
A method engineering approach to support dynamic evolution
in composition-based distributed applications

Author:
Fung, Kam Hay

Publication Date:
2011

DOI:
https://doi.org/10.26190/unsworks/23796

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/51233 in https://
unsworks.unsw.edu.au on 2024-05-03

http://dx.doi.org/https://doi.org/10.26190/unsworks/23796
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/51233
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

AA Method Engineering Approach

to Support Dynamic Evolution

in Composition-Based Distributed Applications

by

Kam Hay Fung

March 2011

A thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Information Systems, Technology and Management

Australian School of Business

The University of New South Wales, Australia

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as
patent rights. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis
in Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy
of my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

© 2011 UNSW page i

AABSTRACT

Dynamic evolution is a phenomenon by which applications can be upgraded without

requiring shutdown and restart. This capability is particularly important for critical

distributed applications in which disruptions from shutdown for changes should be

avoided.

Although a myriad of relevant techniques and tools exist, dynamic evolution is not well

understood or adequately supported from a software development methodology

perspective. This research aims to alleviate these shortcomings as a first step towards

embracing dynamic evolution from this perspective. It leverages composition-based

distributed applications - built of modules weaved into composite structures - for their

ability in accommodating changes in their structures.

This research uses a three-phased design science research approach for its

investigation. First, dynamic evolution requirements for methodological consideration in

composition-based distributed applications were determined. Second, the

methodological support for these requirements was developed. Third, this support was

validated and enhanced by expert review and its application in a case study.

The first contribution of this research is a proposed set of dynamic evolution

requirements: dynamic change requirements and dynamic evolution quality factors.

The former characterise dynamic changes that a distributed application would

accommodate while the latter are concerned with how well the application and its

dynamic changes are designed to facilitate dynamic evolution. They provide areas of

concerns for practitioners and researchers in developing, managing and testing

distributed applications which can benefit from dynamic evolution.

The second major contribution is Continuum, a methodological extension comprising a

suite of method fragments, specified with the International Standard ISO/IEC 24744:

Software Engineering - Metamodel for Development Methodologies, to address the

dynamic evolution requirements proposed from this research. Continuum centres on

three key concerns: an application’s lifecycle, transitional periods between successive

application generations, and transformations which are modifications to the application.

Via situational method engineering, the fragments can be incorporated into a fragment-

structured methodology to extend its capability for dynamic evolution. These

contributions are limited to the analysis and design aspects of software development

and composition-based distributed applications.

© 2011 UNSW page ii

PPUBLICATIONS

A number of articles from earlier work of this research have been accepted and/or

published in refereed journals, as well as presented to refereed conferences.

Refereed International Journal Articles

Fung, K.H., Low, G.C. and Ray, P.K. 2004, 'EEmbracing Dynamic Evolution in

Distributed Systems', IEEE Software, vol. 21, no. 2, pp. 49-55. DOI:

10.1109/MS.2004.1270762

- part of Chapter 2 in this thesis

Fung, K.H., Low, G. 2011, 'QQuality factors for dynamic evolution in composition-based

distributed applications', The DATA BASE for Advances in Information Systems, vol. 42,

no. 1, pp. 29-58. DOI: 10.1145/1952712.1952715

- part of Chapter 4 in this thesis

Fung, K.H. and Low, G. 2009, 'AA methodology evaluation framework for dynamic

evolution in composition-based distributed applications', Journal of Systems and

Software, vol. 82, no. 10, pp. 1950-1965. DOI: 10.1016/j.jss.2009.06.032

- part of Chapter 5 in this thesis

Refereed International Conference Papers

Fung, K.H. and Low, G. 2010, 'AA process-oriented approach to support dynamic

evolution in distributed applications', a paper presented to the 19th International

Conference on Information Systems Development (ISD 2010), Prague, Czech

Republic, 25-27 Aug 2010.

- part of Chapter 6 in this thesis

Fung, K.H. and Low, G.C. 2003, 'DDesign notation for dynamic evolution in component

based distributed systems', Proceedings of the 7th International Conference on

Enterprise Distributed Object Computing (EDOC 2003), Brisbane, Australia, 16-19 Sep

2003. DOI: 10.1109/EDOC.2003.1233859

- some of the concepts and notations from Appendix C.2 in this thesis

© 2011 UNSW page iii

AACKNOWLEDGEMENTS

Doing a PhD study invariably involves other people and it is a great opportunity to

recognise and acknowledge them here lest I forget their help in a few years’ time.

First and foremost, I am most grateful to my supervisor Emeritus Professor Graham

Low for his perseverance and interest in his commitment, encouragement, guidance,

rigour and support in my PhD study. After searching for a candidate supervisor for a

few months, I was fortunate to have found him at the School of Information Systems,

Technology and Management, available and willing to take me on as a part-time

student and to embark on such a long journey of part-time PhD study. He gradually

mentored me to become a researcher by showing insightful knowledge in conducting

research and innovative work. This also expanded my professional skill set which has

otherwise been gained from work experience and built on my computer science and

software engineering background. My thanks and bow to him.

I would also like to thank my co-supervisors at various stages of my PhD study: my

current co-supervisor Associate Professor Aybüke Aurum for sourcing a sponsor in the

case study for this research and her insightful comments on my thesis, and my past co-

supervisors Associate Professors Pradeep Ray and Bob Edmundson for their

involvement in my candidature reviews. It is also my pleasure to acknowledge Dr.

Louise Fitzgerald at the Education Development Unit, the Australian School of

Business, who provided constructive comments on earlier drafts of this thesis through a

different lens to further improve its quality.

My gratitude is also extended to Associate Professor Fethi Rabhi who helped me in the

surveys and the case study, to Patricia Hartley, Margaret Lo and Cathy Sharpley who

have ensured the School’s administrative work has run smoothly to support my PhD

study, and to many fellow research students (past and present) for exchanging

knowledge, news and gossip with me.

This research would not have been possible without the experienced practitioners from

industry and researchers from academia who participated in various activities of this

© 2011 UNSW page iv

PhD study, including surveys, meetings, documentation reviews and the case study.

They have provided invaluable data and feedback which also improve the quality and

credibility of this research’s outcomes. Unfortunately, for reasons of anonymity and

ethics, they are not individually acknowledged here.

Lastly, I am indebted to my father Kwok Woon Fung, my mother Ying Chan and my

brother Timothy Fung for their unequivocal, tireless, loving support for and being

tolerant of my PhD study.

© 2011 UNSW page v

TTABLE OF CONTENTS

ABSTRACT ... I
PUBLICATIONS .. II
ACKNOWLEDGEMENTS .. III
TABLE OF CONTENTS ...V
LIST OF TABLES ..X
LIST OF FIGURES ... XII
ABBREVIATIONS AND ACRONYMS ... XIV
CHAPTER 1. INTRODUCTION .. 1

1.1 BACKGROUND AND MOTIVATION .. 2
1.1.1 Dynamic Evolution .. 3
1.1.2 Role of Composition-Based Distributed Application .. 4
1.1.3 Role of Development Methodology ... 4
1.1.4 Role of Method Engineering ... 6

1.2 RESEARCH OBJECTIVE ... 7
1.3 RESEARCH DESIGN .. 8
1.4 CONTRIBUTIONS ... 9
1.5 RESEARCH DELIMITATIONS .. 11
1.6 CONCLUSION AND THESIS OUTLINE .. 12

CHAPTER 2. REVIEW OF DYNAMIC EVOLUTION AND METHODOLOGY ..13
2.1 DEMYSTIFYING DYNAMIC EVOLUTION ... 14

2.1.1 System and Software Evolution .. 15
2.1.2 Types of Evolution in Applications .. 16
2.1.3 Release, Transformation and Dynamic Change .. 16
2.1.4 Evolution Space ... 18
2.1.5 Evolution Quality .. 19

2.2 COMPOSITION-BASED DISTRIBUTED APPLICATION ... 20
2.2.1 Component-Based Distributed Application ... 21

2.2.1.1 Software component ... 22
2.2.1.2 Connector ... 23

2.2.2 Service-Oriented Architecture Based Application.. 23
2.2.3 Embracing Dynamic Evolution .. 25

2.3 EVALUATION FRAMEWORKS ... 27
2.4 METHODOLOGIES SUPPORTING COMPOSITION-BASED DEVELOPMENT ... 31

2.4.1 ASG ... 34
2.4.2 CBDI-SAE .. 35
2.4.3 Erl .. 36
2.4.4 Oreizy et al. (AEM) ... 38
2.4.5 SUPER... 40
2.4.6 Rational Unified Process .. 41
2.4.7 EPIC .. 43
2.4.8 Papazoglou and van den Heuvel (P&H).. 44
2.4.9 Catalysis .. 46
2.4.10 OPEN Process Framework ... 47
2.4.11 Select Perspective .. 49
2.4.12 KobrA ... 50
2.4.13 SeCSE ... 52
2.4.14 Observations from Selected Methodologies .. 54

2.5 SITUATIONAL METHOD ENGINEERING ... 56
2.6 CONCLUSION ... 57

CHAPTER 3. RESEARCH DESIGN ...59
3.1 DESIGN SCIENCE RESEARCH AND THE JUSTIFICATION OF THIS RESEARCH... 59
3.2 RESEARCH ACTIVITIES AND PHASES ... 61

3.2.1 Phase 1: Determine important dynamic evolution requirements .. 62
3.2.2 Phase 2: Develop support for dynamic evolution .. 66

3.2.2.1 Task 2.1: Identify method fragments from relevant methodologies .. 67
3.2.2.2 Task 2.2: Develop method fragments .. 67

3.2.3 Phase 3: Evaluate and refine support for dynamic evolution ... 68
3.2.3.1 Task 3.1: Conduct an expert review of Continuum ... 68
3.2.3.2 Task 3.2: Apply Continuum to a case study ... 69

3.3 CONCLUSION ... 70

© 2011 UNSW page vi

CCHAPTER 4. DEVELOPMENT OF DYNAMIC EVOLUTION QUALITY FACTORS ..71
4.1 STEP 1: SYNTHESIS OF DYNAMIC EVOLUTION QUALITY FACTORS .. 72

4.1.1 Soundness of Change .. 74
4.1.1.1 Completeness ... 74
4.1.1.2 Consistency .. 75
4.1.1.3 Correctness ... 76

4.1.2 Infusibility of Change .. 76
4.1.2.1 Efficiency .. 77
4.1.2.2 Locality .. 77
4.1.2.3 Maintainability ... 77
4.1.2.4 Transparency .. 78

4.1.3 Changeability of Application ... 78
4.1.3.1 Configurability ... 79
4.1.3.2 Coordination .. 79
4.1.3.3 Flexibility ... 79
4.1.3.4 Loose Coupling ... 80
4.1.3.5 Separation of Concerns ... 80

4.1.4 Robustness of Application .. 80
4.1.4.1 Fault Tolerance ... 81
4.1.4.2 Recoverability ... 81
4.1.4.3 Reliability .. 81
4.1.4.4 Safety.. 81
4.1.4.5 Security ... 82

4.1.5 Existing Evaluation Frameworks ... 82
4.1.6 Summary and Discussion ... 83

4.2 STEP 2: WEB SURVEY ASSESSMENT .. 88
4.2.1 Pilot Tests .. 90
4.2.2 Data Collection ... 90
4.2.3 Additional Dynamic Evolution Quality Factors/Attributes ... 91
4.2.4 Importance Rating of Dynamic Evolution Quality Factors .. 94
4.2.5 Software Practice and Project Information .. 98

4.3 STEP 3: DYNAMIC EVOLUTION QUALITY FACTORS EXTENSION FROM METHODOLOGICAL PERSPECTIVE 99
4.4 STEP 4: EVALUATION OF SUPPORT FOR DYNAMIC EVOLUTION QUALITY FACTORS IN METHODOLOGIES 103
4.5 RELATED WORK ... 108

4.5.1 Related Quality Standards .. 108
4.5.2 Related Quality Models .. 110

4.6 CONCLUSION ... 112
CHAPTER 5. DEVELOPMENT OF DYNAMIC CHANGE REQUIREMENTS .. 114

5.1 STEP 1: SYNTHESIS OF DYNAMIC CHANGE REQUIREMENTS .. 115
5.1.1 Modelling Related Dynamic Change Requirements .. 117
5.1.2 Work Related Dynamic Change Requirements ... 119
5.1.3 Existing Evaluation Frameworks ... 121
5.1.4 Summary and Discussion ... 122

5.2 STEP 2: SURVEY ASSESSMENT .. 125
5.2.1 Pilot Tests .. 126
5.2.2 Data Collection ... 126
5.2.3 Additional Dynamic Change Requirements ... 126
5.2.4 Importance Ratings of Dynamic Change Requirements .. 128

5.3 STEP 3: DYNAMIC CHANGE REQUIREMENTS EXTENSION FROM METHODOLOGICAL PERSPECTIVE 133
5.4 STEP 4: EVALUATION OF SUPPORT FOR DYNAMIC CHANGE REQUIREMENTS IN METHODOLOGIES 134
5.5 CONCLUSION ... 137

CHAPTER 6. DEVELOPMENT OF CONTINUUM ... 138
6.1 REQUIREMENTS FOR CONTINUUM .. 139
6.2 TASK 2.1: METHOD FRAGMENT IDENTIFICATION FROM RELEVANT METHODOLOGIES 142
6.3 TASK 2.2: METHOD FRAGMENT DEVELOPMENT ... 147

6.3.1 Electronic Product Catalogue Platform ... 148
6.3.2 Overview of Continuum .. 149
6.3.3 Dynamic Evolution Metamodel ... 152
6.3.4 Dynamic Change Method Fragments ... 157

6.3.4.1 Fragments for Application Lifecycle Analysis ... 157
6.3.4.2 Fragments for Transformation Identification .. 160
6.3.4.3 Fragments for Transformation Design ... 164
6.3.4.4 Fragments for Transformation Agent Design ... 170

6.3.5 Dynamic Evolution Quality Method Fragments ... 172
6.3.6 Producer Method Fragments .. 178
6.3.7 Usage Guidelines ... 178

6.4 TRACEABILITY OF REQUIREMENTS AND METHOD FRAGMENTS ... 181
6.5 CONCLUSION ... 188

© 2011 UNSW page vii

CCHAPTER 7. EVALUATION AND REFINEMENT ... 189
7.1 TASK 3.1 EXPERT REVIEW OF CONTINUUM ... 189

7.1.1 Selection of Experts ... 189
7.1.2 Procedure .. 190
7.1.3 Results ... 191

7.2 TASK 3.2 CASE STUDY APPLICATION OF CONTINUUM ... 192
7.2.1 Case Description .. 192
7.2.2 Selection of Participants ... 194
7.2.3 Procedure .. 195

7.2.3.1 Project Initiation .. 196
7.2.3.2 Applying Continuum .. 197
7.2.3.3 Evaluating Continuum ... 198
7.2.3.4 Refining Continuum ... 198

7.2.4 Results ... 199
7.2.4.1 Sub-Phase Configuration for Application of Continuum ... 199
7.2.4.2 Dealing with Dynamic Evolution Issues ... 203
7.2.4.3 Usefulness .. 204
7.2.4.4 Usability .. 206

7.2.5 Lessons Learned .. 211
7.3 CONCLUSION ... 212

CHAPTER 8. CONCLUSIONS .. 213
8.1 SUMMARY OF INVESTIGATIONS ... 213
8.2 CONTRIBUTIONS OF RESEARCH ... 216
8.3 VALIDITY AND RELIABILITY THREATS ... 218

8.3.1 Conclusion Validity ... 218
8.3.2 Construct Validity ... 218
8.3.3 Internal Validity ... 219
8.3.4 External Validity ... 220
8.3.5 Reliability.. 221

8.4 RECOMMENDATIONS FOR FUTURE WORK.. 221
8.4.1 Extension ... 221
8.4.2 Applying Continuum to a Variety of Applications and Domains ... 222
8.4.3 Tool Implementation ... 222

8.5 CONCLUDING REMARKS .. 223
BIBLIOGRAPHY .. 224
APPENDIX A. SYSTEMATIC LITERATURE REVIEW ... 246
APPENDIX B. FEATURE ANALYSIS RESULTS OF DEVELOPMENT METHODOLOGIES 251

B.1 EVALUATION RESULTS OF SUPPORT FOR DYNAMIC EVOLUTION QUALITY FACTORS 251
B.1.1 Soundness of Change .. 252

B.1.1.1 Completeness ... 252
B.1.1.2 Consistency .. 252
B.1.1.3 Correctness .. 254

B.1.2 Infusibility of Change .. 254
B.1.2.1 Efficiency .. 254
B.1.2.2 Locality ... 255
B.1.2.3 Maintainability ... 255
B.1.2.4 Transparency .. 256

B.1.3 Flexibility of Application .. 257
B.1.3.1 Autonomy ... 257
B.1.3.2 Configurability ... 257
B.1.3.3 Coordination ... 257
B.1.3.4 Extensibility .. 257
B.1.3.5 Flexibility ... 257
B.1.3.6 Loose Coupling ... 258
B.1.3.7 Separation of Concerns .. 258

B.1.4 Robustness of Application .. 259
B.1.4.1 Fault tolerance .. 259
B.1.4.2 Recoverability ... 260
B.1.4.3 Reliability .. 260
B.1.4.4 Safety ... 261
B.1.4.5 Security .. 262

B.2 EVALUATION RESULTS OF SUPPORT FOR MODELLING RELATED DYNAMIC CHANGE REQUIREMENTS 262
B.3 EVALUATION RESULTS OF SUPPORT FOR WORK RELATED DYNAMIC CHANGE REQUIREMENTS 265

APPENDIX C. DETAILED SPECIFICATIONS FOR CONTINUUM .. 268
C.1 PRODUCER METHOD FRAGMENTS ... 268

C.1.1 Dynamic Evolution Analyst... 268
C.1.2 Dynamic Evolution Designer .. 269

© 2011 UNSW page viii

C.1.3 Runtime Application Discovery Tool ... 269
C.2 WORK PRODUCT FRAGMENTS ... 270

C.2.1 Model Unit Fragments .. 270
C.2.1.1 Application .. 270
C.2.1.2 ApplicationLifecycle .. 271
C.2.1.3 ChangeCase .. 271
C.2.1.4 Generation.. 272
C.2.1.5 Impact .. 272

C.2.1.5.1 Custom attribute type ImpactType ... 273
C.2.1.5.2 Custom attribute type ImpactDisruptionLevel ... 273

C.2.1.6 OperationalProfile ... 273
C.2.1.7 Policy.. 274
C.2.1.8 PerformanceProfile ... 274
C.2.1.9 Resource .. 275
C.2.1.10 ResourceProfile .. 275
C.2.1.11 ServicingPolicy ... 275

C.2.1.11.1 Custom attribute type ServicingPolicyType .. 276
C.2.1.12 Stage .. 276
C.2.1.13 TransformableItem ... 276

C.2.1.13.1 Custom attribute type TransformableItemStateType .. 277
C.2.1.14 Transformation ... 278
C.2.1.15 TransformationAction .. 278

C.2.1.15.1 Custom attribute type TransformationActionType .. 279
C.2.1.16 TransformationAgent .. 279
C.2.1.17 TransformationException .. 280
C.2.1.18 TransformationExceptionResolution ... 280
C.2.1.19 TransitionalPeriod ... 280
C.2.1.20 Zone ... 281
C.2.1.21 ZoningPolicy ... 281

C.2.2 Diagram and Document Fragments ... 282
C.2.2.1 Application Lifecycle Diagram and Notation .. 283
C.2.2.2 Dynamic Application Change Document ... 285
C.2.2.3 Dynamic Evolution Quality Inspection Report.. 286
C.2.2.4 Dynamic Evolution Quality Problem Analysis Report .. 293
C.2.2.5 Dynamic Evolution Quality Profile Report .. 293
C.2.2.6 New and Replacement Transformable Item Catalogue ... 298
C.2.2.7 State Map ... 299
C.2.2.8 Structural Configuration - Notational Extensions ... 300
C.2.2.9 Transformation Diagram and Notation .. 302
C.2.2.10 Transformation Orchestration Diagram and Notation .. 304
C.2.2.11 Zone Change Document ... 306

C.3 WORK UNIT FRAGMENTS .. 307
C.3.1 Process and Task Fragments .. 307

C.3.1.1 Application Lifecycle Analysis ... 308
C.3.1.1.1 Identify As-Is Runtime Structure .. 309
C.3.1.1.2 Derive Change Cases.. 310
C.3.1.1.3 Extend Application Lifecycle .. 310

C.3.1.2 Dynamic Evolution Quality Management... 311
C.3.1.2.1 Define Dynamic Evolution Quality Needs ... 312
C.3.1.2.2 Assess Dynamic Evolution Quality ... 313
C.3.1.2.3 Analyse Dynamic Evolution Quality Problems .. 314
C.3.1.2.4 Improve Dynamic Evolution Quality ... 315

C.3.1.3 Transformation Agent Design ... 317
C.3.1.3.1 Identify Transformation Agents .. 318
C.3.1.3.2 Define Transformation Orchestration ... 318

C.3.1.4 Transformation Design ... 319
C.3.1.4.1 Identify New and Replacement Transformable Items ... 319
C.3.1.4.2 Identify Changes to Zones ... 320
C.3.1.4.3 Define Servicing Policies ... 321
C.3.1.4.4 Develop Transformation .. 321

C.3.1.5 Transformation Identification ... 322
C.3.1.5.1 Define To-Be Runtime Structure .. 322
C.3.1.5.2 Refine Change Cases.. 323
C.3.1.5.3 Identify Transformations .. 323

C.3.2 Technique Fragments .. 324
C.3.2.1 Change Case Modelling ... 324
C.3.2.2 Change Case Partitioning and Ordering.. 326
C.3.2.3 Dynamic Change Impact Analysis... 327
C.3.2.4 Dynamic Evolution Safety Risk Management .. 328
C.3.2.5 Dynamic Recomposition ... 332
C.3.2.6 Dynamic Refactoring .. 333
C.3.2.7 Dynamic Transformable Item Change ... 334
C.3.2.8 Dynamic Transformable Item (Re)binding ... 336

© 2011 UNSW page ix

C.3.2.9 Resource Profile Modelling ... 337
C.3.2.10 Root Cause Analysis .. 338
C.3.2.11 Secure and Reliable Transformation Agent Coordination .. 340
C.3.2.12 Start-up State Configuration.. 341
C.3.2.13 Transformation Agent Disposition ... 342
C.3.2.14 Transformation Exception Management .. 343
C.3.2.15 Transformation Mining .. 345
C.3.2.16 Transformation Orchestration and Agent Coordination .. 347
C.3.2.17 Reused Technique Fragments .. 350

C.3.2.17.1 Dynamic Change Localisation ... 350
C.3.2.17.2 Dynamic Security Policy and Enforcement Management ... 351
C.3.2.17.3 Dynamic Transformable Item Adaptation ... 351
C.3.2.17.4 Dynamic Variation Management .. 351
C.3.2.17.5 Dynamic Workflow Change .. 352
C.3.2.17.6 Dynamic Wrapper .. 352
C.3.2.17.7 Inspections .. 354
C.3.2.17.8 Loose Coupling ... 355
C.3.2.17.9 Performance Profile Modelling ... 355
C.3.2.17.10 Recovery Blocks .. 356
C.3.2.17.11 Runtime Structure Recovery .. 356
C.3.2.17.12 Testability Analysis and Improvement .. 357
C.3.2.17.13 Transformable Item Autonomy ... 357
C.3.2.17.14 Transformable Item Mediation and Channelling ... 358
C.3.2.17.15 Transformable Item Regression Testing .. 358

AAPPENDIX D. CASE STUDY RESULTS OF APPLYING CONTINUUM ... 359
D.1 APPLICATION LIFECYCLE ANALYSIS OUTCOMES .. 359

D.1.1 Distributed Property Valuation - Generation V1 .. 359
D.1.2 Change Cases ... 361
D.1.3 Application Lifecycle .. 367

D.2 TRANSFORMATION IDENTIFICATION OUTCOMES ... 368
D.3 TRANSFORMATION AGENT DESIGN OUTCOMES ... 375
D.4 TRANSFORMATION DESIGN OUTCOMES .. 379

D.4.1 New and Replacement Transformable Items.. 379
D.4.2 Zone Changes ... 382
D.4.3 Detailed Design of Transformations ... 384

D.5 DYNAMIC EVOLUTION QUALITY MANAGEMENT OUTCOMES ... 389
APPENDIX E. QUESTIONNAIRE FORMS ... 395

E.1 SURVEY ON DYNAMIC EVOLUTION QUALITY FACTORS .. 395
E.1.1 Participant Information Sheet ... 395
E.1.2 Survey Web Pages .. 396

E.1.2.1 Instructions ... 396
E.1.2.2 Terminology .. 397
E.1.2.3 Questionnaire overview .. 398
E.1.2.4 Rating questions - page 1 ... 398
E.1.2.5 Rating questions - page 2 ... 400
E.1.2.6 Rating questions - page 3 ... 401
E.1.2.7 Respondent profile .. 401
E.1.2.8 Software practices .. 402
E.1.2.9 Project information .. 402
E.1.2.10 Software development activities .. 403
E.1.2.11 Questionnaire submission ... 404

E.2 SURVEY ON DYNAMIC CHANGE REQUIREMENTS .. 404
E.2.1 Participant Information Sheet ... 404
E.2.2 Questionnaire .. 405

E.2.2.1 Key terminology .. 405
E.2.2.2 Modelling features .. 406
E.2.2.3 Work related features .. 407

E.3 EXPERT REVIEW OF DEVELOPMENT METHODOLOGY EXTENSION TO SUPPORT DYNAMIC EVOLUTION 409
E.3.1 Participant Information Sheet ... 409
E.3.2 Questionnaire .. 410

E.3.2.1 Key terminology .. 410
E.3.2.2 Instructions for completing the questionnaire .. 410
E.3.2.3 Strengths of Continuum .. 411
E.3.2.4 Suggested improvements for Continuum .. 411

E.4 CASE STUDY EVALUATION ON DEVELOPING DYNAMIC EVOLUTION FOR A SOFTWARE PROTOTYPE 411
E.4.1 Participant Information Statement .. 411
E.4.2 Questionnaire .. 413

E.4.2.1 Instructions for completing the questionnaire .. 413
E.4.2.2 Usefulness .. 413
E.4.2.3 Dynamic evolution issues encountered ... 413

© 2011 UNSW page x

E.4.2.4 Completeness ... 414
E.4.2.5 Usability .. 414

E.4.2.5.1 Evaluation of metamodel ... 414
E.4.2.5.2 Evaluation of Application Lifecycle Analysis process and related fragments 415
E.4.2.5.3 Evaluation of Transformation Identification process and related fragments 416
E.4.2.5.4 Evaluation of Transformation Agent Design Process and related fragments......................... 416
E.4.2.5.5 Evaluation of Transformation Design process and related fragments 417
E.4.2.5.6 Evaluation of Dynamic Evolution Quality Management process and related fragments 418

AAPPENDIX F. REFINEMENTS TO CONTINUUM ... 421

LIST OF TABLES

Table 1.1 Examples of distributed applications benefiting from dynamic evolution 3
Table 1.2 Example potential benefits of contributions to method users .. 10
Table 1.3 Potential benefits of contributions to method engineers .. 10
Table 2.1 Examples of specialisation of evolution studies .. 14
Table 2.2 Component-based vs. service-oriented elements ... 26
Table 2.3 Terminology mapping between SEMDM (ISO/IEC 24744) and reviewed methodologies 32
Table 2.4 Erl’s strategies .. 37
Table 2.5 Support for composition and evolution in reviewed methodologies ... 54
Table 4.1 Source of literature examined for quality factor synthesis ... 73
Table 4.2 Potential quality factors/attributes selected from reviewed evaluation frameworks 83
Table 4.3 Origins of quality factors from literature and evaluation frameworks ... 83
Table 4.4 Analysis results of potential quality issues suggested by respondents 91
Table 4.5 Analysis results of additional quality attributes synthesised from the literature (cf. Table 4.3) 92
Table 4.6 Descriptive statistics and results of Wilcoxon one-sample signed-rank test on quality factors 95
Table 4.7 Results of Wilcoxon signed-rank tests for matched pairs on quality factors 96
Table 4.8 Analysis of potential quality factors elicited from reviewed methodologies 100
Table 4.9 Evaluation results of methodological support for quality factors .. 104
Table 4.10 Correspondence between ISO/IEC 9126-1 and ISO/IEC 25010’s definitions for maintainability
and the dynamic evolution quality model .. 109
Table 4.11 Dynamic evolution quality factor requirements investigated in Task 1.1 113
Table 5.1 Source of literature examined for dynamic change requirement synthesis 115
Table 5.2 Potential dynamic change requirements selected from reviewed evaluation frameworks 121
Table 5.3 Modelling related dynamic change requirements from Step 1 .. 122
Table 5.4 Work related dynamic change requirements from Step 1 ... 123
Table 5.5 Analysis results of potential dynamic change requirements suggested by respondents 127
Table 5.6 Analysis results of additional dynamic change requirements synthesised from the literature (cf.
Table 5.4) ... 127
Table 5.7 Descriptive statistics and Wilcoxon one-sample signed-rank test results for modelling related
dynamic change requirements from Step 1 (cf. Table 5.3) ... 128
Table 5.8 Descriptive statistics and Wilcoxon one-sample signed-rank test results for work related dynamic
change requirements from Step 1 (cf. Table 5.4) .. 129
Table 5.9 Results of Wilcoxon signed-rank test for matched pairs on modelling related dynamic change
requirements from Step 1 (cf. Table 5.3) .. 130
Table 5.10 Results of Wilcoxon signed-rank test for matched pairs on work related dynamic change
requirements from Step 1 (cf. Table 5.4) .. 131
Table 5.11 Analysis of potential dynamic change requirements elicited from reviewed methodologies ... 133
Table 5.12 Feature analysis results of selected methodologies .. 135
Table 5.13 Dynamic change requirements investigated in Task 1.2 ... 137
Table 6.1 Summary of dynamic evolution quality factor requirements for Continuum (cf. Table 4.11) 140
Table 6.2 Summary of dynamic change requirements for Continuum (cf. Table 5.13) 141
Table 6.3 Features for reuse/enhancement for dynamic change requirements .. 144
Table 6.4 Features for reuse/enhancement for dynamic evolution quality factors 145
Table 6.5 Techniques used in Application Lifecycle Analysis ... 158
Table 6.6 EPCP: key change cases .. 159
Table 6.7 Techniques used in Transformation Identification ... 161
Table 6.8 EPCP: impact set for change case CC1 ... 163
Table 6.9 EPCP: responsible transformations for refined change cases .. 164
Table 6.10 Techniques used in Transformation Design .. 165

© 2011 UNSW page xi

Table 6.11 EPCP: changes to zones .. 167
Table 6.12 Techniques used in Transformation Agent Design ... 171
Table 6.13 Technique(s) used in task Assess Dynamic Evolution Quality .. 173
Table 6.14 Technique(s) used in task Analyse Dynamic Evolution Quality Problems............................... 174
Table 6.15 Recommended tasks/techniques used in Task Improve Dynamic Evolution Quality 174
Table 6.16 Traceability between important dynamic change requirements (Table 6.2) and Continuum’s
method fragments ... 181
Table 6.17 Traceability between Continuum quality factor requirements (Table 6.1) and method fragments
.. 184
Table 7.1 Expert review timeline ... 191
Table 7.2 Expert comments on strengths of Continuum ... 191
Table 7.3 Case study timeline ... 199
Table 7.4 Dynamic evolution issues encountered in case study and addressed with Continuum 203
Table 7.5 Comparison of Continuum and in-house methodology in tackling recurred dynamic evolution
issues ... 205
Table 7.6 Understandability ratings for Continuum’s metamodel .. 207
Table 7.7 Usability ratings for Continuum’s work unit and work product fragments 207
Table 7.8 Understandability ratings for work products developed with Continuum 210
Table 8.1 Important dynamic evolution requirements ... 214

Table Appendix A.1 Selected Journal and conference proceedings for feature requirement synthesis 247
Table Appendix B.1 Scale points for scoring a methodology’s feature ... 251
Table Appendix B.2 Evaluation of support for modelling related change requirements (see Sections 5.1.4
and 5.2.3 for definitions) ... 263
Table Appendix B.3 Evaluation of support for work related change requirements (see Sections 5.1.4 and
5.2.3 for definitions) .. 265
Table Appendix C.1 Enumerated values of ImpactType ... 273
Table Appendix C.2 Enumerated values of ImpactDisruptionLevel .. 273
Table Appendix C.3 Enumerated values of ServicingPolicyType ... 276
Table Appendix C.4 Enumerated values of TransformableItemStateType ... 277
Table Appendix C.5 Enumerated values of TransformationActionType .. 279
Table Appendix C.6 Model Unit fragments and their usage in model artefacts ... 282
Table Appendix C.7 Notations for Application Lifecycle Diagram ... 284
Table Appendix C.8 Example documentation of change case and impact ... 286
Table Appendix C.9 Example documentation of change case and transformation 286
Table Appendix C.10 Template for dynamic evolution quality inspection report 287
Table Appendix C.11 Example dynamic evolution quality problem analysis report 293
Table Appendix C.12 Template for dynamic evolution quality profile report ... 294
Table Appendix C.13 Example documentation of simple new and replacement transformable item
catalogue .. 298
Table Appendix C.14 Example documentation of resource profile ... 299
Table Appendix C.15 Tabular representation of state map in Figure Appendix C.4 300
Table Appendix C.16 Dynamic evolution related notations for structural configurations 301
Table Appendix C.17 Notations for Transformation Diagram .. 303
Table Appendix C.18 Notations for Transformation Orchestration Diagram ... 304
Table Appendix C.19 Example zone change document ... 306
Table Appendix C.20 Summary of quality factors supported by Continuum ... 312
Table Appendix C.21 Summary of quality factors supported by Continuum ... 312
Table Appendix C.22 Work units for addressing particular aspects of quality factors 315
Table Appendix C.23 Gap operators and templates for expressing change case purposes 325
Table Appendix C.24 Areas of dynamic change impact analysis .. 328
Table Appendix C.25 Assets and Harms .. 329
Table Appendix C.26 Abnormal dynamic change events .. 330
Table Appendix C.27 Dynamic evolution safety design mechanisms ... 332
Table Appendix C.28 Suggested values for dynamic evolution quality defect/issue attributes 339
Table Appendix D.1 DPV: transformable items in generation V1 .. 360
Table Appendix D.2 DPV: dynamic application change document ... 363
Table Appendix D.3 DPV: identified generations .. 368
Table Appendix D.4 DPV: change cases for progressing V1 to V1.1beta ... 370
Table Appendix D.5 DPV: change cases for progressing V1.1beta to V1.1 .. 371
Table Appendix D.6 DPV: change cases for progressing V1.1 to V1.2 ... 372
Table Appendix D.7 DPV: change cases for progressing V1.2 to V1.3 ... 374
Table Appendix D.8 DPV: change cases for progressing V1.3 to V2 .. 375
Table Appendix D.9 DPV: new and replacement transformable item catalogue 380
Table Appendix D.10 DPV: state map from JobAppointmentWS_V1 to its stub 382

© 2011 UNSW page xii

Table Appendix D.11 DPV: zone change document ... 382
Table Appendix D.12 DPV: applying transformation patterns to transformation design 385
Table Appendix D.13 DPV: dynamic evolution quality profile ... 390
Table Appendix D.14 DPV: dynamic evolution quality inspection, assessment and improvement results for
defects/issues ... 390
Table Appendix D.15 DPV: use of Continuum techniques in the Task Improve Dynamic Evolution Quality
.. 392
Table Appendix F.1 Suggested improvements from expert review and subsequent refinements to
Continuum .. 421
Table Appendix F.2 Suggested improvements from case study and actual refinements to Continuum 428

LLIST OF FIGURES

Figure 1.1 Development phases for this research... 8
Figure 2.1 Conceptual model for review sections in Chapter 2 ... 13
Figure 2.2 Release-change-transformation relationship in dynamic evolution .. 17
Figure 2.3 Basic service-oriented model ... 24
Figure 2.4 State machine for using a service .. 24
Figure 2.5 Precedence relationships of reviewed methodologies ... 34
Figure 2.6 Erl’s (2005) agile lifecycle model ... 38
Figure 2.7 Oreizy et al.’s. (1999) lifecycle model .. 39
Figure 2.8 SUPER’s phases and layers .. 41
Figure 2.9 An example of RUP’s evolution cycles .. 42
Figure 2.10 EPIC’s trade space .. 43
Figure 2.11 Phases of Papazoglou and van den Heuvel’s (2006) methodology ... 45
Figure 2.12 Application phases in OPF... 48
Figure 2.13 An expanded view of Select Perspective’s supply-manage-consume model 50
Figure 2.14 SeCSE composition methodology ... 53
Figure 3.1 Development phases adopted for this research (expanded from Figure 1.1)............................. 62
Figure 3.2 Research tasks, steps and techniques used in various phases ... 63
Figure 4.1 Information flow in Phase 1 for determining dynamic evolution quality factors 71
Figure 4.2 Steps in Task 1.1 of Phase 1 ... 72
Figure 4.3 Dynamic evolution quality factors and categories synthesised from the literature 74
Figure 4.4 Quality factor importance rankings before and after expert review .. 97
Figure 4.5 Quality factor importance rankings before and after methodology extension 102
Figure 5.1 Information flow in Phase 1 for determining dynamic change requirements 114
Figure 5.2 Steps in Task 1.2 of Phase 1 ... 115
Figure 5.3 Dynamic change requirements and categories synthesised from the literature 117
Figure 5.4 Example transitional forms .. 119
Figure 5.5 Importance rankings of dynamic change requirements after expert review 132
Figure 6.1 Information flow in Phase 2 for developing Continuum .. 138
Figure 6.2. EPCP: current structure .. 149
Figure 6.3. SEMDM and Continuum components ... 150
Figure 6.4. Application lifecycle, transitional periods and transformations .. 152
Figure 6.5 Dynamic evolution metamodel ... 153
Figure 6.6 Structural foundation classes ... 154
Figure 6.7 Application lifecycle related model unit fragments ... 155
Figure 6.8 Transitional period related model unit fragments ... 155
Figure 6.9 Transformation related model unit fragments .. 156
Figure 6.10 Policy related model unit fragments ... 157
Figure 6.11 Work units for Application Lifecycle Analysis ... 158
Figure 6.12. EPCP: application lifecycle diagram ... 160
Figure 6.13. Work units for Transformation Identification.. 160
Figure 6.14 EPCP: to-be generations after transitional periods a and b ... 163
Figure 6.15 EPCP: generation v2 after transitional period c ... 164
Figure 6.16. Work units for Transformation Design... 165
Figure 6.17 EPCP: applying deployment transformation pattern to Catalogue Service2 168
Figure 6.18 EPCP: applying removal transformation pattern to Catalogue Service 168
Figure 6.19 EPCP: transformation design for “Catalogue Service2 Reconfiguration” 169

© 2011 UNSW page xiii

Figure 6.20 EPCP: delegating different search requests to WebUI and WebUI2 170
Figure 6.21. Work units for Transformation Agent Design .. 170
Figure 6.22 EPCP: orchestration designs for transformation agents .. 172
Figure 6.23. Work units for Dynamic Evolution Quality Management ... 173
Figure 6.24 EPCP: use of coordination agent during transitional period a .. 177
Figure 6.25. Example analysis and design project lifecycle with Continuum process fragments 180
Figure 6.26 Precedence relationships of reviewed methodologies and Continuum (extended from Figure
2.5) ... 188
Figure 7.1 Information flow in Phase 3 for evaluating and refining Continuum ... 189
Figure 7.2 Case Study’s lifecycle diagram .. 195
Figure 7.3 Configuration for case study’s “Application of Continuum” phase .. 197
Figure 7.4 Configuration for “Lifecycle Definition” sub-phase ... 200
Figure 7.5 DPV: generation overview ... 200
Figure 7.6 Configuration for “Transformation Identification”, “Transformation Agent Definition” and
“Transformation Design” sub-phases .. 201
Figure 7.7 Configuration for “Quality Improvement” sub-phase .. 203
Figure 8.1 Major relationships among research artefacts developed in this research 216

Figure Appendix C.1 Example hierarchical zones and illegal zones ... 281
Figure Appendix C.2 Example Petri nets in action .. 284
Figure Appendix C.3 Example application lifecycle diagrams ... 285
Figure Appendix C.4 Example state map for two UML state machines .. 300
Figure Appendix C.5 Example use of Structural Configuration - Notational Extensions 302
Figure Appendix C.6 Example transformation actions .. 304
Figure Appendix C.7 Example transformation orchestration diagram ... 306
Figure Appendix C.8 Example fault tree for replacement transformable item related transformation events
.. 330
Figure Appendix C.9 Example fault tree for data related dynamic change events 331
Figure Appendix C.10 Example safety risk derived from hazard .. 331
Figure Appendix C.11 Addition, removal and property change transformation patterns 335
Figure Appendix C.12 Replacement using three transformation patterns ... 336
Figure Appendix C.13 (Re)binding transformation patterns .. 337
Figure Appendix C.14 Example uses of request and acknowledgement between two transformation agents
.. 340
Figure Appendix C.15 Example of timing out a subordinate agent’s transformation 341
Figure Appendix C.16 Example transformation agent hierarchy ... 343
Figure Appendix C.17 Example taxonomy of abnormal transformation events (exceptions labelled with *)
.. 344
Figure Appendix C.18 Example transformation with exception declaration and rollback 345
Figure Appendix C.19 Example application used to illustrate Transformation Orchestration and Agent
Coordination ... 347
Figure Appendix C.20 Example development of transformation orchestration ... 349
Figure Appendix D.1 DPV: generation V1 ... 360
Figure Appendix D.2 DPV: application lifecycle diagram before process “Transformation Identification” . 367
Figure Appendix D.3 DPV: updated application lifecycle diagram after new change cases identified in
Process “Transformation Identification” .. 368
Figure Appendix D.4 DPV: generation V1.1beta ... 369
Figure Appendix D.5 DPV: generation V1.1 .. 371
Figure Appendix D.6 DPV: generation V1.2 .. 372
Figure Appendix D.7 DPV: generation V1.3 .. 374
Figure Appendix D.8 DPV: generation V2 ... 375
Figure Appendix D.9 DPV: disposition of transformation agents in different zones 376
Figure Appendix D.10 DPV: transformation orchestration diagram (V1 to V1.1beta) 377
Figure Appendix D.11 DPV: transformation orchestration diagram (V1.1beta to V1.1) 377
Figure Appendix D.12 DPV: transformation orchestration diagram (V1.1 to V1.2) 378
Figure Appendix D.13 DPV: transformation orchestration diagram (V1.2 to V1.3) 378
Figure Appendix D.14 DPV: transformation orchestration diagram (V1.3 to V2) 379
Figure Appendix D.15 DPV: transformation pattern for “tomcat addition” ... 385
Figure Appendix D.16 DPV: transformation design for “ds_v1: to ds_v2: data replication” 387
Figure Appendix D.17 DPV: transformation design for “ds_v1: to ds_v2: data sync” 387
Figure Appendix D.18 DPV: transformation design for “ja_v1:JobAppointmentWS_V1 recovery” 388

© 2011 UNSW page xiv

AABBREVIATIONS AND ACRONYMS

Abbreviation / Acronym Description

BPMN Business Process Modelling Notation

COTS commercial-off-the-shelf

IS information systems

IT information technology

N/A not applicable

OO object-oriented

PDA personal digital assistant

QoS quality of service

RM-ODP Reference Model of Open Distributed Processing, an international standard
developed by ISO and ITU-T for large distributed applications

SEMDM
International Standard ISO/IEC 24744:2007 Software Engineering - Metamodel
for Development Methodologies

SISTM The School of Information Systems, Technology and Management, UNSW

SLA service level agreement

SOA service-oriented architecture

SOAP Simple Object Access Protocol

UML OMG's Unified Modelling Language

UNSW The University of New South Wales, Australia

UI user interface

XML eXtensible Markup Language

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 1

Chapter 1. IINTRODUCTION

“Change is the law of life. And those who look only to the past or present are certain to miss the

future.” - John F. Kennedy, US President

Dynamic evolution is a phenomenon by which applications can be upgraded without the

need for shutdown and restart. Their ability to offer their services while minimising the

loss of business revenue due to downtime, for instance, is particularly important for

critical distributed applications running around the clock. A platform well suited for

realising dynamic evolution is the notion of a composition-based distributed application

- built of modules weaved into composite structures (Schuster 2008). Dynamically

accommodating changes in such an application is accomplished via the assembly and

disassembly of modules into and from this kind of application.

Studies have called for evolution to be addressed from the methodological perspective

(Bennett & Rajlich 2000; Coyle et al. 2010) and, although there has been a myriad of

techniques and tools developed for dynamic evolution, the methodological aspect has

been largely ignored. Dynamic evolution is not only poorly understood but also

inadequately supported in existing methodologies encompassing composition-based

distributed application development (cf. Section 1.1.3).

The objective of this research was thus to develop support for dynamic evolution in

composition-based distributed applications from the methodological perspective. It

encompassed the identification of features that a software development methodology

should possess to tackle dynamic evolution and the development of these features.

These features have the flexibility of being incorporated into and thus enhancing

existing software development methodologies in which dynamic evolution is not well

supported.

The rest of this Chapter is organised as follows. The background and motivation for this

research is presented in Section 1.1. Then, the objective of this research is stated in

Section 1.2. Afterwards, the research programme undertaken, as determined by the

decisions made during the development of this research, is presented in Section 1.3.

The contributions and the delimitations of this research are then summarised in

Sections 1.4 and 1.5 respectively. Finally, a conclusion of this Chapter and an outline of

the rest of this thesis are shown in Section 1.6.

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 2

11.1 BACKGROUND AND MOTIVATION
Distributed application technologies are gaining widespread use in organisations to

develop distributed applications with architectures spreading from two-tiered (e.g.

client-server) to multi-tiered models. This trend is driven largely by, for instance, the

need for efficiently utilising geographically dispersed computing resources, making

services of distributed applications more readily available to other users and

applications on a network, and integrating existing legacy applications to provide

enterprise-level services. As modern distributed applications grow in size and

complexity integrating a barrage of components and legacy applications, there tend to

be more changes (upgrades, fixes, reconfigurations etc.) which become increasingly

difficult and costly (Fragopoulou et al. 2010). For instance, as well as reasoning about a

change in affected parts of an application, one must analyse if the change potentially

interferes with other parts of the application and requires further analysis and changes

(Yu et al. 2010). This is because faults caused by improper changes to one part of the

application can potentially be catastrophic as the faults may spread to other parts of the

application (Yau et al. 1993).

Many distributed applications, such as credit card payment gateways, provide critical

services with little or no interruption (Clitherow et al. 2008; Gupta et al. 1996; Oreizy et

al. 1999). Shutting them down for changes is costly and not always a desirable option

(e.g. average loss of US$6.5M per hour for financial brokerage systems due to

downtime (Jayaswal 2005)). Instead, it is preferable to apply changes to these

applications with minimal interruption.

Koskinen (2004) studied a range of software development projects between 1979 and

2000. He observed that software maintenance and evolution costs account for 50% to

90% portion of the overall software development effort. The significance of such costs

is consistent with other studies (e.g. Petrenko et al. (2007):65%; Kluth (2004):70-80%;

Erlikh (2000):85-90%; and Lientz and Swanson (1980):70%). Lehman and Ramil

(2001) further postulate that real world systems that address a problem or an activity

are E-type, meaning that they must undergo continual evolution to remain satisfactory

to end users and stakeholders. On a different note, the information technology (IT)

industry is moving away from the traditional waterfall approach of software

development towards iterative and incremental development approaches in which

software changes are regularly and predictably released. This is in part driven by the

need for greater agility and flexibility with respect to requirement changes (Kruchten

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 3

2003). Another driving force behind regular changes is that project risks can be

reduced by implementing smaller changes regularly (Gilb 1988).

In summary, the tendency for changes to become frequent, regular and predictable

substantiates the need for an application to accommodate changes as required. Making

changes to distributed applications gets increasingly harder as they grow in size and

complexity with more parts distributed in a network, and as they are unlikely to be able

to be shut down for changes. To address these issues, this research argues for

accommodating changes in this kind of application without the need for shutdown and

restart - dynamic evolution.

11.1.1 Dynamic Evolution

The kinds of changes described in Section 1.1 can be handled with dynamic or runtime

evolution. From a business perspective, dynamic evolution may also increase the

flexibility of an application in implementing changes in response to unforeseen

demands. Such demands can arise from changing user and business needs, business

competitiveness and regulatory compliance (Papazoglou 2008).

Many specialised distributed applications, including the types listed in Table 1.1, will

benefit from factoring dynamic evolution into their designs.

Table 1.1 Examples of distributed applications benefiting from dynamic evolution

Application Type Characteristics Example

Self-adaptive (Oreizy et al.
1999)

Responsive to environmental changes and
demands for new functionality by adjusting
behaviour autonomously

Intelligent agents (Morandini
et al. 2008)

Long-lived (Morrison et al.
2007)

Services provided continuously Banking system (Hillman &
Warren 2004)

Autonomous (Kramer &
Magee 2007)

Human interventions erroneous or not quick
enough to react

Autonomous underwater
vehicle (Kramer & Magee
2007)

Critical (Wang et al. 2006) Shut-down prohibitive and costly
Telecommunication system
(Buckley et al. 2005)

Time-to-market (Bennett &
Rajlich 2000)

Minimum features released initially and early
to the market, with frequent upgrades and
add-ons

(Online) financial product
(Bennett & Rajlich 2000)

Note: All cited references have a theme towards dynamic evolution.

Dynamic evolution can be tackled with hardware- and/or software-based approaches

(Segal 2002; Segal & Frieder 1993). In the former, albeit costly and complex, redundant

or secondary hardware is firstly loaded with new code. Then, the state and data of the

programmes running on the original hardware are transferred to the redundant

hardware, followed by rerouting of the network traffic to the secondary hardware. In

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 4

contrast, a software-based approach is relatively cost effective and flexible (Wang et al.

2006), involving the alternation of the structure, behaviour and/or states of an executing

application to achieve a similar effect. In this research, the term “dynamic evolution” is

used synonymously with “dynamic software evolution” since this research undertakes a

software-based approach to evolution. Furthermore, the term “distributed applications” is

used in preference to “distributed systems” to emphasise the software focus of this

research’s treatment of dynamic evolution. One way to embrace dynamic evolution in

distributed applications is to leverage the notion of the composition-based approach

which is described next. Afterwards, an argument for supporting dynamic evolution

from the methodological perspective is made in Section 1.1.3.

11.1.2 Role of Composition-Based Distributed Application

Large distributed applications have been focused on being “assembled from independent

and reusable collections of functionality” (Brown et al. 2002). More specifically,

“composition-based” software development refers to a paradigm of “weaving” existing or

custom-developed applications, (commercial-off-the-shelf) software components,

leased or rented applications and services into composite applications (Schuster 2008).

Common examples include component-based applications (of components and

connectors) (Evans & Dickman 1999) and service-oriented applications (of services

and bindings) (Papazoglou & Georgakopoulos 2003). Composition-based applications

are well suited to dynamic evolution because their structures are fabricated from

loosely coupled parts - units of functionality - and their bindings as elementary building

blocks for applications (e.g. Szyperski 2003). Ongoing changes can be accommodated

into these applications via elementary operations such as addition, replacement and

removal of parts with varying functionality as needed (Zhang et al. 2009). On the other

hand, the notion of distribution in which application parts are scattered and interact over

a network further facilitates this kind of change by connecting (new) parts to and

disconnecting (existing) parts from an application.

1.1.3 Role of Development Methodology

Studies recommend that evolution in applications should be regular, anticipated (Oreizy

et al. 1999) and considered from the methodological perspective (Bennett & Rajlich

2000; Coyle et al. 2010). The International Standard ISO/IEC 24744: Software

Engineering - Metamodel for Development Methodologies defines a development

methodology as the “specification of the process to follow together with the work products to

be used and generated, plus the consideration of the people and tools involved…” (ISO/IEC

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 5

2007) 1. An organisation with a mature systematic software development approach

does not always produce quality software (Pfleeger 1999, p. 34) but without one it

would be hard to trace the cause of errors and correct them when things go wrong

(Firesmith et al. 1997). Such a mature development approach is even more important

to a live application as, once undetected errors are manifested in the application

through dynamic evolution, they may immediately affect the application. Furthermore, a

mature development approach helps an application to evolve (Abran & Moore 2004)

and improves an organisation’s productivity and effectiveness in software development

(Paulk et al. 1993; SEI 2006).

While there have been many studies into techniques and tools that could be useful in

dynamic evolution, the methodological aspect has been largely ignored. For example,

in a more general context, Breivold and Crnkovic (2010) performed a systematic

literature review of fifty-eight studies addressing software evolution (i.e. without regard

to the dynamism of evolution) but found no development process support for software

evolution. The lack of understanding and support for dynamic evolution from the

methodological perspective is further evident from two evaluations, conducted in this

research, of a number of development methodologies supporting composition-based

distributed application development (detailed in Sections 4.4 and 5.4). The results

suggest a lack of maturity in these methodologies with respect to dynamic evolution.

For example, Oreizy et al. (1999) use two process lifecycles to deal with dynamic self-

adaptation in software: one to anticipate changes and produce their descriptions, and

the other to realise the changes. Their approach emphasises particular architectural

styles - which are design patterns for organising parts in an architecture’s structure

(Garlan et al. 1994) - to embrace dynamic changes but lacks details on implementing

changes. In work related to software change, Bohner (1996) defines a process for

change impact analysis to ensure all parts of an application are considered when

proposing changes. The process involves determining changes required for an

application, analysing their impacts on the application, designing and implementing the

changes, and retesting the changed application. It makes no provision for analysing

and evolving a running application to accommodate dynamic changes. The “staged

1 In this research, the term “methodology” is synonymous with “method” (ISO/IEC 2007;
Jayaratna 1994). However, the term “method” is reserved for use in conventional terms “method
engineer”, “method engineering” and “method fragment”, instead of using “methodology engineer”,
“methodology engineering” and “methodology fragment”. Furthermore, as the context of this
research is in software development, both “methodology” and “method” imply “development
methodology”.

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 6

lifecycle” model (Bennett & Rajlich 2000) represents an application’s lifecycle as going

through several stages from initial development to close-down and suffers the same

drawback as Bohner’s (1996).

There have also been no comprehensive studies identifying what kinds of dynamic

changes should be addressed in software development (see Sections 2.4.13, 2.3, 4.3

and 5.3 for evidence). Take the case of an evaluation framework which comprises a

“checklist” (Siau & Rossi 2007) of ideal methodology feature requirements or criteria

used to evaluate the extent to which alternative methodologies address the feature

requirements. A feature requirement for a methodology defines a problem or an

outcome that methodology or method users2 (Nuseibeh et al. 1996) intend to address

for a particular activity, task or objective (Kitchenham 1996; Wasserman et al. 1983). A

number of evaluation frameworks have been proposed but none specifically cover

dynamic evolution (see Section 5.1.3 for review).

Quality is another important consideration in dynamic evolution since dynamic evolution

poses a number of particular challenges to product quality. Low-quality changes may

not only compromise important features of a running application (e.g. security), but also

make it harder to evolve in the future. In dynamic evolution, such a compromise

materialises in the application as soon as dynamic changes to the application has been

made. This is in contrast to static changes in which an application can be taken offline

for repair and tested for errors before being placed into production, hopefully, error free.

While quality plays an important role in information systems (IS) and their development,

little attention has been paid in the literature to quality in dynamic evolution.

11.1.4 Role of Method Engineering

To embrace support for dynamic evolution in methodologies, one can envisage method

engineering and method fragment development. Method engineering is a discipline for

the design, construction and adaptation of methodologies for software development,

and can be achieved through the use of method fragments (Brinkkemper 1996;

Henderson-Sellers 2003). Method fragments 3 - a.k.a. methodology elements

(Henderson-Sellers & Ralyté 2010) - are essentially building blocks (e.g. requirements

modelling) for constructing a methodology. Each method fragment can be process-

2 A "method user" is a role that can be played by people in software development, such as
business analysts, architects and software developers.
3 Strictly speaking, “method fragments” should be termed “method fragment kinds”. For
convenience and ease of reading, the “kind” suffix has been dropped.

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 7

(e.g. procedure) or product-related (e.g. diagram) (Brinkkemper et al. 1998). Method

fragments can be extracted from existing methodologies (e.g. for reuse) or developed

from scratch to meet the needs of practitioners. They can be stored in a methodbase or

repository (Harmsen et al. 1994). Via situational method engineering, fragments are

selected from a repository and assembled into a methodology to adapt it to the

development needs of a particular kind of application in a specific project situation

(Brinkkemper 1996; Brinkkemper et al. 1998; Harmsen et al. 1994; Ralyté & Rolland

2001). In this research, developing support for dynamic evolution using a method

engineering approach has advantages over developing a single methodology for

dynamic evolution. Apart from the ability to be assembled into a methodology to adapt

to a variety of (project) situations, method fragments facilitate incorporation into existing

fragment-structured methodologies supporting composition-based distributed

application development, to enhance their capability to support dynamic evolution.

11.2 RESEARCH OBJECTIVE
Motivated by the benefits of dynamic evolution to a distributed application and the lack

of methodological support for dynamic evolution as discussed in the last Section, this

research was carried out to:

via method engineering, develop a set of method fragments as

enhancements to existing software development methodologies, to

support the analysis and design aspects of dynamic evolution for

composition-based distributed applications, to accommodate dynamic

changes over time without the need for shutdown and restart.

To achieve the above goal, this research investigated two research questions. The first

research question dealt with the concern highlighted earlier in Section 1.1.3 that there

is a lack of feature requirements that should be considered from the methodological

perspective:

RQ1: What are the important requirements for consideration in composition-based

distributed application development to support dynamic evolution?

The second research question concerned the methodological support, exploiting the

flexibility of both the composition-based approach and method engineering, to fulfil the

important requirements that were inquired with the first research question. Again, the

argument for (the lack of) methodological support was made earlier in Section 1.1.3:

RQ2: How can these important requirements be addressed with method fragments

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 8

uused in composition-based distributed application development?

1.3 RESEARCH DESIGN
Since this research aimed to define a set of requirements to be addressed from the

methodological perspective (i.e. research question RQ1) and to build a set of

methodological features to meet these requirements (i.e. research question RQ2), it

falls into a prescriptive inquiry (Gregor 2006) and is best achieved with design science

research - a.k.a. design research (Hevner et al. 2004; March & Smith 1995; Vaishnavi

& Kuechler 2004). Thus, the programme for this research was conducted, using design

science research as the overall research framework, in three phases as shown in

Figure 1.1:

source: developed for this research

Figure 1.1 Development phases for this research

Phase 1: Determine important dynamic evolution requirements.

The first phase responded to research question RQ1 by determining important

requirements that should be considered when addressing dynamic evolution in

composition-based distributed applications. The requirements were used later as

inputs to the next phase for the development of methodological support for dynamic

evolution. Tasks performed during this phase include:

 Synthesise dynamic evolution requirements from the literature and relevant

evaluation frameworks;

 Assess the importance of and extend dynamic evolution requirements using a

survey of experienced practitioners and researchers; and

 Extend the set of important dynamic evolution requirements with those already

considered in relevant methodologies.

Phase 2: Develop support for dynamic evolution.

This phase acted on research question RQ1 by developing the structure and

content of Continuum to address the important dynamic evolution requirements

determined from Phase 1. Continuum is a methodology extension comprising a set

Phase 1

Determine important
dynamic evolution

requirements

Phase 2

Develop support for
dynamic evolution

Phase 3

Evaluate and refine
support for dynamic

evolution

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 9

of International Standard ISO/IEC 24744 (ISO/IEC 2007) based method fragments,

to be incorporated into an existing methodology, to specifically support the analysis

and design aspects of dynamic evolution during software development. Suitable

fragments were reused from existing methodologies, enhanced from existing

methodologies, or otherwise developed from scratch where appropriate. The

development of Continuum involved the execution of the following two tasks:

 Identify method fragments from relevant methodologies suitable for reuse or

requiring small enhancement to address the requirements determined in the last

phase.

 Develop method fragments by enhancing those candidates identified in the last

task if necessary, and defining new ones to fulfil the dynamic evolution

requirements that are not addressed satisfactorily by those fragments identified

in the last task.

PPhase 3: Evaluate and refine support for dynamic evolution.

During this phase, Continuum was progressively evaluated and refined in two tasks:

 Conduct an expert review of Continuum with involves subject matter experts

reviewing the documentation for Continuum. Refine Continuum based on the

experts’ feedback.

 Apply Continuum to a case study, involving the analysis and design of dynamic

evolution for an application. Again, refine Continuum based on the case study

participants’ feedback.

1.4 CONTRIBUTIONS
In response to the poor understanding and support for dynamic evolution in the

literature concerning methodology development and research (as noted in Section

1.1.3), this research fills this gap by making two major contributions as follows. They

are intended to be sufficiently generic to a variety of composition-based distributed

applications, including component-based and service-oriented applications on which

this research focuses:

A proposed set of important dynamic evolution requirements. The novelty lies in their

coverage for both dynamic changes and quality aspects of dynamic changes

and applications, for explicit consideration in methodologies supporting

composition-based distributed application development. These requirements

can also be applied to evaluate a methodology for its extent of support for

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 10

dynamic evolution.

CContinuum, a set of method fragments to specifically address the analysis and design

aspects of dynamic evolution as a separate concern. Continuum has the

flexibility of being orchestrated and sequenced to run alongside conventional

software development activities to extend their capability for dynamic evolution.

These contributions target method users and method engineers (Nuseibeh et al. 1996).

(Note that "method users" and "method engineers" are role names adopted from the

context of method engineering; they can be played by but are not limited to researchers

from academia and practitioners from industry.) First of all, these contributions

hopefully help method users (cf. Section 1.1.3) to leverage the advantages of dynamic

evolution in applications for their business in several ways such as those illustrated in

Table 1.2:

Table 1.2 Example potential benefits of contributions to method users

Contribution Potential Benefits

Dynamic
evolution

requirements

 Become more familiar with the characteristics and quality aspects of dynamic
evolution for an application.

 Evaluate a methodology using the proposed dynamic evolution requirements to
ascertain the methodology’s support for dynamic evolution.

 Articulate dynamic evolution requirements to method engineers (Nuseibeh et al.
1996) when the engineers configure and assemble a methodology.

Continuum

 Become more familiar with the characteristics and quality aspects of dynamic
evolution for an application.

 Handle dynamic evolution as a separate concern during development, along with
conventional analysis and design activities.

Second, these contributions offer methodological foundations for method engineers

who create method fragments and define methodologies from these fragments for use

by method users (Gonzalez-Perez & Henderson-Sellers 2006a) to better handle

dynamic evolution. Example benefits to method engineers are given in Table 1.3:

Table 1.3 Potential benefits of contributions to method engineers

Contribution Potential Benefits

Dynamic
evolution

requirements

 Compare support of various methodologies for dynamic evolution.

 Select a methodology of best fit to meet particular dynamic evolution objectives.

 Identify limitations in a methodology for improvement to better support dynamic
evolution.

 Use the dynamic evolution requirements as a baseline for future extension to better

describe dynamic evolution needs for specific types of composition-based
distributed applications (e.g. SOA-based ones).

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 11

Contribution Potential Benefits

Continuum

 Separate the dynamic evolution concern from conventional analysis and design
concerns in a methodology.

 Assemble a new methodology or extend existing methodologies to suit a

development environment or a project in which dynamic evolution is desirable or
required for a composition-based distributed application.

 Use Continuum as a baseline for future development to better support specific

types of composition-based distributed applications (e.g. SOA-based ones).

11.5 RESEARCH DELIMITATIONS
The following areas are deemed out of the scope for this research, to confine the focus

and the boundary of this research:

 Conventional aspects of software development other than analysis and design

(configuration management, requirements engineering, testing and change

management etc., which are expected to be taken care of by existing

methodologies);

 Technological and tool related support for dynamic evolution, which can be

implementation-oriented;

 Application contexts, which may influence the analysis and design for dynamic

evolution (e.g. online transaction applications which may be more vulnerable to

financial loss because of faulty dynamic changes, leading to the need for better

error handling in the design to deal with dynamic changes);

 Environmental issues, which can be related to non-software issues;

 Organisational, business, people, project, programme management and other

issues falling outside of application development, which may influence how

dynamic evolution is used in applications;

 Data and schema evolution, a branch of specialised studies for evolution (e.g.

Roddick 1992);

 Architectural support for dynamic evolution (e.g. certain architectural designs

potentially facilitating dynamic evolution more easily than others); and

 Incorporation of Continuum into non-fragment based methodologies. (Note:

Continuum will also be useful for non-fragment based methodologies. However,

the effort of incorporating its fragments into this kind of methodology for an

endeavour will vary widely, depending on the structure and customisability of

individual methodologies.)

Chapter 1. Introduction Kam Hay Fung - PhD Thesis

© 2011 UNSW page 12

11.6 CONCLUSION AND THESIS OUTLINE
This Chapter argued how important it is for this research to support dynamic evolution

in the context of development methodology, leveraging the capability of a composition-

based distributed application. In particular, this Chapter presented the research

background and motivation, the research objective derived from the motivation, a

research programme to accomplish this objective, key contributions of this research,

and areas excluded from this research. The rest of this thesis is organised as follows:

Chapter 2 presents a review of dynamic evolution and methodology. The dynamic

evolution part covers concepts of dynamic evolution, composition-based

distributed applications and how they can support dynamic evolution. The

methodology part covers evaluation frameworks to assess methodologies,

relevant and existing software development methodologies supporting

composition-based development, and situational method engineering for the

development of methodologies.

Chapter 3 overviews design science research, presents the rationale for selecting

design science research for this research, and the research plan tailored from

the selected paradigm in terms of three phases and associated tasks carried out

to accomplish the plan.

Chapter 4 and Chapter 5 describe the execution of Phase 1 and its results, which are a

set of important dynamic evolution requirements to be considered for the

development of Continuum.

Chapter 6 documents the content of Continuum. This includes the identification of

features from existing methodologies suitable for reuse/enhancement in

Continuum, and method fragments specifically developed in Phase 2 to address

the requirements selected for Continuum. For convenience, the documentation

also incorporates refinements based on the evaluation results in Phase 3.

Chapter 7 presents the outcomes of Phase 3, comprising the evaluation results from an

expert review of and a case study application of Continuum, plus refinements

made to Continuum based on these results.

Chapter 8 discusses the main conclusions with respect to the research questions

investigated, the contributions of this research, threats to the validity and

reliability of the findings of this research, and recommendations for future work.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 13

Chapter 2. RREVIEW OF DYNAMIC EVOLUTION AND

METHODOLOGY

“Study the past if you would define the future.” - Confucius

The previous Chapter introduced the rationale for and the context of this research, and

presented both the research problem and questions to be explored. In turn, this

Chapter reviews five relevant topics, conceptually divided into two groups as shown in

Figure 2.1.

Problem
Space:
embrace
dynamic

evolution in
CBDA

Dynamic
Evolution

(Section 2.1)

Composition-
Based

Distributed
Application

(CBDA)
(Section 2.2)

Solution
Space:
support
dynamic
evolution

with metho-
dology

Evaluation
Frameworks
(Section 2.3)

Methodologies
Supporting

CBDA

(Section 2.4)

Situational
Method

Engineering

(Section 2.5)

Chapter
2

Review

lack of DE
requirements

lack of DE
support

source: developed for this research

Figure 2.1 Conceptual model for review sections in Chapter 2

 Problem space (for dynamic evolution): This part reviews the literature

concerning the problem aspects of this research, being dynamic evolution in the

context of composition-based distributed applications. First, the definitions of

dynamic evolution are discussed in detail, covering areas from evolution in

general to specific characteristics of dynamic evolution (Section 2.1). Then, the

concept of composition-based distributed application is reviewed and argued as

a suitable platform for dynamic evolution (Section 2.2).

 Solution space (for dynamic evolution): This part reviews the literature

concerning the solution aspects of this research, being the use of

methodologies in tackling dynamic evolution. First, it discusses the “state of the

art” in two methodological areas and points out their gaps in dealing with

dynamic evolution. The first area concerns evaluation frameworks which define

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 14

ideal requirements that a methodology should support and points out that

existing frameworks lack requirements specific to dynamic evolution (Section

2.3). The second area concerns existing development methodologies that

support composition-based software development and argues that dynamic

evolution is poorly understood and supported in these methodologies (Section

2.4). The review then turns to the topic of situational method engineering in the

development of methodologies and its ability to construct a methodology to a

particular problem domain (e.g. dynamic evolution) in a project situation

(Section 2.5).

22.1 DEMYSTIFYING DYNAMIC EVOLUTION
The definition of evolution finds its roots in the natural progression of animal and plant

species, referring to "the process of developing from a rudimentary to a mature or complex

state" (Oxford English Dictionary), or a gradual development from a simple to a complex

form over generations to survive in a continuously changing environment (Darwin

1859). Evolution is an essential and necessary capability for species to adapt to a

dynamic environment.

Evolution is specialised into temporal and spatial evolution (e.g. Aassine & El Jaï 2002),

Temporal evolution specialises in the time-dependent or time-series aspect of evolution

(i.e. how species change over time). In contrast, spatial evolution concerns the location

dynamics of species (i.e. how the distribution of species changes). These

specialisations are also commonly found in sciences that study characteristics of a

phenomenon in space and/or time, as exemplified in Table 2.1. Although temporal and

spatial evolution are treated as two orthogonal constructs, their effects may influence

each other. Therefore, spatio-temporal evolution studies examine their combined effect

(e.g. Martínez-Beneito et al. 2008).

Table 2.1 Examples of specialisation of evolution studies

Specialisation Temporal Spatial

Distributed
applications

Gradual upgrade at runtime to improve
performance to cope with increasing loads

Migration and replication of system parts to
appropriate network nodes to distribute loads

Demography
Effect of population ageing over time on
population growth

Effect of geographical preferences on the
distribution of population

Meteorology Depletion of the ozone layer over time Spread and size of the ozone layer

Astronomy Formulation of black holes over time Location and spread of stars

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 15

22.1.1 System and Software Evolution

In system engineering, Rowe et al. (1998) refer evolution to changes of a system over

its lifespan. Furthermore, they elicit that the origins of changes are attributed to

functional (maintenance, enhancement etc.) and non-functional needs (performance

tuning, change in environment and technology etc.), resulting in changes in the

requirements of the system: “[the nature of] a system to accommodate change in its

requirements throughout the system’s life span with the least possible cost while maintaining

architectural integrity” (Rowe et al. 1998).

While this definition is in line with this research, further justification in the context of a

software system or an application is needed. Evans and Dickman (1999) clarify that

computational changes do not constitute software evolution. By definition, computation

refers to changes in data which are supported as part of the functionality of an

application. This definition includes data transactions in applications containing

database sub-systems where changes to the data are coordinated. Unlike computation,

software evolution results in the alternation of the structure (e.g. by addition/removal of

parts) and semantics (e.g. by replacement of existing parts) in the software so that it

behaves differently (Zhang et al. 2009). Certain requirement driven changes also

contribute to software evolution to a lesser extent. For example, in dynamic document-

based applications (de Lara et al. 2005) and the user-interface tier of a multi-tiered

architecture (Alur et al. 2003) capable of dynamic content provisioning (Challenger et

al. 2005), changes to the information presented to end users and the way it is

presented may trigger software evolution. For instance, adding hyperlinks on a web

page to link it to other pages extends the navigation model which may also require

update to the workflow of the underlying application, whereas colour adjustment on web

pages does not lead to changes to the application’s backend components.

In application development, evolution is related to but distinguished from maintenance.

Kemerer and Slaughter (1999) explain that evolution examines how an application

changes over time whereas maintenance activities focus on modification and error

correction after the development of a new application. With regard to evolution, multi-

year longitudinal studies, for instance, were conducted to examine factors causing

changes to applications (see examples in Kemerer & Slaughter 1999, p. 496). Lientz

and Swanson (1980) categorise maintenance into three activities: adaptive, corrective

and perfective. Adaptive maintenance mandates that an application must change to

adapt to a dynamically changing operating environment. Corrective maintenance is

triggered by discovered errors which must be removed. Perfective maintenance

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 16

concerns the desire to add, modify and enhance functionality to obtain better

applications. In addition, Pressman (2005) and the Guide to the Software Engineering

Body of Knowledge (Abran & Moore 2004) propose an extra activity called preventive

maintenance which concerns the modification of an application after delivery to detect

and correct latent errors before they surface in its operating environment.

22.1.2 Types of Evolution in Applications

The nature of evolution depends on when changes are incorporated into an application.

Buckley et al. (2005) describe three categories of evolution: static, dynamic and load-

time. In static evolution, commonly known as software maintenance, changes are made

to an application’s source code which is then recompiled into a new executable

application. In contrast, dynamic evolution (a.k.a. runtime evolution) concerns changes

that are made and activated in an application without its being shutdown. This includes

removing existing binary code from an application, hot-swapping existing binary code

with a newer version, and adding new code to an application. Load-time evolution lies

between static and dynamic evolution; it occurs when some binary code is not loaded

into an executable application until needed (Buckley et al. 2005).

Dynamic evolution in applications is studied under different guises, including online

software evolution (Wang et al. 2006), online upgrades (OMG 2003b), dynamic

reconfiguration (Agnew et al. 1994a), dynamic programme updating (Segal & Frieder

1993), runtime evolution, runtime reconfiguration, dynamic upgrading, and dynamic

adaptation (Mens 2008). Dynamic adaptation has a particular goal for evolution; make

changes to an application dynamically in response to changes in its environment

(McKinley et al. 2004). Furthermore, studies regard dynamic evolution as a precursor

and a facilitator to successful dynamic adaptation (e.g. Andrikopoulos et al. 2008;

Oreizy et al. 2008). Dynamic evolution, however, is differentiated from other disciplines

of software evolution, including “requirements evolution”, “architecture evolution”, “data

evolution” and “language evolution” (Mens 2008). In data evolution (a.k.a. “schema

evolution” (Roddick 1992)), schema definitions of a relational database are evolved to

adapt to changing business data needs (e.g. adding a secondary contact phone

number for staff). This also requires migrating the underlying relational data to conform

to a new schema (e.g. adding the “2nd_phone_no” attribute to all staff records).

2.1.3 Release, Transformation and Dynamic Change

As an application evolves from its initial release to its retirement, it can be thought of as

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 17

progressing through a number of generations (Kruchten 2003). Each generation

succeeds its predecessor by accommodating a particular release of changes to reach

its next desirable form. A release is the result of requirement elaboration and change

implementation. In dynamic evolution, a release is broken down into dynamic changes

(Papazoglou 2008; Yu et al. 2005), referring to what are to be modified in an application

at runtime. Each dynamic change is kept small enough to be applied to the application

without causing significant disruptions. As opposed to dynamic change, a

transformation4 refers to an act of performing dynamic modifications to the application

(Mens & Demeyer 2008). A simple solution is to define a transformation for each

dynamic change to realise it in the application, as shown in Figure 2.2.

source: adapted from Fung et al. (2004)

Figure 2.2 Release-change-transformation relationship in dynamic evolution

The term "transformation" is used by Blaha and Premerlani (1996) to describe a function

to map a source object model into a target object model. It is also used in the discipline

of transformational software engineering to model a chain of transformations for the

production and evolution of software (Mens & Demeyer 2008, p. 305). A transformation

is distinguished from a transaction, a common term associated with changes in

databases or distributed applications (Date 2003). A transaction refers to a coordinated

manipulation or modification on data held within an application while preserving the

ACID (i.e. atomicity, consistency, isolation and durability) property (Haerder & Reuter

1983), or a coordinated execution of a piece of work (Papazoglou & Kratz 2007). The

subtle difference between transformation and transaction is similar to that of software

evolution vs. computational changes (in data) as discussed in Section 2.1.1.

4 In this research, the term “transformation” is confined to refer to “dynamic transformation” which
refers to a transformation that is acted on an application at runtime.

transformation
fn1

requirementsn

elaboration &
implementation

generation n

changen1

generation n+1

releasen

transformation
fnm

changenm

....

....

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 18

22.1.4 Evolution Space

The evolution of an application lifecycle can be described by an evolution space, which

is an extension of a version model over time. The version model represents the static

version information of software parts, the organisation of the software parts making up

the whole application, and how individual versions of the application can be constructed

from the software parts. Conradi and Wesfechtel (1998) describe a version model

consisting of a version space, a product space, and a configuration language. The

version space represents the organisation of versions - a.k.a. “revisions” and “variants” -

for individual parts and the application (e.g. versioning support for Web Services

(Leitner et al. 2008)). The revisions of an artefact can be described by an ordered list of

subsequent changes applied to the first version of the artefact, each identified by a

unique label (e.g. “Windows Vista™” vs. “Windows XP™”). Variants determine different

forms of each part. In this case, a variant of a particular release of a calendar software

specifies in which environment the software can operate (e.g. mobile phone vs. desktop

computer). The product space characterises the relationships among individual parts to

construct the application, without considering any version information. Typical

relationships are composition (e.g. a transaction system composed of clients and

servers) and dependency (e.g. certain software requires the Microsoft .NET

Framework™). Although product and version spaces are different but related concepts,

approaches exist to model both concepts together to visualise evolution (e.g. evolution

graph, Atkinson et al. 2002).

A particular release of an application can be configured by selecting correct entities

within the product and version spaces (e.g. a word processing software packaged with

version 5.0 of the UK English spell checking function). Thus, the number of possible

configurations grows exponentially with respect to the number of entities available to

choose from. Some rules or a configuration language must therefore be applied to

make the selection process manageable and produce a consistent application5 to

address this combinability problem (Kon & Campbell 2000). Such a language will offer

expressions for constraints in selecting and configuring a particular configuration, as

well as defining preferences of the configured application. With these expressions, any

particular application can be retrieved from a configuration management system. For

example, the query, "Fetch me the latest version of XYZ word processor software that runs on

5 A consistent application does not exhibit errors due to incompatibility among selected
parts within the application.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 19

the Linux operating system and has the German spell checking function", will cause a

particular XYZ configuration to be built and released.

22.1.5 Evolution Quality

Eriksson and Törn (1991) characterise IS quality in three perspectives: IS cost

effectiveness, IS use and IS work quality. IS cost effectiveness addresses the benefit

and cost objectives of an information system, while IS use quality considers how well

an information system serves its users. IS work quality relates to the work performed by

practitioners in providing an information system. Anderson and von Hellens (1997)

expanded on the Eriksson and Törn’s model by incorporating the management aspects

required to address IS work quality and to assure the quality of systems for evolution

and use. The quality of IS management is considered from two viewpoints: evolution

and user support quality. Evolution quality is concerned with how well the evolution of a

system is managed and its documents are updated without compromising quality, as

opposed to user support quality which is concerned with how well user support is

managed. Evolution quality would appear to be the most appropriate quality dimension

for dynamic evolution.

Quality is an important consideration of both the software development process and

product. In the case of dynamic evolution, the urgency to repair a running application

after dynamic evolution is high since it is unacceptable to leave an erroneous

application running indefinitely. It is hence critical that changes, their transformations,

and the change process are of sufficient quality to ensure that the evolving application

is free from errors. On the other hand, low-quality changes may not only compromise

core features of a running application (e.g. security), but also make the application

harder to evolve in the future. Thus, investing in quality for dynamic evolution ensures

the running application can effectively evolve when required and its operation can be

effectively sustained in the future, and makes the benefits of dynamic evolution more

appealing to practitioners, end users and the business. Since evolution in applications

should be considered in a development methodology (Bennett & Rajlich 2000; Coyle et

al. 2010) and quality is a key driver for cost and effort reduction in IS maintenance (and

thus evolution) (Eriksson & Törn 1991), a comprehensive methodology should include

quality as one of its capabilities (e.g. quality engineering (OPFRO 2009)).

The literature lacks a comprehensive discussion of quality factors (ISO/IEC 2008)

relevant to dynamic evolution (see also related work in Section 4.1.6). For example,

Segal (2002) identifies several relevant challenges for online upgrades in a distributed

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 20

environment including the ability of multiple hosts to coordinate upgrades, upgrading at

an appropriate time, securing the upgrading functions from attackers, and the ability to

address failed upgrades. Feiler and Li (1998) discuss fault-tolerant software changes

and define what consistency and completeness mean to software changes. Evans and

Dickman (1999) focus on managing the complexity of dynamic changes by using

application partitioning. Unfortunately the literature is not always clear about the

meaning of the various factors. For example, the terms “correctness” and “correctly” are

associated with changes to a system without clarifications (e.g. Cook & Dage 1999;

Kon et al. 2001; Zhang et al. 2005). Inconsistent terminology has also been used to

epitomise similar concepts, such as “efficient … in time use” (Agnew et al. 1994a),

“quickly” (Bennett & Rajlich 2000) and “time taken … minimised” (Gupta et al. 1996) for

characterising transformation efficiency. Breivold and Crnkovic (2010) conducted a

systematic literature review of quality considerations for architecture design to support

evolution. A few quality terms and synonyms (e.g. evolvability and changeability) were

used as keywords to search for articles for the review but no definitions were given to

those keywords. A more comprehensive analysis and definition of quality factors should

thus be sought to better tackle dynamic evolution quality.

22.2 COMPOSITION-BASED DISTRIBUTED APPLICATION
Software architecture is defined as an abstraction of the structure of an application,

consisting of elements, their externally visible properties, and the relationships among

these elements (Bass et al. 2003). Properties of an element refer to assumptions about

the element, such as its Quality of Service (QoS) profile. Typical relationships include

dependency and interactions, just as an element depends on and interacts with others

to fulfil its role (i.e. perform its computation). Furthermore, a proper architecture shows

the correspondence between system requirements and its elements (Shaw et al. 1995).

In recent years, large applications are increasingly assembled from “independent and

reusable collections of functionality” (Brown et al. 2002). More specifically, “composition-

based” software development refers to a paradigm of “weaving” existing or custom-

developed applications, (commercial-off-the-shelf) software components, leased or

rented applications and services into composite applications (Schuster 2008). In a

more abstract view, this kind of application is fabricated from loosely coupled parts

bound together (e.g. Szyperski 2003). Bindings associate or connect parts to form a

composite which becomes yet another part, and to mediate the interaction among parts

(Bruneton et al. 2002; Magee & Kramer 1996) in accordance with interaction

specifications. Parts are units of functionality which can work independently or with

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 21

others. Parts expose themselves to others as complex composition points or interfaces,

usually specified as some kind of contract (Stojanovic et al. 2004a), while hiding their

internal implementations. For certain composition-based applications, it is common to

have their constituent parts scattered over a network and hence the name composition-

based distributed applications.

Architectural paradigms that fit the description of a composition-based distributed

model include component-based distributed applications (comprising components and

connectors) (Evans & Dickman 1999) and service-oriented applications (comprising

services and bindings) (Papazoglou & Georgakopoulos 2003). In this research, the

latter is also referred to as service-oriented architecture (SOA) based applications for

the peculiar architectural style with services. Various kinds of composition topologies

exist, such as hierarchical composition in component-based applications (Peltz 1999;

Velasco Elizondo & Lau 2010; Wienberg et al. 1999) and conversational composition in

SOA-based applications (Khalaf et al. 2003).

22.2.1 Component-Based Distributed Application

In component-based distributed applications, components and connectors form the

elementary building blocks (Shaw et al. 1995). Components are units of computation

(Shaw et al. 1995; Shaw & Garlan 1996) and distribution (Szyperski 2003), scattered

within the system boundary according to the design and operating choices. Connectors

mediate component interaction by gluing or wiring components together to provide

reliable communications among components over the network. Abstracting interaction

and communication concerns from components to connectors permit components to be

either oriented on business or on computation (Wang et al. 1999). Because of their

idiosyncrasy, connectors deserve to be treated as first-class entities in architectures

(Lopes et al. 2003). Approaches to building a component-based system to yield the

same result - a composite structure of components and connectors - include:

 Starting from components (i.e. bottom-up)

Suitable components are acquired first and then glued together by connectors,

such as “port-n-links” (Wang et al. 1999) or “protocol specifications” (Yellin &

Strom 1997) to progressively assemble an architecture. Syntactical

incompatibilities among components can usually be overcome if their

specifications are sufficiently precise (Yellin & Strom 1997). Constructing a

component-based system this way is analogous to composing a model with

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 22

ready-to-use Lego™ cubes of different shapes (Szyperski 2003; Unhelkar 1997).

 Starting from architecture and connectors (i.e. top-down (D'Souza & Wills 1998))

The skeleton of an architecture is formed by defining and refining component

specifications and their interactions (i.e. connectors), whilst system functionality

is decomposed and allocated to components and connectors. Components are

then built and plugged into the architecture.

 Combining both the above approaches

An architecture is formed by iterating over the design of existing and new

components as well as connectors, such as Unicon (Shaw et al. 1995).

2.2.1.1 Software component

A software component is commonly visualised as a black box

with one or more well-defined interfaces (shown as lollipops)

attached to its boundary, such as the one shown on the right.

Szyperski (2003) formally defines a software component as “a

unit of composition with contractually specified interfaces and explicit context dependencies

only” and it “can be deployed independently and is subject to composition by third parties”.

A software component specifies its behaviour via its “provided” and “required” interfaces

(OMG 2010b). A provided interface is an interaction point for other components to

access the component's operations (Wang et al. 1999; Yellin & Strom 1997). A required

interface specifies what its component needs from others in order to perform its

functions or fulfil its obligations (OMG 2010b).

Components are designed to support composition (D'Souza & Wills 1998); more

complex components can be assembled from simpler components by linking the

simpler ones with connectors, forming a hierarchy of components and connectors.

Atomic components are those that are not assembled from others. At runtime,

components are instantiated as needed (Brown et al. 2002).

Software components can be distribution-capable; they are not confined to a single

address space (i.e. or the same execution environment) but rather connected and

scattered over a network. This, however, does not mean that they are equivalent to

operating-system processes. A process provides components with its address space in

which they operate. Components do not have to be designed and implemented using

object-oriented (OO) technologies (Brown & Wallnau 1998), but they seem to be the

Component

Interface p

Interface q

Interface r

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 23

best choice (Szyperski 2003).

2.2.1.2 Connector

A connector is specified by “roles” and “interactions” (or more formally “interaction

protocols”) among these roles (Allen & Garlan 1997). A role represents the expected

behaviour of a component participating in an interaction. A variety of interaction styles

exist for designers to choose from, covering the means of communication used, such

as events/messages, remote procedure calls and shared memory (Shaw & Garlan

1996). Interaction styles also cover the multiplicity of components (i.e. how many

components are allowed to interact via one connector) (OMG 2010a) and

synchronisation among connected components. In the event-based style, a component

can choose to synchronously send an event to another component and wait until an

acknowledgement is replied, or asynchronously broadcast it to a few other subscribing

components.

A connector is distribution aware; it can link components distributed on different hosts.

A connector thus spans multiple nodes to provide the link for those distributed

components. The “liveness” (Shatz 1993) of a connector (e.g. how long it remains idle

before dropping out) depends on the interaction style used.

22.2.2 Service-Oriented Architecture Based Application

A service-oriented architecture (SOA) based approach centres on utilising services as

the fundamental elements for developing applications (Papazoglou & Georgakopoulos

2003). A service is a self-contained, self-describing, discoverable, coarse-grained

software entity that operates as a single instance interacting with applications and other

services (Brown et al. 2002; Papazoglou & Georgakopoulos 2003; Stojanovic et al.

2004b). A service provides an effective way of exposing discrete business functions

(Brown et al. 2002); it encapsulates business logic into a single cohesive conceptual

module (Yang 2003). In an open networked environment, services are provided by

multiple organisations and communities. This openness facilitates the reuse of existing

services available from various parties so as to gain productivity in software

development and to improve the quality of software produced (Huhns & Singh 2005).

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 24

service
registry

service
consumer

service
provider

Discover
and select

Bind and
invoke

Publish

source: Huhns and Singh (2005) and Yu et al. (2005)

Figure 2.3 Basic service-oriented model

A basic service-oriented model has three main entity types (Figure 2.3): a service

provider, a service consumer and a service registry (Huhns & Singh 2005). A provider

publishes its offered services in a registry, similar to a yellow pages directory. A

consumer simply looks up the registry for potential providers for a service of interest

(i.e. “discovery”), selects one provider of best fit (i.e. “selection”), binds to the selected

provider (i.e. “engagement”) and invokes its service accordingly (i.e. “enactment”). During

the engagement phase, the consumer and the provider may mutually authenticate each

other to establish a trust relationship before the use of services commences. These

steps are summarised by a state machine as shown in Figure 2.4.

discovery selection
engagement /
authentication

enactment
(i.e. invocation)

source: derived from Huhns and Singh (2005)

Figure 2.4 State machine for using a service

In circumstances where only one provider is available and well known to the consumer,

a service registry is redundant and optional in the basic service-oriented model (Figure

2.3). Similar to a component in a component-based system, a service’s descriptions are

independent from the service’s internal implementation and developers are free to

choose technologies to their liking for the actual implementation (Huhns & Singh 2005).

Services are the basic building blocks from which to create service-based applications

(Curbera et al. 2003). Services are independent and self-contained (Brown et al. 2002)

but can be composed or aggregated together according to some business rules to

serve a business goal or to provide new functionality (Curbera et al. 2003). For

instance, a one-stop travel booking service can be offered to customers online to

arrange transport booking and hotel reservation using the services provided by a

particular airline and a hotel chain. A service composition model can be expressed

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 25

using a hierarchical “goal graph” or a “workflow” (a.k.a. business process) (Huhns &

Singh 2005). Services should be stateless (Milanovic & Malek 2004; Pasley 2005; Stal

2006) to improve loose coupling and scalability of an architecture (Stal 2006). The state

information can otherwise be kept in the running (instances of the) business processes

or saved in a data store (Pasley 2005).

In an extended service-oriented model, additional entities support the use and

management of services (Papazoglou & Georgakopoulos 2003). For instance, a

“composite services layer” governs the consolidation of multiple services into a single

composite service (Papazoglou et al. 2008), such as coordinating the execution of

services and data flow among them. At the next higher layer, utilities are available to

manage the operations of services, to monitor their activities, and to support

specialised marketplaces for conducting business electronically with services.

Web services is a realization of a service using the Internet as the means of

communication (Brown et al. 2002) and it is made possible by the proliferation and

maturity of Web service technologies and standards in use today.

22.2.3 Embracing Dynamic Evolution

Composition-based development is well suited to dynamic evolution because the

essence of a composition-based application lies in its structure which is fabricated from

loosely coupled parts bound together (e.g. Szyperski 2003). In response to the need for

changes, parts can be integrated to such an existing application to add new

functionality (Chaudet et al. 2000), upgraded to change their offered functionality and

removed from the application (i.e. to rid functionality of it) once the parts are no longer

required. On the other hand, in a distributed application where parts are scattered and

interact over a network, these changes can be further facilitated by connecting (new)

parts to and disconnecting (existing) parts from the application.

The ability of composition-based distributed applications in embracing dynamic

evolution is exemplified by component-based and SOA-based distributed applications.

In the component-based paradigm, a system built with components and connectors

embodies the concepts of distribution units (i.e. components), composition, explicit

dependency and loose coupling in its architecture. The resulting structure facilitates

simple changes abstracted as addition, replacement and removal of components and

connectors (Brown & Wallnau 1996; Oreizy et al. 1999; Zhang et al. 2009), whilst

connectors play the role of dynamic binding and adapters. The former describes the

wiring and rewiring components at runtime (Rasche & Polze 2003) and the latter is

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 26

responsible for wrapping and plugging components into an application, plus resolving

functional, interface, information and protocol mismatches of components (Brown &

Wallnau 1996; Jiao & Mei 2005). Connectors also abstract the evolution of the protocol

among connected components from the components per se (Ryan & Wolf 2004).

SOA-based applications can be changed at runtime to meet new software requirements

(Tsai et al. 2006) because many runtime features in an SOA environment appear to

support dynamic evolution. For instance, service composition is by nature dynamic

using the descriptions of services at runtime such that services can be dynamically

connected and composite services dynamically reconfigured for use (Li et al. 2006; Yen

et al. 2008). Likewise, dynamic binding (Blake 2007; Curbera et al. 2003) occurs

naturally just before a service is used and the binding reference can be dropped after

service invocation. In other words, a server consumer is usually decoupled from any

service provider; it does not and is not required to retain any reference to a particular

provider. Before binding is established, a service consumer often searches for and

discovers a list of up-to-date potential providers offering services of interest (i.e. service

discovery, Cervantes & Hall 2005), and then picks a provider (i.e. service selection,

Huhns & Singh 2005) most suitable for its needs at runtime. Dynamic evolution is also

regarded as a necessity in an SOA environment to adapt SOA-based applications to an

open environment such as the Internet and changing user requirements (Liu et al.

2009).

Similarities have been drawn between component- and SOA-based applications. Yu et

al. (2005) proposed a mapping between elements in component-based applications

and SOA-based applications that use Web services (see Table 2.2). Thus, dynamic

evolution principles and guidelines for component-based applications are likely to be

also applicable to SOA-based applications.

Table 2.2 Component-based vs. service-oriented elements

Component-Based Service-Oriented

Component Service

Port Interface: Web service Description Language (Christensen et al. 2001)

Connector
Protocol: Simple Object Access Protocol (SOAP) (W3C 2003) and WS-
Coordination (OASIS 2007)

Role Invocation relationship between services

Configuration Service composition structure

Style Composition pattern

Constraints Composition constraints

source: Yu et al. (2005)

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 27

Composite services can be dynamically recomposed for use in service orientation (Li et

al. 2006) to meet new software requirements (Tsai et al. 2006). In this respect an SOA-

based approach is better suited for dynamic evolution than a component-based one.

Elfatatry (2007) further supports this argument with the following observations:

 Late-binding of service consumers and providers allows providers to be flexible

with changes;

 Services are specified as a right level of granularity close to the real-world

business activities and are more adaptable to changing needs of the business;

 Services are packaged to deliver functionality and are better aligned to changes

in functionality as business requirements evolve; and

 Service consumers are decoupled from providers by brokers.

The review of topics in this Chapter so far has established the argument for

composition-based distributed applications as a suitable platform for realising dynamic

evolution, which also concludes the review of the problem space of this research (cf.

Figure 2.1). Beginning from the next section, this Chapter turns to the solution space of

this research (cf. Figure 2.1), dealing with dynamic evolution in composition-based

distributed applications from a methodology’s viewpoint. The first topic to review is the

notion of an evaluation framework which is a systematic way to determine and assess

particular capabilities for a methodology, such as of designing dynamic evolution in

composition-based distributed applications.

22.3 EVALUATION FRAMEWORKS
An evaluation framework comprises a “checklist” of ideal methodology feature

requirements (Siau & Rossi 1998). A feature requirement defines a problem or an

outcome that methodology users intend to address for a particular activity, task or

objective (Kitchenham 1996; Wasserman et al. 1983). Feature requirements can be

thought of as problems or outcomes that a methodology is expected to address when

dealing with the particular activity, task or objective, and as criteria for evaluating the

extent to which alternative methodologies address the feature requirements. In

contrast, a “feature” is a characteristic possessed by a methodology aimed at solving a

problem or fulfilling an outcome (Kitchenham 1996). Note that although neither a

feature nor a feature requirement has any bearing on the structure and composition of a

methodology, a distinction between them is made clear with the following arguments.

Two completely different features (e.g. object-oriented analysis and structured analysis)

can fulfil the same feature requirement (e.g. development of an information domain

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 28

model). Likewise, one feature can fulfil two different feature requirements.

For each feature requirement, a methodology is assessed in two stages: identifying one

or more candidate features from the methodology supporting the requirement, and

assigning a scale point to each feature reflecting its level of support for the requirement

(Kitchenham & Jones 1997). Scale points are defined and tailored for different

evaluation goals. Applying an evaluation framework to assess one or more

methodologies can:

 provide an understanding of particular aspects of a methodology (e.g. problem

solving, Jayaratna 1994);

 assist in selecting and/or discarding a methodology for achieving a particular

goal (Siau & Rossi 1998);

 assist in methodology enhancement (e.g. Tran & Low 2008); and

 provide a comparison of methodologies (e.g. Grimán et al. 2006).

Use of an evaluation framework allows a large number of methodologies to be

assessed in a relatively short period of time (Kitchenham et al. 1997). However,

subjectivity may be an issue since evaluations are usually performed by the same

person. To reduce this effect, Iivari and Kerola (1983) suggest using a kind of Delphi

method (Okoli & Pawlowski 2004) where an evaluation is done by framework authors

and subject matter experts. Significant differences in the ratings are then resolved via

post-evaluation discussions to reach a consensus. Another option would be to invite

experts and practitioners to independently evaluate each methodology (e.g. Stojanovic

et al. 2004a). In the latter case, it could be challenging to recruit evaluators when the

number of methodologies to be evaluated and the requirement set become large, both

implying a time-consuming evaluation effort.

Depending on the objectives and the context of an evaluation, alternative techniques

may be more appropriate. Siau and Rossi (1998) divide evaluation techniques into two

categories. Non-empirical techniques (e.g. feature analysis) assess methodologies and

the contexts of the problems they intend to solve. Empirical techniques (e.g.

experiments) derive the evaluation results by observing the experience gained through

the use of methodologies. On the other hand, Kitchenham et al.’s (1997) DESMET

evaluation methodology divides evaluation techniques into nine categories, covering

both qualitative and quantitative evaluations. DESMET also provides criteria which will

help evaluators in selecting a suitable technique.

A number of relevant evaluation frameworks are now briefly reviewed, covering

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 29

frameworks intended for composition-based applications and those that are not specific

to this kind of application. The inclusion of the latter frameworks is because reviewing

the latter might potentially cover certain aspects of dynamic evolution that are

overlooked by the former:

 Composition-based: Boertien et al.’s (2005) proposed a framework for

component-based application development in the context of e-business. Their

framework is founded on Sol’s (1992) analytical framework for understanding IS

development along five dimensions: way of thinking (the philosophy behind an

approach to software development, including its assumptions and viewpoints),

way of working (e.g. processes to follow), way of modelling (e.g. concepts), way

of controlling (e.g. people management), and way of supporting (e.g. tools).

Dahanayake et al.’s (2003) framework for evaluating component-based

applications is also based on the Sol’s analytical framework but their framework

pays particular attention to component concepts and structures. Stojanovic et al.

(2004a) extended Dahanayake et al.’s framework to accommodate both

component-based and service-oriented applications. With respect to evolution,

both Dahanayake et al.’s and Stojanovic et al.’s frameworks recognise

maintenance as a key phase in the full lifecycle of a component or service.

 Non-composition-based: Wood et al. (1988) proposed an in-depth

multidimensional framework suitable for evaluating real-time system

development. The framework comprises a five-step evaluation process and a

set of evaluative questions ranging from representation and implementation

issues to management characteristics. Asadi and Ramsin (2008) defined a set

of feature requirements for identifying strengths and weaknesses of model-

driven-architecture based methodologies.

There are a number of relevant evaluation approaches for feature analysis in

the object-oriented (OO) arena. HP Labs (Arnold et al. 1991) proposed four

categories of feature requirements to compare OO methodologies: concepts,

models, process and pragmatics. Object Agency Inc. (1995) refined HP Labs’

feature requirements by adding two new categories of requirements and

defining a 0-6 scoring system to rate methodology features. Monarchi and Puhr

(1992) suggested four different categories of feature requirements; OO analysis

process, OO design process, representations, and complexity management. By

comparison, Hong et al. (1993) mapped the analysis and design steps,

concepts and techniques of a methodology into a methodology metamodel

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 30

before comparing them with a set of predefined feature requirements. Beyond

low-level feature requirements, Henderson-Sellers et al. (2001) used a list of

characteristics at the methodology level (e.g. project management) to compare

two methodologies. Similarly, Ramsin and Paige (2008) proposed a process-

centred template to define areas of investigation (e.g. steps) where features

identified from methodologies are slotted into their respective areas of the

template. Other OO-based evaluation frameworks focus on the OO modelling

aspects (e.g. Barbier & Henderson-Sellers 2000; Bobkowska 2005; Paige et al.

2000), and some almost entirely on OO analysis (e.g. de Champeaux & Faure

1992; Iivari 1995; Liang 2000). None of the OO frameworks noted above

consider dynamic evolution as a characteristic of a methodological capability.

They are only specific to their respective paradigms (e.g. inheritance in OO

concepts).

At a broader level, Jayarathna (1994) proposed NIMSAD, a generic framework

for evaluating any kind of system methodology, including IS development

methodologies. NIMSAD is used for assessing and understanding not only a

methodology, but also the person who uses the methodology and the context in

which the methodology is applied. It is however ineffective in offering solutions

for problems in many contexts (e.g. dynamic evolution), and in choosing

methodologies for solving a particular problem (Adman 1997). Matinlassi (2004)

derived an evaluation framework from NIMSAD for product line architecture

development (van Gurp et al. 2001). There are also several reports of early

work in analysing and comparing conventional system analysis and design

methodologies (Olle et al. 1983; Olle et al. 1986).

Although the evaluation frameworks discussed above offer extensive feature

requirements in their respective domains, none of them specially cover dynamic

evolution aspects (more details in Sections 4.1.5 and 5.1.3). Thus, a comprehensive

set of dynamic evolution feature requirements that a methodology should fulfil cannot

be solely determined from these frameworks. Furthermore, without the definition of a

comprehensive set of dynamic evolution feature requirements to fulfil, a methodology is

unlikely to adequately support dynamic evolution. Accordingly, the development of

dynamic evolution requirements formed part of this research (cf. Section 3.2.1). Later

on in Sections 4.1.5 and 5.1.3, these evaluation frameworks are examined in depth, as

part of this development effort, to extract relevant feature requirements, albeit a short

list, for use in this research.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 31

A review of methodologies supporting composition-based development and the extent

to which they support dynamic evolution is presented next. The latter part is discussed

at a high level since there lacks a comprehensive and detailed set of dynamic evolution

feature requirements.

22.4 METHODOLOGIES SUPPORTING COMPOSITION-BASED
DEVELOPMENT

As a vast number of methodologies exist today, it is prudent to have a means of

selecting relevant and suitable methodologies of interest for this research. To facilitate

this, the following selection criteria were used:

 Composition-based development is a main focus in the methodology, even

though it may also be suitable for other paradigm(s) (e.g. OO);

 The methodology supports both analysis and design aspects of software

development;

 The methodology offers dedicated support that may facilitate changes,

maintenance and/or evolution of an application;

 The methodology has been applied in a real world project and/or a case study;

and

 Documentation of the methodology is available and accessible in the public

domain to ensure it could be independently reviewed.

Development methodologies meeting the selection criteria and thus included in the

evaluation were: ASG, Catalysis, CBDI-SAE, Erl’s (2005), EPIC, KobrA, OPEN Process

Framework, Oreizy et al.’s (1999) (referred to as "AEM"), Papazoglou and van den

Heuvel’s (2006), Rational Unified Process, SeCSE, Select Perspective and SUPER.

Because of the extensiveness of a number of these methodologies and space

constraints, it is not possible to discuss each methodology in detail. In contrast, the

purpose is to review them in the context of support for dynamic evolution. The reader is

referred to their respective documentation for further details. Several methodologies

and approaches not satisfying all the criteria were also considered but excluded from

this research:

 Methodologies: Bennett and Rajlich (2000), Bohner (1996), Business

Component Factory (Herzum & Sims 2000), Chang and Kim (2007), COMET

(SINTEF 2007), COMO (Cho et al. 2004), Change Management process of

Information Technology Infrastructure Library (ITIL) (Office of Government

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 32

Commerce 2005a), Freedom Service-Oriented Methodology (LDJ Trust 2003),

IBM’s Service-Oriented Modelling Architecture (SOMA) (Arsanjani 2004),

Incremental Change (Rajlich & Gosavi 2004), Jones and Morris’s (2005)

submission to OASIS as an SOA Adoption Blueprint, MaRMI-III (Ham et al.

2004), PLASTIC (Autili et al. 2007), SCIPIO (Veryard 1998), Service-Oriented

Architectural Framework (SOAF) (Erradi et al. 2006a), Service Oriented Unified

Process (SOUP) (Mittal 2006), the Software Change process model (Petrenko

et al. 2007), UML Components (Cheesman & Daniels 2001), Web Services

Implementation Methodology (WSIM) (Lee et al. 2006); and

 Approaches: Altunel and Tolun (2007), Baglietto et al. (2005), Bohmann et al.

(2003), CADA (Hubbers & Verhoef 2000), Castek Inc.’s CBD/e (Sparling 2000),

CBD96 (Cho et al. 2004), Gu and Lago (2007), IBM’s Service-Oriented Analysis

and Design (SOAD) (Zimmermann et al. 2004), M4SOD (Kim & Yun 2006),

O2BC (Ganesan & Sengupta 2001), Rapid Service Development (RSD)

(GigaTS 2001), Uniface (Howard 2006), Zhang et al. (2007), Zhang et al. (2009).

A challenge to evaluating and/or comparing several methodologies is that they may use

key methodological terms to mean different things, and different terms to mean the

same thing. To counter this effect, a cross reference between terms used in the

reviewed methodologies and those defined by the International Standard ISO/IEC

24744 (ISO/IEC 2007) was developed as documented in Table 2.3, to consistently

guide the study/evaluation/comparison (e.g. mapping “deliverable” and “artefact” to “work

product” in the Standard).

Table 2.3 Terminology mapping between SEMDM (ISO/IEC 24744) and reviewed methodologies

 Work Unit Stage With Duration

Methodology Producer Task Guideline,
Technique Process Work

Product Time Cycle Phase Build

ASG role
activity and
task

technique process artefact lifecycle phase

Catalysis process
pattern

process
pattern

activity,
route

deliverable
(including
model,
framework,
component)

 phase cycle

CBDI-SAE role process unit
guideline,
template

discipline deliverable lifecycle cycle

EPIC worker task and step
guideline,
tool-mentor,
template

activity or
workflow

artefact
process,
lifecycle

phase iteration

Erl (2005) step
principle,
guideline

process
model,
document

lifecycle phase

KobrA activity process artefact
product line
lifecycle

engineering
process

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 33

 Work Unit Stage With Duration

Methodology Producer Task Guideline,
Technique Process Work

Product Time Cycle Phase Build

OPEN
Process
Framework

rôle, direct
producer

task and step technique
activity,
work flow

work product
lifecycle
process

phase

Oreizy et al.
(1999)

 task technique process lifecycle

Papazoglou
and van den
Heuvel (2006)

 activity and
task/step

guideline phase artefact lifecycle phase iteration

RUP 2003 and
v7.2.0.1

role

activity and
step (2003)
task and step
(v7.2.0.1)

guideline,
tool-mentor,
template

workflow
(2003),
discipline
(v7.2.0.1)

artefact process phase

SeCSE role
process/sub-
process and
task

guideline,
technique

process
and phase

work product
sequence of
processes

Select
Perspective

role
activity or
step

technique workflow artefact lifecycle iteration

SUPER role
activity or
step

technique,
method

phase deliverable lifecycle phase

Notes about International Standard ISO/IEC 24744 terms:

1. A “Producer” is a person, a role, a team or a tool responsible for executing a particular work unit
according to his/her/its areas of expertise.

2. A “Work Unit” prescribes steps to follow (i.e. process), what is to be done (a task) or how to
achieve its objectives (guideline or technique).

3. A “Work Product” is an artefact produced and/or used in software development, such as a
document or a diagram.

4. A “Stage With Duration” is a managed interval of time to achieve a particular outcome. It can be
producing a newer version of an existing work product (designated with “Build”), the delivery of a
final product or service (designated with “Time Cycle”) or a period of a specific cognitive activity
such as requirements analysis (designated with “Phase”).

It is not unusual for a methodology to be created as an extension, specialisation and/or

improvement of another. Thus, when studying a methodology, it is useful to also look at

its precedents to improve the understanding of the methodology. Figure 2.5 describes

the precedence relationships for the reviewed methodologies, with each line indicating

that a methodology is built on another (e.g. Catalysis precedes KobrA).

Methodological aspects that fall outside of the scope of this research (Section 1.3) are

not included for review. Other than that, a review of each selected methodology covers:

 a brief description about the methodology and its background information;

 support for composition;

 the process and/or lifecycle aspect (a.k.a. time cycle); and

 the extent to which (dynamic) evolution is supported.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 34

AEMSUPER CBDI-SAE Catalysis

UML Components
(unqualified for

review)
KobrAEPIC

SeCSE

ASG Erl RUP

P&H

OPEN
Process

Framework

Select
Perspective

A BLegend: A precedes B
source: developed for this research

Figure 2.5 Precedence relationships of reviewed methodologies

2.4.1 ASG

The Adaptive Service Grid (ASG) was a project sponsored by the European

Commission, (Lehner et al. 2006). Its goal is to develop a prototype platform (called the

“ASG platform”) to support automatic adaptive applications in an SOA environment.

More specifically, ASG incorporates semantics into services of applications running on

the ASG platform to improve the applications’ agility and adaptability. Semantics is also

used in ASG to automate the planning, enacting and monitoring of service

compositions in applications running on the ASG platform in the following fashion. At

runtime, an ASG application and the ASG platform respond to service changes and

availability. When an ASG application receives a user initiated request, it converts the

request into a user goal. (i.e. planning started). The goal is then forwarded to the ASG

platform which searches for and selects a service (or a composition thereof) from the

platform’s internal database. Next, an agreement on the quality of service is made with

the provider offering the selected service (or with a set of providers offering services in

the selected composition) for fulfilling the goal. Afterwards, an enactment takes place

whereby the user goal is delivered to the selected provider (or a set of them) to fulfil the

goal. During monitoring, a failed enactment (i.e. without meeting the agreement)

triggers replanning and re-composition of the services and subsequently a reiteration of

the whole lifecycle.

support for composition

An ASG Service is a service in an SOA environment and annotated with semantic

specifications. An ASG application is composed of ASG services based on their

semantics, and these services can also be composed of smaller ASG services.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 35

process

ASG consists of three development processes, servicing three levels of abstraction in

the ASG environment:

 Application Engineering process, concerning the development of service-

oriented applications using the ASG platform and its provided services.

Requirements are elicited from which user interfaces, workflows and services

are identified. Design, implementation and testing follow;

 Service Engineering process, concerning the development and registration of

services for the required functionality; and

 Platform Engineering process, for developing the ASG platform itself which

supports SOA-based applications and their services.

support for (dynamic) evolution

ASG uses its own database to store its domain ontologies and to register services and

applications as they are updated and released. ASG applications, services and the

platform undergo three phases in their lifespan: from initial development, ongoing

maintenance and evolution, to eventual retirement. During the maintenance and

evolution phase, four kinds of work are noted - correct defects, add new functionality,

reengineer or redesign artefacts, and migrate artefacts to a new environment (e.g. new

standards) but no task or activity is defined. Apart from that, an ASG Platform

Feedback document is produced to capture new requirements for the current release of

the platform, and to drive new development.

22.4.2 CBDI-SAE

CBDI Service Architecture and Engineering (CBDI-SAE) is a proprietary framework

built from experience from real-world project and feedback from users (Allen 2007;

Allen & Brown 2007). CBDI-SAE proposes a metamodel for SOA concepts, process

definitions, a reference architecture and SOA deliverable templates. CBDI-SAE

maintains a proprietary subscription-based forum to conduct online discussions on the

experience, best practices and guidelines of using CBDI-SAE. Restricted access to this

forum limits the review of CBDI-SAE.

support for composition

CBDI-SAE offers its own metamodel for the SOA paradigm based on experience from

projects using relevant SOA standards and technologies (Dodd et al. 2007). A “service”

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 36

is described by one or more “service specification”, each implemented by one or more

“automation unit”. Smaller automation units can be composed into one unit.

process

CBDI-SAE defines four “disciplines” (i.e. processes) and collectively called the Service-

Oriented Process to construct SOA solutions:

 Manage, for assessing and planning the adoption of the SOA paradigm, and

defining SOA governance capabilities to manage services;

 Consume, for iteratively identifying business requirements and business

improvements, and specifying services and service-oriented solutions

assembled from those services;

 Provide, for realising services and a service-oriented solution with suitable

technologies to meet the business needs of service consumers; and

 Enable, for designing a technology infrastructure to run and manage services.

support for (dynamic) evolution

Once an SOA solution is in operation, CBDI-SAE’s Service-Oriented Process conducts

continuous monitoring of the solution, and refines the design and implementation of

services as required. Two artefacts are under version control: service specifications

and application specifications (Dodd et al. 2007). Support for evolution is not evident in

CBI-SAE’s documentation.

22.4.3 Erl

Erl (2005) proposed a comprehensive development methodology for SOA-based

solutions (hereafter referred to as “Erl”). It defines standard- and technology-based

service-oriented principles and development activities for designing SOA-based

solutions. Erl distinguishes the design of individual services from the design of their

composition to build agility in an SOA-based solution. It models an SOA platform on

three layers of abstraction:

1. Orchestration service layer, consisting of business processes composed of

services from the business service layer;

2. Business service layer, comprising two types of business-oriented services: a

task-centric service encapsulating business logic specific to a business process

or task (e.g. order fulfilment) and an entity-centric service representing a

reusable business entity (e.g. purchase order); and

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 37

3. Application service layer, consisting of reusable application services which

represent technology-specific logic, including utility services (e.g. for database

access) and wrapper services (for legacy systems).

This layered approach brings agility to an SOA-based solution and facilitates

adaptation to evolution. For instance, technological changes are confined to the

application service layer.

support for composition

Erl adopts common definitions of service and hence composition from relevant SOA

standards and technologies.

process

Erl features three processes called “strategies” to suit different objectives (Table 2.4).

Table 2.4 Erl’s strategies

Strategy Description Benefit(s) Drawback(s)

Top-down

Start from the enterprise business
models, progressively identify and
design services from higher to lower
layers.

Aligned to the business
models, high quality
SOA

Significant up-front
analysis work

Bottom-up

Construct ad hoc application services
on demand, and perform integration
with other services to build services in
the higher layers as needed.

Quick reuse of existing
applications, quick
delivery of
implementations

Difficulty in attaining
high quality SOA

Agile (a.k.a.
meet-in-the-
middle) (see
note)

Combine both top-down and bottom-up
approaches.

Aligned to the business
models, quick delivery of
implementation

Overhead in rework,
redesign and
refinement

source: Erl (2005)

Note: Erl (2005) defines the term "agile" in a peculiar way that it does not accord with the term "agile" in a
agile software development approach such as Extreme Programming (Beck & Andres 2005).

support for (dynamic) evolution

Erl’s agile strategy is the most relevant to evolution and maintenance, consisting of two

parallel streams of activities: top-down analysis and development. The top-down

analysis stream conducts on-going analysis of business goals at an enterprise level to

derive (new) business objectives (top of Figure 2.6). Once sufficient and new objectives

from the analysis have been identified, the development stream (bottom of Figure 2.6)

commences in parallel, producing service-oriented artefacts that fit into the three

layers. At the end of this stream, the design is compared with the current business

models at hand which may have evolved to identify discrepancies (in the “Revisit

business and process services” phase). Rework is performed to build extensions, redesign,

redevelop, retest and redeploy new artefacts. Apart from the above description, Erl

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 38

does not define specific tasks and activities to handle evolution and maintenance.

Top-down analysis (ongoing)

Perform
SO

Analysis

Develop
services

Deploy
services

Perform
SO Design

Test
service

operations

Revisit
business

(& process)
services

align with
current business
models

align with
current business

models

rework
“SO” – service-oriented

source: redrawn from Erl (2005)

Figure 2.6 Erl’s (2005) agile lifecycle model

22.4.4 Oreizy et al. (AEM)

Oreizy et al. (1999) prescribe a methodology to support self-adaptive software systems.

Such systems modify their own behaviour in response to changes in their operating

environment observable by the systems. Their methodology centres on the notion of a

software architecture in planning, coordinating, monitoring, evaluating and

implementing adaptation, by means of both adaptation and evolution management

(hereafter the methodology is referred to as “AEM”). These management aspects are

described later in this section.

support for composition

To embrace dynamic changes at the architectural level, AEM advocates the notion of a

“C2-style” architecture (Medvidovic et al. 1999). In such an architectural style,

components are distributed in layers. Components in one layer can only use and

communicate with components in the layer above it. A connector links components

between two layers and provides an abstraction for component communication using

asynchronous message exchanges.

process

AEM’s lifecycle model consists of two interlocked processes which can be performed

by humans or fully automated. The adaptation management process (left of Figure 2.7)

consists of the following four tasks:

 Evaluate and monitor observations, of a software system’s execution and its

environment;

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 39

 Plan changes, which involves accepting evaluations and defining an appropriate

adaptation and its blueprint for execution;

 Deploy change descriptions, to the software system’s implementation

environment according to the defined adaptation; and

 Enact changes and collect observations, to carry out change implementation.

The evolution management process (right of Figure 2.7) focuses on the mechanisms

employed to modify the software system. It continues after Task “enact changes and

collect observations” of the adaptation management process with the following tasks:

 [Update] architectural models, to accommodate the changes specified;

 Maintain consistency, between the architectural model and the implementation

as a result of the accommodated changes;

 [Perform] implementation, which reflects changes in the architectural models in

the software system’s implementation; and

 Collect observations, as part of the task “enact changes and collect observations” of

the adaptation management process, to provide feedback to the adaptation

management process for further adaptation needs.

evaluate &
monitor

observations

enact changes
& collect

observations

deploy change
descriptions

plan changes Adaptation
Management

Evolution
Management

[perform]
implementa-

tion

maintain
consistency

[update]
architectural

model

enact changes
& collect

observations

source: redrawn from Oreizy et al. (1999)

Figure 2.7 Oreizy et al.’s. (1999) lifecycle model

support for (dynamic) evolution

AEM recognises additions, removals and replacements of components and connectors,

changes to their parameters, and modifications to the topology of an architecture.

AEM’s evolution management process is the most relevant to dynamic evolution,

although it is brief as to the details of tasks described in its literature.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 40

22.4.5 SUPER

The Semantics Utilised for Process Management within and between Enterprises

(SUPER) project aims at shifting business process management (BPM) away from the

information technology (IT) level where BPM is mostly and commonly addressed, to the

business level (SUPER 2007). To achieve this, SUPER brings the notions of semantics

and ontology into BPM and creates several deliverables to support BPM. The SUPER

methodology guides semantic business process (SBP) development in a lifecycle.

support for composition

The notion of composition is manifested in a business process model within which

process elements (e.g. a business activity) can be added from a repository or library,

updated and removed. Existing process elements can also be discovered from a

repository or library before being added to the model.

process

The SUPER methodology’s lifecycle addresses two layers of concern. The Ontological

Foundation layer defines a set of ontologies for BPM while the Strategic Semantic

Business Process Management layer defines the business goals from a strategic and

organisational perspective and initiates the lifecycle to create “deliverables” (i.e. work

products) to accomplish the goals. The two layers of concern are addressed with four

ordered “phases” (i.e. processes) in the methodology’s lifecycle (Figure 2.8):

 SBP modelling, for defining a business process model with ontological

annotations.

 SBP configuration, which defines semi-automated mapping of the business

process model to an IT-oriented executable form.

 SBP execution, for runtime discovery of semantic web services, composition of

them into business processes, and execution of the business processes in

respective IT systems.

 SBP analysis, for monitoring and analysing business processes in execution

against their intended objectives from which change and optimisation

recommendations are made.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 41

Ontological Foundation

Strategic SBP
Management

SBP
analysis

SBP
modelling

SBP
configura

-tion
SBP

execution
“SBP” stands
for Semantic
Business Process

source: redrawn from SUPER (2007)

Figure 2.8 SUPER’s phases and layers

support for (dynamic) evolution

SUPER notes that continuous process improvement (i.e. evolution) to adapt a business

to internal and external changes is achieved through repeating the lifecycle. For

example, reports produced in the analysis phase are used in the SBP analysis and

modelling phases to drive enhancement of existing business process models and

development of new ones. There is no support for identifying and accommodating

changes into business processes to handle evolution.

22.4.6 Rational Unified Process

The Rational Unified Process (RUP) is a commercial process framework developed at

Rational Inc., now part of IBM Inc. It consists of a variety of pre-tailored process forms

to suit various types of applications (Kruchten 2003). Earlier editions of RUP were

originally published as books (e.g. Kruchten 2003). RUP is bundled into IBM’s Rational

Method Composer (RMC), a tool for RUP. A variant of RUP is OpenUP, an open-

sourced and subset version of RUP (The Eclipse Foundation 2009).

support for composition

RUP adopts the common definitions of component and service from relevant SOA

standards and technologies to define composition (UML component, business process

etc.). To provide support for component-based and SOA development, RMC includes

specialised plug-ins: “COTS Package Delivery” (for COTS based systems), “Asset Based

Development” (for product lines), “SOA” and “J2EE” (a commercial component

technology).

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 42

process

RUP’s process metamodel, known as the Unified Method Architecture (UMA), unifies

three methodological approaches from IBM: RUP (2003 version), Global Services

Method (GS Method) and Rational Summit Ascendant. A RUP “process” (i.e. time cycle)

is described by “disciplines” (i.e. processes) and phases. RUP predefines nine

disciplines, each a collection of tasks relevant to a major area of concern within a

project. A phase marks a significant period in a project and ends with a key milestone

and/or deliverables. RUP’s development cycle consists of four phases:

 Inception, for defining a software product’s vision and the scope for a project;

 Elaboration, for defining the overall architecture for the product plus resource

and activity planning;

 Construction, for gradual refinement of the architecture and construction of the

product to meet the vision; and

 Transition, for rolling out the product, viz. a particular "software generation", to

end users.

Each phase emphasises the involvement of each discipline differently (e.g. more effort

for the Business Modelling discipline during the Inception phase but less during the

Elaboration phase). A phase is sometimes subdivided into “iterations” to make its

objectives smaller to manage and its progress easier to track.

support for (dynamic) evolution

RUP supports evolution by way of repeating development cycles as “evolution-cycles”

(Figure 2.9), to progress a software product into successive releases.

I E C T

I E C T

I E C T

I E C T

initial
development

cycle

evolution cycles

I-initial
E-elaboration
C-construction
T-transition

source: redrawn from Kruchten (2003)

Figure 2.9 An example of RUP’s evolution cycles

Recognising the scope and importance of product roll-out, RUP offers the Deployment

discipline to separately deal with release management. However, neither RUP nor its

Deployment discipline deals with how software changes will be accommodated into a

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 43

live application and how the application is promoted to its new version.

22.4.7 EPIC

The Evolutionary Process for Integrating Commercial-off-the-Shelf (COTS) Based

Systems (EPIC) methodology is an extension to RUP (Section 2.4.6) and published by

Software Engineering Institute, Carnegie Mellon University for supporting system

development with COTS and pre-existing components (Albert & Brownsword 2002).

When building a solution, EPIC balances “four spheres of influence” - stakeholder needs

and business process, marketplace, architecture and design, and programmatics and

risks - each denoting a set of criteria for the solution to be built. A project kick-off

defines the criteria for the solution in each of these four spheres. On the left of Figure

2.10 is an example configuration of these spheres. The area where all the spheres

overlap represents criteria for the solution agreed among the spheres whereas the rest

of the area bounded by the spheres highlights their disparate and contradictory needs.

As the project progresses, new information is gathered (e.g. what the actual needs are

and what can be built from the marketplace at a reasonable cost) to drive stakeholder

buy-in to resolve and reduce disparate and contradictive stakeholder needs. This is

reflected by an increase in the overlapping area of the spheres such as the one shown

on the right of Figure 2.10.

SB

AD

PRM
iteratively
converging

Legend:
SB - Stakeholder needs and business process
M - marketplace
AD - architecture and design
PR - programmatics and risks

source: adapted from Albert and Brownsword (2002)

Figure 2.10 EPIC’s trade space

support for composition

In EPIC, a component can be a software component, a hardware unit or a legacy

system. A composition is formed by integrating components.

process

To converge the trade space, EPIC iterates five “activities” (i.e. processes) repeatedly.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 44

Each activity is a collection of tasks relevant to a major area of concern within a project.

The activities are:

 Plan the iteration, for analysing and refining the information from the four

spheres, and defining the objectives of the iteration (e.g. specific artefacts to be

developed);

 Gather information, which is needed to meet the iteration objectives (e.g.

information about COTS components from the market);

 Refine the understanding of the solution, which combines the information

gathered from the last activity to develop candidate solutions, and understands

their similarities and differences;

 Assemble an executable representation, which builds and tests the candidate

solutions; and

 Assess the iteration, which validates the candidate solutions against the

iteration objectives and selects a solution from the candidates.

In addition to the activities above, EPIC refines RUP’s four “phases” (i.e. time cycles) in

a project timeline. A phase marks a significant period in a project and may end itself

with a key milestone and/or deliverable. A phase defines what aspects of each process

should be emphasised during the phase. For instance, at the beginning of a project, the

Gather Information activity focuses on identifying suitable COTS components from the

market whereas towards the end of the project, this activity focuses on monitoring

releases of new component versions from the market so as to contemplate possible

upgrades.

support for (dynamic) evolution

Ongoing minor changes to a solution (e.g. new component versions) occur in the final

of the four phases until the solution is retired or replaced by a new one. Significant

changes will require an initiation of a new project going through all the phases. None of

the activities specifically discuss how maintenance or evolution is handled.

22.4.8 Papazoglou and van den Heuvel (P&H)

Papazoglou and van den Heuvel (2006) feature a design and development

methodology, based on RUP (Section 2.4.6), for developing SOA implementations

(hereafter referred to as “P&H”) suitable for use by both service producers and

consumers.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 45

support for composition

P&H adopts the common definitions of service and hence composition from relevant

SOA standards and technologies.

process

P&H defines a preparatory and eight iterative “phases” (i.e. processes) in its lifecycle

(see Figure 2.11). The preparatory phase called Planning kicks off subsequent phases

of development by defining the requirements for a service-oriented solution, its scope

and nature. This phase also aims at understanding the feasibility of the solution, and

how it will fit into an organisation’s business environment.

Planning

Analysis

Construction

Provisioning

Execution

Deployment

Design

TestingMonitoring

source: redrawn from Papazoglou and van den Heuvel (2006)

Figure 2.11 Phases of Papazoglou and van den Heuvel’s (2006) methodology

The eight iterative phases drive “artefacts” (i.e. work products) towards completion

taking into account both technical and business concerns. Each iteration starts with the

Analysis phase during which requirements are investigated in accordance with

business goals and objectives. A “gap analysis” is conducted between the current (as-is)

business process model and the future (to-be) process model to analyse potential

changes to current applications and processes required, and to identify opportunities

for redesign and reuse of existing applications and processes. Then, various realisation

options are examined and from which one is chosen. During the Design phase abstract

business process models are transformed into technical business processes and Web

services according to P&H’s service design principles. During the Construction phase,

Web services are implemented by packaging existing applications as Web services, by

composition of existing Web services and/or applications, or by coding new Web

services. During the Testing phase, Web services and business process

implementations are verified as meeting specified requirements.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 46

The Provisioning phase follows, during which the policing of service provisioning in

compliance within an organisation’s or others’ business models is defined. This covers

service governance, certification, metering and billing (for service usage). Afterwards,

the solution is rolled out to and used in its prospective environment in the Deployment

phase. Measurements, monitoring and reporting are conducted regularly during the

Execution and Monitoring phases to ensure business services meet their service level

agreements and improve their quality of service.

support for (dynamic) evolution

P&H does not explicitly consider maintenance or evolution, although continuous

monitoring and improvement of services and applications are noted in the Monitoring

phase.

22.4.9 Catalysis

Catalysis (D'Souza & Wills 1998) is a development methodology for the design and

construction of component-based software using objects, frameworks and components.

Catalysis has its roots in many well known OO techniques and principles, and

incorporates an earlier version of Unified Modelling Language (UML, v1.0) as its core

modelling notation.

support for composition

Catalysis centres on three modelling concepts in composition - “type, collaboration and

refinement” - plus frameworks to describe the recurring patterns of these concepts. A

type specifies an external and observable behaviour of an object or a component.

Collaboration defines the schemes of interaction among objects/components together

with the concept of “actions”. An action characterises the effect of a particular behaviour

or state change of a type. Through iterative refinement, types and collaborations are

evolved from abstract and simple to concrete and detailed architectural design.

process

Catalysis assumes that “there is no single process that fits every project” (D'Souza & Wills

1998, pp31). Therefore, it does not prescribe a formal lifecycle process for software

development. Instead, it offers several patterns (both modelling and process oriented),

design principles, how-to’s, and guidelines for use during development. Catalysis

emphasises that artefacts are almost never produced in sequential tasks and that a

development lifecycle is largely iterative and incremental. It proposed two composition

“routes” (i.e. processes) as starting points for planning a project:

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 47

 The build route for constructing a system from scratch using four steps:

construction of requirements, construction of system specification, architectural

design and component implementation; and

 The assembly route suitable for developing systems with existing components:

construction of requirements (same as the build route), construction of system

specification (same as the build route), construction of component type models,

construction of component type mapping, refinement of system specification

and refinement of domain model.

support for (dynamic) evolution

Catalysis identifies components and systems as the unit of maintenance and notes that

certain running systems require upgrade without shutdown. More generally, upgrade is

handled during the deployment phase of a project. Catalysis also prescribes the notion

of a “snapshot” diagram to model the effect of a change on a structure over two time

instants (pre- and post-change). Beyond that, it does not elaborate on maintenance and

evolution in its features.

22.4.10 OPEN Process Framework

The OPEN Process Framework (OPF) is a comprehensive and fragment-structured

methodology for creating and tuning a process for developing a variety of applications -

OO, web, component-based etc. - (Firesmith & Henderson-Sellers 2002). OPF is

available on its public web site (OPFRO 2009), with ongoing enhancements. To start a

project with OPF, one constructs a “process instance” by selecting from OPF’s framework

suitable elements called “process components”. They are then assembled to form a

lifecycle model, with “phases” (i.e. time intervals placed in a sequence for iteration) and

“activities” (i.e. processes).

support for composition

A component is regarded as a software package (Haire et al. 2001). Components can

be custom built or COTS based (Henderson-Sellers et al. 2005). They are used for

assembling software systems (Haire et al. 2001).

process

OPF offers process support for component-based development involving COTS and/or

custom-built components, with the Component Selection “activity” (i.e. process) being

the most specific to component-based development, drives the development effort to

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 48

establish policies on component acquisition, to evaluate and select components, and to

adapt/integrate components into an architectural design. To a lesser extent, the

Integration, Evaluation and Reuse Engineering activities are also pivotal to successful

component-based development.

OPF defines five technical phases 6 to describe the temporal existence of an

application during its full “application lifecycle”, with the first three phases collectively

called the “application development cycle” during which an application is developed

(Figure 2.12):

1. Initiation, for development kick-off;

2. Construction, for artefacts development;

3. Delivery, for releasing artefacts to an operating environment;

4. Usage, for placing artefacts into service; and

5. Retirement, phasing out and decommissioning artefacts from being used.

Initiation Construction Delivery Usage Retirement

application development cycle

application lifecycle

source: redrawn from Firesmith & Henderson-Sellers (2002)

Figure 2.12 Application phases in OPF

Throughout a development cycle, activities are identified and performed to create the

intended work products. Each activity is calibrated with a different weighting in each

phase according to its necessity and importance during that phase. For example, the

Initiation phase places more emphasis on requirement analysis which tapers off as a

project nears completion.

support for (dynamic) evolution

OPF has an activity devoted to maintenance which aims to incorporate minor fixes and

enhancements after the initial deployment of an application for use. It addresses four

types of maintenance - adaptive, corrective, preventative and predictive - covering data,

software, hardware and documentation artefacts. Apart from that, it does not deal with

evolution or dynamic aspects of evolution.

6 The online live version of OPF has two additional phases after the Construction phase: Initial
Production and Full Scale Production (OPFRO 2009).

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 49

22.4.11 Select Perspective

Select Perspective, as part of the commercial tool called Select Process Director Plus,

was developed by Select Business Solutions, Inc. with a view to leveraging parallel

development activities to reduce the time-to-market for service- and component-based

applications (Apperly et al. 2003).

support for composition

Unlike some methodologies that adopt public SOA and component standards, Select

Perspective defines its own concepts for services and components. A service is

regarded as a “publicly exposed capability (functionality)” of an application for others to

use the service (e.g. at a business level) and is more like a service end-point than a

service in a service-oriented architecture (Papazoglou & Georgakopoulos 2003). A

component is seen as a package of related services and conforms to a component

model in that it is a unit of composition and deployment. Definitions for service and

component concepts tend to overlap and “there is little difference between using a

component and a Web service” (Apperly et al. 2003, p. 20).

process

In Select Perspective, applications are constructed based on the “supply-manage-

consume” model (Figure 2.13). Component suppliers construct, deliver and maintain

components for use. Component managers source candidate components from

suppliers, perform certification, classify the components and then publish them in their

own component repositories. System developers (i.e. consumers) search repositories

for suitable components and apply them to their system development. If no components

are found, developers either build their own, or register new component specifications

with component managers. Managers notify potential suppliers to provide components

built for the new specifications.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 50

supply manage consume

supplied
components

components
for

consumption

requests
for new

components

notification of
new component
specifications

source: redrawn from Apperly et al. (2003)

Figure 2.13 An expanded view of Select Perspective’s supply-manage-consume
model

Select Perspective’s development lifecycle is based on the supply-manage-consume

model and correspondingly three basic “workflows” (i.e. processes). In the Supply

workflow, suppliers drive the work required for the construction and provisioning of

components according to the needs of consumers. The workflow also handles the

extraction of components (termed “componentisation”) from existing legacy systems. In

the Consume workflow, consumers conduct delivery, maintenance and support of

application composition from acquired components. Lastly, managers perform the

Manage workflow covering component acquisition, quality assurance (i.e. certification),

publication and maintenance of components.

support for (dynamic) evolution

Select Perspective has limited support for maintenance but no specific support for

evolution. In its Supply workflow, component defects and change requests are resolved

to ensure a business’s to continually meet its needs. In its Manage workflow,

components undergo configuration control to track their deployments as they are

changed. In its Consume workflow, ongoing work on an operational application is

carried out to resolve errors and meet new business demands.

2.4.12 KobrA

KobrA (Atkinson et al. 2002) was developed as part of a project funded by the German

Ministry of Education and Research. It integrates three paradigms - component-based

development, product line engineering and model driven architecture (OMG 2003a) - to

lower the time-to-market and cost of application development via high levels of software

reuse. Component-based development regards components as the unit of reuse.

Product line engineering to software development exploits the fact that a family of

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 51

similar products is developed by many organisations. It consolidates common parts

(termed “commonalities”) into a single high-quality core, and facilitates the customisation

and adaptation of variable parts (termed “variabilities”). The model driven architecture

paradigm separates the development of models and architectures from their

implementation with specific technologies so that designers and developers make the

best of both domains. While KobrA has a product line focus, it can also be applied to

single application development by skipping the commonality/variability analysis in its

development lifecycle. KobrA is influenced by Catalysis (Section 2.4.9), OPF (Section

2.4.10) and Select Perspective (Section 2.4.11).

support for composition

KobrA definitions its notion of components - “Komponent”. A Komponent is prescribed

by a “specification” (what it does), a “realisation” (into smaller Komponents or particular

OO designs), and optionally an “implementation” (for translation into programming

code). A Komponent model forms a hierarchy. Komponents at a higher level of

abstraction are refined into smaller Komponents at a lower level of abstraction. Reuse

is achieved by mapping the specification of an existing Komponent or a third-party

component to the Komponent specification required for an architecture.

process

KobrA has two processes in its lifecycle model:

 Framework engineering, for constructing and maintaining a framework for a

variety of applications. This process begins with the context realisation activity,

analysing the business problems a product line is intended to solve, plus

commonalities and variabilities for its framework and its applications.

Komponent modelling tasks then follow, with variants for each application

instantiated from the framework factored into the framework’s design.

 Application engineering, for constructing an application for a particular business

need. This process starts with instantiating a skeleton application from the

framework, instantiating a concrete context in which the application operates,

and then applying a “decision modelling” task to incorporate suitable variable

parts into the application (e.g. adding a data back-up service for a business

transaction system). Custom Komponents are modelled iteratively and added to

the application where needed. The application is then translated to binary code

and packaged into a deliverable.

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 52

support for (dynamic) evolution

KobrA incorporates maintenance into its processes, in recognition of the complexity

and size of managing changes and evolution of a product line, its framework and

applications. Maintenance work is managed by two supplementary processes:

“configuration management” (versioning, updating and configuring artefacts) and “change

management” (registering, evaluating, applying and propagating changes on static

artefacts originating from development only). KobrA regards evolution as part of

maintenance (Atkinson et al. 2002, pp40) and prescribes an “evolution graph” to track

new releases, updates and retirements of assets - including applications and their parts

- across a product line.

22.4.13 SeCSE

The Service Centric System Engineering consortium (SeCSE) aims to provide free and

open source instruments for engineering of service-centric applications (SeCSE 2007).

It offers deliverable tools, methods and techniques supporting cost-effective

development and use of service-centric applications. SeCSE is co-funded by the

European Commission under the “Information Society Technologies” programme. SeCSE

is based on UML Components (not reviewed) which is built on RUP (Section 2.4.6) and

Catalysis (Section 2.4.9).

support for composition

SeCSE defines a service as a unit of composition with abstract and concrete aspects

(Bastida 2008), respectively specifying its functionality and an appropriate

implementation of the functionality. A composition or workflow is defined by combining

a set of abstract services to fulfil the requirements for the composition as a whole. To

realise a composition, potential concrete services that can play the roles of the abstract

services in the composition are identified, evaluated, selected and then bound to the

composition.

process

SeCSE offers processes in four areas: Service-Centric System Engineering for service-

based application development, Service Engineering for individual service

development, Service Acquisition/Provisioning for sourcing services from external

suppliers or third parties, and Validation/Verification. Within Service-Centric System

Engineering is the SeCSE composition methodology comprising an ordered execution

of the following processes in a lifecycle (Figure 2.14):

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 53

 Architectural Specification, for defining and maintaining domain- and

organisation-wide architecture models;

 Functional Specification, for specifying the functionality of an intended

composition;

 Design-Time Service Composition, for designing appropriate service

descriptions in a composition for the identified functionality;

 Variation Point Management, for defining areas in a composition that might

change and design variability into the composition;

 Composition Realisation, for discovering and selecting existing services, or

development of new services; and

 Validation and Verification, of a composition against the functionality.

Functional
Specification

Design-Time
Service

Composition

Composition
Realisation

Variation
Point

Management

Architectural
Specification

Validation &
Verification

source: redrawn from Bastida (2008)

Figure 2.14 SeCSE composition methodology

support for (dynamic) evolution

SeCSE features three work units to add dynamism to a service composition (SeCSE

2006), addressing dynamic evolution to a certain extent by accommodating anticipated

changes (Almeida et al. 2001; Karsai et al. 2010) in a composition:

 Binding and re-binding of services, for replacing a service at runtime with similar

functionality and sometimes better performances;

 Composition re-planning, for modifying a composition at runtime to recover a

service’s lost functionality that cannot be offered by any existing service; and

 Variation points in a composition, for defining places in a composition’s design

where there will be different alternatives (e.g. currencies) to execute an abstract

function (e.g. bill payment). (At runtime, services from different alternatives are

chosen and executed in the composition.)

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 54

Apart from the above, SeCSE does not offer support for handling unanticipated

changes (Almeida et al. 2001; Karsai et al. 2010), such as those arising from new

business needs.

22.4.14 Observations from Selected Methodologies

A summary of the reviewed methodologies, in terms of their support for composition

and evolution is documented in Table 2.5. All the selected methodologies support the

notion of composition. Whilst the selected development methodologies offer a variety of

capabilities and approaches for handling conventional development activities such as

requirement analysis, design and testing, they do not comprehensively support

maintenance or evolution as part of their mainstream activities. For instance, although

the term evolution is noted in Catalysis, it does not elaborate on challenges and issues

relevant to evolution. AEM dedicates a separate process for dynamic evolution but

lacks details on its tasks, techniques and what kinds of work products are created.

SeCSE and ASG offer some support for dynamic evolution, by way of controlled

runtime substitution of services to handle fault tolerance and small variations in

functionality. More generally, Bennett and Rajlich (2000) argue that at a higher level of

specialisation, dealing with evolution is little known or non-uniform in engineering

research and practice. This lack of support for evolution is also attributed to the

ambiguity and poor understanding of system evolvability (Rowe et al. 1998). A more

detailed analysis of the extent of support for dynamic evolution, using the set of

dynamic evolution feature requirements developed during this research, is presented

later in Sections 4.4 and 5.4.

Table 2.5 Support for composition and evolution in reviewed methodologies

Methodo-
logy

Composition
Paradigm1 Unit of Composition Process Support for

Evolution Evolution Mode Evolution
Target

 C S

ASG ASG service (with
semantics)

maintenance and
evolution only noted

undefined, but
appearing to be
ddynamic

ontology,
services,
application

Catalysis collaboration, type
[of component]

upgrade only noted in
deployment phase

static -
maintenance

dynamic -
upgrade without
shutdown briefly
noted but with no
details

component,
system

CBDI-SAE

automation unit
(which is equivalent
to a service
implementation)

solution monitoring
and refinement only
noted

static

reference
framework,
security
architecture,

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 55

Methodo-
logy

Composition
Paradigm1 Unit of Composition Process Support for

Evolution Evolution Mode Evolution
Target

 C S

EPIC

component:
software
component,
hardware unit,
legacy system

minor changes
handled in the final
phase of a project,
significant changes
handled with a new
project - no further
details provided in
EPIC activities (i.e.
processes)

static -
* minor change to
a solution or a
component
* component
upgrade as new
ones are released
from the market
* significant
change

component

Erl (2005)

business process,
business service,
application service,
web services

ongoing rework,
redesign and
refinement noted in
the agile process, but
no further details

static

business
process,
business
service,
application
service, web
services

KobrA Komponent

dedicated
configuration
management and
change management
processes for
development time
artefacts

static - evolution
considered as
part of
maintenance

product line,
product line
framework,
application

OPEN
Process
Framework

 component
maintenance activity
for minor fixes and
enhancement

static component,
application

Oreizy et
al. (1999)

 component evolution
management

ddynamic

component,
connector,
parameters,
topology

Papazoglou
and van
den Heuvel
(2006)

 service, business
process

continuous
monitoring and
improvement of
services and
applications noted in
monitoring phase

undefined service,
application

RUP 2003
and
v7.2.0.1

component,
service, business
process

reiterating
development cycle to
handle evolution,
deployment discipline
to support change
releases - no further
details

static
software
product [i.e.
application]

SeCSE service

binding and re-
binding, re-planning,
and variation points
management
processes

dynamic - for
anticipated
changes in
composition

service,
service
composition

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 56

Methodo-
logy

Composition
Paradigm1 Unit of Composition Process Support for

Evolution Evolution Mode Evolution
Target

 C S

Select
Perspective

own definitions of
service and
component

changes to
components and
applications noted in
Supply and Consume
workflows, tracking of
component changes
noted in Manage
workflow

static - limited
support for
maintenance

component,
application

SUPER
business process
element, business
process

reiterating
development cycle to
handle changes
noted but no further
details

static
business
process

Note 1: “Composition Paradigm” - “C”:supporting component-based, “S”:supporting SOA-based

22.5 SITUATIONAL METHOD ENGINEERING
A one-size-fits-all methodology which can suit any project from a variety of domains

and sizes is unlikely to be attainable (Henderson-Sellers 2006). Thus, an organisation

could be supplied with a plethora of different methodologies (off-the-shelf, pre-built and

the like) to choose from for each project situation at hand. However, the possibility of an

organisation to have a number of methodologies available is likely to be low (Bajec et

al. 2007). This is compounded by the fact that it is not always possible to find

practitioners knowledgeable in all methodologies of the organisation to be able to

choose a suitable methodology (Bajec et al. 2007). Alternatively, a methodology can be

tailored to adapt to the changing nature and actual needs of a project (Firesmith &

Henderson-Sellers 2002; Fitzgerald et al. 2003). In this spirit, method engineering

(introduced earlier in Section 1.1.4) strives to design, construct and adapt

methodologies for software development (Brinkkemper 1996). More specifically,

situational method engineering seeks to develop a purpose-built methodology to suit a

specific organisational and/or project situation (ter Hofstede & Verhoef 1997). A

situation has two aspects: context and project type (Bucher et al. 2007). A project type

characterises the transformation of a design artefact from one state (i.e. version) to its

next. A context is an environmental factor that has a significant impact on the

effectiveness and efficiency of applying a methodology (e.g. organisation size). Both

contexts and project types can be analysed when constructing a methodology for use in

a particular situation (Bucher et al. 2007).

There are a few ways to apply situational method engineering to construct a

methodology: assembly-based, extension-based, paradigm-based and ad hoc (Bajec et

al. 2007; Henderson-Sellers & Ralyté 2010; Ralyté et al. 2004). In the assembly-based

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 57

approach, method components are assembled into a methodology of best fit for a

particular situation (Brinkkemper 1996; Ralyté & Rolland 2001). Variants of method

components include method chunks and method fragments (Henderson-Sellers &

Ralyté 2010). For example, Brinkkemper (1996) presents a process workflow to

configure methodologies, starting from characterising a project environment, to the

selection and assembly of fragments. Brinkkemper et al. (1998) use a fragment

classification model to assemble fragments and define rules and guidelines to govern

the method assembly. Ralyté and Rolland (2001) offer a process model to guide the

retrieval and assembly of method fragments using different strategies depending on the

type of situation. The assembly-based approach offers opportunities for method

fragment reuse, especially when fragments are sourced from existing methodologies

for methodology construction.

In the extension-based approach, typical extension opportunities are first identified from

a skeleton methodology. Extensions are then performed using a set of “extension

patterns” as guidelines. Ralyté et al. (2003) describe a few ways to perform extensions

using extension patterns and meta-patterns for extensions. Some studies contend that

this approach overlooks the situation where certain features in a methodology are not

applicable and should be discarded (Karlsson & Ågerfalk 2004). Hence, feature

reduction should be also performed to complement extension.

In the paradigm-based (a.k.a. “evolution-based” (Bajec et al. 2007)) approach, a new

methodology is constructed by either abstracting from an existing methodology

concerning a particular paradigm, or instantiating from a methodology metamodel,

according to the objectives for the new methodology. Ralyté et al. (2003) suggest that

when creating a methodology this way, a product model is constructed before the

process model. They offer several strategies for constructing these models.

In an ad hoc approach, a methodology is constructed from scratch, i.e. without regard

to existing fragments (Ralyté et al. 2004). Fragments of the newly constructed

methodology can be imported into a methodbase. A rationale for this approach is that

the problem domain to be addressed is not yet supported by an existing methodology.

Nevertheless, the ad hoc approach can be used to augment the assembly-, extension-

and paradigm-based approaches to construct a more suitable methodology

(Henderson-Sellers & Ralyté 2010).

22.6 CONCLUSION
In this Chapter, the notion of dynamic evolution in distributed applications has been

Chapter 2. Review of Dynamic Evolution and Methodology Kam Hay Fung - PhD Thesis

© 2011 UNSW page 58

discussed along the topics of relevant dynamic evolution concepts (cf. Sections 2.1),

composition-based distributed applications, and how dynamic evolution could be

embraced with this kind of application, such as SOA- and component-based ones (cf.

Section 2.2). To assess a methodology for its extent of support for a particular domain

at a more detailed level, an evaluation framework could also be utilised. A review of

existing evaluation frameworks presented in this Chapter reveals that they do not

specially cover dynamic evolution aspects (cf. Section 2.3). This Chapter has also

reviewed a number of relevant methodologies supporting composition-based

development, highlighting their lack of comprehensive support for dynamic evolution

(cf. Section 2.4). Lastly, the notion of situational method engineering has been

discussed as a promising platform for incorporating different features, packaged as

method components, method fragments, method chunks, extension patterns etc., into a

methodology and adapting it to the needs of a project (cf. Section 2.5). Acknowledging

the lack of definitive feature requirements for dynamic evolution and methodological

support for dynamic evolution, the next Chapter presents the design of a programme

undertaken in this research to tackle these limitations.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 59

Chapter 3. RRESEARCH DESIGN

“It is a bad plan that admits of no modification.” - Publilius Syrus

Chapter 2 provided a review of dynamic evolution and development methodology as

the background information to this research. It argued that even though dynamic

evolution can be realised in composition-based distributed applications, the problem of

dynamic evolution is not only poorly defined in the literature and evaluation frameworks

but also inadequately supported by development methodologies. This Chapter

describes a research programme to fill these gaps.

This Chapter begins with a brief introduction to design science research (March &

Smith 1995), or design research (Vaishnavi & Kuechler 2004), being selected as the

overall framework for this research. A justification for the appropriateness of design

science research for this research is given in Section 3.1. The research design for this

research, which is a “plan and structure of investigation so conceived as to obtain answers to

research questions” (Kerlinger 1986, p. 279), is presented in Section 3.2. More

specifically, the research activities and tasks in the research design to determine

dynamic evolution requirements to be addressed by a methodology and to develop

methodological support to satisfy these requirements are outlined.

3.1 DESIGN SCIENCE RESEARCH AND THE JUSTIFICATION OF
THIS RESEARCH

Chapter 1 argued that dynamic evolution is beneficial to certain kinds of distributed

applications and should be supported from the methodological perspective (cf. Section

1.1.1). However, as discussed earlier in Sections 2.3 and 2.4.13, the notion of dynamic

evolution is poorly understood and supported in existing evaluation frameworks and

methodologies (see also Sections 4.1.5, 4.4, 5.1.3 and 5.4). For that reason, this

research aimed to define dynamic evolution requirements that should be addressed by

a methodology, and to build method fragments to address these requirements from the

methodological perspective, both a form of prescriptive inquiry (Gregor 2006).

To carry out effective information systems (IS) research of this genre, it is beneficial to

follow a particular and defined research paradigm suitable for this kind of research.

Generally speaking, a paradigm is a model or pattern accepted by a scientific and/or

research community to nurture a “particular coherent tradition of scientific research” (Kuhn

1996, p. 10) and for one to seek particular research outcomes in an established way

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 60

(e.g. analysis and description, explanation, prediction, and prescription (Gregor 2006)).

The IS research discipline, in particular, fits into a multi-paradigmatic regime (Vaishnavi

& Kuechler 2004). It advocates a variety of research methods and paradigms for the

investigation of the use, development and understanding of information systems. This

diversity stems from the characteristics of information systems and IS research at the

“confluence of people, organizations and technology” (Hevner et al. 2004). This diversity

also makes IS research creative and broadens the foundations from which its

knowledge is claimed (Robey 1996).

Since the outcomes of this research are a proposed set of important dynamic evolution

requirements and associated method fragments to fulfil them, this research called for

an inquiry of prescribing and innovating IS artefacts (e.g. a new methodology). Such an

endeavour fits into the word “design” in its noun form which is a product as sensed by

the world (Hevner et al. 2004). Among a variety of IS research paradigms7, this

research adopts design science research as the overall research framework because

design science research focuses on the problem solving aspects by creating and

prescribing artificial innovations for the effective development, management and use of

information systems (Hevner et al. 2004). Design science research is practised under

different guises, including constructive research (e.g. Iivari et al. 1998), systems

development research (e.g. Burstein & Gregor 1999), and software engineering

research (e.g. Morrison & George 1995). Indeed, its importance has been recognised in

IS research (Gregor 2002) because of its prescriptive nature in creating advances in

vast domains in which problems are inadequately solved (Hevner et al. 2004). Example

advances produced from design science research include constructs, models,

methods, instantiations (March & Smith 1995), better theories (Vaishnavi & Kuechler

2004), and IS development methodologies (Vaishnavi & Kuechler 2004; Venable &

Travis 1999).

Given that design science research has been argued as an appropriate and hence

selected approach for this research, the details of a design science research based

programme tailored for this research are presented next.

7 Examples of different IS research paradigms (Niehaves & Stahl 2006) include design science
research (Hevner et al. 2004), behavioural science research (Hevner et al. 2004; March & Smith
1995), positivism (Chen & Hirschheim 2004; Myers 2004), interpretivism (Chen & Hirschheim
2004; Orlikowski & Baroudi 1991), critical research (Ngwenyama 1991) and non-critical
research (Orlikowski & Baroudi 1991).

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 61

33.2 RESEARCH ACTIVITIES AND PHASES
A basic design science research effort involves two activities (March & Smith 1995).

“Build”, the first activity, concerns the construction of artefacts for a specific purpose -

the methodological support for dynamic evolution in this research. “Evaluate”, the

second activity, is the process of assessing how well these artefacts address a problem

for which they were built. Although a variety of evaluation approaches exist specifically

for demonstrating the validity of methodologies (e.g. Zelkowitz & Wallace 1998), the

build part of design science is not well understood (March & Smith 1995). Vaishnavi et

al. (2004) thus refined the build activity into three phases: identification of a new

research effort (“awareness of a problem”); prototyping a tentative solution (“suggestion”);

and implementation of the tentative solution into a full solution (“development”). Their

approach though suffers a drawback in that it does not identify a class of goals - a.k.a.

meta-requirements (Walls et al. 1992) - that a designed artefact is aimed at addressing

for a particular problem.

Acknowledging the importance of meta-requirements, Peffers et al. (2008) established

an activity called “define objectives of a solution” to be performed ahead of the build

activity which they referred to as “design and development”. “Define objectives of a solution”

determines the meta-requirements for the artefact to build whilst “design and

development” constructs the artefact to satisfy the meta-requirements. Thus, a

comprehensive methodology development endeavour should at least cover the define

(feature requirements) aspect, in addition to the build (features) and evaluate (features)

aspects of a basic design science research programme originally suggested by March

et al. (1995). The lack of the “define” aspect is also in agreement with the observation

that there have been no comprehensive studies identifying what kinds of dynamic

evolution capabilities should be addressed in software development methodologies (cf.

Section 2.3). Correspondingly, this research programme was organised into three

phases to take into account the define, build and evaluate aspects, as depicted in

Figure 3.1 below. The research question that each phase be intended to address is

also indicated in Figure 3.1 (cf. Section 1.2).

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 62

Phase 3: (q.e. Evaluation & Refinement
Phase)

Evaluate & refine support for dynamic evolution.
This corresponds to the “evaluate” aspect.

Phase 2: (q.e. Design Phase)

Develop support for dynamic evolution.
This corresponds to the “build” aspect.

Phase 1: (q.e. Analysis Phase)

Determine dynamic evolution requirements.
This corresponds to the “define” aspect.

RQ1: What are the important
requirements for consideration

in composition-based distributed
application development to
support dynamic evolution?

RQ2:
How can these important

requirements be addressed
with method fragments used in
composition-based distributed

application development?

Research QuestionsResearch Phases

investigate

investigate

source: developed for this research

Figure 3.1 Development phases adopted for this research (expanded from Figure
1.1)

The three phases in this research comprised a number of tasks, each associated with

one or more steps and research techniques applied to accomplish the objectives of the

task. Figure 3.2 gives a bird’s-eye view of these activities, with key research techniques

applied in the steps shown in underlined text. Due to visual cluttering, the task and step

descriptions are shortened in Figure 3.2. The three phases in terms of the tasks and

steps performed, together with the research techniques applied, are presented next.

33.2.1 Phase 1: Determine important dynamic evolution requirements

Phase 1 determined important dynamic evolution requirements that should be

addressed by a methodology, and are perceived as important by methodology users.

These requirements were then used for the development of Continuum in Phase 2.

Tasks in this phase were carried out in response to research question RQ1 stated in

Section 1.2, “What are the important requirements for consideration in composition-based

distributed application development to support dynamic evolution?” The determined

requirements also give some indication of the scope of work during later phases.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 63

Phase
3

Phase
1

Phase
2

• Evaluate Continuum via expert review & refine it with
review feedback.

Task 3.1 Conduct expert
review of Continuum

• Case study
• Step 1. Initiate case study project.
• Step 2. Apply Continuum to dynamic evolution

analysis & design.
• Step 3. Evaluate Continuum based on Step 2 results.
• Step 4. Refine Continuum based on Step 3 results.

Task 3.2 Apply
Continuum

• Step 1. Synthesise dynamic evolution quality factors from
systematic literature review & evaluation frameworks.

• Step 2. Assess & extend dynamic evolution quality factors
with survey.

• Step 3. Extend dynamic evolution quality factors with
methodologies.

• Step 4. Evaluate methodological support for dynamic
evolution quality factors with feature analysis.

Task 1.1 Synthesise,
assess, extend

important quality
factors for dynamic

evolution

• Same steps as Task 1.1, but for dynamic change
requirements instead of dynamic evolution qualify
factors.

Task 1.2 Synthesise,
assess, extend

important dynamic
change requirements for

dynamic evolution

• Identify candidate method fragments from existing &
relevant methodologies with feature analysis.

Task 2.1 Identify method
fragments from
methodologies

• Incorporate & enhance method fragments from Task 2.1,
& develop new method fragments into Continuum.

Task 2.2 Develop
method fragments

source: developed for this research

Figure 3.2 Research tasks, steps and techniques used in various phases

To manage the complexity of dynamic evolution, this investigation distinguished

between two types of requirements: dynamic evolution quality factor and dynamic

change requirements. Dynamic evolution quality factor requirements (or “dynamic

evolution quality factors” for short) are concerned with how well a distributed application

and dynamic changes to it are designed to facilitate dynamic evolution. Dynamic

change requirements account for the characteristics of dynamic changes to a

distributed application including various kinds of changes that a distributed application

would accommodate; who enacts such changes; and the notion of errors arisen from

such changes. Accordingly, two tasks were performed to develop each requirement

type:

 Synthesise, assess and extend important dynamic evolution quality factors

(hereafter referred to as Task 1.1).

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 64

 Synthesise, assess and extend important dynamic change requirements

(hereafter referred to as Task 1.2).

Since the structure and the approach of two tasks above are similar, a generic four-step

process as described below was defined to suit both of these tasks. In the step

descriptions below, “dynamic evolution requirements” refer to either dynamic evolution

quality factors or dynamic change requirements. Differences in the treatment of the two

requirement types are noted in the step descriptions where applicable. The full details

and outcomes of these steps are documented in Chapter 4 (for dynamic evolution

quality factors) and Chapter 5 (for dynamic change requirements).

SStep 1: Synthesise (i.e. identify and categorise) an initial set of dynamic evolution

requirements from both the literature and evaluation frameworks.

Potential dynamic evolution requirements were identified from a systematic

literature review and from evaluation frameworks. Identified requirements were

then categorised using one of the schemes described below, and ready for use

in Step 2:

 For dynamic evolution quality factors

Each identified requirement is referred to as a quality attribute. Quality

attributes characterising the same quality aspect (e.g. security) were

grouped to form the definitions for a quality factor. Quality factors were then

categorised according to their similarities and contexts. The category-factor-

attribute hierarchy corresponds to the quality levels (i.e. characteristic, sub-

characteristic and attribute) in the quality model of the International

Standard ISO/IEC 9126-1 (ISO/IEC 2001).

 For dynamic change requirements

Each identified requirement is referred to as a dynamic change requirement.

Dynamic change requirements were categorised along two dimensions:

methodology and application. The methodology dimension determines

whether a dynamic change requirement is a modelling related (concept,

notation and model) or work related concern (what must be done and how to

do it) that would be addressed by a methodology to support dynamic

evolution. The application dimension classifies dynamic change

requirements in line with their areas of concern: for individual parts, for an

application as a whole, and for all other situations.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 65

SStep 2: Assess and extend the set of dynamic evolution requirements synthesised from

the literature and evaluation frameworks using a survey of experienced practitioners

and researchers.

A survey was conducted to assess the completeness and perceived importance

of the dynamic evolution requirements synthesised in the last step. The survey

fulfilled these objectives:

 Assessment of the importance of dynamic evolution requirements

Each respondent was asked to rate the level of importance of each dynamic

evolution requirement. The rating scores of the dynamic evolution

requirements were used to prioritise subsequent work in this research:

whether dynamic evolution requirements were desirable (i.e. more

important) and should be considered for Continuum, or they were less

important and should be discarded.

 Identification of additional dynamic evolution requirements

Respondents were asked to suggest potential dynamic evolution

requirements for consideration. Two experts experienced in dynamic

evolution then reviewed these dynamic evolution requirements via a Delphi-

type method (Okoli & Pawlowski 2004). Suggested dynamic evolution

requirements that were also recommended by both experts were

incorporated into the set of important dynamic evolution requirements.

The survey set-up for dynamic evolution quality factors was slightly different

from that of dynamic change requirements. In the former, a web site was

prepared for respondents to complete a survey form online whereas in the

latter, respondents were emailed a survey form to complete and return.

Step 3: Extend the dynamic evolution requirements from relevant methodologies.

Dynamic evolution requirements were identified from relevant methodologies

independently from the survey (Step 2). Each requirement identified was then

checked to see if it mapped to one or more requirements from the extended set

of dynamic evolution requirements from Step 2. If not, it represented a new

requirement and was therefore incorporated into the extended set.

Step 4: Evaluate relevant methodologies for their extent of support for dynamic

evolution requirements.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 66

To evaluate the dynamic evolution requirements synthesised in this task, the

methodologies reviewed in Step 3 were evaluated for their level of support for

each requirement using the feature analysis technique (Kitchenham & Jones

1997). The evaluation applied four scale points - High for full support, Medium

for partial support requiring small enhancement, Low for inadequate support

requiring significant enhancement, and None for no support - to determine what

features from existing methodologies could be reused, what features could be

enhanced for use and any additional support required. Features identified for

potential reuse or requiring small enhancement were then considered in the

development of Continuum in Phase 2.

33.2.2 Phase 2: Develop support for dynamic evolution

Given the definitions of the requirements from the last phase, the development of an

initial version of Continuum occurred in this phase, with respect to research question

RQ2 stated in Section 1.2, “How can these important requirements be addressed with method

fragments used in composition-based distributed application development?” The development

of Continuum opted for a method engineering approach (Section 1.1.4) that produces

method fragments to address a problem domain (which is dynamic evolution in this

case). Through assembly-based situational method engineering (Section 2.5), they can

be adapted to a particular situation to provide support for dynamic evolution. The

developed Continuum comprises the following method fragments8 to satisfy these

requirements:

 Metamodel (i.e. a model of models (Gonzalez-Perez & Henderson-Sellers

2007)), which prescribes key concepts and their relationships for dynamic

evolution;

 Work product fragments to be created, updated and used;

 Work unit fragments to be performed (ISO/IEC 2007), which are:

o process fragments, each representing a large-grained work unit within a

given area of expertise;

o task fragments specifying what is achieved by those process fragments;

8 Strictly speaking, according to 24744, “method fragments” (including “work product fragments”,
“work unit fragments”, “process fragments”, “task fragments”, “technique fragments” and “producer
fragments”) should be termed “method fragment kinds” (henceforth “work product fragment kinds”,
“work unit fragment kinds”, “process fragment kinds”, “task fragment kinds”, “technique fragment kinds”
and “producer fragment kinds” respectively). For convenience and ease of reading, the “kind”
suffix is dropped.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 67

o technique fragments specifying how to achieve the given purposes

within the task fragments; and

 Producer fragments, specifying who does which of the above work unit

fragments.

Continuum’s method fragments were reused from existing methodologies, enhanced

from existing methodologies, or developed from scratch where appropriate. The

development of Continuum involved the execution of the following two tasks: Identify

method fragments from relevant methodologies (Section 3.2.2.1) and Develop method

fragments (Section 3.2.2.2).

3.2.2.1 Task 2.1: Identify method fragments from relevant methodologies

Task 2.1 aimed to identify candidate method fragments from existing and relevant

methodologies suitable for addressing particular dynamic evolution requirements

defined in Phase 2 (Section 3.2.2), and for reuse and enhancement consideration in the

next task. This was because some methodologies may already have features that fully

satisfy certain dynamic evolution requirements and/or other features that partially

address some other dynamic evolution requirements. This avoided redeveloping

features and reduced the effort in the next task. The identification involved analysing

the results from the methodology evaluation conducted in Phase 1 (i.e. Step 4 of both

Tasks 1.1 and 1.2) and locating features meeting the following criteria:

 A feature is rated as High, indicating that it fulfils a particular dynamic evolution

requirement and is suitable for reuse in Continuum; or

 A feature is rated as Medium, indicating that it appears to support a particular

dynamic evolution requirement to some extent and needs a small enhancement

to be incorporated into Continuum to fulfil the requirement.

Next, for each requirement the highest rated feature from among those rated as High or

Medium was selected for consideration in the next task. In situations where more than

one feature from different methodologies satisfies the same requirement to a similar

extent, an analysis was performed to choose the most appropriate feature. Each

decision for choosing a particular feature was justified and recorded. Selected features

were then extracted from their respective methodologies as method fragments for the

next task. The full details of this task are documented in Section 6.2.

3.2.2.2 Task 2.2: Develop method fragments

Following the identification of suitable method fragments from existing methodologies in

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 68

Task 2.1, this task carried out the development of Continuum in the following areas:

a. Incorporation of selected existing method fragments from the evaluated

methodologies into Continuum as per Task 2.1;

b. Enhancement of selected existing method fragments from the evaluated

methodologies into Continuum as per Task 2.1; and

c. Development of new method fragments for requirements that are not accounted

for by method fragments from (a) and (b) above. Each requirement was

addressed by firstly reviewing the literature not concerning methodologies for

potential approaches that might fulfil the requirement. The review ensured

approaches from outside the methodology domain were also investigated since

methodologies were only considered in Task 2.1. If no suitable approach was

identified, a new fragment was then developed to satisfy the requirement.

After the development of individual method fragments, they were structured and linked

to form a coherent set of method fragments. Continuum’s method fragments were

documented in accordance with the International Standard ISO/IEC 24744 (ISO/IEC

2007). The full details and outcomes of this task can be found in Section 6.3.

33.2.3 Phase 3: Evaluate and refine support for dynamic evolution

Once the initial version of Continuum was developed, this phase turned to the

incremental evaluation and refinement of Continuum, as a further investigation with

respect to research question RQ2 stated in Section 1.2, “How can these important

requirements be addressed with method fragments used in composition-based distributed

application development?” To increase the credibility of Continuum, two evaluation and

refinement tasks (i.e. Tasks 3.1 and 3.2) were performed in a sequential order to

produce the final version of Continuum.

3.2.3.1 Task 3.1: Conduct an expert review of Continuum

An expert review of Continuum was conducted as an initial means of evaluating and

refining Continuum. More specifically, two subject matter experts, both experienced in

the field of dynamic evolution, were given an initial version of Continuum developed

from the last phase, and asked to critique its strengths, weaknesses and completeness.

For weaknesses and completeness, experts were asked to provide:

 any suggestion for improvement of existing features; and

 any suggestion for new features to complement the existing ones.

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 69

The review was orchestrated to ensure all changes to Continuum satisfied both

experts. To begin with, one expert performed the review after which changes were

made to Continuum in response to the review results and discussed with this expert.

The second expert then performed the review of the updated version of Continuum.

Additional changes as per the second expert’s suggestions were then checked with

him/her, and subsequently with the first expert before being incorporated into

Continuum. The full details and outcomes of this task are documented in Section 7.1.

3.2.3.2 Task 3.2: Apply Continuum to a case study

In this task, a case study (Yin 2003) was applied to evaluate Continuum and the

evaluation results from which were used to further improve it. A case study is

appropriate for Continuum since case studies are suitable for new methodologies in

their early stages of development when the theoretical basis is being established

(Murphy et al. 1999). The case study involved two participants from a sponsoring

organisation jointly developing dynamic evolution capability for a real-world application

(i.e. industrial case study) using Continuum. It was divided into the following steps (full

details and outcomes in Section 7.2):

SStep 1: Initiate a case study project.

A kick-off meeting was held with the participants to disseminate the purpose,

expectations and potential benefits of the case study. A project plan was also

developed in the meeting. This was followed by induction training for the

participants in both Continuum and method engineering.

Step 2: Apply Continuum to the analysis and design for dynamic evolution.

The participants assembled a full methodology lifecycle from Continuum’s

method fragments. Then, they applied the lifecycle to analyse and design

dynamic evolution for the application from one version to the next at runtime. A

set of dynamic evolution artefacts was developed using Continuum’s work

products as templates.

Step 3: Evaluate Continuum based on outcomes and experience from Step 1.

After completing the analysis and design for dynamic evolution, the participants

evaluated the usefulness and usability (Murphy et al. 1999) of Continuum, in

addition to evaluating its weaknesses and completeness as described in the

expert review method in Task 3.1, with respect to how well it addressed the

problem situation in the case study. For usefulness, the participants were asked

Chapter 3. Research Design Kam Hay Fung - PhD Thesis

© 2011 UNSW page 70

to rate how well Continuum addressed the relevant issues encountered during

the case study, and compare it with how well the methodology adopted in their

organisation would address the same issues. For usability, the participants

rated Continuum’s method fragments in terms of understandability (e.g. “Is ‘X’

easy to understand?”) and ease of use (e.g. “Is ‘X’ easy to use?”).

SStep 4: Refine Continuum based on evaluation results and feedback.

Finally, the evaluation results from the last step were collected from the

participants and confirmed with them in a follow-up meeting. Changes - such as

new features and extensions to existing features - were then made to

Continuum in consultation with the suggestions from the participants, which can

be found from the evaluation results. Afterwards, the participants reviewed the

changes and confirmed whether they improved Continuum. The review was

then repeated with the experts who took part in the expert review in Task 3.1.

3.3 CONCLUSION
This Chapter briefly described design science research and provided arguments for

adopting it as the overall programme for this research. It also discussed the detailed

design for the research programme, being composed of research tasks and their

associated steps undertaken in three phases:

 Phase 1 “Determine important dynamic evolution requirements” (Section 3.2.1)

 Phase 2 “Develop support for dynamic evolution” (Section 3.2.2)

 Phase 3 “Evaluate and refine support for dynamic evolution” (Section 3.2.3)

The next four Chapters document the execution of tasks in and outcomes from these

phases.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 71

Chapter 4. DDEVELOPMENT OF DYNAMIC

EVOLUTION QUALITY FACTORS

“Quality is everyone's responsibility.” - W. Edwards Deming

Following the description of the research design in Chapter 3, this Chapter reports the

execution and outcomes from Task 1.1, which aimed to “Synthesise, assess and extend

important dynamic evolution quality factors”. The outcomes of Task 1.1 comprise a

generic set of important dynamic evolution quality factors suitable for composition-

based distributed applications and the results of evaluating methodologies for their

extent of support for these factors. These outcomes form part of the deliverables to the

Phase 2 during which the content of Continuum was developed to address these

quality factors. The relationships between Task 1.1, and other tasks and phases, are

summarised in Figure 4.1.

Phase 1:

dynamic evolution
quality factors

Phase 2:

Develop
support

for
dynamic
evolution

Task 1.1:
Synthesise, assess &

extend dynamic
evolution quality factors

Task 1.2:
Synthesise, assess &

extend dynamic
change requirements

literature,
evaluation

frameworks &
methodologies

dynamic change
requirements

methodology
evaluation results

methodology
evaluation results

source: developed for this research

Figure 4.1 Information flow in Phase 1 for determining dynamic evolution quality
factors

As discussed in Section 3.2.1, Task 1.1 has four steps as illustrated in Figure 4.2. The

first three steps concern the incremental development and assessment of the dynamic

evolution quality factors. In Step 4, methodologies were evaluated for their support of

the factors. Respectively, Sections 4.1 to 4.4 describe the execution and outcomes of

these four steps (see Figure 4.2). Afterwards, the developed set of quality factors are

compared with related work in Section 4.5. Section 4.6 concludes this Chapter.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 72

source: developed for this research

Figure 4.2 Steps in Task 1.1 of Phase 1

44.1 STEP 1: SYNTHESIS OF DYNAMIC EVOLUTION QUALITY
FACTORS

This step synthesised an initial set of dynamic evolution quality factor requirements (or

“quality factors” for short) from the literature and evaluation frameworks. A systematic

literature review (Kitchenham et al. 2009; Kitchenham 2004) was undertaken to guide

the synthesis. The objective of the review was to answer the following research

question:

What dynamic evolution quality factor requirements are considered in the

literature and should be addressed during software development for

composition-based distributed applications?

The corresponding review steps are documented in Appendix A. Table 4.1 shows the

results of the search defined in the review steps. The search covered two parts. The

first part covered a number of journals and conference proceedings published between

1994 and 2010 and identified two hundred and seventeen articles for quality factor

synthesis, and quality attributes for the synthesis were found from sixty-five articles.

The “others” category, at the bottom of Table 4.1, refers to articles examined from the

bibliographies of the articles that were from the first part, for additional quality factors.

This was to account for important and cited articles not covered by the search scope for

the first part.

Step 1 (Section 4.1)
• Synthesise an initial set of

quality factors from the
literature and evaluation
frameworks which are
reviewed in Section 2.3.

Step 2 (Section 4.2)
• Assess and extend the initial

set of quality factors using a
survey of experienced
practitioners and
researchers.

Step 3 (Section 4.3)
• Extend the set of quality

factors after Step 2 from
relevant methodologies which
are reviewed in Section 2.4.

Step 4 (Section 4.4)
• Evaluate methodologies for

their extent of support for the
set of quality factors after
Step 3.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 73

Table 4.1 Source of literature examined for quality factor synthesis

Source Title Abbreviation Articles
examined

Articles with
quality

attributes

Journals
(1994-2010)

Communications of the ACM CACM 8 2

ACM Transactions on Computer Systems TOCS 1 1

ACM Transactions on Software Engineering and Methodology TOSEM 3 1

European Journal of Information Systems EJIS 0 0

IEEE Computer 11 5

IEEE Software 6 0

IEEE Transactions on Software Engineering TSE 10 3

IET Software (formerly "IEE Proceedings Software" and "Software
Engineering Journal") IETS 12 4

Information and Software Technology IST 9 2

Information Systems Journal ISJ 0 0

Information Systems Research ISR 0 0

Journal of Information Technology JIT 0 0

Journal of Software Maintenance and Evolution: Research and
Practice (formerly "Journal of Software Maintenance") JSME 8 6

Journal of Systems and Software JSS 7 1

MIS Quarterly MISQ 0 0

Requirements Engineering 2 0

Conference
Proceedings
(1994-2010)

International Symposium on Component-Based Software
Engineering (formerly "ICSE Workshop on Component-Based
Software Engineering")

CBSE 14 3

International Conference on Configurable Distributed Systems
IWCDS,
ICCDS 26 13

International Conference on Distributed Computing Systems ICDCS 7 2

International Conference on Service-Oriented Computing ICSOC 22 0

International Conference on Software Engineering ICSE 16 3

International Conference on Software Maintenance ICSM 13 1

Others Articles not in any of the publications and years above 42 18

 Total 2217 665

Figure 4.3 summarises the dynamic evolution quality factors synthesised from the

literature and their categories. The textual definitions of the quality factors and their

categories (i.e. Soundness of Change, Infusibility of Change, Changeability of

Application, and Robustness of Application) are described next (Sections 4.1.1 to

4.1.4). A review of existing evaluation frameworks (Section 2.3) was used to extend the

quality factors (Section 4.1.5). Section 4.1.6 summaries the definitions of the factors

and includes a discussion of quality factors considered but not included in the set.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 74

Category

Dynamic Evolution Quality

Dynamic
Evolution
Quality
Factor

Soundness of
Change

Completeness

Consistency

Correctness

Infusibility of
Change

Efficiency

Locality

Maintainability

Transparency

Changeability of
Application

Configurability

Coordination

Flexibility

Loose
Coupling

Separation of
Concerns

Robustness of
Application

Fault
Tolerance

Recoverability

Reliability

Safety

Security

source: developed for this research

Figure 4.3 Dynamic evolution quality factors and categories synthesised from the
literature

44.1.1 Soundness of Change

Soundness refers to the extent of that changes to an application and associated

transformations are free from defects or flaws, and do not make an application harder

to evolve. For instance, it is undesirable to apply a change to an application if the

change makes the application more difficult to maintain. Soundness is characterised by

Completeness, Consistency and Correctness.

4.1.1.1 Completeness

Completeness is a condition that a transformation and its change(s) should not cause

missing, broken or illegal parts, bindings or functions in an updated application.

Incompleteness could be due to unfinished transformations (e.g. additions, removals

and/or updates of parts), or design flaws in transformations and changes.

Incompleteness may cause the application to fail. Completeness requires that parts that

are defined in an application and its interaction specifications are all present after a

transformation (Agnew et al. 1994b; Allen & Garlan 1997). Furthermore, all functions

required by a part are provided by one or more parts of the updated application (Allen &

Garlan 1997; Medvidovic et al. 1999). After a transformation there should be no

missing, illegal, or broken bindings among parts in the application (Feiler & Li 1998;

Hillman & Warren 2004) which may affect communication among parts (Aksit &

Choukair 2003). The binding issue is less of a concern in service-oriented computing

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 75

because service bindings tend to be dynamic: established before a service invocation

and released afterwards (Curbera et al. 2003). Completeness also mandates that

dynamic changes to an application will meet the assumptions and properties of the

application and its parts (Allen & Garlan 1997; Feiler & Li 1998; Mens & D'Hondt 2000).

4.1.1.2 Consistency

Consistency implies that a transformation and its change(s) should not result in an error

state for an application (Lee & Chang 2005; Zimmermann & Drobnik 1994) such as a

deadlock (Gregersen & Jørgensen 2009; Sun & Jiang 2009) or deviating it from a

particular architectural style (Loulou et al. 2010). Rather, the application continues

processing (Kramer & Magee 1990) from a reachable state, which can be progressively

transitioned from its start-up state(s), after the transformation has occurred (Gupta et al.

1996). Maintaining consistency requires that all parts involved in a dynamic change are

identified before starting a transformation (Warren & Sommerville 1996). Moreover,

parts and bindings, both new and replacement, should be allocated adequate

resources (e.g. CPU time) and support to operate correctly after the transformation

(Ben-Shaul et al. 2001; Feiler & Li 1998). It is also desirable that no critical functions

are being executed by parts that will be affected by the transformation (Warren &

Sommerville 1996). There should also be no unprocessed messages, unfinished

interactions or transactions being performed by an application at the time of

transformation (Adamek & Plasil 2005; Bidan et al. 1998; Chen 2002; Kramer & Magee

1990; Li 2009; Wang et al. 2006; Warren & Sommerville 1996). Maintaining consistency

also means that, similar to completeness, any dynamic changes to an application

should meet the assumptions and properties of the application and its parts (Allen &

Garlan 1997; Feiler & Li 1998; Mens & D'Hondt 2000).

To preserve consistency after a transformation, the types and directions of connected

component ports for communication (OMG 2010b) should match (Feiler & Li 1998). In

the service-oriented paradigm, this means the type of service consumer is compatible

with the type of service provider (Meredith & Bjorg 2003). For instance, it does not

make sense to link two output ports in terms of data flow.

The communications protocol used by parts should also be compatible (Allen & Garlan

1997). Newly added parts should be state-synchronised with their hosting application

for it to continue to execute as expected and do so in a timely fashion (Aksit & Choukair

2003; Oreizy et al. 1998; Warren & Sommerville 1996; Zieba & van Sinderen 2006). For

example, when adding a database connection pool to an application, it should be

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 76

preloaded with database connection objects so that it is ready for use by the rest of the

application after the transformation. In service-oriented computing (Huhns & Singh

2005), an interaction among services, such as a business process, can be long-running

(Dustdar & Schreiner 2005). One way to track the state for a long-running interaction, is

to embed the state information into the fields of messages exchanged among the

services (Curbera et al. 2003). At a broader level, system invariants (e.g. no read

access allowed on a deleted file) should be unaffected by a transformation (Kramer &

Magee 1998; Léger et al. 2010; Oueichek & Rousset de Pina 1996).

4.1.1.3 Correctness

Correctness is the degree to which a transformation correctly and effectively applies the

associated and feasible dynamic change(s) to an application. A dynamic change is

feasible (Bennett & Rajlich 2000) when it is non-arbitrary and can be implemented

(Etzkorn 1992; Gupta et al. 1996; Wermelinger 1998). During and after a

transformation, the application should not behave incorrectly or unintentionally (Aksit &

Choukair 2003; Buckley et al. 2005; Coyle et al. 2010; Gregersen & Jørgensen 2009;

Mens & D'Hondt 2000; Segal & Frieder 1993; Zhang & Cheng 2006; Zieba & van

Sinderen 2006).

Correctness is also affected by temporality, referring to the time-related aspects of

models and expressions, such as temporal ordering of messages sent and received by

objects in object-oriented applications (Arapis 1995). In dynamic evolution, temporality

characterises the degree to which changes and transformations satisfy two conditions:

appropriate time and correct order. A transformation should be executed at an

appropriate time (Gupta et al. 1996; Segal & Frieder 1993) to minimise downtime

during critical business hours in case of transformation failure. A transformation should

also perform its steps (such as inserting, updating and removing parts and bindings) in

a correct order (Lim 1996; Segal 2002; Segal & Frieder 1993). Consider F and B, two

new components that are to be inserted into an online application. B provides business

services over the Internet while F regulates access to B. If B is inserted into the

application first, there is a small window during which B is potentially exposed to

Internet worms, for instance, without the protection of F. A better way is to insert F into

the application first, and B afterwards.

44.1.2 Infusibility of Change

Infusibility refers to the ease with which a change can be accommodated (i.e. infused)

into an application at runtime. High Infusibility reduces the complexity and the effort of

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 77

accommodating the change into an application. Efficiency, Locality, Maintainability and

Transparency characterise Infusibility.

4.1.2.1 Efficiency

Efficiency refers to the ease with which changes can be incorporated into a distributed

application in a timely and resource efficient manner while minimising disruptions to

services provided by the application. This means, a transformation can be executed in

a distributed application easily (Bennett & Rajlich 2000; Hicks & Nettles 2005; Wang et

al. 2002) and quickly (Agnew et al. 1994b; Bennett & Rajlich 2000; Gupta et al. 1996).

The transformation should also make efficient use of resources (e.g. available network

bandwidth) that it needs to execute (Agnew et al. 1994b). At the same time, the

transformation should cause minimal disruptions to services provided by the application

and to the parts using these services (Bloom & Day 1993; Chen et al. 2007; Chen

2002; Goudarzi & Kramer 1996; Hauptmann & Wasel 1996; Janssens et al. 2005;

Karamanolis & Magee 1996; Kramer & Magee 1990; Milazzo et al. 2005; Pfleeger &

Bohner 1990; Taentzer et al. 2000; Zimmermann & Drobnik 1994), and minimal

degradation to the performance of the application (Bidan et al. 1998; Bohner 1996;

Chen 2002; Gregersen & Jørgensen 2009; Hauptmann & Wasel 1996; Hicks & Nettles

2005; Oueichek & Rousset de Pina 1996; Segal & Frieder 1993).

4.1.2.2 Locality

Locality concerns the extent to which a change is explicitly confined within a logical

boundary of an application to reduce the effort of managing and implementing the

change and its associated transformation(s). One way to attain Locality is by

partitioning an application into regions and confining a dynamic change to a region

(Sun & Jiang 2009) (a.k.a. localisation (Medvidovic & Taylor 1997)). This means the

effect of alternation is kept in one region without affecting parts in other regions of the

distributed application (Evans & Dickman 1999; Fayad & Cline 1996; Gregersen &

Jørgensen 2009; Oreizy & Taylor 1998; Plášil et al. 1998). There are other benefits with

localisation. It makes the change more manageable in software development (Evans &

Dickman 1999), and easier to understand (Oreizy et al. 1998) and apply to a distributed

application (Bennett & Rajlich 2000).

4.1.2.3 Maintainability

In software and system engineering, maintainability is defined as “the ease with which a

software system or component can be modified to change or add capabilities, correct faults or

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 78

defects, improve performance or other attributes, or adapt to a changed environment” (ISO/IEC

2008). As such, a change should not make an application more difficult and costly to

modify (Bohner 1996; Hicks & Nettles 2005), or harder to test (Pfleeger & Bohner

1990). Proper and adequate specification of interactions among parts aids

maintainability which should not be compromised by changes. For example, clear

definitions of parts, or roles that parts play, in an interaction (or a workflow) help in

understanding the architectural composition of an application and the data flow among

its parts (Allen & Garlan 1997). Likewise, a clear and detailed interaction (e.g. in

diagrams or formal specifications) makes it easier to apply changes to the interaction.

For example, consider a common practice of drawing components and their

connections as boxes and lines joining the boxes (Allen & Garlan 1997). These lines

merely show which components are connected but say little about how they interact

and communicate; they could well be using an event-based messaging mechanism,

remote procedure calls, or something else. Without this detail, it is difficult to apply

changes to these interactions and accordingly to their application (Shaw et al. 1996).

4.1.2.4 Transparency

Transparency concerns the extent to which transformations, when being executed, are

unnoticeable to entities internal and external to a distributed application. Internal

entities include parts and bindings of the application unaffected by a transformation

(Etzkorn 1992; Swaminathan & Goldman 1996). Transparency ensures that the

“liveness” property (Shatz 1993) of the application is maintained or the “availability” of its

services is continuous (Cao et al. 2005). External entities include end users who should

not notice any transformation is taking place (Agnew et al. 1994b; Segal & Frieder

1993) and the application's operating environment which should be unaware of the

presence of transformation agents (McKinley et al. 2004; Segal & Frieder 1993).

Furthermore, transformation design and implementation should be transparent to the

application programmers (Chen 2002; Goudarzi & Kramer 1996; Gregersen &

Jørgensen 2009; Segal & Frieder 1993) so that they can focus on the structure and

functionality of the application without being concerned about dynamic evolution.

44.1.3 Changeability of Application

Changeability refers to the ease with which a distributed application can accommodate

dynamic changes (Cook et al. 2001). Changeability is embodied in the design of the

application to support dynamic evolution. Factors contributing to Changeability include

Configurability, Coordination, Flexibility and Separation of Concerns.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 79

4.1.3.1 Configurability

Configurability concerns the degree to which a distributed application is configured to

suit different change policies when implementing changes with transformations

(Gregersen & Jørgensen 2009). A change policy governs how dynamic changes are

accommodated into an application (Oreizy et al. 1998; Oreizy & Taylor 1998). A simple

policy for upgrading a component handling financial transactions would be to permit all

existing transactions to be terminated before the upgrade. A more graceful policy would

let this component continue processing existing transactions while the component that

is replacing it handles new transactions. Upon processing all its existing transactions,

the old component is removed. A policy in effect constrains the design for dynamic

evolution. However, the decision on using particular change policies is largely

determined by business requirements (Oreizy et al. 1998).

4.1.3.2 Coordination

Coordination concerns the ability of different nodes of a distributed application to

interact to deploy and install dynamic changes to remote nodes or logical partitions to

achieve the overall change effect (Chen et al. 2001; McKinley et al. 2004; Segal 2002;

Segal & Frieder 1993). This involves, for example, an orderly execution of

transformation commands: transmitting change units to appropriate regions; activating,

synchronising and deactivating changes; and recovery from transformation failure at a

remote node. In addition, the distributed application needs to be able to handle

unreliability in the communications network during a transformation (Segal & Frieder

1993) since a transformation command may not reach a target node for execution

because of intermittent loss of communication.

4.1.3.3 Flexibility

From the International Standard ISO/IEC 24765, Flexibility refers to “the ease with which

a system or component can be modified for use in applications or environments other than those

for which it was specifically designed” (cf. ISO/IEC 2008). Applied to dynamic evolution,

Flexibility concerns the ability of a distributed application to easily accommodate a

variety of dynamic changes(Fayad & Cline 1996; Gregersen & Jørgensen 2009; Pahl

2004; Segal & Frieder 1993), including addition, removal, update, merging and splitting

(elaborated in Section 5.1.2). Furthermore, any part of a flexible application should be

changeable without requiring shutdown and restart (Hicks & Nettles 2005).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 80

4.1.3.4 Loose Coupling

Loose coupling means parts composing an application have their own lifecycles and

runtime environments (Wang et al. 2006). Such an application facilitates dynamic

evolution; updating one part in such a structure has less effect on other parts (Wang et

al. 2006). To support dynamic evolution further, parts should be kept independent of

each other, such as parts not having knowledge of or containing static references to

each other as they evolve (Redmond & Cahill 2006).

4.1.3.5 Separation of Concerns

An intent of Separation of Concerns is to break a complex problem into distinct

concerns or aspects with as few overlapping features as possible, to let one address

particular aspects in a comprehensible manner (Dijkstra 1976). Applied to composition-

based applications, Separation of Concerns refers to the extent to which functionality is

separated from dynamic change, communication and security concerns to reduce the

complexity in managing dynamic evolution. For instance, the separation of functional

behaviour from structural reconfiguration (e.g. via transformations) makes it easier to

alter one without affecting the other (Andrade et al. 2002; Bidan et al. 1998; Etzkorn

1992; Kramer & Magee 1990; Milazzo et al. 2005; Oreizy et al. 1998; Oreizy & Taylor

1998; Zhang et al. 2005). This also enables designers to concentrate on designing an

application’s business logic without worrying about dynamic evolution issues during

application development. Likewise, the separation of functionality and communication

concerns allows each to evolve independently (Andrade et al. 2002; Goldman et al.

1995; Oreizy et al. 1999; Wang et al. 1999). This way, the communications protocol

used by parts can be replaced without affecting their functionality. Moreover, security

concerns should be separated from normal business logic. This allows customisation of

the security rules governing the use and behaviour of new and replacement parts

independent of their functionality (Grimm & Bershad 2001).

44.1.4 Robustness of Application

Robustness (a.k.a. Defensibility (OPFRO 2009)) is concerned with the degree to which

an application can withstand or reject invalid dynamic changes (cf. ISO/IEC 2008). A

robust application is less likely to stop working or crash in these circumstances. Fault

Tolerance, Recoverability, Reliability, Safety and Security contribute to Robustness of

an application.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 81

4.1.4.1 Fault Tolerance

Fault tolerance refers to the extent to which an application can tolerate faulty new

and/or replacement parts (Feiler & Li 1998; Hicks & Nettles 2005) since they can inject

errors into the application. Other times, the reliability of parts is not known before use

and the application must ignore their errors as they are added to the application (Voas

1998). An application may establish barriers to contain faulty new and replacement

parts to minimise their impact on itself (Gama & Donsez 2010).

4.1.4.2 Recoverability

The International Standard ISO/IEC 24765 defines Recoverability as “the restoration of a

system, program, database, or other system resource to a state in which it can perform required

functions” (ISO/IEC 2008). In the context of dynamic evolution, Recoverability concerns

the ability of an application to be restored to a state in which it can continue to perform

its functionality, after a failure caused by a transformation and/or its dynamic change(s)

(Robertson & Williams 2006). For example, if one part fails after a transformation, the

part should be replaced (Bianculli et al. 2007). Recovery was discussed earlier as an

instance of Coordination (cf. Section 4.1.3.2) but not considered as an explicit quality

factor. This definition makes Recoverability explicit and distinct from Coordination.

4.1.4.3 Reliability

Reliability refers to “the extent to which an application performs its intended function with the

required precision” (Pressman 2005). Applied to dynamic evolution, reliability refers to

the ability of an application to keep its intended functions from being compromised by

ongoing changes and transformations such that it behaves in an unexpected manner

(Cook & Dage 1999). Use of high quality parts can still make an application unreliable

(Voas 1998) if these parts are incompatible with the rest of the application, or they

demand a quality of service that cannot be met by the application. In addition, during a

transformation, a part to be replaced should not be removed until its replacement part

fully satisfies its roles (Cook & Dage 1999; Desnos et al. 2007; Gregersen & Jørgensen

2009).

4.1.4.4 Safety

Safety is defined as the ability of a distributed application and its parts to continue

operating in a safe manner during and after a transformation (McKinley et al. 2004). In

distributed computing, a safe system should prohibit its execution from violating any

safety property in a predefined set, such as preventing an intrusion detection system

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 82

from failing (Gärtner 1999). Any identifiable discrete event (e.g. a transformation) that

prohibits the application from executing safely needs to be detected and corrected

(Gärtner 1999). For safety-critical computing in particular, an unsafe system means that

its failure could endanger human life, lead to property damage, or cause environmental

damage (ISO/IEC 1998; Knight 2002). A component that offers a critical function should

remain unused if it is to be removed during a transformation (Kon & Campbell 2000)

since removing it might cause the function during execution to abort and the application

to crash.

4.1.4.5 Security

Security impacts dynamic evolution in two ways. Firstly, it affects the degree to which a

distributed application is protected from security threats as it undergoes dynamic

evolution. This involves confining new and replacement parts within a distributed

application such that they can only perform permitted operations without compromising

security (Lindqvist & Jonsson 1998). For instance, when a non-trusted component is

inserted into an application, the component must be prohibited from retrieving user

passwords. Conversely, the new and replacement parts secure themselves by

imposing restrictions on how the rest of the application can access their functionality

(Ben-Shaul et al. 2001). Notwithstanding the new and replacement parts, maintaining

security requires that transformation agents are protected from unauthorised access

(Horie et al. 1998; McKinley et al. 2004) in order to avoid unexpected and illegal

modifications.

Secondly, the security model of an application should be able to easily adapt to the

changing needs of the application. In this case, a security model should be divided into

security policies, which specify the security rules to be followed, and the associated

mechanism to govern and enforce the policies (Grimm & Bershad 2001). Furthermore,

updates to security policies for parts should be performed as parts are added to and

removed from the application (Grimm & Bershad 2001).

44.1.5 Existing Evaluation Frameworks

In this part of the quality factor identification, existing evaluation frameworks reviewed

in Section 2.3 were examined to determine if any quality factor from these frameworks

could be identified as meeting the selection criteria for quality factors (cf. steps 5 and 6,

Appendix A). Of the evaluation frameworks reviewed, only one quality factor meeting

the criteria was identified from Kung (1983). This factor corresponds to an existing

quality factor (i.e. Locality) identified from the literature, and hence there was no need

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 83

to extend the initial set of quality factors identified from the literature. The original

description of this factor is documented in Table 4.2.

Table 4.2 Potential quality factors/attributes selected from reviewed evaluation frameworks
Framework and Type Original Requirement Relevant Quality

Factor
Kung (1983) A model can achieve high changeability if it is llocalised.

It is localised if a few pieces of the model needs to be
modified when a change is required.

Locality

44.1.6 Summary and Discussion

Table 4.3 summarises the resulting dynamic evolution quality factors and their

associated quality attributes, with reference to the literature and evaluation frameworks

from which they were derived. A quality factor is expressed with one or more quality

attributes. Each quality attribute can be verified (e.g. “no missing functionality”). Note that

in Table 4.3 the attribute “assumptions and properties of a distributed application and its parts

met by a dynamic change” is associated with two quality factors: Consistency and

Completeness. Feiler and Li (1998) associate assumptions and properties with

Consistency whereas Allen and Galan (1997) link assumptions to Completeness.

Table 4.3 Origins of quality factors from literature and evaluation frameworks
Quality Categories, Factors and Attributes Relevant Literature and Evaluation

Framework
Soundness of CChange

 Completeness

No missing functionality after a transformation
Allen and Garlan (1997),
Medvidovic et al. (1999)

No missing parts after a transformation
Agnew et al. (1994b),

Allen and Garlan (1997)

No missing, illegal or broken bindings after a transformation
Aksit and Choukair (2003),

Feiler and Li (1998),
Hillman and Warren (2004)

(Also in Consistency) assumptions and properties of a
distributed application and its parts met by a dynamic change

Allen and Garlan (1997),
Feiler and Li (1998),

Mens and D'Hondt (2000)
 Consistency

Compatible bindings
Feiler and Li (1998),

Meredith and Bjorg (2003)
Compatible communications protocol among parts Allen and Garlan (1997)
All parts involved in a dynamic change identified before a
transformation

Warren and Sommerville (1996)

No progression towards an error state after a transformation

Kramer and Magee (1990),
Lee and Chang (2005),

Gregersen and Jørgensen (2009),
Sun and Jiang (2009),

Zimmermann and Drobnik (1994)

Synchronisation of application’s and parts’ states after a
transformation

Aksit and Choukair (2003),
Oreizy et al. (1998),

Warren and Sommerville (1996),
Zieba and van Sinderen (2006)

A reachable state attained after a transformation Gupta et al. (1996)
No critical procedures executed before a transformation Warren and Sommerville (1996)

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 84

Quality Categories, Factors and Attributes Relevant Literature and Evaluation
Framework

No pending messages, interactions or transactions before a
transformation

Adamek and Plasil (2005) ,
Bidan et al.(1998),

Chen (2002),
Kramer and Magee (1990),

Warren and Sommerville (1996),
Wang et al. (2006),

Li (2009)

System invariants preserved from a transformation

Kramer and Magee (1998),
Léger et al. (2010),

Oueichek and Rousset de Pina
(1996)

Adequate resources and support for new and replacement
parts

Ben-Shaul et al. (2001),
Feiler and Li (1998)

(Also in Completeness) assumptions and properties of a
distributed application and its parts met by a dynamic change

Allen and Garlan (1997),
Feiler and Li (1998),

Mens and D'Hondt (2000)
 Correctness

Non-arbitrary and admissible dynamic changes

Bennett and Rajlich (2000),
Gupta et al. (1996),

Etzkorn (1992),
Wermelinger (1998)

No unintentional behaviour during and after a transformation

Aksit and Choukair (2003),
Buckley et al. (2005),
Coyle et al. (2010),

Gregersen and Jørgensen (2009),
Mens and D'Hondt (2000),
Segal and Frieder (1993),
Zhang and Cheng (2006),

Zieba and van Sinderen (2006)

Correct ordering of transformations
Segal (2002),
Lim (1996),

Segal and Frieder (1993)

Transformations at a right time Gupta et al. (1996),
Segal and Frieder (1993)

IInfusibility of Change
 Efficiency

Easily executed transformations Bennett and Rajlich (2000),
Hicks and Nettles (2005),

Wang et al. (2002)
Quickly executed transformations Agnew et al. (1994b),

Bennett and Rajlich (2000),
Gupta et al. (1996)

Resource efficient transformations Agnew et al. (1994b),
Minimal disruptions to application functions and their users
during a transformation

Bloom and Day (1993),
Chen (2002),

Chen et al. (2007),
Janssens et al. (2005),

Goudarzi and Kramer (1996),
Hauptmann and Wasel (1996),

Karamanolis and Magee (1996),
Kramer and Magee (1990),

Milazzo et al.(2005),
Pfleeger and Bohner (1990),

Taentzer et al. (2000),
Zimmermann and Drobnik (1994)

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 85

Quality Categories, Factors and Attributes Relevant Literature and Evaluation
Framework

Minimal degradation to application performance during and
after a transformation

Bidan et al. (1998),
Bohner (1996),
Chen (2002),

Gregersen and Jørgensen (2009),
Hauptmann and Wasel (1996),

Hicks and Nettles (2005),
Oueichek and Rousset de Pina

(1996),
Segal and Frieder (1993)

 Locality

Application partitioning and change localisation to partitions

Evans and Dickman (1999),
Fayad and Cline (1996),

Gregersen and Jørgensen (2009),
Kung (1983) (framework),
Oreizy and Taylor (1998),

Plášil et al. (1998),
Sun & Jiang (2009)

 Maintainability
All parts clearly defined in interaction (or workflow)
specifications

Allen and Garlan (1997)

No degradation in cost and ease of modifications Bohner (1996),
Hicks and Nettles (2005)

No reduction in testability Pfleeger and Bohner (1990)
Clear and detailed interactions Shaw et al. (1996)

 Transparency

Transformations hidden from end users Agnew et al. (1994b),
Segal and Frieder (1993)

Transformation design and implementation hidden from
application programmers

Chen (2002),
Goudarzi and Kramer (1996),

Segal and Frieder (1993),
Gregersen and Jørgensen (2009)

Transformations hidden from parts unaffected by the
transformations

Etzkorn (1992),
Swaminathan and Goldman (1996)

Transformation agents hidden from operating environment McKinley et al. (2004),
Segal and Frieder (1993)

CChangeability oof Application
 + Configurability

+ Distributed application configurable to different policies for
dynamic changes and transformations

Gregersen and Jørgensen (2009)

 Coordination

Transformations coordinated among multiple
nodes/organisations

Chen et al. (2001),
McKinley et al. (2004),

Segal (2002),
Segal and Frieder (1993)

Transformation agents tolerant of network unreliability during
a transformation

Segal and Frieder (1993)

 + Flexibility

+ Distributed application accommodating a variety of runtime
changes (e.g. add, remove, update, merge, split)

Fayad and Cline (1996),
Gregersen and Jørgensen (2009),

Pahl (2004),
Segal and Frieder (1993)

+ Any part of a distributed application to be changeable at
runtime

Hicks and Nettles (2005)

 + Loose Coupling
+ High level of independence between parts Redmond and Cahill (2006)
+ Parts having their own lifecycles and runtime environments Wang et al. (2006)

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 86

Quality Categories, Factors and Attributes Relevant Literature and Evaluation
Framework

 Separation of Concerns

Separating dynamic change concerns from functionality
concerns

Andrade et al. (2002),
Bidan et al. (1998),

Etzkorn (1992),
Kramer and Magee (1990),

Milazzo et al.(2005),
Oreizy et al. (1998),

Oreizy and Taylor (1998),
Zhang et al. (2005)

Separating communication concerns from functionality
concerns

Andrade et al. (2002),
Goldman et al. (1995),

Oreizy et al. (1999),
Wang et al. (1999)

Separating security support from functionality concerns Grimm and Bershad (2001)
RRobustness of Application
 Fault Tolerance

High tolerance of faulty new and/or replacement parts
Feiler and Li (1998),

Hicks and Nettles (2005),
Voas (1998)

+ Barriers established to contain potentially faulty new and
replacement parts

Gama and Donsez (2010)

 + Recoverability
+ Restoration of an application to a state to continue to
perform its functionality, after a failure caused by a
transformation and/or its dynamic change(s)

Robertson and Williams (2006),
Bianculli et al. (2007)

 Reliability
No compromise on intended functionality after a
transformation

Cook and Dage (1999)

Replacement parts fully satisfying their roles
Cook and Dage (1999),

Desnos et al. (2007),
Gregersen and Jørgensen (2009)

 Safety
Distributed application and its parts operating safely during
and after a transformation

McKinley et al. (2004)

 Security

Transformation agents secured from unauthorised access Horie et al. (1998),
McKinley et al. (2004)

No security compromise by new and replacement parts after
a transformation

Lindqvist and Jonsson (1998)

Access to new and replacement parts restricted after a
transformation

Ben-Shaul et al. (2001)

Dynamically updated security policy Grimm and Bershad (2001)
Separating security policy from security enforcement Grimm and Bershad (2001)

Notes:

1. All references to evaluation frameworks are explicitly labelled with “framework”.

2. Quality factors/attributes labelled with “+” were not included in the survey which was commenced
in 2006 (cf. Section 4.2).

The quality factors and their attribute descriptions were subsequently reviewed for

completeness and clarity, and refined using the pilot test for a survey and feedback

from survey respondents (see Section 4.2).

Despite their orientation towards composition-based applications, the proposed factors

should also be useful for other (emerging) application types that increasingly need

changes to be performed without application shutdown. For instance, dynamic

evolution is a precursor to successful dynamic adaptation (Andrikopoulos et al. 2008).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 87

Adaptive software development seeks to improve an application’s fit to its environment

by changing its parameters, components and composition (Aksit & Choukair 2003;

McKinley et al. 2004). However, there are likely to be environment specific quality

factors suitable for adaptive software but not covered in this research. For instance,

Oreizy et al. (1999) suggest that an autonomous and self-adaptive system’s ability to

monitor environmental fluctuations and control its adaptation should be considered a

quality factor for dynamic adaptation.

Quality factors specific to a particular type of composition-based distributed application

were encountered but excluded from consideration. For instance, in the component-

based approach, Dependency concerns the extent to which relationships among

components are clearly defined with sufficient detail to facilitate applying changes to

the application. A reason for the explicitness of the identification and management of

dependencies (Dellarocas 1997) is that changes often result in adjustments to

dependencies or the relationship among modules and nodes of a distributed

application, as well as its operating environment. With explicit dependency information

between a component and its peers, the component can configure itself or be

configured by transformations to adapt to the evolving distributed application and its

environment (Kon & Campbell 2000). In contrast, the SOA paradigm contends that

services should be independent and self-contained modules, offering business

functionality and reusability in isolation from other services (Mak et al. 2005; Pasley

2005; Yu et al. 2005). Accordingly, Dependency is not as important in SOA-based

applications. Another example is Interoperability, an important characteristic in an SOA

environment. The International Standard ISO/IEC 24765 defines Interoperability as “the

ability of two or more systems or components to exchange information and to use the

information that has been exchanged” (ISO/IEC 2008). More specifically, as elements in an

SOA-based application evolve, they should not compromise the application’s capability

for Interoperability among its services (Ponnekanti & Fox 2004). Interoperability in SOA

implementations is greatly facilitated by existing standards and guidelines such as

those offered by the Web-Service Interoperability Organisation (WS-I 2006).

Comparatively speaking, there is less demand for interoperability in component-based

than in SOA-based applications because of the vendor lock-in (e.g. Sun’s Enterprise

Java Beans, CORBA™9 components and Microsoft .NET framework™) and proprietary

9 “CORBA™” stands for Common Object Request Broker Architecture, a platform-independent
specification and model for building distributed object applications in a distributed environment.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 88

technologies used in component implementations (Elfatatry 2007). In component-based

applications, adapters or wrappers are often used to plug different components into an

application to facilitate interoperability at the expense of higher maintenance and

evolution costs (Brereton & Budgen 2000). Alternatively, the types of components used

in an application can be restricted which may reduce the potential for component reuse

(Brereton & Budgen 2000). On a different note, composition-based distributed

applications are increasingly built using third party products, and different parts of

applications may increasingly be developed and serviced by different vendors/teams.

An analysis of the quality of these types of parts in influencing the ability of an

application to evolve is beyond the scope of this research.

Two other factors were considered: Backwards-compatibility and Portability. Studies

advocate that, as a part is upgraded, its replacement should be backwards-compatible

with the original (e.g. Kaminski et al. 2006; Tsai et al. 2006; Wang et al. 2006). In this

research, Backwards Compatibility is regarded as a functional concern rather than a

quality factor in dynamic evolution, since Papazoglou and van den Huevel (2006)

observe that both backwards-compatible and non-backwards-compatible changes are

valid in dynamic evolution. Moreover, as an application evolves over an extended

period of time, old functionality tends to change and lessens the need for Backwards-

Compatibility. The International Standard ISO/IEC 24765 defines Portability as “the ease

with which a system or component can be transferred from one hardware or software

environment to another” (ISO/IEC 2008). Portability is a concern to a variety of application

types and especially important for those that are intended to run on multiple platforms

and environments, whether or not they are required to evolve. Portability is thus not

included in the set of quality factors specific to dynamic evolution.

44.2 STEP 2: WEB SURVEY ASSESSMENT
This step aimed to assess and extend the set of quality factors synthesised in Step 1

using a web-based survey (Yun & Trumbo 2000) of experienced software development

practitioners and researchers. Specifically, the survey asked each respondent to

provide the following information:

 Rating on quality attributes

Each respondent was asked to rate the level of importance of the attributes of

each quality factor on a 0-100 point quasi-continuous scale (0 for not-important-

at-all, 100 for extremely important) with a 50 point score representing a neutral

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 89

rating (i.e. neither important nor not-important) 10 . As the survey was

commenced in 2006, only factors identified up to this point were included in the

survey. The ratings were used to calculate the perceived importance of the

quality factors (see Section 4.2.4).

 Additional comments

Each respondent was asked to provide feedback/comments on the survey, and

suggestions for additional quality issues for consideration. The latter assessed

the completeness of the quality factors/attributes. Any additional quality issues

were then subject to an expert review (see Section 4.2.3).

Moreover, the survey asked respondents about the following to gain an insight into

application development and existing methodologies used in their organisations:

 General information about the software development practices in each

respondent’s organisation

Each respondent was asked about the software development methodologies

used and any relevant certification/accreditation(s) held (e.g. ISO 9001) in

his/her organisation. The inclusion of the former was to survey candidate

methodologies in use for consideration in Step 3 (Section 4.3), and for

evaluation of methodological support for the quality factors (Section 4.4).

 Information about projects on distributed applications in each respondent's

organisation (see Section 4.2.5).

Follow-up interviews via email correspondence and/or face-to-face meetings were

conducted with consenting respondents to clarify response data and any

feedback/comment raised. To improve the consistency and reduce the vagueness of

the survey, the definition of terms specific to dynamic evolution and component-based

applications (transformation, component etc.) was provided in the first section of the

10 A quasi-continuous rating scale (0-100) is an improvement over a Likert scale in that it
provides data of a finer level of granularity than a Likert scale (Chimi & Russell 2009). It
increases the likelihood of spreading the collected data more evenly than a Likert scale,
reducing errors in data analysis (Ladd 2009; Wu et al. 2005). It is usually implemented as a
visual slide bar on a graphical user interface, although it can also be implemented on paper
instruments (Chimi & Russell 2009). In this survey, a slide bar was implemented on the survey
web site. To assign a rating to a quality attribute, a respondent simply drags the bar’s handle to
a desired position instead of typing a value for it. The bar positions also provide visual cues to a
respondent on the relative importance of their respective quality attributes (cf. Appendix
E.1.2.1).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 90

survey. This information helped respondents to comprehend and scope the meaning of

the rating questions. Abstract composition-based terms (i.e. parts and bindings) were

substituted with component-based terms (i.e. components and connectors) for reasons

of increased tangibility and relevance to real-world technologies in use.

44.2.1 Pilot Tests

The paper version of the survey was pilot tested by two research peers and four

experienced practitioners. Discussions on the content, structure, wording and clarity of

the rating questions were held with reviewers afterwards. Feedback and comments

were reviewed and the content was revised accordingly to improve the quality of the

survey and the definitions of the quality attributes. The revised paper survey was then

implemented on a web site where a final on-line trial run was conducted by two

research peers. Revisions reduced the average time to complete the survey from 40-50

minutes to 30-40 minutes. The final version can be found in Appendix E.1.

4.2.2 Data Collection

Candidates were recruited via email invitations to voluntarily participate in the web

survey. The recruitment targeted people with adequate experience and/or knowledge in

component-based technologies. In particular, the invitations were emailed to contacts

from the industry and academia, some known to the researcher, plus public email alias

groups that covered related topics (e.g. distributed system development). The email

alias groups were included since their subscribers should have a genuine interest and

familiarity in areas relevant to dynamic evolution. On the other hand, obtaining

responses from a targeted group of people, a.k.a. purposeful sampling (Patton 2002),

improves the credibility and authenticity of the responses collected at the expense of

bringing selection bias into the responses. A friendly email reminder was sent to

candidates who had not completed the web survey, close to the end-date of the survey

period. All responses were further screened with respect to the respondent profile data

to ensure respondents had sufficient experience in software development

methodologies (minimum of two years), application development (minimum of three

years), and distributed application development (minimum of one year) to contribute to

the survey.

Invitations were sent to over one hundred and sixty email addresses and eight email

aliases, of which forty valid responses were collected. With respect to demography,

most respondents lived in Oceania (70%), whilst the others were from Europe (7.5%),

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 91

North America (15%) and Asia (7.5%). Of the responses collected, thirty-eight (95%)

were recruited via direct email invitations (vs. two via invitations sent to email aliases)

of which 74% were known to the researcher.

44.2.3 Additional Dynamic Evolution Quality Factors/Attributes

In addition to the quality attributes presented in the survey, the respondents suggested

several issues for consideration. To improve credibility of the issues suggested by

respondents and determine whether they should be included in the set, a two-step

examination was performed. First, issues not satisfying the criteria (Appendix A) were

eliminated from further analysis, leaving a total of six potential issues (left of Table 4.4).

Table 4.4 Analysis results of potential quality issues suggested by respondents

Suggested Issue Analysis Expert 1’s
Comment

Expert 2’s
Comment

Inclusion
to the Set

Integrity (1) The International Standard ISO/IEC
24765 defines integrity as “the
degree to which a system or
component prevents unauthorized
access to, or modification of,
computer programs or data”. With
respect to dynamic evolution, the
computer programme aspect is
covered by Security. The data
aspect requires expert review.

should-be-
considered
(Very important)

should-be-
excluded
(Too complex and
costly to address)

No

Robustness (1) Already included as a quality factor
which was not shown to survey
respondents

N/A N/A Already
included

Error handling
and reporting (1)

Out of scope - considered as a
solution to Recoverability and Fault
Tolerance and thus discarded.

N/A N/A No

No unintentional
behaviour when
faulty parts are
present (1)

Unintentional behaviour of an
application may be caused by faulty
parts during and after a
transformation.

should-be-excluded
(Improbable to
achieve)

should-be-
excluded
(Too complex to
detect and
implement)

No

Deterministic
and repeatable
transformations
(1)

Closely related to two of
Correctness’s attributes “non-
arbitrary and admissible dynamic
changes” and “no unintentional
behaviour during and after a
transformation”.

should-be-
considered
(Very important,
essential for
transformations to
have known
outcomes)

should-be-
excluded
(Too complex and
costly to address)

No

Recovery (2) Recovering an individual part to
continue to function after a failure
[caused by a transformation and/or
its dynamic change(s)]. (see also
“Recoverability”, Table 4.5)

should-be-
considered
(Very important and
significance of
recovery analogous
to rolling back a
transaction in a
database system)

should-be-
considered
(Error recovery
an extremely
important area)

Yes

Note: The number enclosed in parenthesis following each issue represents the number of respondent(s)
who raised the issue:

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 92

In the second step, a panel of two experts, one from academia and one from the

industry, reviewed the potential issues using a Delphi-type method. The experts firstly

independently assessed if each potential issue should be considered for dynamic

evolution, and provided a justification for his/her recommendation. Then, one expert at

a time was given an opportunity to revise his/her responses on potential issues that had

been assessed differently by the other expert. For inclusion in the set of qualify factors

after Step 1, a potential issue needed to be assessed by both experts as “should-be-

considered” for dynamic evolution. Expert comments and the outcomes on selecting

which issues to be incorporated into the set of quality factors are shown in Table 4.4.

The same two-step approach was repeated for additional quality attributes found from

articles and evaluation frameworks that were published after the survey commenced in

2006 (cf. Section 4.1.6). The analysis results of these new quality factors/attributes are

documented in Table 4.5.

Table 4.5 Analysis results of additional quality attributes synthesised from the literature (cf. Table 4.3)

Quality Attribute Expert 1’s Comment Expert 2’s Comment Inclusion
to the Set

Distributed application
configurable to different
policies for dynamic changes
and transformations, e.g.
“abort all business
transactions” vs. “wait until all
business transactions finish”
(cf. Configurability, Section
4.1.3.1)

should-be-excluded
(Moderately important, making
an application much more
powerful and flexible in
supporting dynamic evolution)

should-be-considered
(Common and very important.
With respect to the policy
examples, it needs to be very
clear on how to handle
existing transactions during a
transformation. It is good to
have both policies available to
suit different needs if such a
transformation is often
performed.)

No

Barriers established to contain
potentially faulty new and
replacement parts
(cf. Fault Tolerance, Section
4.1.4.1)

should-be-considered
(Very important since overall
application integrity could be
compromised because of
faults)

should-be-considered
(Extremely important and
common in runtime
adaptation)

YYes

Any part of a distributed
application to be changeable
at runtime
(cf. Flexibility, Section 4.1.3.3)

should-be-excluded
(Dependent on requirements
but adding unnecessary
complexity into the design)

should-be-excluded
(Not important at all, often
impossible to design such an
application without incurring
prohibitive complexity and
performance cost. A more
common practice is to predict
the likely changed parts and
optimise the design to cater
just for adapting those specific
parts at runtime.)

No

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 93

Quality Attribute Expert 1’s Comment Expert 2’s Comment Inclusion
to the Set

Distributed application
accommodating a variety of
runtime changes (e.g. add,
remove, update, merge, split)
(cf. Flexibility, Section 4.1.3.3)

should-be-excluded
(Same as the above)

should-be-excluded
(Again, the design should
anticipate potential needs
rather than “over engineer” to
support all types of changes,
even those with small chance
of being needed. There is
often a trade-off between
cost/complexity/performance
and flexibility.)

No

Parts having their own
lifecycles and runtime
environments
(cf. Loose Coupling, Section
4.1.3.4)

should-be-considered
(Very important, enforcing
loose coupling and robustness
between components and
services)

should-be-considered
(Common, very important and
desired property for
components/services in
components-based software
engineering)

YYes

High level of independence
between parts (cf. Loose
Coupling, Section 4.1.3.4)

should-be-considered
(Same as above)

should-be-considered
(Common, very important to
decouple
components/services from
one another)

YYes

Restoration of an application
to a state to continue to
perform its functionality, after
a failure caused by a
transformation and/or its
dynamic change(s) (cf.
Recoverability, Section
4.1.4.2) (see also “Recovery”
in Table 4.4)

should-be-considered
(Very important and
significance of recovery
analogous to rolling back a
transaction in a database
system)

should-be-considered
(Error recovery an extremely
important area)

Yes

The expert review led to the addition of the following quality attributes/issues (in italic

font) as incorporated in the revised set of quality factors (all summarised in Table 4.3):

 Barriers established to contain potentially faulty new and replacement parts

(from Table 4.5)

This attribute originates from the literature published after the survey

commenced in 2006 and is incorporated into Fault Tolerance as a new attribute

(cf. Table 4.3).

 Parts having their own lifecycles and runtime environments (from Table 4.5)

This attribute originates from the literature published after the survey

commenced in 2006 (cf. Table 4.3). A new quality factor called Loose Coupling

is defined for it according to the original literature (cf. Section 4.1.3.4).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 94

 Restoration of an application and its parts to a state to continue to perform their

functionality, after a failure caused by a transformation and/or dynamic

change(s)

This attribute is combined from two closely related statements “recovering an

individual part to continue to function after a failure [caused by a transformation and/or

its dynamic change(s)]” (from “recovery” in Table 4.4) and “restoration of an

application to a state to continue to perform its functionality, after a failure caused by a

transformation and/or dynamic change(s)” (from Table 4.5) The first statement was

suggested by two respondents in the survey whereas the second one originates

from the literature published after the survey commenced in 2006 (cf. Section

4.1.4.2). This attribute defines a new quality factor called Recoverability.

Quality issues and attributes rejected by experts in this step are excluded from further

consideration in the revised set even if they are identified at a later stage in the analysis

(i.e. extension of quality factors from methodologies in Step 3).

44.2.4 Importance Rating of Dynamic Evolution Quality Factors

The importance rating for each quality factor was derived from the scores of its

associated attribute rating questions using Partial Least Squares11. A Wilcoxon one-

sample signed-rank test12 was applied to the data to check if they were from a

distribution away from a known median of 50 being the mid-point between “not-

important-at-all” (0) and “extremely-important” (100). Note that the analysis was limited to

the quality attributes synthesised from articles and evaluation frameworks published

before 2006 (cf. Table 4.3). As reported in Table 4.3, there are in fact new quality

attributes found from articles and evaluation frameworks published between 2006 and

2010. Thus, no data could be collected for these new attributes in the survey and they

were excluded from the importance analysis in this section. However, they were

11 Partial Least Squares (PLS) is a multivariate analysis method for modelling the relationships
between a latent variable (e.g. quality factor) and its indicators (e.g. quality attributes) (Chin et
al. 1996; Wold et al. 2001). It allows each indicator to vary in how much it contributes to the
composite score of the latent variable, rather than assuming that all indicators have equal
weights on the latter. The quality factor importance rating was calculated as follows. The weight
of each attribute on the factor was first estimated with the scores using PLS and then
normalised. Next, the importance rating was calculated by multiplying the weight with each
associated attribute score and adding all the weighted attribute scores for the factor.
12 The Wilcoxon one-sample signed-rank test is a non-parametric method which tests whether
the median of a population is significantly different from a specified value (e.g. midpoint) (Arnold
1965; Wilcoxon 1945). The test is based on rankings drawn from population samples.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 95

assessed in an expert review, to be discussed in Section 4.2.3.

The signed-rank test results together with median, minimum, maximum and Cronbach’s

alpha (α) scores13 are shown in Table 4.6. It indicates that all the quality factors

appeared to be significantly different (pwsr=0.000) from the mid-point. Note also that for

each quality factor, the sum of positive signed-ranks (s+) was much greater than the

sum of negative signed-ranks (s-), impling that the factor was perceived as important.

Table 4.6 Descriptive statistics and results of Wilcoxon one-sample signed-rank test on quality factors

Category Quality Factor Median Min Max s+ s- zwsr pwsr
Cronbach’s

alpha (α)

Soundness of
Change

Completeness 85.7 41.6 100.0 815 5 5.44 0.000 0.816

Consistency 81.0 58.1 100.0 820 0 5.51 0.000 0.665

Correctness 78.5 44.3 100.0 817 3 5.47 0.000 0.660

Infusibility of
Change

Efficiency 66.3 18.0 94.1 726 94 4.25 0.000 0.785

Locality 81.0 40.0 100.0 809 11 5.36 0.000 N/A1

Maintainability 73.5 25.0 97.8 765 55 4.77 0.000 0.761

Transparency 77.0 30.4 98.1 795 25 5.17 0.000 0.706

Changeability
of Application

Coordination 75.8 21.0 100.0 799 21 5.23 0.000 0.703

Separation of
Concerns 78.4 43.1 100.0 816 4 5.46

0.000 0.803

Robustness of
Application

Fault Tolerance 83.0 25.0 100.0 807 13 5.34 0.000 N/A1

Reliability 90.0 45.0 100.0 817 3 5.47 0.000 0.605

Safety 90.0 50.0 100.0 820 0 5.51 0.000 N/A1

Security 77.5 49.6 100.0 817 3 5.47 0.000 0.786

Note:

1. Cronbach’s alpha is not applicable to quality factors having only one attribute (i.e. one rating question).

DDifference in and grouping of perceived level of importance

Which quality factors were perceived to be more important were determined by

examining the ranking order of the quality factors and the statistical grouping of

similarly ranked factors which were not different among themselves. The ranking order

is indicative of how important one factor is compared with another, and was determined

by calculating and ordering the mean rank scores of the quality factors.

The statistical grouping of quality factors was determined by an analysis of difference

among the factors in two steps. In the first step, a Friedman test14 was performed to

13 Cronbach’s alpha checks whether independent variables (e.g. quality attributes) are closely
related when a dependent variable (e.g. quality factor) is derived from them (Cronbach 1951).
14 The Friedman test is a non-parametric method to check whether there is any difference
among a set of independent variables based on their samples (Friedman 1937).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 96

detect if there was any difference between the various factors (n=40, chi-square=102,

df=12, p=0.000). Given the positive result, the second step involving the use of the

Wilcoxon matched-pair signed-rank test15 was carried out to identify pairs of factors

with significant differences. The results of the test, together with the mean rank scores

of the perceived importance of the quality factors, are shown in Table 4.7. For

convenience, pairs with significant difference (p<0.05) are highlighted in their

corresponding cells in Table 4.7 (e.g. Completeness vs. Safety).

Table 4.7 Results of Wilcoxon signed-rank tests for matched pairs on quality factors

R
el

ia
bi

lit
y

S
af

et
y

C
om

pl
et

en
es

s

C
oo

rd
in

at
io

n

C
on

si
st

en
cy

F
au

lt
T

ol
er

an
ce

C
or

re
ct

ne
ss

S
ec

ur
ity

Lo
ca

lit
y

S
ep

ar
at

io
n

of

C
on

ce
rn

s

T
ra

ns
pa

re
nc

y

M
ai

nt
ai

na
bi

lit
y

E
ffi

ci
en

cy

 mean rank significance level (p)

Reliability 9.99 0.75 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Safety 9.93 0.75 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Completeness 7.96 0.03 0.01 0.66 0.82 0.77 0.06 0.13 0.08 0.13 0.09 0.00 0.00

Coordination 7.39 0.00 0.00 0.66 0.45 0.44 0.72 0.53 0.43 0.75 0.28 0.01 0.00

Consistency 7.34 0.00 0.00 0.82 0.45 0.90 0.24 0.12 0.16 0.07 0.05 0.00 0.00

Fault Tolerance 7.28 0.03 0.01 0.77 0.44 0.90 0.54 0.32 0.22 0.31 0.09 0.02 0.00

Correctness 7.09 0.00 0.00 0.06 0.72 0.24 0.54 0.28 0.26 0.26 0.30 0.00 0.00

Security 6.73 0.00 0.00 0.13 0.53 0.12 0.32 0.28 0.79 0.79 0.21 0.01 0.00

Locality 6.70 0.00 0.00 0.08 0.43 0.16 0.22 0.26 0.79 0.79 0.92 0.17 0.00

Separation of
Concerns 6.49 0.00 0.00 0.13 0.75 0.07 0.31 0.26 0.79 0.79 0.32 0.00 0.00

Transparency 6.00 0.00 0.00 0.09 0.28 0.05 0.09 0.30 0.21 0.92 0.32 0.11 0.00

Maintainability 4.68 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.17 0.00 0.11 0.06

Efficiency 3.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Note: Each highlighted cell represents a significant difference (p<0.05) between the two quality factors in
its corresponding row and column.

Of particular interest to this research is the grouping formed by Reliability and Safety,

which were perceived to be significantly different from all other quality factors except

between themselves (p=0.75) (cf. Table 4.7). Furthermore, they had the highest mean

15 The Wilcoxon matched-pair signed-rank test is a non-parametric method to test if two
populations of the same size have different medians based on their ranked data (Wilcoxon
1945).

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 97

rank scores (9.99 and 9.93). This suggests that they were perceived as the most

important quality factors (both under Robustness of Application). No distinct sub-

grouping can be identified from the rest of the factors. Nevertheless, Efficiency was

perceived to be significantly different from all other quality factors except Maintainability

(p=0.06) and had the lowest mean rank score.

As reported in Section 4.2.3, there are quality attributes in addition to those rated by

respondents in the survey, leading to an enhancement of the existing factor Fault

Tolerance and two new factors: Loose Coupling and Recoverability. To assess their

importance relative to the factors already analysed in Table 4.7, the experts were asked

to update the ranking order (cf. Table 4.7) by incorporating these three factors into the

ranking order in two steps. First, the experts independently incorporated the new quality

factors into the ranking order. Then, their differences were discussed with each expert

and progressively reconciled in a new ranking order which was agreed by both experts.

Figure 4.4 shows (a) the original ranking order calculated from the survey results, and

(b) the enhanced ranking order with these three factors as jointly agreed by the experts.

Reliability

Safety

Completeness

Coordination

Consistency

Fault Tolerance (surveyed)

Correctness

Security

Locality

Separation of Concerns

Transparency

Maintainability

Efficiency

(a) original ranking from survey

Reliability

Safety

Completeness

Coordination

Consistency

Correctness

Fault Tolerance (extended)

Security

Locality

Separation of Concerns

Loose Coupling

Transparency

Maintainability

Efficiency

(b) enhanced ranking by both experts

Fault Tolerance
(extended) Recoverability

source: developed for this research

Figure 4.4 Quality factor importance rankings before and after expert review

While the experts individually assessed the three factors, they rated Loose Coupling

similarly. For Fault Tolerance, however, the experts agreed to lower its rating slightly,

from above Correctness (Figure 4.4(a)) to below Correctness (Figure 4.4(b)). One

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 98

expert explained that, with support from the other expert, if transformations and

dynamic changes appear to be correct, they would lessen the need for Fault Tolerance.

Hence Fault Tolerance could be treated as less important than Correctness. Lastly, the

experts contended that since both Recoverability and Fault Tolerance concern fault

treatment, they rated Recoverability as important as Fault Tolerance.

In the survey feedback, two respondents commented that contextual issues would

influence their perception on dynamic evolution quality factors and hence their

importance rankings would be affected (e.g. Safety being highly important to safety-

critical applications). While this research acknowledges contextual issues, they are not

in scope for this research (Section 1.5). Nonetheless, this research aims to be generic

rather than being specific to a particular context.

44.2.5 Software Practice and Project Information

All respondents reported the use of software development methodologies within their

organisations. The majority used in-house methodologies (55%) while one quarter used

IBM Rational Unified Process (RUP) (cf. Section 2.4.5) as-is or with some extensions.

One organisation adopting RUP supplemented it with the Extreme Programming

methodology (Beck & Andres 2005) and another with PRINCE2 for project

management (Office of Government Commerce 2005b). Another organisation

supplemented RUP with the Reference Model of Open Distributed Processing (RM-

ODP) (ISO/IEC 1995), for specifying architectural representations using a reference

model, and with significant in-house enhancements. In addition, half the respondents

reported their organisations had gained an internationally recognised accreditation.

International Standard Organisation accreditations dominated, particularly ISO 9001

(60%). Five organisations earned the CMMI (Capability Maturity Model for Integration)

levelled certification, with one attaining level 5.

About one hundred distributed application development projects, in eighteen industries,

were reported by respondents. The dominant industry was telecommunication (27%)

with other major segments being finance (14%), government (10%) and IT

product/services (10%). There were some interesting comments about these projects.

Thirteen percent of the applications utilised dynamic evolution in which changes were

activated on-the-fly without requiring application restart. The other eighty-seven percent

of the applications used the manual restart option to activate new changes. With regard

to the frequency of releases, many applications required subsequent releases after

their initial/first deployment with the number of releases being clustered in the 2-to-6

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 99

band. Furthermore, a minority (18%) of the applications having subsequent releases

did not require application restart when releases were deployed. In one extreme case,

a value of 99 was reported by a respondent, who mentioned at a follow-up meeting,

that the application was indeed undergoing a new release every week! The interval

between releases ranged from less than one month to three years.

44.3 STEP 3: DYNAMIC EVOLUTION QUALITY FACTORS
EXTENSION FROM METHODOLOGICAL PERSPECTIVE

This step was to extend (if necessary) the set of dynamic evolution quality factors after

Step 2 by examining relevant software development methodologies. Any additional

quality factors were included in the set.

Of the methodologies used by the organisations for which respondents surveyed

worked, the documentation for RUP, XP, RM-ODP and PRINCE2 was available to the

researcher and thus checked for incorporation into the examination. RUP was included

in the examination since it meets the selected criteria stated in Section 2.4. XP was

rejected as its activities are independent of dynamic evolution and the kind of

application being developed. So was PRINCE2 which is project management specific.

Although RM-ODP observes small aspects of dynamic changes (e.g. the presence of

dynamic selection of objects and runtime bindings for objects), it was not included in

the examination since it is not a methodology per se and its limited support of

composition and evolution is restricted to objects at design time. In addition to RUP, a

number of development methodologies (reviewed in Section 2.4) met the selection

criteria and were included in the evaluation.

Based on the same selection criteria for quality factors specified in steps 5 and 6 of

Appendix A, potential and relevant quality factors were identified from the selected

methodologies (Table 4.8). Factors rejected by the experts in Step 2 were excluded.

The identification was conducted without regard to the classification of factors adopted

previously in this research to ensure that the results of this step were not unduly

influenced by prior thinking. Each factor identified was then assessed to determine if it

mapped to one or more factors from the extended set of quality factors from Step 2. If it

did, the equivalent factor(s) from the extended set was documented in the rightmost

column of Table 4.8. For instance, Select Perspective’s notion of Maintainability maps

to the attributes of Efficiency and Maintainability from the extended set.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 100

Table 4.8 Analysis of potential quality factors elicited from reviewed methodologies

Methodology Mapping to quality
factors as revised

from Step 2 Name Quality Factor Quality Attribute Relevant
Literature

AEM

An adaptation might require
ccoordination aamong multiple sites
when the application is physically
distributed and adaptation requires
changes at several sites
simultaneously.

Oreizy et al.
(1999)

Coordination:
“transformations
coordinated among
multiple
nodes/organisations”

Strictly separating computation from
communication lets a system’s
computation and communication
relationships evolve independently of
one another, including rearranging
and replacing the components and
connectors of an application while the
application executes.

Separation of
CConcerns: “separating
communication
concerns from
functionality
concerns”

A C2 component is unaware of
components below itself, so it is
ooblivious to runtime changes that
involve these components.

Transparency:
“transformations
hidden from parts
unaffected by the
transformations”

Catalysis Upgradability

Can the system at runtime be
uupgraded with new features or
versions of software without bringing
operations to a halt?

D'Souza et al.
(1998)

none: new quality
factor Extensibility

CBDI-
SAE

Separation of
Concerns

Provide-Consume Separation:
Consumers can compose and eevolve
solutions independent of providers’
technologies and business contexts.

Allen (2007)
none: new attribute
for Separation of
Concerns

Flexible Provision: separating service
specification from implementation …
allowing implementations to be
rreplaced.

Separation of
CConcerns: “separating
part specification from
realisation concerns”

ERL Service Loose
Coupling

The degree of independence
between services. Loose coupling
increases the agility of an application
to respond to unforeseen changes
and evolution.

Erl (2005)
Loose Coupling: “high
level of independence
between parts”

 Service
Autonomy

The degree of a service to have
control and governance of its
processing. Low autonomy inhibits
service deployment and eevolution.

 none: new quality
factor Autonomy

 Extensibility

The ability of a service to be
eextended with new functionality.
The ability of an application to be
eextended with new services.

 none: new quality
factor Extensibility

KobrA Encapsulation

The description of what a component
does (i.e. Component specification) is
separated from the description of how
it does it (i.e. component realization).
This allows new versions of a
component to be interchanged with
old versions.

Atkinson et al.
(2002)

none: new attribute
for Separation of
Concerns

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 101

Methodology Mapping to quality
factors as revised

from Step 2 Name Quality Factor Quality Attribute Relevant
Literature

OPF

Modifiability -
Extensibility

(encompassing
Scalability)

The degree of easiness of eenhancing
a business enterprise, system,
application, or component and
increasing its capabilities to meet
future factors and significantly
changing requirements.

OPFRO
(2009)

none: new quality
factor EExtensibility

 Modifiability -
Maintainability

The degree of easiness with which a
business enterprise, system,
application, or component can be
mmodified between major releases
when not required by changes to
requirements.

Maintainability: “no
degradation in cost
and ease of
modification”

P&H

Service Coupling
-

Representational
Coupling

The ability of existing services to be
sswapped with new service
implementations.

Papazoglou
and van den

Heuvel (2006)

none: new quality
factor Extensibility

RUP
Run-time

Replaceability

The ability of a component to be
(re)deployed into a running software
system to enable the system to be
uupgraded without loss of availability.

online tool
version of
Kruchten

(2003)

none: new quality
factor Extensibility

Select
Perspective Maintainability

The application should be designed
in such a way that upgrades and
other changes can be made with
minimum disruption.

Apperly et al.
(2003)

Efficiency: “minimal
disruptions to
application functions
and their users during
a transformation” and
“minimal degradation
to application
performance during
and after a
transformation”

Reduce the time and cost of rrepairs
and making enhancements.

Maintainability: “no
degradation in cost
and ease of
modification”

Notes:

1. Underlined text highlights the relevance of quality attributes with changes, maintenance and/or
evolution as argued by respective methodologies.

2. ASG’s notions of Availability, Fault Tolerance and Recovery correspond to Transparency, Fault
Tolerance and Recoverability respectively. However, since ASG does not relate these factors to
changes/maintenance/evolution, ASG is excluded from Table 4.8.

Other factors (e.g. Autonomy from ERL) not covered in the revised set of quality factors

after Step 2 (Section 4.2) represent potential additional quality factors. Analysis results

for their inclusion into the set are shown in the rightmost column of Table 4.8. The

revisions to the set of quality factors following this step are shown in italic font below:

 Autonomy (new factor)

o the ability of a part to have control and governance of its own processing

 Extensibility (new factor)

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 102

o runtime extension/upgrade of an application with new functionality

o runtime extension/upgrade of parts in an application with new

functionality

o runtime extension/upgrade of an application with new parts

 Separation of Concerns (existing factor)

o (new quality attribute) separating part specification from realisation

concerns

o (new quality attribute) separating realisations of parts (e.g. service

providers) from those of part clients (e.g. service consumers)

Because of the above changes, experts were asked again to update the importance

ranking order similarly to Step 2 (Section 4.2.4). The results are shown in Figure 4.5.

The ranking for Separation of Concerns was unchanged. Autonomy was ranked the

same as Loose Coupling and one expert commented that it was because they are

closely related concepts. Extensibility was less important than Loose Coupling because

given Loose Coupling, an architecture would provide support for Extensibility to a

certain extent.

(a) original ranking before extension
from methodologies

(b) enhanced ranking after extension
from methodologies

Reliability

Safety

Completeness

Coordination

Consistency

Correctness

Security

Locality

Separation of Concerns

Loose Coupling

Transparency

Maintainability

Efficiency

Fault Tolerance Recoverability Fault Tolerance

Loose Coupling

Reliability

Safety

Completeness

Coordination

Consistency

Correctness

Security

Locality

Separation of Concerns (extended)

Extensibility

Transparency

Maintainability

Efficiency

Recoverability

Autonomy

source: developed for this research

Figure 4.5 Quality factor importance rankings before and after methodology
extension

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 103

44.4 STEP 4: EVALUATION OF SUPPORT FOR DYNAMIC
EVOLUTION QUALITY FACTORS IN METHODOLOGIES

The evaluation objective was to determine what features from existing methodologies

could be reused, what features could be enhanced for use and any additional support

required. Accordingly, four scale points - “H(high)” for full support, “M(medium)” for

partial support requiring small enhancement, “L(low)” for inadequate support requiring

significant enhancement, and “None” for no support - were applied to grade the level of

support provided by the methodologies for each of the quality attributes. These scale

points also provide some indication as to the potential for reuse of the methodology

feature in its support of the related quality attributes. The initial version of the scale

points were reviewed by two research peers whose comments were incorporated into

the final version of the scale points (cf. Table Appendix B.1).

The methodology evaluation was performed by the researcher on the analysis and

design aspects of the reviewed methodologies which fall within the scope of this

research. The limitation of having one person to perform the evaluation is discussed in

Section 8.3. Table 4.9 summarises the evaluation results. The actual features from the

reviewed methodologies offering the support are detailed in Appendix B.1. At the

attribute level, only eleven of the attributes are sufficiently supported by the

methodologies to suggest models/tasks/techniques for reuse (i.e. “H”), while seven

have a level of support that requires small enhancement (i.e. “M”). New methodological

support is needed for the remaining attributes (over thirty).

At the quality factor level, Autonomy appears to be fully supported (i.e. all attributes

graded with “H”), while Loose Coupling and Reliability are the next best supported (i.e.

with at least half of each factor’s attributes graded with “H”). The worst cases are

Configurability, Coordination, Efficiency, Extensibility, Flexibility, Recoverability and

Transparency; no methodology evaluated offers explicit support that can be enhanced

or reused. The rest of the quality factors are partially supported, with some elements

suitable for reuse (i.e. graded with “H”) as well as some others requiring enhancement

(i.e. graded with “M”). Of the quality factors (Safety and Reliability) perceived as most

important by respondents in Section 4.2.4, their level of support from the methodologies

assessed is partial (scoring one “H” out of three attributes). The fact that the

methodologies do not provide adequate support for these quality factors is a concern,

suggesting areas to which priority should be given when developing methodological

support for dynamic evolution.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 104

From the methodological viewpoint, none of the methodologies offer adequate support

for all the factors in Table 4.9. At best, SeCSE offers the most number of reusable

elements (i.e. three H’s) for Consistency, Reliability and Separation of Concerns but not

all of their attributes. The next best methodologies (with two H’s) split evenly between

those that support component-based development (i.e. Catalyst, Select Perspective

and RUP) and those that support SOA-based development (i.e. RUP, ERL and P&H).

None of the other methodologies adequately support more than one attribute or factor.

The argument is made that a more comprehensive approach from a methodological

perspective is needed to broadly cover the quality factors as a whole to tackle dynamic

evolution.

Table 4.9 Evaluation results of methodological support for quality factors

 Methodology
(C:supporting component-based, S:supporting SOA-based)

 C C C C C C C,
S S S S S S S

Quality Categories, Factors and Attributes

A
E

M

C
at

al
ys

is

E
P

IC

K
ob

rA

O
P

F

S
el

ec
t

P
er

sp
ec

tiv
e

R
U

P

A
S

G

C
B

D
I-

S
A

E

E
R

L

P
&

H

S
eC

S
E

S
U

P
E

R

SSoundness of Change

 Completeness

No missing functionality after a
transformation L HH

No missing parts after a transformation
 L

No missing, illegal or broken bindings after
a transformation

 L

(Also in consistency) assumptions and
properties of a distributed application and its
parts met by a dynamic change

 L L L

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 105

 Methodology
(C:supporting component-based, S:supporting SOA-based)

 C C C C C C C,
S S S S S S S

Quality Categories, Factors and Attributes

A
E

M

C
at

al
ys

is

E
P

IC

K
ob

rA

O
P

F

S
el

ec
t

P
er

sp
ec

tiv
e

R
U

P

A
S

G

C
B

D
I-

S
A

E

E
R

L

P
&

H

S
eC

S
E

S
U

P
E

R

 Consistency

Compatible bindings

Compatible communications protocol
among parts

All parts involved in a dynamic change
identified before a transformation

 L

No progression towards an error state after
a transformation

Synchronisation of application’s and parts’
states after a transformation

A reachable state attained after a
transformation

No critical procedures executed before a
transformation

No pending messages, interactions or
transactions before a transformation

System invariants preserved from a
transformation

 HH

Adequate resources and support for new
and replacement parts

(Also in completeness) assumptions and
properties of a distributed application and its
parts met by a dynamic change

 L L L

 Correctness

Non-arbitrary and admissible dynamic
changes

L L L

No unintentional behaviour during and after
a transformation

Correct ordering of transformations

Transformations at a right time

IInfusibility of Change

 Efficiency

Easily executed transformations

Quickly executed transformations

Resource efficient transformations

Minimal disruptions to application functions
and their users during a transformation

Minimal degradation to application
performance during and after a
transformation

 Locality

Application partitioning and change
localisation to partitions

 MM L L

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 106

 Methodology
(C:supporting component-based, S:supporting SOA-based)

 C C C C C C C,
S S S S S S S

Quality Categories, Factors and Attributes

A
E

M

C
at

al
ys

is

E
P

IC

K
ob

rA

O
P

F

S
el

ec
t

P
er

sp
ec

tiv
e

R
U

P

A
S

G

C
B

D
I-

S
A

E

E
R

L

P
&

H

S
eC

S
E

S
U

P
E

R

 Maintainability

All parts clearly defined in interaction (or
workflow) specifications

No degradation in cost and ease of
modifications

 MM MM MM

No reduction in testability L

Clear and detailed interactions

 Transparency

Transformations hidden from end users

Transformation design and implementation
hidden from application programmers

Transformations hidden from parts
unaffected by the transformations L

Transformation agents hidden from
operating environment

CChangeability oof Application

 Autonomy (after SStep 33)

Self-control and self-governance of parts’
own processing

 HH

 Configurability

Distributed application configurable to
different policies for dynamic changes and
transformations (after SStep 2)

 Coordination

Transformations coordinated among
multiple nodes/organisations

Transformation agents tolerant of network
unreliability during a transformation

 Extensibility (after SStep 33)

Runtime extension/upgrade of an
application with new functionality

 L

Runtime extension/upgrade of parts in an
application with new functionality

Runtime extension/upgrade of an
application with new parts

 L

 Flexibility (after SStep 2)

Any part of a distributed application to be
changeable at runtime

L

Distributed application accommodating a
variety of runtime changes

 Loose Coupling

High level of independence between parts HH L L MM MM HH

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 107

 Methodology
(C:supporting component-based, S:supporting SOA-based)

 C C C C C C C,
S S S S S S S

Quality Categories, Factors and Attributes

A
E

M

C
at

al
ys

is

E
P

IC

K
ob

rA

O
P

F

S
el

ec
t

P
er

sp
ec

tiv
e

R
U

P

A
S

G

C
B

D
I-

S
A

E

E
R

L

P
&

H

S
eC

S
E

S
U

P
E

R

Parts having their own lifecycles and
runtime environments (after SStep 2)

 Separation of Concerns

Separating dynamic change concerns from
functionality concerns

Separating communication concerns from
functionality concerns

Separating security support from
functionality concerns

Separating realisations of parts from those
of part clients (after SStep 33) HH L

Separating part specification from
realisation concerns (after SStep 33)

 HH HH HH HH HH L HH HH HH

RRobustness of Application

 Fault Tolerance

High tolerance of faulty new and/or changed
parts

 L L MM

Barriers established to contain potentially
faulty new and replacement parts (after
SStep 2)

 L

 Recoverability (after SStep 22)

Restoration of an application and its parts to
a state to continue to perform their
functionality, after a failure caused by a
transformation and/or its dynamic change(s)

 L L

 Reliability

No compromise on intended functionality
after a transformation

 L L

Replacement parts fully satisfying their roles L L HH

 Safety

Distributed application and its parts
operating safely during and after a
transformation

L MM

 Security

Transformation agents secured from
unauthorised access

 L MM L

No security compromise by new and
replacement parts after a transformation

 L MM L

Access to new and replacement parts
restricted after a transformation L MM L

Dynamically updated security policy

Separating security policy from security
enforcement

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 108

Notes:

1. The evaluation score indicates the extent of support as per Table Appendix B.1.

2. Quality factors/attributes labelled with “Step 2” mean they originate from survey respondents
and/or the literature and evaluation frameworks published after the survey, and were
subsequently reviewed and recommended by the experts in Step 2.

3. Quality factors/attributes labelled with “Step 3” refer to quality factors and attributes sourced from
methodologies reviewed in Step 3.

4. A blank cell means there is no support from a methodology (identified by the column) for a
particular quality attribute (identified by the row).

44.5 RELATED WORK
This section reviews a number of quality standards and quality models, and compares

them with the set of dynamic evolution quality factors developed in Task 1.1.

4.5.1 Related Quality Standards

A number of standards prescribe quality models suitable for software systems: IEEE

830:1998, ISO/IEC 9126-1 and ISO/IEC 25010. As argued below, dynamic evolution

quality is vague and inadequate in these standards. The IEEE 830-1998 Standard,

“IEEE Recommended Practice for Software Requirements Specifications” (IEEE Computer

Society 1998), defines guidelines for documenting software requirements

specifications. It provides a list of example software quality characteristics that can

serve as requirements for an application. The only characteristic relevant to evolution is

Maintainability which relates to the ease of maintenance of the application itself. This

Standard, however, does not elaborate on what attributes characterise Maintainability.

The International Standard ISO/IEC 9126-1, “Software engineering -- Product quality --

Part 1: Quality model” (ISO/IEC 2001), defines a quality model for external and internal

quality of software as a product. It categorises software quality attributes into six

characteristics (functionality, reliability, usability, efficiency, maintainability and

portability) which are further subdivided into thirty-four sub-characteristics.

A succession of ISO/IEC 9126-1 is the ISO/IEC 25000 series of standards, collectively

titled “Software product Quality Requirements and Evaluation (SQuaRE)”, for the

specification, measurement and evaluation of quality requirements for software

products (ISO/IEC 2005). They are revised and restructured from two international

standards: ISO/IEC 9126-1 and ISO/IEC 14598 (for software product evaluation). The

revised quality model can be found under the International Standard ISO/IEC 25010

(ISO/IEC 2011) which defines eight quality characteristics (functional suitability,

reliability, performance efficiency, operability, security, compatibility, maintainability and

portability) and thirty-eight sub-characteristics.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 109

To assess ISO/IEC 9126-1 and ISO/IEC 25010’s extent of support for dynamic

evolution, one way is to compare their quality characteristics with the dynamic evolution

quality factors synthesised in this research. The comparison focuses on maintainability

since it is the only characteristic in both these standards that is relevant to evolution.

Table 4.10 shows the correspondence between sub-characteristics of maintainability

and the dynamic evolution quality factors. Note that there are no dynamic evolution

quality factors associated with Reusability, Analysability and Maintainability

Compliance. An explanation for Reusability is that it is a design-time concern taken

care of during conventional application development whereas dynamic evolution is a

runtime concern for an application. Analysability does not directly map to any of the

dynamic evolution quality factors. However, both “Locality” (i.e. keeping changes in one

region to make them easier to understand and apply, cf. Section 4.1.2.2) and “Loose

Coupling” (i.e. having less effect on other parts when updating one part, cf. 4.1.3.4)

should improve Analysability. The case for Maintainability Compliance can be partially

explained by the fact that no standards or conventions exist for dynamic evolution

quality.

Table 4.10 Correspondence between ISO/IEC 9126-1 and ISO/IEC 25010’s definitions for
maintainability and the dynamic evolution quality model

Maintainability
Sub-

Characteristic

ISO/IEC 9126-1
Description ISO/IEC 25010 Description Relevant Dynamic

Evolution Quality Factor(s)

Modularity Undefined

The degree to which a system or
computer program is composed
of discrete components such that
a change to one component has
minimal impact on other
components.

Locality (Section 4.1.2.2)
and Loose Coupling
(Section 4.1.3.4)

Reusability Undefined

The degree to which an asset can
be used in more than one
software system, or in building
other assets.

NNone

Analysability

The capability of the
software product to be
diagnosed for
deficiencies or causes of
failures in the software,
or for the parts to be
modified to be identified.

The ease with which the impact of
an intended change on the rest of
the software can be assessed, or
the software product can be
diagnosed for deficiencies or
causes of failures in the software,
or the parts to be modified to be
identified.

Partially linked to Locality
((Section 4.1.2.2) and Loose
CCoupling (Section 4.1.3.4)

Changeability

The capability of the
software product to
enable a specified
modification to be
implemented.

The degree to which the product
enables a specified modification
to be implemented. The ease with
which a software product can be
modified.

All quality factors under the
category “Changeability of
Application”: Autonomy,
Coordination, Extensibility,
Loose Coupling and
Separation of Concerns
(Sections 4.1.3 and 4.3)

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 110

Maintainability
Sub-

Characteristic

ISO/IEC 9126-1
Description ISO/IEC 25010 Description Relevant Dynamic

Evolution Quality Factor(s)

(Modification)
Stability

The capability of the
software product to avoid
unexpected effects from
modifications of the
software.

The degree to which the product
can avoid unexpected effects
from modifications of the
software.

Reliability (Section 4.1.4.3)

Testability

The capability of the
software product to
enable modified software
to be validated.

The degree to which an objective
and feasible test can be designed
to determine whether a
requirement is met.

Attribute “no reduction in
testability” of
“Maintainability” (Section
4.1.2.3)

Maintainability
Compliance

The capability of the
software product to
adhere to standards or
conventions relating to
maintainability.

The degree to which the product
adheres to standards or
conventions relating to
maintainability.

NNone

source: ISO/IEC (2001; 2011)

4.5.2 Related Quality Models

In this section, a number of software quality models are reviewed. In work related to

evolution quality, Rowe et al. (1998) describe four kinds of change (changing existing

design/implementation, component replacement, adding new components to an

architecture and adding new functionality to an architecture) and correspondingly four

architectural quality attributes (generality, adaptability, scalability and extensibility) to

accommodate these changes. In contrast, the set of quality factors synthesised in this

research emphasise the dynamic aspects of evolution and are independent of the types

of changes.

For component-based applications, Mari and Eila (2003) distinguish execution from

evolution quality attributes. The former expresses runtime observable quality

characteristics of an application in execution while the latter expresses the quality of the

static structure of an application to support static evolution. There is no analysis of

whether these attributes relate to the dynamic aspect of evolution.

Deprez et al. (2007) investigated evolvability in a project context using free and open

source software (F/OSS). They proposed a set of quality factors for evolvability from

their surveys of practitioners, the scientific literature, the International Standard

ISO/IEC 9126-1 and several quality assessment techniques for F/OSS. Their factors

cover evolvability of the software, the team involved, the development processes

followed and the tools used. With respect to software, their quality factors are

maintainability, testability, adherence to standards, interoperability, readability and

portability. Maintainability and testability are incorporated into “Maintainability”

synthesised in this research (cf. Table 4.3). Readability (of code and documentation) is

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 111

a general characteristic of well-documented applications, not necessarily specific to

dynamic evolution which is the focus of this research, and as such is not considered in

this research. The argument for excluding interoperability, portability and adherence to

standards from consideration in this research has been made in Sections 4.1.6 and

4.5.1 (adherence to standards discussed under “maintenance compliance” in Section

4.5.1).

Breivold and Crnkovic (2010) undertook a systematic literature review of when and

where evolvability is dealt with in a software architecture during software development.

They associate evolvability with adaptability, analysability, changeability, extensibility,

flexibility, maintainability and modifiability. All but flexibility and modifiability are adopted

from the International Standard ISO/IEC 9126-1 and Rowe et al.’s (1998) (discussed

earlier in this section). The authors do not provide definitions for flexibility and

modifiability.

In work towards software quality, Cavano and McCall (1978) proposed a framework,

a.k.a. the McCall model, for measuring the quality of a software product on three

aspects: product revision, product transition and product operations. Maintainability and

flexibility, both under product revision, are the quality factors relevant to evolution.

Maintainability focuses on fixing defects whereas “Maintainability” synthesised in this

research (Section 4.1.2.3) focuses on changes in general. Flexibility relates to the

“Changeability of Application” category synthesised in this research which is

characterised by “Configurability”, “Coordination”, “Flexibility”, “Loose Coupling”, and

“Separation of Concerns” (Section 4.1.3).

Dromey (1995) proposed a set of quality-carrying properties of software (e.g. variables

initialised) which are linked to the quality characteristics from the ISO-9126-1 Standard.

In this respect, four types of properties for variables and expressions in the source code

are defined: correctness, structural, modularity and descriptive. This model targets

quality analysis at the source code level and is not relevant to dynamic evolution.

The NFR framework lists over one hundred and sixty non-functional requirements but

does not provide their definitions (Chung et al. 1999, pp. 159-160). An exception

though is a small subset of requirements which deal with accuracy, security and

performance requirements for software. Despite that, a small number of requirements,

judged by their names alone, appear to be relevant to dynamic evolution: adaptability,

enhanceability, extensibility, modifiability, reconfigurability, additivity, evolvability.

The FURPS+ model stands for “f”unctionality, “u”sability, “r”eliability, “p”erformance and

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 112

“s”upportability (Grady 1992, p. 32). A number of quality factors in the supportability

category, judged by their names alone, appear to relate to maintenance and/or

evolution: testability, extensibility, adaptability, maintainability, compatibility,

configurability, serviceability, installability, localizability (internationalization). FURPS+

suffers the same drawback as the NFR framework; no definitions are provided for its

quality factors.

In summary, while the reviewed quality standards and models offer quality factors that

could be useful to dynamic evolution, they do not adequately and specifically deal with

dynamic evolution. They do not suggest any additional factors that should be

considered for dynamic evolution, nor do they describe any tailoring approaches to

make them suitable for dynamic evolution. For instance, they do not account for any of

the synthesised dynamic evolution quality factors under the categories “Soundness of

Change” (Completeness, Consistency, Correctness, Section 4.1.1) and “Robustness of

Application” (Fault Tolerance, Recoverability, Reliability, Safety Security, Section 4.1.4).

44.6 CONCLUSION
In this Chapter, the outcomes of Task 1.1 of this research - viz. Synthesise, assess and

extend important dynamic evolution quality factors - have been reported. This task

adopted a multi-step approach to the incremental development of an extended set of

quality factors with associated attributes suitable for dynamic evolution in composition-

based distributed applications.

The initial set of factors was elicited from the literature and relevant evaluation

frameworks, and subsequently assessed in a web survey. Survey feedback was used

to extend the initial set with new factors. Then, the extended set was further extended

via a review of selected development methodologies, as inputs for Phase 2. To

demonstrate the use of the dynamic change requirements, the selected methodologies

were evaluated with respect to their extent of support for these requirements.

Correspondingly, features from these methodologies suitable for reuse or enhancement

were identified for the development of Continuum in Phase 2. The set of quality factor

requirements identified in this Task is summarised in Table 4.11.

Chapter 4. Development of Dynamic Evolution Quality Factors Kam Hay Fung - PhD Thesis

© 2011 UNSW page 113

Table 4.11 Dynamic evolution quality factor requirements investigated in Task 1.1

Category Quality factors

Soundness of Change Completeness, Consistency, Correctness

Infusibility of Change Efficiency, Locality, Maintainability, Transparency

Changeability of Application Autonomy, Coordination, Extensibility, Loose Coupling, Separation of
Concerns

Robustness of Application Fault Tolerance, Recoverability, Reliability, Safety, Security

Notes:

1. Reliability and Safety were perceived by survey respondents as the most important in Step 2 (cf.
Section 4.2.3).

2. Configurability and Flexibility are not included in the table above since they have been discarded
in the expert review (cf. Section 4.2.3).

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 114

Chapter 5. DDEVELOPMENT OF DYNAMIC CHANGE

REQUIREMENTS

“Throughout the world, change is the order of the day.” - Mahatma Gandhi

Chapter 4 reported Task 1.1 of Phase 1 from which a set of dynamic evolution quality

factors was determined. This Chapter reports Task 1.2 of Phase 1, which aimed to

develop dynamic change requirements suitable for composition-based distributed

applications in the same way as Task 1.1. The outcomes comprise a generic set of

dynamic change requirements and the results of evaluating methodologies for their

extent of support for these requirements. The outcomes from Tasks 1.1 and 1.2 were

used for the development of Continuum in Phase 2 (Chapter 6). Figure 5.1 shows the

relationship between Task 1.2 and other tasks/phases in this research:

Phase 1:

dynamic evolution
quality factors

Phase 2:

Develop
support

for
dynamic
evolution

Task 1.1:
Synthesise, assess &

extend dynamic
evolution quality factors

Task 1.2:
Synthesise, assess &

extend dynamic
change requirements

literature,
evaluation

frameworks &
methodologies

dynamic change
requirements

methodology
evaluation results

methodology
evaluation results

source: developed for this research

Figure 5.1 Information flow in Phase 1 for determining dynamic change
requirements

As shown in Figure 5.2 Task 1.2 repeats the four steps in Task 1.1, but is tailored for

dynamic change requirements (cf. Section 3.2.1). The first three steps concern the

incremental development and assessment of the dynamic change requirements.

Relevant methodologies were then evaluated in Step 4 for their support of the

requirements. Respectively, Sections 5.1 to 5.4 describe the execution and outcomes

of these four steps (see Figure 5.2). Section 5.5 concludes this Chapter.

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 115

source: developed for this research

Figure 5.2 Steps in Task 1.2 of Phase 1

55.1 STEP 1: SYNTHESIS OF DYNAMIC CHANGE REQUIREMENTS
The development of the initial set of dynamic change requirements followed the same

systematic literature review approach as the one used for dynamic evolution quality

factors in Task 1.1 (Section 4.1). More specifically, the objective of the review was to

answer the following question:

What dynamic change requirements are considered in the literature and should

be addressed during software development for composition-based distributed

applications?

The corresponding review steps can be found in Appendix A. Table 5.1 shows the

results of the search defined in the review steps. The search covered the same set of

journals and conference proceedings published between 1994 and 2010 as those for

the dynamic evolution quality factors. Of the two hundred and seventeen articles

matching the search criteria, dynamic change requirements were identified and

synthesised from sixty-eight of them.

Table 5.1 Source of literature examined for dynamic change requirement synthesis

Source Title Abbreviation Articles
examined

Articles with
dynamic
change

requirement

Journals
(1994-2010)

Communications of the ACM CACM 8 1

ACM Transactions on Computer Systems TOCS 1 0

ACM Transactions on Software Engineering and Methodology TOSEM 3 0

European Journal of Information Systems EJIS 0 0

Step 1 (Section 5.1)
• Synthesise an initial set of

dynamic change requirements
from the literature and
evaluation frameworks which
are reviewed in Section 2.3.

Step 2 (Section 5.2)
• Assess and extend the initial

set of dynamic change
requirements using a survey
of experienced practitioners
and researchers.

Step 3 (Section 5.3)
• Extend the set of dynamic

change requirements after
Step 2 from relevant
methodologies which are
reviewed in Section 2.4.

Step 4 (Section 5.4)
• Evaluate methodologies for

their extent of support for the
set of dynamic change
requirements after Step 3.

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 116

Source Title Abbreviation Articles
examined

Articles with
dynamic
change

requirement

IEEE Computer 11 4

IEEE Software 6 1

IEEE Transactions on Software Engineering TSE 10 4

IET Software (formerly "IEE Proceedings Software" and "Software
Engineering Journal") IETS 12 7

Information and Software Technology IST 9 4

Information Systems Journal ISJ 0 0

Information Systems Research ISR 0 0

Journal of Information Technology JIT 0 0

Journal of Software Maintenance and Evolution: Research and
Practice (formerly "Journal of Software Maintenance") JSME 8 5

Journal of Systems and Software JSS 7 3

MIS Quarterly MISQ 0 0

Requirements Engineering 2 0

Conference
Proceedings
(1994-2010)

International Symposium on Component-Based Software
Engineering (formerly "ICSE Workshop on Component-Based
Software Engineering") CBSE 14 2

International Conference on Configurable Distributed Systems IWCDS, ICCDS 26 3

International Conference on Distributed Computing Systems ICDCS 7 2

International Conference on Service-Oriented Computing ICSOC 22 3

International Conference on Software Engineering ICSE 16 5

International Conference on Software Maintenance ICSM 13 3

Others Articles not in any of the publications and years above 42 21

 Total 2217 668

Note: The “others” category refers to articles examined from the bibliographies of the articles that were
found to potentially offer dynamic change requirements.

A preview of the initial set of dynamic change requirements produced from the

systematic literature review is given in Figure 5.3. The requirement hierarchy reflects

the result of categorising the requirements as per the categorisation scheme specified

in the research design (cf. Section 3.2.1). More specifically, the scheme categorises

each requirement along two dimensions: methodology and application. The

methodology dimension classifies dynamic change requirements into modelling and

work related requirements from the methodological perspective. “Modelling related”

dynamic change requirements concern the modelling concepts, notations and models

for dynamic evolution used/produced during analysis and design. “Work related”

dynamic change requirements concern what must be done to achieve given purposes

specific to dynamic evolution during analysis and design. A piece of work can be a

process to follow, a task to complete, or a technique to use. The application dimension

further classifies dynamic change requirements with respect to their areas of concern in

an application: “part level” for requirements related to individual parts in an application,

“application level” for requirements related to an application as a whole, and “others” for

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 117

all other situations.

Multiple version co-
existence,

Resource needs,
Performance

characteristics,
Access blocking

Dynamic change,
Transformation,

Transitional form,
Generation,

Application lifecycle,
Servicing continuity

Transformation
agent,

Transformation
action,

Transformation
exception,

Transformation
exception resolution

Dynamic part
change,

Dynamic part
interface change,

Dynamic part
adapter,

Part retirement,
Dynamic part
(re)binding,

Resource need
prediction,

Performance
characteristic

prediction,
Geometric change,

Dynamic state
transfer

Dynamic protocol
evolution,

Dynamic workflow
evolution,
Dynamic

recomposition,
Dynamic refactoring,
Dynamic variability,

Dynamic change
impact analysis

Dynamic Change Requirement Model

Modelling
Related

Part Level Application
Level Others

Work
Related

Part Level Application
Level

Source: developed from this research

Figure 5.3 Dynamic change requirements and categories synthesised from the
literature

This set of dynamic change requirements thus synthesised is described next (Section

5.1.1 for modelling and Section 5.1.2 for work related requirements), with keywords in

the requirements italicised. A review of existing evaluation frameworks (Section 2.3)

was used to extend the set and the results are reported in Section 5.1.3. Section 5.1.4

summarises the initial set of dynamic change requirements thus synthesised.

55.1.1 Modelling Related Dynamic Change Requirements

Dynamic evolution can be described as a series of changes and transformations

throughout the lifecycle of an application. A dynamic change (a.k.a. runtime change)

(Kramer & Magee 1990; Oreizy et al. 1998) refers to an intended result of a

modification to the application, whereas a transformation (a.k.a. dynamic configuration

(Tsai et al. 2004)) refers to an act of performing dynamic modifications to the

application (Mens & Demeyer 2008; Yen et al. 2008). A change can originate from the

business needs (Brown & Wallnau 1998) or the environment in which the application

operates (Chen et al. 2001). In a lifecycle, a series of generations exist, each referring

to an application running a particular version of its code (Kruchten 2003).

Transformations are coordinated and performed by some agents (Almeida et al. 2001;

Hall et al. 1999; Lovrek et al. 2003), referred to as transformation agents in this

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 118

research (e.g. Upgrade Manager, OMG 2003b), in small units of execution called

transformation actions on a software architecture (Erradi et al. 2006b; Mens et al. 2010;

Zhang et al. 2005) (cf. a subset of "Actions" in UML, OMG 2010b). During a

transformation, certain parts affected by it may become unavailable temporarily and

access to them should be blocked or queued (Hauptmann & Wasel 1996; Hillman &

Warren 2004; Oreizy et al. 1998; Wang et al. 2006). Occasionally, a transformation

exception (Jones et al. 2002; Segal 2002) might occur because an application may

become unstable or erroneous after a change has been applied. A transformation

exception resolution, such as a rollback to an older version to recover the application to

a known state (Segal 2002), is sometimes performed to process and resolve errors

caused by a transformation exception.

In reality, deploying a new release of an application almost never completes instantly

but occurs in a finite time (Oreizy et al. 2008), during which one or more temporary

forms of the application may occur. The term transitional form, originally used by

Darwin (1859) for species evolution, is adopted to describe this kind of short and

temporary form in the application (cf. "transition architecture", Zhang et al. 2009). For

instance, when a web server is being upgraded, a temporary server is added to an

architecture to intercept and service incoming web requests (Hillman & Warren 2004).

As another example, when a service is being upgraded, both its old and new versions

may co-exist temporarily (Li 2009). Figure 5.4 shows how a hypothetical application can

be progressed from one generation to its successive one, applicable to both a small

upgrade and a major release. In the former case, C is a newer revision of A. In the

latter case, a release could be the replacement of a dial-up gateway (A) with an ISDN

gateway (C) for an information system (B).

When a release is being deployed, a phenomenon referred to as servicing continuity in

this research occurs (a.k.a. continuous availability (Oreizy et al. 1998; Oriol &

Serugendo 2004)). It is an interesting state of applications which deterministically

continue to provide their services in some capacity in the presence of transformations

(Oreizy et al. 2008). Note that more than one transitional form is possible between two

generations. Without specifying the exact transitional form that takes place during a

release, an application’s behaviour can become arbitrary and erratic. In the previous

example, if the transitional form A-B-C in the top middle of Figure 5.4 occurs, the dial-

up gateway is still available to the information system which can gradually redirect all

its accesses to the dial-up gateway onto the ISDN gateway. In contrast, transitional

form B means that the information system is no longer permitted to access the dial-up

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 119

gateway and the information system must treat this as a faulty condition.

behaviour ??A B

A B

B

B C

C

transitional form A-B-C

generation before
release deployment

generation after
release deployment

transitional form B
source: redrawn from Fung et al. (2004)

Figure 5.4 Example transitional forms

As an application evolves and with it its parts also evolve, many versions of its parts are

built. Over time, multiple versions of the same artefact may co-exist in the application

(Li 2009; McKinley et al. 2004), just as different parts of the application can use

different versions of the same artefact (Evans & Dickman 1999). In another case, an

older version can be used as a failback option if a newer version fails to operate (Cook

& Dage 1999).

55.1.2 Work Related Dynamic Change Requirements

This section describes the kinds of dynamic changes that occur in a composition-based

distributed application, indicative of the changes that could be analysed and designed

with a methodology. Dynamic evolution can occur at various levels of abstraction in a

composition-based distributed application. At the fine-grained level, one can add,

replace and remove individual parts (Aksit & Choukair 2003; de Paula et al. 2000;

Heider et al. 2010; Hofmeister 1993; Karastoyanova et al. 2005; Koning et al. 2009;

Kramer & Magee 1990; Kulkarni & Biyani 2004; Loulou et al. 2010; Parzyjegla et al.

2006; Taentzer et al. 2000) to change functionality (Bucchiarone et al. 2010; Kniesel

1999), as well as modifying their parameters (Chen et al. 2001). Fine-grained dynamic

evolution also occurs at the interface level, such as adding new interfaces to an existing

part, removing interfaces from an existing part (Jones et al. 2002), as well as adding

new operations to (Wang et al. 2006) and modifying existing operations of an existing

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 120

part’s interfaces (Aksit & Choukair 2003; Jones et al. 2002; Mens et al. 2010).

When adding a new part, an adapter may be required to accommodate the part into an

application (Mens & Demeyer 2008; Yellin & Strom 1997) to resolve mismatches

between the part and the application (Canal et al. 1999; Canal et al. 2008; Motahari

Nezhad et al. 2007). Mismatches include functional, interface, interaction, protocol,

semantic, deadlock, and those relating to quality-of-service (Canal et al. 2008; Motahari

Nezhad et al. 2007; Pelliccione et al. 2008; Yellin & Strom 1997). When replacing an

existing part with a new version, the state of the old version is sometimes transferred to

the instance of the new version (Adamek & Plasil 2005; Ben-Shaul et al. 2001; Bloom &

Day 1993; Gregersen & Jørgensen 2009; Gupta et al. 1996; Hauptmann & Wasel 1996;

Lee & Chang 2005; Li 2009; Pelliccione et al. 2008; Plášil et al. 1998; Sun & Jiang

2009; Vandewoude et al. 2007). Other times, as a part is removed from an application,

retirement tasks, such as relinquishing resources held by the part, might be performed

to gracefully remove it from the application (Blake 2007; Chapin et al. 2001; Li 2009).

To support part addition, replacement and removal, dynamic binding is performed to

(re)wire those parts in their application, such as to use the new and/or replacement

parts, at runtime (Aksit & Choukair 2003; 2006; Karastoyanova et al. 2005; Kramer &

Magee 1990; Lee & Chang 2005; Oreizy et al. 1998; Taentzer et al. 2000). In an SOA

environment, dynamic binding between a service consumer and a service provider

(Blake 2007; Curbera et al. 2003; Hu & Grefen 2003; Koning et al. 2009) occurs

naturally just before a service is invoked and the binding reference can be dropped

after service invocation. As an application evolves, its parts may relocate or move to

different locations (Aksit & Choukair 2003; Ben-Shaul et al. 2001; Cugola et al. 2004;

de Paula et al. 2000; Holder et al. 1999; Parzyjegla et al. 2006). Hofmeister (1993)

refers to this as geometric change.

At the application level, an architecture can be designed with variability which means

customisation points are defined in an architecture to facilitate a variety of parts with

slight variations in their functionality (e.g. algorithms) to be customised and plugged

into the architecture (Andersson & Bosch 2005; Heider et al. 2010; Kim et al. 2007;

Koning et al. 2009; Siljee et al. 2005). This supports evolution to a certain degree by

plugging parts with different/new functionality into the application.

Sometimes an application’s structure and topology is recomposed (Bucchiarone et al.

2010; Chaudet et al. 2000; Koning et al. 2009; McKinley et al. 2004), say, to alter the

application’s behaviour or to recover it from errors. In the Unix operating system, pipes

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 121

are constructs that connect programs to create an executing process behaving

differently from original programs. Merging and splitting (Kramer & Magee 1990) are

special cases of recomposition in which smaller applications are combined into a larger

one, and a subset of an application contributing to a particular functionality is sliced out

and used elsewhere. Compared with recomposition on structural aspects, workflow

evolution concerns alternating the sequence of interactions and dataflow among

collaborating parts (Gil et al. 2007; Shrivastava & Wheater 1998; Sun & Jiang 2009). In

an SOA environment, a business process built by orchestrating services into a workflow

at runtime can also evolve to satisfy changing business offerings (Ammon et al. 2010).

Another form of interaction evolution is that the protocol used by parts to interact may

also evolve, such as changing the messages exchanged, to suit new requirements

(Hauptmann & Wasel 1996; Jones et al. 2002; Ryan & Wolf 2004). A complex form of

application change is refactoring (Kataoka et al. 2001; Pelliccione et al. 2008) which

involves changes that cross-cut many parts of its structure and topology.

At all levels of abstraction, change impact analysis can be performed to determine all

the parts in an architecture impacted by a proposed change and actions to be taken to

synchronise with the change (Bohner 1996; Zhao et al. 2002).

55.1.3 Existing Evaluation Frameworks

In this part of the requirement synthesis, existing evaluation frameworks (reviewed in

Section 2.3) were examined to identify if any dynamic change requirements from these

frameworks meet the same criteria outlined in the systematic literature review (cf.

Appendix A), and can be incorporated into the initial set.

Of the evaluation frameworks reviewed, seven relevant and potential dynamic change

requirements meeting the criteria were identified from Wood et al. (1988), HP Labs

(Arnold et al. 1991) and Matinlassi (2004). Their original descriptions are documented

in Table 5.2 with text relevant to changes underlined.

Table 5.2 Potential dynamic change requirements selected from reviewed evaluation frameworks

Framework and Type Original Requirement

Matinlassi (2004),
component product-line

How does the method support vvariability expression?

Wood et al. (1988),
real-time

Do the representations help maintainers determine the sscope of effect of a
proposed change to a particular module or set of modules?

 Does the method provide techniques for organizing its representations to support
the evolution of the system into mmultiple versions over time?

 Can designers use the method to ppredict the resource requirements and
performance characteristics of an evolving design?

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 122

Framework and Type Original Requirement

 Do the method’s design representations ccapture resource estimates for individual
components?

 Do the same representations ccapture performance estimates for these
components?

Arnold et al. (1991),
object-oriented

Does the process provide support for aadding functionality to existing systems …?
[This is considered a special case of dynamic change.]

55.1.4 Summary and Discussion

Table 5.3 and Table 5.4 document the classified modelling and work related set of

dynamic change requirements respectively, citing reference(s) to the literature and/or

evaluation framework(s) from which each requirement was derived. Note that in these

tables the three sub-columns (“generic”, “component-based” and “SOA-based”) under the

“Literature” column classify the genres of the cited references from which the

corresponding requirements were derived.

Table 5.3 Modelling related dynamic change requirements from Step 1
 Literature

Requirement Description Generic Component-
based

SOA-based Evaluation
Framework

 Part Level
Multiple
version
coexistence

Model the ability of a service to
have multiple versions present
in various regions of an
application as the service
evolves over time.

Evans and
Dickman
(1999)

Cook and
Dage (1999),
Li (2009),
McKinley et
al. (2004)

 Wood et al.
(1988).

Resource
needs

Model the changing resource
needs of a service as it evolves.

 Wood et al.
(1988).

Performance
characteris-
tics

Model the changing
performance characteristics of
a service as it evolves.

 Wood et al.
(1988).

Access
blocking

Model the ability to block
access to a service while it is
being updated or replaced.

Hauptmann
and Wasel
(1996)

Hillman and
Warren
(2004),
Oreizy et al.
(1998), Wang
et al. (2006)

 Application Level
Dynamic
change

Model the notion of a runtime
change which is the intended
result of a modification to an
application at runtime.

Kramer and
Magee
(1990)

Oreizy et al.
(1998)

 HP Labs
(Arnold et
al. 1991).

Transforma-
tion

Model the notion of a
transformation which is an act
of performing modifications to
an application at runtime.

Mens and
Demeyer
(2008)

 Tsai et al.
(2004), Yen
et al. (2008)

Transitional
form

Model the presence of a
transitional form between two
generations as an application
progressively evolves from one
generation to the next in a finite
amount of time.

 Hillman and
Warren
(2004),
Zhang et al.
(2009)

Generation Model the notion of a
generation which represents a
stable version of an application
at a particular time.

 Wood et al.
(1988).

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 123

 Literature
Requirement Description Generic Component-

based
SOA-based Evaluation

Framework
Application
lifecycle

Model the notion of an
application lifecycle which
organises application evolution
as a series of generations over
time.

 Wood et al.
(1988).

Servicing
continuity

Model the ability of an
application to continuously offer
some functionality during a
transformation.

Oreizy et al.
(2008)

Oreizy et al.
(1998), Oriol
and
Serugendo
(2004)

 Others
Transforma-
tion agent

Model the notion of a
transformation agent
responsible for performing
transformations.

Hall et al.
(1999),
Lovrek et al.
(2003)

Almeida et al.
(2001)

Transforma-
tion action

Model the steps undertaken in
a transformation, e.g. adding a
new service, followed by
configuring the service.

 Mens et al.
(2010),
Zhang et al.
(2005)

Erradi et al.
(2006b)

Transforma-
tion exception

Model the notion of an error
condition occurred during a
transformation, e.g. because of
faulty changes.

Jones et al.
(2002),
Segal (2002)

Transforma-
tion exception
resolution

Model the notion of an
exception resolution - e.g. a
rollback - to revert errors
caused by aborted or faulty
changes.

Segal (2002)

Table 5.4 Work related dynamic change requirements from Step 1
 Literature

Requirement Description Generic Component-
based

SOA-based Evaluation
Framework

 Part Level

Dynamic part
change

Define support to add,
replace, remove individual
parts, and modify their
parameters at runtime.

Hofmeister
(1993),
Kramer and
Magee
(1990),
Parzyjegla et
al. (2006),
Taentzer et al.
(2000)

Aksit and
Choukair (2003),
Chen et al.
(2001), de Paula
et al. (2000),
Heider et al.
(2010), Kniesel
(1999), Kulkarni
and Biyani (2004),
Loulou et al.
(2010)

Bucchiarone et
al. (2010),
Koning et al.
(2009),
Karastoyanova
et al. (2005)

+ Dynamic part
interface
change

Define support to add,
remove and modify part
interfaces at runtime
(“Modify part interfaces”
means add, remove and
modify operations of
interfaces).

Jones et al.
(2002)

Aksit and
Choukair (2003),
Mens et al.
(2010), Wang et
al. (2006)

Dynamic part
adapter

Define adapters for
wrapping and plugging parts
into an architecture at
runtime, and resolving their
mismatches.

Mens and
Demeyer
(2008)

Canal et al.
(1999), Canal et
al. (2008), Yellin
and Strom (1997),
Pelliccione et al.
(2008)

Motahari
Nezhad et al.
(2007)

Part retirement

Define housekeeping
support to retire parts after
they are no longer needed
and have been removed
from an application.

Chapin et al.
(2001)

Li (2009) Blake (2007)

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 124

 Literature
Requirement Description Generic Component-

based
SOA-based Evaluation

Framework

Dynamic part
(re)binding

Define support to (re)bind
one part to a new part at
runtime as the original part
is replaced or upgraded by
the new part.

Kramer and
Magee
(1990),
Taentzer et al.
(2000)

Aksit and
Choukair (2003),
Oreizy et al.
(1998), Lee and
Chang (2005)

Blake (2007),
Curbera et al.
(2003), Hu and
Grefen (2003),
Karastoyanova
et al. (2005),
Koning et al.
(2009)

Resource need
prediction

Define support to predict the
resource needs for a new
part.

 Wood et
al.(1988).

Performance
characteristic
prediction

Define support to predict the
performance characteristics
for a new part.

 Wood et al.
(1988).

Geometric
change

Define support to relocate
parts to a different hosting
environment as needed.

Cugola et al.
(2004),
Hofmeister
(1993),
Parzyjegla et
al. (2006)

Aksit and
Choukair (2003),
Ben-Shaul et al.
(2001), de Paula
et al. (2000),
Holder et al.
(1999)

Dynamic state
transfer

Define support to transfer
the state from an instance of
an old implementation of a
part/workflow to an instance
of the new implementation of
the part/workflow as it
evolves.

Bloom and
Day (1993),
Gupta et al.
(1996), Sun &
Jiang (2009),
Vandewoude
et al. (2007)

Adamek and
Plasil (2005),
Ben-Shaul et al.
(2001),
Gregersen and
Jørgensen (2009),
Hauptmann and
Wasel (1996),
Lee and Chang
(2005), Li (2009),
Pelliccione et al.
(2008), Plášil et
al. (1998)

 Application Level

Dynamic
protocol
evolution

Define support to evolve a
protocol definition on which
parts base their interactions
while the protocol is being
used.

Jones et al.
(2002), Ryan
and Wolf
(2004)

Hauptmann and
Wasel (1996)

Dynamic
workflow
evolution

Define support to evolve a
workflow definition while the
workflow is operational.

Gil et al.
(2007), Sun &
Jiang (2009)

Shrivastava and
Wheater (1998)

Ammon et al.
(2010)

Dynamic
recomposition

Define support to combine
several parts/workflows into
a larger unit, split a larger
part/workflow into smaller
units or reconfigure the
architectural structure at
runtime.

Kramer and
Magee (1990)

Chaudet et al.
(2000), McKinley
et al. (2004)

Bucchiarone et
al. (2010),
Koning et al.
(2009),

Dynamic
refactoring

Define support to refactor an
application structure without
functional changes at
runtime, say, to reduce its
complexity and improve its
performance.

Kataoka et al.
(2001)

Pelliccione et al.
(2008)

Dynamic
variability

Define customisation points
in an architecture to plug in
or swap different parts at
runtime to support limited
variations in functionality
(e.g. using credit card vs.
account debit for payment).

Andersson
and Bosch
(2005)

Heider et al.
(2010), Kim et al.
(2007)

Siljee et al.
(2005), Koning
et al. (2009)

Matinlassi
(2004)

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 125

 Literature
Requirement Description Generic Component-

based
SOA-based Evaluation

Framework

Dynamic
change impact
analysis

Analyse the impact of
dynamic changes to an
application to determine
which parts/workflows of the
application will need to be
affected and updated to
accommodate the changes.

Bohner
(1996)

Zhao et al. (2002) Wood et al.
(1988).

Note: Any requirements labelled with “+” were not included in the survey since they were identified after the
survey commented in late 2006 (cf. Section 5.2). Instead, they were reviewed by experts (cf. Section
5.2.3).

Where a dynamic change requirement was specific to a particular type of composition-

based application, it was regarded as not sufficiently generic for inclusion since the

intention was that the generic set of dynamic change requirements should be

applicable to a variety of composition-based applications. Examples of dynamic change

requirements excluded are service discovery (Cervantes & Hall 2005) and service

selection (Huhns & Singh 2005) in the SOA paradigm. They allow service consumers to

look up a variety of suitable service providers on demand, and then choose a service

provider most suitable for their needs at runtime as the providers evolve (Akram et al.

2003). In another case, service policies governing the intended use of services may

need to change to suit the business needs or as services are updated (Gu & Lago

2007; Tsai et al. 2005).

55.2 STEP 2: SURVEY ASSESSMENT
This step aimed to assess and extend the set of dynamic change requirements

synthesised in Step 1 using a questionnaire survey of experienced software

development practitioners and researchers. The questionnaire asked each respondent

to provide the following information:

 Ratings on modelling and work related requirements

Each respondent was asked to rate the level of importance of each requirement

on a Likert scale (1 for “not-important-at-all”, 5 for “extremely-important”). As the

survey was commenced from late 2006, only requirements identified up to this

point were included in the survey. The ratings were used to assess the

perceived importance of the requirements (see Section 5.2.4).

 Additional comments

Each respondent was also asked to provide feedback/comments on the rating

questions in the survey, such as suggestions for additional requirements for

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 126

consideration.

Follow-up interviews via email correspondence and/or face-to-face meetings were

conducted with consenting respondents to clarify response data and any

feedback/comment raised. Any additional requirements were then subject to an expert

review (see Section 5.2.3).

55.2.1 Pilot Tests

The questionnaire was pilot tested by two research peers, one experienced in

distributed system development and the other in SOA development. The completion

time was about 15-20 minutes which was noted in the final version of the questionnaire.

Feedback and comments on content, structure, wording and clarity were reviewed and

the content was revised accordingly to improve the quality of the questionnaire. The

final version can be found in Appendix E.2.

5.2.2 Data Collection

The questionnaire as an electronic document was emailed to practitioners from the IT

industry and research scientists from academia to complete. This recruitment approach

invited contacts known to the researcher to ensure that candidates have adequate

experience and/or knowledge in SOA related technologies. This approach, a.k.a.

purposeful sampling (Patton 2002), improves the credibility and authenticity of the

questionnaire responses collected at the expense of introducing selection bias into the

responses. Towards the end of the survey, a friendly reminder was emailed to invited

candidates who had not completed and returned the questionnaire.

Over fifty-five candidates were invited to the survey and a total of thirty-six valid

responses were returned. All respondents worked in Australia. Nine respondents were

conducting SOA related research in academia whilst the rest worked in the IT industry

using SOA related technologies. All responses were screened to ensure they had

sufficient experience in software development methodologies (minimum of one year),

application development (minimum of three years), and distributed application

development/research in relation to Web services (minimum of two years) to contribute

to this survey.

5.2.3 Additional Dynamic Change Requirements

Respondents were asked to suggest additional dynamic change requirements that

should be included in the set. The same two-step approach used for selecting quality

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 127

factors/attributes (Section 4.2.3) was repeated for these requirements. The first step

qualified four potential requirements, shown in Table 5.5, using the same criteria as

those defined in the systematic literature review (cf. Appendix A). The expert review in

the second step reduced the set to three requirements as shown in Table 5.5.

Table 5.5 Analysis results of potential dynamic change requirements suggested by respondents
Suggested dynamic change

requirement
Expert 1’s Comment Expert 2’s Comment Inclusion to

requirement
set

Modelling the notion of an
expected dynamic change impact
(e.g. scope and extent).

should-be-considered
(Very nice to have)

should-be-considered
(Very important. Some
analysis will identify
characteristics of
impact)

YYes

Modelling the notion of
deprecation in a part’s lifecycle
(i.e. one part being superseded by
another part or version). A
rationale is that deprecated parts
may still be present in a
composition-based distributed
application after they have been
updated.

should-be-considered
(Very important, similar to
deprecation in Java
programming language)

should-be-excluded
(Deprecation important
but not a key issue in
dynamic evolution,
better addressed in
versioning)

No

Define support for expected
impact of dynamic changes on
other applications.

should-be-considered
(Very important with
respect to external impact)

should-be-considered
(Extremely important to
parts/application in
proximity)

YYes

Contract management: updating
of contracts between parts as the
parts evolve.

should-be-considered
(It must be supported for
dynamic evolution)

should-be-considered
(Contracts between
parts require update as
changes to parts
happen)

YYes

The same two-step review approach was repeated for additional dynamic change

requirements found from articles and evaluation frameworks that were published after

the survey commenced in late 2006 (cf. Table 5.3 and Table 5.4). The results are

documented in Table 5.6.

Table 5.6 Analysis results of additional dynamic change requirements synthesised from the literature
(cf. Table 5.4)

New dynamic change requirement Expert 1’s Comment Expert 2’s Comment Inclusion to
the

requirement
set

Dynamic part interface change -
Define support to add, remove and
modify part interfaces at runtime
(“modify part interfaces” means
add, remove and modify
operations of interfaces).

should-be-excluded
(Only a nice to have. But it
should be accompanied by
support for notification of
changes to the parts clients.)

should-be-considered
(Common to allow
service end point
evolution)

No

The expert review led to the following revisions to the set of dynamic change

requirements after Step 1 (in italic font). These changes originated from the

respondents’ suggestions (cf. Table 5.5). The revised set of requirements is

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 128

summarised in Table 5.12:

 Expected dynamic change impact (new modelling related requirement)

Model the impact of dynamic changes (scope and extent) expected on parts

within the application and other applications affected by the changes.

 Dynamic change impact analysis (revision to existing work related requirement)

Analyse the impact of dynamic changes to an application to determine which

parts/workflows of the application, those parts/workflows outside the application,

and other applications, are to be affected and updated to accommodate the

changes.

 Dynamic contract update (new work related requirement)

Support the update of contracts among parts as the parts/contracts evolve.

Dynamic change requirements rejected by experts in this step are excluded from

further consideration in the revised set even if they are identified at a later stage in the

analysis (i.e. extension of requirements from methodologies in Step 3, Section 5.3).

55.2.4 Importance Ratings of Dynamic Change Requirements

A Wilcoxon one-sample signed-rank test (Arnold 1965; Wilcoxon 1945) was applied to

the data to check if the importance ratings of the requirements were from a distribution

away from a known median of 3 being the mid-point between “not-important-at-all” (1)

and “extremely-important” (5). Note that the analysis was limited to the requirements

synthesised from articles and evaluation frameworks published before late 2006 (cf.

Table 5.3 and Table 5.4). The signed-rank test results together with median and range

scores are shown in Table 5.7 and Table 5.8. Of the modelling related dynamic change

requirements (Table 5.7), “transitional form” was not perceived to be important

(pwsr=0.19, highlighted). Of the work related dynamic change requirements, neither

“dynamic protocol evolution” nor “part retirement” was regarded as significant (pwsr=0.38,

0.11, highlighted).

Table 5.7 Descriptive statistics and Wilcoxon one-sample signed-rank test results for modelling related
dynamic change requirements from Step 1 (cf. Table 5.3)

Requirement Median Range s+ s- pwsr
Part level

Multiple version coexistence 4 1-5 358 107 0.00
Resource needs 4 2-5 265 60 0.00
Performance characteristics 4 2-5 288 63 0.00
Access blocking 3.5 1-5 208 45 0.00

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 129

Requirement Median Range s+ s- pwsr
Application level

Dynamic change 4 2-5 338 40 0.00
Transformation 4 2-5 331 48 0.00
TTransitional form 33 11--55 2208 1143 00.19
Generation 4 2-5 319 32 0.00
Application lifecycle 4 2-5 301 50 0.00
Servicing continuity 3 1-5 262 90 0.01

Others
Transformation agent 3 1-5 233 93 0.02
Transformation action 4 1-5 329 77 0.00
Transformation exception 4 1-5 457 40 0.00
Transformation exception resolution 4 1-5 537 25 0.00

Table 5.8 Descriptive statistics and Wilcoxon one-sample signed-rank test results for work related
dynamic change requirements from Step 1 (cf. Table 5.4)

Requirement Median Range s+ s- pwsr
Part level

Dynamic part change 4 2-5 471 25 0.00
Dynamic part adapter 4 2-5 328 50 0.00
PPart rretirement 33 11--55 1149 883 00.11
Dynamic part (re)binding 4 3-5 406 0 0.00
Resource need prediction 3 1-5 160 50 0.02
Performance characteristic prediction 3 1-5 183 48 0.01
Geometric change 3 2-5 133 57 0.04
Dynamic state transfer 4 2-5 332 46 0.00

Application level
DDynamic protocol eevolution 33 11--55 1148 1129 00.38
Dynamic workflow evolution 4 2-5 244 32 0.00
Dynamic recomposition 4 1-5 361 75 0.00
Dynamic refactoring 3 1-5 191 41 0.00
Dynamic variability 4 2-5 332 19 0.00
Dynamic change impact analysis 4 2-5 458 7 0.00

Requirements perceived to be more important were identified by examining the ranking

order of the requirements and the grouping of similarly ranked requirements that were

not different among themselves. The order is indicative of how important one

requirement is compared with another, and was determined by calculating and ordering

the mean rank scores of the requirements. The grouping of requirements was then

determined by an analysis of difference among the requirements. A Friedman test

(Friedman 1937) was performed to check if there was a difference between any two

requirements (p<0.05). If a difference was detected, a Wilcoxon matched-pair signed-

rank test (Wilcoxon 1945) was performed to identify pairs of requirements with

significant differences. The Wilcoxon test results, together with the mean rank scores of

the perceived importance of the requirements, are shown in Table 5.9 and Table 5.10.

For convenience, pairs with significant difference (p<0.05) are highlighted in their

corresponding cells (e.g. “transitional form” vs. “transformation exception resolution” in

Table 5.9). For modelling related dynamic change requirements, the analysis did not

suggest any grouping of dynamic change requirements as being significantly different

from the remaining requirements. Nevertheless, based on the mean rank scores alone,

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 130

the requirements that relate to the error condition of a transformation - viz.

“transformation exception resolution” and “transformation exception” - have the highest

ranks (Table 5.9) and the highest mean values (Table 5.7). The relatively high ranking

of these requirements may suggest that respondents were most concerned about the

success of transformations, with one respondent commenting in a follow-up interview,

“dynamic evolution must work or, at least, recover when it doesn't”. In contrast, “transitional

form” is the lowest ranked requirement (Table 5.9) and was found to be not significant

based on the Wilcoxon one-sample signed-rank test results (pwsr=0.19, Table 5.7). The

fact that tools can be used to compute and take care of the intermediate transitional

forms, making them transparent to end-users, may help explain this low ranking.

Table 5.9 Results of Wilcoxon signed-rank test for matched pairs on modelling related dynamic
change requirements from Step 1 (cf. Table 5.3)

T
ra

ns
fo

rm
at

io
n

ex
ce

pt
io

n
re

so
lu

tio
n

T
ra

ns
fo

rm
at

io
n

ex
ce

pt
io

n

D
yn

am
ic

 c
ha

ng
e

T
ra

ns
fo

rm
at

io
n

G
en

er
at

io
n

A
pp

lic
at

io
n

lif
ec

yc
le

T
ra

ns
fo

rm
at

io
n

ac
tio

n

P
er

fo
rm

an
ce

ch

ar
ac

te
ris

tic
s

A
cc

es
s

bl
oc

ki
ng

M
ul

tip
le

 v
er

si
on

co

ex
is

te
nc

e

S
er

vi
ci

ng
 c

on
tin

ui
ty

R
es

ou
rc

e
ne

ed
s

T
ra

ns
fo

rm
at

io
n

ag
en

t

TT
ra

ns
iti

on
al

 fo
rm

 Mean
Rank Significance Level (p)

Transformation exception
resolution 10.4 0.07 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Transformation exception 9.4 0.07 0.13 0.06 0.23 0.10 0.02 0.01 0.00 0.03 0.02 0.01 0.00 0.00

Dynamic change 8.1 0.01 0.13 0.85 0.81 0.54 0.45 0.30 0.27 0.44 0.19 0.19 0.06 0.00

Transformation 8.0 0.01 0.06 0.85 0.78 0.64 0.63 0.55 0.39 0.51 0.20 0.21 0.09 0.00

Generation 7.9 0.02 0.23 0.81 0.78 0.47 0.45 0.18 0.25 0.27 0.10 0.12 0.07 0.00

Application lifecycle 7.8 0.01 0.10 0.54 0.64 0.47 0.92 0.76 0.61 0.73 0.52 0.56 0.24 0.05

Transformation action 7.4 0.00 0.02 0.45 0.63 0.45 0.92 0.66 0.49 0.76 0.44 0.55 0.10 0.04

Performance characteristics 7.0 0.00 0.01 0.30 0.55 0.18 0.76 0.66 0.72 0.95 0.63 0.99 0.21 0.04

Access blocking 7.0 0.00 0.00 0.27 0.39 0.25 0.61 0.49 0.72 0.83 0.78 0.94 0.56 0.11

Multiple version coexistence 6.9 0.00 0.03 0.44 0.51 0.27 0.73 0.76 0.95 0.83 0.78 0.81 0.47 0.11

Servicing continuity 6.8 0.00 0.02 0.19 0.20 0.10 0.52 0.44 0.63 0.78 0.78 0.60 0.76 0.24

Resource needs 6.8 0.00 0.01 0.19 0.21 0.12 0.56 0.55 0.99 0.94 0.81 0.60 0.48 0.10

Transformation agent 6.2 0.00 0.00 0.06 0.09 0.07 0.24 0.10 0.21 0.56 0.47 0.76 0.48 0.26

Transitional form 5.5 0.00 0.00 0.00 0.00 0.00 0.05 0.04 0.04 0.11 0.11 0.24 0.10 0.26

In a similar analysis with work related dynamic change requirements, no distinct

grouping of requirements was identified from Table 5.10. Based on the mean rank

scores from Table 5.10, however, the top ranked requirements are “dynamic change

impact analysis”, “dynamic part change” and “dynamic part (re)binding”. These requirements

tend to require considerable attention in composition-based application development.

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 131

For instance, “dynamic change impact analysis” is essential in development as the impact

of a dynamic change may ripple through many parts of a composition-based

application, leading to unexpected results if additional parts also affected by the

proposed change are identified during the analysis but not accommodated by the

change. “Dynamic part change” and “dynamic part (re)binding” occur frequently owing to

the way a composition-based application is structured - built with parts and bindings - to

embrace dynamic evolution.

Table 5.10 Results of Wilcoxon signed-rank test for matched pairs on work related dynamic change
requirements from Step 1 (cf. Table 5.4)

D
yn

am
ic

 c
ha

ng
e

im
pa

ct

an
al

ys
is

D
yn

am
ic

 p
ar

t c
ha

ng
e

D
yn

am
ic

 p
ar

t (
re

)b
in

di
ng

D
yn

am
ic

 v
ar

ia
bi

lit
y

D
yn

am
ic

 r
ec

om
po

si
tio

n

D
yn

am
ic

 p
ar

t a
da

pt
er

D
yn

am
ic

 s
ta

te
 tr

an
sf

er

D
yn

am
ic

 w
or

kf
lo

w

ev
ol

ut
io

n

D
yn

am
ic

 r
ef

ac
to

rin
g

P
er

fo
rm

an
ce

ch

ar
ac

te
ris

tic
 p

re
di

ct
io

n
R

es
ou

rc
e

ne
ed

pr

ed
ic

tio
n

P
ar

t r
et

ire
m

en
t

G
eo

m
et

ric
 c

ha
ng

e

D
yn

am
ic

 p
ro

to
co

l
ev

ol
ut

io
n

Mean
Rank Significance Level (p)

Dynamic change impact analysis 10.2 0.13 0.13 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dynamic part change 9.4 0.13 0.95 0.50 0.09 0.10 0.08 0.07 0.01 0.03 0.01 0.00 0.00 0.00

Dynamic part (re)binding 8.8 0.13 0.95 0.42 0.15 0.12 0.05 0.06 0.02 0.01 0.00 0.00 0.00 0.00

Dynamic variability 8.5 0.03 0.50 0.42 0.47 0.47 0.31 0.22 0.08 0.09 0.04 0.01 0.00 0.00

Dynamic recomposition 8.3 0.01 0.09 0.15 0.47 0.97 0.68 0.80 0.19 0.24 0.12 0.04 0.02 0.01

Dynamic part adapter 8.1 0.00 0.10 0.12 0.47 0.97 0.99 0.79 0.23 0.25 0.09 0.02 0.02 0.01

Dynamic state transfer 7.8 0.00 0.08 0.05 0.31 0.68 0.99 0.97 0.50 0.26 0.12 0.04 0.01 0.01

Dynamic workflow evolution 7.7 0.00 0.07 0.06 0.22 0.80 0.79 0.97 0.48 0.33 0.13 0.03 0.04 0.01

Dynamic refactoring 7.0 0.00 0.01 0.02 0.08 0.19 0.23 0.50 0.48 0.56 0.35 0.11 0.11 0.08

Performance characteristic
prediction 6.5 0.00 0.03 0.01 0.09 0.24 0.25 0.26 0.33 0.56 0.43 0.36 0.31 0.15

Resource need prediction 6.0 0.00 0.01 0.00 0.04 0.12 0.09 0.12 0.13 0.35 0.43 0.61 0.54 0.21

PPart retirement 5.8 0.00 0.00 0.00 0.01 0.04 0.02 0.04 0.03 0.11 0.36 0.61 0.84 0.60

Geometric change 5.6 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.04 0.11 0.31 0.54 0.84 0.54

DDynamic protocol evolution 5.3 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.08 0.15 0.21 0.60 0.54

The three lowest ranked requirements, viz. “part retirement”, “geometric change” and

“dynamic protocol evolution” (Table 5.10), occur relatively infrequently in a composition-

based platform and this may explain why they were perceived as relatively less

important. “Part retirement” and “dynamic protocol evolution” were also found to be not

significant based on the Wilcoxon one-sample signed-rank test results (pwsr=0.11 and

0.38, Table 5.8).

As reported in Section 5.2.3, there are extensions to the set of dynamic change

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 132

requirements rated by respondents in the survey. To assess their importance, the same

expert review procedure as the one for additional quality factors (cf. Section 4.2.4) was

used to incorporate these extensions into the importance rankings (cf. Table 5.9 and

Table 5.10). Figure 5.5 shows the revised ranking orders for (a) modelling related, and

(b) work related dynamic change requirements.

Transformation exception resolution

Transformation exception

Expect Change Impact

Dynamic change

Transformation

Generation

Application lifecycle

Transformation action

Performance characteristics

Access blocking

Multiple version coexistence

Servicing continuity

Resource needs

Transformation agent

Transitional form

(a) modelling related dynamic change
requirements

Dynamic change impact analysis

Dynamic part change

Dynamic part (re)binding

Dynamic variability

Dynamic recomposition

Dynamic part adapter

Dynamic state transfer

Dynamic contract change

Dynamic workflow evolution

Dynamic refactoring

Performance characteristic prediction

Resource need prediction

Part retirement

Geometric change

Dynamic protocol evolution

Dynamic contract change (new)

Dynamic change impact analysis (extended)

(b) work related dynamic change requirements

Expected dynamic change impact (new)

source: developed for this research

Figure 5.5 Importance rankings of dynamic change requirements after expert
review

With respect to the modelling related requirements, the new entry “expected dynamic

change impact” was ranked third. The experts commented that this requirement should

be extremely important as in the work related requirement ranking order (“dynamic

change impact analysis (extended)” in Figure 5.5(b)). Both “transformation exception” and

“transformation exception resolution” still remained the most important and should be

given the top priority for dynamic evolution.

With respect to the work related requirements, “dynamic change impact analysis” after

refinement from the survey feedback still remains at the top spot. The new entry

“dynamic contract change” was ranked just below “dynamic state transfer”. The experts

explained that “dynamic contract change” is less common than “dynamic state transfer” but

more common than "dynamic workflow evolution".

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 133

55.3 STEP 3: DYNAMIC CHANGE REQUIREMENTS EXTENSION
FROM METHODOLOGICAL PERSPECTIVE

In this Step, the same set of methodologies (listed in Section 2.4) that were reviewed

for dynamic evolution quality factor identification in Task 1.1 (cf. Section 4.3) were also

reviewed for dynamic change requirements. Then, the identified dynamic change

requirements were used to extend (if necessary) the dynamic change requirement set

after Step 2, by incorporating any additional requirements into the set.

Based on the same selection criteria for dynamic change requirements specified in

Appendix A, requirements were identified from a number of methodologies (Table

5.11). Each identified requirement was then checked to see if it mapped to one or more

requirements from the set of requirements after Step 2. As shown in Table 5.11, all

requirements identified from the methodologies correspond to requirements in the set

after Step 2 and hence no modification to the set is required.

Table 5.11 Analysis of potential dynamic change requirements elicited from reviewed methodologies

Methodology Mapping to
requirement as

revised from Step 2 Name Concern Description Relevant
Literature

AEM Changes can include the addition, removal, or
replacement of components and connectors.

Oreizy et al.
(1999)

Work related: part
level: ddynamic part
change

AEM
Changes can include ... mmodifications to the
configuration or parameters of components
and connectors.

Oreizy et al.
(1999)

Work related: part
level: ddynamic part
change

ASG
variation of

service
composition

Another aspect arises if service compositions
are provided to several internal or external
requestors. Often, they require slightly
different functionality. To serve all of them
optimally, different variants of each service
composition are required.

Fahringer et
al. (2007)

Work related:
application level:
ddynamic variability

KobrA variability

… rather than assemble every system in the
family from scratch, it makes sense to build so-
called ‘frameworks’, which ‘hard-wire’ the
common aspects of the family, and allow the
variable components to be ‘plugged in’ as and
when needed.

Atkinson et
al. (2000)

Work related:
application level:
ddynamic variability

SeCSE rebinding

If the chosen candidate [i.e. one being used]
has to be replaced (due to an error or a QoS
decrease, for instance), the re-binding process
will choose a new one from the alternatives list
… and will mmodify the composition to bind the
new service.

SeCSE
(2006)

Work related: part
level: ddynamic part
(re)binding

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 134

Methodology Mapping to
requirement as

revised from Step 2 Name Concern Description Relevant
Literature

SeCSE
service

composition
replanning

When a service which participates in the
composition fails, in the case there is no
possibility to replace with other single service,
there is the need to mmodify the composition in
such a way the lost functionality can be
recovered. The functionality may be split … or
may be regrouped with other part of the
composition …

SeCSE
(2006)

Work related:
application level:
ddynamic
recomposition

SeCSE

variability
point or
variation

point

With the variability points approach, we can
define the places of the composition where
there will be different alternatives to execute
an abstract activity … Depending on the
context when the composition requested and
the conditions defined for each variability
point, one option will be chosen and executed.
The variances may be defined as different
features available or as service realisation
alternatives at runtime.

SeCSE
(2006)

Work related:
application level:
ddynamic variability

Note: Underlined text highlights the relevance of each requirement with changes, maintenance and/or
evolution as argued by respective methodologies.

5.4 STEP 4: EVALUATION OF SUPPORT FOR DYNAMIC CHANGE
REQUIREMENTS IN METHODOLOGIES

After the incremental development of the set of dynamic change requirements in the

previous steps, a feature analysis of existing methodologies (Section 2.3) was

performed using the requirement set after Step 3, to determine what features from

existing methodologies could be reused, what features could be enhanced for use and

any additional support required. For consistency, the same scale points (Table

Appendix B.1) used for evaluating the methodologies for their support for dynamic

evolution quality factors (cf. Section 4.4) were also used in this step.

The analysis was conducted by the researcher and was limited to a qualitative review

of the respective documentation of each methodology (Section 8.3 discusses this

limitation). Table 5.12 reports the evaluation results. The actual features from the

reviewed methodologies offering the support are detailed in Appendices B.2 and B.3.

With respect to modelling related dynamic change requirements, the Unified Modelling

Language (UML) (OMG 2010b) was also considered when evaluating Catalysis, Select

Perspective, OPF, RUP and KobrA because these methodologies adopt UML as their

underlying modelling language. Object Modelling Language (Firesmith et al. 1997) was

also evaluated since it is adopted by OPF.

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 135

Table 5.12 Feature analysis results of selected methodologies

Methodology
(C:supporting component-based, S:supporting SOA-

based)

 C C C C C C C,
S S S S S S S

Dynamic Change Requirement

A
E

M

C
at

al
ys

is

E
P

IC

K
ob

rA

O
P

F

S
el

ec
t

P
er

sp
ec

tiv
e

R
U

P

A
S

G

C
B

D
I-

S
A

E

E
R

L

P
&

H

S
eC

S
E

S
U

P
E

R

M
od

el
lin

g
R

el
at

ed

Part level
Multiple version coexistence L L
Resource needs L L L L
Performance characteristics L HH22 HH HH HH L L
Access blocking

Application level
Dynamic change L L L L
Transformation L
- Transitional form
Generation L MM
Application lifecycle L L MM L L
Servicing continuity L

Others
Transformation agent L L L
Transformation action MM11 MM11 MM11 MM11 MM11 MM11
Transformation exception
+ Transformation exception resolution
Expected dynamic change impact (after SStep 22) L MM L

W
or

k
R

el
at

ed

Part level
Dynamic part change L
Dynamic part adapter L L MM L L HH L L L L MM MM
Part retirement HH L L
Dynamic part (re)binding L L MM L
Resource need prediction
Performance characteristic prediction HH L
Geometric change L
Dynamic state transfer

Application level
- Dynamic protocol evolution
Dynamic workflow evolution
Dynamic recomposition L L L
Dynamic refactoring L L MM L L L L L
Dynamic variability MM L L L HH
+ Dynamic change impact analysis (after SStep 2) L L L
Dynamic contract update (after SStep 2) L

Notes:

1. UML offers elementary action objects “CreateLinkAction”, “CreateLinkObjectAction”,
“DestroyLinkAction” and “DestroyObjectAction” to model change operations on an object model
(OMG 2010b). The evaluation result of “transformation action” on a methodology adopting UML is
equivalent to that for UML.

2. EPIC reiterates the list of performance characteristics from RUP in its documentation. This is not
surprising since EPIC is an extension of RUP.

3. “After Step 2” dynamic evolution requirements refer to the requirements added/enhanced as a
result of the survey results.

4. Dynamic change requirements prefixed with “+” and “-” are those ranked as the most and least
important respectively. See Figure 5.5.

From a methodological viewpoint (i.e. columns in Table 5.12), no methodology

addresses all the dynamic change requirements. Furthermore, none of the

methodologies adequately support (“H”) more than one modelling related requirement

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 136

or more than one work related requirement, suggesting that they pay little attention to

dynamic evolution as a first class problem in application development. OPF, RUP and

ASG offer the best support, providing adequate support for two dynamic change

requirements (two H’s). ASG, for instance, prescribes a performance related technique

(addressing the “performance characteristics prediction” work requirement) and

comprehensive performance modelling attributes (addressing the “performance

characteristics” modelling related dynamic change requirement). EPIC and SeCSE

provide the next best level of support (one H).

The methodologies were then assessed to determine if a particular group of

methodologies offers better support for dynamic evolution. The grouping was

performed based on the type(s) of composition-based applications they support

(component-based, SOA-based or both) as shown in Table 5.12. There is no apparent

difference in the level of support between the best methodologies from each group

(OPF from component-based, ASG from SOA-based, and RUP from both), each

providing full support for two dynamic change requirements (two H’s). However,

methodologies addressing component-based development provide better coverage for

the modelling related dynamic change requirements than those for SOA-based

development (i.e. more M’s and H’s in Table 5.12). This may reflect the relative maturity

of the component-based paradigm which started gaining popularity in the 1990s. The

SOA-based paradigm is comparatively younger, focusing mainly on key issues, such as

services, as fundamental elements for building applications. The initial request from the

Object Management Group for a Specification for the UML Profile and Metamodel for

Services only dates from 2006 (OMG 2008). The modelling concepts of dynamic

evolution are yet to be incorporated into the SOA-based paradigm.

From the dynamic change requirement viewpoint (i.e. rows in Table 5.12), “performance

characteristics” seem to be the best supported: EPIC, OPF, RUP and ASG model them

as sets of measurable attributes (e.g. throughput). The notion of a “dynamic part adapter”

is the requirement most widely supported by all the methodologies with RUP offering

the best support (i.e. scoring “H”). The work related dynamic change requirement

ranked as the most important (cf. Section 5.2.4) - “dynamic change impact analysis” - is

inadequately supported (i.e. no “H”). Moreover, neither of the error related modelling

requirements (i.e. “transformation exception” and “transformation exception resolution”),

which were also top ranked (cf. Section 5.2.4), are supported by the methodologies

assessed. The fact that the methodologies do not provide adequate support for

dynamic change requirements regarded as the most important by respondents is a

Chapter 5. Development of Dynamic Change Requirements Kam Hay Fung - PhD Thesis

© 2011 UNSW page 137

concern, suggesting areas to which priority should be given when developing

methodology extensions for dynamic evolution.

55.5 CONCLUSION
In this Chapter, the outcomes of Task 1.2 of this research - viz. Synthesise, assess and

extend important dynamic change requirements - have been reported. This task

performed four steps to the incremental development of an extended set of dynamic

change requirements suitable for dynamic evolution in composition-based distributed

applications.

The initial set of dynamic change requirements was elicited from the literature and

relevant evaluation frameworks. The requirements were subsequently evaluated in a

survey. Feedback from the survey was used to extend the initial set with new

requirements. Then, the extended set was further extended via a review of selected

development methodologies. To demonstrate the use of the extended set of dynamic

change requirements, an evaluation of the selected development methodologies for

their extent of support for these requirements was discussed. The set of dynamic

change requirements identified in Task 1.2 are summarised in Table 5.13.

Table 5.13 Dynamic change requirements investigated in Task 1.2

Scope Modelling Related Work Related

Part

Multiple Version Coexistence
Resource Needs

Performance Characteristics
Access Blocking

Dynamic Part Change
Dynamic Part Adapter

Part Retirement (see note 1)
Dynamic Part (Re)Binding
Resource Need Prediction

Performance Characteristic Prediction
Geometric Change

Dynamic State Transfer

Application

Dynamic Change
Transformation

Generation
Transitional Form (see note 1)

Application Lifecycle
Servicing Continuity

Dynamic Protocol Evolution (see note 1)
Dynamic Workflow Evolution

Dynamic Recomposition
Dynamic Refactoring
Dynamic Variability

Dynamic Change Impact Analysis
Dynamic Contract Update

Others

Transformation Agent
Transformation Action

Transformation Exception
Transformation Exception Resolution

Expected dynamic change impact

Notes:

1. These requirements were perceived by survey respondents as the least important (i.e. Step 2).

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 138

Chapter 6. DDEVELOPMENT OF CONTINUUM

“Art and science have their meeting point in method.” - Edward Bulwer-Lytton, English

dramatist, novelist and politician

In Chapter 4 and Chapter 5, the process of determining important dynamic evolution

requirements for Continuum in Phase 1 and its outcomes were presented. This Chapter

reports the outcomes from Phase 2 during which Continuum was subsequently

developed to fulfil these requirements. Continuum is a methodology extension,

comprising a suite of method fragments designed to be incorporated into an existing

methodology via method engineering. Continuum developed in Phase 2 was

subsequently evaluated and refined using the evaluation results in Phase 3. Figure 6.1

below illustrates the information flow among the tasks of Phase 2 and other phases:

Phase 2:

identified
existing

candidate
method

fragments

Phase 3:

Evaluate
& refine
support

for
dynamic
evolution

Task 2.1:

Identify
candidate
method

fragments
from

methodologies

Task 2.2:

Develop
method

fragments

dynamic
evolution
method

fragments
important
dynamic
evolution

requirements

methodology
evaluation

results

Phase 1:

Determine
important
dynamic
evolution

requirements

source: developed for this research

Figure 6.1 Information flow in Phase 2 for developing Continuum

This Chapter is organised as follows. Section 6.1 summarises the set of important

dynamic evolution requirements from Phase 1’s results, selected for the development

of Continuum.

Section 6.2 presents the outcome of Task 2.1 of Phase 2, which sought candidate

method fragments from existing methodologies suitable for reuse or requiring small

enhancement to address these requirements.

Section 6.3 describes Continuum which was developed in Task 2.2 of Phase 2. The

development involved a number of areas such as incorporating the method fragments

identified from Task 2.1 as suitable for reuse into Continuum. A hypothetical application

is used to guide the discussion of Continuum.

Section 6.4 summarises the correspondence between the dynamic evolution

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 139

requirements and Continuum’s method fragments, as evidence of support for each

requirement. For convenience, the version of Continuum presented in this Chapter also

includes the refinements made to Continuum based on the evaluation results of

Continuum obtained from Phase 3. The descriptions for the actual refinements together

with the evaluation results are documented in the next Chapter. The full documentation

for Continuum can be found in Appendix C. Section 6.5 concludes this Chapter.

66.1 REQUIREMENTS FOR CONTINUUM
In Phase 1 of this research, two types of dynamic evolution requirements were

synthesised: dynamic evolution quality factors (cf. Chapter 4) and dynamic change

requirements (cf. Chapter 5). Dynamic evolution quality factors are concerned with how

well a distributed application and dynamic changes to it facilitate dynamic evolution (cf.

Table 4.11). Dynamic change requirements characterise dynamic changes that a

distributed application would accommodate and they are subdivided into modelling and

work related dynamic change requirements (cf. Table 5.13). Since a vast number of

requirements exist, it is logical to inspect their relative importance and focus on the

more important ones so as to narrow the scope of the development of Continuum in

Phase 2. The following requirements were omitted since they were considered the least

important by the survey respondents:

 In the dynamic evolution quality factor category, Efficiency appears at the

bottom of the importance ranking (Figure 4.5) and has the lowest mean rank

(Table 4.7) based on the survey (Section 4.2.4);

 In the modelling related dynamic change requirement category, transitional form

has the lowest importance ranking (Table 5.9). It is also the only modelling

related requirement that was not perceived as important in the survey (pwsr=0.19,

Table 5.7); and

 In the work related dynamic change requirement category, neither part

retirement nor dynamic protocol evolution was perceived to be important

(pwsr=0.11 and 0.38, Table 5.8).

Accordingly, the set of dynamic evolution requirements that was selected for

Continuum development are summarised in Table 6.1 (for dynamic evolution quality

factors) and Table 6.2 (for dynamic change requirements).

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 140

Table 6.1 Summary of dynamic evolution quality factor requirements for Continuum (cf. Table 4.11)

Quality Factor Quality Attribute

Soundness of Change

Completeness

No missing functionality after a transformation

No missing parts after a transformation

No missing, illegal or broken bindings after a transformation

(Also in consistency) assumptions and properties of a distributed application and its
parts met by a change

Consistency

Compatible bindings

Compatible communications protocol among parts

All parts involved in a runtime change identified before a transformation

No progression towards an error state after a transformation

Synchronisation of application’s and parts’ states after a transformation

A reachable state attained after a transformation

No critical procedures executed before a transformation

No pending messages, interactions or transactions before a transformation

System invariants preserved from a transformation

Adequate resources and support for new and replacement parts

(Also in completeness) assumptions and properties of a distributed application and
its parts met by a change

Correctness

Non-arbitrary and admissible changes

No unintentional behaviour during and after a transformation

Correct ordering of transformations

Transformations at a right time

Infusibility of Change

Locality Application partitioning and change localisation to partitions

Maintainability

All parts clearly defined in interaction (or workflow) specifications

No degradation in cost and ease of modifications

No reduction in testability

Clear and detailed interactions

Transparency Transformations hidden from end users

Transformation design and implementation hidden from application programmers

Transformations hidden from parts unaffected by the transformations

Transformation agents hidden from operating environment

Changeability of Application

Autonomy Self-control and self-governance of parts’ own processing

Coordination
Transformations coordinated among multiple nodes/organisations

Transformation agents tolerant of network unreliability during a transformation

Extensibility

Runtime extension/upgrade of an application with new functionality

Runtime extension/upgrade of parts in an application with new functionality

Runtime extension/upgrade of an application with new parts

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 141

Quality Factor Quality Attribute

Loose Coupling
High level of independence between parts

Parts having their own lifecycles and runtime environments

Separation of
Concerns

Separating dynamic change concerns from functionality concerns

Separating communication concerns from functionality concerns

Separating security support from functionality concerns

Separating realisations of parts from those of part clients

Separating part specification from realisation concerns

Robustness of Application

Fault Tolerance
High tolerance of faulty new and/or changed parts

Barriers established to contain potentially faulty new and replacement parts

Recoverability
Restoration of an application and its parts to a state to continue to perform their
functionality, after a failure caused by a transformation and/or its dynamic change(s)

Reliability
No compromise on intended functionality after a transformation

Replacement parts fully satisfying their roles

Safety Distributed application and its parts operating safely during and after a
transformation

Security

Transformation agents secured from unauthorised access

No security compromise by new and replacement parts after a transformation

Access to for new and replacement parts restricted

Dynamically updated security policy

Separating security policy from security enforcement

Table 6.2 Summary of dynamic change requirements for Continuum (cf. Table 5.13)

Requirement Description

Modelling related, part level

Multiple version
coexistence

Model the ability of a service to have multiple versions present in various regions of
an application as the service evolves over time.

Resource needs Model the changing resource needs of a service as it evolves.

Performance
characteristics

Model the changing performance characteristics of a service as it evolves.

Access blocking Model the ability to block access to a service while it is being updated or replaced.

Modelling related, application level

Dynamic change
Model the notion of a runtime change which is the intended result of a modification to
an application at runtime.

Transformation Model the notion of a transformation which is an act of performing modifications to an
application at runtime.

Generation
Model the notion of a generation which represents a stable version of an application
at a particular time.

Application lifecycle Model the notion of an application lifecycle which organises application evolution as
a series of generations over time.

Servicing continuity
Model the ability of an application to continuously offer some functionality during a
transformation.

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 142

Requirement Description

Modelling related, others

Transformation
agent

Model the notion of a transformation agent responsible for performing
transformations.

Transformation
action

Model the steps undertaken in a transformation, e.g. adding a new service, followed
by configuring the service.

Transformation
exception

Model the notion of an error condition occurred during a transformation, e.g. Because
of faulty changes.

Transformation
exception resolution

Model the notion of a resolution - e.g. a rollback - to process and resolve errors
caused by transformation exceptions.

Expected dynamic
change impact

Model the impact of dynamic changes (scope and extent) expected on parts within
the application and other applications affected by the changes.

Work related, part level

Dynamic part
change

Define support to add, replace, remove individual parts, and modify their parameters
at runtime.

Dynamic part
adapter

Define adapters for wrapping and plugging parts into an architecture at runtime, and
resolving their mismatches.

Dynamic part
(re)binding

Define support to (re)bind one part to a new part at runtime as the original part is
replaced or upgraded by the new part.

Resource need
prediction Define support to predict the resource needs for a new part.

Performance
characteristic
prediction

Define support to predict the performance characteristics for a new part.

Geometric change Define support to relocate parts to a different hosting environment as needed.

Dynamic state
transfer

Define support to transfer the state from an instance of an old implementation of a
part/workflow to an instance of the new implementation of the part/workflow as it
evolves.

Work related, application level

Dynamic workflow
evolution Define support to evolve a workflow definition while the workflow is operational.

Dynamic
recomposition

Define support to combine several parts/workflows into a larger unit, split a larger
part/workflow into smaller units or reconfigure the architectural structure at runtime.

Dynamic refactoring
Define support to refactor an application structure without functional changes at
runtime, say, to reduce its complexity and improve its performance.

Dynamic variability
Define customisation points in an architecture to plug in or swap different parts at
runtime to support limited variations in functionality (e.g. Using credit card vs.
Account debit for payment).

Dynamic change
impact analysis

Analyse the impact of dynamic changes to an application to determine which
parts/workflows of the application, those parts/workflows outside the application, and
other applications, will need to be affected and updated to accommodate the
changes.

Dynamic contract
update Define support to update contracts among parts as the parts/contracts evolve.

66.2 TASK 2.1: METHOD FRAGMENT IDENTIFICATION FROM
RELEVANT METHODOLOGIES

The objectives of this task were to identify and select features from relevant and

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 143

existing methodologies that can be reused without the need for enhancement, or can

be enhanced with minimal effort to address the requirements. Selected features were

documented as the International Standard ISO/IEC 24744 (ISO/IEC 2007) based

method fragments to prepare them for incorporation into Continuum in Task 2.2. This

task reused the assessment results of the selected methodologies in Phase 1 for their

support of the dynamic evolution requirements. In particular, the results identify

candidate features from the methodologies suitable for Continuum:

1. For reuse (i.e. rated as “H” for high in Phase 1), a feature explicitly and fully

supports a particular requirement; and

2. For enhancement (i.e. rated as “M” for medium in Phase 1), a feature appears

to support a particular requirement to some extent and needs a small

enhancement to fulfil the requirement.

Although the assessment results are indicative of which of the features could potentially

be incorporated for reuse/enhancement, they do not determine which of the features

should be selected for Continuum. This is because a requirement may well be

supported by similarly scored features from several methodologies. Accordingly, in this

task the following steps were performed for each requirement to select the final set of

features for reuse and enhancement in Continuum:

1. Determine if a feature exists in a methodology that fully supports the

requirement (i.e. scored with “H”). If more than one feature is identified, select

one as the reusable feature. In this case, the rationale for selecting a particular

feature or integrating two or more into a better feature for the requirement is

detailed in Table 6.3 and Table 6.4.

2. If no suitable feature is found in Step 1, identify the features with the medium

score (i.e. “M”). If more than one feature is equally scored, select the feature

requiring the minimum effort for enhancement, as the to-be-enhanced feature.

3. If no suitable feature is found, a new fragment is developed.

Features identified from Steps 1 and 2 above are presented in Table 6.3 and Table 6.4

for dynamic change and quality factor requirements respectively. The “Potential Source

of Reuse/Enhancement” column summarises the features from the methodologies offering

the support and their scores, as analysed in Phase 1 (cf. Appendix B). The “Decision for

Continuum” column summarises the final features from the methodologies selected for

Continuum and the rationale for choosing them. For brevity, only those requirements

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 144

that have corresponding features suitable for reuse/enhancement are shown in these

tables. The following abbreviations are used in these tables for identifying respective

methodologies:

 ASG: Adaptive Service Grid (Lehner et al. 2006)

 EPIC: Evolutionary Process for Integrating Commercial-off-the-Shelf Based

Systems (Albert & Brownsword 2002)

 OPF: OPEN Process Framework (Firesmith & Henderson-Sellers 2002)

 RUP: Rational Unified Process (Kruchten 2003)

 SeCSE: Service Centric System Engineering (SeCSE 2007)

 SUPER: Semantics Utilised for Process Management within and between

Enterprises (SUPER 2007)

Table 6.3 Features for reuse/enhancement for dynamic change requirements

Requirement Potential Source(s) for Reuse/Enhancement Decision for Continuum

 MModelling Related

Part Level

Performance
characteristics

HH:OPF—capacity, latency, throughput, response
time.
HH:EPIC/RUP—speed, efficiency, availability,
accuracy, throughput, response time, recovery time.
HH:ASG—performance metrics: duration (response
time, service time, network delay, residence time),
capacity (throughput, workload, error rate).

RReuse ASG’s definitions which
are the most comprehensive
and accompanied by
performance engineering
capabilities which also meet
another requirement for
Continuum (see the
“performance characteristic
prediction” requirement).

Application Level

Generation MM::RUP—”software generation” from “evolution
cycle”.

Enhance RUP’s notion of
“generation” to cover dynamic
evolution.

Application lifecycle M:RUP—”evolution cycle”.

Enhance RUP’s notion of
“evolution cycle” to cover
dynamic lifecycle of
application.

Others

Transformation
action

M:Unified Modelling Language (UML) (as used by
many of the reviewed methodologies)—four low
level actions relevant to object/link instantiation and
destruction, but insufficient for a variety of scenarios
in a transformation.

Enhance UML’s action
concept.

Expected dynamic
change impact

M:EPIC—within the target resistance plan, EPIC
characterises the impact of change with several
attributes: “target that will be affected”, “type of
impact”, and “level of disruption”.

Enhance EPIC’s notion of
impact of change for dynamic
change.

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 145

Requirement Potential Source(s) for Reuse/Enhancement Decision for Continuum

 WWork Related

Part Level

Dynamic part
adapter

HH:RUP—“service mediation” guideline to mediate
interface, protocol and operational conflicts
between parts.
MM:KobrA—“component adaptation” process to bridge
between a component specification a and
component to be reused.
MM:SeCSE—designing adapter in the “re-planning”,
process to replace faulty services.
MM:SUPER—process and data mediators to bridge
interactions between processes and to translate
their data flows.

RReuse RUP’s “service
mediation” guideline.

Dynamic part
(re)binding

M:SeCSE—“binding and re-binding” process to find,
select and execute appropriate service

Enhance SeCSE’s “binding
and re-binding” process.

Performance
characteristic
prediction

H:ASG—“performance engineering” analysis and
modelling tasks and techniques for SOA solutions
(Kempter et al. 2007).

Reuse ASG’s “performance
engineering” tasks.

Application Level

Dynamic refactoring M:OPF—”design refactoring” task.
Enhance OPF’s task to support
dynamic refactoring.

Dynamic variability

M:KobrA—support for static variability in “framework
engineering” process.
H:SeCSE—“variation points management” process
to design variation points, and “variation points
realisation” process to design runtime variability in
applications.

Reuse SeCSE’s “variation
points management” and
“variation points realisation”
processes.

Table 6.4 Features for reuse/enhancement for dynamic evolution quality factors

Quality Factor /Attribute Potential Source of Reuse/Enhancement Decision for Continuum

Soundness of Change

Completeness

No missing functionality
after a transformation

H:RUP—features the “review the design” task to
check if a design model fulfil its requirements.

Reuse RUP’s “review the
design” task.

Consistency

System invariants
preserved from a
transformation

H:SeCSE—“regression testing” technique to
derive invariants and test cases to verify them.

Reuse SeCSE’s “regression
testing” technique.

Infusibility of Change

Locality

Application partitioning
and applying changes
to partitions

M:Catalysis—suggests several ways to partition
an application into packages to confine
propagation of changes.

Enhance Catalysis to support
runtime changes.

Maintainability

All parts clearly defined
in interaction (or
workflow) specifications

Well supported by many methodologies’
respective modelling languages (rated H for
UML and BPMN for Catalysis, KobrA, OPF,
P&H, RUP, SeCSE, Select Perspective).

Reuse respective modelling
languages where appropriate
to document interactions.

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 146

Quality Factor /Attribute Potential Source of Reuse/Enhancement Decision for Continuum

No degradation in cost
and ease of
modifications

MM:EPIC—defines characteristics of an evolvable
architecture.
MM:OPF—suggests a number of mechanisms to
implement maintainability.
MM:Select Perspective—defines characteristics of
easily maintained components and applications.

EPIC, OPF and Select
Perspective’s characterisations
of an easily maintainable
application overlap (e.g. proper
and current documentation).
However, OPF defines the
most number of
characteristics. EEnhance OPF
by augmenting its definitions
with characteristics from EPIC
and Select Perspective but
missing in OPF.

Clear and detailed
interactions

Well supported by many methodologies’
respective modelling languages (rated H for
UML and BPMN for Catalysis, KobrA, OPF,
P&H, RUP, SeCSE and Select Perspective).

Reuse respective modelling
languages where appropriate
to document interactions.

Changeability of Application

Autonomy

Self-control and self-
governance of parts’
own processing

H:ERL—the “service autonomy” principle which
distinguishes between “service-level autonomy”
and “pure autonomy”.

Reuse ERL’s “service
autonomy” principle.

Loose Coupling

High level of
independence between
parts

H:Catalysis—”decoupling process” pattern for
objects and classes.
H:P&H—the “service coupling” principle as a
guideline for SOA.

Reuse P&H’s “service
coupling” principle which is
more suitable to composition-
based models. Catalysis’s
pattern targets objects and
classes which are less
relevant/intuitive to
composition-based models
than P&H.

Separation of Concerns

Separating
communication
concerns from
functionality concerns

H:RUP—communication concerns between two
services are abstracted from services into a
concept called “service channel”, and
addressed in the “service mediation” guideline.
MM:Catalysis— communication concerns are
abstracted from components into the notion of
an “action” and “collaborations” to model the
interactions.

Reuse RUP’s “service
channel” and “service
mediation” to handle part
communication.

Separating security
support from
functionality concerns

H:ERL—ERL’s approach to security is based on
the WS-Security standard (OASIS 2006). The
standard defines mechanisms to separate
security support from Web services
functionality.

Reuse ERL’s approach to
support security, in the SOA
context.

Separating realisations
of parts from those of
part clients

H:Select Perspective—uses two development
processes to separate the development
activities of component providers from those of
component consumers, thus decoupling their
realisation dependencies.

Reuse Select Perspective’s
notion of separating the
development of parts from
those of part clients.

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 147

Quality Factor /Attribute Potential Source of Reuse/Enhancement Decision for Continuum

Separation of part
specification from
implementation

Well supported by many methodologies (rated HH
for Catalysis, Select Perspective, RUP, EPIC,
COMET, UML Components, P&H, SeCSE).

In summary, methodologies
rated with HH suggest that
specifications and
implementation of a part
should be 1) regarded as
separate concepts, 2)
developed with separate
activities; and 3) documented
separately. Rather than
reusing a feature from a
particular methodology,
Continuum adopts these
criteria in its inspection
checklist (see Dynamic
Evolution Quality Inspection
Report, Appendix C.2.2.3).

Robustness of Application

Reliability

Replacement parts fully
satisfying their roles

H:SeCSE—“regression testing” technique to
ensure a replacement part is in line with the
expectations (both behaviour and QoS) for the
original part.

Reuse SeCSE’s “regression
testing” technique.

Safety

Distributed application
and its parts operating
safely during and after a
transformation

M:OPF—“work product safety engineering”
process to ensure work products produced
reach accepted levels of safety.

Enhance OPF’s process to
cover composition-based
distributed application with
dynamic evolution capability.

Security

Transformation agents
secured from
unauthorised access

M:OPF—“security engineering” process to
ensure security needs of the work products are
met.

Enhance OPF’s process to
cover this requirement.

No security
compromise after a
transformation

Ditto Enhance OPF’s process to
cover this requirement.

Access to new and
replacement parts
restricted after a
transformation

Ditto
Enhance OPF’s process to
cover this requirement.

6.3 TASK 2.2: METHOD FRAGMENT DEVELOPMENT
This task developed Continuum to support the requirements identified in Phase 1.

Continuum follows the paradigm of specifying a methodology’s elements as a set of

method fragments, with a primary focus on dynamic evolution. The word Continuum

originates from the Latin word “continuus” meaning “uninterrupted”, and signifies “a

continuous sequence in which adjacent elements are not perceptibly different from each other,

but the extremes are quite distinct” (Oxford English Dictionary). In this research, the word

symbolises the ability of an application to continue running as it evolves. The

development of Continuum comprises the following areas:

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 148

1. Incorporate the method fragments of reviewed methodologies that were

selected for reuse in Task 2.1 into Continuum;

2. Enhance the method fragments of reviewed methodologies that were selected

for enhancement in Task 2.1 and incorporate these fragments into Continuum;

3. For each requirement not addressed by any of the method fragments above,

identify an approach from the literature that addresses the requirement; and

4. Develop new method fragments to meet the requirements that are otherwise not

addressed by any of the method fragments above.

The description of Continuum is organised as follows. Section 6.3.1 describes a

hypothetical application used to guide the discussion of Continuum in subsequent

sections. Section 6.3.2 gives an introduction to Continuum. Section 6.3.3 presents key

concepts and their relationships underpinning Continuum to model dynamic evolution.

The next three sections present Continuum’s method fragments for dynamic changes

(Section 6.3.4), for dynamic evolution quality (Section 6.3.5) and for representing

producers who execute dynamic evolution specific tasks during development (Section

6.3.6). Finally, Section 6.3.7 provides usage guidelines for Continuum such as how its

process fragments could be used in a development lifecycle.

66.3.1 Electronic Product Catalogue Platform

A hypothetical application called Electronic Product Catalogue Platform (EPCP) is used

throughout this Chapter to illustrate the features in Continuum. EPCP serves electronic

product catalogues (EPC) on items of interest (e.g. merchandise) via the web,

comprising:

 Catalogue Service, which provides access to EPC data;

 Local EPC, a database providing up-to-date catalogue information on items of

interest, offered by an organisation in local currency;

 Search Service, which coordinates search invocations to the Catalogue Service

using:

o Search Query Composer, which builds search queries for search criteria

entered by end users; and

o Search Result Processor, which ranks and iterates through search

results; and

 Web User Interface (WebUI), for end users to enter search criteria and view

search results.

Figure 6.2 illustrates EPCP. Solid boxes, connecting lines and the drum symbol are

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 149

notations from existing modelling languages of choice. Dashed boxes represent logical

partitions in EPCP called zones using Continuum’s notation (cf. Structural

Configuration - Notational Extensions, Appendix C.2.2.8).

source: developed for this research

Figure 6.2. EPCP: current structure

Suppose that after the initial successful launch of EPCP, its stakeholders decide that it

should be integrated with two external partner EPC systems to provide additional

catalogues for an increased variety of merchandise. Furthermore, EPCP will also

support the internationalisation (a.k.a. “i18n”) capability (Arnold et al. 2005), meaning

EPCP will handle catalogue items described in foreign languages and priced in

different currencies. The EPCP scenario is inspired by the need for integrating different

EPC systems together (Lincke & Schmid 1998). Since EPCP runs around the clock, it

is desirable to progressively roll out these changes while reducing the interruption to

EPCP.

66.3.2 Overview of Continuum

In specifying a full methodology or a methodological extension such as Continuum, a

common approach is to instantiate elements from an existing methodology metamodel.

More generally, a metamodel is a model of models (Atkinson & Kühne 2003). Likewise,

a methodology metamodel is a model of methodologies (Gonzalez-Perez &

Henderson-Sellers 2006b) offering (methodology) elements for construction and

definitions of a methodology or a methodology extension. One such metamodel is the

International Standard ISO/IEC 24744: Software Engineering - Metamodel for

Development Methodologies (SEMDM) (ISO/IEC 2007) which supports both product

and process aspects. The product aspect represents modelling needs of an endeavour,

such as modelling concepts and the artefacts generated/used, whereas the process

aspect represents what are performed in an endeavour. Because of its ability to support

these two aspects, SEMDM is adopted for specifying Continuum.

Figure 6.3 depicts the major components of Continuum and their relationships with

relevant methodology metamodel domain elements from SEMDM. In the “methodology

Search Engine Zone Repository ZoneWeb Zone

:Search
Result

Processor

:Search
Query

Composer

:WebUI :Search
Service

:Local
EPC

:Catalogue
Service

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 150

metamodel domain” (upper half of Figure 6.3) are the SEMDM elements called “powertype

patterns” (Henderson-Sellers & Gonzalez-Perez 2005) all of which suffixed with “/*Kind”

(Gonzalez-Perez & Henderson-Sellers 2006b). They are intended to be instantiated to

create methodological elements (Henderson-Sellers & Gonzalez-Perez 2006), such as

Continuum’s, in the “methodology domain” (lower half of Figure 6.3). (For simplicity the

suffix “/*Kind” is suppressed from SEMDM element names in the remainder of this

Chapter.)

source: developed for this research

Notes:
1. Model/*Kind is related to ModelUnit/*Kind via ModelUnitUsage/*Kind which is hidden for

simplicity.
2. Task/*Kind is related to WorkProduct/*Kind via Action/*Kind which is hidden for simplicity.
3. Producer/*Kind is related to WorkUnit/*Kind via WorkPerformance/*Kind which is hidden for

simplicity.

Figure 6.3. SEMDM and Continuum components

As shown in the upper half of Figure 6.3, three types of SEMDM elements are used for

specifying Continuum via the instantiation mechanism:

 Product elements (upper left of Figure 6.3)

A WorkProduct is an artefact of interest in an endeavour, such as a Model to

represent a particular view of an entity being modelled (e.g. class diagram).

ModelUnits are atomic constructs used in a model to define the meaning of the

model (e.g. class).

 Process elements (upper middle of Figure 6.3)

A WorkUnit is an abstraction of some job to be performed for a given purpose.

More specifically, a Process is a large-grained work unit within a given area of

expertise, whereas a Task and a Technique respectively focus on what must be

done for a given purpose and how to achieve it for the given purpose. A logical

Methodology
Metamodel
Domain
(ISO/IEC 24744,
a.k.a. SEMDM)

product elements process elements

Methodology
Domain
(Continuum)

Model/*Kind

ModelUnit/*Kind

Process/*KindTask/*Kind

Technique/*Kind

WorkProduct/*Kind

**

*

*

*

*

[See
Note 2]

[See
Note 1]

Dynamic
Evolution Quality

Method
Fragments

Dynamic Change
Method

Fragments

Dynamic
Evolution

Metamodel
«uses»

«extends»

«uses»

«instanceOf» «instanceOf» «instanceOf»«instanceOf» «instanceOf»

WorkUnit/*Kind

*

producer elements

Producer/*Kind

Role/*Kind Tool/*Kind

Dynamic
Evolution

Producer Method
Fragments

* *
[See

Note 3]

«instanceOf»

«uses»

«uses»

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 151

way to construct work units is to define tasks to be performed within each

process, and supplement the tasks with techniques to achieve their given

purpose (e.g. OPFRO 2009).

 Producer elements (upper right of Figure 6.3)

A Producer is a surrogate for an entity which has the responsibility of executing

work units according to its areas of expertise. In particular, a Role defines a set

of responsibilities that a producer can play to fulfil the objectives of certain work

units, or a Tool which represents responsibilities that involve executing certain

work units that can be automated.

The instantiation of SEMDM elements from the methodology metamodel domain into

the methodology domain (i.e. from the upper to the lower half of Figure 6.3) establishes

the following major components of Continuum:

 The dynamic evolution metamodel 16 (Section 6.3.3), defining elementary

concepts within the domain of dynamic evolution and the relationships among

them. They are instantiated from SEMDM’s ModelUnit powertype pattern.

 Dynamic change method fragments (Section 6.3.4), comprising work unit and

work product fragments, to provide basic support for the analysis and design of

changes to a running composition-based distributed application without

requiring shutdown. They are instantiated from SEMDM’s WorkProduct,

Process, Task and Technique powertype patterns.

 Dynamic evolution quality method fragments (Section 6.3.5), comprising work

unit and work product fragments, extend the capabilities of the dynamic change

method fragments by addressing the quality aspects of the dynamic changes

developed with the dynamic change method fragments. They are instantiated

from SEMDM’s WorkProduct, Process, Task and Technique powertype patterns.

 Dynamic evolution producer method fragments (Section 6.3.6), specifying who

are responsible for executing work units in dynamic change and dynamic

16 A metamodel has two meanings, “a model of models” and “a model of methodologies” (Gonzalez-
Perez & Henderson-Sellers 2007). The former can also be seen as a domain ontology intended
for a target domain (Rossi et al. 2004). It describes modelling concepts and the relationships
among them (e.g. “classes” and “objects” in object-oriented modelling (ISO/IEC 2007)) They can
be specified with instances of “model unit class” which are also methodology elements (ISO/IEC
2007) or method fragments (Henderson-Sellers & Ralyté 2010). In this research, the notion of
dynamic evolution metamodel takes the meaning of a “model of models” which refers to a set of
concepts relevant to dynamic evolution and their relationships.

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 152

evolution quality method fragments according to their areas of expertise. They

are instantiated from SEMDM’s Role and Tool powertype patterns.

Continuum components address a breadth of dynamic evolution problems sufficiently

generic for a variety of composition-based distributed application types rather than for a

particular composition-based application type. To enhance an existing methodology,

the method engineering approach can be leveraged to incorporate Continuum

components into the methodology’s lifecycle to drive ongoing developments and

dynamic changes to an application as they arise. Note that Continuum components

focus on the analysis and design aspects of dynamic evolution. Conventional aspects

of software development such as implementation, testing and configuration

management, as well as those specialised for particular kinds of composition-based

applications (e.g. component-based) are expected to be handled by features of existing

methodologies.

66.3.3 Dynamic Evolution Metamodel

Continuum divides the notion of dynamic evolution into three concerns: application

lifecycle, transitional period and transformation. Each concern symbolizes dynamic

evolution on a different time scale so as to focus on particular issues at a time to handle

its complexity. On a coarse-grained time scale, the Application Lifecycle concern

characterises the progression of an application over its generations of releases during

its operating lifespan. A Generation denotes the application is operating a particular

version of its code, such as Figure 6.2 which shows the current generation of EPCP.

The notion of a Transitional Period represents the period in the application lifecycle

during which the application advances from one generation to the next via high-level

runtime modifications called Transformations. On a fine-grained time scale, a

Transformation concern prescribes low-level atomic runtime modification steps to the

application’s elements, such as initialising a new component before use. Figure 6.4

illustrates these concepts.

generation
1

application lifecycle (extending over time)

transformations occurring in transitional periods

generation
2

generation
3

generation
4

time

source: developed for this research

Figure 6.4. Application lifecycle, transitional periods and transformations

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 153

A metamodel generally defines concepts called model unit fragments (ISO/IEC 2007),

representing pieces of coherent information about a topic and their relationship. It is

modelled with object-oriented class diagrams in which each class corresponds to a

model unit fragment. (Strictly speaking, a model unit fragment should be called a

“clabject” (ISO/IEC 2007), having both the instance aspect from the SEMDM

metamodel, and the class aspect from the methodology.) In Phase 1 of this research,

individual concepts were identified from the literature, and subsequently validated and

extended in a survey (cf. Chapter 5). The development of Continuum involved first a

synthesis of a dynamic evolution metamodel which specifies these concepts as model

unit fragments and defines the relationships among them. The resultant metamodel is

shown in Figure 6.5 with the three key concerns highlighted.

source: developed for this research

Figure 6.5 Dynamic evolution metamodel

Continuum’s dynamic evolution metamodel can be described along five related

aspects: structural foundation, application lifecycle, transitional period, transformation,

and policy.

Structural foundation related concepts (Figure 6.6: Application, OperationalProfile,

PerformanceProfile, Resource, ResourceProfile, TransformableItem and Zone): These

concepts represent abstractions for a composition-based distributed application which

are the runtime structure of the application in terms of its elements and the

relationships between them. They also prescribe constructs in its hosting environment

Policy

ServicingPolicy

ZoningPolicy

ApplicationLifecycleChangeCase

Generation

change

1..*

target
1

Stage

lifecycle1

stage*

Application

context1

lifecycle1

OperationalProfile

ResourceTransformableItem

applicationContext

*

member *

target

*

profile *

resource

*

consumer*

Zone

context
0..1

managedResource
occupant

host
0..1

TransformationAction

zone

*

command

*

target*

command

*

command

*

resource

*

TransformationE
xceptionResoluti

on

TransformationTransitional
Period

context1

in
te

nt

1..*

prev

0..1

next

0..1
prev

0..1

next

0..1

TransformationAgent

in
te

nt

*

actor

*

task

*

worker
1 TransformationException

origin

1

exception*

policy

*

target

*

composite

0..1member *

output
*

outputContext*

input*

inputContext *

policy *

target

*

coordinator

*

co-worker

* Transformation
Exception
Resolution

Impact

resolvedImpact*

supplementary
change

*

expected
impact

*

proposed
change

*

handler

* exception
*

context

1
workItem

*

enactment

1..*

in
te

nt

1..*

Performance
Profile

ResourceProfile

profile*

re
so

ur
ce

*

context

1
activity

1..*

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 154

to support the running of the application. They are specified to a level of detail sufficient

to articulate dynamic evolution in the application. Central to the structural foundation is

TransformableItem denoting a runtime logical distributed entity that can be transformed

into some other form. It epitomises a part, a binding or a composite thereof. It may

consume specific Resources in order to function (Dearle 2007). An OperationalProfile

represents distinctive characteristics of the TransformableItem such as resource needs

and performance during its normal operation (i.e. ResourceProfile and

PerformanceProfile). OperationalProfiles may impose conditions for runtime changes to

be satisfied if a TransformableItem is to be modified or affected by those changes. At a

high level of abstraction, an Application is a set of related TransformableItems together

offering some functionality and computing capabilities. A Zone (Evans & Dickman

1999) defines a logical partition in a distributed environment (e.g. a logical node in a

network) for hosting TransformableItems. In the EPCP example, its elements, which

are TransformableItems, are scattered over three Zones: Web, Search Engine and

Repository (Figure 6.2).

source: developed for this research

Figure 6.6 Structural foundation classes

Application lifecycle related concepts (Figure 6.7: Application, ApplicationLifecycle,

ChangeCase, Generation, Impact, Stage, TransformableItem and TransitionalPeriod):

An ApplicationLifecycle transcribes a series of stages over which an Application

progresses, from the time the application becomes operational to the time it is retired. A

Stage is a time period within the lifecycle of an application and can be a Generation or

a TransitionalPeriod. During a Generation, an application is operating a particular

version of its code. A TransitionalPeriod, on the other hand, designates the period

between two successive Generations of an application during which it advances from

one Generation to the next via a dynamic modification. A TransitionalPeriod is present

since the modification almost never completes instantly. An ApplicationLifecycle can

thus be conceived of as a sequence of alternate Generations and TransitionalPeriods

TransformableItem

Zone

Resource

resource
consumer

occupant*

host

0..1

context

0..1

managedResource
*

OperationalProfile

target *

profile
*

Application
applicationContext

*

member *composite 0..1

member *

Performance
Profile

Resource
Profile

usage

* resource

*

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 155

over time.

source: developed for this research

Figure 6.7 Application lifecycle related model unit fragments

Whilst requirements and change requests generally describe what an Application is

intended to become, they may not always be sufficiently explicit for expressing dynamic

changes to a running Application. Thus, Continuum extends the notion of a

ChangeCase (Ecklund et al. 1996; Office of Government Commerce 2002). In

Continuum, ChangeCases articulate dynamic changes to the properties and

functionality of an Application’s TransformableItems, to its structure, and to its Zones

(e.g. “replace function p1 in component instance X with a new function p2”) and to facilitate

further understanding of changes required for the Application at runtime. ChangeCases

may result in one or more TransitionalPeriods required to gradually roll out the intended

changes based on their priorities, complexity etc. Once a change is proposed for an

Application, the effect of the modification may ripple through several parts of an

Application (Bohner 2002a). An Impact captures entities thought to be affected by a

ChangeCase (TransformableItems, Zones etc.) and the extent of the impact.

source: developed for this research

Figure 6.8 Transitional period related model unit fragments

Application

Stage

Transitional
PeriodGeneration

lifecycle1

stage
*

{ordered}

prev 0..1next0..1

ApplicationLifecycle

context

1 lifecycle1

ChangeCase
change
1..* target

1

context 1intent1..*
prev0..1 next 0..1

TransformableItem

+applicationContext

*+member *

+composite
0..1

+member

*

Impact

resolvedImpact*

supplementaryChange
*

expectedImpact *

proposedChange
*

TransformationException

handler

*

exception

*
TransformationEx
ceptionResolution

Transformation

context 1

intent 1..*

context

1 activity

1..*

ChangeCase TransformationAgent

coordinator

*

co-worker

*

task

*worker

1
Transitional

Period

intent

* actor

*

origin

1

exception

*

Transformation
Exception
Resolution

enactment

1..*

intent
1..*

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 156

Transitional Period related concepts (Figure 6.8: TransitionalPeriod,

TransformationAgent, ChangeCase, Transformation, TransformationException and

TransformationExceptionResolution): During a TransitionalPeriod, one or more

TransformationAgents (e.g. upgrade manager (OMG 2003b)) perform a set of

Transformations (i.e. the “how”) over a network in concert to realise a set of

ChangeCases (i.e. the “what”). A Transformation represents some kind of high-level

modification activity to an application. Since errors inevitably occur because of

unforeseen circumstances while performing transformations, a

TransformationException thus models such an error occurrence. Accordingly, a

TransformationExceptionResolution designates a special kind of Transformation for

resolving TransformationExceptions. An example resolution is to roll back changes

made by an incorrect Transformation.

Transformation related concepts (Figure 6.9: Resource, TransformableItem,

Transformation, TransformationAction and Zone): A Transformation captures the actual

performance of runtime modification steps to an application. Each modification step,

being atomic, stepwise, low-level and fine-grained (e.g. “bind a new component” to an

application), is called a TransformationAction. Example TransformationActions include

configuring the start-up state for a new TransformableItem before it operates, setting up

Zones to host new TransformableItems, and allocating Resources to new

TransformableItems.

source: developed for this research

Figure 6.9 Transformation related model unit fragments

Policy related concepts (Figure 6.10: Policy, ServicingPolicy and ZoningPolicy): A

Policy generally describes a set of rules for a particular purpose (ISO/IEC 2006). In

dynamic evolution, a Policy is an abstract concept for articulating rules or behaviour

desirable for dynamic evolution in a composition-based distributed application. An

example network policy might confine the behaviour of a Transformation from breaking

TransformableItemTransformationAction

+
in

pu
t

*

+inputContext*

+
ou

tp
ut

*

+outputContext*

Transformation
+context

1

+
w

or
kI

te
m

*

+
ta

rg
et

*

+
co

m
m

an
d

*

Resource +resource
* +

co
ns

um
er

*

+
co

m
m

an
d*

+resource

*

Zone

+
oc

cu
pa

nt

*

+host
0..1

+zone

*+
co

m
m

an
d

*

+managedResource
*

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 157

communication links in an application. The Policy class is extended to model various

rules in dynamic evolution. ServicingPolicy, for instance, denotes the extent to which a

TransformableItem offers its services, especially useful during a TransitionalPeriod.

ZoningPolicy, on the other hand, specifies rules for configuring a zone to host its

TransformableItems as they evolve.

source: developed for this research

Figure 6.10 Policy related model unit fragments

66.3.4 Dynamic Change Method Fragments

In light of the approach to divide dynamic evolution into three concerns, viz. application

lifecycle, transitional period and transformation, Continuum prescribes four dynamic

evolution specific process fragments (or processes), plus associated fragments, for the

analysis and design of dynamic changes to composition-based distributed applications:

 Application Lifecycle Analysis to address the application lifecycle concern

during analysis;

 Transformation Identification and Transformation Agent Design to tackle

identification, sequencing and assignment of transformations during a

transitional period; and

 Transformation Design to handle the detailed design of each transformation.

6.3.4.1 Fragments for Application Lifecycle Analysis

The Application Lifecycle Analysis process aims to define the roadmap for an

application as successive stages in its lifecycle to accommodate changes elicited from

requirements analysis. It does so by extending its lifecycle with new generations, with

each transitional period between two successive generations labelled with associated

change cases to accomplish during the period. Figure 6.11 shows the tasks iterated

and techniques used in this process. The rounded rectangle, ellipse and circle

notations correspond to process, task and technique instances as per SEMDM’s

notation (ISO/IEC 2010). The symbol on each link between a task and a technique

Policy

ServicingPolicyZoningPolicy

Zone

+policy*

+target*
TransformableItem

+composite

0..1

+member

*+occupant

*+host

0..1

+policy *

+target
*

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 158

indicates the degree of suitability of the technique to the task: (“!”:mandatory,

“+”:recommended, “~”:optional). For convenience, tasks are also annotated with

numbers (not part of SEMDM’s notations) as suggestions for the order in which they

can be iterated in this process. Additionally, a filled shape represents a technique

reused from an existing methodology or the literature whereas a diagonally marked one

represents a technique enhanced from an existing methodology or the literature.

source: developed for this research

Figure 6.11 Work units for Application Lifecycle Analysis

The tasks iterated in this process are:

1. Identify As-Is Runtime Structure determines the current or “as-is” model (Salinesi

et al. 2004) of an application at runtime. This information forms the basis from

which dynamic changes can be identified and articulated.

2. Derive Change Cases determines the change cases from requirements and

change requests to the application, and records them in a Dynamic Application

Change Document (cf. Appendix C.2.2.2).

3. Extend Application Lifecycle introduces new generations to an application

lifecycle to progressively accommodate dynamic changes (specified as change

cases) for the application. The updated application lifecycle is recorded in an

Application Lifecycle Diagram (cf. Appendix C.2.2.1).

Table 6.5 summarises the technique(s) used and the circumstance(s) in which they

should be used in various tasks of Application Lifecycle Analysis.

Table 6.5 Techniques used in Application Lifecycle Analysis

Task Relevant Technique Technique Purpose Usage Criteria Source of Reuse/
Enhancement

Identify As-Is
Runtime
Structure

Runtime Structure
Recovery

Recover the
information about the
structure of a running
application.

Optional - used when the
detailed information
about the application
structure is unavailable
or out-of-date.

Huang et al.
(2006), Schmerl et
al. (2006) (reused)

2 31
Extend Application

Lifecycle
Identify As-Is

Runtime Structure

Application Lifecycle Analysis

Derive Change Cases

Change
Case

Modelling

!

Runtime
Structure
Recovery

~

Change
Case

Partitioning
& Ordering

+

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 159

Task Relevant Technique Technique Purpose Usage Criteria Source of Reuse/
Enhancement

Derive
Change
Cases

Change Case
Modelling

Express change
cases for an
application.

Mandatory Salinesi et al.
(2004) (eenhanced)

Extend
Application
Lifecycle

Change Case
Partitioning and
Ordering

Divide a set of
change cases into
separate groups of
logical and coherent
change cases, and
order the groups
appropriately.

Recommended - used
when change cases are
complex and the number
of change cases is high
such that dividing them
into smaller groups
would assist in the
identification of
transitional periods.

Example: To illustrate this process, consider the first objective which aims to obtain the

“as-is” runtime structure of EPCP (i.e. using Task “Identify As-Is Runtime Structure”) as

shown earlier in Figure 6.2. Next, the two enhancement requirements stated earlier in

Section 6.3.1, being the i18n capability and integration with external EPC systems for

EPCP, need to be translated into change cases (i.e. using Task “Derive Change Cases”).

According to the architecture (Figure 6.2), these requirements mean the Catalogue

Service is required to handle catalogues in different currencies and languages and to

plug-in two external EPC systems. In the Web Zone, WebUI will be extended for end

users to enter search criteria for and display catalogue items in different currencies and

languages. The resulting change cases are specified in Table 6.6.

Table 6.6 EPCP: key change cases

Change
Case ID Purpose Description Related

Requirement

CC11 Add i18n support to WebUI
WebUI extended to display a variety of
products in different units of currency
and languages.

i18n capability

CC21

Modify Search Service’s
binding with old Catalogue
Service to new Catalogue
Service

Search Service modified to interact with
the new Catalogue Service instead of the
old one. Ditto

CC31
Add i18n support to Catalogue
Service

Catalogue Service extended to support
catalogue data in a variety of currencies
and languages.

Ditto

CC32
Add Catalogue Service
bindings with two external
EPC systems

Catalogue Service modified to integrate
with two external EPC systems operated
by business partners.

Integration with
external EPC
systems

Next, the application lifecycle of EPCP is extended (i.e. in Task “Extend Application

Lifecycle”) to incorporate these change cases. To determine which change cases

should be accomplished first, an analysis of the nature and purpose of the change

cases is given. Since the two external EPC systems will hold catalogue items in a

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 160

foreign language, the EPCP application must support i18n before it is integrated with

the EPCs (i.e. both CC31 and CC21 realised first). On the other hand, before the

Catalogue Service serves catalogue items from external EPCs to WebUI, WebUI must

be able to display them in foreign languages/currencies. This analysis suggests a

sequential order in which the changes cases should be realised: from CC21/CC31 to

CC11 and then followed by CC32. The resulting application lifecycle, taking into

account this constraint, is shown in Figure 6.12 (notations discussed in Appendix

C.2.2.1). The lifecycle designates three transitional periods - noted as “a”, “b” and “c” -

to roll out the annotated change cases. Generation v2 on the right represents the final

outcome of dynamic evolution, involving two intermediate generations: v1.1 (enhanced

with the i18n capability) and v1.2 (enhanced with foreign currency and language

support).

s

source: developed for this research

Figure 6.12. EPCP: application lifecycle diagram

6.3.4.2 Fragments for Transformation Identification

The Transformation Identification process aims at identifying a set of transformations to

execute during a transitional period to advance an application from an “as-is” generation

to a “to-be” generation that will accommodate the proposed changes for the “as-is”

generation.

source: developed for this research

Figure 6.13. Work units for Transformation Identification

Figure 6.13 depicts the tasks iterated and techniques used in Transformation

v1.1v1
(current)

v1.2

CC21, CC31 CC11

transitional
period a

transitional
period b

v2transitional
period c

CC32

Transformation Identification

Identify
Transformations

2 31

~ !~~

Dynamic
Change
Impact

Analysis

Define To-Be
Runtime Structure

Dynamic
Variation
Manage-

ment

Dynamic
Recom-
position

Dynamic
Refactoring

Dynamic
Workflow
Change

Refine Change
Cases

Change
Case

Modelling

~

Trans-
formation

Mining

+!

Loose
Coupling

~

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 161

Identification (using the same notations as in Figure 6.11). The tasks are:

1. Define To-Be Runtime Structure determines the expected or “to-be” model

(Salinesi et al. 2004) of an application at runtime after proposed changes are

accommodated into the application. The “to-be” runtime structure is derived from

the static design of the “to-be” generation, the runtime structure of the “as-is”

generation, and the change cases identified during analysis.

2. Refine Change Cases performs updates to the change cases defined during

analysis. This Task also aims to uncover any potential change cases that could

not be determined during analysis until the “to-be” runtime structure has been

defined.

3. Identify Transformations determines the transformations to realise a set of

change cases by progressing the application from the “as-is” into the “to-be”

generation.

Table 6.7 summarises the techniques used and the circumstances in which they should

be used in various tasks of Transformation Identification.

Table 6.7 Techniques used in Transformation Identification

Task Relevant
Technique Technique Purpose Usage Criteria Source of Reuse /

Enhancement

Define To-Be
Runtime
Structure

Dynamic
Refactoring

Refactor a runtime structure,
such as for the case of
performance improvement,
without functional changes.

Optional - used
when
transformations
during a
transitional period
aim to improve an
application.

OPF methodology
(OPFRO 2009)
(eenhanced)

Dynamic
Recomposition

Compose several
transformable items in a larger
unit, decompose a larger one
into smaller units, and
reconfigure the structure at
runtime.

Optional - used
when
transformations
during a
transitional period
aim to recompose
an application.

Dynamic
Workflow
Change

Dynamically change a running
workflow.

Optional - used
when a workflow is
required to evolve.

Casati et al.
(1998), Tosic et al.
(2007), Ellis and
Keddara (2000)
(reused)

Dynamic
Variation
Management

Define customisation points in
a structure to plug in or swap
different transformable items
to support limited variations in
functionality.

Optional - used
when
transformations
during a
transitional period
aim to use variation
points to alter an
application.

SeCSE
methodology
(SeCSE 2007)
(reused)

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 162

Task Relevant
Technique Technique Purpose Usage Criteria Source of Reuse /

Enhancement

Loose
Coupling

Reduce coupling among
transformable items.

Optional - used as
supplement to
Dynamic
Refactoring to
further improve the
flexibility of an
application
structure to evolve.

P&H methodology
(Papazoglou &
van den Heuvel
2006) (reused)

Refine Change
Cases

Change Case
Modelling

Capture newly uncovered
dynamic changes. Mandatory

Salinesi et al.
(2004) (eenhannced)

Dynamic
Change
Impact
Analysis

Determine the scope of
dynamic changes.

Mandatory

Identify
Transformations

Transformation
Mining

Determine transformations
from change cases.

Recommended -
used when a
transitional period
is complex,
requiring the
partition of work
into several
transformations, or
when reuse of
transformation
patterns is sought.

Example: In the EPCP example, it has been determined from the Application Lifecycle

Analysis process that there are three transitional periods (Figure 6.12) and thus three

“as-is”-and-to-be generation pairs: v1-v1.1, v1.1-v1.2 and v1.2-v2. The first task in this

process (i.e. Task “Define To-Be Runtime Structure”) is to determine the runtime

structures of these “to-be” generations. Generation v1 denotes the current design of

EPCP and is shown earlier in Figure 6.2. The design for generation v2 is undertaken

with conventional design activities. So it remains to derive generations v1.1 and v1.2.

Given that change cases CC21, CC31 and CC11 aim to add the i18n capability to

EPCP, affected transformable items (i.e. Catalogue Service and WebUI) require

upgrade. Consequently, the generations to realise the upgrade are depicted in Figure

6.14, with changes from previous generations highlighted and labelled with the delta

symbol “ ”, as per Continuum’s Structural Configuration - Notational Extensions (cf.

Appendix C.2.2.8).

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 163

source: developed for this research

Figure 6.14 EPCP: to-be generations after transitional periods a and b

After the “to-be” generation has been defined, the gaps between the “as-is” and “to-be”

generations can now be finalised (not possible during the Application Lifecycle Analysis

process when the “to-be” generation was undefined), to uncover additional change

cases to be incorporated into the set (i.e. using Task “Refine Change Cases”).

Furthermore, the ripple effect of the proposed changes can also be scrutinised for

additional change cases (cf. Technique “Dynamic Change Impact Analysis”, Appendix

C.3.2.3) to account for parts also affected by the proposed changes. Take the case of

“CC31: Add i18n support to Catalogue Service”. An analysis reveals that since the

Catalogue Service will provide pricing information in different currencies and product

descriptions in different languages, the Search Query Composer must be able to take

the currency unit as a parameter in addition to a price range for a search. Similarly, the

Search Result Processor will also be modified. This results in two new change cases as

shown in Table 6.8:

Table 6.8 EPCP: impact set for change case CC1

Originating Change Case Target Impact
Type

Level of
Disruption Supplementary Change Case(s)

CC31: Add i18n support
to Catalogue Service

Search Query
Composer direct high CC22: Add i18n support to Search

Query Composer

 Search Result
Processor

direct high CC23: Add i18n support to Search
Result Processor

Consequently, the runtime structure for generation v1.1 is updated to accommodate

these two change cases. The same analysis is performed for the other change cases

(CC11 and CC32) but yields no further change cases. Accordingly, the resultant

generation v2 is now finalised as in Figure 6.15, with changes with generation v1.2

highlighted and labelled with “ ”.

(b) generation v1.2 after transitional period b(a) generation v1.1 after transitional period a
Search Engine Zone

Resource
ZoneWeb Zone

:Search
Result

Processor

:Search
Query

Composer

:Search
Service

:Local
EPC

:Catalogue
Service2:WebUI

Search Engine Zone
Resource

ZoneWeb Zone

:Search
Result

Processor

:Search
Query

Composer

:Search
Service

:Local
EPC

:Catalogue
Service2

:WebUI2

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 164

source: developed for this research

Figure 6.15 EPCP: generation v2 after transitional period c

After Task “Refine Change Cases” has been completed, transformations are identified

with Task “Identify Transformations”. For simplicity and illustration only, each change

case will be realised by one or more transformations as listed in Table 6.9. Note that an

extra transformation called “WebUI reconfiguration” is added for change case CC11 to

handle existing web (browser) sessions with WebUI. It is further elaborated during the

Transformation Design process.

Table 6.9 EPCP: responsible transformations for refined change cases

Change Case Responsible Transformation(s)
Designated
Transitional

Period

CC31: Add i18n support to Catalogue
Service

Catalogue Service2 deployment
Catalogue Service removal

 a

CC21: Modify Search Service’s binding with
old Catalogue Service to new Catalogue
Service

Search Service reconfiguration a

CC22 Add i18n support to Search Query
Composer

Search Query Composer2 deployment
Search Query Composer removal a

CC23: Add i18n support to Search Result
Processor

Search Result Processor2 deployment
Search Result Processor removal

 a

CC11: Add i18n support to WebUI
WebUI2 deployment
WebUI and WebUI2 reconfiguration
WebUI removal

 b

CC32: Add Catalogue Service bindings with
two external EPC systems

Catalogue Service2 reconfiguration c

6.3.4.3 Fragments for Transformation Design

The Transformation Design process aims to produce the detailed design for a

transformation. It also identifies changes to zone configurations, say, to accommodate

new and relocated transformable items, and specifies how transformable items affected

by the transformation will offer their functions or services during and/or after the

transformation.

Search Engine Zone Resource ZoneWeb Zone

:Search Result
Processor2

:Search Query
Composer2

:WebUI2 :Search
Service

:Local
EPC Partner2

EPC

Partner1
EPC

:Catalogue
Service2

In
te

rn
et

Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis

© 2011 UNSW page 165

source: developed for this research

Figure 6.16. Work units for Transformation Design

Figure 6.16 depicts the tasks iterated and techniques used in Transformation Design.

The tasks are:

1. Identify New and Replacement Transformable Items determines which

transformable items are added to an application after a transformation.

2. Identify Changes to Zones determines changes to zone configurations and keep

them current to support changes to transformable items (e.g. hosting new ones).

These changes are recorded in a Zone Change Document (cf. Appendix

C.2.2.11).

3. Define Servicing Policies determines the policies to regulate the services

provided by transformable items (cf. Appendix C.2.1.11) that are impacted by

transformations. For instance, when a transformable item is being upgraded,

access to its services may be temporarily suspended.

4. Develop Transformation details the transformation actions to realise a

transformation. The design of the transformation is captured in a Transformation

Diagram (cf. Appendix C.2.2.9).

Table 6.10 summarises the techniques used and the circumstances in which they

should be used in various tasks of Transformation Design.

Table 6.10 Techniques used in Transformation Design

Task Relevant
Technique Technique Purpose Usage Criteria

Source of
Reuse /

Enhancement

Identify New
and
Replacement
Transformable
Items

Performance
Profile
Modelling

Analyse and predict
performance characteristics
of new/replacement
transformable items.

Optional - used when
performance is a key
requirement for an
application. Performance
profiles are captured in a
New and Replacement
Transformable Item
Catalogue.

ASG
methodology
(Lehner et al.
2006) (reused)

Transformation Design

2 31 4

~~~ ~ ~~

Develop 
Transformation

Resource 
Profile 

Modelling

Performance 
Profile 

Modelling

Start-Up
State 

Configura-
tion

Dynamic 
Transform-
able Item 

Adaptation

Dynamic 
Transform-
able Item 

(Re)Binding

Dynamic 
Transform-
able Item 
Change

Define 
Servicing 
Policies

Identify 
Changes 
to Zones

Identify New and 
Replacement 

Transformable Items



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 166 

Task Relevant 
Technique Technique Purpose Usage Criteria 

Source of 
Reuse / 

Enhancement 

 
Resource 
Profile 
Modelling 

Analyse and predict the 
resource needs of 
new/replacement 
transformable items. 

Optional - used when 
resources are limited. 
Resource profiles are 
recorded in a New and 
Replacement 
Transformable Item 
Catalogue (cf. Appendix 
C.2.2.6). 

 

 Start-up State 
Configuration 

Determine states from 
which new/replacement 
transformable items start to 
operate after they have 
been placed into an 
application. 

Optional - used when 
transformable items have 
the notion of states. If a 
replacement transformable 
item derives such a start-
up state from its replacing 
transformable item, this 
will be specified with a 
State Map (cf. Appendix 
C.2.2.7). 

 

Develop 
Transformation 

Dynamic 
Transformable 
Item 
Adaptation  

Wrap and plug 
transformable items into an 
architecture at runtime. 

Optional - used when 
transformable items have 
incompatible interfaces 
with its hosting application. 

RUP 
methodology 
(Kruchten 2003) 
(reused) 

 

Dynamic 
Transformable 
Item 
(Re)binding  

To (re)bind a transformable 
item to a composition of 
transformable items at 
runtime. 

Optional - used when 
transformable items are 
required to be (re)bound to 
an application. 

SeCSE 
methodology 
(SeCSE 2007) 
(eennhanced) 

 
Dynamic 
Transformable 
Item Change 

Provide design patterns to 
add/replace/remove 
transformable items at 
runtime. 

Optional - used when a 
transformation 
adds/replaces/removes 
transformable items. 

 

 

Example: To demonstrate this process using EPCP, consider the transformations for 

EPCP listed in Table 6.9. (Normally, each transformation is separately developed by 

executing the Transformation Design process. For illustration only, however, they are 

discussed together in the following text.) The transformable items added to EPCP by 

their respective transformations are identified in Task “Identify New and Replacement 

Transformable Items”. They are summarised in Table 6.11. Next, an analysis is 

performed (i.e. Task “Identify Changes to Zones”) to determine changes to the zones to 

accommodate new and replacement transformable items. The right hand columns of 

Table 6.11 summarise the deployment of new and replacement transformable items to 

various zones and the removal of old ones from these zones by respective 

transformations. Since all transformable items will reside in existing zones, there is no 

need for creating new zones. On the other hand, the Repository Zone must be set up 

(e.g. opening network ports) to permit the new version of Catalogue Service (i.e. 

“Catalogue Service2”) to have secure and remote access to the two external EPC 

systems. This change requirement is also noted in Table 6.11. 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 167 

Table 6.11 EPCP: changes to zones 

 New and Replacement  Changes to Zone (+: addition, -: removal) 

Transformation Transformable Item(s) Web Search Engine Repository 

Catalogue Service2 
deployment Catalogue Service2 

  +Catalogue 
Service2 

Catalogue Service 
removal    -Catalogue 

Service 

Search Service 
reconfiguration 

    

Search Query 
Composer2 deployment 

Search Query 
Composer2 

 +Search Query 
Composer2 

 

Search Query Composer 
removal 

  -Search Query 
Composer 

 

Search Result 
Processor2 deployment 

Search Result 
Processor2 

 +Search Result 
Processor2 

 

Search Result Processor 
removal 

  -Search Result 
Processor 

 

WebUI2 deployment WebUI2 +WebUI2   

WebUI and WebUI2 
reconfiguration 

    

WebUI removal  -WebUI   

Catalogue Service2 
reconfiguration 

 

  secure and 
remote access 
to external EPC 
systems 

 

Before defining appropriate servicing policies to individual transformable items during 

transformations are defined (i.e. using Task “Define Servicing Policies”). When doing so, 

it is useful to review the nature of the transformations. In essence, the transformations 

can be classified into three types: deployment, removal and reconfiguration. For the 

deployment transformation type, the design is straightforward since it does not interfere 

with the normal operations of EPCP and no specific servicing policies are needed. 

Then, Continuum’s “add” transformation pattern (cf. Appendix C.3.2.7) in which the 

steps are summarised below, can be used as the design for this type of this 

transformation (produced from Task “Develop Transformation”):  

1. Assign adequate resources from the hosting zone to X (i.e. transformable item). 

2. Create X in the hosting zone. 

3. Initialise X to a start-up state. 

4. Bind X to appropriate transformable items. 

For instance, the transformation “Catalogue Service2 deployment” can be 

diagrammatically represented, as illustrated in Figure 6.17, using Continuum’s notation 

for transformation design (Appendix C.2.2.9). 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 168 

 
source: developed for this research 

Figure 6.17 EPCP: applying deployment transformation pattern to Catalogue 
Service2 

Likewise, the design for a removal transformation for all cases in EPCP is adapted from 

Continuum’s “removal” transformation pattern (Appendix C.3.2.7) (i.e. from Task 

“Develop Transformation”). Transformation actions 3 to 6 in the sequence below (see 

also Figure 6.18) have the reverse effect of the transformation actions in the 

deployment transformation: 

1. Announce that X (i.e. transformable item) will no longer be available for use. 

2. Disable access to X. 

3. Unbind X from the rest of the application. 

4. Set X to a shutdown state. 

5. Destroy X in the hosting zone. 

6. Release resources allocated to X to the hosting zone. 

 
source: developed for this research 

Figure 6.18 EPCP: applying removal transformation pattern to Catalogue Service 

On the other hand, thought must be given to the rest of the transformations since they 

serve slightly different purposes. To begin with, the “Catalogue Service2 Reconfiguration” 

transformation aims to reconfigure Catalogue Service2, the new version of the 

Catalogue Service, to integrate it to the two external EPC systems. For data integrity, 

Catalogue Service2 needs to be temporarily out of service while it is being integrated 

with these two EPC systems. A simple strategy is to momentarily queue incoming 

search requests to Catalogue Service2 (cf. “blocked and queued” servicing policy, 

Appendix C.2.1.11), and hence the following sequence (also illustrated in Figure 6.19) 

(which is produced from Task “Develop Transformation”): 

1. Wait for Catalogue Service2 to complete outstanding search requests. 

2. Block and queue incoming requests to Catalogue Service2. 

Local EPC

«Composition»

Bind

Catalogue 
Service2

«Zone»

Create 
Item

«Zone»

Assign
Resource

«State»

Initialise

(ports to access 
external EPC systems)

Catalogue
Service«Composition»

Unbind

«Zone»

Reclaim
Resource

«ServicingPolicy»

Illegalise

Catalogue 
Service 

with Local 
EPC

Local EPC

«State»

Finalise

«Zone»

Remove 
Item

(not applicable to 
Catalogue Service)

«Composition»

Announce N’s
Unavailability



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 169 

3. Bind Catalogue Service2 to two EPC systems. 

4. Unblock incoming requests for Catalogue Service2. 

 
source: developed for this research 

Figure 6.19 EPCP: transformation design for “Catalogue Service2 Reconfiguration” 

Similarly, the “Search Service reconfiguration” transformation can adopt the same strategy 

(also with the “blocked and queued” servicing policy) but with an extra step before Step 3 

above (also produced from Task “Develop Transformation”): 

1. Wait for the Search Service to complete outstanding search requests. 

2. Block and queue incoming requests to the Search Service. 

3. Unbind the Search Service from the old version of the Search Query Composer 

and the Search Result Processor. 

4. Bind the Search Service to the new version of the Search Query Composer and 

the Search Result Processor. 

5. Unblock incoming requests for the Search Service. 

Lastly, the “WebUI and WebUI2 Reconfiguration” transformation is more complicated. At 

any time there may still be end users accessing EPCP and hence the presence of 

several web sessions. It is not ideal to switch EPCP over to the new user interface (i.e. 

WebUI2) instantly since end users may be confused with the spontaneity of the change 

in the user interface. A suitable strategy is to keep WebUI handling existing web 

sessions while all new and future web sessions are handled by WebUI2. Over time, all 

sessions served by WebUI will time out or be closed by end users. After that, WebUI is 

no longer required and can be removed from EPCP (to be handled by a removal 

transformation). Therefore, a delegation strategy is useful to this transformation (cf. 

“delegated” servicing policy, Appendix C.2.1.11) (which is an outcome of Task “Define 

Servicing Policies”). The corresponding sequence of transformation actions is thus 

(which is an outcome of Task “Develop Transformation”): 

1. Redirect all incoming requests from new web sessions to WebUI2. The 

delegation mechanism can be implemented in the web container which hosts 

the old and new versions of the WebUI. This is depicted in Figure 6.20. 

2. Wait for all web sessions served by WebUI to close or expire. 

Catalogue 
Service2 

«Composition»
Bind

«State»
Acquire 

quiescent

«ServicingPolicy»
Block & queue 

«ServicingPolicy»
Void

external EPC systems 

(i.e. Wait for Catalogue Service2 to 
complete outstanding requests



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 170 

3. Disable access to WebUI. 

 
source: developed for this research 

Figure 6.20 EPCP: delegating different search requests to WebUI and WebUI2 

6.3.4.4 Fragments for Transformation Agent Design 

The Transformation Agent Design process identifies the transformation agents to 

progress a particular generation (i.e. “as-is”) of an application to the next (i.e. “to-be”) 

during a transitional period, their responsibilities in terms of which transformations they 

perform, and the order in which they perform the assigned transformations. 

 
source: developed for this research 

Figure 6.21. Work units for Transformation Agent Design 

Figure 6.21 depicts the tasks iterated and techniques used in Transformation Agent 

Design. The tasks are: 

1. Identify Transformation Agents determines the transformation agents required 

to perform a set of transformations identified during a transitional period, to 

progress an application from a particular generation to the next. 

2. Define Transformation Orchestration arranges transformations to be carried out 

(e.g. sequentially) during a transitional period and assigns them to the agents. 

Table 6.12 summarises the techniques used and the circumstances in which they 

should be used in various tasks of Transformation Agent Design. 

:Web Container

:WebUI

:WebUI2

searchProducts for old sessions

for newly establishedand future sessions

«delegated» 

Transformation Agent Design

Define
Transformation 
Orchestration

21

Transformation 
Orchestration & 

Agent 
Coordination

!

Transformation  
Agent 

Disposition

!

Identify  
Transformation 

Agents



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 171 

Table 6.12 Techniques used in Transformation Agent Design 

Task Relevant 
Technique Technique Purpose Usage Criteria Source of Reuse 

/ Enhancement 

Identify 
Transformation 
Agents 

Transformation 
Agent 
Disposition 

Station transformation 
agents in different zones 
ready for transformations. 

Mandatory N/A 

Define 
Transformation 
Orchestration  

Transformation 
Orchestration 
and Agent 
Coordination 

Design the orchestration of 
transformations and assign 
them to transformation 
agents which will 
coordinate with one 
another to carry out those 
transformations. 

Mandatory N/A 

 

Example: Continuing on the EPCP example, transformation agents are first allocated in 

the architecture (i.e. using Task “Identify Transformation Agents”). A logical way is to put 

a transformation agent in each of the zones (Figure 6.2) to handle transformations 

within that zone: Web Agent, Engine Agent and Repository agent.  

Next, transformations in each transitional period are assigned to transformation agents 

and arranged into an orchestration (i.e. in Task “Define Transformation Orchestration”). 

The orchestration specifies the order of precedence in which the transformations will be 

performed and can be represented with a “Transformation Orchestration Diagram” 

(Appendix C.2.2.10). In this regard, a transitional period is split into three phases - 

preparatory, interruptive, finishing17 - if applicable, to factor out transformations that will 

not interrupt an application from those that will, to confine the window of interruption (cf. 

Technique “Transformation Orchestration and Agent Coordination”, Appendix C.3.2.16). 

Consider a transformation orchestration diagram for transitional period “a” for the EPCP 

example, as shown in Figure 6.22(a). During the preparatory phase, new versions of 

the Search Result Processor, the Search Query Composer and the Catalogue Service 

are set up ready for use in EPCP since their respective transformations will not affect 

the running of EPCP. During the interruptive phase, the Search Service will be 

temporarily out of service to allow it to bind to these new transformable items - leading 

to interruptions to end users. Finally, in the finishing phase, unused and old versions of 

these three transformable items can be removed from EPCP since their respective 

transformations do not affect EPCP. A similar design heuristics is applied to transitional 

                                                   

17 Li (2009) defines three stages for dynamic evolution based on types of modifications made: 
installation, transformation and removal. This classification is somewhat restrictive. For 
instance, state transfer (i.e. from an old transformable item to a replacement one) must only 
occur in the transformation stage and modifications in this stage are regarded as “instantaneous” 
i.e. very fast. 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 172 

periods “b” and “c”, resulting in the Transformation Orchestration Diagrams (cf. 

Appendix C.2.2.10) shown in Figure 6.22(b) and Figure 6.22(c) respectively. 

 
source: developed for this research 

Figure 6.22 EPCP: orchestration designs for transformation agents 

66.3.5 Dynamic Evolution Quality Method Fragments 

Apart from the ability to accommodate changes to an application, quality is important in 

dynamic evolution. For example, low-quality changes may not only make the 

application harder to evolve but also inject live undetected errors into the application 

such that they may cause the application to fail instantly. For instance, an application 

may become compromised if a component responsible for protecting the application 

has been accidentally removed during a transformation. Hence, Continuum provides 

quality-oriented method fragments to address the quality aspects of dynamic evolution. 

Dynamic Evolution Quality Management, a process fragment (or process), aims to 

improve the quality of the work products produced with the four basic dynamic change 

process fragments: Application Lifecycle Analysis, Transformation Identification, 

Transformation Agent Design and Transformation Design. This process addresses a 

portfolio of dynamic evolution quality factors as summarised in Table 6.1.  

A quality paradigm typically involves work to be performed in defining, measuring, 

analysing and improving quality (Fox & Frakes 1997). Likewise, Dynamic Evolution 

Quality Management is performed in an iterative manner using four tasks as shown in 

Figure 6.23, covering the define-assess-analyse-improve steps of a quality 

E
ng

in
e 

A
ge

nt
R

ep
os

ito
ry

 
A

ge
nt

v1.1

Catalogue 
Service2 

deployment

Search Result 
Processor2
deployment

Search Query 
Composer2
deployment

Search Result 
Processor 
removal

Search Query 
Composer
removal

Catalogue 
Service 
removal

v1

(a) transitional period a

Preparatory Interruptive Finishing

Search 
Service 

reconfiguration

W
eb

 A
ge

nt

v1.2

WebUI2
deployment

v1.1

(b) transitional period b

Preparatory Interruptive Finishing

WebUI 
reconfiguration

WebUI
removal

R
ep

os
ito

ry
 

A
ge

nt

v2v1.2

Interruptive

Catalogue 
Service2 

reconfiguration

(c) transitional period c



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 173 

improvement effort. Each stacked circle connected to the “Improve Dynamic Evolution 

Quality” task represents a collection of techniques: 

 
source: developed for this research 

Figure 6.23. Work units for Dynamic Evolution Quality Management 

The tasks used in this process are: 

1. Define Dynamic Evolution Quality Needs evaluates which dynamic evolution 

quality factors are relevant and important to an application at hand and 

documents the results in a Dynamic Evolution Quality Profile Report (cf. 

Appendix C.2.2.5).  

2. Assess Dynamic Evolution Quality discovers quality problems of dynamic 

evolution work products, using a checklist of inspection questions for the quality 

factors. Note that the types of work products to assess depend on the quality 

factors to achieve. The results are recorded in a Dynamic Evolution Quality 

Inspection Report (cf. Appendix C.2.2.3). Table 6.13 summarises the 

technique(s) applied in this task. 

Table 6.13 Technique(s) used in task Assess Dynamic Evolution Quality 

Relevant 
Technique Technique Purpose Usage Criteria Source of Reuse 

/ Enhancement 

Inspection 

Evaluate work products in 
order to identify areas for 
resolution and 
improvement 

Mandatory 
Henderson-
Sellers et al. 
(1998) (reused) 

 

3. Analyse Dynamic Evolution Quality Problems determines the underlying causes 

for the identified quality problems such as defects and/or issues found in the 

work products. The results are recorded in a Dynamic Evolution Quality 

Problem Analysis Report (cf. Appendix C.2.2.4). Table 6.14 summarises the 

technique(s) applied in this task. 

Analyse 
Dynamic Evolution 
Quality Problems

Dynamic Evolution 
Quality Management

Improve 
Dynamic Evolution 

Quality

Inspection

2 31 4

! +

Assess 
Dynamic Evolution 

Quality

Define 
Dynamic Evolution 

Quality Needs

relevant
techniques 

from 
Continuum 

techniques
from 

literature

+

Root Cause 
Analysis

+



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 174 

Table 6.14 Technique(s) used in task Analyse Dynamic Evolution Quality Problems 

Relevant 
Technique Technique Purpose Usage Criteria Source of Reuse 

/ Enhancement 

Root Cause 
Analysis 

Determine the root causes 
which led to dynamic 
evolution quality problems. 

Recommended 
Leszak et al. 
(2002) 
(eenhanced) 

 

4. Improve Dynamic Evolution Quality revises dynamic evolution work products to 

further improve their quality. As shown in Table 6.15, this Task reuses a number 

of techniques from existing methodologies and the literature. In addition, 

Continuum offers several tasks and techniques to address other aspects of the 

quality factors. 

Table 6.15 Recommended tasks/techniques used in Task Improve Dynamic Evolution Quality 

Quality Factor Recommended 
Task/Technique 

Purpose (repeated from Table 
Appendix C.22) 

Dynamic 
Evolution 
Quality 

Specific? 
[see note 2] 

Source of Reuse  

SSoundness of Change  

Completeness not applicable [see note 1]    

Consistency 

Dynamic Change Impact 
Analysis 

Identify transformable items 
affected by proposed changes. no  

Start-up State 
Configuration 

Declare resuming states to 
avoid progression towards error 
states after a transformation. 

no  

Transformable Item 
Regression Testing 

Identify and detect violations of 
invariants. yes 

SeCSE 
methodology 

(SeCSE 2006) 

Resource Profile Modelling 

Capture adequate resources 
and support required for new 
and replacement transformable 
items. 

no  

Correctness 

Change Case Modelling Capture proposed changes 
explicitly. no  

Define Servicing Policies Restrict behaviour during 
transformations. 

no  

IInfusibility of Change  

Locality 

Identify Changes to Zones 
Provide guidance on 
accommodating transformable 
items in zones. 

no  

Dynamic Change 
Localisation 

Confine changes to within 
zones. 

yes 
Evans and 
Dickman 
(1999) 

Maintainability 

Identify Changes to Zones Keep the information about 
zones up-to-date. 

no  

Identify New and 
Replacement 
Transformable Items  

Keep the information about 
transformable items in an 
application up-to-date. 

no  

Extend Application 
Lifecycle 

Keep the information about an 
application lifecycle up-to-date. no  



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 175 

Quality Factor Recommended 
Task/Technique 

Purpose (repeated from Table 
Appendix C.22) 

Dynamic 
Evolution 
Quality 

Specific? 
[see note 2] 

Source of Reuse  

Identify As-Is Runtime 
Structure 

Keep the information about 
runtime structure of an 
application up-to-date. 

no  

Define To-Be Runtime 
Structure Ditto no  

Testability Analysis and 
Improvement 

Improve testability of an 
application and its 
transformable items. 

yes 
Freedman 

(1991) 

Transparency 

Transformation 
Orchestration and Agent 
Coordination 

Reduce the effects of 
transformations to end users. 

no  

Develop Transformation 

Abstract transformations away 
from the business logic of an 
application to hide them from its 
programmers. 

no  

Identify Transformations Ditto no  

Dynamic Change 
Localisation 

Hide transformations from 
transformable items of an 
application unaffected by the 
transformations. 

yes 
Evans and 
Dickman 
(1999) 

CChangeability  oof Application  

Autonomy  
Transformable Item 
Autonomy 

Improve self-control and self-
governance over transformable 
items. 

yes 
ERL 

methodology 
(Erl 2005) 

Coordination 

Define Transformation 
Orchestration 

Organise transformation agents 
to facilitate the orchestration of 
transformations among multiple 
zones during a transitional 
period. 

no  

Secure and Reliable 
Transformation Agent 
Coordination 

Address network unreliability 
when transformation agents 
coordinate with one another 
during a transitional period. 

yes  

Extensibility 

Dynamic Wrapper Add new functionality to existing 
compositions. 

yes Truyen et al. 
(2001) 

Dynamic Change 
Localisation  

Use zones to confine the scope 
of changes. yes 

Evans and 
Dickman 
(1999) 

Dynamic Variation 
Management 

Add variation points to an 
architecture to plug alternative 
or additional transformable 
items to it. 

no 
SeCSE 

methodology 
(SeCSE 2006) 

Identify Changes to Zones Support multiple versions of 
transformable items to co-exist. no  

Dynamic Wrapper Add new functionality to existing 
transformable items. yes 

Truyen et al. 
(2001) 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 176 

Quality Factor Recommended 
Task/Technique 

Purpose (repeated from Table 
Appendix C.22) 

Dynamic 
Evolution 
Quality 

Specific? 
[see note 2] 

Source of Reuse  

Loose Coupling Loose Coupling 
Reduce coupling among 
transformable items. no 

P&H 
methodology 

(Papazoglou & 
van den 

Heuvel 2006) 

Separation of 
Concerns 

Transformable Item 
Mediation and Channelling 

Abstract communication 
concerns from functionality. yes 

RUP (Kruchten 
2003) 

RRobustness of Application  

Fault Tolerance 

Dynamic Wrapper 

Protect an application against 
potential faults from new and 
replacement transformable 
items. 

yes 
de Castro 

Guerra et al. 
(2003) 

Dynamic Wrapper 

Establish barriers to contain the 
faults from new and 
replacement transformable 
items. 

yes 
Gama and 

Donsez (2010) 

Dynamic Change 
Localisation 

Confine changes to within 
zones to isolate faults 
propagating from one zone to 
another. 

yes 
Evans and 
Dickman 
(1999) 

Recoverability 

Transformation Exception 
Management 

Manage potential exceptions 
raised during the execution of a 
transformation. 

yes  

Recovery Blocks 

Recover an application from 
errors caused by new and 
replacement transformable 
items after a transformation. 

yes Horning et al. 
(1974) 

Reliability 

Dynamic Wrapper 

Limit the behaviour of new and 
replacement transformable 
items in case they behave 
unexpectedly, compromising an 
application. 

yes Voas (1998) 

Transformable Item 
Regression Testing 

Check whether or not new and 
replacement transformable 
items behave as expected in an 
application. 

yes 
SeCSE 

methodology 
(SeCSE 2008) 

Safety 
Dynamic Evolution Safety 
Risk Management 

Identify and mitigate safety risks 
associated with transformations 
and dynamic changes. 

yes  

Security 

the security aspect of 
Secure and Reliable 
Transformation Agent 
Coordination 

Provide security for 
transformation agent control 
and coordination. 

yes Kon et al. 
(2000) 

Dynamic Wrapper 

Protect the security of an 
application from being 
compromised by new and 
replacement transformable 
items and vice versa. 

yes Herrmann and 
Krumm (2001) 

Dynamic Wrapper 

Provide access control, 
intrusion management and data 
input/output protection for 
transformable items. 

yes 
Badger and 

Feldman 
(1999) 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 177 

Quality Factor Recommended 
Task/Technique 

Purpose (repeated from Table 
Appendix C.22) 

Dynamic 
Evolution 
Quality 

Specific? 
[see note 2] 

Source of Reuse  

Dynamic Security Policy 
and Enforcement 
Management 

Manage security policy and 
enforcement changes in 
response to dynamic changes in 
an application. 

yes 
Grimm and 

Bershad 
(2001) 

Notes: 

1. The primary support for Completeness is by Inspection which is carried out in Task Assess 
Dynamic Evolution Quality. No further techniques are specifically defined to further support 
Completeness. 

2. “Dynamic Evolution Quality Specific?”: “no” - work units support both dynamic change and quality 
factor requirements, “yes” - work units support quality factor requirements only. 

 

Example: Continuing on the EPCP example, several transformations are executed by 

two transformation agents in two zones during transitional period “a” (Figure 6.22(a)). 

With respect to Coordination, an inspection on the quality of the transformation 

orchestration design identifies that transformation agents can be further organised to 

facilitate the coordination of their transformations. This is attained by employing 

Technique “Secure and Reliable Transformation Agent Coordination” (Appendix C.3.2.11) 

as recommended in Table 6.15. This dedicates a new transformation agent to initiate 

and oversee transformations executed by the two agents. The improved design is 

shown in Figure 6.24 with the new agent labelled as “coordination agent”. The improved 

orchestration starts with deploying the new version of three transformable items to their 

respective zones. Then, Search Service is reconfigured to use the new version of these 

transformable items. Finally, old versions of the transformable items are removed.  

 
source: developed for this research 

Figure 6.24 EPCP: use of coordination agent during transitional period a 

E
ng

in
e 

A
ge

nt
R

ep
os

ito
ry

 
A

ge
nt

v1.1

Catalogue 
Service2 

deployment

Search Result 
Processor2
deployment

Search Query 
Composer2
deployment

Search Result 
Processor 
removal

Search Query 
Composer
removal

Catalogue 
Service 
removal

v1

Preparatory Interruptive Finishing

Search 
Service 

reconfiguration

C
oo

rd
in

a-
tio

n 
A

ge
nt



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 178 

66.3.6 Producer Method Fragments 

Producers hold the responsibility of executing work units according to their areas of 

expertise (ISO/IEC 2007). In other words, the producer-work unit relationship defines 

who is doing what during software development to tackle dynamic evolution. 

Correspondingly, Continuum prescribes a set of basic producers as summarised below. 

The producer-work unit relationship is specified in the documentation of individual work 

units in Appendix C.3.1: 

 A Dynamic Evolution Analyst (role-typed producer) is responsible for performing 

the analysis of dynamic evolution for a composition-based distributed 

application; 

 A Dynamic Evolution Designer (role-typed producer) is responsible for carrying 

out the design of dynamic evolution for a composition-based distributed 

application; and 

 A Runtime Application Discovery Tool (tool-typed producer) is a tool used for 

discovering information about a composition-based distributed application whilst 

it is running. 

Although people and tool related issues are not a focus of this research (cf. Section 

1.5), these role- and tool-typed producers are provided for completeness. The producer 

information is also useful for incorporating Continuum into a methodology tool. One 

such example is the Eclipse Process Framework (The Eclipse Foundation 2009) which 

mandates “roles” to be defined for tasks. 

6.3.7 Usage Guidelines 

As introduced in Section 6.3.3, the dynamic evolution metamodel (cf. Figure 6.5) 

provides a basis from which dynamic evolution can be described, expressed and 

modelled during development (e.g. an application lifecycle is represented by a 

sequence of generations and transitional periods). In particular, rules can be derived 

from the metamodel to govern model contents in work products. For example, in an 

Application Lifecycle Diagram (cf. Appendix C.2.2.1), one would expect to find 

generations and transitional periods for an application. SEMDM’s ModelUnitUsage 

class instances can be used as surrogates for specifying this type of information (see 

Appendix C.2.2). 

To utilise Continuum in an endeavour, the following steps are suggested: 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 179 

1. Construct a development lifecycle model which includes Continuum’s processes, 

or incorporate them into an existing development lifecycle model. In the spirit of 

evolution, the lifecycle model should iteratively and progressively correct, refine 

and improve analysis and design work products. 

2. Determine which Continuum techniques are appropriate for the particular 

application under consideration (Table 6.5, Table 6.7, Table 6.10 and Table 

6.12). 

3. Determine which quality factors are important to the business, the stakeholders, 

end users and the application, and tailor the Dynamic Evolution Quality 

Management process accordingly. For example, if security is not an issue for an 

in-house distributed application because it runs in an organisation’s Intranet 

which is secure, security relevant inspection questions can be skipped when 

assessing the quality of dynamic evolution work products. 

Figure 6.25 is one example development lifecycle model, informative as a guide for it is 

one of many ways to organise, link and sequence stages and processes in a project or 

programme setting to suit different situations. The lifecycle model has two concurrent 

streams of development activities, one for conventional application development (lower 

half) and the other devoted to dynamic evolution (upper half). It begins with the 

Analysis phase on the left, consisting of two builds, Conventional Analysis and 

Dynamic Evolution Analysis, each delivering a particular objective for the project. The 

Conventional Analysis build consists of a conventional Requirement Analysis process 

sourced from an existing methodology for eliciting, analysing, prioritising and approving 

requirements and change requests in an endeavour.  



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 180 

 
source: developed for this research 

Figure 6.25. Example analysis and design project lifecycle with Continuum process 
fragments 

The Dynamic Evolution Analysis build consists of Continuum’s Application Lifecycle 

Analysis process which runs alongside Requirement Analysis to take approved 

requirements and change requests from the latter as inputs, and to plan for the 

application lifecycle and successive generations necessary to fulfil those requirements 

and change requests. This process also converts those requirements and change 

requests into change cases, and defines transitional periods to roll out the change 

cases. In a quality-aware endeavour, the Dynamic Evolution Analysis build 

complements this process with Continuum’s Dynamic Evolution Quality Management 

process (top left of Figure 6.25) to continuously and progressively drive quality 

improvement of dynamic evolution work products produced with Continuum. 

During the Design phase, requirements and change requests are inputted to a 

conventional Application Design process sourced from an existing methodology (as in 

the Conventional Design build in the lower right of Figure 6.25) which focuses on 

levelling the static design of the application to meet the new requirements and change 

requests, with little regard for dynamic evolution concerns. Likewise, change cases are 

inputted to the Dynamic Evolution Design build (upper right of Figure 6.25), during 

Design

Conventional Design Build

analysis 
milestone

TxI

TxAD

TxD

Transformation Identification Process

Transformation Agent Design Process

Transformation Design Process

Legend:

milestonephase

build

Analysis

design 
milestone

Conventional Analysis Build

Requirement Analysis
High Level Design

Low Level Design

Dynamic Evolution Design 
Build

TxI

Dynamic Evolution Analysis 
Build

Application Lifecycle 
Analysis TxD

TxAD

Dynamic Evolution 
Quality Management

Dynamic Evolution 
Quality Management

Example Project Incorporating Conventional and Dynamic Evolution Concerns

process



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 181 

which Continuum’s Transformation Identification process is used to identify the 

transformations required to promote the running application to the new runtime 

structure. Next, one can continue with Continuum’s Transformation Design process and 

then Continuum’s Transformation Agent Design process (as sequenced inside the 

Dynamic Evolution Design build in Figure 6.25). In the former, the detailed design of all 

transformations is worked out before transformation agents are identified and assigned 

to these transformations whereas in the latter the execution order of these 

transformations is defined. Indeed, Transformation Identification, Transformation 

Design and Transformation Agent Design attend to different design aspects of 

transformations respectively: what is to be done, how it is to be done, and who is to do 

it. The Dynamic Evolution Design build is also augmented with Continuum’s Dynamic 

Evolution Quality Management process (top right) to improve the quality of the design 

work products. 

66.4 TRACEABILITY OF REQUIREMENTS AND METHOD 
FRAGMENTS 

Table 6.16 and Table 6.17 show which Continuum’s method fragments address each of 

the important dynamic evolution requirements considered for Continuum. In each row, 

method fragments in the “Method Fragment” column are those directly addressing the 

respective requirement in the “Requirement” column. Method fragments in the 

“Supplementary Method Fragment” column supplement those in the “Method Fragment” 

column to further and indirectly support their respective requirements. For instance, 

“ChangeCase” is a feature that represents the notion of a “dynamic change” requirement. 

But a means of producing and documenting ChangeCases should also be in place in 

application development. Thus, Continuum proposes Technique “Change Case 

Modelling” and Work Product “Dynamic Application Change Document” as supplementary 

fragments for modelling and recording ChangeCases. 

Table 6.16 Traceability between important dynamic change requirements (Table 6.2) and Continuum’s 
method fragments 

Requirement Method Fragment(s) Supplementary Method Fragment(s) 

Modelling Related  

Part Level 

Multiple version 
coexistence 

ZoningPolicy used in Task Identify 
Changes to Zones 

Task Identify Changes to Zones 

Resource needs ResourceProfile 
New and Replacement Transformable Item 
Catalogue 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 182 

Requirement Method Fragment(s) Supplementary Method Fragment(s) 

Performance 
characteristics 

PerformanceProfile (rreused from ASG, 
cf. New and Replacement Transformable 
Item Catalogue) 

New and Replacement Transformable Item 
Catalogue 

Access blocking ServicingPolicyType attribute in 
ServicingPolicy 

Transformation Diagram, Structural 
Configuration - Notational Extensions  
 
Task Define Servicing Policies 

Application Level  

Dynamic change ChangeCase 

Dynamic Application Change Document 
 
Tasks Derive Change Cases and Refine 
Change Cases 
 
Techniques Change Case Modelling and 
Change Case Partitioning and Ordering 

Transformation Transformation 

Transformation Diagram 
 
Tasks Identify New and Replacement 
Transformable Items, Identify Changes to 
Zones, Define Servicing Policies and Identify 
Transformations 
 
Technique Transformation Mining 

Generation Generation (eenhanced from RUP with 
additional semantics) 

Application Lifecycle Diagram 
 
Tasks Identify As-Is Runtime Structure, 
Extend Application Lifecycle and Define To-
Be Runtime Structure 
 
Technique Runtime Structure Recovery 

Application 
lifecycle 

ApplicationLifecycle (enhanced from 
RUP with the notion of a 
TransitionalPeriod and additional 
semantics) 

Application Lifecycle Diagram 
 
Task Extend Application Lifecycle  
Technique Change Case Partitioning and 
Ordering 

Servicing 
continuity 

ServicingPolicyType attribute in 
ServicingPolicy 

Transformation Diagram, Structural 
Configuration - Notational Extensions 
 
Task Define Servicing Policies 

Others 

Transformation 
agent 

TransformationAgent 

Transformation Orchestration Diagram 
 
Tasks Identify Transformation Agents and 
Define Transformation Orchestration 
 
Techniques Transformation Agent 
Disposition and Transformation Orchestration 
and Agent Coordination 

Transformation 
action 

TransformationAction (eenhanced from 
UML’s action with various 
TransformationActionType values) 

Transformation Diagram 
 
Task Develop Transformation 

Transformation 
exception TransformationException Transformation Orchestration Diagram 

Transformation 
exception 
resolution 

TransformationExceptionResolution Transformation Orchestration Diagram 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 183 

Requirement Method Fragment(s) Supplementary Method Fragment(s) 

Expected 
dynamic change 
impact 

Impact(eenhanced from EPIC with 
additional attributes and refined 
semantics for dynamic evolution) 

Technique Dynamic Change Impact Analysis 

WWork Related  

Part Level 

Dynamic part 
change 

Technique Dynamic Transformable Item 
Change  Task Develop Transformation 

Dynamic part 
adapter 

Technique Dynamic Transformable Item 
Adaptation (rreeused from RUP) Task Develop Transformation 

Dynamic part 
(re)binding 

Technique Dynamic Transformable Item 
(Re)binding (eenhanced from SeCSE with 
transformation patterns for performing 
the actual (re)binding at runtime) 

Task Develop Transformation 

Resource need 
prediction Technique Resource Profile Modelling 

New and Replacement Transformable Item 
Catalogue 

Performance 
characteristic 
prediction 

Technique Performance Profile 
Modelling (reused from ASG) 

New and Replacement Transformable Item 
Catalogue 

Geometric 
change 

Task Identify Changes to Zones Zone Change Document 

Dynamic state 
transfer Technique Start-up State Configuration State Map 

Application Level  

Dynamic 
workflow 
evolution 

Technique: Dynamic Workflow Change 
(rreused from several sources) 

 

Dynamic 
recomposition 

Technique Dynamic Recomposition  

Dynamic 
refactoring 

Technique Dynamic Refactoring 
(eenhanced from OPF) 

Technique Loose Coupling (rreused from 
P&H) 

Dynamic 
variability 

Technique Dynamic Variation 
Management (rreused from SeCSE) 

 

Dynamic change 
impact analysis 

Technique Dynamic Change Impact 
Analysis Dynamic Application Change Document 

Dynamic 
contract update 

Technique Dynamic Change Impact 
Analysis  

Notes: 

1. Not listed in the Table 6.16 are the four process fragments - Application Lifecycle Analysis, 
Transformation Identification, Transformation Design and Transformation Agent Design - which 
link and sequence the tasks and techniques (cf. Figure 6.11, Figure 6.13, Figure 6.16 and Figure 
6.21) to produce the desired outcomes for dynamic changes. 

 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 184 

Table 6.17 Traceability between Continuum quality factor requirements (Table 6.1) and method 
fragments 

Quality Factor and Attribute Requirement Method Fragment(s) Supplementary Method Fragment(s) 

SSoundness of Change  

Completeness   

No missing functionality after a 
transformation 

I+A [see note 1] 
 
Inspection questions 
rreused from criteria of 
RUP’s “review the 
design” task 

 

No missing parts after a transformation I+A  

No missing, illegal or broken bindings 
after a transformation 

I+A  

(Also in consistency) assumptions and 
properties of a distributed application and 
its parts met by a change 

I+A  

Consistency   

Compatible bindings I+A  

Compatible communications protocol 
among parts 

I+A  

All parts involved in a runtime change 
identified before a transformation 

I+A Technique Dynamic Change Impact 
Analysis 

No progression towards an error state 
after a transformation 

I+A Technique Start-up State 
Configuration, and the notion of a 
resuming state in State Map 

Synchronisation of application’s and 
parts’ states after a transformation 

I+A  

A reachable state attained after a 
transformation 

I+A  

No critical procedures executed before a 
transformation 

I+A The notion of a quiescent state in 
State Map 

No pending messages, interactions or 
transactions before a transformation 

I+A The notion of a quiescent state in 
State Map 

System invariants preserved from a 
transformation 

I+A Technique Transformable Item 
Regression Testing 

Adequate resources and support for new 
and replacement parts 

I+A Technique Resource Profile Modelling 

(Also in completeness) assumptions and 
properties of a distributed application and 
its parts met by a change 

I+A  

Correctness   

Non-arbitrary and admissible changes I+A Technique Change Case Modelling 

No unintentional behaviour during and 
after a transformation 

I+A Task Define Servicing Policies 

Correct ordering of transformations I+A  

Transformations at a right time I+A  



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 185 

Quality Factor and Attribute Requirement Method Fragment(s) Supplementary Method Fragment(s) 

IInfusibility of Change  

Locality   

Application partitioning and change 
localisation to partitions 

I+A Task Identify Changes to Zones 
-- 
Technique Dynamic Change 
Localisation (rreused from Evans and 
Dickman (1999), in lieu of enhancing 
a Catalysis feature as originally 
planned in Table 6.4) [see note 2]. 

Maintainability   

All parts clearly defined in interaction (or 
workflow) specifications 

I+A  

No degradation in cost and ease of 
modifications 

I+A 
 
Inspection questions 
eenhanced from EPIC, 
OPF and Select 
Perspective’s merged 
attributes for easily 
maintainable 
applications 

Tasks Identify Changes to Zones, 
Identify New and Replacement 
Transformable Items, Extend 
Application Lifecycle, Identify As-Is 
Runtime Structure, and Define To-Be 
Runtime Structure 

No reduction in testability 
I+A Technique Testability Analysis and 

Improvement 
(rreused from Freedman (1991)) 

Clear and detailed interactions I+A  

Transparency   

Transformations hidden from end users I+A Technique Transformation Mining 
 

Transformation design and 
implementation hidden from application 
programmers 

I+A Tasks Develop Transformation and 
Identify Transformations 

Transformations hidden from parts 
unaffected by the transformations 

I+A Technique Dynamic Change 
Localisation (reused from Evans and 
Dickman (1999)) 

Transformation agents hidden from 
operating environment 

I+A  

Separating part specification from 
realisation concerns 

I+A  

Changeability  of Application 

Autonomy   

Self-control and self-governance of parts’ 
own processing 

I+A Technique Transformable Item 
Autonomy (rreused from ERL) 

Coordination   

Transformations coordinated among 
multiple nodes/organisations 

I+A Task Define Transformation 
Orchestration 

Transformation agents tolerant of network 
unreliability during a transformation 

I+A Technique Secure and Reliable 
Transformation Agent Coordination 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 186 

Quality Factor and Attribute Requirement Method Fragment(s) Supplementary Method Fragment(s) 

Extensibility   

Runtime extension/upgrade of an 
application with new functionality 

I+A Techniques Dynamic Wrapper 
(rreused from Truyen et al. (2001)) and 
Dynamic Change Localisation (rreused 
from Evans and Dickman (1999)). 

Runtime extension/upgrade of parts in an 
application with new functionality 

I+A Technique Dynamic Variation 
Management (rreused from SeCSE) 
 
Task Identify Changes to Zones to 
support multi-version co-existence of 
transformable items. 

Runtime extension/upgrade of an 
application with new parts 

I+A Techniques Dynamic Wrapper 
(rreused from Truyen et al. (2001)) 

Loose Coupling   

High level of independence between 
parts 

I+A Technique Loose Coupling (rreused 
from P&H) 

Parts having their own lifecycles and 
runtime environments 

I+A  

Separation of Concerns   

Separating dynamic change concerns 
from functionality concerns 

I+A  

Separating communication concerns from 
functionality concerns 

I+A Technique Transformable Item 
Mediation and Channelling (reused 
from RUP) 

Separating security support from 
functionality concerns 

I+A  
 
Inspection questions 
derived (i.e. reused) 
from ERL’s approach 
to security 

 

Separating realisations of parts from 
those of part clients 

I+A  
 
Inspection questions 
derived (i.e. reused) 
from Select 
Perspective’s notion of 
separate part and 
client development 

 

Separating part specification from 
realisation concerns 

I+A 
 
Inspection questions 
derived from analysing 
several methodologies 
(cf. Table 6.4) 

 

Robustness of Application 

Fault Tolerance   

High tolerance of faulty new and/or 
changed parts 

I+A Technique Dynamic Wrapper (rreused 
from de Castro Guerra et al. (2003)) 

Barriers established to contain potentially 
faulty new and replacement parts 

I+A Technique Dynamic Wrapper (rreused 
from Gama and Donsez (2010)) 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 187 

Quality Factor and Attribute Requirement Method Fragment(s) Supplementary Method Fragment(s) 

Recoverability    

Restoration of an application and its parts 
to a state to continue to perform their 
functionality, after a failure caused by a 
transformation and/or its dynamic 
change(s) 

I+A Technique Transformation Exception 
Management and Recovery Blocks 
(rreused from Horning et al. (1974)) 

Reliability   

No compromise on intended functionality 
after a transformation 

I+A Technique Dynamic Wrapper (rreused 
from Voas (1998)) 

Replacement parts fully satisfying their 
roles 

I+A Technique Transformable Item 
Regression Testing (rreused from 
SeCSE) 

Safety   

Distributed application and its parts 
operating safely during and after a 
transformation 

I+A Technique Dynamic Evolution Safety 
Risk Management (enhancement for 
OPF’s “safety engineering” process) 

Security   

Transformation agents secured from 
unauthorised access 

I+A The security part of technique Secure 
and Reliable Transformation Agent 
Coordination (reused from Kon et al. 
(2000), in lieu of enhancing an OPF 
feature as originally planned in Table 
6.4) [see note 2] 

No security compromise by new and 
replacement parts after a transformation 

I+A Technique Dynamic Wrapper (rreused 
from Herrmann and Krumm (2001), in 
lieu of enhancing an OPF feature as 
originally planned in Table 6.4) [see 
note 2] 

Access to new and replacement parts 
restricted after a transformation 

I+A Technique Dynamic Wrapper (rreused 
from Badger and Feldman (1999), in 
lieu of enhancing an OPF feature as 
originally planned in Table 6.4) [see 
note 2] 

Dynamically updated security policy 

I+A Technique Dynamic Security Policy 
and Enforcement Management 
(rreused from Grimm and Bershad 
(2001)) 

Separating security policy from security 
enforcement 

I+A Ditto 

Notes: 

1. “I+A” stands for inspection and analysis, referring to Techniques “Inspections” (reused from OPF) 
and “Root Cause Analysis” (enhanced from Leszak et al. (2002)). These techniques utilise work 
products Dynamic Evolution Quality Inspection Report (cf. Appendix C.2.2.3) and Dynamic 
Evolution Quality Problem Analysis Report (cf. Appendix C.2.2.4). 

2. Enhancements were originally planned for a small set of fragments identified from existing 
methodologies to address certain dynamic evolution requirements (Table 6.3 and Table 6.4). 
Instead, since some techniques fully satisfying some of these requirements were also identified 
from the literature, the development of Continuum opted for adopting these techniques from the 
literature rather than performing fragment enhancement. 

3. Not listed in Table 6.17 are the process fragment Dynamic Evolution Quality Management (cf. 
Section 6.3.5) and its tasks which together apply the techniques above in a lifecycle (cf. Figure 
6.23) to drive quality improvement for dynamic evolution. 

4. Task Improve Dynamic Evolution Quality (cf. Appendix C.3.1.2.4) applies to all quality factors but 



Chapter 6. Development of Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 188 

omitted from the “Supplementary Method Fragment(s)” column for clarity reasons. 

In section 2.4, the precedence relationships for a number of reviewed methodologies 

have been presented in Figure 2.5. Since Continuum reuses/enhances a number of 

these methodologies (cf Table 6.16 and Table 6.17), the relationships are extended, 

incorporating the relationships between Continuum and these methodologies, as 

depicted in Figure 6.26.  

AEMSUPER CBDI-SAE

Continuum

Catalysis

UML Components
(unqualified for 

review)
KobrAEPIC

SeCSE

ASG Erl RUP

P&H

OPEN
Process

Framework

Select
Perspective

A BLegend: A precedes B
 

source: developed for this research 

Figure 6.26 Precedence relationships of reviewed methodologies and Continuum 
(extended from Figure 2.5) 

6.5 CONCLUSION 
An extended introduction to Continuum, a methodological extension to support dynamic 

evolution, has been presented in this Chapter. It covers: 

 the metamodel for describing dynamic evolution; 

 work unit fragments (what to do) for addressing dynamic changes and quality 

aspects relevant to dynamic evolution; 

 work product fragments (i.e. produced/used in these work unit fragments); and 

 producer method fragments (who perform a particular work unit fragment).  

The set of important dynamic evolution requirements that Continuum intends to 

address were briefly described. Some guidelines on using Continuum in an endeavour 

are also provided. The detailed specifications for Continuum can be found in Appendix 

C. The next Chapter describes the tasks of evaluations of Continuum and refinements 

made to it. 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 189 

Chapter 7. EEVALUATION AND REFINEMENT 

“The first step towards amendment is the recognition of error.” - Seneca 

This Chapter reports the evaluation and refinement of Continuum performed in Phase 3 

of this research. In Task 3.1, an expert review of the version of Continuum produced 

from Phase 2 was used to refine Continuum. In Task 3.2, the version of Continuum 

updated after Task 3.1 was used in a case study, and subsequently refined based on 

the feedback from the case study results. Note that all refinements made to Continuum 

have been included in the version presented in Section 6.3 and Appendix C. Figure 7.1 

below summarises the information flow for these tasks.  

Phase 3:
Task 3.1:

Conduct 
an expert 

review
of 

Continuum

Task 3.2:

Apply 
Continuum 

in a 
case study

dynamic 
evolution 
method 

fragments

Phase 2:

Develop
support

for 
dynamic 
evolution

refined
dynamic 
evolution 
method 

fragments

 
source: developed for this research 

Figure 7.1 Information flow in Phase 3 for evaluating and refining Continuum 

Task 3.1 is reported in Section 7.1. This is followed by Task 3.2 in Section 7.2. Section 

7.3 concludes this Chapter. 

7.1 TASK 3.1 EXPERT REVIEW OF CONTINUUM 
The first task of Phase 3 aimed to conduct a preliminary assessment of the initial 

version of Continuum (i.e. developed from Phase 2, cf. Section 6.3) and refine it 

accordingly. In this regard, experts were asked to review the documentation of this 

version of Continuum consisting of two parts: the introduction section (similar to Section 

6.3) and the full specifications section (similar to Appendix C). The former gave an in-

depth overview of Continuum, its method fragments, how they could be fitted together 

and used in an endeavour. The latter provided full descriptions of individual fragments 

in Continuum which were organised according to the fragment types.  

7.1.1 Selection of Experts 

Two experts, one from the IT industry and the other from academia, took part in the 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 190 

review. The former had experience in dealing with architectural aspects and 

implementation of live upgrades to distributed applications, while the latter did 

researches in dynamic adaptation in service-oriented systems. An advantage of having 

experts from two different sectors is that their knowledge and experience 

complemented each other and potentially improved the comprehensiveness of the 

review findings. Neither expert was aware of the identity of the other to avoid possible 

communication between them without the researcher’s involvement. 

77.1.2 Procedure 

The review procedure consisted of the following sequential steps. Note that the experts 

never reviewed Continuum in parallel (i.e. at the same time): 

1. Expert 1 reviewed the initial version of the documentation of Continuum, 

completed a review form (Appendix E.3), and if necessary annotated further 

comments on the documentation. 

2. A meeting was held with Expert 1 to discuss the comments on the returned form 

and the documentation and to clarify and avoid possible misinterpretation of 

them. 

3. The documentation was refined to address Expert 1’s comments. 

4. The refinements made to Continuum were discussed with Expert 1 via email 

communications to ensure that Expert 1 was satisfied that the refinements did 

address his/her comments. If not, go to Step 3. 

5. Expert 2 reviewed the refined version of the documentation. 

6. The clarification-refinement-discussion steps (i.e. 2 to 4) were repeated with 

Expert 2 using his/her comments. 

7. Refinements according to Expert 2’s comments were discussed with Expert 1 to 

ensure Expert 1 was also satisfied with the refinements. If not, further 

refinements and discussions were performed until both experts were satisfied. 

Before commencing the review (i.e. Step 1 or 5), each expert was given the 

documentation of Continuum and the review form (Appendix E.3). The review form 

specifically requested each expert to comment on: 

 strengths of Continuum; 

 areas for improvement in Continuum (i.e. weaknesses); and 

 suggestions, if any, for improvement to the areas above. 

The review form also noted the size of the documentation (over one hundred and thirty 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 191 

pages long) and how much time would be expected to complete the review (four to five 

days). This information served as a heads-up to experts to allocate sufficient time for 

the review. A deadline was then negotiated with each expert as to when the review 

form would be returned. Each expert was then sent a reminder close to the deadline.  

77.1.3 Results 

A summary of major events occurred in this task is shown in Table 7.1, with the longest 

events being the periods that the two experts spent on their first review of the 

documentation (two and three months respectively). 

Table 7.1 Expert review timeline 

Period Major Event(s) 

May to Jun 2009 Expert 1 reviewed initial version of Continuum. 

Jul 2009 
Expert 1 and Researcher discussed Expert 1’s comments. 
Researcher refined Continuum based on Expert 1’s comments. 
Expert 1 reviewed refinements. 

Aug to Oct 2009 Expert 2 reviewed refined version of Continuum. 

Nov 2009 
Expert 2 and Researcher discussed Expert 2’s comments. 
Researcher refined Continuum based on Expert 2’s comments. 
Expert 2 reviewed refinements. 

Nov 2009 
Expert 1 reviewed refined version of Continuum and suggested further 
improvements. 

Dec 2009 Researcher further refined Continuum based on Expert 1’s further suggestions. 
Expert 1 reviewed further refinements. 

Dec 2009 to Jan 2010 Expert 2 reviewed further refinements. 

 

The experts’ comments on the strengths of Continuum are given in Table 7.2. In 

summary, the strengths were observed from its content, structure, comprehensiveness 

and novelty in dealing with dynamic evolution. 

Table 7.2 Expert comments on strengths of Continuum 

Expert Strengths 

1 

 Continuum gives an impression of comprehensiveness and should be able to handle 
many of the dynamic evolution scenarios that it accounts for. 

 Continuum is precise in its definitions, procedures and usage. It is clear in its definitions 
of what to do and when to do it. 

 Continuum is prescriptive and offers a structural way for processes and work products to 
fit together, and a logical way to follow during analysis and design for dynamic evolution. 

2 

 The documentation is well-written, detailed and easy to read, follow and understand. 
 The methodology is well-presented and well-organised.  
 The methodology extension of dynamic change identification and management is 

comprehensive, well-documented and provides links to relevant techniques. 
 The extensions are novel and fill the gap in the existing methodology for the dynamic 

management of changes in software and services [in SOA environments]. 
 Continuum and its metamodel open new doors and opportunities to works on dynamic 

changes of services [in SOA environments]. 

 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 192 

The areas pinpointed by the experts worthy of improvements (i.e. weaknesses of 

Continuum) are summarised below:  

 clarity, completeness and semantics of the metamodel; 

 clarity, completeness and relationship of the work units, and terminology used in 

them; 

 notations and semantics of the work products; 

 clarity, completeness, sequence, structure and style of the presentation;  

 examples used to guide the discussion; and 

 the people aspect (e.g. no producers missing in Continuum). 

The areas that could be improved, the experts' suggestions on how these areas could 

be improved as well as the actual refinements made to Continuum to implement their 

suggestions are documented in Table Appendix F.1. The refinements include changes 

to the Continuum’s method fragments, its level of details and examples in the 

documentation.  

77.2 TASK 3.2 CASE STUDY APPLICATION OF CONTINUUM 
After the expert review of the initial version of Continuum and the subsequent 

refinements made to it in Task 3.1 (cf. Section 7.1), this task was a case study in which 

the objective was to apply Continuum to the analysis and design of dynamic evolution 

for an application, and to use the results from it to further refine and improve 

Continuum. To achieve realism, the case study was managed as a project 

incorporating project schedules, deadlines and meetings.  

An introduction to the case study encompassing the application used and the sponsor 

is presented in Section 7.2.1. The recruitment of case study participants is noted in 

Section 7.2.2. This is followed by a description of the case study procedure in Section 

7.2.3 and the case study results in Section 7.2.4. A brief discussion on the lessons 

learned from the case study is given in Section 7.2.5. 

7.2.1 Case Description 

The Distributed Property Valuation system - also called “DPV” - used in the case study 

is a commercial and distributed application running around the clock. DPV coordinates 

activities among financial institutions and property valuers (i.e. individuals and staff of 

property valuation firms). Financial institutions use DPV to register valuations to be 

performed on properties of interest. DPV then notifies property valuers who carry out 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 193 

the valuations on-site and return valuation reports to DPV. DPV checks and forwards 

completed valuation reports to the financial institutions. DPV adopts the standards 

proposed by the Lending Industry XML Initiative (LIXI)18 (LIXI 2010) specifying the 

formats and exchange of lending-related data which replace numerous incompatible 

and proprietary approaches.  

The organisation that sponsored this case study (i.e. the sponsor) was outsourced to 

develop DPV for another company (i.e. the owner). The organisation was selected 

using convenience sampling with a personal contact at the organisation, for reasons of 

limited availability of industry sponsors and the preliminary nature of Continuum. The 

first version of DPV, labelled V1, was released in 2008. It consisted of: 

 a web-based business process system for property lenders to initiate and track 

valuation workflows; 

 a Mobile Job Application (MJA) running on personal digital assistant devices 

(PDA) for individual property valuers and staff from property valuation firms 

(collectively called “valuers”) to capture property valuation data on-site (i.e. the 

jobs); and 

 a desktop sub-system for system administrators to manage property valuation 

data held in DPV.  

The sponsor had been using an in-house agile software development methodology for 

five years. The methodology was intended for small development teams (e.g. four 

people for V1). Its major analysis and design activities were: 

 requirements consistency analysis, reviewing consistency of requirements and 

the design19; 

 high-level design, producing block diagrams for an architecture; 

 low-level design, producing minimal structural diagrams; 

 technology and platform (off-the-shelf) evaluation and selection, producing 

extensive documents; 

                                                   

18 LIXI is an independent non-profit organisation established for the Australian lending industry 
to facilitate lending information exchange among its member organisations more efficiently and 
at a lower cost. LIXI members include major banks, mortgage originators, mortgage brokers, 
mortgage insurers, property valuation firms, settlement agents, trustees and information 
technology providers. 
19  Requirements gathering was handled by clients and thus not part of the in-house 
methodology. 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 194 

 effort estimation, based on function point analysis and development tasks to 

perform; 

 migration planning, involving ad hoc brainstorming (e.g. switching from old to 

new versions of a database); and 

 installation and operation planning, involving ad hoc brainstorming on potential 

issues and plans. 

Soon after the release of V1, the sponsor developed V2 which incorporated several 

enhancements to V1 such as a new database platform for storing property valuations 

and additional functionality. As several parts of DPV in V1 had to be ported to vastly 

different technology platforms in V2, the sponsor treated the upgrade from V1 to V2 as 

also a migration project and gave a lot of thoughts to change planning. During both 

development and installation/operation time, however, the development team had to 

think about and deal with changes and evolution themselves on an ad hoc basis. This 

was because the in-house methodology did not provide guidance, such as checklists, 

steps and patterns, for changes and evolution. During the upgrade from V1 to V2, the 

sponsor encountered several issues neither foreseen nor adequately addressed by its 

methodology causing unanticipated delays in completing the upgrade. Thus, the 

sponsor sought alternatives to deal with future upgrades. 

At the time of the case study, a new version of DPV (i.e. V3) had been planned and 

was still subject to project approval and funding. The sponsor thus suggested applying 

Continuum to retrospectively re-design the upgrade from V1 to V2 in order to gain 

experience in dealing with dynamic evolution, for the benefit of future upgrades. Since 

V2 of DPV had already been designed and implemented, the sponsor decided not to 

repeat the conventional development activities in the case study project but to reuse 

what had already been developed from these activities instead.  

77.2.2 Selection of Participants 

The sponsor organisation assigned two of its technical employees (i.e. the participants) 

to take part in the case study. One participant had been involved in the whole 

development lifecycle of DPV - covering analysis, design, implementation, testing and 

deployment - since its inception (i.e. from V1 onwards). The second participant joined 

the DPV development team after the V2 release to specifically perform requirements 

analysis of the latest version (i.e. V3). The latter participant was also familiar with the 

V1 and V2 features of DPV. Note that the participants were not the experts who 

reviewed earlier versions of Continuum in Task 3.1 (Section 7.1). 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 195 

77.2.3 Procedure 

The following steps were carried out in this task as described in the research design (cf. 

Section 3.2.3.2): 

1. Initiate the project to kick off the case study. 

2. Apply Continuum by analysing and designing dynamic evolution for an 

application and developing relevant dynamic evolution work products. 

3. Evaluate Continuum by completing an evaluation form (Appendix E.4). 

4. Wrap-up the project by refining Continuum based on the evaluation results and 

verifying the refinements made with the case study participants and the experts. 

As highlighted in Section 7.2.1, the conventional design and analysis activities for DPV 

had been completed. Therefore, the project lifecycle for the original upgrade project 

was extended by incorporating the four steps above to concentrate the case study on 

the dynamic evolution aspects of DPV from V1 to V2. In this regard, a lifecycle diagram 

(ISO/IEC 2010), as depicted in Figure 7.2, can be used to represent the relationship 

between the original upgrade project and the case study project.  

 
source: developed for this research 

Figure 7.2 Case Study’s lifecycle diagram 

On the left of Figure 7.2 is the time cycle20 for the original upgrade project which 

consisted of two phases: one covering the conventional development activities prior to 

the case study and the other covering the upgrade of DPV to V2.  

                                                   

20 SEMDM defines a “time cycle” as a managed interval of time for the delivery of a product 
(ISO/IEC 2007). 

Case Study ProjectOriginal DPV V1 to V2 Upgrade Project

DPV 
upgraded

to V2

case study 
completed

Legend (from SEMDM):

milestonephase time cycle

Conventional 
Development 
for V2

(analysis, 
design, 
implementation 
and testing)

V1 to V2
Upgrade

(deployment 
and data 
migration)

Project 
Initiation
(step 1)

Application of 
Continuum
(step 2)

Evaluation of 
Continuum 
(step 3)

Refinement of 
Continuum
(step 4)



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 196 

The right hand side of Figure 7.2 shows the time cycle for the case study project which 

was divided into four phases, corresponding to the execution of the four steps defined 

for this task. The activities of each phase of the case study project are now discussed. 

7.2.3.1 Project Initiation 

The case study project commenced with a kick-off meeting to communicate with the 

participants about the purpose, expectations and potential benefits of the case study. 

Furthermore, a project plan was structured to align the scope of work in the case study, 

the workload and involvement of the participants. An overall project schedule along 

with milestones was established. The schedule imposed deadlines to add realism to 

the case study. Early milestones let the participants and their sponsor see early results 

from the case study. In the meeting the participants gave an introductory talk on DPV 

and were handed the documentation for Continuum to read.  

After the meeting, the participants received in-house training on Continuum in two 

hourly sessions (one week apart from each other). The first session covered topics 

such as key concepts and features of Continuum, how to navigate its documentation, 

and a brief introduction to method engineering using Continuum as an illustration. In the 

second session, examples in Section 6.3 were presented to the participants to 

showcase the use of Continuum. The presentation also drew on the characteristics of 

DPV, using the whiteboard where necessary, to demonstrate key concepts of 

Continuum (e.g. an example change case for DPV). The participants commented that 

examples were especially important since without a lifecycle model or being integrated 

into a full methodology, Continuum (alone) as a set of method fragments would be hard 

to understand. 

Before applying Continuum, the participants refined the next phase “Application of 

Continuum” to guide them when to use particular features of Continuum. A logical 

approach was to define a sub-phase for each of the five Continuum processes (see 

Figure 7.3) to focus the sub-phase on particular dynamic evolution aspects supported 

by the associated process. Three milestones were also defined in “Application of 

Continuum”: “dynamic evolution analysed”, “dynamic evolution designed” and “dynamic 

evolution improved”. “Dynamic evolution analysed” signalled the end of the “Lifecycle 

Definition” sub-phase, during which the participants were expected to perform the 

analysis of DPV to evolve it from V1 to V2. 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 197 

 
source: developed for this research 

Figure 7.3 Configuration for case study’s “Application of Continuum” phase 

The milestone “dynamic evolution designed” flagged the completion of activities defined in 

the following sub-phases: 

1. The “Transformation Identification” sub-phase, for identifying all transformations 

to advance DPV from V1 to V2; 

2. The “Transformation Agent Definition” sub-phase, for identifying transformation 

agents and assigning them responsibilities (e.g. which agents would execute 

particular transformations defined in “Transformation Identification”); and 

3. The “Transformation Design” sub-phase, for producing the internal design for 

each transformation identified in “Transformation Identification”. 

After “dynamic evolution designed”, the quality of the dynamic evolution work products 

developed from prior sub-phases were to be assessed and subsequently improved in 

the “Quality Improvement” sub-phase. Finally, the milestone “dynamic evolution improved” 

indicated the completion of the “Application of Continuum” phase.  

The sub-phases are further elaborated in Section 7.2.4.1. 

7.2.3.2 Applying Continuum 

After project initiation, the participants used Continuum to analyse and design dynamic 

evolution for DPV. Since the case study application of Continuum was expected to run 

for a few months, they were handed an evaluation form (Appendix E.4) to complete 

along the way, lest they forgot their experience of applying specific parts of Continuum 

earlier on. During each week, a meeting was held to keep everyone up-to-date about 

the case study application, to monitor its status and progress, and to establish work to 

complete in the following week. The last point involved: 

 negotiating what objectives would be accomplished by the next meeting; 

 determining which parts of the methodology would be used to accomplish the 

objectives; and 

Application of Continuum

dynamic
evolution
analysed Trans-

formation 
Identifica
-tion

Trans-
formation 
Agent 
Definition

Trans-
formation 
Internal 
Design

dynamic
evolution
designed Quality 

Improve-
ment

Lifecycle 
Definition

dynamic
evolution
improved 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 198 

 getting commitment from participants to the objectives above. 

In terms of evidence of use, the following materials were tracked in every meeting: 

 topics discussed in relation to the dynamic evolution metamodel; 

 work unit fragments discussed and used; and 

 informal documentation (e.g. sketches on whiteboards) and formal 

documentation (i.e. work-in-progress and completed work products). (Note: 

Completed work products developed from using Continuum are documented in 

Appendix D.) 

7.2.3.3 Evaluating Continuum 

After applying Continuum to DPV (cf. Section 7.2.3.2), the participants completed and 

returned the evaluation form. For an early assessment of a development approach, 

Murphy et al. (1999) suggest focusing on usefulness (e.g. “Is it useful when addressing 

dynamic evolution) and usability (e.g. “Is it easy to understand and use?”). Thus, in the 

evaluation form the participants were asked to rate these aspects of Continuum. 

Furthermore, they were asked to evaluate its strengths, weaknesses and 

completeness21 by: 

 rating the extent to which Continuum tackled each dynamic evolution issue (i.e. 

strengths and weaknesses); 

 identifying areas in Continuum requiring improvement (i.e. weaknesses and 

completeness); and 

 providing suggestions, if any, for improving these areas. 

Follow-up face-to-face meetings were held to discuss and clarify the evaluation results 

in the returned forms. They also gave participants an opportunity to cross-check each 

other’s data. 

7.2.3.4 Refining Continuum 

The feedback obtained from the evaluation results was used to determine which parts 

of Continuum required updates based on the feedback. Refinements were iteratively 
                                                   

21 In work related to technology adoption for IS, Yang et al. (2005) propose a number of factors 
for measuring the service quality of a technology adoption model: “usefulness” of information 
provided, “usability” of information provided, “adequacy or completeness” of information provided, 
“accessibility” of IS (e.g. responsiveness), the means of “interaction” with IS, and “privacy and 
security” of information collected from users. The first three factors were also used in this 
evaluation. The last three were not applicable to Continuum and thus discarded. 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 199 

made to Continuum and reviewed by both participants until they were satisfied. Next, 

this same refinement and review process was repeated with the two subject matter 

experts who took part in the expert review earlier in Task 3.1 (cf. Section 7.1).  

77.2.4 Results 

An overview of the major events occurred during the case study is shown in Table 7.3. 

The case study lasted ten months. 

Table 7.3 Case study timeline 

Period Phase Major Event(s) 

Jan 2010 Project Initiation Kick-off meeting. 

Feb 2010  Case study participants attended Continuum training sessions. 

Feb to Jun 
2010 Application of Continuum Case study participants performed analysis and design of 

dynamic evolution for DPV. 

Jun 2010 Evaluation of Continuum Case study participants completed evaluation of Continuum. 

Jul to Aug 
2010 Refinement of Continuum Researcher refined Continuum based on participant evaluation 

results. 

Aug 2010  Case study participants reviewed refinements made to 
Continuum. 

Sep 2010  

Expert 1 reviewed refinements made to Continuum since 
Expert 1’s last review and suggested further improvements. 
Researcher further refined Continuum based on Expert 1’s 
suggestions. 
Expert 1 reviewed further refinements. 

Oct 2010  Case study participants reviewed further refinements based on 
Expert 1’s suggestions. 

Oct 2010  Expert 2 reviewed all refinements since Expert 2’s last review. 

 

The case study results are documented in the following sections: 

 Section 7.2.4.1, for the configuration of the sub-phases in “Application of 

Continuum” showing how Continuum processes were set up and used for DPV; 

 Section 7.2.4.2, for the dynamic evolution issues encountered and the ratings 

for how well Continuum addressed these issues; 

 Sections 7.2.4.3 and 7.2.4.4, for the evaluation results for usefulness and 

usability of Continuum respectively; and 

 Table Appendix F.2, for the areas in Continuum requiring improvement, 

suggestions for how they could be improved, and the actual refinements made 

to Continuum to improve them. 

7.2.4.1 Sub-Phase Configuration for Application of Continuum 

As defined during Project Initiation (cf. Section 7.1), the case study application of 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 200 

Continuum began with the “Lifecycle Definition” sub-phase, during which the 

participants had to conduct an analysis of the dynamic evolution aspects of DPV. As 

discussed in Section 7.2.3.1 the conventional analysis for DPV had already been 

performed, the configuration for “Lifecycle Definition” was straightforward. That is, 

during “Lifecycle Definition”, the participants simply followed Continuum’s Application 

Lifecycle Analysis process without repeating the conventional analysis in a designated 

time interval called a “build” (ISO/IEC 2007). This is depicted in Figure 7.4. 

 
source: developed for this research 

Figure 7.4 Configuration for “Lifecycle Definition” sub-phase 

 
source: developed for this research 

Figure 7.5 DPV: generation overview 

phase

build

Continuum process

Legend:

Lifecycle Definition

Lifecycle 
Definition Build

Application 
Lifecycle 
Analysis

•The first version of DPV.

V1

•No change to V1 functionality (as seen by end users). 
•The new database platform released.  

V1.1beta

•No change to V1 functionality. 
•The old database platform removed. 

V1.1

•No change to V1 functionality. 
•V2 functionality released.  
•Both V1 and V2 user interfaces running concurrently on separate web sites.

V1.2

•Valuation booking part of V1 user interface disabled. 
•Valuation bookings to be performed via V2 user inteface only.

V1.3

•All transformable items responsible for V1 functionality (e.g. V1 user 
interface) removed.

V2



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 201 

After completing “Lifecycle Definition”, the participants decided that in order to progress 

DPV from V1 to V2, DPV would be required to pass through four temporary generations 

(i.e. V1.1beta, V1.1, V1.2 and V1.3). A brief description of the generations from V1 to 

V2 is provided in Figure 7.5. See Appendix D for further details. 

On account of the number of temporary generations between V1 and V2, the 

progression in effect would involve five transitional periods (i.e. from V1 to V1.1beta, 

from V1.1beta to V1.1, from V1.1 to V1.2, from V1.2 to V1.3, and from V1.3 to V2). This 

information was used to configure the next three sub-phases: “Transformation 

Identification”, “Transformation Agent Definition” and “Transformation Design”. More 

specifically, the participants assembled five homogeneous builds in each of these sub-

phases, corresponding to the five transitional periods identified. The configurations for 

these sub-phases are shown in Figure 7.6 and briefly described afterwards. 

 
source: developed for this research 

Figure 7.6 Configuration for “Transformation Identification”, “Transformation Agent 
Definition” and “Transformation Design” sub-phases 

 “Transformation Identification” sub-phase 

Each build in this sub-phase was configured with Continuum’s Transformation 

Identification and Application Lifecycle Analysis processes. The former was 

used to identify transformations to occur in the transitional period as targeted by 

the build. The latter was used alongside the former to update the application 

Transformation 
Agent Definition

v1
->v1.1beta

TxI

v1.1beta
->v1.1

TxI

v1.1->v1.2

TxI

v1.2->v1.3

TxI

v1.3->v2

TxI

TxAD TxAD

TxAD TxAD

TxAD

Transformation 
Identification

v1
->v1.1beta

ALA

v1.1beta
->v1.1

ALA

v1.1->v1.2

ALA

v1.2->v1.3

ALA

v1.3->v2

ALA

TxI TxI

TxI TxI

TxI

ALA

TxI

TxAD

TxD

Continuum’s Transformation Identification Process

Continuum’s Transformation Agent Design Process

Continuum’s Transformation Design Process

Continuum’s Application Lifecycle Analysis Process

Legend:

phase

build

Transformation 
Internal Design

v1
->v1.1beta

v1.1beta
->v1.1

v1.1->v1.2 v1.2->v1.3

v1.3->v2

TxD TxD

TxD TxD

TxD



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 202 

lifecycle and change cases developed earlier from “Lifecycle Definition”. For 

example, when additional change cases were identified with the Transformation 

Identification process, they needed to be incorporated into the application 

lifecycle.  

 “Transformation Agent Definition” sub-phase 

Each build in this sub-phase was configured with Continuum’s Transformation 

Agent Design and Transformation Identification processes. The Transformation 

Agent Design process was used to determine the transformation agents to 

execute transformations during the transitional period targeted by the build. 

Transformations identified earlier during “Transformation Identification” were 

updated accordingly with the Transformation Identification process if required. 

For example, if two transformations assigned to the same transformation agent 

could be combined into a larger transformation, the transformations identified 

would thus require updates. The Application Lifecycle Analysis process was not 

added to the build since the outcomes of the Transformation Agent Design 

process were not expected to affect the design for the application lifecycle. 

 “Transformation Design” sub-phase 

Each build in this sub-phase (Figure 7.6) was configured with Continuum’s 

Transformation Design process, for designing how transformations work 

internally in terms of transformation actions. Since the internal behaviour of 

transformations would not affect other analysis and design aspects of dynamic 

evolution (e.g. change cases and transformation agents), the work products 

developed for the latter were not expected to require update. Hence, no other 

Continuum processes were used in the build. 

Lastly, the “Application of Continuum” phase was finalised with the “Quality Improvement” 

sub-phase (cf. Figure 7.3) in which the primary objective was to improve the quality of 

the dynamic evolution work products developed earlier on. As illustrated in Figure 7.7, 

“Quality Improvement” had only one build which was assembled with all of Continuum’s 

processes. The primary process in the build was Dynamic Evolution Quality 

Management used to assess the quality of the dynamic evolution work products 

developed so far and to improve them according to the quality assessment. This 

process was supplemented with Continuum’s other four processes (Application 

Lifecycle Analysis, Transformation Identification, Transformation Agent Design and 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 203 

Transformation Design) to further update and refine the work products developed. For 

instance, the participants identified that there was no mechanism to protect DPV from a 

potential failure triggered by a critical transformation (cf. Table Appendix D.14). This led 

to a number of changes to the work products, e.g.: 

 the incorporation of a recovery transformation into a Transformation 

Orchestration Diagram via the Transformation Agent Design process; and 

 the internal design for the recovery transformation above via the Transformation 

Design process.  

 
source: developed for this research 

Figure 7.7 Configuration for “Quality Improvement” sub-phase 

7.2.4.2 Dealing with Dynamic Evolution Issues 

In this section of the evaluation form, the participants were asked to jointly identify 

significant analysis/design issues in dynamic evolution in situ, i.e. encountered in the 

case study, and describe how Continuum was used to tackle the issues. Then, each 

participant rated the extent to which Continuum tackled each issue on a 1-7 Likert scale 

(1 for “extremely badly”, 7 for “extremely well”). The information about the issues and the 

rating scores is shown in Table 7.4.  

Table 7.4 Dynamic evolution issues encountered in case study and addressed with Continuum 

Dynamic Evolution Issue 
Encountered 

How Continuum Was Used to Address The 
Issue 

Rating Score for 
Continuum 

Range Median 
The overall interruption time to the 
system due to upgrade (i.e. 
dynamic evolution) is too long. 

Allocating transformations to interruptive and 
non-interruptive (i.e. preparatory and 
finishing) phases, to reduce overall 
interruption time. 

6-6 6.0 

All users require to be trained for 
using the new system (V2) almost 
at the same time as when V2 is 
released, which is not practical 
and costly.  

Use of a temporary generation in transit to 
make both V1 and V2 versions of the system 
functions available to end users, to give end 
users enough time to complete training. 

6-6 6.0 

phase

build

Continuum process

Legend:

Quality Improvement

Application Lifecycle Analysis 

Transformation Identification 

Transformation Agent Design 

Transformation Design 

Dynamic Evolution Quality Management 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 204 

Dynamic Evolution Issue 
Encountered 

How Continuum Was Used to Address The 
Issue 

Rating Score for 
Continuum 

Range Median 
The new version of the system 
(V2) is not backwards compatible 
with other systems. This means 
jobs created with V1 of the system 
and still in progress can no longer 
be completed by the new version 
after the system upgrade to V2. 

Use of a temporary generation in transit to 
make both V1 and V2 versions of the system 
functions available to end users, to enable 
them to complete jobs created with V1 of the 
system while using V2 to create and 
complete new jobs. 

5-6 5.5 

The scope of change for each 
system upgrade is too big and too 
complex. 

Breakdown of changes into change cases, 
transformations and transformation actions. 

6-6 6.0 

Coordination among different 
roles (i.e. transformation agents) 
during application deployment is 
unplanned and chaotic. 

Use of Transformation Orchestration 
Diagram and Notation to model coordination 
among different people. 

6-7 6.5 

System upgrade is not 
transparent to end users. 

Overall system upgrade refined into small 
units of transformations, and only a subset of 
which will interrupt the system; use of 
«Blocked and Queued» ServicingPolicy to 
cache incoming requests from end users to 
further improve transparency. 

6-7 6.5 

Not all required changes and 
upgrades are identified from 
requirements. 

Explicit use of change cases and associated 
tasks/techniques to progressively identify 
and analyse changes and upgrades. 

4-6 5.0 

Quality aspects of dynamic 
evolution are not covered. 

Explicit and dedicated Process “Dynamic 
Evolution Quality Management” to cover 
quality aspects. 

6-6 6.0 

ooverall score 44--77  55.9  
 

Continuum achieved median scores ranging from 5.0 (“well”) to 6.5 (between “very well” 

and “extremely well”). For instance, Continuum scored best in its ability to specify 

coordination among roles to perform transformations, and its ability to improve the 

transparency of transformations to end users of DPV. Note also that all issues were 

encountered in both the case study and in the previous actual upgrade project for DPV 

(i.e. from V1 to V2) with one exception; the issue concerning quality aspects of dynamic 

evolution (italicised in Table 7.4) was not addressed in the original upgrade project but 

was in the case study. One participant explained that practitioners of the upgrade 

project were unfamiliar with and unaware of quality aspects of dynamic evolution and 

quality was hence not contemplated in the upgrade project. After consulting Continuum, 

however, the participants felt that quality played an important role in dynamic evolution 

and subsequently it was applied in the case study. 

7.2.4.3 Usefulness 

For evaluation of usefulness, the case study aimed at comparing Continuum with the 

sponsor’s in-house methodology to see which one was more useful. A common 

technique for this kind of comparison is member checking which calls for each 

participant to perform a qualitative comparison from his/her past experience (Seaman 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 205 

1999) Hence, the evaluation form asked participants to list the dynamic evolution 

issues encountered in both the case study (i.e. using Continuum) and in the previous 

project, which actually upgraded DPV (i.e. using the in-house methodology), and to 

determine which methodology worked better for each issue. 

Only one of two participants in the case study was also involved in the previous 

upgrade project and thus able to evaluate Continuum’s usefulness compared with the 

previous approach. The comparison results reported by this participant are listed in 

Table 7.5. 

Table 7.5 Comparison of Continuum and in-house methodology in tackling recurred dynamic evolution 
issues 

 How the Issue was Addressed Extent to Which the 
Issue was Addressed 

Dynamic Evolution 
Issue Encountered with Continuum with In-House 

Methodology 

B
et

te
r w

ith
 

C
on

tin
uu

m
 

A
bo

ut
 th

e 
S

am
e 

B
et

te
r w

ith
 

In
-H

ou
se

 
M

et
ho

do
lo

gy
 

The overall interruption 
time to the system due 
to upgrade (i.e. 
dynamic evolution) is 
too long. 

Allocating transformations to 
interruptive and non-interruptive 
(i.e. preparatory and finishing) 
phases, to reduce overall 
interruption time. 

All changes planned 
to be applied to the 
system in one long 
time period (also 
the interruption 
time). 

   

All users require to be 
trained for using the 
new system (V2) 
almost at the same 
time as when V2 is 
released, which is not 
practical and costly.  

Use of a temporary generation in 
transit to make both V1 and V2 
versions of the system functions 
available to end users, to give 
end users enough time to 
complete training. 

A temporary 
generation as in the 
Continuum case 
considered but not 
probable since the 
upgrade had to be 
completed in one 
time period. 

   

The new version of the 
system (V2) is not 
backwards compatible 
with other systems. 
This means valuations 
created with V1 of the 
system and still in 
progress can no longer 
be completed by the 
new version after the 
system upgrade to V2. 

Use of a temporary generation in 
transit to make both V1 and V2 
versions of the system functions 
available to end users, to enable 
them to complete jobs created 
with V1 of the system while 
using V2 to create and complete 
new jobs. 

Not addressed 
(incomplete 
valuations in V1 of 
the system, if any, 
expected to be 
manually re-created 
in V2 of the system 
as part of the 
upgrade). 

   

The scope of change 
for each system 
upgrade is too big and 
too complex. 

Breakdown of changes into 
change cases, transformations 
and transformation actions. 

Changes identified 
at a high-level only. 

   

Coordination among 
different roles (i.e. 
transformation agents) 
during application 
deployment is 
unplanned and chaotic. 

Use of Transformation 
Orchestration Diagram and 
Notation to model coordination 
among different people. 

Not addressed. 

   



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 206 

 How the Issue was Addressed Extent to Which the 
Issue was Addressed 

Dynamic Evolution 
Issue Encountered with Continuum with In-House 

Methodology 

B
et

te
r w

ith
 

C
on

tin
uu

m
 

A
bo

ut
 th

e 
S

am
e 

B
et

te
r w

ith
 

In
-H

ou
se

 
M

et
ho

do
lo

gy
 

System upgrade is not 
transparent to end 
users. 

Overall system upgrade refined 
into small units of 
transformations, and only a 
subset of which will interrupt the 
system; use of «Blocked and 
Queued» ServicingPolicy to 
cache incoming requests from 
end users to further improve 
transparency. 

Not addressed. 

   

Not all required 
changes and upgrades 
are identified from 
requirements.  

Explicit use of change cases and 
associated tasks/techniques to 
progressively identify and 
analyse changes and upgrades. 

Changes identified 
(but limited to high-
level ones). 

   

 

Continuum appeared to handle most issues better than the in-house methodology 

except one, shown at the bottom of Table 7.5. More specifically, all changes and 

upgrades were successfully identified from requirements in both the case study (i.e. 

with Continuum) and the previous project (i.e. with the in-house methodology). During a 

follow-up meeting, this participant clarified that the identification in the previous project 

was confined to “high-level” changes and upgrades only. However, this participant 

acknowledged that Continuum offers useful constructs to map identified high-level 

changes to low-level changes and to detailed designs (i.e. of transformation actions). 

Such mapping was not supported by the in-house methodology. 

7.2.4.4 Usability 

For usability, the case study asked the participants to evaluate method fragments in 

Continuum with respect to understandability (e.g. “Is ‘X’ easy to understand?”) and ease 

of use (e.g. “Is ‘X’ easy to use?”)22, depending on the type of method fragment under 

assessment. In the evaluation form, they were asked to assign ratings to method 

fragments on a 1-7 Likert scale (1 for “strongly disagree”, 7 for “strongly agree”). The 

evaluation results gave some confidence in the quality of Continuum.  

For model unit fragments (i.e. concepts) in Continuum’s metamodel, the participants 

                                                   

22 In work related to product quality, the ISO/IEC 9126-1 standard (ISO/IEC 2001) divides 
usability into three sub-characteristics: understandability, learnability and operability. 
Learnability is not in scope for this research as Continuum could be presented to the participants 
via better media, such as a development tool, which could influence learnability. Operability 
concerns the capability of a product to be used and liked by a user. This definition is equivalent 
to ease of use in this research. 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 207 

were asked to rate the fragments’ understandability (i.e. “Is concept ‘X’ easy to 

understand?”) but not ease of use, since model unit fragments are not directly used; they 

manifest in work unit and work product fragments which are actually used. Table 7.6 

presents the scores for the metamodel. Continuum’s model unit fragments achieved 

median scores ranging from 5.5 (for the “Transitional Period” aspect) to 6.5 (for the 

“Structural Foundation” aspect). 

Table 7.6 Understandability ratings for Continuum’s metamodel 

Metamodel Aspect Related Model Units 
Understandability 

Range Median 

Structural 
Foundation 

Application, Resource OperationalProfile, 
TransformableItem and Zone 

6-7 6.5 

Application 
Lifecycle 

Application, ApplicationLifecycle, ChangeCase, 
Generation, Impact, Stage, TransformableItem and 
TransitionalPeriod 

6-6 6.0 

Transitional Period 
TransitionalPeriod, TransformationAgent, ChangeCase, 
Transformation, TransformationException and 
TransformationExceptionResolution 

5-6 5.5 

Transformation Resource, TransformableItem, Transformation, 
TransformationAction and Zone 

5-7 6.0 

Policy Policy, ServicingPolicy and ZoningPolicy 6-6 6.0 

 ooverall score 55--77  66.0  
((average)  

 

For work unit and work product fragments of Continuum, the participants were asked to 

evaluate both understandability (i.e. “Is ‘X’ easy to understand?”) and ease of use (i.e. “Is 

‘X’ easy to use to, such as to produce relevant models/diagrams/documents?”). Table 7.7 

presents the scores for Continuum’s work unit and work product fragments. Overall, the 

task and technique fragments scored an average of 6.0 for both understandability and 

ease of use. The work product fragments scored averages of 5.9 and 6.0 for 

understandability (of the fragments) and ease of use respectively. Process fragments 

were not individually rated. Instead, the scores for each process fragment were 

obtained by taking the average of the scores of the process fragment itself, its 

associated task, technique and work product fragments. The process fragments 

attained an average score of 6.0 for both understandability and ease of use. 

Table 7.7 Usability ratings for Continuum’s work unit and work product fragments 

Method 
Fragment 

Kind 
Work Unit/Product Fragment 

Understandability  Ease of Use  

Range Median Range Median 

Process Application Lifecycle Analysis 

Task Identify As-Is Runtime Structure 6-7 6.5 6-7 6.5 

 Derive Change Cases 5-6 5.5 5-6 5.5 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 208 

Method 
Fragment 

Kind 
Work Unit/Product Fragment 

Understandability  Ease of Use  

Range Median Range Median 

 Extend Application Lifecycle 6-7 6.5 6-7 6.5 

Technique Change Case Modelling 5-6 5.5 5-6 5.5 

 Change Case Partitioning and Ordering 5-6 5.5 5-6 5.5 

 Runtime Structure Recovery (reused) 6-6 6.0 6-6 6.0 

Work 
Product Application Lifecycle Diagram 6-7 6.5 6-7 6.5 

 Dynamic Application Change Document 6-6 6.0 6-6 6.0 

 Structural Configuration - Notational 
Extensions 

5-6 5.5 6-6 6.0 

pprocess score ((including its task, technique and work 
pproduct method fragments)  55-7 

5.9  
(average)  5-7 

6.0  
(average)  

Process Transformation Identification 

Task Define To-Be Runtime Structure 7-7 7.0 7-7 7.0 

 Refine Change Cases 5-7 6.0 5-7 6.0 

 Identify Transformations 7-7 7.0 7-7 7.0 

Technique Dynamic Variation Management (reused) 6-6 6.0 6-6 6.0 

 Dynamic Workflow Change (reused) 6-6 6.0 6-6 6.0 

 Dynamic Refactoring 6-6 6.0 6-6 6.0 

 Dynamic Recomposition 6-6 6.0 6-6 6.0 

 Change Case Modelling 5-7 6.0 5-7 6.0 

 Dynamic Change Impact Analysis  6-7 6.5 6-7 6.5 

 Transformation Sizing 5-6 5.5 5-6 5.5 

Work 
Product Dynamic Application Change Document 6-6 6.0 6-6 6.0 

 Structural Configuration - Notational 
Extensions 5-6 5.5 6-6 6.0 

process score ((including its task, technique and work 
product method fragments)  5-7 6.1  

(average)  5-7 6.2  
(average)  

Process Transformation Agent Design 

Task Identify Transformation Agents 6-6 6.0 6-6 6.0 

 Define Transformation Orchestration 6-6 6.0 6-6 6.0 

Work 
Product Transformation Orchestration Diagram  6-6 6.0 6-6 6.0 

process score ((including its task, technique and work 
product method fragments)  6-6 

6.0  
(average)  6-6 

6.0  
(average)  

Process Transformation Design 

Task Identify New and Replacement Transformable 
Items 6-7 6.5 6-7 6.5 

 Identify Changes to Zones 6-7 6.5 6-7 6.5 

 Define Servicing Policies 5-6 5.5 5-6 5.5 

 Develop Transformation 6-7 6.5 5-7 6.0 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 209 

Method 
Fragment 

Kind 
Work Unit/Product Fragment 

Understandability  Ease of Use  

Range Median Range Median 

Technique Resource Profile Modelling 6-6 6.0 6-6 6.0 

 Start-up State Configuration 5-6 5.5 5-6 5.5 

 Performance Profile Modelling 4-6 5.0 4-6 5.0 

 Dynamic Transformable Item Adaptation 4-6 5.0 4-6 5.0 

 Dynamic Transformable Item (Re)binding 5-6 5.5 5-6 5.5 

 Dynamic Transformable Item Change 6-6 6.0 6-6 6.0 

Work 
Product Transformation Diagram 6-6 6.0 6-6 6.0 

 State Map 5-6 5.5 5-6 5.5 

 New and Replacement Transformable Item 
Catalogue 

6-7 6.5 6-7 6.5 

 Zone Change Document 5-6 5.5 5-6 5.5 

pprocess score ((including its task, technique and work 
pproduct method fragments)  

44-7 5.8  
(average)  

4-7 5.8  
(average)  

Process Dynamic Evolution Quality Management 

Task Define Dynamic Evolution Quality Needs 6-7 6.5 6-7 6.5 

 Assess Dynamic Evolution Quality 6-7 6.5 6-7 6.5 

 Analyse Dynamic Evolution Quality Problems 6-6 6.0 6-6 6.0 

 Improve Dynamic Evolution Quality 6-6 6.0 6-6 6.0 

Technique Dynamic Change Localisation (reused) 5-7 6.0 5-7 6.0 

 Dynamic Evolution Safety Risk Management 5-6 5.5 5-6 5.5 

 Dynamic Security Policy and Enforcement 
Management (reused) 5-7 6.0 5-7 6.0 

 Dynamic Wrapper (reused) 6-7 6.5 6-7 6.5 

 Inspection (reused) 6-7 6.5 6-7 6.5 

 Loose Coupling (reused) 6-7 6.5 6-7 6.5 

 Recovery Blocks (reused) 6-6 6.0 6-6 6.0 

 Secure and Reliable Transformation Agent 
Coordination 

5-7 6.0 5-7 6.0 

 Start-up State Configuration 6-7 6.5 6-7 6.5 

 Testability Analysis and Improvement 
(reused) 

5-6 5.5 5-6 5.5 

 Transformable Item Autonomy (reused) 4-6 5.0 4-6 5.0 

 Transformable Item Mediation and 
Channelling (reused) 

5-6 5.5 5-6 5.5 

 Transformable Item Regression Testing 
(reused) 5-6 5.5 5-6 5.5 

 Transformation Exception Management 6-7 6.5 5-7 6.0 

 Transformation Sizing 5-5 5.0 5-5 5.0 

Work 
Product Dynamic Evolution Quality Profile Report 6-6 6.0 6-6 6.0 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 210 

Method 
Fragment 

Kind 
Work Unit/Product Fragment 

Understandability  Ease of Use  

Range Median Range Median 

 Dynamic Evolution Quality Inspection Report 6-6 6.0 6-6 6.0 

pprocess score ((including its task, technique and work 
pproduct method fragments)  

44-7 6.0  
(average)  

4-7 6.0  
(average)  

      

 overall process score  4-7 6.0  
(average)  

4-7 6.0  
(average)  

 

For each work product fragment of Continuum, the participants were also asked to 

assess the understandability of the actual work product(s) (model(s), diagram(s), 

document(s) etc.) developed with the work product fragment for the case study. The 

rating question corresponds to “Are the models/diagrams/documents produced from work 

product fragment ‘X’ easy to understand?”. Table 7.8 presents the scores for the actual 

work products developed which are documented in Appendix D. They scored an 

average of 6.0 for understandability. 

Table 7.8 Understandability ratings for work products developed with Continuum 

Work Product Kind Actual Work Product Developed for Case Study 
Understandability 

Range Median 

Application 
Lifecycle Diagram 

Figure Appendix D.2 6-7 6.5 

Dynamic 
Application 
Change Document 

Table Appendix D.4 (for change cases for generation V1) 
Table Appendix D.5 (for change cases for generation 
V1.1beta), 
Table Appendix D.6 (for change cases for generation V1.1), 
Table Appendix D.7 (for change cases for generation V1.2), 
Table Appendix D.8 (for change cases for generation V1.3), 
Table Appendix D.2 (for analysed change impacts) 

6-6 6.0 

Structural 
Configuration - 
Notational 
Extensions 

Figure Appendix D.1 (for generation V1),  
Figure Appendix D.4 (for generation V1.1beta),  
Figure Appendix D.5 (for generation V1.1),  
Figure Appendix D.6 (for generation V1.2),  
Figure Appendix D.7 (for generation V1.3),  
Figure Appendix D.8 (for generation V2),  
Figure Appendix D.9 (for disposition of transformation agents) 

6-6 6.0 

Transformation 
Orchestration 
Diagram 

Figure Appendix D.10 (for progressing generation V1 to 
V1.1beta),  
Figure Appendix D.11 (for progressing generation V1.1beta to 
V1.1),  
Figure Appendix D.12 (for progressing generation V1.1 to 
V1.2),  
Figure Appendix D.13 (for progressing generation V1.2 to 
V1.3),  
Figure Appendix D.14 (for progressing generation V1.3 to V2) 

6-6 6.0 

Transformation 
Diagram 

Figure Appendix D.15, 
Figure Appendix D.16, 
Figure Appendix D.17, 
Figure Appendix D.18 

6-6 6.0 

State Map Table Appendix D.10 5-6 5.5 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 211 

Work Product Kind Actual Work Product Developed for Case Study 
Understandability 

Range Median 

New and 
Replacement 
Transformable 
Item Catalogue 

Table Appendix D.9 6-7 6.5 

Zone Change 
Document Table Appendix D.11 5-6 5.5 

Dynamic Evolution 
Quality Profile 
Report 

Table Appendix D.13 (only overall scores of dynamic evolution 
quality factors shown in Table Appendix D.13) 6-6 6.0 

Dynamic Evolution 
Quality Inspection 
Report 

Table Appendix D.14 (only method fragments with 
defects/issues shown in Table Appendix D.14) 

6-6 6.0 

ooverall score 55-7 6.0  
(average)  

 

7.2.5 Lessons Learned 

While the case participants were enthusiastic about a new approach for dealing with 

dynamic evolution relevant to their project, lessons learned from the case study are 

discussed with a view to facilitate Continuum’s adoption in an industrial setting. To 

begin with, Continuum expects people who contemplate in learning and using it to have 

certain knowledge and/or experience in relevant areas. From a method user’s 

viewpoint, the case study participants’ familiarity with specific kinds of composition-

based distributed applications and change management indeed helped them 

comprehend Continuum and dynamic evolution. From a method engineer’s viewpoint, 

their experience with a methodology helped them quickly grasp the notion of method 

engineering and attain the skills for configuring Continuum to suit the case study. 

With respect to learning, the case study conducted two training sessions for the 

participants (Section 7.2.3.1). While they gained basic knowledge about Continuum, it 

would have been more effective if the training sessions had been scheduled farther 

apart than in the case study (e.g. at least weeks). This is because the participants 

would have reasonable time to read through Continuum documentation between the 

two sessions and to be able to ask in-depth questions about Continuum during the 

second session. It was also observed that the participants had to take care of their 

normal duties in the period between the two sessions such that they had limited time to 

read through Continuum. On the other hand, it was effective for the participants to learn 

to apply Continuum in a real project setting (cf. Section 7.2.3.1) and by solving a real 

dynamic evolution problem relevant to their responsibilities. Other possibilities to help 

lower the learning curve include offering exercises for learners, providing sample 



Chapter 7. Evaluation and Refinement Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 212 

Continuum configurations for a variety of contexts and additional sample dynamic 

evolution work products for specific kinds of composition-based distributed applications.  

Based on the case study, other factors that may contribute to the successful adoption of 

Continuum in the industry include:  

 Tool support: From the experience of developing a methodology tool, one 

participant noted that it would be easier to use Continuum in the form of a 

methodology tool (further elaborated in Section 8.4.3) than as a document. 

 Cost control: Adopting a new technology/methodology invariably entails cost 

overheads (Murphy et al. 1999). Although the sponsor generously offered two 

participants to take part in the case study, cost overheads - studying, training, 

development time, etc. - should be analysed, discussed and controlled with an 

adopting organisation.  

 Experienced participation: It was not an intent for any researcher to participate 

in a case study. However, someone familiar with Continuum would be beneficial 

to an endeavour in the form of mentoring others and participating in 

development requiring dynamic evolution. 

77.3 CONCLUSION 
This Chapter presented how Continuum was progressively evaluated and refined in 

Phase 3 of this research programme to produce the final version of Continuum 

(documented in Section 6.3 and Appendix C). The first task of Phase 3 conducted a 

review of Continuum’s documentation by two subject matter experts both experienced 

in the field of dynamic evolution. The results of the review were used to refine 

Continuum. After that, the second and final task of Phase 3 involved two participants in 

a case study to apply the updated version of Continuum to retrospectively analyse and 

design dynamic evolution for a real-world application. Feedback from the results was 

collected from the participants and Continuum was refined accordingly. The evaluation 

aspect of these tasks covered usefulness, usability, strengths, weaknesses and 

completeness. The refinement aspect of these tasks resulted in improvements to 

various areas of Continuum, including its metamodel, work unit fragments, work 

product fragments, structure, organisation, presentation and examples used. The next 

Chapter concludes this research. 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 213 

Chapter 8. CCONCLUSIONS 

“From the end spring new beginnings.” - Pliny the Elder 

This Chapter concludes this research with a summary of the investigations carried out 

in this research (Section 8.1), a discussion of the contributions of this research (Section 

8.2), a statement of validity and reliability threats to the findings of this research 

(Section 8.3) and recommendations for future work in both research and practice 

(Section 8.4). 

8.1 SUMMARY OF INVESTIGATIONS 
The aim of this research was to develop extensions to existing software development 

methodologies to support the analysis and design aspects of dynamic evolution for 

composition-based distributed applications (Section 1.2). Correspondingly, this 

research organised its investigations into two research questions (Section 1.2). On this 

basis, this research implemented a design science research programme consisting of 

three phases of activities to investigate the two research questions. In Phase 1 

(Chapter 4 and Chapter 5), the investigation focused on answering the first research 

question (i.e. RQ1): 

“What are the important requirements for consideration in composition-based 

distributed application development to support dynamic evolution?” 

To manage the complexity of dynamic evolution, the investigation distinguished 

between two types of requirements: 

 Dynamic change requirements 

These requirements characterise the changes that a distributed application 

could accommodate at runtime. 

 Dynamic evolution quality factors 

These requirements concern how well a distributed application and the dynamic 

changes to it are designed to facilitate dynamic evolution. 

Both types of requirements are sufficiently generic to a variety of composition-based 

distributed applications, including component-based and service-oriented applications, 

both a main focus of this research. Each type of requirement was determined using the 

same process. An initial set of requirements was first synthesised from evaluation 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 214 

frameworks and a systematic literature review. They were then extended in two steps: 

a survey of practitioners and researchers; and identification of dynamic evolution 

requirements already considered in a number of selected methodologies.  

The importance rankings of the initial set of dynamic evolution requirements were 

determined from the analysis of survey data. They were then revised using expert 

opinions to account for additional requirements suggested by survey respondents and 

those identified from the literature published after the survey. Important dynamic 

evolution requirements are summarised in Table 8.1. A small number of requirements 

that were deemed to be the least important - viz. Efficiency, Transitional Form, Part 

Retirement and Dynamic Protocol Evolution (cf. Section 6.1) - are discarded from Table 

8.1. 

Table 8.1 Important dynamic evolution requirements 

Type Category Requirements 

Dynamic Change 
Requirement Modelling Related Part Level 

Multiple Version Coexistence 
Resource Needs 

Performance Characteristics 
Access Blocking 

 

 Application 
Level 

Dynamic Change 
Transformation 

Generation 
Application Lifecycle 
Servicing Continuity 

 

 Others 

Transformation Agent 
Transformation Action 

Transformation Exception 
Transformation Exception Resolution 

Expected dynamic change impact 

 

Work Related Part Level 

Dynamic Part Change 
Dynamic Part Adapter 

Dynamic Part (Re)Binding 
Resource Need Prediction 

Performance Characteristic Prediction 
Geometric Change 

Dynamic State Transfer 

 

 Application 
Level 

Dynamic Workflow Evolution 
Dynamic Recomposition 

Dynamic Refactoring 
Dynamic Variability 

Dynamic Change Impact Analysis 
Dynamic Contract Update 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 215 

Type Category Requirements 

Dynamic Evolution 
Quality Factor Soundness of Change 

Completeness 
Consistency 
Correctness 

 
Infusibility of Change 

Locality 
Maintainability 
Transparency 

 

Changeability of 
Application 

Autonomy 
Coordination 
Extensibility 

Loose Coupling 
Separation of Concerns 

 

Robustness of 
Application 

Fault Tolerance 
Recoverability 

Reliability 
Safety 

Security 

 

The second research question (i.e. RQ2), as repeated below, was addressed in Phases 

2 and 3 by developing Continuum which is a methodological extension comprising a set 

of the International Standard ISO/IEC 24744 (ISO/IEC 2007) based method fragments: 

“How can these important requirements be addressed with method fragments used in 

composition-based distributed application development?” 

Continuum supports the design and analysis of dynamic evolution during composition-

based distributed application development. An initial version of Continuum was 

constructed in Phase 2 to specifically address the important dynamic evolution 

requirements determined as a result of the first research question (RQ1). Afterwards, 

Continuum was progressively evaluated and refined in Phase 3 via the expert view and 

case study application of Continuum to reach its final version. To summarise, 

Continuum comprises: 

 Dynamic evolution metamodel (Section 6.3.3) 

The metamodel offers constructs to express, communicate and reason about 

dynamic evolution during software development. 

 Dynamic change method fragments (Section 6.3.4) 

These fragments provide basic support for the analysis and design of changes 

to a running composition-based distributed application without requiring 

shutdown. 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 216 

 Dynamic evolution quality method fragments (Section 6.3.5) 

These fragments further enhance the quality of the work products delivered with 

Continuum’s dynamic change method fragments. 

 Dynamic evolution producer method fragments (Section 6.3.6) 

These fragments define roles responsible for executing particular work units 

specified in Continuum’s dynamic change and dynamic evolution quality method 

fragments according to their areas of expertise. 

The relationship between Continuum’s method fragments and the important dynamic 

evolution requirements identified in this research is summarised in Figure 8.1. The 

information on which individual method fragments fulfil a particular dynamic evolution 

requirement was provided in Section 6.4. 

Important dynamic 
change 

requirements

Important dynamic 
evolution quality 

factors

Dynamic 
Evolution 

Metamodel

Dynamic 
Change 
Method 

Fragments

Dynamic 
Evolution 
Quality 
Method 

Fragments

Dynamic 
Evolution 
Producer 
Method 

Fragments

A B   B addresses A

A B   B supports A

Legend

Solution Domain 
(Continuum)

Requirements 
Domain

 
source: developed for this research 

Figure 8.1 Major relationships among research artefacts developed in this research 

88.2 CONTRIBUTIONS OF RESEARCH 
As highlighted in Section 1.1.3, poor understanding and support for dynamic evolution 

is apparent in the literature concerning methodology development and research. This is 

reflected by two gaps: 1) the lack of a comprehensive set of dynamic evolution 

requirements from the literature, evaluation frameworks and methodologies; and 2) 

inadequate support for dynamic evolution in methodologies. The first gap was observed 

from the publications (i.e. the literature, evaluation frameworks and methodologies) 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 217 

reviewed for dynamic evolution requirement synthesis in this research. None offer a 

broad range of dynamic evolution requirements covering many aspects of dynamic 

evolution considered in this research (e.g. Sections 4.1.5, 4.3, 5.1.3 and 5.3). The 

second gap was evidenced from a feature analysis of a number of relevant 

methodologies performed in this research using the dynamic evolution requirements 

proposed in this research as the analysis criteria (cf. Sections 4.4 and 5.4). 

Regarding the first gap, the investigation outcomes contribute to both research and 

practice by proposing a comprehensive set of important dynamic evolution 

requirements for explicit consideration in methodologies supporting composition-based 

distributed application development (cf. Section 8.1). This contribution represents an 

improvement to existing and relevant evaluation frameworks and development 

methodologies in which dynamic evolution has not been explicitly considered and/or 

addressed (Sections 2.3 and 2.4). 

With respect to software development concerning dynamic evolution, it is hoped that 

the proposed requirements will assist methodology or method users (Nuseibeh et al. 

1996) in becoming more familiar with various aspects of dynamic evolution for a 

composition-based distributed application and the level of support provided by their 

own methodology for dynamic evolution. For instance, if security and safety are key 

non-negotiable concerns in their business, method(ology) users can utilise relevant 

requirements from the proposed set to examine if a methodology satisfactorily 

addresses these concerns. Moreover, the proposed requirements offer method(ology) 

users a means to communicate their specific needs for dynamic evolution to 

methodology or method engineers (Nuseibeh et al. 1996) who will then configure a 

methodology attuned to those needs, or choose the methodology of best fit. 

Method(ology) engineers can also apply the proposed requirements as criteria to 

identify gaps in a methodology in terms of weaknesses for supporting dynamic 

evolution (e.g. lack of fault tolerance) which also represent areas for change to 

enhance the methodology’s support for dynamic evolution. 

To fill the second gap (i.e. lack of methodological support for dynamic evolution), this 

research contributes to research and practice by proposing Continuum to specifically 

address the analysis and design aspects of dynamic evolution as a separate concern. 

Leveraging the situational method engineering approach, method(ology) engineers can 

select fragments from Continuum, orchestrate and sequence them to run alongside 

conventional software development activities in a methodology to suit a particular 

endeavour. The flexibility of extending a methodology to support dynamic evolution this 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 218 

way also separates the dynamic evolution concern from conventional analysis and 

design concerns in a methodology. This separation allows method(ology) users 

responsible for application development to focus on conventional activities, 

independently from method(ology) users who specifically deal with dynamic evolution 

as a distinct concern during application development. 

88.3 VALIDITY AND RELIABILITY THREATS 
Limitations of this research and the way in which the research techniques were applied 

pose threats to the findings of this research. The threats are examined along five 

dimensions which are commonly used for empirical and social research paradigms 

(Wohlin et al. 2000; Yin 2003): conclusion validity, construct validity, internal validity, 

external validity and reliability. 

8.3.1 Conclusion Validity 

Conclusion validity concerns whether conclusions can be correctly drawn about the 

relations between a treatment and an outcome (Wohlin et al. 2000). In the surveys 

conducted in this research, respondents could misinterpret questionnaire forms 

because of potentially poor wording and bad rating scales used. This would affect the 

importance rankings of the dynamic evolution requirements and limit conclusion validity 

(Sections 4.2 and 5.2). This was addressed by pilot testing and refining questionnaire 

forms to improve their quality, clarity and completeness.  

Misinterpretation of the feedback collected from survey respondents, experts and case 

study participants could also lead to the wrong conclusions drawn from the feedback 

and a threat to conclusion validity. To counter this, follow-up meetings were held with 

subjects to discuss and clarify their feedback. 

8.3.2 Construct Validity 

Construct validity concerns whether appropriate means of measurement for the 

concepts being studied have been established (Wohlin et al. 2000; Yin 2003). One 

threat to construct validity observed in the case study is experimenter expectancy 

(Wohlin et al. 2000). Since one of the two participants had involved in the previous 

upgrade project prior to the case study, this participant might have certain positive or 

negative expectations of the case study and bias the results. To lessen this effect, the 

case study had both participants cross-check each other’s data (e.g. Section 7.2.3.3). 

In order to address construct validity of the case study data further, multiple sources of 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 219 

evidence were collected: evaluation forms, project meetings, follow-up meetings and 

documentation (whiteboard drawings and hard copies). 

88.3.3 Internal Validity 

Internal validity concerns the extent to which the causal relationship of the theory being 

evaluated is established from the measured data (Wohlin et al. 2000; Yin 2003). There 

are several threats to internal validity of this research’s outcome - purposeful sampling 

used in the surveys, for instance (Sections 4.2 and 5.2). In particular, since the survey 

recruitment targeted an adequately sized group of people with appropriate experience 

and/or knowledge in composition-based technologies to achieve credibility and 

authenticity of the responses collected, this led to selection bias which weakens 

internal validity. A larger sample size randomly sourced from wider geographic regions 

would improve the confidence of the survey outcomes. 

The expert review of Continuum relied on the opinion from a small number of experts 

(Section 7.1) which might be biased and limited by their own experience and 

knowledge in dynamic evolution. Internal validity is therefore dampened. A more 

thorough review effort would involve a mix of people with different experience, 

knowledge and skill set, including experts, practitioners experienced in dealing with 

dynamic evolution and experienced users of relevant methodologies, in conducting 

assessment and review activities. As the number of people participating in such a 

review grows, they should be coordinated and managed to ensure the review results 

are systematically collated and analysed. 

In the case study, the sponsor provided only two participants to evaluate Continuum 

and only one of them was able to compare Continuum with the in-house methodology 

based on this participant’s own experience (Sections 7.2.4.3 and 7.2.4.4). Both 

limitations compromise internal validity of the evaluation and comparison results. The 

former can be alleviated by sourcing a sponsor that can provide an increased number 

of participants. The latter can be addressed by undertaking a controlled and replicated 

experiment in lieu of a case study approach to evaluate Continuum. In a simple 

experiment, participants apply a methodology to develop dynamic evolution, repeat the 

development using the same methodology enhanced with Continuum, and then 

compare the outcomes from the two development activities. A threat to this experiment 

is the learning effect (Basili et al. 1999), in which case the participants gain experience 

in dealing with dynamic evolution in the first instance and may subsequently improve 

the solution when dealing with dynamic evolution again (i.e. when using the 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 220 

methodology enhanced with Continuum). This effect can be alleviated by applying a 

between-subjects design (Basili et al. 1999; Pfleeger 1995), which varies the 

participants, the dynamic evolution problems to solve and the number of experiments. 

Other threats to internal validity include the fact that the methodology evaluations (to 

demonstrate a use of the dynamic evolution requirements and to identify method 

fragments for reuse) were performed by only one person (Sections 4.4 and 5.4). In 

addition, the evaluation results were subject to the quality of the information provided in 

the documentation of the reviewed methodologies. Some confidence could be gained 

by involving experienced users of the methodologies to take part in the evaluation. 

Significant differences in the evaluation results would then be resolved by post-

evaluation discussions (Iivari & Kerola 1983). 

88.3.4 External Validity 

External validity refers to the degree to which a technique is generalisable to other 

situations (projects, application types etc.) (Wohlin et al. 2000; Yin 2003). Since the 

practical use of dynamic evolution is still in its infancy, the number of respondents 

interested in both dynamic evolution and the surveys was small (thirty-six for dynamic 

change requirements and forty for dynamic evolution quality factors). It cannot be 

concluded whether the findings are representative of the whole IS community from the 

industry and academia, in which case the small sample sizes compromise external 

validity. Similarly, the small number of experts participating in various stages of this 

research is also a threat to external validity since their opinions cannot be generalisable 

to experts from the industry and academia. 

While the single case study offered Continuum to be evaluated in a particular context 

(i.e. property valuations) in depth, this limits external validity because the case study 

results cannot be generalisable to other applications and contexts. This threat can be 

alleviated by applying Continuum in different application contexts (see Section 8.4.2).  

Another threat to external validity is this research investigated mainly two types of 

composition-based distributed applications - component-based and SOA-based - for 

the development of the dynamic evolution requirements and Continuum which cannot 

be regarded as generalisable to all kinds of composition-based distributed applications. 

This is because there are potentially other (and perhaps less common) types of 

composition-based distributed applications which have not been accounted for in this 

research. The rationale for restricting the investigation to these two types of 

applications is because they are commonly used in practice and a vast amount of 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 221 

relevant literature exists. The outcome of this research, however, aims to be sufficiently 

generic to these two types and is hopefully also suitable for other types of composition-

based distributed applications. 

88.3.5 Reliability 

Reliability relates to whether the results of a technique can be replicated by other 

researchers (Yin 2003). For that matter, this research documented the procedures for 

the techniques used, including the systematic literature review (Appendix A), surveys 

(Sections 4.2 and 5.2), expert reviews (Section 7.1.2), and the case study (Section 

7.2.3), as well as the instruments (e.g. Table Appendix B.1) and forms used (Appendix 

E). Lee (1989), however, cautioned that in a replicated case study, not all conditions in 

a previous development endeavour are likely to recur and this situation represents a 

potential threat to reliability. 

8.4 RECOMMENDATIONS FOR FUTURE WORK 
Apart from the suggestions for addressing the limitations of this research (cf. Section 

8.3), there are a few unexplored research areas suggesting potential topics for future 

work that can be pursued from the industry and academia. They are described next. 

8.4.1 Extension 

There are several directions for extending the work in this research. For example, since 

Continuum and the proposed dynamic evolution requirements are intended to be 

sufficiently generic to different types of composition-based distributed applications, one 

could utilise these results as a baseline to develop further enhancements tailored to 

applications of a specific type such as those based on SOA. 

As noted in Section 1.4, this research focuses on two types of composition-based 

distributed applications (i.e. component-based and SOA-based) in order to manage its 

scope. Continuum can be extended for other types of composition-based distributed 

applications. An example is agent-oriented systems consisting of agents operating in a 

distributed heterogeneous environment. Agents resemble active components or objects 

interacting with one another to achieve a common objective (Fortino et al. 2004; 

Zambonelli et al. 2003). 

In consideration of the scope of Continuum which is currently limited to analysis and 

design, a possibility is to extend Continuum to cover other aspects of the development 

lifecycle. This includes implementation, testing, and deployment of changes to a 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 222 

running application. One expert undertaking the review of Continuum also suggested 

that during deployment, monitoring the execution of transformations and checking their 

conformance to the design of dynamic evolution are interesting areas of concern since 

they are required to support both the detection of faults and the application of remedies 

to faults. They provide an opportunity for extending Continuum. 

On a different note, research in dynamic adaptation has been gathering pace. Dynamic 

adaptation requires dynamic evolution and needs to be able to deal with changes in the 

environment in which an application operates (see Section 2.1.2). Logically, an 

investigation into this environmental or contextual factor and extending the work of this 

research to handle dynamic adaptation represents another opportunity for future work. 

88.4.2 Applying Continuum to a Variety of Applications and Domains 

In this research, Continuum was applied to the analysis and design of dynamic 

evolution for a property valuation system and subsequently evaluated by two 

participants (Section 7.2). To further strengthen its validity and quality, future work 

should apply Continuum to a wide range of applications from a variety of domains and 

improve it accordingly. This diversity also stems from an observation that dynamic 

evolution is increasingly recognised as a capability in many application domains, 

research projects and commercial systems (Oreizy et al. 2008). Applications would 

preferably be sourced from the real world to give Continuum an opportunity to be used 

to solve real dynamic evolution problems in a practical setting. In addition, as noted 

earlier in Section 8.3.3, more participants should be involved in future applications and 

evaluations of Continuum. 

8.4.3 Tool Implementation 

The current version of Continuum is documented on paper (introduction in Sections 

6.3.2 to 6.3.7, and full details in Appendix C). A future endeavour would be to 

incorporate Continuum into an existing methodbase or a repository supporting method 

fragments, an exemplar of which being the Open Process Framework (OPF) 

Repository (OPFRO 2009). This would allow Continuum to be integrated with other 

methodologies implemented in the same methodbase. For instance, a methodology 

plug-in is firstly constructed for Continuum in accordance with the Eclipse Process 

Framework (EPF), an open-source tool for methodology construction and tailoring (The 

Eclipse Foundation 2009). Afterwards, the plug-in is then incorporated into OpenUP, a 

small methodology also built with EPF (The Eclipse Foundation 2009). Nonetheless, 



Chapter 8. Conclusions Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 223 

EPF and OpenUP are not based on the International Standard ISO/IEC 24744 

(ISO/IEC 2007). 

88.5 CONCLUDING REMARKS 
Dynamic evolution will in no doubt bring agility to the business in accommodating 

changes in their increasingly critical modern distributed applications. However, dynamic 

evolution has not been well supported by existing methodologies. Through a design 

science research programme, this research proposed a comprehensive set of dynamic 

evolution requirements and associated methodological support to fill this gap. These 

improvements are a step forward to embracing dynamic evolution in this kind of 

application. Hopefully, the outcomes of this research will help to stimulate further 

research in dynamic evolution, and to harness methodologies to increase its uptake in 

practice. 



Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 224 

 

BBIBLIOGRAPHY 

Aassine, S & El Jaï, MC 2002, 'Vegetation dynamics modelling: a method for coupling local and 
space dynamics', Ecological Modelling, vol. 154, no. 3,  pp. 237-249. 

Abran, A & Moore, JW 2004, Guide to the Software Engineering Body of Knowledge: 2004 
Version, Report Number 0-7695-2330-7, IEEE Computer Society, viewed 13 Sep 2010 
<http://www2.computer.org/portal/web/store?product_id=RN0000001&category_id=Rea
dyNotes>. 

Adamek, J & Plasil, F 2005, 'Component composition errors and update atomicity: static 
analysis', Journal of Software Maintenance and Evolution: Research and Practice, vol. 
17, no. 5,  pp. 363-377. 

Adman, P 1997, 'Book Review: Understanding and Evaluating Methodologies - NIMSAD: A 
Systemic Framework. Nimal Jayaratna.', Systems Research and Behavioral Science, 
vol. 14, no. 5,  pp. 352-354. 

Agnew, B, Hofmeister, C & Purtilo, J 1994a, 'Planning for change: a reconfiguration language for 
distributed systems', Distributed Systems Engineering: Special Issue on Configurable 
Distributed Systems, vol. 1, no. 5,  pp. 313-322. 

Agnew, B, Hofmeister, C & Purtilo, J 1994b, 'Planning for change: a reconfiguration language for 
distributed systems', Proceedings of the 2nd International Workshop on Configurable 
Distributed Systems (IWCDS'94) pp. 15-22. 

Akram, MS, Medjahed, B & Bouguettaya, A 2003, 'Supporting dynamic changes in web service 
environments', in, Service-Oriented Computing - ICSOC 2003, vol. 2910/2003, Springer, 
Berlin / Heidelberg, pp. 319-334. 

Aksit, M & Choukair, Z 2003, 'Dynamic, adaptive and reconfigurable systems overview and 
prospective vision', Proceedings of the 23rd International Conference on Distributed 
Computing Systems Workshops, IEEE Computer Society, pp. 84-89. 

Albert, C & Brownsword, L 2002, Evolutionary Process for Integrating COTS-Based Systems 
(EPIC), Technical Report CMU/SEI-2002-TR-005, Software Engineering Institute, 
Pittsburgh PA, viewed 3 Aug 2007 
<http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr009.pdf>. 

Allen, P 2007, The Service Oriented Process, Report Number 1745-1884, Everware-CBDI Inc., 
viewed 3 Jun 2008 <http://www.cbdiforum.com/secure/interact/2007-
02/service_oriented_process.php>. 

Allen, P & Brown, P 2007, Architected Solution Delivery: Enhancing the Service Oriented 
Process, Report Number 1745-1884, Everware-CBDI Inc., viewed 3 Jun 2008 
<http://www.cbdiforum.com/secure/interact/2007-
11/architected_solution_delivery_enhancing_service_oriented_process.php>. 

Allen, R & Garlan, D 1997, 'A formal basis for architectural connection', ACM Transactions on 
Software Engineering and Methodology, vol. 6, no. 3,  pp. 213-249. 

Almeida, JPA, Sinderen, MV & Nieuwenhuis, L 2001, 'Transparent dynamic reconfiguration for 
CORBA', Proceedings of the 3rd International Symposium on Distributed Objects and 
Applications, IEEE Computer Society, pp. 197-207. 

Altunel, Y & Tolun, M, R. 2007, 'Component-based software development with component 
variants', Proceedings of the 25th conference on IASTED International Multi-
Conference: Software Engineering, ACTA Press, Innsbruck, Austria, pp. 235-241. 

Alur, D, Malks, D & Crupi, J 2003, Core J2EE patterns: Best Practices and Design Strategies, 
2nd edn, Prentice Hall PTR, Upper Saddle River, NJ, USA. 

Ammon, Rv, Ertlmaier, T, Etzion, O, Kofman, A & Paulus, T 2010, 'Integrating complex events 
for collaborating and dynamically changing business processes', in A Dan, F Gittler & F 
Toumani (eds), Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, 
vol. 6275, Springer Berlin / Heidelberg, pp. 370-384. 

Andersson, J & Bosch, J 2005, 'Development and use of dynamic product-line architectures', 
IEE Proceedings - Software, vol. 152, no. 1,  pp. 13-26. 

Andersson, T & von Hellens, LA 1997, 'Information systems work quality', Information and 
Software Technology, vol. 39, no. 12,  pp. 837-844. 

http://www2.computer.org/portal/web/store?product_id=RN0000001&category_id=ReadyNotes
http://www2.computer.org/portal/web/store?product_id=RN0000001&category_id=ReadyNotes
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr009.pdf
http://www.cbdiforum.com/secure/interact/2007-02/service_oriented_process.php
http://www.cbdiforum.com/secure/interact/2007-02/service_oriented_process.php
http://www.cbdiforum.com/secure/interact/2007-11/architected_solution_delivery_enhancing_service_oriented_process.php
http://www.cbdiforum.com/secure/interact/2007-11/architected_solution_delivery_enhancing_service_oriented_process.php


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 225 

Andrade, L, Fiadeiro, JL, Gouveia, J & Koutsoukos, G 2002, 'Separating computation, 
coordination and configuration', Journal of Software Maintenance and Evolution: 
Research and Practice, vol. 14, no. 5,  pp. 353-369. 

Andrews, JD & Moss, TR 2002, Reliability and Risk Assessment, 2nd edn, Professional 
Engineering Publishing, London. 

Andrikopoulos, V, Benbernou, S & Papazoglou, M 2008, 'Managing the evolution of service 
specifications', in, Advanced Information Systems Engineering, Springer, Berlin / 
Heidelberg, pp. 359-374. 

Apperly, H, Hofman, R, Latchem, S, Maybank, B, McGibbon, B, Piper, D, Simons, C & Hoffman, 
R 2003, Service- and Component-based Development: Using the Select Perspective, 
Addison-Wesley Professional. 

Arapis, C 1995, 'A temporal perspective of composite objects', in O Nierstrasz & D Tsichritzis 
(eds), Object-Oriented Software Composition, Prentice Hall Inc., pp. 123-152. 

Arnold, HJ 1965, 'Small sample power of the one sample Wilcoxon test for non-normal shift 
alternatives', The Annals of Mathematical Statistics, vol. 36, no. 6,  pp. 1767-1778. 

Arnold, K, Gosling, J & Holmes, D 2005, The Java(TM) Programming Language (4th Edition), 
Addison-Wesley Professional. 

Arnold, P, Bodoff, S, Coleman, D, Gilchrist, H & Hayes, F 1991, Criteria for Comparing Object-
Oriented Development Methods, HP Labs, viewed 6 Apr 2008 
<http://www.hpl.hp.com/techreports/91/HPL-91-51.html>. 

Arnold, RS & Bohner, SA 1996, 'An introduction to software change impact analysis', in RS 
Arnold & SA Bohner (eds), Software Change Impact Analysis, IEEE Computer Society, 
pp. 1-26. 

Arsanjani, A 2004, Service-Oriented Modeling and Architecture, IBM Corp., viewed 6 Jun 2008 
<http://www.ibm.com/developerworks/library/ws-soa-design1/>. 

Arshad, N, Heimbigner, D & Wolf, A 2007, 'Deployment and dynamic reconfiguration planning 
for distributed software systems', Software Quality Journal, vol. 15, no. 3,  pp. 265-281. 

Asadi, M & Ramsin, R 2008, 'MDA-Based Methodologies: An Analytical Survey', in, Model 
Driven Architecture – Foundations and Applications, Springer, pp. 419-431. 

Atkinson, C, Bayer, J, Bunse, C, Kamsties, E, Laitenberger, O, Laqua, R, Muthig, D, Paech, B, 
Wüst, J & Zettel, J 2002, Component-based Product Line Engineering with UML, 
Addison-Wesley. 

Atkinson, C, Bayer, J & Muthig, D 2000, 'Component-based product line development: the 
KobrA approach', Proceedings of the first conference on Software product lines : 
experience and research directions: experience and research directions, Kluwer 
Academic Publishers, Denver, Colorado, United States, pp. 289-309. 

Atkinson, C & Kühne, T 2003, 'Model-driven development: a metamodeling foundation', IEEE 
Software, vol. 20, no. 5,  pp. 36-41. 

Autili, M, Berardinelli, L, Cortellessa, V, Di Marco, A, Di Ruscio, D, Inverardi, P & Tivoli, M 2007, 
'A development process for self-adapting service oriented applications', in B Krämer, K-
J Lin & P Narasimhan (eds), Service-Oriented Computing – ICSOC 2007, vol. 4749, 
Springer Berlin / Heidelberg, pp. 442-448. 

Baglietto, P, Maresca, M, Parodi, A & Zingirian, N 2005, 'Stepwise deployment methodology of a 
service oriented architecture for business communities', Information and Software 
Technology, vol. 47, no. 6,  pp. 427-436. 

Bajec, M, Vavpotic, D & Krisper, M 2007, 'Practice-driven approach for creating project-specific 
software development methods', Information and Software Technology, vol. 49, no. 4,  
pp. 345-365. 

Balsamo, S, Marco, AD, Inverardi, P & Simeoni, M 2004, 'Model-based performance prediction 
in software development: a survey', IEEE Transactions on Software Engineering, vol. 
30, no. 5,  pp. 295-310. 

Barbacci, M, Klein, MH, Longstaff, TA & Weinstock, CB 1995, Quality Attributes, Software 
Engineering Institute, Pittsburgh PA, viewed 27 Jul 2010 
<http://www.sei.cmu.edu/reports/95tr021.pdf>. 

Barbier, F & Henderson-Sellers, B 2000, 'Object modelling languages: An evaluation and some 
key expectations for the future', Annals of Software Engineering, vol. 10, no. 1-4,  pp. 67-
101. 

Basili, VR, Shull, F & Lanubile, F 1999, 'Building knowledge through families of experiments', 
IEEE Transactions on Software Engineering, vol. 25, no. 4,  pp. 456-473. 

http://www.hpl.hp.com/techreports/91/HPL-91-51.html
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.sei.cmu.edu/reports/95tr021.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 226 

Bass, L, Clements, P & Kazman, R 2003, Software Architecture in Practice, 2nd edn, Addison 
Wesley. 

Bastida, L 2008, 'A methodology for dynamic service composition', Proceedings of the 7th 
International Conference on Composition-Based Software Systems, 2008 (ICCBSS 
2008), IEEE Computer Society, pp. 33-42. 

Beck, K & Andres, C 2005, Extreme Programming Explained: Embrace Change, 2nd edn, 
Addison-Wesley Longman, Boston, MA. 

Ben-Shaul, I, Holder, O & Lavva, B 2001, 'Dynamic adaptation and deployment of distributed 
components in Hadas', IEEE Transactions on Software Engineering, vol. 27, no. 9,  pp. 
769-787. 

Bengtsson, P, Lassing, N, Bosch, J & van Vliet, H 2004, 'Architecture-level modifiability analysis 
(ALMA)', Journal of Systems and Software, vol. 69, no. 1-2,  pp. 129-147. 

Bennett, KH & Rajlich, VT 2000, 'Software maintenance and evolution: a roadmap', Proceedings 
of the 22nd International Conference on Software Engineering: The Future of Software 
Engineering, ACM, Limerick, Ireland, pp. 73-87. 

Bianculli, D, Jurca, R, Binder, W, Ghezzi, C & Faltings, B 2007, 'Automated dynamic 
maintenance of composite services based on service reputation', in B Krämer, K-J Lin & 
P Narasimhan (eds), Service-Oriented Computing – ICSOC 2007, vol. 4749, Springer 
Berlin / Heidelberg, pp. 449-455. 

Bidan, C, Issarny, V, Saridakis, T & Zarras, A 1998, 'A dynamic reconfiguration service for 
CORBA', Proceedings of the 4th International Conference on Configurable Distributed 
Systems (ICCDS'98), IEEE Press, Annapolis, Maryland, pp. 35-42. 

Blaha, M & Premerlani, W 1996, 'A catalog of object model transformations', Proceedings of the 
3rd Working Conference on Reverse Engineering (WCRE'96), IEEE Computer Society, 
Monterey, California, pp. 87-97. 

Blake, MB 2007, 'Decomposing composition: service-oriented software engineers', IEEE 
Software, vol. 24, no. 6,  pp. 68-77. 

Bloom, T & Day, M 1993, 'Reconfiguration and module replacement in Argus: theory and 
practice', Software Engineering Journal, vol. 8, no. 2,  pp. 102-108. 

Bobkowska, AE 2005, 'A framework for methodologies of visual modeling language evaluation', 
Proceedings of the 2005 Symposia on Metainformatics, ACM, Esbjerg, Denmark. 

Bock, C 2003, 'UML 2 Activity and Action Models Part 2: Actions', Journal of Object Technology, 
vol. 2, no. 5,  pp. 41-56. 

Boertien, N, Steen, MWA & Jonkers, H 2005, 'Evaluation of component-based development 
methods', in J Krogstie, TA Halpin & K Siau (eds), Information Modeling Methods and 
Methodologies, Idea Group, pp. 323-343. 

Bohmann, T, Junginger, M & Krcmar, H 2003, 'Modular service architectures: a concept and 
method for engineering IT services', Proceedings of the 36th Annual Hawaii 
International Conference on System Sciences (HICSS'03) - Track 3 - Volume 3, ed. M 
Junginger, IEEE p. 74.71. 

Bohner, SA 1996, 'Impact analysis in the software change process: a year 2000 perspective', 
Proceedings of the 1996 International Conference on Software Maintenance, IEEE 
Computer Society, Monterey, CA, USA, pp. 42-51. 

Bohner, SA 2002a, 'Extending software change impact analysis into COTS components', 
Proceedings of the 27th Annual NASA Goddard Software Engineering Workshop (SEW-
27'02), IEEE Computer Society, pp. 175-182. 

Bohner, SA 2002b, 'Software change impacts-an evolving perspective', Proceedings of the 18th 
International Conference on Software Maintenance (ICSM'02), IEEE Computer Society, 
pp. 263-272. 

Bradbury, JS, Cordy, JR, Dingel, J & Wermelinger, M 2004, 'A survey of self-management in 
dynamic software architecture specifications', Proceedings of the 1st ACM SIGSOFT 
workshop on Self-managed systems, ACM, Newport Beach, California, pp. 28-33. 

Breivold, HP & Crnkovic, I 2010, 'A Systematic Review on Architecting for Software Evolvability', 
Proceedings of the 21st Australian Software Engineering Conference (ASWEC'10), 
IEEE Computer Society, Auckland, New Zealand pp. 13-22. 

Brereton, P & Budgen, D 2000, 'Component-based systems: a classification of issues', 
Computer, vol. 33, no. 11,  pp. 54-62. 

Brereton, P, Kitchenham, BA, Budgen, D, Turner, M & Khalil, M 2007, 'Lessons from applying 
the systematic literature review process within the software engineering domain', 



Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 227 

Journal of Systems and Software, vol. 80, no. 4,  pp. 571-583. 
Brinkkemper, S 1996, 'Method engineering: engineering of information systems development 

methods and tools', Information and Software Technology, vol. 38, no. 4,  pp. 275-280. 
Brinkkemper, S, Saeki, M & Harmsen, F 1998, 'Assembly techniques for method engineering', in 

B Pernici & C Thanos (eds), Proceedings of the 10th International Conference on 
Advanced Information Systems Engineering, Springer-Verlag  London, UK, pp. 381-
400. 

Brown, A, Johnston, S & Kelly, K 2002, Using service-oriented architecture and component-
based development to build web service applications, Rational Software Corp. (now part 
of IBM Corp.), viewed 2 Jul 2007 
<http://www.ibm.com/developerworks/rational/library/510.html>. 

Brown, AW & Wallnau, KC 1996, 'Engineering of component-based systems', in AW Brown 
(ed.), Component-Based Software Engineering, IEEE Computer Society, pp. 7-15. 

Brown, AW & Wallnau, KC 1998, 'The current state of CBSE', IEEE Software, vol. 14, no. 5,  pp. 
37-46. 

Bruneton, E, Coupaye, T & Stefani, JB 2002, 'Recursive and dynamic software composition with 
sharing', Proceedings of the 7th ECOOP International Workshop on Component-
Oriented Programming (WCOP’02), Malaga, Spain. 

Brykczynski, B 1999, 'A survey of software inspection checklists', SIGSOFT Softw. Eng. Notes, 
vol. 24, no. 1,  pp. 82-89. 

Bucchiarone, A, Cappiello, C, Di Nitto, E, Kazhamiakin, R, Mazza, V & Pistore, M 2010, 'Design 
for adaptation of service-based applications: main issues and requirements', in A Dan, F 
Gittler & F Toumani (eds), Service-Oriented Computing. ICSOC/ServiceWave 2009 
Workshops, vol. 6275, Springer Berlin / Heidelberg, pp. 467-476. 

Bucher, T, Klesse, M, Kurpjuweit, S & Winter, R 2007, 'Situational method engineering: on the 
differentiation of “context” and “project type”', in J Ralyté, S Brinkkemper & B 
Henderson-Sellers (eds), Situational Method Engineering: Fundamentals and 
Experiences, vol. 244, Springer Boston, pp. 33-48. 

Buckley, J, Mens, T, Zenger, M, Rashid, A & Kniesel, G 2005, 'Towards a taxonomy of software 
change', Journal of Software Maintenance and Evolution: Research and Practice, vol. 
17, no. 5,  pp. 309-332. 

Burstein, F & Gregor, S 1999, 'The systems development or engineering approach to research 
in information systems: an action research perspective', Proceedings of the 10th 
Australasian Conference on Information Systems, eds B Hope & P Yoong, Wellington, 
New Zealand, pp. 122-134. 

Canal, C, Pimentel, E & Troya, JM 1999, 'Specification and refinement of dynamic software 
architectures', Proceedings of the TC2 First Working IFIP Conference on Software 
Architecture (WICSA1), Kluwer, B.V., pp. 107-126. 

Canal, C, Poizat, P & Salaun, G 2008, 'Model-based adaptation of behavioral mismatching 
components', IEEE Transactions on Software Engineering, vol. 34, no. 4,  pp. 546-563. 

Cao, F, Bryant, BR, Liu, S & Zhao, W 2005, 'A non-invasive approach to dynamic web services 
provisioning', Proceedings of the 3rd IEEE International Conference on Web Services 
(ICWS 2005), IEEE Computer Society, Orlando, pp. 229-236. 

Carzaniga, A, Fuggetta, A, Hall, RS, van der Hoek, A, Heimbigner, D & Wolf, AL 1998, A 
Characterization Framework for Software Deployment Technologies, Dept. of Computer 
Science, University of Colorado, viewed 19 Jan 2008 
<http://www.ics.uci.edu/~andre/papers/T3.pdf>. 

Casati, F, Ceri, S, Pernici, B & Pozzi, G 1998, 'Workflow evolution', Data & Knowledge 
Engineering, vol. 24, no. 3,  pp. 211-238. 

Cavano, JP & McCall, JA 1978, 'A framework for the measurement of software quality', 
Proceedings of the software quality assurance workshop on Functional and 
performance issues, ACM, pp. 133-139. 

Cervantes, H & Hall, RS 2005, 'Technical concepts of service orientation', in Z Stojanovic & A 
Dahanayake (eds), Service-oriented Software System Engineering: Challenges and 
Practices, IGI Global, Hershey, PA, pp. 1-26. 

Challenger, J, Dantzig, P, Iyengar, A & Witting, K 2005, 'A fragment-based approach for 
efficiently creating dyanmic web content', ACM Transactions on Internet Technology, 
vol. 5, no. 2,  pp. 359-389. 

Chang, SH & Kim, SD 2007, 'A Service-Oriented Analysis and Design Approach to Developing 

http://www.ibm.com/developerworks/rational/library/510.html
http://www.ics.uci.edu/~andre/papers/T3.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 228 

Adaptable Services', Proceedings of the IEEE International Conference on Services 
Computing (SCC'07), IEEE Computer Society, pp. 204 - 211. 

Chapin, N, Hale, JE, Kham, KM, Ramil, JF & Tan, W-G 2001, 'Types of software evolution and 
software maintenance', Journal of Software Maintenance and Evolution: Research and 
Practice, vol. 13, no. 1,  pp. 3-30. 

Chaudet, C, Greenwood, RM, Oquendo, F & Warboys, BC 2000, 'Architecture-driven software 
engineering: specifying generating, and evolving component-based software systems', 
IEE Proceedings - Software, vol. 147, no. 6,  pp. 203-214. 

Cheesman, J & Daniels, J 2001, UML Components: A Simple Process for Specifying 
Component-Based Software, Addison-Wesley, Boston, MA, USA. 

Chen, H, Yu, J, Chen, R, Zang, B & Yew, P-C 2007, 'POLUS: A POwerful Live Updating 
System', paper presented to the Proceedings of the 29th international conference on 
Software Engineering. 

Chen, W-K, Hiltunen, MA & Schlichting, RD 2001, 'Constructing adaptive software in distributed 
systems', Proceedings of the 21st International Conference on Distributed Computing 
Systems (ICDCS 2001), pp. 635-643. 

Chen, W & Hirschheim, R 2004, 'A paradigmatic and methodological examination of information 
systems research from 1991 to 2001', Information Systems Journal, vol. 14, no. 3,  pp. 
197-235. 

Chen, X 2002, 'Extending RMI to support dynamic reconfiguration of distributed systems', 
Proceedings of the 22nd International Conference on Distributed Computing Systems 
(ICDCS 2002), pp. 401-408. 

Chikofsky, EJ & Cross, JH, II 1990, 'Reverse engineering and design recovery: a taxonomy', 
IEEE Software, vol. 7, no. 1,  pp. 13-17. 

Chimi, CJ & Russell, DL 2009, 'The Likert scale: a proposal for improvement using quasi-
continuous variables', Proceedings of the Information Systems Education Conference 
2009, v 26, Washington DC. 

Chin, W, Marcolin, B & Newsted, P 1996, 'A Partial Least Squares latent variable modeling 
approach for measuring interaction effects: results from a Monte Carlo simulation study 
and voice mail emotion/adoption study', Proceedings of the International Conference on 
Information Systems (ICIS 1996), Association for Information Systems, viewed 6 Jul 
2011 <http://aisel.aisnet.org/icis1996/6>. 

Cho, ES, Kim, SD & Rhew, SY 2004, 'A domain analysis and modeling methodology for 
component development', International Journal of Software Engineering and Knowledge 
Engineering, vol. 14, no. 2,  pp. 221-254. 

Christensen, E, Curbera, F, Meredith, G & Weerawarana, S 2001, Web Services Description 
Language (WSDL) 1.1, W3C, viewed 2 Jul 2007 <http://www.w3.org/TR/2001/NOTE-
wsdl-20010315>. 

Chung, L, Nixon, BA, Yu, E & Mylopoulos, J 1999, Non-Functional Requirements in Software 
Engineering  Springer. 

Clitherow, D, Brookbanks, M, Clayton, N & Spear, G 2008, 'Combining high availability and 
disaster recovery solutions for critical IT environments', IBM Systems Journal, vol. 47, 
no. 4,  pp. 563-575. 

Conradi, R & Westfechtel, B 1998, 'Versions models for software configuration management', 
ACM Computing Surveys, vol. 30, no. 2,  pp. 232-282. 

Cook, JE & Dage, JA 1999, 'Highly reliable upgrading of components', Proceedings of the 21st 
IEEE International Conference on Software Engineering (ICSE'99), IEEE Computer 
Society, Los Angeles CA, USA, pp. 203-212. 

Cook, S, He, J & Harrison, R 2001, 'Dynamic and static views of software evolution', 
Proceedings of the IEEE International Conference on Software Maintenance, 2001., 
IEEE Computer Society, pp. 592-601. 

Coyle, L, Hinchey, M, Nuseibeh, B & Fiadeiro, JL 2010, 'Guest editors' introduction: evolving 
critical systems', Computer, vol. 43, no. 5,  pp. 28-33. 

Cronbach, LJ 1951, 'Coefficient alpha and the internal structure of tests', Psychometrika, vol. 16, 
no. 3,  pp. 297-334. 

Cugola, G, Frey, D, Murphy, AL & Picco, GP 2004, 'Minimizing the reconfiguration overhead in 
content-based publish-subscribe', Proceedings of the 2004 ACM symposium on Applied 
computing, ACM, Nicosia, Cyprus, pp. 1134-1140. 

Curbera, F, Khalaf, R, Mukhi, N, Tai, S & Weerawarana, S 2003, 'The next step in Web 

http://aisel.aisnet.org/icis1996/6
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 229 

services', Communications of the ACM, vol. 46, no. 10,  pp. 29-34. 
D'Souza, DF & Wills, AC 1998, Objects, Components and Frameworks with UML: The Catalysis 

Approach, Addison-Wesley. 
Dahanayake, ANW, Sol, HG & Stojanovic, Z 2003, 'Methodology Evaluation Framework for 

Component-Based System Development', Journal of Database Management, vol. 14, 
no. 1,  pp. 1-26. 

Darwin, C 1859, On the Origin of Species by Means of Natural Selection, or the Preservation of 
Favoured Races in the Struggle for Life, 6th edn, John Murray, Albemarle Street, 
London. 

Date, CJ 2003, An Introduction to Database Systems, 8th edn, Addison Wesley. 
de Castro Guerra, PA, Rubira, CMF, Romanovsky, A & de Lemos, R 2003, 'Integrating COTS 

software components into dependable software architectures', Proceedings of the 6th 
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 
pp. 139-142. 

de Champeaux, D & Faure, P 1992, 'A comparative study of object-oriented analysis methods', 
Journal of Object-Oriented Programming, vol. 5, no. 1,  pp. 21-33. 

de Jonge, M, Muskens, J & Chaudron, M 2003, 'Scenario-based prediction of run-time resource 
consumption in component-based software systems', Proceedings of the 6th ICSE 
Workshop on Component-based Software Engineering (CBSE6), pp. 19-24. 

de Lara, E, Chopra, Y, Kumar, R, Vaghela, N, Wallach, DS & Zwaenepoel, W 2005, 'Iteratvie 
adaptation for mobile clients using existing APIs', IEEE Transactions on Parallel and 
Distributed Systems, vol. 15, no. 10,  pp. 966-981. 

de Paula, VC, Justo, GRR & Cunha, PRF 2000, 'Specifying and verifying reconfigurable 
software architectures', Proceedings of the International Symposium on Software 
Engineering for Parallel and Distributed Systems, IEEE Computer Society, p. 21. 

Dearle, A 2007, 'Software deployment, past, present and future', Future of Software Engineering 
(FOSE '07), IEEE Computer Society, pp. 269-284. 

Dellarocas, C 1997, 'A coordination perspective on software system design', Proceedings of the 
9th International Conference on Software Engineering and Knowledge Engineering 
(SEKE'97), Knowledge Systems Institute, Madrid, Spain, pp. 569-578. 

Dellarocas, C, Klein, M & Shrobe, H 1998, 'An architecture for constructing self-evolving 
software systems', Proceedings of the 3rd International Workshop on Software 
Architecture, ACM, Orlando, Florida, United States, pp. 29-32. 

Deprez, JC, Monfilsc, FF, Ciolkowskf, M & Soto, MASM 2007, 'Defining software evolvability 
from a Free/Open-Source Software', Proceedings of the 3rd International IEEE 
Workshop on Software Evolvability ed. FF Monfilsc, IEEE Computer Society, pp. 29-35. 

Desnos, N, Huchard, M, Urtado, C, Vauttier, S & Tremblay, G 2007, 'Automated and 
unanticipated flexible component substitution', in H Schmidt, I Crnkovic, G Heineman & 
J Stafford (eds), Component-Based Software Engineering, vol. 4608, Springer Berlin / 
Heidelberg, pp. 33-48. 

Dijkstra, E 1976, A discipline of programming, Prentice Hall Inc. 
Ding, L & Medvidovic, N 2001, 'Focus: a light-weight, incremental approach to software 

architecture recovery and evolution', Procedings of the 2001 Working IEEE/IFIP 
Conference on Software Architecture (WISCA'01), IEEE Computer Society, Amsterdam, 
The Netherlands, p. 191. 

Dodd, J, Allen, P, Butler, J, Olding, S, Veryard, R & Wilkes, L 2007, CBDI-SAE Meta Model for 
SOA version 2.0, Everware-CBDI Inc., viewed 12 Aug 2010 
<http://www.cbdiforum.com/public/CBDI_SAE_META_MODEL_FOR_SOA_V2.0.php3>
. 

Dromey, RG 1995, 'A model for software product quality', IEEE Transactions on Software 
Engineering, vol. 21, no. 2,  pp. 146-162. 

Dustdar, S & Schreiner, W 2005, 'A survey on web services composition', International Journal 
of Web and Grid Services, vol. 1, no. 1,  pp. 1-30. 

Ebraert, P, D'Hondt, T & Mens, T 2004, 'Enabling dynamic software evolution through automatic 
refactorings', Proceedings of the Workshop on Software Evolution Transformations 
(SET2004), pp. 3-7. 

Ecklund, EF, Delcambre, LML & Freiling, MJ 1996, 'Change cases: use cases that identify future 
requirements', SIGPLAN Notices, vol. 31, no. 10,  pp. 342-358. 

Elfatatry, A 2007, 'Dealing with change: components versus services', Communications of the 

http://www.cbdiforum.com/public/CBDI_SAE_META_MODEL_FOR_SOA_V2.0.php3


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 230 

ACM, vol. 50, no. 8,  pp. 35-39. 
Ellis, C & Keddara, K 2000, 'ML-DEWS: modeling language to support dynamic evolution within 

workflow systems', Computer Supported Cooperative Work (CSCW), vol. 9, no. 3,  pp. 
293-333. 

Endler, M 1993, 'A model for distributed management of dynamic changes', Proceedings of the 
4th IFIP/IEEE International Workshop on Distributed Systems: Operations and 
Management (DSOM'93), Long Branch, USA. 

Eriksson, I & Törn, A 1991, 'A model for IS quality [information systems]', Software Engineering 
Journal, vol. 6, no. 4,  pp. 152-158. 

Erl, T 2005, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall 
Inc. 

Erlikh, L 2000, 'Leveraging Legacy System Dollars for E-business', IT Pro, pp. 17-23. 
Ernst, MD, Perkins, JH, Guo, PJ, McCamant, S, Pacheco, C, Tschantz, MS & Xiao, C 2007, 

'The Daikon system for dynamic detection of likely invariants', Science of Computer 
Programming, vol. 69, no. 1-3,  pp. 35-45. 

Erradi, A, Anand, S & Kulkarni, N 2006a, 'SOAF: an architectural framework for service 
definition and realization', Proeedings of the IEEE International Conference on Services 
Computing, 2006. (SCC '06) ed. A Sriram, IEEE Press, pp. 151-158. 

Erradi, A, Maheshwari, P & Tosic, V 2006b, 'Policy-driven middleware for self-adaptation of web 
services compositions', in M van Steen & M Henning (eds), Middleware 2006, vol. 
4290/2006, Springer, Berlin / Heidelberg, pp. 62-80. 

Etzkorn, G 1992, 'Change programming in distributed systems', International Workshop on 
Configurable Distributed Systems (IWCDS'92), IEEE Computer Society, pp. 140-151. 

Evans, H & Dickman, P 1999, 'Zones, contracts and absorbing change: an approach to software 
evolution', Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOPSLA'99), vol. 34(10), ACM, 
pp. 415-434. 

Fahringer, T, Krause, H, Kuropka, D, Mayer, H, Ocampo, A, Schreder, B, Staab, S, Tröger, P, 
Wahler, A & Zaremba, M 2007, Adaptive Services Grid – White Paper: ASG technology 
advantages and disadvantages, exploitation possibilities and its business impact, 
Adaptive Services Grid (ASG), viewed 22 Jan 2010 <http://tb0.asg-
platform.org/download/downloadrequest.php?asgdocument=white_paper_ASG.pdf>. 

Fayad, M & Cline, MP 1996, 'Aspects of software adaptability', Communications of the ACM, vol. 
39, no. 10,  pp. 58-59. 

Feiler, P & Li, J 1998, 'Managing inconsistency in reconfigurable systems', IEE Proceedings - 
Software, vol. 145, no. 5,  pp. 172-179. 

Feng, T & Maletic, JI 2006, 'Applying dynamic change impact analysis in component-based 
architecture design', Proceedings of the 7th ACIS International Conference on Software 
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 
(SNPD 2006). ed. JI Maletic, IEEE Computer Society, pp. 43-48. 

Firesmith, DG 2003, Common Concepts Underlying Safety, Security, and Survivability 
Engineering, Software Engineering Institute, Pittsburgh PA, viewed 27 Jul 2010 
<http://www.sei.cmu.edu/reports/03tn033.pdf>. 

Firesmith, DG & Henderson-Sellers, B 2002, The OPEN Process Framework: An Introduction, 
Addison-Wesley, Harlow, Herts, U.K. 

Firesmith, DG, Henderson-Sellers, B & Graham, IM 1997, OPEN Modelling Language (OML) 
Reference Manual, Cambridge University Press. 

Fitzgerald, B, Russo, NL & O'Kane, T 2003, 'Software development method tailoring at 
Motorola', Communications of the ACM, vol. 46, no. 4,  pp. 64-70. 

Fortino, G, Russo, W & Zimeo, E 2004, 'A Statecharts-based software development process for 
mobile agents', Information and Software Technology, vol. 46, no. 13,  pp. 907-921. 

Fowler, M, Beck, K, Brant, J, Opdyke, W & Roberts, D 1999, Refactoring: Improving the Design 
of Existing Code, Addison-Wesley Professional. 

Fox, C & Frakes, W 1997, 'The quality approach: is it delivering?', Communications of the ACM, 
vol. 40, no. 6,  pp. 24-29. 

Fragopoulou, P, Mastroianni, C, Montero, R, Andrjezak, A & Kondo, D 2010, 'Self-* and 
Adaptive Mechanisms for Large Scale Distributed Systems', in F Desprez, V Getov, T 
Priol & R Yahyapour (eds), Grids, P2P and Services Computing, Springer US, pp. 147-
156. 

http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=white_paper_ASG.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=white_paper_ASG.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=white_paper_ASG.pdf
http://www.sei.cmu.edu/reports/03tn033.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 231 

Fraser, T, Badger, L & Feldman, M 1999, 'Hardening COTS software with generic software 
wrappers', Proceedings of the 1999 IEEE Symposium on Security and Privacy, IEEE 
Computer Society, Oakland, CA, pp. 2-16. 

Freedman, RS 1991, 'Testability of software components', IEEE Transactions on Software 
Engineering, vol. 17, no. 6,  pp. 553-564. 

Friedman, M 1937, 'The use of ranks to avoid the assumption of normality implicit in the analysis 
of variance', Journal of the American Statistical Association, vol. 32, no. 200,  pp. 675-
701. 

Fung, KH, Low, GC & Ray, PK 2004, 'Embracing dynamic evolution in distributed systems', 
IEEE Software, vol. 21, no. 2,  pp. 49-55. 

Gama, K & Donsez, D 2010, 'A self-healing component sandbox for untrustworthy third party 
code execution', in L Grunske, R Reussner & F Plasil (eds), Component-Based 
Software Engineering, vol. 6092, Springer Berlin / Heidelberg, pp. 130-149. 

Gamma, E, Helm, R, Johnson, R & Vlissides, J 1995, Design Patterns: Elements of Reusable 
Software, Addison-Wesley. 

Ganesan, R & Sengupta, S 2001, 'O2BC: A technique for the design of component-based 
applications', Proceedings of the 39th International Conference and Exhibition on 
Technology of Object-Oriented Language and Systems, pp. 46-55. 

Garlan, D, Allen, R & Ockerbloom, J 1994, 'Exploiting style in architectural design 
environments', SIGSOFT Software Engineering Notes, vol. 19, no. 5,  pp. 175-188. 

Gärtner, FC 1999, 'Fundamentals of fault-tolerant distributed computing in asynchronous 
environments', ACM Computing Surveys, vol. 31, no. 1,  pp. 1-26. 

Georgiadis, I, Magee, J & Kramer, J 2002, 'Self-organising software architectures for distributed 
systems', Proceedings of the 1st workshop on Self-healing systems, ACM, Charleston, 
South Carolina, pp. 33-38. 

GigaTS 2001, GigaTS Handbook: Rapid Service Development Methodology, Telematica 
Instituut, viewed 26 Aug 2007 <http://rsd.demo.telin.nl/handbook/>. 

Gil, Y, Deelman, E, Ellisman, M, Fahringer, T, Fox, G, Gannon, D, Goble, C, Livny, M, Moreau, 
L & Myers, J 2007, 'Examining the Challenges of Scientific Workflows', Computer, vol. 
40, no. 12,  pp. 24-32. 

Gilb, T 1988, Principles of Software Eng. Management, Addison Wesley. 
Goldman, KJ, Swaminathan, B, McCartney, P, Anderson, MD & Sethuraman, R 1995, 'The 

programmers' playground: I/O abstraction for user-configurable distributed applications', 
IEEE Transactions on Software Engineering, vol. 21, no. 9,  pp. 735-746. 

Gonzalez-Perez, C & Henderson-Sellers, B 2005, 'Templates and resources in software 
development methodologies', Journal of Object Technology, vol. 4, no. 4,  pp. 173-190. 

Gonzalez-Perez, C & Henderson-Sellers, B 2006a, 'An Ontology for Software Development 
Methodologies and Endeavours', in C Calero, F Ruiz & M Piattini (eds), Ontologies for 
Software Engineering and Technology, Springer-Verlag, Berlin, pp. 123-151. 

Gonzalez-Perez, C & Henderson-Sellers, B 2006b, 'A powertype-based metamodelling 
framework', Software and Systems Modeling, vol. 5, no. 1,  pp. 72-90. 

Gonzalez-Perez, C & Henderson-Sellers, B 2007, 'Modelling software development 
methodologies: A conceptual foundation', Journal of Systems and Software, vol. 80, no. 
11,  pp. 1778-1796. 

Goudarzi, KM & Kramer, J 1996, 'Maintaining node consistency in the face of dynamic change', 
Proceedings of the 3rd International Conference on Configurable Distributed Systems 
1996 (ICCDS'96), IEEE Computer Society, Annapolis, Maryland, pp. 62-69. 

Grady, RB 1992, Practical Software Metrics for Project Management and Process Improvement, 
Prentice-Hall, Inc. 

Graham, I 1991, Object-oriented methods, Addison-Wesley. 
Graham, IM, Henderson-Sellers, B & Younessi, H 1997, The OPEN Process Specification, 

Addison-Wesley. 
Gregersen, AR & Jørgensen, BN 2009, 'Dynamic update of Java applications—balancing change 

flexibility vs programming transparency', Journal of Software Maintenance and 
Evolution: Research and Practice, vol. 21, no. 2,  pp. 81-112. 

Gregor, S 2002, 'Design theory in information systems', Australasian Journal of Information 
Systems, vol. 10, no. 1. 

Gregor, S 2006, 'The nature of theory in information systems', MIS Quarterly, vol. 30, no. 3,  pp. 
611-642. 

http://rsd.demo.telin.nl/handbook/


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 232 

Grimán, A, Pérez, M, Mendoza, L & Losavio, F 2006, 'Feature analysis for architectural 
evaluation methods', Journal of Systems and Software, vol. 79, no. 6,  pp. 871-888. 

Grimm, R & Bershad, BN 2001, 'Separating access control policy, enforcement, and 
functionality in extensible systems', ACM Transactions on Computer Systems, vol. 19, 
no. 1,  pp. 36-70. 

Grundy, J, Ding, G & Hosking, J 2005, 'Deployed software component testing using dynamic 
validation agents', Journal of Systems and Software, vol. 74, no. 1,  pp. 5-14. 

Gu, Q & Lago, P 2007, 'A stakeholder-driven service life cycle model for SOA', Proceedings of 
the 2nd International Workshop on Service oriented software engineering: in 
conjunction with the 6th ESEC/FSE Joint Meeting, ACM, Dubrovnik, Croatia, pp. 1-7. 

Gupta, D, Jalote, P & Barua, G 1996, 'A formal framework for on-line software version change', 
IEEE Transactions on Software Engineering, vol. 22, no. 2,  pp. 120-131. 

Haerder, T & Reuter, A 1983, 'Principles of transaction-oriented database recovery', ACM 
Computing Surveys, vol. 15, no. 4,  pp. 287-317. 

Haire, B, Henderson-Sellers, B & Lowe, D 2001, 'Supporting web development in the OPEN 
process: additional tasks', Proceedings of the 25th International Computer Software and 
Applications Conference on Invigorating Software Development, IEEE Computer 
Society, pp. 383-389. 

Hall, RS, Heimbigner, D & Wolf, AL 1999, 'A cooperative approach to support software 
deployment using the software dock', Proceedings of the 21st International Conference 
on Software Engineering, IEEE Computer Society, Los Angeles, California, United 
States, pp. 174-183. 

Ham, DH, Kim, JS, Cho, JH & Ha, SJ 2004, 'MaRMI-III: A methodology for component-based 
development', ETRI Journal, vol. 26, no. 2,  pp. 167-180. 

Harmsen, F, Brinkkemper, S & Oei, JLH 1994, 'Situational method engineering for informational 
system project approaches', Proceedings of the IFIP WG8.1 Working Conference on 
Methods and Associated Tools for the Information Systems Life Cycle, Elsevier Science 
Inc., pp. 169-194. 

Hauptmann, S & Wasel, J 1996, 'On-line maintenance with on-the-fly software replacement', 
Proceedings of the 3rd International Conference on Configurable Distributed Systems 
1996 (ICCDS'96), IEEE Computer Society, Annapolis, Maryland, pp. 70-80. 

Heider, W, Froschauer, R, Gruenbacher, P, Rabiser, R & Dhungana, D 2010, 'Simulating 
evolution in model-based product line engineering', Information and Software 
Technology, vol. 52, no. 7,  pp. 758-769. 

Henderson-Sellers, B 2003, 'Method engineering for OO systems development', 
Communications of the ACM, vol. 46, no. 10,  pp. 73-78. 

Henderson-Sellers, B 2006, 'Method engineering: theory and practice', Information Systems 
Technology and its Applications. 5th International Conference ISTA'2006, vol. P-84, eds 
D Karagiannis & HC Mayr, Klagenfurt, Austria, pp. 13-23. 

Henderson-Sellers, B, Collins, G, Due, R & Graham, I 2001, 'A qualitative comparison of two 
processes for object-oriented software development', Information and Software 
Technology, vol. 43, no. 12,  pp. 705-724. 

Henderson-Sellers, B & Gonzalez-Perez, C 2005, 'Connecting powertypes and stereotypes', 
Journal of Object Technology, vol. 4, no. 7,  pp. 83-96. 

Henderson-Sellers, B & Gonzalez-Perez, C 2006, 'On the ease of extending a powertype-based 
methodology metamodel, keynote paper', in S Brockmans, J Jung & Y Sure (eds), Meta-
Modelling and Ontologies, Proceedings of the 2nd Workshop on Meta-Modelling 
(WoMM 2006), vol. P-96, Gesellschaft für Informatik, Bonn, pp. 11-25. 

Henderson-Sellers, B, Gonzalez-Perez, C, Serour, MK & Firesmith, DG 2005, 'Method 
engineering and COTS evaluation', Proceedings of the second international workshop 
on Models and processes for the evaluation of off-the-shelf components, ACM, St. 
Louis, Missouri, pp. 1-4. 

Henderson-Sellers, B & Ralyté, J 2010, 'Situational method engineering: state-of-the-art review', 
Journal of Universal Computer Science, vol. 16, no. 3,  pp. 424-478. 

Henderson-Sellers, B, Simons, A & Younessi, H 1998, The OPEN toolbox of techniques, 
ACM/Addison-Wesley Publishing Co. 

Herrmann, P & Krumm, H 2001, 'Trust-adapted enforcement of security policies in distributed 
component-structured applications', Proceedings of the 6th IEEE Symposium on 
Computers and Communications, IEEE Computer Society, pp. 2-8. 



Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 233 

Herzum, P & Sims, O 2000, Business Components Factory: A Comprehensive Overview of 
Component-Based Development for the Enterprise, John Wiley & Sons Inc. 

Hevner, AR, March, ST, Park, J & Ram, S 2004, 'Design science in information systems 
research', MIS Quarterly, vol. 28, no. 1,  pp. 75-106. 

Hicks, M & Nettles, S 2005, 'Dynamic software updating', ACM Transactions on Programming 
Langiages and Systems, vol. 27, no. 6,  pp. 1049-1096. 

Hillman, J & Warren, I 2004, 'An open framework for dynamic reconfiguration', Proceedings of 
the 26th IEEE International Conference on Software Engineering (ICSE'04), IEEE 
Computer Society, pp. 594-603. 

Hnětynka, P & Plášil, F 2006, 'Dynamic reconfiguration and access to services in hierarchical 
component models', in I Gorton, GT Heineman, I Crnkovic, HW Schmidt, JA Stafford, 
CA Szyperski & K Wallnau (eds), Component-Based Software Engineering, vol. 
4063/2006, Springer, Berlin / Heidelberg, pp. 352-359. 

Hofmeister, C 1993, 'Dynamic Reconfiguration of Distributed Applications', Ph. D. thesis, 
University of Maryland. 

Holder, O, Ben-Shaul, I & Gazit, H 1999, 'System support for dynamic layout of distributed 
applications', Proceedings of the 19th IEEE International Conference on Distributed 
Computing Systems (ICDCS'99), pp. 403-411. 

Hong, S, van den Goor, G & Brinkkemper, S 1993, 'A formal approach to the comparison of 
object-oriented analysis and design methodologies', Proceeding of the 26th Hawaii 
International Conference on System Sciences vol. iv, ed. G van den Goor, pp. 689-698. 

Horie, M, Pang, JC, Manning, EG & Shoja, GC 1998, 'Using meta-interfaces to support secure 
dynamic system reconfiguration', Proceedings of the 4th International Conference on 
Configurable Distributed Systems (ICCDS'98), pp. 164-171. 

Horning, JJ, Lauer, HC, Melliar-Smith, PM & Randell, B 1974, 'A program structure for error 
detection and recovery', Proceedings of an International Symposium on Operating 
Systems, Springer-Verlag, pp. 171-187. 

Howard, P 2006, Compuware Uniface 9: Product Evaluation, Bloor Research, viewed 25 Aug 
2007 <http://www.compuware.com/products/uniface/resources/6197_ENG_HTML.asp>. 

Hu, JM & Grefen, P 2003, 'Conceptual framework and architecture for service mediating 
workflow management', Information and Software Technology, vol. 45, no. 13,  pp. 929-
939. 

Huang, G, Mei, H & Yang, F-Q 2006, 'Runtime recovery and manipulation of software 
architecture of component-based systems', Automated Software Engineering, vol. 13, 
no. 2,  pp. 257-281. 

Hubbers, J-W & Verhoef, D 2000, Tutorial: Component Based Analysis and Design, viewed 25 
Aug 2007 
<http://www.dsv.su.se/conferences/caise00/tutorials2.html#component_based_analysis
_design>. 

Huhns, MN & Singh, MP 2005, 'Service-oriented computing: key concepts and principles', IEEE 
Internet Computing, vol. 9, no. 1,  pp. 75-81. 

IEEE 2009, SEVOCAB: Software and Systems Engineering Vocabulary, IEEE, viewed 10 Jan 
2009 <http://pascal.computer.org/sev_display/>. 

IEEE Computer Society 1998, IEEE Std 830-1998, IEEE Recommended Practice for Software 
Requirements Specifications, IEEE Computer Society. 

Iivari, J 1995, 'Object-orientation as structural, functional and behavioural modelling: a 
comparison of six methods for object-oriented analysis', Information and Software 
Technology, vol. 37, no. 3,  pp. 155-163. 

Iivari, J, Hirschheim, R & Klein, HK 1998, 'A Paradigmatic Analysis Contrasting Information 
Systems Development Approaches and Methodologies', Information Systems 
Research, vol. 9, no. 2,  pp. 164-193. 

Iivari, J & Kerola, P 1983, 'A sociocybernetic framework for the feature analysis of information 
systems design methodologies', in TW Olle, H Sol & C Tully (eds), Information System 
Design Methodologies: A Feature Analysis, Elsevier B.V., Amsterdam, pp. 87-140. 

ISO/IEC 1995, Open Distributed Processing - Reference Model: Part 1 to Part 4 ( ITU-T Rec. 
X.901 to X.904 | ISO/IEC 10746-1 to 10746-4), ISO/IEC Press. 

ISO/IEC 1998, ISO/IEC 15026:1998 Information technology -- System and software integrity 
levels, ISO/IEC Press. 

ISO/IEC 2001, Software engineering -- Product quality -- Part 1: Quality model ISO/IEC 9126-

http://www.compuware.com/products/uniface/resources/6197_ENG_HTML.asp
http://www.dsv.su.se/conferences/caise00/tutorials2.html#component_based_analysis_design
http://www.dsv.su.se/conferences/caise00/tutorials2.html#component_based_analysis_design
http://pascal.computer.org/sev_display/


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 234 

1:2001, ISO/IEC Press. 
ISO/IEC 2004, ISO/IEC 15909-1:2004: Systems and software engineering -- High-level Petri 

nets -- Part 1: Concepts, definitions and graphical notation, ISO/IEC Press. 
ISO/IEC 2005, ISO/IEC 25000:2005: Software engineering -- Software product Quality 

Requirements and Evaluation (SQuaRE) -- Guide  to SQuaRE, ISO/IEC Press. 
ISO/IEC 2006, ISO/IEC 15414:2006 Information technology -- Open distributed processing -- 

Reference model -- Enterprise language, ISO/IEC Press. 
ISO/IEC 2007, Software Engineering -- Metamodel for Development Methodologies ISO/IEC 

24744:2007, ISO/IEC Press. 
ISO/IEC 2008, Software and Systems Engineering Vocabulary ISO/IEC FCD 24765, ISO/IEC 

Press. 
ISO/IEC 2010, ISO/IEC 24744:2007/Amd 1:2010 : Software Engineering - Metamodel for 

Development Methodologies - Amendment 1: Notation, ISO/IEC Press. 
ISO/IEC 2011, ISO/IEC FDIS 25010: Systems and software engineering -- Systems and 

software Quality Requirements and Evaluation (SQuaRE) -- System and software 
quality models, ISO/IEC Press. 

Janssens, N, Joosen, W & Verbaeten, P 2005, 'NeCoMan: middleware for safe distributed-
service adaptation in programmable networks', Distributed Systems Online, IEEE, vol. 
6, no. 7. 

Jayaratna, N 1994, Understanding and Evaluating Methodologies: NIMSAD, a Systematic 
Framework, McGraw-Hill Inc. 

Jayaswal, K 2005, 'No time for down time', in K Jayaswal (ed.), Administering Data Centers: 
Servers, Storage, and Voice over IP, John Wiley & Sons Inc. 

Jiao, W & Mei, H 2005, 'Dynamic architectural connectors in cooperative software systems', 
Proceedings of the 10th IEEE International Conference on Engineering of Complex 
Computer Systems (ICECCS 2005). ed. M Hong, IEEE Computer Society, pp. 477-486. 

Jones, CB, Romanovsky, AB & Welch, I 2002, 'A structured approach to handling on-line 
interface upgrades', Proceedings of the 26th International Computer Software and 
Applications Conference on Prolonging Software Life: Development and 
Redevelopment (COMPSAC'02), IEEE Computer Society, pp. 1000-1005. 

Jones, S & Morris, M 2005, A methodology for Service Architectures (OASIS SOA Adoption 
Blueprints draft), Capgemini UK plc, <http://www.oasis-
open.org/committees/download.php/15071/A%20methodology%20for%20Service%20A
rchitectures%201%202%204%20-%20OASIS%20Contribution.pdf>. 

Kaminski, P, Müller, H & Litoiu, M 2006, 'A design for adaptive web service evolution', 
Proceedings of the 2006 International Workshop on Self-adaptation and Self-managing 
Systems, ACM, Shanghai, China, pp. 86-92. 

Karamanolis, CT & Magee, JN 1996, 'A replication protocol to support dynamically configurable 
groups of servers', Proceedings of the 3rd International Conference on Configurable 
Distributed Systems (ICCDS'96), pp. 161-168. 

Karastoyanova, D, Houspanossian, A, Cilia, M, Leymann, F & Buchmann, A 2005, 'Extending 
BPEL for run time adaptability', Proceedings of the 9th IEEE International EDOC 
Enterprise Computing Conference (EDOC'05) pp. 15-26. 

Karlsson, F & Ågerfalk, PJ 2004, 'Method configuration: adapting to situational characteristics 
while creating reusable assets', Information and Software Technology, vol. 46, no. 9,  pp. 
619-633. 

Karsai, G, Massacci, F, Osterweil, L & Schieferdecker, I 2010, 'Evolving embedded systems', 
Computer, vol. 43, no. 5,  pp. 34-40. 

Kataoka, Y, Notkin, D, Ernst, MD & Griswold, WG 2001, 'Automated support for program 
refactoring using invariants', Proceedings of the 17th IEEE International Conference on 
Software Maintenance (ICSM'01), IEEE Computer Society, Florence, Italy pp. 736-743. 

Kemerer, CF & Slaughter, S 1999, 'An empirical approach to studying software evolution', IEEE 
Transactions on Software Engineering, vol. 25, no. 4,  pp. 493-509. 

Kempter, B, Olkovich, L & Rachinskiy, E 2007, Adaptive Services Grid Deliverable D6-III-3: 
Performance Engineering Methodology Adaptive Services Grid (ASG), viewed 20 Jun 
2008 <http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-
3_Performance_Engineering.pdf>. 

Kerlinger, FN 1986, Foundations of behavioral research, 3rd edn, Holt, Rinehart & Winston, New 
York. 

http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-3_Performance_Engineering.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-3_Performance_Engineering.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 235 

Khalaf, R, Mukhi, N & Weerawarana, S 2003, 'Service-oriented composition in BPEL4WS', 
Proceedings of the 2003 World Wide Web Conference, Web Services Track, ACM, 
Budapest, Hungary, viewed 14 Jul 2007 
<http://www.www2003.org/cdrom/papers/alternate/P768/choreo_html/p768-khalaf.htm>. 

Kim, I-G, Bae, D-H & Hong, J-E 2007, 'A component composition model providing dynamic, 
flexible, and hierarchical composition of components for supporting software evolution', 
Journal of Systems and Software, vol. 80, no. 11,  pp. 1797-1816. 

Kim, Y & Yun, H 2006, 'An approach to modeling service-oriented development process', 
Proceedings of the IEEE International Conference on Services Computing (SCC'06), 
IEEE Computer Society, pp. 273-276. 

Kitchenham, B, Brereton, OP, Budgen, D, Turner, M, Bailey, J & Linkman, S 2009, 'Systematic 
literature reviews in software engineering - A systematic literature review', Information 
and Software Technology, vol. 51, no. 1,  pp. 7-15. 

Kitchenham, B, Linkman, S & Law, D 1997, 'DESMET: a methodology for evaluating software 
engineering methods and tools', Computing & Control Engineering Journal, vol. 8, no. 3,  
pp. 120-126. 

Kitchenham, BA 1996, 'Evaluating software engineering methods and tool part 1: The evaluation 
context and evaluation methods', ACM SIGSOFT Software Engineering Notes, vol. 21, 
no. 1,  pp. 11-14. 

Kitchenham, BA 2004, Procedures for Undertaking Systematic Reviews, Joint Technical Report, 
Computer Science Department, Keele University (TR/SE-0401) and National ICT 
Australia Ltd (0400011T.1). 

Kitchenham, BA & Jones, L 1997, 'Evaluating software engineering methods and tools part 6: 
identifying and scoring features', ACM SIGSOFT Software Engineering Notes, vol. 22, 
no. 2,  pp. 16-18. 

Klein, M & Dellarocas, C 2000, 'A knowledge-based approach to handling exceptions in 
workflow systems', Computer Supported Cooperative Work (CSCW), vol. 9, no. 3,  pp. 
399-412. 

Kluth, A 2004, 'Survey: Information Technology: Make it simple', The Economist, vol. 17, pp. 1-
14. 

Kniesel, G 1999, 'Type-safe delegation for run-time component adaptation', in R Guerraoui 
(ed.), ECOOP’ 99 — Object-Oriented Programming, vol. 1628, Springer Berlin / 
Heidelberg, pp. 668-668. 

Knight, JC 2002, 'Safety critical systems: challenges and directions', Proceedings of the 24th 
International Conference on Software Engineering, ACM, Orlando, Florida, pp. 547-550. 

Kon, F & Campbell, RH 2000, 'Dependence management in component-based distributed 
systems', IEEE Concurrency, vol. 8, no. 1,  pp. 26-36. 

Kon, F, Campbell, RH & Nahrstedt, K 2001, 'Using dynamic configuration to manage a scalable 
multimedia distribution system', Computer Communications, vol. 24, pp. 105-123. 

Kon, F, Gill, B, Anand, M, Campbell, R & Mickunas, M 2000, 'Secure dynamic reconfiguration of 
scalable CORBA systems with mobile agents', in, Agent Systems, Mobile Agents, and 
Applications, Springer, Berlin / Heidelberg, pp. 86-98. 

Koning, M, Sun, C-a, Sinnema, M & Avgeriou, P 2009, 'VxBPEL: supporting variability for Web 
services in BPEL', Information and Software Technology, vol. 51, no. 2,  pp. 258-269. 

Koskinen, J 2004, Software Maintenance Costs, University of Jyväskylä, Finland, viewed 22 Mar 
2007 <http://www.cs.jyu.fi/~koskinen/smcosts.htm>. 

Kramer, J & Magee, J 1990, 'The evolving philosophers problem: dynamic change 
management', IEEE Transactions on Software Engineering, vol. 16, no. 11,  pp. 1293-
1306. 

Kramer, J & Magee, J 1998, 'Analysing dynamic change in distributed software architectures', 
IEE Proceedings - Software, vol. 145, no. 5,  pp. 146-154. 

Kramer, J & Magee, J 2007, 'Self-managed systems: an architectural challenge', Future of 
Software Engineering, 2007 (FOSE '07), IEEE Computer Society, pp. 259-268. 

Kruchten, P 2003, The Rational Unified Process: An Introduction, 3rd edn, Addison-Wesley. 
Kuhn, TS 1996, The Structure of Scientific Revolutions, 3rd edn, University of Chicago Press. 
Kulkarni, SS & Biyani, KN 2004, 'Correctness of component-based adaptation', in I Crnkovic, JA 

Stafford, HW Schmidt & K Wallnau (eds), Component-Based Software Engineering, vol. 
3054, Springer Berlin / Heidelberg, pp. 48-58. 

Kung, CH 1983, 'An analysis of three conceptual models with time perspective', in TW Olle, H 

http://www.www2003.org/cdrom/papers/alternate/P768/choreo_html/p768-khalaf.htm
http://www.cs.jyu.fi/~koskinen/smcosts.htm


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 236 

Sol & C Tully (eds), Information System Design Methodologies: A Feature Analysis, 
Elsevier B.V., Amsterdam, pp. 141-168. 

Ladd, DA 2009, 'Everybody likes Likert: using a variable-interval slider to collect interval-level 
individual options', Proceedings of the International Conference on Information Systems 
(ICIS 2009), Association for Information Systems, viewed 6 Jul 2011 
<http://aisel.aisnet.org/icis2009/100>. 

Lamport, L 1977, 'Proving the correctness of multiprocess programs', IEEE Transactions on 
Software Engineering, vol. 3, no. 2,  pp. 125-143. 

Lamport, L, Shostak, R & Pease, M 1982, 'The Byzantine Generals Problem', ACM Transactions 
on Programming Languages and Systems, vol. 4, no. 3,  pp. 382-401. 

Laprie, JC 1995, 'Dependable computing and fault tolearance: concepts and terminology', 
Proceedings of the 25th International Symposium on Fault-Tolerant Computing: 
Highlights from Twenty-Five Years, IEEE, pp. 2-11. 

Lassing, N, Rijsenbrij, D & van Vliet, H 2003, 'How well can we predict changes at architecture 
design time?', Journal of Systems and Software, vol. 65, no. 2,  pp. 141-153. 

LDJ Trust 2003, "Freedom" Service-Oriented Methodology, viewed 5 Jun 2008 
<http://www.jreality.com/freedom/index.html>. 

Lee, AS 1989, 'A scientific methodology for MIS case studies', MIS Quarterly, vol. 13, no. 1,  pp. 
33-50. 

Lee, SP, Chan, LP & Lee, EW 2006, 'Web Services Implementation Methodology for SOA 
application', IEEE International Conference on Industrial Informatics, IEEE, pp. 335-340. 

Lee, YF & Chang, RC 2005, 'Java-based component framework for dynamic reconfiguration', 
IEE Proceedings - Software, vol. 152, no. 3,  pp. 110-118. 

Léger, M, Ledoux, T & Coupaye, T 2010, 'Reliable dynamic reconfigurations in a reflective 
component model', in L Grunske, R Reussner & F Plasil (eds), Component-Based 
Software Engineering, vol. 6092, Springer Berlin / Heidelberg, pp. 74-92. 

Lehman, MM & Ramil, JF 2001, 'Rules and tools for software evolution planning and 
management', Annals of Software Engineering, vol. 11, pp. 15-44. 

Lehner, T, Bayer, J, Bella, F & Ocampo, A 2006, Adaptive Services Grid Deliverable D6.III-2: 
ASG Development Process – Application and Service Engineering Adaptive Services 
Grid (ASG), viewed 13 Jun 2008 <http://tb0.asg-
platform.org/download/downloadrequest.php?asgdocument=D6.III-2.pdf>. 

Leitner, P, Michlmayr, A, Rosenberg, F & Dustdar, S 2008, 'End-to-end versioning support for 
Web Services', Proceedings of the 2008 IEEE International Conference on Services 
Computing - Volume 1, IEEE Computer Society, pp. 59-66. 

Leszak, M, Perry, DE & Stoll, D 2002, 'Classification and evaluation of defects in a project 
retrospective', Journal of Systems and Software, vol. 61, no. 3,  pp. 173-187. 

Leveson, NG 1986, 'Software safety: why, what, and how', ACM Computing Surveys, vol. 18, 
no. 2,  pp. 125-163. 

Li, G, Han, Y, Zhao, Z, Wang, J & Wagner, RM 2006, 'Facilitating dynamic service compositions 
by adaptable service connectors', International Journal of Web Services Research, vol. 
3, no. 1,  pp. 68-85. 

Li, W 2009, 'DynaQoS©-RDF: a best effort for QoS-assurance of dynamic reconfiguration of 
dataflow systems', Journal of Software Maintenance and Evolution: Research and 
Practice, vol. 21, no. 1,  pp. 19-48. 

Liang, Y 2000, 'An approach to assessing and comparing object-oriented analysis methods', 
Journal of Object-Oriented Programming, vol. 13, no. 3,  pp. 27-33. 

Lientz, BP & Swanson, EB 1980, Software Maintenance Management, Addison-Wesley. 
Lim, AS 1996, 'Abstraction and composition techniques for reconfiguration of large-scale 

complex applications', Proceedings of the 3rd International Conference on Configurable 
Distributed Systems (ICCDS'96) pp. 186-193. 

Lincke, D-M & Schmid, B 1998, 'Mediating electronic product catalogs', Communications of the 
ACM, vol. 41, no. 7,  pp. 86-88. 

Lindqvist, U & Jonsson, E 1998, 'A map of security risks associated with using COTS', 
Computer, vol. 31, no. 6,  pp. 60-66. 

Liu, M, Ma, D & Zhao, Y 2009, 'An approach to identifying conversation dependency in service 
oriented system during dynamic evolution', Proceedings of the 2009 ACM symposium 
on Applied Computing, ACM, Honolulu, Hawaii, pp. 1072-1073. 

LIXI 2010, Welcome to the LIXI home page, viewed 8 May 2010 <http://www.lixi.org.au/>. 

http://aisel.aisnet.org/icis2009/100
http://www.jreality.com/freedom/index.html
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-2.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-2.pdf
http://tb0.asg-platform.org/download/downloadrequest.php?asgdocument=D6.III-2.pdf
http://www.lixi.org.au/


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 237 

Lopes, A, Wermelinger, M & Fiadeiro, JL 2003, 'Higher-Order Architectural Connectors', ACM 
Transactions on Software Engineering and Methodology, vol. 12, no. 1,  pp. 64-104. 

Loulou, I, Jmaiel, M, Drira, K & Kacem, AH 2010, 'P/S-CoM: Building correct by design 
publish/subscribe architectural styles with safe reconfiguration', Journal of Systems and 
Software, vol. 83, no. 3,  pp. 412-428. 

Lovrek, I, Jezic, G, Kusek, M, Ljubi, I, Caric, A, Huljenic, D, Desic, S & Labor, O 2003, 
'Improving software maintenance by using agent-based remote maintenance shell', 
Proceedings of the 19th International Conference on Software Maintenance (ICSM 
2003), IEEE Computer Society, pp. 440-449. 

Maes, P 1987, 'Concepts and experiments in computational reflection', Conference proceedings 
on Object-oriented programming systems, languages and applications, ACM, Orlando, 
Florida, United States, pp. 147-155. 

Magee, J & Kramer, J 1996, 'Dynamic structure in software architectures', Proceedings of the 
4th ACM SIGSOFT symposium on Foundations of Software Engineering, ACM, San 
Francisco, California, United States, pp. 3-14. 

Mak, R, Walton, J, Keely, L, Heher, D & Chan, L 2005, 'A reliable service–oriented architecture 
for NASA’s Mars Exploration Rover mission', Proceedings of 2005 IEEE Aerospace 
Conference, IEEE, Big Sky, MT, pp. 1-14. 

Mao, C, Zhang, J & Lu, Y 2007, 'Using dependence matrix to support change impact analysis for 
CBS', International Conference on Computational Science and its Applications, 2007 
(ICCSA 2007). ed. J Zhang, IEEE Computer Society, pp. 192-200. 

March, ST & Smith, GF 1995, 'Design and natural science research on information technology', 
Decision Support Systems, vol. 15, no. 4,  pp. 251-266. 

Mari, M & Eila, N 2003, 'The impact of maintainability on component-based software systems', 
Proceedings of the 29th Euromicro Conference, pp. 25-32. 

Martínez-Beneito, MA, López-Quilez, A & Botella-Rocamora, P 2008, 'An autoregressive 
approach to spatio-temporal disease mapping', Statistics in Medicine, vol. 27, no. 15,  
pp. 2874-2889. 

Matinlassi, M 2004, 'Comparison of software product line architecture design methods: COPA, 
FAST, FORM, KobrA and QADA', Proceedings of the 26th International Conference on 
Software Engineering, IEEE Computer Society, pp. 127-136. 

McKinley, PK, Sadjadi, SM, Kasten , EP & Cheng, BHC 2004, 'Composing adaptive software', 
Computer, vol. 37, no. 7,  pp. 56-64. 

Meadows, C & McLean, J 1998, 'Security and dependability: then and now', Proceedings of 
Computer Security, Dependability and Assurance: From Needs to Solutions (CSDA'98), 
IEEE Computer Society, pp. 166-170. 

Medvidovic, N, Rosenblum, DS & Taylor, RN 1999, 'A language and environment for 
architecture-based software development and evolution', Proceedings of the 21st IEEE 
International Conference on Software Engineering (ICSE'99), IEEE Press, pp. 44-53. 

Medvidovic, N & Taylor, R 1997, 'Exploiting architectural style to develop a family of 
applications', IEE Proceedings Software Engineering, vol. 144, no. 5,  pp. 237-248. 

Mens, T 2008, 'Introduction and roadmap: history and challenges of software evolution', in T 
Mens & S Demeyer (eds), Software Evolution, Springer, pp. 1-11. 

Mens, T & D'Hondt, T 2000, 'Automating support for software evolution in UML', Automated 
Software Engineering, vol. 7, no. 1,  pp. 39-59. 

Mens, T & Demeyer, S 2008, Software Evolution, Springer. 
Mens, T, Magee, J & Rumpe, B 2010, 'Evolving software architecture descriptions of critical 

systems', Computer, vol. 43, no. 5,  pp. 42-48. 
Meredith, LG & Bjorg, S 2003, 'Contracts and types', Communications of the ACM, vol. 46, no. 

10,  pp. 41-47. 
Merideth, MG, Iyengar, A, Mikalsen, T, Tai, S, Rouvellou, I & Narasimhan, P 2005, 'Thema: 

Byzantine-fault-tolerant middleware for web-service applications', Proceedings of the 
24th IEEE Symposium on Reliable Distributed Systems, IEEE Computer Society, pp. 
131-142. 

Milanovic, N & Malek, M 2004, 'Current solutions for Web Service composition', IEEE Internet 
Computing, vol. 8, no. 6,  pp. 51-59. 

Milazzo, M, Pappalardo, G, Tramontana, E & Ursino, G 2005, 'Handling run-time updates in 
distributed applications', Proceedings of the 2005 ACM symposium on Applied 
computing (SAC'05), ACM, Santa Fe, New Mexico, pp. 1375-1380. 



Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 238 

Mittal, K 2006, Service Oriented Unified Process, viewed 3 Jun 2008 
<http://www.kunalmittal.com/html/soup.shtml>. 

Monarchi, DE & Puhr, GI 1992, 'A research typology for object-oriented analysis and design', 
Communications of the ACM, vol. 35, no. 9,  pp. 35-47. 

Morandini, M, Penserini, L & Perini, A 2008, 'Towards goal-oriented development of self-
adaptive systems', Proceedings of the 2008 International Workshop on Software 
Engineering for Adaptive and Self-Managing Systems, ACM, Leipzig, Germany, pp. 9-
16. 

Morrison, J & George, J, F. 1995, 'Exploring the software engineering component in MIS 
research', Communications of the ACM, vol. 38, no. 7,  pp. 80-91. 

Morrison, R, Balasubramaniam, D, Kirby, G, Mickan, K, Warboys, B, Greenwood, R, Robertson, 
I & Snowdon, B 2007, 'A framework for supporting dynamic systems co-evolution', 
Automated Software Engineering, vol. 14, no. 3,  pp. 261-292. 

Motahari Nezhad, HR, Benatallah, B, Martens, A, Curbera, F & Casati, F 2007, 'Semi-
automated adaptation of service interactions', Proceedings of the 16th international 
conference on World Wide Web, ACM, Banff, Alberta, Canada, pp. 993-1002. 

Mukhija, A & Glinz, M 2005, 'Runtime adaptation of applications through dynamic recomposition 
of components', in, Systems Aspects in Organic and Pervasive Computing - ARCS 
2005, vol. 3432/2005, Springer, Berlin / Heidelberg, pp. 124-138. 

Murphy, GC, Walker, RJ & Baniassad, ELA 1999, 'Evaluating emerging software development 
technologies: lessons learned from assessing Aspect-Oriented Programming', IEEE 
Transactions on Software Engineering, vol. 25, no. 4,  pp. 438-455. 

Muskens, J & Chaudron, M 2004, 'Prediction of run-time resource consumption in multi-task 
component-based software systems', in, Component-Based Software Engineering, 
Springer, Berlin / Heidelberg, pp. 162-177. 

Myers, MD 2004, Qualitative research in information systems, MISQ Discovery, viewed 24 Sep 
2010 <http://www.misq.org/discovery/MISQD_isworld/>. 

Ngwenyama, OK 1991, 'The critical social theory approach to information systems: problems 
and challenges', in HE Nissen, HK Klein & H R. (eds), Information Systems Research: 
Contemporary Approaches and Emergent Traditions, INFORMS, New York, NY, pp. 
267-280. 

Niehaves, B & Stahl, BC 2006, 'Criticality, epistemology and behaviour vs. design - information 
systems research across different sets of paradigms', Proceedings of the 14th 
European Conference on Information Systems, Göteborg, Sweden. 

Nuseibeh, B & Easterbrook, S 2000, 'Requirements engineering: a roadmap', Proceedings of 
the Conference on The Future of Software Engineering, ACM, Limerick, Ireland, pp. 35-
46. 

Nuseibeh, B, Finkelstein, A & Kramer, J 1996, 'Method engineering for multi-perspective 
software development', Information and Software Technology, vol. 38, no. 4,  pp. 267-
274. 

OASIS 2006, Web Services Security: SOAP Message Security 1.1 (WS-Security 2004), OASIS, 
viewed 18 Jun 2008 <http://www.oasis-open.org/committees/download.php/16790/wss-
v1.1-spec-os-SOAPMessageSecurity.pdf>. 

OASIS 2007, Web Services Coordination (WS-Coordination) Version 1.1, OASIS, viewed 4 Jul 
2007 <http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf>. 

Office of Government Commerce 2002, Application Management, The Stationery Office, 
London. 

Office of Government Commerce 2005a, ITIL Service Support, The Stationery Office, London. 
Office of Government Commerce 2005b, PRINCE2: Managing Successful Projects, 4th edn, 

TSO (The Stationery Office), London. 
Okoli, C & Pawlowski, SD 2004, 'The Delphi method as a research tool: an example, design 

considerations and applications', Information & Management, vol. 42, no. 1,  pp. 15-29. 
Olle, TW, Sol, H & Tully, C 1983, Information System Design Methodologies: A Feature 

Analysis, Elsevier B.V., Amsterdam. 
Olle, TW, Sol, H & Verrijn-Stuart, AA 1986, Information Systems Design Methodologies : 

Improving the Practice Elsevier B.V., Amsterdam. 
OMG 2003a, MDA Guide Version 1.0.1, Report Number omg/2003-06-01, viewed 25 Jul 2007 

<http://www.omg.org/docs/omg/03-06-01.pdf>. 
OMG 2003b, Online Upgrades: Draft Adopted Specification, Report Number ptc/03-08-07, 

http://www.kunalmittal.com/html/soup.shtml
http://www.misq.org/discovery/MISQD_isworld/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf
http://www.omg.org/docs/omg/03-06-01.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 239 

viewed 21 Jul 2010 <http://www.omg.org/cgi-bin/doc?ptc/2003-08-07>. 
OMG 2005, UML Profile for Schedulability, Performance, and Time Specification v1.1, Report 

Number formal/2005-01-02, viewed 21 Jul 2010 <http://www.omg.org/cgi-
bin/doc?formal/2005-01-02>. 

OMG 2008, Service oriented architecture Modeling Language (SoaML) - Specification for the 
UML Profile and Metamodel for Services (UPMS), Report Number ad/2008-08-04, 
viewed 29 May 2009 <http://www.omg.org/cgi-bin/doc?ad/2008-08-04>. 

OMG 2009, Business Process Modeling Notation Specification v1.2, Report Number 
formal/2009-01-03, viewed 21 Jul 2010 <http://www.omg.org/spec/BPMN/1.2>. 

OMG 2010a, OMG Unified Modeling Language™(OMG UML), Infrastructure, Version 2.3, Report 
Number formal/2010-05-03, viewed 21 Jul 2010 
<http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/>. 

OMG 2010b, OMG Unified Modeling Language™(OMG UML), Superstructure, Version 2.3, 
Report Number formal/2010-05-05, viewed 21 Jul 2010 
<http://www.omg.org/spec/UML/2.3/Superstructure/PDF/>. 

OPFRO 2009, OPEN Process Framework Repository Organization, viewed 21 Jul 2010 
<http://www.opfro.org/>. 

Oreizy, P, Gorlick, MM, Taylor, RN, Heimbigner, D, Johnson, G, Medvidovic, N, Quilici, A, 
Rosenblum, D & Wolf, A 1999, 'An architecture-based approach to self-adaptive 
software', IEEE Intelligent Systems, vol. 14, no. 3,  pp. 54-62. 

Oreizy, P, Medvidovic, N & Taylor, RN 1998, 'Architecture-based runtime software evolution', 
Proceedings of the 20th IEEE International Conference on Software Engineering 
(ICSE'98), IEEE Computer Society, Kyoto, Japan, pp. 177-186. 

Oreizy, P, Medvidovic, N & Taylor, RN 2008, 'Runtime software adaptation: framework, 
approaches, and styles', Companion of the 30th International Conference on Software 
Engineering, ACM, Leipzig, Germany, pp. 899-910. 

Oreizy, P & Taylor, RN 1998, 'On the role of software architectures in runtime system 
reconfiguration', Proceedings of the 4th International Conference on Configurable 
Distributed Systems (ICCDS'98), pp. 61-70. 

Oriol, M & Serugendo, GDM 2004, 'Disconnected service architecture for unanticipated run-time 
evolution of code', IEE Proceedings - Software, vol. 151, no. 2,  pp. 95-107. 

Orlikowski, WJ & Baroudi, JJ 1991, 'Studying Information Technology in Organizations: 
Research Approaches and Assumptions', Information Systems Research, vol. 2, no. 1,  
pp. 1-28. 

Oueichek, I & Rousset de Pina, X 1996, 'Dynamic configuration management in the Guide 
object-oriented distributed system', Proceedings of the 3rd International Conference on 
Configurable Distributed Systems (ICCDS'96), pp. 28-35. 

Pahl, C 2004, 'Adaptive development and maintenance of user-centric software systems', 
Information and Software Technology, vol. 46, no. 14,  pp. 973-986. 

Paige, RF, Ostroff, JS & Brooke, PJ 2000, 'Principles for modelling language design', 
Information and Software Technology, vol. 42, no. 10,  pp. 665-675. 

Papazoglou, M 2008, 'The challenges of service evolution', in, Advanced Information Systems 
Engineering, vol. 5074/2008, Springer, Berlin / Heidelberg, pp. 1-15. 

Papazoglou, M & Kratz, B 2007, 'Web services technology in support of business transactions', 
Service Oriented Computing and Applications, vol. 1, no. 1,  pp. 51-63. 

Papazoglou, MP & Georgakopoulos, D 2003, 'Service-oriented computing: introduction', 
Communications of the ACM, vol. 46, no. 10,  pp. 24-28. 

Papazoglou, MP, Traverso, P, Dustdar, S & Leymann, F 2008, 'Service-oriented computing: A 
research roadmap', International Journal of Cooperative Information Systems, vol. 17, 
no. 2,  pp. 223-255. 

Papazoglou, MP & van den Heuvel, W-J 2006, 'Service-oriented design and development 
methodology', International Journal of Web Engineering and Technology, vol. 2, no. 4,  
pp. 412-442. 

Parzyjegla, H, Muhl, GG & Jaeger, MA 2006, 'Reconfiguring publish/subscribe overlay 
topologies', Proceedings of the 26th IEEE International Conference on Distributed 
Computing Systems Workshops (ICDCSW 2006), pp. 29-29. 

Pasley, J 2005, 'How BPEL and SOA are changing Web services development', Internet 
Computing, IEEE, vol. 9, no. 3,  pp. 60-67. 

Patton, MQ 2002, Qualitative Research and Evaluation Methods, Sage. 

http://www.omg.org/cgi-bin/doc?ptc/2003-08-07
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?ad/2008-08-04
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.opfro.org/


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 240 

Paulk, M, Curtis, B, Chrissis, M & Weber, C 1993, Capability Maturity Model for Software 
(Version 1.1), Technical Report CMU/SEI-93-TR-024, Software Engineering Institute, 
Pittsburgh PA. 

Peffers, K, Tuunanen, T, Rothenberger, M & Chatterjee, S 2008, 'A design science research 
methodology for information systems research', Journal of Management Information 
Systems, vol. 24, no. 3,  pp. 45-77. 

Pellegrinelli, S 1997, 'Programme management: organising project-based change', International 
Journal of Project Management, vol. 15, no. 3,  pp. 141-149. 

Pelliccione, P, Tivoli, M, Bucchiarone, A & Polini, A 2008, 'An architectural approach to the 
correct and automatic assembly of evolving component-based systems', Journal of 
Systems and Software, vol. 81, no. 12,  pp. 2237-2251. 

Peltz, C 1999, 'A hierarchical technique for composing COM based components', Proceedings 
of the 2nd International Workshop on Component-Based Software Engineering 
(CBSE'99), IEEE Computer Society, pp. 17-18, viewed 17 Dec 2007 
<http://www.sei.cmu.edu/pacc/icse99/papers/26/26.pdf>. 

Petrenko, M, Poshyvattyk, D, Rajlich, V & Buchta, J 2007, 'Teaching Software Evolution in Open 
Source', Computer, vol. 40, no. 11,  pp. 25-31. 

Pfleeger, SL 1995, 'Experimental design and analysis in software engineering', Annals of 
Software Engineering, vol. 1, pp. 219-253. 

Pfleeger, SL 1999, 'Albert Einstein and empirical software engineering', Computer, vol. 32, no. 
10,  pp. 32-38. 

Pfleeger, SL & Bohner, SA 1990, 'A framework for software maintenance metrics', Proceedings 
of the International Conference on Software Maintenance, IEEE, San Diago, C.A., pp. 
320-327. 

Plášil, F, Bálek, D & Janeček, R 1998, 'SOFA/DCUP: architecture for component trading and 
dynamic updating', Proceedings of the 4th International Conference on Configurable 
Distributed Systems (ICCDS'98), pp. 43-51. 

Ponnekanti, SR & Fox, A 2004, 'Interoperability among independently evolving web services', 
Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware, 
Springer-Verlag New York, Inc., Toronto, Canada, pp. 331-351. 

Pressman, RS 2005, Software Engineering: A Practitioners' Approach, 6th edn, McGraw-Hill Int. 
Rajlich, V & Gosavi, P 2004, 'Incremental change in object-oriented programming', IEEE 

Software, vol. 21, no. 4,  pp. 62-69. 
Ralyté, J, Deneckère, R & Rolland, C 2003, 'Towards a generic model for situational method 

engineering', in, Proceedings of the 15th Conference on Advanced Information Systems 
Engineering, CAISE’03, vol. 2681/2010, Springer Berlin / Heidelberg, 
Klagenfurt/Velden, Austria, pp. 95-110. 

Ralyté, J & Rolland, C 2001, 'An assembly process model for method engineering', in, 
Proceedings of the 13th International Conference on Advanced Information Systems 
Engineering, CAiSE 2001, vol. 2068/2001, Springer Berlin / Heidelberg, Interlaken, 
Switzerland, pp. 267-283. 

Ralyté, J, Rolland, C & Deneckère, R 2004, 'Towards a meta-tool for change-centric method 
engineering: a typology of generic operators', in A Persson & J Stirna (eds), Advanced 
Information Systems Engineering, vol. 3084, Springer Berlin / Heidelberg, pp. 695-717. 

Ramsin, R & Paige, R, F 2008, 'Process-centered review of object oriented software 
development methodologies', ACM Computing Surveys, vol. 40, no. 1,  pp. 1-89. 

Rasche, A & Polze, A 2003, 'Configuration and Dynamic reconfiguration of component-based 
applications with Microsoft .NET', Proceedings of the 6th IEEE International Symposium 
on Object-Oriented Real-Time Distributed Computing (ISORC'03), IEEE Computer 
Society, pp. 164-171. 

Redmond, B & Cahill, V 2006, 'Supporting unanticipated dynamic adaptation of application 
behaviour', in B Magnusson (ed.), ECOOP 2002 — Object-Oriented Programming, vol. 
2374, Springer Berlin / Heidelberg, pp. 29-53. 

Robertson, P & Williams, B 2006, 'Automatic recovery from software failure', Communications of 
the ACM, vol. 49, no. 3,  pp. 41-47. 

Robey, D 1996, 'Diversity in Information Systems Research: Threat, Promise, and 
Responsibility', Information Systems Research, vol. 7, no. 4,  pp. 400-408. 

Roddick, JF 1992, 'Schema evolution in database systems: an annotated bibliography', ACM 
SIGMOD Record, vol. 21, no. 4,  pp. 35-40. 

http://www.sei.cmu.edu/pacc/icse99/papers/26/26.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 241 

Rossi, M, Ramesh, B, Lyytinen, K & Tolvanen, J-P 2004, 'Managing evolutionary method 
engineering by method rationale', Journal of the Association for Information Systems, 
vol. 5, no. 9,  pp. 356-391. 

Rowe, D, Leaney, J & Lowe, D 1998, 'Defining systems evolvability', Proceedings of the 11th 
IEEE Conference on Computer Based Systems (ECBS'98), IEEE Press, Jerusalem, 
Israel, pp. 45-52. 

Ryan, ND & Wolf, AL 2004, 'Using event-based translation to support dynamic protocol 
evolution', Proceedings of the 26th International Conference on Software Engineering 
(ICSE'04), IEEE Computer Society, pp. 408-417. 

Salinesi, C, Etien, A & Zoukar, I 2004, 'A systematic approach to express IS evolution 
requirements using gap modelling and similarity modelling techniques', in, Advanced 
Information Systems Engineering, Springer, Berlin / Heidelberg, pp. 338-352. 

Schmerl, B, Aldrich, J, Garlan, D, Kazman, R & Yan, H 2006, 'Discovering architectures from 
running systems', IEEE Transactions on Software Engineering, vol. 32, no. 7,  pp. 454-
466. 

Schuster, S 2008, 'Forward', Proceedings of the 7th International Conference on Composition-
Based Software Systems (ICCBSS 2008), IEEE Computer Society, Madrid, Spain  

Seaman, CB 1999, 'Qualitative methods in empirical studies of software engineering', IEEE 
Transactions on Software Engineering, vol. 25, no. 4,  pp. 557-572. 

SeCSE 2006, Report on Methodological Approach to Design Service Compositions (v 2.0) The 
SeCSE consortium, viewed 9 Aug 2009 <http://www.secse-project.eu/wp-
content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-
composition-v2.zip>. 

SeCSE 2007, SeCSE Methodology, Version 3, The SeCSE consortium, viewed 9 Aug 2009 
<http://www.secse-project.eu/wp-content/uploads/2007/08/a5-d4-2-secse-methodology-
version-3.pdf>. 

SeCSE 2008, Testing Method Definition, The SeCSE consortium, viewed 9 Aug 2009 
<http://www.secse-project.eu/wp-content/uploads/a1d34-testing-method-definition-v4-
final.pdf>. 

Segal, ME 2002, 'Online software upgrading: new research directions and practical 
considerations', Proceedings of the 26th International Computer Software and 
Applications Conference on Prolonging Software Life: Development and 
Redevelopment (COMPSAC'02), IEEE Computer Society, Los Alamitos, CA, USA, pp. 
977-981. 

Segal, ME & Frieder, O 1993, 'On-the-fly program modification: systems for dynamic updating', 
IEEE Software, vol. 10, no. 2,  pp. 53-65. 

SEI 2006, CMMI for Development, Version 1.2, Technical Report CMU/SEI-2006-TR-008, 
Software Engineering Institute, Pittsburgh PA, viewed 17 Apr 2007 
<http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf>. 

Shatz, M 1993, Development of Distributed Software: Concepts and Tools, Macmillan Publ. Co. 
Shaw, M, DeLine, R, Klein, DV, Ross, TL, Young, DM & Zelesnik, GZ 1995, 'Abstractions for 

software architecture and tools to support them', IEEE Transactions on Software 
Engineering, vol. 21, no. 4,  pp. 314-335. 

Shaw, M, DeLine, R & Zelesnik, G 1996, 'Abstractions and Implementations for architectural 
connections', Proceedings of the 3rd International Conference on Configurable 
Distributed Systems (ICCDS'96), pp. 2-10. 

Shaw, M & Garlan, D 1996, Software Architecture: Perspectives on an Emerging Discipline, 
Prentice Hall Inc. 

Shrivastava, SK & Wheater, SM 1998, 'Architectural support for dynamic reconfiguration of 
distributed workflow applications', IEE Proceedings - Software, vol. 145, no. 5,  pp. 155-
162. 

Siau, K & Rossi, M 1998, 'Evaluation of information modeling methods -- a review', Proceedings 
of the 31st Annual Hawaii International Conference on System Sciences - Volume 5, 
IEEE Computer Society, pp. 314-422. 

Siau, K & Rossi, M 2007, 'Evaluation techniques for systems analysis and design modelling 
methods - a review and comparative analysis', Information Systems Journal. 

Siljee, J, Bosloper, I, Nijhuis, J & Hammer, D 2005, 'DySOA: making service systems self-
adaptive', in B Benatallah, F Casati & P Traverso (eds), Service-Oriented Computing - 
ICSOC 2005, vol. 3826, Springer Berlin / Heidelberg, pp. 255-268. 

http://www.secse-project.eu/wp-content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-composition-v2.zip
http://www.secse-project.eu/wp-content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-composition-v2.zip
http://www.secse-project.eu/wp-content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-composition-v2.zip
http://www.secse-project.eu/wp-content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-composition-v2.zip
http://www.secse-project.eu/wp-content/uploads/2007/08/a3d32-report-on-methodological-approach-to-design-service-composition-v2.zip
http://www.secse-project.eu/wp-content/uploads/2007/08/a5-d4-2-secse-methodology-version-3.pdf
http://www.secse-project.eu/wp-content/uploads/2007/08/a5-d4-2-secse-methodology-version-3.pdf
http://www.secse-project.eu/wp-content/uploads/2007/08/a5-d4-2-secse-methodology-version-3.pdf
http://www.secse-project.eu/wp-content/uploads/a1d34-testing-method-definition-v4-final.pdf
http://www.secse-project.eu/wp-content/uploads/a1d34-testing-method-definition-v4-final.pdf
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 242 

SINTEF 2007, COMET - component and model-based development methodology, SINTEF ICT, 
viewed 20 Jun 2007 <http://www.modelbased.net/comet/>. 

Sol, HG 1992, 'Information systems development: a problem solving approach', in WW 
Cotterman & JA Senn (eds), Challenges and Strategies for Research in Systems 
Development, John Wiley & Sons Inc., pp. 151-161. 

Sparling, M 2000, 'Lessons learned through six years of component-based development', 
Communications of the ACM, vol. 43, no. 10,  pp. 47-53. 

Stal, M 2006, 'Using architectural patterns and blueprints for service-oriented architecture', IEEE 
Software, vol. 23, no. 2,  pp. 54-61. 

Standards Australia 2004, AS/NZS 4360:2004 Risk Management, 3rd edn. 
Stojanovic, Z, Dahanayake, A & Sol, H 2004a, 'An evaluation framework for component-based 

and service-oriented system development methodologies', in K Siau (ed.), Advanced 
Topics in Database Research, vol. 3, IGI Global, pp. 45-68. 

Stojanovic, Z, Dahanayake, A & Sol, H 2004b, 'Modeling and design of service-oriented 
architecture', IEEE International Conference on Systems, Man and Cybernetics, IEEE 
Computer Society, pp. 4147-4152. 

Sun, P & Jiang, CJ 2009, 'Analysis of workflow dynamic changes based on Petri net', 
Information and Software Technology, vol. 51, no. 2,  pp. 284-292. 

SUPER 2007, Semantic Business Process Life Cycle version 1.0. 
Swaminathan, B & Goldman, KJ 1996, 'Data handles and virtual connections: high-level support 

for anonymous reconfiguration', Proceedings of the 3rd International Conference on 
Configurable Distributed Systems (ICCDS'96), pp. 19-26. 

Szyperski, C 2003, Component Software: Beyond Object Oriented Programming, 2nd edn, 
Addison-Wesley. 

Taentzer, G, Goedicke, M & Meyer, T 2000, 'Dynamic change management by distributed graph 
transformation: towards configurable distributed systems', in H Ehrig, G Engels, H-J 
Kreowski & G Rozenberg (eds), Theory and Application of Graph Transformations, vol. 
1764, Springer Berlin / Heidelberg, pp. 179-193. 

ter Hofstede, AHM & Verhoef, TF 1997, 'On the feasibility of situational method engineering', 
Information Systems, vol. 22, no. 6-7,  pp. 401-422. 

The Eclipse Foundation 2009, Eclipse Process Framework Project (EPF), viewed 7 Nov 2009 
<http://www.eclipse.org/epf/>. 

The Object Agency Inc. 1995, A Comparison of Object-Oriented Development Methodologies, 
viewed 5 Jun 2007 <http://www.toa.com/smnn?mcr.html>. 

Torres-Pomales, W 2000, Software Fault Tolerance: A Tutorial, NASA Langley Research 
Center, Hampton, Virginia, viewed 18 Aug 2009 
<http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000120144_2000175863.pdf>. 

Tosic, V, Erradi, A & Maheshwari, P 2007, 'WS-Policy4MASC - a WS-Policy extension used in 
the MASC middleware', Proceedings of the IEEE International Conference on Services 
Computing (SCC 2007), IEEE Computer Society, pp. 458-465. 

Tran, Q-NN & Low, G 2008, 'MOBMAS: A methodology for ontology-based multi-agent systems 
development', Information and Software Technology, vol. 50, no. 7-8,  pp. 697-722. 

Truyen, E, Vanhaute, B, Jørgensen, BN, Joosen, W & Verbaeton, P 2001, 'Dynamic and 
selective combination of extensions in component-based applications', Proceedings of 
the 23rd International Conference on Software Engineering, IEEE Computer Society, 
Toronto, Ontario, Canada, pp. 233-242. 

Tsai, WT, Fan, C, Chen, Y, Paul, R & Chung, J-Y 2006, 'Architecture classification for SOA-
based applications', Proceedings of the 9th IEEE International Symposium on Object 
and Component-Oriented Real-Time Distributed Computing (ISORC'06) - Volume 00, 
IEEE Computer Society, pp. 295-302. 

Tsai, WT, Liu, X & Chen, Y 2005, 'Distributed policy specification and enforcement in service-
oriented business systems', Proceedings of the IEEE International Conference on e-
Business Engineering, IEEE Computer Society, pp. 10-17. 

Tsai, WT, Song, W, Paul, R, Cao, Z & Huang, H 2004, 'Services-oriented dynamic 
reconfiguration framework for dependable distributed computing', Proceedings of the 
28th Annual International Computer Software and Applications Conference 
(COMPSAC'04) - Volume 01, IEEE Computer Society, Washington, DC, pp. 554-559. 

Unhelkar, B 1997, 'Effect of granularity of object-oriented design on modelling an enterprise, and 
its application to financial risk management', Ph. D. thesis, The University of 

http://www.modelbased.net/comet/
http://www.eclipse.org/epf/
http://www.toa.com/smnn?mcr.html
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000120144_2000175863.pdf


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 243 

Technology, Sydney, Sydney. 
Vaishnavi, V & Kuechler, W 2004, Design Research in Information Systems, Association for 

Information Systems, viewed 07 Feb 2010 <http://desrist.org/design-research-in-
information-systems>. 

van Gurp, J, Bosch, J & Svahnberg, M 2001, 'On the notion of variability in software product 
lines', Proceedings of the Working IEEE/IFIP Conference on Software Architecture 
(WICSA'01) - Volume 00, IEEE Computer Society, pp. 45-54. 

Vandewoude, Y & Berbers, Y 2002, 'Run-time evolution for embedded component-oriented 
systems', Proceedings of the 18th International Conference on Software Maintenance, 
ed. Y Berbers, IEEE Computer Society, pp. 242-245. 

Vandewoude, Y, Ebraert, P, Berbers, Y & D'Hondt, T 2007, 'Tranquility: a low disruptive 
alternative to quiescence for ensuring safe dynamic updates', IEEE Transactions on 
Software Engineering, vol. 33, no. 12,  pp. 856-868. 

Velasco Elizondo, P & Lau, K-K 2010, 'A catalogue of component connectors to support 
development with reuse', Journal of Systems and Software, vol. 83, no. 7,  pp. 1165-
1178. 

Venable, JR & Travis, J 1999, 'Using a group support system for the distributed application of 
soft systems methodology', Proceedings of the 10th Australasian Conference on 
Information Systems, eds B Hope & P Yoong, Wellington, New Zealand, pp. 1105-1117. 

Veryard, R 1998, SCIPIO: Aims, Principles and Structure v0.9, viewed 30 Aug 2007 
<http://www.users.globalnet.co.uk/~rxv/scipio/SCIPIOap.PDF>. 

Voas, J 1998, 'Certifying off-the-shelf software components', Computer, vol. 31, no. 6,  pp. 53-59. 
W3C 2003, SOAP Version 1.2, W3C, viewed 26 Dec 2006 <http://www.w3.org/TR/soap12/>. 
Walls, JG, Widmeyer, GR & El Sawy, OA 1992, 'Building an information system design theory 

for vigilant EIS', Information Systems Research, vol. 3, no. 1,  pp. 36-59. 
Wang, G, Ungar, L & Klawitter, D 1999, 'Component assembly for OO distributed systems', 

Computer, vol. 32, no. 7,  pp. 71-78. 
Wang, Q, Chen, F, Mei, H & Yang, F 2002, 'An application server to support online evolution', 

Proceedings of the 18th International Conference on Software Maintenance (ICSM 
2002), pp. 131-140. 

Wang, Q, Shen, J, Wang, X & Mei, H 2006, 'A component-based approach to online software 
evolution', Journal of Software Maintenance and Evolution: Research and Practice, vol. 
18, no. 3,  pp. 181-205. 

Warren, I & Sommerville, I 1996, 'A model for dynamic configuration which preserves application 
integrity', Proceedings of the 3rd International Conference on Configurable Distributed 
Systems 1996 (ICCDS'96), IEEE Computer Society, Annapolis, Maryland, pp. 81-88. 

Wasserman, AI, Freeman, P & Porcella, M 1983, 'Characteristics of software development 
methodologies', in TW Olle, H Sol & C Tully (eds), Information System Design 
Methodologies: A Feature Analysis, Elsevier B.V., Amsterdam, pp. 37-62. 

Wermelinger, M 1998, 'Towards a chemical model for software architecture reconfiguration', IEE 
Proceedings - Software, vol. 145, no. 5,  pp. 130-136. 

White, SA 2004, Workflow Patterns with BPMN and UML, IBM Corp., viewed 7 Jul 2009 
<http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf>. 

Wienberg, A, Matthes, F & Boger, M 1999, 'Modeling dynamic software components in UML', in, 
Proceedings of the 2nd International Conference on Unified Modelling Language 
(UML'99), Springer-Verlag, pp. 204-219. 

Wilcoxon, F 1945, 'Individual comparisons by ranking methods', Biometrics Bulletin, vol. 1, no. 
6,  pp. 80-83. 

Wohlin, C, Runeson, P, Höst, M, Ohlsson, MC, Regnell, B & Wesslén, A 2000, Experimentation 
in Software Engineering: An Introduction, Kluwer Academic Publishers. 

Wold, S, Sjöström, M & Eriksson, L 2001, 'PLS-regression: a basic tool of chemometrics', 
Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2,  pp. 109-130. 

Wood, B, Pethia, R, Gold, LR & Firth, R 1988, A Guide to the Assessment of Software 
Development Methods, Technical Report CMUSEI-88-TR-8, 
Software Engineering Institute. 

WS-I 2006, About WS-I, Web-Service Interoperability Organisation, viewed 11 Jul 2007 
<http://www.ws-i.org/about/>. 

Wu, M, Etta, P & Zheng, Y 2005, 'Information Systems and Health Care IV: Real-time ROC 
analysis to evaluate radiologists' performance of interpreting mammography', 

http://desrist.org/design-research-in-information-systems
http://desrist.org/design-research-in-information-systems
http://desrist.org/design-research-in-information-systems
http://www.users.globalnet.co.uk/~rxv/scipio/SCIPIOap.PDF
http://www.w3.org/TR/soap12/
http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf
http://www.ws-i.org/about/


Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 244 

Communications of AIS, vol. 2005, no. 16,  pp. 340-355. 
Xiao, H, Guo, J & Zou, Y 2007, 'Supporting change impact analysis for service oriented 

business applications', International Workshop on Systems Development in SOA 
Environments, 2007 (SDSOA '07), ed. J Guo, IEEE Computer Society, p. 6. 

Yan, H, Garlan, D, Schmerl, B, Aldrich, J & Kazman, R 2004, 'DiscoTect: a system for 
discovering architectures from running systems', Proceedings of the 26th International 
Conference on Software Engineering, IEEE Computer Society, pp. 470-479. 

Yang, J 2003, 'Web service componentization', Communications of the ACM, vol. 46, no. 10,  pp. 
35-40. 

Yang, Z, Cai, S, Zhou, Z & Zhou, N 2005, 'Development and validation of an instrument to 
measure user perceived service quality of information presenting Web portals', 
Information & Management, vol. 42, no. 4,  pp. 575-589. 

Yau, SS, Collofello, JS & MacGregor, TM 1993, 'Ripple effect analysis of software maintenance', 
in M Shepperd (ed.), Software Engineering Metrics I: Measures and Validations, 
McGraw-Hill Inc., pp. 71-82. 

Yellin, DM & Strom, RE 1997, 'Protocol specifications and component adaptors', ACM 
Transactions on Programming Languages and Systems, vol. 19, no. 2,  pp. 292-333. 

Yen, I-L, Ma, H, B. Bastani, F & Mei, H 2008, 'QoS-reconfigurable Web services and 
compositions for high-assurance systems', Computer, vol. 41, no. 8,  pp. 48-55. 

Yin, RK 2003, Case Study Research: Design and Methods, 3rd edn, SAGE Publications. 
Yu, L, Mishra, A & Ramaswamy, S 2010, 'Component co-evolution and component dependency: 

speculations and verifications', IET Software, vol. 4, no. 4,  pp. 252-267. 
Yu, P, Ma, X & Lu, J 2005, 'Dynamic software architecture oriented service composition and 

evolution', Proceedings of the 5th International Conference on Computer and 
Information Technology (CIT'05), IEEE Computer Society, pp. 1123-1129. 

Yun, GW & Trumbo, CW 2000, 'Comparative response to a survey executed by post, e-mail, & 
web form', Journal of Computer-Mediated Communication, vol. 6, no. 1,  pp. 0-0. 

Zambonelli, F, Jennings, NR & Wooldridge, M 2003, 'Developing multiagent systems: The Gaia 
methodology', ACM Transactions on Software Engineering and Methodology, vol. 12, 
no. 3,  pp. 317-370. 

Zelkowitz, MV & Wallace, DR 1998, 'Experimental models for validating technology', Computer, 
vol. 31, no. 5,  pp. 23-31. 

Zenger, M 2004, 'Programming Language Abstractions for Extensible Software Components', 
Ph. D. thesis, EPFL, Lausanne. 

Zhang, H, Urtado, C & Vauttier, S 2009, 'Connector-driven process for the gradual evolution of 
component-based software', Proceedings of the 2009 Australian Software Engineering 
Conference, IEEE Computer Society, Gold Coast, Australia, pp. 246-255. 

Zhang, J & Cheng, BHC 2006, 'Model-based development of dynamically adaptive software', 
Proceedings of the 28th International Conference on Software Engineering, ACM, 
Shanghai, China, pp. 371-380. 

Zhang, J, Cheng, BHC, Yang, Z & McKinley, PK 2005, 'Enabling safe dynamic component-
based software adaptation', in A Romanovsky, R de Lemos & C Gacek (eds), 
Architecting Dependable Systems III, Springer-Verlag, pp. 194-211. 

Zhang, P, Zhou, Y & Li, B 2007, 'A service-oriented methodology supporting automatic 
synthesis and verification of component behavior model', 8th ACIS International 
Conference on Software Engineering, Artificial Intelligence, Networking, and 
Parallel/Distributed Computing, vol. 1, IEEE Computer Society, pp. 511-516. 

Zhao, J, Yang, H, Xiang, L & Xu, B 2002, 'Change impact analysis to support architectural 
evolution', Journal of Software Maintenance and Evolution: Research and Practice, vol. 
14, no. 5,  pp. 317-333. 

Zhao, W 2009, 'Design and implementation of a Byzantine fault tolerance framework for Web 
services', Journal of Systems and Software, vol. 82, no. 6,  pp. 1004-1015. 

Zieba, B & van Sinderen, M 2006, 'Preservation of correctness during system reconfiguration in 
data distribution service for real-time systems (DDS)', Proceedings of the 26th IEEE 
International Conference on Distributed Computing Systems Workshops (ICDCSW 
2006), pp. 30-30. 

Zimmermann, M & Drobnik, O 1994, 'Specification and implementation of reconfigurable 
distributed applications', Proceedings of the 2nd International Workshop on 
Configurable Distributed Systems (IWCDS'94), pp. 23-34. 



Selected Bibliography Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 245 

Zimmermann, O, Krogdahl, P & Gee, C 2004, Elements of Service-Oriented Analysis and 
Design, IBM Corp., viewed 6 Jun 2008 
<http://www.ibm.com/developerworks/webservices/library/ws-soad1/>. 

 

 

http://www.ibm.com/developerworks/webservices/library/ws-soad1/


Appendix A. Systematic Literature Review Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 246 

Appendix A. SSYSTEMATIC LITERATURE REVIEW 

This Appendix describes the steps undertaken to perform the systematic literature 

review to identify feature requirements for dynamic evolution (or “dynamic evolution 

requirements” for short) from the literature. This research distinguishes between two 

types of dynamic evolution requirements to handle the complexity of dynamic evolution: 

 Dynamic evolution quality factor requirements (or “dynamic evolution quality 

factors” for short), concerned with how well a distributed application and 

dynamic changes to it are designed to facilitate dynamic evolution; and 

 Dynamic change requirements, accounting for the characteristics of dynamic 

changes to a distributed application including various kinds of changes that a 

distributed application would accommodate; who enacts such changes; and the 

notion of errors arisen from such changes. 

The systematic literature review steps undertaken are described below. They follow the 

guidelines from Kitchenham et al. (2009) which are based on the original review 

guidelines proposed by Kitchenham (2004). Any differences in the treatment for the two 

types of dynamic evolution requirements are noted accordingly: 

1. Research question 

The objective of the review is to answer the following research question: 

What dynamic evolution requirements are considered in the literature 

and should be addressed during software development for composition-

based distributed applications? 

2. Search process 

The search process was a search of relevant articles from conference 

proceedings and journals, covering the period 1994 to 2010. The search used 

their respective journal and proceeding databases rather than search engines 

since the latter are not designed to support systematic literature review 

(Brereton et al. 2007). A rationale for selecting particular conference 

proceedings and journals for the search process was because most of them are 

known to publish research on maintenance, evolution and distributed systems. 

Table Appendix A.1 lists the selected journals and conference proceedings. 



Appendix A. Systematic Literature Review Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 247 

Table Appendix A.1 Selected Journal and conference proceedings for feature requirement synthesis 

Source Title Abbreviation 

Journals 

Communications of the ACM CACM 

ACM Transactions on Computer Systems TOCS 

ACM Transactions on Software Engineering and Methodology TOSEM 

European Journal of Information Systems EJIS 

IEEE Computer  

IEEE Software  

IEEE Transactions on Software Engineering TSE 

IET Software (formerly "IEE Proceedings Software" and "Software 
Engineering Journal") IETS 

Information and Software Technology IST 

Information Systems Journal ISJ 

Information Systems Research ISR 

Journal of Information Technology JIT 

Journal of Software Maintenance and Evolution: Research and 
Practice (formerly "Journal of Software Maintenance") JSME 

Journal of Systems and Software JSS 

MIS Quarterly MISQ 

Requirements Engineering  

Conference 
Proceedings 

International Symposium on Component-Based Software 
Engineering (formerly "ICSE Workshop on Component-Based 
Software Engineering") CBSE 

International Conference on Configurable Distributed Systems 
IWCDS, 
ICCDS 

International Conference on Distributed Computing Systems ICDCS 

International Conference on Service-Oriented Computing ICSOC 

International Conference on Software Engineering ICSE 

International Conference on Software Maintenance ICSM 

 

3. Inclusion and exclusion criteria 

The following criteria were used to filter articles from the journals and 

conference proceedings listed in Step 2: 

 An included article must be in English. 

 An included article must address software development. 

 An included article’s title or abstract must have one of the following search 

terms or variations of it (e.g. “adapt” in verb form vs. “adaptability” in noun 

form): dynamic, runtime, online, adaptation, change, evolution, maintenance, 

(re)configuration, update, and upgrade. 



Appendix A. Systematic Literature Review Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 248 

 The topic described by an included article must be relevant to dynamic 

evolution since it is studied under different terms: live, running, runtime, 

dynamic, online etc. 

 The work described by an included article must be sufficiently generic for 

composition-based distributed applications, including component- or SOA-

based types. 

 The article must be a “full paper”. Example short articles that are excluded 

are “poster papers” in conference proceedings. 

 Only the most recent version of the same study was included in the review. 

Duplicate and earlier reports of the same study, even when they appear in 

different journals/conference proceedings, are excluded; 

 Articles on the following topics were excluded: 

o hardware evolution; 

o data and schema evolution (e.g. Roddick 1992); and 

o studies targeting object- and aspect-oriented techniques, since they 

may be too low level and unsuitable for composition-based 

distributed applications (Andrade et al. 2002). 

4. Quality assessment 

To improve the credibility of the dynamic evolution requirements synthesised, 

the following quality criteria were used to filter the articles selected in Step 3: 

 The work described by an included article must be complete rather than in-

progress. 

 An included article solves at least one problem or aspect relevant to 

dynamic evolution. 

 An included article has been cited. 

5. Data collection 

The articles remained after Step 4 were examined for “raw” dynamic evolution 

requirements (raw requirements were synthesised into actual dynamic evolution 

requirements in the next step). The following selection criteria were used to 

guide the identification of raw requirements to focus on areas relevant to this 

research:  

 An included raw requirement is relevant to dynamic evolution of 

composition-based distributed applications; 



Appendix A. Systematic Literature Review Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 249 

 An included raw requirement can be addressed and/or reasoned about 

during analysis and/or design of such applications;  

 An included raw requirement should be sufficiently generic to a variety of 

composition-based distributed applications, including component-based and 

service-oriented applications which are the main focus of this research;  

 An included raw requirement is concerned with to a technical aspect (e.g. 

structural) of dynamic evolution; and 

 A raw requirement that falls into the areas generally excluded from this 

research (Section 1.5) is excluded. 

For each raw requirement identified, the following data were recorded: 

 the original textual description for the requirement; 

 bibliographical information (author name(s), article title, journal/conference 

name etc.); and 

 the kind of composition-based distributed application(s) for which the 

associated article is intended. 

6. Data analysis: 

After identification in Step 5, the set of “raw” requirements was revised to 

reconcile the meaning of overlapping requirements, to remove duplicate 

requirements, to change the descriptions to use standardised terms (e.g. 

transformation) and to narrow the descriptions to be specific to dynamic 

evolution. Groupings were formed using appropriate schemes as stated in the 

research design (cf. Section 3.2.1), in accordance with the types of 

requirements: 

 For dynamic evolution quality factors 

The revised requirements are called quality attributes. Quality attributes 

characterising the same quality aspect (e.g. security) were grouped to form 

the definitions for the factor23. Quality factors were then categorised into four 

groups (soundness of change, infusibility of change, changeability of 

application, and robustness of application) according to their similarities and 

contexts. The category-factor-attribute hierarchy corresponds to the quality 

                                                   

23 A quality attribute describes an assessable characteristic possessed by a quality factor. An 
example assessable characteristic is “no missing component”. 



Appendix A. Systematic Literature Review Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 250 

levels (i.e. characteristic, sub-characteristic and attribute) in the quality 

model of the International Standard ISO/IEC 9126-1 (ISO/IEC 2001). 

 For dynamic change requirements 

The revised requirements are called dynamic change requirements. The 

dynamic change requirements were categorised along two dimensions: 

methodology and application. The methodology dimension determines 

whether a dynamic change requirement is a modelling related (concept, 

notation and model) or work related (what must be done and how to do it) 

concern to be addressed by a methodology to support dynamic evolution. 

The application dimension classifies dynamic change requirements in line 

with their areas of concern: for individual parts, for the application as a 

whole, and for all other situations. 

7. Derivation (refinement) 

A complementary search was performed on the bibliographies of the articles 

that offer dynamic evolution requirements (after Step 5) for additional articles. 

This was to account for important and cited articles not covered in the journals 

and conference proceedings (cf. Table Appendix A.1) and the period searched 

in Step 2. Afterwards, Steps 3-6 were repeated for the additional articles. 

 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 251 

Appendix B. FFEATURE ANALYSIS RESULTS OF 

DEVELOPMENT METHODOLOGIES 

This Appendix documents the detailed results of evaluating selected methodologies (cf. 

Section 2.4) for their extent of support for the dynamic evolution requirements proposed 

in this research. The evaluation was limited to a qualitative review of the respective 

documentation of the methodologies. The results are organised into three areas of 

concern as per the requirement types: 

 dynamic evolution quality factors and attributes (Appendix B.1); and 

 dynamic change requirements, which are further divided into  

o modelling related dynamic change requirements (Appendix B.2); and 

o work related dynamic change requirements (Appendix B.3) 

The results are summarised elsewhere in Table 5.12 for dynamic change requirements 

and in Table 4.9 for dynamic evolution quality factors. To rate a methodological feature 

for its extent of support for a requirement, the scaling points in Table Appendix B.1 

were developed for and used in the evaluation: 

Table Appendix B.1 Scale points for scoring a methodology’s feature  
Scale Point Definition 

H(high) A feature appears explicitly in a methodology and fully supports the feature 
requirement, providing opportunities for rreuse. 

M(medium) A feature appears explicitly in a methodology and supports the feature requirement to a 
limited extent and needs ssmall enhancement. 

L(low) A feature appears explicitly in a methodology, does not adequately address many 
aspects of the feature requirement and needs significant enhancement. This may take 
as much effort as new development. 

[blank] A methodology fails to recognise any support for the requirement. This identifies an 
area in the methodology for nnew development. 

 

B.1 EVALUATION RESULTS OF SUPPORT FOR DYNAMIC 
EVOLUTION QUALITY FACTORS 

This section documents the detailed results of evaluating selected methodologies (see 

Section 2.4) for their extent of support for the dynamic evolution quality factors 

proposed in this research (see Section 4.4 for summary). Each subsection reports the 

evaluation results for a particular dynamic evolution quality factor. Each subsection is 

divided by lines of boxed text, each of which representing a quality attribute of the 

respective quality factor. The text below each quality attribute (i.e. boxed text) 

documents the evaluation results for the attribute using the following format. Each 

methodology that offers support to a quality attribute is given an evaluation score and a 

brief description of the support. The evaluation score indicates the extent of support as 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 252 

per Table Appendix B.1 (i.e. “HH” for high, “M” for medium, and “L” for low). An 

evaluation score appearing in bold font indicates that the corresponding feature of a 

methodology is a potential source for reuse or enhancement (i.e. rated as “H” or “M”). 

The brief description part records the name of a methodology and briefly describes its 

feature that offers the support.  

B.1.1 Soundness of Change 

B.1.1.1 Completeness 

no missing functionality after a transformation 

H: RUP’s “review the design” task evaluates a design model as a whole to check if it 

fulfils its requirements. In each iteration of a development lifecycle, it verifies that there 

is no missing behaviour by checking to see that all scenarios (i.e. use cases) specified 

have been completely realised by respective designs. 

L: OPF offers “inspections” which is a generic technique to evaluate work products to 

identify defects and issues. 

no missing parts after a transformation 

no missing, illegal or broken bindings after a transformation 

L: RUP highlights the importance of configuration management in ensuring the overall 

completeness of an application. RUP also has several tasks (e.g. “perform configuration 

audit”) under the “configuration and change management” process to manage changes. 

L: EPIC’s checklist for a “component dossier document” includes items for identifying what 

a component offers, what capabilities are expected from the component to build the 

system, and how the missing capabilities can be fulfilled. 

(Also in Consistency) assumptions and properties of a distributed application and its 

parts met by a change 

See Consistency in Appendix B.1.1.2 for the quality attribute above. 

B.1.1.2 Consistency 

all parts involved in a runtime change identified before a transformation 

L: RUP highlights the importance of configuration management in supporting the 

consistency of an application. 

adequate resources and support for new and changed parts 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 253 

No direct support is identified for the quality attribute listed above. 

system invariants preserved from a transformation 

HH: In SeCSE’s “regression testing” technique, possible invariants are automatically 

generated using tools. Test cases are then developed to verify if the generated 

invariants are violated. This technique also uses known invariants, which are captured 

as part of specifications of services, to generate additional test cases and check the 

design against the invariants. 

(Also in Completeness) assumptions and properties of a distributed application and its 

parts met by a change 

L: KobrA defines six consistency rules (Atkinson et al. 2002, pp94 & 334) to ensure that 

artefacts in a product line are mutually consistent with one another as they are subject 

to constant demand for changes: 

 intra-diagram rule: well-formed individual diagrams; 

 inter-diagram rule: diagrams at the same abstraction level consistent with one 

another; 

 realisation rule: component’s realisation correctly representing its specification; 

 clientship rule: clients and servers fulfilling their contract; 

 containment rule: component relationships at runtime consistent with their 

relationships at development time; and 

 specialisation rule: specialised components (e.g. application’s) conforming to 

the component from which it is specialised (e.g. framework’s). 

L: SeCSE defines several online testing approaches to detect SLA (service-level-

agreement) and QoS (quality-of-service) violations. 

L: RUP has several tasks (e.g. “perform configuration audit”, “develop deployment plan”) 

under the “configuration and change management” process to verify changes. 

compatible connections, meaning for component-based system: types and directions of 

connected ports matching, and for service-oriented system: compatibility between 

service consumers and providers 

compatible communications protocols among parts 

no progression towards an error state after a transformation 

synchronisation of application’s and parts’ states after a transformation, and specific to 

SOA: synchronisation of state information of messages and new services after a 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 254 

transformation 

a reachable state attained after a transformation 

no critical procedures executed before a transformation 

no pending messages, interactions or transactions before a transformation 

No direct support is identified for the quality attributes listed above. 

B.1.1.3 Correctness 

non-arbitrary and admissible changes 

L: AEM checks modifications in the “maintain consistency and system integrity” task. 

L: RUP highlights the importance of configuration management in supporting 

correctness of an application. In its “configuration and change management” process, 

several tasks (e.g. “confirm duplicate or rejected change requests”) are specified to manage 

changes. However, these tasks are oriented towards change requests from the 

business and are not explicitly related to dynamic aspects of changes. 

L: OPF prescribes the task “configuration control” to manage changes on work products 

under configuration management. One of its responsibilities is to evaluate each change 

request, and then either approves, rejects, or postpones it. 

correct ordering of transformations 

no unintentional behaviour during and after a transformation 

transformations at a right time 

No direct support is identified for the quality attributes listed above. 

BB.1.2 Infusibility of Change 

B.1.2.1 Efficiency 

easily executed transformations 

quickly executed transformations 

resource efficient transformations 

Minimal disruptions to application functions and their users during a transformation 

Minimal degradation to application performance during and after a transformation 

No direct support is identified for the quality attributes listed above. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 255 

B.1.2.2 Locality 

application partitioning and change localisation to partitions 

MM: To confine the propagation of changes, Catalysis suggests using packages to 

partition model elements into separate areas, with explicit dependencies between them 

(D'Souza & Wills 1998, pp298-9). Catalysis also lists a number of ways to partition a 

system into packages, such as vertical slicing (from user perspectives), horizontal 

slicing (i.e. business vs. technical), and domain driven partitioning (e.g. user interface 

vs. persistence). 

L: OPF uses both layering and partitioning to organise the grouping of functionality 

provided by various parts of an architecture. 

L: In Select Perspective, business components (i.e. the business layer) are separated 

from the database schema for data management (i.e. the resource layer), to avoid 

major ripples between them. That is, changes that occur in the business components 

are expected to have little or no effect on the database structure. 

B.1.2.3 Maintainability 

no degradation in cost and ease of modifications  

M: In Select Perspective, easily maintained components and applications mean: 

 interfaces are properly designed, documented and tested; 

 tools and templates are available to streamline implementation; and 

 component specification and implementation information is published and 

properly catalogued to facilitate search and retrieval for reuse. 

M: In EPIC, an “evolvable” (i.e. easy to accommodate changes) architecture exhibits 

these characteristics: 

 layered to group components; 

 highly modular with optimally scoped and sized components; 

 well-defined and standard based component interfaces; and 

 common mechanisms (e.g. means of component communication). 

M: OPF suggests a number of mechanisms to implement maintainability: 

 layered architectures; 

 modular software; 

 information hiding of implementation; 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 256 

 well-defined interfaces; 

 object-orientation and component-based development; 

 complete and current documentation; and 

 adherence to project conventions. 

all parts clearly defined in interaction (or workflow) specifications 

No direct support is identified for the quality attribute listed above. 

no reduction in testability 

No direct support is identified for the quality attribute listed above. RUP, however, offers 

the “verify changes in build” task in the “configuration and change management” to deal with 

testing and verification of changes. But it does not address testability of an application. 

Testability is also noted as a systemic quality but neither its definition nor how it can be 

improved is provided. 

clear and detailed interactions 

No direct support is identified for the quality attribute listed above. 

B.1.2.4 Transparency 

transformation design and implementation hidden from application programmers 

transformation agents hidden from operating environment  

No direct support is identified for the quality attributes listed above. 

transformations hidden from end users 

L: AEM constrains the design of an architecture to follow the C2-style topology 

(Medvidovic et al. 1999) to hide runtime changes in one layer from components in the 

layer below it. 

RUP acknowledges component “run-time replaceability” as a way to support upgrade 

with “no loss of availability” but does not describe how it can be supported. 

transformations hidden from parts unaffected by the transformations 

No direct support is identified for the quality attribute listed above. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 257 

BB.1.3 Flexibility of Application 

B.1.3.1 Autonomy 

self-control and self-governance of parts’ own processing 

H: ERL provides the “service autonomy” principle, and distinguishes between “service-

level autonomy” and “pure autonomy”. 

L: P&H discusses “distributed governance” for business units. 

B.1.3.2 Configurability 

distributed application configurable to different policies for dynamic changes and 

transformations 

No direct support is identified for the quality attribute listed above. 

B.1.3.3 Coordination 

transformations coordinated among multiple nodes/organisations 

transformation agents tolerant of network unreliability during a transformation 

No direct support is identified for the quality attributes listed above. 

B.1.3.4 Extensibility 

runtime extension/upgrade of an application with new functionality 

L: ERL contends that operations and messages should be designed in a way that are 

business activity-agnostic such that functionality extensions would minimise and avoid 

changes to existing interfaces (Erl 2005, p. 558). 

runtime extension/upgrade of parts in an application with new functionality 

No direct support is identified for the quality attribute listed above. Nevertheless, ERL 

acknowledges “extensibility” but does not properly deal with it. 

runtime extension/upgrade of an application with new parts 

L: ERL notes that when handling new requirements, composing existing services 

without modifying their interfaces should be considered first. 

B.1.3.5 Flexibility 

any part of a distributed application to be changeable at runtime 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 258 

L: AEM advocates the notion of a “C2-style” architecture in which components are 

distributed in layers. Components in one layer only use and communicate with those in 

the layer above it. Thus, components in one layer are oblivious to runtime changes to 

those in the layer below it. 

distributed application accommodating a variety of runtime changes 

No direct support is identified for the quality attribute listed above. 

B.1.3.6 Loose Coupling 

high level of independence between parts 

HH: Catalysis offers the ”decoupling process” pattern for objects and classes. 

M: ERL offers the “service loose coupling” principle to design a loosely coupled 

architecture. Its “service contract” principle reduces the processing logic from using 

different services as this would lead to tight dependencies (i.e. tight coupling). 

L: KobrA notes the use of layers to improve low coupling between a product-line 

framework and applications using the framework. 

L: OPF notes the use of tiers and coupling for application design. It also offers the 

“collaboration analysis” technique to reduce system coupling. 

H: P&H offers the “service coupling” principle as a guideline for SOA-based applications. 

M: RUP offers the ”solution partitioning” and “package coupling” principles and the “design 

subsystem” guidelines to address coupling and cohesion. 

parts having their own lifecycles and runtime environments 

No direct support is identified for the quality attributes listed above. 

B.1.3.7 Separation of Concerns 

separating dynamic change concerns from functionality concerns 

separating communication concerns from functionality concerns 

separating security support from functionality 

No direct support is identified for the quality attributes listed above. 

separating realisations of parts (e.g. service providers) from those of their clients (e.g. 

service consumers) 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 259 

L: CBDI-SAE notes it is important for component consumers to be separated from 

component providers. 

HH: Select Perspective uses two development processes to keep development activities 

of component providers independent from those of component consumers, thereby 

decoupling their realisation dependencies. 

separating part specification from realisation concerns 

H: ASG separates service specification in a service discovery database from the 

service providers offering the service. 

H: Catalysis maintains component specification from implementation in its techniques. 

L: CBDI-SAE notes it is important for service realisation to be separated from 

implementation as a key objective. 

H: ERL offers the “service abstraction” principle. Its purpose is to hide the underlying 

details of the service so that only the service contract is available and of concern to 

service requestors. 

H: KobrA clearly distinguishes among component specification, realisation and 

implementation throughout its lifecycle of activities. 

H: P&H offers the ”process realisation analysis” activity which utilises the separation of 

specification from implementation to implement Web services in different ways. 

H: RUP uses different activities (“identify design elements”, “identify services” etc.) to 

separately address identification, design and realisation of services. 

H: SeCSE offers tasks to define abstract service composition, and others to design 

alternative concrete services. 

H: Select Perspective defines four levels of component abstractions - specification, 

implementation, executable and deployment – and offers various tasks to support their 

development separately. 

B.1.4 Robustness of Application 

B.1.4.1 Fault tolerance 

high tolerance of faulty new and/or changed parts 

L: OPF catalogues “exception handling” as a basic technique to trap and handle errors at 

the code level during the execution of an application. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 260 

L: In RUP, designing with “redundancy” is a mechanism to handle fault tolerance, say, to 

alleviate reliance on faulty servers. To handle a faulty server (but not the parts running 

on it), parts on the server are designed to be “location transparent”; they can be relocated 

to a server on another node to continue to operate. In addition, RUP suggests 

diagnostics on a running application be available to monitor its faults/errors. 

MM: SeCSE employs several processes together addressing faulty services (SeCSE 

2007, pp. 28-31, 38-39). The “Service monitoring” process, which is complemented with 

tool support, observes and checks at runtime that each service conforms to its 

expected functional and non-functional behaviour. If a service is found to deviate from 

its expected behaviour, the “recovery management” process is notified to recover the 

associated application from the problematic behaviour. It firstly uses the “binding and re-

binding” process which attempts to look for alternative services offering comparative 

functionality, and select the most appropriate ones. If no alternative is found, recovery 

management instructs the “runtime service composition management and re-planning” 

process to generate an alternative service, composed of other existing services, to 

substitute the problematic service. 

barriers established to contain potentially faulty new and replacement parts 

L: OPF offers “exception handling” as a basic technique to trap and handle errors at the 

code level during the execution of an application. 

B.1.4.2 Recoverability 

Restoration of an application and its parts to a state to continue to perform their 

functionality, after a failure caused by a transformation and/or its change(s) 

L: OPF defines a set of disaster recovery activities to deal with major disasters, whether 

natural or man-made. 

L: SeCSE defines the “recovery management” process to recover a system from 

problematic behaviour but it is not specific to dynamic evolution (SeCSE 2007, pp. 29-

30). 

B.1.4.3 Reliability  

no compromise on intended functionality after a transformation 

L: In EPIC, reliability of components must be benchmarked and evaluated against the 

overall reliability requirements for the overall system. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 261 

L: RUP acknowledges the need for evaluating reliability during the “review the 

architecture” activity, but lacks support for improving reliability. 

replacement parts fully satisfying their roles 

L: In EPIC, reliability of components must be benchmarked and evaluated against the 

overall reliability requirements for the overall system. 

L: RUP acknowledges the need for evaluating reliability during the “review the 

architecture” activity, but lacks support for evaluating and improving reliability. 

HH: SeCSE’s “regression testing” technique (SeCSE 2008) aims at ensuring that a 

replacement service is accessible, performs its operations, and behaves as expected 

after it replaces the obsolete original service. This technique checks both the 

functionality and QoS aspects of the replacement service. “QoS testing” and “agreement 

testing” are related techniques for measuring the boundaries of the service-level-

agreements provided by services, but they do not adequately address the dynamic 

evolution requirement above. 

B.1.4.4 Safety 

distributed application and its parts operating safely during and after a transformation 

L: AEM suggests architectural changes are analysed during its “enact changes” task to 

check if they render an application to become unsafe. 

M: In OPF, there is a full discipline dedicated to safety: “Work Product Safety 

Engineering”. This discipline is to ensure work products - systems, applications and 

components - do not exceed accepted levels of safety risks. Safety control begins with 

the “safety program planning” activity to define an overall safety programme plan for a 

particular application. Then, during the “safety risk analysis” activity acceptable safety 

risks are identified and safeguards are determined. Next, the “safety monitoring” activity 

is executed to monitor and report the status of the safety programme. If safety incidents 

are detected, the “incident investigation” activity is conducted to determine the causes of 

safety incidents and appropriate steps required to prevent their recurrence. The “safety 

compliance assessment” activity is used to analyse if an application conforms to a safety 

programme, standards and/or other safety requirements. Optionally, the application can 

be certified for compliance in the “safety certification” activity. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 262 

B.1.4.5 Security 

transformation agents secured from unauthorised access 

no security compromise after a transformation 

access to new and replacement parts restricted after a transformation 

L: EPIC’s checklist for a “component dossier document” includes items for checking if 

components meet the security requirements for the overall system. 

MM: OPF defines a process called “Security Engineering” to address security in an 

endeavour. It is structured as a generic framework to tackle security but it is not specific 

to a particular problem domain. Its tasks are performed to ensure security needs of the 

work products are met. In “security risk assessment”, security risks on work products are 

assessed. The assessment results are used in the “security policy production” activity to 

create approved security policies and privacy statements. When the policies are ready, 

the “security enforcement” activity puts in place the mechanisms to enforce them. Then, 

activities for “preventing” and “deterring” security threats from occurring can be activated. 

Where appropriate, the “security auditing” and “security threat detection and analysis” 

activities are conducted on business units, data centres etc. for security assessment 

and impact analysis from threats. 

L: In RUP, overall security of an architecture is evaluated in the “review the architecture” 

activity but it lacks guidelines for doing such an evaluation. 

dynamically updated security policy 

separating security policy from security enforcement 

No direct support is identified for the quality attributes listed above.  

B.2 EVALUATION RESULTS OF SUPPORT FOR MODELLING 
RELATED DYNAMIC CHANGE REQUIREMENTS 

Table Appendix B.2 presents the detailed results of evaluating selected methodologies 

(see Section 2.4) for their extent of support for the dynamic change requirements 

concerning the modelling aspect of a methodology (see Section 5.4 for summary). The 

evaluation took into account the following variations: 

1. Catalysis, Select Perspective, KobrA and RUP adopt UML as their modelling 

approach with or without extensions. Thus, their evaluations thus included the 

evaluation of UML. 



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 263 

2. OPF is designed to integrate with UML and Open Modelling Language (OML, 

Firesmith et al. 1997) as its modelling approach. In the evaluation, OPF’s 

modelling capabilities were assessed in conjunction with UML and OML. 

3. P&H and SUPER adopt BPMN (OMG 2009) as their modelling approach with or 

without extensions. Thus, they were evaluated together with BPMN. 

The first letter of each evaluation score represents a scale point (“H” for high, “M” for 

medium, “L” for low). See Table Appendix B.1 for its definitions. 

Table Appendix B.2 Evaluation of support for modelling related change requirements (see Sections 
5.1.4 and 5.2.3 for definitions) 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

Service Level 

m
ul

tip
le

 v
er

si
on

 
co

ex
is

te
nc

e 

        

L:
m

ul
tip

le
 s

er
vi

ce
 

ve
rs

io
n

s 

   

L:
m

ul
tip

le
 

ve
rs

io
n

s 
of

 
bu

si
ne

ss
 p

ro
ce

ss
 

m
od

el
 

re
so

ur
ce

 n
ee

ds
 

  

L:
ev

id
e

nt
 o

n
ly

 in
 

an
 e

xa
m

p
le

 

 

L:
pa

rt
 o

f 
pe

rf
or

m
a

nc
e

 

L:
re

so
ur

ce
 

m
an

ag
em

en
t 

no
te

d 
fo

r 
m

ai
nt

en
a

nc
e

 

  

L:
re

so
ur

ce
 

re
a

llo
ca

tio
n

 fo
r 

S
LA

 c
o

m
p

lia
nc

e
 

    

pe
rf

or
m

an
ce

 c
ha

ra
ct

er
is

tic
s 

  

H
:p

e
rf

or
m

a
nc

e
 m

et
ric

s 
m

od
el

 

L:
ca

pt
ur

e
d 

as
 p

a
rt

 o
f u

se
 c

as
es

 

 

H
: s

pe
ed

,  e
ff

ic
ie

nc
y,

  a
va

ila
b

ili
ty

,  
a

cc
u

ra
cy

, t
h

ro
ug

h
pu

t, 
re

sp
on

se
 ti

m
e,

  
re

co
ve

ry
 ti

m
e,

 r
es

o
ur

ce
 u

sa
g

e 
[a

ls
o 

re
ite

ra
te

d
 in

 R
U

P
]  

L:
so

m
e

 p
er

fo
rm

a
nc

e
 a

ttr
ib

ut
es

 a
s 

p
ar

t 
of

 te
ch

ni
ca

l c
o

ns
tr

ai
nt

s 

 

H
:c

a
pa

ci
ty

, l
at

en
cy

, t
hr

ou
g

hp
ut

, 
re

sp
o

ns
e

 ti
m

e 

 

H
: s

pe
ed

,  e
ff

ic
ie

nc
y,

  a
va

ila
b

ili
ty

,  
a

cc
u

ra
cy

, t
h

ro
ug

h
pu

t, 
re

sp
on

se
 ti

m
e,

  
re

co
ve

ry
 ti

m
e,

 r
es

o
ur

ce
 u

sa
g

e 
[a

ls
o 

re
itee

ra
te

d
 in

 E
P

IC
] 

  

L:
p

er
fo

rm
a

nc
e

 d
at

a 
n

ot
ed

 

ac
ce

ss
 b

lo
ck

in
g 

             

Application Level 

dy
na

m
ic

 c
ha

ng
e 

L:
”c

ha
ng

e
 

de
sc

rip
tio

ns
” 

n
ot

e
d

 

 

L:
on

e 
ch

an
g

e 
pe

r 
pa

ck
ag

e 
re

le
as

e
 

   

L:
su

pp
or

t f
o

r 
ch

a
ng

e 
at

 
de

si
gn

 ti
m

e
 o

nl
y 

   

L:
ru

nt
im

e 
ch

a
ng

e
 

lim
ite

d 
to

 r
e

pl
ac

e
m

en
t 

of
 fa

il e
d

 s
e

rv
ic

es
 v

ia
 

“r
e

-p
la

n
ni

ng
” 

  



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 264 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

tr
an

sf
or

m
at

io
n 

      

L:
”c

ha
ng

e
 

op
e

ra
to

r 
“u

se
d 

at
 

de
si

gn
 ti

m
e

 o
nl

y 

      

tr
an

si
tio

na
l f

or
m

 

             

ge
ne

ra
tio

n 

    

[ [s
ee

 R
U

P
] 

 

L:
”e

vo
lu

tio
n

 
gr

a
ph

” 

  

M
:”

so
ft

w
a

re
 

g g
en

er
at

io
n

” 
fr

o
m

 
e

vo
lu

tio
n

 c
yc

le
  

   

ap
pl

ic
at

io
n 

lif
ec

yc
le

 

 

L:
se

rv
ic

e 
lif

ec
yc

le
 

(p
la

n
ni

n
g,

 
ag

re
e

m
e

nt
, 

en
a

ct
m

en
t)

 

  

[s
ee

 R
U

P
] 

 

L:
”e

vo
lu

tio
n

 
gr

a
ph

” 

L:
”a

pp
lic

at
io

n
 

lif
ec

yc
le

” 

L:
 li

fe
cy

cl
e 

ite
ra

tiv
e 

bu
t n

o 
co

ve
ra

ge
 fo

r 
ev

ol
ut

io
n

 

M
:”

ev
o

lu
tio

n 
cy

cl
e

” 

L:
 li

fe
cy

cl
e 

ite
ra

tiv
e 

bu
t n

o 
co

ve
ra

ge
 fo

r 
ev

ol
ut

io
n

 

  

dy
na

m
ic

 
fu

nc
tio

na
lit

y 
al

te
rn

at
io

n 

             

se
rv

ic
in

g 
co

nt
in

ui
ty

 

  

L:
”u

pg
ra

da
bi

lit
y”

 

          

Others 

tr
an

sf
or

m
at

io
n 

ag
en

t 

L:
de

pl
oy

m
en

t/c
h

a
ng

e
 a

ge
nt

s 

L:
”c

om
po

se
r”

 
(t

oo
l)

 

    

L:
”c

ha
ng

e
 

op
e

ra
to

r”
 

   

L:
”c

om
pe

ns
at

io
n 

ha
n

dl
er

” 

  

tr
an

sf
or

m
at

io
n 

ac
tio

n 

  

L:
”c

on
ne

ct
”,

 
“d

is
co

n
ne

ct
” 

 

[s
ee

 R
U

P
] 

 

[s
ee

 n
ot

e 
1]

 

[s
ee

 n
ot

e 
1]

 

 

[s
ee

 n
ot

e 
1]

 

 

[s
ee

 n
ot

e 
1]

 

 

tr
an

sf
or

m
at

io
n 

ex
ce

pt
io

n 

             



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 265 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

tr
an

sf
or

m
at

io
n 

co
m

pe
ns

at
io

n 

 

L:
au

to
m

at
ed

 r
e-

pl
a

nn
in

g
 fo

r 
fa

ile
d

 
co

m
po

si
tio

n
 

           

ex
pe

ct
ed

 d
yn

am
ic

 
ch

an
ge

 im
pa

ct
 

  

L:
im

pa
ct

 o
f c

h
an

g
e 

tr
e

at
ed

 a
s 

ch
a

ng
e  

fr
o

m
 

on
e

 le
ve

l o
f a

bs
tr

ac
tio

n 
to

 
th

e
 h

ig
h

es
t l

ev
el

 

 

MM
:t

ar
g

et
 r

es
is

ta
nc

e
 p

la
n  

  

L:
n

ot
ed

 in
 c

ha
ng

e 
re

q
ue

st
 fo

rm
 

     

Notes:  

1. UML offers elementary action objects “CreateLinkAction”, “CreateLinkObjectAction”, 
“DestroyLinkAction” and “DestroyObjectAction” to model change operations on an object model. 
The rating for UML with respect to “transformation action” is given medium (i.e. “M”). 

BB.3 EVALUATION RESULTS OF SUPPORT FOR WORK RELATED 
DYNAMIC CHANGE REQUIREMENTS 

Table Appendix B.3 presents the detailed results of evaluating selected methodologies 

(see Section 2.4) for their extent of support for the dynamic change requirements 

concerning the kinds of work to be performed during development (see Section 5.4 for 

summary). The first letter of each evaluation score represents a scale point (cf. Table 

Appendix B.1). 

Table Appendix B.3 Evaluation of support for work related change requirements (see Sections 5.1.4 
and 5.2.3 for definitions) 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

Service Level 

dy
na

m
ic

 p
ar

t c
ha

ng
e 

 

L:
au

to
m

at
ed

 ”
re

-p
la

n
ni

n
g”

 
to

 r
ep

la
ce

 fa
u

lty
 

co
m

po
si

tio
n

 

        

L:
 “

ru
nt

im
e

 s
er

vi
ce

 
co

m
po

si
tio

n 
m

an
a

ge
m

e
nt

 
an

d
 r

e -
pl

a
nn

in
g

“ 
pr

oc
es

s 
to

 r
ep

la
ce

 a
 fa

u
lty

 s
e

rv
ic

e
 

  



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 266 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

dy
na

m
ic

 p
ar

t a
da

pt
er

 

 

L:
“w

ra
pp

e
r”

 s
e

rv
ic

e 
to

 c
e

rt
ai

n 
ty

pe
s 

o
f l

eg
ac

y 
ap

pl
ic

at
io

ns
 

L:
ad

ap
te

rs
 a

n
d 

th
ei

r 
pr

op
er

tie
s 

no
te

d
 

L:
w

ra
p

pe
r 

fo
r 

le
ga

cy
 s

ys
te

m
 

L:
w

ra
p

pe
r 

o
r 

gl
u

e 
no

te
d

 
th

ro
ug

ho
ut

 th
e 

m
et

ho
do

lo
gy

 
[s

ee
 R

U
P

 fo
r 

b
et

te
r 

su
pp

or
t]

 

L:
 “

w
ra

pp
er

” 
fo

r 
le

ga
cy

 s
ys

te
m

 
no

te
d

 

MM
:”

co
m

p
on

en
t a

da
pt

at
io

n”
 tta

sk
  

L:
le

ga
cy

 a
nd

 e
xt

er
n

al
 a

d
ap

te
rs

 
no

te
d

 

L:
w

ra
p

pe
r 

n
ot

ed
 in

 “
pr

o
ce

ss
 

re
a

lis
at

io
n 

an
al

ys
is

” 

HH
:”

se
rv

ic
e

 m
ed

ia
tio

n”
 g

ui
d

el
in

e  

MM
: “

a
da

pt
er

” 
in

 th
e

 “
re

-
p

la
nn

in
g”

, p
ro

ce
ss

 

L:
w

ra
p

pe
r 

a
nd

 a
da

pt
er

 
di

sc
us

se
d

 

M
:d

at
a 

an
d

 p
ro

ce
ss

 m
e

di
a

to
rs

  

dy
na

m
ic

 p
ar

t 
(r

e)
bi

nd
in

g 

 

L:
au

to
m

at
ed

 b
in

d
in

g 
du

ri
n

g 
e

na
ct

m
en

t o
 f 

se
rv

ic
e

 a
nd

 w
or

kf
lo

w
 

      

L:
”d

yn
am

ic
 b

in
di

ng
” 

no
te

d
 

 

M
:“

bi
nd

in
g

 a
nd

 r
e--

b
in

di
ng

” 
p

ro
ce

ss
  

 

L:
us

e 
of

 s
e

m
an

tic
 

se
rv

ic
e

 b
us

 

re
so

ur
ce

 n
ee

d 
pr

ed
ic

tio
n 

             

pe
rf

or
m

an
ce

 
ch

ar
ac

te
ris

tic
 p

re
di

ct
io

n 

 

H
:“

in
st

an
t p

er
fo

rm
a

nc
e 

p p
ro

to
ty

pi
ng

” 
te

ch
ni

qu
e  

        

L:
p

er
fo

rm
a

nc
e

 b
ou

n
d 

co
m

pu
ta

tio
n

 o
n 

th
ro

ug
hp

ut
 a

n
d 

re
sp

o
ns

e
 

tim
e 

fo
r 

W
e

b 
se

rv
ic

es
 

  

ge
om

et
ric

 c
ha

ng
e 

         

L:
re

lo
ca

tio
n

 n
ot

ed
 

in
 lo

ca
tio

n
 

tr
a

ns
p

ar
e

nc
y 

fo
r 

co
m

po
ne

n
ts

 

   

dy
na

m
ic

 s
ta

te
 

tr
an

sf
er

 

             

  Application Level 

dy
na

m
ic

 p
ro

to
co

l 
ev

ol
ut

io
n 

             

dy
na

m
ic

 w
or

kf
lo

w
 

ev
ol

ut
io

n 

             



Appendix B. Feature Analysis Results of Development Methodologies Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 267 

 

A
E

M
 

A
S

G
 

C
at

al
ys

is
 

C
B

D
I-

S
A

E
 

E
P

IC
 

E
rl 

K
ob

rA
 

O
P

F
 

P
&

H
 

R
U

P
 

S
eC

S
E

 

S
el

ec
t 

P
er

sp
ec

tiv
e 

S
U

P
E

R
 

dy
na

m
ic

 r
ec

om
po

si
tio

n 

 

L:
au

to
m

at
ed

 ”
re

-p
la

n
ni

n
g”

 
fo

r 
fa

ul
ty

 c
o

m
po

si
tio

n
 

L:
ru

nt
im

e 
co

m
po

si
tio

n 
br

ie
fe

d 
in

 u
p

gr
ad

ab
ili

ty
 

       

L:
“r

un
tim

e 
se

rv
ic

e 
co

m
po

si
tio

n 
m

an
a

ge
m

e
nt

 
an

d
 r

e -
pl

a
nn

in
g

” 
pr

oc
es

s 
fo

r 
fa

ul
ty

 s
e

rv
ic

es
 

  

dy
na

m
ic

 r
ef

ac
to

rin
g 

 

L:
au

to
m

at
ed

 ”
re

-p
la

n
ni

n
g”

 
fo

r 
fa

ul
ty

 c
o

m
po

si
tio

n
 

L:
de

si
g

n 
tim

e 
re

fa
ct

or
in

g
 

   

L:
”t

re
e 

re
fa

ct
or

in
g”

 
(d

es
ig

n 
tim

e)
 

MM
:”

de
si

g
n 

re
fa

ct
or

in
g”

  

L:
de

si
g

n 
tim

e 
bu

si
n

es
s 

pr
oc

es
s 

re
fin

e
m

e
nt

 n
ot

ed
 

L:
co

de
 le

ve
l r

ef
ac

to
rin

g 
te

ch
ni

q
ue

 w
ith

 e
X

tr
em

e 
P

ro
g

ra
m

m
in

g™
 

L:
“r

un
tim

e 
se

rv
ic

e 
co

m
po

si
tio

n 
m

an
a

ge
m

e
nt

 
an

d
 r

e -
pl

a
nn

in
g

” 
pr

oc
es

s 
fo

r 
fa

ul
ty

 s
e

rv
ic

es
 

L:
p

ar
a

m
e

te
r,

 m
es

sa
ge

, 
co

d
e 

re
fa

ct
or

in
g

 

 

dy
na

m
ic

 v
ar

ia
bi

lit
y 

    

[s
ee

 R
U

P
] 

 

M M
:s

up
p

or
t f

or
 s

ta
tic

 
va

ri
ab

ili
ty

 o
n

ly
 

 

L:
”d

es
ig

n
 fo

r 
se

rv
ic

e 
re

us
ab

ili
ty

” 

L:
”a

ss
e

t b
as

ed
 

de
ve

lo
pm

en
t”

 

H
:”

va
ri

at
io

n
 p

oi
nt

 
m

a
na

ge
m

e
nt

” 
a

nd
 

“v
a

ria
tio

n 
po

in
ts

 
re

a
lis

at
io

n
” 

pr
oc

es
se

s  

L:
”c

om
m

o
na

lit
y”

 n
ot

ed
 

 

dy
na

m
ic

 c
ha

ng
e 

im
pa

ct
 a

na
ly

si
s 

  

L:
 c

ha
ng

e 
im

p
ac

t 
no

te
d

 

 

L:
sc

op
e

 o
f c

ha
n

ge
 

im
p

ac
t a

ss
es

sm
e

nt
 

no
te

d 
th

ro
u

gh
ou

t 
th

e
 m

et
ho

d
ol

o
gy

 

  

L:
ch

an
ge

 im
pa

ct
 

no
te

d 
in

 c
h

an
ge

 
re

q
ue

st
 fo

rm
 

     

dy
na

m
ic

 c
on

tr
ac

t 
up

da
te

 

 

L:
”r

e-
ne

go
tia

te
 

co
nt

ra
ct

s”
 fo

r 
ex

ce
pt

io
n

 h
a

nd
lin

g
 

           

 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 268 

Appendix C. DDETAILED SPECIFICATIONS FOR 

CONTINUUM 

This Appendix documents Continuum method fragments which are specified using the 

International Standard ISO/IEC 24744 for Software Engineering Metamodel for 

Development Methodologies (SEMDM) (ISO/IEC 2007). (Strictly speaking, “method 

fragments” should be termed “method fragment kinds”. For convenience and ease of 

reading, the “kind” suffix has been dropped.) This standard adoption aims to help 

vendors to implement and import these fragments in an existing method repository, and 

practitioners to consistently learn and apply these fragments. An introduction to 

Continuum can be found in Section 6.3. 

Continuum’s method fragments are described under three headings: 

 Producer Method Fragments (Appendix C.1) describes agents (people, roles, 

tools etc.) responsible for executing work units. 

 Work Product Fragments (Appendix C.2) describes artefacts used and/or 

produced in development, plus the modelling concepts and notations applied in 

the artefacts.  

 Work Unit Fragments (Appendix C.3) describes what must be done for given 

purposes and how they are achieved in development. 

C.1 PRODUCER METHOD FRAGMENTS 
Producer method fragments concern producers who are agents having the 

responsibility of executing work units according to their areas of expertise (ISO/IEC 

2007). Continuum prescribes two specific types of producer method fragments: role 

and tool (ISO/IEC 2007). A role is a collection of responsibilities that a producer can 

play to fulfil objectives of certain work units. A tool assists a producer in executing the 

producer’s responsibilities in an automated way. 

C.1.1 Dynamic Evolution Analyst 

This role is mainly involved in executing the work units relating to the analysis aspects 

of dynamic evolution. Its responsibilities include: 

 identification and analysis of dynamic evolution requirements in terms of 

dynamic changes to an application; 

 planning the roll out of dynamic changes through an application lifecycle;  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 269 

 analysis of dynamic evolution quality aspects important to an application; and 

 assessment and improvement of dynamic changes and the application lifecycle 

with respect to dynamic evolution quality. 

AAttributes: 

Name Type Semantics 
name String The name of a DynamicEvolutionAnalyst. 
 

Associations: See the description for the "agents" field of a task fragment specification in 

the Appendix C.3.1. 

C.1.2 Dynamic Evolution Designer 

This role is primarily involved in executing the work units relating to the design aspects 

of dynamic evolution. Its responsibilities include: 

 development of design-related dynamic evolution work products; 

 selection and use of relevant design patterns for the development of the above; 

and 

 assessment and improvement of quality aspects of design-related dynamic 

evolution work products. 

Attributes: 

Name Type Semantics 
name String The name of a DynamicEvolutionDesigner. 
 

Associations: See the description for the "agents" field of a task fragment specification in 

the Appendix C.3.1. 

C.1.3 Runtime Application Discovery Tool 

This tool is used for providing a secure means of discovering information about an 

application whilst it is running. Its responsibilities include: 

 inspecting the runtime structure of the application for discovering its 

transformable items and their binding relationships; 

 identification of the zones in which the transformable items are hosted; 

 identification of the version information of each transformable item; and 

 determination of the resources used by the transformable items. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 270 

AAttributes: 

Name Type Semantics 
name  String The name of a RuntimeApplicationDiscoveryTool. 
 

Associations: See the description for the "agents" field of a task fragment specification in 

the Appendix C.3.1. 

C.2 WORK PRODUCT FRAGMENTS 
Work product fragments concern model artefacts – software and hardware, models, 

documents etc. – used, created and/or modified in development, plus the modelling 

concepts and notations applied in the artefacts (ISO/IEC 2007). 

Continuum prescribes two types of product fragments: 

 Model Unit fragments, which depict atomic elements, concepts and constructs 

as low level semantic building blocks for creating models of interest relevant to 

dynamic evolution; and 

 Diagram, Document and Notation fragments, which depict these models visually 

and/or textually.  

Work product fragments of each type are described next in alphabetical order. 

C.2.1 Model Unit Fragments 

Model Unit fragments are instances of SEMDM ModelUnit/*Kind, and specified with 

attributes and associations, with the same semantics as those for object-oriented 

classes. Attributes hold data values about an instance of a model unit fragment. The 

data values can be of standard data types (e.g. integer and string) or custom 

enumerated data types. An association defines a relationship of one model unit 

fragment with another. A visual representation of the model unit fragments and their 

associations are depicted in Figure 6.5 as part of the introduction to Continuum. 

C.2.1.1 Application 

An Application is a set of inter-related TransformableItems to offer some functionality 

and computing capabilities to the needs of a business (Dearle 2007).  

Attributes:  

Name Type Semantics 
name  String The name of an Application. 
 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 271 

AAssociations: 

Role To Class Semantics 

member TransformableItem TransformableItems that together provide the 
functionality of an Application as a whole. 

lifecycle ApplicationLifecycle The various Stages through which an Application 
passes. 

C.2.1.2 ApplicationLifecycle 

An ApplicationLifecycle, a.k.a. a software lifecycle, is defined as “the period of time that 

begins when a software product is conceived and ends when the software is no longer available 

for use” (IEEE 2009). In this context, Within an ApplicationLifecycle, an Application 

progresses through successive Stages as it evolves dynamically. 

Attributes: none 

Associations: 

Role To Class Semantics 
context Application The Application exhibiting the lifecycle. 

stage Stage 
Successive Stages in a lifecycle that an 
Application progresses. 

C.2.1.3 ChangeCase 

A ChangeCase articulates a proposed dynamic change to properties and functionality 

of an Application’s TransformableItems, contracts between TransformableItems, to its 

structure, and to its Zones so as to facilitate further understanding of changes required 

for the Application at runtime24. The change specified by a ChangeCase is confined to 

a particular element of an application as the recipient of the change. A ChangeCase is 

slightly different from a user or business requirement or a change request, which is 

specified in terms understood by end users, stakeholders and the business, and 

independent of the structure and configuration of an application. For instance, a change 

request may propose a change to an application as a whole, “Add a new function to 

application Z”, which can be translated to a change case, “Add a new function to 

component X in application Z”. This change case might then be mapped to a 

transformation called “component X upgrade” which replaces the existing component X 

with a new version that has the new function. 

A ChangeCase is specified relative to the as-is (i.e. current) Generation of an 

application. ChangeCases effectively articulate goals for TransformationAgents (i.e. the 

actors for the change cases) to achieve during a TransitionalPeriod. 

                                                   

24  The original definition of ChangeCase articulates changes specific to an Application’s 
functionality (Ecklund et al. 1996; Office of Government Commerce 2002). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 272 

AAttributes:  

Name Type Semantics 
id String A unique identifier of the ChangeCase. 

purpose String 
The purpose of a ChangeCase in a sentence, 
including a gap operator, and a recipient of the 
change if required. 

description String A long description of a ChangeCase. 

relatedRequirement String Requirements from which a ChangeCase is 
derived. 

expectedImpact Impact The expected impact of a ChangeCase has on 
the recipient of the change. 

resolvedImpact Impact 
The impact that a ChangeCase intends to resolve 
because of the impact caused by another 
ChangeCase. 

 

Associations: 

Role To Class Semantics 

actor TransformationAgent 
The entity responsible for realising the 
ChangeCase. 

context TransitionalPeriod 
The period during and after which a ChangeCase 
will be realised in an Application. 

target Generation 
A particular “as-is” Generation of an Application 
for which a dynamic change is specified using a 
ChangeCase. 

enactment Transformation 
The transformation which realises the change 
case. 

 

C.2.1.4 Generation 

A Generation of an Application represents a stable state of the Application. That means 

the Application structure is operating a particular version of its code and not involving in 

any runtime modification. 

Generation is a subclass of Stage. 

Attributes:  

Name Type Semantics 
name  String The name of a Generation. 
 

Associations: 

Role To Class Semantics 
change ChangeCase A change requirement for this Generation. 
next TransitionalPeriod The TransitionalPeriod following this Generation. 

prev TransitionalPeriod 
The TransitionalPeriod preceding this 
Generation. 

C.2.1.5 Impact 

An impact identifies a target (e.g. a TransformableItem, a Zone) thought to be affected 

both directly and/or indirectly by a proposed ChangeCase, and the extent to which the 

impact has on the target. 

The notions of “Target”, “Impact Type” and “Level of Disruption” for an Impact are reused 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 273 

from “target resistance plans” in the EPIC methodology (Albert & Brownsword 2002). The 

enumerated values for the latter two attributes are customised for dynamic evolution 

(cf. Table Appendix C.1 and Table Appendix C.2). 

AAttributes:  

Name Type Semantics 
impactType ImpactType The type of the impact on the “target”. 

disruptionLevel ImpactDisruptionLevel 
The level of disruption the impact has on the 
“target”. 

target String 
An entity (TransformableItem, Zone etc.) thought 
to be affected by the ChangeCase. 

 

Associations: 

Role To Class Semantics 
proposedChange ChangeCase The change case that leads to the Impact. 

supplmentaryChange ChangeCase 
A supplementary ChangeCase (or more) that 
must also be realised in order to resolve the 
impact. 

C.2.1.5.1 Custom attribute type ImpactType 

ImpactType enumerates the possible kinds of impacts that a ChangeCase has on a 

target thought to be affected by the ChangeCase. The default value for ImpactType is 

“direct”. 

Table Appendix C.1 Enumerated values of ImpactType 

Name Semantics 

direct 
(default) 

A change case describes a change that directly modifies or applies to a target identified 
by the Impact. 

indirect 
A change case describes a change that modifies or applies to a target. Via a ripple 
effect, the change causes a further and indirect change to another target identified by the 
Impact.  

C.2.1.5.2 Custom attribute type ImpactDisruptionLevel 

ImpactDisruptionLevel enumerates the possible severity levels of disruptions that an 

impact has on a target thought to be affected by a ChangeCase.  

Table Appendix C.2 Enumerated values of ImpactDisruptionLevel 

Name Semantics 

high The target will no longer function. 

medium 
The target will continue to offer a subset of its functions or services not affected by the 
change. 

low The target will continue to offer all its functions or services. 

C.2.1.6 OperationalProfile 

An OperationalProfile is an abstract description about distinctive operational 

characteristics of the TransformableItem, such as resource needs and performance 

expectations, during its normal operation. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 274 

AAttributes: none 

Associations:  

Role To Class Semantics 

target TransformableItem The TransformableItem to which this 
OperationalProfile applies. 

 

C.2.1.7 Policy 

A Policy is an abstract concept for articulating rules or behaviour desirable for dynamic 

evolution in a composition-based distributed application. The Policy class is intended to 

be extended (using the class inheritance mechanism) to model various facets of 

dynamic evolution. Through class extension, Continuum can identify and classify 

various types of policies suitable for dynamic evolution. On the other hand, Continuum 

does not offer any formalism or language for expressing policies to allow methodology 

users to choose and adopt various ways of expressing policies as appropriate.  

Attributes: none 

Associations: none 

C.2.1.8 PerformanceProfile 

A PerformanceProfile specifies observable performance expectations for a 

TransformableItem when it carries out a particular function. For example, the minimum 

number of user requests a web server should handle at a time is a performance 

characteristic of the web server. Continuum reuses Adaptive Service Grid’s 

performance metrics model (Kempter et al. 2007). Metrics are incorporated into a 

PerformanceProfile as attributes. This is beyond the scope of Continuum to fully 

describe the metrics model here. 

PerformanceProfile is a subclass of OperationalProfile. 

Attributes:  

Name Type Semantics  

responseTime String 

The duration from the start of a request is 
initiated (e.g. click of a search button) to an 
observable response of an application or a 
TransformableItem is received. 

serviceTime String 
The portion of the responseTime that a request is 
actually serviced by an application or a 
TransformableItem. 

networkDelay String The portion of the responseTime that is attributed 
to the latency caused by the network. 

residenceTime String The portion of the responseTime that a request is 
spent in a queue waiting to be processed. 

throughput String The number of requests processed per time unit 
(e.g., bits/sec, hits/sec, applied use cases/sec). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 275 

Name Type Semantics  

workload String 
The number of requests (e.g. click of a search 
button) per time unit an application or a 
TransformableItem has to handle. 

errorRate String 
The number of times an application or a 
TransformableItem responds with errors over the 
number of requests handled by it. 

 

AAssociations: none 

C.2.1.9 Resource 

A Resource is a finite computing artefact that a TransformableItem requires in order to 

function (Dearle 2007). Resources are offered by and managed within Zones. 

Attributes:  

Name Type Semantics 
name  String The name of a Resource. 
description String  A description of a Resource. 
 

Associations: 

Role To Class Semantics 

command TransformationAction 
The command causing adjustments to the 
allocation of the Resource. 

consumer TransformableItem 
The TransformableItem that will use the 
Resource. 

context Zone The environment that manages the Resource. 
profile ResourceProfile The usage profile for the Resource. 
 

C.2.1.10 ResourceProfile 

A ResourceProfile specifies the resources used or consumed by a TransformableItem 

in order to function. 

ResourceProfile is a subclass of OperationalProfile. 

Attributes: none 

Associations:  

Role To Class Semantics 

resource Resource 
The Resource for which the ResourceProfile is 
targeted. 

 

C.2.1.11 ServicingPolicy 

A ServicingPolicy specifies the condition under which a construct, be it a 

TransformableItem or its method(s), is offering its services or functions, such as during 

a TransitionalPeriod. 

Exclusion is a subclass of Policy. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 276 

AAttributes:  

Name Type Semantics 

type ServicingPolicyType The type of a ServicingPolicy characterising the 
access to a TransformableItem. 

 

Associations:  

Role To Class Semantics 

target TransformableItem The TransformableItem(s) to which the 
ServicingPolicy applies. 

C.2.1.11.1 Custom attribute type ServicingPolicyType 

ServicingPolicyType enumerates the possible kinds of policy for a TransformableItem 

in offering its services, and especially useful during a TransitionalPeriod. The default 

value for ServicingPolicyType is “void”. 

Table Appendix C.3 Enumerated values of ServicingPolicyType 

Name Semantics 

Illegal Use of a service is banned and illegal. 

Delegated Use of a service is not available but another TransformableItem (i.e. the delegate) is 
offering an equivalent service. 

Blocked and 
Queued 

Requests to use a service are blocked and queued on a first-come first-served order. 
Note that the delay caused by a service being “blocked and queued” may be sufficiently 
long such that the service might be regarded as unavailable. If this apparent “downtime” 
is unacceptable, a design should investigate the “delegated” ServicingPolicyType option 
which means requests to the service will be forwarded to and handled by an alternative 
TransformableItem. 

Void (default) Use of a service is permitted as normal. 

C.2.1.12 Stage 

A Stage is an abstract designated period during the lifespan of an Application. 

Attributes: 

Name Type Semantics 
startTime Timestamp The time instant at which a Stage begins. 
endTime Timestamp The time instant at which a Stage ends. 
 

Associations: 

Role To Class Semantics 
lifecycle ApplicationLifecycle The lifecycle in which a particular Stage exhibits. 

C.2.1.13 TransformableItem 

A TransformableItem is an abstract concept for a runtime logical entity that can be 

transformed into some other form (e.g. a newer version) by some means. It epitomises 

a building block in a composition-based distributed application: a part of some 

functionality, a binding for connecting parts and mediating their interactions, a 

composite of smaller parts, or a workflow of parts thereof. TransformableItems are 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 277 

distributed in a network which facilitates connectivity among them. Example 

TransformableItems include components and connectors in component-based 

applications (Evans & Dickman 1999) and services and bindings in service-oriented 

applications (Papazoglou & Georgakopoulos 2003).  

Each TransformableItem is assigned a unique instance identifier, to distinguish itself 

from others running the same code at runtime. 

AAttributes:  

Name Type Semantics 

instanceId String A unique identifier to identify a particular 
TransformableItem in an Application.  

state TransformableItem 
StateType 

A condition of a TransformableItem indicating 
when it can join and leave a Transformation. 

 

Associations: 

Role To Class Semantics 

applicationContext Application 
The Application to which a TransformableItem 
belongs. 

command TransformationAction 
A unit of modification to be applied to a 
TransformableItem. 

host Zone 
An environment in which a TransformableItem is 
deployed and run. 

inputContext Transformation 
The Transformation in which a 
TransformableItem will be changed. 

outputContext Transformation 
The Transformation in which a 
TransformableItem was changed. 

profile OperationalProfile 
A profile describing an operational characteristic 
of a TransformableItem. 

policy ServicingPolicy 
The policy defining rules for a TransformableItem 
to offer its services during a Transformation. 

resource Resource A resource used by a TransformableItem. 
 

C.2.1.13.1 Custom attribute type TransformableItemStateType 

This enumeration type defines the possible and externally observable states of a 

TransformableItem from a configuration or transformation perspective. These states 

can be used to specify State Maps (Appendices C.3.2.12 and C.2.2.7). The 

enumerated values are intended to annotate additional semantics to existing states of a 

TransformableItem under normal operations. 

Table Appendix C.4 Enumerated values of TransformableItemStateType 

Name Semantics 

Quiescent 

A state of an existing TransformableItem to indicate it is ready to participate in a 
Transformation (Kramer & Magee 1990). For example, a TransformableItem is in a 
quiescent state when it is not performing any transaction (e.g. updating a database 
record). A quiescent state is, however, a necessary but not sufficient condition for a 
transformation to start. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 278 

Name Semantics 

Resuming 

A state of a new TransformableItem from which the TransformableItem operates after a 
Transformation completes. A resuming state may very well be the initial state (i.e. the 
state when a TransformableItem is firstly instantiated) but this is not always the case. 
When a database façade is added to an application, it is desirable to configure the 
façade to the 'database available' state, ready for access, rather than the 'database 
shutdown' state, which is the initial state. 

Resolved A state of an existing TransformableItem from which the TransformableItem continues to 
operate after a TransformationException has been detected and resolved.  

 

C.2.1.14 Transformation 

A Transformation is a mapping from some existing entities, such as 

TransformableItems, as the input to entities in another form as the output. A 

Transformation can be executed without requiring an Application to be shutdown. A 

Transformation is modelled as a set of atomic steps of runtime modifications called 

TransformationActions (cf. Appendix C.2.1.15). 

AAttributes:  

Name Type Semantics 
name  String The name of a Transformation. 
 

Associations: 

Role To Class Semantics 
context TransitionalPeriod The context in which a Transformation occurs. 
exception TransformationException An exception that occurs in a Transformation. 

input TransformableItem A TransformableItem to be changed in a 
Transformation. 

intent ChangeCase A change intended to be realised. 

output TransformableItem A TransformableItem changed by a 
Transformation. 

worker TransformationAgent The body responsible for performing a 
Transformation. 

workItem TransformationAction A unit of work in a Transformation. 

C.2.1.15 TransformationAction 

A TransformationAction is a unit of work performed by a TransformationAgent on 

TransformableItems, Resources or Zones. 

Attributes: 

Name Type Semantics 

behaviour String 
A verb or short description about what a 
TransformationAction is intended to do (e.g. 
“create”, “replace” and “remove”). 

type TransformationActionType The type of a TransformationAction 
characterising its behaviour. 

 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 279 

AAssociations: 

Role To Class Semantics 

context Transformation The context in which a TransformationAction is 
executed. 

resource Resource A resource (re)configured by a 
TransformationAction. 

target TransformableItem A TransformableItem affected by a 
TransformationAction. 

zone Zone A Zone configured by a TransformationAction. 

C.2.1.15.1 Custom attribute type TransformationActionType 

TransformationActionType enumerates the possible kinds of behaviour of a 

TransformationAction at a high level of abstraction. The kinds can be extended by 

defining new behaviours to add new meanings to a TransformationAction. Alternatively, 

new kinds can also be derived from existing kinds to enhance the semantics of the 

original ones. For instance, the “composition” kind can be further refined into “create”, 

“delete”, “bind” and “unbind” to designate the kinds of modifications for an application’s 

structure. 

Table Appendix C.5 Enumerated values of TransformationActionType 

Name Semantics 

Composition 

An action type relating to a change in the composition of a TransformableItem and/or 
its elements: 

 establishing TransformableItem binding 
 managing resources 
 notifying clients of a TransformableItem about modifications 

Location An action type designating that a TransformableItem is being relocated. 

State 
An action type designating that the state of a TransformableItem is being configured 
(e.g. according to a State Map, Appendix C.2.2.7). 

Zone 
An action type designating that the environment in which TransformableItems 
operate (e.g. the Zone) is being configured, such as allocating resources to a 
TransformableItem. 

Property An action type relating to a modification to a property (i.e. operating parameter) of a 
TransformableItem. 

ServicingPolicy 
An action type designating that a servicing policy is being assigned to a 
TransformableItem or one of its services or functions. 

C.2.1.16 TransformationAgent 

TransformationAgents are mobile entities over the network (e.g. Lovrek et al. 2003), 

responsible for executing Transformations and therefore realising ChangeCases during 

a TransitionalPeriod. In complex scenarios, TransformationAgents may collaborate with 

one another to perform their assigned Transformations. It should be emphasised that 

TransformationAgent is a role. In a self-modifiable Application, for instance, its 

TransformableItems may also play the role of a TransformationAgent to execute 

Transformations on themselves. In another case, a TransformationAgent can also be a 

surrogate of a person who manually performs modifications to an application.  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 280 

AAttributes: none 

Associations: 

Role To Class Semantics 

task Transformation A unit of work performed by a 
TransformationAgent. 

intent ChangeCase A change intended for a TransformationAgent to 
realise. 

coordinator TransformationAgent A coordinator for a group of 
TransformationAgents. 

co-worker TransformationAgent A peer TransformationAgent with a common 
interest to be achieved by the coordinator. 

C.2.1.17 TransformationException 

A TransformationException is an abstract concept representing an error condition 

occurred during a Transformation, such as the situation when a transformation does not 

complete within a time limit. 

Attributes: 

Name Type Semantics 
reason  String A description of the error condition. 
 

Associations: 

Role To Class Semantics 

origin Transformation The entity from which the error condition 
originated. 

handler TransformationExceptionResolution The transformation to process or resolve a 
TransformationException. 

C.2.1.18 TransformationExceptionResolution 

A TransformationExceptionResolution designates a special kind of Transformation for 

resolving one or more TransformationExceptions should they occur. The “Resolution” 

part of the name is adopted from Dellarocas et al. (1998) concerning exception 

management. 

TransformationExceptionResolution is a subclass of Transformation. 

Attributes: none 

Associations: 

Role To Class Semantics 

exception TransformationException The exception resolved by a 
TransformationExceptionResolution. 

C.2.1.19 TransitionalPeriod 

A TransitionalPeriod is a special Stage during which an Application advances from one 

Generation to another in transitu as modifications are underway. It is temporary and 

short lived compared with the lifecycle of an Application. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 281 

Transition is a subclass of Stage. 

AAttributes: none 

Associations: 

Role To Class Semantics 

intent ChangeCase 
A set of ChangeCases to be realised during a 
Transitional Period. 

next Generation 
The Generation after a TransitionalPeriod has 
occurred. 

prev Generation 
The Generation before a TransitionalPeriod 
starts. 

C.2.1.20 Zone 

A Zone is a disjoint partition or region (Evans & Dickman 1999) which establishes a 

boundary for its TransformableItems to help to manage their lifecycles and to enforce 

policies on them (e.g. security). A Zone is also a controlled environment (cf. "container", 

Dearle 2007) under the management and/or guardian of some kind of authority (e.g. 

Transformation Agents). Zones are related to each other in a hierarchy (e.g. Figure 

Appendix C.1(b)). An enclosing Zone (i.e. parent Zone) can have other Zones (i.e. 

children Zones) fully enclosed within its boundary, as illustrated in Figure Appendix 

C.1(a) consisting of a parent “p” and two children “a” and “b”. “Disjoint” means 

boundaries of children zones should not overlap or else this would complicate the 

domains of responsibilities by the respective authorities, such as when identifying 

Transformation Agents and their transformations. 

 
source: developed for this research 

Figure Appendix C.1 Example hierarchical zones and illegal zones 

Attributes: none 

Associations: 

Role To Class Semantics 
managedResource Resource A Resource offered and managed by a Zone. 

command TransformationAction A unit of transformation work to be applied to a 
Zone. 

occupant TransformableItem The TransformableItems occupying a Zone. 

policy ZoningPolicy The policy defining rules for configuring a Zone 
(or more). 

C.2.1.21 ZoningPolicy 

A ZoningPolicy is a rule for configuring one zone or more in which an application 

y

p

ba
x

(a) parent and children zones (b) overlapping zones (not recommended)



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 282 

operates as it evolves. 

ZoningPolicy is a subclass of Policy. 

AAttributes: none 

Associations:  

Role To Class Semantics 
target Zone The Zone to which the ZoningPolicy applies. 
 

C.2.2 Diagram and Document Fragments 

Continuum’s diagram and document fragments depict dynamic evolution models, which 

are abstract representations of some subjects of interest relevant to dynamic evolution. 

These fragments offer their own notations, which may be extended or reused from 

existing notations for modelling similar concepts. They are instances of SEMDM 

WorkProduct/*Kind. 

Table Appendix C.6 lists various dynamic evolution model unit fragments (i.e. instances 

of ModelUnit/*Kind) used in diagram and document fragments (instances of 

Model/*Kind). The entry in each cell (e.g. “1..n”) is a multiplicity using the UML notation 

(OMG 2010b), which specifies a range for the possible number of occurrences of a 

model unit fragment (i.e. row) in a diagram or document fragment (i.e. column). The 

presence of such an entry also implies an instance of SEMDM’s ModelUnitUsage/*Kind 

in Continuum. 

Table Appendix C.6 Model Unit fragments and their usage in model artefacts 

Model Unit Fragment 

A
pp

lic
at

io
n 

Li
fe

cy
cl

e 
D

ia
gr

am
  

D
yn

am
ic

 A
pp

lic
at

io
n 

C
ha

ng
e 

D
oc

um
en

t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
In

sp
ec

tio
n 

R
ep

or
t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
P

ro
bl

em
 A

na
ly

si
s 

R
ep

or
t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
P

ro
fil

e 
R

ep
or

t 

N
ew

 a
nd

 R
ep

la
ce

m
en

t 
T

ra
ns

fo
rm

ab
le

 It
em

 
C

at
al

og
ue

 

S
ta

te
 M

ap
 

S
tr

uc
tu

ra
l C

on
fig

ur
at

io
n 

- 
N

ot
at

io
na

l E
xt

en
si

on
s 

T
ra

ns
fo

rm
at

io
n 

D
ia

gr
am

 

T
ra

ns
fo

rm
at

io
n 

O
rc

he
st

ra
tio

n 
D

ia
gr

am
 

Z
on

e 
C

ha
ng

e 
D

oc
um

en
t 

Application 1..1           

ApplicationLifecycle 1..1           

ChangeCase 0..n 1..n          

Generation 1..n 1..n        2..2  

Impact  0..n          

OperationalProfile      1..n      

Policy (abstract)            

Resource  0..n       0..n   

ServicingPolicy        0..n    

Stage (abstract)            

TransformableItem  0..n    1..n 2..2 0..n 0..n  0..n 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 283 

Model Unit Fragment 

A
pp

lic
at

io
n 

Li
fe

cy
cl

e 
D

ia
gr

am
  

D
yn

am
ic

 A
pp

lic
at

io
n 

C
ha

ng
e 

D
oc

um
en

t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
In

sp
ec

tio
n 

R
ep

or
t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
P

ro
bl

em
 A

na
ly

si
s 

R
ep

or
t 

D
yn

am
ic

 E
vo

lu
tio

n 
Q

ua
lit

y 
P

ro
fil

e 
R

ep
or

t 

N
ew

 a
nd

 R
ep

la
ce

m
en

t 
T

ra
ns

fo
rm

ab
le

 It
em

 
C

at
al

og
ue

 

S
ta

te
 M

ap
 

S
tr

uc
tu

ra
l C

on
fig

ur
at

io
n 

- 
N

ot
at

io
na

l E
xt

en
si

on
s 

T
ra

ns
fo

rm
at

io
n 

D
ia

gr
am

 

T
ra

ns
fo

rm
at

io
n 

O
rc

he
st

ra
tio

n 
D

ia
gr

am
 

Z
on

e 
C

ha
ng

e 
D

oc
um

en
t 

Transformation       1..1 0..n 1..1 1..n  

TransformationAction         1..n   

TransformationAgent         1..n 1..n  

TransformationException          0..n  

TransformationException 
Resolution 

  
   

    0..n  

TransitionalPeriod 0..n       0..n  1..1  

Zone  0..n      0..n 0..n  1..n 

ZoningPolicy           1..n 

Note: Dynamic Evolution Quality Inspection Report, Dynamic Evolution Quality Problem Analysis Report 
and Dynamic Evolution Quality Profile Report do not document artefacts using any of the model units. They 
are however displayed in the table for completeness. 

C.2.2.1 Application Lifecycle Diagram and Notation 

Description: An Application Lifecycle Diagram depicts the evolution landscape of an 

application, in terms of generations and transitional periods, using the notion of Petri 

nets with minor extensions. In a nutshell, a Petri net 25 is a directed graph with 

mathematical and graphical facets to model processes and systems that exhibit 

concurrent, asynchronous, distributed, parallel and/or non-deterministic behaviour 

(ISO/IEC 2004). The basic premises of a Petri net are “places” and “transitions”, being 

the two node types drawn respectively as circles and boxes, plus “arcs” linking the 

nodes. A Petri net is labelled with markings, called “tokens” drawn as filled circles, to 

denote the state of a net. Tokens move along arcs and nodes in a Petri net to describe 

the underlying behaviour in action. To model data processing in action, for instance, 

Petri net places represent inputs to and outputs of a process, and a Petri net transition 

as the process. The presence of a token in an input or output place is interpreted as 

data presenting to or produced from the process respectively. Figure Appendix C.2 

illustrates the modelling of a simple process, via the traversal of a token from input 

place X to output place Y via transition t. 

                                                   

25 It is beyond the scope of this research to fully describe and review Petri net. Research in Petri 
net has been extensive and well published (e.g. the International Standard ISO/IEC 15909-
1:2004, ISO/IEC 2004). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 284 

 
source: developed for this research 

Figure Appendix C.2 Example Petri nets in action 

To empower Petri net in modelling an application lifecycle, a mapping is defined in 

Table Appendix C.7. Those marked with asterisks are extensions to the basic Petri net 

concepts. They will be clarified in the examples after Table Appendix C.7. 

Table Appendix C.7 Notations for Application Lifecycle Diagram 

Continuum Notation Continuum Semantics Equivalent Petri net Semantics 

 
Generation (past or future) Place 

 
Generation (current) Place marked with single Token 

 
Transitional Period (past or future) Transition 

 
Transitional Period (current) ** Transition marked with a small filled box 

 entering or exiting a Transitional Period directed Arc 

 

Change Cases associated with a 
Transitional period 

** annotation to Transition 

 

Figure Appendix C.3 depicts three uses of these notations for one application: 

a) An application is defined to pass through two transitional periods: from release 

“g1” to the current release “g2” (marked with a token), and from “g2” to the next 

release “g3”. “g1” is a source place with no inbound arc (ISO/IEC 2004), 

representing a first or initial release of the application.  

b) The evolution history of a decommissioned application is shown. Notice that 

none of the nodes are marked with a token. The final transitional period labelled 

“tps” is an indefinite period meaning that the application has reached the end of 

its application lifecycle and is no longer in use. It is equivalent to a “sinking 

transition” (ISO/IEC 2004) in Petri net. 

c) Transitional period “t1” is explicitly marked with a token to indicate that an 

application is currently in a transitional period. Marking a transitional period this 

way enables the diagram to emphasise the latency aspects of a transitional 

period (or more), which is unsupported by ordinary Petri net transitions. 

place X
(enabled)

(a) before processing (b) after processing

place Y place X
place Y

(enabled)
t t

Change Case 1
Change Case 2
...



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 285 

 
source: developed for this research 

Figure Appendix C.3 Example application lifecycle diagrams 

Each transitional period can be further annotated with change case tags, to designate 

the change cases that are to be realised in the transitional period, as a way of evolution 

planning. In this regard, Figure Appendix C.3(a) illustrates in which of the transitional 

periods the three change cases (“#1”, “#2” and “#3”) are to be realised. 

There are restrictions for applying Petri net notations in an Application Lifecycle 

Diagram: 

 There is one and only one token in the diagram; 

 Each Petri net place can hold at most one Petri net token; and 

 Arc traversal is directed by relevant software development initiatives. 

C.2.2.2 Dynamic Application Change Document 

Description: A Dynamic Application Change Document catalogues dynamic changes 

proposed for an application. In particular, dynamic changes are specified as change 

cases and accompanied impact sets. Change cases are derived from requirements and 

change requests with respect to the current runtime structure and configuration of an 

application. Each impact set identifies the entities in an application or those outside an 

application thought to be impacted by the associated change case should the change 

case be realised. A Dynamic Application Change Document uses the table structures of 

Table Appendix C.8 and Table Appendix C.9 as templates to record change cases. The 

semantics of each column is described in Appendices C.2.1.3 and C.2.1.5. 

(a) forward and 
backward planning

g1 g3g2

(c) currently in a 
transition period

(b) end of life

g6 g7t1g4 g5 tps

#1: upgrade login service
#2: upgrade database 
access service

#3: improve 
performance of 
order fulfilment 
service



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 286 

Table Appendix C.8 Example documentation of change case and impact 

  Change Case    Impact  

Id Purpose Description Related 
Requirement Target Impact 

Type 
Level of 

Disruption 

Supplemen-
tary 

Change 
Case 

generation v1.4 

CC8 Add visual 
features to 
UI (user 
interface) 

The original UI 
displays the seating 
capacity and the 
location of a selected 
lecture room. The new 
UI will display the 
audio/visual 
equipments available, 
and a map showing 
the room location. 

Use Case 5: 
Display details 
of selected 
room 

Search 
Engine (it 
must now 
provide 
new 
search 
data fields 
to the UI) 

indirect medium CC50: 
Replace 
search 
query 
composer 

 

Table Appendix C.9 Example documentation of change case and transformation 

Change 
Case ID Change Case Purpose Enactment (i.e. Name of responsible 

transformation(s)) 

CC8 Add visual features to UI transformation “UI upgrade” 

 

C.2.2.3 Dynamic Evolution Quality Inspection Report 

Description: An inspection checklist consists of items, documented as inspection 

questions, to inspectors or reviewers with hints and recommendations for finding 

defects and issues (Brykczynski 1999). In particular, the Dynamic Evolution Quality 

Inspection Report offers a checklist of inspection questions for evaluating the state of 

dynamic evolution quality. During an inspection, inspection results are recorded against 

the checklist in such a report, to be used as inputs for improving the quality for dynamic 

evolution afterwards. As shown in Table Appendix C.10, inspection questions are 

grouped under their respective quality categories and quality factors. The questions 

were derived from the attributes of the quality factors (cf. Table 6.1) along with 

enhancements from the relevant literature and methodologies (as cited in Table 

Appendix C.10). Note that not all quality factors are suitable or important for any 

endeavour at hand. Accordingly, an inspection should select the inspection questions 

relevant to the dynamic evolution quality factors of interest. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 287 

Table Appendix C.10 Template for dynamic evolution quality inspection report 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

SSoundness of Change  [[i.e. quality category]        

CCompleteness  [[i.e. quality factor]        

Functionality (reused and converted into questions from RUP) 
After a transformation is applied to an application: 

 Is the functionality offered by the application (i.e. external 
functionality) covered by its realisations (i.e. of respective 
transformable items)?  

 Is the internal functionality relevant to and/or supporting 
external functionality) covered by its realisations (i.e. of 
respective transformable items)? 

D 

  

Transformable items and workflows 
After a transformation is applied to an application,  

 Are all transformable items (including workflows) specified in 
the application present? 

 Are all transformable items participating in workflows 
present? 

D 

  

Bindings 
After a transformation is applied to an application,  

 Are all bindings specified in the application present? 
 Are all broken bindings (i.e. without required transformable 

items) identified and removed from the application? 
 Are all illegal bindings identified and removed from the 

application? 

D 

  

Assumptions and properties 
 Are assumptions and properties of an application and its 

parts met by change cases and transformations? 
A, D 

  

CCoonsistency        

Bindings 
 Are bindings compatible (.e.g. interface) with their associated 

transformable items after a transformation? 
D 

  

Protocols 
 Do transformable items use compatible protocols when 

communicating with one another after a transformation? 
D 

  

Dynamic change impact 
 Have all transformable items to be involved in a dynamic 

change been identified? 
D 

  

Resuming state (Appendix C.2.1.13.1) 
 Have resuming states been identified for all new and 

replacement transformable items to be placed into an 
application by a transformation?  

 Are all resuming states reachable (i.e. which can be 
progressively transitioned from the start-up states of their 
respective transformable items)? 

D 

  

State maps 
 Have state maps been specified for all transformable items 

affected by a transformation, to ensure they do not progress 
towards any error state but continue from their resuming 
states after a transformation? 

D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 288 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

State synchronisation 
 Are the resuming states of all new and replacement 

transformable items synchronised with the state of the 
application and vice versa after a transformation? (For 
instance, if a new component is required to keep a database 
available for use by an application, it will do so after a 
transformation.) 

D 

  

Quiescent state (Appendix C.2.1.13.1) 
 Have quiescent states been identified for all transformable 

items affected by a transformation? 
 During each quiescent state (from which a transformation will 

commence): 
o Are critical procedures prevented from execution? 
o Are message exchanges, interactions and 

transactions prevented from being started? 

D 

  

System invariants 
 Are all system invariants preserved from transformations? 

D 
  

Resources and support for transformable items 
 Have adequate resources and support been identified and 

provided for new and replacement transformable items? 
D 

  

Assumptions and properties 
 [See Completeness] 

A, D 
  

CCorrectness        

Dynamic changes 
 Are proposed dynamic changes non-arbitrary, meaning 

o all proposed changes are captured (e.g. using 
ChangeCase, Appendix C.2.1.3); and 

o recipients of all proposed changes are identified in 
an application? 

 Are proposed dynamic changes feasible (i.e. corresponding 
transitional periods and transformations identifiable to realise 
the changes)? 

A, D 

  

Behaviour 
 Are appropriate servicing policies (Appendix C.2.1.11.1) 

declared for all transformable items affected by a 
transformation when it is executed?  

D 

  

Transformation ordering 
 Are transformations ordered as appropriate in all 

transformation orchestration diagrams? 
 Are transformation actions ordered correctly in all 

transformation diagrams? 

D 

  

Transformations 
 During each transitional period, are transformations broken 

into sufficiently short and simple units to facilitate execution? 
 Is each transformation executed at a right time (e.g. avoiding 

interference with normal business activities (Carzaniga et al. 
1998))? 

D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 289 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

IInfusibility of Change        

LLocality        

Zoning and change localisation 
 Are zoning policies (Appendix C.3.1.4.2) followed when 

defining zones? 
 Are changes local to a set of transformable items (e.g. in a 

zone) rather than global to an application? 

D 

  

MMaintainability        

Transformable items 
 Are transformable items that will participate in interactions (or 

workflows), after a transformation, explicitly defined in these 
interactions (using relevant modelling languages UML, 
BPMN etc.)? 

D 

  

Cost and ease of modifications (merged and enhanced from Select 
Perspective, EPIC and OPF): 

 Are specifications for new and replacement transformable 
items well-defined, standard based, tested, catalogued and 
current after changes?  

 Are realisations for new and replacement transformable 
items appropriately documented and catalogued after 
changes? 

 Are changes to zones of an application identified (e.g. in 
Zone Change Document, Appendix C.2.2.11)? 

 Is an application appropriately layered after changes? 
 Are new and replacement transformable items identified (e.g. 

in New and Replacement Transformable Item Catalogue, 
Appendix C.2.2.6)? 

 After changes are made, will the documentation be current 
for: 

o the application lifecycle (i.e. up-to-date Application 
Lifecycle Diagram, Appendix C.2.2.1); and 

o the application structure (e.g. using Structural 
Configuration - Notational Extensions, Appendix 
C.2.2.8)? 

 Are project conventions followed for  
o the application lifecycle (e.g. Appendix C.2.2.1); 
o change specifications (e.g. Appendix C.3.2.1); 
o state maps (e.g. Appendix C.2.2.7); 
o the application structure (e.g. UML, BPMN and 

Appendix C.2.2.8); and 
o transformations (e.g. Appendix C.2.2.9)? 

A, D 

  

Testability 
 Is the documentation for input and output characteristics, and 

states of transformable items current after changes? 
 Do the changes degrade application observability (Appendix 

C.3.2.17.12)? 
 Do the changes degrade application controllability (Appendix 

C.3.2.17.12)? 

D 

  

Interactions (or workflows) 
 Are interactions (or workflows), after a transformation, clearly 

documented, detailed (e.g. with UML, BPMN) and current 
after changes? 

D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 290 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

TTransparency        

End users 
 Are transformations, when executed, hidden from end users? 

D 
  

Application programmers 
 Are the design and implementation for transformations 

hidden from application programmers such that they do not 
need to take care of transformations when developing the 
business logic of an application?  

D 

  

Transformable items 
 Are transformations hidden from transformable items of an 

application unaffected by the transformations? 
D 

  

Zones 
 Are transformation agents abstracted from zones in which an 

application operates? 
D 

  

CChangeability  oof Application        

AAutonomy        

Transformable items 
 Are transformable items designed to have control and 

governance of their own processing? 
D 

  

CCoordination        

Transformation agents 
 Are transformation agents organised to facilitate the 

coordination of transformations among multiple zones during 
a transitional period? 

D 

  

Network 
 Do transformation agents have a means of tolerating network 

unreliability when they coordinate with one another during a 
transitional period? 

D 

  

EExtensibility        

Application with new functionality  
 Does the application support extensions of its compositions 

with new functionality? 
(customised from Zenger (2004, pp. 9-10)) 
 Are compositions defined with the specifications rather than 

the realisations of transformable items? 
 Are zones used to confine the scope of changes? 

D 

  

Application with new transformable items (customised from Zenger 
(2004, pp. 3,10)) 

 Are variation points defined in an architecture to plug in 
alternative or additional transformable items where 
appropriate? 

 Are bindings between transformable items dynamic instead 
of static? 

 Does the application support multiple versions of 
transformable items to co-exist? 

D 

  

Parts with new functionality 
 Does the architecture support extensions of its transformable 

items with new functionality? 
D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 291 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

LLoose Coupling        

Transformable items 
 Are transformable items loosely coupled from one another? 
 Do transformable items have their own lifecycles where 

appropriate? 
 Are transformable items allocated their own runtime 

environments where appropriate? 

D 

  

SSeparation of CConcerns        

Functionality vs. dynamic changes 
 Are dynamic change concerns (e.g. change cases, 

transformations, transitional periods, application lifecycle) 
explicitly defined? 

 Are dynamic change concerns separated from functionality 
concerns (e.g. specifications and realisations for 
transformable items)? 

D 

  

Functionality vs. communication 
 Are channels defined in bindings between communicating 

transformable items? 
 Are communication concerns between transformable items 

mediated in channels or their bindings? 

D 

  

Functionality vs. security (reused and converted into questions from 
ERL) 

 Is the support for security separated from functionality of 
transformable items? 

 Are relevant standards followed for security concerns where 
appropriate (e.g. use of WS-Security (OASIS 2006) as in 
ERL (2005))? 

D 

  

Transformable item realisation vs. clients (reused and converted into 
questions from Select Perspective) 

 Are realisations for transformable items hidden from their 
clients? 

 Does the development for clients of transformable items use 
the specifications for the transformable items only but not 
their realisations? 

 Is the development for the realisations for transformable 
items separated from the development for their clients (e.g. 
separate activities used in Select Perspective (Apperly et al. 
2003))? 

D 

  

Transformable item specification vs. realisation 
 Is the specification for a transformable item distinguished 

from its realisation as separate concepts? 
 Are the specification and realisation for a transformable item 

developed with separate activities? 
 Are the specification and realisation for a transformable item 

documented separately? 

D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 292 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

RRobustness of Application        

FFault Tolerance        

New and replacement transformable items 
 Is an application protected from potential faults of new and 

replacement transformable items? 
 Are barriers established to contain potentially faulty new and 

replacement transformable items to minimise their impact on 
the application? 

D 

  

RRecoverability        

Failure caused by transformation 
 Are transformations declared with exceptions and exception 

handlers where appropriate to restore an application to 
continue to offer its functionality, for failures caused by 
transformations? 

D 

  

Failure caused by dynamic change 
 Is an application restored to a state to continue to operate for 

failures caused by dynamic changes (i.e. after a 
transformation)? 

D 

  

RReliability        

Control 
 Does an application limit the behaviour of its new and 

replacement transformable items to avoid itself from being 
compromised? 

D 

  

New and replacement transformable items 
 Do new and replacement transformable items behave as 

expected, both functionally and non-functionally, in an 
application? 

D 

  

SSafety        

In-transformation 
 Do transformations not lead an application and its 

transformable items to operate unsafely? 
D 

  

Post-transformation 
 Do dynamic changes not lead an application and its 

transformable items to operate unsafely? 
D 

  

SSecurity        

Transformation agents 
 Are transformation agents secured from unauthorised 

access? 
D 

  

Application 
 Is the security of an application protected from being 

compromised by new and replacement transformable items 
after a transformation? 

D 

  

New and replacement transformable items 
 Is access to new and replacement items restricted where 

appropriate to ensure they are used as intended after a 
transformation? 

D 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 293 

Inspection Question(s)  

T
yp

e 
of

 a
rt

ef
ac

t 
to

 In
sp

ec
t: 

“A
” f

or
 a

na
ly

si
s 

 
“D

” f
or

 d
es

ig
n 

“Y
”,

“N
” o

r “
N

/A
” 

(y
es

, n
o 

or
 n

ot
 

ap
pl

ic
ab

le
) 

If 
“N

o”
, 

de
sc

rib
e 

al
l 

de
fe

ct
s/

 is
su

es
 

Security policies 
 Are security policies dynamically updatable and reloadable in 

an application? 
D 

  

Security policies and enforcement 
 Are the declarations for security policies separated from their 

enforcement? 
D 

  

 

C.2.2.4 Dynamic Evolution Quality Problem Analysis Report  

Description: A Dynamic Evolution Quality Problem Analysis Report documents the 

information about the defects/issues found and analysed for dynamic evolution quality. 

Each defect/issue consists of the following attributes: 

 Phase detected: the development phase in which a defect or an issue was 

detected 

 Defect/Issue type: the type of the defect or issue found 

 Defect/Issue location: the work product in which the defect or issue has actually 

been found 

 Root cause(s): the trigger that led to the defect or issue 

Table Appendix C.11 provides an example as well as a template for documenting a 

Dynamic Evolution Quality Problem Analysis Report. See Technique Root Cause 

Analysis for ranges of values suitable for these attributes (cf. Appendix C.3.2.10). 

Table Appendix C.11 Example dynamic evolution quality problem analysis report 

Defect/Issue 
Description Phase Detected Defect/Issue Type Defect/Issue 

Location Root Cause(s) 

Cache component 
not initialised after 
deployment 

Dynamic evolution 
design 

TransformableItem 
State Map for 
cache 
component 

Transformation Design 
incomplete 

Individual mistake 

C.2.2.5 Dynamic Evolution Quality Profile Report 

Description: A Dynamic Evolution Quality Profile Report records assessment results on 

dynamic evolution quality factors for an application. An assessment aims at grading 

these factors for their importance, with the results providing a basis from which quality 

factors can be ranked and prioritised to be dealt with in an endeavour. The importance 

for each quality factor is likely to be different for each particular situation (i.e. the 

application). For instance, Security could be seen as more important to an application 

with components distributed in a wide area network than an application running in a 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 294 

secure local area network. At other times, quality factors are re-assessed over time to 

adapt to the changing nature of a business and the needs of end users. For example, 

initial releases of a simple application might ignore “extensibility” but as it grows in size 

and complexity, application extension becomes increasingly important. 

The Dynamic Evolution Quality Profile Report is produced by filling out the template as 

shown in Table Appendix C.12. A quality factor is represented by one or more quality 

attributes, each further exemplified by a consequence in the table should the attribute 

fail to be met. A quality attribute is assessed for an application by assigning an 

importance score to the attribute (between 1 for not important at all and 7 for extremely 

important). Each quality factor is then scored by taking the average of the scores of its 

quality attributes. Its score is recorded in the rightmost column of the template. 

Table Appendix C.12 Template for dynamic evolution quality profile report 

   

Importance Score 
(1-not important at 

all 
7-extremely 
important) 

Quality Factor Quality Attribute Possible Adverse 
Consequences 

Quality 
Attribute 

Quality 
Factor 

SSoundness of Change        

Completeness 

No missing functionality after a 
transformation 

An application missing 
functionality to operate  

  

No missing transformable items 
after a transformation 

An application missing 
transformable items to operate  

  

No missing, illegal or broken 
bindings after a transformation 

Transformable items unable to 
interact through missing, illegal 
or broken bindings 

  

(Also in Consistency) 
assumptions and properties of a 
distributed application and its 
transformable items met by a 
change 

Assumptions and properties of a 
application and its 
transformable items violated  

  

Consistency 

Compatible bindings Transformable items unable to 
bind to one another 

  

Compatible communications 
protocol among transformable 
items 

Transformable items unable to 
communicate 

  

All transformable items involved 
in a runtime change identified 
before a transformation 

Transformable items requiring 
modifications left out of a 
transformation 

  

No progression towards an error 
state after a transformation 

Application failure after a 
transformation 

  

Synchronisation of application’s 
and transformable items’ states 
after a transformation 

An application viewing a new 
transformable item as not ready 
for use yet the item has been 
initiated and operating 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 295 

   

Importance Score 
(1-not important at 

all 
7-extremely 
important) 

Quality Factor Quality Attribute Possible Adverse 
Consequences 

Quality 
Attribute 

Quality 
Factor 

A reachable state attained after a 
transformation 

Unknown application behaviour 
(due to being in an unknown 
state) 

  

No critical procedures executed 
before a transformation 

Critical procedures in execution 
aborted during a transformation 

  

No pending messages, 
interactions or transactions before 
a transformation 

Pending messages, interactions 
or transactions aborted during a 
transformation 

  

System invariants preserved from 
a transformation 

System invariants violated   

Adequate resources and support 
for new and replacement 
transformable items 

New and replacement 
transformable items unable to 
operate 

  

(Also in Completeness) 
assumptions and properties of a 
distributed application and its 
transformable items met by a 
change 

Assumptions and properties of 
an application and its 
transformable items violated 

  

Correctness 

Non-arbitrary and admissible 
changes 

Changes too complex and error 
prone to implement in an 
application 

  

No unintentional behaviour during 
and after a transformation 

An application behaving 
erratically during and after a 
transformation 

  

Correct ordering of 
transformations 

Transformable items inserted 
into an application in a wrong 
order 

  

Transformations at a right time 
Transformations interrupting an 
application during busy 
business operating hours 

  

IInfusibility of Change        

Locality 

Application partitioning and 
change localisation to partitions 

A small change in one part of an 
application triggering changes 
to many other parts that have 
not been accounted for 

  

Maintainability 

All transformable items clearly 
defined in interaction (or 
workflow) specifications 

Transformable items 
participating in interactions not 
accounted for change as their 
interactions change 

  

No degradation in cost and ease 
of modifications 

An application more costly and 
difficult to evolve 

  

No reduction in testability An application more difficult to 
test 

  

Clear and detailed interactions Unable to evolve interactions 
because of lack of 
documentation on interactions 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 296 

   

Importance Score 
(1-not important at 

all 
7-extremely 
important) 

Quality Factor Quality Attribute Possible Adverse 
Consequences 

Quality 
Attribute 

Quality 
Factor 

Transparency 

Transformations hidden from end 
users 

End users noticing and 
dissatisfied with interruptions 
caused by transformations 

  

Transformation design and 
implementation hidden from 
application programmers 

Harder to focus on normal 
application development as 
transformation design and 
implementation are mixed with 
application code 

  

Transformations hidden from 
transformable items unaffected by 
the transformations 

Potential interruptions to 
transformable items unaffected 
by the transformation 

  

Transformation agents hidden 
from operating environment 

Transformation agents exposed 
to transformable items that run 
in the operating environment 

  

CChangeability  oof Application        

Autonomy 
Self-control and self-governance 
of transformable items’ own 
processing 

Transformable items unable to 
evolve independently 

  

Coordination 

Transformations coordinated 
among multiple nodes 

Changes in different nodes out 
of sync with one another 

  

Transformation agents tolerant of 
network unreliability during a 
transformation 

Transformation agents unable 
to complete transformations 
executed remotely 

  

Extensibility 

Runtime extension/upgrade of an 
application with new functionality 

An application unable to 
accommodate new functionality 
with ease 

  

Runtime extension/upgrade of 
transformable items in an 
application with new functionality 

Transformable items unable to 
accommodate new functionality 
with ease 

  

Runtime extension/upgrade of an 
application with new 
transformable items 

An application unable to 
accommodate new 
transformable items with ease 

  

Loose 
Coupling 

High level of independence 
between transformable items 

Increase in likelihood of 
changes to one transformable 
item causing changes to others 

  

Transformable items having their 
own lifecycles and runtime 
environments 

Ditto   

Separation of 
Concerns 

Separating dynamic change 
concerns (i.e. via transformations) 
from functionality concerns 

Transformation design tangled 
up with functional design, 
making the latter harder to 
evolve 

  

Separating communication 
concerns from functionality 
concerns 

Harder to evolve communication 
design and functionality 
independently 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 297 

   

Importance Score 
(1-not important at 

all 
7-extremely 
important) 

Quality Factor Quality Attribute Possible Adverse 
Consequences 

Quality 
Attribute 

Quality 
Factor 

Separating security support from 
functionality concerns 

Harder to evolve security 
support and functionality 
independently 

  

Separating realisations of 
transformable items from those of 
transformable item clients 

Harder to evolve transformable 
items from their clients 
independently 

  

Separating transformable item 
specification from realisation 
concerns 

Harder to evolve transformable 
items without also requiring 
updates to their clients 

  

RRobustness of Application        

Fault 
Tolerance 

High tolerance of faulty new 
and/or changed transformable 
items 

An application producing faulty 
results in the presence of faults 
from new and replacement 
transformable items 

  

Barriers established to contain 
potentially faulty new and 
replacement transformable items 

Faults from new and 
replacement transformable 
items rippling through and 
impacting other parts of an 
application 

  

Recoverability 

Restoration of an application and 
its parts to a state to continue to 
perform their functionality, after a 
failure caused by a transformation 
and/or its dynamic change(s) 

An application unable to 
continue operation after 
transformation failures 

  

Reliability 

No compromise on intended 
functionality after a transformation 

Functionality compromised by 
new and replacement 
transformable items 

  

Replacement transformable items 
fully satisfying their roles 

New and replacement 
transformable items behaving 
unexpectedly 

  

Safety 

Distributed application and its 
transformable items operating 
safely during and after a 
transformation 

Potential safety hazards 
triggered during and/or after a 
transformation 

  

Security 

Transformation agents secured 
from unauthorised access 

Unauthorised changes to 
application 

  

No security compromise by new 
and replacement transformable 
items after a transformation 

New and replacement 
transformable items introducing 
security compromise in 
application 

  

Access to for new and 
replacement transformable items 
restricted 

New and replacement 
transformable items unprotected 
from misuse by distrusted ones 

  

Dynamically updated security 
policy 

Security policies not easily 
updated to adapt to changing 
security requirements 

  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 298 

   

Importance Score 
(1-not important at 

all 
7-extremely 
important) 

Quality Factor Quality Attribute Possible Adverse 
Consequences 

Quality 
Attribute 

Quality 
Factor 

Separating security policy from 
security enforcement 

Unable to update security 
enforcement without changes to 
policies 

  

 

C.2.2.6 New and Replacement Transformable Item Catalogue 

Description: A New and Replacement Transformable Item Catalogue documents 

Transformable Items (new and replacement) to be added to an application, their state 

configurations from which they start up to operate, and their Operational Profiles 

(Appendix C.2.1.6). Continuum supports two kinds of operational profile, viz. resource 

and performance profiles (cf. Appendices C.2.1.10 and C.2.1.8). Operational profiles 

can be used to verify if these profiles will still be met after changes are made to an 

application at runtime. For simple resource and performance profiles, the template 

shown in Table Appendix C.13 can be used for such a catalogue: 

Table Appendix C.13 Example documentation of simple new and replacement transformable item 
catalogue 

  New and Replacement Transformable Items 

Responsible 
Transformation(s) Name 

Change in Resource 
Profile 

(current vs. new) 

Change in 
Performance 

Profile 
(current vs. new) 

Start-up State 
Configuration 

progressing from generations V3 to V4 

data store upgrade new data store 
exclusive memory: 
4TB/16TB 
(current/new) 

 

state map XYZ (cf. 
example in Table 
Appendix C.15) 

Web UI upgrade new Web UI 
exclusive memory: 
512MB/4GB 
(current/new) 

minimum number 
of users: 2000/5000 
(current/new) 

N/A 

 

For a more sophisticated resource profile, an estimate for a resource consumed by a 

transformable item can be treated as consisting of the static (i.e. steady usage) and 

dynamic parts (i.e. on-demand usage) (see resource profile modelling in Appendix 

C.3.2.9). Thus, the example template in Table Appendix C.14 can be used to 

supplement Table Appendix C.13. The “exclusive use” column indicates if a resource 

allocation will be dedicated exclusively to a consumer, or can be shared with other 

consumers. The “current” and “new” columns register the current and new usages for a 

resource before and after a transformation. The “static” and “dynamic” columns register 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 299 

the steady-state and on-demand usage estimates for a resource. 

Table Appendix C.14 Example documentation of resource profile 

  Exclusive  Static (GB) Dynamic (GB) 

Resource Resource Consumer Use Current New Current New 

network drive space new data store Yes 2000 4000 2000 12000 

 new Web UI Yes ¼ 2 ¼ 2 

 

For complex performance profiles, Continuum reuses Adaptive Service Grid’s (ASG’s) 

performance metrics model (Kempter et al. 2007) which comprehensively models 

performance characteristics for services, applications and their operating environment. 

This is summarised in the descriptions for the Performance Profile model unit fragment 

(Appendix C.2.1.8). For reference only, there are alternative approaches for 

performance analysis and prediction, such as those surveyed by Balsamo et al. (2004). 

C.2.2.7 State Map 

Description: A State Map describes the mapping between the states of an existing 

TransformableItem and the states of the TransformableItem replacing it (i.e. the 

replacement) after a transformation is complete. A state map is defined as a tuple (Q, 

M, V) where Q and V are quiescent and resolved states of an existing or old 

TransformableItem, and M is a resuming state of a replacement TransformableItem 

(see Appendix C.2.1.13.1 for state definitions). This tuple is depicted in graphical and 

tabular ways. In the former, two UML state machines (OMG 2010b) for the old and 

replacement TransformableItems are interconnected with the following arc types: 

 A double-ended arrow dashed arc represents a two-way mapping between a 

state of the old TransformableItem, being both a quiescent and a resolved state, 

and a resuming state of the replacement TransformableItem. This means when 

a transformation occurs and the old TransformableItem happens to be at a 

quiescent state connected by the arc, the replacement TransformableItem will 

commence from the resuming state connected by the arc after the 

transformation. If the transformation fails, the old TransformableItem is set to 

continue to operate from the same quiescent state pointed to by the arc. The arc 

connecting state p of the old to state p’ of the replacement TransformableItem in 

Figure Appendix C.4 illustrates this scenario. 

 A single-arrow dashed arc from a state of the old TransformableItem to a state 

of its replacement defines a forward mapping from the former to the latter, with 

the resolved state being annotated on the arc. Its semantics is similar to a 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 300 

double-arrow dashed arc, except that the resolved state of the old 

TransformableItem is the state annotated on the arc rather than the state 

connected by the arc. So, if the transformation fails, the old TransformableItem 

is set to continue to operate from the designated resolved state. Figure 

Appendix C.4 illustrates this scenario, where the arc linking state r of an old 

TransformableItem to state p’ of its replacement TransformableItem designates 

state p as the resolved state if a transformation fails. 

p

sq

r p’

q’

r’
p

(a) old TransformableItem (b) replacement TransformableItem
 

source: developed for this research 

Figure Appendix C.4 Example state map for two UML state machines 

In the tabular form, rows and columns of a state map correspond to the observable 

states of the old TransformableItem and the states of the replacement 

TransformableItem. State identifiers in the row and column headings are further 

annotated with “Q” for Quiescent, “M” for resuMing and “V” for resolVed states. Table 

Appendix C.15 and Figure Appendix C.4 describe the same information. 

Table Appendix C.15 Tabular representation of state map in Figure Appendix C.4 

resolved  
state 

replacement state 

p’: M q’: M r’ 

old state 

pp: QQV  p   

qq: QQV   q  

rr: QQ  p   

ss     

 

Note that certain TransformableItems have no notion of state, such as stateless 

services in a SOA environment (Milanovic & Malek 2004). As such, State Map is not 

applicable. 

C.2.2.8 Structural Configuration - Notational Extensions 

Description: A structural configuration generally depicts the runtime structure of an 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 301 

application at some stage in its lifecycle. As various mature modelling languages and 

notations already exist to model the structural configurations of different types of 

composition-based distributed applications, Continuum does not prescribe its own set 

of extensive notations for modelling the same kinds of concepts. Instead, Continuum 

offers several notations, listed in Table Appendix C.16, as generic extensions to those 

languages to enhance their richness and support for dynamic evolution. These 

notations are sufficiently generic for different types of composition-based distributed 

applications, and sufficiently detailed to assist in modelling an application undergoing 

dynamic changes with Continuum. 

Table Appendix C.16 Dynamic evolution related notations for structural configurations 

Continuum Notation Continuum Semantics 

 
A Zone (Appendix C.2.1.20). 

«blocked and queued» or 

 

Attached to a TransformableItem to indicate its Servicing Policy being set as 
“blocked and queued”, such as during a Transformation (Appendix C.2.1.11). 

«illegal» or  
Attached to a TransformableItem to indicate its Servicing Policy being set as 
“illegal”, such as during a Transformation (Appendix C.2.1.11). 

«delegated» or  

Attached to a TransformableItem to indicate its Servicing Policy being set as 
“delegated”, such as during a Transformation (Appendix C.2.1.11). The arrow 
points to the TransformableItem or its services being delegated with the 
responsibilities. 

 
A TransformationAgent (Appendix C.2.1.16). 

Delta symbol “Δ” with 
additional highlighting on 
the parts (i.e. thickened 
line for a binding, shading 
on a TransformableItem)  

Attached to a TransformableItem or a binding between TransformableItems to 
indicate that either it is new or it has been changed since the last generation. 

 

A TransformableItem. Existing notations such as those from UML and BPMN 
can also be used instead of the one on the left. Each TransformableItem should 
be labelled to distinguish it from others (e.g. of the same type), with this format: 
{instanceIds}:{TransformbleItemType} 

 {TransformableItemType} denotes the type of TransformableItem, its 
semantics equivalent to the notion of “class” in object-oriented 
concepts.  

 {instanceIds} specifies a set of identifiers that uniquely identify 
particular TransformableItems.  

 
The following examples illustrate these fields: 
[a, b, c, d]:WebCrawler –  

a set of web crawler instances “a”, “b”, “c” and “d” 
wc[1..1]:WebCrawler or wc1:WebCrawler –  

a particular web crawler instance “wc1” 
wc[2..5]:WebCrawler –  

a set of web crawler instances numbered consecutively, which are 
“wc2”, “wc3”, “wc4” and “wc5” 

 

Figure Appendix C.5 shows three successive generations of an application 

Agent 
name



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 302 

demonstrating use of these notations. The application is scattered in two zones: 

“internal” and “external”. Its components are drawn with UML’s component instance 

notation. In the second generation, a transformation agent “T” is added to the internal 

zone to handle modifications within that zone. A new version of the online bank 

component (i.e. “b2:OnlineBank_V2”) is also added to this zone to take over the bill 

payment functionality of version V1 of the online bank component (i.e. 

“bank:OnlineBank_V1”) (note the “delegated” servicing policy on the “payBill” function). 

However, access to its “checkBalance” function is not yet available (i.e. labelled with the 

“blocked and queued” servicing policy). In the third generation, version V1 of the online 

bank component is superseded by version V2, and hence version V1 is no longer 

accessible (i.e. labelled with the “illegal” servicing policy).  

 
source: developed for this research 

Figure Appendix C.5 Example use of Structural Configuration - Notational 
Extensions 

C.2.2.9 Transformation Diagram and Notation 

Description: A Transformation Diagram specifies the transformation actions in a 

transformation and the order of precedence of their execution. Several concepts and 

notations are adopted from UML’s behavioural modelling notations (OMG 2010b) in a 

transformation diagram (see Table Appendix C.17). An UML Action is a fundamental 

unit of behaviour specification and is used to represent a transformation action in a 

transformation. Each transformation action is labelled with the action type enclosed by 

ExternalInternal

checkBalance

payBill

biller
[1..20]
:Biller

payBillb1:
Online 

Bank_v1

Agent  
T

ExternalInternal

createAccount

checkBalance

payBill

biller
[1..20]
:Biller

payBill
b1:

Online 
Bank_v1

ExternalInternal

biller
[1..20]
:Biller

payBill
b1:

Online 
Bank_v1

b2:
Online 

Bank_v2 

checkBalance

payBill

checkBalance

payBill

(a) first generation

(b) second generation (c) third generation

b2:
Online 

Bank_v2 

checkBalance

payBill



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 303 

the guillemot characters «» and a short name of the behaviour for that particular type. 

UML’s Initial and Final Nodes designate the entry and exiting points for a transformation 

model. UML Control and Object Flows are used to represent control and item-under-

transformation (IUT) flows from one transformation action to another. A control flow in a 

transformation depicts the execution of an action being terminated and passed on to 

the next action indicated by the flow. An IUT flow represents a flow of an IUT from an 

output to an input action. An IUT can be a TransformableItem, a Resource, or a Zone. 

Table Appendix C.17 Notations for Transformation Diagram 

Continuum Notation Continuum Semantics Equivalent UML 
Semantics 

 

Transformation action (node).Default types are:  
««ccomposition»» - modification to a composition 
«rresource» - (re)configuration to a resource 
«zzone» - modification to a zone (e.g. resource 
assignment) 
«sstate» - setup of a TransformableItem’s state 
«sservicingPolicy» - setup of a TransformableItem’s 
ServicingPolicy 
«ccustom» - any other action handled by foreign means 
(e.g. a tool) which is not modelled by Continuum 

Action 

 Start (node) of transformation Initial node 

 End (node) of transformation Final node 

 Generic flow (arc) Flow 

 
Synchronisation for flow split and merge Fork and join 

 

Item under transformation (IUT), including 
TransformableItem, Resource and Zone 

Object node 

 
Control flow between actions Control flow 

 or 

 

IUT flow between actions Object flow 

 

As per UML semantics, a transformation action starts execution when its incoming 

control(s) and IUT(s) are available to it as inputs (Bock 2003). Likewise, as a 

transformation action terminates, control(s) and IUT(s) are emitted from the action as 

outputs (Bock 2003). Figure Appendix C.6(a) denotes a Bind action being executed as 

soon as the Client, the Server and a designated control signal are fed to the action. 

Figure Appendix C.6(b) depicts the opposite action breaking the binding between the 

Client and the Server: both these components and a control signal emitted after 

execution. See Appendix C.3.2.7 for additional examples. 

«type»
behaviour

IUT 
name



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 304 

 
source: developed for this research 

Figure Appendix C.6 Example transformation actions 

Note that the actual order of execution of the transformation actions in a transformation 

model is decided by the transformation’s implementation, which may choose a single-

threaded execution to step through the transformation actions in the model one at a 

time, or run several threads to perform multiple actions in parallel where possible to 

maximise concurrency. 

C.2.2.10 Transformation Orchestration Diagram and Notation 

Description: A Transformation Orchestration Diagram specifies the steps, in terms of 

transformations and their sequence, to progress an application from one generation to 

its succeeding one. A subset of the concepts and their notations, as listed in Table 

Appendix C.18, are customised from the Business Process Modelling Notation (BPMN) 

for representing process flows (OMG 2009) to support the modelling of transformation 

orchestration diagrammatically. A BPMN task is an atomic unit of execution which 

represents a transformation. A BPMN sub-process is a hierarchical grouping of tasks 

and smaller sub-processes, and maps to a set of transformations to be performed 

during a transitional period. The BPMN sequence flows and gateways provide a means 

of sequencing, joining and merging transformations in an execution flow. The BPMN 

start event, intermediate event, end event and error event concepts identify triggers and 

results within the execution flow of the set of transformations. Finally, a BPMN 

swimlane identifies a set of transformations assigned to a transformation agent by 

enclosing them within the swimlane. 

It should be noted that although UML Activity Diagrams offer features similar to BPMN 

for modelling transformation orchestration, BPMN is more appropriate since it is more 

focused and intuitive than the UML approach when representing situations where 

exceptions arise (White 2004). 

Table Appendix C.18 Notations for Transformation Orchestration Diagram 

Continuum 
Notation Continuum Semantics BPMN Semantics 

 
The start point representing the as-is generation before a set of 
transformations are executed Start event 

Client «Composition»
Bind

Server

Client«Composition»
Unbind

Server

(a) “Bind” action (b) “Unbind” action



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 305 

Continuum 
Notation Continuum Semantics BPMN Semantics 

 
An intermediate point representing a transformation agent is 
passed control of an execution flow by another agent Intermediate event 

 
An end point representing the expected to-be generation after a 
transitional period 

Generic end event 
with additional 
semantics 

 
An end point representing a resolved generation (e.g. because of 
errors) after a transitional period Ditto 

 
A special resolved generation representing the recovered as-is 
generation (e.g. because of errors) after a transitional period 

Ditto 

 
Transformation Task 

 

A transformation to be implemented/handled by foreign means 
(e.g. using a particular third party tool) Task 

 
A group of transformations 

Collapsed and 
expanded sub-
process 

 
A marker for a transformation to indicate that it intends to resolve a 
transformation exception 

Including but not 
equivalent to 
compensation 

 Execution flow of transformations Sequence flow 

 
Synchronisation point for branching or merging alternative 
transformation execution flows Exclusive gateway 

 
Synchronisation point for forking and joining transformations 
executed in parallel 

Parallel gateway 

 

Decision point for the outgoing transformation execution flow 
based on the first incoming transformation execution flow from 
among several transformations executed in parallel 

Complex gateway 

 

Enclosure for transformations designating the responsibility of a 
transformation agent Swimlane 

 
Transformation exception Error event 

 
Timer to set maximum duration for a transformation (or a group of) Intermediate timer 

 

Figure Appendix C.7 exemplifies the notations using an orchestration of 

transformations. A normal execution would involve four transformations, “t1”, “t2”, “t3” 

and “t4”, with the last two being executed in parallel. If an exception fires from any of 

these transformations, the transformation exception resolution “c” will attempt to revert 

an application to its original generation. 

«custom»

ag
en

t 
na

m
e



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 306 

 
source: developed for this research 

Figure Appendix C.7 Example transformation orchestration diagram 

C.2.2.11 Zone Change Document 

Description: The Zone Change Document captures changes to zones which host an 

application and its TransformableItems. These changes are required to synchronise the 

configurations of zones with the changes to the application and its TransformableItems 

as they evolve. A Zone Change Document records: 

 addition of new zones; 

 deletion of existing (empty) zones; 

 addition/removal of TransformableItems to/from a zone; 

 relocation of TransformableItems from one zone to another zone (considered 

removal followed by addition); and/or 

 changes to the resources offered by zones 

Table Appendix C.19 is an example of documenting the kinds of zone changes above. 

In general, the following notations are used for convenience: 

 “+x”: either addition of transformable item “x” to the zone identified by the 

column heading, or introduction of new zone “x”. 

 “-x”: either removal of transformable item “x” from the zone identified by the 

column heading, or deletion of existing zone “x”. 

 “^x”: increase in resource “x” in the zone identified by the column heading. 

 “Vx”: decrease in resource “x” in the zone identified by the column heading. 

Table Appendix C.19 Example zone change document 

Responsible Transformation(s) ++Security Zone Web Zone Repository Zone 

Security Zone addition 
^24TB shared network drive 
space   

Authorisation module addition +sec:AuthModule_v1 
  

Web UI upgrade  ++ui:WebUI_v2  

Data store upgrade   ++ds:DataStore_v2 

Normal flow

t1 t2

t3

t4

current
generation

next
generation

cc

recovered 
current

generation



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 307 

 

CC.3 WORK UNIT FRAGMENTS 
Work unit fragments concern what must be done and how to achieve given purposes 

during development (ISO/IEC 2007). A work unit fragment can be a process to follow, a 

task to complete (the “what”) in a process, or a technique to use (i.e. the “how”) in a task 

(ISO/IEC 2007). Continuum’s work unit fragments encompass all these types. 

SEMDM characterises a work unit fragment with a field called the “minimum capability 

level” at which a project situation is expected to attain before the fragment is used. In 

Continuum, the minimum capability level is not individually specified for each work unit 

fragment. Rather, all Continuum work unit fragments have the minimum capability level 

set to two, meaning that they can only be used in a project situation that is at least 

“planned and tracked while it is performed; work products conform to specified standards and 

requirements” (ISO/IEC 2007).  

C.3.1 Process and Task Fragments 

Continuum’s process fragments are instances of SEMDM Process/*Kind. Each 

fragment is a large-grained work unit tackling a particular area of dynamic evolution 

during analysis and/or design. 

Continuum’s task fragments are instances of SEMDM Task/*Kind, which supplement 

process fragments as to what objectives are to accomplish when those process 

fragments are performed (ISO/IEC 2007). Each of Continuum’s task fragments is 

specified with a name (as in its section heading), a purpose and a description, in 

accordance with SEMDM. In addition, the following fields are documented to link and 

relate to other fragments in Continuum: 

 “Actions Performed” lists what action(s) (i.e. “Create”, “Read” and/or “Modify”) to 

perform on what kinds of work products, should this task be executed. This field 

is effectively the placeholder for specifying the connection between task 

fragments and work product fragments with respect to SEMDM. For 

convenience, however, action specifications in Continuum are derived from this 

field rather than explicitly specified. For instance, an action titled “‘Create’ State 

Map” means the associated task “creates” a work product of the type “State Map”, 

and instantiates an action clabject (Gonzalez-Perez & Henderson-Sellers 2005; 

ISO/IEC 2007) called “CreateStateMapAction” which links the task to the product 

“State Map”. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 308 

 “Technique(s) Used” lists the technique(s) applied in the performance of a task. 

Continuum uses a “deontic value” (Graham et al. 1997) to grade the degree of 

suitability of a technique to a task: “mandatory” (i.e. must be used in a task), 

“recommended” (i.e. recommended for use in a task), or “optional” (i.e. optionally 

used in a task). 

 “Agents” lists the producers responsible for carrying out the associated task. 

This field is effectively the placeholder for specifying WorkPerformance 

clabjects (ISO/IEC 2007), each of which a connection between task and 

producer fragments, with respect to SEMDM. For convenience, however, the 

WorkPerformance specification is derived from this field rather than explicitly 

specified. For instance, when “‘Analyst” is assigned to this field of a task 

fragment called “ElicitRequirements”, a WorkPerformance clabject called 

“AnalystElicitRequirementsWorkPerformance” is instantiated, linking the 

producer fragment "Analyst" to the task fragment "ElicitRequirements". 

Process fragments are described next in alphabetical order. For reasons of readability 

and comprehensibility, task fragments intended to be used within a particular process 

fragment are described within the section for the process fragment. The sequence in 

which task fragment names are listed in each process fragment section suggests an 

order in which the task fragments are performed in the process fragment. 

C.3.1.1 Application Lifecycle Analysis 

Purpose: To define the roadmap consisting of new generations and transitional periods 

in the lifecycle of an application that will accommodate the changes elicited from 

requirements analysis.  

Application Lifecycle Analysis extends the lifecycle of an application with new 

generations and transitional periods, with each period labelled with associated change 

cases identified for and implemented in the period. This process is not intended as a 

replacement of but rather expected to be used alongside a conventional requirements 

analysis process for eliciting requirements from various sources. It may also be 

beneficial to collaborate this process with programme management which develops a 

coherent framework to organise project-based change activities (Pellegrinelli 1997)26. 

This process performs the following sequence of tasks: 

                                                   

26 Programme management is out-of-scope for this research (see Section 1.5). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 309 

1. Identify As-Is Runtime Structure (Appendix C.3.1.1.1); 

2. Derive Change Cases (Appendix C.3.1.1.2); and 

3. Extend Application Lifecycle (Appendix C.3.1.1.3) 

C.3.1.1.1 Identify As-Is Runtime Structure 

Purpose: To produce an as-is model representing the runtime structure of an 

application as it appears in its zone(s). 

Description: Before evolving a live application, a clear and accurate representation of 

the runtime structure of application as-is must be known in order to define dynamic 

changes which are specified with respect to the structure. The runtime structure is most 

likely to have been documented in the last project which developed the current version 

of the application. If so, this task reviews and updates relevant work products for the 

runtime structure. Otherwise, the current runtime structure is uncovered from existing 

work products, such as via reflection (Maes 1987). In particular, the following 

information is examined to identify the as-is runtime structure of an application: 

 the static architectural design of the application; 

 if available, the most recent version of the runtime structure of the application;  

 the domain and general knowledge about the problem that the application 

solves and personal experience with the application (Chikofsky & Cross 1990); 

and 

 a recent history of modifications made to the application. 

The task produces the following information about the as-is runtime structure. The 

information is principally captured with an appropriate and existing modelling language 

(e.g. UML), and if necessary with additional notations from Continuum (i.e. Structural 

Configuration - Notational Extensions, Appendix C.2.2.8) not addressed by the 

language: 

 transformable items in the application and their interactions (Ding & Medvidovic 

2001); 

 the versions of the transformable items; and 

 zones in which the transformable items reside. 

Technique(s) used: Runtime Structure Recovery (optional) 

Actions performed: Create, Read or Modify diagrams for the as-is runtime structure. 

Agents: Dynamic Evolution Designer, Runtime Application Discovery Tool 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 310 

C.3.1.1.2 Derive Change Cases 

Purpose: To derive and document purposeful change cases to the application from 

approved requirements and change requests. 

Description: Requirements and change requests are elicited from people such as end-

users, system administrators and the application development team on what an 

application is intended to become and how it will behave, and are almost invariably 

expressed without regard to the dynamic change aspects of a running application in 

mind.  

This task takes the responsibility of converting new, revised and to-be-deleted 

requirements and change requests, to change cases that describe dynamic changes 

relative to the as-is generation of an application and/or its zone(s). The change cases 

are also described in a way to facilitate further understanding of the changes required 

for an application at runtime and the design of the changes. For instance, a change 

request “Improve the search performance of a catalogue application” can be translated to a 

change case “Replace the search algorithm in the search engine with a new search algorithm”. 

Note that requirement elicitation is outside the scope of Continuum and is best 

accomplished with existing requirement engineering techniques (see Nuseibeh and 

Easterbrook (2000) for comprehensive references). 

Technique(s) used: Change Case Modelling (mandatory) 

Actions performed: Create or Modify Dynamic Application Change Document. Read 

existing relevant requirement work products. 

Agents: Dynamic Evolution Analyst 

C.3.1.1.3 Extend Application Lifecycle 

Purpose: To extend an application lifecycle by adding new generations to it to 

progressively accommodate dynamic changes for the application. 

Description: The application lifecycle identifies generations that an application 

advances dynamically over time. A transitional period exists between two successive 

generations and changes are incorporated into the application during that period. When 

determining the number of generations required for a set of change cases, consider 

how many transitional periods are required to feasibly realise those change cases in 

the application, and the characteristics of the change cases. To accommodate a small 

set of simple change cases, one transitional period might suffice. For a large set of 

(complex) change cases, not only may more transitional periods become desirable, but 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 311 

also the sequence in which the change cases are implemented may become important. 

The following outcomes are produced with this task: 

 change cases partitioned into groups; 

 the order in which the groups of change cases, if applicable, are realised (to 

handle situations in which certain change cases must be realised before a 

peculiar change case is realised); 

 a transitional period assigned to each group of change cases for their realisation; 

and 

 an updated application lifecycle with the new transitional periods and associated 

generations. 

The application lifecycle is a living entity; it will be continually extended and updated 

over time to evolve the application dynamically until its retirement. 

Technique(s) used: Change Case Partitioning and Ordering (recommended) 

Actions performed: Read Dynamic Application Change Document. Read and Modify 

Application Lifecycle Diagram. 

Agents: Dynamic Evolution Analyst 

C.3.1.2 Dynamic Evolution Quality Management  

Purpose: To improve the quality analysis and design aspects of dynamic evolution for 

an application. 

Dynamic Evolution Quality Management is performed in an iterative manner to 

continuously and progressively drive quality improvement in dynamic evolution related 

analysis and design work products. This process performs the following sequence of 

tasks:  

1. Define Dynamic Evolution Quality Needs (Appendix C.3.1.2.1); 

2. Assess Dynamic Evolution Quality of the dynamic evolution analysis and design 

artefacts (Appendix C.3.1.2.2); 

3. Analyse Dynamic Evolution Quality Problems uncovered in task above 

(Appendix C.3.1.2.3); and 

4. Improve Dynamic Evolution Quality to rectify problems (Appendix C.3.1.2.4). 

Note that during analysis, the first Task “Define Dynamic Evolution Quality Needs” sets 

the main focus for dynamic evolution quality. As development advances to design, 

dynamic evolution quality related work products are incrementally developed and 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 312 

refined and the development effort shifts towards the remaining three tasks to check 

and improve their quality. This process can be iterated a number of times, each of 

which focusing on improving different quality needs (e.g. security and safety).  

Continuum supports a portfolio of dynamic evolution quality factors, organised in four 

categories as shown in Table Appendix C.20. Their definitions are attuned to dynamic 

evolution: 

Table Appendix C.20 Summary of quality factors supported by Continuum 

Quality Category Description Quality Factors 

Soundness of 
change  

The extent of dynamic changes and associated 
transformations being free from defects which make the 
application harder to evolve. 

Completeness, Consistency, 
Correctness 

Infusibility of 
change 

The ease with which a change can be accommodated 
(i.e. infused) into an application at runtime. 

Efficiency, Locality, 
Maintainability, Transparency 

Changeability of 
application 

The ease with which a distributed application can 
accommodate dynamic changes. 

Autonomy, Coordination, 
Extensibility, Loose 
Coupling, Separation of 
Concerns 

Robustness of 
application 

The degree to which an application can withstand or 
reject invalid dynamic changes. 

Fault Tolerance, 
Recoverability, Reliability, 
Safety, Security 

 

C.3.1.2.1 Define Dynamic Evolution Quality Needs 

Purpose: To define the dynamic evolution quality needs for an application. 

Description: Re-evaluating the quality needs specific to dynamic evolution is essential 

because of issues such as the changing nature of the business, the application 

development team’s feedback, the evolving end user needs and the changing context 

in which the application is used. For instance, efficiency might be regarded as important 

to computation intensive applications, whereas recoverability might be seen as 

necessary in mission-critical applications. The quality needs are determined by 

evaluating quality factors that are appropriate for dynamic evolution to the application. 

Evaluation results are documented in a Dynamic Evolution Quality Profile Report. 

Continuum supports a set of quality factors as summarised in Table Appendix C.21. 

Table Appendix C.21 Summary of quality factors supported by Continuum 

Quality 
Category Quality Factor Description 

Soundness 
of Change Completeness 

The extent to which a transformation and its change(s) do not cause 
missing, broken or illegal transformable items, bindings or functions in an 
updated application 

Consistency The extent to which a transformation and its change(s) do not result in an 
error state for an application but rather it continues processing as normal 

Correctness 
The degree to which a transformation correctly and effectively applies the 
associated and feasible change(s) to an application 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 313 

Quality 
Category Quality Factor Description 

Infusibility of 
Change Locality 

The extent to which a change is explicitly confined within a logical 
boundary of an application to reduce the effort of managing and 
implementing change and its transformation 

Maintainability The degree to which a change does not make an application more difficult 
and costly to modify, nor harder to test 

Transparency 
The extent to which transformations, when being executed, are not 
noticeable to entities internal and external to a distributed application 

Changeability 
of Application 

Autonomy The ability of transformable items to have control and governance of their 
own processing 

Coordination 
The ability of different nodes of a distributed application to interact to 
deploy and install runtime changes to remote nodes or logical partitions to 
achieve the overall change effect 

Extensibility The ability of application and its transformable items to be 
extended/upgraded with new functionality 

Loose 
Coupling 

The degree of independence between transformable items and the 
freedom of having their own lifecycles and runtime environments 

Separation of 
Concerns 

The extent to which functionality is separated from transformation, 
communication and security concerns, and transformable items’ 
realisations are separated from their specifications and their clients’ 
realisations 

Robustness 
of Application 

Fault 
Tolerance 

The extent to which an application can tolerate faulty transformable items 
and contain their faults 

Recoverability 
The ability of an application to be restored to a state in which it can 
continue to perform its functionality, after a failure caused by a 
transformation and/or its dynamic change(s) 

Reliability 
The ability of an application to keep its intended functions from being 
compromised by ongoing changes and transformations such that it 
behaves in an unexpected manner 

Safety 

The ability of a distributed application and its transformable items to 
continue operating in a safe manner, such as not leading to harm to 
people, properties and/or the environment, during and after a 
transformation 

Security 
The degree to which a distributed application is protected from security 
threats as it undergoes dynamic evolution, and the ability of the security 
model of an application to adapt to the changing needs of the application 

Technique(s) used: none 

Actions performed: Create, or Read and Modify Dynamic Evolution Quality Profile 

Report. 

Agents: Dynamic Evolution Analyst 

C.3.1.2.2 Assess Dynamic Evolution Quality 

Purpose: To assess the (current state of) quality for analysis and design work products 

for dynamic evolution. 

Description: This assessment serves to assure that the necessary implementation for 

the quality factors of interest is in place, which means dynamic evolution related 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 314 

analysis and design work products attain a certain level of quality anticipated for an 

application. Additionally, this assessment identifies quality related defects and issues in 

these work products. It is recommended that an investigation on identifying solutions for 

or resolving the found defects and issues is not carried out during this task to ensure 

that this task stays focused on finding defects and issues. 

Typical approaches for assessment include inspection and testing27. Since Continuum 

centres on analysis and design activities performed in software development, 

inspection appears to be an appropriate choice for Continuum. In this regard, this task 

reuses OPF’s “inspection” technique28 for evaluating quality (Appendix C.3.2.17.7), and 

supplements this technique with its own inspection checklist suitable for dynamic 

evolution quality (Appendix C.2.2.3). 

Technique(s) used: Inspection (mandatory) 

Actions performed: Read and Modify Dynamic Evolution Quality Inspection Report. 

Read Dynamic Evolution Quality Profile Report. Read analysis and design related work 

products for dynamic evolution. 

Agents: Dynamic Evolution Analyst, Dynamic Evolution Designer  

C.3.1.2.3 Analyse Dynamic Evolution Quality Problems 

Purpose: To analyse the quality problems for analysis and design work products for 

dynamic evolution.  

Description: With the defects and issues reported from prior assessment on quality in 

dynamic evolution related work products, this task investigates and establishes the root 

causes for the defects and issues. For instance, a transformation’s failure to update an 

existing transformable item could be traced to incorrect steps in the transformation’s 

design. 

Technique(s) used: Root Cause Analysis. 

                                                   

27Testing is a complex problem which is not part of Continuum. However, studies regard runtime 
testing as especially important after changes have been applied to an application (e.g. Bennett 
& Rajlich 2000) as it is not always possible to verify the changes statically in a laboratory setting 
at design time (Grundy et al. 2005). Sparling (2000) distinguishes the testing of individual parts 
from the testing of the composite application. Thus, testing is conducted separately before and 
after changes are made to an application (Bennett & Rajlich 2000; Oreizy et al. 1998), and 
separately before and after parts are deployed into an application (Grundy et al. 2005). 
28 Although RUP has a number of inspection oriented tasks (“review the design” and “review the 
architecture” etc.). They target particular work products. Instead, OPF’s "inspection" is adopted in 
Continuum since OPF’s is generic and customisable to different kinds of work products. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 315 

Actions performed: Read Dynamic Evolution Quality Inspection Report. Create, or 

Read and Modify Dynamic Evolution Quality Problem Analysis Report. 

Agents: Dynamic Evolution Analyst, Dynamic Evolution Designer  

C.3.1.2.4 Improve Dynamic Evolution Quality 

Purpose: To revise analysis and design work products for dynamic evolution to further 

improve their quality. 

Description: This task ensues once the quality defects and issues for dynamic evolution 

are identified, and their root causes are established. Solutions to rectify the defects and 

issues found are developed and implemented in the relevant work products. A solution 

may be a simple correction of a design defect (e.g. filling a missing transformable item 

in a composition) whilst others may require specialised techniques for given purposes 

(e.g. improving loose coupling). Continuum offers a catalogue of recommended tasks 

and techniques to further improve particular aspects of individual quality factors some 

of which directly tackling particular types of quality problems, as shown in Table 

Appendix C.22. The table also summarises in which particular aspects of development 

(i.e. “A” for analysis, “D” for design) the tasks/techniques are used. 

Table Appendix C.22 Work units for addressing particular aspects of quality factors 

Quality Factor Recommended Task/Technique Purpose Used 
During 

Soundness of Change   

Consistency 

Dynamic Change Impact 
Analysis 

Identify transformable items affected by 
proposed changes. 

D 

Start-up State Configuration Declare resuming states to avoid progression 
towards error states after a transformation. 

D 

Transformable Item Regression 
Testing 

Identify and detect violations of invariants. D 

Resource Profile Modelling Capture adequate resources and support 
required for new and replacement transformable 
items. 

D 

Correctness 

Change Case Modelling Capture proposed changes explicitly. A, D 

Define Servicing Policies Restrict behaviour during transformations. D 

Infusibility of Change   

Locality 

Identify Changes to Zones Provide guidance on accommodating 
transformable items in zones. 

D 

Dynamic Change Localisation Confine changes to within zones. D 

Maintainability 

Identify Changes to Zones Keep the information about zones up-to-date. D 

Identify New and Replacement 
Transformable Items 

Keep the information about transformable items 
in an application up-to-date. 

D 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 316 

Quality Factor Recommended Task/Technique Purpose Used 
During 

Extend Application Lifecycle Keep the information about an application 
lifecycle up-to-date. 

A 

Identify As-Is Runtime Structure Keep the information about runtime structure of 
an application up-to-date. 

A 

Define To-Be Runtime Structure D 

Testability Analysis and 
Improvement 

Improve testability of an application and its 
transformable items. 

D 

Transparency 

Transformation Mining Hide the effects of transformations from end 
users. 

D 

Identify Transformations Abstract transformations away from the 
business logic of an application to hide them 
from its programmers. 

D 

Dynamic Change Localisation Hide transformations from transformable items 
of an application unaffected by the 
transformations. 

D 

Changeability of Application   

Autonomy 
Transformable Item Autonomy Improve self-control and self-governance over 

transformable items. 
D 

Coordination 

Define Transformation 
Orchestration 

Organise transformation agents to facilitate the 
orchestration of transformations among multiple 
zones during a transitional period. 

D 

Secure and Reliable 
Transformation Agent 
Coordination 

Address network unreliability when 
transformation agents coordinate with one 
another during a transitional period. 

D 

Extensibility 

Dynamic Wrapper Add new functionality to existing compositions. D 

Dynamic Change Localisation Use zones to confine the scope of changes. D 

Dynamic Variation Management Add variation points to an architecture to plug 
alternative or additional transformable items to it. 

D 

Identify Changes to Zones Support multiple versions of transformable items 
to co-exist. 

D 

Dynamic Wrapper Add new functionality to existing transformable 
items. 

D 

Loose 
Coupling 

Loose Coupling Reduce coupling among transformable items. D 

Separation of 
Concerns 

Transformable Item Mediation 
and Channelling 

Abstract communication concerns from 
functionality. 

D 

Robustness of Application   

Fault 
Tolerance 

Dynamic Wrapper Protect an application against potential faults 
from new and replacement transformable items. 

D 

Dynamic Wrapper Establish barriers to contain faults from new and 
replacement transformable items. 

D 

Dynamic Change Localisation Confine changes to within zones to isolate faults 
propagating from one zone to another. 

D 

Recoverability 

Transformation Exception 
Management 

Manage potential exceptions raised during the 
execution of a transformation. 

D 

Recovery Blocks Recover an application from errors caused by 
new and replacement transformable items after 
a transformation. 

D 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 317 

Quality Factor Recommended Task/Technique Purpose Used 
During 

Reliability 

Dynamic Wrapper Limit the behaviour of new and replacement 
transformable items in case they behave 
unexpectedly, compromising an application. 

D 

Transformable Item Regression 
Testing 

Check whether or not new and replacement 
transformable items behave as expected in an 
application. 

D 

Safety 
Dynamic Evolution Safety Risk 
Management 

Identify and mitigate safety risks associated with 
transformations and dynamic changes. 

D 

Security 

The security part of Secure and 
Reliable Transformation Agent 
Coordination 

Provide security for transformation agent control 
and coordination. 

D 

Dynamic Wrapper Protect the security of an application from being 
compromised by new and replacement 
transformable items and vice versa. 

D 

 Provide access control, intrusion management 
and data input/output protection for 
transformable items. 

D 

Dynamic Security Policy and 
Enforcement Management 

Manage security policy and enforcement 
changes in response to dynamic changes in an 
application. 

D 

Note(s): 

1. Each “purpose” specifies a criterion to be verified against a particular quality factor when filling out 
the dynamic quality inspection report (Table Appendix C.10, Appendix C.2.2.3). 

2. Abbreviations in the “used during” column: “A” and “D” stand for “analysis” and “design” respectively, 
indicating the kinds of producers (i.e. “A” for Dynamic Evolution Analyst, “D” for Dynamic 
Evolution Designer) to carry out the “recommended task/technique”.  

 

Technique(s) used: see Table Appendix C.22 

Actions performed: Read Dynamic Evolution Quality Inspection Report. Read Dynamic 

Evolution Quality Problem Analysis Report. Read and Modify the design of runtime 

structures (e.g. using Structural Configuration - Notational Extensions). Read and 

Modify relevant dynamic evolution work products (e.g. Dynamic Application Change 

Document, Transformation Orchestration Diagram, Transformation Diagram). 

Agents: Dynamic Evolution Analyst, Dynamic Evolution Designer  

C.3.1.3 Transformation Agent Design  

Purpose: To define transformation agents to progress a particular generation (i.e. as-is) 

of an application to the next generation (i.e. to-be) during a transitional period. 

Transformation Agent Design defines the responsibilities of transformation agents in 

terms of how many transformation agents are required to perform a set of 

transformations, which transformation(s) each agent perform, and an order in which the 

transformations are performed by the agents. This process performs the following two 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 318 

tasks: 

1. Identify Transformation Agents (Appendix C.3.1.3.1); and 

2. Define Transformation Orchestration (Appendix C.3.1.3.2). 

C.3.1.3.1 Identify Transformation Agents 

Purpose: To identify transformation agents to be responsible for executing a set of 

transformations during a transitional period, in order to advance an application from one 

generation to the next. 

Description: In a distributed environment, dynamic changes may result in 

transformations to several parts of an application over a network. To manage this 

complexity, a number of transformation agents may sometimes be used. This task 

takes the following information to determine the transformation agents required to 

accomplish the dynamic changes via respective transformations: 

 the intended transformations during a transitional period; 

 the structures of the application before and after the intended transformations in 

terms of its transformable items and their locations (i.e. zones); and 

 the transformable items that will be affected by the intended transformations 

and the zones they reside. 

This task also establishes the zones that the transformation agents are stationed and 

their relationships to coordinate and execute the set of transformations together. Note 

that in a self-modifying application, its transformable items can also play the role of a 

transformation agent. 

Technique(s) used: Transformation Agent Disposition (mandatory) 

Actions performed: Read Dynamic Application Change Document. Read diagrams for 

the to-be runtime structure. Read and Modify diagrams for the as-is runtime structure. 

Agents: Dynamic Evolution Designer  

C.3.1.3.2 Define Transformation Orchestration 

Purpose: To arrange transformations to be carried out during a transitional period and 

assign them to appropriate transformation agents. 

Description: Once the transformation agents are positioned in appropriate zones in an 

operating environment (see Task Identify Transformation Agents, Appendix C.3.1.3.1), 

these agents can be assigned transformations in their respective zones, and an order 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 319 

in which they carry out the transformations are determined in this task.  

Technique(s) used: Transformation Orchestration and Agent Coordination (mandatory) 

Actions performed: Read Dynamic Application Change Document. Read diagrams for 

the as-is runtime structure. Create Transformation Orchestration Diagram. 

Agents: Dynamic Evolution Designer  

C.3.1.4 Transformation Design  

Purpose: To define the detailed design for a transformation to be performed during a 

transitional period. 

This process produces the design for a transformation covering low-level modification 

steps for an application; changes to the zone(s) hosting the application to make the 

zone(s) in sync with the changes made by the transformation; and how transformable 

items affected by the transformation will offer their functions or services during and after 

the transformation. This process performs the following sequence of tasks: 

1. Identify New and Replacement Transformable Items (Appendix C.3.1.4.1); 

2. Identify Changes to Zones (Appendix C.3.1.4.2); 

3. Define Servicing Policies (Appendix C.3.1.4.3); and 

4. Develop Transformation (Appendix C.3.1.4.4). 

C.3.1.4.1 Identify New and Replacement Transformable Items 

Purpose: To identify transformable items, including new and replacement ones, that will 

be added to an application after a transformation. 

Description: As new and replacement transformable items are incorporated into an 

application, they will need to be registered so that they are known to exist and be used. 

Additionally, their resource profiles should be used to verify whether zones will offer 

adequate resources to support these items. Likewise, their performance profiles should 

be used to verify whether they can meet the performance needs of the application. At 

other times, when incorporating a transformable item into an application, it may be 

necessary to start the item from a desirable rather than a default and initial state. In 

summary, this task determines the new and replacement transformable items to be 

added to an application, their operational profiles and start-up state configurations. 

Technique(s) used: Resource Profile Modelling (optional), Performance Profile 

Modelling (optional), Start-up State Configuration (optional). 

Actions performed: Read the design of the current and new runtime structures. Read 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 320 

Dynamic Application Change Document and Transformation Orchestration Diagram. 

Create State Map. Modify New and Replacement Transformable Item Catalogue. 

Agents: Dynamic Evolution Designer  

C.3.1.4.2 Identify Changes to Zones 

Purpose: To identify changes to be made to zones hosting transformable items in an 

application, to keep them in sync with changes to the transformable items. 

Description: The zones hosting various parts of an application may be impacted by the 

changes proposed for transformable items. Correspondingly, changes are also required 

for the zones to support the application. For instance, additional zones may be needed 

to host new items, and existing zones may require updates as items are relocated to 

different zones. The task identifies the following information about zone changes: 

 changes to the distribution of zones as a result of zone addition and removal; 

 changes to the distribution of transformable items in zones as a result of 

addition, removal, and relocation of transformable items from one zone to 

another; and 

 changes to resources offered by zones. 

Continuum defines the following zoning policies (Appendix C.2.1.21) as guides for 

specifying changes to zones. These policies are intended for supporting multiple 

versions of the same transformable item type in the same application: 

 In each zone, all transformable items of the same type must be of the same 

version. An upgrade to a type in the zone will cause an upgrade to all 

transformable items of the same type in the zone. To host transformable items 

of different versions, define separate zones with each hosting only one version. 

This policy keeps transformable items of the same type in one zone to be 

consistent with one another (Evans & Dickman 1999). 

 To accommodate transformable items of different versions in one application, 

additional zones are established if necessary with each zone hosting only one 

version of transformable items. 

Technique(s) used: none 

Actions performed: Read Transformation Orchestration Diagram. Read diagrams of the 

current and new runtime structures. Read Dynamic Application Change Document. 

Create or Modify Zone Change Document. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 321 

Agents: Dynamic Evolution Designer  

C.3.1.4.3 Define Servicing Policies 

Purpose: To define rules to regulate the services or functions provided by 

transformable items impacted by transformations.  

Description: A transformable item may be unable to fully provide its services or 

functions if it is affected by transformations. Thus, it may be appropriate to define how 

the impacted transformable item should offer its functions. For instance, when the 

transformable item is being replaced, its functions could be demarcated as “blocked and 

queued” meaning that any request to them (e.g. function invocation) is put on a queue 

until its replacement transformable item has been installed and resumes the processing 

of requests to its functions after a transformation. For convenience, Continuum 

prescribes some basic servicing policies and notations (Appendix C.2.2.8) to regulate 

access to services affected by transformations. 

Technique(s) used: none 

Actions performed: Read and Modify the diagram for a runtime structure. 

Agents: Dynamic Evolution Designer 

C.3.1.4.4 Develop Transformation 

Purpose: To define the design of a transformation as a number of transformation 

actions, representing atomic modification steps at a fine-grained level. 

Description: A transformation is performed by a transformation agent to realise a 

dynamic change planned for the transformation. A transformation design consists of 

low-level modification steps called transformation actions (Appendix C.2.1.15). 

Examples include: 

 state configuration of new and replacement transformable items; 

 addition, removal, replacement, binding and unbinding of transformable items; 

 resource (re)allocation for new and replacement transformations; 

 zone configuration; 

 relocation of transformable items to different zones; and 

 configuration of servicing policies for transformable items. 

Technique(s) used: Dynamic Transformable Item Adaptation (optional), Dynamic 

Transformable Item (Re)binding (optional), Dynamic Transformable Item Change 

(optional). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 322 

Actions performed: Read the design of the current and new runtime structures, 

Dynamic Application Change Document, New and Replacement Transformable Item 

Catalogue, State Map, Transformation Orchestration Diagram and Zone Change 

Document. Create Transformation Diagram. 

Agents: Dynamic Evolution Designer  

C.3.1.5 Transformation Identification 

Purpose: To identify a set of transformations to execute during a transitional period, to 

progress an application from an as-is generation to a to-be generation that will have 

accommodated the changes proposed for the as-is generation. 

Transformation Identification focuses on identifying what transformations are required 

to map an application to a to-be generation. It utilises the information gathered (i.e. as 

change cases) during the analysis of dynamic evolution and the design for the 

application. The how and who aspects – i.e. how transformations will do their job, and 

who will execute the transformations – are handled by other processes (Transformation 

Design (Appendix C.3.1.4) and Transformation Agent Design (Appendix C.3.1.3)). This 

process performs the following sequence of tasks: 

 Define To-Be Runtime Structure (Appendix C.3.1.5.1); 

 Refine Change Cases (Appendix C.3.1.5.2); and 

 Identify Transformations (Appendix C.3.1.5.3). 

C.3.1.5.1 Define To-Be Runtime Structure 

Purpose: To define what the runtime structure of an application (i.e. the new or “to-be” 

generation) would become after the expected changes are realised in the application.  

Description: The to-be runtime structure is what an application is expected to become 

after a set of change cases have been realised in the application. This task takes as 

inputs the current or “as-is” runtime structure of the application, the new architecture of 

the application developed from a conventional application design activity independent 

of dynamic evolution, and the dynamic changes proposed for the current structure, to 

derive the to-be runtime structure. 

Technique(s) used: Dynamic Recomposition (optional), Dynamic Refactoring (optional), 

Dynamic Workflow Change (optional), Dynamic Variation Management (optional), 

Loose Coupling (optional) 

Actions performed: Read Dynamic Application Change Document. Read diagram for 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 323 

the current runtime structure. Create diagram for the to-be runtime structure.  

Agents: Dynamic Evolution Designer  

C.3.1.5.2 Refine Change Cases 

Purpose: To update, refine and expand the set of change cases identified for an 

application since analysis. 

Description: Not all change cases would normally be determined during analysis until 

the runtime structure of the to-be generation has been defined during design. This is 

because, until the to-be generation is defined, the differences between the as-is and to-

be generations and hence the change cases cannot be clearly identified. Moreover, 

once the design of the to-be generation is complete, there may be new features in the 

to-be generation, requiring additional change cases to capture them since they could 

not be accounted for during analysis when the to-be generation had not been defined. 

In another situation, dynamic changes proposed to one part of an application (e.g. 

existing transformable items) may ripple through and therefore impact other parts of the 

application (Bohner 2002b). Additional change cases may thus be required to represent 

changes to other parts of the applications. This task refines and expands the set of 

change cases identified so far in preparation for subsequent transformation design 

tasks that follow.  

Technique(s) used: Change Case Modelling (mandatory), Dynamic Change Impact 

Analysis (mandatory) 

Actions performed: Read diagrams of the current and new runtime structures. Read 

and Modify Dynamic Application Change Document. 

Agents: Dynamic Evolution Analyst, Dynamic Evolution Designer  

C.3.1.5.3 Identify Transformations 

Purpose: To identify the transformations to realise a set of change cases by 

progressing an application from the as-is into the to-be generation.  

Description: This task identifies the differences between the as-is and the to-be 

generations of an application, reviews the change cases identified, and determines the 

transformations, representing modification steps at a coarse-grained level, to progress 

the application from the as-is into the to-be generation. For a group of simple change 

cases targeting the same transformable item, one transformation to realise these 

change cases may suffice. For complex change cases, however, the number of 

transformations required will depend on several factors including: 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 324 

 Recipients of change cases 

Change cases affecting or impacting several parts of an application (i.e. the 

recipients) may require more modification steps to realise them, suggesting 

more transformations; 

 Transformation latency 

A long running transformation may need to be broken down into smaller 

transformations, to reduce the length of time during which an application’s 

services are affected by a transformation; and 

 Zones 

Change cases might impact transformable items in multiple zones. To manage 

this kind of complexity, it is recommended that each transformation should not 

span more than one zone. 

Technique(s) used: Transformation Mining (recommended) 

Actions performed: Read and Modify Dynamic Application Change Document. Read 

diagrams for current and new runtime structure.  

Agents: Dynamic Evolution Designer  

CC.3.2 Technique Fragments 

Continuum’s technique fragments are instances of SEMDM's Technique/*Kind, 

supplementing Continuum’s task fragments by specifying how the objectives of the 

associated tasks are to be achieved. They are described next in alphabetical order. 

C.3.2.1 Change Case Modelling 

Purpose: To express change cases for an application. 

Description: Change cases can be used to analyse, estimate and plan the modifications 

proposed for an application to implement the changes at runtime.  

A change case’s purpose is expressed with a “gap operator” (Salinesi et al. 2004), a 

recipient of the change, and any additional information characterising the purpose of 

the change. A gap operator identifies a type of change that can be performed on the 

recipient in evolution. A subset of gap operators from Salinesi et al. (2004) that are 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 325 

relevant to dynamic evolution 29  are used for expressing change cases. These 

operators are listed on the left of Table Appendix C.23. A recipient is the entity 

receptive of the proposed change. A recipient can be a transformable item, a contract 

between transformable items, the structure of an application, or a zone. The notion of a 

recipient further distinguishes change cases from requirements and change requests 

which tend to be specified with respect to an application as a whole. 

Table Appendix C.23 Gap operators and templates for expressing change case purposes 

Gap 
Operator Recommended Template(s) Example(s) 

Add 
AAdd {feature} tto {recipient}. AAdd data caching support tto online bookshop data 

store. 

Remove RRemove {feature} ffrom {recipient}. RRemove old currency support ffrom online bookshop 
user interface. 

Move 

MMove {feature/recipient} ffrom 
{recipient1} tto {recipient2}. 

Move authentication functionality ffrom online 
bookshop user interface to dedicated corporate 
authentication system. 
 
MMove authentication module from business logic zone 
tto web zone. 

Merge 
Merge {feature1} iin {recipient1} wwith 
{feature2} in {recipient2}. 

Merge authentication function in user interface wwith 
authorisation function in user interface. 

Split Split {feature} iin {recipient} tto {sub-
feature1} aand {sub-subfeature2}. 

Split business logic function iinto business transaction 
function aand data logic function. 

Replace Replace {feature1} iin {recipient} 
with {feature2}. 

Replace old search function iin online bookshop 
search engine wwith new search function. 

Modify 
Modify {recipient} {property name 
and value description}. 

Modify user interface binding with internal 
authentication module to corporate authentication 
system 

 

Table Appendix C.23 provides templates for expressing various change case purposes 

using gap operators, with examples illustrating their uses. In most templates, the notion 

of feature is used. A feature refers to a function or an observable property of a recipient, 

such as a new function to be offered by a recipient. A feature can be directly identified 

from requirements and change requests, both of which written with end users and the 

business in mind. A “new search function” is an example feature for an existing 

transformable item “X” - the recipient. An expression for the purpose of such a change 

case can thus be written as “Add [gap operator] new search function to X [recipient]”. 

Apart from its purpose, a change case can be augmented with information such as a 

long description about the proposed change; the application generation it targets; the 

transitional period during which the change is to be realised; and a transformation 
                                                   

29 For instance, since operator “rename” (Salinesi et al. 2004) does not involve in altering an 
application structure or its hosting zone(s), it is not considered for dynamic evolution.  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 326 

agent that will be responsible for realising the change case. A change case can also be 

linked to the original use cases/requirements/change requests in which the 

specifications may need to be updated in line with the change proposed by the change 

case (Ecklund et al. 1996). See the semantics of change case (Appendix C.2.1.3) and 

the Dynamic Application Change Document fragment (Appendix C.2.2.2) for further 

details. 

C.3.2.2 Change Case Partitioning and Ordering 

Purpose: To divide a set of change cases into groups of logical and coherent change 

cases, and order the groups appropriately. 

Description: Partitioning of change cases into groups and ordering of the groups aid in 

defining (the extension of) an application lifecycle to accommodate those change 

cases. Partitioning uses the following strategies: 

 High cohesion 

Change cases relating to one another are clustered into one group, to stay 

focused on a common goal. For instance, change cases targeting the same 

transformable item, or transformable items within the same zone may be 

grouped together. Change cases linked by an impact (Appendix C.2.1.5) can 

also form a group. 

 Loose coupling 

Change cases in one group should be as independent as possible from change 

cases in other groups. For example, two change cases describing modifications 

to different parts of an application may be assigned to different groups. As 

another example, performing the Technique Dynamic Change Impact Analysis 

on change cases in one group does not identify change cases in another group. 

 Ease of realisation 

Complex change cases should be partitioned into smaller groups, to reduce the 

complexity of realising them in an application. For instance, when change cases 

impact a large number of transformable items in the same zone, consider 

organising the change cases into smaller groups to reduce the scope. 

The ordering of the change case groups is derived from the ordering of the change 

cases among the groups: 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 327 

 Precedence: A change case may require certain change cases to be realised in 

an application before it can be realised in the same application. For instance, a 

client cannot be upgraded to use a new function of a server until the server has 

been upgraded to offer the function. 

 Priority: Critical and important change cases have precedence over others and 

may require immediate transitional periods to roll them out, whereas other 

change cases are deferred to later transitional periods. For instance, when an 

application is found to have defects, a priority would be given to change cases 

for defect correction rather than change cases for adding new features to the 

application. 

 Business perspective: Consider the time, cost and resource implications for 

implementing particular types of change cases (Arshad et al. 2007). Some 

change cases, for instance, may require significant costs which may not be met 

in the short term and will be deferred. It should be noted that Continuum does 

not cover the investigation of business aspects for evolution. 

C.3.2.3 Dynamic Change Impact Analysis 

Purpose: To determine the potential impacts caused by proposed change cases. 

Description: Change impact analysis generally concerns the identification of “potential 

consequences of a change, or estimating what needs to be modified to accomplish a change” 

(Arnold & Bohner 1996). That is because a small change to one part of an application 

has a tendency to ripple through and affect other parts of the application (and others 

outside the application); additional changes to the affected parts are required to ensure 

that they stay consistent with the original change (Yau et al. 1993). In particular, 

dynamic change impact analysis focuses on analysing the impact of changes to a live 

application at runtime (Feng & Maletic 2006). The following steps are undertaken to 

identify impacts and new change cases to accommodate those impacts: 

1. Identify entities thought to be impacted by change cases proposed for an 

application. Consider the following types of entities as part of identification: 

 a transformable item internal to the application; 

 an external application; and 

 a transformable item external to the application. 

Table Appendix C.24 lists the areas of impact analysis and external techniques 

for identifying entities to be impacted by change cases. It is instructive to note 

that although some of these techniques are mainly used for analysis of static 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 328 

changes, their underlying concepts and approaches are sufficiently generic to 

be applicable to dynamic changes. 

Table Appendix C.24 Areas of dynamic change impact analysis 

Area Description Analysis Technique(s) 

Structure 

A part (i.e. transformable item) that depends on 
some other parts bound/connected to it to offer its 
functionality may be affected by changes to the 
other parts (Bohner 2002a). 

Bohner (2002a) 
Mao et al. (2007) 

Semantics 
The semantics (i.e. type) of a change to a part 
determines which other parts are affected by the 
change (Bohner 2002a). 

Feng and Maletic (2006) 
Mao et al. (2007) 
Xiao et al. (2007) 

Logical ripple 
effect 

A change to one transformable item of an 
application may cause incompatibility of the item 
with other transformable items of the application, 
potentially leading the other items to err (Yau et al. 
1993). 

Yau et al. (1993) 

Performance 
ripple effect 

A change to one transformable item of an 
application may affect and/or degrade the 
performance of other transformable items (Yau et 
al. 1993). 

Yau et al. (1993) 

Version 
conflict 

A changes may introduce version conflicts among 
various transformable items of an application 
(Lassing et al. 2003). 

Bengtsson et al. (2004) 

Contract [see 
note 1] 

A change to a contract may also require 
transformable items bound to the contract to 
change.  
 
A change to a transformable item bound to a 
contract may also require the contract and/or other 
transformable items bound to the same contract to 
change to keep them in sync with the change 
proposed for the transformable item. 
 
New contracts may also be put in place. 
 
Existing contracts may also be decommissioned. 

(see note 2) 
When a change is 
proposed to a contract, its 
transformable items 
become potentially 
impacted entities.  
 
When a change is 
proposed to a 
transformable item, other 
peers in the same contract 
and the contract itself 
become potentially 
impacted entities. 

Notes:  

1. A contract epitomises some kind of mutual agreement - such as in the areas of 
interfaces, interaction protocols and quality of service - among transformable items for 
them to collaborate. 

2. The analysis technique for contracts was suggested by an expert during the review of 
respondents’ suggestions for dynamic change requirements in a survey (cf. Table 5.5).  

2. For each entity identified in the last step, assess the characteristics of the 

impact. See Appendix C.2.1.5 for information on characterising an impact. 

3. Identify new change cases required to cover unforeseen changes for entities in 

the impact set which are not yet covered by the original change cases. 

C.3.2.4 Dynamic Evolution Safety Risk Management 

Purpose: To identify and mitigate safety risks associated with transformations and 

dynamic changes. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 329 

Description: In the distributed system terminology, safety is a property that “something 

bad does not happen” (Lamport 1977). Although the state of badness depends on the 

context and use of an application, safety is generically defined in terms of: 

 Mishaps (a.k.a. an accident (Firesmith 2003)), which result in harm to an asset. 

An asset can be one of those in Table Appendix C.25. 

Table Appendix C.25 Assets and Harms 

Asset Type Asset Example Harm Example 

Human Operators, end users Illness, injury or death to a 
person 

External property (i.e. 
outside an application)  

Personal, commercial, civic, physical 
properties (e.g. buildings), data, 
money 

Corruption of data, loss of 
money 

Internal property (i.e. parts 
of an application) 

Data, hardware and software 
components 

Damage to components of 
an application or a machine 

Physical environment Rivers, roads Fire, flooding 

source: Firesmith (2003) with additional examples 

 Hazards, which are states of an application that would lead to a mishap 

(Leveson 1986). 

 Safety risks, each a function of the probability of hazards leading to a mishap 

and the severity of the worst mishap (Leveson 1986).  

This technique is used in an overall process approach to account for dynamic evolution 

related safety issues. For instance, it enhances OPF’s “safety engineering” process 

(OPFRO 2009) by supplementing its “safety risk analysis” task with safety considerations 

specific to dynamic evolution. It takes a preventative approach in anticipating and 

mitigating safety risks by iterating the following steps. These steps are defined in 

accordance with the risk identification, analysis, evaluation and treatment aspects of 

the AS/NZS 4360 Standard for risk management (Standards Australia 2004): 

1. Identify potential hazards caused by abnormal transformation events. 

Abnormal transformation events that have the potential to trigger hazards during 

transformations are firstly identified. An example event is a transformation 

agent’s being unavailable when it is required to perform expected 

transformations (see taxonomy in Figure Appendix C.17). This kind of event can 

be identified with the Technique Transformation Exception Management 

(Appendix C.3.2.14). The identified events are then analysed to derive hazards. 

Continuum reuses fault tree analysis (FTA), based on combinatorial logic (e.g. 

AND and OR functions), for linking hazards and their causes (Andrews & Moss 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 330 

2002). Each fault represents a (partial) cause for a hazard and corresponds to 

an abnormal transformation event. 

Figure Appendix C.8 depicts an example fault tree for a new transformable item 

intended for replacing an existing one. The former will not work if it cannot 

acquire enough resource, or the state of the latter cannot be inspected and used 

to set the state of the former. 

 
source: developed for this research 

Figure Appendix C.8 Example fault tree for replacement transformable item related 
transformation events 

2. Identify potential hazards caused by abnormal dynamic change events. 

This is identical to Step 1, except that it focuses on abnormal dynamic change 

events which may lead to hazards, after intended transformations have been 

executed to accommodate desirable dynamic changes to the application. Table 

Appendix C.26 suggests possible abnormal dynamic change events. 

Table Appendix C.26 Abnormal dynamic change events 

Category Example 

Functionality  
 Functionality missing 
 Obsolete functionality still present 
 Transformable items/application not functioning as expected 

Composition  Transformable item/binding missing 
 Obsolete transformable item/binding still present 

 

Figure Appendix C.9 depicts an example fault tree arising from abnormal 

dynamic change events. It indicates that when all the abnormal dynamic change 

events occur (i.e. all inputs to the AND gate are true), the hazard becomes 

consequential. 

abnormal 
transformation 

events

hazardresource 
starvation

state of old 
transformable 

item 
inspection 

failed

automatic 
emergency 
call service 

halted

(replacement 
transformable 

item start up failure)

OR gate



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 331 

 
source: developed for this research 

Figure Appendix C.9 Example fault tree for data related dynamic change events 

3. Determine safety risks from hazards. 

For each hazard identified in the previous steps, determine the safety risks 

associated with it, in terms of the probability and severity of the safety risks. 

Continuum reuses event tree analysis (ETA) for identifying the of those 

hazardous events and their probabilities (Andrews & Moss 2002). Figure 

Appendix C.10 illustrates such an event tree resulted from analysing the 

example hazard in Figure Appendix C.8 – “automatic emergency call service halted”. 

To cope with this hazard, the application cuts over to an in-built “automatic 

backup emergency call service”, to override the original emergency call service, 

with two possible consequences: either the backup service fails (probability 

Pr=0.1) or succeeds (Pr=0.9). To deal with the former, the application cuts over 

to the “manual emergency call service override” option with the probability of 

success being 0.95. Hence, the probability of the safety risk, which is the 

condition that both override mechanisms fail, is 0.005. The severity of the safety 

risk is then judged afterwards by assigning a suitable score to it. 

 
source: developed for this research 

Figure Appendix C.10 Example safety risk derived from hazard 

4. Evaluate and treat safety risks. 

abnormal 
dynamic 

change events

hazard

no storage 
ability for 
sensitive 

data 

data 
encryption 

function 
missing

data storage 
not 

functioning 
as expected

AND gate

automatic 
emergency 
call service 

halted
(initiating 
hazard)

automatic 
backup 

emergency 
call service

override

Failure 
(Pr=0.1)

Success 
(Pr=0.9)

consequence

1 (Pr=0.005)
(safety risk)

2 (Pr=0.095)

3 (Pr=0.9)

Failure 
(Pr=0.05)

Success 
(Pr=0.95)

manual 
emergency 
call service

override

severity
(1-low, 2-
medium
3-high)

3

-

-



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 332 

Determine which of the safety risks identified from the previous steps are 

unacceptable to the business. Accordingly, hazards that lead to the 

unacceptable safety risks are dealt with by incorporating safety 

countermeasures in the design for dynamic evolution. Barbacci et al. (1995) 

suggest three mechanisms for addressing safety in the design: lockin, lockout 

and interlock. Their descriptions are attuned to the context of dynamic evolution, 

as shown in Table Appendix C.27: 

Table Appendix C.27 Dynamic evolution safety design mechanisms  

Mechanism Description Example Continuum features to realise mechanism 

Lockin 
Lock the 
application into 
safe states 

 Enforcement of operational profile (Appendix 
C.2.1.6) 

 Use of Dynamic Wrapper (Appendix C.3.2.17.6) 

Lockout 
Lock the 
application out of 
hazardous states 

 Time limit set for transformations 
 Transformation exception declaration and resolution 
 Use of Recovery Blocks (Appendix C.3.2.17.10) 

Interlock 
Prescribe or 
disallow specific 
sequence of events 

 Explicit sequencing and ordering of transformations  
 Explicit sequencing and ordering of transformation 

actions in a transformation 

 

C.3.2.5 Dynamic Recomposition 

Purpose: To compose several transformable items in a larger unit, decompose a larger 

transformable item into smaller units, and reconfigure the structure at runtime. 

Description: Dynamic recomposition finds its presence in dynamic evolution, say, to 

alter the application’s behaviour (e.g. with Unix pipes), recover from errors (SeCSE 

2006), or provide alternative compositions for equivalent functionality (Mukhija & Glinz 

2005). Dynamic recomposition can be unfolded into addition, removal and replacement 

of transformable items (Mukhija & Glinz 2005), each of which realised by a 

transformation. To determine, what transformable items need to be added, removed 

and replaced, the gaps and similarities between the as-is and to-be structures (i.e. 

before and after recomposition) are analysed (Salinesi et al. 2004). This technique 

considers three recomposition scenarios for the analysis: 

1. Composing two composite transformable items, say, A and B, into a larger unit: 

 Identify transformable items to link A and B. This suggests additional 

dynamic wrappers (Appendix C.3.2.17.6) and bindings to be established. 

 Identify transformable items internal to A and B that can be shared between 

them (e.g. email component). This suggests redundant items to be removed. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 333 

 Identify transformable items internal to A and B which need to be upgraded 

in order for A and B to interact (e.g. to resolve incompatibility in 

communications protocol). This suggests old items to be replaced. 

2. Decomposing a composite into two smaller units, A and B. 

 Identify transformable items shared between A and B. This suggests items 

to be replicated (and added), for them to be present in both A and B after 

decomposition. 

 Identify transformable items linking A and B, suggesting unused items to be 

removed. 

3. Reconfiguring a composition structure at runtime (more generic than the above): 

 Identify additional transformable items required to be present in the to-be 

structure. This suggests new items to be added. 

 Identify transformable items found in the as-is structure but absent in the to-

be structure. This suggests redundant items to be removed. 

 Identify transformable items found in the to-be structure that replace their 

peers in the as-is structure. This suggests old items to be replaced. 

C.3.2.6 Dynamic Refactoring 

Purpose: To refactor a runtime structure without alternating its functionality. 

Description: Refactoring aims to alter the structure of an application to make it easier to 

understand and cheaper to modify (Fowler et al. 1999). Dynamic refactoring is intended 

to achieve the same goal, by altering the structure of the application while it is running. 

The following steps are adapted from the work of Ebraert et al. (2004) for automatic 

dynamic refactoring: 

1. Detect candidate design time refactoring. This step involves the determination 

of possible to-be static structures of the application which are alternative 

improvements of the as-is static structure of the application. Each static 

structure can be identified by iterating the following steps, as reused from the 

OPF’s Design Refactoring technique (Firesmith & Henderson-Sellers 2002): 

a. Understand a design defect to be eliminated via refactoring.  

b. Identify a relevant refactoring design pattern.  

c. Apply the refactoring design pattern to eliminate the defect.  

d. Evaluate the refactored design to ensure the defect is eliminated.  

2. Select the to-be static structure of best fit. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 334 

3. Derive the to-be runtime structure of the application from the selected to-be 

static structure and the runtime as-is structure. 

4. Refine the to-be runtime structure of the application further by eliminating 

defects that are not apparent in the static structure. 

Dynamic Refactoring can be supplemented with Technique Loose Coupling (Appendix 

C.3.2.17.8) to further improve the structure of an application to evolve. 

C.3.2.7 Dynamic Transformable Item Change 

Purpose: To add, replace, remove transformable items, and/or change their properties 

at runtime. 

Description: Addition, removal and replacement of transformable items are basic 

operations to an application supporting dynamic evolution (Kramer & Magee 1990; Mak 

et al. 2005; Oreizy et al. 1998). They represent recurrent problems to resolve and 

opportunities for reuse. Thus, Continuum offers a number of transformation design 

patterns as a guide to address these problems, and as a baseline for extension to suit 

more complex transformation scenarios. 

Figure Appendix C.11(a) depicts a transformation pattern to add a new transformable 

item to a composition. First, the transformation assigns resources for the item. Then, 

the transformation creates the new transformable item in its designated zone and 

initialises the start-up state of the item. Finally, it binds the item to other item(s) (i.e. its 

containing composite) that it is going to interact with (i.e. early binding). Alternatively, 

the binding is not established until interactions occur (i.e. late binding). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 335 

 
source: developed for this research 

Figure Appendix C.11 Addition, removal and property change transformation 
patterns 

Figure Appendix C.11(b) is a transformation pattern to remove an existing 

transformable item from an application. The transformation starts with announcing or 

notifying to the clients of a transformable item that it will become unavailable. Then, 

services of the item are disabled from access. Next, the item relinquishes any 

resources it held. Afterwards, the unbinding of the item from the composite takes place 

which is followed by setting the item’s state to the finalised state for graceful shutdown. 

The item is then removed from its hosting zones. Finally, the zone reclaims any 

resource previously allocated to the item. 

Figure Appendix C.11(c) shows a transformation pattern to modify a property (e.g. 

operating parameter) of a transformable item. 

A replacement can be thought of as consisting of adding a replacement transformable 

item and removing an existing transformable item to be replaced. Accordingly, a 

transformation orchestration diagram (Figure Appendix C.12) can be defined using the 

two transformation patterns described above, plus a rebinding transformation pattern to 

link these two patterns together. Rebinding is discussed in Appendix C.3.2.8. 

compositeN

(a) adding transformable item N to composite

«Zone»
Create 
Item

«Zone»
Assign

Resource

«Composition»
Bind

«State»
Initialise

(b) removing transformable item N from composite

«Composition»
Unbind

«Zone»
Reclaim

Resource

composite

composite 
without N

Remaining 
Composition 

without N

«State»
Finalise

«Zone»
Remove 

Item

«ServicingPolicy»
Illegalise N

«Composition»
Announce N’s
Unavailability

«Composition»
Relinquish
Resource

N

(c) changing a property of a transformable item N

«Property»
[property name] = [value]

N



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 336 

 
source: developed for this research 

Figure Appendix C.12 Replacement using three transformation patterns 

C.3.2.8 Dynamic Transformable Item (Re)binding 

Purpose: To bind or rebind a transformable item to a composition of transformable 

items at runtime. 

Description: Binding occurs when a transformable item is to be integrated into a 

composite of transformable items at runtime. Rebinding refers to the situation where an 

existing transformable item in a composite is to be substituted with another one offering 

equivalent (i.e. identical or similar) functionality, such as when the existing 

transformable item fails to operate.  

This technique starts with the “binding and re-binding” technique30 from the SeCSE 

methodology (SeCSE 2007) to look for an equivalent transformable item using the 

following steps: 

1. Gather the following information: 

 the transformable item’s functional and non-functional characteristics; and 

 monitored data about the transformable item to further determine the 

specific features that the replacement transformable item should have. This 

information is necessary in case the transformable item fails. 

2. Obtain the list of candidate (replacement) transformable items. 

3. Select the most appropriate (replacement) transformable item. 

4. Map the operations and parameters between the selected transformable item 

and the composite. 

These steps can be carried out at design time and runtime. In fact, SeCSE automates 

these steps in an application and the platform supporting the application. To 

automatically trigger these steps, SeCSE proposes the detection of transformable item 

failures as well as of the arrival of new transformable items as replacement for their 

older counterparts. 

Once the transformable item is identified from the steps described above, a 

                                                   

30 Strictly speaking, Binding and Re-Binding should be classified a technique as opposed to a 
process by SeCSE, as it describes how to bind or rebind a composition to a service, in terms of 
steps. 

removalrebindingaddition



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 337 

transformation design takes place to (re)establish the actual binding in order for the 

application to continue to operate as normal. Continuum enhances SeCSE by offering 

several designs to accomplish this. First, the binding case is the most straightforward 

as illustrated in Figure Appendix C.13(a).  

 
source: developed for this research 

Figure Appendix C.13 (Re)binding transformation patterns 

For rebinding, there are two options. The transformation pattern in Figure Appendix 

C.13(b) utilises the “blocked and queued” servicing policy to temporarily buffer input 

requests to the composite while establishing the binding between the composite and 

N’’, the new transformable item. In Figure Appendix C.13(c), both N and N’’ are bound 

to the composite first. Then the “delegate” servicing policy is used to forward all new 

requests to N’’, while leaving N to fulfil all pending and existing requests. After all 

existing requests have been processed by N (i.e. a particular quiescent state reached), 

N is no longer required and is thus unbound from the composite. 

C.3.2.9 Resource Profile Modelling 

Purpose: To analyse and predict the resource needs of transformable items. 

Description: A new and replacement transformable item may require resources, 

dedicated or shared, in order to function. At other times, an existing transformable item 

may increase/decrease its resource consumption to adapt to the changing pattern of its 

usage. For instance, a new search engine would need a dedicated disk space to buffer 

search data. Without sufficient disk space, the engine would not be able to operate 

composite 
with N

«Composition»

Bind

N«Composition»

Unbind
«ServicingPolicy»

Block & queue 

composite without N

composite
with N’’

«ServicingPolicy»

VoidN’’

composite 
with N

«Composition»

Bind

composite
with N & N’’

N’’
«ServicingPolicy»

Delegate

(b) rebinding using “block & queue”  and “void” servicing policies

(c) rebinding using “delegate”  servicing policy

X
«Composition»

Bind
Y

(a) binding two transformable items X & Y

composite 
(X & Y)

«State»

Acquire 
quiescent

(i.e. Wait for N to complete 
outstanding requests)

«Composition»

Unbind

composite 
with N’’

N

(i.e. Wait for N to complete 
outstanding requests)

«State»

Acquire 
quiescent



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 338 

after it has been deployed live to an application. On the other hand, resource 

contention arises when there are insufficient resources to meet the demands from two 

transformable items sharing the resources. 

Continuum prescribes the following basic steps which will help one to estimate the 

resource needs for each transformable item: 

1. Identify resources required by the transformable item (i.e. the consumer). 

2. For each resource identified above, assess if the consumer will share the 

resource with others, or require exclusive use of the resource. 

3. For each resource identified above which is also quantifiable, estimate the static 

and dynamic usages (OMG 2005) in appropriate units. Static usage refers to the 

use of the resource that does not vary with time or load (e.g. when the 

transformable item is idle). Dynamic usage accounts for situations where the 

use of the resource varies on-demand (e.g. when a transformable item is being 

used. For the latter, Muskens and Chaudron (2004) proposed an estimation 

technique for resource consumption during the invocation of each service of a 

component (i.e. transformable item). 

4. In a composition paradigm, a transformable item can potentially invoke services 

provided by other transformable items to deliver its own services. Accordingly, 

the resources consumed by the latter items must also be estimated (de Jonge et 

al. 2003). In this situation, repeat Steps 1-3 for these additional items. 

For advanced resource modelling, readers can refer to the General Resource Modelling 

Framework (OMG 2005) which provides comprehensive constructs for modelling 

resource usage patterns (static or varying loads on resources), resource types, 

resource management and so forth. They are beyond the scope of Continuum. 

C.3.2.10 Root Cause Analysis 

Purpose: To determine the root causes which led to dynamic evolution quality 

problems, including defects and issues. 

Description: Root causes are analysed in this technique after which appropriate actions 

can be planned to rectify them later on. This technique consists of two steps to analyse 

defects and issues for their root causes: 

1. Classify defects/issues. Leszak et al. (2002) propose a classification scheme for 

analysing defects along the following dimensions: 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 339 

 Phase detected: the development phase (e.g. analysis, design, testing) in 

which a defect or an issue was detected; 

 Defect type: the type of the defect or issue found; 

 Defect location: the work product in which the defect or issue has actually 

been found (e.g. code, documentation); and 

 Root cause(s): the root cause(s) or trigger(s) which led to the defect or issue. 

The can be more than one root cause for each defect or issue. 

Leszak et al. (2002) also define a set of make attribute values for the above. 

Some of these values are substituted, with respect to dynamic evolution and 

Continuum’s features, to make them suitable for use in Continuum. 

Table Appendix C.28 Suggested values for dynamic evolution quality defect/issue attributes 

Name Value 

Defect/Issue 
Type 

An instance of Continuum’s model unit fragments: 
 
“Application”, “ApplicationLifecycle”, “ChangeCase”, “Generation”, “Impact”, 
“OperationalProfile”, “Resource”, “ServicingPolicy”, “TransformableItem”, 
“Transformation”, “TransformationAction”, “TransformationAgent”, 
“TransformationException”, “TransformationException 
Resolution”,TransitionalPeriod”, “Zone”, “ZoningPolicy” 

Defect/Issue 
Location 

An instance of Continuum's diagram and document fragments: 
 
“Application Lifecycle Diagram“, “Dynamic Application Change Document“, 
“Dynamic Evolution Quality Inspection Report“, “Dynamic Evolution Quality 
Problem Analysis Report“, “Dynamic Evolution Quality Profile Report“, “New and 
Replacement Transformable Item Catalogue“, “State Map“, “Structural 
Configuration - Notational Extensions“, “Transformation Diagram“, “Transformation 
Orchestration Diagram“, “Zone Change Document” 

Root Cause 

Phase 
Related 

An instance of Continuum's process fragments: 
 
“Application Lifecycle Analysis”, “Transformation Identification”, 
“Transformation Agent Design”, “Transformation Design”, “Dynamic 
Evolution Quality Management” 
 
and its outcomes further qualified by the nature of the root cause 
(reused from (Leszak et al. 2002)): 
 
“incorrect”, “incomplete”, “ambiguous”, “changed/revised/evolved”, “not 
aligned with customer needs” 

Human 
Related 

(reused from (Leszak et al. 2002)): 
“change coordination”, “lack of domain knowledge”, “lack of system 
knowledge”, “lack of tools knowledge”, “lack of process knowledge”, 
“individual mistake”, “introduced with other repair”, “communications 
problem”, “missing awareness of need for documentation” 

Project 
Related 

(reused from (Leszak et al. 2002)): 
“time pressure”, “management mistake”, “caused by other product” 

Review 
Related 

(reused from (Leszak et al. 2002)): 
“no review”, “incomplete review”, “not enough preparation”, “inadequate 
participation” 

Other descripton for an ad hoc root cause 

 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 340 

2. Group root causes according to defect/issue locations, defect/issue types and 

root causes. This is to facilitate defects/issues to be resolved. For example, 

defects found from the same Transformable Item may be dealt with together. 

C.3.2.11 Secure and Reliable Transformation Agent Coordination 

Purpose: To support security and reliability of the coordination among transformation 

agents in a distributed environment for the performance of a set of transformations. 

Description: A distributed environment opens the door to security threats and network 

failures. This means the communication and thus the coordination among 

transformation agents are susceptible to security and reliability issues when they are 

performing a set of transformations in concert. To address the unreliability of the 

network impacting the coordination of transformation agents, Continuum suggests the 

following enhancements: 

 Reliable network communications protocol: For instance, Georgiadis et al. 

(2002) applied a reliable broadcast protocol which distributes reconfiguration 

information and commands to distributed component managers (i.e. 

subordinate agents) to coordinate their actions. 

 Explicit request and acknowledgement: For every request a coordinator sends 

to a subordinate agent, an acknowledgement of the completion of the request 

should be explicitly captured (Endler 1993). Figure Appendix C.14(a) depicts 

that after a coordinator issues a subordinate agent to perform its transformation 

“t”, it is unable to determine whether “t” completes or not. Figure Appendix 

C.14(b) shows a slight improvement; an acknowledgement is sent back to the 

coordinator to say that “t” has indeed been executed. 

 
source: developed for this research 

Figure Appendix C.14 Example uses of request and acknowledgement between two 
transformation agents 

 Deadline: In the presence of network failure, a coordinator agent is unlikely to 

receive acknowledgement messages for requests it sent. Imposing a time limit 

on such messages and handling the situation on message expiration is one way 

t

C
oo

r-
di

na
to

r
S

ub
or

-
di

na
te

(a) request sent without 
acknowledgement

t

C
oo

r-
di

na
to

r
S

ub
or

-
di

na
te

(b) request sent with 
acknowledgement returned

request request acknowledgement



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 341 

to deal with latency in network communications. An expiration should be 

handled by the coordinator (Figure Appendix C.15(b)) rather than its 

subordinates (Figure Appendix C.15(a)), for the coordinator needs to retain 

control of the execution flow. 

 
source: developed for this research 

Figure Appendix C.15 Example of timing out a subordinate agent’s transformation 

To provide security, Kon et al. (2000) identified three common security supports used 

together for secure transformation agent control and interactions: 

 Secure communications, messages exchanged among transformation agents, 

and commands from an agent administrator to the agents are encrypted so that 

a third party cannot eavesdrop on their content and resend them; 

 Authentication, transformation agents and their administrator establish the 

identities of one another for which they wish to trust; and  

 Access control, access to transformation agents in terms of issuing them 

transformation commands is controlled. Furthermore, in a role-based access 

control, what a coordinator agent is permitted to instruct a transformation agent 

to perform is determined by its role. For instance, a coordinator agent has 

permissions to instruct a subordinate agent to relocate transformable items from 

one zone to another zone only, whereas another coordinator agent has full 

control of the subordinate.  

C.3.2.12 Start-up State Configuration 

Purpose: To determine the states from which new and replacement transformable 

items start to operate after they have been placed into their application.  

Description: In some situations, transformable items are designed to have states (as 

opposed to “stateless” ones (e.g. Milanovic & Malek 2004)) and state configuration may 

be required for these transformable items before they start operating. For instance, it is 

sometimes desirable to make a (new) transformable item operate from a non-initial 

state right after a transformation to reduce the latency caused by the transformable 

item’s initialisation. A more complex scenario is when a replacement transformable 

t

C
oo

r-
di

na
to

r
S

ub
or

-
di

na
te

C
oo

r-
di

na
to

r
S

ub
or

-
di

na
te

(a) subordinate (agent x) 
monitored execution

(b) coordinator (agent p) 
monitored execution

t

timed out

completed

timed out

completed



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 342 

item’s state must be derived from the state of an existing item being replaced before 

operation. For example, when replacing a live database connection pool, it is desirable 

to transfer its “ready” state to the new pool by instantiating connection objects in the 

new pool such that it is ready to offer its connection objects to its clients. 

Start-up State Configuration involves two steps.  

1. Identify all resuming states of a new and replacement transformable item. A 

resume state is one that a transformable item can resume or commence its 

operation (cf. Appendix C.2.1.13.1). Sometimes the initial state of a 

transformable item can also be, but not always, the resuming state. 

2. Determine from which resuming states the transformable item can commence 

operation. If it is intended to replace an existing transformable item, its state will 

likely be derived from the latter and a State Map (cf. Appendix C.2.2.7) will be 

specified. 

While the steps presented above are elementary, state configuration can be highly 

complex and existing theoretical approaches for in-depth state configuration design can 

be consulted (e.g. Gupta et al. 1996; Kramer & Magee 1990). For instance, 

Vandewoude and Berbers (2002) discuss implementation issues of state transfer and 

offer an algorithm to partially automate it. 

C.3.2.13 Transformation Agent Disposition 

Purpose: To station transformation agents in zones ready for transformations. 

Description: When a set of related transformations to occur during a transitional period 

are intended for different parts of an application in a distributed environment, the control 

of the associated transformations can be centralised to a transformation agent or 

decentralised/distributed to several agents, the latter being more scalable for large 

applications (Bradbury et al. 2004). Endler (1993) recommends that agents should be 

arranged hierarchically – each having a parent (the coordinator), and one or more 

children (the subordinates) - to avoid potential interaction deadlocks if transformations 

were concurrently executed. Inspired by Endler’s hierarchical and decentralised 

approach, the following steps are proposed to identify transformation agents: 

1. Identify the zones in which transformations are performed. This defines the 

domain of responsibilities for transformation agents. 

2. Assign a transformation agent to each identified zone. See Figure Appendix 

C.16(a) for illustration. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 343 

3. Define a hierarchy of transformation agents in identified zones by linking the 

agents to form a tree-like structure. If appropriate, introduce additional agents 

that will help subordinated agents to manage their workload. An example is 

illustrated in Figure Appendix C.16(b) where agent “sub” is placed into zone 3 to 

explicitly manage subordinate agents “v” and “w”, and agent “top” is responsible 

for coordinating all transformations handled by agents “x”, “y” and “sub” in the 

four zones. 

 
source: developed for this research 

Figure Appendix C.16 Example transformation agent hierarchy 

C.3.2.14 Transformation Exception Management 

Purpose: To manage exceptions as a result of the enactment of a transformation. 

Description: To improve the resilience of an application against failures anticipated from 

transformations, appropriate exceptions should be declared for transformation failures 

and handled accordingly. This technique has two steps simplified from Dellarocas et 

al.’s (1998) approach for managing exceptions in an evolving system, and customised 

to specifically address transformation failures: 

1. Anticipate and detect transformation exceptions. Given the design of a 

transformation (see the task Develop Transformation, Appendix C.3.1.4.4), 

identify a list of transformation exceptions (Appendix C.2.1.17) known to occur 

from the transformation. Klein and Dellarocas (2000) proposed an identification 

approach that uses a taxonomy of events representing what can occur during 

normal circumstances, and associates the events with the kinds of exceptions 

anticipated. A taxonomy is analogous to a class hierarchy; events towards the 

top of the taxonomy are more generic than those towards the bottom of the 

taxonomy which are increasingly specialised from the former. Each event 

inherits all exceptions from its ancestors in the hierarchy and may contain 

additional exceptions that are specific to it.  

zone 1 zone 2 zone 3

(a) positioning of transformation 
agents to zones

(b) adding & linking transformation 
agents to form hierarchy

x y v

zone 1 zone 2 zone 3

x y

zone 4

w

zone 4

top

v w

sub



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 344 

Figure Appendix C.17 shows an example event taxonomy (using notations from 

Klein & Dellarocas 2000). Events on the “modification” branch are derived from 

the types of transformation actions supported in Continuum (Appendix 

C.2.1.15.1) whereas events on the “enactment” branch cover the aspect of 

carrying out transformations. With respect to the taxonomy, if a transformation 

intends to relocate transformable items to another zone (i.e. “relocation” event), 

possible transformation exceptions include “destination zone unreachable”, “item 

busy”, “aborted” and “timed-out”. 

 
source: developed for this research 

Figure Appendix C.17 Example taxonomy of abnormal transformation events 
(exceptions labelled with *) 

 
Transformation exceptions identified are then incorporated into the 

transformation design. Using Continuum’s notation (Appendix C.2.2.8), Figure 

Appendix C.18 declares a transformation annotated with an exception to trap 

the failure condition of that transformation. 

root
*timed-out

modifica-
tion

*aborted

zone 
modifica-

tion

resource 
(de)allocation

*resource 
starvation

transforma-
tion item 

modification
*item busy

compositional 
modification

*items 
mismatch

state 
configuration

*old state 
inspection 

failed

relocation
*destination 

zone 
unreachable

servicing policy 
assignment

*request queue 
overlow

enactment

transforma-
tion agent 

*agent 
unavailable

application
*operational 

profile 
violated



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 345 

 
source: developed for this research 

Figure Appendix C.18 Example transformation with exception declaration and 
rollback 

2. Resolve transformation exceptions. Based on the diagnosis of each 

transformation exception, a suitable strategy (or more) is determined to resolve 

it. Continuum adopts Laprie’s (1995) three error processing approaches (as 

below) as generic and basic means of resolving transformation exceptions: 

a. Backward recovery: Bring the application back to the state prior to the 

transformation. This means a rollback to its structure and configuration 

before the transformation commences (e.g. Figure Appendix C.18). 

b. Forward recovery: Promote the application forward to a state from which 

it can still operate. One example is to re-execute the failed 

transformation if possible. 

c. Failure compensation: The transformation failure is masked out or 

compensated to let the application continue to operate. The actual 

compensation depends on the type of a transformation exception, the 

design of the transformation and the context in which the transformation 

occurred. For instance, if there are insufficient resources to operate a 

new transformable item, a possible solution is to negotiate a lower 

resource requirement for the item. 

As in the case for transformation, exception handling is undertaken at runtime. Thus, 

the information produced from the steps above would normally be fed to exception 

handling infrastructures to facilitate automation. Since infrastructure and tool aspects 

are not part of Continuum, they are not elaborated further. 

C.3.2.15 Transformation Mining 

Purpose: To extract transformations from change cases, and refine transformations 

such that they can be realised during a transitional period. 

Description: Composition-based distributed applications facilitate dynamic evolution in 

a certain way and hence it is appropriate to leverage this capability when defining 

normal 
transformation

as-is
generation

to-be
generation

compensation
transformation

resolved
generation



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 346 

transformations for this kind of application. This technique defines the following steps to 

identify transformations from change cases: 

1. For each change case targeting more than one transformable item or zone, 

treat it as if there were several identical change cases, each targeting an 

individual transformable item/zone. 

2. For each transformable item or zone targeted by one or more change cases, 

perform the following sub-steps: 

a. Group change cases that target the same transformable item/zone.  

b. For each group identified in the last step, identify modifications to realise 

change cases in the group. In a composition-based distributed 

application, the following modifications are common and hence can be 

used as a baseline: 

 addition of a new transformable item/zone;  

 removal of an existing transformable item/zone; 

 replacement of an existing transformable item, which can be thought 

of as an addition, followed by a rebinding and a removal (cf. 

Appendix C.3.2.7); 

 binding of a transformable item to another one; 

 rebinding of a transformable item from one transformable item to a 

different one; and 

 reconfiguration of a transformable item/zone’s parameters/settings. 

Note that one modification can realise multiple change cases. For 

instance, a modification can both add a new function and upgrade an 

existing function of a transformable item at the same time. 

c. For each modification identified above, match it with a transformation 

pattern. Continuum offers addition, removal, property change, 

replacement, binding and rebinding transformation patterns (Appendices 

C.3.2.7 and C.3.2.8). If no patterns are suitable for the modification, a 

separate transformation will be individually designed for it. 

d. Break up a transformation into smaller transformations if necessary. The 

break up might be beneficial if the transformable item being targeted is a 

composite of other transformable items such that the transformation 

affects many of these items. Smaller transformations are also likely to 

have shorter execution times and to cause smaller interruptions to the 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 347 

application. A note of caution is that transformations should not be very 

small as this would explode the number of transformations to cover all 

change cases to be realised during a transitional period. A resulting 

overhead could be an increase in the number of times an application 

waits for a quiescent state (Appendix C.2.1.13.1) as the number of 

transformations increases. 

C.3.2.16 Transformation Orchestration and Agent Coordination 

Purpose: To design an orchestration of transformations and assign them to 

transformation agents which will coordinate with one another to carry out those 

transformations during a transitional period. 

Description: In a distributed environment, transformations scattered in different zones 

of an application should be managed together to accomplish desirable effects. To guide 

the use of this technique, consider a simple hypothetical application consisting of two 

zones, 1 and 2, with transformable items “m” and “l” held in zone 2 (Figure Appendix 

C.19(a)). 

  
source: developed for this research 

Figure Appendix C.19 Example application used to illustrate Transformation 
Orchestration and Agent Coordination 

Based on the Technique Transformation Agent Disposition (Appendix C.3.2.13), 

transformation agents “x” and “y” have been identified and assigned to zones 1 and 2 

respectively to deal with transformations in these zones. Additionally, transformation 

agent “c” is defined to coordinate the transformations of agents “x” and “y”.  

Suppose that a new transformable item “n” is to be deployed to zone 1 and integrated 

with “m” (Figure Appendix C.19(b)). For this to work, “m” must also be upgraded to 

expose a new interface used for integration with “n”. This requirement translates to the 

following transformations: 

 “m’.add”, “l.rebind” and “m.remove”, which add the new version of “m” (i.e. “m’”) to 

zone 2, rebind “l” from “m” to “m’” , and remove the old version of “m”. 

(a) before transitional period

zone 1 zone 2

c

x y

m’
l

zone 1 zone 2

c

x y

m l
n

(b) after transitional period



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 348 

 “n.add” and “n.bind”, which add “n” to zone 1 and integrate “n” with “m’”. 

To design the orchestration of transformations and the coordination of transformation 

agents to perform these transformations, the following steps are executed: 

1. Allocate transformations to particular phases of a transitional period. 

Transformations almost never complete instantly; some might cause 

interruptions whilst others are invisible to end users and the rest of the 

application. To confine the window of interruption, this step allocates each 

transformation to one of the three phases, to distinguish between 

transformations that will interrupt an application and those that will not do so: 

a. Transformations in the preparatory phase do not interrupt an application. 

They aim to perform preparatory work ready for transformations that will 

interrupt the application. In the example shown in Figure Appendix C.19, 

as transformations “m’.add” and “n.add” will not impact the application, 

they can be performed first and thus assigned to the preparatory phase.  

b. Transformations in the interruptive phase interfere with the normal 

running of an application, its transformable items and/or services being 

offered (e.g. “l.rebind” and “n.bind”). For instance, a transformable item or 

an application as a whole may need to be temporarily out of service 

during a transformation. In the Figure Appendix C.19 example, both 

“l.rebind” and “n.bind” are allocated to the interruptive phase since they 

will cause some degree of interruption to the application. 

c. Transformations in the finishing phase aim to perform housekeeping 

work after transformations in the interruptive phase, such as the removal 

of transformable items that are no longer used (e.g. “m.remove”). 

The allocation of transformations into different phases using sub-steps 1.a to 1.c 

above results in an initial version of the transformation orchestration diagram 

(Appendix C.2.2.10) as shown in Figure Appendix C.20(a). 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 349 

 
source: developed for this research 

Figure Appendix C.20 Example development of transformation orchestration 

2. Arrange and link transformations into an orchestration. 

Link transformations to form an orchestration depicting a workflow of 

transformations. In doing so, consider the nature of the transformations and 

take advantage of parallelism to shorten the transitional period. It is because 

certain transformations may be executed in parallel whereas some 

transformations must be completed prior to others. For instance, in Figure 

Appendix C.20(b), transformations “m’.add” and “n.add” in the preparatory phase 

can be executed concurrently since they do not interfere with each other. In the 

interruptive phase, however, transformation “l.rebind” should precede 

transformation “n.bind” since “m’” should be integrated into the application 

before “n” is integrated with “m’”. 

3. Assign transformations to transformation agents and define their coordination. 

To illustrate this, consider Figure Appendix C.20(c). First, add a swimlane to the 

transformation orchestration diagram for each transformation agent identified 

(i.e. agents “x”, “y” and “c”). Next, transformations to appear within a particular 

(a) allocation of transformations to phases

m'.add n.add m.removel.rebind n.bind

(b) orchestration of transformations

m'.add

n.add

m.removel.rebind

n.bind

A
ge

nt
 x

A
ge

nt
 c

m'.add

n.add

m.removel.rebind n.bind

(c) assignment & coordination of transformation agents

Preparatory Interruptive Finishing

Preparatory Interruptive Finishing

Preparatory Interruptive Finishing

A
ge

nt
 y



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 350 

zone are placed in the swimlane of the agent responsible for the zone (i.e. 

transformations “n.add” and “n.bind” to agent “x”, and transformations “m’.add”, 

“l.rebind” and “m.add” to agent “y”). Appropriate control flows (Table Appendix 

C.18) are then inserted into the workflow to define the coordination of 

transformations. In Figure Appendix C.20(c), for example, start ( ) 

intermediate ( ) and end points ( ) as well as gateways ( ) are assigned 

to the swimlane for agent “c” as it will coordinate agents “x” and “y” to perform 

their specified transformations. 

C.3.2.17 Reused Technique Fragments 

Continuum incorporates several existing techniques into its set of technique method 

fragments. These techniques - wrapped as technique fragments below - have been 

reviewed as suitable for dynamic evolution. Although they may have been developed 

for particular types of composition-based distributed applications, they are sufficiently 

generic to be useful for other types of composition-based distributed applications. 

Interested readers should consult their respective documentation for further details. 

C.3.2.17.1 Dynamic Change Localisation 

Purpose: To localise of changes to within a logical boundary of an application. 

Description: Evans and Dickman (1999) describe an approach to confine the scope of 

dynamic changes to within a logical boundary of an application to manage their 

complexity. Their approach is underpinned by three abstractions: zones, contracts 

between zones, and change absorbers. Their notion of zone is equivalent to 

Continuum’s zone which defines logical partitions in an application (Appendix 

C.2.1.20). Contracts explicitly capture the dependencies between zones, by way of 

specifying their communications and invocations between them. To confine a change to 

within a zone, change absorbers with respect to the change are inserted at the 

boundary of the zone to perform data translation, interface mapping etc. Change 

absorbers ensure that the transformable items in the zone, even after the change, still 

appear to fulfil any contract associated with the zone as if they were unaffected by the 

change. Their approach confines not only dynamic changes to an application but also 

errors to within the zone itself, should the changes fail.  

See the related Technique Identify Changes to Zones (Appendix C.3.2.17.1) about 

zoning policies recommended for an application. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 351 

C.3.2.17.2 Dynamic Security Policy and Enforcement Management 

Purpose: To manage security policy and enforcement changes in response to dynamic 

changes in an application. 

Description: Grimm and Bershad (2001) present a generic access control model which 

separates security policies, security enforcement and application functionality from one 

another. The model adapts to dynamic security policy changes as extensions (i.e. 

transformable items) are added to and removed from an application. It explicitly defines 

a security policy manager and a security enforcement manager as entities which are 

separated from an application. The security policy manager keeps security policies for 

the application (i.e. which subjects are granted what kinds of privileges to access 

protected objects) up-to-date whenever extensions are added to or removed from an 

application. The enforcement manager intercepts messages or invocation requests to 

protected extensions, and checks the access rights of the clients which sent the 

messages or invocation requests against their granted privileges for the extensions by 

interrogating the security policy manager. 

C.3.2.17.3 Dynamic Transformable Item Adaptation 

Purpose: To wrap and plug transformable items into an architecture at runtime, while 

resolving their mismatches. 

Description: The Rational Unified Process (RUP) (Kruchten 2003) defines the “service 

mediation” guideline which uses mediation to resolve communication incompatibilities 

between incompatible services (which are transformable items) and their consumers, 

by way of transforming consumer requests or protocols into formats that services can 

understand. It offers three forms of mediation: interface-, protocol- and operation-

based. 

C.3.2.17.4 Dynamic Variation Management 

Purpose: To define customisation points in a structure, to plug in or swap different 

transformable items, to support limited variations in functionality. 

Description: SeCSE (2006) offers the “Variations Points Management” technique31 to 

describe at design time which parts of a composition are variable which means that 

they can be changed at runtime. It offers steps to analyse a composition model and add 

variation points to it. 
                                                   

31  Strictly speaking, Variations Point Management should be classified as a technique as 
opposed to a task by SeCSE, as it describes how to produce variation points in a composition. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 352 

C.3.2.17.5 Dynamic Workflow Change 

Purpose: To dynamically change a workflow while it is operational. 

Description: Workflow evolution improves the flexibility of a workflow in adapting to the 

changing needs of an application. In particular, dynamic workflow change extends this 

flexibility further by supporting workflows in execution to be changed dynamically.  

Research on evolving workflows at runtime has been extensive, some of which can be 

useful for Continuum. For instance, Casati et al. (1998) divide the problem of workflow 

evolution into static and dynamic facets. They proposed a language to address both 

facets of workflow evolution: a set of primitives to modify the definitions of the workflow 

schema (i.e. the static support), and mechanisms to migrate existing running workflow 

to conform to the new schema (i.e. the dynamic support). Tosic et al. (2007) proposed a 

language for the specification of policy assertions in business processes (i.e. 

workflows) implemented with Web Services. One of the discussed policy assertion 

types concerns the structural adaptation for processes, supporting addition, removal, 

and replacement of activities (i.e. sub-processes) in a process. Ellis and Keddara 

(2000) proposed a modelling language for specifying dynamic workflow changes, 

intended to be generic enough for several domains: organisational, manufacturing, 

software etc. Their approach characterises changes along six modalities, such as 

whether a change is applied instantaneously or gradually on a workflow.  

C.3.2.17.6 Dynamic Wrapper 

Purpose: To dynamically enclose a transformable item (or more) to modify its 

input/output characteristics for desired results. 

Description: The origin of wrapper (a.k.a. adapter) is traced to a design pattern for 

object-oriented development, which aims to convert an object or an interface of a class 

into another form compatible with its clients (Gamma et al. 1995; Graham 1991). It is 

utilised in different contexts for various purposes. In dynamic evolution, wrappers are 

specifically applied at runtime to achieve the following results: 

 Input/output confinement: Voas (1998) defines two types of wrappers used 

together to limit what a distrusted component (i.e. transformable items) can do 

in an application, to guard the application against any unexpected behaviour 

from the component. Input wrappers limit the range of inputs to the component 

to filter illegal inputs and prevent the component from invocations with inputs 

that could lead the component or its application to produce out-of-range or 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 353 

illegal outputs. Output wrappers intercept outputs from the component, ensure 

they meet certain constraints, and pass outputs to the receiving component. 

 Functionality extension: Truyen et al. (2001) describe an architectural approach 

for supporting customisation to an application by accommodating extensions 

into an application dynamically. In their approach, an application is regarded as 

consisting of core “components” (i.e. transformable items) offering minimal 

functionality, and extensions to be integrated with the core ones. An extension 

holds refinements of an existing functionality or new functionality, and is 

encapsulated into one or more wrappers. To extend a core component, one or 

more wrappers dynamically enclose the component using design patterns 

(Gamma et al. 1995) to alter its observable behaviour. Their approach also 

supports extensions to existing functionality at the application level (i.e. 

functionality realised by a collaboration of several components). This is 

accomplished using a combination of wrappers and an interceptor for adjusting 

the message flow among the components. 

 Fault protection: Wrappers have also been employed to protect an application 

against faults anticipated from wrapped transformable items (Torres-Pomales 

2000) and against erroneous requests from the application (Meadows & 

McLean 1998). de Castro Guerra et al. (2003) proposed protectors, a special 

kind of wrappers, to serve these dual roles. Each protector is specified with 

constraints on the interaction between its wrapped component and the rest of 

the application. The constraints are used by both the protector for runtime 

detection of constraint violation and exception handlers to recover the 

application from such violations. Constraints are derived from information such 

as the behaviour of the wrapped components (i.e. transformable items) viewed 

from the application. For arbitrary (both anticipated and unanticipated) faults up 

to a certain number as determined by the size of a distributed application (i.e. 

Byzantine faults, Lamport et al. 1982), several fault-tolerant infrastructures have 

been investigated to operate potentially faulty web services (e.g. Merideth et al. 

2005; Zhao 2009). 

 Fault containment: Gama and Donsez (2010) proposed a special kind of 

wrapper called “sandbox”, to execute potentially and/or not trusted faulty 

transformable items. A sandbox continuously predicts and monitors known 

types of faults from these transformable items. If such faults occur, the sandbox 

contains them by avoiding them from propagating to transformable items 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 354 

outside the sandbox. In a more severe case, if the sandbox crashes because of 

such faults, the sandbox automatically recovers without restarting the 

application. It minimises failure impacts on and disruptions to the application.  

 Security confinement: Herrmann and Krumm (2001) employ security wrappers 

to secure: 

o an application and its environment against wrapped transformable items 

not trusted to the full extent, for the application and its environment may 

be compromised by the transformable items; and 

o wrapped transformable items against misuse from others, the 

application and its environment. 

Security wrappers support these protections by enforcing the contracts for 

transformable items, the application and its environment. Each contract 

specifies the security behaviour constraints on all these parties. To reduce 

runtime overheads, the level of security checks against the contracts is 

dynamically adjusted, depending on prior knowledge of trust already 

established among the parties. 

Fraser et al. (1999) identify and offer support for other uses of security 

wrappers:  

o enforcement of customised access control to transformable items; 

o auditing and intrusion detection of access to and parameters passed to 

transformable items; and 

o security enhancements, such as encryption and decryption of sensitive 

data passed in and out of a transformable item. 

C.3.2.17.7 Inspections 

Purpose: To evaluate one or more work products against a checklist in order to identify 

areas for resolution and improvement. 

Description: OPF’s “inspections” (Henderson-Sellers et al. 1998) is a quality engineering 

technique for conducting an evaluation on work products against a checklist in order to 

identify defects and issues. It defines pre-conditions (i.e. inputs) for an inspection, steps 

to perform when preparing and during an inspection, and completion criteria (i.e. 

outputs) after an inspection. Its steps are generic in that they are not specifically 

defined for particular kinds of checklists or work products. 

It should be noted that defect correction or issue improvement is not covered in this 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 355 

technique to ensure the performance of this technique stays focused on identifying 

defects and issues to be resolved. 

C.3.2.17.8 Loose Coupling 

Purpose: To de-couple independent transformable items in an application. 

Description: Papazoglou and van den Heuvel (2006) proposed the “service coupling” 

principle to make services (i.e. transformable items) and business processes (i.e. 

workflows) as independent from one another as possible. Their principle centres on 

reducing the number of bindings among the services and business processes. 

C.3.2.17.9 Performance Profile Modelling 

Purpose: To analyse and predict the performance characteristics of new and 

replacement transformable items. 

Description: ASG (Lehner et al. 2006) offers the “performance engineering methodology”, a 

process which is used alongside its development process to specifically deal with 

performance objectives of a system that comprises an application, its parts (i.e. 

transformable items) and its platform (Kempter et al. 2007). In this regard, for each 

development, it offers steps and techniques to ensure the system is performing and 

scalable. During the requirements phase, performance requirements are specified. 

During the design phase, these requirements are mapped to the system’s design from 

which the performance models and performance predictions are created. In the 

implementation phase, these models and predictions are refined as the system is 

implemented and instrumented for collecting performance data. In the testing phase, 

performance testing is evaluated to obtain the actual performance of the system. 

Of the guidance and techniques specified in the performance engineering 

methodology, Continuum reuses its technique “instant performance prototyping”. In 

summary, this technique performs the following steps to analyse and predict the 

performance characteristics of a system, its transformable items and its platforms: 

1. Create a system model (or transformable items). 

2. Define load tests. 

3. Perform experiments in sub-steps: 

a. Create a performance prototype of the system model. 

b. Run load tests to measure performance of the prototype. 

c. Analyse performance results. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 356 

C.3.2.17.10 Recovery Blocks 

Purpose: To recover an application from errors brought by new and replacement 

transformable items after a transformation. 

Description: A recovery block basically encompasses a primary block, zero or more 

alternative blocks, and a mechanism to verify and select a block (Horning et al. 1974). 

In a normal operating mode, a recovery block relies on its primary block to deliver its 

services. When errors are detected in the primary block, an alternative block is selected 

to substitute the services of the primary block to recover the operations provided by the 

recovery block as a whole. Recovery blocks can be composite, i.e. one block being 

made of smaller ones. 

The recovery block technique can be applied to handle errors brought into an 

application by new and replacement transformable items. For new transformable items, 

the structure of an application with the new items and the one without them are mapped 

to the primary and alternative blocks respectively. For replacement items, the new and 

older versions of transformable items correspond to the primary block and alternative 

blocks respectively. The replacement case is illustrated by HERCULES, a framework 

for component upgrade (Cook & Dage 1999). 

C.3.2.17.11 Runtime Structure Recovery 

Purpose: To recover the information about the structure of a running application. 

Description: When the as-is architecture of an application deviates from its as-

documented form over time, implementing changes to an application poses real 

challenges such as an incorrect implementation of new functionality (Ding & 

Medvidovic 2001). Note that the name of this technique “Runtime Structure Recovery” is 

synonymous with “Runtime Structure Discovery” since the literature uses both recovery 

and discovery in describing different approaches for the same intent.  

Schmerl et al. (2006) proposed a technique to observe and construct an architectural 

view of a running application. Their technique essentially covers three steps: monitor 

low-level runtime events in an application (e.g. method invocations); map them into 

architecturally related events (component creations); and build architectural models 

from those events. This approach requires certain assumptions about the architecture 

to perform the last two steps. It expects the architecture to follow a known architectural 

style and coding conventions in its implementation. To enable the application to 

generate events, its compiled code is instrumented.  



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 357 

Huang et al. (2006) utilise the reflection ability of a component framework used for 

building an application to recover the architecture of an application. As an application 

runs, a set of runtime entities is automatically created as basic elements are created in 

the application at runtime. As soon as changes to the application are made, the 

recovered architecture comprising these entities is kept up-to-date as changes to the 

elements are reflected in changes to these entities. Different views of the architecture 

are then constructed for the recovered architecture according to some principles (e.g. 

composite components) to increase the level of abstraction for the architecture and 

make it easier to understand. 

C.3.2.17.12 Testability Analysis and Improvement 

Purpose: To analyse and improve the testability of an application and its transformable 

items. 

Description: Freedman (1991) proposed an approach to analyse and improve testability 

of an application. Testability is defined as the ease with which the input and data 

characteristics, and states of a computing unit (a transformable item or an application 

etc.) are identified. Two measures reflect testability: controllability, for ease of 

producing specified outputs from specified inputs, and observability, for ease of 

determining if specified inputs affect outputs. In summary, testability is improved with: 

 proper documentation for input and output characteristics and states of 

transformable items;  

 observability and controllability for the application, stated as functional 

requirements, as modification to an application may be required to make hidden 

input/output characteristics and states accessible; and 

 implementation of observability and controllability in the application. 

C.3.2.17.13 Transformable Item Autonomy 

Purpose: To facilitate transformable items to have control and governance over their 

own processing. 

Description: Erl (2005) describes in his methodology the “service autonomy” principle, 

offering guidance on dividing a business logic into services (i.e. transformable items) 

and defining their boundaries to improve the ability of the services to have control and 

governance of their own processing. Erl also notes that service loose coupling not only 

reduces service dependencies but also enhances their autonomy. 



Appendix C. Detailed Specifications for Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 358 

C.3.2.17.14 Transformable Item Mediation and Channelling 

Purpose: To abstract communication concerns from transformable items. 

Description: RUP’s “service mediation” guideline (Kruchten 2003) describes three ways 

to handle mediation between incompatible service consumers and providers. One of 

these addresses the mediation of protocols between service consumers and providers 

using in a “service channel” representing an abstraction for communication between 

service providers and consumers. A service channel is defined separately from the 

specification of services offered by the service provider. 

C.3.2.17.15 Transformable Item Regression Testing 

Purpose: To ensure that a transformable item is accessible correctly, performs its 

operations, and behaves as expected, both functionally and non-functionally. 

Description: SeCSE proposed a technique called “regression testing” to validate that 

services (i.e. transformable items) after deployment are in line with their expectations 

as they evolve (SeCSE 2008). In short, services are tested on two fronts. First, test 

cases are created and updated as services evolve or are added to an application, and 

executed against these services on demand. Second, normal invocations of the 

services are monitored in place to ensure that they produce the desired outputs for the 

invocations. Monitoring and verification also reduce the costs associated with 

conducting validation with the test cases on a live application, such as an increase in 

consumption of computing resources. 

To address potential violations of invariants, SeCSE supports two ways of identifying 

invariants, and defines test cases to regression test an application and its services. 

First, for known invariants, they are explicitly specified upfront along with pre- and post-

conditions for services and the application. Test cases are then specified and used in 

regression testing. Otherwise, likely invariants are profiled using the following steps:  

1. Determine the possible ranges of inputs to services. 

2. Randomly generate a large set of test cases simulating inputs to services within 

these ranges. 

3. Execute the test cases on the services. 

4. Analyse the inputs/outputs and derive the likely invariants (e.g. using a tool 

called Daikon (Ernst et al. 2007)). 

5. Generate the test cases for the derived invariants. 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 359 

Appendix D. CCASE STUDY RESULTS OF APPLYING 

CONTINUUM 

This Appendix describes the outcomes of using Continuum - the analysis and design 

artefacts produced with Continuum - in a case study application (cf. Section 7.2). It is 

split into the following sections, each of which documenting the artefacts produced with 

the designated Continuum process and its associated method fragments: 

 Appendix D.1 for Process “Application Lifecycle Analysis”; 

 Appendix D.2 for Process “Transformation Identification”; 

 Appendix D.3 for Process “Transformation Agent Design”; 

 Appendix D.4 for Process “Transformation Design”; and 

 Appendix D.5 for Process “Dynamic Evolution Quality Management”. 

For convenience, the artefacts presented in Appendices D.1 to D.4 also include the 

enhancements made to them to resolve the quality defects/issues found from their 

earlier versions. The defects/issues were identified and resolved by applying Process 

“Dynamic Evolution Quality Management” (cf. Appendix D.5). See Table Appendix D.14 

for a description of the quality defects/issues and the respective improvements to rectify 

the defects/issues.  

D.1 APPLICATION LIFECYCLE ANALYSIS OUTCOMES 
The Application Lifecycle Analysis process extended the lifecycle of the application 

used in the case study to accommodate the changes to the application at runtime which 

were elicited from requirements analysis. It produced three key artefacts:  

 from Task “Identify As-Is Runtime Structure”, the runtime structure of generation 

V1 of the application (Appendix D.1.1); 

 from Task “Derive Change Cases”, the change cases proposed for the application 

(Appendix D.1.2); and  

 from Task “Extend Application Lifecycle”, the extended application lifecycle to 

realise the change cases above (Appendix D.1.3).  

D.1.1 Distributed Property Valuation - Generation V1 

The Distributed Property Valuation system (or “DPV” in short) is a commercial and 

distributed application for issuing requests for property valuations and collecting 

property valuations. (See Section 7.2.1 for an introduction to DPV and its change 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 360 

history.) DPV uses a variety of technologies (Java™ and Microsoft .NET framework™) 

and implementation models (Web Services plus components) in its architecture. In 

generation V1 of DPV, its elements (which are transformable items) are distributed in 

the following zones: 

 Internet zone, the domain in which individual property valuers and staff of 

valuation firms (collectively called “valuers”) use a mobile device application 

called “Mobile Job Application” or “MJA” to obtain property valuation bookings or 

appointments, to fill out property valuation reports, and to upload the completed 

reports; 

 Web zone, hosting Internet facing sub-systems; 

 Internal zone, hosting DPV’s business related sub-systems and other 

applications used by internal business and administration staff; and 

 Repository zone, in which valuation related data are kept. 

The runtime structure of generation V1 of DPV is illustrated in Figure Appendix D.1. 

The transformable items in each zone are briefly described in Table Appendix D.1. 

 

Figure Appendix D.1 DPV: generation V1 

Table Appendix D.1 DPV: transformable items in generation V1 

Zone Transformable Item Description 

Internet pa_v1:MobileJobApp_V1 

An application (MJA) running on a personal digital assistant 
device (PDA) and enabling valuers to perform tasks remotely, 
including downloading valuation appointments, recording 
valuation data on-site and submitting the data.  
In generation V1, there were twenty PDAs with MJA installed. 

Web pdaWeb1:Tomcat 
WebContainer 

A web container hosting a web-based interface for MJA to 
communicate with DPV. It uses Apache Tomcat, an open 
source HTTP framework for Java.  

Internet Zone Web Zone

pdaWeb1: 
TomcatWebContainer

Internal Zone Repository Zone

Admin

sm:Sales 
Management

bs_v1:Biz
Service_V1

eg:Email 
Gateway

endUserWeb1: 
NukeWebContainer

jf:
JobFulfilmentWS

jwp_v1:
JobWorkerPortal

_V1
re_v1:

Reporting 
Engine_V1

boa_v1:
BackOffice
Admin_V1

ds_v1:
SqlServer 
Datastore

jrp_v1:Job
Requester
Portal_V1

ja_v1:
jobAppointment

WS_V1

lender_v1

valuer_v1

pa[1..20]_v1:
MobileJob 
App_V1

wp1:
Web
Proxy

bsp1:
BizService 

Proxy



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 361 

Zone Transformable Item Description 

 jf:JobFulfilmentWS A Web Service for MJA to submit completed valuations. 

 
ja_v1:JobAppointmentWS_V
1 A Web Service to download valuation bookings to MJA. 

 endUserWeb1:Nuke 
WebContainer 

A web container hosting all valuer facing applications via the 
Internet. It uses DotNetNuke, an open source web content 
management system, and Microsoft .NET framework™ for 
application development. 

 jwp:v1:JobWorkerPortal_V1 
A web application for valuers to view valuation bookings and 
the information required to conduct a property valuation, such 
as the location of a property. 

 wp1:webProxy 
An access point to transformable items in the Web zone from 
the Internet. 

Internal 
jrp_v1:JobRequesterPortal_V
1 

A propriety application accessed via Microsoft Windows 
Remote Desktop to let clients submit valuation requests to be 
performed for properties of interest. 

 sm:SalesManagement An internal application, external to DPV, to collect data from 
DPV for invoicing lenders and paying valuers. 

 boa_v1:BackOfficeAdmin_V1 

An internal application for internal staff to privileged access 
and administer valuation data such as valuation quotes, 
valuation requests, valuation bookings, valuations, progress 
reports, invoices, accounts etc. 

 eg:EmailGateway A system interface, external to DPV, for DPV to send emails to 
clients (i.e. lenders) and valuers. 

 re_v1:ReportingEngine_V1 
An application which runs periodically and on-demand to 
generate valuation and business activity reports from the data 
store. It uses Crystal Reports (a commercial database tool). 

 bsp1:BizServiceProxy 
An access point from the Web zone to transformable items in 
the Internal zone. 

Repository bs_v1:BizService_V1 A service to act as a facade to access to valuation related data 
held in the data store. 

 
ds_v1:SqlServerDatastore 
_V1 

A Microsoft® SQL Server database or data store storing 
valuation related data. 

Notes: 

1. “Job” denotes “property valuation”. 

2. “WS” stands for “Web Service”.  

3. Transformable Items suffixed with “_V1” designate that they were specific to version V1 and were 
to be upgraded with a new version, all of which suffixed with “_V2”. 

DD.1.2 Change Cases 

Change cases were derived from the business requirements specified for V2, the 

runtime structure of generation V1 of DPV and the following business constraints:  

1. Outstanding valuations-in-progress: In the business domain, the period of time 

that begins when a valuation request has been created and ends when an 

associated valuation report is completed can last from a day to a fortnight. Thus, 

a valuation can be analogous to a long running transaction (Curbera et al. 2003). 

At any time during the original roll-out there were likely to be valuations booked 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 362 

in DPV that were yet to be completed. Furthermore, valuations managed by 

DPV use different data structures between V1 and V2. Hence, when V2 was 

released, DPV should retain the V1 functionality to let valuers complete all 

outstanding valuations created with V1 of DPV. 

2. Latency in training completion: Existing valuers of version V1 of DPV were 

handed out training materials to learn to use the V2 version of DPV at their own 

pace. The sponsor observed that it was inappropriate to roll out version V2 of 

DPV before all these valuers completed the training. Thus, DPV should handle 

a period during which both V1 and V2 functionality co-exist to support both 

untrained and trained users. 

The business constraints were especially imposed by the sponsor that they should be 

addressed in the case study since they were encountered but not resolved satisfactorily 

in the original V2 upgrade project.  

In Task “Derive Change Cases” (Process “Application Lifecycle Analysis”), the initial set of 

change cases were directly derived from the business requirements and constraints. 

The derived change cases are described in Table Appendix D.2 and grouped according 

to the generations targeted by the change cases. Note that the original requirements 

from which the change cases were derived are not shown in Table Appendix D.2 for 

reasons of confidentiality and anonymity. 

Additional change cases were then identified by performing Task “Refine Change Cases” 

in Process “Transformation Identification” (cf. Appendix D.2) and subsequently 

incorporated to the initial set. For completeness, these change cases are also shown in 

Table Appendix D.2 (in italicised font). They were determined from:  

 the differences between successive generations (i.e. V1 and V1.1beta, 

V1.1beta and V1.1, V1.1 and V1.2, V1.2 and V1.3, and V1.3 and V2) after the 

structures of the generations had been defined (in Process “Transformation 

Identification”); and 

 Technique “Dynamic Change Impact Analysis”. (Change cases identified from this 

technique (e.g. “CC4003”) are highlighted in the “ID” column in Table Appendix 

D.2.) 

To illustrate, “CC3011” is a supplementary change case for “CC4001”, which means 

when the data store is migrated to a different database platform (i.e. “CC4001”), the 

database driver of the reporting engine must also be changed (i.e. “CC3011”) to make 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 363 

the reporting engine compatible with the new database platform. An example of the 

latter situation (i.e. additional change case) is when the old web container is replaced 

with one using a new technology platform (i.e. “CC2000”); not only must the new web 

container be installed in the web zone (i.e. “CC2005” being an additional change case) 

but also any existing web application running on the old web container needs to be 

relocated to the new web container (i.e. “CC2006” being the additional change case).  

Table Appendix D.2 DPV: dynamic application change document 

Change Case Impact 

ID Purpose Description Type Disrup-
tion Level Target 

Supple-
mentary 
Change 
Case ID 

Applied to generation V1 

CC3005 

Replace clientManagement 
function in 
boa_v1:BackOfficeAdmin_
V1 with new version. 

Bug fixes for 
clientManagement 

direct high [self] 
 

CC3006 

Replace jobReporting 
function in 
boa_v1:BackOfficeAdmin_
V1 with new version. 

Bug fixes for jobReporting direct high [self] 
 

CC3007 

Replace 
jobBookingAssignment 
function in 
boa_v1:BackofficeAdmin_
V1 with new version. 

Bug fixes for 
jobBookingAssignment 

direct high [self] 
 

CC4001 

Replace SqlServer 
persistence support in 
Repository zone with 
MySql persistence support.  

Microsoft® SQL Server 
replacement with MySQL, 
plus refactoring and 
redesign of existing data 
schema. 
This change case is split 
into CC4001a and 
CC4001b. 

  
See CC4001a 
and CC4001b  

CC4001a 
Add MySql persistence 
support to Repository 
zone. 

MySQL with refactoring 
and redesign of existing 
data schema.  

indirect high 
sm:SalesMana
gement 

CC3011 

indirect high 
re_v1:Reportin
gEngine_V1 CC4003 

indirect high bs_v1:BizServi
ce_V1 

CC4002 

CC4002 
Replace old bizService 
function with new version 
in Repository Zone. 

Microsoft® SQL Server 
replacement with MySQL. 
This change case is split 
into CC4002a and 
CC4002b.  

  
See CC4002a 
and CC4002b.  

CC4002a 
Add new version of 
bizService function to 
Repository zone. 

New version  

indirect high boa_v1:backOf
ficeAdmin_V1 CC3010 

indirect high jf:JobFulfilment
WS CC3008 

indirect high ja_v1:JobAppoi
ntmentWS_V1 CC3008 

indirect high jwp_v1:JobWor
kerPortal_V1 CC3008 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 364 

Change Case Impact 

ID Purpose Description Type Disrup-
tion Level Target 

Supple-
mentary 
Change 
Case ID 

CC4003 

Replace SqlServer 
database driver in 
re_v1:ReportingEngine_V1 
with MySql database 
driver. 

re_v1:ReportingEngine_V
1 to communicate with 
new data store type 
(MySQL) and instance 
(ds_v2:MySqlDatastore) 

direct high [self]  

CC4005 
Add bizServiceRecovery 
function to Repository 
zone. 

rsrb:BizServiceRecoveryBl
ock to ensure that if 
bsf:BizService1to2Facade 
fails to operate as 
expected, it will fall back to 
bs_v1:BizService_V1 to 
continue to provide its 
functions. 

indirect high bsp1:BizServic
eProxy CC3009 

indirect high sm:SalesMana
gement CC3011 

CC3008 
Add facade for new version 
of bizService function to 
Internal zone. 

Providing a facade to 
bs_v2:BizService_V2 to 
make the functions 
provided by 
bs_v2:BizService_V2 
backwards compatible 
with those of 
bs_v1:BizService_V1. 

indirect high bsp1:BizServic
eProxy CC3009 

indirect high sm:SalesMana
gement CC3011 

CC3009 

Modify 
bsp1:BizServiceProxy’s 
binding with old bizService 
function to 
bizServiceRecovery 
function. 

bsp1:BizServiceProxy no 
longer accessing 
bs_v1:BizService_V1 
directly. Instead, 
bsp1:BizServiceProxy 
accesses 
bs_v1:BizService_V1 
functions via 
rsrb:BizServiceRecoveryBl
ock. 

direct low [self]  

CC3010 

Replace SqlServer 
database driver in 
boa_v1:BackOfficeAdmin_
V1 with that for MySql 
database. 

Change to 
boa_v1:BackOfficeAdmin_
V1 required for it to 
communicate with new 
data store type (MySQL) 
and instance 
(ds_v2:MySqlDatastore) 

direct high [self]  

CC3011 

Modify 
sm:SalesManagement’s 
binding with old bizService 
function to 
bizServiceRecovery 
function. 

sm:SalesManagement no 
longer accessing 
bs_v1:BizService_V1 
directly. Instead, 
sm:SalesManagement 
accesses 
bs_v1:BizService_V1 
functions via 
rsrb:BizServiceRecoveryBl
ock. 

direct low [self]  

Applied to generation V1.1beta 

CC4001b 
Remove SqlServer 
persistence support from 
Repository zone. 

ds_v1:SqlServerDatastore 
no longer required 

direct high bs_v1:BizServi
ce_V1 

CC4002b 

CC4002b 
Remove old version of 
bizService function from 
Repository zone. 

bs_v1:BizService_V1 no 
longer required direct high rsrb:BizService

RecoveryBlock CC4006 

CC4006 

Remove 
bizServiceRecovery 
function from Repository 
zone. 

bsf:BizService1to2Facade 
working and 
rsrb:BizServiceRecoveryBl
ock no longer required 

direct high bsp1:BizServic
eProxy CC3012 

direct high sm:SalesMana
gement CC3013 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 365 

Change Case Impact 

ID Purpose Description Type Disrup-
tion Level Target 

Supple-
mentary 
Change 
Case ID 

CC3012 

Modify 
bsp1:BizServiceProxy’s 
binding with 
bizServiceRecovery 
function to facade for new 
version of bizService 
function. 

rsrb:BizServiceRecoveryBl
ock no longer needed, 
bsp1:BizServiceProxy to 
directly access 
bsf:BizService1to2Facade 

direct low [self]  

CC3013 

Modify 
sm:SalesManagement’s 
binding with 
bizServiceRecovery 
function to facade for new 
version of bizService 
function. 

rsrb:BizServiceRecoveryBl
ock no longer needed, 
sm:SalesManagement to 
directly access 
bsf:BizService1to2Facade 

direct low [self]  

Applied to generation V1.1 

CC2000 

Replace DotNetNuke 
valuer web site in Web 
zone with Tomcat valuer 
web site. 

Web container platform 
migration from 
DotNetNuke to Tomcat 

direct high [self] 
 

CC2001 
Move jobRequester 
function from Internal zone 
to Web zone. 

jobRequester relocation 
from Windows Remote 
Desktop to the Web zone 

direct low [self]  

CC2002 
Move jobBookingView 
function from Internal zone 
to Web zone. 

jobBookingView relocation 
from Windows Remote 
Desktop to the Web zone 

direct low [self]  

CC2003 
Move jobManagement 
function from Internal zone 
to Web zone. 

jobManagement relocation 
from Windows Remote 
Desktop to the Web zone 

direct low [self]  

CC2004 
Move notes function from 
Internal zone to Web zone. 

Notes relocation from 
Windows Remote Desktop 
to the Web zone 

direct low [self] 
 

CC1001a 

Replace old version of MJA 
in 20 PDAs 
(pa[1..20]_v1:MobileJobAp
p_V1) with new version. 

bug fixes for MJA direct high [self]  

CC1001b 
Add new version of MJA to 
80 PDAs. 

More valuers for the new 
version of MJA direct high [self]  

CC1002 

Add jobHistory function to 
MJA in 20 PDAs 
(pa[1..20]_v1:MobileJobAp
p_V1). 

New feature jobHistory to 
add to MJA direct high [self]  

CC2005 Add Tomcat valuer web 
site to Web zone. See CC2000 direct low [self]  

CC2006 

Add jobWorker function to 
Tomcat valuer web site 
(endUserWeb2:TomcatWe
bContainer). 

See CC2000 direct low [self]  

CC2007 

Add jobRequester function 
to Tomcat valuer web site 
(endUserWeb2:TomcatWe
bContainer). 

See CC2001, CC2002, 
CC2003 and CC2004 direct low [self]  



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 366 

Change Case Impact 

ID Purpose Description Type Disrup-
tion Level Target 

Supple-
mentary 
Change 
Case ID 

CC2008 Add new PDA facing web 
site to Web zone. 

New web container to host 
pdaWeb1: such that 
versions V1 and V2 of 
ja_v1:JobAppointmentWS
_V1 can run in parallel (i.e. 
in pdaWeb1: and 
pdaWeb2:) 

direct low [self]  

CC2010 

Add new version of 
jobAppointment function to 
new PDA facing web site 
(pdaWeb2:TomcatWebCon
tainer). 

New version direct low [self]  

CC2009 

Move jobFulfilment 
function from old PDA 
facing web site 
(pdaWeb1:TomcatWebCon
tainer) to new PDA facing 
web site 
(pdaWeb2:TomcatWebCon
tainer).  

jf:JobFulfilmentWS to stay, 
ja_v1:JobAppointmentWS
_V1 to be removed 
together with pdaWeb1: 
later on 

indirect low pdaWeb1 CC2013 

indirect low pdaWeb2 CC2014 

indirect medium wp1 CC2011 

CC2011 

Modify wp1:WebProxy’s 
binding with jobFulfilment 
function in old PDA facing 
web site 
(pdaWeb1:TomcatWebCon
tainer) to jobFulfilment 
function in new PDA facing 
web site 
(pdaWeb2:TomcatWebCon
tainer). 

jf:JobFulfilmentWS 
relocated from pdaWeb1: 
to pdaWeb2: 

direct low [self]  

CC2012 Add new webProxy 
function to Web zone. New  direct low [self]  

CC2013 

Remove jobFulfilment 
function from old PDA 
facing web site 
(pdaWeb1:TomcatWebCon
tainer). 

See CC2009 direct high [self]  

CC2014 

Add jobFulfilment function 
to new PDA facing web site 
(pdaWeb2:TomcatWebCon
tainer). 

See CC2009 direct low [self]  

CC4004 
Add new version of 
bizSeviceProxy function to 
Internal zone. 

New direct low [self]  

Applied to generation V1.2 

CC3001 
Remove old version of 
jobRequester function from 
Internal zone. 

See CC2001, CC2002, 
CC2003 and CC2004 

direct high [self] 
 

CC3002 

Replace old version of 
jobAppointment function in 
DotNetNuke valuer web 
site 
(endUserWeb1:NukeWebC
ontainer) with stub 
function. 

Temporary stub to always 
return nil job appointments 
to valuers 

direct high [self] 
 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 367 

Change Case Impact 

ID Purpose Description Type Disrup-
tion Level Target 

Supple-
mentary 
Change 
Case ID 

Applied to generation v1.3 

CC2015 
Remove old version of 
webProxy function from 
Web zone. 

Obsolete direct low [self]  

CC2016 

Remove old PDA facing 
web site (which also 
removes jobAppointment 
stub function) from Web 
zone. 

See CC1001a, CC1001b 
and CC1002 

indirect medium wp1:WebProxy CC2015 

CC2017 

Remove DotNetNuke 
valuer web site (which also 
removes old version of 
jobWorker function) from 
Web zone. 

See CC2000 indirect medium wp1:WebProxy CC2015 

CC2018 

Remove old version of 
MJA 
(pa[1..20]_v1:MobileJobAp
p_V1) from 20 PDAs. 

Instances of old version of 
MJA to be removed 

indirect medium wp1:WebProxy 
 

Note: Italicised change cases were identified in Task “Refine Change Cases” in Process “Transformation 
Identification”. 

DD.1.3 Application Lifecycle 

It was decided in the case study meetings that in order to cope with the business 

constraints stated in Appendix D.1.2, DPV will have to pass through a few temporary 

generations (V1.1beta, V1.1, V1.2 and V1.3) when it progresses from V1 to V2. The 

initial version of the resultant application lifecycle produced from Process “Application 

Lifecycle Analysis” thus becomes what is depicted in Figure Appendix D.2.  

 

Figure Appendix D.2 DPV: application lifecycle diagram before process 
“Transformation Identification” 

The resultant application lifecycle was subsequently updated to accommodate the new 

change cases identified in Process “Transformation Identification” (cf. Appendix D.2). 

The lifecycle is depicted in Figure Appendix D.3. 

V1.1 V1.2transitional 
period a’

transitional
period b

V2transitional
period d

transitional
period c

V1.3
V1.1
beta

V1 transitional 
period a

CC3005, CC3006, 
CC3007, CC4001a

CC1001a, CC1001b, CC1002, 
CC2000, CC2001, CC2002, 
CC2003, CC2004, CC2005, 
CC2006, CC2007, CC2008, 
CC2009, CC2010,  CC2012, 
CC4004

CC2016, 
CC2017, 
CC2018

CC4001b
CC3001, 
CC3002



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 368 

 

Figure Appendix D.3 DPV: updated application lifecycle diagram after new change 
cases identified in Process “Transformation Identification” 

The generations of DPV are described in Table Appendix D.3. 

Table Appendix D.3 DPV: identified generations 

Generation Description 

V1 The “as-is” version of DPV. 

V1.1beta 

The new database platform and its associated transformable items rreleased. The old 
database platform and its associated transformable items on standby as a fall back.  

 All V1 features still available to end users (i.e. no noticeable changes or differences 
to valuers). 

V1.1 

The old database platform and its associated transformable items rremoved, given that the 
new database platform and its associated transformable items operate satisfactorily.  

 All V1 features still available to end users (i.e. no noticeable changes or differences 
to valuers). 

V1.2 

All new features (i.e. V2, including bug fixes) rreleased. Existing V1 features still remain in 
DPV.  

 Both V1 and V2 features available to end users. 
 Trained valuers starting to use V2 features if desired. 

V1.3 

Old version (i.e. V1) of valuation request features rremoved.  
 Lenders to use the new features in V2 to submit valuation requests via the Internet. 

Old version (i.e. V1) of valuation booking features rremoved.  
 Valuers to use V2 part of DPV to download valuation booking information. However, 

they continue to use the V1 part of DPV to submit existing valuations from which the 
bookings were created with the V1 part of DPV. 

V2 
All V1 parts of DPV rremoved since they are no longer required.  

 All valuation requests booked with the V1 part of DPV fulfilled. 

 

D.2 TRANSFORMATION IDENTIFICATION OUTCOMES 
The Transformation Identification process identified the transformations required to 

realise the change cases during the five transitional periods between generations V1 

V1.1 V1.2transitional 
period a’

transitional
period b

V2transitional
period d

transitional
period c

V1.3
V1.1
beta

V1 transitional 
period a

CC3005, CC3006, 
CC3007, CC4001a, 
CC3008, CC3009, 
CC3010, CC3011, 
CC4002a, CC4003, 
CC4005

CC1001a, CC1001b, CC1002, 
CC2000, CC2001, CC2002, 
CC2003, CC2004, CC2005, 
CC2006, CC2007, CC2008, 
CC2009, CC2010, CC2011, 
CC2012, CC2013, CC2014, 
CC4004

CC2015, 
CC2016, 
CC2017, 
CC2018

CC3012, 
CC3013, 
CC4001b, 
CC4002b, 
CC4006

CC3001, 
CC3002

Note: Change cases identified in the “Transformation Identification” process are italicised.



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 369 

and V2 of DPV. It produced the following artefacts: 

 from Task “Define To-Be Runtime Structure”, the runtime structures of the 

generations based on the initial set of identified change cases (i.e. those shown 

in non-italic font in Table Appendix D.2) and the purposes of the generations (cf. 

Table Appendix D.3);  

 from Task “Refine Change Cases”, new change cases derived from the differences 

between two successive generations (i.e. “as-is” and “to-be”). These change 

cases were in addition to those identified in Process “Application Lifecycle 

Analysis”; and 

 from Task “Identify Transformations”, the transformations for producing the 

runtime structure of each “to-be” generation from its “as-is” generation.  

The additional change cases are already described in Table Appendix D.2. The runtime 

structures and transformations are presented in the rest of this section.  

After transitional period a, when DPV has progressed from V1 to V1.1beta: 

The resulting generation V1.1beta is depicted in Figure Appendix D.4. In the Repository 

zone, a new data store “ds_v2:MySqlDatastore” and a number of transformable items 

giving access to the data store are installed. Particular attention should be given to 

“bsf:BizService1to2Facade” which resides in the Repository zone. It aims to keep the 

services provided by the new “bs_v2:BizService_V2” backwards compatible with existing 

transformable items (e.g. “jf:JobFulfilmentWS” in the Web zone), and enables DPV to 

offer both the old (V1) and new (V2) functionality to users from generation V1.2 later on 

(cf. Table Appendix D.3).  

 

Figure Appendix D.4 DPV: generation V1.1beta 

Internet Zone Web Zone

pdaWeb1: 
TomcatWebContainer

Internal Zone Repository Zone

∆

∆

∆

Admin

∆

sm:Sales 
Management

bs_v2:Biz
Service_V2

∆

∆

eg:Email 
Gateway

endUserWeb1: 
NukeWebContainer

jf:
JobFulfilmentWS

jwp_v1:
JobWorkerPortal

_V1

∆

∆
∆  re_v2:
Reporting 

Engine_V2

boa_v2:
BackOffice

Admin_V2 ∆

 ∆ ds_v2:
MySql 

Datastore

jrp_v1:Job
Requester
Portal_V1

bsp1:
BizService 

Proxy
ja_v1:

jobAppointment
WS_V1

lender_v1

bsf:
BizService

1to2 
Facade ∆

∆

∆

valuer_v1

pa[1..20]_v1:
MobileJob 
App_V1

wp1:Web
Proxy

bs_v1:Biz
Service_V1

ds_v1:
SqlServer 
Datastore

bsrb:Biz
Service 

Recovery 
Block ∆

∆ ∆



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 370 

Since it is critical for DPV to continue to offer V1 functionality, 

“bsrb:BizServiceRecoveryBlock” will ensure that if “bsf:BizService1to2Facade” cannot 

correctly provide V1 functionality through its interfaces, “bsrb:BizServiceRecoveryBlock” 

will have the opportunity to switch to and use “bs_v1:BizService_V1” as a backup for 

DPV to continue to operate. In the Internal zone, “BackOfficeAdmin” and 

“ReportingEngine” are upgraded with new features and the ability to use the new data 

store in the Repository zone. 

The transformations identified to bring DPV to the V1.1beta generation are listed in 

Table Appendix D.4. Notice the evidence of the many-to-many relationship between 

change cases and transformations: one transformation “boa_v1:BackOfficeAdmin_V1 

upgrade” to three change cases CC3005, CC3006 and CC3007, and three 

transformations “ds_v2:MySqlDatastore deployment”, “ds_v1: to ds_v2: data replication” and 

“ds_v1: to ds_v2: data sync” to one change case CC4001a. 

Table Appendix D.4 DPV: change cases for progressing V1 to V1.1beta 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC3005 Replace clientManagement function in 
boa_v1:BackOfficeAdmin_V1 with new version. 

boa_v1:BackOfficeAdmin_V1 upgrade 

CC3006 
Replace jobReporting function in 
boa_v1:BackOfficeAdmin_V1 with new version.   

CC3007 Replace jobBookingAssignment function in 
boa_v1:BackofficeAdmin_V1 with new version. 

  

CC4001a 
Add MySql persistence support to Repository 
zone. 

ds_v2:MySqlDatastore deployment, 
ds_v1: to ds_v2: data replication, ds_v1: 
to ds_v2: data sync. 
Removal of ds_v1:SqlServerDatastore is 
dealt with in CC4001b, Table Appendix 
D.5 

CC4002a Add new version of bizService function to 
Repository zone. 

bs_v2:BizService_V2 deployment. 
Removal of bs_v1:BizService_V1 is dealt 
with in CC4002b, Table Appendix D.5 

CC4003 
Replace SqlServer database driver in 
re_v1:ReportingEngine_V1 with MySql database 
driver. 

re_v2:ReportingEngine_V2 deployment, 
re_v1:ReportingEngine_V1 removal 

CC4005 Add bizServiceRecovery function to Repository 
zone. 

bsrb:BizServiceRecoveryBlock 
deployment 

CC3008 Add facade for new version of bizService 
function to Internal zone. bsf:BizService1to2Facade deployment 

CC3009 
Modify bsp1:BizServiceProxy’s binding with old 
bizService function to bizServiceRecovery 
function. 

bsp1:BizServiceProxy rebinding1 

CC3010 
Replace SqlServer database driver in 
boa_v1:BackOfficeAdmin_V1 with MySql 
database driver. 

boa_v1:BackOfficeAdmin_V1 upgrade 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 371 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC3011 
Modify sm:SalesManagement’s binding with old 
bizService function to bizServiceRecovery 
function. 

sm:SalesManagement rebinding1 

Note: Change cases identified from Task “Refine Change Cases” are italicised. 

After transitional period a’, when DPV has progressed from V1.1beta to V1.1: 

The resulting generation V1.1 is depicted in Figure Appendix D.5. The transformations 

to appear in transitional period a’ remove Microsoft® SQL Server specific parts (i.e. 

“ds_v1:SqlServerDatastore” and “bs_v1:BizService_V1”) plus “bsrb:BizServiceRecoveryBlock” 

from the Repository zone, after ensuring that “bsf:BizService1to2Facade” has been 

successful in providing the old (V1) functionality in generation V1.1beta. See Table 

Appendix D.5 for the transformations identified to promote DPV to generation V1.1.  

 

Figure Appendix D.5 DPV: generation V1.1 

Table Appendix D.5 DPV: change cases for progressing V1.1beta to V1.1 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC4001b 
Remove SqlServer persistence support from 
Repository zone. ds_v1:SqlServerDatastore removal 

CC4002b Remove old version of bizService function from 
Repository zone. bs_v1:BizService_V1 removal 

CC4006 Remove bizServiceRecovery function from 
Repository zone. rsrb:BizServiceRecoveryBlock removal 

CC3012 
Modify bsp1:BizServiceProxy’s binding with 
bizServiceRecovery function to facade for new 
version of bizService function. 

bsp1:BizServiceProxy rebinding2 

CC3013 
Modify sm:SalesManagement’s binding with 
bizServiceRecovery function to facade for new 
version of bizService function. 

sm:SalesManagement rebinding2 

Note: Change cases identified from Task “Refine Change Cases” are italicised. 

Internet Zone Web Zone

pdaWeb1: 
TomcatWebContainer

Internal Zone Repository Zone

∆

Admin

sm:Sales 
Management

bs_v2:Biz
Service_V2

eg:Email 
Gateway

endUserWeb1: 
NukeWebContainer

jf:
JobFulfilmentWS

jwp_v1:
JobWorkerPortal

_V1
re_v2:

Reporting 
Engine_V2

boa_v2:
BackOffice
Admin_V2

ds_v2:
MySql 

Datastore

jrp_v1:Job
Requester
Portal_V1

bsp1:
BizService 

Proxy
ja_v1:

jobAppointment
WS_V1

lender_v1

bsf:
BizService

1to2 
Facade

∆

valuer_v1

pa[1..20]_v1:
MobileJob 
App_V1

wp1:Web
Proxy



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 372 

After transitional period b, when DPV has progressed from V1.1 to V1.2: 

The resulting generation V1.2 is depicted in Figure Appendix D.6. The transformations 

to appear in transitional period b update transformable items in the Web zone to offer 

the new (V2) functionality of DPV to valuers, while keeping the old (V1) functionality 

available (cf. Table Appendix D.3). They are listed in Table Appendix D.6.  

 

Figure Appendix D.6 DPV: generation V1.2 

Table Appendix D.6 DPV: change cases for progressing V1.1 to V1.2 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC2000 
Replace DotNetNuke valuer web site in Web 
zone with Tomcat valuer web site. 

endUserWeb2:TomcatWebContainer 
deployment (removal of 
endUserWeb1:NukeWebContainer is dealt 
with in CC2012) 

CC2001 
Move jobRequester function from Internal zone 
to Web zone. 

jrp_v2:JobRequesterPortal_V2 
deployment (removal of 
jrp_v1:JobRequesterPortal_V1 is dealt 
with in CC3001) 

CC2002 Move jobBookingView function from Internal 
zone to Web zone.  

CC2003 
Move jobManagement function from Internal 
zone to Web zone.  

CC2004 Move notes function from Internal zone to Web 
zone.  

Internet Zone Web Zone

∆ pdaWeb2: 
TomcatWebContainer 

∆ pdaWeb1: 
TomcatWebContainer 

endUserWeb1: 
NukeWebContainer

ja_v1:
jobAppointment

WS_V1

valuer_v1

jwp_v1:
JobWorkerPortal

_V1

∆  endUserWeb2: 
TomcatWebContainer

jwp_v2:
JobWorkerPortal

_V2    ∆

pa[1..20]_v1:
PDA 

Application
_V1

∆

∆

valuer_v2
(trained)

∆

∆

pa[1..100]_v2:
MobileJob 

App_V2     ∆

wp2:Web
Proxy ∆

ja_v2:
JobAppointment

WS_V2 ∆
∆

jf:
JobFulfilmentWS

∆

wp1:Web
Proxy ∆

Internal Zone Repository Zone

Admin

sm:Sales 
Management

bs_v2:Biz
Service_V2

eg:Email 
Gateway

re_v2:
Reporting 

Engine_V2 

boa_v2:
BackOffice
Admin_V2

ds_v2:
MySql 

Datastore

jrp_v1:Job
Requester
Portal_V1

bsp1:
BizService 

Proxy

bsf:
BizService

1to2 
Facade

bsp2:
BizService 

Proxy
 ∆

∆

∆

∆

lender_v1

jrp_v2: 
JobRequester
Portal_V2 ∆

lender_v2
(trained)

∆ ∆
∆



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 373 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC1001a 
Replace old version of MJA in 20 PDAs with 
new version. 

pa[1..100]_v2:MobileJobApp_V2 
deployment.  
(pa[1..20]_v1:MobileJobApp_V1 removal 
dealt with in CC2013) 

CC1001b Add new version of MJA to 80 PDAs.  

CC1002 Add jobHistory function to MJA in 20 PDAs. 
pa[1..100]_v2:MobileJobApp_V2 
deployment 

CC2005 Add Tomcat valuer web site to Web zone. endUserWeb2:TomcatWebContainer 
deployment 

CC2006 
Add jobWorker function to Tomcat valuer web 
site. jwp_v2:JobWorkerPortal_V2 deployment 

CC2007 Add jobRequester function to Tomcat valuer 
web site. 

jrp_v2:JobReqesterPortal_V2 deployment 

CC2008 Add new PDA facing web site to Web zone. 
pdaWeb2:TomcatWebContainer 
deployment 

CC2010 Add new version of jobAppointment function to 
new PDA facing web site. ja_v2:JobAppointmentWS_V2 deployment 

CC2009 
Move jobFulfilment function from old PDA 
facing web site to new PDA facing web site. 

jf:JobFulfilmentWS removal (from 
pdaWeb1); jf:JobFulfilmentWS 
deployment (to pdaWeb2) 

CC2011 

Modify wp1:WebProxy’s binding with 
jobFulfilment function in old PDA facing web 
site to jobFulfilment function in new PDA facing 
web site. 

wp1:WebProxy reconfiguration 

CC2012 Add new webProxy function to Web zone. wp2:WebProxy deployment 

CC2013 Remove jobFulfilment function from old PDA 
facing web site. see CC2009 

CC2014 Add jobFulfilment function to new PDA facing 
web site. see CC2009 

CC4004 Add new version of bizSeviceProxy function to 
Internal zone. 

bsp2:BizServiceProxy deployment 

Note: Change cases identified from Task “Refine Change Cases” are italicised. 

After transitional period c, when DPV has progressed from V1.2 to V1.3: 

The resulting generation V1.3 is depicted in Figure Appendix D.7. The transformations 

to appear in transitional period c aim to stop lenders and valuers from creating and 

managing valuations using the old (V1) user interfaces and functionality (cf. Table 

Appendix D.3).The transformations are listed in Table Appendix D.7.  



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 374 

 

Figure Appendix D.7 DPV: generation V1.3 

Table Appendix D.7 DPV: change cases for progressing V1.2 to V1.3 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC3001 Remove old version of jobRequester function 
from Internal zone. 

jrp_v1:JobRequesterPortal_V1 removal 

CC3002 Replace old version of jobAppointment function 
in DotNetNuke valuer web site with stub function. 

ja_v1:JobAppointmentWS_V1 
replacement with 
jas_v1:JobAppointmentStubWS_V1 

 

After transitional period d, when DPV progressed from generation V1.3 to V2 

The resulting generation V2 is depicted in Figure Appendix D.8. The transformations to 

appear in transitional period c remove transformable items which provide the old (V1) 

functionality to valuers (cf. Table Appendix D.3). The transformations are listed in Table 

Appendix D.8. 

Internet Zone Web Zone

pdaWeb2: 
TomcatWebContainer

∆ pdaWeb1: 
TomcatWebContainer 

endUserWeb1: 
NukeWebContainer

jas_v1:
JobAppointment
StubWS_V1   ∆

valuer_v1

jwp_v1:
JobWorkerPortal

_V1

endUserWeb2: 
TomcatWebContainer

jwp_v2:
JobWorkerPortal

_V2

pa[1..20]_v1:
PDA 

Application
_V1

valuer_v2
(trained)

pa[1..100]_v2:
MobileJobApp

_V2

wp2:Web
Proxy

ja_v2:
jobAppointment

WS_V2

jf:JobFulfilment
WS

wp1:Web
Proxy

Internal Zone Repository Zone

Admin

sm:Sales 
Management

bs_v2:Biz
Service_V2

eg:Email 
Gateway

re_v2:
Reporting 

Engine_V2 

boa_v2:
BackOffice
Admin_V2

ds_v2:
MySql 

Datastore

bsp1:
BizService 

Proxy

bsf:
BizService

1to2 
Facade

bsp2:
BizService

Proxy

lender_v1

jrp_v2:
JobRequester

Portal_V2
lender_v2
(trained)



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 375 

 

Figure Appendix D.8 DPV: generation V2 

Table Appendix D.8 DPV: change cases for progressing V1.3 to V2 

Change 
Case ID Change Case Purpose Enactment (i.e. Responsible 

Transformation(s)) 

CC2015 Remove old version of webProxy function from 
Web zone. wp1:WebProxy removal 

CC2016 
Remove old PDA facing web site (which also 
removes jobAppointment stub function) from 
Web zone. 

pdaWeb1:TomcatWebContainer removal 

CC2017 
Remove DotNetNuke valuer web site (which also 
removes old version of jobWorker function) from 
Web zone. 

endUserWeb1:NukeWebContainer 
removal 

CC2018 Remove old version of MJA from 20 PDAs. pa[1..20]_v1:MobileJobApp_V1 removal 

Note: Change cases identified from Task “Refine Change Cases” are italicised. 

DD.3 TRANSFORMATION AGENT DESIGN OUTCOMES 
The Transformation Agent Design process identified the transformation agents required 

to perform a set of transformations for DPV and determine how they will collaborate 

with one another to perform the transformations. With respect to the agent identification 

in the case study (i.e. Task “Identify Transformation Agents”), Figure Appendix D.9 

depicts the disposition of transformation agents in various zones where DPV’s 

transformable items reside.  

Internet Zone Web Zone

pdaWeb2: 
TomcatWebContainer

valuer_v1

endUserWeb2: 
TomcatWebContainer

jwp_v2:
JobWorkerPortal

_V2

valuer_v2
(trained)

pa[1..100]_v2:
MobileJobApp

_V2

wp2:Web
Proxy

ja_v2:
jobAppointment

WS_V2

jf:JobFulfilment
WS

Internal Zone Repository Zone

Admin

sm:Sales 
Management

bs_v2:Biz
Service_V2

eg:Email 
Gateway

re_v2:
Reporting 

Engine_V2 

boa_v2:
BackOffice
Admin_V2

ds_v2:
MySql 

Datastore

bsp1:
BizService 

Proxy

bsf:
BizService

1to2 
Facade

bsp2:
BizService

Proxy

lender_v1

jrp_v2:
JobRequester

Portal_V2
lender_v2
(trained)



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 376 

 

Figure Appendix D.9 DPV: disposition of transformation agents in different zones 

Each of the Web, Internal and Repository Zones is assigned a dedicated agent 

responsible for transformations within that zone. In the Internet zone, there are two 

options to upgrade MJA running on valuers’ PDAs: 

1. Each valuer manually installs version V2 of MJA to his/her PDA, and removes 

version V1 of MJA, if any, from his/her PDA. 

2. Each valuer installs a transformation agent, a custom built software, on his/her 

PDA and let it automatically upgrade MJA from V1 to V2. 

The case study sponsor opted for option 1 since it was more economical and feasible. 

This option makes each valuer play the role of a transformation agent. Hence, the 

transformation agents in the Internet zone are labelled “Valuer” in Figure Appendix D.9. 

Finally, a “Coordination Agent” is placed in the Web zone to coordinate transformation 

activities among the agents in the four zones. 

With respect to the second outcome of the Transformation Agent Design process (i.e. 

using Task “Define Transformation Orchestration”), Figure Appendix D.10 to Figure 

Appendix D.14 depict the collaboration of transformation agents to perform the set of 

transformations, in terms of the orchestration of transformations during the transitional 

periods a(V1 V1.1beta), a’(V1.1beta V1.1), b(V1 V1.2), c(V1.2 V1.3), and 

d(V1.3 V2) respectively.  

DPV Owner Site

Internet
Web zone Internal Zone

Repository 
Zone

Coordi-
nation
Agent

WebZone 
Agent

IntZone 
Agent

RepZone 
Agent

Valuer 
[1..100]



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 377 

 

Figure Appendix D.10 DPV: transformation orchestration diagram (V1 to V1.1beta) 

Notes for Figure Appendix D.10: Highlighted transformations are product specific. The transformation 
“bsp1: rebinding1” issued from the Coordination Agent to the IntZone Agent will be retried once if the 
latter does not respond within a specified time (0.5 second). If still unsuccessful, this transitional period will 
terminate DPV in an error state and DPV will have extra transformable items (which are 
“ds_v2:MySqlDatastore”, “bs_v2:BizService_V2” and “bsrb:BizServiceRecoveryBlock”) installed but not used. 
The error will be logged and investigated. However, manual handling of the error is deemed out of the 
scope for this case study. 

 

Figure Appendix D.11 DPV: transformation orchestration diagram (V1.1beta to 
V1.1) 

Notes for Figure Appendix D.11: A retry similar to Figure Appendix D.10 may occur between the 
Coordination and the IntZone Agents to re-perform the critical transformation “bsp1: rebinding2”. 

R
ep

Z
on

e 
A

ge
nt

In
tZ

on
e 

A
ge

nt
C

oo
rd

in
at

io
n 

A
ge

nt

V1.1
beta

bsf:
deployment

ds_v2: 
deployment

bs _v2: 
deployment

ds_v1: to 
ds_v2: data 
replication

bsp1: 
rebinding1

re_v2:
deployment

re_v1:
removal

V1

Preparatory Interruptive Finishing

bsrb: 
deployment

ds_v1: to 
ds_v2: 
data 
sync

boa_v1: 
upgrade to 

boa_v2:

sm: 
rebinding1

bsp1: 
rebinding1

timed 
out

IntZone Agent 
replied

0.5 sec

2 sec

IntZone 
Agent 
replied timed 

out

V1 with 
extra parts

R
ep

Z
on

e 
A

ge
nt

In
tZ

on
e 

A
ge

nt
C

oo
rd

in
at

io
n 

A
ge

nt

V1.1

ds_v1: 
removal

bs_v1: 
removal

bsp1: 
rebinding2

rsrb: 
removal

V1.1
beta

Interruptive Finishing

sm: 
rebinding2

bsp1: 
rebinding2

sm: 
rebinding2

V1.1be
ta with 
extra 
parts

timed 
out

timed out

IntZone Agent replied
IntZone Agent replied

0.5 sec

2 sec

Intzone Agent 
replied



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 378 

 

Figure Appendix D.12 DPV: transformation orchestration diagram (V1.1 to V1.2) 
Notes for Figure Appendix D.12:  

1. The highlighted transformation will be performed by each of the one hundred valuers. This means 
each one will install version V2 of MJA on his/her PDA. 

2. A retry similar to Figure Appendix D.10 may occur between the Coordination and the WebZone 
Agents to re-perform the critical transformation “wp1: rebinding”. 

 

 

Figure Appendix D.13 DPV: transformation orchestration diagram (V1.2 to V1.3) 

Notes for Figure Appendix D.13: The transformation “ja_v1:recovery” is specifically added to this design 

In
tZ

on
e 

A
ge

nt
W

eb
Z

on
e 

A
ge

nt
C

oo
rd

in
at

io
n 

A
ge

nt

V1.2

endUser 
Web2:

deployment

bsp2: 
deployment

jrp_v2:
deployment

V1.1

pdaWeb2:
deployment

pa[1..100]_v2:
deployment

wp2: 
deployment

ja_v2:
deployment

jwp_v2:
deployment

jf: deployment 
(to pdaWeb2) 
(as replicated 

from 
pdaWeb1)

va
lu

er
_v

2

jf: 
removal 

(from 
pdaWeb1)

Preparatory Interruptive Finishing

wp1: 
rebinding

wp1: 
rebinding

timed 
out

WebZone Agent 
replied

0.5 sec

2 sec

WebZone 
Agent 
replied timed 

out

V1.1 with 
extra parts

W
eb

Z
on

e 
A

ge
nt

V1.3V1.2

ja_v1: 
replacement 
with jas_v1

In
tZ

on
e 

A
ge

nt
C

oo
rd

in
a-

tio
n 

A
ge

nt

Interruptive

ja_v1: 
recovery

jrp_v1:
removal

V1.2 (as 
recovered)

jas_v1: 
deployed

jas_v1: not 
deployed



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 379 

to handle the case where the preceding transformation “ja_v1: replacement with jas_v1” fails to complete. 
This addition was done during dynamic evolution quality inspection (cf. Table Appendix D.14), and not 
directly derived from change cases (cf. Table Appendix D.7). If this failure happens, DPV will be rolled back 
to V1.2 and the root cause of this failure will be manually investigated and dealt with. 

 

 

Figure Appendix D.14 DPV: transformation orchestration diagram (V1.3 to V2) 
Notes for Figure Appendix D.14: The highlighted transformation is manually performed by individual 
valuers. In fact, it will be executed once by each of the twenty valuers whose PDA has the old version (V1) 
of MJA installed.  

DD.4 TRANSFORMATION DESIGN OUTCOMES 
The Transformation Design process carried out the designing of individual 

transformations, producing the following outcomes for DPV: 

 from Task “Identify New and Replacement Transformable Items”, the new and 

replacement transformable items to be added to DPV and their configurations 

(Appendix D.4.1); 

 from Task “Identify Changes to Zones”, changes to zones hosting of transformable 

items of DPV (Appendix D.4.2);  

 from Task “Develop Transformation”, the detailed design for each transformation 

(Appendix D.4.3); and 

 from Task “Define Servicing Policies”, the policies to specify services provided by 

transformable items that will be affected by a transformation when it operates 

(Appendix D.4.3).  

D.4.1 New and Replacement Transformable Items 

Table Appendix D.9 summarises the new and replacement transformable items to be 

added to DPV, including: 

W
eb

Z
on

e 
A

ge
nt

V1.3

wp1: 
removal

va
lu

er
_v

1
C

oo
rd

in
a-

tio
n 

A
ge

nt

V2

pdaWeb1: 
removal

pa[1..20]_v1: 
removal

endUserWeb1: 
removal

Interruptive Finishing



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 380 

 their new resource profiles (specifying resources that should be offered by their 

hosting environment) vs. those of the existing transformable items they intend to 

replace in DPV; and  

 their new performance profiles vs. those of the existing transformable items they 

intend to replace in DPV; and  

 the states from which they start to operate. 

Table Appendix D.9 DPV: new and replacement transformable item catalogue 

 New and Replacement Transformable Items 

Responsible 
Transformation(s) Name 

Change in 
Resource 

Profile 
(current vs. 

new) 

Change in 
Performance 

Profile 
(current vs. new) 

Start-up State 
Configuration 
(see note 1) 

progressing from V1beta to 
V1.1    

 

bsf:BizService1to2Facade 
deployment bsf:BizService1to2Facade     

N/A 

bs_v2:BizService_V2 
deployment 

bs_v2:BizService_V2     

Connection 
pool (holding 
16 connections 
to 
ds_v2:MySqlD
atastore) 
established 

ds_v2:MySqlDatastore 
deployment 

ds_v2:MySqlDatastore 

Exclusive disk 
space: 
500GB/10TB 
(current/new) 

 

Loaded with 
up-to-date data 
obtained from 
ds_v1:SqlServ
erDatastore 

bsrb:BizServiceRecoveryBl
ock deployment 

bsrb:BizServiceRecoveryB
lock   

N/A 

re_v1:ReportingEngine_V2 
deployment 

re_v1:ReportingEngine_V
2 

    N/A 

boa_v1:BackOfficeAdmin_
V1 upgrade 

boa_v2:BackOfficeAdmin_
V2     

N/A 

progressing from V1.1beta 
to V1.1    

 

(none) 
   

 

progressing from V1.1 to 
V1.2    

 

endUserWeb2:TomcatWeb
Container deployment 

endUserWeb2:TomcatWe
bContainer 

Exclusive 
memory: 
512MB/4GB 
(current/new) 

Minimum 
number of 
users: 20/100 
(current/new) 

N/A 

jwp_v2:JobWorkerPortal_V
2 deployment 

jwp_v2:JobWorkerPortal_
V2     N/A 

jrp_v2:JobReqesterPortal_
V2 deployment 

jrp_v2:JobReqesterPortal_
V2  

    N/A 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 381 

 New and Replacement Transformable Items 

Responsible 
Transformation(s) Name 

Change in 
Resource 

Profile 
(current vs. 

new) 

Change in 
Performance 

Profile 
(current vs. new) 

Start-up State 
Configuration 
(see note 1) 

pdaWeb2:TomcatWebCont
ainer deployment 

pdaWeb2:TomcatWebCon
tainer 

Exclusive 
memory: 
256MB/2GB 
(current/new) 

Minimum 
number of 
users: 20/100 
(current/new) 

N/A 

ja_v2:JobAppointmentWS_
V2 deployment 

ja_v2:JobAppointmentWS
_V2 

    N/A 

jf:jobFulfilmentWS 
deployment (to pdaWeb2) jf2:JobFulfilmentWS     

N/A 

wp2:WebProxy deployment wp2:WebProxy     N/A 

bsp2:BizServiceProxy 
deployment bsp2:BizServiceProxy     

N/A 

pa[1..100]_v2:MobileJobAp
p_V2 deployment 

pa[1..100]_v2:MobileJobA
pp_V2  

    N/A 

progressing from V1.2 to 
V1.3    

 

ja_v1:JobAppointmentWS_
V1 replacement with 
jas_v1:JobAppointmentStu
bWS_V1 

ja_v1:JobAppointmentStu
bWS_V1 
(temporary, to be removed 
in V2) 

  

States mapped 
from 
ja_v1:JobAppoi
ntmentWS_V1 
(see Table 
Appendix D.10) 

progressing from V1.3 to 
V2    

 

(none) 
   

 

Notes: 

1. “N/A” stands for “not applicable”, which means the transformable item is stateless and/or no 
specific start-up state for the transformable item is needed. 

2. Existing data need to be copied from the old instance (ds_v1:SqlServerDatastore) to the new 
instance (ds_v2:MySqlDatastore) before the new instance commences its operation.  

As can be seen from Table Appendix D.9, there are three transformable items in which 

their start-up states must be defined: 

 “bs_v2:BizService_V2”, which provides streamlined access to the business 

functions, needs to set up the connections to the data store in its connection 

pool before it is ready for use, to reduce the latency caused by the set up. This 

is abstracted as a particular transformation action “«State»initialise” (cf. Figure 

Appendix C.11(a)) to be performed in the respective transformation (i.e. 

“bs_v2:BizService_V2 deployment”).  

 “ds_v2:MySqlDatastore”, requires its data to be copied from the part it is replacing 

(i.e. “ds_v1:SqlServerDatastore”). Two transformations - “ds_v1: to ds_v2: data 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 382 

replication” and “ds_v1: to ds_v2: data sync” - are dedicated to accomplish this 

(see Figure Appendix D.10).  

 The case for replacing the “JobAppointmentWS” Web Service (i.e. 

“ja_v1:JobAppointmentWS_V1”) with its stub (i.e. 

“jas_v1:JobAppointmentStubWS_V1”) to deprecate its functions (cf. Table 

Appendix D.2) requires a State Map. More specifically, DPV is allowed to switch 

“JobAppointmentWS” to its stub only when “JobAppointmentWS” is in one of the 

two permissible states (“Ready_empty” and “Ready_pending”) during which it does 

not have any incoming requests for processing. The State Map is documented 

in Table Appendix D.10. 

Table Appendix D.10 DPV: state map from JobAppointmentWS_V1 to its stub 

Resolved State 

Replacement State (of 
jas_v1:JobAppointmentStubWS_V1) 

Startup  Ready_empty - 
[M] 

Ready_pend
ing - [M] 

Servicing  

 Startup  
(i.e. not initialised):  

    

 
Ready_empty – [QV] 
(i.e. without pending 
requests) 

 Ready_empty  
 

Old state (of 
ja_v1:JobAppointmentWS

_V1) 

Ready_pending – [QV] 
(i.e. with pending 
requests not yet served) 

  
Ready_pen

ding 

 

 
Servicing – [QV] 
(i.e. requests being 
served) 

   
 

Note: Q/V/M: abbreviations for quiescent/resolved/resuming states. 

DD.4.2 Zone Changes 

Table Appendix D.11 summarises changes to the respective zones as transformable 

items are added to and removed from DPV when it progresses from generation V1 to 

V2. 

Table Appendix D.11 DPV: zone change document 

Responsible 
Transformation(s) External zone Web zone Internal zone Repository zone 

Progressing from V1 to V1.1beta 

bsf:BizService1to2Fa
cade deployment  

  +bsf:BizService1to2
Facade 

bs_v2:BizService_V2 
deployment    

+bs_v2:BizService_
V2 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 383 

Responsible 
Transformation(s) External zone Web zone Internal zone Repository zone 

ds_v2:MySqlDatastor
e deployment  

  

+ds_v2:MySqlDatas
tore, allocation of 
additional disk 
space (cf. Table 
Appendix D.9) 

bsrb:BizServiceRecov
eryBlock deployment  

  +bsrb:BizServiceRe
coveryBlock 

re_v1:ReportingEngin
e_V2 deployment   

+re_v1:ReportingEn
gine_V2  

boa_v1:BackOfficeAd
min_V1 upgrade  

 

+boa_v2:BackOffic
eAdmin_V2 
-
boa_v1:BackOffice
Admin_V1 

 

re_v1:ReportingEngin
e_V1 removal 

-  re_v1:ReportingEng
ine_V1 

 

Progressing from V1.1beta to V1.1 

ds_v1:SqlServerData
store removal    

-
ds_v1:SqlServerDat
astore 

bs_v1:BizService_V1 
removal    

-
bs_v1:BizService_V
1 

bsrb:BizServiceRecov
eryBlock removal  

  
-
bsrb:BizServiceRec
overyBlock 

Progressing V1.1 to V1.2 

endUserWeb2:Tomca
tWebContainer 
deployment  

+endUserWeb2:To
mcatWebContainer, 
allocation of 
additional memory 
(cf. Table Appendix 
D.9) 

  

jwp_v2:JobWorkerPor
tal_V2 deployment  

+jwp_v2:JobWorker
Portal_V2   

jrp_v2:JobReqesterPo
rtal_V2 deployment  

+jrp_v2:JobReqeste
rPortal_V2  

  

pdaWeb2:TomcatWe
bContainer 
deployment  

+pdaWeb2:Tomcat
WebContainer, 
allocation of 
additional memory 
(cf. Table Appendix 
D.9) 

  

ja_v2:JobAppointment
WS_V2 deployment  

+ja_v2:JobAppoint
mentWS_V2   

jf:jobFulfilmentWS 
deployment (to 
pdaWeb2)  

+jf2:JobFulfilmentW
S 

  

wp2:WebProxy 
deployment  

+wp2:WebProxy   

bsp2:BizServiceProxy 
deployment   

+bsp2:BizServicePr
oxy  



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 384 

Responsible 
Transformation(s) External zone Web zone Internal zone Repository zone 

pa[1..100]_v2:MobileJ
obApp_V2 
deployment 

+pa[1..100]_v2:M
obileJobApp_V2  

   

jf:JobFulfilmentWS 
removal (from 
pdaWeb1) 

 
-jf:JobFulfilmentWS 
from pdaWeb1   

Progressing V1.2 to V1.3 

jrp_v1:JobRequesterP
ortal_V1 removal  

-
jrp_v1:JobRequeste
rPortal_V1 

  

ja_v1:JobAppointment
WS_V1 replacement 
with 
jas_v1:JobAppointme
ntStubWS_V1 

 

-
ja_v1:JobAppointm
entWS_V1, 
+ja_v1:JobAppoint
mentStubWS_V1 

  

ja_v1:JobAppointment
WS_V1 recovery     

Progressing V1.3 to V2 

wp1:WebProxy 
removal  -wp1:WebProxy   

pdaWeb1:TomcatWe
bContainer removal  

-
pdaWeb1:TomcatW
ebContainer (and 
containing parts) 

  

endUserWeb1:Nuke
WebContainer 
removal 

 

-
endUserWeb1:Nuk
eWebContainer 
(and containing 
parts) 

  

pa[1..20]_v1:MobileJo
bApp_V1 removal 

-
pa[1..20]_v1:Mobi
leJobApp_V1  

   

Notations:  

“+x”: add transformable item “x” to the zone identified by the column.  

“-x”: remove transformable item “x” from the zone identified by the column. 

DD.4.3 Detailed Design of Transformations 

When designing a transformation, it is useful to check if a transformation design pattern 

already exists as a solution to the design. Accordingly, Table Appendix D.12 

documents the outcomes of the transformation pattern matching effort which links the 

transformations identified for DPV to the transformation patterns prescribed by 

Continuum (addition, removal, replacement etc., Appendices C.3.2.7 and C.3.2.8). 

Furthermore, a new transformation pattern called “tomcat addition” (cf. Figure Appendix 

D.15) is specifically designed to perform changes in a particular web container platform 

(i.e. Apache Tomcat). Indeed, “tomcat addition” is qualified as a pattern because it can 

be used for a few transformations in Table Appendix D.12. 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 385 

 

Figure Appendix D.15 DPV: transformation pattern for “tomcat addition” 

Table Appendix D.12 DPV: applying transformation patterns to transformation design 

Transitional 
Period Responsible Transformation(s) Transformation 

Pattern 
Comments2 

V1 to 
V1.1beta bsf:BizService1to2Facade deployment addition 

 

  bs_v2:BizService_V2 deployment addition  

  
ds_v1: to ds_v2: data replication (i.e. 
from ds_v1:SqlServerDatastore to 
ds_v2:MySqlDatastore) 

N/A1 
 

  ds_v2:MySqlDatastore deployment addition  

  re_v1:ReportingEngine_V2 deployment addition  

  boa_v1:BackOfficeAdmin_V1 upgrade replacement  

  sm:SalesManagement rebinding1 rebinding 

Rebinding with “blocked and 
queued” and “void” servicing 
policies (See Figure Appendix 
C.13(b)) 

  bsp1:BizServiceProxy rebinding1 rebinding Ditto 

  
ds_v1: to ds_v2: data sync (i.e. from 
ds_v1:SqlServerDatastore to 
ds_v2:MySqlDatastore) 

N/A 
 

  re_v1:ReportingEngine_V1 removal removal  

V1.1beta to 
V1.1 

ds_v1:SqlServerDatastore removal removal  

  bs_v1:BizService_V1 removal removal  

 bsrb:BizServiceRecoveryBlock removal removal  

 sm:SalesManagement rebinding2 rebinding 

Rebinding with “blocked and 
queued” and “void” servicing 
policies (See Figure Appendix 
C.13(b)) 

 bsp1:BizServiceProxy rebinding2 rebinding Ditto 

V1.1 to V1.2 
endUserWeb2:TomcatWebContainer 
deployment addition 

 

  jwp_v2:JobWorkerPortal_V2 
deployment 

tomcat addition  

  
jrp_v2:JobReqesterPortal_V2 
deployment tomcat addition 

 

  pdaWeb2:TomcatWebContainer 
deployment addition  

  ja_v2:JobAppointmentWS_V2 
deployment 

tomcat addition  

  
jobFulfilmentWS deployment (to 
pdaWeb2) addition 

 

  wp2:WebProxy deployment addition  

«Zone»
Assign

Resource

«Custom»
Deploy Web
Component

Tomcat 
WebContainer

«State»
Initialise

(i.e. for Web 
Component in Tomcat)



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 386 

Transitional 
Period Responsible Transformation(s) Transformation 

Pattern 
Comments2 

  bsp2:BizServiceProxy deployment addition  

  wp1:WebProxy rebinding rebinding 

Rebinding with “blocked and 
queued” and “void” servicing 
policies (See Figure Appendix 
C.13(b)) 

  
pa[1..100]_v2:MobileJobApp_V2 
deployment N/A 

 

  jf:JobFulfilmentWS removal (from 
pdaWeb1) 

removal  

V1.2 to V1.3 jrp_v1:JobRequesterPortal_V1 removal removal 
Unavailability to be announced 
to users with “lender1” role 

  
ja_v1:JobAppointmentWS_V1 
replacement with 
jas_v1:JobAppointmentStubWS_V1 

addition, then 
rebinding, then 

removal (cf. 
Figure 

Appendix C.12) 

Rebinding with “delegate” 
servicing policy (See Figure 
Appendix C.13(c)) 

V1.3 to V2 wp1:WebProxy removal removal 
Unavailability to be announced 
to users with “lender1” or 
“valuer1” roles 

  
pdaWeb1:TomcatWebContainer 
removal removal 

 

  endUserWeb1:NukeWebContainer 
removal removal  

  pa[1..20]_v1:MobileJobApp_V1 removal N/A  

Notes: 

1. “N/A” stands for “not applicable”. 

2. The “Comments” column also records the servicing policies used in particular transformations 
with respect to the applied transformation patterns. 

It should be noted from Table Appendix D.12 that there are a number of 

transformations for which no transformation design patterns are suitable. These 

transformations are individually discussed below: 

 ds_v1: to ds_v2: data replication (cf. Figure Appendix D.10) 

This transformation initialises “ds_v2:MySqlDatastore” with the data held in 

“ds_v1:SqlServerDatastore”. Although data evolution issues are not in scope for 

this research (Section 1.3), for completeness the following steps were 

determined during the case study to complete its design, which is shown in 

Figure Appendix D.16: 

1. Set a checkpoint in “ds_v1:SqlServerDatastore”. A checkpoint is a point in time 

from which all changes to a database is logged. A follow-up transformation 

called “ds_v1: to ds_v2: data sync” is used to synchronise 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 387 

“ds_v2:MySqlDatastore” with all updates to “ds_v1:SqlServerDatastore” since 

this checkpoint. 

2. Export data from “ds_v1:SqlServerDatastore” before the check point. 

3. Convert exported data to a format compatible with “ds_v2:MySqlDatastore”. 

4. Import data to “ds_v2:MySqlDatastore”. 

 

Figure Appendix D.16 DPV: transformation design for “ds_v1: to ds_v2: data 
replication” 

 ds_v1: to ds_v2: data sync (cf. Figure Appendix D.10) 

This transformation synchronises “ds_v2:MySqlDatastore” with all updates to 

“ds_v1:SqlServerDatastore” since the transformation “ds_v1: to ds_v2: data 

replication” was completed, before “ds_v2:MySqlDatastore” takes over the role of 

“ds_v1:SqlServerDatastore” in DPV. Similar to “ds_v1: to ds_v2: data replication”, 

data evolution issues are not in scope but for completeness the following steps 

were determined. The transformation design is shown in Figure Appendix D.17: 

1. Export changes to data from “ds_v1:SqlServerDatastore” since the checkpoint 

set in “ds_v1:SqlServerDatastore”. 

2. Convert exported data to a format compatible with “ds_v2:MySqlDatastore”. 

3. Import data to “ds_v2:MySqlDatastore”. 

 

Figure Appendix D.17 DPV: transformation design for “ds_v1: to ds_v2: data sync” 

 pa[1..100]_v2:MobileJobApp_V2 deployment (cf. Figure Appendix D.12) 

This transformation installs the new version (V2) of MJA in one hundred PDAs. 

This falls into operational aspects and hence is not in scope for this research 

ds_v1:SqlServer
Datastore 

«Custom»
Set Checkpoint

Valuation data

ds_v2: 
MySqlDatastore

Converted valuation data

ds_v1:SqlServer 
Datastore 

ds_v2: 
MySqlDatastore

«Custom»
Convert Data

«Custom»
Export Data

«Custom»
Import Data

(loaded with 
valuation data)

ds_v1:SqlServer
Datastore 

valuation data

ds_v1:SqlServer 
Datastore 

«Custom»
Export Changed Data 

Since Checkpont

ds_v2: 
MySqlDatastore

converted valuation data

ds_v2: 
MySqlDatastore

«Custom»
Import Data

«Custom»
Convert Data



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 388 

(Section 1.3). However, the following steps were suggested by one case study 

participant: 

1. Set up “MobileJobApp_V2” accessible for download from the Internet. 

2. Send email one hundred valuers to notify them that “MobileJobApp_V2” is 

available for download, and the instructions to install it. 

3. Each valuer downloads and installs “MobileJobApp_V2” to his/her PDA. 

 ja_v1:JobAppointmentWS_V1 recovery (cf. Figure Appendix D.13)  

This recovery transformation reverts DPV to generation V1.2 in case the 

transformation “ja_v1:JobAppointmentWS_V1 replacement with 

jas_v1:JobAppointmentStubWS_V1” fails. It has the following steps (as shown in 

Figure Appendix D.18) and is a variation of the “tomcat addition” pattern in Figure 

Appendix D.15: 

1. Redeploy “ja_v1:JobAppointmentWS_V1” to “pdaWeb1:TomcatContainer” if the 

former has already been removed from the latter. 

2. Reinstate the state of “ja_v1:JobAppointmentWS_V1” to one of its resolved 

states (as defined in the state map in Table Appendix D.10) prior to the 

transformation “ja_v1:JobAppointmentWS_V1 replacement with 

jas_v1:JobAppointmentStubWS_V1” was executed (cf. Figure Appendix D.13). 

 

Figure Appendix D.18 DPV: transformation design for 
“ja_v1:JobAppointmentWS_V1 recovery” 

 pa[1..20]_v1:MobileJobApp_V1 removal (cf. Figure Appendix D.14)  

This transformation removes the old version (V1) of MJA from twenty valuers’ 

PDAs. This falls into operational aspects and is not in scope for this research 

(Section 1.3). However, for completeness the following steps were determined: 

1. Inform the twenty valuers that the old version of MJA is obsolete, and send 

them instructions to uninstall it. 

2. The valuers manually uninstall this version of MJA from their own PDAs. 

A note about transformations “pa[1..100]_v2:MobileJobApp_V2 deployment” and 

“pa[1..20]_v1:MobileJobApp_V1 removal” – The number of valuers signed-up to use DPV 

«Custom»
Deploy 

ja_v1:JobAppointmentWS_V1 

pdaWeb1: 
TomcatContainer 

«State»
Initialise

(i.e. ja_v1:JobAppointmentWS_V1 
to be set to the state of 

ja_v1:JobAppointmentWS_V1 prior 
to transformation failure)



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 389 

was twenty when V1 was released. In the original deployment project (i.e. upgrading 

DPV from V1 to V2), however, the number of valuers who signed-up to use the new 

version of DPV (i.e. V2) increased to one hundred but the project did not have time to 

address this growth. Therefore, the sponsor explicitly requested the case study to 

address this growth requirement as a business requirement. From the design 

perspective, the twenty valuers who already have the old version of MJA installed on 

their PDAs will have to perform “pa[1..100]_v2:MobileJobApp_V2 deployment” 

transformation to install the new version of MJA, and afterwards the 

“pa[1..20]_v1:MobileJobApp_V1 removal” transformation to rid the old version of MJA. For 

the eighty new valuers who signed-up to use V2 of DPV, they will simply install the new 

version of MJS by performing the “pa[1..100]_v2:MobileJobApp_V2 deployment” 

transformation. 

DD.5 DYNAMIC EVOLUTION QUALITY MANAGEMENT OUTCOMES 
The Dynamic Evolution Quality Management process improved the quality of the 

dynamic evolution analysis and design artefacts produced for DPV. As described in 

Appendix C.3.1.2, this process iterates over four tasks: dynamic evolution quality 

definition, assessment, analysis and improvement. The execution of the definition task 

in the case study produced the rankings of dynamic evolution quality factors for DPV, in 

terms of their levels of importance as perceived by the case study participants. This is 

reported in Table Appendix D.13. Although the rankings could be used to prioritise in 

subsequent tasks which quality factors should be targeted for DPV, the sponsor 

endeavoured to investigate all quality factors in order to evaluate Continuum’s support 

for all these factors. 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 390 

Table Appendix D.13 DPV: dynamic evolution quality profile 

Quality Factor Importance Score  
(1-lowest, 7-highest) Rank 

Recoverability 6.00 1 

Completeness, Fault Tolerance, Reliability 5.50 2 

Correctness 5.38 5 

Coordination 5.25 6 

Consistency 4.91 7 

Separation of Concerns 4.90 8 

Extensibility 4.83 9 

Maintainability 4.63 10 

Locality, Loose Coupling, Security 4.50 11 

Transparency 3.63 14 

Autonomy, Safety 3.50 15 

 

After the definition task, the inspection task was carried out to identify defects/issues in 

the artefacts with respect to the dynamic evolution quality factors. The defects/issues 

were assessed in the assessment task to reveal their root causes, and then fixed, 

corrected and improved as per the assessment results in the improvement task. The 

defects/issues in the artefacts, their root causes and the changes carried out to resolve 

those defects/issues are documented in Table Appendix D.14.  

Table Appendix D.14 DPV: dynamic evolution quality inspection, assessment and improvement results 
for defects/issues 

Inspection Assessment Improvement 

Artefact 
Type(s) 

to Inspect 

Inspection Question(s) 
(all answered with 

“No”) 

If “No”, describe all 
defects/issues 

If “No”, describe root 
cause for each 

defect/issue 

If “No”, propose a 
solution(s) to resolve 

the defect/issues 

  CCoonsistency        

D 

Protocols: 
 
Do transformable 
items use compatible 
protocols when 
communicating with 
one another after a 
transformation? 

re_v1:ReportingEngin
e_V1 would not 
handle long report 
generation with 
MySqlDatastore. 

The database driver 
used in 
re_v1:ReportingEngin
e_V1 (i.e. 
CrystalReport) is 
incompatible with the 
database version of 
MySqlDatastore. 

Upgrade 
re_v1:ReportingEngin
e_V1 to 
re_v2:ReportingEngin
er_V2 which uses the 
correct driver version. 

  LLocality        

D 

Zoning and change 
localisation: 
 
Are changes local to a 
set of transformable 
items (e.g. in a zone) 
rather than global to 
an application? 

Changes to the 
Repository zone are 
unlikely localised to 
within the Repository 
zone. 

bsf:BizService1to2Fac
ade, which is intended 
to encapsulate 
updates to the 
Repository zone, is 
hosted in the wrong 
zone (i.e. Internal). 

Relocate 
bsf:BizService1to2Fac
ade to the Repository 
zone. 
sm:SalesManagement 
should also directly 
bind to 
bsf:BizService1to2Fac
ade instead of to 
ds_v2:MySqlDatastore
. 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 391 

Inspection Assessment Improvement 

Artefact 
Type(s) 

to Inspect 

Inspection Question(s) 
(all answered with 

“No”) 

If “No”, describe all 
defects/issues 

If “No”, describe root 
cause for each 

defect/issue 

If “No”, propose a 
solution(s) to resolve 

the defect/issues 

  CCoordination        

D 

Network: 
 
Do transformation 
agents have a means 
of tolerating network 
unreliability when they 
coordinate with one 
another during a 
transitional period? 

Disturbance of 
transformations in an 
interruptive phase 
may lead DPV to an 
undesirable state. 

wp1: WebProxy 
binding, 
bsp1:BizServiceProxy 
rebinding1 and 
bsp1:BizServiceProxy 
rebinding2 are critical 
transformations but 
none deal with 
network unreliability. 

Impose a time limit on 
the agents responsible 
for these 
transformations and 
retry the issuing of 
these transformations 
to their agents at least 
once. 

  LLoose Coupling        

D 

Transformable items: 
 
Are transformable 
items loosely coupled 
from one another? 

Couplings between 
the Internet and Web 
zones, and between 
the Web and Internal 
zones need further 
improvement. 

There are many 
bindings between the 
Internet and Web 
zones, and between 
the Web and Internal 
zones. This makes 
changes to parts in 
one zone hard to be 
isolated from their 
clients in another 
zone.  

Add “proxy” elements 
(Gamma et al. 1995) 
between adjacent 
zones (i.e. 
wp1:webProxy, 
wp2:webProxy, 
bsp1:BizServiceProxy, 
bsp2:bizServiceProxy) 

  FFault Tolerance        

D 

New and replacement 
transformable items: 
 
Is an application 
protected from 
potential faults from 
new and replacement 
transformable items? 

It is critical that 
bsf:BizService1to2Fac
ade is fully backwards 
compatible to 
bs_v1:BizService_V1 
otherwise in Internal 
and Web zones 
transformable items 
unchanged from V1 
will be impacted. 

bsf:BizService1to2Fac
ade and 
bs_v2:BizService_V2 
may introduce faults to 
DPV. 

(1) Add a wrapper to 
bsf:BizService1to2Fac
ade to regulate 
input/output ranges as 
per 
bs_v1:BizService_V1. 
(2) Add a recovery 
block (see issues 
under Recoverability.) 
Option (2) was 
preferred by the 
sponsor.  

  RRecoverability        

D 

Failure caused by 
transformation: 
 
Are transformations 
declared with 
exceptions and 
exception handlers 
where appropriate to 
restore an application 
to continue to perform 
its functionality, for 
failures caused by 
transformations? 

If the transformation 
“ja_v1:JobAppointmen
tWS_V1 replacement 
with 
jas_v1:JobAppointme
ntStubWS_V1” fails, 
DPV is not restored to 
a state to continue to 
offer web access to 
valuers.  

No transformation 
exception handling is 
defined for the 
transformation 
“ja_v1:JobAppointmen
tWS_V1 replacement 
with 
jas_v1:JobAppointme
ntStubWS_V1”. 

Declare a 
transformation 
exception 
encapsulating the 
replacement 
transformation and 
resolve it with a 
recovery 
transformation 
“ja_v1:JobAppointmen
tWS_V1 recovery”. 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 392 

Inspection Assessment Improvement 

Artefact 
Type(s) 

to Inspect 

Inspection Question(s) 
(all answered with 

“No”) 

If “No”, describe all 
defects/issues 

If “No”, describe root 
cause for each 

defect/issue 

If “No”, propose a 
solution(s) to resolve 

the defect/issues 

D 

Failure caused by 
dynamic change: 
 
Is an application 
restored to a state to 
continue to operate, 
for failures caused by 
dynamic changes (i.e. 
after a 
transformation)? 

If 
bsf:BizService1to2Fac
ade as a critical 
component fails, DPV 
will stop working.  

Current design does 
not handle the case in 
which 
bsf:BizService1to2Fac
ade does not provide 
functionality 
backwards compatible 
with what was offered 
in V1. 

Run 
bs_v1:BizService_V1 
and 
ds_v1:SqlServerDatas
tore in parallel with 
bsf:BizService1to2Fac
ade. Define 
bsrb:BizServiceRecov
eryBlock in front of bsf 
and bs_v1. By default, 
bsrb uses bsf. If bsf 
has errors/debugs, 
bsrb falls back to 
bs_v1. Define a 
temporary generation 
(V1.1 beta) to keep 
bsrb in the 
architecture until bsf is 
fully tested, after 
which bsrb is 
removed. 

  RReliability        

D 

New and replacement 
transformable items: 
 
Do new and 
replacement 
transformable items 
behave as expected, 
both functionally and 
non-functionally, in an 
application? 

re_v1:ReportingEngin
e_V1 would not 
handle long report 
generation with 
MySqlDatastore. 

The database driver 
used in 
re_v1:ReportingEngin
e_V1 (i.e. 
CrystalReport) is 
incompatible with the 
database version of 
MySqlDatastore. 

Upgrade 
re_v1:ReportingEngin
e_V1 to 
re_v2:ReportingEngin
er_V2 which uses the 
correct driver version. 

Note: “Artefact Type(s) to Inspect”: “A” and “D” stand for analysis and design artefacts respectively.  

 

The Continuum techniques actually used for improving the quality of the artefacts 

during the improvement task are shown in Table Appendix D.15.  

Table Appendix D.15 DPV: use of Continuum techniques in the Task Improve Dynamic Evolution 
Quality 

  New/Enhanced Technique(s) developed for 
Continuum External Technique(s) reused in Continuum 

Dynamic 
Evolution 

Quality Factor 
Used in Case Study Not Used in Case 

Study Used in Case Study Not Used in Case 
Study 

Recoverability 
Transformation 
Exception 
Management  

Recovery Blocks 
 

Completeness [no specific techniques for Completeness] 

Fault 
Tolerance   

Dynamic Wrapper 
(for fault 
containment and 
protection) 

 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 393 

  New/Enhanced Technique(s) developed for 
Continuum External Technique(s) reused in Continuum 

Dynamic 
Evolution 

Quality Factor 
Used in Case Study Not Used in Case 

Study Used in Case Study Not Used in Case 
Study 

Reliability    

Dynamic Wrapper (for 
input/output 
confinement), 
Transformable Item 
Regression Testing 

Correctness Change Case 
Modelling    

Coordination 
Secure and Reliable 
Transformation 
Agent Coordination    

Consistency 

Dynamic Change 
Impact Analysis, 
Start-up State 
Configuration, 
Resource Profile 
Modelling 

  
Transformable Item 
Regression Testing 

Separation of 
Concerns    

Transformable Item 
Mediation and 
Channelling 

Extensibility 
  

Dynamic Change 
Localisation 

Dynamic Wrapper (for 
functional extension), 
Dynamic Variation 
Management 

Maintainability 
   

Testability Analysis 
and Improvement 

Locality 
  

Dynamic Change 
Localisation  

Loose 
Coupling   Loose Coupling  

Security 
Secure and Reliable 
Transformation 
Agent Coordination 

  

Dynamic Wrapper (for 
security containment), 
Dynamic Security 
Policy and 
Enforcement 
Management 

Transparency 

Transformation 
Mining 
(formerly called 
“Transformation 
Sizing”) 

 
Dynamic Change 
Localisation  

Autonomy    
Transformable Item 
Autonomy 

Safety  

Dynamic Evolution 
Safety Risk 
Management 

  

 

With regard to the techniques specifically developed in this research (i.e. new and 

enhanced from others), all except Technique “Dynamic Evolution Safety Risk 



Appendix D. Case Study Results of Applying Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 394 

Management” were applied to resolve the defects/issues. An explanation for why this 

technique was not used is that the participants did not regard Safety as relevant in DPV 

(cf. Table Appendix D.13) and therefore no Safety defect/issue was reported (cf. Table 

Appendix D.14). For completeness of the case study’s evaluation of Continuum, 

however, they reviewed its content and steps (cf. Appendix C.3.2.4) as if it were to be 

used, and provided feedback for it (cf. Appendix F). 

In contrast to the techniques specifically developed in this research, only a subset of 

the techniques reused from the literature and methodologies to resolve the 

defects/issues had been used by the participants (right of Table Appendix D.15). The 

fact that some of the reused techniques were not used in the case study is less of an 

issue in evaluating Continuum because the reused techniques would have been 

evaluated by their respective authors to a certain degree. In fact, they had already been 

reviewed by the experts before the case study (Section 7.1) and again by the case 

study participants (Appendix 7.2). 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 395 

Appendix E. QQUESTIONNAIRE FORMS 

This Appendix documents the questionnaire forms used in this research:  

 Appendix E.1, for the form “Survey on Dynamic Evolution Quality Factors” used in 

Task 1.1 (Section 4.2) 

 Appendix E.2, for the form “Survey on Dynamic Change Requirements” used in 

Task 1.2 (Section 5.2) 

 Appendix E.3, for the form “Expert Review of Development Methodology Extension 

to Support Dynamic Evolution” used in Task 3.1 (Section 7.1) 

 Appendix E.4, for the form “Case Study Evaluation on Developing Dynamic 

Evolution for a Software Prototype” used in Task 3.2 (Section 7.2) 

E.1 SURVEY ON DYNAMIC EVOLUTION QUALITY FACTORS 

E.1.1 Participant Information Sheet  

Survey on the Characteristics of 
Dynamic Evolution in Distributed Applications 

Dear respondent,  

Thank you for your participation in this survey which evaluates the characteristics of dynamic 
evolution in distributed applications. Dynamic evolution is a phenomenon in which a distributed 
application can undergo continuous changes without the need for shutdown. Example 
applications include global financial systems, mobile phone networks etc. Dynamic evolution is 
evident in systems built with current technologies, such as updating Enterprise Java Beans™ 
(EJB™) components in a Java™ 2 Enterprise Edition (J2EE™) environment, and assembly 
components used in Microsoft® .NET platforms. The result of this survey will provide us 
information to develop better techniques and models for this type of system development.  

This survey has two parts.  

The first part consists of completing the questionnaire about your opinions on, and experience 
with, the characteristics of dynamic evolution in distributed applications.  

The second part, if you agree, is a follow-up interview, if necessary, to clarify your questionnaire 
responses. The interview will be:  

 email exchanges, and/or  

 phone calls, and/or  

 face-to-face conversations  

Contacts  

Survey Organisers  
Mr. Kam Hay Fung  
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: k.h.fung@student.unsw.edu.au 

Prof. Graham Low 
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: g.low@unsw.edu.au 

 

mailto:k.h.fung@student.unsw.edu.au
mailto:g.low@unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 396 

CComplaints  

Complaints may be directed to: 

Ethics Secretariat, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
phone +61 2 93854234  
fax +61 2 93856648  
email: ethics.sec@unsw.edu.au 
 

Confidentiality  

The information you provide is strictly confidential except as required by law, and no personal 
identification is permanently stored on computer media after the completion of this research. 
Your contact details will be used for administration purposes only: to let us conduct the follow-up 
interview and email you the summary result. 

How to proceed  

Please click “Start” to begin.  

Or “Return to Survey” to continue with your last incomplete survey.  

Your voluntary participation in this survey is greatly appreciated. In return, we provide you a 
summary result of this survey if you request and fill out your contact details. You are permitted to 
withdraw from this survey at any time before the completion of this research without penalty or 
prejudice.  

E.1.2 Survey Web Pages 

The content of the web pages as viewed by end users is presented here. Note that 

these pages do not reproduce the exact look-and-feel as seen by end users through an 

HTML browser. 

E.1.2.1 Instructions 

How to complete the rating questions  

The rating questions in this questionnaire ask you about your perception on the importance of 
each characteristic of dynamic evolution on distributed applications, broken down into four 
categories. Each question consists of a description about a feature in dynamic evolution, and a 
scroll bar for you to rate the importance of the feature. The bar is arranged in an increasing 
order of importance from left to right, representing a score from 0 to 100. The score reading is 
shown on the right hand side of the bar.  

 

To assign a rating, please move the bar’s handle to a desired position. If you feel that feature X 
is relatively more important than feature Y, please make sure you assign a higher rating to X 
than Y, e.g.:  

 

There are no right or wrong answers; just answer as accurately as possible. Please complete all 

mailto:ethics.sec@unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 397 

questions.  

E.1.2.2 Terminology 

Let's introduce the terminology for the rest of this survey.  

CComponent 

Components are individual units of logical computation designed to be integrated into larger 
applications at design time or while they are running. They also represent explicit units of 
distribution and can be deployed into systems at runtime.  

Port  

Components connect to one another via their ports. A component's port defines a point of 
interaction between its component and others, as well as the data they exchange. A port is more 
than just an interface; it describes the interfaces used by and provided by a component.  

Resources and Services  

When a component is added to a distributed application, it needs to be allocated with sufficient 
resources (e.g. CPU time). It must also be granted the use of certain services (e.g. file 
read/write access) before it can operate. 
Resources and services are also temporarily needed by a reconfigurator in order to execute 
transformations.  

Dynamic Distributed Application (also referred to as 'Distributed Application')  

A dynamic distributed application is one that can be built from components (i.e. parts) and does 
not need to be shut down completely for maintenance and/or enhancement. Examples are long-
running (e.g. operating systems), and mission critical applications (e.g. emergency hotline). 
These components are scattered on more than one physical node in a network. Usually one or 
more components are allocated to an operating system process, and multiple processes are 
running in each node.  

Change  

A change refers to the modification required to such an application to make it behave as 
desired. 

Transformation  

A transformation means the act of updating an application with the change in a finite and 
reasonable time bound. In the following diagram, suppose that we wish to upgrade in an 
application component A to component B which performs better than A. That is, we need to 
reach the system structure to the right end of the diagram. In this scenario, the change refers to 
B, and the transformation to the progression of the structure alternation from left to right. Once B 
is in place, it needs to be activated in the application so that the change becomes effective in the 
application. 

 
Figure 1 - example transformation 

 

 

Reconfigurator  

Reconfigurators are software processes responsible for making changes and updates (i.e. 
applying transformations) to a dynamic distributed application at runtime without requiring it to 
shutdown. They are scattered throughout different physical nodes of the distributed application. 
For instance, when a component is to be added to an application, a reconfigurator will create an 
instance of the component, initialize its runtime parameters, deploy it to the node where it will 

A A BB



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 398 

operate, and activate it in the application.  

 

E.1.2.3 Questionnaire overview 

This questionnaire asks your opinion on dynamic evolution, your software development 
experience, your organisation and its experience in distributed application development. 
 
Before commencing this questionnaire, please: 

 read the instructions by clicking the Instructions link in the navigation bar at the top of 
this page, and  

 familiarise yourself with our terminology by clicking the Terminology link in the 
navigation bar at the top of this page  

 
If you need to go back to the Instructions and the Terminology pages while filling out the 
questionnaire, simply click on the link found in the blue navigation bar at the top or the bottom of 
each questionnaire page. 
 
Should you need to leave while filling out the questionnaire and come back to complete it later, 
simply click the "Save and Quit" button at the bottom right hand corner of a questionnaire page 
to save your data entered so far. A token is then displayed and you must use it when returning 
to complete your questionnaire.  

(The identification code for each rating question shown next is also displayed for 

convenience.) 

E.1.2.4 Rating questions - page 1 

 
not 
important 
at all  

extremely 
important  

  

How important do you believe that prior to a transformation,  

 [A3] adequate resources and services are allocated at remote 
physical nodes for new and changed components? 

 
50  

 [A15] all components involved in a runtime change are 
identified? 

 
50  

 [A19] no critical functions are being executed by components 
that are affected by the transformation? 

 
50  

 [A20] there are no unprocessed messages, unfinished 
interactions, or incomplete transactions in a distributed 
application? 

 
50  

How important do you believe that during a transformation,  

 [A12] a component to be replaced is not removed until its 
replacement component fully satisfies its roles? 

 
50  

How important do you believe that after a transformation,  

 [A5] all services required by every component are provided by 
the rest of the application? 

 
50 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 399 

 [A6] there are no missing components in the distributed 
application? 

 
50 

 [A8] there are no missing, illegal, or broken connections among 
components in the distributed application? 

 
50 

 [A10] intended functionality is not compromised?  50 

 [A16] a distributed application does not progress towards an 
error state (e.g. a deadlock)? 

 
50 

 [A17] the state of a component added to a distributed 
application is set properly to synchronise with the state of the 
application? 

 
50 

 [A18] a changed distributed application continues to execute 
from a valid state in the changed application as if it had been 
executing from an initial state of the changed application? 

 
50 

How important do you believe that a change to a distributed application  

 [A1] is checked to ensure that the change is non-arbitrary and 
can be put into the application? 

 
50 

 [A9] meets the assumptions and properties of the application 
and its components? 

 
50 

 [A22] does not make the application harder and more costly to 
change in the future? 

 
50 

 [A23] does not make the application harder to test in the 
future? 

 
50 

Miscellaneous: how important do you believe that  

 [A4] a distributed application does not behave in an 
unintentional manner during and after a transformation? 

 
50  

 [A7] all components are clearly defined in interaction 
specifications? 

 
50 

 [A11] a distributed application is tolerant of faulty new and/or 
changed components? 

 
50 

 [A13] the types and directions of connected ports match?  50 

 [A14] protocols of communication among components are 
compatible in order for them to interact correctly? 

 
50 

 [A21] system invariants (e.g. no read access allowed on 
deleted files) are unaffected by a transformation? 

 
50 

 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 400 

E.1.2.5 Rating questions - page 2  

 
not 
important 
at all 

extremely 
important  

  

How important do you believe that the reconfigurators of a distributed application  

 [B1] coordinate among multiple nodes to apply a change to 
distributed application at runtime? 

 
50 

 [B2] are able to cope with unreliability in the communication 
network during a transformation? 

 
50 

How important do you believe that a transformation  

 [B3] can be executed easily?  50 

 [B4] can be executed quickly?  50 

 [B5] is efficient in resource use?  50 

 [B6] causes minimal disruptions to services provided by a 
distributed application and to the parts using these services? 

 
50 

 [B7] causes minimal degradation to the performance of a 
distributed application? 

 
50 

 [B8] inserts components into and removes components from a 
distributed application in a correct order? 

 
50 

 [B9] is executed at the right time (e.g. when the application is 
not busy)? 

 
50 

[B10] How important do you believe that a distributed application is 
partitioned and a runtime change is confined to an identifiable partition 
of one or more components? 

 
50 

How important do you believe that the separation of  

 [B14] the functional behaviour from issues regarding runtime 
changes makes it easier to alter one without affecting the 
other? 

 
50 

 [B15] the communication concerns (i.e. mechanisms and 
strategies) from functionality implementation allows them to 
evolve independently of each other? 

 
50 

 [B16] security support from functionality implementation 
permits changes to security policies without requiring access to 
the implementation code? 

 
50 

 [B17] security policies from the implementation for their 
enforcement permits changes to security policies without 
requiring changes to the implementation? 

 
50 

 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 401 

E.1.2.6 Rating questions - page 3 

 
not 
important 
at all  

extremely 
important  

  

How important do you believe that the reconfigurators of a distributed application  

 [C1] are secured from unauthorised access?  50 

 [C9] are transparent to the environment in which the application 
operates? 

 
50 

How important do you believe that new and replacement components to a distributed application  

 [C2] are confined so that they can only perform permitted 
operations without causing security problems? 

 
50 

 [C3] impose restrictions on how other components of the 
application can access their services, and vice versa after a 
transformation? 

 
50 

[C5] Security policies for a distributed application are updated as 
components are added to and removed from the application? 

 
50 

How important do you believe that a transformation occurring in a distributed application is 
transparent to  

 [C6] users of the application?  50 

 [C8] other components of the application unaffected by the 
transformation? 

 
50 

How important do you believe that during a transformation,  

 [C12] a distributed application and all its components continue 
to operate in a safe manner? 

 
50 

Miscellaneous: how important do you believe that  

 [C7] the design and implementation for transformation is 
transparent to application programmers who implement the 
functionality of a distributed application? 

  
50 

 [C11] an interaction among components is stated with sufficient 
details (e.g. remote procedure calls versus shared memory) to 
make a change easier to apply to the interaction? 

  
50 

 

E.1.2.7 Respondent profile 

Which best describes your principal responsibility? (Please mark as many boxes as apply)  

□ Technical Manager 
□ Project Manager 
□ Technical Team Leader 
□ Architect 
□ Senior Developer / Programmer 
□ Research Scientist 
□ Consultant 
□ Other (Please specify)       



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 402 

What is your software development experience in: (Please specify for each category)  

Your present organisation?        Years 

Your professional career(s) in software development?        Years 

Using software development methodologies? (e.g. Rational Unified 
Process, in-house) 

       Years 

Developing distributed applications (both dynamic and non-dynamic)?        Years 

 

For your software development experience in dynamic distributed applications (DDA), if any:  

How many DDAs have you been involved in development for, including the ones 
you are currently working on?  
How long have you worked/been working on these DDAs? months 
What roles did/do you play in the development of these DDAs?  
 

E.1.2.8 Software practices 

About your organisation at your location, please fill out the following information:  

Country of your location      

Primary line of business  

o Consulting 

o Hardware (e.g. mobile phone) 

o Research 

o Services 

o Education (e.g. university) 

o Software Product 

o Government 

o Other (Please specify)      

What software development methodologies are currently adopted?  

o None 

o In-house 

o Don’t know 

o Other (Please specify, e.g. Rational Unified Process)     

What certification/accreditation(s) does your organisation currently hold?  

o None, and not planned within the next six months  

o None, but planned within the next six months  

o Other (Please specify, e.g. ISO 9001, CMM level 2)     

E.1.2.9 Project information 

For each completed distributed application development project (especially applications that can 
be changed at runtime) at your location in the past five years, please provide the following 
information: 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 403 

Applicati
on  

Number of 
releases 

Project start 
date 

(mm/yyyy)  

Average 
duration 

per 
release 

(months)  

Average 
effort per 
release 
(person-
months)  

Change 
activation 
(“manual 
restart” or 

“none”) 

Industry (e.g. 
finance, 

telecommunication
, transport, 
healthcare)  

Main software 
technologies used 
(e.g. J2EE, Web 

services, 
Microsoft® .NET, 

CORBA™)  

1        

2        

… … … … … … … … 

10        

 
A release corresponds to an installation and acceptance of an application's version to its 
operating environment. 

Change activation refers to the action performed to an application after changes are applied to 
make the changes active in the application. There are two options: 

 manual restart means the application must be manually restarted for the changes to be 
active.  

 none means nothing needs to be done as the effect of the changes is automatically 
activated by the application.  

E.1.2.10 Software development activities 

Please select the appropriate radio button for each activity listed below used while developing 
the applications listed above: 

Activity Does the activity explicitly address dynamic evolution and 
transformation concerns?  

Don't 
know 

Yes: 
Does the activity work well for dynamic 

evolution and transformations? 

No 

Software requirements analysis  O O Yes O No O Don’t know O 
Software modification analysis  
(see example 1 below) 

O O Yes O No O Don’t know O 

Software architectural design  O O Yes O No O Don’t know O 
Software detailed design  O O Yes O No O Don’t know O 
Software coding and testing  O O Yes O No O Don’t know O 
Integration with existing application  
(see example 2 below) 

O O Yes O No O Don’t know O 

Software acceptance testing  O O Yes O No O Don’t know O 
Transforming application to the new 
version in the operating environment  

O O Yes O No O Don’t know O 

Retirement of removed software parts 
(see example 3 below) 

O O Yes O No O Don’t know O 

 
Examples  

1. Software modification analysis - What is the impact of a modification to the application?  

2. Integration with existing application - Will the change be compatible with existing parts of the 
application? If not, what needs be done?  

3. Retirement of removed software parts - What needs to be done with removed parts? Is 
backing up of data using old database schema required?  



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 404 

E.1.2.11 Questionnaire submission 

If you have any comment about this survey, and suggestions of quality issues for consideration, 
please write it down here. 

 

 

 

Please choose the following options by clicking the check boxes:  

□ consent to a possible follow up interview 

□ receive a summary of the results of this survey 

 

If you choose either of the above options, please fill out your contact details below: 

Name  

Job Title  

Email  

Work Tel. No.  

 

If complete, please click the “Submit” button to send your response to us. Thank you for taking 
time to fill out this questionnaire.  

Submit 

EE.2 SURVEY ON DYNAMIC CHANGE REQUIREMENTS 

E.2.1 Participant Information Sheet 

Participant selection and purpose of study 

You, the research participant, are invited to participate in a study about the desirable technical 
features in a software development methodology to support dynamic evolution in a service-
oriented architecture (SOA). Dynamic evolution enables the application to undergo changes 
without the need for shutdown and restart. We, the investigators, hope to learn from this 
research to develop a methodology to support for dynamic evolution in an SOA environment. 
You were selected as a possible participant in this research because of your technical 
knowledge and/or expertise in this area. 

Description of study and risks 

If you decide to participate, we will ask you complete a questionnaire which seeks your technical 
views about a list of desirable features of a methodology to support dynamic evolution, and asks 
you to suggest features missing from the list. The questionnaire is expected to be completed in 
15 minutes. 

This research does not solicit information about yourself, the work or role you perform at your 
organisation(s), or the organisation(s) for which you work. There are no known risks from taking 
part in this research. To participate we expect that you have sound technical knowledge of SOA. 
If not, please do not to proceed with this research. 

Confidentiality and disclosure of information 

Any information that is obtained in connection with this research and that can be identified with 
you will remain confidential and will be disclosed only with your permission, except as required 
by law. We plan to publish the results in an academic journal or periodical, and in a PhD thesis. 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 405 

In any publication, information will be provided in such a way that you cannot be identified. 

We will provide you a summary result of this research if you request it and fill out your contact 
details. 

CComplaints 

Complaints may be directed to the Ethics Secretariat, The University of New South Wales, 
SYDNEY 2052 AUSTRALIA (phone 9385 4234, fax 9385 6648, email 
ethics.sec@unsw.edu.au). Any complaint you make will be investigated promptly and you will be 
informed out the outcome. 

Your consent 

Your decision whether or not to participate will not prejudice your future relations with the 
University of New South Wales. If you decide to participate, you are free to withdraw your 
consent and to discontinue participation at any time without prejudice before the end of this 
research. 

Your completion and return of the questionnaire will be regarded as your consent to participate 
in this research. 

If you have any questions, please feel free to ask us. If you have any additional questions later, 
we will be happy to answer them. Our contact details can be found below: 

You will be given a copy of this form to keep. 

Investigators’ contact details 

Investigator-in-Chief Investigator 
Mr. Kam Hay Fung  
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: k.h.fung@student.unsw.edu.au 

Prof. Graham Low 
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: g.low@unsw.edu.au 

 

E.2.2 Questionnaire 

E.2.2.1 Key terminology 

Please read the following terms which assist you in understanding and completing this 
questionnaire. 

Runtime or Dynamic 

Refer to something happening to a running application without requiring it to shutdown and 
restart. 

Runtime change 

The intended result of a modification to the structure, elements and/or configuration of a running 
application at runtime. An example is to add an extra step to the end of a banking transaction 
business process to log each completed transaction record. 

Transformation 

The act of performing modifications to a running application at runtime. Hot swapping a running 
service with a newer version to fix a bug is an example of a transformation. 

Transformation Agent 

The entity responsible for coordinating with one another and executing transformations in a 
distributed SOA application. 

Generation 

mailto:ethics.sec@unsw.edu.au
mailto:k.h.fung@student.unsw.edu.au
mailto:g.low@unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 406 

A stable version of an application at a particular time instant. 

TTransitional Form 

A temporary form and structure of an application that exists between two generations as the 
application progressively evolves from one generation to the next in a finite amount of time. For 
instance, during hot swapping, a service becomes temporarily unavailable in an application and 
cannot be used. 

Dynamic evolution 

A phenomenon describing an application undergoing evolution, in which planned 
transformations occur regularly to adapt to changing business needs, without requiring it to 
shutdown and restart. 

The following diagram shows the timeline of an application undergoing dynamic evolution. It 
also illustrates the relationships of generation, transitional form and transformation. 

Generation 1
Genera-

tion 2
Generation 3

T
ra

ns
iti

on
al

 
F

or
m

 a

T
ra

ns
iti

on
al

 
F

or
m

 b

transformation transformation

time

......

 
 

Feature (of interest) 

A feature is a characteristic support offered by a methodology for a particular aspect of software 
development. In this questionnaire, the features of interest are limited to: 

 work to be carried out during software development; and 

 modelling concepts or models used and/or created in software development; and 

 features specific to runtime changes. For instance, a “requirement” is not considered as 
a feature but a “change” is in this research. 

Quality related features (e.g. Completeness, Consistency, Coordination, Correctness, 
Efficiency, Fault Tolerance, Locality, Maintainability, Reliability, Safety, Security, Separation of 
Concerns, and Transparency) have been considered in another study and are excluded from 
this questionnaire. 

E.2.2.2 Modelling features 

Modelling features concern the mmodelling concepts, nnotations and mmodels used/produced in 
SOA development. Please indicate how much you agree with the following modelling features 
as important in a methodology to support dynamic evolution, by ticking the appropriate box. 

DESIRABLE MODELLING FEATURE 

Not 
Important 

At All 
Slightly 

Important 
Moderately 
Important 

Very 
Important 

Extremely 
Important 

Service Level      
Define support for multiple versions present in various 
parts of an application as the service evolves over time.      

Model the changing resource needs of a service as it 
evolves.      

Model the changing performance characteristics of a 
service as it evolves.      

Model the ability to block access to a service while it is 
being updated or replaced.      



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 407 

DESIRABLE MODELLING FEATURE 

Not 
Important 

At All 
Slightly 

Important 
Moderately 
Important 

Very 
Important 

Extremely 
Important 

Application Level      
Model the notion of a runtime change for an application (as 
defined in the Terminology Section).      

Model the notion of a transformation to an application (as 
defined in the Terminology Section).      

Model the presence of a  transitional form in an application 
(as defined in the Terminology Section).      

Model the notion of a generation of an application (as 
defined in the Terminology Section).      

Model the notion of an application lifecycle which 
organises application evolution as a series of generations 
over time. 

     

Model the ability of an application to continuously offer 
some functionality during a transformation.      

Others      
Model the notion of a transformation agent responsible for 
performing transformations.      

Model the steps undertaken in a transformation, e.g. 
adding a new service, followed by configuring the service.      

Model the notion of an error condition occurred during a 
transformation, e.g. because of faulty changes.      

Model the notion of a compensation - e.g. a rollback - to 
revert errors caused by aborted or faulty changes.      

Please list any other mmodelling feature(s) missing in the previous table that you believe should 
be supported in a methodology for SOA in a SOA environment. 

      

 

E.2.2.3 Work related features 

Work related features concern what must be done, and how to achieve given purposes in SOA 
development. A piece of work can be a pprocess to follow, a ttask to complete, or a ttechnique to 
use. Please indicate how much you agree with the following work related features as important 
in a methodology to support dynamic evolution, by ticking the appropriate box. 

DESIRABLE WORK RELATED FEATURE 

Not 
Important 

At All 
Slightly 

Important 

Moderatel
y 

Important 
Very 

Important 
Extremely 
Important 

Service Level      
Define support to add, replace and remove individual 
services, and modify their parameters at runtime.      

Define adapters for wrapping and plugging services into an 
architecture at runtime, and resolving their mismatches.       

Define housekeeping support to retire services after they 
are no longer needed and have been removed from an 
application. 

     

Define support to (re)bind one service consumer to a new 
service provider at runtime as the original provider is 
replaced or upgraded. 

     

Define support to predict the resource needs for a new 
service.      

Define support to predict the performance characteristics 
for a new service.      



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 408 

DESIRABLE WORK RELATED FEATURE 

Not 
Important 

At All 
Slightly 

Important 

Moderatel
y 

Important 
Very 

Important 
Extremely 
Important 

Application Level      
Define support to evolve a protocol definition on which 
services base their interactions while the protocol is being 
used. 

     

Define support to evolve a business process definition 
while the business process is operational.      

Define support to combine several services/ business 
processes into a larger unit, split a larger service/business 
process into smaller units or reconfigure the architectural 
structure at runtime.  

     

Define support to refactor an application structure without 
functional changes at runtime, say, to reduce its complexity 
and improve its performance. 

     

Define customisation points in an architecture to plug in or 
swap different services at runtime to support limited 
variations in functionality (e.g. using credit card vs. account 
debit for payment).  

     

Define support to transfer the state from an instance of an 
old implementation of a business process to an instance of 
the new implementation of the business process as the 
business process evolves. 

     

Analyse the impact of dynamic changes to an application 
to determine which services/business processes will need 
to be affected and updated to accommodate the changes. 

     

Others      
Define support to relocate services to a hosting 
environment as needed.      

 

Please list any other wwork related feature(s) missing in the previous table that you believe 
should be supported in a methodology for SOA in a SOA environment. 

      

 

Please fill out your contact details below to receive a summary of the results of this research: 

Name       

Email       

 

When complete, please return the questionnaire to:  

Mr. Kam Hay Fung 
School of Information Systems, Technology and Management, 
The Australian School of Business, 
The University of New South Wales,  
SYDNEY NSW 2052 AUSTRALIA 
email: k.h.fung@student.unsw.edu.au 

mailto:k.h.fung@student.unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 409 

EE.3 EXPERT REVIEW OF DEVELOPMENT METHODOLOGY 
EXTENSION TO SUPPORT DYNAMIC EVOLUTION 

E.3.1 Participant Information Sheet 

Participant selection and purpose of study 

You are invited to participate in a study to review a development methodology extension to 
support dynamic evolution in distributed applications which undergo changes without the need 
for shutdown and restart. We hope to use this study to improve and enhance the methodology 
extension. You were selected as a possible participant because of your technical knowledge 
and/or expertise in this area. 

Description of study and risks 

If you decide to participate, we will ask you complete a questionnaire which asks you to read 
and provide feedback on the methodology extension documentation about 130 pages. The 
questionnaire is expected to be completed in 4-5 days and you can spread the time over several 
days as you go through the document. Afterwards, a face-to-face meeting will be held with you 
to clarify and avoid possible misinterpretation of your feedback. You will then be communicated 
via email to confirm refinements to the documentation in accordance with suggestions in the 
feedback. 

There is no risk to you if you participate. You may learn something new when reading the 
methodology extension. However, we cannot and do not guarantee or promise that you will 
receive any benefits from this study. 

This study does not solicit information about yourself, the work or role you perform at your 
organisation(s), or the organisation(s) for which you work. There are no known risks from taking 
part in this study. 

Confidentiality and disclosure of information 

Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your permission, except as required by 
law. We plan to publish the results in an academic journal or periodical, and in a PhD thesis. In 
any publication, information will be provided in such a way that you cannot be identified. 

Complaints 

Complaints may be directed to the Ethics Secretariat, The University of New South Wales, 
SYDNEY 2052 AUSTRALIA (phone 9385 4234, fax 9385 6648, email 
ethics.sec@unsw.edu.au). Any complaint you make will be investigated promptly and you will be 
informed out the outcome. 

Your consent 

Your decision whether or not to participate will not prejudice your future relations with the 
University of New South Wales. If you decide to participate, you are free to withdraw your 
consent and to discontinue participation at any time without prejudice before the end of this 
study. Your completion and return of the questionnaire will be regarded as your consent to 
participate in this study. 

If you have any questions, please feel free to ask us. If you have any additional questions later, 
we will be happy to answer them. Our contact details can be found below: 

Investigator Supervisor 
Mr. Kam Hay Fung  
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: k.h.fung@student.unsw.edu.au 

Prof. Graham Low 
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: g.low@unsw.edu.au 

 

mailto:ethics.sec@unsw.edu.au
mailto:k.h.fung@student.unsw.edu.au
mailto:g.low@unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 410 

EE.3.2 Questionnaire 

E.3.2.1 Key terminology 

Please read the following terms which assist you in understanding and completing this 
questionnaire. 

Methodology 

The specification of a process to follow together with the work products to be used and 
generated during a development effort. 

Method(ology) Fragments 

A generic term to refer to elements that can be assembled into a methodology. 

Work Unit 

A specific type of method fragment referring to what must be done and how to achieve given 
purposes during a development effort. 

Task 

A type of work unit specifying what objectives are to accomplish. 

Technique 

A type of work unit specifying how the objectives of certain tasks are accomplished. 

Process 

A kind of work unit referring to the systematic application of tasks and techniques through 
stages in a life cycle. 

Work Product 

A specific type of method fragment, referring to anything of value used and/or generated during 
a development effort. 

Metamodel 

A model of models, i.e. a definition of constructs and rules at a higher level of abstraction for 
specifying models. 

E.3.2.2 Instructions for completing the questionnaire 

The questionnaire asks you to read the documentation of a software development methodology 
extension, called Continuum, and write your comments on it. The documentation has two parts, 
the main part (Section 1) and an appendix. The former gives an in-depth introduction to 
Continuum and its method fragments, and how they all fit together. The appendix provides full 
descriptions of individual fragments in Continuum, organised according to the fragment types, to 
complement the former. As such, some level of descriptions may repeat in both parts of the 
documentation. 

We suggest the following procedure to read, comprehend and write your comments on 
Continuum: 

1. Do a first read of Section 1 (i.e. the Introduction part) to gain a fair understanding of 
what Continuum is about. 

2. Read Section 1 again and write comments as you go. Use the appendix as guidance for 
details about the fragments referenced in the main part. 

3. Read and comment on individual task and technique definitions in the appendix (i.e. the 
full specifications part). 

4. (Optional) Read and comment on the work product definitions in the appendix. 

On the following pages, we solicit comments from you about Continuum. 



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 411 

When complete, please contact Mr. Kam Hay Fung (email: k.h.fung@student.unsw.edu.au) 
to collect the questionnaire and the documentation, and schedule a face-to-face meeting. 

E.3.2.3 Strengths of Continuum 

Summarise the sstrengths of Continuum. Here is a sample of hypothetical strengths: 

 Continuum offers broad aspects of coffee making tasks and techniques, from beans 
preparation to coffee decoration. 

 Continuum is flexible for making a variety of coffee types (e.g. mocha, espresso, latte). 

 Continuum is suitable for baristas in training who are new to the process of coffee 
making. 

Write your summary below in point form. 

1. 

2. 

E.3.2.4 Suggested improvements for Continuum 

Identify in Continuum  areas for improvement and  suggestions for improvement. An improvement 
is not limited to a new feature, or a fix or an enhancement to an existing feature. Here is a 
sample of short and hypothetical suggestions: 

Areas for improvements Suggestions for improvement 
The tasks “Make cappuccino” and “Make espresso” 
overlap when addressing the problem of warming up 
the milk. 

Consider factoring the mike preparation as a 
separate reusable task or technique. 

For Task “Make coffee”, the cup size has not been 
accounted for.  Add the parameter “cup size” as input to the task. 

For Task “Make coffee”, there can be various ways to 
add milk to coffee. 

Add a technique “Making milk froth pattern” [citing 
reference] which enhances the presentation of the 
coffee produced by this task. 

A “Person” may drink more than a cup of “Coffee” but 
the cardinality from “Person” to “Coffee” is shown to 
be “0..1”. 

Correct the cardinality as “*”. 

The concept “Bike” is confusing as it has more than 
one meaning (motorbike and bicycle). 

Rename the concept “Bike” to “Bicycle”. 

Write your comments on areas of improvement and suggestions for improvement  in these 
areas. You can annotate your comments ddirectly adjacent to the areas within the document, or 
write your comments bbelow in point form, whichever is most convenient. Use additional pages if 
necessary. 

Areas for improvements Suggestions for improvement 
  
  
  
 

E.4 CASE STUDY EVALUATION ON DEVELOPING DYNAMIC 
EVOLUTION FOR A SOFTWARE PROTOTYPE 

E.4.1 Participant Information Statement 

Participant selection and purpose of study 

You are invited to participate in a study to evaluate a software development methodology 

mailto:k.h.fung@student.unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 412 

extension support dynamic evolution in distributed applications which undergo changes without 
the need for shutdown and restart. We hope to use this study to improve and enhance the 
methodology extension. You were selected as a possible participant because of your technical 
knowledge and/or expertise in this area. 

DDescription of study and risks 

If you decide to participate, we will ask you use a methodology extension, called Continuum, as 
a guide (about 80 pages) to design a software prototype, to demonstrate dynamic adaptation 
capabilities using your organisation’s software components. During this case study, you’ll be 
asked to fill out a questionnaire, with evaluation results and suggestions on improvements on 
Continuum, as you use it. Overall, the questionnaire is expected to be completed in 2 days. 
However, the development will last about 4 months (exact duration to be determined by your 
organisation). Weekly meetings will be held with you to guide the use of Continuum. When the 
questionnaire is completed, a meeting will be held with you to clarify and avoid possible 
misinterpretation of your questionnaire data. Another meeting will be held afterwards to and 
confirm refinements to the documentation of Continuum in accordance with your feedback and 
suggestions. 

There is no risk to you if you participate. You may learn something new when reading 
Continuum. However, we cannot and do not guarantee or promise that you will receive any 
benefits from this study. 

This study does not solicit information about yourself, the work or role you perform at your 
organisation, or your organisation for which you work. There are no known risks from taking part 
in this study. 

Confidentiality and disclosure of information 

Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your permission, except as required by 
law. We plan to publish the results in an academic journal or periodical, and in a PhD thesis. In 
any publication, information will be provided in such a way that you cannot be identified. 

Complaints 

Complaints may be directed to the Ethics Secretariat, The University of New South Wales, 
SYDNEY 2052 AUSTRALIA (phone 9385 4234, fax 9385 6648, email 
ethics.sec@unsw.edu.au). Any complaint you make will be investigated promptly and you will be 
informed out the outcome. 

Your consent 

Your decision whether or not to participate will not prejudice your future relations with the 
University of New South Wales and your organisation. If you decide to participate, you are free 
to withdraw your consent and to discontinue participation at any time without prejudice before 
the end of this study. Your completion and return of the questionnaire will be regarded as your 
consent to participate in this study. 

If you have any questions, please feel free to ask us. If you have any additional questions later, 
we will be happy to answer them. Our contact details can be found below: 

Investigator Supervisor 
Mr. Kam Hay Fung  
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: k.h.fung@student.unsw.edu.au 

Prof. Graham Low 
School of Information Systems, 
Technology and Management, 
The University of New South Wales, 
SYDNEY NSW 2052 AUSTRALIA 
email: g.low@unsw.edu.au 

 

You will be given a copy of this form to keep. 

mailto:ethics.sec@unsw.edu.au
mailto:k.h.fung@student.unsw.edu.au
mailto:g.low@unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 413 

EE.4.2 Questionnaire 

E.4.2.1 Instructions for completing the questionnaire 

The questionnaire asks you to give comments on various parts of Continuum. It is provided to 
you as a documentation of two parts, the main part (Section 1) and the appendix. The former 
gives an in-depth introduction to Continuum and its method fragments, and how they fit together. 
The appendix provides a full description of individual fragments in Continuum, organised 
according to the fragment types, to complement the former. As such, some level of description 
may repeat in both parts of the documentation. 

We suggest the following procedure to read, comprehend and write your comments on 
Continuum: 

 Do a first read of Section 1 (i.e. the main part) to gain an understanding of what 
Continuum is about. 

 Use Read Section 1 again. This time, follow up on reading the details of the fragments 
in the appendix as they are referenced in the main part. 

 Use and comment on Continuum method fragments as you go, and after designing the 
software prototype. 

When complete, please email this questionnaire to Mr. Kam Hay Fung (email: 
k.h.fung@student.unsw.edu.au), and schedule a face-to-face meeting. 

E.4.2.2 Usefulness 

If you have been involved using your in-house methodology to address dynamic evolution in the 
last project, complete this section. Otherwise, skip to the next section. 

For each significant analysis/design dynamic evolution issue from the last project that is 
RECURRING in this case study, please describe the issue in the table below and: 

 if the issue was addressed by Continuum in this case study, choose one of the 
following: 

o Continuum was better as in this case study, 

o your in-house methodology was better as in the last project, or 

o about the same 

 otherwise (i.e. issue not addressed by Continuum in this case study) describe how the 
issue was addressed and why Continuum was not used. 

 Issue addressed with 
Continuum in case study 

Issue not addressed with Continuum in case 
study 

Description of Issue 
encountered 

be
tte

r 
w

ith
 

C
on

tin
uu

m
  

be
tte

r 
w

ith
 

yo
ur

 in
-h

ou
se

 
m

et
ho

do
lo

gy
 

ab
ou

t t
he

 
sa

m
e Description of how the issue was addressed 

and the rationale for not using Continuum 

     
     
     
 

E.4.2.3 Dynamic evolution issues encountered 

For each significant analysis/design issue in dynamic evolution encountered in this case study, 
describe the issue and rate the extent to which Continuum addressed it, with one of the 
following 7 values on the Likert Scale: 

mailto:k.h.fung@student.unsw.edu.au


Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 414 

1 
extremely 

badly 

2 
very badly 

3 
badly 

4 
neutral 

5 
well 

6 
very well 

7 
extremely 

well 
 

 How well did Continuum 
address the issue? 

Description of issue encountered extremely 
badly 

extremely  
well 

 
 

 
 

 
 

 

E.4.2.4 Completeness 

With respect to this case study, please write down in the space below: 

 any suggestion for new features for Continuum; and 

 any suggestion for improvement of existing features for Continuum  

that should be considered to better address dynamic evolution analysis/design concerns in this 
case study. 

 

E.4.2.5 Usability 

The following pages ask you to rate and write your comments on various parts of Continuum. 

The rating scale is a 7-point Likert scale looking like , with “1” on the left most 
being the lowest (strongly DISAGREE) and “7” on the right most being the highest (strongly 
AGREE). 

1 
strongly 

DISAGREE 

2 
disagree 

 

3 
disagree 

somewhat 

4 
neutral 

(i.e. neither 
disagree or 

agree) 

5 
agree 

somewhat 

6 
agree 

 

7 
strongly 
AGREE 

 

Tasks/Techniques labelled with “(reused)” are reused as-is from existing methodologies and 
approaches. 

E.4.2.5.1 Evaluation of metamodel 

Area Related Model Units Easy to Understand  

Structural Foundation 
Application, Resource OperationalProfile, 
TransformableItem, and Zone  

Application Lifecycle 
Application, ApplicationLifecycle, ChangeCase, 
Generation, Impact, Stage, TransformableItem, and 
TransitionalPeriod 

 

Transitional Period 
TransitionalPeriod, TransformationAgent, ChangeCase, 
Transformation, TransformationException, and 
TransformationExceptionResolution 

 

1 7

1 7

1 7

1 7

1 7

1 7

1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 415 

Transformation 
Resource, TransformableItem, Transformation, 
TransformationAction, and Zone  

Policy Policy, ServicingPolicy, and ZoningPolicy  

Suggestions for improvement and any other comments on Metamodel 

 

E.4.2.5.2 Evaluation of Application Lifecycle Analysis process and related fragments 

Task Easy to Understand  Easy to Use32  

Identify As-Is Runtime Structure   
 

Derive Change Cases   
 

Extend Application Lifecycle   
 

Technique Easy to Understand Easy to Use  

Change Case Modelling   
 

Change Case Partitioning and 
Ordering   

 

Runtime Structure Recovery (reused)   
 

Work Product Easy to Understand  Easy to Use 
Produced models/ 

diagrams/documents 
Easy to Understand33 

Application Lifecycle Diagram    

Dynamic Application Change 
Document    

Structural Configuration - Notational 
Extensions    

Suggestions for improvement and any other comments on Application Lifecycle Analysis Related 
Fragments. For instance, if a task/technique/work product exists as a better alternative for the ones above, 

please describe it below. 

 

                                                   

32 “Easy to use” means, “Is ‘X’ easy to use, such as to produce a relevant diagram?” 
33 “Produced models/diagrams/documents easy to understand” means “Are the 
models/diagrams/documents produced from ‘X’ easy to understand?” 

1 7

1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 416 

E.4.2.5.3 Evaluation of Transformation Identification process and related fragments 

Task Easy to Understand  Easy to Use  

Define To-Be Runtime Structure   
 

Refine Change Cases   
 

Identify Transformations   
 

Technique Easy to Understand Easy to Use  

Dynamic Variation Management 
(reused)   

 

Dynamic Workflow Change (reused)   
 

Dynamic Refactoring   
 

Dynamic Recomposition   
 

Change Case Modelling   
 

Dynamic Change Impact Analysis    
 

Transformation Sizing   
 

Work Product Easy to Understand  Easy to Use 
Produced models/ 

diagrams/documents 
Easy to Understand 

Dynamic Application Change 
Document    

Structural Configuration - Notational 
Extensions    

Suggestions for improvement and any other comments on Transformation Identification Related 
Fragments. For instance, if a task/technique/work product exists as a better alternative for the ones above, 

please describe it below.  

 

E.4.2.5.4 Evaluation of Transformation Agent Design Process and related fragments 

Task Easy to Understand  Easy to Use  

Identify Transformation Agents   
 

Define Transformation Orchestration   
 

Work Product Easy to Understand  Easy to Use 
Produced models/ 

diagrams/documents 
Easy to Understand 

Transformation Orchestration 
Diagram     

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7 1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 417 

Suggestions for improvement and any other comments on Transformation Agent Design Related 
Fragments. For instance, if a task/technique/work product exists as a better alternative for the ones above, 

please describe it below.  

 

E.4.2.5.5 Evaluation of Transformation Design process and related fragments 

Task Easy to Understand  Easy to Use  

Identify New and Replacement 
Transformable Items   

 

Identify Changes to Zones   
 

Define Servicing Policies   
 

Develop Transformation   
 

Technique Easy to Understand Easy to Use  

Resource Profile Modelling   
 

Start-up State Configuration   
 

Performance Profile Modelling   
 

Dynamic Transformable Item 
Adaptation   

 

Dynamic Transformable Item 
(Re)binding   

 

Transformable Item Change   
 

Work Product Easy to Understand  Easy to Use 
Produced models/ 

diagrams/documents 
Easy to Understand 

Transformation Diagram    

State Map    

New and Replacement Transformable 
Item Catalogue    

Zone Change Document    

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7

1 7 1 7 1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 418 

Suggestions for improvement and any other comments on Transformation Identification Related 
Fragments. For instance, if a task/technique/work product exists as a better alternative for the ones above, 

please describe it below.  

 

E.4.2.5.6 Evaluation of Dynamic Evolution Quality Management process and related 
fragments 

Task Easy to Understand  Easy to Use  

Define Dynamic Evolution Quality 
Needs   

 

Assess Dynamic Evolution Quality   
 

Analyse Dynamic Evolution Quality 
Problems   

 

Improve Dynamic Evolution Quality   
 

Technique Easy to Understand Easy to Use  

Dynamic Change Localisation 
(reused)   

 

Dynamic Evolution Safety Risk 
Management   

 

Dynamic Security Policy and 
Enforcement Management (reused)   

 

Dynamic Wrapper (reused)   
 

Inspection (reused)   
 

Loose Coupling (reused)   
 

Recovery Blocks (reused)   
 

Secure and Reliable Transformation 
Agent Coordination   

 

Start-up State Configuration   
 

Testability Analysis and Improvement 
(reused)   

 

Transformable Item Autonomy 
(reused)   

 

Transformable Item Mediation and 
Channelling (reused)   

 

Transformable Item Regression 
Testing (reused)   

 

Transformation Exception 
Management   

 

Transformation Sizing   
 

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7

1 7 1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 419 

Work Product Easy to Understand  Easy to Use 
Produced models/ 

diagrams/documents 
Easy to Understand 

Dynamic Evolution Quality Profile 
Report    

Dynamic Evolution Quality Inspection 
Report    

Suggestions for improvement and any other comments on Dynamic Evolution Quality Management 
Related Fragments. For instance, if a task/technique/work product exists as a better alternative for the 

ones above, please describe it below.  

 
 

 

  

1 7 1 7 1 7

1 7 1 7 1 7



Appendix E. Questionnaire Forms Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 420 

 

 

 

 

 

 

 

 

 

 

 

 

 

[This page is intentionally left blank.] 

 

 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 421 

Appendix F. RREFINEMENTS TO CONTINUUM 

This Appendix documents the refinements made to Continuum based on the evaluation results from Phase 3 of this research. They are 

presented in two tables: 

 Table Appendix F.1, for the expert review results and subsequent refinements (Section 7.1) 

 Table Appendix F.2, for the results of applying Continuum in a case study and subsequent refinements (Section 7.2) 

In each table, the refinements are categorised as “metamodel”, “work unit”, “work product” and “others”. The first three target specific types of 

method fragments in Continuum whereas the last category accounts for all other cases (e.g. structure of documentation). 

Table Appendix F.1 Suggested improvements from expert review and subsequent refinements to Continuum 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

  Expert 1    

Metamodel The association between “Application” and 
“TransformableItem” does not reflect the whole-
part relationship between them. 

Change it to an UML aggregation (i.e. 
the hollow diamond shape). 

Changed as per suggestion. Figure 6.5,  
Figure 6.6,  
Figure 6.7 

 “Change impact" is discussed in Continuum but 
not apparent in the metamodel. 

Consider including the notion change 
impact in the metamodel.  

New model unit “Impact” added to the 
metamodel. 

Appendix C.2.1.5 

 “Workflow” is discussed in Continuum but not 
apparent in the metamodel. 

Consider workflow as a special case of 
TransformableItem. 

Definition of TransformableItem expanded to 
include a workflow as a special case for 
TransformableItem. 

Appendix 
C.2.1.13 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 422 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 “Compensation” has its peculiar meaning and 
excludes certain types of handlers for 
transformation exceptions. In BPEL / BPMN, it 
refers to “undoing" of a completed activity to deal 
with undesirable outcomes from the activity. So, 
compensation does not account for cases such as 
when a transformation aborts half-way through. 

The new term should accommodate both 
compensation and recovery scenarios, 
the latter referring to getting an 
application back to a known state and 
form (or the one prior to a 
transformation) to continue to run. 

“Compensation” renamed to 
“TransformationExceptionResolution” in the 
metamodel, and its definition expanded to cover 
both compensation and recovery. 

Appendix 
C.2.1.18 

Work Unit In the introduction section of Continuum, the 
process diagrams for the Application Lifecycle 
Analysis, Transition Design and Transformation 
Design processes lack sequence information 
about the tasks to perform in these process. This 
is somewhat confusing until the textual 
description is read and followed. 

Add sequence numbers for the tasks in 
these diagrams. 

Changed as per suggestion. Figure 6.11, 
Figure 6.13, 
Figure 6.16, 
Figure 6.21, 
Figure 6.23 

 In the introduction section of Continuum, the 
definitions for process, task and technique, and 
their notations in process diagrams are missing. 
This is confusing to readers unfamiliar with these 
concepts. 

Add definitions for process, task and 
technique fragments, and example uses 
of their notations in the introduction 
section of Continuum. 

Descriptions of notations for process, task and 
technique fragments added to the introduction 
section of Continuum. 

Section 6.3.2 

 In Technique “Start-up State Configuration 
Modelling”, a TransformableItem can be stateless 
which makes the technique superfluous. 

Clarify when Technique “Start-up State 
Configuration Modelling” is appropriate 
with respect to the use of states in 
TransformableItems. 

Descriptions for Technique “Start-up State 
Configuration” updated to confine it to 
TransformableItems that are designed to have 
states. 

Appendix 
C.3.2.12 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 423 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 Task “Develop Transition” and Technique “Secure 
Transformation Agent Coordination” overlap in 
terms of assigning responsibilities to 
transformation agents. 

Describe the assignment of 
transformation agent responsibilities 
within one work unit. 

New Process “Transformation Agent Design” 
and associated tasks added to Continuum to 
specifically address transformation agent 
concerns.  

Appendix C.3.1.3 

 Task “Identify Transition” renamed to “Define 
Transformation Orchestration”. 

Appendix 
C.3.1.3.2 

 Technique “Secure Transformation Agent 
Coordination” renamed to “Secure and Reliable 
Transformation Agent Coordination” and 
simplified because of the new process 
“Transformation Agent Design”. 

Appendix 
C.3.2.11 

 In Task “Define Dynamic Evolution Quality 
Needs”, although the definitions of quality factors 
are given (in the embedded table), they are a bit 
abstract for one to perform assessment on the 
dynamic evolution quality needs for a situation 
(i.e. an application).  

Consider providing more details on the 
quality factors and/or breaking them 
down into smaller units, along with 
examples of each to further explain their 
meanings, to facilitate assessment. 

New Work Product “Dynamic Evolution Quality 
Profile Report” added to Continuum, offering 
instructions on assessing dynamic evolution 
quality needs for a situation. 

Appendix C.2.2.5 

 Process “Dynamic Evolution Quality 
Management” aims to improve quality of the 
analysis and design aspects of dynamic evolution 
but it is unclear which work units/products focus 
on analysis whilst the others on design aspects. 

Link the quality work units/products to 
analysis and/or design aspects of 
dynamic evolution.  

Work Product “Dynamic Evolution Quality 
Inspection Report” updated to indicate which 
quality factors are used in analysis and which 
ones are used in design. 

Table Appendix 
C.10 

 In Task “Extend Application Lifecycle”, there may 
be situations in which change cases do not need 
to be ordered for implementation (think about 
change cases which are all independent from one 
another). 

Tone down the sentence, “… the order in 
which the groups of change cases are 
realised is determined …” 

Changed as per suggestion, “… the order in 
which the groups of change cases, if applicable, 
are realised …”  

Appendix 
C.3.1.1.3 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 424 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

Work 
Product 

In the Transformation Orchestration Diagram, the 

reuse of BPMN’s “end event” notation  cannot 
distinguish among possible outcomes each of 
which representing a unique generation. The 
presence of multiple resulting generations after a 
transition is due to transformation exceptions 
which lead to different generations when resolved 
by a generation. 

Refine notations to distinguish various 
resulting generations. 

New notations added to Transformation 

Orchestration Diagram (   ) to 
indicate different outcomes (i.e. generations) of 
transformation orchestrations. 

Appendix 
C.2.2.10 

 In the example diagram for “timing out a 
subordinate agent’s transformation” as repeated 

next,  the BPMN’s 

“parallel gateway”  cannot distinguish or 
choose between the case when the timer expires 
and the case when the subordinate agent 
completes transformation “t”, as both flows will 
eventually arrive at the gateway. 

Consider modifying this example using 
BPMN’s “complex gateway” to handle 
this kind of situations. 

The “complex gateway” notation  added to 
Transformation Orchestration Diagram. 

Appendix 
C.2.2.10 

 The example diagram updated to use the 
“complex gateway”. 

Figure Appendix 
C.15(b) 

 “State Map” may be inappropriate for stateless 
TransformableItems. 

Exclude “State Map” for stateless 
TransformableItems. 

Changed as per suggestion. Appendix C.2.2.7 

Others The scope of Continuum – with the focus on 
analysis and design aspects - is reiterated in 
several parts of Continuum except at the 
beginning of the introduction section of 
Continuum. 

Relocate the analysis and design focus 
of Continuum to the beginning of the 
introduction section of Continuum. 

Changed as per suggestion. Section 6.3.2 

t

C
o

or
-

di
na

to
r

S
u

bo
r-

d
in

a
te

c



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 425 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 Continuum is not developed from ground up. It 
reuses and enhances materials from other 
methodologies. 

Highlight the extensional and 
incremental nature of Continuum. 

Citations for methodologies and the literature, 
noted in the introduction section of Continuum, 
for method fragments that are reused and 
enhanced.  

Table 6.5,  
Table 6.7,  
Table 6.10,  
Table 6.12,  
Table 6.15 

 Because of its comprehensiveness, Continuum 
can be overkill for small dynamic evolution 
projects.  

Offer guidelines as to what work units 
are mandatory/optional. 

Suitability of a technique to each task 
(mandatory, recommended, optional) added to 
high-level diagrams for process fragments.  

Figure 6.11, 
Figure 6.13, 
Figure 6.16, 
Figure 6.21, 
Figure 6.23 

 Usage guidelines extended to provide steps to 
adopt Continuum to an endeavour and link its 
process fragments. 

Section 6.3.7 

 In the full specifications section of Continuum, 
processes and tasks are documented in separate 
sub-sections. It makes the processes harder to 
navigate and follow without the tasks. 

Consider relocating the specification of 
tasks to their respective process 
fragment headings in the full 
specifications section of Continuum. 

Task fragments relocated and documented 
under their respective process fragment 
headings in the full specifications section of 
Continuum. 

Appendix C.3.1 

   EExpert 22    

Metamodel In the dynamic evolution metamodel in the 
introduction section of Continuum, the 
discussions on Application Lifecycle, Transition 
and Transformation appear after the metamodel 
class diagram is presented.  

Relocate the discussions on these 
concepts to the beginning of the 
metamodel in the introduction section of 
Continuum. This gives a better 
understanding of the metamodel which is 
underpinned by these key concepts. 

Changed as per suggestion. Section 6.3.3 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 426 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

Work Unit In Task “Identify As-Is Runtime Structure”, Yan et 
al. (2004)’s paper titled “DiscoTect: a system for 
discovering architectures from running systems” is 
also a popular reference to obtain a runtime 
structure. 

Add this reference to the list of 
references for recovering runtime 
structures. 

Discussions on recovery removed from Task 
“Identify As-Is Runtime Structure”. 
New Technique “Runtime Structure Recovery” 
added to Continuum to explicitly deal with 
recovery. A citation to Schmerl et al. (2006) 
which is a more recent version of Yan et al. 
(2004) also added to this technique. 

Appendix 
C.3.2.17.11 

 In Task “Extend Application Lifecycle”, there is no 
provision for determining of the number of 
transitional periods required for a set of known 
change cases. 

Introduce some guidelines to determine 
the number of transitional periods 
required. 

Task “Extend Application Lifecycle” updated to 
identify transitional periods.  

Appendix 
C.3.1.1.3 

New Technique “Change Case Partitioning and 
Ordering” added to Continuum to organise 
change cases and to help to determine the 
number of transitional periods. 

Appendix C.3.2.2 

Work 
Product 

In “State Map”, the role of the backward mapping 
part of a double-ended arrow dashed arc is 
unclear. 

Clarify how the backward mapping part 
of a double-ended arrow dashed arc 
helps in defining a State Map. 

Clarification on backward mapping added to 
“State Map”. 

Appendix C.2.2.7 

 In “State Map” - example state map for two UML 
state machines, the role of state “p” as a resolved 
state is unclear. 

Explain the role of a resolved state in the 
State map example. 

Clarification on a resolved state added to “State 
Map”. 

Appendix C.2.2.7 

Others It is unclear which part of Continuum is new 
contribution and which part of Continuum is 
reused/enhanced from existing work. 

Organise the text to distinguish the new 
contribution from Continuum from the 
reused/enhanced parts of Continuum. 

Highlighting added to summary tables in the 
introduction section of Continuum to distinguish 
reused and enhanced method fragments from 
those developed for Continuum.  

Table 6.5,  
Table 6.7,  
Table 6.10,  
Table 6.12,  
Table 6.15 

 Continuum remains (too) abstract in some places 
and opens to interpretation and ambiguity. 

Provide a full example (Continuum has 
partly) and use it to illustrate important 
new modelling elements. 

New examples added in the introduction section 
of Continuum. All examples now linked to the 
same illustrative application for completeness. 

Section 6.3 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 427 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 SEMDM also highlights the role of people in 
addition to process and product. 

More elaboration on the people aspect of 
the SEMDM in the context of dynamic 
change management would help. 

Although people issues are not a focus of 
Continuum, for completeness a number of basic 
producer method fragments are added to 
Continuum. 

Section 6.3.6,  
Appendix C.1 

 In the example for “EPCP: orchestration designs 
for transformation agents”, it is unclear how the 
service continuity is achieved in the service 
blocking time (is service blocking the same as 
downtime?). 

Clarify the issue of downtime in relation 
to the “search service blocking” mode of 
a servicing policy. 

Clarifications added to the definitions for Model 
Unit “ServicingPolicyType” to highlight that a 
sufficiently long delay caused by a service being 
“blocked and queued” may regard the service as 
unavailable, in which case the “delegated” 
ServicingPolicy should also be considered. 

Appendix 
C.2.1.11 

 There is also a change management process in 
ITIL best practices framework (see e.g., 
http://www.itil-officialsite.com/home/home.asp 
and http://www.infra-
corp.com/solutions/ITIL/change-management-
workflow.asp). 

Investigate how ITIL is related to this 
research. 

None. 
ITIL has a process called Change Management 
(CHM) for managing the full lifecycle of 
changes, from change identification to change 
implementation. CHM lacks emphasis on 
evolution and is not specific to a particular type 
of application development (e.g. composition-
based). Hence, CHM is reviewed in this 
research but not considered for reuse 
opportunities in Continuum. 

Not applicable 

EExpert 1 (comments on refinements made to Continuum based on Expert 2’s feedback) 

Work Unit In Task “Runtime Structure Recovery”, the term 
“discovery” rather than “recovery” is also used, 
even though the approach for discovery may be 
through recovery. 

Make “recovery” synonymous with 
“discovery”. 

Synonymy between the “Runtime Structure 
Recovery” and “Runtime Structure Discovery” 
noted in Task “Runtime Structure Recovery”. 

Appendix 
C.3.2.17.11 

 

http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.itil-officialsite.com/home/home.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp
http://www.infra-corp.com/solutions/ITIL/change-management-workflow.asp


Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 428 

Table Appendix F.2 Suggested improvements from case study and actual refinements to Continuum 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

   PParticipant 11    

Metamodel As I understand, the concept of “Transition” is to 
be replaced as it is confusing. 

“Transition” has dual meanings: 1) the 
process of changing from one state or 
condition to another; and 2) a period of 
such change. Continuum refers to 
“transition” as 2. However, it can be 
misinterpreted as 1). 

“Transition” renamed to “transitional period” to 
make Continuum clearer about the notion of a 
period during which transformations are 
executed. 

Changes made 
throughout 
Continuum 

 The concept and effectiveness of using 
ChangeCases is a bit confusing. Some 
ChangeCases are read like Transformations. 

Semantics for ChangeCases and 
Transformations are overlapping and 
should be separated. 

ChangeCase definitions updated to focus it on 
functional and property changes from the 
requirement perspective, whereas 
transformation definitions remain focused on 
structural and configuration changes from the 
architectural perspective. 

Sections 6.3.3, 
6.3.4.1 and 
6.3.4.2; 
Appendices 
C.3.1.1.2, 
C.3.1.5.2, C.3.2.1,  
C.3.2.2, C.3.2.3, 
C.2.1.3 and 
C.2.2.2 

 In ChangeCase, the "target" association of 
ChangeCase is limited to TransformableItem. 

It should be an attribute to refer to 
anything that can be reconfigured (e.g. 
Zone).  

The “target” association changed to an attribute 
in the ChangeCase model unit. 

Figure 6.5, 
Figure 6.7, 
Appendix C.2.1.3 

Work Unit In Technique “Transformation Sizing”, the 
description is not very clear how Transformation 
Sizing works. Is it measured by effort or calendar 
time? 

Clarify Technique “Transformation 
Sizing”. 

Technique “Transformation Sizing” replaced 
with “Transformation Mining” in which the name 
reflects the original intent of the technique 
“Transformation Sizing”.  
“Transformation Mining” made clearer in terms 
of spotting Transformations from change cases. 

Appendix 
C.3.2.15 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 429 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 In Process “Dynamic Evolution Quality 
Management” and related tasks/techniques, 
Safety remains too abstract. It has different 
meanings in different domains. And it seems to be 
overlapping with some of the other quality such as 
consistency, integrity and security. 

More concrete descriptions of safety in 
relation to dynamic evolution should be 
provided. This would also help 
distinguish safety from other quality 
factors. 

In Technique “Dynamic Evolution Safety Risk 
Management”, the notion of safety split into 
hazards, mishaps, assets and safety risks, with 
new examples provided. Steps and associated 
examples refined to be more relevant to 
dynamic evolution. 

Appendix C.3.2.4 

 In the “addition” transformation pattern of 
Technique “Dynamic Transformable Item 
Change”, the TransformationAction "«zone» 
create item” appears before "«zone» assign 
resource". This may be problematic as the 
transformable item will need resources when it is 
instantiated/created in a zone. 

Change the transformation pattern such 
that "«zone» assign resource" appears 
before "«zone» create item”. 

Changed as per suggestion. Figure Appendix 
C.11 

 In the "removal" transformation pattern offered by 
Technique "Dynamic Transformable Item 
Change”, the resources actually attained by a 
transformable item itself at runtime should be 
relinquished by the item before it is removed, as 
these resources may not be those originally pre-
allocated to it when it was started. 

Resource management in this pattern 
should be handled in two steps. The 
transformable item firstly relinquishes the 
resources allocated to it. Then, the 
resources are claimed back by the zone. 

Two TransformationActions explicitly defined in 
the “removal” transformation pattern, 
“«composition» relinquish resource” and 
“«zone» reclaim resource”, the latter appearing 
at the end of the pattern. 

Figure Appendix 
C.11 

 In the “removal” transformation pattern of 
technique “Dynamic Transformable Item Change”, 
before removing a transformable item, it would be 
more appropriate to notify consumers of the item.  

Add a notification TransformationAction 
at/near the beginning of the "removal" 
transformation pattern. It is used to notify 
all "consumers" of the item. 

A TransformationAction “«composition» 
announce N’s unavailability” added to the 
beginning of the “removal” transformation 
pattern. 

Figure Appendix 
C.11 

 Task “Define To-Be Runtime Structure” may 
utilise "Loose Coupling". 

Technique "Loose Coupling" not only is 
useful to “Define To-Be Runtime 
Structure” but also complements 
Technique "Dynamic Refactoring" when 
defining a to-be runtime structure.  

Links to “Loose Coupling” added in Task “Define 
To-Be Runtime Structure” and Technique 
“Dynamic Refactoring”. 

Appendix 
C.3.1.5.1, 
Appendix C.3.2.6 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 430 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 In the EPCP example and Technique “Change 
Case Modelling”, the discussions about change 
case identification appears to be a bit repetitive 
and mix different levels of abstractions across 
requirements, high level designs and realisation 
details in the final deployment. Its effectiveness is 
not very obvious. 

Confine change cases to relate change 
cases closely to requirements, and 
transformations to relate closely to 
design. This will decouple change cases 
from design which should otherwise be 
addressed with transformations as it is 
right now. 

Technique “Change Case Modelling” updated to 
incorporate the notion of a feature, a function or 
property directly derived from requirements,  
into a change case expression.  

Appendix C.3.2.1 

 Change case examples in EPCP and Technique 
“Change Case Modelling” updated to relate 
change cases more closely to requirements. 

Table 6.6,  
Table 6.9,  
Table Appendix 
C.23 

 In Technique “Secure and Reliable 
Transformation Agent Coordination”, it seems 
understanding the parallelism nature of all the 
transformations is essential. The coordination 
could be non-trivial and require computer-aided 
optimisation. 

More guidance could be provided on 
coordination among transformation 
agents.  

New Technique “Transformation Orchestration 
and Agent Coordination” added to Continuum to 
1) explicitly address coordination; 2) provide an 
example as a guide; and 3) explicitly assign 
transformations to different phases to reduce 
overall interruption time. 
 
In a subsequent expert review, Expert 1 
commented on this new technique and further 
improvement was made accordingly. 

Appendix 
C.3.2.16 

 In Task “Define Transformation Orchestration”, 
during an orchestration some transformations 
may be executed without any impact on an 
application, whilst some others interrupt the 
normal running of the application. 

Non-interruptive transformations might 
be better performed outside of an 
interruption period.  

 In Techniques “Dynamic Transformable Item 
Change” and “Dynamic Transformable Item 
(Re)binding”, more transformation patterns could 
be included over time. 

For instance, consider the "rebinding" 
transformation as a candidate pattern as 
it has been used a number of times in the 
case study. 

New transformation pattern “Rebinding” added 
to Continuum. 

Appendix C.3.2.8 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 431 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 In Task “Develop Transformation”, a 
Transformation Diagram with 
TransformationActions is one way of documenting 
the design of a transformation. There are 
situations in which a transformation design is not 
modelled with transformation actions, but as a 
sequence of steps, or as an external proprietary 
technique. A similar argument is made for 
TransformationAction which may not account for 
all possible steps in a transformation. 

The approach of documenting a 
transformation should be flexible enough 
to accommodate this variation.  

The tag “«custom»” added to Continuum to label 
Transformations and TransformationActions that 
are handled by foreign means which is not 
supported by Continuum. 

Table Appendix 
C.17,  
Table Appendix 
C.18 

Work 
Product 

“Structural Configuration - Notational Extensions” 
does not provide support to highlight differences 
between two successive generations. 

Notations about “change” and “removal” 
between two successive generations 
could be improved, to contrast 
differences between the two successive 
generations. 

Highlighting and the delta symbol Δ in a 
generation added to Continuum to contrast 
generation differences. (Caution: Removed 
parts cannot be highlighted since they no longer 
appear in a diagram.) 

Appendix C.2.2.8 

 “Structural Configuration - Notational Extensions” 
does not provide support to label individual 
Transformable Item instances of the same type. 

As Continuum deals with runtime 
instances instead of static designs, it is 
appropriate to define notations to label 
individual instances.  

Added notations to uniquely label individual 
instances of transformable items (e.g. “robot[1]” 
and “robot[2]” for two instances of software 
robots). 

Appendix C.2.2.8 

   PParticipant 2   

Metamodel In Zone, it is unclear what a “disjoint controlled 
environment” is with respect to the model unit 
Zone. Citing a reference it is not enough. 

An example and more explanations 
would be more helpful.  

The notion of a Zone simplified in the 
introduction section of Continuum. 

Section 6.3.3 

The specification for Zone expanded with further 
details. 

Appendix 
C.2.1.20 

 OperationalProfile seems to represent resource 
needs. 

Clarifications should be given as to 
whether there is any relationship 
between OperationalProfile and 
Resource. 

New Model Unit ResourceProfile - inherited from 
OperationalProfile and associated with 
Resource - added to Continuum. 

Figure 6.5,  
Figure 6.6,  
Appendix 
C.2.1.10 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 432 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 TransformationAgent is abstract. It is unclear if it 
refers to humans or computers. 

TransformationAgent is not limited to 
software distribution units. 
TransformationAgent may also be tools, 
scripts, practitioners, software 
components etc. The notion of a 
TransformationAgent should be 
expanded to accommodate this variation. 

The definition of TransformationAgent 
rephrased to emphasise it as a role which can 
be played by software components, tools, 
practitioners etc. 

Appendix 
C.2.1.16 

 The association between TransformationAgent 
and TransformationAction is incorrect. 

TransformationAgent should be directly 
related to Transformation as a whole 
rather than to individual 
TransformationActions. 

Corrected as per suggestion.  Figure 6.5,  
Figure 6.8,  
Appendix 
C.2.1.14,  
Appendix 
C.2.1.16 

Work Unit In Task “Define Servicing Policies”, the concept of 
“service levels” is ambiguous. 

More clarification should be provided for 
“service levels”, e.g. how many service 
levels there are. 

“service levels” replaced with “services” and 
“functions”. 

Appendix 
C.3.1.4.3 

 Technique “Performance Profile Modelling” is a bit 
short as to the description of the “Performance 
Engineering Methodology” that this technique 
reuses from ASG (Lehner et al. 2006). 

More descriptions should be provided for 
“Performance Engineering Methodology” 
to help readers to understand its basic 
ideas. 

Model Unit PerformanceProfile added to 
Continuum. 

Appendix C.2.1.8 

 Work Product New and Replacement 
Transformable Item Catalogue changed to 
utilise PerformanceProfile. 

Appendix C.2.2.6 

 More descriptions added to Technique 
Performance Profile Modelling. 

Appendix 
C.3.2.17.9 

 Task “Identify Transformation Agents” lacks 
guidance. 

More guidance on how to identify 
Transformation Agents should be 
provided. 

New Technique “Transformation Agent 
Disposition” added to Continuum to specifically 
deal with identifying of Transformation Agents. 

Appendix 
C.3.2.13 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 433 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

Work 
Product 

Discrepancies are found between the “New and 
Replacement Transformable Item Catalogue” 
produced from the case study and “Zone Change 
Document” filled out for this case study vs. their 
templates specified in Continuum documentation. 

The templates should be rectified in this 
regard.  
 
(Note: the documents produced with the 
“New and Replacement Transformable 
Item Catalogue” and “Zone Change 
Document” templates deviated from the 
templates to better record data from the 
case study. Their templates, however, 
had not been updated accordingly.) 

Templates for “New and Replacement 
Transformable Item Catalogue” and “Zone 
Change Document” updated accordingly. 

Appendix C.2.2.6, 
Appendix 
C.2.2.11 

 In “Structural Configuration - Notational 
Extensions”, why only seven notations are defined 
in Continuum? What are the advantages and 
disadvantages of current notations? 

More explanations should be given on 
why current and existing notations are 
extended in this regard. 

Clarified the role of Structural Configuration - 
Notational Extensions as complements and 
extensions to existing languages to help to 
express and depict dynamic evolution. 

Appendix C.2.2.8 

 The example in “Structural Configuration - 
Notational Extensions” is a bit short. 

Consider extending the example 
structural configuration diagram to 
include most if not all notations from 
Structural Configuration - Notational 
Extensions, to illustrate their usefulness.  

Example expanded to show most if not all the 
notations. 

Appendix C.2.2.8 

Others In the introduction section of Continuum, the 
Section reference for “Structural Configuration - 
Notational Extensions” is missing when it first 
appears. It is hard for readers to learn more 
details about it. 

The reference to Structural Configuration 
- Notational Extensions should be added 
when it first appears in the introduction 
section of Continuum. 

Changed as per suggestion. Section 6.3.1 

 In the introduction section of Continuum, there is 
no explanation on what the Structural Foundation 
aspect is in regard to the metamodel. This 
concept is a little bit hard to understand. 

More description on the notion of 
Structural Foundation should be given. 

Additional descriptions incorporated into the 
dynamic evolution metamodel in the introduction 
section of Continuum. 

Section 6.3.3 



Appendix F. Refinements to Continuum Kam Hay Fung - PhD Thesis 

© 2011 UNSW  page 434 

Area for Improvement Suggestion for Improvement Actual Refinement 

Type Method Fragment and Issue  Description Reference 

 The overall metamodel diagram in the 
introduction section of Continuum does not 
highlight key dynamic evolution concepts. 

If possible, highlight the key dynamic 
evolution concepts (ApplicationLifecycle, 
Transformation and TransitionalPeriod) 
in the overall metamodel.  

Key concepts highlighted in the diagram 
depicting the whole dynamic evolution 
metamodel.  

Figure 6.5 

 It would also be clearer to draw five 
boundary boxes in the overall metamodel 
if possible, corresponding to the five 
related aspects of the metamodel. 

None. 
An attempt was made to add boundary boxes to 
the metamodel diagram but it led to visual 
cluttering found. This change was dropped. 

Not applicable 

 EExpert 1 (comments on refinements made to Continuum based on case study participants’ feedback) 

Work Unit Technique “Transformation Orchestration and 
Agent Coordination” is a bit complicated. I had to 
read it a few times to understand it. 

Simplify it. Descriptions and steps shortened and 
simplified. 

Appendix 
C.3.2.16 

 


	Title Page - A Method Engineering Approach to Support Dynamic Evolution in Composition-Based Distributed Applications
	ABSTRACT
	PUBLICATIONS
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS AND ACRONYMS

	Chapter 1 - Introduction
	Chapter 2 - Review of Dynamic Evolution and Methodology
	Chapter 3 - Research Design
	Chapter 4 - Development of Dynamic Evolution Quality Factors
	Chapter 5 - Development of Dynamic Change Requirements
	Chapter 6 - Development of Continuum
	Chapter 7 - Evaluation and Refinement
	Chapter 8 - Conclusions
	Bibliography
	Appendix A - Systematic Literature Review
	Appendix B - Feature Analysis Results of Development Methodologies
	Appendix C - Detailed Specifications for Continuum
	Appendix D - Case Study Results of Applying Continuum
	Appendix E - Questionnaire Forms
	Appendix F - Refinements to Continuum



