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Abstract 
This thesis deals with modeling of an induced hydraulic fracture and a natural fracture

in a poroelastic medium and study their interaction. A finite element based numerical model 

is developed for this purpose. The model integrates a wellbore, an induced hydraulic fracture, 

a natural fracture and a reservoir in a fully coupled manner and simulates the interaction 

between induced hydraulic fracture and a natural fracture. A half reservoir model is used to 

take advantage of symmetry. In order to have control over the entire grid and element 

numbering, an innovative mesh generator was developed as part of this study. Fracture 

propagation is modeled based on KGD fracture mechanics.

The numerical studies have shown that a natural fracture has a profound effect on the 

induced fracture propagation. It has been observed that in most cases the induced fracture 

crosses the natural fracture at high angles of approach and high differential stress. The width 

of the induced fracture decreases as it propagates. Once the induced fracture crosses a natural 

fracture and it propagates further into the formation fracture width increases. At low angles of 

approach and low differential stress the induced fracture is more likely to be arrested (at least 

short time) and/or breaks out from the far end side of the natural fracture. Results also 

showed that in the case of high angle of approach the hydraulic fracture always crosses the 

natural fracture and the differential stress has no significant effect on the propagation of 

hydraulic fracture. It has been also observed that propagation of induced fracture is stopped 

by a large (>10m) natural fracture at high angle of approach. If the injection rate, however, is 

increased the induced fracture crosses the large natural fracture at high angle of approach. At

low angle of approach the induced fracture deviates and propagates along natural fracture. 

Crossing of natural fracture and/or arrest by the natural fracture is controlled by shear 

strength of the natural fracture, natural fracture orientation and in-situ stress state of the 

reservoir.

From the results of this study it has been found that this model has a potential 

application in the design and optimization of hydraulic fracture treatments in naturally 

fractured reservoirs including tight gas reservoirs and enhanced geothermal systems. The 

model can also be used in the design of hydraulic stimulation of naturally fractured reservoirs 

based on shear dilation principle.
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Chapter 1: Introduction 
1.1 Background Knowledge:

The main objective of this thesis is to investigate the fracture propagation pathway of 

an induced hydraulic fracture in the presence of a pre-existing natural fracture in a poroelastic 

medium. Several field and lab experimental studies have shown that a hydraulically induced 

fracture can propagate in a naturally fractured reservoir in different modes. It can intersect 

and cross a natural fracture, turn into a natural fracture (fracture arrest) or turn into the natural 

fracture for a short distance and breaks out again to propagate in direction dictated by

perturbed local stress state (Blanton, 1982; Lammont and Jessen, 1963; Potluri et al., 2005).

These possibilities are dependent on the magnitude of stress differential and the angle at 

which the induced fracture approaches the natural fracture (Daneshy, 1974; Warpinski and 

Teufel, 1987). One of these possibilities is shear dilation of natural fractures which can 

enhance reservoir permeability (Chen et al.,1995). 

Analytical solutions are developed for predicting the direction of a propagating 

fracture in naturally fractured reservoirs. Most notable of which is Blanton’s criterion 

(Blanton, 1986) which is primarily based on angle of approach of an induced fracture towards 

the natural fracture and differential stress field. Under this criterion low angle of approach 

associated with low to intermediate differential stress tends to open the natural fracture and 

divert fracturing fluid and/or arrest the propagation of the hydraulic fracture, whereas under 

high differential stress and high angle of approach hydraulic fracture most likely crosses the 

natural fracture. Warpinski and Teufel (1987) presented criteria for shear slippage (based on 

Mohr- Coulomb failure criterion) and shear dilation (based on the relationship between 

fracture pressure and normal stress) of the natural fracture. If the hydraulic fracture has 

already crossed the natural fracture, shear slippage or dilation of the natural fracture are 

affected by perturbed stress state of the region around the fracture.  Warpinski and Teufel 

(1987) also presented a simplified analytical approximation of stress field around a natural 

fracture by taking into account for the effect of fluid leak-off mainly through the natural 

fracture. 

Numerous studies are also carried out on the interaction of hydraulic fracture and 

layered formations. Renshaw and Pollard (1995) introduced a criterion for fracture 

propagation across unbounded frictional interfaces in linear elastic media. Studies based on 
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the elastic theory have shown that a fracture initiated in a stiff layer of two perfectly bounded 

interfaces is able to advance towards and enter into the softer layer under favorable stress 

conditions. In an opposite situation, a fracture that has grown in a softer rock cannot 

propagate into stiff rocks (Bear, 1991; Erdogan and Biricikoglu, 1973; Helgeson and Aydin, 

1991). Recently, Zhang et al. (2006a) presented a numerical simulation of hydraulic fracture 

propagation at the bedding interfaces using a two-dimensional boundary element model.

As far as numerical studies are concerned, only a few works have been carried out on 

the interaction between hydraulically induced fracture and natural fractures. Heuze (1990)

used FEFFLAP model (Finite Element Fracture and Flow Analysis Program) to investigate 

fluid-driven crack in jointed rock. Dong and de Pater (2001) applied a displacement 

discontinuity method to study the effect of a fault on hydraulic fracture reorientation. Zhang 

and Jeffrey (2006b) also applied a displacement discontinuity method to study the role of 

friction and secondary flaws on deflection and re-initiation of hydraulic fractures at 

orthogonal pre-existing fractures. Koshelev (2003) developed a numerical elastic model to 

study crack propagation near natural discontinuities such as joints and faults based on 

complex variable boundary element method. Potluri (2005) developed a numerical elastic 

model to predict the dynamic fracture dimension in the presence of natural fracture based on 

the PKN model. Akulich et al. (2008) developed a numerical elastic model to investigate the 

interaction of a hydraulic fracture with fault. They suggested that the fault slows down the 

propagation of a hydraulic fracture. An increase in differential stresses and the angle of 

inclination of the fault leads to a decreased likelihood of fault activation and decrease in the 

relative normal and tangential displacements of the fault faces. Modeling of interaction 

between induced fracture and fault did not include fracture intersections; however, it gives an 

idea about the slippage along the fault and how it affects the stress intensity factors at the tip 

of the growing hydraulic fractures. Lecampion (Lecampion, 2008) attempted to use the 

Extended Finite Element Methods (XFEM) to solve this problem. He sought the elasticity 

solution via XFEM for a given fracture geometry with either specified pressure distribution 

or opening profile.

1.2 Aims and significance:

In all the aforementioned works interaction (diversion, arrest and/or crossing) of an 

approaching induced fracture with an arbitrarily oriented natural fracture in a poroelastic 

medium has not been addressed. In this study the influence of angle of approach, differential 
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stress and natural fracture properties on the interaction between pre-existing natural fractures 

and an induced hydraulic fracture in a poroelastic environment is studied. First a numerical 

model that is capable of dealing with fracture propagation near natural fracture in poroelastic 

environment is developed and then a number of case studies are presented. Due to the 

computational complexity of three dimensional analysis of fractures, all the analyses will be 

limited to the two dimensional geometries. A finite element mesh generator is developed 

using FORTRAN 90 in part of this thesis to accurately implement the natural fracture into the 

model and the zone of interaction.

Large volumes of natural gas are stored in low-permeable fractured reservoirs around 

the world. Tight gas reservoirs, which form a significant part of low permeable fractured 

rocks, include coal bed methane, shale gas and natural gas hydrates. Although hydraulic 

fracturing has been used for decades to enhance productivity of tight gas reservoirs, a 

thorough understanding of the interaction between induced hydraulic and natural fractures is 

still lacking. The interaction of pre-existing natural fractures and an advancing hydraulic 

fracture can lead to complex fracture geometry. Performing hydraulic fracture design 

calculations under these complex conditions requires understanding of fracture intersections 

and tracking of fluid fronts (fracture tip of induced hydraulic fracture). The findings in this 

modeling work can be used to explain different observed behaviors of hydraulic fracturing in 

tight gas reservoirs and in geothermal reservoir. It can be used to predict the possible

reactivations of natural fracture and the possible fracture extension pathway of the induced 

fracture in those reservoirs. Generally, this model can be used to predict the fracture 

propagation pathway and optimization of hydraulic fracture treatments in naturally fractured 

reservoirs including tight gas reservoirs and enhanced geothermal systems. The fully coupled 

poroelastic model and the understandings derived from this model, have beneficial 

applications in the design and optimization of hydraulic fracture treatments in naturally 

fractured reservoirs including tight gas reservoirs and enhanced geothermal systems. The 

model can also be used in the design of hydraulic stimulation of naturally fractured reservoirs 

based on shear dilation (high pressure low injection rate).

1.3 Structure of the thesis:

This thesis is divided in four chapters including the Chapter-1, introduction. Chapter-

2 is divided into two sections. In section one the brief introduction of development of theory 

of poroelasticity, governing equations of linear elasticity and diffusivity are presented. The 
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coupling of these two phenomenon using Biot’s theory. A model based for intact wellbore is

built. For validation of the model developed, derivation of analytical solutions is discussed. 

Finite element method is used to solve the poroelastic equations. The results produced are 

illustrated at the end of the chapter and supporting discussion is also provided. In section two

detailed review of existing current fracturing models and different modes and criteria for 

fracture are outlined. The effects of poroelasticity and fracture treatment parameters such as 

formation permeability, rock strength, and fluid viscosity on the hydraulic fracture 

propagation are analysed. The results produced are illustrated at the end of the chapter and 

supporting discussion is also provided.

In Chapter-3, a fracture propagation model is presented to simulate the induced 

hydraulic fracture propagation in presence of a natural fracture in poroelastic environment. A 

two dimensional model is presented to study the effect of natural fracture on hydraulic 

fracture propagation. Also a model for analysing the induced fracture arrest by and/or 

breakout of natural fracture is presented. Results produced are illustrated at the end of the 

chapter and supporting discussion is also provided.

In Chapter-4 conclusions are made, major findings observed through the study are presents 

and recommendations for future work are outlined.
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Chapter 2: Modelling of Fracture 
Propagation in Poroelastic Formation 

The purpose of this chapter is to develop a fully coupled numerical model to simulate 

fracture propagation in a poroelastic medium. For this purpose an intact wellbore model is 

first developed and validated. Then a fracture is bringing in to study its propagation.

2.1 Intact Wellbore Modelling

Poroelastic modeling involves two processes: deformation of the rock due to change 

in pore pressure, and change of pore pressure due to deformation of the rock in undrained 

condition. These two processes are coupled and hence impart an obvious time dependent 

character to the mechanical properties of the rock.

The reciprocal impact of the processes of diffusion and deformation is first developed 

by Terzaghi in 1923 who proposed a model for one dimensional consolidation. This theory is

generalized to three dimensions by Rendulic in 1936. Biot developed the theory of linear 

poroelasticity in 1935, 1941 and extended in 1956. This theory is then further extended by

Verruijt (1969) in the context of soil mechanics. Rice and Cleary (1976) related the 

parameters of rocks and soils to poroelasticity. In petroleum engineering, poroelastic theory is

first applied to study subsidence by Geerstma (1966) and hydraulic fracturing by Haimson 

and Fairhurst (1969).

According to Longuemare et al. (2002), governing equations of the poroelasticy 

include two components: fluid flow and rock deformation. These can be solved by using

partially coupled method or fully coupled method. In partially coupled approach, two 

separate simulators (reservoir simulator and geomechanics simulator) are used for each part 

of the problem. A conventional reservoir simulator is first employed to calculate pore 

pressure for a certain time step, and this result (pore pressure) is then bring into a 

geomechanics simulator that produces stress distribution. The procedure is then repeated for 

different time steps to generate results of displacement and pore pressure. Since there is no 

iteration involved in this method, it is named “one way coupling approach”. In one way 

coupling, the effect of geomechanics on fluid flow is not taken into account. The outputs of 

two simulators are exchanged at each time step in an explicit or iterative manner (Fung et al., 

1992; Koutsabeloulis and Hope, 1998; Settari and Walters, 1999; Tortike and Farouq Ali, 
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1993). In a fully coupled method the governing equations are simultaneously solved by one 

simulator. This approach gives more accurate and consistent results. Therefore, less 

computational time is required in compare to iteratively one way coupling approach. 

Poroelastic governing equations 

In conventional reservoir simulators the diffusivity equation is used as the governing 

equation of pressure (Aghighi 2007). The coupled fluid flow equations used in the model are 

as follows: 

( . ) . .t f
p u k kc p c p p
t t

(2.1)

( . ) .t
p u kc p
t t

(2.2)

Where = porosity, ct=total compressibility, Biot coefficient k=permeability tensor,

= fluid viscosity, cf = the fluid compressibility and p=fluid pressure (See Nomenclature).

The governing equations for displacement which contain the fluid pressure as a 

coupling variable are as follows: 

2 . )( ) 0x
x

u pG u G
x x

(2.3)

2 . )
( ) 0y

y

u pG u G
y y

(2.4)

2 . )( ) 0z
z

u pG u G
z z

(2.5)

in which 
2 2 2

2
2 2 2
a a a

a
u u uu
x y z

Here, ct is the total compressibility, and ‘G’ is Lame’s parameters, ux, uy and uz is 

displacement along x, y and z axis respectively. The detail derivations of these equations are 

given in Appendix-2.1 B.

Equations 2.1 to 2.5 are the constitutive equations of poroelasticity with four 

unknowns: ux, uy , uz and p. Coupling occurs among these equations because pore pressure 
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appears in the force equilibrium equations and mean stress/strain(derivative of displacement) 

appears in the fluid flow equation. The richness and verities of poroelastic phenomena arise 

from interactions between the mechanical requirement of force equilibrium and the fluid flow 

requirement of continuity (H.F Wang, 2000).

Simplification of poroelastic equations 

Under specific conditions Eq. 2.1 or 2.2 is decoupled from the equation of equilibrium 

to make easier to solve. These conditions require assumptions for change in stress and 

loading conditions. Some of the conditions are non-deformable porous medium (no change in 

volumetric deformation ( ) 0kk

t
), Oedometric depletion also known as uniaxial strain 

compaction ( 0zz and kk zz ). For this purpose, the coupling term ( . )u
t

of 

Equation Eq. 2.1, which is in fact equal to ( )kk

t
, must be removed or changed to p

t

(Aghighi, 2007). So the, Eq. 2.1 turns into: 

. .t f
p k kc p c p p
t (2.6)

Undrained response 

Poroelastic coupling in a physical situation depends on the rate of pore fluid 

movement relative to the rate of change of stress conditions. Normally when flow is restricted 

to move there is an undrained conditions. When the well is drilled, rock is replaced by a 

wellbore and pressurized by a fluid column. The stress acting on wellbore becomes different 

from the stresses in its previous condition. Rocks deforms in response to this stress change.

Fluid flow is initiated if the wellbore pressure is different than pore pressure. Due to viscous 

effect fluid needs time to flow whereas solid deforms faster than fluid flow. In an undrained 

response solid deformation is not associated with fluid flow, which is often the case of 

drilling.

Hydraulic fracture is conducted relatively long time after drilling. The drained 

situation (p=pr, reservoir pressure) is considered as initial condition for hydraulic fracturing.
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For undrained case the constitutive equations of poroelasticity can be expressed as (Aghighi 

2008):

u b
kk

K Kp (2.7)

where kk = the volumetric strain, Ku and Kb are undrained and drained bulk modulus 

respectively. Substituting this value in the Eqs.2.3-2.5 one can write:

2 ( . )( ) 0x
x u

uG u G
x

(2.8)

2 ( . )
( ) 0y

y u

u
G u G

y
(2.9)

2 ( . )( ) 0z
z u

uG u G
z

(2.10)

where u is undrained first Lame’s parameter. 

Plane strain

Plane strain assumption can be used when one of the dimensions is very large as 

compared to other two. According to Jaeger (Jaeger and Cook, 1969) the principal strain in 

the direction of longest dimension is constrained and can be assumed to be zero. Thus, in this 

case the principal stress in the direction of longest axis (vertical axis) can be excluded from 

the calculations. This allows reducing three dimensional analyses to two dimensional 

analyses of stresses. These assumptions are widely used in the study of hydraulic fracturing 

and stress reorientation by various authors (Biot et al., 1986; Garagash and Detournay, 2005; 

Geerstma and De Klerck, 1969; Hidayati et al., 2001; Nouri et al., 2002; Sato and Hashida, 

2000). Using the stress-displacement relationship Eqs.2.3 to 2.5 is reduced into two 

dimensions. The two dimensional stress-displacement relationships can be expressed as 

follows (Zienkiewicz and Taylor, 2000):

0T
eS D S u p (2.11)

where De is the elastic modulus tensor, is change in total stress and p is change 

in pressure. The detail derivations of these equations are given in Appendix-2.1 B.
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Description of the model

The poroelastic intact wellbore model presented here includes a reservoir which is 

intercepted by a vertical wellbore. It is assumed that the reservoir surface is horizontal, at 

initial condition the system is at rest and that the reservoir is in drained situation in which 

pore pressure is stabilized. Vertical stress is a principal stress and other two principal stresses 

(minimum and maximum horizontal in-situ stresses) are in horizontal plane and are aligned in 

the same direction of Cartesian coordinates of the reservoir. Initial value of displacement, 

pore pressure and stress components are obtained from Kirsh’s analytical solutions for a 

poroelastic rock as shown in Appendix-2 E.5. At the outer boundary of the reservoir no-flow 

(Neumann type) condition is applied. The two in-situ stresses are applied as force at the outer

boundary of the reservoir. A constant wellbore pressure (Drichlet type boundary condition) is 

applied as force at inner boundary (wellbore) of reservoir. Young’s modulus, Poisson’s ratio, 

porosity, permeability, total system compressibility and the viscosity of fluid are assumed to 

be independent of time and space. The model geometry is shown in Fig.2.1. The elastic 

properties of reservoir, formation fluid properties and in-situ stresses are given in Table 2.1.

Structural boundary conditions are applied on the x and y axis of the model in order to take

advantage of symmetry. This boundary condition is applied to restrict the displacement of the 

nodes along the x and y axis. A large outer radius is used and the time steps are chosen such a

way that the change in pore pressure or stress state is not felt at the outer boundary. In this 

study the sign convention of conventional rock mechanics have been used and applied to all 

phases. Thus, all forms of stress, strain and pressure are positive when compressive and 

negative when tensile. Displacement (strain) resulted from compression is, therefore, positive 

and tension negative.

Numerical solution procedure 

Formulations of finite element equations as a result of discretization of the governing 

equations of poroelasticity are discussed in Appendix-2D. Finite element equations are 

solved for change in displacement and pressure. These changes are then added to the previous 

time step to achieve the total displacement and pressure at the current time step. Super 

convergent patch recovery technique (Zienkiewicz and Zhu 1992) is employed as a method 

of obtaining the gradient from the displacements to calculate the nodal stresses.
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To achieve high accuracy, 8-noded quadrilateral elements are employed as 

recommended by Zienkiewicz and Taylor (2000). Moreover, in order to get more stable result 

8-noded elements are used for solution of displacement and 4-noded elements are used for 

pressure solution. To reduce the required computational resources, a quarter of the domain is 

modeled by taking advantage of symmetry. Code optimization is used to speed up the 

solution. Besides, matrices are stored in banded form wherever possible; nodes and elements 

are numbered efficiently to minimize the bandwidth of the matrices. Furthermore, to reduce 

the instability caused by the huge difference in scale among the nonzero values in the mass

matrices involved in coupling process, a scaling factor is used to make a custom system of 

units. By using this unit system the cell values of the matrices roughly come into the same 

order of magnitude and stability is greatly improved. Stress components are calculated using 

the relation between displacement gradient (strain) through material properties ( D ). 

Stresses are first calculated at Gauss points (G. R. Cowper, 1973; TR Chandrupatla 2002)

using standard shape functions over the entire domain then nodal stresses are evaluated by 

determining a polynomial expansion over a patch of elements sharing the node. Pressure 

gradients are also evaluated using the same procedure.

2.2 Validation of Intact Wellbore Model 

The numerical poroelastic model is the base model for this study. Therefore, 

numerical results of this model need to be verified against analytical solutions. Analytical

equations to verify the numerical results for displacement, stress and pore pressure are 

acquired using the theory of superimposition and are given in Appendix-2.2B. Derivation of 

analytical solutions for problems related to linear elasticity and poroelasticity are discussed in 

Appendix-2E. Time steps are managed by an input file generated by using Excel. In firs time 

step time increment was 29 sec and then change geometrically that finally reaches 1 year.

Model read the time from that text file.

Pore pressure 

Wellbore pressure is set maintained a lower value than the reservoir pressure. Thus,

fluid flows towards the wellbore and the pore pressure progressively decreases. In Fig.2.2 the 

results of pore pressure obtained from the numerical model are compared with that of
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analytical solutions (Eqn. E73). As can be seen from Fig.2.2, the numerical results match 

well with the analytical solutions.

Similarly contour plots of pore pressure for a range of time (one minute to one month) 

for stress values of 6000 psi ( H), 5000 psi ( h), wellbore pressure 2000 psi and pore 

pressure of 4000 psi are shown in Fig.2.3 to 2.6, please note that Fig.2.3 (b), Fig.2.4 (b),

Fig.2.5 (b) and Fig.2.6 (b) is presented to provide detail information on changes in pressure 

within one meter. . As expected pore pressure changes linearly to wellbore pressure near the 

wellbore region.

Total and effective stress 

In two dimension stress tensor has two normal and one shear components which are 

referred to x, y and xy. The three components of total stresses remain same as the original 

state if the poroelastic effect is neglected. However if  the poroelastic effect is taken into 

account the change in pore pressure due to injection or production of fluids, alters the stress 

state of the reservoir in the vicinity of the wellbore. In this section, the numerical result of the 

time dependent stresses along X-axis, Y-axis and 45 degrees are verified.

Change in x-component of total and effective stress  

Numerical results of change in x component of total stress and effective stress for 

different time and for 0o (along X-axis), 45o and 90o (along Y-axis) are compared with that of 

analytical solutions. To visualize the change in stress very clearly the results of entire region, 

wellbore region and far field region are presented separately. The numerical results show a 

good agreement with the exact solutions for different time and orientations. For all cases, as 

expected, x-component of total stress approaches the maximum horizontal in-situ stress (6000 

psi) at far field.

It is assumed that wellbore pressure is equal to the reservoir pressure at zero time, so 

an instantaneous change in wellbore pressure is considered at the first time step which is very 

small. Change in x-component of total stress, induced change (due to poroelastic effect) in x-

component along x-axis (0o) and change in x-component of effective stress along x-axis (0o)

are presented in Figs.2.7, 2.8 and 2.9 respectively. It can be observed from these figures that 

for a given wellbore pressure the value of the stress at the wellbore do not change with time. 

It is also observed that as time progresses, the size of the area, which is affected by the 
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change in x-component of total stress increases. This is due to change in pore pressure. It is 

also evident from Fig.2.7 that x-component of total stress along x-axis decreases with time 

while the x-component of effective stress, along x-axis increases (See Fig.2.9c) with time. 

Change in x-component of total stress, induced change (due to poroelastic effect) in x-

component and change in x-component of effective stress along 45 degree are plotted in

Figs.2.10, 2.11 and in 2.12 respectively. Results for x-component of total and effective stress 

change along y-axis are also presented in Figs.2.13, 2.14 and 2.15. It can be seen from 

Figs.2.10 through 2.15 that same trend for stresses are observed with time along 45 degree 

and along y-axis. The numerical results show a good agreement with the exact solutions for 

different time and orientations presented by Detournay and Cheng (1988). For all cases, as 

expected, x-component of total stress approaches the maximum horizontal in-situ stress (6000 

psi) at far field.

Change in y-component of total and effective stress 

Numerical results of change in y-component of total stress and effective stress for 

different time and for 0o (along X-axis), 45o and 90o (along Y-axis) are compared with that of 

analytical solutions and presented in Figs.2.16 to 2.24. In this case also the results of entire 

region, wellbore region and far field region are presented separately. The numerical results 

show a good agreement with the exact solutions for different time and orientations. For all 

cases, as expected, y-component of total stress approaches the minimum horizontal in-situ 

stress (5000 psi) at far field.

Change in shear stress

In this model the horizontal principal stresses are coincided with x and y axes. Thus 

shear stress along these directions becomes zero. Numerical results of change in shear stress

for different time for 45 degree are presented in Fig.2.25. The results of induced change in 

shear stress, ( xy) are also present in Fig.2.26. It can be seen from Fig.2.25, that shear stress 

is not zero for 45 degrees in the wellbore vicinity as the stress field is anisotropic. Numerical 

results are in good agreement with analytical solutions for 45 degrees.
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2.3 Modelling and Validation of Fracture Propagation 

Hydraulic fracturing process is controlled by three major mechanisms which include 

crack opening, penetration of fracturing fluid into the formation (leak-off) and fluid flow in 

the fracture. The first simplified theoretical models for hydraulic fracturing are developed in

the 1950s (Crittendon 1950, Harrison et al. 1954 and Hubbert and Willis 1957). The method 

of fracture mechanics is first applied to hydraulic fracturing by Barenblatt (1956 and 1962). 

One of the pioneering works in fracture mechanics in this era is a paper by Perkins and Kern 

(1961) who adapted the classic Sneddon (1946) elasticity plane-strain crack solution to 

establish PK model. Nordgren (1972) modified the PK model to devise the PKN (Perkins 

and Kern 1961; Nordgren 1972), which included the effects of fluid loss to the formation.

Nordgren’s formulation is based on substituting the elliptic fracture opening relation into the 

lubrication equation. Khristianovic and Zheltov (1955), and Geertsma and de Klerk (1969) 

independently developed the so-called KGD model (plane strain). Estimates of the fracture 

growth rate based on simple elastic model and the approximate integration of Reynold’s

equation have been reviewed extensively by Geertsma and Haafkens (1979). Daneshy (1973) 

extended the KGD model for the case of power-law fluid. Spence and Sharp (1985) 

introduced fracture toughness into the extended version of KGD model.

The earliest 2D models are KGD (Khristianovic and Zheltov 1955; Geertsma and De 

Klerk 1969), PKN (Perkins and Kern 1961; Nordgren 1972) and radial model (Valko and 

Economides, 1995). First two models assume constant height and constant elastic modulus. 

PKN model assumes plane strain on the vertical plane, whereas KGD model assumes plane 

strain on the horizontal plane. Due to these assumptions PKN has longer half lengths as 

compared to KGD. These models are initially developed to determine the fracture width for a 

given injection rate and initial fracture half length (one wing of the two coplanar fracture

which extends from the wellbore). The mass balance is later introduced using Carters (1957)

equation. The KGD model assumed that the fluid behaves similar to that of Newtonian fluids 

as presented by Lamb (1932). Nolte (Nolte 1979, Nolte 1991) introduced the power law fluid 

model to PKN model. In both PKN and KGD models the rock is assumed to behave as 

isotropic linear elastic solid. In this study KGD fracture mechanics principle is used to model 

the fracture geometry.
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Fracture opening and propagation criteria

Finite element method can be applied to determine fracture width for any fracture 

shape and for both homogenous and inhomogeneous formations. In this study finite element 

method is used to determine the deformation of the formation, i.e. fracture opening.  There 

are three basic modes of crack tip opening/displacement (See Fig.2.27).

1) Mode- I: Fracture opening by tensile failure,

2) Mode- II: Fracture opening by plane shear failure also known as sliding mode and 

3) Mode- III: Fracture opening by anti-plane shear also known as tearing mode.

Fracture opening and propagation is primarily dominated by tensile failure in 

isotropic medium (Pak 1997). In this current model tensile mode is used for fracture opening. 

The stresses and displacements around the fracture are calculated using the following

equations (Smith 1991).
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where, KI is the mode-I stress intensity factor, v = Poisson’s ratio, k = 3- 4v for plane 

stress, k = (3- 4v)/ (1+v) for plane strain, G = shear modulus, r = polar coordinates with 

respect to the crack tip and u, v, w = displacements in x, y and z planes respectively.

In most hydraulic fracture simulators, fracture propagation criterion is derived from 

linear elastic fracture mechanics (LEFM) which is established based on the Griffith’s 

concepts of crack stability (Griffith, 1920; Griffith, 1924). He studied the stress field around 

an elliptical crack and proposed a criterion for crack propagation. Based on the Griffith ideas 

for crack stability, fracture propagation is simulated through a sequence of steps. First stress 
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intensity factor is calculated for a given geometry and loading condition. Then the crack 

propagation criterion is applied to see whether the fracture is stable or not. In the third step, if 

fracture is unstable, propagation occurs to a certain distance. The crack is extended if the 

stress intensity factor is equal to or greater than a critical value known as fracture toughness, 

KIC or critical stress intensity factor (Clifton and Abou-Sayed, 1979) which is a material

property.

The criterion applied in the current model for propagation is based on the critical 

width. Instead of critical stress intensity factor, critical width is used that is a function of 

fracture toughness of the rock (Vandamme,1986 and Gidely et al. ,1989). The authors also 

suggested that for a crack to be stable, the value of width obtained due to pressurizing of well 

bore should not exceed this critical width. The critical width for a fracture is shown in 

Fig.2.28 and is calculated using the following equation:

28 (1 )
2

IC
c

K rW
E

(2.17)

Where, Wc = Critical width,

KIC = Fracture toughness, E = Young’s modulus of elasticity, r = distance from 

the crack tip and = Poisson’s ratio.

When the obtained width reaches a value equal or greater than the critical width, 

fracture is extended and a new element is added to the current fracture.

Modeling of fluid flow in fracture

In order to model fluid flow the continuity and momentum equations across the width 

of the fracture are integrated. Two dimensional fluid flow equations are derived along the 

fracture plane. The injected fluid volume into the formation to create a fracture comprises of

the volume of the created fracture and the volume of fluid leaked off into the formation from 

the fracture. So one can write the following:

i f lV V V (2.18)

where, Vi = volume of fluid injected, Vf = volume of fracture created and Vl = volume 

of fluid leaked off.
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Considering the fact that the flow of fracturing fluid in the direction normal to the 

fracture face inside the fracture is negligible, the governing equation for fluid flow of a 

Newtonian fluid in a fracture can be obtained from the combination of equations of pressure 

loss in fracture (cubic law) and material balance as follows (Charlez, 1997): 

3

( , )
12 l
w p w V x t

x x x (2.19)

Where, w = fracture width; x, y = Cartesian coordinates, μ = fluid viscosity, vl = leak-

off velocity and p = fluid pressure. 

In this study Eq. 2.19 is discretized and solved using finite element method to model

the fluid flow inside the fracture. At first time step a guess wellbore pressure is used as a 

boundary condition at the fracture surface. For this guess wellbore pressure and a given 

pumping rate, an iterative procedure is carried out to satisfy material balance and to achieve a 

numerical convergence for time increment. 

Modeling of fluid leak-off 

To determine the fracture geometry the rate of fluid leak-off into the formation needs 

to be calculated correctly. The volume of fluid loss during the treatment determines the 

fracturing fluid efficiency. Carter(1957) introduced the leak off term as stated below:

L LV C A
t t

(2.20)

or

L
L

CV
t

(2.21)

Where, = the opening time of the element of interest (at which the element is 

exposed to fluid), A = the fracture surface, VL = leak-off velocity, CL = leak-off coefficient

and t = actual (leak-off) time. 

Another approach to characterize fracturing fluid leak-off is to evaluate the rate of 

fluid loss through fluid flow equation (Valko and Economides, 1995). In this approach, the 

rate of fluid loss through the fracture surfaces can be expressed from Darcy’s law. Assuming 

one-dimensional flow in the direction normal to the fracture faces, one can obtain: 
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y
L

k PV
y (2.22)

Where, ky = formation permeability (at fracture surface) in the direction normal to the 

fracture faces μ = fracturing fluid viscosity, 
P
y

= pressure gradient (at fracture surface) 

normal to the fracture surface 

This current model is capable of modeling leak-off using either leak-off as a material 

property (Carter leak-off model) or the fluid flow approach based on Darcy’s law. In this 

study however the first approach (Carter leak-off model based on Eq. 2.21) is used to 

calculate the fluid leak-off. The fracture pressure and the leak off coefficient are two 

additional boundary conditions being incorporated in this model. The model initiates with a 

small crack and after successful iteration it calculates the width and pressure profile of the 

fracture for an extended length of fracture generated. The finite element mesh for this system 

is presented in the Fig.2.29.

Algorithm of fully coupled hydraulic fracture propagation model 

For fracture propagation model it is essential to tackle nonlinearity issues. Other 

issues, such as modularity, robustness, computational time and resources and accuracy are 

needs to be considered. Computational procedure used to couple the governing equations of 

fluid flow and displacement of the formation with the fracture fluid flow equation assured the 

accuracy of the model. The algorithm of the model is presented in Figs.2.30 and 2.31 include 

the following steps. This procedure is build upon previous work done by Aghighi (2007).

i. Initially the reservoir data and fracturing parameters are read from external files into 

the model. 

ii. Using the physical description of boundaries of the reservoir and the wellbore, a mesh 

is generated and read from external files and used as input into the model.

iii. Using the mesh data and the initial condition of the reservoir, the initial displacement 

and pressures are calculated. Based on the drained or undrained assumptions, the 

poroelastic model calculates the displacement and initializes the model variables. 

iv. Wellbore breakdown pressure can be calculated analytically or numerically. Once the 

breakdown pressure is calculated, a bottom hole pressure (BHP, which is the pressure 
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at the fracture mouth) is estimated to extend the fracture into next stage. The well bore 

pressure is calculated as a function of fracture toughness.

v. Using this bottom hole pressure as a boundary condition at the wellbore and inside the 

fracture, change in pore pressure and displacements are calculated.

vi. Using this deformation a new pressure profile for the fracture is calculated. In order to 

solve the fluid flow equation inside the fracture a guess time increment is used.

vii. Fracture pressure profile obtained in previous step is used to calculate a new time 

increment based on material balance equation and the given injection rate. The fluid 

flow equation is solved again for a new fracture pressure profile in a loop until the 

convergence criterion for time increment is satisfied.

viii. The fracture pressure profile is again applied as boundary condition for the formation 

in a similar manner to step ‘i’.

ix. The displacement then compared with the previous solution. Since the nodes at the 

fracture surface are only nodes that are directly subjected to the fracturing fluid 

pressure, it is assumed that when a convergence achieved for the displacement of 

these nodes, the entire displacement solution is converged. If the convergence 

criterion for the previous step is not met, program iterates the step ii through viii. 

Upon convergence it proceeds to the next step.

x. Once the displacement convergence is successful, the critical width using equation 

2.17 at the fracture tip calculated. If the critical width is numerically equal (based on a 

reasonable tolerance) to the deformation calculated from the model of the fracture tip , 

then a new element is added to the existing fracture and the model returns to the first 

step with a new fracture geometry for next iteration.

In this study a short fracture is considered as the initial fracture in the orthogonal 

direction to the minimum principal stress, i.e. minor horizontal stress herein. It is also 

noteworthy that the simulation time of creating a fracture of given length depends on the 

mesh size, accuracy needed and the length of fracture growth at each time step. 

Validation of fully coupled hydraulic fracture propagation model 

In this section, results of fully coupled fracture propagation model in isotropic 

medium are presented. The reservoir and fracture data are given in Table 2.2. Plots of fracture 
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profile for selected time (when fracture is at equilibrium, i.e. when numerical width, 

WNM=Critical width, WIC) and corresponding fracturing fluid pressure profile are shown in 

Figs.2.32 and 2.33. As can be seen from Fig.2.33, fracturing fluid pressure drop is higher for 

earlier time steps than those of late time steps. As fracture propagates deeper into the 

reservoir the fracturing fluid pressure profile flattens. 

Comparison of fully coupled poroelastic model with KGD-C model 

KGD-C model is chosen to compare with the current numerical model as both assume 

plain strain in horizontal plane. The key differences between the two models are the 

application of boundary condition and propagation criterion. KGD-C model assumes that 

fracture is uniformly pressurized and the criterion for propagation is based on 

Barenblatt’s(1962) hypothesis. Whereas in the proposed model, fracture fluid pressure is a 

function of nodal position in the fracture and the fracture propagation is based on LEFM. 

A closed system of equations for KGD-C model can be found in the Appendix-2.3 B

(Equations B-63 to B-68). The well bore pressure, fracture half length and fracture width at 

the well bore can be obtained by using a numerical root finding method. Data used to 

compare the results of the current numerical model and the KGD-C model is presented in 

Table 2.2.  A low value for permeability is chosen, so that the effect of diffusion could be 

minimised around the wellbore and fracture. The results of fracture half length, fracture width 

and fracture propagation pressure are presented in Figs.2.34 to 2.36. It can be shown from 

these figures that the trends of the values obtained from numerical result are similar to the 

KGD-C model. This is due to the fact that in both poroelastic and KGD-C model, fluid-leak-

off is considered. In poroelastic model fluid leak-off is considered by using Darcy’s equation, 

while the KGD-C models a laboratory drive empirical equation. Some differences, which are 

observed between the models, are due to the different propagation criteria and the tolerance 

set for the numerical simulation. Also note that results from the numerical elastic model 

(effect of pore pressure ignored) are also presented in order to have a good comparison with 

KGD-C model which is an elastic model. 

Parametric study of poroelastic fracturing model 

A sensitivity analysis on parameters affecting fracture propagation in a poroelastic 

medium is presented in this section. The reservoir parameters and the fluid data are presented 
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in Table 2.3. In simulating the propagation of this fracture, the effect of various parameters 

such as Biot’s coefficient, formation permeability, and fluid viscosity are studied and 

presented.

Effect of formation permeability 

High permeability of fracture face leads to large volume of fluid loss which in turn 

results in a low fracturing fluid efficiency and slow fracture growth. It also affects back stress 

by controlling change in pore pressure in the vicinity of the fracture. Assumed that the 

fracture face has the same permeability as the formation, a clean fracturing fluid is used so 

that no filter cake is built up. To study the effect of formation permeability, two different 

permeability of 0.1 and 5 mD are considered. Other reservoir, wellbore and fracture data are 

given in Table 2.3. Results of fracture length, width and propagation pressure are shown in 

Figs.2.37 to 2.39.

The effect of formation permeability on fracture half length is presented in Fig.2.37. It 

can be seen from the figure that high permeability results in short fracture half length. For 

example, after 30 seconds of injection, fracture half length is 18.5 m for k=0.1 mD and about 

16 m for k = 5 mD. This means that the fracture half length is about 13.5% shorter for k = 5

mD than that for k = 0.1 mD. From Fig.2.38, it can be also observed that higher reservoir 

permeability yields considerably narrower fracture (about 6.6 % narrower for k = 5 mD than 

that for k = 0.1 mD). This is due to higher fracturing fluid loss as well as higher back stress 

effect due to high formation permeability. Fig.2.39 also shows that higher fracture 

propagation pressure is needed for high permeable reservoir. These results are in good 

agreement with results reported by Charlez and Aghighi (Charlez 1997, Aghighi 2007).

Effect of Biot’s coefficient

To study the effect of Biot’s coefficient on the hydraulic fracture propagation, two 

cases of Biot’s coefficient 1.0 and 0.85 are considered. All other parameters are kept 

constant. Result of this study is presented in Fig.2.40. It is found that the Biot’s coefficient 

has negligible effect on fracture propagation pressure. These results are in good agreement 

with the published results (Ghassemi 1997; Aghighi 2007).
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Effect of pumping rate 

In order to study the effect of pumping rate on hydraulic fracture propagation, two 

cases of pumping rates: 10 bbl/min and 20 bbl/min are chosen. All other parameters are kept 

constant. Results of fracture geometry and propagation pressure for two pumping rates are 

shown in Figs.2.41 to 2.43. It can be seen from the Fig.2.41 that higher pumping rate results 

in higher fracture growth. After 20 second of injection time at a pumping rate of 10 bbl/min 

fracture propagates to about 14 m. For same time and at an injection rate of 20 bbl/min 

fracture propagates up to 19.5 m. This means that increased pumping rate yields longer

fracture half length and wider fracture width as shown in Fig.2.41 and 2.42. From Fig.2.43 it 

can be observed that injection rate has no significant effect on fracture propagation pressure.

These results are in good agreements with those of Ghassemi (1997) and Aghighi ( Aghighi 

2007).

Effect of fracture toughness 

In order to study the effect of fracture toughness on hydraulic fracture propagation in 

poroelastic media, two fracture toughness of 500 psi.ft0.5 and 1000 psi.ft0.5 are considered. All 

other parameters are kept constant. Fracture half length, fracture width and fracture 

propagation pressure profiles in terms of elapse time are shown in Figs.2.44 through 2.46. It 

can be observed from these figures that, fracture propagation process in poroelastic 

environment is highly sensitive to the material fracture toughness. Lower fracture toughness 

can lead to longer and narrower fracture (see Fig.2.44 and 2.45), while higher fracture 

toughness lead to shorter and wider fracture. It can be also observed that the rate of fracture 

growth is considerably higher for the case with lower fracture toughness. As illustrated in 

Fig.2.44 for fracture toughness of 500 psi.ft 0.5 it takes about 30.5 seconds for fracture to 

reach a target of 18.5 meter compared to about 49.5 seconds (about 30% longer) for fracture 

toughness of 1000 psi.ft 0.5. Fracture width at the wellbore is wider for higher fracture 

toughness (1000 psi.ft0.5) than that for low value of fracture toughness (500 psi.ft0.5) (See 

Fig.2.45). It can be also observed that fracture propagation pressure is lower for the case of 

lower fracture toughness. The fracture propagation pressure difference at the early time is 

somewhat equal to 250 psi and later on nearly 65-70 psi that coincide with Aghighi’s (2007)

result. Results of this study suggest that fracture toughness of formation is a critical

parameter in the design of hydraulic fracture treatment. 
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Effect of fracturing fluid viscosity

In order to study the effect of fracturing fluid viscosity on fracture propagation 

process two values of 1 and 100 cp (mPa.s) are used. All the other parameters listed in Table 

2.3 are kept constant. Results of fracture geometry and propagation pressure are presented in

Figs.2.47 to 2.49. It can be seen from the Fig.2.47 that high viscous fracturing fluid causes a 

lower fracture half length. It also seen from the Fig.2.48 that, the created fracture at a given 

injection time is considerably wider for the higher viscous fracturing fluid than that of low 

viscous fluid. The difference in fracture width increases with the progress of time which leads 

to higher fracture volume. This is due to the fact that less fluid loss (high fracturing fluid 

efficiency) for μ=100cp. Fracture propagation pressure at the wellbore is considerably higher 

for μ=100cp than that of μ=1cp as shown in Fig.2.49.

2.4 Summary 

In this chapter, a fully coupled poroelastic model is presented to study the fracture 

propagation in a homogenous medium. In order to achieve this, first an intact wellbore model 

is developed and the result of pore pressure, total and effective stresses are validated against 

analytical equations. It is observed that when the wellbore pressure is maintained lower than 

the initial reservoir pressure, the pore pressure with time decreases and change in pore 

pressure results in change in total stress. Next a hydraulically induced fracture is introduced 

to the intact wellbore model to study the induced fracture propagation. The results of fracture 

geometry (half length and width) and propagation pressure are validated against KGD-C

model. Finally a parametric study of various parameters which can affect the process of 

hydraulic fracturing is conducted and discussed with supporting plots. It is observed that 

higher injection rate and high value of fracture toughness yields wider fracture. High 

fracturing fluid viscosity can result in shorter and wider fractures. The rate of fracture growth 

can significantly lower in high permeable reservoirs due to high injection fluid loss. 
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Table 2.1: Parameter used for verification of intact wellbore model

Properties Values

Young’s modulus of elasticity 2.18E+6 psi

Poisson’s ratio 0.25

Formation porosity, 0.2

Reservoir fluid compressibility, cf 1.0E-5 psi-1

Reservoir fluid viscosity, μ 1 cp

Biot’s coefficient, 1.0

Maximum horizontal stress, H 6000 psi

Minimum horizontal stress, h 5000 psi

Initial reservoir pressure, pi 4000 psi

Wellbore pressure, pw 2000 psi

Formation permeability, kx 1.0 mD

Formation permeability, ky 1.0 mD

Wellbore radius, rw 0.1 m

Reservoir outer radius, re 1500 m

Table 2.2: Parameter used for the study of hydraulic fracture propagation

Properties Values

Young’s modulus of elasticity 2.18 E+6 psi

Bulk Poisson’s ratio 0.25

Formation permeability, kx 0.1 mD

Formation permeability, ky 0.1 mD

Formation Porosity,, 0.1

Reservoir fluid compressibility  1 E-5 1/psi

Reservoir fluid viscosity, μ     1 cP

Fracture fluid viscosity ,μf 1 cP

Biot’s coefficient, 1.0

Initial reservoir pressure, pi 4500 psi
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Maximum horizontal stress, H 6000 psi

Minimum horizontal stress, h 5000 psi  

Wellbore radius, rw 0.1 m  

Drainage radius ,re 500.0 m  

Injection rate, q 10 bbl/min

Leak-off coefficient, CL    0.00025 ft.min-0.5

Fracture toughness  500 psi.ft 0.5

Table 2.3: Parameter used for the sensitivity analysis of hydraulic fracture 

propagation in poroelastic media.

Properties Values

Young’s modulus of elasticity 1.45 E+6 psi

Bulk Poisson’s ratio 0.25

Formation permeability, kx 0.1 – 5 mD

Formation permeability, ky 0.1 – 5 mD

Formation Porosity, 0.1

Reservoir fluid compressibility  1 E-5 1/psi

Reservoir fluid viscosity, μ     1 cP

Fracture fluid viscosity ,μf 1~100 cP

Biot’s coefficient, 1.0~0.85

Initial reservoir pressure, pi 4500 psi

Maximum horizontal stress, H 6000 psi

Minimum horizontal stress, h 5000 psi  

Wellbore radius, rw 0.1 m  

Drainage radius ,re 500.0 m  

Injection rate, q 10~20 bbl/min

Leak-off coefficient, CL    0.00025 ft.min-0.5

Fracture toughness  500-1000 psi.ft 0.5

Pay zone height, h 100 ft
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Fig. 2.1: Model geometry of pressurized intact wellbore and reservoir

Fig. 2.2: Pore pressure as a function of radius and time H = 6000 psi, 
h = 5000 psi, Pi = 4000 psi, Pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD (See Eqn E73 for analytical 

solution).
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Fig. 2.3(a): Pore pressure contour map after 1 min (Numerical results, 
psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD.)

Fig. 2.3
psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.4 H h = 5000 psi, 
pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.4(b): Pore pressure contour map after 1hr (Nume H h = 5000 
psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.5(a) H h = 5000 
psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig.2.5 H h = 5000 
psi, pi = 4000 psi, pw = 2000 psi, kx =1.0 mD, ky = 1.0 mD).
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Fig. 2.6(a): Pore pressure contour H h =
5000 psi, pi = 4000 psi, pw = 2000 psi, kx =1.0 mD, ky = 1.0 mD).

Fig. 2.6 H h =
5000 psi, pi = 4000 psi, pw = 2000 psi, kx =1.0 mD, ky = 1.0 mD).
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Fig. 2.7 (a): X-component of total stress ( x) as a function of time and radial position along X-
axis for entire region (poroelastic reservoir H h = 5000 psi, pi = 4000 psi, pw = 2000 
psi, kx =1.0 mD, ky = 1.0 mD).

Fig. 2.7 (b): X-component of total stress ( x) as a function of time and radial position along X-
axis for far field region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.7 (c): X-component of total stress ( x) as a function of time and radial position along X-
axis for near wellbore region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.8: Change in x-component of total stress ( x) as a function of time and radial position 
along X-axis H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx =
1.0 mD, ky = 1.0 mD).
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Fig. 2.9(a): X-component of effective stress ( x) as a function of time and radial position along 
X-axis for entire region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.9(b): X-component of effective stress ( x) as a function of time and radial position along 
X-axis for near wellbore H h = 5000 psi, pi = 4000 psi, 
pw = 2000 psi, kx =1.0 mD, ky = 1.0 mD).



33

Fig. 2.9(c): X-component of effective stress ( x) as a function of time and radial position along 
X-axis for far field H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.10(a): X-component of total stress ( x) as a function of time and radial position along 45o

for entire region H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, 
kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.10(b): X-component of total stress ( x) as a function of time and radial position along 45o

for near wellbore region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.10(c): X-component of total stress ( x) as a function of time and radial position along 45o

for far field region H h = 5000 psi, pi = 4000 psi, pw = 2000 
psi, kx = 1.0 mD, ky = 1.0 mD).



35

Fig. 2.11: Change in x-component of total stress ( x) as a function of time and radial position 
along 45o

H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 
mD, ky = 1.0 mD).

Fig. 2.12(a): X-component of effective stress ( x) as a function of time and radial position along 
45o for entire H h = 5000 psi, pi = 4000 psi, pw = 2000 
psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.12(b): X-component of effective stress ( x) as a function of time and radial position along 
45o for near wellbore region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.12(c): X-component of effective stress ( x) as a function of time and radial position along 
45o for far field H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.13(a): X-component of total stress ( x) as a function of time and radial position along y-
axis (90o) for entire region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.13(b): X-component of total stress ( x) as a function of time and radial position along y-
axis (90o) for near wellbore region H h = 5000 psi, pi = 4000 
psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.13(c): X-component of total stress ( x) as a function of time and radial position along y-
axis (90o) for far field H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.14: Change in x-component of total stress ( x) as a function of time and radial position 
along y-axis H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx =
1.0 mD, ky = 1.0 mD).
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Fig. 2.15(a): X-component of effective stress ( x) as a function of time and radial position along 
y-axis (90o) for entire region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.15(b): X-component of effective stress ( x) as a function of time and radial position along 
y-axis (90o) for near wellbore region H h = 5000 psi, pi = 4000 
psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.15(c): X-component of effective stress ( x) as a function of time and radial position along 
y-axis (90o

H h = 5000 psi, pi = 4000 psi, 
pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.16(a): Y-component of total stress ( y) as a function of time and radial position along x-
axis for entire region H h = 5000 psi, pi = 4000 psi, pw = 2000 
psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.16(b): Y-component of total stress ( y) as a function of time and radial position along x-
axis for near wellbore region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.16(c): Y-component of total stress ( y) as a function of time and radial position along x-
axis for far field H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.17: Change in y-component of total stress ( y) as a function of time and radial position 
along y-axis H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx =
1.0 mD, ky = 1.0 mD).

Fig. 2.18(a): Y-component of effective stress ( y) as a function of time and radial position along 
X-axis for entire region ( H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.18(b): Y-component of effective stress ( y) as a function of time and radial position along 
X-axis for near wellbore region H h = 5000 psi, pi = 4000 psi, 
pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.18(c): Y-component of effective stress ( y) as a function of time and radial position along 
X- H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).



44

Fig. 2.19(a): Y-component of total stress ( y) as a function of time and radial position along 45o

for entire region H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, 
kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.19(b): Y-component of total stress ( y) as a function of time and radial position along 45o

for near wellbore region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.19(c): Y-component of total stress ( y) as a function of time and radial position along 45o

for far field (poroel H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx =
1.0 mD, ky = 1.0 mD).

Fig. 2.20: Change in y-component of total stress ( y) as a function of time and radial position 
along 45o (poroelastic reservoir H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 
mD, ky = 1.0 mD).
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Fig. 2.21(a): Y-component of effective stress ( y) as a function of time and radial position along 
45o for entire region H h = 5000 psi, pi = 4000 psi, pw = 2000 
psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.21(b): Y-component of effective stress ( y) as a function of time and radial position along 
45o for near wellbore region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.21(c): Y-component of effective stress ( y) as a function of time and radial position along 
45o

H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.22(a): Y-component of total stress ( y) as a function of time and radial position along y-
axis (90o) for entire region H h = 5000 psi, pi = 4000 psi, pw =
2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.22(b): Y-component of total stress ( y) as a function of time and radial position along y-
axis (90o) for near wellbore H h = 5000 psi, pi = 4000 
psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.22(c): Y-component of total stress ( y) as a function of time and radial position along y-
axis (90o) for far field region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.23: Change in y-component of total stress ( y) as a function of time and radial position 
along y-axis H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx =
1.0 mD, ky = 1.0 mD).

Fig. 2.24(a): Y-component of effective stress ( y) as a function of time and radial position along 
y-axis (90o) for entire region H h = 5000 psi, pi = 4000 psi, pw

= 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.24(b): Y-component of effective stress ( y) as a function of time and radial position along 
y-axis (90o) for near wellbore region H h = 5000 psi, pi = 4000 
psi, pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).

Fig. 2.24(c): Y-component of effective stress ( y) as a function of time and radial position along 
y-axis (90o) for far field H h = 5000 psi, pi = 4000 psi, 
pw = 2000 psi, kx = 1.0 mD, ky = 1.0 mD).
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Fig. 2.25(a): Shear stress ( xy) as a function of time and radial position along 45o for entire
region H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 
mD, ky = 1.0 mD).

Fig. 2.25(b): Shear stress ( xy) as a function of time and radial position along 45o for near 
wellbore region H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, 
kx = 1.0 mD, ky = 1.0 mD).
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Fig .2.25(c): Shear stress ( xy) as a function of time and radial position along 45o for far field
region H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 
mD, ky = 1.0 mD).

Fig. 2.26: Change in shear stress ( xy) as a function of time and radial position along 45o

H h = 5000 psi, pi = 4000 psi, pw = 2000 psi, kx = 1.0 mD, ky =
1.0 mD).
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Fig .2.27: Schematic illustration of three basic modes of fracture extension.

Fig. 2.28: Nodal arrangement of fracture tip element for calculation of critical width.

Fig. 2.29: Finite element mesh used for simulation.
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Fig. 2.30: Algorithm of hydraulic fracture propagation model.
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Fig. 2.31: Algorithm of fracture pressure profile calculation.

Fig .2.32: Fracture profile for selected time steps (poroelastic reservoir, H = 6000 psi, h = 5000 
psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min, k = 0.1 mD, KIC = 500 psi.ft0.5).
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Fig .2.33: Fracturing fluid pressure profile for selected time steps (poroelastic reservoir, H =
6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min, k = 0.1 mD, KIC=500 psi.ft0.5).

Fig .2.34: Fracture half length vs., pumping time for the numerical poroelastic and elastic
fracturing models as well as KGD-C model ( H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, 
q =10 bbl/min, k = 0.1 mD, KIC=500 psi.ft0.5).
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Fig. 2.35: Fracture width vs. pumping time for the numerical poroelastic, elastic fracturing 
models and KGD-C model ( H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min, k
= 0.1 mD, KIC = 500 psi.ft0.5).

Fig. 2.36: Fracture propagation pressure vs. pumping time for the numerical poroelastic, elastic
fracturing models and KGD-C model ( H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10
bbl/min, k = 0.1 mD, KIC = 500 psi.ft0.5).
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Fig. 2.37: Fracture half length vs., pumping time for two permeability of 0.1 mD and 5 mD
(poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min,
KIC=500 psi.ft0.5).

Fig. 2.38: Fracture width vs. pumping time for two permeability of 0.1 mD and 5 mD
(poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 45 f = 1 cp, q = 10 bbl/min, KIC =
500 psi.ft0.5).



59

Fig. 2.39: Fracture propagation pressure vs. pumping time for two permeability of 0.1 mD and 5
mD (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min,
KIC = 500 psi.ft0.5).

Fig. 2.40: Fracture propagation pressure vs. pumping time for two Biot’s coefficient of 1.0 and 
0.85 (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, q = 10 bbl/min, k
= 0.1 mD, KIC = 500 psi.ft0.5).
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Fig. 2.41: Fracture half length vs., pumping time for two pumping rate of 10 bbl/min and 20 
bbl/min (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 mD, 
KIC = 500 psi.ft0.5).

Fig. 2.42: Fracture width vs. pumping time for two pumping rate of 10 bbl/min and 20 bbl/min
(poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 mD, KIC = 500 
psi.ft0.5).
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Fig. 2.43: Fracture propagation pressure vs. pumping time for two pumping rate of 10 bbl/min 
and 20 bbl/min (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 
mD, KIC = 500 psi.ft0.5).

Fig. 2.44: Fracture half length vs., pumping time for two fracture toughness of 500 psi.ft0.5 and 
1000 psi.ft 0.5 (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 
mD, q = 10 bbl/min).
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Fig. 2.45: Fracture width vs. pumping time for two fracture toughness of 500 psi.ft0.5 and 1000 
psi.ft 0.5 (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi=4500 psi, f = 1 cp, k = 0.1 mD, q
= 10 bbl/min).

Fig. 2.46: Fracture propagation pressure vs. pumping time for two fracture toughness of 500 
psi.ft0.5 and 1000 psi.ft 0.5 (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi =4 500 psi, f = 1
cp, k = 0.1 mD, q = 10 bbl/min).
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Fig. 2.47: Fracture half length vs., pumping time for two fracturing fluid viscosities of 1cP and 
100 cP (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 mD, q =
10 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 2.48: Fracture width vs. pumping time for two fracturing fluid viscosities of 1cP and 100 cP
(poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 mD, q = 10
bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 2.49: Fracture propagation pressure vs. pumping time for two fracturing fluid viscosities of 
1cP and 100 cP (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 psi, f = 1 cp, k = 0.1 
mD, q = 10 bbl/min, fracture toughness = 500 psi.ft0.5).
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Chapter 3: Hydraulic Fracture 
Propagation in Presence of a Natural 

Fracture 
The objective of this chapter is to extend the numerical poroelastic model developed 

in previous chapter to simulate hydraulic fracture propagation in presence of a natural

fracture. For this purpose an arbitrarily oriented natural fracture is incorporated in the 

numerical poroelastic model. Possibilities of fracture deviation, arrest and fracture crossing 

for various angles of approach are investigated under different scenarios of in-situ stress 

contrast, rock strength, natural fracture geometry and injection rate.  

Several field and lab experimental studies have investigated the presence of natural 

fractures on the propagation of an induced hydraulic fracture. In 1943 Lammont and Jessen 

(Norman Lamont and F.W. Jessen 1963) conducted a series of experiments in different types 

of rock (cement, Austin stone, Leuders lime, Berea sandstone, Boise sandstone and Millsap 

sandstone). Experiments are conducted under tri-axial compression. All samples are pre-

fractured and angle of inclination, bearing and width are varied from specimen to specimen. 

Widths are also varied from hairline to a large open fracture. The loading conditions for the 

experiment are showing in Fig.3.1 and results are shown in Fig.3.2 to Fig.3.4. Authors 

reported that the hydraulic fracture tends to turn and intersect the existing fracture at right 

angles or deviates from its existing extension path.  They also observed that after intersecting

a natural fracture the hydraulic fracture exit with an offset angle. 

Daneshy (1974) has shown that fracture follows the local path of least resistance, not 

the global path, and this leads to substantial branching. The works of Blanton (1982; 1986)

have shown that the propagating fracture crosses the natural fracture, turns into the natural 

fracture, or in some cases, turns into the natural fracture for a short distance, and then breaks 

out again to propagate in a mechanically more favorable direction depending primarily on the 

approach angle. The author does not provide any threshold for the approach angle to predict 

fracture arrest or fracture diversion.  Studies by Azeemuddin et al., 2002; Blanton, 1982; 

1986; Britt and Hager, 1995; Daneshy, 1974; Vinod et al., 1997; Zhou et al., 2008 suggest 

that hydraulic fractures tend to cross existing fractures at high differential stress and high 

angles of approach. At low angle of approach and low differential stress the natural fracture 
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opens, diverting the fracturing fluid and preventing the induced fracture from crossing, at 

least temporarily. A propagating hydraulic fracture deviates after reaching the vicinity of a 

natural fracture or it turns into the natural fracture and breaks out from the tip of the natural

fracture because of the altered stress around the natural fracture. It is likely that the width of 

the hydraulic fracture becomes substantially smaller than its initial width. Warpinski and 

Teufel (1987) conducted mine back experiments to study the effect of geologic 

discontinuities on hydraulic fracture propagation. However, mine back experiments have 

several major differences from hydraulic fracturing, such as shallow depth and low confining 

stresses. On the other hand, it is not feasible to monitor hydraulic fractures in the subsurface 

with great precision, because of the limited access to the subsurface.

More recently, L. Casas et al. (2006) performed hydraulic fracturing experiments in 

the laboratory on a large block of high modulus and low permeability rock (Colton 

sandstone) with artificial discontinuities. Authors concluded that in a high confining stress 

condition, planar fracture propagation follows the expected trend and the fluid net pressure 

inside the induced fracture becomes slightly higher than expected due to fluid lag zones.

Difference in stiffness between the grout and Colton sandstone interface (artificial 

discontinuity), as well as joint orientation do not arrest fracture growth.

As far as numerical studies are concerned, only a few works have been carried out on 

the interaction between hydraulically induced fracture and natural fractures. Heuze (1990)

used FEFFLAP (Finite Element Fracture and Flow Analysis Program) to investigate fluid-

driven crack in jointed rock. Dong and de Pater (2001) applied a displacement discontinuity 

method to study the effect of a fault on hydraulic fracture reorientation. Zhang and Jeffrey 

(2006b) also applied a displacement discontinuity method to study the role of friction and 

secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal to pre-

existing fractures. Ghassmi, (V. Koshelev and A. Ghassmi 2003) developed a numerical 

elastic model using boundary element method to study crack propagation near natural 

discontinuities such as joints and faults based on complex variable boundary element method. 

Potluri (2005) developed a numerical elastic model to predict the dynamic fracture dimension 

in the presence of natural fracture based on the PKN model. Akulich et al. (2008) developed a 

numerical elastic model to investigate the interaction of a hydraulic fracture with fault. They 

suggested that the fault slows down the propagation of a hydraulic fracture. An increase in 

differential stresses and the angle of inclination of the fault lead to a decreased likelihood of 

fault activation and decrease in the relative normal and tangential displacements of the fault 
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faces. Modeling of interaction between induced fracture and fault do not include fracture 

intersections; however, it gives an idea about the slippage along the fault and how it affects 

the stress intensity factors at the tip of the growing hydraulic fractures.

In all the aforementioned works interaction (diversion, arrest and/or crossing) of an 

approaching induced fracture with an arbitrarily oriented natural fracture in a poroelastic 

medium has not been addressed. In this study the poroelastic medium is considered to model 

and used to study the interaction of a hydraulically induced fracture and a natural fracture.

3.1 Modelling of fracture propagation in the presence of natural fracture 

(fracture arrest and/or deviation)

In the poroelastic model finite element technique is conveniently adopted to develop 

incremental approaches for the solution of moving boundary of the hydraulically induced 

fracture. The computational technique accommodates the situations where the induced 

fracture interacts with natural fracture. Propagation of hydraulic fracture takes place along the 

trajectory governed by mixed mode (mode-I and mode-II) fracture extension concept. The 

incremental nature of the iterative scheme allows for the time dependent analysis where pore 

pressure and deformation are appropriately adjusted by using 8-noded displacement element 

and 4-noded pressure element. The schematic of the system of an induced hydraulic fracture 

approaching/intersecting a pre existing natural fracture is shown in Fig.3.5.

Modeling fluid leak-off

Natural fractures (closed or mineralized) can still act as weak paths for fracture 

growth. One common observation in naturally fractured reservoirs is a high leak-off rate and

in some cases it is as high as 60 times more than that of in non-fractured reservoirs (Valkó 

and Economides, 1996). Leak-off rate in a permeable medium without natural fractures is 

dependent on formation permeability, net treatment pressure and fracture fluid parameters 

(Valkó and Economides, 1996). Whereas field observation during hydraulic fracturing in 

naturally fractured reservoirs shows that leak-off primarily depends on net treatment pressure 

and fracture fluid parameters does not depend on formation permeability (Barree 1996, Britt 

et al. 1994). For every fracture system there is a threshold for net injection pressure above 

which natural fracture opens. If net injection pressure stays below this threshold, fractures 
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remain closed and do not contribute to leak-off. This mechanism makes the leak-off rate in 

naturally fractured reservoirs strongly injection pressure dependent.

The fluid leak-off model developed in chapter-2 is further extended here by using a 

modified leak-off coefficient for natural fracture. Dong et al (1999) presented a simple 

methodology to handle the leak-off coefficient at fracture intersection. The same 

methodology is applied to calculate the modified leak-off coefficient at the fracture 

intersection. Here the assumptions are made that the fracture conductivity is much larger than 

the formation permeability and the pressure inside the natural fracture is considered to be the 

same as the pressure at the intersection point (between induced hydraulic fracture and natural 

fracture). The leak-off coefficient in the affected region (near the induced fracture) is set to 

the matrix leak of coefficient (CL) and the distance (distance perpendicular to the axis of the 

induced fracture) is referred to as lref. The leak-off coefficient at the intersection point now 

can be calculated using the following equation:

nf
nf L

ref

l
C C

l
(3.1)

where CL= matrix leak of coefficient, lnf = length of natural fracture, lref = length of the 

influence zone known as reference length and Cnf = calculated leak-off coefficient at the 

intersection point used as a natural fracture leak-off coefficient.

The pressure in the region very close to the hydraulically induced fracture (main flow 

path) can be expressed by the diffusivity equation as follows:

2

2

p c p
y k t

(3.2)

where = porosity, k = formation permeability (at fracture surface), = fluid 

viscosity, c = fluid compressibility and y = distance parallel to the Y-axis from the induced 

fracture. 

Carslaw and Jaeger (H.S. Carslaw and J.C. Jaeger, 1959) gave the solution of the 

above equation. For typical values for each parameter ( =0.2, = 1, c = 10-5 psi, k = 50 

mD and y = 1 ft) they found that the pressure in the region close to the main flow path 

reaches 1.9 times larger than that of the main fracture within one second. Based on their 

solution, in this study the influence zone of 1ft is utilized as a reference length (lref) to 

calculate the modified leak-off coefficient at the intersection point.  Replacing CL by Cnf in
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equation 2.20 fracturing fluid leak-off through natural fracture can be calculated using the 

following equation:

nfL
CV A

t t
(3.3)

The rate of fluid leak-off at the natural fracture surface is controlled by viscosity of the 

fracturing fluid, natural fracture permeability and local pressure gradient. 

Fracture propagation criteria in the presence of natural fracture

In this poroelastic model mixed mode (opening and shearing mode) fracture extension 

criteria is employed to simulate the induced fracture propagation in presence of natural

fracture. For this purpose first opening mode criterion that is based on Griffith’s concepts of 

crack stability is developed. Then the opening mode criterion is further extended to include 

the influence of shearing effects (mode-II). In order to include the shearing effect, both 

fracture extension and fracture orientation criteria are implemented.

According to the Griffith’s concepts of crack stability (Griffith, 1920; Griffith, 1924)

the fracture propagation in a poroelastic medium is assumed to take place in opening mode 

when the stress intensity factor in the fracture tip satisfied the following condition in terms of 

fracture toughness: 

(3.4)

where KIC is the critical value of the stress intensity factor known as fracture 

toughness and KI is the stress intensity factor for opening mode. 

In this model Erdogan and Sih’s (1963) crack extension criteria is used to include the 

shearing effects. According to authors, orientation of fracture extension (“ ”) can be 

calculated using the following equation:

2cos cos
2 2

I II
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(3.5)

where KII is the stress intensity factor for shearing mode (mode-II). 

The equation 3.5 gives two directions for propagation, the one with positive tensile 

stress is accepted and utilized in the mixed mode fracture propagation criteria.  Finally 

fracture orientation and extension criteria for the fracture propagation in mixed mode given 

I ICK K
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by G.C.Sih and Theocaries (1979) and G.C.Sih (1991) is adapted to model fracture 

propagation in presence of natural fracture. According to authors, the mixed mode fracture 

propagation (rock failure) criterion is as follows:

sinI IIK K (3.6)

Displacement correlation method is employed to calculate the stress intensity factors 

(for mode-I and mode-II) at the fracture tip. This method utilizes the quarter point singular 

elements (shift the mid-side nodes of an eight nodded iso-parametric element to their quarter 

points) as shown in Fig.3.6. Nodal displacements at four locations A, B, D, and E of the 

fracture tip are shown in the Fig.3.7. The opening mode-I and shearing mode-II stress 

intensity factors can be calculated using the following equations (Ingraffea, 1977a; Ingraffea 

and Manu, 1980; Murti and Valliappan, 1984, 1986):
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(3.8)

where G is the rock shear modulus, l0 is the length of fracture 

tip element and ux (*) and uy (*) are the nodal displacements along X and Y axis calculated 

from the numerical model. 

The meshes are made considerably fine when using the displacement correlation 

method. In order to have compliance with these considerations into the meshing process, a 

mesh generator is developed to generate this special type of geometry. The schematic of the 

finite element mesh is presented in Fig.3.8. It should be noted that the stress field around the 

fracture tip is modified by change in local pore pressure due to fracturing fluid leak off into 

the formation. In this study, this effect (also known as back stress) is taken into account by 

taking advantage of thin fluid (inside the fracture) elements. 

Criteria for induced fracture interaction with natural fracture 

There are some works done to provide analytical equations for predicting the 

intersection of a natural fracture by an induced hydraulic fracture. Blanton (Blanton T.L, 

1986) and Warpinski (Warpinski and Teufel, 1987) gave a relation based on the differential 

stress and angle of approach. Renshaw (Renshaw C.E, and Pollard D.D, 1996) provided a 
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criterion for crossing across unbonded interfaces, and Dyer (Dyer R., 1988) analyzed the 

interaction between joints and a hydraulic fracture.  In this study Blanton’s and Warpinski’s 

criteria are used and extended to model the intersection with a natural fracture and its 

breakout.

According to Blanton (Blanton, 1986) crossing will occur when the pressure required 

for re-initiation is less than the opening pressure. This critical state occurs just as the natural 

fracture begins to open.  For the induced fracture to breakout at a point opposite to the initial 

intersection point, the fracture pressure, p would have to overcome the stress t , plus the 

tensile strength of the rock, oT . Mathematically this can be written as

0tp T (3.9)

or

.ot T (3.10)

where t t p effective stress, T0 = tensile strength of the rock, p = pressure.

Determination of t is complicated by the fact that it depends not only on the far-

field stresses and pressure in the fracture but also on the geometry of the interaction zone as 

well as frictional slippage and opening along the natural fracture. An expression for t is 

given by Blanton (Blanton, 1986). In this model, the value of t can be obtain directly from 

the numerical results of displacement. Hence it is possible to calculate t at any point 

including at the circumference of the natural fracture. After that the value of those effective 

stress are investigated to evaluate points at the circumference of the natural fracture where the 

stress exceed the value of tensile strength of the rock. This rock tensile failure criterion is 

adopted to determine the crossing or break out behavior of the natural fracture based on the 

angular nodal position of natural fracture surface (see Fig. 3.9).  

Algorithm of induced fracture propagation in presence of natural fracture

The computational methodologies for fracture propagation away from the natural 

fracture (without the influence of the natural fracture) are same as the methodologies 

described in chapter-2. Once the induced fracture reaches the vicinity of the natural fracture 

the interaction is modeled by mixed mode failure criteria. The computational procedure 



72

presented in Fig.3.10 which includes step 1-9 of the section “Algorithm of hydraulic fracture 

propagation” of chapter-2 forms the first part of the algorithm. The second part of the 

algorithm includes step 10 to 14.

x. Once the displacement convergence is successful, instead of calculating critical 

width (as described in section “Algorithm of hydraulic fracture propagation” 

chapter-2) stress intensity factor KI and KII using equation 3.7 and 3.8 at the 

fracture tip element are calculated. This element is already made as quarter point 

singular element. 

xi. Then fracture orientation “ ” is calculated using equation 3.5. The equation gives 

two values of “ ” (directions for fracture propagation) which is physically 

unacceptable. Out of these two values only one value is accepted (which yields the 

positive tensile stress at fracture tip) as fracture orientation angle. 

xii. Once the fracture orientation angle (see Fig.3.12 a) is found, fracture extension 

criteria (using equation 3.6) is then checked. If the extension criteria meet the 

requirement, then a new element is added to the existing fracture which locates the 

new fracture tip (See Fig.3.12 b and c).

xiii. If the fracture extension criteria for mixed mode not met, the criterion for opening 

mode (mode-I) is checked before next iteration. If the opening mode criteria 

(KIC=KI) fulfills the requirement, then a new element is added to the existing 

fracture to locate the new fracture tip. Otherwise the process sends back to the 

step “iv” for next iteration. In this case decision is to be made whether the 

propagation is opening mode or mixed mode driven. 

xiv. The double nodes of the new element in step xii or xiii is split to generate the 

quarter point singular element. Then the model returns to the first step with a new 

fracture geometry for next iteration (new time step).

3.2 Parametric study of hydraulic fracture propagation in presence of a 

natural fracture:

According to Daneshy (1974) natural fractures can be divided as: small (up to 1.27 

cm), medium (up to 10 m) and large (more than 10 m). It is found in literature (Daneshy, 

1974; Blanton, 1982, 1986) that small natural fracture does not have any impact on induced 
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hydraulic fracture propagation. Hence, in this study only the medium natural and large 

natural fractures are considered. Angle of approach ‘ ’ (as shown in Fig.3.5) and 

H h H- h) are varied.

In order to study the influence of natural fracture on hydraulic fracture propagation, 

four parameters are varied: angle of approach, differential stress, natural fracture length and 

injection rate. Angles of approaches are set at 90o, 60o and 30o respectively.  Fluid injection 

rates used in this study are 20 bbl/min and 35 bbls/min and differential stress 1000 psi and 

500 psi respectively. A natural fracture is placed 20 meter away from the wellbore. Lengths 

of natural fracture used in this study are 10 m and 20 m long. Reservoir rock properties, 

fracture properties, rock mechanical properties and stress data are presented in Table 3.1. All 

propagation results discussed in this section are mix of opening mode (mode-I, near the 

wellbore region) and mixed mode (Mode-I and mode-II, in the vicinity of natural fracture)

driven.

Effect of angle of approach on fracture interaction

Results of the effect of a 10 m long natural fracture with an angle of approach of 90o

and differential stress of 1000 psi on fracture interaction are presented in Figs.3.13 through

3.16. It can be seen from Fig.3.13 that the induced fracture reaches the vicinity of the natural 

fracture after 42 sec of its initiation. Propagation of the induced hydraulic fracture ceases at

this time temporarily. From Fig.3.14 it can be seen that the width of induced fracture 

increases until it reaches natural fracture (42 sec). After this time the width at the fracture 

mouth continues to decrease for about 65 sec (117 s from the initiation). During this time, 

fracture propagation pressure increased by about 30 psi. As the injection of fracturing fluid 

continues the propagation pressure begins to drop sharply from 117 sec until 142 sec and then 

flattens out. It is also important to note that during the same period of 42 sec-117 sec fracture 

pressure at the fracture tip (inside the induced fracture) drops from 5095 psi to 5070 psi (See 

Fig.3.15). This phenomenon can be explained by the fact that as the induced fracture 

propagates and reaches the vicinity of the natural fracture a significant amount of fracture 

fluid leaks into the natural fracture, thus reducing the width of the induced fracture at the 

wellbore and fracture pressure near the fracture tip (See Fig.3.13 and 3.14). As the pumping 

continues pressure inside the natural fracture builds up and at about 117 sec (from the 

initiation of induced fracture) the tangential stress at angular position of 90o and 270o of the 

natural fracture surface exceeds its tensile strength (See Fig.3.16 where effective tangential 
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stress as a function of angular position of the natural fracture is presented). At this time 

induced fracture crosses the natural fracture and continues to propagate further into the 

formation. As the fracture propagates the fracture propagation pressure continues to decrease.

Results of the effect of a 10 m long natural fracture with an angle of approach of 60o

and differential stress of 1000 psi on fracture interaction are presented in Figs.3.17 through

3.20. Results of this study show very similar behavior to that of a 90o angle of approach but 

with following exceptions. Pressurization time required for tangential stress exceeds the 

tensile strength of the rock and the tangential stress at the point of interception for the case of 

60o angle of approach are much greater (about 2.5 times) than that of 90o angle of approach. 

This means that the angle of approach of 90o provides a most favorable condition for the 

induced fracture to intercept and cross the natural fracture. As the angle of approach 

decreases the pressurization time and the tangential stress at the circumference of the natural 

fracture required for the induced fracture to breakout increases. 

Results of the effect of a 10 m long natural fracture with an angle of approach of 30o

and differential stress of 1000 psi on fracture interaction are presented in Figs.3.21 through

3.22. In this case the induced fracture intersected the natural fracture. With continuous 

injection of fracturing fluid the induced fracture reorients and propagates along the axis of the 

natural fracture. It can be observed that the propagation pressure after the induced fracture 

intersects the natural fracture is greater (by 20 psi) for 30o angle of approach than that for 90o

angle of approach. This means that at low angle of approach it is less likely that the induced 

fracture to cross the natural fracture. 

Effect of differential stress on fracture interaction

Results of the effect of a 10 m long natural fracture with an angle of approach of 60o

and differential stress 500 psi on fracture interaction are presented in Figs.3.23 through 3.25.

From the result it can be seen that the induced fracture propagates and intersects the natural 

fracture. As the injection of fracturing fluid continues the induced fracture reorient and 

propagate along the axis of natural fracture. In previous case where differential stress is 1000 

psi and angle of approach 60o, the induced fracture crossed the natural fracture (see Fig. 3.17-

3.20). It can be seen from Fig.3.23 that the fracture propagation pressure in current case 

(propagate along the axis of natural fracture) is higher than that for 1000 psi differential stress 

(see Fig.3.17 and 3.18). This additional fracture propagation pressure is required to

reorientation for the induced fracture. From Fig.3.24 it is observed that, during the 
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reorientation of induced fracture along the axis of natural fracture the width of the induced 

fracture at the wellbore decreases due to the increase fluid leak-off into the surrounding and 

into the natural fracture. Fracture pressure profiles for two differential stresses (1000 psi and 

500 psi and angle of approach 60o) are presented in Fig.3.25. It can be seen from the figure 

that at higher differential stress (1000 psi) less fluid pressure inside the fracture is needed to 

cross the natural fracture. While at low differential stress (500 psi) higher fluid pressure is 

observed inside the fracture. 

Results of the effect of a 10 m long natural fracture with an angle of approach of 30o

and differential stress of 500 psi on fracture propagation are presented in Figs.3.26 through

3.27. Results of this study show very similar behavior to that of a 60o angle of approach (500

psi differential stress). When the results of this study are compared with 30o angle of 

approach and 1000 psi differential stress, it can be seen that the behavior is very similar, but 

the pressurization time required to re-orient along the axis of natural fracture  is much greater 

(about 2.5 times) than that for 1000 psi  differential stress.

From the above discussion one can conclude that, at high differential stress and high 

angle of approach the induced fracture is likely to cross the natural fracture. As the 

differential stress and angle of approach decreases it is unlikely for the induced fracture to 

cross the natural fracture.

Effect of natural fracture length on fracture interaction

In order to investigate the effect of the natural fracture length on fracture interaction a 

natural fracture of 20 m is placed at a distance of 20 meter away from the wellbore (fracture 

half length). The angles of approach are set at 90o and 60o. The wellbore is pressurized by 

injecting fracturing fluid (slick water). Results of the effect of a 20 m long natural fracture 

with an angle of approach of 90o and differential stress 1000 psi on fracture interaction are 

presented in Figs. 3.28 to 3.31 and compared with results of 10 m long natural fracture (see 

Figs.3.13-3.16). It can be observed from Figs.3.28 and 3.29 that the induced fracture 

continues to propagate until about 73.25s. After this time propagation slows down and finally 

stops propagating at the vicinity of the natural fracture (19.91 m from the wellbore) at about 

98s. This means that an induced fracture is likely to be stopped from propagation by a natural 

fracture of length 20 m and greater with angle of approach 90 o.
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Results of the effect of a 20 m long natural fracture with an angle of approach of 60o

and differential stress 1000 psi on fracture interaction are presented in Figs.3.31 through 3.33 

and compared with results of 10 m long natural fracture (see Fig.3.17-3.20). It can be

observed from Fig.3.31 that the induced fracture propagates and reaches the vicinity of the 

natural fracture (19.14 m from the wellbore). As the injection of the fracturing fluid continues 

the induced fracture reorient, deviate from its original direction and propagates along the axis 

of the natural fracture as it enter into the influence zone of natural fracture (see Fig.3.32 for 

better view).  This result is in good agreement with the result reported by Kosheleve’s (2003). 

It also agrees with the theory that the plane of the extending hydraulic fracture should be 

normal to the least stress (Daneshy, 1974). 

Effect of injection rate on fracture interaction

In order to study the effect of injection rate on fracture interaction the fluid injection 

rate is increased from 20 bbl/min (previous case) to 35 bbl/min. The length of the natural 

fracture and the angle of approach are kept at 20 m and 90orespectively. Results of this study 

are presented from Figs.3.35 through 3.37 and compared with results presented in Figs. 3.13 

to 3.16 in which the injection rate is kept at 20 bbl/min.

It can be seen from Fig.3.35 that the induced fracture requires 11.6 sec to reach the 

vicinity of the natural fracture from the time of its initiation compared to 71.8 sec for the case 

of 20 bbl/min injection rate (see Fig.3.13). Similarly time required to reach maximum width 

is much reduced (11.8 sec compared to about 97 sec for the case of 20 bbl/min, see Fig.3.14 

and 3.15). After this time the width at the fracture mouth continues to decrease for about 15 

sec (until 26.7 s from the initiation). Fracture propagation pressure increased by about 15 psi 

during the same period. With continuation of injection of fluid the induced fracture intercepts

and breaks out of the natural fracture and propagates further into the formation (see Fig.3.5 

and 3.36). Results of this study show very similar behavior to that of a 10 m long natural 

fracture with 90o angle of approach and 20 bbl/min injection rate but with a number of 

exceptions: the natural fracture pressurization time and the tangential stress at the point of 

interception. For the case of 20 m long natural fracture the pressurization and interception 

time is about 2.5 times lower than that of 10 m long natural fracture. This means that a higher 

injection rate can overcome the leak off of fluid from the both induced and natural fracture 

and maintains the stress intensity factor at the fracture tip at a level required for it to intercept, 

cross and further propagation into the formation.
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3.3 Analysis of the induced hydraulic fracture arrest by and/or breakout of 

natural fracture

In order to develop a detail understanding of the mechanism by which the induced 

fracture breaks out of and/or arrested by the natural fracture after intersecting, the previous

numerical model is modified here. The model geometry includes a poroelastic reservoir, an 

arbitrarily oriented natural fracture and an intersected induced fracture. The processes of 

induced fracture arrest and/or breakout of the natural fracture are described by the governing 

equations of geomechanical deformation of formation, fluid flow within the formation 

(reservoir) and fluid flow inside the fractures. A much larger number of meshes (nodes and 

elements) are generated than in the previous case to study the arrest and breakout.

The initial condition of this model is that, the induced hydraulic fracture is already 

intersected the natural fracture and ready to propagate within the natural fracture. Schematic 

representation of an induced hydraulic fracture in a medium containing a natural fracture with 

its initial condition is presented in Fig.3.38 h acts 

perpendicularly to the induced fracture. Fracture is driven by injecting fluid at a constant rate, 

Qo through the wellbore. It is assumed that the fracture propagates along the x-axis. 

Governing Equations

Fluid flow and geomechanical deformations are coupled based on the poroelastic 

theory developed by Biot (1951; 1955). The governing equations, which are derived in 

Chapter-2(See Equation 2.1, 2.3-2.5) on the basis of mass continuity equations (for both 

fluids and solids), are presented as follows (Charlez, 1997; Chen et al., 1995): 

( )
t

p u kc p
t t
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i i

u pG G u
x x
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where is porosity; ct is total system compressibility ( sc + fc ); p is pore pressure; t

is time; is Biot’s coefficient; u is displacement vector; k is the permeability tensor; is 

fluid viscosity; fc is fluid compressibility; is a vector operator; and G are Lame’s 
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constants and xi is the position vector (i = 1, 2, and 3 in a 3D space to represent three spatial 

components).

Discretization of the above equations using finite element method (FEM) 

(Zienkiewicz and Taylor, 2000) results in the following coupled linear system of equations:

2

1

5 3

3 4

T i

i

fUM M

fPM M
(3.11)

where i is the time step; P is the pore pressure vector; 1 2 ....T
nP p p p ; p is the 

nodal pore pressure; n is the number of nodes; U is the displacement vector; 

1 1 2 ....T
x y x ynU u u u u ; ux is the nodal value of x-component of displacement,  uy is the 

nodal value of y-component of displacement; 1i iP P P ; 1i iU U U ; and represents the 

time increment. Additionally 5M , 4M , 3M , 1f , and 2f are matrices and vectors which are 

defined in the Appendix-2D.

Model description 

The finite element mesh to represent the model geometry that includes a poroelastic 

reservoir, a natural fracture and an intersected induced fracture is presented in Fig.3.39. It is 

noted that different types of elements have been embedded in this mesh: a) reservoir element, 

b) hydraulic fracture element and c) natural fracture element. Different material properties are

assigned to these elements. As the hydraulic fracture is infinite conductive a very high 

permeability and a very low value of young modulus are given to the respective elements

(like a fluid element). Values of porosity, permeability and young modulus for the natural 

fracture elements are considered such that they represent more realistic properties of a 

mineralized natural fracture (http://en.wikipedia.org/wiki/Youngs_modulus).

It should be mentioned that in this study compressive stress is considered positive and 

tensile stress negative. Main assumptions made in this study are as follows:

H h act at far field along x and y axes 

respectively.

No flow boundary condition is set at the outer reservoir boundary. 

Plane strain hypothesis are employed to reduce the 3D problem to 2D.

http://en.wikipedia.org/wiki/Youngs_modulus
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In order to simulate the induced fracture arrest by and/or breakout of natural fracture, 

a fluid (slick water) is injected from the wellbore into the induced fracture. This is done by 

applying an appropriate boundary condition at the wellbore nodes. At each time step of the 

injection period the system of linear equations (Eq.3.11) is solved for displacement and pore 

pressure. Stress tensor at each node is recovered from the numerical results of nodal 

displacement using super convergent patch recovery method (Boroomand and Zienkiewicz, 

1997; Zienkiewicz and Zhu, 1992) which are found to be the most accurate methods of stress 

recovery. The algorithm of the arrest and/or breakout analysis is presented in Fig.3.40. 

Initially the effective tangential stress is compressive at every point on the surface of the 

natural fracture due to the influence of far filed in situ stresses. When the induced hydraulic 

fracture intersects the natural fracture, pore pressure is built up inside the natural fracture 

which results in the dilation of the natural fracture. As the injection continues due to the 

increase in pressure inside the natural fracture, the effective stresses acting at the surfaces of 

the natural fracture decrease. In particular, tangential stress at the circumference of the 

natural fracture gradually transforms from compression to tensile. When the effective 

tangential stress exceeds the tensile strength of the rock, tensile failure takes place. 

Depending on the point of failure, this is called crossing or breakout (see Fig.3.38).

Parametric study of induced fracture arrest by and/or breakout of natural 

fracture

For the purpose of arrest and breakout analysis a number of cases are studied by 

varying angle of approach ‘ -

cases it is assumed that the induced fracture has already intersected the natural fracture. The 

natural fracture length is varied from 10 to 20 m and the natural fracture placed 20 m away 

from the wellbore. Reservoir properties and natural fracture data are given in Table 3.2. 

Effect of angle of approach

In order to study the influence of angle of approach on the induced fracture arrest by 

and/or breakout of natural fracture, three cases of 90o, 60o and 30o are considered. 

Differential stress and natural fracture length are kept constant at 1000 psi and 10 m 

respectively.
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The variation of effective tangential stress at angular positions along the surface of the 

natural fracture for the case of 90o angle of approach is presented in Fig.3.41. From the figure

it can be seen that the first point where the effective tangential stress exceeds the tensile 

strength of the rock is at 90o angular position. That means that the breakout of natural fracture 

occurs at the point opposite of the intersection point. Therefore, in the case of 90o angle of 

approach induced hydraulic fracture crosses the natural fracture and propagates further into 

the formation without changing its original direction.

The variation of effective tangential stress at angular positions along the surface of the 

natural fracture for the case of 60o angle of approach is presented in Fig.3.42. From the figure

it can be seen that the result is very similar to that of 90o angle of approach. Variation of 

effective tangential stress at angular positions along the surface of the natural fracture for the 

case of 30o angle of approach is presented in Fig.3.43. From the figure it can be seen that at 

180o angular position the effective tangential stress reaches the tensile strength of the rock (-

150 psi). Therefore, in this case breakout takes place at the far end tip of the natural fracture. 

From the above result one can conclude that at high angle of approach break out 

occurs at the point opposite to the initial intersecting point. At low angle of approach the 

induced hydraulic fracture is more likely to be arrested (at least temporarily) and/or breaks

out from far end tip of the natural fracture. Results when compared with results of the Potluri

Effect of differential stress 

In order to study the influence of differential stress on the induced fracture arrest by 

and/or breakout of natural fracture an angle of approach 60o and 500 psi differential stress are 

considered and compared with the case of 1000 psi differential stress. The length of the 

natural fracture is kept constant at 10 m.

The change in effective tangential stress at different angular positions along the 

surface of the natural fracture for the cases of 500 psi differential stress is presented in 

Fig.3.44. From the figure it can be seen that unlike the previous case (see Fig.3.68) induced 

fracture breaks out at the far end tip of the natural fracture (180o angular position). Therefore,

at low differential stress the induced hydraulic fracture breaks out at the far end tip of the 

natural fracture.
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Effect of length of the natural fracture 

In order to study the influence of natural fracture length on the induced fracture arrest 

by and/or breakout of natural fracture a 20 m long natural fracture is considered. Angle of 

approach and differential stress are kept constant at 90o and 1000 psi respectively.

The change in effective tangential stress at the angular positions along the surface of 

the natural fracture for the cases of 20 m long natural fracture is presented in Fig.3.45. From 

the figure it can be seen that after 18 minutes of injection the effective stress at the 

circumference of the natural fracture remains compressive. This means that the fracture is 

more likely to be arrested by the 20 m long natural fracture. 

Effect of injection rate

In order to study the influence of injection rate on the induced fracture arrest by 

and/or breakout of natural fracture the injection rate is increased from 20 bbl/min to 35 

bbl/min. The length of the natural fracture, angle of approach and differential stress are kept

constant at 20 m, 90o and 1000 psi respectively.

The change in effective tangential stress at the angular positions along the surface of 

the natural fracture for the cases of 35 bbl/min injection rate is presented in Fig.3.46. From 

the figure it can be seen that after 8.4 minutes of injecting the effective stress at the 

circumference of the natural fracture at 90o angular position becomes tensile and exceeds the 

tensile strength of the natural fracture. This means that the induced fracture is more likely to

breaks out of natural fracture at the point opposite to the initial intersecting. When this result 

is compared with that of 20 bbl/min injection rate (see Fig.3.71), it is found that induced 

fracture is arrested by the natural fracture on that case.

3.4 Summary

In this chapter, a fully coupled poroelastic model is presented to study the fracture 

propagation in presence of a natural fracture. In order to achieve this, first an arbitrary 

oriented natural fracture is initiated to the previously developed model to study the effect of 

natural fracture. Next a parametric study of various parameters which can affect the process 

of hydraulic fracturing in presence of natural fracture is conducted and discussed with 

supporting plots. Numerical results have shown that natural fractures have a considerable 



82

effect on the induced fracture propagation. In particular it is observed that for medium sized 

natural fracture (<= 10 m) the angle of approach and the stress state plays an important role. 

At high angle of approach and high differential stress, it is more likely for the hydraulic 

fracture to cross the medium size natural fracture, whereas for a case where angle of approach 

and differential stress are low the hydraulic fracture is more likely to be arrested (at least for a 

short time) and then reorient and propagate along natural fracture. Results also confirmed that 

in the case of 90o (or close to 90o) angle of approach the hydraulic fracture always crosses the 

natural fracture and the differential stress (studied here) has no significant effect on the 

trajectory of the hydraulic fracture propagation. Crossing of the natural fracture depends on 

the size of the natural fracture. In the case of long (>10 m, 20 m is used in this study) natural 

fracture, the propagation of induced fracture is stopped by the natural fracture. If the injection 

rate is high enough the induced hydraulic fracture crosses the long natural fracture. 

These results are compared with results published in Potluri (2004) and found that the 

trends are similar. Low angles of approach and low differential stress favors the induced 

fracture to open the natural fracture and propagates through the axis of the natural fracture, 

whereas high angles of approach with moderate to high differential stress favor crossing of 

the natural fracture. In all cases width constriction happened and as expected the magnitudes 

(decrease in width, increase of propagation pressure) are different as Potluri (2004) uses 

elastic model with no fluid leak-off. 

Next the model is further modified to provide an in-depth understanding of the 

induced fracture arrest by and/or breakout the natural fracture in a close proximity. It is 

observed that at high angle of approach and high differential stress break out occurs at the 

point opposite to the initial intersecting point. At low angle of approach the induced hydraulic 

fracture is more likely to be arrested (at least temporarily) and/or breaks out from far end tip 

of the natural fracture.
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Table 3.1: Parameter used for the study of fracture propagation and 

interaction

Reservoir properties

Young’s modulus of elasticity 1.48 E+6 psi

Bulk Poisson’s ratio 0.2

Biot’s coefficient,     1.0

Leak-off coefficient, CL    0.00025 ft.min-0.5

Fracture toughness  500 psi.ft 0.5

Fracture fluid viscosity ,μf 1 cP

Formation permeability, kx, ky 0.1 mD

Formation porosity, 0.1

Reservoir fluid compressibility 1 E-5 1/psi

Reservoir fluid viscosity, μ     1 cP

Initial reservoir pressure, pi 4000 psi

Maximum horizontal stress, H 5500-6000 psi

Minimum horizontal stress, h 5000 psi  

Injection rate, q 20-35 bbl/min

Natural Fracture properties

Length of natural fracture, lnf 10 m

Width of natural fracture 0.5 mm

Rock tensile strength, To -150.0 psi

Distance of natural fracture from wellbore 20 m

Porosity, 0.15
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Table 3.2: Reservoir properties and wellbore data used for fracture arrest 

and breakout analysis

Young’s modulus of formation  1.58 E 6 psi

Porosity 0.1

Biot’s coefficient, 1.0

Initial reservoir pressure, pi 5000 psi

Poisson’s ratio 0.2

Viscosity of fracturing fluid 1.0 cp

Maximum horizontal stress, H 5200-6000 psi

Minimum horizontal stress, h 5000 psi

Drainage area 5000 ft

Formation permeability, kx, ky 0.1 mD

Table 3.3: Natural fracture data used for fracture interaction, fracture 

arrest and breakout analysis

Length of natural fracture, lnf 10~20 m

Width of natural fracture 0.5 mm

Rock tensile strength, To -150.0 psi

Distance of natural fracture from wellbore 20 m

Porosity, 0.15
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Fig. 3.1: Schematic of Lammont and Jessen’s model with existing fracture showing directions of 
loading (from Lammont and Jessen, 1943).

Fig. 3.2: Austin stone model with hairline fracture, angle of inclination 0o, angle of bearing 450

(from Lammont and Jessen, after Potluri, 2004).
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Fig. 3.3: Austin stone model with 2-IN width fracture, angle of inclination 0o, angle of bearing 
900 (from Lammont and Jessen, after Potluri, 2004).

Fig. 3.4: Austin stone model with 1/2-IN width fracture, angle of inclination 0o, angle of bearing 
900 (from Lammont and Jessen, after Potluri, 2004).
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Fig. 3.5: Schematic of Induced hydraulic fracture intersecting a pre-existing natural fracture.

Fig. 3.6: Quarter point singular element.
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Fig. 3.7: Nodal arrangement for computation of stress intensity factor using displacement 
correlation method.

Fig. 3.8(a): Schematic of finite element 2D mesh of the induced fracture, natural fracture and 
the reservoir system. (A total number of nodes=47123 and total number of elements=19444 are
used for this study).
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Fig. 3.8 (b): Finite element 2D mesh of the induced fracture, natural fracture and the reservoir 
system showing near natural fracture region (A total number of nodes=47123 and total number 
of elements=19444 are used for this study).

Fig .3.9: Schematic of natural fracture showing different angular positions at the surface. 
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Fig .3.10: Fracture propagation/ extension algorithm using mixed mode fracture criteria.
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Fig .3.11: Calculation of mixed mode fracture criteria.

Fig. 3.12: Identification of crack orientation.
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Fig. 3.13: Fracture half length and propagation pressure vs. pumping time, natural fracture
length 10 m, width 0.5 mm, angle of approach 90o and natural fracture position from well bore 
is 20 m, differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.14: Fracture width and propagation pressure vs. pumping time, natural fracture length 
10 m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f =1 
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.15: Fracturing fluid pressure profile for selected time steps, natural fracture length 10 m, 
width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.16: Effective tangential stresses vs. angular position at the surfaces of the natural fracture
for selected time steps, natural fracture length 10 m, width 0.5 mm, angle of approach 90o,
natural fracture position from well bore is 20 m and differential stress 1000 psi (poroelastic 
reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1 cp, k = 0.1 mD, q = 20 bbl/min, 
fracture toughness = 500 psi.ft0.5).
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Fig. 3.17: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 10 m, width 0.5 mm, angle of approach 60o, natural fracture position from well bore is 20 
m and differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.18: Fracture width and propagation pressure vs. pumping time, natural fracture length 
10 m, width 0.5 mm, angle of approach 60o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.19: Fracturing fluid pressure profile for selected time steps, natural fracture length 10 m, 
width 0.5 mm, angle of approach 60o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.20: Effective tangential stresses vs. angular position at the surfaces of the natural fracture
for selected time steps, natural fracture length 10 m, width 0.5 mm, angle of approach 60o,
natural fracture position from well bore is 20 m and differential stress 1000 psi (poroelastic 
reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1 cp, k = 0.1 mD, q = 20 bbl/min, 
fracture toughness = 500 psi.ft0.5).
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Fig. 3.21: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 10 m, width 0.5 mm, angle of approach 30o and natural fracture position from well bore 
is 20 m, differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500 

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.22: Fracture width and propagation pressure vs. pumping time, natural fracture length 
10 m, width 0.5 mm, angle of approach 30o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.23: Fracture half length vs. pumping time, natural fracture length 10 m, width 0.5 mm, 
angle of approach 60o and  natural fracture position from well bore is 20 m (poroelastic 
reservoir, H = 6000 psi, h = 5500 psi, pi = 45 f = 1 cp, k = 0.1 mD, q = 20 bbl/min, 
fracture toughness = 500 psi.ft0.5).

Fig. 3.24: Fracture width vs. pumping time, natural fracture length 10 m, width 0.5 mm, angle 
of approach 60o and  natural fracture position from well bore is 20 m (poroelastic reservoir, H =
6000 psi, h = 5500 psi, pi =45 f=1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness =
500 psi.ft0.6).
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Fig. 3.25: Fracturing fluid pressure profile for two differential stress of 500.0 psi and 1000.0 psi, 
natural fracture length 10 m, width 0.5 mm, angle of approach 60o and natural fracture position 
from well bore is 20 m (poroelastic reservoir, H = 6000 psi, h = 5500 ~ 6000 psi, pi = 45 f

= 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.26: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 10 m, width 0.5 mm, angle of approach 30o and natural fracture position from well bore 
is 20 m, differential stress 500 psi (poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi = 4500

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.27: Fracture width and propagation pressure vs. pumping time, natural fracture length 
10 m, width 0.5 mm, angle of approach 30o, natural fracture position from well bore is 20 m and 
differential stress 500 psi (poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi f = 1 
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.28: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 20 m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 
m and differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi = 4500 psi, 

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.29: Fracture width and propagation pressure vs. pumping time, natural fracture length 
20 m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness of 500 psi.ft0.5).

Fig. 3.30: Stress intensity factor at the fracture tip during pressurization after the induced 
fracture induced fracture propagation stopes by the natural fracture for two differential 
stresses. Natural fracture length 20 m, width 0.5 mm, angle of approach 90o, natural fracture 
position from well bore is 20 m and differential stress 1000 psi (poroelastic reservoir, H = 6000 
psi, h = 5000~5500 psi, pi = f= 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness =
500 psi.ft0.5).
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Fig. 3.31: Effective tangential stresses vs. angular position at the surfaces of the natural fracture 
after the induced fracture propagation stopes by the natural fracture, natural fracture length 20 
m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.32: Propagating hydraulic fracture half length vs. nodal displacement along y axis of the 
induced fracture, angle of approach= 60o, natural fracture position from wellbore 20 m, length 
of natural fracture 20 m, width of natural fracture 0.5 mm, differential stress = 500 psi
(poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi = f = 1 cp, k = 0.1 mD, q = 20 
bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.33: Propagating hydraulic fracture half length vs. nodal displacement along y axis of the 
induced fracture, angle of approach= 60o, natural fracture position from wellbore 20 m, length  
of natural fracture 20 m, width of natural fracture 0.5 mm, differential stress = 500 psi and 
1000psi (poroelastic reservoir, H = 6000 psi, h = 5500~5000 psi, pi = f = 1 cp, k = 0.1 
mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.34: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 20 m, width 0.5 mm, angle of approach 60o, natural fracture position from well bore is 20 
m and differential stress 500 psi (poroelastic reservoir, H = 6000 psi, h = 5500 psi, pi = 4500 psi,

f = 1 cp, k = 0.1 mD, q = 20 bbl/min, fracture toughness = 500 psi.ft0.5).
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Fig. 3.35: Fracture half length and propagation pressure vs. pumping time, natural fracture 
length 20 m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 
m and differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = 4500

f = 1 cp, k = 0.1 mD, q = 35 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.36 Fracture width and propagation pressure vs. pumping time, natural fracture length 20 
m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f = 1
cp, k = 0.1 mD, q = 35 bbl/min, fracture toughness = 500 psi.ft0.5).



104

Fig. 3.37: Effective tangential stresses vs. angular position at the surfaces of the natural fracture 
after the induced fracture propagation stops by the natural fracture, natural fracture length 20 
m, width 0.5 mm, angle of approach 90o, natural fracture position from well bore is 20 m and 
differential stress 1000 psi (poroelastic reservoir, H = 6000 psi, h = 5000 psi, pi = f =1
cp, k = 0.1 mD, q= 35 bbl/min, fracture toughness = 500 psi.ft0.5).

Fig. 3.38: Schematic of initial condition of induced hydraulic and natural fracture intersection 
showing the angular positions at the natural fracture surface. 
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Fig. 3.39(a): Schematic of finite element mesh of the induced fracture, natural fracture and the 
reservoir system.

Fig. 3.39(b): Finite element 2D mesh of the induced fracture, natural fracture and the reservoir 
system showing a thin element near natural fracture region (angle of approach 90o).
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Fig .3.40: Algorithm of the induced fracture arrest and/or breakout (BHP=bottom hole 
pressure, t is the tangential stress around natural fracture and T0 is the tensile strength of the 
natural fracture rock).
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Fig. 3.41: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 10 m, angle of approach = 900, differential stress = 1000 psi, injection 
rate 20 bbl/min.

Fig. 3.42: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 10 m, angle of approach = 600, differential stress = 1000 psi, injection 
rate 20 bbl/min.
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Fig. 3.43: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 10 m, angle of approach = 300, differential stress = 1000 psi, injection 
rate 20 bbl/min.

Fig. 3.44: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 10 m, angle of approach = 600, differential stress = 500 psi, injection 
rate 20 bbl/min.
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Fig. 3.45: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 20 m, angle of approach = 900, differential stress = 1000 psi, injection 
rate 20 bbl/min.

Fig. 3.46: Effective tangential stress vs. angular position at the surfaces of the natural fracture. 
Natural fracture length = 20 m, angle of approach = 900, differential stress = 1000 psi, injection 
rate 35 bbl/min.
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Chapter 4: Conclusion and 
Recommendation 

4.1. Summary of the completed work

The main objective of this thesis is to investigate the factors responsible for hydraulic 

fracture propagation in presence of a natural fracture. In order to achieve this objective a 

finite element based poroelastic model is developed. The poroelastic model couples a 

wellbore, an induced fracture, an arbitrarily oriented natural fracture and poroelastic 

reservoir. A mesh generator is developed to generate the finite element mesh that can

represent natural fracture, an induced fracture and the reservoir. The model is developed in 

different stages.

First an intact wellbore in a poroelastic reservoir is modeled. The model is validated 

against analytical solutions. Next in the poroelastic intact wellbore model an induced fracture 

is incorporated. This model is validated against KGD-C model and a range of sensitivity 

analysis is carried out by varying formation permeability, fracture toughness, injection rate 

and fracturing fluid viscosity. Finally an arbitrarily oriented natural fracture of variable length 

is introduced into the poroelastic model and parametric studies of fracture interaction are 

carried out. 

Results of this study are presented in two parts: fracture interaction which includes 

fracture arrest, crossing and deviation; and a detailed description of how the induced fracture 

is arrested by and/or breaks out of the natural fracture.

It is observed that at high angle of approach and differential stress, it is more likely 

that the induced hydraulic fracture crosses the medium size natural fracture, whereas at low 

angle of approach and low differential stress the induced hydraulic fracture is more likely to 

be arrested (at least for a short time) and then reorient from the existing path and propagate 

along the axis of natural fracture. It is also observed that at high angle of approach and 

differential stress, it is more likely for the large natural fracture to stop the propagation of 

hydraulic fracture, while at a low angle of approach and low differential stress the induced 

hydraulic fracture is more likely to deviate from its existing path. 
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Results of this study also suggest that when a hydraulic fracture intersects a natural 

fracture it is initially arrested. With increased injection pressure due to continuous pumping, 

the induced fracture breaks out of the natural fracture. At high angle of approach and high 

differential stress it breaks out at the point opposite to the initial intersecting point. With 

decrease in angle of approach and differential stress the induced fracture is likely to break out 

at the far end tip of the natural fracture.

4.2 Recommendation for future works 

Following further works are recommended:

i. The current poroelastic model is a 2D model; hence it could not model the induced 

fracture height effect and the deep effect of the natural fracture. So further work 

should dictate to the modelling of fracture interaction in 3D. 

ii. This model has direct application to all the new Shale gas reservoirs around the world. 

One can extend this work to apply in Shale gas reservoir with appropriate field data.

iii. In order to apply in the geothermal reservoirs, the model can be extended by 

incorporating heat extraction model. 

iv. In this study the induced hydraulic fracture interaction is investigated by a single 

natural fracture. Future work should consider hydraulic fracture propagation in the 

presence of multiple natural fractures.

v. Using the appropriate field data one can study the natural and hydraulic fracture 

growth by interpreting treatment pressure response.
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Nomenclature 
A = the fracture surface (m2)

ct=total compressibility (psi -1)

cf= fluid compressibility

cs= solid compressibility

CL = leak-off coefficient (m/min1/2)

Cnf = natural fracture leak-off coefficient.

G=shear modulus (psi)

hf=fracture height (ft)

k=permeability (md)

KI=stress intensity factor for mode-I

KII=stress intensity factor for mode-II

KIC=Critical value of stress intensity factor

l=fracture length (ft)

lnf = length of natural fracture

lref = length of the influence 

p=pressure (psi)

pr=reservoir pressure (psi)

pw=wellbore pressure (psi)

Qo=injection rate (bbl/min)

t=time, sec (min, hrs)

To=tensile strength of the rock (psi)

ux = displacement along x axis

uy = displacement along y axis 

uz = displacement along z axis 
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VL = leak-off velocity

w=width of the natural fracture (mm)

= Biot’s coefficient

=angle of approach (deg)

=porosity

=viscosity (cp)

= fluid viscosity; 

H=maximum horizontal stress (psi)

h=minimum horizontal stress (psi)

t = Tangential stress (psi)

o =shear strength (psi)

=shear stress acting on the natural fracture plane (psi)

=Poisson ratio

=drained Lame’s parameters

u = undrained first Lame’s parameter. 

v = Poisson’s ratio

= the opening time of the element of interest

= porosity

= fluid viscosity

= is the Poisson’s ratio
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Appendix-2A: Change in Bulk and Pore 
Volume 

This appendix presents definition of basic rock properties. Solid matrix refers to the 

solid phase or solid skeleton of the material including all disconnected pores whereas bulk 

refers to the solid skeleton plus interconnected pores. 

A1: Total and bulk state variables

Bulk volume is defined as the solid volume plus pore volume. So one can write:

b s pV V V (A.1)

where V is volume and the subscripts b, s and p represent the bulk, solid and pores,

respectively.

The total volume is the solid volume plus fluid volume:

t s fV V V (A.2)

where the subscript (t) represents the total.

It is also noted that the fluid phase is contained within and completely saturates the

pores. Thus, the fluid volume is the same as pore volume:

f pV V (A.3)

So the bulk volume is the same as the total volume:

b tV V (A.4)

Again, porosity is the ratio of interconnected pore volume to bulk volume. This can be 

written as:

p

b

V
V

(A.5)

where ( ) is porosity. Now Vp can be eliminated in Eq.A.5. Using Eq.A.1 to give:

1 s

b

V
V

(A.6)
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One can define all state variables over a phase, except volume, as volume averages. 

Thus, the total of any state variable (a) is defined as:

t t s s f fa V a V a V (A.7)

Using Eqs.A.3-A.6, Eq.A.7 can be rearranged as follows:

(1 )t f sa a a (A.8)

A2: Solid and bulk compressibility 

Under certain boundary condition, compressibility of solid and bulk are determined 

through laboratory measurements. In all cases, the apparatus contains a jacketed rock core 

which is set between two caps at two ends and placed in a vessel where a confining pressure 

can be applied hydraulically. The caps can be designed either with drainage holes for a 

drained test, or solid for an undrained test. The rock sample is initially subjected to a 

confining pressure and a pore pressure. The change in volume is then determined by 

measuring the response of the rock sample to a small load increment. 

Bulk compressibility is measured with a drained test in which an increment of 

confined pressure pc leads to a bulk volume change Vb, which is measured once the initial 

pore pressure is recovered after diminishing the early undrained response. Bulk 

compressibility is then calculated using the following equation (Detournay and Cheng, 1993): 

1 b
b

b c p

VC
V P

(A.9)

where cb is often called drained jacketed bulk compressibility (Biot, 1935) due to the

measurement method. 

Solid phase compressibility, cs can be determined through so-called unjacketed test 

(Biot and Willis, 1957) where an equal increment is applied for both pore pressure and 

confining pressure ( p= pc) so that the differential pressure pd (pd=pc-p) is maintained 

constant. Following Detournay and Cheng (1993), this loading path is hereafter called I-

loading. Under I-loading condition, it can be argued that the volumetric variation is uniform 

all over the material as a result of the uniform pressure everywhere. Therefore no change in 

shape of the pores is experienced and porosity remains constant provided the solid phase is 

homogenous (Biot and Willis, 1957; Geerstma, 1957). Hence it can be written:
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ps b

s p b

VV V
V V V

(A.10)

The measured bulk volume variation from the unjacketed test can be used to calculate 

cs as follows: 

1 1b s
s

Pd Pdb s

V VC
V P V P

(A.11)

Hence cs which are also called unjacketed bulk compressibility can reflect the solid 

phase compressibility (Chin et al., 1995; Detournay and Cheng, 1993). 

A3: Total and effective stress 

Total stress is defined as the total stress acting on the solid/fluid system. It can be 

defined using Eq.A.12 as:

(1 )t f s (A.12)

where s, f and t are the solid, fluid and total stresses respectively.

As solid stress cannot be directly measured this relation is rarely used and in 

petroleum engineering it is more important for the stress on the bulk rather than the solid.

Effective stress is defined as the stress acting on the bulk. If the fluid is removed from

the solid fluid system or there is no fluid stress, the total stress equals the effective stress. In 

general fluid is included in the system and effective stress differs from total stress. One can

relate effective stress to total stress and fluid stress through superposition.

In state (b) of Fig.A.1, there is no external load so the stress only acts on the pores. In

state (c) of Fig.A.1, the stresses are acting on the bulk. For incompressible pores, state (b) 

contributes no load to the bulk so the effective stress is:

(A.13)

In general both the pores and solid are compressible and the effective stress can be 

written as:

f (A.14)

where alpha is the Biot coefficient ( 0 1ij ) and defined as:
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1 s

b

c
c

(A.15)

Fluid stress comprises a deviatoric component which is zero for motionless fluid and 

a pressure (p). So one can write as:

f p (A.16)

where ( ) is the kronecker delta. Effective stress tensor ij is then defined as (Nur and 

Byerlee, 1971): 

ij ij ijp (A.17)

A4: Changes in bulk and pore volume 

In poroelastic media pore volume varies as a result of a combined effect of rock stress

and fluid pressure on solid grains. In this section the study is related to the rock skeleton 

deformation which is basically the core problem of the poroelasticity. It provides 

relationships to evaluate bulk and the pore volume to be used in the derivation of linear 

poroelastic governing equations.

Hook’s law for a poroelastic medium 

The state of stress acting on an element of a porous medium can be decomposed to 

two components as shown in Fig.A.2 (Cornet, 1988).

Hook’s law in indicial notation is: 

2
ij

ij kk ij
V

G E
(A.18)

where G is the shear modulus and E Young’s modulus. 

Subscript kk represents Einstein summation.  In state (b) of the figure A.2, which 

corresponds to hydrostatic loading of the matrix with fluid pressure 1 2=p), Hook’s law 

can be written as: 

3
b

ij
s

P
K

(A.19)

where b is the strain tensor corresponding to the stage b and K the bulk modulus and 
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the subscript “s” refers to solid or matrix (
3(1 2 )

s
s

s

EK ).

In stage (c), a dry element of the porous media is considered. A resultant stress of - p

is applied on the bulk. The strain tensor corresponding to this stage ( c
ij ) is as follows:

1
3

2
bb b

ij ij ij kk p ij
b b

V VP
E E

(A.20)

The subscript “b” refers to the bulk. Adding Eqs. A.19 and A.20 gives the total strain

as follows:

1 1 1
2 3

b b
ij ij kk ij ij

b b b s

V V P
E E K K

(A.21)

Where Kb = Eb/3(1-2Vb).

When solved with respect to stress, It can also be written as follows: 2G

2 2
3ij B kk ij ij ij
GK G p (A.22)

Introducing effective stres ij kk, one can write:

1
2

b b
ij ij kk ij

b b

V V
E E

(A.23)

So Hook’s law for poroelastic medium can be written by introducing effective stress 

in place of total stress for elastic medium.

Change in bulk volume 

The volumetric strain defined by b
V

b

V V
V

can be obtained from Eq.A.21.

( )
3

b b kk
kk V b s

b b

V V V c p c p
V V

(A.24)

or: 

b
kk b m

b

V c
V

(A.25)



139

where cb is bulk compressibility, m kk/3 and effective mean stress m .is as 

follows:

m m p (A.26)

Change in pore volume 

Change in pore volume is only attributed to the change in normal components of 

stress. In order to analyse the pore volume variation, the total normal stress is first 

decomposed into two components: a hydrostatic part with mean stress m and a deviatoric 

ij- m:

ij m ij m (A.27)

It can also be expressed that the variation in pore volume is only a function of pore 

pressure and mean stress (Geerstma, 1957). Hence one can write:

1 1p p p
p m m

p p m p

V V V
d dp

V V V p
(A.28)

To evaluate the second term in the right hand side of Eq.A.28, stage (c)-loading is 

considered in which m From Eqs.A.10 and A.11 in differential form, the following 

equation is obtained: 

p
s

p

dV
c dp

V
(A.29)

Introducing Eq.A.29 into Eq.A.28 results in: 

1 1p p
s m

p m p pp

V V
c

V V
(A.30)

Combining Eqs.A.28 and A.30, one can write: 

1p p
s m

p p m p

V V
c dp d dp

V V
(A.31)

In order to calculate the differentiation involved in the second term of the right hand 

side of Eq.A.31, Betti-Maxwell reciprocal theorem is employed. According to this theorem, 

the work done by the forces of the first system acting through the displacements of the second 
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system is equal to the work done by the forces of the second system acting through the 

displacements of the first system (Jaeger and Cook, 1969). Under the stage (b)-loading 

condition, mean stress is applied as the confining pressure which is equal to the pore 

pressure. In the first transformation, an increase in mean stress d m gives rise to a decrease in 

pore volume while the pore pressure is constant. 

The second transformation involves an increase in pore pressure dp (dp =d m ) while 

the mean stress is maintained constant. This leads to an increase in bulk volume. The product 

of pressure-volume is identical to work, by applying the reciprocal theorem, one can write: 

. .c b
m b pd dV dp dV (A.32)

where superscripts represent two transformations. Here negative sign is due to the 

bulk expansion which is considered negative in this work. After rearrangement: 

p b

m pp m

V V (A.33)

It can be seen that the increase in bulk volume dVb caused by dp is equal to the

decrease in the pore volume dVp m of the same magnitude. On the other hand, 

m = 0, the relative bulk volume variation due to a change in pore pressure dp can be 

obtained from Ee.A.25 as follows:

b
b b

p m

V V c (A.34)

Eliminating b

p m

V from Eqs.A.33 and A.34, one can write:

p
b b

m p

V
V c (A.35)

By substituting Eq.A.35 into Eq.A.31 leads to: 

1p
s b m

p

V
c dp c d dp

V
(A.36)

Similar reasoning can be used for deviatoric component of stress so as to prove that 

the relative change in pore volume is zero. Therefore Eq.A.36 holds in general case. 
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FFig. A.1: Superposition to show the effect of fluid stress on bulk

Fig. A.2: Superposition of stress and fluid pressure acting on bulk
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Appendix-2B: Derivation of Poroelastic 
Governing Equations and Analytical 

Equations 
2.1 B Poroelastic Governing Equations 

Coupled Fluid Flow Equation 

In conventional reservoir simulators the diffusivity equation is used as the governing 

equation of pressure. This equation is derived by introducing Darcy’s law into fluid 

continuity equation where the solid deformation (velocity of solid) is neglected. 

Darcy’s law in general form can be written as follows: 

( ) ( )f s f
kv v p g H (B.1)

where fv and sv are fluid and solid velocities. 

Continuity equation for a fluid can be written as:

( )
. f

f fv q
t

(B.2)

In the same way, Continuity equation for a solid can be written as:

((1 ) ). (1 ) s
s sv q

t
(B.3)

By combining the diffusivity equation and the continuity equation one can written:

( )
( ) f

f f
k p g H q

t
(B.4)

Where, f = fluid density, H = depth, g = gravitational acceleration 

= porosity, k = permeability tensor, = fluid viscosity

q = rate of mass injected/produced and p = fluid pressure. 



143

In order to simplify the derivation of diffusivity equation with a coupled term, it is

assumed that the net flow of fluid from source to sink to be zero (q =0) and the effect of 

gravity also to be negligible i.e. .H = 0, q = 0. The effect of gravitation and the source/sink 

term will be introduced to the final equation.  

Introducing Eq.B.1 into Eq.B.2 and neglecting source sink term gives:

( )
.( )f

f s f
k p

t
(B.5)

Expanding the right hand side of Eq.B.5 gives:

( )
. ( ) . ( )f

s f f s f
k p

t
(B.6)

Introducing the material derivative with respect to a moving solid (Chen et al., 1995),

Ds where (*) (*) . (*)s
s

D
Dt t

one can write 

( ) ( )
. ( )s f f

s f

D
Dt t

(B.7)

Using Eq.B.7 into Eq.B.6 and after rearrangement, one can get: 

( )
. ( )s f f

f s

D k
p

Dt
(B.8) 

After differentiation of the left hand side of Eq.B.8 results in following form of the equation:

( )( ) . ( )s f fs
f f s

D kD p
Dt Dt

(B.9)

Rearranging the Eq.B.9, it becomes: 

( )( )1 1 1( )s f fs
s

f f

D kD p
Dt Dt

(B.10)

Expanding the solid continuity equation (Eq.B.3) and introducing the bulk density 

(1 )b s as well as neglecting the source/sink term the equation leads to:
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. . . 0b
b s b s b sv v

t
(B.11)

After rearranging and using material derivative one can obtain: 

( )1. s b
s

b

D
Dt

(B.12)  

Substituting Eq.B.12 into Eq.B.10 results in: 

( )( ) ( )1 1 1 1s f fs s b

f b f

D kD D p
Dt Dt Dt

(B.13)  

From the definition of porosity, density and compressibility one can write:    

p b

p b

V V
V V

(B.14) 

b b

b b

V
V

(B.15)

and

1 f
f

f

c
p

(B.16)

where cf is the fluid compressibility, Vp and Vs is the pore and bulk volume 

respectively. Substituting Eqs.B.14 and B.15 into Eq.B.13 gives: 

( ) ( )1 1 1s p s f f

p f f

D V D k
p

V Dt Dt
(B.17)   

Substituting Eqs.B.16 and A.31 (See Appendix-2A) into Eq.B.17, one can write: 

1( ) fs s m
f b s b

f

kD p Dc c c c p
Dt Dt

(B.18) 

where cs and cb are solid and bulk compressibility respectively and m is the mean 

stress. Using the definition of the effective mean stress ( '
m = m - p) into Eq.B.18 leads to: 
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2 1( ) fs s m
f b s b b

f

kD p Dc c c c c p
Dt Dt

(B.19) 

Using Eq.A.15 and substituting '
m from Eq.A.25 into Eq.B.19 gives: 

2 1( ) s jj fs
f s b

f

D kD pc c c p
Dt Dt

(B.20) 

where jj is the volumetric strain defined as follows:

jj x y z

yx z
uu u

x y z

.u (B.21)  

where ux, uy and uz is displacement along x, y and z axis respectively.

Expanding the right hand side of Eq.B.20 and substituting the value of jj yields:

( . )( ) . .s s
f s f

D p D u k kc c p c p p
Dt Dt

(B.22)

For slightly compressible fluid on can write: 

. .f
k kc p p p (B.23)

Hence Eq.B.22 can be written as: 

( . )( ) .s s
f s

D p D u kc c p
Dt Dt

(B.24)

It is also assumed that material derivative can be approximated by normal derivative, 

namely sD
Dt t

. This implies that (*). (*)s t
which physically means that the medium 

deforms without movement.  Using this assumption one can write the Eq.B.22 and B.24 as 

follows:
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( . )( ) .f s
p u kc c p
t t

(B.25)

( . )( ) . .f s f
p u k kc c p c p p
t t

(2.26)

The total compressibility ct can be defined as

( )
t f sc c c (B.27)

Using the equation of total compressibility one can calculate 

( )( ) s
f s f

cc c c = ct

Putting the value of ( )f sc c in Eq.B.26 and B.25 one can rewrite them as follows:

( . ) . .t f
p u k kc p c p p
t t

(B.28)

( . ) .t
p u kc p
t t

(B.29)

These are the coupled fluid flow equations using in the modelling of linear poroelasticity. 

Displacement Equations: 

The governing equation for displacement should contain the fluid pressure as the 

pressure is chosen as a coupling variable. The general equation of equilibrium for linear 

elastic materials is given as:

. 0 (B.30)

By introducing effective stress in equation will result into

. 0p (B.31)

Where effective stress tensor defined as

. . p (B.32)
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and is the Kronecker delta which is defined as follows:

1 0 0
0 1 0
0 0 1

(B.33)

Stress strain relationship can be defined in vector form as:

eD (B.34)

where De is the elastic modulus tensor (material properties matrix) defined in two 

dimensions is as follows:

2 0
2 0

0 0

G
D G

G
(B.35)

in which are Lame’s parameters.

Strain which is defined as change in displacement is a function of displacement. This 

relationship can be represented in vector form as:

, ,
1 ( )
2ij i j j iu u (B.36)

where ui is solid displacement vector, i, j is solid strain tensor and i, j=x, y, z.

First to substitute the constitutive equations for the stress components (Eq.B.32) into 

Eq.B.30 and then to apply the definition of the strain components in terms of derivatives of 

displacement (Eq.B.36) the three constitutive equations in terms of displacement and pressure 

can be written as follows (Charlez, 1991): 

2 ( . )( ) 0x
x

u pG u G
x x

(B.37)

2 ( . )
( ) 0y

y

u pG u G
y y

(B.38)

2 ( . )( ) 0z
z

u pG u G
z z

(B.39)
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in which 
2 2 2

2
2 2 2
a a a

a
u u uu
x y z

Eq.B.29 associated with Eqs.B.37-B.39 are the constitutive equations of poroelasticity 

with four unknowns: ux, uy , uz and p. Coupling occurs among these equations because pore 

pressure appears in the force equilibrium equations and mean stress/strain(derivative of 

displacement) appears in the fluid flow equation. The richness and varieties of poroelastic 

phenomena arise from interactions between the mechanical requirement of force equilibrium 

and the fluid flow requirement of continuity (H.F Wang, 2000)

Plane Strain

Due to the restriction in computing time and resources the plane strain assumption has 

been widely used in petroleum engineering that yield acceptable results with 2D analysis (Cui 

et al., 1997). This assumption has been widely used in the study of hydraulic fracturing and 

stress reorientation by various authors (Biot et al., 1986; Garagash and Detournay, 2005; 

Geerstma and De Klerck, 1969; Hidayati et al., 2001; Nouri et al., 2002; Sato and Hashida, 

2000). Using the stress-displacement relationship one can reduce Eqs.B.37- B.39 into two 

dimensions. The stress-displacement relationship can be expressed as follows (Zienkiewicz 

and Taylor, 2000):

eD Su (B.40)

where 

0

0

x

S
y

y x

(B.41)

or in incremental form: 

eD S u (B.42)

where u the change in displacement is vector and expressed as follows: 

x

y

u
u

u
(B.43)
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Combining Esq.B.30, B.31 and B.43 yields:

0TS p (B.44)

or: 

0T
eS D S u p (B.45)

Where Change in total stress,
x

y

xy

change in effective stress
x

y

xy

and p change in pressure
0

p
p

2.2 B Analytical equations to verify the numerical results for displacement, 

stress and pore pressure.

The aim of this section is to present appropriate analytical solutions to be used for 

verification of numerical results. They include equations for displacement, pore pressure and 

stresses at different time and location in a horizontal reservoir intercepted by a vertical 

wellbore. The initial state is assumed to be drained and anisotropic stress field exists in 

general case. The solutions are found through superposing two cases as shown in Fig.B.1. In 

case (b), a vertical wellbore of radius rw is located in an infinite horizontal reservoir.

Reservoir fluid pressure is pi. Wellbore pressure is considered to be equal to the reservoir 

pressure for superposition purpose. Solid skeleton of the rock is compressible and stress field 

is anisotropic. Analytical solutions for displacement, stress and pore pressure are obtained 

using the theory of superimposition and are given below as (Detournay and Cheng 1988; 

Aghighi 2007):

Radial displacement:

2 2 2
' ' ' '

2 2 2

' 2

( , ) ( )(1 2 ) ( ) 4 4 1 cos(2 )
4

( ) ( , )
2

w w w
r H h H h

w w
w w i

r r rru r v v
G r r r

p r r p p h r t
G r G

(B.46)
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Tangential displacement:

2 2
' '

2 2( , ) ( ) 2 4 1 sin(2 )
4

w w
H h

r rru r v
G r r

(B.47)

Pore pressure:

( , ) ( ) ( , )i w ip r t p p p g r t (B.48)

Radial stress:

2 4 2

2 4 2

2

2

( , ) (1 ) (1 3 4 )cos(2 )
2 2

2 ( ) ( , )

H h w H h w w
rr

w w
w w i

r r rr
r r r

r rp p p h r t
r r

(B.49)

Tangential stress:

2 4

2 4

2

2

( , ) (1 ) (1 3 )cos(2 )
2 2

2 ( ) ( , ) ( , )

H h w H h w

w w
w w i

r rr
r r

r rp p p h r t g r t
r r

(B.50)

Shear stress:

4 2

4 2( , ) (1 3 2 )sin(2 )
2

H h w wr rr
r r

(B.51)

where, H h are maximum and minimum horizontal stresses respectively,

pw, pi and p are the wellbore pressure, initial reservoir pressure and pore pressure 

respectively,

rw = wellbore radius, of any point, t= time.

1( , ) ( , )g r t L g r s (B.52)

1( , ) ( , )h r t L h r s (B.53)

L-1 is the Laplace inversion operator and:

0

0

( )( , )
( )

Kg r s
sK

(B.54)
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1 1

0 0

1( , )
( )

wK Krh r s
s K r K

(B.55)

1 2
2 1

v
v

(B.56)

sr
c

(B.57)

w
sr
c

(B.58)

12

2t
kc c

G
(B.59)

K0 and K1 are the first order modified Bessel function of the first and second kind. 

Laplace inversion can be performed using the method presented by Stehfest (1970) which is 

one of the various methods of approximating Laplace inversion. The solution in time can be 

calculated by using the following formula:

1

1 2 ln 2N

n
n

nf t c f n
t t

(B.60)

where ln is the natural logarithm, N any positive even number between 8 and 20; and

Cn can be calculated using the following equation:

min( , )
2 2

2

1( )
2

(2 )!1
( )! !( 1)!( )!(2 )!

2

N Nn
Nn

n
nk floor

k kc N k k k n k k n
(B.61)

2.3 B Closed system of equations for KGD-C model 

KGD-C model is chosen to compare with the current numerical model as both assume 

plain strain in horizontal plane. The key difference is the application of boundary condition 

and propagation criterion. KGD-C model assumes a constant pressure throughout the 

wellbore and the criterion for propagation is based on Barenblatt’s(1962) hypothesis. 

Whereas in the proposed model, fracture fluid profile obtained from numerical calculation is 

used as boundary condition and the fracture propagation is based on LEFM. The KGD 

geometry is illustrated in Fig.B.2. The width, half length and net pressure obtained from the 
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current model and KGD-C are compared. The letter C denotes that the 2D algebraic models 

are combined with carter II solution (for leak off) of material balance. For constant-injection-

rate/no-leak-off case the length, width and net pressure  is calculated as(Geerstma and De 

Klerck 1969):

1 1
1 6 6

2 26
3 3

3 3

2 2
3 3 3

16 0.593
21

i iq q

i if

E E
x t t

h h
(B.63)

1 1
1 6 6

26
3

3 3

2 2
3 3 3

5376 2.36
i iq q

ifw t
E h E h

(B.64)

1
1 11 13
3 33 32 2

,
21 1.09
16net wp t tE E (B.65)

Using the carter II solution of material balance, fracture half length can be obtained 

from the following equation(Valko and Economides 1995):

( 2 ) 2exp( ) ( ) 1
4

p

L f
f

w S q
X erfc

C h
(B.67)

2
( 2 )

L

p

C t
w S

(B.68)

where, CL = Leak-off coefficient, Sp = spurt loss coefficient, w = Average width,

E' = E/ 1- v2, = Fracturing fluid viscosity, q= Flow rate and hf = height of 

fracture.

A closed system of equations for KGD-C model can be formed using equations B.63

to B.68. The well bore pressure, fracture half length and fracture width at the well bore can be 

obtained by using a numerical root finding method.
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Fig. B.1: Decomposition of total problem (c) into two cases which are: (a) static state of 
a wellbore with balanced pressure in a drained rock subjected to anisotropic horizontal 
stress and (b) poroelastic response of a wellbore in an initially unstressed rock 
containing fluid at zero pressure (pi = initial reservoir pressure, pw = wellbore pressure, 
rw = wellbore radius, re = the radius of outer boundary, Source Aghighi, 2007).
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Fig. B0.2: Schematic representation of classical KGD model.

Where, wf = Width at the well bore,

w(x) = Width along the length x,

xf = Fracture half length and

hf = height of the fracture
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Appendix-2C: General Implementation 
of Finite Element Method (FEM) 

Formulation of finite element equations as a result of discretization of the governing 

equations of poroelastic equations is discussed in Appendix-2D. In this section, some basics 

of the general implementation of FEM are presented and discussed.

C.1: Model description.

The poroelastic intact wellbore model presented here includes a reservoir which is 

intercepted by a vertical wellbore. Vertical stress is a principal stress and other two principal 

stresses (minimum and maximum horizontal in-situ stresses) are in horizontal plane and are 

aligned in the same direction of Cartesian coordinates of the reservoir. This can be modeled

by taking a horizontal cross section of the reservoir and introducing a circular hole to 

represent the wellbore. The model geometry is shown in Fig.C1.

C.2: Quarter reservoir model and space discretization

In this study, due to the symmetrical stress field, advantage of symmetry is taken and 

solve on a quarter models for intact wellbore modeling. The schematic of quarter model is 

given in Fig.C.2.

To generate the finite element mesh, it is necessary to make the finest mesh near 

wellbore as displacement and pressure profiles are concentrated towards the wellbore. So 

away from the wellbore the mesh size is increases and the coarsest mesh at the outer radius. 

The following formula can be used:

1.i ir c r (C.1)

where r is the radial position and c is a constant defined as follows:

1
m

e

w

rc r (C.2)

In which re and rw are the wellbore and outer radius respectively, m is the number of 

radial steps. To generate an accurate mesh it is necessary to use angular steps so that the 
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aspect ratio of the elements does not exceed 10. It is recommended to use the aspect ratio 

close to 1. The angular step is defined as. 

.i i (C.3)

where is the angular position and “i” is the number of steps.

and m can be adjusted according to the required density mesh. This mesh is quite 

efficient with fine mesh close to the wellbore and coarse mesh on the outer radius. Using 

Eqs.C.1 to and C.3) a regular node pattern on the quarter model can create and connect the 

nodes to make the mesh which is illustrated in Fig.C.3.

The specific mesh using the poroelastic intact wellbore modeling is given in Fig.C.4.

Outer boundary (re) and wellbore radius (rw) is 1500 m and 0.1 m. respectively. Value of 

angular step, is 15°and 42 angular steps are used.

C.3: Four nodded square elements

Local coordinates are used to position the centre of an element at the origin 

Zienkiewicz (2000). The four nodded square element are shown in Fig.C.5 with local 

coordinates.

Using Lagrange polynomial one can write two linear Lagrange equations for an interval with 

two nodes as follows:

1 1
0

0 1

L (C.4)

1 0
1

1 0

L (C.5)

Using Lagrange polynomials shape functions for the square element are given by 

Zienkiewicz (2000) as:

, , .n m
i j i iN L L (C.6)

Starting with the bottom right hand corner and working anticlockwise around the 

element and using the equation C.6 the four shape functions are as follows:

1
1, .(1 ).(1 )
4

N (C.7a)
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2
1, .(1 ).(1 )
4

N (C.7b)

3
1, .(1 ).(1 )
4

N (C.7c)

and

4
1, .(1 ).(1 )
4

N (C.7d)

C.4: Eight nodded square elements

The eight nodded square element with node numbering is shown in Fig.C.6. Node 

numbering starts with the bottom right hand corner and going anticlockwise around the 

element. 

Here there is no node at the midpoint so Eq.C.6 cannot be used for making shape 

function for this element. The straight line equations can be use to find out the shape 

functions. The general straight line equation that passes through two coordinate (x1, y1) and 

(x2, y2) is as follows.

1 1

1 2 1 2

x x y y
x x y y

(C.8)

Using the Eq.C.8 one can define straight lines passing through the nodes of the elements is as 

follows:

13 1 0Line (C.9a)

35 1 0Line (C.9b)

57 1 0Line (C.9c)

71 1 0Line (C.9d)

24 1 0Line (C.9e)

46 1 0Line (C.9f)

68 1 0Line (C.9g)

82 1 0Line (C.9h)
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Now the eight shape functions can be formed using the Eq.C.9 through combinations 

of the lines not passing through the given node and multiplying by a constant to satisfy unity 

at the given node.

For the first shape function of node number 1 Line35, Line57 and Line82 are combined 

with a constant 1
4

to give:

1
1, 1 1 1
4

N (C.10a)

For the second shape function of node number 2 Line35, Line57 and Line71 are 

combined with a constant 1
2

to give:

2
1, 1 1 1
2

N (C.10b)

Similarly the other shape functions are:

3
1, 1 1 1
4

N (C.10c)

4
1, 1 1 1
4

N (C.10d)

5
1, 1 1 1
4

N (C.10e)

6
1, 1 1 1
2

N (C.10f)

7
1, 1 1 1
4

N (C.10g)

8
1, 1 1 1
2

N (C.10h)

C.5: General two dimensional transformation

For an element there are four local coordinates ( , ) and corresponding global 

coordinates (x, y). It also has shape functions in terms of local coordinates. In order to 
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operate on derivatives in the global coordinates, transformations from local coordinate to 

global coordinates are required. In this study Zienkiewicz’s (2000) relationship are used and 

for a shape function (Ni) for this transformation is as follows:

.

i i

ii

N N
xJ

NN
y

(C.11)

where J is Jacobian matrix and defined as

x y

J
x y

(C.12)

To find the global derivatives of the shape functions (J) needs to invert and can be 

written as follows:

1.

ii

i i

NN
x J

N N
y

(C.13)

Again for area integrals a relationship between the area in local coordinates (d d )

and the area in global coordinates (dxdy) are needed. Given by Zienkiewicz (2000) one can 

write:

. det( ).

x y

dxdy d d J d d
x y

(C.14)

In which det (*) represent the determinants of the matrix.

C.6: Four nodded element transformation

For the four nodded element transformation the shape functions (Ni), their derivatives 

with respect to global coordinates and area (dxdy) as functions of local coordinates ( , )

are needed. The shape functions as functions of local coordinates are given by Eq.C.7. 
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Differentiating Eq.C.7 the derivatives of shape functions with respect to local coordinates as 

functions of local coordinates can be written as follows:

1 1 .(1 )
4

N (C.15a)

2 1 .(1 )
4

N (C. 15b)

3 1 .(1 )
4

N (C. 15c)

4 1 .(1 )
4

N (C. 15d)

and

1 1 .(1 )
4

N (C. 16a)

2 1 .(1 )
4

N (C. 16b)

3 1 .(1 )
4

N (C. 16c)

4 1 .(1 )
4

N (C. 16d)

Using the mapping of a four nodded square in local coordinates ( , ) onto an 

arbitrary four nodded quadrilateral in global coordinates (x, y) leads to the following 

relationships for the element:

1 1 2 2 3 3 4 4. . . .x N x N x N x N x (C.17)

1 1 2 2 3 3 4 4. . . .y N y N y N y N y (C.18)

where the shape functions N1 to N4 are given by the Eq.C.7

Differentiating Eq.C.17and using Eqs.C.15 and C.16 one can write the derivatives of 

the x coordinate with respect to the local coordinates as follows:

4

1 2 3 4
1

1( ) . . (1 ). (1 ). (1 ). (1 ).
4

i
i

i

Nx x x x x x (C.19)
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4

1 2 3 4
1

1( ) . . (1 ). (1 ). (1 ). (1 ).
4

i
i

i

Nx x x x x x (C.20)

Similarly differentiating Eq.C.18 and using Eqs.C.15 and C.16 one can write the 

derivatives of the y coordinate with respect to the local coordinates as follows:

4

1 2 3 4
1

1( ) . . (1 ). (1 ). (1 ). (1 ).
4

i
i

i

Ny y y y y y (C.21)

4

1 2 3 4
1

1( ) . . (1 ). (1 ). (1 ). (1 ).
4

i
i

i

Ny y y y y y (C.22)

Using Eqs.C.19 to C.22 into the Eq.C.19 one can calculate Jacobian as a function of local 

coordinates (Guassian point). Then using the value of Jacobian and Eqs.C.15 and C.16 with 

Eqs.C.13 and C.14, one can calculate the area integral as a function of local coordinates.

C.7: Eight nodded element transformation

For the eight nodded element transformation the shape functions (Ni), their derivatives 

with respect to global coordinates and area (dxdy) as functions of local coordinates ( , )

are needed. The shape functions as functions of local coordinates are given by Eq.C.10. 

Differentiating Eq.C.10 the derivatives of shape function with respect to local coordinates as 

functions of local coordinates can be written as follows:

1 1, 1 2
4

N (C.23a)

2 1, .(1 )(1 )
2

N (C.23b)

3 1, .(1 )(2 )
4

N (C. 23c)

4 , .(1 )N (C. 23d)

5 1, .(1 )(2 )
4

N (C.23e)

6 1 .(1 )(1 )
2

N (C. 23f)
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7 1, .(1 )(2 )
4

N (C. 23g)

8 , .(1 )N (C. 23h)

and

1 1
4

, 1 2N (C.24a)

2 , .(1 )N (C. 24b)

3 1, .(1 )(2 )
4

N (C. 24c)

4 1, .(1 )(1 )
2

N (C. 24d)

5 1, .(1 )(2 )
4

N (C.24e)

6 , .(1 )N (C. 24f)

7 1, .(1 )(2 )
4

N (C. 24g)

8 1 .(1 )(1 )
2

N (C. 24h)

Using the mapping of an eight nodded square in local coordinates ( , ) onto an 

arbitrary eight nodded quadrilateral in global coordinates (x, y) leads to the following 

relationships for the element:

8

1
.i i

i
x N x (C.25)

8

1
.i i

i
y N y (C.26)

where i=1 to 8 (node number of the element) and the shape functions N1 to N8 are 

given by the Eq.C.10
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Differentiating Eq.C.25 and using Eqs.C.23 and C.24 one can write the derivatives of 

the x coordinate with respect to the local coordinates as follows:

8

1
( ) ( , ).i

i
i

Nx x (C.27)

8

1
( ) ( , ).i

i
i

Nx x (C.28)

Similarly differentiating Eq.C.26 and using Eqs.C.15 and C.16 one can write the 

derivatives of the y coordinate with respect to the local coordinates as follows:

8

1
( ) ( , ).i

i
i

Ny y (C.29)

8

1
( ) ( , ).i

i
i

Ny y (C.30)

Using Eqs.C.19 to C.22 into the Eq.C.19 one can calculate Jacobian as a function of local 

coordinates (Guassian point). Then using the value of Jacobian and Eqs.C.23 and C.24 with 

Eqs.C.29 and C.30, one can calculate the area integral as a function of local coordinates.

C.8: Half reservoir model and space discretization

In this study, due to the asymmetrical nature of arbitrary oriented natural fracture 

quarter model cannot be used. In order to take advantage of symmetry the problem is solved

on a half model with a natural fracture. 

In this half model all through 4-nodded and 8-nodded square elements are used except 

the end point of natural fracture. In order to represent the shape of natural fracture two 

triangular elements are implemented at two corners (Near end tip and far end tip of the 

natural fracture) of natural fracture. For this purpose 3-nodded and 6-nodded triangular 

element transformations are used. 

Starting the node numbering with the bottom right hand corner and working 

anticlockwise around the element and using local coordinates the three nodded triangular 

elements are shown in Fig.C.7.

The shape functions are specified in terms of local coordinates, the origin being at the

centroid of the element. The shape functions in terms of the local coordinates are: 
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1
1, 1 2
3

N (C.31a)

2
1, 1 3
3

N (C.31b)

3
1, 1 3
3

N (C.31b)

Differentiating Eq.C.31 the derivatives of shape functions with respect to local 

coordinates as functions of local coordinates can be written as follows:

1 2,
3

N (C.32a)

2 1,
3

N (C. 32b)

3 1,
3

N (C. 32c)

1 0,N (C.32d)

2 1,
3

N (C. 32e)

3 1,
3

N (C. 32f)

Using the mapping of a four nodded square in local coordinates ( , ) onto an arbitrary 

four nodded quadrilateral in global coordinates (x, y) leads to the following relationships for 

the element:

3

1
.i i

i
x N x (C.33)

3

1
.i i

i
y N y (C.34)

where the shape functions N1 to N3 are given by the Eq.C.31

Differentiating Eq.C.17 and using Eqs.C.31 and C.32 one can write the derivatives of 

the x coordinate with respect to the local coordinates as follows:
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3

1
( ) .i

i
i

Nx x (C.35)

3

1
( ) .i

i
i

Nx x (C.36)

C.9: Super convergent patch recovery

Patch is a group of elements that belong to a corner node that is not on the boundary 

of the mesh. The general patch configuration is presented in the Fig.C.8. Using the known 

gradient at each super convergent point within the patch, the SPR method fits a polynomial to 

these points in a least squares manner. This polynomial is then used to determine the gradient 

at the nodes. If possible the gradients are found using interior patches. Thus, the gradient for 

the corner nodes is determined from one patch and for a side node the gradient is found using

two patches and taking an average. In this study the gradient to be recovered are xu
x ,

yu
x ,

xu
y and 

yu
y .

Let u be any one of these gradients. The procedure to calculate the gradient at a 

node u* from the gradient at the super convergent points is as follows.

For each super convergent point (ski, yak) one can determine the matrix, kM as 

follows:

2 21 .k k k k k k kM x y x y x y (C.31)

where k is the number of super convergent point and (ski, yak) is the coordinate of 

these points.

Then for a patch containing “n” super convergent points one can determine the matrix, kA

and vector kX as follows:

1
.

n
T
k

k
kA M M (C.32)



166

1
.

n
T
k k

k
kX M u (C.33)

where ( uk) is the gradient at the super convergent point “k”.

Then the linear system can be solved using the following equation:

. kk a XA (C.33)

Then the gradient at the node is:

* * * * * * *2 2 .1 .u ax y x y x y (C.34)

where the coordinate of the node is (x*, y*). 
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Fig. C.1 Intact 
wellbore reservoir model.

Fig. 

C.2 Quarter reservoir model



168

Fig. C.3 Schematic of the mesh of the Quarter model

Fig. C.4 (a) Exact mesh of the Quarter model, wellbore radius is 0.1 m, outer 
boundary radius 1500 m, first element showing in coloured.
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Fig. C.4 (b) Exact mesh of the Quarter model zoom in from 0 meter to 0.3 meter. 
Last number of element showing in coloured.

Fig. C.5 Four nodded square element with local coordinates.
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Fig. C.6 Eight nodded square element with local coordinates.

Fig. C.7 Three nodded triangular element with local coordinates
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Fig. C.8 Schematic of a patch for eight nodded square elements.
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Appendix-2D: Implementation of Finite 
Element Method (FEM) for Governing 

Equations of Poroelasticity. 
In this study, poroelastic equations are numerically solved by using the finite element 

formulation for space discretisation and the implicit finite difference method for time 

discretisation. For each time step, a system of linear equations is constructed which is solved 

using a standard FORTRAN routine. The finite element method used is the widely used 

Galerkin method, a weighted residuals approach. The essential or forced boundary conditions 

are applied using the method of elimination. In this section detailed formulation of the FEM 

is presented.

D.1: Fully Coupled Poroelastic FEM Formulation

Assuming off-diagonal components of permeability tensor are zero
0

0
x

y

k
k

k
,

Eq.2.2 is expanded by introducing k as:

yx
t

kkp p pc u
t t x y x x y y

(D.1)

Multiplying both sides of Eq.D.1 by a trial function, w and integrating over the 

domain, Q yields: 

yx
t

kkp pwc d w u d w d
t t x y x x y

(D.2)

Using the Green formulae, Eq.D.2 becomes: 

yx
t

yx
x y

r

kkp w p w pwc d d d
t x x y y

kk p pw n n d w u d
x y t x y

(D.3)

boundary integral can be eliminated from the formulation for no flow boundaries and 



173

boundaries with constant pressure. It is also assumed that porosity and permeability have no 

considerable change over each time step. After rearranging, Eq.D.3 becomes: 

11
1 1

11

ii i i
i i x

t i

i ii i
y

i
y

kp p w pwc d d
t x x

kw p u ud w d
y x y t

(D.4)

in which ‘i’ and ‘i-1’ are current and previous times respectively. Using Galerkin 

method (Zienkiewicz and Taylor, 2000), Eq.D.4 becomes:  

1 11

1 1

1

0

i i T TiT i ip pp y pi x
p pt i i i

i i
T

p i

N k NkP P N Nc N N d d P
t x x y y

U UN d
x y t

(D.5)

where: 

1 2

T

nP p p p (D.6)

1 2

T
pN N N Nn (D.7)

1 2

1

0 0

0 0
u

n

N N
N

N N
(D.8)

1 1 2

T

x y x xn ynU u u u u u (D.9)

and the numbered subscripts represent each node, “n” is the number of nodes and “N” is a 

basis/shape function. After rearrangement, Eq.D.5 can be written as: 

1 11 2 3 0
i i ii i iM p p t M p M U U (D.10)

where M is a mass matrix. With rearranging one can write:

11 1 11 2 3 2
i i i ii i i i iM p p t M p p M U U t M p (D.11)

This can be written as:
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14 3i iM P M U f (D.12)

Where

1ii iP p p (D.13)

1ii iU U U (D.14)

4 1 2iM M t M (D.15)

1

1 2
iif t M p (D.16)

The matrix M4 can be obtained from:

1 1
4 4 1 2

ne ne
e e i e

e e
M M M t M (D.17)

in which ‘e’ denotes element and ‘ne’ is the number of elements and  

1
1 1

ne
e

e
M M (D.18)

111
i Te i e

p ptM c N N d (D.19)

1
2 2

ne
e

e
M M (D.20)

11

1 12
ii

i i
e

T Te e ee e e
p pp y pe x

e e

N k Nk N NM d
x x y y

(D.21)

1
3 3

ne
e

e
M M (D.20)

3
T

e

e eee u u
p

N NM N d
x x

(D.21)

where for an eight nodded element:

1 1 1 1
1 2 8

T
i i i iP p p p (D.22)
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1 2 8

e
pN N N N (D.23)

1 2

1 8

0 0

0 0
e
u

N N
N

N N
(D.24)

All the integrations can be carried out numerically using the Gauss-Lagrandre 

integration technique. Eq.D.12 is called the poroelastic balance of fluid momentum equation 

and needs to be solved simultaneously with coupled equilibrium equation. Also for the 

coupled equilibrium equation multiplying Eq.B.30 by trial function and integrating over the 

domain Q leads to: 

0
T TW S d (D.25)

where: 

1
2

( , )
( , )

W x y
W x yW (D.26)

w1 and w2 are trial functions. Using Green’s identity one can obtains: 

0
TT T

W M d SW d (D.27)

where: 

0
0

T yx

y x
M

nn
n n (D.28)

After introducing Eq.B.45 into Eq.D.27 and rearranging, one gets: 

T i i iT T
eSW D S U d SW P d W M d (D.29)

Using Galerkin method Eq.D.29 yields: 

T
T i iu u

eu u P

T T i
u

N NS N D S N d U N d P
X X

N M d

(D.30)

or in compact form: 
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25 6i iM U M P f (D.31)

where: 

1
5

ne
e

e
Ms M (D.32)

5
e

Te ee
u ueM S N D S N d (D.33)

1
6 6

ne
e

e
M M (D.34)

6
e

T

u ue
P

N NM N d
X X

(D.35)

6 3
T

e eM M (B.36)

Eqs.D.12 and D.35 are the final finite element equations to be simultaneously solved 

as a system of linear equations which is as follows: 

2

1

5 6

3 4

i

i

fM M U

fPM M
(D.37)

Or

2

1

5 3

3 4

T i

i

fUM M

fPM M
(D.38)

D.2: Rearrangement of element mass matrix to create a Banded Structure

Solving the linear system efficiently involves giving matrix in the Eq.D.37 a banded 

structure and minimizing the bandwidth. This allows it to be stored in banded storage and 

then solved with less computation time. Rearranging the formulation of Eq.D.37 involves 

reordering the unknowns and load vector. The unknowns ( ux, uy and p) can be reordered 

so that the vector of unknowns becomes:
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1 1 1 2 2 2

T b b b b b b b
b x y x y nX u u p u u p p (D.39)

In a similar fashion one can reorder the load vector to be:

1 2 1 22 2 1 2 1n n

T b b b b b
bf f f f f f (D.40)

It follows that the equation to solve becomes:

b b bM X f (D.41)

where

1

ne
e

b b
e

M M (D.42)

and

1,1 1,2 1,1 1,3 1,2 1,

2,1 2,2 2,1 2,3 2,2 2,

1,1 1,2 1,1 1,3 1,2 1,

3,1 3,2 3,1 3,3 3,2 3,

2 ,1 2 ,2 2 ,1 2

5 5 6 5 5 6
5 5 6 5 5 6
3 3 4 3 3 4

5 5 6 5 5 6

5 5 6 5

e e e e e e
n n

e e e e e e
n n

e e e e e e
n n

e e e e e e e
b n n

e e e
n n n

M M M M M M
M M M M M M
M M M M M M

M M M M M M M

M M M M ,3 2 ,2 2 ,

,1 ,2 ,1 ,3 ,2 ,

5 6
3 3 4 3 3 4

e e e
n n n n n

e e e e e e
n n n n n n n n

M M
M M M M M M

(D.43)

D.3: Rearrangement of element mass matrix for 4 and 8-noded pressure

Solving the fully couple poroelastic linear system equation involves matrix in the Eq. 

D.37. In general 8-noded elements are used for both displacement and pressure. But 8-noded 

pressure formulation is not always stable. For that reason to make the model stable and more 

reliable 8-noded displacement and 4-noded pressure are used in this model. So the 

formulation of element mass matrix is different. In this section the formulation of element 

mass matrix for both cases 1) 8-noded displacement and pressure 8 8ND NPM and 2) 8-noded 

displacement and 4-noded pressure 8 4ND NPM is presented.
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Formulation of element mass matrix for 8-noded displacement and 

pressure.

The matrix M5 in the eq.D.37 represents the coefficient matrix for the deformation 

and the dimension of the matrix is (npE*DOF × npE*DOF) i.e. (16×16) as the degree of 

freedom is 2(here npE = node per element, DOF = degree of freedom is). So M5 can be 

written as follows: 

1,1 1,2 1,3 1,4 1,15 1,16

2,1 2,2 2,3 2,4 2,15 2,16

3,1 3,2 3,3 3,4 3,15 2,16

4,1 4,2 4,3 3,4 4,15 2,16

15,1 15,2 15,3 15,4 15,15 15,16

16,1 16,2 16,3 16,4 16,15 16,16

5eM

E E E E E E
E E E E E E
E E E E E E
E E E E E E

E E E E E E
E E E E E E

(D.44)

Similarly the matrix M4 in the Eq.D.37 represents the coefficient matrix for the 

pressure and the dimension of the matrix is (node per element x node per element) i.e. (8×8) 

as the degree of freedom is 1 and can be written as follows: 

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

6,1 6,2 6,3 6,4 6,5 6,6 6

4e

E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E

M
E E E E E E E E
E E E E E E E ,7 6,8

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8

E
E E E E E E E E
E E E E E E E E

(D.45)

where Ei, j are the component of the matrices.

Matrix M3 has the coupling term and the dimension of this matrix is (8×16). M6 is the 

transpose of M3 hence the dimension is (16×8) and can be written as follows:
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1,1 1,2 1,3 1,4 1,15 1,16

2,1 2,2 2,3 2,4 2,15 2,16

3,1 3,2 3,3 3,4 3,15 3,16
3 4,1 4,2 4,3 4,4 4,15 4,16

7,1 7,2 7,3 7,4 7,15 7,16

8,1 8,2 8,3 8,4 8,15 8,16

eM

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

E E E E E E

(D.46)

and

1,1 1,2 1,3 1,4 1,7 1,8

2,1 2,2 2,3 2,4 2,7 2,8

3,1 3,2 3,3 3,4 3,7 2,8

4,1 4,2 4,3 3,4 4,7 2,8

15,1 15,2 15,3 15,4 15,7 15,8

16,1 16,2 16,3 16,4 16,7 16,8

6eM

E E E E E E
E E E E E E
E E E E E E
E E E E E E

E E E E E E
E E E E E E

(D.47)

So the dimension of the elemental mass matrix 8 8ND NPM is (24×24) and can be written as:

5 5 6 61,1 1,16 1,1 1,8

5 5 6 616,1 16,16 16,1 16,88 8
3 3 4 41,1 1,16 1,1 1,8

3 3 4 48,1 8,16 8,1 8,8

M M M M

M M M MM ND NP
M M M M

M M M M

(D.48)

Formulation of element mass matrix to create the structure for 8-noded 

displacement and 4-noded pressure.

In this case dimension of matrix M5 is same and can be defined as Eq.D.44. As 4-
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noded pressure element is used so the dimension of the matrix M4 would be (4×4) and can be 

presented as:

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 2,3 3,4

4,1 3,2 4,3 4,4

4e

E E E E
E E E E

M
E E E E
E E E E

(D.49)

Matrix M3 has the coupling term and the dimension of this matrix is (4×16). M6 is the 

transpose of M3 hence the dimension is (16×4) and can be written as follows:

1,1 1,2 1,3 1,15 1,16

2,1 2,2 2,3 2,15 2,16
3

3,1 3,2 3,3 3,15 3,16

4,1 4,2 4,3 4,15 4,16

E E E E E

E E E E E
eM

E E E E E

E E E E E

(D.50)

and

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,46

15,1 15,2 15,3 15,4

16,1 16,2 16,3 16,4

eM

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

(D.51)

So the dimension of the elemental mass matrix 8 4ND NPM is (20×20) and can be written as:

1,1 1,16 1,1 1,2 1,3 1,4

4,16 16,16 16,1 16,2 16,3 16,4
8 4

1,1 1,2 1,16 1,1 1,2 1,3 1,4

2,1 2,16 2,1 2,2 2,3 2,4

3,1

5 5 6 6 6 6

5 5 6 6 6 5
3 3 3 4 4 4 4
3 3 4 4 4 4
3 3

ND NP

M M M M M M

M M M M M M
M

M M M M M M M
M M M M M M
M M 3,16 3,1 3,2 3,3 3,4

4,1 4,2 4,16 4,1 4,2 4,3 4,4

4 4 4 4
3 3 3 4 4 4 4

M M M M
M M M M M M M

(D.52)
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Appendix-2E: Fluid flow, Elastic and 
Poroelastic Analytical Solutions for 

Intact Wellbore 
In this section various elastic and poroelastic analytical solutions for pressure, 

deformation and stresses are presented. These solutions are utilized to verify the accuracy of 

computed numerical results of poroelastic phenomenon as well as to calculate initial values 

for pressure, displacement and stress. These initial values are used to initialize the numerical 

model of poroelasticity. All the problems in this section are solved based on following 

assumptions:

Rock is porous, homogenous with isotropic properties.

The rock skeleton behaves as a linear elastic material under plane strain condition.

Fluid is single phase and is slightly compressible.

The rock properties are not influenced by change in pressure and displacement in both 

space and time increment.

Principal stresses are oriented in the direction of Cartesian coordinates with maximum 

and minimum horizontal stress along X and Y axes respectively.

Vertical wellbore intercepts the horizontal layer of reservoir wherever appropriate.

Sign convention is same as that used in traditional rock mechanics where compressive 

stress, strain and pressure are positive, tensile negative.

Outward displacement is taken as positive and inward negative.

E.1:  Elastic deformation of a pressurized wellbore in a dry rock subjected 

to isotropic horizontal stress at finite outer boundary (Pressurized hollow 

cylinder) 

Schematic of the problem is illustrated in Fig.E.1 where rw = inner/wellbore boundary

radius, re = outer boundary radius, pw = wellbore pressure, and p = pore pressure set to be zero 

as the rock is dry. Magnitudes of maximum and minimum horizontal stresses are same and 

equal to h.
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Analytical solutions for this pressurized hollow cylinder are as follows (Jaeger and 

Cook, 1969): 

• Radial displacement: 

2

2 2
h h w w

r
P Ru r r

G G r
(E.1)

The second term of the right hand side, which is often called well convergence, gives 

displacement due to placing a well whereas the first term of the right hand side is the 

displacement caused by the in situ stress before drilling. 

• Tangential displacement:  

0u r (E.2)

• Pore pressure: 

0p (E.3)

• Radial stress: 

2 2 2 2

2 2 2 2 2
h e w w w e

rr h w
e w e w

r P r r rr P
r r r r r

(E.4)

• Tangential stress: 

2 2 2 2

2 2 2 2 2
h e w w w e

h w
e w e e w

r P r r rr r P
r r r r r

(E.5)

• Shear stress: 

0r r (E.6)

E.2: Elastic deformation of a pressurized wellbore in an unstressed dry 

rock 

Schematic of the problem is illustrated in Fig.E.2 where rw = inner/wellbore boundary

radius, re = outer boundary radius, pw = wellbore pressure, and p = pore pressure set to zero as 

the rock is dry. Magnitudes of maximum ( H) and minimum horizontal stresses ( h) are also 

equal to zero as the rock is unstressed. 
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Analytical solutions for this pressurized wellbore in unstressed rock are as follows 

(Jaeger and Cook, 1969): 

• Radial displacement: 

2

2
w w

r
p ru r
Gr

(E.7)

• Tangential displacement:  

0u r (E.8)

• Pore pressure: 

0p (E.9)

• Radial stress: 

2

2
w w

rr
p rr
r

(E.10)

• Tangential stress: 

2

2
w wp rr
r

(E.11)

• Shear stress: 

0r r (E.12)

E.3: Elastic deformation of an intact dry rock subjected to anisotropic in 

situ horizontal stress 

Schematic of the problem is illustrated in Fig.E.3 where re=outer boundary radius,

p=pore pressure set to zero as the rock is dry; H= maximum horizontal stresses and h =

minimum horizontal stress. For an infinite plate subjected to a biaxial compressive state of 

stress shown in Fig.E.3, the state of stress at all point of the solid are as follows:

xx H (E.13)

yy h (E.14)

0xy (E.15)
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Eqs. E.13- E.15 can be written in cylindrical coordinate as given in the followings:

• Radial stress: 

( , ) cos(2 )
2 2

H h H h
rr r (E.16)

• Tangential stress: 

( , ) cos(2 )
2 2

H h H hr (E.17)

• Shear stress: 

( , ) sin(2 )
2

H h
r r (E.18)

The components of displacement can be calculated using the Hook’s law and the strain-

displacement relationship.

• Radial displacement: 

, 2 4 cos(2 )
4 2

H h
r H h

ru r v
G

(E.19)

• Tangential displacement:

, sin(2 )
4 H h
ru r
G

(E.20)

• Pore pressure: 

0p (E.21)

E.4: Elastic deformation of a pressurized wellbore in a dry rock subjected 

to isotropic in situ horizontal stress 

Schematic of the problem is illustrated in Fig.E.4 where rw=inner/wellbore boundary

radius, re=outer boundary radius set as infinity, pw=wellbore pressure, and p=pore pressure 

set to be zero as the rock is dry. Magnitudes of maximum and minimum horizontal stresses 

are same and equal to h.
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• Radial displacement: 

2

2 2
h h w w

r
P Ru r r

G G r
(E.22)

• Tangential displacement:  

0u r (E.23)

• Pore pressure: 

0p (E.24)

• Radial stress: 

2 2

2 21 w w
rr h w

r rr p
r r

(E.25)

• Tangential stress: 

2 2

2 21 w w
h w

r rr p
r r

(E.26)

• Shear stress: 

0r r (E.27)

E.5: Elastic deformation of a pressurized wellbore in a dry rock subjected 

to anisotropic in situ horizontal stress (Kirsh’s Problem) 

Schematic of the problem is illustrated in Fig.E.5 where rw=inner/wellbore boundary

radius, re=outer boundary radius set as infinity, pw=wellbore pressure, and p=pore pressure 

set to be zero as the rock is dry. H= maximum horizontal stresses and h = minimum 

horizontal stress. Analytical solutions are given for zero time (initial state) when fluid is yet 

to flow. They are as follows (Jaeger and Cook, 1969): 

• Radial displacement: 

2

2

2 2 2

2 2

( , ) ( )(1 2 )
4

( ) (4 4 ) 1 cos(2 )
4 2

w
r H h

w w w w
H h

rru r v
G r

r r p rr v
G r r G r

(E.28)



186

• Tangential displacement:  

2 2

2 2( , ) ( ) 2 4 1 sin(2 )
4

w w
H h

r rru r v
G r r

(E.29)

• Pore pressure: 

0p (E.30)

• Radial stress: 

2 4 2 2

2 4 2 2( , ) 1 1 3 cos(2 )
2 2

H h w H h w w w
rr w

r r r rr p
r r r r

(E.31)

• Tangential stress: 

2 4 2

2 4 2( , ) 1 1 3 cos(2 )
2 2

H h w H h w w
w

r r rr p
r r r

(E.32)

• Shear stress: 

4 2

4 2( , ) 1 3 2 sin(2 )
2

H h w w
r

r rr
r r

(E.3

3)

E.6: Elastic deformation of a pressurized wellbore in a drained rock 

subjected to anisotropic in situ horizontal stress (Kirsh’s Problem) 

Schematic of the problem is illustrated in Fig.E.6 where rw=inner/wellbore boundary

radius, re=outer boundary radius set as infinity, pw=wellbore pressure, and p=pore pressure 

set to be initial pressure pi. H= maximum horizontal stresses and h = minimum horizontal 

stress.

This problem is a special case of Kirsh’s problem in which the concept of effective 

stress is introduced (Charlez, 1991). Analytical solutions can be written as follows

• Radial displacement: 
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2
' '

2

2 2 2 2
' '

2 2

, 1 2
4

4 4 1 cos(2 )
4 2

w
r H h

w w w w
H h

rru r v
G r

r r p rr v
G r r G r

(E.34)

where

Pore pressure, rp p (E.35)

Effective maximum horizontal stress, '
H H rp (E.36)

Effective minimum horizontal stress, '
h h rp (E.37)

Effective wellbore pressure, '
w w rp p p (E.38)

and Biot’s coefficient

• Tangential displacement:  

2 2

2 2( , ) ( ) 2 4 1 sin(2 )
4

w w
H h

r rru r v
G r r

(E.39)

• Radial stress: 

2 4 2 2

2 4 2 2( , ) 1 1 3 4 cos(2 )
2 2

H h w H h w w w
rr w

r r r rr p
r r r r

(E.40)

• Tangential stress: 

2 4 2

2 4 2( , ) 1 1 3 cos(2 )
2 2

H h w H h w w
w

r r rr p
r r r

(E.41)

• Shear stress: 

4 2

4 2( , ) 1 3 2 sin(2 )
2

H h w w
r

r rr
r r

(E.42)

E.7: Poroelastic behavior of a pressurized wellbore (pw) in an unstressed 

rock containing fluid at zero pressure 

Schematic of the problem is illustrated in Fig.E.7 where rw = inner/wellbore boundary

radius, re = outer boundary radius set as infinity, pw = wellbore pressure, and p = pore 
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pressure initially it is zero and after that pressure is a function of time and space i.e. p = p (t, 

r). Magnitudes of maximum ( H) and minimum horizontal stresses ( h) are also equal to zero 

as the rock is unstressed.

This is equivalent to mode 2 of poroelastic solution given by Detournay and Cheng 

(1988). It should be noted that here we use the modified analytical solution given by Aghighi 

(2008). Analytical solutions are as follows: 

• Radial displacement: 

2

( , ) ( , )
2

w w
r w w

p ru r t r p h r t
G r G

(E.43)

• Tangential displacement:  

0u (E.44)

• Pore pressure: 

( , ) ( , )wp r t p g r t (E.45)

• Radial stress: 

2

2( , ) 2 ( , )w w
rr w w

r rr t p p h r t
r r

(E.46)

• Tangential stress: 

2

2( , ) 2 ( , ) ( , )w w
w w

r rr t p p h r t g r t
r r

(E.47)

• Shear stress: 

0r (E.48)

where: 

1( , ) ( , )g r t L g r s (E.49)

1( , ) ( , )h r t L h r s (E.50)

L-1is the Laplace inversion operator and
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0

0

( )( , )
( )

Kg r s
sK

(E.51)

1 1

0 0

1( , )
( )

wK Krh r s
s K r K

(E.52)

1 2
2 1

v
v

(E.53)

sr
c

(E.54)

w
sr
c

(E.55)

12

2t
kc c

G
(E.56)

K0 and K1 are the first order modified Bessel function of the first and second kind. The 

solution in time is achieved by following formula: 

1

1 2 ln 2N

n
n

nf t c f n
t t

(E.57)

where (ln) is the natural logarithm, N an arbitrary integer and: 

min( , )
2 2

2

1( )
2

(2 )!1
( )! !( 1)!( )!(2 )!

2

N Nn
Nn

n
nk floor

k kc N k k k n k k n
(E.58)

E.8: Poroelastic behavior of a pressurized wellbore in an unstressed rock 

containing fluid at zero pressure 

Schematic of the problem is illustrated in Fig.E.8 where rw = inner/wellbore boundary

radius, re=outer boundary radius set as infinity, pw-pi = wellbore pressure, and p = pore 

pressure initially it is zero and after that pressure is a function of time and space i.e. p = p (t,

r). Magnitudes of maximum ( H) and minimum horizontal stresses ( h) are also equal to zero 

as the rock is unstressed.

Analytical solutions are as follows: 
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• Radial displacement: 

2

( , ) ,
2

w i w
r w w i

p p ru r t r p p h r t
G r G

(E.59)

• Tangential displacement:  

0u (E.60)

• Pore pressure: 

, ,w ip r t p p g r t (E.61)

• Radial stress: 

2

2, 2 ( , )w w
rr w i w i

r rr t p p p p h r t
r r

(E.62)

• Tangential stress: 

2

2, 2 ( , ) ( , )w w
w i w i

r rr t p p p p h r t g r t
r r

(E.63)

• Shear stress: 

0r (E.64)

E.9: Deformation of a wellbore with balanced pressure in a drained rock 

subjected to anisotropic horizontal stress 

Schematic of the problem is illustrated in Fig.E.9 where rw = inner/wellbore boundary

radius, re=outer boundary radius set as infinity, pw = wellbore pressure set as a constant pi and

pore also set a constant value of pr. Magnitudes of maximum ( H) and minimum horizontal 

stresses ( h) are also equal to zero as the rock is unstressed.

Analytical solutions are as follows:  

• Radial displacement: 

2
' '

2

2 2 2
' '

2 2

( , ) 1 2
4

4 4 1 cos(2 )
4 2

w
r H h

w w wr r
H h

rru r v
G r

r r rp pr v
G r r G r

(E.65)
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• Tangential displacement:  

2 2
' '

2 2( , ) 2 4 1 sin(2 )
4

w w
H h

r rru r v
G r r

(E.66)

• Pore pressure: 

ip p (E.67)

• Radial stress: 

2 4 2 2

2 4 2 2( , ) 1 1 3 4 cos(2 )
2 2

H h w H h w w w
rr r

r r r rr p
r r r r

(E.68)

• Tangential stress: 

2 4 2

2 4 2( , ) 1 1 3 cos(2 )
2 2

H h w H h w w
r

r r rr p
r r r

(E.69)

• Shear stress: 

4 2

4 2( , ) 1 3 2 sin(2 )
2

H h w w
r

r rr
r r

(E.70)

E.10: Drained poroelastic response of a pressurized wellbore in a drained 

rock subjected to anisotropic horizontal stress 

Schematic of the problem is illustrated in Fig.E.10 where rw = inner/wellbore 

boundary radius, re = outer boundary radius set as infinity, pw = wellbore pressure and pore 

pressure is a function of time and space i.e. p = p (t, r). Magnitudes of maximum ( H) and 

minimum horizontal stresses ( h) are also equal to zero as the rock is unstressed.

Analytical solutions are as follows:  

• Radial displacement: 
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2
' ' ' '

2

2 2 ' 2

2 2

( , ) ( )(1 2 ) ( )
4 4

4 4 1 cos(2 ) ( ) ( , )
2

w
r H h H h

w w w w
w w i

rr ru r v
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(E.71)

• Tangential displacement:  

2 2
' '

2 2( , ) ( ) 2 4 1 sin(2 )
4

w w
H h

r rru r v
G r r

(E.72)

• Pore pressure: 

( , ) ( ) ( , )i w ip r t p p p g r t (E.73)

• Radial stress: 

2 4 2

2 4 2

2

2

( , ) (1 ) (1 3 4 )cos(2 )
2 2

2 ( ) ( , )

H h w H h w w
rr

w w
w w i

r r rr
r r r

r rp p p h r t
r r

(E.74)

• Tangential stress: 

2 4

2 4

2

2

( , ) (1 ) (1 3 )cos(2 )
2 2

2 ( ) ( , ) ( , )

H h w H h w

w w
w w i

r rr
r r

r rp p p h r t g r t
r r

(E.75)

• Shear stress: 

4 2

4 2( , ) (1 3 2 )sin(2 )
2

H h w wr rr
r r

(E.76)
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Fig. E.1: Schematic of the pressurized wellbore in a dry rock with isotropic horizontal 
stress and finite outer boundary.

Fig. E.2: Schematic of the pressurized wellbore in an unstressed dry rock
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Fig. E.3: Schematic of the intact dry rock with anisotropic in situ horizontal stress.

Fig. E.4: Schematic of the pressurized wellbore in a dry rock with isotropic in situ 
horizontal stress.
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Fig. E.5: Schematic of the pressurized wellbore in a dry rock with anisotropic in situ 
horizontal stress.

Fig. E.6: Schematic of the pressurized wellbore in a drained rock with anisotropic in situ 
horizontal stress.
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Fig. E.7: Schematic of the pressurized wellbore in an unstressed rock at zero pressure.

Fig. E.8: Schematic of the pressurized wellbore in an unstressed rock with zero fluid 
pressure.
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Fig. E.9: Schematic of the wellbore with balanced pressure in a drained rock with 
anisotropic horizontal stress.

Fig. E.10: Schematic of the pressurized wellbore in a drained rock with anisotropic 
horizontal stress.
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