incremental Sampling and Node Selection

sampled node, then we start running a Dijkstra’s algorithm from v
3

. The property

of Dijkstra’s algorithm is that it will incrementally reach the nodes close to the

source node. So in the figure, v
3

first reaches nodes v
2

and v
4

with shortest path

distance of 1. Remember that v
4

is the node already selected. Then we do not need

to further compute the distance from all the other nodes to v
3

, as their distances are

greater than that of v
4

. The reason is that adding any of them to S will not change

the distance from S to the sample v
3

. Consequently, their distances to v
3

are all

recorded as 1 = d(v
3

, v
4

), that is for v0 2 V \{v
2

, v
3

, v
4

}, it holds d(S[{v0}, v
3

) = 1.

We can apply this strategy to other sampled nodes to reduce the computation cost.

According to the motivating example, if we can incrementally do the sampling

and node selection, we will significantly reduce the cost of computing shortest path

distances from nodes to the samples. To fulfill it, we firstly divide the sample into

k partitions {P
1

, P
2

, ..., Pk}. For the i-th node selection, we compute the distances

from all the nodes to the samples in Pi by utilizing the selected i � 1 nodes. For

a sample in Pi, we start a Dijkstar’s algorithm from it and we can terminate the

shortest path computation, if we reach a selected node. We repeat this procedure

for all the samples in Pi and we can obtain the node with the largest marginal

gain by considering the estimation due to samples in [ij=1

Pj. The details of the

algorithm are shown in Algorithm 13.
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Algorithm 13: OrderBasedSampling

Input : G : a social network, k : a positive integer, l : sample size.

Output: S : a set of k nodes

S  ;; Score ;; M  ; ;1

Get samples and partitions {P
1

, P
2

, ..., Pk} ; /* partition of l samples2

*/;

for i from 1 to k do3

Compute the distance from all nodes to Pi with S as constraint ;4

Update Score for u 2 V \ S based on the samples in [ij=1

Pj ;5

v = argmaxw2V \S Score[w] ;6

S  S [ {v} ;7

for each u 2 V \ S do8

for each w 2 [ij=1

Pj do9

if d(u, w) > d(v, w) then10

M [u, w] = d(v, w) ;11

return S12

In Algorithm 13, we sample l nodes and divide them into k partitions in Line 2.

To get l samples without replacement, we can do a random permutation on all the

nodes and select the first l nodes. In such case, each sample has a rank induced by

the permutation. Then each partition can store the samples based on the order,

i.e., Pi stores the (i� 1)l/k-th to il/k-th sampled nodes.

In the i-th iteration, we compute the distances from all the nodes to samples

in Pi with S as the constraint. It means when running Dijkstra’s algorithm from a

sample v0, we can early stop if we get the shortest path distance from v0 to a seed

node u0 in S. In Line 5, by considering the distance computed from the sampled
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nodes in Pi, we update the Score value for nodes based on the samples in [ij=1

Pj.

Then we select the node v with the largest marginal gain and add it to S. Finally,

we update the distance matrix, i.e., d(S [ {u}, w) for u 2 V \ S and w 2 [ij=1

Pj.

The algorithm terminates after k iterations.

Correctness of Algorithm 13. The aim of the algorithm is to select the node with

the largest marginal gain from V \ S in each iteration. The input of the iteration

is the seed set S from previous i � 1 iterations. Since the proposed optimization

only prunes the unnecessary calculation, the distance matrix M and Score vector

are exactly calculated based on the samples in [ij=1

Pj given S. Moreover, [ij=1

Pj

consists of the first |[ij=1

Pj| samples of the l samples, as we partition the samples

based on the sample order (i.e., permutation order). Consequently, the case in iter-

ation i amounts to selecting the node with the largest marginal gain, based on the

already selected i�1 nodes with |[ij=1

Pj| samples. Therefore the algorithm is guar-

anteed to be correct. Although the incremental selection strategy may a↵ect the

accuracy of estimation, the quality drop is negligible as shown in the experimental

evalutions.

Update Optimization. In the baseline sampling algorithm, after selecting one

node in an iteration, we need to update the Score vector for all the other nodes.

However, the closeness centrality tends to be very small, i.e., insignificant nodes,

for most of the nodes in a social network. Usually we have k << n. As a result,

the nodes with small centralities will never be selected into the results. If we can

avoid updating their marginal gains we will save a large amount of computational

cost. Following is a motivating example.

Example 6.4. Suppose node v
1

is a less important node with c(v
1

) = 0.0001. In the

i-th iteration, we find a node v
2

with marginal gain of 0.05. Due to the submodular

property of the objective function, the marginal gain of v
1

must be smaller than
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c(v
1

) < 0.05. Thus we can safely prune v
1

from the i-th node selection without

updating its marginal gain.

Based on the motivating example, we come up with the update when needed

strategy. The idea is that in the i-th iteration, we do not calculate the marginal

gain for node v 2 V unless necessary. It is easy to adopt this strategy by modifying

Algorithm 13. For each node u 2 V \ S, Score[u] stores its centrality or values

calculated in the previous iteration, so does for the distance matrix M . In the i-th

iteration, we first calculate the distance of nodes to the samples in Pi, then update

the matrix and the score vector based on Pi. Next we sort the nodes decreasingly

based on their values in Score. We continuously pop nodes from the queue and

calculate their true marginal gains, until the largest marginal gain found is greater

than the top value of the queue. Then we can safely prune all the untouched nodes

from this iteration and select the node with the largest marginal gain as the next

seed. Through this way, we can reduce the update cost for many unpromising

nodes, which will greatly improve the e�ciency when n is large.

6.4 Experiment

In this section, we present the results of a comprehensive performance study to

evaluate the e�ciency and e↵ectiveness of the proposed techniques in this chapter.

6.4.1 Experiment Setup

In the experiments, we report the response time of finding k nodes to evaluate the

e�ciency of the algorithms. We also report the closeness centrality of the returned

node set to measure the e↵ectiveness.

Algorithms and Workload. We evaluate the performance of two proposed al-
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gorithms, baseline sampling algorithm (BSA) and order based sampling algorithm

(OSA). We omit the greedy algorithm in Algorithm 12, since it needs to compute

and store all pairs shortest path distances. Even for a small graph with 50,000

nodes, it will need more than one day to return the results. We set the sample

size for both BSA and OSA as 1000 to make a tradeo↵ between the accuracy and

e�ciency. In the experiments, we vary k from 1 to 50 with 50 by default. For each

algorithm, we run 20 times and report the average performance.

Datasets. To demonstrate the e↵ectiveness and e�ciency of our methods, we

conduct experiments on four real world social networks 2. The parameters of the

datasets are reported in Table 6.2. The diameter is defined as the longest shortest

path distance in the graph. The datasets are available for download and further

details about the datasets can also be referred.

Dataset n m Diameter
Gowalla 196,591 950,327 14
Amazon 334,863 925,872 44
Youtube 1,134,890 2,987,624 20

LiveJournal 3,997,962 34,681,189 17

Table 6.2: Summary of Datasets

Implementation Environment. All experiments are carried out on a PC with

Intel Xeon 2.30GHz and 96G RAM. The operating system is Redhat. All algorithms

are implemented in C++ and compiled with GCC 4.8.2 with -O3 flag.

6.4.2 E�ciency Evaluation

In this section we evaluate the e�ciency of the algorithms through response time.

In the first set of experiments, Figure 6.3 reports the response time of BSA and

2
https://snap.stanford.edu/data/
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Figure 6.3: E�ciency Evaluation on All Datasets

OSA on all the datasets under the default settings. As the increase of dataset size,

the response time grows for both algorithms. Because the cost of computing the

distance from nodes to the samples and calculating the marginal gain will increase

with the growing graph size. OSA constantly outperforms BSA by up to 4 times

acceleration, due to the pruning in computing shortest path distances and updating

the marginal gains.

In Figure 6.4, we report the response time by varying k from 1 to 50 on four

datasets. When k equals 1, the response time of both algorithms is the same. It is

because when k equals 1, there is no incremental node selection optimization and

the updating optimization for OSA. Under the same sample size and k = 1, the

procedure of OSA is the same as that of BSA. When k increases, the response time

of BSA increases because of the increase of cost in the node selection. For OSA, the

response time firstly drops then increases, because when k is larger than 1, OSA

can take advantage of incremental node selection to reduce the cost of calculating

shortest path distances to the samples. However, when k becomes larger, the node

selection cost and marginal gain updating cost increase, which leads to the increase

of the running time.



Chapter 6. Maximum Closeness Centrality Group Identification 145

 0

 50

 100

 150

 200

 0  10  20  30  40  50

R
e
sp

o
n
se

 T
im

e
 (

s)

BSA
OSA

(a) Gowalla

 0

 100

 200

 300

 400

 0  10  20  30  40  50

R
e
sp

o
n
se

 T
im

e
 (

s)

BSA
OSA

(b) Amazon

 200

 600

 1000

 1400

 1800

 0  10  20  30  40  50

R
e
sp

o
n
se

 T
im

e
 (

s)

BSA
OSA

(c) Youtube

 1000

 2000

 3000

 4000

 5000

 6000

 0  10  20  30  40  50

R
e
sp

o
n
se

 T
im

e
 (

s)

BSA
OSA

(d) Livejournal

Figure 6.4: E�ciency Evaluation by Varying k

6.4.3 E↵ectiveness Evaluation
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Figure 6.5: E↵ectiveness Evaluation on All Datasets

In this section, we evaluate the e↵ectiveness of the proposed algorithms. In

Figure 6.5, we report the closeness centrality on all the datasets under default

settings. As can be seen, the quality of the results returned by OSA is almost

the same as that of BSA. Only in few cases there is a very slight drop in the
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closeness centrality returned by OSA. Since for each node selection in OSA, it only

utilizes part of the samples for estimating, i.e., [ij=1

Pj for selecting the i-th node.

While BSA always uses the full samples to do the estimation. Also note that the

closeness centrality of returned nodes is decided by the diameter of the graph. For

graphs with small diameters, it tends to return a set of nodes with large closeness

centrality when k is identical. In Figure 6.6, we report the closeness centrality by

varying k from 1 to 50. When k increases, the closeness centrality increases for the

returned node set. The quality di↵erence of the results by both algorithms is very

small. This is because the sample size should be proportional to k for the näıve

sampling method in order to bound the quality of returned results. Therefore, by

partitioning the sample into k parts and incrementally finding the node, it can

o↵er similar quality results. For less dense graph with large diameters such as the

Amazon dataset, the closeness centrality increases slowly when k is small (1 to 10).
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Figure 6.6: E↵ectiveness Evaluation by Varying k
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6.5 Conclusion

In this chapter, we consider closeness centrality for a set of nodes and aim to find

the set with the largest closeness centrality. We show the problem is NP-Hard.

By proving the monotonic and submodular properties of the objective function, we

present a greedy framework which can achieve 1�1/e approximation ratio. Unfor-

tunately, näıve implementation of the greedy framework will result in large space

and time cost. To be able to scale to large graphs, we present two sampling based

algorithms, BSA and OSA, respectively. OSA significantly accelerates BSA due

to the optimizations in the shortest path distance computation and the updating

procedure. By conducting extensive experiments on four real social networks, we

demonstrate the e�ciency and e↵ectiveness of the proposed techniques.



Chapter 7

Final Remark

In this chapter, we provide a brief summarization of our research and describe some

possible future directions. The major contributions of this thesis are concluded in

Section 7.1. Section 7.2 introduces several possible orientations for future work.

7.1 Conclusions

Due to the information explosion, increasing number of existing techniques are

facing the challenges of big data. To process massive datasets, a natural consider-

ation is to use approximation methods. Unlike the parallel methods, sampling and

sketching based approaches need much less resource and still can provide bounded

solutions, which is acceptable for most applications. In this thesis, we apply the

sampling and sketching techniques to tackle four problems where large datasets or

high computation cost are involved. Below are the details.

On Gapped Set Intersection Size Estimation. Set intersection size estimation

is a fundamental tool for data analysis and information retrieval. However, the gap

information is neglected by existing work. In this thesis, we formally define the

GSISE problem for both point query and range query. We extend the bottom-

148
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k sketch to e�ciently handle these queries. In addition, e�cient algorithms are

developed to conduct the estimation. Through carefully analysis, we derive the

space required to bound the estimation quality. Moreover, we apply the techniques

to solve top-K problem. Extensive experiments are conducted to evaluate the

performance of proposed approaches.

E↵ective Order Preserving Estimation Method. Order preserving estimation

is a very important tool in many applications, such as data visualization. To reduce

the sample size required, we propose two e↵ective methods, the interval separation

method and the pairwise comparison method. In interval separation method, each

group is considered individually, while in pairwise comparison method, we check

the order of data by considering pairwise adjacent groups. To make the best use

of samples, we dynamically allocate the input failure probability � based on the

current observed sample means. Finally, we conduct experiments on both real and

synthetic datasets to demonstrate the e↵ectiveness of the proposed techniques.

A Novel Scalable Method for Influence Maximization. Influence maxi-

mization is a key problem in viral marketing. As the state-of-the-art method has

limitations in scalability, we propose an e�cient solution, BKRIS, which combines

the bottom-k sketch with the RIS framework. Specifically, we bring the order of

samples into consideration, which makes it possible to achieve early termination

before enumerating all the samples. To provide results with theoretical guarantees,

we propose an e�cient method to derive the lower bound of OPT . To handle

the worst-case situation, several optimization techniques are developed. Finally,

we conduct experiments on 10 real world social networks. Compared with the

state-of-the-art method, we can achieve up to 2 orders of magnitude speedup.

Maximum Closeness Centrality Group Identification. We extend the con-

cept of closeness centrality to a set of nodes and formally define the group closeness
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centrality problem. We show the problem is NP-Hard, but the objective function

is monotonic and submodular. Thus a greedy algorithm can achieve a result with

1 � 1/e approximation ratio. To scale to large graphs, we propose two sampling-

based methods, BSA and OSA. OSA significantly accelerates the processing by

incrementally selecting the nodes and using the pruning method to avoid compu-

tations for less important nodes. Our experiments on real social networks demon-

strate the e�ciency and e↵ectiveness of the proposed methods.

7.2 Directions for Future Work

In this section, we propose several possible directions for future work.

7.2.1 GSISE Problem for Real Value Gap

As stated in Chapter 3, it is necessary to consider the gap information when con-

ducting the set intersection size estimation. While the techniques proposed in this

thesis can only solve the case where the input gap is integer type. However, in

many applications, the input gap may be real values. Even though we can normal-

ize all the real value gaps into integers, it may not be cost-e↵ective for data storage.

Thus, e�cient and e↵ective methods for processing real value gaps are required.

7.2.2 Optimal Sample Strategy for OPE Problem

The visualization of data order is a useful tool for many fields. In Chapter 4, we de-

velop two e↵ective stop functions by dynamically allocating the failure probability.

However, the sample strategy used in this thesis is heuristic based. Even though

the proposed methods are working well on both real and synthetic datasets, it is

still attractive to develop the optimal sample strategy, which would have bound in
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the worst case scenario.

7.2.3 Query-based Group Closeness Centrality

As we stated in Chapter 2, for influence maximization problem, there is a type

of query-based settings. Thus it is natural to consider the query-based version

for group closeness centrality maximization problem. For example, each node is

associated with a weight decided by the input query. Näıvely, we can extend

the uniform sampling method to a weighted sampling method by considering the

weights of nodes. However, there might be a lot of queries issued, thus an index-

based solution is required to answer each query e�ciently. So the challenge is how

to index su�cient samples or graph structures which can be utilized to answer any

query with bounded guarantees.
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