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Abstract

Research in computational statistics develops numerically efficient methods to estimate
statistical models, with Monte Carlo algorithms a subset of such methods. This the-
sis develops novel Monte Carlo methods to solve three important problems in Bayesian
statistics. For many complex models, it is prohibitively expensive to run simulation meth-
ods such as Markov chain Monte Carlo (MCMC) on the model directly when the likelihood
function includes an intractable term or is computationally challenging in some other way.
The first two topics investigate models having such likelihoods. The third topic proposes
a novel model to solve a popular question in causal inference, which requires solving a
computationally challenging problem.

The first application is to symbolic data analysis, where classical data are summarised and
represented as symbolic objects. The likelihood function of such aggregated-level data is
often intractable as it usually includes a high dimensional integral with large exponents.
Bayesian inference on symbolic data is carried out in the thesis by using a pseudo-marginal
method, which replaces the likelihood function with its unbiased estimate.

The second application is to doubly intractable models, where the likelihood includes
an intractable normalising constant. The pseudo-marginal method is combined with the
introduction of an auxiliary variable to obtain simulation consistent inference. The pro-
posed algorithm offers a generic solution to a wider range of problems, where the existing
methods are often impractical as the assumptions required for their application do not
hold.

The last application is to causal inference using Bayesian additive regression trees (BART),
a non-parametric Bayesian regression technique. The likelihood function is complex as it
is based on a sum of trees whose structures change dynamically with the MCMC iterates.
An extension to BART is developed to estimate the heterogeneous treatment effect, aiming
to overcome the regularisation-induced confounding issue which is often observed in the
direct application of BART in causal inference.
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with h being a random number from {1, . . . , χ}, χ ∼ Pois(λ). The term
“bc” refers to the bias-corrected estimator. . . . . . . . . . . . . . . . . . . . 59

3.4 Mean results for 10 independent replications under the data set of size
50,000, 100,000 and 500,000. The columns show the dimension (dim), aver-
age percentage points used in SDA (obs%), RMSE of µ, Σ and computing
time (time). The ratio of computing times SDA over the full data approach
is also included (ratio). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



3.5 Mean, variance and execution time of 20,000 MCMC iterations on the full
data and the symbolic data with various quantile cut-offs (q). The “obs%”
column shows the percentage points used in SDA. “Prep” includes the time
of fitting the mixture of normals and the symbol construction. “MCMC” is
the time spent on running 20,000 iterations. The last column is the ratio
of running times for the full data over that of the symbolic data. . . . . . . 67

4.1 Inference results for the Ising model. All the chains, except for “Gold stan-
dard”, run for 20,000 iterations using the algorithms described (Gold=exchange
algorithm, BP= block-Poisson, Approx = bias-corrected estimator, RR =
Russian roulette). The mean estimates are corrected for the negative esti-
mates (BP, RR). The highest posterior density (HPD) is calculated by the
coda package in R. The IACT calculation is based on all the samples as the
chains start at the true value. For BP and RR, the calculation of IACT
accounts for the negative estimates (see (4.8)). ESS/sec is the effective
sample size per second. For BP, λ refers to the number of blocks. NoImp
is the number of particles used in the AIS. . . . . . . . . . . . . . . . . . . 88

4.2 Scheme of how the test data are generated. Several equally spaced points
are generated between [-5,5] (inclusive) per dimension. The number after
the comma is the total number of test points. . . . . . . . . . . . . . . . . 94

4.3 Results for the GP prior using observations of sizes 100 and 1,000. The
results obtained are the mean value of 20 independent replications with
the standard deviation in brackets. For the large data set (n = 1,000), 50
inducing points are used. “CONS” and “UNCONS” stand for the model
with/without constraints (no intractable quantity involved). The negative
predictions are rounded up to zero for both models. . . . . . . . . . . . . . 96

4.4 Simulation results for 100 independent replications of a FB5 distribution.
All numbers refer to the RMSE with respect to the true value. . . . . . . . 98

4.5 Results for the Bayesian, moment and MLE approaches for all the data sets.
The Bayesian estimate is the posterior mean. The numbers in brackets are
the 95% confidence (credible for Bayesian) intervals. For the moment esti-
mates and MLE, the confidence intervals are obtained using the bootstrap
(Efron, 1992) with 1,000 repetitions each. . . . . . . . . . . . . . . . . . . . 102

4.6 Results of 5-fold cross validation on the four data sets. “grp1”,“grp2” are
the number of observations for the corresponding group. Accuracy on the
training and test data is the average value of the 5 folds, with standard
deviation in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



5.1 Comparison between BART-EXT, BART (ps-BART), BCF and GRF. For
BART related methods (BART-EXT, BART/ps-BART, BCF), µ(·), τ(·),
τ̃(·) refer to the sum over multiple regression trees. For GRF, µj(·) is the
prediction given by the jth tree. . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 The CATE estimation results from 100 independent replications with n =
250, 500 observations. The results are the mean values of RMSE, MAE,
coverage and interval length, where coverage and interval length are re-
ported as 95% credible or confidence intervals. Numbers in parentheses are
standard deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 The result of the 2016 ACIC data challenge, which collects the average
value of difference metrics across 7,700 cases with standard deviation in-
cluded in parenthesis. Coverage and interval length refer to 95% credible
or confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 The ATE estimates for the fuel intensity of purchased vehicles. The lower
and upper bounds are called the boundary points of the 95% confidence
interval. For the tree-based methods, the ATE estimates are obtained as
the average values of the CATE estimates. The same rule applies for the
standard deviations. The lower and upper bounds are obtained as the 2.5%
and 97.5% quantiles of the corresponding estimates. . . . . . . . . . . . . . 130

xiv



Abbreviations

ABC Approximate Bayesian computation

AIS Annealed importance sampling

ATE Average treatment effect

ATT Average treatment effect on the treated group

BART Bayesian additive regression tree

BCF Bayesian causal forest

CART Bayesian classification and regression tree

CATE Conditional average treatment effect

ESS Effective sample size

GRF Generalised random forest

IACT Integrated autocorrelation time

MAE Mean absolute error

MAPE Mean absolute percentage error

MCMC Markov chain Monte Carlo

MET Minimax-exponentially-tilted estimator

MH Metropolis-Hasting Algorithm

MLE Maximum likelihood estimator

OLS Ordinary least squares

PM Pseudo-marginal

RIC Regularisation-induced confounding

RMSE Root mean squared error

xv



SDA Symbolic data analysis

SMC Sequential Monte Carlo

SOV Separation of variables

SUTVA The stable unit treatment value assumption

xvi



Chapter 1

Introduction

Statistical analysis develops models to investigate data generating processes involving

observations together with domain knowledge. Advances in computing power enable the

possibility of analysing complicated models on massive amounts of data. The main aim of

computational statistics is to develop and understand computationally intensive statistical

methods from both a computational science and statistics perspective. Computational

statistics is the backbone of modern data science as conducting data analysis inevitably

requires computing. This is particularly true for Bayesian analysis, where the output of

the analysis is the posterior distribution which quantifies the uncertainty of the inference.

In most applications, the posterior distribution is intractable and various algorithms are

available to draw samples from it, but often have large computational requirements. The

main aim of this thesis is to develop novel methods for Bayesian analysis with specific

applications in symbolic data analysis (SDA), doubly intractable problems and causal

inference. Some applications, such as doubly intractable problems and causal inference,

are widely studied in the literature with ongoing developments. Some are relatively new

branches in modern statistics, such as SDA, but with promising potential in the era of big

data. The motivation is application specific, but the overall target is to develop efficient

algorithms to cope with complex models. The remaining part of this chapter briefly

introduces Bayesian statistics and its rising challenges.
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The well-known Bayes’ theorem is

π(θ|y) = p(y|θ)π(θ)
p(y) , (1.1)

where p(y|θ) is the likelihood function of parameter(s) θ given data y, π(θ) is the prior

and p(y) is often called the data evidence or the marginal likelihood.

A fundamental problem in computational statistics is to obtain the expectation of Eπ(θ|y) [ψ(θ)]

of a function ψ of θ ∈ Θ with respect to the posterior distribution π(θ|y), which is equiv-

alent to evaluating the integral ∫
θ
ψ(θ)π(θ|y)dθ.

A closed form solution for the integral above rarely exists for a high-dimensional vector

θ, but it can be approximated by Monte Carlo integration, giving

Eπ(θ|y) [ψ(θ)] ≈ 1
M

M∑
m=1

ψ(θ(m)),

where θ(m) is drawn from the posterior distribution π(θ|y).

One of the challenges in Bayesian inference is dealing the unknown p(y) defined as p(y) =∫
θ p(y|θ)π(θ)dθ, which makes evaluating the posterior π(θ|y) intractable in most appli-

cations. A popular method to conduct Bayesian analysis is Markov chain Monte Carlo

(MCMC), which draws correlated samples of θ from π(θ|y) without needing to know p(y).

However, MCMC is not applicable for many inference problems. For example, it may not

be possible to evaluate the likelihood function p(y|θ) point-wise in θ. For some problems,

pseudo-marginal (PM) methods replace the likelihood function with its unbiased estima-

tor. The likelihood function can also be computationally demanding when it involves a

variable number of parameters, which may lead to inefficiencies within MCMC algorithms.

Chapters 3 and 4 investigate modelling with intractable likelihood functions in Bayesian

analysis. In Chapter 5, the focus shifts to Bayesian non-parametric regression for causal

inference, where the likelihood function is provided as a sum-of-trees model having no

fixed structures.

Chapters 3, 4 and 5 are composed of three separate and self-contained articles. To maintain

the consistency of the thesis, detailed reviews of the methodologies (MCMC and PM

2



methods) are covered in Chapter 2. The chapter also covers the background knowledge for

the applications in the remaining chapters. As a result, there is some overlapping material

between the literature reviews and the technical chapters, with repeated definitions and

explanation of notations when necessary.

Chapter 3 investigates models that often have an intractable likelihood function in the

context of SDA, where the likelihood function is characterised by an integral raised to

a large power, i.e., p(y|θ) ∝ [
∫

y f(y|θ)dy]n with n a large number and f(y|θ) a density

function. This likelihood function is built using “symbolic data”, which contain struc-

tural information about the data, derived from the original data set. The integral can

often be intractable, although an unbiased estimator may be available. To overcome the

intractability, we utilise the PM method. As the exact computation of the likelihood esti-

mate is usually expensive, an approximate method is proposed to speed up the algorithm

with minor difference in the results. The approximate method is applied to a factor model

and a linear regression involving heteroscedasticity. It achieves significantly less comput-

ing time compared to that of the full data, with a tolerable difference in terms of the

accuracy.

In Chapter 4, the likelihood function involves an unknown normalising constant that

depends on the parameters of interest. This leads to the so-called doubly intractable

problem in Bayesian analysis. The PM method is adapted again in combination with

an auxiliary variable approach to generate simulation consistent results. Compared with

existing methods in the literature, the proposed algorithm has favourable properties such

as being more widely applicable and having available guidelines for hyperparameter tuning.

Chapter 5 focuses on the Bayesian additive regression tree (BART), a non-parametric

Bayesian regression technique, which uses regression trees to fit a highly non-linear re-

sponse surface with a variable number of parameters. To avoid overfitting, BART uses a

regularisation prior so that each tree is able to explain part of the relationship between the

dependent variable and the covariates. Even though BART is a flexible predictive model,

its application in causal inference produces a bias in the estimated causal effects in the
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presence of confounding, where the treatment and the outcome are both affected by other

variables (usually unobserved or omitted). The chapter extends the original BART model

for estimating heterogeneous treatment effects of an observational study with binary treat-

ments and continuous outcomes. Such an extension overcomes the regularisation-induced

confounding issue and provides more accurate results compared with the existing tree-

related methods.

Finally, Chapter 6 concludes and discusses potential future research work.
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Chapter 2

Literature review

The literature review consists of two parts: the generic methods used in this thesis, and a

brief background introduction for each of the technical chapters.

2.1 The Markov chain Monte Carlo simulation method

Bayesian methods target the posterior distribution of the parameter(s) θ given the data

y, which is expressed as π(θ|y) = p(y|θ)π(θ)/p(y), where p(y|θ) is the likelihood and

π(θ) is the prior. The marginal likelihood p(y) =
∫

θ p(y|θ)π(θ)dθ, and this integral can

be high-dimensional. For most complex models, the posterior distribution is unknown,

which poses challenges for sampling directly from it.

Markov chain Monte Carlo (MCMC) (Brooks et al., 2011) is the most popular class of

algorithms to draw samples from the posterior distribution. It produces correlated sam-

ples from the posterior distribution using a properly designed Markov chain which has

π(θ|y) as its invariant distribution. MCMC techniques are not only useful in Bayesian

inference. They are often applied to solve integration and optimisation problems, having

wide applications in statistical mechanics, physics, machine learning etc. (Andrieu et al.,

2003; Jerrum and Sinclair, 1996).
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2.1.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is an important MCMC algorithm (Hastings,

1970; Metropolis et al., 1953). It designs a Markov process by constructing the transition

from θ to θ′ from the density q(θ′|θ), from which θ′ is drawn. The transition from θ to

θ′ is accepted with probability:

α(θ,θ∗) = min
{

1, π(θ′)p(y|θ′)q(θ|θ′)
π(θ)p(y|θ)q(θ′|θ)

}
; (2.1)

the chain remains at θ, otherwise.

Algorithm 1 describes the MH approach which is frequently used in Bayesian inference due

to its simplicity and general applicability. The marginal likelihood p(y) is not required

for MH because it cancels out in the MH acceptance ratio based on (2.1). The only

requirement is that the likelihood function of the model is analytically tractable, i.e., it

can be evaluated point-wise in θ.

Algorithm 1 The Metropolis-Hastings algorithm
1: Initialise θ such that π(θ|y) > 0.

2: Propose θ′ from q(θ′|θ).

3: Calculate the MH acceptance ratio:

α(θ,θ′) = min
{

1, π(θ′)p(y|θ′)q(θ|θ′)
π(θ)p(y|θ)q(θ′|θ)

}
.

4: Generate uar ∼ Uniform(0, 1).

5: Update θ ← θ′ if α(θ,θ′) > uar. Otherwise, θ is unchanged.

6: Repeat Step 2-5 based on the updated θ for a prefixed number of iterations.

The MH algorithm is designed to obey the detailed balance condition, which states that the

probability of the chain being in a set A (under the stationary distribution) and moving to

a general set B is the same with A and B reversed. To satisfy the condition, the proposal

distribution must have a positive density function in the support of the parameter space

of the posterior distribution. For example, a random walk proposal usually fulfils such

requirement and is often used in the MH algorithm. A random walk proposal with the
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normal density for the scalar θ′ is defined as q(θ′|θ) = N(θ′; θ, σ2), which is a normal

distribution with mean θ and variance σ2, and so θ′ is sampled from a normal distribution

with mean θ and variance σ2. A large σ2 results in too many rejections whereas a small

σ2 results in slow movement in the parameter space. Both cases lead to poor efficiency of

the MH algorithm.

Theoretical results suggest that for a multi-dimensional posterior distribution formed from

independent and identically distributed (iid) components, the acceptance ratio of a mul-

tivariate proposal should be around 0.234 to achieve the optimal asymptotic efficiency of

the MH algorithm (Gelman et al., 1997; Neal and Roberts, 2006; Roberts and Rosenthal,

2001). However, a universal proposal distribution does not exist for several reasons. For

example, multi-modality of the posterior distribution can lead to slow convergence of the

chain. Adaptive MH algorithms (Roberts and Rosenthal, 2009) are popular methods for

constructing the proposal distribution; they tune the proposal distribution automatically

based on information obtained from previous draws. Numerous algorithms have been

built for fast and reliable adaptive MH algorithms (Atchadé and Rosenthal, 2005; Gior-

dani and Kohn, 2010; Haario et al., 2001). In this thesis, we adopt the approach proposed

by Garthwaite et al. (2016), where a stochastic search algorithm based on the Robbins-

Monro process (Robbins and Monro, 1951) is adapted, so that the scale parameter of a

Gaussian random walk proposal is automatically tuned to target a prespecified value of the

overall sampler acceptance probability. If a specific proposal is rejected, then the scalar

σ decreases for the next iteration. Otherwise, a larger σ is used instead to encourage a

larger step size. The changes in σ decrease in magnitude as the algorithm runs, so that σ

converges. For a multivariate parameter, Garthwaite et al. (2016) combine the Robbins-

Monro process with the strategy in Haario et al. (2001) to construct a positive-definite

covariance matrix for the Gaussian proposal.
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2.1.2 The Gibbs sampler

The Gibbs sampler is a method for sampling θ = (θ1, . . . , θd) from π(θ|y) over at least

two dimensions, with θk a univariate parameter or a parameter block. The Gibbs sampler

is proposed by Geman and Geman (1984) and formalised by Gelfand and Smith (1990).

It assumes that the conditional distributions of θi, i = 1, . . . , d, are tractable to work with.

Instead of sampling from π(θ|y) which is impractical for many models, sampling from the

full conditional distribution π(θi|θj ̸=i,y) is often more straightforward. The notation θj ̸=i

refers to all the parameters (parameter blocks) except for the ith parameter (parameter

block). In each iteration of the Gibbs sampler, θi is updated in turn, with the remaining

parameters θj ̸=i being fixed. The sampling order can be fixed before the Gibbs sampling

begins. We also note that each conditional distribution may be for a parameter block, i.e.,

a vector parameter.

Algorithm 2 The Gibbs sampler
1: Initialise θi, i = 1, . . . , d, such that π(θ|y) > 0 where θ = (θ1, . . . , θd).

2: Update θi from π(θi|θj ̸=i,y) for i = 1, . . . , d.

3: Repeat Step 2 for a fixed (in advance) number of iterations.

The Gibbs sampler (Algorithm 2) is a special case of the MH algorithm, with the proposal

distribution q(θ|θ′) defined as π(θi|θj ̸=i,y). The MH acceptance ratio is one in this

case. Compared with the MH algorithm, Gibbs sampling updates θ in each iteration and

does not require a specially designed proposal distribution. The main drawback of Gibbs

sampling is that it can have poor sampling efficiency if the blocks of θ are correlated,

i.e., the chain can traverse the parameter space slowly, especially in high dimensions. The

Gibbs sampler is also limited in many cases as the full conditional distribution for each

element of θ may be unavailable. Running a MH update within the Gibbs sampler is an

alternative to the full Gibbs sampler (Gilks et al., 1995).
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2.2 The pseudo-marginal method

In many statistical models, the likelihood function p(y|θ) is analytically or computation-

ally intractable. One example is state space models, where the likelihood of the parameters

after integrating out the states is often intractable, but can be estimated unbiasedly by

particle filters (Shephard and Pitt, 1997). In such cases, the MH acceptance ratio (2.1) is

computationally intractable as p(y|θ) cannot be analytically evaluated. Beaumont (2003)

replaces the likelihood function with its unbiased estimator. The idea is formally stud-

ied and described in Andrieu and Roberts (2009), who name the approach the pseudo-

marginal (PM) method. Loosely speaking, the paper establishes the conclusion that when

an unbiased and positive estimator for the likelihood is used inside the MH algorithm,

the algorithm provides exact samples from the posterior distribution even though the

likelihood is estimated.

Andrieu and Roberts (2009); Flury and Shephard (2011); Pitt et al. (2012) explain the

PM method using an auxiliary variable representation. Suppose the likelihood estimator is

expressed as p̂(y|θ,u), where u contains the random numbers involved in the construction

of the estimate. Without loss of generality, u is assumed to be independent of θ from here

on. If we assume that p̂(y|θ,u) is an unbiased estimator of p(y|θ), then∫
p̂(y|θ,u)p(u)du = p(y|θ).

The joint posterior density of u and θ is defined as

π(θ,u|y) ∝ p̂(y|θ,u)π(θ)p(u), (2.2)

and it is easy to verify that the density integrates to one as p̂(y|θ,u) is an unbiased esti-

mator. Moreover, the marginal distribution of θ,
∫

u π(θ,u|y)du, is π(θ|y), the posterior

distribution of interest.

A key issue in implementing the PM method is controlling the variability of the likelihood

estimator, specifically, the variance of the logarithm of the likelihood estimator. If the

variance is too large, the chain is likely to get stuck at some local region due to overesti-

mating the likelihood function at some point, leading to poor efficiency of the algorithm.
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The overestimation can be caused by a set of random numbers used in generating the like-

lihood estimation, which results in the corresponding likelihood estimate being too large.

As a consequence, the following proposal, which might be close to the current parameter

value but with a “normal” likelihood estimate, is unlikely to be accepted. A small variance

is desirable, but it may be too computationally costly to reduce the variance. The optimal

variance of the logarithm of the likelihood estimator should be approximately in the range

of 1 to 3 to achieve an optimal trade-off between sampling efficiency and computational

cost (Doucet et al., 2015; Pitt et al., 2012; Schmon et al., 2021; Sherlock et al., 2015).

When implementing the PM method, the number of particles (samples used in Monte

Carlo integration) is set to target a variance in this range.

The original PM method uses independent sets of random numbers for generating likeli-

hood estimates evaluated at the current and proposed parameters. For an estimator with

a large variance (larger than 3), the PM method can be very inefficient. Several authors

show that PM methods benefit from updating the random numbers in a way that in-

duces a correlation between the logarithms of the estimators at the current and proposed

draws. Deligiannidis et al. (2018) obtain this by correlating the random numbers used

in constructing the estimators. A high correlation between these estimators significantly

reduces the number of particles required for optimal implementation. Tran et al. (2016)

propose an alternative approach called the block pseudo-marginal (BPM) method, which

controls the correlation of the estimators more directly than Deligiannidis et al. (2018).

The method is more efficient than that of Deligiannidis et al. (2018) for some problems.

The BPM method divides the random numbers for u (in the numerator of the MH ratio)

into blocks and updates θ jointly with one block of u to form θ′ and u′ in the denominator

(see Algorithm 3). With many blocks, a high correlation is induced between the numera-

tor and the denominator of the log MH acceptance ratio. Tran et al. (2016) also provide

guidelines for selecting the optimal number of particles for an efficient implementation of

the BPM algorithm.

The PM method discussed above assumes the existence of a positive and unbiased estima-

tor for the likelihood function. If the estimator p̂(y|θ,u) is not necessarily positive, then
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Algorithm 3 The block pseudo-marginal algorithm
1: Initialise θ such that π(θ|y) > 0 and generate a collection of random numbers u =

(u1, . . . , uB) with B blocks.

2: Propose θ′ from q(θ′|θ).

3: Propose u′ by randomly updating one block of u. The proposal for u′ is usually

independent of θ, i.e., q(u′|u,θ,θ′) = q(u′|u).

4: Calculate the acceptance ratio by

α(θ,θ′) = min
{

1, π(θ′)p̂(y|θ′,u′)q(θ|θ′)
π(θ)p̂(y|θ,u)q(θ′|θ)

}
.

▷ Here we assume a symmetric distribution for q(u′|u), so that the two proposal

density functions, q(u′|u) and q(u|u′), cancel out in the acceptance ratio.

5: Update θ ← θ′,u ← u′ if α(θ,θ′) > uar with uar ∼ Uniform(0, 1). Otherwise, θ,u

are unchanged.

6: Repeat Step 2-5 based on the updated θ,u for a fixed number of iterations.

the corresponding π̂(θ,u|y) is not guaranteed to be positive, as the PM method defines a

density on the augmented space of u and θ in (2.2). Given a negative value of p̂(y|θ,u),

the posterior density function of u and θ, π̂(θ,u|y) is invalid. Lyne et al. (2015) propose

a solution to the issue by running the PM sampler on the absolute value of the likelihood

estimate, which leads to an unbiased estimator. An importance sampling correction is

applied to consistently estimate the posterior mean with respect to π(θ|y) of any function

of the parameters. We call this approach “the signed PMMH algorithm”. As Lyne et al.

(2015); Quiroz et al. (2021) point out, even though the signed PMMH algorithm eliminates

the effect of negative estimates, the posterior mean has a big Monte Carlo error if a large

portion of the estimates are negative.

Algorithm 4 describes the signed PMMH algorithm. The BPM algorithm (Algorithm 3)

can be easily incorporated into the algorithm; we omit the details here. Both Chapter 3

and Chapter 4 provide detailed steps of the signed block PMMH algorithm for specific

problems.
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Algorithm 4 The pseudo-marginal Metropolis-Hastings with importance sampling sign

correction (signed PMMH) algorithm
1: Initialise θ such that π(θ|y) > 0.

2: Propose θ′ from q(θ′|θ).

3: Calculate the acceptance ratio by

α(θ,θ′) = min
{

1, π(θ′)|p̂(y|θ′)|q(θ|θ′)
π(θ)|p̂(y|θ)|q(θ′|θ)

}
.

4: Update θ ← θ′ if α(θ,θ′) > uar with uar ∼ Uniform(0, 1). Otherwise, θ is unchanged.

5: Track the sign of p̂(y|θ) for the updated θ: sign(y|θ) = 1 if p̂(y|θ) ≥ 0, otherwise

sign(y|θ) = −1.

6: Repeat Step 2-5 based on the updated θ for a prefixed number of iterations M .

7: The posterior expectation of any function h(θ) is
∫
h(θ)π(θ|y)dθ =

∑M
m=1 h(θ(m))sign(y|θ(m))∑M

m=1 sign(y|θ(m))
.

2.3 Symbolic data analysis (SDA)

This section first shows how to obtain “symbolic data” (termed “symbols”) from “classical

data” in Section 2.3.1, where the original data is summarised into a symbolic data set of

manageable size. As a large proportion of the symbolic data are presented in the format

of intervals, Section 2.3.2 explains interval-valued data with its associated statistics. The

section also covers methods for the analysis of interval-valued random variables. Section

2.3.3 outlines the likelihood-based approaches which fit symbols with parametric models.

2.3.1 From classical to symbolic data

Modern statistical models often analyse “classical data” of which realisations are typically

single points in Euclidean space X ⊆ Rp. A large data matrix of size n× p can be formed

accordingly, where each row takes the values from one individual, with the p variables

represented in columns. Denote the matrix as X = (Xij) where i represents the ith
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observation and j is the jth variable. Let xij denote the observed value of the variable

Xij and Xj denote the domain of the jth variable Xj . Then X = (X1, . . . , Xp) takes value

in X = ×pj=1Xj . Table 2.1 shows a typical data set taken from Billard and Diday (2003).

The variables Xij can be quantitative, with the response being a continuous variable such

as systolic blood pressure Xsystolic or the discrete variable Xage. The variables can also be

categorical. For example, the variable Xcity is a categorical variable with the domain being

a collection of cities Xcity = {Boston,Chicago,El Paso, . . . }. For the variable Xcancer, the

domain is not uniform as it can take a binary value Xcancer = {Yes,No} or a disease name

Xcancer = {lung, brain, breast, . . . }. What is crucial in the classical data setting is that for

each observation Xij , there is only one realisation associated with the variable.

Age Systolic pressure Diastolic pressure
i City Gender (years) (mmHg) (mmHg) Cancer

1 Boston M 24 120 79 No
2 Boston M 56 130 90 No
3 Chicago M 48 126 82 Lung
4 El Paso F 47 121 86 Yes
...

...
...

...
...

...
...

Table 2.1: Sample data set: Classical data.

In contrast, symbolic data contain the internal variation and structural information ex-

tracted from the original data set. The idea is to condition on some variables taking

specific values, e.g. Xcity = Boston, and then collapse the other variables to a distribu-

tional form. For example, the collapsed variable for Xage given the conditioning variable

Xcity = Boston would have a discrete distribution over positive integers, with the mass

on Xage = k being proportional to the number of individuals in the data set with Xcity

= Boston and Xage = k. As introduced by Diday (1989), symbolic data represent and

summarise the “classical data” in such a way that the resulting symbolic data set is of

manageable size and retains as much information as possible from the original data set.

The choice of conditioning variable(s) is related to the subject of the analysis.

Table 2.2 (extracted from Billard and Diday, 2003) provides more examples of symbolic

data obtained from the data set in Table 2.1. The symbolic objects u refer to groups of
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individual classical data points. The number of symbols is usually less than the number of

entities n, because each symbolic data point contains the information derived of a set of

observations. In order to describe the variation of the collapsed variables within each sym-

bol, the symbolic variable can take, e.g., an interval-valued format. For example, the first

row of Table 2.2 represents (as the collapsed variable) a male in his 20s, living in Boston,

who has a brain tumour with a blood pressure 120/79 mmHg (as the conditioning vari-

ables). The object u can be a collection of individuals who have the same characteristics,

or it can be interpreted as a specific male individual followed over a 10-year period with

the Age records falling in the interval [20,30). The interval-valued format is not the only

option for symbolic data. Other common representations of symbols include histograms,

distributions, set of categories, etc. For example, the 4th row of Table 2.2 may present the

same individual (4th) in Table 2.1, with the type of cancer undetermined, or a group of

people with different cancer types. Here a distribution is used to state the type of cancer:

A probability p of having lung cancer, and (1− p) of having breast cancer.

u Age Blood pressure (mmHg) City Type of cancer Gender

1 [20,30) (79/120) Boston {brain tumor} {Male}
2 [50.60) (90/130) Boston {lung, liver} {Male}
3 [45,55) (80/130) Chicago {prostate} {Male}
4 [47,47] (86/121) El Paso {breast p, lung 1-p} {Female}
...

...
...

...
...

...

Table 2.2: Sample data set: Symbolic data.

It is worth pointing out that the symbol types are not limited to the ones mentioned

above. Researchers may extract information and formulate the symbols according to the

requirements of their analyses. For instance, Diday and Vrac (2005) use the cumulative

density function as the format of symbols and model a partition problem by copulas. In

this thesis, we mainly focus on the symbols relating to interval-valued variables. Chapter

3 presents more details of this approach to symbol construction.

Symbolic data can arise naturally through the process of data collection and processing.

The original data may be collected as lists, intervals, histograms, distributions etc. One

naturally occurring example is blood pressure which changes continuously, and so naturally
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takes a range of values. Symbolic objects may also be constructed for large data sets

where it is too expensive to conduct inference on the original data. Hence, SDA has great

potential for inference and data storage in the era of big data, where large volumes of data

are becoming commonplace.

2.3.2 Interval-valued symbolic data

A symbolic observation can take multiple forms such as an interval, a list, a histogram

or even a distribution of values. Bock and Diday (1999) formally introduce the concept

of symbolic data. Bertrand and Goupil (2000) derive descriptive statistics for symbolic

data such as sample mean, standard deviation etc. Symbolic data can be classified into

quantitative or qualitative types. The former includes, but is not limited to, interval-valued

and histogram-valued symbols. The latter includes categorical multi-valued variables.

This section focuses on interval-valued variables which are analysed in Chapter 3.

Following Bertrand and Goupil (2000), suppose an interval-valued symbol Sij of the ith

observation (i = 1, . . . , n) and the jth variable (j = 1, . . . p) follows a uniform distribution

with an observed interval (aij , bij). Let Wj be a point in Sij . Then, for an arbitrary w,

Pr(Wj < w) =


0, if w < aij

(w − aij)/(bij − aij), aij ≤ w < bij ,

1, bij ≤ w.

The symbolic sample mean W j and the symbolic sample variance S2
j of Wj are

W j = 1
2n

n∑
i=1

(aij + bij),

S2
j = 1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)−
1

4n2

[
n∑
i=1

(aij + bij)
]2

.

Billard (2007, 2008) further show that the symbolic sample variance (SST ) can be decom-

15



CHAPTER 2. LITERATURE REVIEW

posed into the sum of interval variation (SSW ) and external variation (SSB).

nS2
j = SST = SSB + SSW

SSB =
n∑
i=1

(W ij −W j)2

SSW =
n∑
i=1

(bij − aij)2/12,

where W ij = (aij + bij)/2 and W j is the symbolic sample mean defined above. Note

that the result for SSW is consistent with the variance expression under the assumption

of uniformity. In this thesis, we relax such assumptions (in practice, the data between

aij and bij are unlikely to be uniform); see Chapter 3 for more detail. The definition of

symbols of other formats is in Bertrand and Goupil (2000); Bock and Diday (1999). It

is worth pointing out that “classical data” is a special case of symbolic data, where the

distribution relating to symbols, e.g., the uniform distribution on interval-valued variables,

has probability mass one on a single point.

2.3.3 Methods for interval-valued symbolic data

Symbolic data have a special structure, i.e., they have a specific structure such as interval-

valued variables, histogram-valued variables. Hence, methodologies developed for “classi-

cal data” are inappropriate. For example, conventional methods such as linear regression

methods cannot be directly applied to interval-valued variables. A number of papers

explore different methods for modelling interval-valued symbolic data.

Explanatory analysis: Cazes et al. (1997) and Chouakria et al. (1998) develop principle

component methods for analysing symbolic variables. Gowda and Diday (1991) intro-

duce a dissimilarity measure for Boolean symbolic objects and later Billard and Diday

(2003) extend clustering methods for symbolic objects based on the criteria proposed by

Chavent (1998). Chavent and Lechevallier (2002) and De Carvalho and Tenório (2010)

propose clustering methods based on various criteria. Brito (2002) presents hierarchical

and pyramid clustering methods for SDA.
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Regression analysis: Linear regression analysis builds models describing relationships

between variables. It has been intensively investigated in the SDA literature. The variable

of interest is usually one-dimensional, known as the response variable (Y ) and the other

variables are called explanatory/independent variables, denoted as X1, . . . , Xp, with the

observed values denoted as x1, . . . , xp. The linear regression models assume that Y is a lin-

ear combination of X1, . . . , Xp, with the weights determined by the parameters β0, . . . , βp,

plus a noise term ϵ. Mathematically, the model of an observation Yi, i = 1, . . . , n, is

expressed as

Yi = β0 + β1xi1 + · · ·+ βpxip + ϵi,

or equivalently in matrix form,

Y = Xβ + ϵ,

where the design matrix X is of size n × (p + 1), which collects x1, . . . , xp as the column

vectors. The first column of X is a column vector of 1, presenting the variable (a constant)

associated with the intercept β0. The least squares estimator for β = [β0, β1, . . . , βp]T

can be obtained by minimising
∑n
i=1(yi − β0 − β1xi1 − . . . βpxip)2. The solution is β̂ =

(X⊤X)−1X⊤Y with β̂ = (β̂0, . . . , β̂p)⊤.

Bock and Diday (1999) develop the first linear regression model, known as the centre

method, for symbolic data where the centre points of the intervals are used as single

points. Loosely speaking, each independent variable is collapsed into a fixed number (nc)

of one-dimensional intervals and the centre points are calculated accordingly from the

constructed intervals. For example, suppose the ith interval of Xj is Sij = [aij , bij ]. Then,

the centre point is calculated by Scij = (aij + bij)/2. A similar rule applies to Y to obtain

the centre point Scyi. The linear model regresses Scyi against Scij , i = 1, . . . , nc, j = 1, . . . , p,

where nc is the number of central points. The model is

Scy = Scβc + ϵc,

with Scy, Sc, ϵc conformal matrices and vectors, which are defined similarly to the regres-

sion model on single data points. The predicted value of the model is Snew,cβ̂c and the
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prediction interval is [SnewL β̂
c
,SnewU β̂

c] for a new set of variables Snew = (Snew1 , . . . , Snewp )

with Snewj = [SnewjL , SnewjU ]. The construction rule of the interval Snewj is identical to that

of Sij . Its lower and upper bounds are SnewjL , SnewjU respectively.

As an improvement for the centre method, the centre and range method is proposed in

De Carvalho et al. (2004); Neto et al. (2004). Two independent linear regression models

are used in this approach. The first regression model is the same as the one used in the

centre method. The second model is applied to the ranges of the interval-valued variables,

where the range of the interval Sij = [aij , bij ] is defined as Srij = bij − aij . The matrix

form of this model is

Sry = Srβr + ϵr.

The predicted value is the same as that of the centre method, and the prediction intervals

are constructed using both β̂
c and β̂

r. More detail is provided in De Carvalho et al.

(2004).

Both methods mentioned above have undesirable characteristics: the predicted upper

bounds might be smaller than the lower bounds given negative slope estimates of some

elements in β. To overcome this, Neto and de Carvalho (2010) build a regression model

under the condition that all parameters must be positive. The approach is generalised by

considering lasso-based constraints on the coefficients (Giordani, 2015). However, forcing a

non-negative constraint on parameters may distort the true relationship between variables.

Xu (2010) puts a constraint on the prediction bound, which forces the lower bound to be

smaller or equal to the upper one. In addition, the author uses the empirical covariance

function defined in Billard (2007, 2008) to obtain confidence intervals for the parameters

of interest. Lima Neto and dos Anjos (2015) use copulas to model the lower and upper

bounds jointly as a random vector.

Time series: Time series analysis aims to model a set of correlated observations. Interval-

valued variables arise naturally in time series models as observations are collected as an

ordered sequence through time. Teles and Brito (2005) model an interval time series using

an autoregressive moving average (ARMA) model with midpoints and ranges of interval-
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valued variables. Maia et al. (2008) adopt a similar strategy to fit an autoregressive (AR)

and autoregressive integrated moving average (ARIMA) models. García-Ascanio and Maté

(2010) apply vector autoregressive (VAR) forecasting models to the interval-valued time

series data to predict electric power demand per hour in Spain for two years. Ai et al.

(2008) investigate the high order interval autoregressive models to analyse the sterling-U.S.

dollar exchange rate.

A likelihood-based approach: In the previous section, the regression analysis on

interval-valued variables often uses centre points and ranges obtained from the origi-

nal data, where the symbols (centre points and ranges) are treated as observed data

without considering the variation of the data within the interval. As there is no para-

metric modelling on the symbols, it is usually difficult to carry out inference or conduct

hypothesis testing for quantities related to the symbols. In terms of parametric mod-

elling, Le-Rademacher and Billard (2011) propose the first likelihood-based approach for

interval-valued and histogram-valued variables. In this approach, each symbol is mapped

to a random vector, chosen so that it uniquely defines the symbol. Appropriate dis-

tributions are then specified to model the vector. For example, for the interval-valued

symbol Sj = [aj , bj ], define Θ = (Θj1,Θj2), with the realisations θj1 = (aj + bj)/2 and

θj2 = (bj − aj)2/12 respectively. Le-Rademacher and Billard (2011) assume

Θj1 ∼ N(µ, σ2), Θj2 ∼ Exp(β).

Then the joint likelihood function is

L(µ, σ2, β; θ1, . . . ,θm) ∝
m∏
j=1

[p1(θj1;µ, σ2)p2(θj2;β)],

where θj = (θj1, θj2), j = 1, . . . ,m, and p1(·), p2(·) denote the density functions of a normal

and an exponential distribution respectively. Maximum likelihood estimates (MLE) for

µ, σ2, β can then be obtained. Brito and Duarte Silva (2012); Lin et al. (2017) take an

alternative approach by modelling centre points and log-ranges of interval-valued variables

by a multivariate normal or a skew normal distribution to derive estimates accounting for

the dependence between the interval centre point and its log-range.
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The above methods build parametric models for the parameters associated with interval-

valued variables, for example, midpoints and ranges. However, most frameworks ignore

the process by which the interval-valued data are constructed from the underlying clas-

sical data. Instead, the data are commonly assumed to be uniformly distributed within

intervals, which is rarely satisfied in real examples. Consequently, it is unclear how to

incorporate the knowledge about the underlying micro-data into the analysis of the sym-

bols. In some cases, researchers are more interested in modelling parameters associated

with the original data than those obtained by modelling midpoints and interval ranges. To

address this issue, Zhang et al. (2020) develop an inferential framework for interval-valued

symbols, which allows direct parametric modelling of the underlying real-valued data in

the presence of interval-valued summaries. The approach provides more interpretable re-

sults compared with the methods mentioned above. Beranger et al. (2018) further extend

the approach by deriving a new general construction rule used for building the likelihood

functions for interval-valued and histogram-valued variables. However, the approach is

limited to the case of tractable likelihood functions. This thesis extends the approach

and uses PM methods to carry out Bayesian inference which facilitates the likelihood-

based approach for models with intractable likelihoods. The relevant literature and the

construction rule in Beranger et al. (2018) are covered in Chapter 3.

2.4 The doubly intractable problem

2.4.1 Introduction

Suppose that the likelihood function is expressed as

p(y|θ) = f(y|θ)
Z(θ) , with Z(θ) =

∫
y
f(y|θ)dy,

where f(y|θ) is computable and Z(θ) is an intractable normalising constant depending

on the parameter(s) θ. Standard MCMC techniques cannot be applied in such a model,

because the acceptance ratio (2.1) cannot be computed as the normalising constant Z(θ)
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does not cancel out. Models with intractable normalising functions arise in many applica-

tions, for instance, exponential random graph models (EGRMs) (Robins et al., 2007) to

model social network problems, the Ising and autologistic models for lattice data (Besag,

1974; Hughes et al., 2011) and Gaussian Markov random field models (GMRFs) (Rue and

Tjelmeland, 2002) in spatial statistics.

An example of social network data is given below. Figure 2.1 illustrates the friendship

connections of 34 individuals in a karate club (Zachary, 1977). An ERGM can be applied

Figure 2.1: Zachary’s karate club graph: A social network of 34 individuals with 78 edges.

to model the data set with the corresponding likelihood function defined as

f(y|θ) =
exp

(∑d
i=1 θisi(y)

)
Z(θ) , where Z(θ) =

∑
y∈Y

(
exp

d∑
i=1

θisi(y)
)
.

The term Y refers to the set of all graphs. The terms si(y) i = 1, . . . , d, are usually

sufficient statistics which are straightforwardly obtained from a realised graph. Suppose

that an undirected graph has n nodes; then the constant Z(θ) for the model involves a

sum over all 2n(n−1)/2 possible graphs, y, making Z(θ) computationally intractable even

for a relatively small n.

If a likelihood has an intractable normalising constant, then it is infeasible to calculate its

gradient, and likelihood maximisation is then impractical. Besag (1974) introduces the

idea of pseudolikelihood estimation, which involves summing over local data, and hence is

tractable: the likelihood f(y|θ) is approximated without Z(θ). However, when a data set

has strong dependence and a small sample size, the maximum pseudolikelihood estimator
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may seriously overestimate the dependence. Geyer (1991) constructs Monte Carlo-based

algorithms for approximating the MLE (MCMC-MLE). This approach has motivated the

use of various simulation methods for EGRMs; see Snijders (2002) for a review.

2.4.2 Bayesian methods for the doubly intractable problem

Before introducing specific methods designed for doubly intractable problems, a number of

approximate methods can be applied to the problem given that their associated assump-

tions are satisfied. For example, approximate Bayesian computation (ABC) algorithms

(Marin et al., 2012) bypass evaluation of the likelihood function with a comparison be-

tween the observed data and simulated data. The intractable likelihood functions cancel

out in the MH acceptance probability under ABC. Another example is the integrated

nested Laplace approximation (INLA) (Rue et al., 2009), which approximates the poste-

rior distribution by a normal density with the mean situated at the posterior mode and

the variance obtained by the local curvature of the distribution evaluated at the mode.

In addition to approximate methods, there is a growing literature on Bayesian inference

for doubly intractable problems with the aim of exact inference; see Park and Haran

(2018) for a comprehensive review of such methods. The algorithms may be classified

into two overlapping categories: auxiliary variable approaches and likelihood approxima-

tion approaches. Park and Haran (2018) also use the term “asymptotically exact” or

“asymptotically inexact” to distinguish whether the stationary distribution of the gener-

ated Markov chain is equal to the desired posterior or not. Following Park and Haran

(2018), we introduce both approaches below with one representative algorithm of each.

Both algorithms are implemented in a simulation study in Chapter 4 to compare with our

proposed method.

Auxiliary variable approaches: In general, auxiliary variable approaches cleverly

choose the transition kernel of the parameter and the auxiliary variable so that the nor-

malising constant cancels out in the MH acceptance probability. The exchange algorithm

proposed by Murray et al. (2006), which includes the auxiliary variable x and the proposal
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θ′ on an augmented space, is an example of such an approach. Let f(x|θ′)/Z(θ′) be the

density function of x and q(θ′|θ) be the density function of θ′. Then, the joint density of

x and θ′ conditional on y, θ is

p(x,θ′|y,θ) = p(x|θ′)q(θ′|θ) = f(x|θ′)
Z(θ′) q(θ

′|θ).

The posterior distribution on the augmented space is

π(θ)π(x,θ,θ′|y) ∝ π(θ)f(y|θ)
Z(θ) q(θ

′|θ)f(x|θ′)
Z(θ′) .

Since
∫

θ′
∫

x π(x,θ,θ′|y)dxdθ′ = π(θ|y), the marginal distribution of this approach is the

distribution of interest.

For each iteration, let (θ,θ′) be the current parameter setting for (y,x). Consider a

symmetric parameter swapping proposal between θ and θ′, which is (θ′,θ) for (y,x), then

the MH acceptance ratio of θ′ together with the dependent auxiliary variable x is

α(θ,θ′) = min
{

1, π(θ′)π(x,θ′,θ|y)
π(θ)π(x,θ,θ′|y)

}

= min
{

1, π(θ′)
π(θ)

f(y|θ′)����
Z−1(θ′)

f(y|θ)����Z−1(θ)
q(θ|θ′)
q(θ′|θ)

f(x|θ)����Z−1(θ)
f(x|θ′)����

Z−1(θ′)

}

= min
{

1, π(θ′)f(y|θ′)q(θ|θ′)f(x|θ)
π(θ)f(y|θ)q(θ′|θ)f(x|θ′)

}
.

Møller et al. (2006) introduce an alternative approach, where an auxiliary variable x is

proposed with a predefined density conditional on θ,y. The normalising constant cancels

out by utilising the likelihood function as a part of the proposal for θ,x.

Both algorithms require the implementation of perfect sampling (Propp and Wilson, 1996)

from the likelihood function as the density function of x is also intractable. However, for

some complex models, such as the Ising model on a large grid, perfect sampling is too

costly.

Several papers propose methods for cases where it is infeasible to sample from the assumed

data generating process. Caimo and Friel (2011) modify the original exchange algorithm,
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where the simulation of x from f(x|θ′) is carried out by MCMC. A similar idea is explored

by Liang (2010), named the double Metropolis-Hastings sampler, where the MH algorithm

is used twice; once for generating θ and once for generating the auxiliary variable x.

However, the algorithm is asymptotically inexact as the detailed balance condition does

not hold for updating θ, unless the number of draws for x is infinite. To overcome the

issue, Liang et al. (2016) propose the adaptive exchange algorithm, which can be an MCMC

extension of the exchange algorithm. In this algorithm, two chains are run simultaneously.

The auxiliary variables are generated via importance sampling from one Markov chain

and the other chain adopts the exchange algorithm to generate posterior samples. The

algorithm is asymptotically exact, but there are memory issues associated with the large

number of intermediate variables needed to be stored within each iteration.

To conclude, auxiliary variable approaches avoid evaluation of the intractable constant

directly. However, perfect sampling from the likelihood function is required. This can be

relaxed, but this results either in inexact inference, or a computationally costly algorithm.

Approximate likelihood approaches: These approaches approximate the normalising

constant, or its reciprocal, and substitute the approximation into the MH acceptance ratio.

In this thesis, we consider the PM framework which replaces the likelihood function with

an unbiased estimator. A representative method is the so-called Russian roulette (RR)

method.

The RR method first appears in the physics literature (Carter and Cashwell, 1975) as a

sampling technique for particle transport problems. Lyne et al. (2015) apply it to tackle

the doubly intractable problem. The reciprocal of the normalising constant is expressed as

a geometric series, and RR determines a truncation rule of the infinite sum. Specifically,

Z−1(θ) is estimated by

Ẑ−1(θ) = c(θ)
Z̃(θ)

[
1 +

∞∑
n=1

n∏
i=1

k̂i(θ)
]
, with k̂i(θ) = 1− c(θ) Ẑi(θ)

Z̃(θ)
, (2.3)

where c(θ) ensures |1− c(θ)Z(θ)/Z̃(θ)| < 1, and Ẑi(θ) (i = 1, . . . , n) is an unbiased

estimator for Z(θ). The ideal value of Z̃(θ) is the upper bound on Ẑ(θ), i.e., supi≥1 Ẑi(θ).
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RR is then introduced to find a stopping rule for the summation (so that there is only a

finite sum for n) such that Ẑ−1(θ) is an unbiased estimator of the likelihood Z−1(θ).

Following the notation in Lyne et al. (2015), we rewrite the infinite sum in (2.3) (including

the constant 1) as

S =
∞∑
i=0

ϕi(θ),

and define

Sk = ϕ0(θ) +
k∑

n=1

ϕn(θ)
pn

,

where S0 = ϕ0(θ) and p0 = 1. The RR process is based on simulation of the stopping

time τ according to the probabilities Pr(τ ≥ n) > 0 for all n ≥ 0. The stopping time is

often chosen as

τ = inf{k ≥ 1 : Uk ≥ qk},

where Uk
iid∼ Uniform(0, 1), qk ∈ (0, 1] and pn =

∏n−1
j=1 qj .

The RR estimator of S is Ŝ = Sτ−1 in this case. It is easy to verify that E(Ŝ) = S. Lyne

et al. (2015) further suggest ϕj(θ) = ϕj(θ) and qk = q = ϕ(θ) to ensure the variance of

the RR estimator is finite. The RR estimator is then simplified as

Sτ−1 = 1 +
τ−1∑
n=1

∏n
i=1 k̂i(θ)∏n−1
k=1 qk

,where qk =
k∏
i=1

k̂i(θ).

The RR algorithm offers asymptotically exact inference and can be applied to a wider

range of problems than the auxiliary variable approaches as perfect sampling from the

likelihood function is not required. However, RR has two drawbacks. First, it is usually

difficult to obtain a tight upper bound Z̃(θ) for Ẑ(θ). If the upper bound is loose, then

the convergence of the geometric series is slow and prevents the algorithm from running

efficiently (in this case, Ẑi(θ)/Z̃(θ) is small and k̂i(θ) ≈ 1, leading to a large value of

τ). Conversely, if the specified upper bound is not an actual upper bound, the estimator

can produce negative values, which can be corrected by weighting the expectation as with

the signed PMMH algorithm (see Section 2.2). However, the variance of the posterior

estimate becomes large when too many negative estimates are observed. Second, the
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variability of the likelihood estimator cannot be controlled explicitly. Consequently, a

significant amount of tuning is required for the algorithm to perform well.

Lyne et al. (2015) also propose an exponential auxiliary variable within the PM approach

and claim a faster convergence rate of the corresponding geometric series. Suppose ν ∼

Expon(−Z(θ)), then the joint distribution of ν and θ is

π(θ, ν|y) = π(θ)Z(θ) exp(−νZ(θ))f(y|θ)
Z(θ)

1
p(y)

= π(θ) exp(−νZ(θ))f(y|θ) 1
p(y)

= π(θ)
[
1 +

∞∑
n=1

(−νZ(θ))n

n!

]
f(y|θ) 1

p(y) . (2.4)

The series including the infinite sum in (2.4) can be estimated similarly to (2.3). However,

the introduction of the auxiliary variable ν does not solve the issues as mentioned above.

Chapter 4 adopts the same approach, but uses the block-Poisson estimator (Quiroz et al.,

2021) to overcome the problem encountered by the RR method.

Other approaches besides the PM methods approximate likelihood functions with different

targets. Atchadé et al. (2013) construct an adaptive MCMC method, which can be thought

of as a Bayesian version of the MCMC-MLE approach (Geyer, 1991). The constant Z(θ) is

approximated through importance sampling using the entire sample path. The proposed

algorithm is not Markovian, but the marginal distribution of θ generally converges to the

posterior density. Similarly to the adaptive exchange algorithm, this algorithm requires

many particles to cover the parameter space.

Park and Haran (2020) use a Gaussian process-based approximation to estimate the nor-

malising constant, and provide a theoretical justification. The algorithm overcomes the

expense in obtaining the normalising constant in other algorithms. The algorithm is ef-

fective for low-dimensional parameter spaces, which may involve high-dimensional data

sets. The parameter dimensions considered in the examples of this paper are between 1

and 4. For a high-dimensional parameter space, the algorithm might be computationally

impractical.
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Stoehr et al. (2019) propose a noisy Hamiltonian Monte Carlo (HMC) algorithm for in-

tractable distributions. The method relies on Hamiltonian dynamics to propose a large

transition across the parameter space. Monte Carlo estimates are introduced to overcome

the intractability induced in the construction of the transition and the computation of the

MH acceptance ratio.

2.5 Causal inference and the Bayesian additive regression

tree (BART)

2.5.1 Causal inference

The central task for many scientific questions is to understand causal relationships. It often

requires some assumptions to show that two correlated variables have a cause-and-effect

relationship. For example, causes always occur before effects; all individuals have a positive

probability of receiving the available treatments. We will discuss these assumptions further

later on. Causal inference investigates the methods of how, and to what extent, causality

can be inferred from the data. For example, causal inference helps to answer the following

question: “I have a headache. Will it help if I choose to take an aspirin?”. It is worth

emphasising that causal inference investigates the effect of causes (causal effects) but does

not identify the causes of the effect, which answers the question: “My headache is gone.

Why is it gone?”.

There are multiple ways to conduct causal inference, such as the potential outcome ap-

proach (Rubin, 1974), the graphical approach (Pearl, 2009) and the decision-analytical

approach (Dawid, 2000). In this thesis, we use the most widely adopted framework, the

potential outcome approach. Statistical methods using this approach are intensively inves-

tigated in the literature. Depending on different identification strategies (research designs),

various methods can be applied to model the same data. The next section introduces key

concepts in the potential outcome approach, the identification strategy “selection on the

observables,” and two popular associated statistical methods.
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The potential outcome approach

The approach is formulated in Rubin (1974) who claims that Jerzy Neyman first used

the language in randomised experiments (Rubin, 1990). Randomised experiments are re-

garded as the gold standard for investigating causal effects, where subjects are randomised

into either the treatment or the control group. The differences in outcomes can be at-

tributed to the treatment as the the responses of each group are comparable to those of

the other due to the randomisation. Rubin points out that randomised experiments are

impractical for many questions. For example, the cost of a randomised experiment may

be prohibitively expensive. There may be ethical reasons for not conducting such exper-

iments. The results can be delayed many years for some long term studies. Noting this,

Rubin (1974) proposes the potential outcome framework for observational studies when

no randomisation is involved in the treatment assignment.

Let Zi ∈ {0, 1} be a binary treatment indicator with 0 indicating that the ith unit is

in the control group and 1 that it is in the treatment group. Denote Xi and Yi as the

pre-treatment covariates and the response variable respectively. The potential outcomes

are defined as Yi(0) and Yi(1) to represent the outcome of each group. The effect of cause

Z on the ith unit is the difference between Yi(1) and Yi(0). Equivalently, it states that the

treatment Zi causes the effect Yi(1)−Yi(0). The observed continuous outcome variable Yi
is therefore defined as

Yi = Yi(1), if Zi = 1,

Yi = Yi(0), if Zi = 0.

The paired definition is often written compactly as

Yi = ZiYi(1) + (1− Zi)Yi(0).

The fundamental problem of causal inference (Holland, 1986) is that at most one of Yi(0)

and Yi(1) is observed for each unit i. Therefore, it is impossible to obtain the effect of Z

on the ith unit directly, which implies that it is implausible to infer individual-level casual

effects. However, such effects can be aggregated into the average treatment effect (ATE)
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for a subset of the population. The definition of ATE in the population as a whole is

τATE := E(Y (1)− Y (0)).

Likewise, the average treatment effect on the treated units (ATT) is defined as

τATT := E(Y (1)− Y (0)|Z = 1),

and the conditional treatment effect (CATE) as

τCATE(x) := E(Y (1)− Y (0)|X = x).

“Selection on the observables”

To estimate ATE, ATT or CATE, identification strategies are often required in causal

inference: research designs which aim to solve causal inference identification problems.

Angrist and Pischke (2008); Morgan and Winship (2015) provide in-depth reviews for

identification strategies based on different type of studies. The identification strategy “the

selection on observables” (Barnow et al., 1980) is adopted in Chapter 5. Under such a

strategy, it is asserted that the treatment assignment is random conditioning on a set

of observed covariates, which means that the treatment is conditionally independent of

potential outcomes given the observed covariates. Two commonly adopted assumptions

under this strategy are the stable unit treatment value assumption (SUTVA) and strong

ignorability.

SUTVA (Rubin, 1978) states that the potential outcomes of individuals are unaffected by

the changes of treatments that all other individuals receive. Strong ignorability is built

on the critical “ignorable” property (Rubin, 1978). If the treatment status is independent

of potential outcomes, the treatment assignment mechanism Pr(Z|X, Y (0), Y (1)) is said

to be “ignorable”. The “ignorable” assumption is written as

(Y (0), Y (1)) ⊥ Z.
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All the randomised experiments share such a property. Strong ignorability (Rosenbaum

and Rubin, 1983) is a stronger and theoretically more convenient assumption. The treat-

ment assignment is strongly ignorable given the covariates X if

(Y (0), Y (1)) ⊥ Z|X, 0 < Pr(Z = 1|X) < 1.

The first condition states the conditional independence of the potential outcomes Y (1),

Y (0) and the treatment Z given covariates X. The second condition says that every unit

has a positive chance of being assigned to the treatment or the control group.

If the SUTVA and strong ignorability are assumptions are satisfied, then

E(Y |Z = 1,X = x) = E(Y (1)|X = x),

E(Y |Z = 0,X = x) = E(Y (0)|X = x).

Hence, CATE can be estimated from the observed data as a problem of finding the condi-

tional expectation. For ATE and ATT, they can be derived by averaging the estimates of

CATE across relevant observations. Alternative approaches include regression and match-

ing methods; see the section below for an introduction.

Regression and matching methods

Many statistical methods are available to estimate causal effects provided the SUTVA and

strong ignorability assumptions hold; see Imbens and Rubin (2015); Morgan and Winship

(2015) for textbook-level introductions. Here we introduce the two most popular methods:

regression and matching. The proposed model in Chapter 5 uses a hybrid of both methods,

which is a regression method with adaptive matching involved.

Regression analysis is widely used to adjust for covariates under the identification strategy

“selection on observables”, which relies on consistent estimates of the response surfaces

E(Y (1)|X = x) and E(Y (0)|X = x). The models can have restricted functional forms

such as linear regressions or logistic regressions. For example, suppose that the treatment

effect is constant for all units i. Consider a linear model for estimating the treatment

effect,

Yi = Xiα + βZi + ϵi,
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with ϵi ⊥ Xi. The strong ignorability assumption asserts that Zi is independent of ϵi
conditioning on Xi. The coefficient β is then interpreted as an estimate of the treatment

effect. However, the strong ignorability assumption does not imply a linear relationship

between the response and the covariates. As critiqued in Freedman (2006), functional

form misspecifications may bias the estimate when the response surface is nonlinear. Non-

parametric regression methods, on the other hand, are more flexible for fitting complex

response surfaces. The use of splines and kernel methods is investigated in Hainmueller

and Hazlett (2014); Zhou et al. (2019); see Imbens (2004) for a review. Hill (2011) esti-

mates CATE by the Bayesian additive regression tree (BART) (Chipman et al., 2010), a

nonparametric Bayesian regression method which is introduced in the next section.

Matching is another popular technique in causal inference. It represents an intuitive idea

which makes the objects from the treatment group comparable to those from the control

group in terms of the observed covariates or a function of the covariates. A variety of

matching methods are developed in the literature on causal inference; see Stuart (2010)

for a detailed review. Since conditioning on all the covariates is impractical in case of a

high-dimensional X, an important quantity often used in matching is the propensity score

Pr(Z = 1|X = x) (Rosenbaum and Rubin, 1983), which is defined as the conditional prob-

ability of receiving the treatment given the observed covariates x. The propensity score

serves as a balancing score, which says that conditioning on the propensity score, the distri-

bution of the observed covariates is similar between treated and untreated subjects (Austin,

2011). Furthermore, Rosenbaum and Rubin (1983) show that if potential outcomes are

independent of treatment conditioning on the covariates X, then they are also indepen-

dent of treatment conditioning on a balancing score, i.e., (Y (0), Y (1)) ⊥ Z|Pr(Z = 1|X).

As the true propensity score is usually unknown in practice, its estimate is used prior to

the matching procedure. Various practical guides for implementing the propensity score

matching discussed in Caliendo and Kopeinig (2008); Heinrich et al. (2010). Abadie and

Imbens (2016) derive the large sample distribution of propensity score matching estima-

tors, where the propensity score itself is estimated first. The estimated propensity score

is also used in the model proposed in Chapter 5.
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2.5.2 BART

The Bayesian additive regression tree (BART) is first introduced in Chipman et al. (2007,

2010) as an alternative regression method. Unlike most regression models which make

stringent assumptions on the functional form of the conditional expectation, such as

E(Y |X) = Xβ, BART avoids such parametric assumptions. It combines a machine

learning algorithm with a likelihood-based inference framework to flexibly model a highly

non-linear response surface. Below, we first introduce the regression tree, followed by the

BART model and its prior. We then represent the iterative backfitting MCMC algorithm

and recent developments for the BART model.

Regression tree

The regression tree recursively partitions covariate space into subgroups and is the building

block of BART. Figure 2.2 provides an example of a binary tree. The left panel displays

the splitting rule x1 < 0.9 followed with x2 < 0.4 in the interior nodes (the boxes). The

observations are assigned to different leafs (the circles) by passing them along the tree.

The leafs are also termed terminal nodes to differentiate from interior nodes. Each leaf is

associated with a parameter µhi, i = 1, 2, 3, representing the predicted value. The right

panel of Figure 2.2 shows the corresponding partitioned sample space. If the tree is bushy

with more interior nodes, the partition of the space is expected to be finer. Observations

with similar covariates are likely to be assigned to the same subgroup. The criterion

for finding appropriate splitting rules are extensively studied in the machine learning

literature; see Rokach and Maimon (2005) for a review.

The model

The original BART formulation is as a sum-of-trees model,

Y =
m∑
j=1

g(x;Tj ,Mj) + ϵ, ϵ ∼ N(0, σ2).

Each (Tj ,Mj) is a single binary tree with Tj being the collection of splitting variables and

decision rules and Mj = {µ1j , . . . , µbjj} being the parameters attached to the terminal
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2.5.2 BART

Figure 2.2: An example binary tree with the corresponding partition of the sample space.
The figure is taken from Hill et al. (2020).

nodes of tree j. The number of elements in Tj and Mj may change through the MCMC

iterates.

The model prediction is the sum over the predictions provided by the m binary trees,

which can be regarded as an ensemble learning method (Dietterich et al., 2002). Instead

of finding a tree with the best structure to explain the data, the sum-of-trees model

makes use of the predictive power of each tree. The model is composed of weak learners

(individual regression trees) and combines them to form a stronger learner. The first

tree may explain a small amount of variation in the response with part of the remaining

variation explained by the next tree. The process is performed m times in total. To avoid

overfitting, a regularisation prior is placed on the tree structure. Such prior constrains

each tree to be small and each element of Mj is shrunk toward zero.

The BART prior

The default prior (Chipman et al., 2010) is imposed on σ2 and the pair (Tj ,Mj) jointly.

Assuming that the trees are independent of each other, the prior can be factorised as,

p((T1,M1), · · · , (Tm,Mm), σ2) =
[ m∏
j=1

p(Tj ,Mj)
]
p(σ2) =

[ m∏
j=1

p(Mj |Tj)p(Tj)
]
p(σ2),

where p(Mj |Tj) =
bj∏
i=1
p(µij |Tj), µij ∈Mj = {µ1j , . . . , µbjj}.

The prior is composed of three components, (1) the prior on σ2, p(σ2) (2) the prior on
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the tree structure Tj , p(Tj) and (3) the prior on terminal parameters conditioning on the

tree structure, p(Mj |Tj). Regularisation on the tree structure is advocated to prevent

the effects of a single tree from being too influential. Without the regularisation, a large

number of trees tend to overfit the data which leads to poor predictions. It is recommended

to use the default specifications in Chipman et al. (2007), which appear to be effective.

The prior on σ2 is an inverse chi-squared distribution,

σ2 ∼ νλ

χ2
ν

.

The hyperparameters ν and λ are obtained through a rough estimate for σ2, σ̂2. The degree

of freedom ν can be an integer number from 3 to 10. The quantile q is picked as 0.75

(conservative), 0.90 (default) or 0.99 (aggressive) and λ is set to satisfy Pr(σ2 < σ̂2) = q.

The default choice is (ν, q) = (3, 0.90).

The specification in Chipman et al. (1998) is used for the prior on Tj . Let d be the depth

of an interior node. The root node of a tree is at depth 0. The prior on a nonterminal

node is

Pr(node is an interior node) = α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞).

The default value for (α, β) is (0.95, 2). Small trees are favoured under such a specification.

For example, a tree with ≥ 5 terminal nodes is assigned with a probability 0.03.

The last component is the prior on the parameters at terminal nodes. Let µij be the

parameter attached to the ith terminal node of the jth tree. Conditioning on the tree

structure Tj , a normal distribution is imposed on µij ,

µij ∼ N(0, σ2
µ).

The observations y are rescaled, with ymin = −0.5 and ymax = 0.5. The scalar σµ is

selected to ensure k
√
mσµ = 0.5 with m being the number of trees of the BART model

and 0.5 being within kσu standard deviations of zero. For the choice of k, the values

between 1 to 3 yield good results. The number of trees typically ranges from 50 to 200.

The algorithm
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The BART model is implemented through an iterative backfitting MCMC algorithm. Let

T−j be the set of the structures of all trees except tree j and M−j the set of all parameters

excluding those of tree j. The backfitting algorithm can be regarded as a Gibbs sampler

which draws (Tj ,Mj) conditioning on T−j ,M−j , σ
2,y. The process is repeated m times

by looping through j = 1, . . . ,m, i.e.,

(T1,M1)|T−1,M−1, σ
2,y,

(T2,M2)|T−2,M−2, σ
2,y,

...

(Tm,Mm)|T−m,M−m, σ
2,y,

σ2|T1, . . . , Tm,M1, . . . ,Mm,y.

The last step draws samples from the full conditional distribution of σ2. The effect of

T−j ,M−j and y can be replaced by the residuals R−j = y −
∑
i ̸=j g(x;Ti,Mi). The last

step is straightforward to implement due to the conjugate prior on σ2, which results in an

inverse chi-squared distribution. For the first m steps, the sampling consists of two stages,

drawing from (Tj |R−j , σ
2) and (Mj |Tj , R−j , σ

2). Updating the terminal parameters Mj

conditional on Tj , R−j , σ
2 is also straightforward due to the conjugate normal prior on the

elements of Mj .

Sampling Tj conditioning on R−j , σ
2 is completed by the MH algorithm after integrating

out Mj . Chipman et al. (1998) propose a new tree based on the current one using one

of the four moves: growing, pruning, swapping and changing. Pratola et al. (2014) ad-

vise using growing and pruning only as the fits are close to those obtained by the four

moves. Kapelner and Bleich (2013) suggest using three alterations, which are growing,

pruning and changing. The “swapping” move is excluded because of the complexity of

the computational bookkeeping. In implementing the model proposed in Chapter 5, we

follow the approach in Kapelner and Bleich (2013), using the derivation of the conditional

distributions in Appendix C.1.

Development on BART

35



CHAPTER 2. LITERATURE REVIEW

The original BART assumes that the response variable is continuous. In Chipman et al.

(2007, 2010), the response variable is extended to a binary classifier by the transformation

Φ(.) on fitted values, where Φ(.) is a standard normal cumulative density function. Murray

(2021) extends the BART model to Poisson and binomial count models. For positive

observations, Linero et al. (2020) describe probit-based hurdle models and Gamma hurdle

models with the logarithm of the response modelled by BART. Another BART extension

allows heteroscadastic regression, where the variance of the error depends on covariates

(Pratola et al., 2017).

The default BART prior may break down for data with a high-dimensional covariate space.

In this setting, Linero (2018) modifies the default prior by introducing a sparsity-inducing

Dirichlet prior to filter out most variables in the model. Linero and Yang (2018) propose

the soft BART (SBART) model, where a soft threshold is advocated in the splitting rules

to introduce smoothness in regression trees. Under SBART, the decision of going to the

next leaf is made randomly rather than deterministically.

Ročková and van der Pas (2020) develop theory investigating why and when BART does

not overfit. Theoretical results are established on the optimal convergence rate of the

BART posterior concentration up to a log factor. Linero and Yang (2018) study such

a rate for SBART. Liu et al. (2021) propose ABC Bayesian forests for variable selection

problems, with theoretical results obtained for a modified BART prior.

Various software packages are available for efficient BART implementations on real appli-

cations, such as the R packages bartMachine (Kapelner and Bleich, 2013), dbarts(Dorie,

2021), and BART (Sparapani et al., 2021). Pratola et al. (2014) implement parallel com-

putation on a simplified version of BART to obtain an efficient algorithm.

The development on BART is more substantial than what we have discussed above; see

Hill et al. (2020) for a review on BART models with recent developments. In the next

section, we focus on an important application of BART, causal inference.
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2.5.3 BART for causal inference

Recall the estimation of CATE, which is defined as

τCATE(x) = E(Y |X = x, Z = 1)− E(Y |X = x, Z = 0),

provided that SUTVA and strong ignorability are satisfied. This problem can be refor-

mulated as finding the conditional expectation of Y given x and z. Hill (2011) first uses

BART as a tool to estimate heterogeneous treatment effects for observational studies with

continuous outcomes and binary treatments. Green and Kern (2012) adopt a similar

approach for survey experiments.

Recall that the BART model is written as (including the covariates x and treatment

indicator z),

Yi = f(xi, zi) + ϵi,

where f(xi, zi) is a sum over a set of trees.

The prediction of the BART model conditional on xi, zi is E(Yi|xi, zi) = f(xi, zi). To

obtain the counterfactual, which is E(Yi, |xi, 1−zi), the original data is imputed by flipping

the treatment status from zi to 1− zi.

Hahn et al. (2020) take a different approach by assuming

Yi = µ(xi) + τ(x̃i)zi + ϵi, ϵi ∼ N(0, σ2),

where µ(xi) and τ(x̃i) are modelled by separate sets of trees. The variables x̃i can be the

same as x or a subset of x. The method is called the Bayesian causal forest (BCF). Unlike

the approach in Hill (2011), τCATE(x) is modelled explicitly in this method. A similar

approach is applied in Zeldow et al. (2019), where the treatment effect τ(x̃i) is replaced

with a linear function of x. As pointed out in Hahn et al. (2020), the choice of treatment

level affects posterior inference. For example, if two active treatments are compared, it is

inappropriate to code zi as an element in {0, 1} or {±0.5} because there is no reference

treatment level. Another example is that when there is a big difference in the marginal
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variance of Y for the treated and control group, inferences based on the CATE estimator

are impacted. The BCF method treats the coding of z as a variable, with the model

described as:

Yi = µ(xi) + τ̃(x̃i)bzi + ϵi, ϵi ∼ N(0, σ2),

b0 ∼ N(0, 0.5), b1 ∼ N(0, 0.5).

Then, the CATE can be estimated by

τ(xi) = (b1 − b0)τ̃(x̃i).

Chapter 5 proposes our solution of a BART implementation for causal inference and

compares it with Hill (2011) and Hahn et al. (2020) in the simulated data sets of the 2016

ACIC challenge (Dorie et al., 2019).
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Chapter 3

Analysing symbolic data by

pseudo-marginal methods

3.1 Introduction

Large data sets are becoming the norm in science today. The traditional statistical ap-

proaches usually involve evaluating the likelihood function for all observations, which may

be computationally infeasible. Symbolic data analysis (SDA), on the other hand, aggre-

gates many individual-level observations into “symbols”, which provide a summary of the

underlying data, giving summary information about the distribution of subsets of the

data. Inference is then carried out using the symbols instead of the original data. The

procedure has favourable features in terms of computational efficiency for large data sets

as SDA uses manageable sized data rather than the full data set, providing a valuable

framework for statistical analysis in the big data era.

Symbolic data can be multi-valued, interval-valued or model-valued variables (Billard,

2006), for example, random intervals or random histograms. In this chapter, we use the

term symbols indistinguishably with symbolic data. Symbols are similar to summary

statistics, but may contain more information depending on the associated construction
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method. Many popular statistical analyses are extended to SDA, including regression

analysis (Billard and Diday, 2000, 2002), time series (Teles and Brito, 2015), clustering

(Brito, 2014), etc. However, these techniques are often based on assumptions that the

symbols follow uniform distributions. For example, if data X1, . . . , Xn are summarised by

a random interval [a, b] which contains all the Xi values, then it is often assumed that

the distribution of data within [a, b] is uniform. However, the assumption of uniformity

is inappropriate in many real applications. It consequently affects statistical inference, as

the variability within the interval is specified wrongly.

In contrast to other approaches of treating symbols as observed data, Beranger et al. (2018)

propose a likelihood-based framework for constructing a symbolic likelihood function which

relaxes the uniformity assumption. The approach incorporates the process of constructing

the symbol from the full data set, as part of the analytical process. This allows the

fitting of standard statistical models for classical data {Xi}, only given the symbolic

summary information (e.g. [a, b]). Evaluating the corresponding likelihood, the so-called

symbolic likelihood, requires computing integrals over the space of the unobserved data

Xi. Most work on these models has to consider the case where the integrals have a closed

form solution. However, this has restricted these techniques from being applied to more

general settings, for which the integrals may be intractable. Such intractability prevents

the application of popular algorithms to perform Bayesian inference on the model. We

propose a pseudo-marginal MCMC framework to carry out Bayesian inference for symbolic

data; see Section 3.2.1 for details.

As part of their symbol construction, Beranger et al. (2018) apply their approach to per-

form inference for the parameters of bivariate normal distributions and skewed normal

distributions. There are some limitations with the symbol construction technique they

propose, which does not make full use of the available information. As a result, it fails

to make reliable inference for the correlation parameter for a large data set with low

or moderate correlation. This weakness is noted in the results of a simulation study in

Beranger et al. (2018). Another downside of their method is that the applications are lim-

ited to low-dimensional problems with tractable likelihood functions only. For modelling
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histogram-valued random variables, the number of bins to construct the histograms in-

creases exponentially with the number of dimensions (similarly to non-parametric density

estimation), which limits direct applications for high-dimensional problems. In contrast,

the proposed method in this chapter overcomes the limitation on the data dimension and

relaxes the requirement of the tractable likelihood function. We also resolve the problem

of correlation underestimation through a novel symbolic construction method.

Various applications are investigated in the literature using the likelihood-based approach

in Beranger et al. (2018). Lin et al. (2017) estimate global species richness by a Bayesian

hierarchical approach. Whitaker et al. (2020) extend the framework to higher dimensions

using composite likelihoods and investigate climate extremes. Rahman et al. (2020) inves-

tigate theoretical properties of the likelihood and show the consistency of the estimators

in the context of modelling internet network traffic volumes.

In this chapter, we propose a novel symbol construction method for likelihood-based in-

ference in SDA. Following the construction method of Beranger et al. (2018), we extend

their framework to solve high-dimensional problems by considering a single quantile-based

(or min-max) interval instead of histogram-valued intervals, which is computationally

faster. To cope with the intractable likelihood function, we use the pseudo-marginal (PM)

framework (Andrieu and Roberts, 2009) to conduct Bayesian analysis, where an unbiased

likelihood estimator replaces the intractable likelihood. An exact and an approximate

method are proposed to get a (nearly) unbiased estimator of the likelihood function.

The chapter is organised as follows. Section 3.2 introduces the symbolic likelihood-based

framework and our extension. The exact and the approximate methods for likelihood es-

timation are then derived. The signed block pseudo-marginal Metropolis-Hastings (signed

block PMMH ) algorithm completes the chapter. Section 3.3 has three parts. The first part

compares the proposed method with Beranger et al. (2018). The second part compares our

exact and approximate methods. Third, the approximate method is applied to a factor

model and compared with the full data result. Section 3.4 demonstrates the method on

an empirical data set using a Bayesian linear regression.
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3.2 Methodology

3.2.1 Symbolic data likelihood

Beranger et al. (2018) propose a likelihood-based approach for SDA which incorporates the

data generating process of the random variables that underlie the symbols. We first explain

how the symbol is constructed in Beranger et al. (2018), then state the redefinition of the

symbolic likelihood based on our proposal. Finally, we discuss the differences between the

two approaches.

Denote X = (X1, . . . , Xd) as a d-dimensional random vector with density gx(·; θ) in the

domain X ⊆ Rd. The observed values x of X are aggregated into a symbol s according to

some known function fS|X=x(s|x, ϕ) parameterised by ϕ, which determines how the symbol

s is generated conditional on x. The function fS|X=x(s|x, ϕ) is a conditional density of s

given x and ϕ. The parameter ϕ is implicitly determined by the construction, and is not

modelled. The symbolic likelihood has the form

L(s; θ, ϕ) ∝
∫

X
fS|X=x(s|x, ϕ)gx(x; θ)dx. (3.1)

The equation says that L(s; θ, ϕ) is the marginal distribution of s obtained by integrating

over the unobserved x, which means all the possible data sets that may have generated s

are taken into account.

In this chapter, we write the symbol s as s = {xb,xo, nb, no, nt}, where xb ∈ Rd refers

to the location of those classical data points used to construct a hyper-rectangle, which

lie on the boundary of the hyper-rectangle constructed by themselves, and xo ∈ Rd refers

to the observations lying outside the hyper-rectangle. The total number of observations

is nt and the number of boundary (xb) and external (xo) data points are nb and no

respectively. To construct the symbol, we first select certain points to form the boundary

of the hyper-rectangle. After the hyper-rectangle is constructed, we can easily determine

the observations outside the boundary of the hyper-rectangle. Those data points within

the hyper-rectangle are discarded. We propose two ways of obtaining the boundary points.
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The first is to select the points which lie on the marginal minimum or maximum over all

the other points in at least one dimension. The second method generalises the first one by

choosing those observations containing the q and 1− q quantiles of at least one dimension.

When q = 0, then the first method results in a standard min-max hyper-rectangle with

no observations outside, i.e., xo = ∅, no = 0. By having q closer to 0.5, we reduce the

symbolic likelihood to the classic one as no observations exist inside the hyper-rectangle

(unless some points happen to lie exactly on the d-dimensional median).

Figure 3.1 illustrates the two types of symbols constructed by the methods described

above. In Figure 3.1, the left panel shows the original data set with nt = 1,000 data

points. The centre panel constructs a min-max (q = 0) hyper-rectangle using the 4

extreme data points as the boundary, and discarding the 996 observations within. The

right panel constructs the hyper-rectangle from the marginal q = 0.005 quantiles, retaining

17 external data points and discarding 979 points within the hyper-rectangle. Clearly, the

symbolic representation of the data significantly reduces the memory storage required. By

having a sufficiently small value of q, the quantile-based interval contains a few additional

observations over the min-max hyper-rectangle.
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Figure 3.1: Symbol construction. Left panel: Original data set of 1,000 independent obser-
vations, which are generated from a bivariate normal distribution with µ = (−1, 1), σ1 =
2, σ2 = 1, ρ12 = 0.8. Middle panel: Min-max interval with 4 points on the boundary,
discarding the 996 points within the rectangle. Right panel: Quantile-based interval
(q = 0.005 (0.5th quantile)) with 4 points on the boundary, 17 points outside and the
remaining points (979 points) inside the rectangle.

Based on (3.1), and assuming that the underlying data are iid observations from gx(x; θ),

43



CHAPTER 3. ANALYSING SYMBOLIC DATA BY PSEUDO-MARGINAL
METHODS

the symbolic likelihood of the observed symbol s is defined as

Lf (s; θ) ∝
[ ∫

S
gx(x; θ)dx

]nt−nb−no

× L(xb; θ)× L(xo; θ), (3.2)

where S is the hyper-rectangle defined by the symbolic variable s, and L(·; ·) is the classi-

cal likelihood function for the specific individual observations. The symbolic likelihood in-

cludes an integral with a large exponent representing the points within the hyper-rectangle.

In contrast, evaluating these points in the classical likelihood function is a product over

the densities, i.e.,
∏nt−nb−no
i=1 gx(xi; θ), which can be computationally prohibitive in the

absence of low-dimensional sufficient statistics. It is expected that if the integral with a

large exponent could be obtained at a low computational cost in the case of large nt and

small no, the symbolic approach would gain a potential advantage in reduced computing

time compared with evaluating the likelihood function on the full data.

The min-max random hyper-rectangle approach in Beranger et al. (2018) constructs the

symbolic likelihood function as

LB(s; θ) ∝
[ ∫

S
gx(x; θ)dx

]nt−nb

× Lb(xb; θ), (3.3)

where nt and nb respectively denote the total number of observations and the number of

observations attaining the minimum/maximum in at least one dimension. Lb is a likelihood

term which takes into account the number of classical data points used to construct the

random hyper-rectangle and their indicative (but not precise) location, e.g. “two points,

one in the bottom left corner, one in the top right”. This term does not make use of the

precise location of these points xb. The general expression for the term is complex and

case dependent; see the full expression in Beranger et al. (2018, Section 2.3.1).

Comparing (3.2) and (3.3), the differences in the symbol construction lead to different like-

lihood functions. Our proposal extends the Beranger et al. (2018) approach in two ways.

First, we include the full locations of the boundary points instead of just their indicative

locations. This enables us to properly capture the correlation between dimensions in the

case of a large data set. Second, as the minimal and maximal values are driven by the

extreme values of the observations, it is likely that such values will tend to ±∞ as the
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sample size increases. Consequently, the integral is close to 1 regardless of the true param-

eters. To mitigate this problem, Beranger et al. (2018) split the data into multiple subsets

and construct a symbol for each subset. When the integral can be evaluated analytically,

this approach is computationally feasible. When the integral has no analytical solution,

its estimation can be computationally costly, as it is typically done by Monte Carlo in-

tegration. In addition, the process has to be repeated for each subset, which makes the

whole process even more costly. In contrast, our proposal does not require data splitting.

The estimation is based on one single integral, resulting in a moderate computational

overhead. Compared with the data splitting approach, the total computational overhead

required to evaluate one integral is less costly than multiple integrals.

3.2.2 Likelihood estimators

For X with more than 2 dimensions (d > 2), the analytical evaluation of the integral in

(3.2) is often unavailable even for well-known distributions. The form of the likelihood

L is pn (omitting the known terms), where p is a probability that we can unbiasedly

estimate (p̂), e.g. via Monte Carlo integration, with n a known integer. However, us-

ing this estimate directly as L̂ = p̂n or l̂ogL = n log p̂ results in a biased estimate of

the likelihood or log-likelihood function, which is problematic for using within a pseudo-

marginal Metropolis-Hastings (PMMH) sampler. Another way of estimating L is to use

n independent estimates of p such that
∏n
m=1 p̂

m is an unbiased estimator of L. However,

this approach is computationally expensive as n is usually a large number, for example,

n > 10, 000. Inspired by the work of Gelman and Meng (1998) and Papaspiliopoulos

(2011), we propose an exact method for unbiased estimation of the symbolic likelihood

in Section 3.2.2.1. However, the exact method is slow due to the massive Monte Carlo

simulation involved. Section 3.2.2.2 proposes an approximate method to speed up the

computation. For observations from a multivariate normal distribution, Section 3.2.2.3

illustrates a more efficient way to estimate the likelihood.
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3.2.2.1 An exact method: Path sampling using the Poisson estimator

A two-step procedure constructs an unbiased estimator for the symbolic likelihood function

in (3.2). The first step uses path sampling (Gelman and Meng, 1998) to obtain an unbiased

estimator of the logarithm of the likelihood. This ensures that multiplication by the scalar

(nt−nb−no) does not bias the estimator of (nt−nb−no) log (
∫
S gx(x; θ)dx). The second

step transforms the unbiased estimator of the log of the symbolic likelihood to an unbiased

estimator of the symbolic likelihood by applying the Poisson estimator (Papaspiliopoulos,

2011). We now describe the approach in detail.

The logarithm of the symbolic likelihood function is (with constant omitted)

l(s; θ) = (nt − nb − no) log
[∫
S
gx(x; θ)dx

]
+ logL(xb; θ) + logL(xo; θ), (3.4)

where the last two terms are the classic log-likelihood functions. It is possible to obtain an

unbiased estimator for
∫
S gx(x; θ)dx in the first term by Monte Carlo or other sampling

methods. However, unbiasedness is not preserved by the log transformation. Instead, we

use the path sampler (Gelman and Meng, 1998) to obtain an unbiased estimator in the

logarithmic scale as follows. Let ht(z; θ) = gx(z; θ)t, t ∈ [0, 1] and

qt(z; θ) = ht(z; θ)∫
s ht(z; θ)dz .

The logarithm of the term (an integral with large exponents) in the likelihood function

(3.2) can be expressed as

(nt−nb−no) log
∫
S
gx(x; θ)dx = (nt−nb−no)

(∫ 1

0
Eqt(z;θ)

[
d

dt
log ht(z; θ)

]
dt+log

∫
S

1dz
)
.

(3.5)

Appendix A.1 proves this result. Based on (3.5), the path sampler offers an elegant way

to obtain the desired estimator by integrating over the so-called temperature t. The one-

dimensional integral ∫ 1

0
Eqt(z;θ)

[
d

dt
log ht(z; θ)

]
dt

usually does not have an analytical solution, but it is efficiently approximated using nu-

merical integration methods. This chapter uses the trapezoidal rule.
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To select an appropriate so-called “temperature ladder”, i.e., a sequence of temperatures

t ∈ (0, 1] 1, we follow the Friel and Pettitt (2008) approach, with t = (i/T )5, i = 1, . . . , T .

This geometric series fixes the total number of temperatures T and places more points at

the lower temperatures, where the value of Eqt(z;θ)

[
d
dt log ht(z; θ)

]
changes drastically with

t. Figure 3.2 demonstrates the results obtained by the path sampler using this temperature

ladder. The left panel depicts the result obtained at each temperature. The area of the

rectangles edged with blue in the left panel are used for the numerical integration over

temperatures. The right panel shows that the path sampler provides an unbiased result

(up to the error in the trapezoidal rule) compared with the true value. Algorithm 5

implements the path sampler.
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Figure 3.2: Demonstration of path sampler. The data are generated the same way as the
middle plot of Figure 3.1. The temperature ladder is set as t = (i/M)5, i = 1, . . .M,M =
100. For each temperature, we sample 2,000 zs from the target distribution at each
temperature. The left plot shows the estimates at each temperature. The right plot shows
the histogram of 500 independent replications and the theoretical true value.

Recall that path sampling enables us to get an unbiased estimator for the logarithm of

the likelihood function. The next step is to transform back to the original scale. Let

1The value of t usually cannot be zero as the corresponding density function qt(z; θ) ∝
constant, which does not integrate to 1. In the implementation, t usually starts from a
small value, e.g., (1/100)5. The approximation error is negligible by using the trapezoidal
rule.
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Algorithm 5 The path sampling algorithm
1: Input:

smin, smax: vectors containing the marginal minimal/maximal values of S;

θ: parameter(s);

t: a vector of length T between 0 and 1;

M : number of samples to draw at temperature ti, i ∈ {1, . . . , T};

2: Output: an unbiased estimator of log
∫ smax
smin gx(x; θ)dx.

3: for i = 1→ T do

4: ti ← the ith element of t.

5: for m = 1→M do

6: Sample zm from qti(z; θ).

7: end for

8: Tti ← 1
M

∑M
m=1

d

dti
log hti(zm; θ)

▷ Tti : an unbiased estimator of Eqt(z;θ)
[
d
dti

log hti(z; θ)
]
.

9: end for

10: Integrate Tti from t0 (a number close to 0) to tT = 1 numerically and use (3.5) to

obtain the final result.

A = (nt − nb − no) log
∫
S gx(x; θ)dx, and denote the corresponding estimator obtained

by the path sampler as ÂP . Due to the non-linearity of the exponential transformation,

E(exp(ÂP )) ̸= exp(A). The Poisson estimator (Papaspiliopoulos, 2011) êxp(AP ) ensures

that E(êxp(AP )) = exp(AP ) with

êxp(AP ) = exp(a+ λ)
χ∏
h=1

(ÂP
(h)
− a)

λ
; (3.6)

here χ ∼ Poisson(λ), ÂP
(h) is the hth (h = 1, . . . , χ) realisation of ÂP , which is an unbiased

estimator of AP , and a is an arbitrary real number. Note that if a is a lower bound of ÂP ,

then the estimator in (3.6) is positive with probability 1. However, it is usually difficult to

obtain a tight lower bound in many cases. Here we use the soft lower bound a = ÂP − λ

as proposed in Quiroz et al. (2021), where ÂP is a random draw from the realised ÂP
(h)
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(h = 1, . . . , χ). The unbiasedness of the estimator is guaranteed based on Property 4 of

Appendix A.2. In the implementation, we draw Quiroz et al. (2021) use the block-Poisson

estimator in the PM framework, where each block consists of a Poisson estimator. The

default value of λ is 1 in the block-Poisson estimator. Here we set λ to a larger integer,

e.g. λ = 3, to avoid a high probability of getting χ = 0 as there is one block. When χ = 0,

the Poisson estimator is reduced to exp(a+ λ), which can be a poor estimation of exp(A)

if a is far from the tight lower bound of ÂP − λ.

3.2.2.2 The approximate method: Taylor expansion with bias-correction

Even though the exact method generates an unbiased likelihood estimator, it is compu-

tationally costly as there are three nested loops in its implementation. To execute the

path sampler (Algorithm 5), a loop over T temperatures is required. For each temper-

ature, another loop includes M draws for evaluating the expectation. Furthermore, the

Poisson estimator requires λ replications on average based on (3.6). The computational

cost associated is more of a concern in the Bayesian context as the nested loop requires

re-evaluation for each parameter proposal in each MCMC iteration.

Similarly to the exact method, the approximate method also consists of a two-step pro-

cedure. In the first step, the logarithm of the likelihood function is approximated by a

quadratic Taylor series. Suppose E(B̂(m)) = B =
∫
S gx(x; θ)dx, m = 1, . . . ,M . It is

straightforward to show that the Taylor expansion of log B̂(m) in a neighbourhood of B is

log B̂(m) =
2∑
j=0

log(j)(B)
j! (B̂(m) −B)j +O((B̂(m) −B)3),

where log(j)(B) refers to the jth derivative of log(B) with respect to B.

Discarding the higher order degree 3 term and taking the expectation on both sides, we

have

E(log B̂(m)) ≈ logB + 1
B
E(B̂(m) −B)− 1

2B2E((B̂(m) −B)2)

= logB − 1
2B2 Var(B̂(m)).
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Define l̂ogB as an estimator of logB, the equation above can be re-expressed as

l̂ogB = 1
M

M∑
m=1

log B̂(m) + 1
2B2 Var(B̂), (3.7)

where B̂ is the random variable from which the B̂(m)s are drawn.

Recall that A = (nt−nb−no) log
∫
S gx(x; θ)dx and use the connection between A and B:

A = (nt − nb − no) logB; then the approximate estimator ÂT for A is

ÂT = (nt − nb − no)l̂ogB. (3.8)

Suppose that log B̂(m) is approximately normal distributed, i.e., log B̂(m) iid∼ N(µ, σ2).

It is straightforward to show that B = exp(µ + σ2/2). Then, l̂ogB is also likely to be

normally distributed as it is a linear combination of log B̂(m) plus a constant 1
2B2 VarB̂.

Similarly, by (3.8), ÂT is also (approximately) normally distributed. It is straightfor-

ward to propose the approximate estimator (also called the “approximately bias-corrected

estimator”), êxp(AT ) of exp(A) as :

êxp(AT ) := exp
(
ÂT −

1
2s(ÂT )

)
,

where we use the sample variance s(ÂT ) to replace the unknown quantity σ2 = Var(ÂT ),

given a relatively large M . The Monte Carlo estimates B̂(m)s in (3.7) are used to compute

the sample variance of s(ÂT ) based on (3.8).

3.2.2.3 The likelihood estimator for a truncated multivariate normal distri-

bution

The approximate method in the last section assumes the availability of an unbiased estima-

tor B̂(m),m = 1, . . . ,M , for the integral B =
∫
S gx(x; θ)dx. However, taking the average

of the independent samples ( 1
M

∑M
m=1 B̂

(m)) from the restricted region may result in an es-

timator with large variability, especially in high dimensions. If the underlying distribution

is of a specific form, there may exist a more efficient way of doing the Monte Carlo integra-

tion. This chapter focuses on an efficient estimator for multivariate normal distributions.
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Assuming gx(x; θ) is a d-dimensional multivariate normal density function with mean µ

and covariance Σ (θ = {µ,Σ}), the separation of variables (SOV) estimator is widely

used to compute probabilities over some region S. SOV, first proposed by Genz (1992),

is a numerical computational method to evaluate an integral by decomposing the region

S into d one-dimensional areas. Botev (2017) extends the SOV estimator into a so-called

minimax-exponentially-tilted (MET) estimator for simulating independent observations

from a truncated multivariate normal distribution as well as computing the cumulative

distribution function. The MET estimator has lower variance than the SOV estimator

based on simulation studies demonstrated in Botev (2017), which is desirable in the PM

framework. This chapter implements the MET estimator for computing
∫
S gx(x; θ)dx.

The general idea behind the SOV or the MET estimator is the representation∫
S
gx(x; θ)dx =

∫
S′
gx(x; 0,Σ)dx = (2π)−d/2

∫ u′
1

l′1

exp
(
−y

2
1
2

)
dy1· · ·

∫ u′
d

l′
d

exp
(
−y

2
d

2

)
dyd,

(3.9)

where y = L−1x, Σ = LLT (L is a lower triangular matrix), and S′ = S − µ to ensure

y = (y1, . . . , yd)T has mean vector 0. Here S is the region defined by the boundary

points of the symbol s, e.g., S is a rectangle for a 2-dimensional space and is cuboid for

a 3-dimensional space. S − µ means shifting S along the direction µ. Denote the lower

and upper bounds of S′ by l̃ = (l̃1, . . . , l̃d), ũ = (ũ1, . . . , ũd), and define l′ = (l′1, . . . , l′d),

u′ = (u′
1, . . . , u

′
d) as satisfying the following conditions:

l′1 = l̃1; u′
1 = ũ1;

l′i = l̃i −
i−1∑
j=1

Lijyj/Ljj ; u′
i = ũi −

i−1∑
j=1

Lijyj/Ljj , i = 2, . . . , d,

l′i ≤ yi ≤ u′
i i = 1, . . . , d,

where the subscript i denotes the ith element of the corresponding vector of length d and

Lij is the (i, j)th element of L. The SOV estimator first evaluates the integral∫ u′
1

l′1

exp
(
−y

2
1
2

)
dy1,

and then samples y1 between l′1 and u′
1, which is equivalent to sampling from a truncated

normal distribution. The region l′2, u′
2 is determined based on y1. Hence, the next integral
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∫ u′
2

l′2
exp

(
−y2

2
2

)
dy2 can be evaluated with high precision. All the remaining integrals pro-

ceed by similar steps, with the realisation of yi (i ≤ d) computed. The difference between

the MET and the SOV estimators is that SOV uses (3.9) directly to evaluate the integral,

whereas MET uses a tilting parameter which shifts l′,u′ as well. See Botev (2017) and

references therein for further details.

3.2.3 The signed block PMMH algorithm with the Poisson estimator

A popular way of constructing MCMC samplers involving intractable likelihood functions

is to use unbiased likelihood estimates in place of the unavailable likelihood function. An-

drieu and Roberts (2009) formally investigate the properties of such samplers and call

the approach “the pseudo-marginal” (PM) method. The key criterion for an efficient PM

method is that the variances of the logarithm of likelihood estimates should be sufficiently

small, approximately in the interval [1, 3], to achieve an optimal trade-off between sam-

pling efficiency and computational cost (Doucet et al., 2015; Pitt et al., 2012). If the

likelihood is greatly overestimated, then the Markov chain is likely to get stuck for many

iterations. Controlling the variance of the logarithm of the likelihood estimator is thus

crucial, in particular for the symbolic likelihood setting as the variance increases quadrati-

cally with the number of observations, indicating that we need to correspondingly increase

the number of random samples for generating the likelihood estimates.

In PM methods, the randomness in the likelihood estimates for Lf (s; θ) is determined

by the random numbers u = (u1, . . . , uM ) and therefore the likelihood estimator is de-

noted as L̂f (s; θ,u). It is now well-known that correlating the logarithm of the likelihood

estimators at the current and proposed draws increases the sampling efficiency of PM

methods by controlling the variability of the likelihood ratio in the Metropolis-Hastings

(MH) acceptance probability (Deligiannidis et al., 2018; Tran et al., 2016). To do so, we

adopt the block PM method in Tran et al. (2016). The idea behind the block PM method

is to group the random numbers u into blocks, and update one block at a time, holding

the other blocks fixed. The updated blocked random numbers are denoted by u′. The
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blocking strategy induces the correlation between the logarithm of the likelihood estimates

(determined by u and u′ respectively) in the MH acceptance probability.

For the methods introduced in Section 3.2.2.1 and Section 3.2.2.2, the blocks can be

formed flexibly. For the exact (path sampling) method, the block can be generated by

grouping at the temperature level or over the particles drawn at each temperature. For the

approximate method, there are M particles involved in generating the likelihood estimator.

Each particle can form a block on its own. With the update occurring at a few blocks,

the correlation between the likelihood estimators at the current and the proposed values

is much higher. The key result established by Tran et al. (2016) is that the optimal

value for the variance of the logarithm of the likelihood estimator after blocking is σ2
opt ≈

2.162/(1− ρ2) where ρ = 1− 1/M with the update on one out of M blocks. For example,

by having M = 500, we have the optimal variance for each block is σ2
opt/M ≈ 2.33. The

optimal variance on the likelihood estimator is then 1, 167, which is significantly larger

than the optimal ≈ [1, 3] in the standard PM method. Note that allowing a larger variance

means that we need less random numbers, which results in a computationally more efficient

algorithm. In our implementation, we set a prespecified value for ρ and adjust the number

of blocks M to achieve σ2
opt.

Another issue to consider is that in the exact method, the Poisson estimator in (3.6)

sometimes generates a negative estimate for the likelihood function. The optimal value

of the lower bound aopt is aopt = AP − λ (see Appendix A.2 for the proof). It often

impractical to obtain aopt as the quantity AP itself is intractable. In the application, we

set âopt = ÂP − λ. Here ÂP is a random draw from all realised ÂP
(h)s in the Poisson

estimator. If χ = 0, we generate an estimate ÂP from scratch. To cope with the possible

negative estimates, rewrite (3.6) by taking its absolute value

|êxp(AP )| = exp(a+ λ)

∣∣∣∣∣∣
χ∏
h=1

(ÂP
(h)
− a)

λ

∣∣∣∣∣∣ . (3.10)

The final absolute value of the likelihood estimate for one symbol is |L̂f (s; θ,u)| ∝

|êxp(AP )| × L(xb; θ) × L(xo; θ). Obviously, as an estimator of Lf (s; θ), |L̂f (s; θ,u)| is
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no longer unbiased, but we can still carry out inference from the posterior distribution

of interest by following the approach in Lyne et al. (2015). Lyne et al. (2015) use a PM

method with the biased likelihood estimator in (3.10), where the sign of the likelihood

estimates is tracked and subsequently used in an importance sampling step to obtain con-

sistent estimates of expectations with respect to the true posterior. Algorithm 6 illustrates

the steps in detail. We refer the reader to Lyne et al. (2015); Quiroz et al. (2021) for more

details on the signed PMMH algorithm.

The last implementation challenge is finding a good proposal distribution q(θ′|θ) in Al-

gorithm 6. We use a random walk proposal in this chapter, which is a Gaussian distribu-

tion centred on the current value of the Markov chain with a specific covariance matrix.

Here, the covariance matrix is formulated by the adaptive MCMC strategy in Haario

et al. (2001). We also follow the approach proposed in Garthwaite et al. (2016), where

a stochastic search algorithm based on the Robbins-Monro process (Robbins and Monro,

1951) is used to determine the scale of the covariance matrix needed to achieve a specific

overall sampler acceptance probability, here α = 0.234 in (3.11). The general idea of this

approach is that the scale of the covariance matrix gets shrunk in the next iteration of

MCMC if the proposed value is rejected, which leads to a potentially smaller proposed

move and a larger acceptance probability in the next iteration. If the proposed value is

accepted, the next proposal distribution is more likely to result in a larger jump by in-

creasing the scale. The changes in scale are chosen to achieve the target overall sampler

acceptance probability. See Garthwaite et al. (2016) and the references therein for further

details.

3.3 Simulated examples

3.3.1 Example 1: Correlation in a bivariate normal distribution

We compare the performance of our proposed symbolic likelihood in the case of the full

min-max random hyper-rectangle (no = 0), and the one proposed in Beranger et al.
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Algorithm 6 The signed block PMMH algorithm
1: Input:

S: symbol information.

u: random numbers between 0 and 1, grouped in M blocks.

θ0: starting value for parameters.

iter: total number of iterations.

2: Output: An unbiased estimator for ψ(θ) from target distribution.

3: for i = 1→ iter do

4: Generate u′ given u update one block out of M blocks.

5: Generate θ′ given θi−1 by q(θ′|θi−1).

6: Calculate the acceptance ratio:

acceptance ratio α = min
{

1, |L̂f (s; θ′,u′)|π(θ′)
|L̂f (s; θi−1,u)|π(θi−1)

× q(θi−1|θ′)
q(θ′|θi−1)

}
. (3.11)

7: Generate a from Uniform(0,1).

8: if α > a then

9: Accept θi ← θ′.

10: Update u← u′.

11: else

12: Maintain θi ← θ.

13: No update for u.

14: end if

15: sign(θi|s)← sign(L̂f (s; θi,u)). ▷ sign(x) = 1 if x > 0; sign(x) = −1 if x < 0.

16: end for

17: h(θ)←
∑iter
i=1 h(θi)sign(θi|s)∑iter

i=1 sign(θi|s)
.

(2018) by replicating the experiment in Beranger et al. (2018, Section 3.2). The symbolic

likelihood functions are denoted as Lf (our likelihood) and LB (Beranger’s likelihood)

respectively.

We construct m = 20, 50 symbols, each of which is obtained from a random sample of
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size nc = 5, 10, 50, 100, 1,000, 100,000 from a bivariate normal distribution with µ = (2, 5),

σ2
1, σ

2
2 = 0.52, and the correlations ρ = 0, 0.3, 0.5, 0.7, 0.9.

Table 3.1 reports the mean and standard deviation of the estimate ρ̂ under both likelihoods,

taken over 100 replicate data sets. For Lf , the estimates are unbiased and close to the

true value in all settings, with a smaller standard deviation compared to those using LB.

For LB with small sample sizes, most results are close to the true values as well, except

where nc = 1,000 and 100,000 with ρ = 0.3, 0.5, 0.7. Beranger et al. (2018) explain that

when nc is large, under any fixed correlation, it is increasingly likely that the min-max

constructed random rectangle is constructed from 4 unique data points (in 2-dimensional

data). As the number of rectangle-defining data points is used by Beranger et al. (2018) to

determine the strength of the correlation, (i.e., 2 points imply strong correlation; 4 points

imply weaker or no correlation), this means that LB underestimates the magnitude of ρ

for any value of correlation, once nc is sufficiently large.

Table 3.1 clearly shows this effect, particularly for smaller ρ. This limitation in Beranger

et al.’s approach can be overcome by using all the information of the boundary points,

including their precise locations, which our proposed method achieves. Hence, the Lf

results are unbiased and precise for all ρ and nc. Accordingly, we have resolved this bias

problem with the symbolic likelihood of Beranger et al..

3.3.2 Example 2: Comparing the exact and approximate method

Section 3.2.2.1 and Section 3.2.2.2 explain that both the exact and the approximate meth-

ods involve a two-step procedure to estimate the likelihood. We now examine and compare

the results of both methods for each step in this simulated example.

We first compare the performance of path sampling (exact method) and the Taylor approx-

imation in estimating the logarithm of the likelihood function. After selecting the method
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m=20 m=50

ρ nc 5 10 100 1,000 100,000 5 10 100 1,000 100,000

0.0

LB -0.001 0.015 0.006 -0.003 0.000 -0.009 0.001 -0.001 0.011 0.000
(0.126) (0.123) (0.146) (0.068) (0.004) (0.087) (0.082) (0.100) (0.108) (0.004)

Lf -0.006 0.014 0.000 -0.006 0.000 -0.017 0.001 -0.001 -0.003 0.000
(0.108) (0.073) (0.046) (0.037) (0.025) (0.071) (0.045) (0.026) (0.023) (0.017)

0.3

LB 0.304 0.297 0.273 0.168 0.012 0.306 0.303 0.289 0.249 0.045
(0.112) (0.129) (0.160) (0.217) (0.087) (0.067) (0.066) (0.100) (0.152) (0.143)

Lf 0.306 0.307 0.299 0.306 0.299 0.308 0.306 0.301 0.305 0.300
(0.102) (0.067) (0.038) (0.032) (0.023) (0.058) (0.043) (0.028) (0.018) (0.014)

0.5

LB 0.505 0.499 0.490 0.426 0.212 0.509 0.503 0.494 0.488 0.315
(0.094) (0.105) (0.134) (0.204) (0.298) (0.058) (0.055) (0.083) (0.076) (0.274)

Lf 0.504 0.505 0.499 0.505 0.503 0.506 0.505 0.501 0.502 0.503
(0.084) (0.059) (0.035) (0.029) (0.021) (0.048) (0.036) (0.023) (0.018) (0.014)

0.7

LB 0.701 0.700 0.696 0.692 0.641 0.706 0.702 0.701 0.701 0.695
(0.077) (0.074) (0.079) (0.081) (0.233) (0.044) (0.039) (0.047) (0.045) (0.055)

Lf 0.702 0.705 0.700 0.703 0.703 0.704 0.704 0.700 0.701 0.703
(0.060) (0.043) (0.029) (0.021) (0.018) (0.034) (0.025) (0.019) (0.015) (0.012)

0.9

LB 0.901 0.900 0.901 0.901 0.903 0.902 0.901 0.901 0.900 0.902
(0.030) (0.026) (0.025) (0.028) (0.023) (0.017) (0.014) (0.016) (0.016) (0.015)

Lf 0.900 0.901 0.901 0.901 0.903 0.901 0.900 0.901 0.900 0.902
(0.023) (0.018) (0.016) (0.012) (0.008) (0.013) (0.011) (0.009) (0.008) (0.007)

Table 3.1: Mean and standard deviation (in brackets) of the estimated correlation ρ over
100 independent data sets. The estimate is given by maximising the symbolic likelihood
LB (Beranger’s method) and Lf (our method), respectively. The table shows the number
of symbols (m), the number of data points per symbol (nc), and the true correlation ρ
between the two variables.

with the better performance, the Poisson estimator and the bias-corrected estimator are

implemented based on the selected method with the purpose of checking whether they

provide similar results.

As an illustrating example, we choose gx(x; µ,Σ) to be a d-dimensional multivariate

normal distribution with µ = 0d,Σ = 0.5Id + 0.51d1⊤
d , where 0d, 1d are respectively

d-dimensional vectors of 0’s and 1’s and Id is a d-dimensional identity matrix. The inte-

gration region between the lower and upper bounds is fixed as S = [−2 × 1d, 2 × 1d], for

d = 2, . . . , 10. The number of observations is n = 100, which is large enough to compare

the results of the two methods.

Table 3.2 shows the mean and variance of the estimated log-likelihood l̂ogL for logL =
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n log
∫
S gx(x; µ)dx, under both path sampling and the Taylor approximate methods taken

over 1,000 replicate calculations. The log-likelihood is estimated at the parameter values

stated above. Both methods provide similar results for low-dimensional cases (d ≤ 5).

The difference in estimates becomes slightly larger as the number of dimensions increases.

The largest difference is 0.25 at d = 10 which is around 2% of the mean value. The path

sampler gives an unbiased estimator of the log-likelihood function in theory. However,

in real applications, the unbiasedness is compromised by the numerical integration in

(3.5). Therefore, we cannot evaluate which method provides the result closest to the true

value (n log
∫
S gx(x; µ,Σ)dx) unless we know the analytical solution of the integral. The

estimator obtained by the Taylor expansion has lower variance than the path sampler, and

the gap increases with dimension. The computing time of 1,000 replications shows that the

Taylor approximation only takes around 1% of the path sampler’s time, i.e., it is 100 times

faster. We conclude that, compared to the path sampler, the Taylor approximation has

good accuracy with lower variance and a significantly lower computing time, particularly

for lower dimensions.

dim mean of l̂ogL var of l̂ogL time(secs)
path Taylor path Taylor path Taylor

2 -8.645 -8.652 0.113 0.003 298.393 2.959
3 -12.245 -12.215 0.188 0.011 354.071 3.636
4 -15.482 -15.472 0.316 0.027 433.104 4.503
5 -18.449 -18.499 0.382 0.048 510.373 5.318
6 -21.236 -21.314 0.528 0.075 564.963 6.028
7 -23.859 -24.041 0.641 0.100 617.368 6.297
8 -26.333 -26.597 0.772 0.131 656.173 6.751
9 -28.723 -29.141 0.818 0.163 728.830 8.369

10 -30.937 -31.534 0.973 0.201 703.758 8.244

Table 3.2: Mean, variance and execution time of 1,000 independent replications of esti-
mating logL = n log

∫
S gx(x; µ,Σ)dx with n = 100, where gx(x; µ,Σ) is a d-dimensional

multivariate normal distribution. Here µ = 0d,Σ = 0.5×Id +0.5×1d1⊤
d , S = [−21d, 21d]

and d = 2, . . . , 10. For the path sampler (path), the temperature ladder is defined as
(t/T )5 with T = 100 and t = 1, . . . , T . The number of Monte Carlo draws at each tem-
perature is M = 2,000. For the Taylor approximation (Taylor), we also set M = 2,000.

Table 3.3 shows the mean and variance of the logarithm of the absolute likelihood estimator

obtained by the Poisson method and the bias-correction method using identical settings
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dim mean of log |L̂| var of log |L̂| time(secs)
pois bc pois bc pois bc

2 -8.654 -8.654 0.000 0.003 8.446 2.811
3 -12.217 -12.223 0.003 0.011 17.011 5.803
4 -15.468 -15.473 0.009 0.026 18.591 6.284
5 -18.503 -18.507 0.018 0.043 19.629 6.377
6 -21.341 -21.369 0.032 0.072 20.900 6.849
7 -24.061 -24.089 0.055 0.102 23.680 7.608
8 -26.671 -26.709 0.107 0.131 24.424 7.860
9 -29.194 -29.240 0.170 0.174 27.146 8.668

10 -31.678 -31.680 0.304 0.196 29.563 9.561

Table 3.3: Mean, variance and execution time of 1,000 independent replications of es-
timating the (absolute) value of likelihood function L = [

∫
S gx(x; µ,Σ)dx]n, where the

estimator of the log-likelihood function is provided by the approximate method. For the
Poisson estimator (pois), λ = 3, a = Â(h) − λ, with h being a random number from
{1, . . . , χ}, χ ∼ Pois(λ). The term “bc” refers to the bias-corrected estimator.

to Table 3.2. We compare the results on the logarithmic scale as the target of interest

[
∫
S gx(x; θ)dx]n is numerically close to zero for large values of n. Note that this is different

from the estimator of the log likelihood (log L̂ ̸= l̂ogL). Both estimators provide close

results for the mean values across all dimensions. The Poisson estimator has a smaller

variance for data of dimension 1 to 9. However, the Poisson estimator has larger variance

than the bias-correction method, supported by the result of 10-dimensional data, which

is the highest dimension considered in this simulation study. For higher dimensions, the

bias-correction method continues to provide the estimator with lower variance compared

with the Poisson estimator (results not shown here). The associated computing time is 3

times longer than that of the approximate method, which is a result of setting λ = 3. For

the soft lower bound a, its computation is based on a random draw from the realisations

Â(h) with h ∈ {1, . . . , χ}, used in the Poisson estimator. See Appendix A.2 for more

details.

We close this example by summarising that the approximate method (the Taylor expansion

with bias-correction) offers results close to the exact method, but with significantly less

computing time. We thus use the approximate method in the following analyses.
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3.3.3 Example 3: Implementation of SDA on a factor model

This simulation study applies our SDA method on a factor model, where observations are

assumed from a multivariate normal distribution with the covariance matrix constructed

via a low-rank approximation. For d-dimensional observations, the covariance matrix is

assumed to be Σ = BB⊤ + D, where B is a low triangular matrix of size d × k (k ≪ d)

and D is a d × d diagonal matrix with positive entries. There are dk − k(k − 1)/2 + d

elements to be estimated instead of the d(d+ 1)/2 elements for the full covariance matrix.

The factor model is yi = µ + Bfi + ϵi, where fi ∼ N(0, Id), ϵi
iid∼ N(0,D).

One Bayesian approach is to model the latent variables fi so that the full conditional

distributions of all the parameters can be derived in closed form (Geweke and Zhou,

2015). However, each observation has its own corresponding latent variable(s), indicating

that many latent variables are required for a big data set. For example, for a data set

with n observations, it is necessary to update (d× n) + (d× k − k × (k − 1)/2) + (2× d)

parameters per MCMC iteration, which requires significant memory and computational

resources. The first term (d × n) is the number of latent variables; the middle term

(d× k− k× (k− 1)/2) refers to the number of parameters in B; and the last term (2× d)

is the number of the number of elements of µ and diagonal elements of D. To ensure a

fair comparison between the analysis on the full data and SDA, we use the MH algorithm

within Gibbs for the full data and symbols, where all elements in µ, D and B are updated

in a block conditioning on the other parameters.

We consider a data dimension d from 3 to 10 and set k = 1 for this simulation study.

Each data set includes 50,000, 100,000 or 500,000 independent observations with y ∼

N(µ,Σ). The elements of the d-dimensional vector µ are equally spaced from −1 to 1.

The covariance matrix is constructed by Σ = BB⊤ + D, with logDii ∼ Uniform(0, 0.25),

Bij ∼ Uniform(−0.5, 0.5) with i = 1, . . . , d and 1 ≤ j ≤ i. For each data set, only

one symbol is constructed by setting q = 0.005 (0.5th quantile). In the PM method, we

set u as a collection of 500, 1,000 and 6,000 random numbers respectively to estimate

the likelihood function. The number increases with the size of the corresponding data
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set. To implement the signed block PMMH algorithm (Algorithm 6), only one element in

u is updated randomly per MCMC iteration to induce the correlation in the block PM

method. For both approaches, we run the MCMC for 10,000 iterations and use the last

5,000 samples to estimate the posterior.

Table 3.4 shows the average value of the root mean squared error (RMSE) for µ, Σ and

the running time based on 10 independent replications. The calculation of RMSE is for µ

and the lower triangular matrix of Σ with the formula:

RMSE(θ̂,θ) =

√√√√ 1
N

N∑
i=1

(θ̂i − θi)2,

where θ̂ is the posterior mean vector of length N and θ is the true value. For symbolic

data, as we retain the data outside the q and 1 − q quantiles across every dimension,

the number of observations outside the d-dimensional hyper-rectangle increases roughly

linearly with the number of dimensions given a moderate correlation between dimensions.

In the worst case, SDA requires 2dq × 100% of the original data points. The percent of

observations required by SDA is in column “obs%” of Table 3.4.

Based on Table 3.4, the mean RMSE ratio between SDA and full data results is between 2

to 3 for the results of µ, and 1 to 6 for the results of Σ (lower triangular part). The results

show that the the full data analysis is more accurate than SDA, which is unsurprising

as there is some loss of information in the symbols compared to the full data set. The

computing time ratios for SDA vs full data range between 0.2 and 0.9, showing that SDA

requires less time than the full data approach. The computational advantage of SDA is

more evident for big data sets (n = 500,000). For smaller data sets (e.g. n = 50,000),

given the loss in precision, analysing the full data set is better.

Two implementation details are worth mentioning. First, the symbol construction time is

not included here as it is negligible compared with MCMC execution time. For example,

when n = 500,000 and d = 10, the symbol construction for the quantile min-max interval

(q = 0.005) costs around 1 second on average. Second, the full data analysis is speeded

up by vectorising the computation wherever possible, which saves a large amount of the
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time. In spite of optimising the code for the full data, SDA is faster than the full data

approach across all data sets, with the advantage more pronounced for large data sets.

We close this example by summarising that SDA saves computing time compared to the

full data approach, at the cost of less accurate results.

50,000

dim obs% RMSE (µ) ratio RMSE (Σ) ratio time(secs) ratio
Full SDA Full SDA Full SDA

3 2.980 0.004 0.014 3.832 0.007 0.013 1.992 117.979 111.172 0.942
4 3.946 0.005 0.015 3.130 0.006 0.010 1.788 146.723 131.156 0.894
5 4.912 0.005 0.014 2.610 0.005 0.010 2.068 190.498 137.421 0.721
6 5.860 0.005 0.015 2.788 0.005 0.011 2.225 206.843 155.910 0.754
7 6.806 0.005 0.011 2.434 0.005 0.011 2.249 291.440 175.189 0.601
8 7.716 0.005 0.015 3.248 0.005 0.014 2.872 335.309 173.867 0.519
9 8.642 0.005 0.011 2.434 0.005 0.012 2.641 350.184 196.541 0.561

10 9.562 0.005 0.012 2.452 0.004 0.011 2.597 319.808 227.150 0.710

100,000

dim obs% RMSE (µ) ratio RMSE (Σ) ratio time(secs) ratio
Full SDA Full SDA Full SDA

3 2.975 0.003 0.009 3.163 0.004 0.010 2.667 176.482 125.282 0.710
4 3.942 0.003 0.012 3.730 0.004 0.009 2.033 325.470 137.355 0.422
5 4.894 0.003 0.007 2.097 0.004 0.009 2.360 285.435 163.247 0.572
6 5.848 0.003 0.009 2.916 0.003 0.008 2.500 409.198 175.770 0.430
7 6.787 0.003 0.008 2.382 0.004 0.009 2.560 493.279 204.891 0.415
8 7.707 0.003 0.010 3.115 0.003 0.010 3.160 446.424 202.067 0.453
9 8.621 0.003 0.010 3.139 0.003 0.013 4.425 480.807 218.753 0.455

10 9.539 0.003 0.008 2.397 0.003 0.010 3.279 546.189 236.209 0.432

500,000

dim obs % RMSE (µ) ratio RMSE (Σ) ratio time(secs) ratio
Full SDA Full SDA Full SDA

3 2.966 0.001 0.004 2.893 0.002 0.004 2.346 1237.003 258.973 0.209
4 3.938 0.001 0.005 3.279 0.002 0.005 2.505 1458.698 335.016 0.230
5 4.892 0.001 0.005 3.364 0.002 0.006 3.821 1753.631 418.772 0.239
6 5.837 0.001 0.004 3.021 0.002 0.006 4.130 1941.753 500.909 0.258
7 6.770 0.001 0.003 2.610 0.002 0.008 4.950 2234.427 584.210 0.261
8 7.701 0.002 0.004 2.379 0.002 0.007 4.227 2503.626 675.187 0.270
9 8.620 0.002 0.004 2.497 0.002 0.007 4.751 2742.427 787.251 0.287

10 9.525 0.001 0.004 2.651 0.001 0.008 5.900 3099.076 887.121 0.286

Table 3.4: Mean results for 10 independent replications under the data set of size 50,000,
100,000 and 500,000. The columns show the dimension (dim), average percentage points
used in SDA (obs%), RMSE of µ, Σ and computing time (time). The ratio of computing
times SDA over the full data approach is also included (ratio).
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3.4 Empirical study: 2015 U.S. domestic flight delays

The previous simulation studies assume a multivariate normal distribution for the data.

However, this is often untrue in real data sets. The relationship between variables is often

the key question to explore in many studies. Regression analysis is widely used as a tool

for studying the relationship between the response variable and the observed variables.

This section conducts SDA in a regression model and compares its performance with the

standard approach using the full data.

We analyse flight delay data in the year 2015, which is available from the Kaggle platform

(https://www.kaggle.com/usdot/flight-delays). The data is originally provided by

the U.S. Department of Transportation’s (DOT) Bureau of Transportation Statistics. It

consists of 5 million records from tracking the on-time performance of domestic flights op-

erated by 14 large air carriers. Removing cancelled flights, there are 5,714,008 observations

in total. The aim is to study the relationship between the arrival delay, departure delay

and scheduled time (planned time amount). Ordinary least squares analysis shows that

the variability in the residuals increases with a longer scheduled time on the logarithmic

scale (results not shown here). We therefore model the heteroscedasticity as

yij = β0,i + β1x1i,j + β2x2i,j + ϵij ,

ϵij ∼ N(0, σ2
ij),

log(σ2
ij) = α0 + α1(x2i,j − x2i),

where y is the arrival delay (1 unit = 5 minutes); x1 is the departure delay (1 unit =

5 minutes); x2 is the logarithm of scheduled length of the flight (the planned amount of

time for the flight; 1 unit = log(5)) 2. For example, a flight departed 11 minutes early and

arrived 22 minutes earlier than the expected arrival time. The scheduled length of the flight

was 205 minutes and the actual trip time was 205− 11 = 194 minutes. The corresponding

2We include the scheduled length of flight to investigate whether the trip time is as-
sociated with an arrival delay. The result (not shown here) implies that a longer trip is
less likely to have an arrival delay. The logarithm transformation is carried out because
the range of length of flight is large compared to x1 and y, which mitigates the potential
influence of extreme points and makes the linear relationship more plausible.
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y, x1 and x2 are y = −22/5 = −4.4, x1 = −11/5 = −2.2, x2 = log(205/5) ≈ 3.71. The

air carrier is indexed by i, with i = 1,. . . , 14 and the subscript j denotes the individual

observations within each group. The term x2i refers to the average value of x2 in the ith

group.

We are interested in the posterior distribution of θ := {β0,1, . . . , β0,14, β1, β2, α0, α1}. The

approach for obtaining an unbiased estimator of
∫
S gx(x; θ)dx, the probability that x from

a multivariate normal distribution falls in the region S, discussed in Section 3.2.2.3 cannot

be adapted directly here as the assumption of joint normality of x1, x2, y is violated.

As p(x1, x2, y|θ) = p(y|x1, x2,θ)p(x1, x2), the part of the symbolic likelihood in (3.1) that

corresponds to the integration simplifies to∫
S
p(x1, x2, y|θ)d(.) =

∫
S
p(y|x1, x2,θ)p(x1, x2)dx1dx2dy

= Ex1,x2∼p(x1,x2)

[ ∫ sy,max

sy,min

p(y|x1, x2,θ)dy
]

= 1
M

M∑
m=1

(
Φ(sy,max|x(m)

1 , x
(m)
2 ,θ)− Φ(sy,min|x(m)

1 , x
(m)
2 ,θ)

)
, (3.12)

where x(m)
1 , x

(m)
2 are samples from p(x1, x2), m = 1, . . . ,M , sy,max, sy,min are the upper

and lower integration bounds, and Φ(·) is the standard normal distribution cdf.

In (3.12), the distribution p(x1, x2) is required, which is usually unknown. We use a finite

mixture of normal distributions to approximate p(x1, x2). Fitting a finite mixture normal

distribution for multivariate data can be done in many software packages. We use the

scikit-learn package in Python, using the following steps to construct symbols.

For each air carrier i:

1. Fit a K-group mixture normal distribution for x1i,j , x2i,j , j = 1, . . . , ni.

2. Predict the membership of each observation j and extract the observations falling

outside (q, 1− q) quantile values of x1i,j , x2i,j based on the predictions of this group.

3. Record the hyper-rectangle Sk constructed by the q, 1−q quantile values of x1i,j , x2i,j
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and count the observations nk falling in the hyper-rectangle for each group k, k =

1, . . . ,K.

Figure 3.3 illustrates the symbolic data representation for observations from one airline

with over 115,000 observations. The hyper-rectangles at the right panel of Figure 3.3

include 62,264, 33,867 and 14,974 observations, respectively. There are 4,088 individual

points to be analysed individually by our method, which is only 3.5% of the total number

of observations.

A K-group mixture of normal distribution is used to approximate p(x1, x2). The number

of groups is decided by BIC by changing the number of groups K. It is challenging

to do the model selection based on BIC scores as many candidate models are needed to

determine which one has the best BIC score. For each air carrier, we find that a model with

more than 10 groups has the lowest BIC score. However, in such cases, most groups only

contain thousands of observations or even fewer, implying that SDA is unnecessary. The

final numbers of groups chosen for each air carrier i are K = 4, 4, 5, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2

for i = 1, . . . , 14. Our choice is based on the following 1) the group number is the first

point after a sharp change in BIC scores of adjacent groups (the curve starts to become

“flat enough” after the point); 2) most groups contain more than 10,000 observations,

indicating the potential capability of SDA to reduce computational overhead. Figure 3.3

shows that the marginal distribution of x2 is inaccurate. However, Table 3.5 shows that

the corresponding parameter estimates are close to those obtained using the full data set.

The symbolic likelihood function for one air carrier i is (omitting the subscript i)

L(s; θ) ∝
K∏
k=1

[(∫
Sk

p(y;x1, x2,θ)p(x1, x2)dP (x1, x2, y)
)nk

× L(zb,k; θ)× L(zo,k; θ)
]
,

where z = {x1, x2, y}, zb,k, zo,k refer to the points falling on or outside the boundary of

hyper-rectangle Sk. The Bayesian analyses on the full data and the symbolic data are

performed using 20,000 MCMC iterations. After discarding the first 10,000 iterations, the

posterior mean vector θ̂f (full data) and θ̂s (SDA) are compared by considering the mean
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Figure 3.3: Demonstration of the symbol construction for the NK (Spirit Air Lines) airline
, which has 115,193 observations. Left panel: The relationship between departure delay
(x1) and log of scheduled time (x2). The histograms on the top and right present the
marginal distribution with a density curve for fitting a 3-component bivariate mixture of
normals on x1 and x2 jointly. Right panel: The symbol with three rectangles, obtained
by setting q = 0.01. The top and right plots show the predictive group memberships.

absolute percentage error (MAPE) and RMSE with the definitions:

MAPE(θ̂f , θ̂s) = 1
N

N∑
i=1

(
(|θ̂f,i − θ̂s,i|)/|θ̂f,i|

)
,

RMSE(θ̂f , θ̂s) =

√√√√ 1
N

N∑
i=1

(θ̂f,i − θ̂s,i)2,

where N = 18 (the number of total parameters).

Table 3.5 shows both metrics as well as the computing time. By increasing the value

of q from 0.005 to 0.10, both metrics decrease gradually (the symbolic data become a

better approximation of the full data) with a rise in computing time (more individual

observations are involved with an increased value of q). A larger value of q increases the

similarity of the results to that of the full data approach. It is unclear how to choose an

optimal value for q to achieve a principled trade-off between accuracy and computation.

According to these results, even an extremely small q (q = 0.005) suffices as the MAPE

is only 8%, but is about 12 times faster in terms of computing time. In the simulation
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study (results not shown here), if the underlying distribution of p(x1, x2) is known or can

be closely approximated by a normal distribution, a small value of q gives satisfactory

results, for example, q ≤ 0.025.

q obs% RMSE MAPE time(secs) ratio
prep MCMC total

full 100.0 0.0 0.0 0.0 11529.74 11529.74 1.0
0.005 2.17 0.17 0.08 31.71 934.05 965.76 11.94
0.01 3.8 0.15 0.07 39.48 1453.83 1493.31 7.72
0.025 9.15 0.15 0.06 39.68 2163.29 2202.98 5.23
0.05 17.64 0.12 0.05 39.82 3378.86 3418.68 3.37
0.1 33.9 0.07 0.03 40.44 5664.21 5704.64 2.02

Table 3.5: Mean, variance and execution time of 20,000 MCMC iterations on the full data
and the symbolic data with various quantile cut-offs (q). The “obs%” column shows the
percentage points used in SDA. “Prep” includes the time of fitting the mixture of normals
and the symbol construction. “MCMC” is the time spent on running 20,000 iterations.
The last column is the ratio of running times for the full data over that of the symbolic
data.

Evaluating (3.12) can be more computationally costly compared with the direct likelihood

evaluation when the number of Monte Carlo draws M is equal to the number of obser-

vations. A threshold has to be determined to guarantee that SDA takes less time than

analysing the full data. The left panel of Figure 3.4 explores the choice of threshold by

comparing computing time for both approaches. The SDA approach requires significantly

longer computing time given the same number of observations (Monte Carlo draws). From

the plot, the evaluating the likelihood for 10,000 observations takes about the same time as

evaluating the integral with 4,000 Monte Carlo samples. The optimal σ2
opt for each block

can be satisfied by updating one out of 4,000 blocks, which guarantees an efficient run of

the signed block PMMH algorithm. Hence, we set the threshold as 10,000 and select the

number Monte Carlo estimates to be 4,000.

Another concern is that SDA does not guarantee to give consistent estimators. The middle

and right panels of Figure 3.4 show the posterior distributions for β0,8 (air line NK) and

β1 using different qs. Although the posterior distributions of β1 are not the same, their

difference is negligible. By increasing q to 0.5, the symbolic data is reduced to the full

data. However, as mentioned above, a large value of q results in the loss of computational
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advantage of our method.
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Figure 3.4: Left panel: Time spent on evaluating of the integral part of the symbolic and
classical likelihoods. The result is the average time of 100 replications of evaluating the
same likelihood function 10 times. Middle panel: The posterior densities of β0,8 (which is
the individualised intercept for air line NK, with the symbol construction demonstrated
in Figure 3.3). Right panel: The posterior densities of β1 under different quantile values
of q.

3.5 Conclusions and discussion

We extend the likelihood-based SDA framework in Beranger et al. (2018) by proposing

novel symbol construction approaches. This chapter shows that it is possible of applying

PM to SDA by proposing exact and approximate computing methods. The approximate

method is nearly unbiased and is much faster than the exact approach. Much of the focus

is given to controlling the variance of difference in the logarithm of the estimator using

the signed block PMMH algorithm. By using blocking, estimators that are more variable

can be used. The computing time of our proposal is significantly less than that for the

full data, with a tolerable difference in the accuracy. The proposed method is also useful

when an intractable likelihood function is involved in Bayesian analysis, for example, the

doubly intractable problem (Park and Haran, 2018).

The likelihood-based SDA approach provides an elegant framework for inference in large

data sets. We believe that we have just scratched the surface of the field. There are several

open questions to be investigated in future research. In the symbolic data context, this
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chapter uses q, 1− q quantiles for a specific symmetric distribution (a multivariate normal

distribution). For high-dimensional skewed distributions, constructing symbols that give

a better representation remains an open question. For the symbol construction, numerical

evidence from simulations and the empirical study indicates that a small value of q pro-

vides good results. Although the pragmatic approach works well, understanding how to

tune the hyperparameters optimally is important, as their values have a large impact on

both the symbol construction and the variance of the logarithm of the likelihood estimator.

Regarding the symbol construction method, Beranger et al. (2018) propose alternatives

including “marginal only”, “sequential nesting” and “iterative segmentation” in addition

to min-max intervals. These methods are worth further investigation. A possible improve-

ment can be the incorporation of precise locations of boundary points in hyper-rectangles

into symbols. A more general question for SDA is providing a principled framework for

symbol construction which trades off accuracy and computing time. To implement the

PM method, we first transform the likelihood function into its logarithm, find a (nearly)

unbiased estimator and then transform back to its original scale to circumvent a direct

evaluation of the likelihood function. However, the path sampler requires a large amount

of computing time. Exploring more efficient methods of getting such an estimator is left

for future research.
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Chapter 4

A novel pseudo-marginal approach

to doubly intractable problems

using the block-Poisson estimator

4.1 Introduction

Doubly intractable problems occur in a Bayesian model when the likelihood function con-

tains an intractable normalising constant that depends on the model parameters. Markov

chain Monte Carlo (MCMC) methods (see Brooks et al., 2011, for an overview ) carry out

Bayesian inference for complicated models without computing the marginal likelihood, but

they cannot directly be applied in this setting due to the intractability of the likelihood.

Many well-known models have such a normalising constant in the likelihood function, for

example, the exponential random graph models for social networks (Hunter and Hand-

cock, 2006), the non-Gaussian Markov random field for spatial statistics, including the

Ising model and its variants (Hughes et al., 2011; Ising, 1925; Lenz, 1920).

Several MCMC algorithms have recently been proposed for Bayesian inference to tackle

the doubly intractable problem. These algorithms are classified into two categories, with
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some overlap between them. The first approach introduces auxiliary variables to cancel the

normalising constant in the Metropolis-Hasting (MH) acceptance ratio (Hastings, 1970;

Metropolis et al., 1953). The second approach approximates the likelihood function (in-

cluding the normalising constant) and substitutes the approximation in place of the exact

likelihood in the estimation. The pseudo-marginal (PM) method (Andrieu and Roberts,

2009) is often utilised when an unbiased estimator of the likelihood is available through

Monte Carlo approximations. However, in some problems, including doubly intractable

models, forming an unbiased estimator that is almost surely positive is prohibitively ex-

pensive (Jacob and Thiery, 2015). The so-called Russian roulette (RR) estimator (Lyne

et al., 2015) is an example of a method that uses a carefully chosen geometric series

to approximate the likelihood function unbiasedly. Section 4.3 further discusses existing

methods including RR.

We propose an efficient method for exact inference in doubly intractable problems by

utilising the approach in Lyne et al. (2015), where an unbiased, but not necessarily positive,

estimator of the likelihood function is used. The algorithm targets a posterior density

that uses the absolute value of the likelihood, resulting in iterates from a perturbed target

density. The iterates are subsequently reweighted using importance sampling to obtain

consistent estimates of the expectation of any function of the parameters with respect to

the true posterior density. We refer to such a pseudo-marginal approach as signed pseudo-

marginal. The approach is often combined with the MH algorithm, and called the signed

PMMH.

Our main contribution is to explore the use of the block-Poisson (BP) estimator (Quiroz

et al., 2021) in the context of estimating doubly intractable models using the signed PMMH

approach. Compared to the RR method in Lyne et al. (2015), our method offers the fol-

lowing advantages. First, the BP estimator has a much simpler structure and hence it is

more computationally efficient. Second, the block form of our estimator makes it straight-

forward to correlate the estimators of the doubly intractable posterior at the current and

proposed draws in the MH algorithm. Introducing such correlation dramatically improves

the efficiency of PM algorithms (Deligiannidis et al., 2018; Tran et al., 2016). Finally, un-
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der some simplifying assumptions, the logarithm of the absolute value of our estimator has

a closed form expression that can be used to derive heuristic guidelines to optimally tune

its hyperparameters. We demonstrate empirically that our method outperforms that pro-

posed in Lyne et al. (2015) when estimating the Ising model. To the best of our knowledge,

our method and that of Lyne et al. (2015) are the only alternatives in the PM framework

to perform exact inference (in the sense of consistent estimates of posterior expectations)

for general doubly intractable problems. Compared with algorithms which use auxiliary

variables to avoid evaluating the normalising constant, the signed PMMH is more widely

applicable and generic as it does not require exact sampling from the likelihood.

The chapter is organised as follows. Section 4.2 formally introduces the problem and

Section 4.3 discusses previous research. Section 4.4 consists of three parts. The first part

describes the BP estimator. The second part introduces the signed block pseudo-marginal

Metropolis-Hastings algorithm with the BP estimator (signed block PMMH with BP). The

third part establishes guidelines for tuning the hyperparameters in the signed block PMMH

with BP. Section 4.5 demonstrates the proposed method in three simulation studies: the

Ising model, the constrained Gaussian process and the Kent distribution. Section 4.6

analyses four data sets using the Kent distribution. The group of each sample is known.

The group is either a collection place or a sample processing procedure. Cross-validation

is used to provide the overall prediction accuracy of the group identity for each data set.

Section 4.7 concludes.

4.2 Doubly intractable problems

Let p(y|θ) denote the density of the observation vector y, where θ is the parameter vec-

tor. Suppose p(y|θ) = f(y|θ)/Z(θ), where f(y|θ) is computable while the normalising

constant Z(θ) is not. The reason that Z(θ) is intractable may be that it is computation-

ally expensive or it does not have an analytical form. Two examples are given below to

demonstrate this intractability for both discrete and continuous observations y.

Example 1. The Ising model (Ising, 1925).
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Consider an L × L lattice with binary observation yij ∈ {−1, 1} in row i and column j.

The likelihood of θ ∈ R is

p(y|θ) = 1
Z(θ) exp(θS(y)); S(y) =

L∑
i=1

L−1∑
j=1

yi,jyi,j+1 +
L−1∑
i=1

L∑
j=1

yi,jyi+1,j ; (4.1)

with Z(θ) =
∑

y
exp(θS(y)).

The normalising constant Z(θ) in the Ising model is a sum over 2L2
S(y) terms, making

it computationally intractable even for moderate values of L. This example is discussed in

Section 4.5.1.

Example 2. The Kent distribution (Kent, 1982).

The density of the Kent distribution for y ∈ R3, ∥y∥ = 1, is

f(y|γ1,γ2,γ3, β, κ) = 1
c(κ, β) exp

{
κγ1

⊤ · y + β
[
(γ2

⊤ · y)2 − (γ3
⊤ · y)2

]}
; (4.2)

with c(κ, β) = 2π
∞∑
j=0

Γ(j + 0.5)
Γ(j + 1) β2j(0.5κ)−2j−0.5I2j+0.5(κ),

where Iν(.) is the modified Bessel function and γ1,γ2,γ3 form a set of 3-dimensional

orthonormal vectors. The normalising constant c(κ, β) is an infinite sum. Section 4.5.3

covers this example.

Let π(θ) be the prior for θ. To see why MCMC sampling is difficult for models with an

intractable normalising constant, note that the posterior of θ is

π(θ|y) = f(y|θ)π(θ)
Z(θ)p(y) . (4.3)

If we use a MH proposal q(θ′|θ), then the acceptance probability of θ′ is

α(θ′,θ) = min
{

1, π(θ′)f(y|θ′)/Z(θ′)
π(θ)f(y|θ))/Z(θ) ×

q(θ|θ′)
q(θ′|θ)

}
, (4.4)

which is computationally intractable because Z(θ)/Z(θ′) is unknown.
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4.3 Previous research

Previous research on doubly intractable problems is mainly divided into the auxiliary

variable approach and the likelihood approximation approach; see Park and Haran (2018)

for an excellent review of both approaches. The auxiliary variable approach cleverly

chooses the joint transition kernel of the parameters and the auxiliary variables so that the

normalising constant cancels in the MH acceptance ratio. The most well-known algorithms

are the exchange algorithm (Murray et al., 2006) and the auxiliary variable method (Møller

et al., 2006). Both algorithms are model dependent and rely on the sampling technique

to draw observations from the likelihood function. Perfect sampling (Propp and Wilson,

1996) is often used to generate samples from the model without knowing the normalising

constant. However, for some complex models, such as the Ising model on a large grid,

perfect sampling is prohibitively expensive. To overcome such issues, Liang (2010) and

Liang et al. (2016) relax the requirement of exact sampling and propose the double MH

sampler and the adaptive exchange algorithm. However, the former generates inexact

inference results and the latter suffers from memory issues as many intermediate variables

need to be stored within each iteration.

The likelihood approximation approach approximates the likelihood function, often so

that the corresponding algorithm leads to a simulation consistent result, which means

that the posterior mean of any function of the parameters is a consistent estimator of that

function. Atchadé et al. (2013) directly approximate Z(θ) through multiple importance

sampling. Their approach also depends on an auxiliary variable, but does not require

perfect sampling. The downside is similar to that of the adaptive exchange algorithm;

generally, a large memory is required to store the intermediate variables generated in

each iteration. An alternative method is to approximate 1/Z(θ) directly and use the

signed PMMH algorithm to replace the likelihood function by an unbiased estimator as

proposed in Lyne et al. (2015). To obtain the unbiased estimator, 1/Z(θ) is expressed

as a geometric series which is truncated using an RR approach. The RR method first

appears in the physics literature (Carter and Cashwell, 1975) and is useful for obtaining
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an unbiased estimator through a finite time stochastic truncation of the infinite series.

To implement RR, a tight upper bound for Z(θ) is required, otherwise the convergence

of the geometric series is slow and makes the algorithm inefficient. In practice, an upper

bound is usually unavailable, which may lead to negative estimates of the likelihood, and

thus a signed PMMH approach is necessary, although it inflates the asymptotic variance

of the MCMC chain (Andrieu and Vihola, 2016)1 compared to a standard PM approach,

especially if the estimator produces a significant proportion of negative estimates (Lyne

et al., 2015). It is therefore crucial to quantify the probability of a negative estimate when

tuning the hyperparameters of the estimator, which is difficult for the RR estimator. In

contrast, our estimator is more tractable and the probability of a positive estimate is

analytically derived under simplifying assumptions. Besides the upper bound, a few other

hyperparameters of the RR estimator need to be determined and guidelines have not been

established due to its intractability. Wei and Murray (2017) combine RR with Markov

chain coupling to produce an estimator with lower variance and a larger probability of

producing positive estimates. However, their estimator is still too intractable to derive

optimal tuning guidelines.

The signed PMMH requires an unbiased likelihood estimator, so obtaining an efficient

estimator of the normalising constant is important, which is usually hard for complex

models. If such an estimator is normally distributed, then a bias-corrected approxima-

tion of the likelihood in combination with an auxiliary variable can be constructed to

generate simulation consistent results with faster execution time (Ceperley and Dewing,

1999; Quiroz et al., 2019). In the simulation study of Section 4.5.1, we compare our

proposed method to the exchange algorithm and the RR method. We also consider the

bias-corrected estimator.

1The asymptotic variance of the function ψ(θ) with θ the trajectories from an MCMC
chain {θ1,θ2, . . . }, with respect to the posterior distribution π, is defined as

Var(ψ(θ)) + 2
∞∑
τ=1

Covτ (ψ(θ)),

where Covτ (·) is the covariance of two iterates that are τ steps part in the chain.
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4.4 Methodology

4.4.1 The block-Poisson estimator

Before introducing the signed PMMH algorithm, we present the BP estimator, proposed

by Quiroz et al. (2021) for estimating exp(B) unbiasedly, assuming that E(B̂) = B,

where B̂ is an unbiased estimator of the log-likelihood B in the data-subsampling context.

The BP estimator is formed using blocks of Poisson estimators (Papaspiliopoulos, 2011),

to allow for correlation between adjoining iterates in the PM algorithm, as described

in Section 4.4.2. Similarly to the likelihood approximation approaches discussed above,

the BP estimator is implemented in combination with an auxiliary variable ν, and the

estimator of the normalising constant. Omitting many details, assume B(θ) = −νZ(θ).

Given ν and an unbiased estimator of Z(θ), the BP estimator produces an unbiased

estimator of exp(−νZ(θ)). The BP estimator requires a lower bound for B(θ) to guarantee

its positiveness. The BP estimator is more likely to be positive than the RR estimator.

This section describes the BP estimator L̂B in Definition 1. Lemma 1 gives the expectation

and variance of L̂B. Lemmas 2 and 3 establish useful results for hyperparameter tuning

of the algorithm (see Section 4.4.3). Appendix B.1 contains the proofs of all the lemmas.

Definition 1. The block-Poisson estimator (Quiroz et al., 2021) is defined as

L̂B(θ) =
λ∏
l=1

exp(ξl(θ)), where exp(ξl(θ)) = exp(a/λ+m)
χl∏
h=1

B̂(h,l)(θ)− a
mλ

. (4.5)

where m must be a positive real number; B̂(h,l)(θ) are realisations of a random variable

B̂(θ) with E(B̂(θ)) = B(θ); λ is the number of blocks with χl ∼ Pois(m) and a is an

arbitrary real number (it need not be positive).

Lemma 1. Denote Var(B̂(θ)) as σ2
B, assume σ2

B < ∞ and E(B̂(θ)) = B(θ). The

following properties hold for L̂B(θ),

(i) E(L̂B(θ)) = exp(B(θ)).

(ii) Var(L̂B(θ)) = exp
[(B(θ)− a)2 + σ2

B

mλ
+ 2a+mλ

]
− exp(2B(θ)).
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(iii) Var(L̂B(θ)) is minimised at a = B(θ)−mλ, given fixed m and λ.

Lemma 1 shows that given an unbiased estimator B̂(θ) of B(θ), the BP estimator is

unbiased for exp(B(θ)). Part (iii) of Lemma 1 suggests that we can choose the lower bound

a = B̂(θ)−mλ, as B(θ) is unknown. Here a uses B̂(θ), a realised estimate of B(θ), which

is estimated independently of B̂(h,l)(θ). Similarly to the RR estimator, the downside

of the BP estimator is that it is not necessarily positive all the time. Fortunately, by

having a relatively large mλ, the sufficient condition for L̂B(θ) ≥ 0 is likely to be satisfied.

Conversely, it is computationally costly as a large mλ value implies many products in the

BP estimator. Here we follow Quiroz et al. (2021) and advocate the use of a soft lower

bound, i.e., one that may lead to negative estimates, but still gives a Pr(L̂B(θ) ≥ 0) close

to one. The probability Pr(L̂B(θ) ≥ 0) is analytically tractable, with details provided

in Lemma 2. It is crucial to have this probability close to one for the algorithm to be

efficient.

Lemma 2.

Pr(L̂B(θ) ≥ 0) = 1
2

(
1 + (1− 2Ψ(a,m,M))λ

)
,

with Ψ(a,m,M) = Pr(ξ < 0) = 1
2
∑∞
j=1

(
1− (1− 2 Pr(Am ≤ 0))j

)
Pr(χl = j), χl ∼

Pois(m) and Am = [B̂(θ)−B(θ)]/(mλ) + 1.

Lemma 3. If B̂(h,l)(θ) iid∼ N(B(θ), σ2
B) for all h and l, when a = B(θ)−mλ, the variance

of log |L̂B| is

σ2
log|L̂B | = mλ(ν2

B + η2
B)

where

ηB = log(σB/(mλ)) + 0.5
(
log 2 + EJ(ψ(0)(0.5 + J))

)
and

ν2
B = 0.25

(
EJ(ψ(1)(0.5 + J)) + VarJ(ψ(0)(0.5 + J))

)
where J ∼ Pois((mλ)2/(2σ2

B)) and ψ(q) is the polygamma function of order q.
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Lemma 3 derives the variance of the logarithm of the absolute value for the block-Poisson

estimator by assuming a normal distribution for B̂(h,l)(θ). This result is used for hyper-

parameter tuning in Section 4.4.3.

4.4.2 The signed block PMMH with BP algorithm

This section first incorporates the BP estimator into the PMMH algorithm to cope with

the doubly intractable problem. To deal with the negative estimates, a signed correction

is placed in the signed PMMH algorithm. The signed block PMMH with BP algorithm

is then presented, and its performance demonstrated in the simulation studies and the

empirical data sets in this chapter.

Following Lyne et al., an auxiliary variable ν ∼ Expon(Z(θ)) is introduced. The joint

distribution of θ and the auxiliary variable ν is

π(θ, ν|y) = Z(θ) exp(−νZ(θ))f(y|θ)
Z(θ) π(θ) 1

p(y)

= exp(−νZ(θ))f(y|θ)π(θ) 1
p(y) .

Sampling ν ∼ Expon(Z(θ)) directly is impractical as we never know the true value of

Z(θ). In the implementation, we draw ν ∼ Expon(Ẑ(θ)), where Ẑ(θ) is an unbiased

estimator for Z(θ). Note that ν depends on θ implicitly, which could be written as ν(θ).

In this chapter, we omit the dependence of ν on θ and write ν(θ) as ν for simplicity.

The signed PMMH algorithm

Suppose an unbiased, but not necessarily positive, estimator êxp(−νZ(θ)) of exp(−νZ(θ)),

is available; e.g., the BP estimator in (4.5). We also write the estimator as êxp(−νZ(θ)|u),

where u is a set of random numbers with density p(u). The unbiasedness of êxp(−νZ(θ)|u)

means that

exp(−νZ(θ)) =
∫

u
êxp(−νZ(θ)|u)p(u)du.
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The corresponding posterior distribution is

π̂(θ,u, ν|y) = êxp(−νZ(θ)|u)p(u)f(y|θ)π(θ) 1
p(y) .

However, the distribution above is not a valid target as the estimate êxp(−νZ(θ)|u)

can be negative. We follow the signed PMMH algorithm in Lyne et al. and replace the

likelihood estimate with its absolute value in the MH acceptance ratio. Then, the posterior

distribution on θ, u and ν is

|π̂(θ,u, ν|y)| = |êxp(−νZ(θ)|u)|p(u)f(y|θ)π(θ) 1
p(y) .

The MCMC iterates are reweighed using importance sampling to obtain a consistent esti-

mate of the expectation of an arbitrary function ψ(θ) with respect to the posterior density

π(θ|y). The expectation is computed as follows,

E(ψ(θ)|y) =
∫

θ
ψ(θ)π(θ|y)dθ

=
∫

θ
ψ(θ)

∫
u

∫
ν
π(θ,u, ν|y)dνdudθ

=
∫

θ
ψ(θ)

∫
u

∫
ν
π̂(θ,u, ν|y)sign(π̂(y|θ,u, ν))dνdudθ,

where sign(x) = 1 if x > 0; sign(x) = −1 if x < 0.

The function ψ(θ) is independent of ν, storing only θ(i) and the sign of likelihood esti-

mate evaluated at the accepted θ(i), ν(i),u(i) at the ith iterate. The final estimate of the

expectation is

Êπ(ψ(θ)) =
∑N
i=1 ψ(θ(i))s(i)∑N

i=1 s
(i)

, (4.6)

where s(i) = sign(π̂(y|θ(i),u(i), ν(i))).

The signed block PMMH with the BP algorithm

Correlating the estimators at the current and proposed draws decreases the variability of

the difference of the log likelihoods, which brings a well-documented substantial advantage

over the standard PMMH (Deligiannidis et al., 2018; Tran et al., 2016). We follow the

approach in Tran et al. (2016), where the correlation is induced by blocking the random

79



CHAPTER 4. A NOVEL PSEUDO-MARGINAL APPROACH TO DOUBLY
INTRACTABLE PROBLEMS USING THE BLOCK-POISSON ESTIMATOR

numbers and updating one of the blocks in the evaluation of the likelihood at the proposal

while keeping the rest of the blocks fixed. In the BP estimator, we use the random number

ul to estimate ξl, l = 1, . . . , λ and group them as u = (u1, . . . , uλ) = u1:λ. Note that each

ul may include random numbers of different sizes depending on the realised χl ∼ Pois(m).

At successive MCMC iterates, only one block is updated when obtaining the likelihood

estimator at the proposed draw. Given the number of blocks λ is sufficiently large, the

correlation ρ between the log of the likelihood estimators evaluated at the current and the

proposed draw is approximately 1− 1/λ (Quiroz et al., 2021). We can adjust the number

of blocks to produce a pre-specified correlation between the log of likelihood estimates.

Algorithm 7 the signed block PMMH with BP for one iteration
1: Input: Current values of ν,θ, u1:λ.

2: Output: Updated values of ν,θ, u1:λ and sign(π̂(y|θ, u1:λ, ν).

3: Generate u′
1:λ ← u1:λ by updating one block of random numbers.

4: Generate θ′ by q(θ′|θ).

5: Estimate Ẑ(θ′) and generate ν ′ from an exponential distribution with mean Ẑ(θ′) :

q(ν ′|θ′) = Ẑ(θ′) exp(−ν ′Ẑ(θ′))

6: Set θ ← θ′, ν ← ν ′ and u1:λ ← u′
1:λ with the probability:

min
{

1, |π̂(θ′, ν ′|y, u′
1:λ)|

|π̂(θ, ν|y, u1:λ)|
q(θ|θ′)
q(θ′|θ)

Ẑ(θ)
Ẑ(θ′)

exp(−νẐ(θ))
exp(−ν ′Ẑ(θ′))

}
(4.7)

where π̂(θ, ν|y, u1:λ) = êxp(−νZ(θ)|u1:λ)f(y|θ)π(θ)p−1(y) and êxp(−νZ(θ)|u1:λ) is

estimated by the BP estimator.

7: Record s = sign(π̂(y|θ, u1:λ, ν)) which is equivalent to the sign of êxp(−νZ(θ)|u1:λ).

Note: sign(x) = 1 if x > 0; sign(x) = −1 if x < 0.

Algorithm 7 outlines the signed block PMMH with BP. For Line 5 in Algorithm 7, we

recommend estimating Ẑ by reusing the Ẑ obtained in the BP estimator.

To understand this, rewrite (4.7) as

π(θ′)f(y|θ′)
π(θ)f(y|θ) ×

q(θ|θ′)
q(θ′|θ)

× Ẑ−1(θ′)
Ẑ−1(θ)

× |êxp(−ν ′Z(θ′)|u′
1:λ)|/ exp(−ν ′Ẑ(θ′))

|êxp(−νZ(θ)|u1:λ)|/ exp(−νẐ(θ))
.
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The equation above indicates the term

|êxp(−ν ′Z(θ′)|u′
1:λ)|/ exp(−ν ′Ẑ(θ′))

|êxp(−νZ(θ)|u1:λ)|/ exp(−νẐ(θ))

corrects the induced bias in Ẑ−1(θ′)/Ẑ−1(θ). As Z−1(θ′)/Z−1(θ) is intractable, it is

desirable to decrease the variability in Ẑ(θ) and Ẑ(θ′). Conversely, estimating Ẑ(θ)

with low variability may cost extra computational resources which in turn increases the

computing time. Hence, we recommend constructing Ẑ(θ) by taking the average value

of Ẑ(θ)s used in the BP estimator. The unbiasedness property of the BP estimator is

still preserved under this construction given a provided ν and the availability of unbiased

estimate Ẑ(θ)s of Z(θ), and the computing cost involved in obtaining the average is

negligible.

Equation (4.6) provides the final estimate of ψ(θ). Quiroz et al. (2021) show that a

significant proportion of negative likelihood estimates inflate the asymptotic variance.

The worst case occurs when half of the estimates are negative; the expectation is then

unbounded because of the zero in the denominator.

4.4.3 Tuning the signed block PMMH with BP algorithm

Pitt et al. (2012) provide guidelines to tune the number of particles in a PM algorithm for

an optimal trade-off between computing time and MCMC efficiency measured by the inte-

grated autocorrelation time (IACT); the IACT is the sum of the autocorrelation functions

of the MCMC iterates of ψ(θ) (after convergence) lagged from zero to infinity (Roberts

and Rosenthal, 2009). Quiroz et al. (2021) extend these guidelines to cases when the like-

lihood estimator is not necessarily positive. The derivation of our guidelines follow those

in Quiroz et al. (2021), with modifications that account for our (different) estimator.

Following Section 4.3 of Quiroz et al. (2021), the optimal hyperparameters minimise the

computational time (CT) of the algorithm, which can be viewed as a trade-off between

computing cost and the inefficiency factor (IF). The simplified expression of CT in Quiroz
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et al. (2021) is

CT = mλM
IF|π̂|,ψs

(
σ2

log |L̂B |
(m,λ,M |γ)

)
(2τ(m,λ,M)− 1)2 . (4.8)

The first term mλM is proportional to the expected cost per iteration since there are

λ blocks in total and each block includes m estimates on average with M Monte Carlo

samples in each.

The numerator in (4.8) is the inefficiency factor (IF), which measures the MCMC sampling

efficiency of drawing ψs from the targeted distribution |π̂|. The IF is implicitly determined

by the variance of the log of the absolute likelihood estimate σ2
log |L̂B |

, which in turn depends

on the hyperparameters m,λ,M . Section S2 of Quiroz et al. (2021) defines and derives IF.

The IF evaluation in (4.8) requires γ(θ), defined as γ(θ) = MVar(−νẐM (θ)), provided

that the estimator of Z(θ) is obtained by Monte Carlo integration using M particles.

Note that γ(θ) is the estimator’s variance, which does not depend on M . The term γ(θ)

is decomposed as

γ(θ) = MVar(−νẐM (θ)) = MVar
(
− log(u)
Z(θ) ẐM (θ)

)
= M log(u)2 Var(ẐM (θ))

Z(θ)2 . (4.9)

The second equality in (4.9) uses ν ∼ Expon(Z(θ)), or equivalently, ν = − log(u)/Z(θ),

with u ∼ Uniform(0, 1). This decomposition is useful in tuning the hyperparameters.

The denominator in (4.8) stands for τ(m,λ,M) = Pr(L̂B > 0). Lemma 2 provides its

expression. Equation (4.8) shows that having a large proportion of negative estimates

has a detrimental effect on the CT.

Figure 4.1 shows the effects of the number of blocks (λ) and Monte Carlo samples (M)

on the logarithm of CT, τ and σ2
log |L̂B |

. We consider the three cases γ = 102, 1002, 5002

respectively (left to right panels). The panels from left to right show that the optimal λ

(corresponding to minimal CT) varies with different values of M and it increases with γ

(top row). The minimum CT is associated with a high probability of a positive estima-

tor (τ) (middle row). The last row indicates that σ2
log
∣∣L̂B

∣∣ decreases as a function of λ.

Comparing the top nine panels with the bottom nine, a high correlation ρ = 0.99, reduces

λopt from 295 (no correlation, ρ = 0) to 195 for γ = 5002. On the other hand, ρ = 0.99
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(a) ρ = 0

(b) ρ = 0.99

Figure 4.1: The effect of the number of blocks λ on the logarithm of CT, τ and σ2
log |L̂B |

.
The Poisson parameter m is fixed as 1 for all the panels. The correlation term ρ = 0
(upper panel), 0.99 (bottom panel). The columns from left to right, correspond to three
different settings of γ = 102, 1002, and 5002. The top, middle and last rows show the CT
(4.8), the probability of obtaining a positive estimator (see Lemma 2) and the variance of
log of the absolute value of the likelihood estimate.
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requires at least 100 blocks. So when the variance γ is small, introducing a high corre-

lation increases the CT as more blocks are required compared to the uncorrelated case.

Our implementation follows the approach in Tran et al. (2016) which sets the correlation

ρ to a value close to 1. Comparing the first row of the top nine panels in Figure 4.1 with

that of the bottom nine, it shows that a high correlation significantly reduces the CT per

iteration for large γ.

From above, the optimal tuning depends on γ, which is affected by the intrinsic variability

of the estimator ẐM (θ) based on (4.9). In the application, γ is set to a large value γmax
by using a grid search over possible θ. The tuning process starts with fixed values of

λ and m to find the optimal value for M to minimise (4.8). In Figure 4.2, we fix the

values of λ and m, with λ = 50, 100 (the corresponding ρ are 0.98 and 0.99 respectively),

and m = 1. A standard optimiser is used to find the optimal value Mopt for each of the

γ. The scattered dots in the left panel of Figure 4.2 plot various values of √γ and the

corresponding Mopt. The figure shows that Mopt increases as a function of the √γ and

similarly for the logarithm of CT as the right panel of Figure 4.2 shows. To illustrate the

relationship between Mopt and √γ, a quadratic polynomial is fitted to the dots in the left

panel.

Figure 4.2: Left panel: The optimal value Mopt vs √γ. The lines are quadratics fitted to
the scattered dots. Right panel: the minimised CT vs √γ.

The tuning strategy is based on γmax, leading to a conservative choice of Mopt. We
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recommend the following heuristic approach to choose the values for the hyperparameters.

1 Have a general idea of the posterior distribution of θ. This can be accomplished by

conducting an exact method for a few iterations, optimising the posterior distribution

by plugging the biased estimator (1/Ẑ(θ)), or adopting an available approximate

method.

2 Estimate the corresponding Var(ẐM (θ))/Z2(θ) using a grid search over possible θ

values based on results from Step 1. The estimator ẐM (θ) can be plugged into (4.9)

to replace the unknown Z(θ). The variability induced by ν needs to be consid-

ered here. A conservative choice is γ(θ) = 2MVar(ẐM (θ))/ẐM
2(θ). Appendix B.2

discusses this in more detail.

3 Obtain the maximum value γmax(θ) of γ(θ) from Step 2. A good starting point is

to set λ = 100,m = 1, ρ = 0.99 and Mopt = max{50, 0.0012× γmax(θ)}.

When γmax(θ) is small or moderate large, e.g. γmax(θ) < 1002, having many blocks

increases CT. A weaker correlation also produces an efficient algorithm with smaller

CT. Another suitable setting is λ = 50,m = 1, ρ = 0.98 andMopt = max{50, 0.0042×

γmax(θ)}.

For a even smaller γ(θ), the correlation can be relaxed further. In the Ising model

example, setting λ = 10 is sufficient when variability is low; see Section 4.5.1 and

Appendix B.3.

4.5 Simulation studies

We demonstrate the algorithm on three examples with different targets. The first ex-

ample is an Ising model, which is usually the benchmark example for doubly intractable

problems, as perfect sampling is available for this model. The example serves the purpose

of comparing the signed PMMH with BP to other methods and showing that the signed

PMMH with BP generates simulation consistent results with less computing time. In the
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second example, the intractability is caused by constraint on the Gaussian process GP.

We show that not accounting for the constraint leads to erroneous inference. The last

example considers the Kent distribution, where the intractable normalising constant is an

infinite sum. The last two examples are for models where the non-pseudo methods (the

auxiliary variable approaches) cannot be easily applied.

4.5.1 The Ising model

The Ising model (Ising, 1925; Lenz, 1920) has widespread applications such as under-

standing phase transitions in thermodynamic systems (Fredrickson and Andersen, 1984),

interactive image segmentation in vision problems (Kolmogorov and Zabin, 2004) and

modelling small-world networks (Herrero, 2002). It is the typical benchmark example in

the literature to evaluate different methods for tackling the doubly intractable problem

(Atchadé et al., 2013; Lyne et al., 2015; Møller et al., 2006; Park and Haran, 2018). How-

ever, most of the existing methods use auxiliary variable approaches, as it is feasible to

draw observations from the likelihood function perfectly. The PM methods such as RR

and our approach do not require perfect sampling, which makes them applicable to more

general problems. In this section, we implement and compare the results given by the BP

estimator, the bias-corrected estimator (Quiroz et al., 2019) and the RR method for the

Ising model.

Recall Example 4.1 here. Consider an L× L lattice with binary observations yij of row i

and column j (yij ∈ {−1, 1}). The model is

p(y|θ) = 1
Z(θ) exp(θS(y)),

with S(y) =
L∑
i=1

L−1∑
j=1

yi,jyi,j+1 +
L−1∑
i=1

L∑
j=1

yi,jyi+1,j

and Z(θ) =
∑
yi,yj

exp(θS(y)),

where the only parameter is θ and the spatial dependence is imposed by S(y). A stronger

interaction between observations is associated with a larger θ. Obtaining Z(θ) is com-

putationally expensive with a sum over 2L2 possible configurations. The simulations are
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conducted using perfect sampling (Propp and Wilson, 1996), which samples exactly with-

out knowing the normalising constant. Perfect sampling uses coupling to guarantee that

the samples are generated from a Markov chain which has already converged to its equi-

librium distribution. Following the settings in Park and Haran (2018), two scenarios are

considered on a 10×10 grid, with θ = 0.2, 0.43 respectively. See Figure 4.3 for a graphical

illustration.

Figure 4.3: Illustrating an Ising model on a 10 × 10 grid. The samples are drawn using
perfect sampling with θ = 0.2 (left) and θ = 0.43 (right). The light and dark blue squares
correspond to the values 1 and −1.

For all the algorithms considered, a uniform distribution on [0, 1] is selected as the prior for

θ. We adopt a random walk proposal centred at the current θ with a step size 0.07. The

PM methods (RR, BP, and the bias-corrected estimator) require an unbiased estimator for

Z(θ). We use annealed importance sampling (AIS) (Neal, 2001) to obtain the estimate of

Z(θ). The method starts by sampling from a tractable distribution (prior) and transfers

to an intractable target (posterior) via a sequence of intermediate distributions. The

transitions between the distributions are completed via Gibbs updates and the weights

associated with the transitions finally constitute the normalising constant of interest; see

Neal (2001) for details of AIS in general and Appendix B.3 for its implementation for the

Ising model.

As the MH algorithm cannot be applied to the model due to intractability, a “gold”

standard is desired to facilitate the evaluation. To obtain such a standard, the approach
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in Park and Haran (2018) is followed, where an exchange algorithm is conducted with

1,010,000 iterations. The first 10,000 iterations is discarded for burn-in and the remaining

iterates are thinned to every 100 iterations. The final samples contain 10,000 iterations.

θtrue = 0.2

Method Mean 95%HPD IACT Time(sec) ESS/sec λ NoImp

Gold 0.205 (0.075, 0.337) 1 - - - -
BP 0.203 (0.066, 0.328) 7.43 676 4.0 10 100

Approx 0.204 (0.077, 0.331) 7.09 62 45.5 - 100
RR 0.202 (0.062, 0.328) 11.65 853 2.0 - 100

θtrue = 0.43

Method mean 95%HPD IACT time(sec) ESS/sec λ NoImp

Gold 0.433 (0.330, 0.533) 1.04 - - - -
BP 0.435 (0.332, 0.545) 6.91 5877 0.5 50 100

Approx 0.441 (0.331, 0.549) 7.78 745 3.5 - 500
RR 0.432 (0.334, 0.549) 10.77 9134 0.2 - 500

Table 4.1: Inference results for the Ising model. All the chains, except for “Gold standard”,
run for 20,000 iterations using the algorithms described (Gold=exchange algorithm, BP=
block-Poisson, Approx = bias-corrected estimator, RR = Russian roulette). The mean
estimates are corrected for the negative estimates (BP, RR). The highest posterior density
(HPD) is calculated by the coda package in R. The IACT calculation is based on all the
samples as the chains start at the true value. For BP and RR, the calculation of IACT
accounts for the negative estimates (see (4.8)). ESS/sec is the effective sample size per
second. For BP, λ refers to the number of blocks. NoImp is the number of particles used
in the AIS.

Table 4.1 summarises the results of the simulation. When θ = 0.2, the estimates of all the

algorithms are close to that of the gold standard. The bias-corrected method has the least

computing time and has the best IACT. In the implementation, both the bias-corrected

and BP methods exploit the block structure used in the signed block PMMH to control

the variability in log of likelihood estimates between the current and the proposed value.

As suggested in Section 4.4.3, the target correlation is set to no less than 0.98 with at

least 50 blocks. We find that when θ = 0.2, the AIS method already gives a sufficiently

low value for γmax. So we reduced the number of blocks and set it to 10 (λ = 10). As

a result, the targeted correlation cannot be preserved and the algorithm with a weaker

correlation still provides good results. When θ = 0.43, the strong dependence leads to a
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higher variability in Ẑ(θ) (see Appendix B.3). We increased the number of blocks to 50 for

the BP estimator. To ensure a fair comparison, we also increased the number of particles

in the importance samplers of AIS from 100 to 500 for the RR method to bring down

the variance. The results of the BP and RR methods match well with that of the gold

standard, whereas the bias-corrected method slightly overestimates the parameter. This

may be due to the violation of the normality assumption of the bias-corrected estimator

when θ is large. The bias-corrected method is 8 times faster than BP and 12 times faster

than RR. Comparing the two exact methods with respect to ESS/sec, the BP estimator

is around twice as efficient as the RR method.

To sum up, both the BP and the RR methods provide exact inference on the Ising model.

We propose a faster bias-corrected estimator; however, the estimator is biased for this

method if Ẑ(θ) is not normally distributed. The normality assumption is unlikely to hold

for large θ; see Figure B.2 of Appendix B, which shows a large θ results in a heavily skewed

distribution of Ẑ(θ).

4.5.2 A constrained Gaussian process

A Gaussian process GP is a stochastic process, i.e., a collection of random variables, such

that every finite collection has a multivariate normal distribution. It defines a distribu-

tion over functions and is widely used as a non-parametric Bayesian regression method

(Williams and Rasmussen, 2006). In this section, we focus on a constrained version of a GP

regression problem, where the constraint stems from the underlying GP and not from the

observations; we can usually transform observations to satisfy constraints. Such process

arises naturally in many applications. For example, the prediction value of some chemical

concentration data is enforced to lie in an interval of positive regions (Rice et al., 2018).

Specifically, we assume that y = g(x) + ϵ, where x ∈ Rd, g(x) ≥ 0 and ϵ ∼ N(0, σ2). A

constrained GP prior on g(x) is proposed with the covariance of g chosen as the squared

exponential (SE) kernel combined with a diagonal matrix with small positive entries,
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g(x) ∼ GP(0,K(x,x′|α, ρ))1(g ≥ 0) with

K(x,x′|α, ρ) = α2 exp
(
−∥x− x′∥2

2ρ2

)
+ τ2

1(x = x′).

The constrained GP prior assumes that the function values behave according to

g|x1,x2, . . . ,xn ∼ N(0,K(x,x′|α, ρ))1(g ≥ 0),

where x = (x1,x2, . . . ,xn). The nugget effect τ2 is needed to prevent the determinant of

a kernel matrix based on the SE kernel from being close to zero in high dimensions (page

97,98, Williams and Rasmussen, 2006). Setting τ2 to a small positive number avoids this

problem, and we set τ2 = 0.052.

To the best of our knowledge, this type of constraint has not been investigated in the

literature; see the survey paper for the constrained GP in Swiler et al. (2020). The

demonstration consists of two parts. The first part focuses on using the GP process on a

small data set (n = 100). The second part considers a scalable GP on a larger data set

(n = 1,000), where it is computationally expensive to conduct exact inference.

4.5.2.1 Prior on the hyperparameters

The GP regression involves two stages. The first stage carries out inference about the

hyperparameters (α, ρ, σ2); the second stage predicts g for a new location x∗. We use a

Bayesian approach and make the predictions based on the iterates to obtain E(g(x∗)|y).

The hyperparameters are α, ρ, σ. We place an informative prior on the logarithms of these

parameters. The priors on logα, log ρ, log σ respectively are

log σ ∼ N(0, 1); logα ∼ N(0, 1); log ρ ∼ inv-Gamma(a, b),

where a, b are parameters obtained by optimising over an inverse gamma cumulative den-

sity function to ensure that the prior can cover a reasonable interval. In the simulation

study,

Pr(l, u) =
∫ u

l
inv-Gamma(ρ|a, b)dρ = 0.9,
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where l, u are the narrowest and the widest gaps between x and x′. See Betancourt (2020,

Section 3.2.3) for more details.

4.5.2.2 GP on small data sets

The latent variable g(x) has the constrained GP prior

g(x) ∼ GP(0,K(x,x′|α, ρ))1(g ≥ 0).

The intractability of g(x) is due to the constraint g(x) ≥ 0, resulting in the GP prior

having the normalising constant

Z(α, ρ) =
∫

g≥0
p(g|α, ρ)dg,

where p(g|α, ρ) is a multivariate normal distribution with a mean vector 0, and covariance

matrix K(·). Here, g represents the function values of g(x). Denote Kxx = K(x,x′|α, ρ),

and the unbiased estimator for the posterior distribution is

π̂(α, ρ, σ2, ν|y) ∝ Ẑ∗(µ∗
g,Σ∗

g)py(y|α, ρ, σ2)π(σ2, α, ρ)|êxp(−νZ(α, ρ))|, (4.10)

where Σ∗
g = (In/σ2+K−1

xx )−1, µ∗
g = Σ∗

gy/σ2, Ẑ∗(µ∗
g,Σ∗

g) = Pr(z ≥ 0), with z ∼ N(µ∗
g,Σ∗

g)

and py(·) refers to the unconstrained multivariate normal distribution with mean vector 0

and covariance matrix Kxx + σ2In. Appendix B.4.2 derives the posterior distribution.

Note that Z(·, ·) and Z∗(·, ·) are both intractable if the number of observations is greater

than 2. We adopt the separation of variables (SOV) estimator (Genz, 1992) to estimate

Z(·, ·) and Z∗(·, ·). The estimator is a numerical computational method to evaluate the

integral by decomposing the d-dimensional region into d one-dimensional areas which are

dependent on each other. Its variability is far smaller than naive Monte Carlo simulation,

making it attractive for applications.

4.5.2.3 GP on big data sets

GP for big data sets is computationally expensive as the matrix inversion and determinant

computations have O(n3) complexity. There is a vast literature on scalable GP’s (Liu
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et al., 2020; Quinonero-Candela and Rasmussen, 2005; Williams and Rasmussen, 2006).

However, in our case, most methods cannot be used directly due to the intractability

caused by the constraint. We consider the popular approximation approach known as

fully independent training conditionals (FITC) (Quinonero-Candela and Rasmussen, 2005;

Snelson and Ghahramani, 2006). The approach considers a pseudo data set, so-called

inducing points, xm of size m < n and the corresponding values of the function g(xm),

gm, known as the pseudo targets. The matrix operations with regards to xm are far less

costly compared to those with x.

Assume that the likelihood of data y is

p(y|x,xm,gm) ∼ N(KnmK−1
mmgm,Λ + σ2In),

where Kmm = K(xm,x′
m|α, ρ); Knn = K(x,x′|α, ρ) and Knm = K(x,x′

m|α, ρ); and

Λ = diag(Knn −KnmK−1
mmKmn).

The prior is placed on gm(xm) instead of g(x), i.e., gm(xm) ∼ GP(0,Kmm)1(gm ≥ 0).

Similarly to the exact inference of the constrained GP, the latent variable gm ≥ 0 is

integrated out and the posterior conditional on the inducing points xm is

π̂(α, ρ, σ2, ν|y,xm) ∝ Ẑ∗(µ∗
g,Σ∗

g)py(y|α, ρ, σ2)π(σ2, α, ρ)|êxp(−νZ(α, ρ))|,

where Σ∗
g = KmmQ−1

mmKmm, µ∗
g = KmmQ−1

mmKmn(Λ + σ2In)−1y, Qmm = Kmm +

Kmn(Λ + σ2In)−1Knm. The definitions of Z∗(·, ·), Z(·, ·) are the same as those in (4.10),

with the major difference that the integration is constructed from m-dimensional space

instead of n, reducing the complexity from O(n3) to O(m2n).

The question of how to construct the pseudo data set xm arises naturally. Again, due to

the intractability, a common approach such as a greedy selection of a subset to maximise

the information gain (Seeger et al., 2003) is inapplicable. On the other hand, the optimal

pseudo data set does not necessarily come from the observations themselves. Instead, it can

be treated as an unknown quantity. Without constraints, the optimal pseudo data set can

be obtained by the gradient-optimiser as suggested in Snelson and Ghahramani (2006).

A corresponding Bayesian treatment is presented in Rossi et al. (2021), where various
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priors are put on the inducing points. A heuristic approach is now proposed, where the

inducing points are fixed before the MCMC chain starts. We first fit the data using a

k-means clustering method and then randomly select one observation out of each cluster.

An alternative approach is to use a binary variable to label whether the observation is an

inducing point or not. However, this method requires using many latent variables. Hence,

we do not use this method. We will show that the heuristic approach leads to satisfactory

simulation results.

4.5.2.4 Simulation results

In the simulation, the data set is generated by the following function of a d-dimensional

x = (x1, . . . , xd),

g(x) = 5
π

(1− 0.9t(x)) exp(−0.5t(x)) + C, with t(x) = 0.25 ∥x∥22 ,

y(x) = g(x) + ϵ, ϵ ∼ N(0, σ2),

where C = −min(g(x)) + 0.01, xi ∈ [−5, 5], i = 1, . . . , d, to ensure the process is con-

strained to lie above zero.

For the training data, we generate n observations x ∈ Rd from a multivariate normal

distribution with mean vector 0 and a diagonal covariance matrix with all its entries equal

to 4. The values of x are constrained to the hyper-rectangular [−5, 5]d. We generate data

sets with each of the combinations from d = 2, 4 and n = 100, 1,000, respectively. For

the noise level, we choose σ2 = 0.52, so that there is a considerable percentage of negative

observations (20% ∼ 30%). Table 4.2 documents the settings for generating the test data

in all the scenarios.

Figure 4.4 illustrates the 2-dimensional function. The test region is slightly bigger than

that covered by the training data. Based on the functional form, the points close to the

boundary are likely to have negative observations. The design serves the purpose of testing

the prediction accuracy of these points, where there is a limited number of neighbouring

observations. As the posterior prediction of a point is largely affected by its neighbouring
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d = 2 d = 4

n = 100 20 pts/dim, 400 5 pts/dim, 625
n = 1,000 60 pts/dim, 3,600 8 pts/dim, 4,096

Table 4.2: Scheme of how the test data are generated. Several equally spaced points are
generated between [-5,5] (inclusive) per dimension. The number after the comma is the
total number of test points.

points for a GP process, the prediction results of the points close to the boundary are

likely to be less credible if the possibility of obtaining negative predictions is not ruled out

in the model. This phenomenon turns out to be more distinct in high dimensions as the

number of points near the boundary increases with the number of dimensions. A large

data set will overcome the issue, but with an associated high computational cost.

Figure 4.4: Left: Plot of the function (d = 2). Right: A realisation of the data generation
with n = 100 (blue points). The red points are the locations of the testing data.

Table 4.3 presents summary results obtained for 20 independent replications. The inference

is based on 10,000 iterations with the first 5,000 iterations discarded as the burn-in period

for both the unconstrained (UNCONS) and the constrained (CONS) models. For the

n = 100 case, both models give fairly good estimates for σ2 (true σ2 = 0.25) with relatively

low IACT, indicating the good mixture behaviour of the chain. The RMSE for the training

data are close for both models. For the test data, CONS generates better prediction

results with lower RMSE. The raw predictions do not take the non-negative constraint into
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consideration. The correction rounds up the negative predictions to zero for UNCONS. For

CONS, the posterior prediction distribution is a constrained truncated normal distribution.

We use the posterior median as it is more robust than the posterior mean. Appendix

B.4.2 gives more details. The corrected predictions of CONS reduce RMSE by around

25% compared with UNCONS.

For the large data set n = 1,000, the GP is placed on the inducing points (50 observations).

Similarly to the previous results, the performance of CONS and UNCONS is close in terms

of IACT and RMSE for the training data. For the test data predictions, CONS has 30-

40% lower RMSE compared to UNCONS. The larger gap can be explained because the

predictions are mainly based on the inducing points, not the whole data set, resulting in

less support from the neighbouring points. Consequently, the extrapolation based on an

inducing point with a negative value is likely to yield a negative prediction. For UNCONS,

such extrapolation amplifies the prediction error given the constraint is not incorporated

into the model.

4.5.3 The Kent distribution

Directional statistics involves the study of density functions on the collection of unit vec-

tors. The Kent distribution2 (FB5) is proposed as an analogue to the bivariate normal

distribution to model asymmetrically distributed data on a spherical surface (Kent, 1982).

Its distribution is characterised by 5 parameters: γ1,γ2,γ3, β, and κ, where γ1,γ2,γ3

form a 3-dimensional orthonormal basis, representing the mean, major and minor axes;

κ is the concentration parameter, and β is a measure of its ovalness, with the constraint

0 ≤ β < κ/2 to ensure that the distribution is unimodal.

Example 2 is

f(y|γ1,γ2,γ3, β, κ) = 1
c(κ, β) exp

{
κγ1

⊤ · y + β
[
(γ2

⊤ · y)2 − (γ3
⊤ · y)2

]}
,

2The Kent distribution is also known as the 5-parameter Fisher Bingham distribution
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n = 100

RMSE

Method d σ2 IACT train test-raw test-corrected

UNCONS 2 0.235 11.088 0.180 0.284 0.232
(0.037) (1.072) (0.037) (0.05) (0.035)

CONS 2 0.259 11.371 0.178 0.212 0.179
(0.041) (0.886) (0.037) (0.034) (0.037)

UNCONS 4 0.229 16.647 0.272 0.495 0.486
(0.068) (8.818) (0.043) (0.046) (0.042)

CONS 4 0.308 14.012 0.256 0.488 0.371
(0.043) (2.355) (0.028) (0.015) (0.039)

n = 1,000

RMSE

Method d σ2 IACT train test-raw test-corrected

UNCONS 2 0.237 10.26 0.076 0.143 0.132
(0.01) (1.206) (0.012) (0.029) (0.019)

CONS 2 0.237 10.055 0.070 0.122 0.094
(0.01) (1.103) (0.009) (0.014) (0.01)

UNCONS 4 0.204 12.157 0.203 0.468 0.463
(0.023) (2.075) (0.02) (0.007) (0.007)

CONS 4 0.216 11.848 0.205 0.461 0.275
(0.026) (1.658) (0.023) (0.006) (0.013)

Table 4.3: Results for the GP prior using observations of sizes 100 and 1,000. The results
obtained are the mean value of 20 independent replications with the standard deviation
in brackets. For the large data set (n = 1,000), 50 inducing points are used. “CONS”
and “UNCONS” stand for the model with/without constraints (no intractable quantity
involved). The negative predictions are rounded up to zero for both models.

where y ∈ R3, ∥y∥ = 1. The normalising constant c(κ, β) is

c(κ, β) = 2π
∞∑
j=0

Γ(j + 0.5)
Γ(j + 1) β2j(0.5κ)−2j−0.5I2j+0.5(κ),

where Iν(·) is the modified Bessel function.

The intractable constant involves an infinite sum. Due to the complex form of the density

function, Kent (1982) proposes a moment estimator of the parameters, which is consistent.

The moment estimation of γi, (i = 1, 2, 3) is independent of β and κ. Estimation of β and

κ requires an approximation that utilises the limiting case when 2β/κ is small or κ is

large, provided that the moment estimates of the γi are available. Alternatively, κ and

β can be obtained numerically. Kume and Wood (2005) adopt saddle point techniques
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to obtain the approximation for the normalising constant directly. Kasarapu (2015) uses

the Bayesian framework to model a mixture of FB5 distributions. The γi basis terms

are reparameterised in terms of the three angular parameters ψ, α, η. The infinite sum

in c(κ, β) is truncated in the sense that the successive term to be added is less than a

prefixed threshold. However, this approach results in inexact inference. In contrast, the

signed block PMMH with BP provides exact inference for the parameters. To the best of

our knowledge, exact Bayesian inference is not considered for the Kent distribution in the

literature.

To obtain an unbiased estimator for c(κ, β), we use the approach proposed by Papaspiliopou-

los (2011). Rewrite c(κ, β) as
∑∞
j=0 ϕj(κ, β); then the estimator ĉ(κ, β) = ϕk/qk is unbi-

ased, where k is a non-negative discrete random variable with probability mass function

qk. Either a Poisson or a geometric distribution is suitable, as k is a non-negative integer.

It is straightforward to verify that E(ĉ(κ, β)) =
∑
k ϕk/qk × qk = c(κ, β). As ϕj(κ, β) is a

decreasing function in j, a “hard” truncation is set up for the first K terms to reduce its

variability. c(κ, β) is rewritten as
K−1∑
j=0

ϕj(κ, β) +
∞∑
j=K

ϕj(κ, β).

The first K terms are computed in the implementation and the remaining terms are

truncated at a random point.

We adopt the reparameterisation trick (Kasarapu, 2015) in the analysis. The orthonormal

basis γ1,γ2,γ3 can be reparameterised as ψ ∈ [0, π], α ∈ [0, 2π], η ∈ [0, π]. An adap-

tive random walk proposal is used for all the parameters with the optimal covariance

matrix proposed in Garthwaite et al. (2016). To accommodate such a proposal, we fur-

ther transform ψ, α, η into ψ∗, α∗, η∗ which take unconstrained values using the following

transformations:

ψ∗ = log
(

ψ

π − ψ

)
;α∗ = log

(
α

2π − α

)
and η∗ = log

(
η

π − η

)
.

We also model β and κ in terms of their logarithms to ensure they are unconstrained.

We follow Dowe et al. (1996) and set the prior for κ as 4κ2

π(1+κ2)2 . For a given κ, the prior
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for β is uniform on [0, κ/2). The priors for ψ, α and η follow Kasarapu (2015). The final

prior on all the parameters, ψ, α, η, β and κ is

π(ψ, α, η, β, κ) = 2κ sinα
π3(1 + κ2)21(0 ≤ 2β/κ < 1).

In the simulation, we generate n observations from FB5, with different settings for β and

κ. The data generation is performed by the R package Directional, which implements

the acceptance-rejection method in Kent et al. (2013). We set n = 10, 100, 1,000 in

combination with β/κ = 0.01, 0.25, 0.49, with κ fixed as 5. The lower and the upper

bounds for β/κ are 0 and 0.5 to ensure unimodality of the data (Kent, 1982).

n=10 n=100 n=1,000
Method/RMSE β κ β/κ β κ β/κ β κ β/κ

β/κ = 0.01 Bayesian 1.33 2.40 0.22 0.45 0.50 0.09 0.11 0.17 0.02
Moment 1.48 4.01 0.16 0.25 0.55 0.05 0.05 0.16 0.01

MLE 2.29 4.30 0.26 0.47 0.57 0.09 0.11 0.17 0.02

β/κ = 0.25 Bayesian 0.64 2.20 0.04 0.38 0.55 0.07 0.11 0.16 0.02
Moment 1.01 3.69 0.09 0.63 0.54 0.13 0.65 0.17 0.13

MLE 2.00 4.18 0.16 0.36 0.60 0.06 0.35 0.24 0.07

β/κ = 0.49 Bayesian 1.28 1.99 0.22 0.42 0.57 0.06 0.14 0.19 0.02
Moment 1.38 3.27 0.27 1.48 0.59 0.28 1.50 0.46 0.28

MLE 1.73 3.79 0.17 0.42 0.60 0.06 0.98 0.59 0.19

Table 4.4: Simulation results for 100 independent replications of a FB5 distribution. All
numbers refer to the RMSE with respect to the true value.

Table 4.4 shows the RMSE with regard to the true values for the three methods based

on 100 independent replicates. “Bayesian” refers to the signed block PMMH with BP al-

gorithm. The selected hyperparameters are λ = 20 (number of blocks), m = 1 (Poisson

mean value of BP), and K = 10 (truncated terms). A Poisson distribution with mean

value 1 is used for the truncation. “Moment” refers to the moment estimates and “MLE”

is based on our modification of function kent.mle of the R package Directional, where

the original version uses the moment estimates of γs. We use an optimiser on the trans-

formed parameters to obtain the MLE of all the parameters in the modified version. For

the Bayesian method, the RMSE is calculated using the posterior mean after the sign

correction. For a small number of observations (n = 10), our method yields the smallest

RMSE amongst all three methods.

98



4.6. AN EMPIRICAL STUDY ON SPHERICAL DATA

Comparing the results of different β/κ combinations, the moment estimator gives the best

RMSE for β/κ = 0.01, and our method is superior to the other two when the ratio ap-

proaches 0.49, where the assumption underlying the moment estimator is almost violated.

The MLE method uses the saddle point technique (Kume and Wood, 2005) to approxi-

mate the likelihood. Its performance gets closer to the Bayesian method for β/κ = 0.01

with many observations. As β/κ increases, it outperforms the moment estimator, but is

inferior to the Bayesian method.

The simulation study shows that the signed block PMMH with BP algorithm performs the

best when the sample size is small. It also has the lowest RMSE when β/κ approaches

the limiting value 0.5.

4.6 An empirical study on spherical data

We now analyse four real world spherical data sets using the Kent distribution and our

method. Recall that the non-pseudo marginal approaches cannot be applied to this model.

Each data set contains samples from two groups, which are formed naturally from the

sample collection process. Figure 4.5 plots the spherical data.

1. Palaeomagnetic (Palaeo) (Wood, 1982): Thirty three estimates of previous mag-

netic pole positions were obtained using palaeomagnetic techniques. Each estimate

is associated with a different site in Tasmania. The data is originally in Schmidt

(1976) and the author points out that the data is likely to fall mainly into two

groups of distinct geographical regions. Following Figueiredo (2009), the first group

contains the observation indices 9, 10, 11, 12, 14, 16, 23, 24, 30.

2. Magnetic (Fisher et al., 1993, Table B8): Measurements of magnetic remanence

from a set of 62 specimens is obtained. The specimens are from Mesozoic Dolerite

from Prospect, New South Wales, after successive partial demagnetisation stages

(200◦ and 350◦). An experiment was conducted to determine the blocking temper-

ature spectrum of the magnetisation components.
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3. Sandstone (Fisher et al., 1993, Table B23): Measurements of natural remanent

magnetisation in Old Red Sandstone rocks in Pembrokeshire, Wales. The measure-

ments consist of specimens from two sites with the number of observations 35 and

13, respectively.

4. Stone (Fisher et al., 1993, Table B25): Measurements of the longest axis (101

observations) and shortest axis (101 observations) orientations of tabular stones on

a slope at Windy Hills, Scotland.

Figure 4.5: Illustration of the data sets. Green points and red points refer to the observa-
tions from groups 1 and 2, respectively.

The two groups are modelled separately by assuming a non-hierarchical structure on the

prior for all the parameters. The data is modelled in the same way as in Section 4.5.3

using the density function (4.2).

Table 4.5 summarises the results. We first note that the three methods provide different

estimates of the same quantity. The gap between the estimates of Bayesian and ML is

narrower for the bigger data sets (Magnetic, Stone). The moment estimates are far from

the MLE and the Bayesian results, even for the bigger data sets. Since β/κ is close to 0.5

in Magnetic, the moment estimate is unreliable. This result is supported by the simulation

results in Section 4.5.3. The second result is that the confidence intervals for the moment

estimates and the MLE, especially for small data sets (Palaeo, Sandstone), are wider than

the Bayesian intervals. The Bayesian credible interval is constructed using the posterior

distribution. For the MLE and moment estimates, we obtain the confidence intervals using

the non-parametric bootstrap (Efron, 1992). By construction, the intervals have different
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interpretations (frequentist vs Bayesian); however, both intervals are expected to be close

when the number of observations is sufficiently large. The interval results for the bigger

data set, Stone, in Table 4.5 show this, where the MLE and Bayesian results are close

to each other. The moment estimates again seem to be less reliable for β. A larger κ

indicates the observations are more concentrated. For small data sets, the non-parametric

bootstrap is likely to draw the same observation multiple times, resulting in a concentrated

data pattern and a correspondingly large estimate of κ.

We use 5-fold cross validation to test the models’ performance. The data set is split

into 5 folds, with 4 folds being the training set and the fifth the test set. To avoid bias

in sampling, the splitting is done for both groups. Denote the training and test sets as

ytrain,g,ytest,g with g the group membership g ∈ {1, 2}.

After fitting the models using ytrain,g, the prediction for an observation yi conditional on

samples θg = {β, κ, ψ, α, η} from the posterior distribution is

p(yi|ytrain,g) =
∫

θ
p(yi|θg)p(θg|ytrain,g)dθg.

If p(yi|ytrain,1) > p(yi|ytrain,2), yi is classified as being in group 1, and conversely. Ap-

pendix B.5 provides more details.

Table 4.6 shows the prediction accuracy on the training and test data sets. There is no

notable difference in terms of the accuracy between the methods across the data sets.

One possible reason is that the parameters of one group are distinct from that of the

other group, so that minor differences in parameter estimates do not appreciably affect

the classification.

4.7 Discussion

We propose the signed block PMMH with BP algorithm to carry out inference in general

doubly intractable problems. This algorithm only relies on the availability of an unbiased
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Palaeo group 1 (n=9) group 2 (n=24)
β κ β/κ β κ β/κ

Bayesian 2.78 18.25 0.16 3.86 33.89 0.11
(0.20,11.64) (7.92,38.55) (0.01,0.41) (0.27,12.76) (21.33,50.48) (0.01,0.32)

Moment 4.03 26.54 0.15 5.88 39.84 0.15
(1.11,98.84) (18.96,223.76) (0.05,0.46) (1.24,30.51) (28.16,92.60) (0.04,0.35)

MLE 4.55 26.65 0.17 6.44 40.02 0.16
(0.78,106.84) (18.96,223.02) (0.04,0.50) (1.06,34.34) (28.25,96.38) (0.03,0.38)

Magnetic group 1 (n=62) group 2 (n=62)
β κ β/κ β κ β/κ

Bayesian 7.32 15.23 0.49 15.77 32.04 0.49
(5.28,10.03) (11.18,20.34) (0.43,0.50) (11.17,21.58) (22.95,43.29) (0.46,0.50)

Moment 4.55 12.99 0.35 8.87 23.22 0.38
(2.58,10.73) (8.21,26.72) (0.31,0.40) (5.28,20.53) (14.77,49.06) (0.35,0.42)

MLE 8.24 16.49 0.50 15.57 31.13 0.50
(4.76,16.95) (9.57,34.04) (0.49,0.50) (9.82,33.12) (19.65,66.23) (0.49,0.50)

Sandstone group 1 (n=36) group 2 (n=13)
β κ β/κ β κ β/κ

Bayesian 1.48 20.31 0.07 8.54 47.08 0.19
(0.08,5.68) (14.51,28.33) (0.00,0.23) (0.70,27.20) (24.69,89.95) (0.02,0.39)

Moment 2.07 22.36 0.09 18.45 68.94 0.27
(0.70,16.37) (13.38,64.33) (0.04,0.30) (8.76,67.07) (54.64,188.26) (0.11,0.41)

MLE 2.42 22.44 0.11 20.15 70.18 0.29
(0.00,17.93) (13.41,65.55) (0.00,0.36) (7.90,76.18) (55.30,199.75) (0.09,0.44)

Stone group 1 (n=101) group 2 (n=101)
β κ β/κ β κ β/κ

Bayesian 0.52 4.19 0.13 1.06 2.18 0.49
(0.05,1.32) (3.37,5.12) (0.01,0.30) (0.79,1.34) (1.64,2.72) (0.44,0.50)

Moment 0.23 4.29 0.05 0.41 1.99 0.21
(0.08,0.54) (3.33,6.23) (0.02,0.11) (0.30,0.52) (1.79,2.30) (0.15,0.24)

MLE 0.60 4.32 0.14 1.10 2.19 0.50
(0.15,1.91) (3.38,6.31) (0.03,0.50) (0.92,1.30) (1.85,2.61) (0.50,0.50)

Table 4.5: Results for the Bayesian, moment and MLE approaches for all the data sets.
The Bayesian estimate is the posterior mean. The numbers in brackets are the 95%
confidence (credible for Bayesian) intervals. For the moment estimates and MLE, the
confidence intervals are obtained using the bootstrap (Efron, 1992) with 1,000 repetitions
each.
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Train accuracy Test accuracy

data grp1 grp2 Bayesian Moment MLE Bayesian Moment MLE

Palaeo 9 24 0.985 0.985 0.985 0.943 0.943 0.943
(0.019) (0.019) (0.019) (0.070) (0.070) (0.070)

Magnetic 62 62 0.554 0.561 0.548 0.507 0.502 0.501
(0.024) (0.031) (0.033) (0.014) (0.077) (0.083)

Sandstone 36 13 0.943 0.953 0.953 0.920 0.920 0.880
(0.030) (0.031) (0.031) (0.160) (0.117) (0.147)

Stone 101 101 0.892 0.877 0.890 0.886 0.861 0.896
(0.005) (0.006) (0.003) (0.011) (0.025) (0.011)

Table 4.6: Results of 5-fold cross validation on the four data sets. “grp1”,“grp2” are the
number of observations for the corresponding group. Accuracy on the training and test
data is the average value of the 5 folds, with standard deviation in brackets.

estimator of the normalising constant, which makes it more applicable to a wider range

of problems than its competitors, who often require perfect sampling from the model.

Our simulation study in Section 4.5.2 shows that it is crucial to take the intractable

normalising constant into modelling consideration. Otherwise, inexact inference leads to

poor prediction results. Compared with the RR method, the BP estimator controls the

variability of the logarithmic difference in the likelihood estimates in the MH acceptance

ratio by tuning its hyperparameters. The Ising model example suggests that it is also

faster than RR.

In spite of its wide applicability, the signed PMMH algorithm suffers from a high com-

putational cost when unbiasedly estimating the normalising constant. The Ising model

example shows that AIS is required multiple times during each iteration for both the RR

and BP methods. This prevents the computing time of the PM methods being competitive

with other methods which do not require computing the normalising estimates explicitly.

However, the algorithm gives exact inference in almost all situations regardless of its high

computing time. When the normalising constant is an infinite sum as in the Kent dis-

tribution, the BP estimator can be obtained relatively cheaply, enabling the signed block

PMMH with BP algorithm to complete in a reasonable time. Hence, one of area for fu-

ture work is to obtain an efficient estimator of the normalising constant. With respect to

the applications, the proposed algorithm is the first exact Bayesian analysis on the Kent

distribution. The application in this chapter only considers 3-dimensional data. Future
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work could apply the method to higher dimensional problems, provided that an efficient

estimator of the likelihood is available.

This chapter establishes guidelines for hyperparameter tuning, where the hyperparam-

eters are fixed before the start of the MCMC. However, it may be desirable to have a

dynamic tuning strategy during the MCMC, where the number of particles estimating the

normalising constant is reduced when the likelihood estimator has low variability and vice

versa.
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Chapter 5

Estimating heterogeneous

treatment effects by extending the

Bayesian additive regression tree

(BART) algorithm

5.1 Introduction

Causal inference investigates the causal connection between the occurrence of an event and

its effect on an outcome. Unlike traditional statistical models which investigate the pattern

behind data and aim for small prediction errors, causal inference focuses on estimating

the treatment effect. Based on Rubin’s causal framework (Rubin, 1978), the treatment

effect is defined by comparing among all outcomes that could have been observed under

possible treatment assignments. However, in real experiments, only one assignment is

applied and the outcome under that assignment is observed on a single unit. In the

absence of randomised experiments, it is challenging to estimate the treatment effect

for observational studies as the assignment mechanism is unknown. Researchers often
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assume ignorability of the treatment assignment conditional on the observed covariates

(Rosenbaum and Rubin, 1983), so that the estimation of the treatment effect involves

predicting the value(s) for the unassigned treatment(s). In recent years, various attempts

were made to adopt machine learning methods for causal inference, as they perform well

for prediction on trained models. Early research mainly focuses on implementing existing

machine learning techniques to obtain good predictions of either potential outcomes or

the propensity score, which is defined as the probability of receiving treatment given the

covariates. Much recent effort was made to improve these methods to accommodate the

causal inference setting. In this chapter, we are particularly interested in adapting the

Bayesian additive regression tree (BART) algorithm (Chipman et al., 2010) for causal

inference.

The BART model uses a sum of regression trees to fit complex response surfaces, where the

BART prior applies regularisation. Hill (2011) uses BART in estimating heterogeneous

treatment effects for causal inference, demonstrating its superior performance in the con-

text of modelling nonlinear response surfaces. In Hill, the treatment indicator is dealt

with similarly to the observed covariates. Hill and Su (2013) discuss the weakness of such

a naïve implementation. The BART model tends to generate biased results due to extrap-

olation on the covariate space, where there is no common support from observations of

the control and treatment groups. Hahn et al. (2020) develop a new method based on the

original BART implementation for causal inference, referred to as the “Bayesian Causal

Forest” (BCF). In the BCF, the response surface is separated into the prognostic impact

(the conditional mean of the response that is unrelated to the treatment effect) and the

treatment effect, which are modelled by separate collections of regression trees. The design

provides adequate control over the strength of regularisation over the heterogeneity effect.

Hahn et al. (2018) find that regularised models for Bayesian linear regression which were

originally designed for prediction can bias causal estimates. The bias can be quantified

by the function involving the unknown nuisance parameters and the form of the design

matrix. To circumvent the bias induced by regularisation, the BCF includes an estimate of

the propensity score as one of the covariates, which substantially improves the treatment

effect estimation in the presence of confounding variables (the variables influencing both
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the treatment and the outcome).

Besides BART and its extensions (Hahn et al., 2020; Murray, 2021; Sparapani et al., 2016),

there are non-Bayesian tree-based methods for estimating causal effects. Among them,

the generalised random forest (GRF) (Wager and Athey, 2018) is popular for causal infer-

ence. The GRF also aims to estimate heterogeneous treatment effects. It is derived from

traditional random forests, but with distinctive tree growing/pruning criteria. To accom-

modate random forests for causal inference, the tree structure is forced to be identical for

the observations from the control and the treatment groups, implying that each leaf of the

tree must contain at least a few observations from both groups. The bottom layer of the

interior nodes of each tree splits at the treatment indicator, implying that the treatment

effect can be inferred from the difference in mean values of the leafs. The GRF produces a

point-wise consistent estimator of the true treatment effect, which has an asymptotically

Gaussian distribution (Wager and Athey, 2018).

We propose extending the BART model (BART-EXT) for estimating heterogeneous treat-

ment effects of an observational study with continuous outcomes and binary treatments.

The model combines the idea of the BCF and GRF approaches, where the response sur-

face is split into the baseline (prognostic) effect and the treatment effect, with each part

modelled by separate regression trees. We force the trees modelling the treatment effect

to have identical structures for observations from the treatment and the control groups.

The proposed model inherits the strength of both the BCF and GRF approaches and

overcomes their downsides. For example, the BCF shrinks causal effects to homogeneity,

which is not guaranteed in real data sets. In our proposal, the identical tree structure

protects the estimates from shrinkage in the presence of strong heterogeneity. Section

5.3.3 discusses the similarities and differences between the methods in more detail. The

simulation studies in Section 5.4 show that the BART-EXT method produces substantially

better results than GRF and the BCF.

The rest of this chapter is organised as follows. Section 5.2 provides the background knowl-

edge on causal inference, the BART method, and the BCF and GRF approaches. Section
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5.3 presents the proposed model with its prior specification, followed with a discussion

on the similarities and differences between the BCF and GRF. Section 5.4 compares the

BART-EXT method with the other tree-based methods using simulation. Section 5.5 ap-

plies the method to an experimental study on fuel intensity. Section 5.6 concludes with a

summary and discussion.

5.2 Background

5.2.1 Causal inference

Causal inference on a data set can be treated as a missing data problem, where the missing

pattern is not random. Suppose the treatment indicator Z is binary, stating that each

individual either receives the treatment (Z = 1) or does not (Z = 0). The potential

outcome is defined as the outcome associated with the paired actions, denoted as Y (1)

and Y (0). Based on Rubin’s causal framework (Rubin, 1978), the fundamental problem of

causal inference, stated by Holland (1986), is that at most one of the potential outcomes

is observed. Throughout this chapter, we denote each observation as (Yi,Xi, Zi) for unit

i = 1, . . . , n. The scalar Yi is the observed continuous outcome, Xi and Zi respectively

denote the observed corresponding covariates and the binary treatment indicator. The

observed Yi can also be represented compactly by Yi = ZiYi(1) + (1 − Zi)Yi(0). We are

interested in estimating the conditional average treatment effect (CATE), defined as,

τCATE(x) := E(Y (1)− Y (0)|X = x).

The average treatment effect (ATE) and the average treatment effect on the treated units

(ATT) are also of interest, defined as,

τATE := E(Y (1)− Y (0)), τATT := E(Y (1)− Y (0)|Z = 1).

As usually stated in the causal inference literature, we make the stable unit treatment

value assumption (SUTVA) (Rubin, 1978) and strong ignorability (Rosenbaum and Rubin,

1983) for the observations. The first is a critical assumption of no interference between
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different units, where the potential outcomes of one subject are unaffected by the changes

of treatments received by all the other subjects. The second assumption has two parts:

conditional independence Zi ⊥ Yi(0), Yi(1)|Xi and the overlapping condition 0 < Pr(Zi =

1|Xi = xi) < 1, i = 1, . . . , n. Provided that both assumptions hold, CATE can be

expressed as,

τCATE(xi) = E(Yi|Xi = xi, Zi = 1)− E(Yi|Xi = xi, Zi = 0). (5.1)

Based on (5.1), the casual inference problem is then transformed into a prediction problem

whose target is to predict the response surfaces, E(Y |X = x, Z = 1) and E(Y |X = x, Z =

0).

There are two approaches to obtain the predictions for E(Y |X, Z). The first approach is to

model the treated and untreated units separately. The final estimate of the CATE is then

obtained by combining the predictions from the two models. However, this approach is

problematic in the sense that if the treatment and the control groups have different features

(self-selection), the prediction step may require extrapolation in one or both of the models,

given no support from the covariate space. For example, suppose the issue of interest is

the effectiveness of an anti-hypertension drug. Subjects with high blood pressure are more

likely to take the pills compared with the healthy ones. If the response model on the

treated presumes the contributing factors for high blood pressure as important predictors,

whereas those are ignored in the model on the control units, the prediction model for the

control group may misinterpret the contributions and hence biases the causal estimates.

The second approach to predicting E(Y |X, Z) models observations from the treatment

and the control groups jointly. The model, including observations from both groups, has

components that are no longer independent in the sense that they share common structure

to some degree. A typical example is the ordinary least squares (OLS) regression where the

response Y is regressed against X and Z, possibly with interaction terms. The prediction

difference obtained by alternating Z and fixing X gives the CATE. Künzel et al. (2019)

discuss both approaches in detail, which are called the “T-learner”(the first approach) and

the “S-learner” (the second approach). See Künzel et al. and its references.
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5.2.2 BART

Prior to the development of BART, Chipman et al. (1998) introduced Bayesian CART

(Bayesian classification and regression tree) which involves one decision tree. BART,

introduced by Chipman et al. (2010), assumes a normal distribution of the response Y,

with the conditional mean constructed by a sum-of-trees model. It is a Bayesian non-

parametric model with a data-driven tree structure. We follow the Chipman et al. (2010)

notation throughout this chapter. The BART model is explicitly expressed as

Y =
m∑
j=1

g(x;Tj ,Mj) + ϵ, ϵ ∼ N(0, σ2).

Without loss of generality, in the causal inference setting, input variables x can in-

clude both the covariates and the treatment indicator. The jth binary tree structure

Tj includes the variable to split and the associated decision rule for each node. The

Mj = {µ1j , . . . , µbjj} represents a set of parameter values associated with the terminal

nodes, with bj the number of terminal nodes (leafs) of Tj . This structure provides great

flexibility in modelling the response surface, as it can be recursively partitioned into more

refined regions over the covariate space. Each individual tree (Tj ,Mj) captures a certain

pattern from the underlying data. Analogous to renowned ensemble methods such as

boosting, BART uses many trees to increase the model’s flexibility. The major difference

between BART and boosting is that BART uses an iterative backing fitting strategy under

a fixed number of trees (m), where in one MCMC iteration, the structure of each tree is

updated with the structure of the other trees fixed. This means that BART cycles through

the m trees. In contrast, in boosting, each tree is trained sequentially to compensate the

weaknesses of its predecessor.

The critical part of the BART model is the regularisation prior on the parameters. Chip-

man et al. assume the tree components Tj ,Mj , (j = 1, . . . ,m) are independent of those

in the other trees, so that the distribution of the prior is factorised as

p((T1,M1), . . . , (Tm,Mm), σ2) =
[ m∏
j=1

p(Tj ,Mj)
]
p(σ2) =

[ m∏
j=1

p(Mj |Tj)p(Tj)
]
p(σ2),
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where p(Mj |Tj) =
bj∏
i=1
p(µij |Tj), µij ∈Mj .

In addition to the independence in the tree components Tj ,Mj , the parameters of the

terminal nodes within Mj are also independent of each other, given Tj . The regularisation

is embedded in the prior for p(Tj). It is composed of three hierarchical parts: (i) the

probability of a node being non-terminal; (ii) the distribution of the variable that selects

the splitting variable; and (iii) the distribution on the splitting value conditional on the

splitting variable. We now briefly state the default BART prior introduced in Chipman

et al. (2010) below.

For (i), suppose the node is at depth (the number of edges back to the root) d (d = 0, 1, . . . ).

Then,

Pr(node is an interior node) = α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞). (5.2)

In (5.2), the probability of being an interior node decreases as the node depth increases.

The node at a large depth is more likely to be a terminal node than an interior one. It

can be interpreted as the prior favouring shallow trees over bushy trees. For (ii), the

default BART prior assumes equal probability of the available variables being chosen as

the splitting variable. Linero (2018) suggests using a Dirichlet distribution in place of the

prior above when the number of predictors is larger than the number of observations in

order to achieve better predictive performance. For (iii), a uniform prior is placed on the

discrete set of all available splitting values.

The prior p(µij |Tj) is the conjugate normal distribution N(µµ, σ2
µ). In this chapter, we

set

µij ∼ N(0, σ2
µ),with σµ = 1√

m
, (5.3)

assuming that the response variable Y is standardised. For the prior p(σ2), an inverse

chi-squared conjugate prior is chosen for σ2,

σ2 ∼ νλ

χ2
ν

. (5.4)

Throughout this chapter, the default value for ν is 3, and the value of λ is determined by the

data such that Pr(σ2 < σ̂2) = 0.9, where σ̂2 can be an estimate of σ2 obtained by regression
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methods. Chipman et al. (2010) provide guidance for choosing these hyperparameters.

5.2.3 The BCF and GRF approaches

This section introduces the BCF and GRF approaches; both inspire the proposed BART-

EXT method. They are non-parametric, and enable the estimation of heterogeneous

treatment effects in an observational study.

The BCF approach is Bayesian, and is built on the BART model, whereas the GRF method

is frequentist and is based on random forests.

The BCF method models the response variable Yi by

Yi = µ(xi, π̂i) + τ(xi)zi + ϵi, ϵi ∼ N(0, σ2), (5.5)

where µ(·) and τ(·) are sums of regression trees. The term π̂i is the estimated propensity

score. The model can be viewed as a linear regression in zi with covariate-dependent

functions for the slope and the intercept. Compared with the original BART model,

the CATE estimation is modelled directly in (5.5) by τ(xi). In Hahn et al. (2020), the

treatment coding level zi is also modelled as a variable bzi , because various coding levels

(e.g. zi ∈ {0, 1} or zi ∈ {±0.5}) affect posterior inference. The final model specification of

the BCF method is

Yi = µ(xi, π̂i) + τ̃(xi)bzi + ϵi, ϵi ∼ N(0, σ2), (5.6)

bzi ∼ N(0, 0.5), zi ∈ {0, 1}.

From (5.6), the CATE estimate using the BCF approach is

τ(xi) = (b1 − b0)τ̃(xi).

The GRF approach uses many regression trees for causal inference. The intuition behind

GRF is that if the leaf L is small enough to contain observations from both treatment and

control groups, then those observations will share similar covariate values as though they
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were from a randomised experiment. The treatment effect of xi in the leaf L of the jth

tree is estimated as

τ̂j(xi) = 1
|{i : zi = 1,xi ∈ L}|

∑
{i:zi=1,xi∈L}

Yi −
1

|{i : zi = 0,xi ∈ L}|
∑

{i:zi=0,xi∈L}
Yi.

CATE estimation by GRF aggregates the predictions of each tree by averaging:

τ̂(xi) = 1
m

m∑
j=1

τ̂j(xi). (5.7)

Wager and Athey (2018) show that predictions by GRF are asymptotically Gaussian and

unbiased. The condition that has to be satisfied to achieve these theoretical results, is

that for each training sample, the tree uses its response to estimate the causal effect or

the tree uses its covariates to decide the splitting variable and value, but not both.

Section 5.3 introduces the BART-EXT method, which combines the ideas behind BCF

and GRF. The similarities and differences BART-EXT and the other two methods are

also discussed there.

5.3 Methodology

5.3.1 An extension to the BART model (BART-EXT)

Inspired by BCF (Hahn et al., 2020) and GRF (Wager and Athey, 2018), we propose

BART-EXT as an extension to the BART model,

Yi =



m0∑
j=1

g(xi;T
′
j ,M

′
j) +

m1∑
k=1

g(xi;Tk,M1k) + ϵi, if zi = 1,

m0∑
j=1

g(xi;T
′
j ,M

′
j) +

m1∑
k=1

g(xi;Tk,M0k) + ϵi, if zi = 0,
ϵi ∼ N(0, σ2); (5.8)

i ∈ {1, . . . , n} indexes the observations, T ′
j is the structure of the jth tree for capturing

the baseline impact, and Tk is the structure of the kth tree of the treatment contribution.

Correspondingly, M ′
j stands for the node parameters of T ′

j with M ′
j = {µ′

1j , . . . , µ
′
njj
},

and M1k,M0k for the node parameters attached to Tk with Mzk = {µz,1k, . . . , µz,nkk},
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z ∈ {0, 1}. The number of parameters in M0k and M1k is the same because they share the

identical structure Tk.

The conditional mean is composed of the baseline and treatment effects. By omitting the

tree structure and node parameters, (5.8) simplifies to

Yi =


µ(xi) + τ1(xi) + ϵi, if zi = 1,

µ(xi) + τ0(xi) + ϵi, if zi = 0,
(5.9)

where µ(·), τ0(·) and τ1(·) are sums of separate regression trees.

Given the strong ignorability and SUTVA conditions, the CATE is estimated by

τ̂(xi) = τ̂1(xi)− τ̂0(xi) =
m1∑
k=1

ĝ(xi;Tk,M1k)−
m1∑
k=1

ĝ(xi;Tk,M0k).

For the trees modelling the baseline impact, (5.8) exploits a specific tree structure with

identical node values for the baseline estimate regardless of the treatment status. The

trees capturing the treatment effect share the same tree structure Tk, but the node values

may vary based on the treatment assignment. This part is analogus to the tree structure

in Wager and Athey (2018), where each individual tree is constructed by the same split-

ting rules for all internal nodes except for the bottom layer, which implies that the last

split occurs at the treatment indicator. The treatment effect can then be estimated by

accumulating the difference between the values of two leafs from the same terminal node.

In Wager and Athey (2018), the predictions are obtained by averaging the prediction of

each tree as in (5.7). Our proposed method (BART-EXT) uses posterior predictions for

inference on τ(xi) directly. The identical structure also reduces the need to obtain a good

estimate of the propensity score, which is strongly advocated in the BCF approach to

reduce the bias. Here, the estimated propensity score is provided as a covariate in the

model, which is fixed before the start of the MCMC. In a high-dimensional setting, it is

usually difficult to obtain a good estimate of the propensity score. Unlike BCF, BART-

EXT is less dependent on the estimate of the propensity score due to the specific structure

of trees modelling treatment effects.
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Figure 5.1 illustrates BART-EXT and the other methods (vanilla BART/ps-BART, BCF

and GRF). The vanilla BART uses x and z as covariates. The ps-BART includes the

estimated propensity score together with x and z as covariates.

Section 5.3.3 discusses the differences and similarities between these methods.

(a) (b)

(c)

(d)

Figure 5.1: A graphical illustration for vanilla BART /BART with propensity score (top
left), GRF (top right), BCF (middle) and our proposal (BART-EXT) (bottom). The
circles and squares represent interior nodes and terminal nodes (leaves) respectively. The
shaded circle is where the tree splits at the binary treatment indicator (Z). The illustration
uses one or two trees to describe the tree structure, whereas in real applications, each
method involves a group of trees.

5.3.2 Prior specification

We propose different hyperparameters for the prior on T ′
j (the tree structure for the base-

line) and Tk (the tree structure for treatment effects) in (5.8). For the prior on T ′
j , the

default suggestion in Chipman et al. is adopted with α = 0.95, β = 2, and m0 = 200.

For the prior on Tk, we use α = 0.25, β = 3 and m1 = 50 as proposed by Hahn et al.

(2020). With such a setting, the CATE estimate is shrunk towards the homogeneous treat-

ment effect by favouring shallow trees over bushy ones. For the prior on the parameter

nodes M ′
j ,M0k,M1k and the variance σ2, we follow the priors from Chipman et al. (1998),
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specified in (5.3) and (5.4).

We also consider a half-Cauchy prior for σµ in (5.3), proposed in Hahn et al. (2020), which

exhibits heavier tails than a normal distribution. As indicated by results of the simulations

and the empirical study in later sections, we do not find much difference between the half-

Cauchy prior and the choice adopted in this chapter (σu = 1/
√
m).

5.3.3 Connection with GRF and BCF

We first state the motivation for the BART-EXT by presenting the weakness of a stan-

dard regression tree, which serves as the workhorse for all tree-based methods in causal

inference. We then illustrate the “regularisation-induced confounding” (RIC) introduced

by Hahn et al. (2018) and explain why vanilla BART suffers from such a phenomenon

(Hahn et al., 2020). Finally, we discuss the commonalities and differences between GRF,

BCF and BART-EXT.

The problem with a standard regression tree for causal inference

The standard regression tree targets minimising the mean squared error of predictions to

determine the splitting rule, defined as

SSE =
∑
i∈S1

(yi − y1)2 +
∑
i∈S2

(yi − y2)2,

where y1 and y2 are the mean values for the corresponding observations on the same leaf.

Under such a scheme, the treatment indicator has priority to be selected if it results in a

smaller SSE compared with the splitting on one of the other covariates. In the following

paragraphs, we use an intuitive example to illustrate such splitting behaviour.

Consider the data generation process for the observation i, (i = 1, . . . , n) as

yi = x1i + x2i + τizi + ϵi, ϵi ∼ N(0, σ2),
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and suppose the propensity score is

Pr(zi = 1|xi) =


0.8, if x1i ≥ 0.8,

0.2, otherwise.

To simplify the computation, we also assume the homogeneous treatment effect is τ = 1,

and x1i, x2i
iid∼ Uniform(0, 1). In a standard regression tree, the treatment indicator z is

treated similarly to the covariates x1, x2. Suppose the root node splits on z. Then the

SSE can be expressed as

SSEz =
∑

{i:zi=1}
(yi − yzi=1)2 +

∑
{i:zi=0}

(yi − yzi=0)2.

As evaluation of the equation above needs realised observations, we analyse its expectation

instead:

E(SSEz) =
∑

{i:zi=1}
E[(yi − yzi=1)2] +

∑
{i:zi=0}

E[(yi − yzi=0)2]

= (n0 + n1)(Var(x1) + Var(x2)) + (n0 + n1)σ2,

where n0, n1 respectively represent the number of observations in the control and the

treatment groups 1.

Alternatively, if the split is on x1 with the cut-off value c in the root node, the SSE can

be expressed as

SSEx1 =
∑

{i:x1i≥c}
(yi − yx1i≥c)

2 +
∑

{i:x1i<c}
(yi − yx1i<c)

2.

The expectation of SSEx1 is

E(SSEx1) =
∑

{i:x1i≥c}
E[(yi − yx1i≥c)

2] +
∑

{i:x1i<c}
E[(yi − yx1i<c)

2]

= n′
0Var(x1|x1 ≥ c) + n′

1Var(x1|x1 < c) + (n′
0 + n′

1)Var(x2)

+ τ2n′
0Var(z|x1 ≥ c) + τ2n′

1Var(z|x1 < c) + (n′
0 + n′

1)σ2,

1Taking expectations generates the sample variance s2(x1) (Var(x1) = E((x−E(x))2),
here we use x instead of its expectation) instead of Var(x1), and similarly for the variance
associated with the error term σ2. Assuming n0 and n1 are both relatively large (for this
discussion), we cannot distinguish the difference between sample variance and the true
variance.
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where n′
0, n

′
1 are the number of observations with x1i ≥ c and x1i < c, n′

0 + n′
1 = n0 + n1.

Under the setting where τ is relatively large compared to x1 and x2 (τ = 1, x1, x2 ∼

Uniform(0, 1)), and with the uniform assumption on x1, x2, we have

E(SSEz) = n0 + n1
6 + (n0 + n1)σ2,

E(SSEx1) = n′
0
(1− c)2

12 + n′
1
c2

12 + n′
0 + n′

1
12 + 0.16(n′

0 + n′
1) + (n′

0 + n′
1)σ2.

It is easy to verify that E(SSEx1) > E(SSEz), which in turn results in the node splitting

on z. If the tree does not split further, the expectation for τ̂ : E(τ̂) = E(yz=1 − yz=0) =

τ + E(x1|z = 1) − E(x1|z = 0) = 1.3 > 1, which overstates the true treatment effect.

Such bias can possibly be reduced by further splitting on the nodes. Given that a finer

covariate space is formed, the prediction is then obtained by observations with covariate

values having greater similarity. However, once the split occurs at the treatment indicator,

it is equivalent to the approach that models treatment and control responses separately as

discussed in Section 5.2.1. For an arbitrary tree, splitting on the treatment indicator may

occur on some branches, which in turns affects the estimates for observations passing along

those branches. Unless the counterfactual is independent of the treatment assignment

conditioning on previous splitting rules, a reliable estimate cannot be guaranteed.

For the BART model, the prior on selecting the splitting variable assigns equal probability

on the available variables, so that the corresponding tree does not necessarily split on z.

Meanwhile, the prior on the node parameters is a normal distribution with the standard

deviation 1/
√
m, which concentrates on 0 given a large m. Such a strong prior helps

to avoid treatment effect overestimation, to some extent. However, researchers cannot

control the split behaviour on the treatment indicator either in random forests or the

standard BART model. Consequently, these approaches bias the treatment effect for at

least some observations. On the other hand, the regularisation prior advocates splitting

on the treatment indicator z instead of the covariates x given that z is a good predictor,

which can make the problem worse. See below for further discussion.

Regularisation-induced confounding

“Regularisation-induced confounding” (RIC) refers to a phenomenon whereby the usage
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of a regularisation prior on the coefficients of the covariates leads to a biased treatment

effect estimate (Hahn et al., 2018).

Hahn et al. (2020) illustrate the issue in the BART context. In the vanilla BART model,

the treatment indicator is treated the same as the covariates. If the splitting on the

treatment indicator brings similar prediction power to splitting on the covariates, then

the tree is more likely to split on the treatment indicator. This is because the BART

prior favours shallow trees. In other words, the treatment indicator and many covariates

compete to be the best predictor, and BART tends to select the former because of the

regularisation prior. The key observation in Hahn et al. (2018) is that including the

estimated propensity score as one of the covariates mitigates RIC in the linear model. In

a non-linear setting, including the estimates of propensity score can improve the ATE and

CATE estimates in the presence of moderate to strong confounding, as pointed out in

Hahn et al. (2020); see (5.6). In implementing the BART-EXT method, we also include

the estimated propensity score as one of the covariates.

Similarities and differences in BART-EXT, BCF and GRF

As a non-parametric Bayesian method, the BART-EXT approach distinguishes itself from

the GRF, which stems from random forests. For the GRF, all the plausible trees con-

structed in random forests are searched greedily to model the response surface, whereas

BART models the posterior distribution of such trees directly. Another difference is that

BART and its extensions are the analogues of boosting methods, which use sums over

trees to represent the underlying surface. Random forests, on the other hand, work on

the bagging principle where each tree is generated from random samples of the data set.

The final result is based on the average value obtained from the predictions of all trees.

In Wager and Athey (2018), obtaining the asymptotically unbiased estimator requires an

appropriate subsample size to construct individual trees, which scales at a specific rate

with the total number of observations. However, such a requirement is not satisfied in

most applications. Based on the simulation results in Section 5.4, the GRF does not out-

perform BART and its extensions in various settings. The results of Dorie et al. (2019);
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Hahn et al. (2020); Wendling et al. (2018) also support such findings.

To mitigate the weakness of a standard regression tree in estimating causal effects, BCF

adopts different strategies from GRF. It models the prognostic and the treatment effect

separately by reparameterising the model as

E(yi|xi, zi) = µ(xi) + τ̃(xi)bzi ,

with both µ(xi) and τ̃(xi) are estimated by sets of trees; see (5.6). The trees for τ̃(xi)

shrink more strongly toward homogeneous treatment effects. BCF includes the estimated

propensity score as one of its covariates to reduce RIC. Even though the approach excludes

the treatment indicator zi as one of the variable candidates for tree splitting, which means

that the splitting on zi never occurs in the BCF, it is unclear whether this method of

constructing trees avoids RIC. For example, in the area of covariate space dominated by

the treated subjects, the corresponding tree structure is heavily influenced by the features

of the treatment group. Without the support from observations in the control group, such

tree structures may overestimate or underestimate the treatment effect.

The BART-EXT is similar to GRF with respect to the tree structures. In GRF, all the leafs

of each tree contain units from the treated and the control groups. The equivalent approach

in BART-EXT is that for the trees modelling causal effects, the treated and control units

share the same tree structure, with the terminal nodes splitting at the treatment indicator.

Such an approach mimics the classic idea of matching, which has not previously been

implemented in standard BART and BCF. Matching is an intuitive idea that given one

pair of observations with different treatment assignments, but almost the same values of

the covariates, the average difference of the outcome can be used as an estimate of the

treatment effect. In a high-dimensional setting, it is usually hard to find the matching

pairs exactly. Tree-based methods solve the problem by finding the nearest neighbours

adaptively. The matching is executed via a “coarsened” covariate value with one splitting

process. Finally, the observations falling on the same leaf node are the ones filtered by the

common splitting rules of the ancestral nodes, leading to a similarity between covariate

values.
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Table 5.1 provides a brief comparison between the methods.

Method E(Yi|Xi = xi, Zi = zi) Description
BART-EXT µ(xi) + τzi (xi) An extension to BART with identical tree struc-

tures for the treated and untreated subjects in
trees estimating τzi (.)

BART/ps-BART µ(xi, zi) Original BART method: Both x and z are treated
as covariates. ps-BART: Estimates of propensity
score are also included as one of covariates.

BCF µ(xi) + τ̃(xi)bzi An extension to BART, modelling treatment ef-
fects and treatment level together by τ̃(.) and bzi

respectively.
GRF 1

m

∑m

j=1 µj(xi, zi) An extension to random forests with identical tree
structures for treatment and control groups.

Table 5.1: Comparison between BART-EXT, BART (ps-BART), BCF and GRF. For
BART related methods (BART-EXT, BART/ps-BART, BCF), µ(·), τ(·), τ̃(·) refer to the
sum over multiple regression trees. For GRF, µj(·) is the prediction given by the jth tree.

5.3.4 Algorithm

We adopt the iterative Bayesian backfitting Markov chain Monte Carlo (MCMC) algorithm

in Chipman et al. (2010). Appendix C describes the computational details of the algorithm.

The algorithm is implemented in R using the Rcpp package.

5.4 Simulation studies

This section first illustrates the strengths and weaknesses of BART-EXT compared with

other popular methods via a toy example in Section 5.4.1. As argued in Dorie et al.

(2019), some methods work particularly well for a certain data generating process, whereas

they fail for other scenarios. No method dominates the others in all cases. However,

it is worthwhile to compare the performance of different methods in a wider setting.

Section 5.4.2 implements our model for the 2016 ACIC data challenge (2016 Atlantic

causal inference conference competition). Dorie et al. (2019) analyse this challenge using

30 competitors, including BART and its extensions. The challenge attempts to address
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the limitations of methods in the causal inference literature by using many synthetic data

sets.

5.4.1 A low-dimensional but complicated model

We start with a simple toy example to illustrate the effects of RIC on various tree-based

methods. The data generating process consists of the following components,

response equation: µi = −1(xi,2 > xi,1) + 1(xi,1 > xi,2) + 0.5xi,3,

Yi = µi + τizi + ϵi, ϵi ∼ N(0, 1)

selection equation: Pr(zi = 1|xi,1, xi,2) = Φ(0.6µi),

treatment effect: τi = 0.251(xi,2 > 2) + 0.25xi,1 + 0.25,

where i = 1, . . . , n, with n = 250, 500, and xi,j
iid∼ N(0, 0.52) with j = 1, 2, 3. The indicator

function 1(A) = 1 if statement A is true, otherwise 1(A) = 0. The function Φ(·) is the

cumulative distribution function of the standard normal distribution.

The following features are noted for this data generating process.

1. The dimension of the covariates is relatively small compared with the number of

observations. However, both the response surface and the treatment effect are non-

linear. There exists an independent variable x3 affecting the baseline surface only.

2. There appears to be moderate correlation between the propensity score and the

response equation. When the response surface (µi) has a high value, the unit is

more likely to receive treatment as the right panel of Figure 5.2 shows. Simply

taking the mean difference overestimates the treatment effect for most observations,

as the left panel of Figure 5.2 shows.

3. The treatment effect is heterogeneous, with a relatively larger magnitude compared

with the response surface.
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Figure 5.2: Left panel: The boxplot of observed response y against the treatment indicator
z. Right panel: The boxplot of the baseline response µi against the propensity score
Pr(zi = 1|xi,1, xi,2).

We apply the following methods together with the BART-EXT to the simulated data set.

Without extra specifications, all the methods are implemented using the default setting

provided in the corresponding packages. For the Bayesian methods, we use 4,000 iterations

for the MCMC sampler with the first 2,000 iterations discarded as burn-in. To eliminate

the influence by the estimated propensity scores, the true propensity score (which is often

unavailable in observational studies) is provided.

1. BART-EXT: The prior is described in Section 5.3.2. We use m0 = 200 and m1 = 50

trees to model the response surface and the treatment effect, respectively. The true

propensity score is included in both parts of the tree.

2. Vanilla BART: The default setting in R package BART (version 2.0) is adopted without

the propensity score as one of the covariates.

3. ps-BART: This method is identical to vanilla BART except that the true propensity

score is provided as one of the covariates.

4. BCF: The R package BCF (version 1.3) is used to implement the method proposed

by Hahn et al. (2020), with the true propensity score included.

5. GRF: The R package grf (version 0.10.4) is applied with 4,000 trees.
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6. OLS: The regular ordinary least squares regression method.

Table 5.2 shows the average results of the CATE estimation based on 100 independent

replications of the simulated data. The metrics RMSE and MAE are, respectively, defined

as:

RMSE =

√√√√n−1
n∑
i=1

(θ̂i − θ)2, MAE = n−1
n∑
i=1
|θ̂i − θ|,

where n = 250, 500, and θ̂i refers to the CATE estimation of the ith unit. For the Bayesian

methods, θ̂i is the posterior mean; for the GRF, θ̂i is the prediction averaging over all

trees. The RMSE of CATE estimates is also known as PEHE (precision in estimating

heterogeneous effects) (Hill, 2011).

The BART-EXT yields the smallest RMSE and MAE for n = 250 and n = 500. The

results of all the methods improve with a larger number of observations, except for OLS.

In terms of credible/confidence interval coverage and its length, the tree-based methods do

a relatively good job, especially the Bayesian methods, compared with GRF and OLS. The

result of BART-EXT is close to that of ps-BART in coverage, but with a narrower interval

length (15% to 20% less). The BCF has coverage rate closest to 95% with the interval

length even narrower than that of BART-EXT. We note that the true propensity score is

provided for all BART-related methods, except for vanilla BART. In a high-dimensional

setting, it is often hard to get a precise estimate of the propensity score. Here, BART-EXT

has an advantage over ps-BART, because the method does not rely heavily on propensity

scores, due to the identical structures imposed on the trees. The next simulation study

explores a high-dimensional problem.

It has to be admitted that we may be asking the data for too much on inference for the

treatment effect as the response surface is complex with a relatively large noise. Table 5.2

(the cases of n = 250 and n = 500) shows that a large sample size helps to improve the

estimates for most methods. Figure 5.3 shows the CATE estimate (vertical axis) with its

true value (horizontal axis) for one simulated data set with n = 500. From this figure,

none of the methods capture the true treatment effects particularly well. BART-EXT and

ps-BART are arguably the best. Vanilla BART and the GRF overestimate the treatment
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effects for a large portion of the observations, whereas BCF shrinks the estimates towards

some mean values without capturing the variability in the causal effects.

n=250 RMSE MAE Coverage Length

BART-EXT 0.180 0.152 0.986 1.001
(6.840×10−2) (6.313×10−2) (4.011×10−2) (4.987×10−2)

vanilla.BART 0.389 0.354 0.876 1.269
(1.442×10−1) (1.441×10−1) (1.727×10−1) (7.386×10−2)

ps-BART 0.202 0.169 0.993 1.175
(7.139×10−2) (6.490×10−2) (2.243×10−2) (7.071×10−2)

BCF 0.196 0.166 0.969 0.933
(7.088×10−2) (6.434×10−2) (6.979×10−2) (1.549×10−1)

GRF 0.341 0.311 0.713 0.838
(1.340×10−1) (1.361×10−1) (2.612×10−1) (7.075×10−2)

OLS 0.400 0.379 0.386 0.626
(1.498×10−1) (1.557×10−1) (3.120×10−1) (3.329×10−2)

n = 500 RMSE MAE Coverage Length

BART-EXT 0.152 0.126 0.990 0.843
(4.875×10−2) (4.423×10−2) (2.975×10−2) (4.405×10−2)

vanilla BART 0.361 0.324 0.874 1.128
(9.857×10−2) (9.759×10−2) (1.336×10−1) (5.762×10−2)

ps-BART 0.180 0.147 0.993 1.035
(5.179×10−2) (4.483×10−2) (1.900×10−2) (5.658×10−2)

BCF 0.168 0.141 0.958 0.742
(5.276×10−2) (4.824×10−2) (8.436×10−2) (1.314×10−1)

GRF 0.288 0.255 0.723 0.712
(8.744×10−2) (8.764×10−2) (1.944×10−1) (4.788×10−2)

OLS 0.420 0.400 0.151 0.442
(1.136×10−1) (1.185×10−1) (1.769×10−1) (1.501×10−2)

Table 5.2: The CATE estimation results from 100 independent replications with n =
250, 500 observations. The results are the mean values of RMSE, MAE, coverage and
interval length, where coverage and interval length are reported as 95% credible or confi-
dence intervals. Numbers in parentheses are standard deviations.
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Figure 5.3: Comparisons between the true treatment effect (horizontal axis) and the pre-
diction (vertical axis) obtained by different methods with the top row: BART-EXT, ps-
BART, GRF and the bottom row: vanilla BART, BCF, OLS. The result is for a single
replication.

5.4.2 2016 ACIC data challenge

A wide range of methodologies are available for causal inference. However, most literature

on causal inference advocates their proposed method by comparing it with the existing

ones in simulation studies only. Such comparisons are limited in the sense that they only

involve a specific data generating process which might favour the advocated method. The

2016 ACIC data challenge is motivated by observing the shortcomings of such compar-

isons. It was initiated as an attempt to compare the performance of numerous methods

on a large synthetic data set, measured by various metrics. The full data sets contain

77 scenarios, each with 100 repetitions of 4,802 observations, available from the website

http://jenniferhill7.wixsite.com/acic-2016/competition. The simulation frame-

work considers different response models, treatment assignment mechanisms, heterogeneity

levels, etc.; see Dorie et al. (2019) for more details.
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As BART and its extensions perform better than the other methods in estimating the

heterogeneous treatment effects in this challenge, we implement the same methods in

Section 5.4.1 on the full data sets. For all the Bayesian methods considered, we run the

MCMC sampler for 4,000 iterations, retaining the second half of the iterates for inference.

The true propensity scores are replaced by the estimates obtained using BART, where

we use the pbart function in the BART package to fit the binary response (treatment

level). The parameters of interest here are the CATE and ATT, which Dorie et al. (2019);

Hahn et al. (2020) also target. The performance of the methods is measured against

various metrics: RMSE, 95% credible/confidence interval coverage rate, interval length,

bias and absolute bias. Note that the simulated data sets only provide the true CATE.

The true sample ATT (SATT) is obtained by averaging all the CATE across the treated

observations. As the SATT is a scalar, the RMSE results of the Bayesian methods are

calculated based on the MCMC samplers, i.e., RMSE =
√
M−1∑M

m=1(θ̂m − θ)2, where θ̂m
is the estimate of the mth samplers.2 To ensure that the estimated treatment effects are

on a similar scale across different data sets, the final estimates and true values are scaled

down by the standard deviation of the observed outcomes.

Table 5.3 presents the average results for all the methods being considered. For the CATE

results, BART-EXT has the lowest RMSE, bias and absolute bias among all the methods.

The coverage of the confidence interval is 4-5% lower than BART and ps-BART, but with

a 50% narrower interval. The BCF has a narrower interval, but with lower coverage. The

GRF performs poorly for CATE across all metrics.

For the SATT results, BART-EXT performs comparatively to BCF, which yields the

lowest RMSE. ps-BART has the highest coverage, but at the cost of wider intervals (50%

wider) compared with that of BART-EXT. All BART-related methods outperform the

GRF in the SATT setting as well. However, all methods fail to achieve 95% coverage,

which indicates overfitting, although the Bayesian tree-based methods achieve the best

relative coverage for SATT (over 80%).

2We make this choice to account for variation in the posterior distribution. Otherwise,
the RMSE results of SATT are the same as |Bias|.
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CATE RMSE Coverage Interval length Bias |Bias|

BART-EXT 0.19 0.69 0.20 0.0011 0.089
(7.76×10−2) (6.23×10−2) (3.87×10−2) (2.56×10−3) (2.84×10−2)

BCF 0.21 0.59 0.17 0.0016 0.096
(8.07×10−2) (5.83×10−2) (3.85×10−2) (3.23×10−3) (2.96×10−2)

BART 0.23 0.72 0.40 0.0012 0.12
(8.62×10−2) (3.86×10−2) (9.80×10−2) (3.08×10−3) (3.66×10−2)

ps-BART 0.24 0.74 0.40 0.0018 0.124
(8.71×10−2) (4.97×10−2) (9.79×10−2) (1.16×10−2) (3.83×10−2)

GRF 0.34 0.61 0.35 0.016 0.19
(1.23×10−1) (9.30×10−2) (6.26×10−2) (5.98×10−3) (6.25×10−2)

OLS 0.76 0.078 0.087 0.037 0.54
(1.94×10−1) (7.22×10−2) (8.28×10−3) (2.62×10−2) (1.33×10−1)

ATT RMSE Coverage Interval length Bias |Bias|

BART-EXT 0.012 0.84 0.028 0.0013 0.011
(2.47×10−3) (7.81×10−2) (2.88×10−3) (1.87×10−3) (2.41×10−3)

BCF 0.012 0.82 0.027 0.0011 0.010
(2.11×10−3) (7.75×10−2) (1.78×10−3) (1.74×10−3) (2.09×10−3)

BART 0.017 0.82 0.041 0.0018 0.014
(3.80×10−3) (8.05×10−2) (6.78×10−3) (2.40×10−3) (3.42×10−3)

ps-BART 0.015 0.86 0.037 0.0014 0.013
(3.08×10−3) (7.32×10−2) (5.72×10−3) (2.98×10−3) (2.85×10−3)

GRF 0.025 0.62 0.056 0.0184 0.025
(6.90×10−3) (1.49×10−1) (8.81×10−3) (6.80×10−3) (6.90×10−3)

OLS 0.112 0.22 0.087 0.0449 0.112
(4.82×10−2) (2.53×10−1) (8.28×10−3) (3.46×10−2) (4.82×10−2)

Table 5.3: The result of the 2016 ACIC data challenge, which collects the average value
of difference metrics across 7,700 cases with standard deviation included in parenthesis.
Coverage and interval length refer to 95% credible or confidence intervals.

5.5 An empirical study

This section illustrates the strength of our proposal through an experimental study. Unlike

observational studies, experimental studies usually adopt randomisation from which the

ATE can be estimated unbiasedly by a simple linear regression. Unbiasness is not affected

by the missing confounders or model misspecification (Lei and Ding, 2021). This property

facilitates a direct comparison between various methods and the “true value” obtained by

an OLS regression.

Allcott and Knittel (2019) study the effect of providing the information about the fuel

economy of a vehicle on consumers’ purchasing behaviour. A small-scale dealership exper-
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iment and a large-scale online experiment are conducted among participants who intend to

buy a vehicle within the next six months. Here, we focus on the online experiment only, as

the tree-based methods perform better in a large data setting. In the online experiment,

potential participants are screened against a number of criteria for eligibility. After that,

they are randomised into either the treatment or the control group. Participants in the

control group answer several basic questions, including their first and second choice of car

purchase. Those in the treatment group answer the same questions, but with additional

information on the fuel economy provided. For example, given the participants’ first and

second choice, collectively denoted as the consideration set, the highest-MPG (miles per

gallon) vehicle in the same class is shown on screen with annual and lifetime fuel costs.

A follow-up survey collects the MPG of the vehicles purchased by the participants, if the

purchases are made by the time of the follow-up survey. The information from 1,489

participants are analysed. For the analysis, the following estimation equation is used,

Yi = τzi + xiβ + ϵi,

where the dependent variable Yi is the fuel intensity of the vehicle purchased by consumer

i, measured in gallons per 100 miles; the treatment indicator is zi, which identifies if fuel

economy information is provided (zi = 1) or not (zi = 0). The details of the covariates x

are given below.

Male: The gender indicator, with 1 for male and 0 for female.

Age: The age of the participant.

Caucasian: The race indicator for Caucasian people.

lnIncome: The natural log of annual income (1 unit = 1,000 dollars)

Miles_per_year : Miles driven per year (1 unit = 1,000 miles).

current_Ford: Whether the consumer’s current vehicle is a Ford.

current_SelfCombGP100M : Fuel intensity of the current vehicle (gallons/100 miles).
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considerSet_GP100M : The average fuel intensity of the consideration set, which includes

consumers’ first and second choice (gallons/100 miles).

Allcott and Knittel (2019) analyse the ATE of providing information on the fuel intensity

of purchased vehicles by OLS. The heterogeneous treatment effects are also investigated

on subgroups formed arbitrarily by user-defined criteria in Allcott and Knittel (2019). We

do not need to reanalyse the subgroups as all tree-based methods provide estimates of the

CATE.

We now implement the same set of methods examined in Section 5.4.2. As the study is

a randomised experiment, RIC is not induced. However, we still put the BCF and ps-

BART in the method pool to check their performance. Table 5.4 depicts the estimates

of the ATE, together with the standard deviation, confidence or credible interval, and its

length. The treatment here is the provision of the fuel information. A negative treatment

effect indicates that the consumers buy a less fuel-intensive (more economical) vehicle

given the fuel information, which implies positive feedback from the treatment. Given

the randomisation is still valid after subject attrition (the loss of subjects in the sample)

between the baseline and follow-up surveys, the OLS result is treated as the benchmark

here. Except for the BCF, all the other methods generate close estimates to OLS, but

with a larger standard deviation and wider interval length. Figure 5.4 gives the histograms

Mean Sd Lower bound Upper bound Interval length
BART-EXT 0.034 0.089 −0.125 0.132 0.256
vanilla BART 0.034 0.099 −0.151 0.153 0.304
ps-BART 0.036 0.099 −0.134 0.143 0.278
BCF 0.017 0.016 −0.016 0.038 0.055
GRF 0.027 0.063 −0.084 0.153 0.236
OLS 0.031 0.041 −0.051 0.112 0.163

Table 5.4: The ATE estimates for the fuel intensity of purchased vehicles. The lower
and upper bounds are called the boundary points of the 95% confidence interval. For the
tree-based methods, the ATE estimates are obtained as the average values of the CATE
estimates. The same rule applies for the standard deviations. The lower and upper bounds
are obtained as the 2.5% and 97.5% quantiles of the corresponding estimates.

of the estimated CATE of all participants. BART-EXT, vanilla BART and ps-BART all
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provide close results. This is a reasonable outcome as it is a randomised experiment

with no RIC involved. However, it is surprising that opposite causal effects are observed

for the female and the male participants. The female participants are more likely to

purchase less fuel-intensive (more economical) vehicles after the treatment intervention.

In contrast, the treatment seems to result in negative feedback for the male participants.

The results of the BCF do not exhibit much variability compared with the other methods,

as BCF imposes strong homogeneity assumptions for the causal effects. For the GRF

results, there is no distinguishing difference between the results of males and females.

Unfortunately, we cannot use OLS as the benchmark for the subgroup constructed by

gender as randomisation validity is questionable here3. The different patterns exhibited in

BART-related methods and the GRF are potentially explained by two reasons. First, GRF

selects a random subset of the covariates as candidates to split on. Gender is probably

not selected in some trees. Second, GRF adopts a different measure for a potential split

to a classic decision tree, which is that the goodness of a split relates to maximisation of

heterogeneity across the child nodes. Even though gender is a good predictive variable,

GRF does not necessarily choose it to split according to the adopted measure.

Figure 5.5 depicts the relationship between the estimated CATE from the BART-EXT

method and the covariates: age, miles (in thousands) driven per year, log of annual income,

and race (Caucasian or non-Caucasian). The top left panel of Figure 5.4 shows that

the CATE estimates are clustered in two groups based on the variable gender, with the

estimated causal effect for females being opposite to that of males. The left panel of Figure

5.5 shows that the treatment effect seems to have a positive relationship with age and the

log of annual income. Most of the 95% credible intervals include zero (results not shown

here), indicating that the positive relationship may not be statistically significant based on

the data. Miles driven per year appears to be unrelated to the estimated CATE (the top

right panel in Figure 5.5). The treatment intervention tends to have positive impacts on

the non-Caucasian participants, as the estimated CATE is less than that of the Caucasian

participants (the bottom right plot in Figure 5.5). Compared with the classic approach

3A Pearson’s Chi-squared test between gender and treatment indicator yields a p-value
of 0.07, which is marginally significant.
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Figure 5.4: Histograms for the CATE estimates on fuel intensity under the different mod-
els.

such as OLS, the CATE estimates cast more insights on the treatment intervention on

individuals with different characteristics.

5.6 Discussion

This chapter proposes an extension to the original BART model, BART-EXT, for esti-

mating heterogeneous treatment effects with binary treatments and continuous outcomes.

The original BART model can bias causal effects in the presence of strong confounding,

as it has a regularisation prior to prevent overfitting. Inspired by the GRF (Wager and

Athey, 2018) and the BCF (Hahn et al., 2020) approaches, we propose a solution to the
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Figure 5.5: Plots for the estimated CATE of the BART-EXT method on the fuel economy
in relation to different covariates, including age, thousands miles driven per year (1 unit
= 1,000 miles), nature log of annual income (1 unit = 1,000 dollars) and race of being
Caucasian or non-Caucasian.

problem by separating the response surface into baseline and treatment parts. For trees

capturing the treatment effects, we use identically structured trees for the treated and un-

treated subjects so that the treatment indicator is only considered in the terminal nodes

of each tree. Section 5.4.1 demonstrates the advantage of BART-EXT in a toy example

with strong confounding. Section 5.4.2 analyses the data set from the 2016 ACIC data

challenge (Dorie et al., 2019), which is a large collection of synthetic data sets gener-

ated by different mechanisms. BART-EXT performs well compared to all the tree-related

methods considered in this chapter, including the original BART, ps-BART, the BCF and

the GRF in respect to different metrics. For the experimental study in Section 5.5, the
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performance of BART-EXT is close to the benchmark (OLS). The OLS method estimates

the ATE only, whereas BART-EXT estimates heterogeneous effects for each unit, which

reveals more information about the magnitude of the causal effects with regard to various

covariates.

The BART-EXT method fixes hyperparameters before the MCMC begins; for example, the

number of trees for the baseline (m0) and the treatment (m1) effects. As some covariates

are strong predictors of treatment status, the baseline tree might suffer from confounding

to some extent. How to determine the tree type stochastically is worth future investigation.

With respect to computing time, all the examples in this chapter are implemented using the

R package Rcpp, making the reported computing times comparable to the other discussed

methods. One direction of future work is to parallelise computation of the BART-EXT

method using the proposal suggested in Pratola et al. (2014). Another future improvement

is to develop a more efficient algorithm to implement the proposed model. This chapter

adopts the iterative Bayesian backfitting MCMC algorithm proposed by Chipman et al.

(2010), where the proposal of a new tree only considers the evolution on a single node at

each iteration. As a consequence, the tree structure may stabilise over many iterations,

which impedes the algorithm’s ability to explore tree structures efficiently. He et al. (2019)

propose a grow-from-root strategy, XBART, to accelerate posterior simulation. We can

also consider the approach of Lakshminarayanan et al. (2013), which uses a sequential

Monte Carlo method for the Bayesian decision tree.
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Chapter 6

Conclusion and future directions

This thesis investigates three different problems in Bayesian statistics. The conclusion of

each chapter is provided first and followed by a discussion on future directions.

Chapter 3 focuses on SDA, which is a relatively new field in statistics. In SDA, the volume

and complexity of the original data is reduced by aggregating the data into symbols of in-

terest. Our proposed approach provides an improved solution to identify information in the

original data compared with that of Beranger et al. (2018). The symbols are constructed

from a min-max interval or a quantile-based interval, and are modelled by the so-called

symbolic likelihood function. Such functions are usually intractable and hence we utilise

the signed block PMMH algorithm (Quiroz et al., 2021) to deal with the intractability and

the negative likelihood estimates. An exact method is proposed to estimate the likelihood

function, which involves path sampling (Gelman and Meng, 1998) and the Poisson esti-

mator (Papaspiliopoulos, 2011). As the method requires large computational resources,

we also propose an approximate method to speed up the algorithm, based on a Taylor

expansion and the bias-corrected estimator (Ceperley and Dewing, 1999; Quiroz et al.,

2019). The approximate method is applied to a factor model and a linear regression in-

volving heteroscedasticity. Compared to the results on the full data, our method requires

substantially less running time with a tolerable difference in the parameter estimates.
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Chapter 4 investigates the doubly intractable problem, where the likelihood function in-

volves an intractable normalising constant. To overcome such intractability, we adopt a

similar algorithm (the signed block PMMH) to Chapter 3, but with a few differences.

First, an auxiliary variable is introduced, resulting in a likelihood function on an aug-

mented space being estimated on the exponential scale. Second, the block-Poisson estima-

tor (Quiroz et al., 2021) is used instead of the Poisson estimator (Papaspiliopoulos, 2011).

The estimator has a tractable form so that analytical results for the likelihood estimator

can be derived under simplifying assumptions, which are used in establishing guidelines

for hyperparameter tuning. The proposed method is applied to the Ising model (Ising,

1925), a constrained Gaussian process, and the Kent distribution (Kent, 1982). The first

application is one of the classic problems in the literature, whereas for the remaining two

applications, the methods for exact Bayesian inference are rarely investigated, because

approximate methods usually provide good results as long as the associated assumptions

are satisfied. The proposed method can also be applied to a wide range of problems as its

only requirement is to have an unbiased estimator for the normalising constant.

Chapter 5 considers causal inference. This chapter extends the original BART model to

estimate heterogeneous treatment effects of an observational study with binary treatments

and continuous outcomes. The proposed method, BART-EXT, is inspired by the BCF

(Hahn et al., 2020) and the GRF (Wager and Athey, 2018) methods. To control the

strength of regularisation of the BART prior, the treatment effect is estimated separately

from the baseline effect. The estimated propensity score is included to mitigate the bias

caused by the regularisation-induced confounding (Hahn et al., 2018). To make the covari-

ates comparable for treated and untreated observations, the trees modelling the treatment

effects are forced to have identical structures for observations from the treatment and the

control group, which can be regarded as an adaptive matching process. The benefits are

illustrated in an extensive simulation study (Dorie et al., 2019), which is often used in

the causal inference literature to compare performance between methods under different

data generating processes. We demonstrate the BART-EXT method in a reanalysis of an

experimental study to investigate the causal effects of providing fuel intensity information

on vehicle purchases (Allcott and Knittel, 2019).
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Discussion of our contribution and future directions is given in each technical chapter.

Here we present a general discussion. All the topics involve a model with a complex like-

lihood function, whose evaluation is computationally challenging. The likelihood function

in Chapter 3 involves an integral with no analytical solution. Chapter 4 studies a likeli-

hood function which is intractable with an unknown normalising constant. In Chapter 5,

the likelihood function is composed of multiple trees with a changing structure through

the MCMC iterates. To speed up the MCMC methods, one future direction is to find

efficient methods for likelihood evaluations. However, the likelihood estimator is model

dependent. For complex models, it is usually difficult to develop efficient unbiased estima-

tors with low variability. An alternative direction is to develop elegant algorithms which

ease the difficulties in the direct evaluation of the likelihood function. For example, the

exchange algorithm presented in Chapter 2.4 avoids estimating the normalising constant

by carefully designing an auxiliary variable and the corresponding transition kernel. An

iterative backfitting MCMC algorithm is used for inference on the BART model in Chap-

ter 5, where the likelihood of a single tree is investigated with the other trees fixed. The

computing cost is much smaller than evaluating the likelihood function for all the trees.

In future research, it is feasible to incorporate other simulation-based Monte Carlo meth-

ods in the algorithms developed in this thesis. For example, sequential Monte Carlo (SMC)

algorithms (Andrieu et al., 2003) are a collection of methods, which sequentially sample

from a series of distributions to approach the target distribution. Del Moral et al. (2006)

show that the output of SMC samplers gives a consistent estimate of the posterior expecta-

tion of any function of parameters. The computing cost required by SMC methods is often

cheaper than MCMC methods. SMC methods have other advantages such as robustness

to multi-modality and the availability of parallel computation. As proposed in McGree

et al. (2016), it is possible to implement SMC methods under the PM framework. Linking

to the topic of Chapter 3, the combination of SMC and PM methods could reduce the

computing cost, which can be achieved by gradually increasing the number in the expo-

nent from a small number to the number in the likelihood function using AIS (Neal, 2001).

The SMC method also applies for the doubly intractable problems discussed in Chapter

4 provided that it is practical to sample observations from the likelihood function exactly
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without knowing the normalising constant. This approach is achievable for the Ising model

(Ising, 1925) and some graphical models (Naesseth et al., 2014). However, incorporating

SMC methods in the algorithm developed in Chapter 4 is not that straightforward and

needs further research. For the BART model, Lakshminarayanan et al. (2013) develop

a generic particle filtering method for SMC, which explores the tree structure more effi-

ciently than the MCMC algorithm. The method is proposed for vanilla BART and it can

be reformulated in our novel BART model proposed in Chapter 5.

In addition to efficient algorithms exploiting simulation-based methods, it may be promis-

ing to use generic techniques such as divide-and-conquer approaches (Bardenet et al., 2017;

Neiswanger et al., 2013; Scott et al., 2016) and subsampling-based algorithms (Quiroz

et al., 2018). Both techniques attempt to accelerate of simulation-based methods using

various approaches. The former divides the sample data into mini batches and combines

the posterior distribution of each batch cleverly to approximate the posterior distribution

of the whole data set. The latter uses a small portion of observations at each MCMC

iteration to obtain an unbiased likelihood function estimate based on the sample. With

regards to the applications in this thesis, a direct implementation of the techniques above

is impractical, especially for the SDA and doubly intractable problems where the indepen-

dence assumption does not hold for symbolic objects and correlated observations. For the

BART model, it is also difficult to use subsampling directly under the backfitting setting.

The divide-and-conquer approach, on the other hand, may lead to an inefficient algorithm

as the tree structures for each mini-batch are likely to be totally different. Further work

is needed to incorporate generic techniques into the topics in this thesis.
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Appendix A

Supplementary materials for

Chapter 3

A.1 Details on the path sampler

Let 0 ≤ t ≤ 1, and denote ht(x; θ) = gx(x; θ)t,x ∈ S, S ⊆ Rd. The following equation

holds

log
∫
S
gx(x; θ)dx =

∫ 1

0
Eqt(z;θ)

[
d

dt
log ht(z; θ)

]
dt+ log

∫
S

1dz.

Proof. It is straightforward to show that h0(x; θ) = 1 and h1(x; θ) = gx(x; θ).

Let ϕt(θ) =
∫
S ht(x; θ)dx, then log(ϕ1(θ)) = log (

∫
S gx(x; θ)dx), which is our target and
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ϕ0(θ) =
∫
S 1dx = volume of S.

d

dt
log ϕt(θ) = 1

ϕt(θ)
d

dt
ϕt(θ) = 1

ϕt(θ)
d

dt

(∫
S
ht(x; θ)dx

)
= 1
ϕt(θ)

∫
S

d

dt
ht(x; θ)dx

= 1
ϕt(θ)

∫
S
ht(z; θ) d

dt
log ht(x; θ)dx

=
∫
S

ht(x; θ)
ϕt(θ)

d

dt
log ht(x; θ)dx

=
∫
S
qt(x; θ) d

dt
log ht(x; θ)dx where qt(x; θ) = ht(x; θ)

ϕt(θ)

= Eqt(x;θ)

[
d

dt
log ht(x; θ)

]
.

Taking the integral from 0 to 1, we have

[log ϕt(θ)]10 = log ϕ1(θ)− log ϕ0(θ)

=
∫ 1

0
Eqt(x;θ)

[
d

dt
log ht(x; θ)

]
dt.

A.2 Some properties of the Poisson estimator

The proof of the Poisson estimator closely follows that in Quiroz et al. (2019), which

focuses on the block-Poisson estimator. The only difference is that the Poisson estimator

is a special version of the block-Poisson estimator with only one block. The appendix of

Quiroz et al. (2019) proves some properties of the block-Poisson estimator.

Here, we rewrite the proof in the SDA context.

Recall that the Poisson estimator is

êxp(A) = exp(a+ λ)
χ∏
h=1

(Â(h) − a)
λ

.‘

We show the following properties of the Poisson estimator,

1. E(êxp(A)) = exp(A).
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2. Var(êxp(A)) = exp
(

(A− a)2

λ
+ λ+ 2a+ σ̂2

A

λ

)
− exp(2A).

3. The optimal value of a which minimises the variance of êxp(A) is aopt = A− λ.

4. The optimal value for a is unavailable as A is unknown. We can choose a = A(h)−λ,

where h is drawn from {1, . . . , χ} randomly, which still gives an unbiased estimator

for exp(A).

We use the following results for the Poisson distribution in the proof. If χ ∼ Poisson(λ)

and A <∞,

1. Eχ(Aχ) = exp[(A− 1)λ].

2. Varχ(Aχ) = exp(−λ)[exp(A2λ)− exp(2Aλ− λ)].

Proof. Property 1

E(êxp(A)) = Eχ

[
E
Â|χ(exp(a+ λ)

χ∏
h=1

Â(h) − a
λ

]

= exp(a+ λ)Eχ
[(
A− a
λ

)χ]
= exp(a+ λ) + exp(A− a

λ
λ− λ) (use result 1)

= exp(a+ λ) exp(A− a− λ)

= exp(A).

Next, to derive the optimal value for the lower bound a, we derive the variance of êxp(A).
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Proof. Property 2

Var(êxp(A)) = Var
(

exp(a+ λ)
χ∏
h=1

Â(h) − a
λ

)

= exp(2a+ 2λ)Var
( χ∏
h=1

Â(h) − a
λ

)

= exp(2a+ 2λ)
(

VarχEÂ|χ

χ∏
h=1

Â(h) − a
λ

+ EχVar
Â|χ

χ∏
h=1

Â(h) − a
λ

)

= exp(2a+ 2λ)(C +D),

with C = VarχEÂ|χ

χ∏
h=1

Â(h) − a
λ

= exp(−λ)
[
exp

((
(A− a

λ
)2λ

)
− exp

(
2A− a

λ
λ− λ

))]
= exp(−λ)

[
exp

(
(A− a)2

λ

)
− exp(2A− 2a− λ)

]
,

and D = EχVar
Â|χ

[ χ∏
h=1

(
Â(h) − a

λ

)]
.

To derive term for D, first we compute the conditional variance as

Var
Â|χ

[ χ∏
h=1

(
Â(h) − a

λ

)]
=

χ∏
h=1

Var
(
Â(h) − a

λ

)
+
(
Â(h) − a

λ

)2
− χ∏

h=1

(
Â(h) − a

λ

)2

=

 σ̂2
A

λ2 +
(
Â− a
λ

)2
χ −

(Â− a
λ

)2
χ .

Plug the term above into D, we have

D = E

[(
σ̂2
A

λ2 +
(
A− a
λ

)2
)χ]

− E
[(

A− a
λ

)2χ
]

= exp
[(

σ̂2
A

λ2 +
(
A− a
λ

)2
− 1

)
λ

]
− exp

[((
A− a
λ

)2
− 1

)
λ

]

= exp
[

(A− a)2

λ
− λ

] [
exp

(
σ̂2
A

λ

)
− 1

]
.

Rearrange terms to derive Var(êxp(A)),

Var(êxp(A)) = exp(2a+ 2λ)·{
exp(−λ)

[
exp

(
(A− a)2

λ

)
− exp(2A− 2a− λ)

]
− exp

(
(A− a)2

λ
− λ

)[
exp

(
σ̂2
A

λ

)
− 1

]}

= exp
(

(A− a)2 + σ̂2
A

λ
+ λ+ 2a

)
− exp(2A).
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Proof. Property 3

To get the optimal value for a, take the first derivative with regards to a,

∂

∂a
log (Var(êxp(A)) = −2A− a

λ
+ 2 = 0,

which gives a = A − λ. The second derivative is 2
λ2 > 0, confirming the minimum is

achieved.

Even though the Poisson estimator is an unbiased estimator, regardless of the value of a,

it is ideal to set a = A − λ, which gives a closer result to exp(A) even if χ = 0, which is

likely to happen for a small λ. However, we do not know the true value of A, otherwise it

is pointless to use the Poisson estimator. We estimate the value of a as

a = f(Â1, ...Âχ)− λ,

where f(·) produces a random draw from the inputs.

Proof. Property 4

Assume j ∼ Uniform(1, . . . , χ), and let a =
∑χ
h=1whÂ

(h) − λ with wj = 1 and wi = 0 for

i ̸= j (we have a random draw from all the candidates).

To show the unbiasedness of the Poisson estimator, starting with the intermediate result

of the proof for property 1:

E
Â|χ

(
exp(a+ λ)

χ∏
h=1

Â(h) − a
λ

)

= E
Â|χ exp(Âj)

χ∏
h=1,h̸=j

(
Â(h) − Â(j) + λ

λ

)

= E
Â(j)|χ exp(Â(j))

(
A− Â(j) + λ

λ

)χ−1

.

The last step uses the iterative expectation on Âh|Âj , h ̸= j.
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Exchange the order of χ and Â,

E(êxp(A)) = E
Â

exp(Â(j))
(
A− Â(j) + λ

λ

)−1

E
χ|Â

(
A− Â(j) + λ

λ

)χ
= E

Â

exp(Â(j))
(
A− Â(j) + λ

λ

)−1

exp(A− Â(j))


= exp(A)E

Â

(
A− Â(j) + λ

λ

)−1

Assume that Â P−→ A, then
(
A− Â+ λ

λ

)−1
P−→ 1, where P−→ refers to convergence in

probability.
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Supplementary material for

Chapter 4

B.1 Properties of the block-Poisson estimator

Proof of Lemma 11:

Proof. Recall that the block-Poisson estimator is expressed as L̂B(θ) =
∏λ
l=1 exp(ξl(θ))

with

exp(ξl(θ)) = exp(a/λ+m)
χl∏
h=1

B̂(h,l)(θ)− a
mλ

,

where λ is the number of blocks with χl ∼ Pois(m) and a is an arbitrary constant. For

notational convenience, dependence on θ is omitted for L̂B, B̂ and ξ.

The following proofs closely follow the proofs in Quiroz et al. (2021, Section S8). In the

paper, they assume m = 1, whereas here m can be any non-negative integer. The two

properties below are useful for the proof. Suppose that X ∼ Pois(m) and A <∞. Then,

1The proof of Lemma 1 is almost the same as in Appendix A.1, with the only difference
that the number of blocks m is also included.
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(i) EX(AX) = exp((A− 1)m).

(ii) VarX(AX) = exp(−m)[exp(A2m)− exp(2Am−m)].

Proof of unbiasedness

E(exp(ξl)) = exp(a/λ+m)E
[ χl∏
h=1

B̂(h,l) − a
mλ

]

= exp(a/λ+m)EχEB̂|χ

[ χl∏
h=1

B̂(h,l) − a
mλ

]

= exp(a/λ+m)Eχ

[
B − a
mλ

]χ

= exp(a/λ+m) exp((B − a)/λ−m)

= exp(B/λ).

As ξ1, . . . , ξλ are independent, E(L̂B) = exp(B).

In the implementation, we use a = B̂ − mλ, where B̂ is an estimate of B and it is

independent of B̂(h,l). Such choice of a preserves the unbiasedness of the block Poisson

estimator with the explanation given below.

Treating a as a random variable, the expectation of block-Poisson estimator can be ex-

pressed as

E(L̂B(θ)) = EaEξ1,...,ξλ|a

λ∏
l=1

exp(ξl(θ)) = Ea

(
λ∏
l=1

Eξl|a exp(ξl(θ))
)
.

The conditional expectation of Eξl|a exp(ξl) is (omitting the dependence on θ)

Eξl|a exp(ξl) = Eξ1|a exp(a/λ+m)
χl∏
h=1

B̂(h,l) − a
mλ

.

The conditional expectation is the same as the derived E(exp(ξl)), which is independent

of a as it is cancelled out in the process. Hence, treating a as a random variable still

guarantees the unbiasedness of the block-Poisson estimator.

Derivation of the variance

146



B.1. PROPERTIES OF THE BLOCK-POISSON ESTIMATOR

From the definition of L̂B,

Var(L̂B) = Var
(

λ∏
l=1

exp(ξl)
)
.

For a collection of independent random variables exp(ξ1), . . . , exp(ξλ),

Var
(

λ∏
l=1

exp(ξl)
)

=
λ∏
l=1

(
Var(exp(ξl)) + E(exp(ξl))2

)
−

λ∏
l=1

E(exp(ξl))2

with

Var(exp(ξl)) = exp(a/λ+m)
[
EχVar

B̂|χ

( χ∏
h=1

B̂(h,l) − a
mλ

)
+ VarχEB̂|χ

( χ∏
h=1

B̂(h,l) − a
mλ

)]
.

For the first term in the brackets, making the use of independence of B̂(h,l), h = 1, . . . , χl,

Var
B̂|χ

(∏χ
h=1

B̂(h,l) − a
mλ

)
can be simplified as

Var
B̂|χ

( χ∏
h=1

B̂(h,l) − a
mλ

)
=

χ∏
h=1

Var
(
B̂(h,l) − a

mλ

)
+ E

(
B̂(h,l) − a

mλ

)2
− χ∏

h=1
E

(
B̂(h,l) − a

mλ

)2

=
χ∏
h=1

(
σ2
B + (B − a)2

(mλ)2

)
−
(
B − a
mλ

)2χ
.

Taking the expectation with regard to χ and use property 1 twice for the two terms, we

have

EχVar
B̂|χ

( χ∏
h=1

B̂(h,l) − a
mλ

)
= exp

[(
σ2
B + (B − a)2

(mλ)2 − 1
)
m

]
− exp

[(
(B − a)2

(mλ)2 − 1
)
m

]

= exp
[(

(B − a)2

(mλ)2 − 1
)
m

] [
exp

(
σ2
B

mλ2

)
− 1

]
.

The second term can be derived similarly,

VarχEB̂|χ

( χ∏
h=1

B̂(h,l) − a
mλ

)
= Varχ

(
B − a
mλ

)χ

= exp
(
−m+ (B − a)2

mλ2

)
− exp (2(B − a)/λ− 2m) .

Combining the two terms, we have

Var(exp(ξl)) = exp
[(B − a)2 + σ2

B

mλ2 −m
]
− exp(2(B − a)/λ− 2m).
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Deriving E(exp(ξ))2 is straight forward,

E(exp(ξl))2 =
[
EχEB|χ

χ∏
h=1

(
B̂(h,l) − a

mλ

)]2

= exp(2(B − a)/λ− 2m).

Combining all the terms, after some algebra, the variance of the block-Poisson estimator

is

Var(L̂B) = exp
[

(B − a)2 + σ2
B

mλ
+ 2a+mλ

]
− exp(2B).

Choice of the constant a

The optimal value a minimising Var(L̂B) is a = B −mλ. This is obtained by solving the

equation ∂L̂B/∂a equal to 0.

Proof of Lemma 2:

Proof. The proof is exactly the same as Lemma 3 in Quiroz et al. (2021).

Proof of Lemma 3:

Proof. The variance of the log of the likelihood estimator is

Var(log|L̂B|) = Var
( λ∑
l=1

χl∑
h=1

log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣
)

= Eχ1,...,λ
VB|χ1,...λ

log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣+ Varχ1,...,λ
EB|χ1,...λ

log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣.
Suppose B̂(h,l) ∼ N(B, σ2

B) and a = B −mλ, then

log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣ = log
∣∣∣∣σBZmλ + 1

∣∣∣∣
= log(σB/(mλ)) + log|Z +mλ/σB|

= log(σB/(mλ)) + 1
2 log((Z +mλ/σB)2)

= log(σB/(mλ)) + 1
2 logW (h,l), W (h,l) ∼ χ2(1, (mλ/σB)2),
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where χ2(k, λ) denotes the non-central χ2 distribution with k degrees of freedom and

non-centrality parameter λ. Lemma S12 in Quiroz et al. (2021) provides the moments of

logW .

Let ηB and ν2
B be the expectation and the variance of log

∣∣∣ B̂(h,l)−a
mλ

∣∣∣ respectively. We have

ηB = E

(
log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣
)

= log(σB/(mλ)) + 1
2 log(2 + EJ [ψ(0)(0.5 + J)],

ν2
B = Var

(
log
∣∣∣∣∣B̂(h,l) − a

mλ

∣∣∣∣∣
)

= 1
4
[
EJ [ψ(1)(0.5 + J)] + VarJ [ψ(0)(0.5 + J)]

]
,

where J ∼ Pois((mλ)2/2σ2
B) and ψ(q) is the polygamma function of order q.

Finally,

Var(log|L̂B|) = Eχ1,...,λ

( λ∑
l=1

χl

)
ν2
B + Varχ1,...,λ

( λ∑
l=1

χl

)
ηB

= mλ(ν2
B + η2

B).

Furthermore, Var(log|L̂B|) <∞. Lemma 7 in Quiroz et al. (2021) derives the result.

B.2 Implementation details of the signed block PMMH with

the BP algorithm

The implementation details of Algorithm 7 are covered in this section; it covers the con-

struction of the BP estimator and the choice of the soft lower bound. In Section 4.4.3,

the variance of γ(θ) = MVar(−νẐM (θ)) is treated as a known value for hyperparameter

tuning. The decomposition of γ(θ) is discussed below, which helps to understand the

effect of the randomness in ν.

Construction of the BP estimator

To implement the BP estimator, we first fix the hyperparameters λ,m and a. For each

of the blocks h, h = 1, . . . , λ,, we sample χh ∼ Pois(m). Depending on the value of χh,
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we need to have the same number of −νẐ estimates. The whole process can be done in

parallel. We can draw χh for all the possible h values at one time, and the total replications

of −νẐ required are
∑λ
h=1 χh. Parallel computation can also be implemented within the

individual estimation process for Ẑ locally, where the calculation of M particles is executed

simultaneously.

Choosing the lower bound in the BP estimator

The lower bound aopt = −νZ −mλ for the BP estimator minimises the variance of the

likelihood estimator. In the implementation, Z is replaced by its estimate Ẑ. Its compu-

tation is exactly the same as that of the Ẑs’ used in the estimator. We emphasise that it

is necessary to estimate Ẑ independently to ensure that the estimator is unbiased.

Decomposition of γ

Recall the decomposition of γ(θ) in (4.9),

γ(θ) = Mν2Var(ẐM (θ)) = M
log(u)2

Z2
σ2
Z

M
= log(u)2σ

2
Z

Z2 .

The dependence of Z, σ2
Z and γ on θ is omitted for notational simplicity. The equation

above shows that γ is determined by a constant log(u)2 and the ratio between standard

deviation of the estimator Ẑ and mean value: σZ/Z. The unconditional variance can

also be derived by using the law of total variance, giving a similar conclusion as discussed

below.

Effect of log(u)2: It is concerning that log(u)2 is unbounded as u approaches to 0. As

Figure B.1 shows, there is less than a 5% chance of log(u)2 > 9. Instead, as the equation

above shows, the introduction of u reduces the variance by a factor of around 2 with 50%

probability as Pr(log(u)2 < 0.48) = 0.5. Furthermore, Pr(log(u)2 < 1) = 0.63, indicating

that the variance does not increase with a probability greater than 0.6. The expectation

of log(u)2 is around 2, i.e., on average, the effect of u doubles the variance.

Effect of σZ/Z: This ratio is called the coefficient of variation. It describes the magnitude

of the variation relative to the mean. However, it is difficult to estimate as both σZ and Z
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Figure B.1: Left panel: function of log(u)2 on u ∈ (0, 1]. Right panel: the cdf of log(u)2

with u ∼ Uniform(0, 1].

are unknown. The term σ2
Z

MZ2 is often estimated by calculating the sample variance of Ẑ

over M samples by Monte Carlo integration. The value of σZ/Z is implicitly determined

by the properties of Ẑ, regardless of M .

Conclusion: It is hard to obtain an analytical expression of γ. However, we could estimate

it by Monte Carlo integration. There is also uncertainty associated with ν. Setting

γ ≈ 2σ2
Z/Z

2 is a conservative choice to account for the effect of log(u)2.

B.3 Details of the Ising model

B.3.1 An unbiased estimator for the normalising constant

This section supplements the material on AIS sampling in Section 4.5.1. The likelihood

function is p(y|θ) = f(y|θ)
Z(θ) , with f(y|θ) = exp(θS(y)).

Consider the following intermediate kernel of the likelihood function

fn(y|θ) = f(y|θ)βnp(y)1−βn ,

where 0 = β0 < β1 < · · · < βn−1 < βn = 1 and p(y) = 0.5L×L. In the case of β0, sampling
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from the prior density fn(y|θ) of β0 is straightforward. By gradually increasing β, the

samples will be drawn from the likelihood function at the nth step without knowing the

normalising constant. The algorithm starts by sampling M particles from f0(y|θ), and

proceeds with a certain transition probability to a new configuration for βi (i = 1, . . . , n−1)

and terminates when βn = 1 is reached.

The transition to a new configuration yi+1,m (m = 1, . . . ,M) from the current configura-

tion yi,m is completed by the following Gibbs update.

1 Select one random location i, j out of an L× L grid.

2 Change the corresponding value of yi,j with probability

p(yi,j = 1) = 1
1 + exp(−βi+1θ

∑
yneighbour)

,

where yneighbour refers to the points to the left, right, up and down of yi,j .

3 Set the new configuration as yi+1,m.

The final weight associated with particle m (omitting θ) is

w(m) = f1(y0,m)
f0(y1,m)

f2(y1,m)
f1(y1,m) . . .

fn(yn−1,m)
fn−1(yn−1,m) .

The average of the importance weights
∑M
m=1w

(m)/N converges to the ratio of Z1(θ)/Z0(θ),

where Zi(θ) corresponds the normalising constant of fi(y|θ).

The computation of w(m) is in logs to avoid overflow problems. Each particle is indepen-

dent of the others, which makes parallel computation possible. Our description follows

the supplementary code in Park and Haran (2018) which uses OpenMP to implement

the parallel computation. The re-evaluation of S(y) from scratch can be computationally

costly as it involves O(L2) operations for each combination of βi and particle m. We

modify the evaluation process by adding or subtracting the local updates of the selected

location only. Such changes reduces the complexity to O(1) and consequently decrease

the computational time substantially.
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B.3.2 The bias-corrected estimator

B.3.2 The bias-corrected estimator

By introducing the auxiliary variable ν, we transform the problem of unbiasedly estimating

the reciprocal Z(θ) into the problem of unbiasedly estimating exp(−νZ(θ)). Ceperley and

Dewing (1999) discus a method for debiasing exp(·); Quiroz et al. later extend their

estimator to subsampling. They call their estimator the approximately bias-corrected

likelihood estimator. The core idea of the method is based on the normality assumption

of Ẑ(θ). It is well known that if x ∼ log−normal(µ, σ2), then E(x) = exp(µ + 0.5σ2).

Using this property of the log-normal distribution, the bias-corrected estimator is

exp
(
−νẐM (θ)− Var(−νẐi(θ))

2M

)
,

where ẐM (θ) = 1
M

∑M
i=1 Ẑi(θ).

B.3.3 The variability of the normalising constant

The estimate Ẑ and its variability are crucial in hyperparameter tuning for the proposed

algorithm. As the Ising model involves one parameter, it is feasible to study the variability

of Ẑ by simulation. Figure B.2 shows the estimates of the scaled Ẑ under different θ values,

where Ẑ is rescaled by dividing the sample mean of the replications. Each histogram is

generated by 1,000 independent replications, each of which uses 100 particles in AIS with

4,000 intermediate transitions equally spaced between 0 and 1. The horizontal axis refers

to the scaled Ẑ(θ). As θ increases, the distribution of the scaled Ẑ is heavily skewed

and the normality assumption appears to be invalid for θ > 0.4. Such violation explains

the overestimation by the bias-corrected estimator for θ = 0.43 in the example in Section

4.5.1. Examining the range of the horizontal axis, the magnitude also increases sharply

with θ. It states that a larger θ is associated with more variability in Ẑ. Hence, more

particles are required to estimate Ẑ as θ increases.
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Figure B.2: Histograms of scaled Z(θ) estimates on a 10× 10 2D Ising model.

B.4 Details of the GP example

B.4.1 Derivation of the posterior distribution

Recall the model: y = g(x) + ϵ, with g ≥ 0, ϵ ∼ N(0, σ2).

The posterior is:

π(α, ρ, σ2|y) ∝ π(α, ρ, σ2)
∫

g≥0
p(y|g, σ2)p(g|α, ρ)

Z(α, ρ) dg

∝ π(α, ρ, σ2)
Z(α, ρ)

∫
g≥0

p(y|g, σ2)p(g|α, ρ)dg

= π(α, ρ, σ2)
Z(α, ρ) Z∗(µ∗,Σ∗)py(y|α, ρ, σ2),
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where p(g|α, ρ) is a multivariate normal distribution with mean vector 0, covariance ma-

trix K(x,x′|α, ρ) and Z(α, ρ) =
∫

g≥0 p(g|α, ρ)dg is the intractable term. Here we use py(.)

refers to a unconstrained multivariate normal distribution with mean vector 0 and covari-

ance matrix Kxx + σ2In, where Kxx = K(x,x′|α, ρ). The integration in the second last

line is done analytically as it is a convolution of two normal distributions. The posterior

for the scalable GP is done similarly except that the covariance matrix is placed on the

inducing points. Sections 4.5.2.2 and 4.5.2.3 provide the results.

The posterior, after introducing the auxiliary variable ν ∼ Expon(Z(α, ρ)), is

π(α, ρ, σ2, ν|y) ∝ π(α, ρ, σ2) exp(−νZ(α, ρ))Z∗(µ∗,Σ∗)py(y|α, ρ, σ2)

In the signed block PMMH with BP algorithm, the posterior is estimated as:

π̂(α, ρ, σ2, ν|y) ∝ π(α, ρ, σ2)|êxp(−νZ(α, ρ))|Ẑ∗(µ∗,Σ∗)py(y|α, ρ, σ2),

where êxp(·) is the block-Poisson estimator and Ẑ(·, ·) and Ẑ∗(·, ·) are estimated by the

SOV estimator (Genz, 1992).

B.4.2 Prediction based on the constrained GP

Obtaining “raw” predictions follows the same procedure as an ordinary GP without con-

straints. The results are established in Williams and Rasmussen (2006) and Snelson and

Ghahramani (2006) for scalable GP. We illustrate the posterior prediction under the

constraint below.

Prediction at x: Denote g(x) as g and denote all the hyperparameters (α, ρ, σ) by θ.

To get the prediction for g for the small data case, consider the expectation with respect

to the posterior distribution,

E(g|y) =
∫

g
gp(g|y)dg

=
∫

g
g
(∫

θ
p(g|θ,y)p(θ|y)dθ

)
dg

=
∫

θ

∫
g

gp(g|θ,y)p(θ|y)dgdθ,
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where p(g|θ,y) is a truncated multivariate normal distribution with mean µ∗
g, covariance

Σ∗
g, with the lower bound 0. The expressions for µ∗

g,Σ∗
g follow the notation used in Sections

4.5.2.2 and 4.5.2.3. Fortunately, samples of g are obtained in the process of evaluating

Ẑ∗(θ) in the MCMC iterations, so there is no extra computing cost.

For the scalable GP, µ∗
g and Σ∗

g are replaced with or µ∗
g and Σ∗

g. The samples of g need

to be further projected to the location x by gm(x) = KnmK−1
mmgm.

Prediction at x∗: Starting with the small sample case first, to predict g∗(x∗) at a new

location x∗, we have:

E(g∗|y) =
∫

g∗p(g∗|y)dg∗

=
∫

g∗
g∗
∫

g

∫
θ
p(g∗|g,y,θ)p(g|θ,y)p(θ|y)dgdθdg∗

=
∫

g∗

∫
g

∫
θ

g∗p(g∗|g,θ)p(g|θ,y)p(θ|y)dgdθdg∗,

where p(g∗|g,θ) = trunc-normal(g∗|µg∗|g,Σg∗|g; 0,∞) with µg∗|g = Kx∗xK−1
xxg and Σg∗|g =

Kx∗x−Kx∗xK−1
xxKxx∗ . It is expensive to sample a vector g∗ from p(g∗|g,θ) as it requires

O(n3
pred) evaluations to get the Cholesky decomposition of the matrix Σg∗|g. Instead, con-

sider a one-dimensional g∗ so that p(g∗|g,θ) is reduced to a one-dimensional truncated

normal distribution with a known normalising constant. The analytical forms of quanti-

ties such as the mean and median of one-dimensional truncated normal distributions are

available. In the simulation study, the median is selected as it is more robust than the

mean.

For the scalable GP, p(g∗|g,θ) is a truncated normal distribution with mean vector

µg∗|gm
= Kx∗mK−1

mmgm and the variance Kx∗x∗(K−1
mm −Q−1

mm)Kxx∗ .
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B.5 Details of the Kent distribution

Recall the density function of the Kent distribution, y = {y1, y2, y3} with
∑3
i=1 y

2
i = 1 and

θ = {γ1,γ2,γ3, β, κ},

p(y|θ) = 1
c(β, κ) exp

{
κγ⊤

1 · y + β
[
(γ⊤

2 · y)2 − (γ⊤
3 · y)2

]}
= f(y|θ)
c(β, κ) ,

where κ > 0, 0 ≤ β < κ/2. The parameters {γ1,γ2,γ3} form a 3-dim orthonormal matrix

with γi, i = 1, 2, 3 is a 3× 1 vector.

For a 3-dimensional FB5 distribution, the mathematical expression for the normalising

constant is

c(β, κ) = 2π
∞∑
j=0

Γ(j + 0.5)
Γ(j + 1) β2j(0.5κ)−2j−0.5I2j+0.5(κ)

.

Assume n independent observations from an FB5 distribution, together with the auxiliary

variables νi ∼ Expon(c(β, κ)), i = 1, · · · , n. The posterior distribution

π(θ, ν1:n|y1:n) ∝ π(θ)
n∏
i=1

f(yi|θ) exp (−νic(β, κ))

= π(θ) exp
(
−

n∑
i=1

νic(β, κ)
)

n∏
i=1

f(yi|θ).

Calculating the normalising constant c(β, κ) does not increase with the number of obser-

vations and again, we use the BP method for unbiasedly estimating exp(·).

Classification prediction: In the empirical study, we assume n independent observations

are from a mixture of two groups of the Kent distribution with unknown parameters

θg = {γ1,g,γ2,g,γ3,g, βg, κg}, g = 1, 2. Given the underlying group membership is provided

and there is no hierarchical structure for the prior on θg, the posterior distribution for the

parameters and the auxiliary variables is

π(θ1,θ2, ν1:n,1:2|y1:n1,1,y1:n2,2) ∝
2∏
g=1

[
π(θg) exp

(
−

ng∑
i=1

νi,gc(βg, κg)
) ng∏
i=1

f(yi,g|θg)
]

;

ng is the number of observations belonging to group g and the auxiliary variable νi,g ∼

Expon(c(βg, κg)).
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For prediction, assign yi to group 1 if p(yi|ytrain,1) > p(yi|ytrain,2) or to group 2, otherwise.

The density p(yi|ytrain,g) is evaluated as

p(yi|ytrain,g) =
∫

θg

p(yi|θg)p(θg|ytrain,g)dθg

=
∫

θg

∫
νi

p(yi, νi|θg)p(θg|ytrain,g)dνidθg

=
∫

θg

∫
νi

f(yi|θg) exp(−νic(βg, κg))p(θg|ytrain,g)dνidθg

=
∫

θg

∫
νi

f(yi|θg)E(êxp(−νic(βg, κg)))p(θg|ytrain,g)dνidθg.

The last equation can be evaluated by importance sampling using the proposal νi ∼

Expon(ĉ(βg, κg)). The inner integral can be estimated by

f(yi|θg)
1

ĉ(βg, κg)
1
M

M∑
i=1

êxp(−νic(βg, κg))
exp(−νiĉ(βg, κg))

.

The outer integral is computed by taking the average of the θg iterates.
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Appendix C

Supplementary material for

Chapter 5

C.1 The BART MCMC algorithm

We follow the notation in Kapelner and Bleich (2013). Let xi, i = 1, . . . , n be p-dimensional

covariates. The binary treatment indicator is zi with the observed response yi. Denote

T ′
j as the structure for the jth tree which captures the prognostic (baseline) effect with

j = 1, . . . ,m0. The corresponding parameters for the terminal nodes are denoted as

M ′ = {µ1j , . . . , µbjj}. For the trees modelling the causal effects, let Tk be the structure

for the kth tree with k = 1, . . . ,m1. As the terminal node splits with z, the corresponding

node parameters are M0k and M1k respectively. It is worth noting that M0k,M1k have

the same number of elements as they share an identical structure.

C.1.1 Data model

Recall the sum-of-trees model in (5.8). Observations are assumed to be independent of

each other, with a normal distribution for residuals with a constant variance.
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Yi =



m0∑
j=1

g(xi;T
′
j ,M

′
j) +

m1∑
k=1

g(xi;Tk,M1k) + ϵi if zi = 1,

m0∑
j=1

g(xi;T
′
j ,M

′
j) +

m1∑
k=1

g(xi;Tk,M0k) + ϵi if zi = 0,
ϵi ∼ N(0, σ2)

for all i = 1, . . . , n.

C.1.2 Prior

The prior is defined as,

p((T ′
1,M

′
1), . . . , (T ′

m0 ,M
′
m0), (T1,M01,M11), . . . , (Tm1 ,M0m1 ,M1m1), σ2)

=
m0∏
j=1

[
p(M ′

j |T
′
j )p(T

′
j )
] m1∏
k=1

[p(M0k|Tk)p(M1k|Tk)p(Tk)] p(σ2).

Section 5.3.2 describes the prior on T, T ′ In the implementation of Chapter 5, we set

α, β = 0.95, 2 for the prior on T ′ and α, β = 0.25, 3 for the prior on T .

For p(M ′
j |T

′
j ), the conditional distribution of each element in M ′

j is set as a normal distribu-

tion with mean 0 and variance 1/m0. The same rule applies for p(M0k|Tk) and p(M1k|Tk)

with the variance changing to 1/m1.

The prior on σ2 is chosen as σ2 ∼ InvGamma(ν/2, νλ/2), such that λ is chosen to satisfy

Pr(σ2 < σ̂2) = 0.9 (Chipman et al., 2010). The estimate σ̂2 is obtained by an OLS

regression. The degrees of freedom parameter ν is set as 3 as suggested in Chipman et al.

(2010).

C.1.3 Posterior sampling

The likelihood cannot be simply described by the parameters specified in the model due

to its complexity. It is also difficult to express the posterior distribution explicitly. Chip-

man et al. (2010) use the Gibbs sampler within an iterative Bayesian backfitting MCMC

algorithm. Without loss of generality, define the “residual” term of the tree index j or k
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for each observation i, as the difference between yi and the fitted value for all the other

trees. We denote the residuals as R′
−j (for the baseline tree) or R−k (for the treatment

tree), i.e.,

R′
−j = y−

m0∑
i=1,i ̸=j

g(x;T ′
i ,M

′
i )−

m1∑
k=1

g(x;Tk,Mzk),

R−k = y−
m0∑
j=1

g(x;T ′
j ,M

′
j)−

m1∑
i=1,i ̸=k

g(x;Ti,Mzi),

where y, x refer to the observation vector, and the covariates of all the observations

respectively. The parameter node is referred to as Mzk with z ∈ {0, 1}. Both R′
−j and

R−k refer to the residuals for all the units with i = 1, . . . , n.

Before starting the backfitting algorithm, each tree is set to a root node and σ2 is selected

to be a positive random number prior to back-fitting. The sampling procedure consists of

the following three parts.

Part 1: Cycle through j = 1, . . .m0, sample (T ′
j ,M

′
j) given R′

−j , σ2.

Part 2: Cycle through k = 1, . . .m1, sample (Tk,M0k,M1k) given R−k, σ2.

Part 3: Sample σ2 given {(T ′
j ,M

′
j), (Tk,M0k,M1k)}, j = 1, . . . ,m0, k = 1, . . . ,m1.

Part 3 is the most straightforward. The full posterior conditional distribution of σ2 is an

inverse-gamma distribution, due to the choice of a conjugate prior.

Parts 1 and 2 are decomposed into two steps. For Part 1, we need to first sample from

p(T ′
j |R′

−j , σ
2) and then sample p(M ′

j |T ′
j , R

′
−j , σ

2). Part 2 proceeds similarly. The second

step is equivalent to updating the mean value for a normal distribution given a normal

prior. The first step requires the MH algorithm, which we implement as follows.

C.1.3.1 Sample T ′
j given R′

−j

The subscript j for T ′
j , R′

−j , j = 1, . . .m0, is suppressed in this section for simplicity.
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The acceptance ratio r of the MH algorithm is defined as,

r = p(T ′
∗ → T ′)p(T ′

∗|R′, σ2)
p(T ′ → T ′

∗)p(T ′|R′, σ2) .

The proposal for T , T∗, is either a grow or prune process. Details of the grow and prune

processes are in Kapelner and Bleich (2013). The derivation for p(T ′|R′, σ2) is

p(T ′|R′, σ2) = p(T ′, R′|σ2)
p(R′|σ2) = p(R′|T ′, σ2)p(T ′|σ2)

p(R′|σ2) .

The distribution of p(T ′|σ2) is independent of σ2, so it can be further simplified as p(T ′).

In combination, the formulation above gives the acceptance ratio

r = p(T ′
∗ → T ′)

p(T ′ → T ′
∗) ×

p(R′|T ′
∗, σ

2)
p(R′|T ′, σ2) ×

p(T ′
∗)

p(T ′) ;

r is the product of three components, each of which can be computed separately. The

computation of the second term requires an integration over M ′. The next section develops

the full expression.

Computing p(R′|T ′, σ2)

It is straightforward to show that p(R′|T ′,M ′, σ2) is a normal density. We obtain p(R′|T ′, σ2)

by integrating out M ′ . Using the conditional independence of all observations given

T ′,M ′, p(R′|T ′, σ2) is expressed as,

p(R′|T ′, σ2) =
∫
M ′
p(R′|T ′,M ′, σ2)p(M ′|T ′, σ2)dM ′

=
b∏
t=1

∫
µ′

t

p(R′
µ′

t
|T ′, µ′

t, σ
2)p(µ′

t|T ′, σ2)dµ′
t,

where M ′ = {µ′
1, . . . , µ

′
b}, R′

µ′
t

stands for the residuals for the observation falling on the

leaf with the node parameter µ′
t. The analytical solution of the integral is available as,

log
∫
µt′
p(R′

µt′ |T
′, µ′

t, σ
2)p(µ′

t|T ′, σ2)dµ′
t =

− 1
2 log(τ2)− 1

2 logA− 1
2

∑
r2
µ′

t

σ2 + 1
2A

(∑
rµ′

t

σ2

)2

,

where µ′
t ∼ N(0, τ2),

∑
rµ′

t
is the sum of all the observations (residuals) falling on the

leaf with node parameter µ′
t, and A = σ−2nb + τ−2, where n is the total number of

observations (residuals) in µ′
t.
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Computing p(R′|T ′
∗, σ

2)
p(R′|T ′, σ2) turns out to be simple by observing that T ′, T ′

∗ only differ in one

of the nodes as a consequence of the grow/prune process, which results in computing the

likelihood for a small portion of observations only.

Computing p(R|T, σ2)

The general procedure is similar to computing p(R′|T ′, σ2). The major difference is that

T has the same structure for the treatment and the control groups, so the integration

involves M0 and M1 respectively. The analytical result is not detailed here, as it is just

a product of the probability from each group. It is worth noting that there must be a

positive number of observations from the control and the treatment groups, given a specific

tree structure. Otherwise, the acceptance ratio is set as zero for the proposal T∗. In the

implementation, if the number of observations falling on the leaf is less than 5 based on

T∗, we set the acceptance ratio to 0.

C.1.3.2 Sampling M ′
j given T ′

j , R
′
−j , σ

2

We again suppress the subscript j. Recall that M ′ = {µ′
1, . . . , µ

′
b}. By exploiting the

conditional independence between the µ’s,

p(M ′|T ′, R′, σ2) =
b∏
t=1

p(µ′
t|T ′, R′, σ2)

∝
b∏
t=1

p(R′
µ′

t
|T ′, µ′

t, σ
2)p(µ′

t),

where R′
µ′

t
denotes the residuals for the observations falling on the leaf with parameter

µ′
t. As the prior on µ′

t and the likelihood are both normal distributions, the conditional

posterior distribution for µ′
t is also a normal distribution with mean

(
nb
σ2 + 1

τ2

)−1 ∑ rµ′
t

σ2 ,

and variance
(
nb
σ2 + 1

τ2

)−1
, where nb is the number of observations in rµ′

t
and

∑
rµ′

t
is

the sum of all the observations (residuals) falling on the node parameter µ′
t.
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C.1.3.3 Sampling M0k,M1k given Tk, R−k , σ2

The sampling procedure is almost identical to the one in the previous section. The node

parameters M0k,M1k are updated separately.
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