
Scalar outcomes suffice for finitary probabilistic testing

Author:
Zhang, Chenyi; Deng, Yuxin; van Glabbeek, Robert; Morgan, Charles

Publication details:
Programming languages and systems
pp. 363-378
9783540713142 (ISBN)

Event details:
16th European symposium on programming, 2007
Braga, Portugal

Publication Date:
2007

Publisher DOI:
http://dx.doi.org/10.1007/978-3-540-71316-6_25

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/44460 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-71316-6_25
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/44460
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Scalar Outcomes Suffice
for Finitary Probabilistic Testing

Yuxin Deng1?, Rob van Glabbeek 2,1, Carroll Morgan1? & Chenyi Zhang 1,2

1 School of Comp. Sci. and Eng., University of New South Wales, Sydney, Australia
2 National ICT Australia, Locked Bag 6016, Sydney, NSW 1466, Australia

Abstract. The question of equivalence has long vexed research in con-
currency, leading to many different denotational- and bisimulation-based
approaches; a breakthrough occurred with the insight that tests ex-
pressed within the concurrent framework itself, based on a special “suc-
cess action”, yield equivalences that make only inarguable distinctions.
When probability was added, however, it seemed necessary to extend the
testing framework beyond a direct probabilistic generalisation in order
to remain useful. An attractive possibility was the extension to multiple
success actions that yielded vectors of real-valued outcomes.
Here we prove that such vectors are unnecessary when processes are
finitary, that is finitely branching and finite-state: single scalar outcomes
are just as powerful. Thus for finitary processes we can retain the original,
simpler testing approach and its direct connections to other naturally
scalar-valued phenomena.

1 Introduction

The theory of testing of De Nicola & Hennessy [4] yields equivalences making
only inarguable distinctions: two processes are may-testing inequivalent iff there
is a context, built with parallel composition and hiding or restriction operators,
in which one of them might do a visible action but the other definitely can
not; they are must-testing inequivalent iff there is a context in which one must
do a visible action, but the other might never do any. This reduces a complex
phenomenon to a scalar- (in fact Boolean-) valued outcome.

Wang & Larsen [21] generalised this theory in a straightforward way to pro-
cesses with probabilistic and nondeterministic choice, again yielding only distinc-
tions that are hard to argue with: two processes are may-testing inequivalent iff
there is a context in which, in the best case (when resolving nondeterministic
choice), one of them might do a visible action with some probability p whereas
the other falls short of that. They are must-testing inequivalent iff there is a con-
text in which, in the worst case, one must do a visible action with probability p,
whereas the other might fall short of that.

Wang & Larsen ended with the question of finding denotational character-
isations of may- and must testing; for non-trivial examples this is necessary to
show the equivalence of two processes. The question is still open today, although
Jonsson & Wang [9] have found a denotational characterisation in the special
? We acknowledge the support of the Australian Research Council Grant DP034557.



364 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

case of may-testing for processes without internal actions.
Meanwhile, progress has been made elsewhere for notions of testing that are

seemingly more powerful than Wang & Larsen’s. Most notably, Segala [17] found
denotational characterisations of variants of may- and must testing that employ
multiple success actions instead of a single one, and consequently yield vectors of
real-valued outcomes instead of scalars. Earlier, Jonsson, Ho-Stuart & Wang [8]
characterised variants that employ so-called “reward testing”, and that consider
non-probabilistic test processes only.

It follows immediately from the definitions that Segala’s vector-based testing
is at least as powerful as the scalar testing of Wang & Larsen, while reward test-
ing sits in between. Unfortunately, the possibility that these extended notions of
testing are strictly more powerful suggests that the argument above, that testing
equivalences make no unwarranted distinctions, might not apply to them.1

In this paper we show that in fact the argument does apply, at least for
finitary processes, where we prove all three notions to be equally powerful. This
is a fundamental prerequisite for a stable notion of program equivalence, a core
concept for rigorous software engineering.

2 Probabilistic Testing of Probabilistic Automata

2.1 Probabilistic Structures and Notational Conventions

We write f.s instead of f(s) for function application, with left association so
that f.g.x means (f(g))(x).
− A discrete probability distribution over a set X is a function µ ∈ X→[0, 1]

with µ.X = 1, where for subset X ′ of X we define µ.X ′ :=
∑

x∈X′ µ.x.
We write X for the set of all such distributions over X.

− The point- or Dirac distribution x assigns probability one to x∈X.
− The support dµe of distribution µ is the set of elements x such that µ.x 6= 0.
− Given p ∈ [0, 1] and distributions µ, ζ ∈X, the weighted average µ p⊕ ζ ∈X

is the distribution defined (µ p⊕ ζ).x := p×µ.x + (1−p)×ζ.x .
− Given some function f ∈ X→IR (a random variable), its expected value µ.f

over distribution µ is the weighted average
∑

x∈X(µ.x× f.x).2

− Given a function f ∈ X→Y , we write f.µ for the image distribution in Y
formed by applying f to a distribution µ ∈ X: for element y ∈ Y we define
f.µ.y := µ.{x ∈ X | f.x = y}.

− The product of two discrete probability distributions µ, µ′ over X, X ′ is the
distribution µ× µ′ over X ×X ′ defined (µ× µ′).(x, x′) := µ.x× µ′.x′.

2.2 Probabilistic Automata and their Resolutions

In this paper we employ probabilistic automata [18] as representatives of a class
of models that treat both probabilistic and nondeterministic choice [20, 5, 21, 6].
1 However, Stoelinga & Vaandrager [19] offer evidence that the distinctions of Segala’s

vector-based may-testing are observable by repeating experiments many times.
2 This extends to any linear vector space, in particular to functions in X→IRN.



Scalar Outcomes Suffice for Finitary Probabilistic Testing 365

Definition 1. A probabilistic automaton is a tuple M = (M,m◦, E, I, T ) where
− M is a set of states,
− m◦ ∈ M is a distribution of start states,
− E and I are disjoint sets of external- and internal actions respectively and
− T ∈ M→P(Σ ×M) is the transition relation, where Σ := E ∪ I.

Automaton M is fully probabilistic if from each state m∈M there is at most
one outgoing transition, i.e. if the set T.m contains at most one element. If
T.m is finite for all m ∈ M , then M is said to be finitely branching. An execution
sequence of M is an alternating sequence of states and actions m0, α1,m1, α2, · · ·,
either infinite or ending in state mn, such that m0 ∈dm◦e and for all i > 0 (and
i ≤ n if finite) we have ∃(αi, µi)∈T.mi−1 with mi ∈dµie. The execution sequence
is maximal if either it is infinite or T.mn = ∅. ¶

From here on we use “automaton” to mean “probabilistic automaton”.
Any automaton can be “resolved” into fully probabilistic automata as follows.

Definition 2. A resolution of an automaton M = (M,m◦, E, I, T ) is a fully
probabilistic automaton R = (R, r◦, E, I, T ′) such that there is a resolving func-
tion f ∈ R→M with
− f.r◦ = m◦, equivalent initialisations
− if T ′.r = {(α, µ)} then (α, f.µ) ∈ T.(f.r) and compatible choice taken
− if T ′.r = ∅ then T.(f.r) = ∅ liveness preserved

for any r∈R. ¶ 3

A resolution has as its main effect the choosing in any state of a single outgoing
transition from all available ones; but f can be non-injective, so that the choice
can vary between different departures from that state, depending e.g. on the
history of states and actions that led there. Further, since a single state of M
can be “split” into a distribution over several states of R, all mapped to it by f ,
probabilistic interpolation between distinct choices is obtained automatically.4

Fig. 1 illustrates the history-dependent choice with states r1,4 both mapped
to m1; it illustrates interpolation with states r2,4 both mapped to m1.

2.3 Probabilities of Action Occurrences in Resolutions

For a fully probabilistic automaton in which all execution sequences are finite,
like R from Fig. 1, the probability of an action’s occurrence is easily obtained:
we calculate probabilities for the maximal execution sequences, given for each by
multiplication of the probabilities of the choices occurring along it; the probabil-
ity of an action’s occurrence is then the sum of the so-calculated probabilities for

3 We use this abstract definition because of its useful mathematical properties; it is
equivalent to Segala’s [17] in that it generates the same distributions over action
sequences, as the following discussion illustrates.

4 In this regard our resolutions strictly generalise the ones of Jonsson et al. [8].



366 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

We show that M is resolved by R in the following diagram. Enclosing circles and ovals
represent distributions, the enclosed shapes’ relative sizes within hinting at probabili-
ties; on the left the shapes are associated 1-1 with the distinct states, but the right-hand
states’ shapes indicate the left-hand states to which they are mapped. Thus the resolving
function f is given by f.r1,2,3,4 := m1, f.r5 := m2 and f.r6 := m3.

The left-hand automaton M has initial (Dirac) distribution m◦ = m1 and transitions

T.m1 := {(α, m1) , (β, m2 1
2
⊕m3) , (β, m3)} , T.m2 = T.m3 := ∅ .

The right-hand (fully probabilistic) resolution R has initial distribution r◦ = r1 1
3
⊕ r2;

its non-∅ transitions are

T ′.r1 := {(α, r3 1
2
⊕ r4)}

T ′.r2 := {(β, r5 1
2
⊕ r6)}

T ′.r3 := {(α, r2 1
2
⊕ r4)}

T ′.r4 := {(β, r6)} .

Fig. 1. Example of a fully probabilistic resolution

all maximal sequences containing it. For example, in R the maximal-execution-
sequence probabilities are

〈r1, α, r3, α, r2, β, r5〉 @(1/3×1/2×1/2×1/2) that is, probability 1/24
〈r1, α, r3, α, r2, β, r6〉 @(1/3×1/2×1/2×1/2) probability 1/24
〈r1, α, r3, α, r4, β, r6〉 @(1/3×1/2×1/2×1) probability 1/12
〈r1, α, r4, β, r6〉 @(1/3×1/2×1) probability 1/6
〈r2, β, r5〉 @2/3×1/2 probability 1/3
〈r2, β, r6〉 @2/3×1/2 probability 1/3 ,

with all other sequences being assigned probability zero. If we use f to map this
distribution back to M, and aggregate, we get

〈m1, α,m1, α,m1, β,m2〉 probability 1/24
〈m1, α,m1, α,m1, β,m3〉 probability 1/24 + 1/12
〈m1, α,m1, β,m3〉 probability 1/6
〈m1, β,m2〉 probability 1/3
〈m1, β,m3〉 probability 1/3 ,



Scalar Outcomes Suffice for Finitary Probabilistic Testing 367

where we can see both history-dependence and interpolation at work. Finally,
concentrating on just the actions gives us

〈α, α, β〉 probability 1/24 + 1/24 + 1/12
〈α, β〉 probability 1/6
〈β〉 probability 1/3 + 1/3 .

No matter which of the three views above we use, the probability that a particu-
lar action occurs is the probability assigned to the set of all sequences containing
that action: thus the probability of α’s occurrence is 1/24+1/24+1/12+1/6 =
1/3; for β the probability is 1. (The sum exceeds one because both can occur.)

When our automata can generate infinite executions, however, there might
be uncountably many of them: consider a looping automaton, choosing forever
between bits 0 and 1, whose infinite sequences thus encode the whole unit inter-
val [0, 1] in binary. Simple summation within discrete distributions is then not
appropriate;5 in this case we apply the following more general definition.

Definition 3. Given a fully probabilistic automaton R = (R, r◦, E, I, T ), the
probability that R starts with a sequence of actions σ ∈Σ∗, with Σ := E ∪ I, is
given by r◦.(Pr

R
.σ), where Pr

R
∈ Σ∗→R→[0, 1] is defined inductively:

Pr
R
.ε.r := 1 and Pr

R
.(ασ).r :=

{
µ.(Pr

R
.σ) if T.r = {(α, µ)} for some µ

0 otherwise

Here ε denotes the empty sequence of actions and ασ the sequence starting
with α∈Σ and continuing with σ ∈Σ∗. Recall from Sec. 2.1 that µ.(Pr

R
.σ) is

the expected value over µ of the random variable Pr
R
.σ ∈ R→[0, 1]. The value

Pr
R
.σ.r is the probability that R proceeds with sequence σ from state r.
Let Σ∗α be the set of finite sequences in Σ∗ that contain α just once, namely

at the end. Then the probability that a fully probabilistic automaton R ever
performs an action α is given by

∑
σ∈Σ∗α r◦.(Pr

R
.σ). 6 ¶

2.4 Probabilistic Testing

We now recall the testing framework of Segala [17] which, as we will see, differs
from the testing framework of Wang and Larsen [21] in that a test may have
countably many success actions rather than just one.7

We begin by defining the parallel composition of two automata in the CSP
style [7], synchronising them on their common external actions.
5 Discrete distributions’ supports must be countable and so they cannot, for example,

describe a situation in which the uncountably many infinite sequences are equally
likely — unless they are all (equally) impossible.

6 An alternative, but equivalent definition appeals to more general probabilistic mea-
sures: the probability of R’s performing α is the measure of the set of sequences
containing α at any point [17]. We have specialised here for simplicity.

7 Another difference is that Segala’s success actions must actually occur, whereas for
Wang and Larsen (and earlier De Nicola and Hennessy [4]), it is sufficient that a
state be reached from which the action is possible. Here we treat only the former.



368 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

Definition 4. Let M1 = (M1,m
◦
1, E1, I1, T1) and M2 = (M2,m

◦
2, E2, I2, T2) be

two automata, and let Σi := Ei ∪ Ii. They are compatible when the only actions
they share are external, that is when Σ1 ∩ Σ2 ⊆ E1 ∩ E2. In that case their
parallel composition M1‖M2 is (M1×M2,m

◦
1×m◦

2, E1 ∪ E2, I1 ∪ I2, T ) where

T.(m1,m2) := {(α, µ1×µ2) | α∈Σ1 ∪Σ2 ∧
(α, µi)∈Ti.mi if α∈Σi else µi = mi, for i = 1, 2}. ¶

Parallel composition is the basis of testing: it models the interaction of the
observer with the process being tested; and it models the observer himself — as
an automaton.

From here on, we fix some disjoint sets E and I of external and internal
actions, and the automata we subject to testing —the ones for which testing
preorders will be defined— are the ones whose components of external- and
internal actions are subsets of E and I. Now let Ω := {ω1, ω2, · · ·} be a countable
set of success actions, disjoint from E and I, and define a test to be an automaton
T = (T, t◦, E, I, T ) with E ⊇ E ∪ Ω and I ∩ I = ∅. Thus every such test T is
automatically compatible with the automaton M that is to be tested, and in
the parallel composition M‖T all the external actions of M must synchronise
with actions of T. Let T be the class of all such tests, and write TN for the
subclass of T that uses only N success actions; we write T∗ for

⋃
N∈IN TN and,

for convenience, allow TIN as a synonym for T itself.
To apply test T to automaton M we first form the composition M‖T and then

consider all resolutions of that composition separately: in each one, any particular
success action ωi will have some probability of occurring; and those probabilities,
taken together, give us a single success tuple for the whole resolution, so that if
w is the tuple then wi is the recorded probability of ωi’s occurrence. The set of
all those tuples, i.e. over all resolutions of M‖T, is then the complete outcome
of applying test T to automaton M: as such, it will be a subset of W := [0, 1]IN

+
.

Definition 5. For a fully probabilistic automaton R, let its (single) success
tuple W.R ∈ [0, 1]IN

+
be such that (W.R)i is the probability that R performs the

action ωi, as given in Def. 3.
Then for a (not necessarily fully probabilistic) automaton M we define the

set of its success tuples to be those resulting as above from all its resolutions:

W.M := {W.R | R is a resolution of M}. ¶

We note that the success-tuple set W.M is convex in the following sense:

Lemma 1. For any two tuples w1, w2 ∈ W.M, their weighted average w1 p⊕w2

is also in W.M for any p∈ [0, 1].

Proof. Let R1,R2 be the resolutions of M that gave rise to w1, w2. Form R as
their disjoint union, except initially where we define r◦ := r◦1 p⊕ r◦2 . The new
resolution R generates the interpolated tuple w1 p⊕ w2 as required. ¶



Scalar Outcomes Suffice for Finitary Probabilistic Testing 369

2.5 May- and Must Preorders

We now define various preorders v on testable automata; in general M1 v M2

will mean that M2 scores at least as well as M1 does on certain tests.
For w,w′ ∈ W, we write w ≤ w′ if wi ≤ w′

i for all i∈ IN+. Given that Ω com-
prises “success” actions it is natural to regard ≤ on W as a (non-strict) “better
than” order, i.e. that it is better to have higher probabilities for the occurrence
of success actions. Since nondeterminism generates however sets of success tuples
(Def. 5), rather than merely individuals, we are led to appeal to two complemen-
tary testing preorders on automata; they are based on the standard techniques
for promoting an underlying order to a preorder on powersets.

Definition 6. Given two automata M1,M2 and a testing automaton T compat-
ible with both, say that

M1 vT
may M2 iff W.(M1‖T) ≤H W.(M2‖T)

M1 vT
must M2 iff W.(M1‖T) ≤S W.(M2‖T) ,

where ≤H ,≤S are the Hoare, resp. Smyth preorders on P W generated from the
index-wise order ≤ on W itself.8 Abstracting over all tests in T then gives us

M1 vT
– M2 iff ∀T∈T : M1 vT

– M2 ,

where within a single formula or phrase we use “–” for “may, must respectively”
in the obvious way, and we define the preorders vT∗– , and vTN– for N≥1, by
similar abstractions. Finally, scalar testing as employed by Wang & Larsen [21]
is defined by taking suprema and infima, as follows:

M1 v1
may M2 iff ∀T∈T1 :tW.(M1‖T) ≤tW.(M2‖T)

M1 v1
must M2 iff ∀T∈T1 :uW.(M1‖T) ≤uW.(M2‖T) . ¶

Thus, in vector-based testing vT
–, for each test one compares sets of tuples

of reals, whereas for vT1– one is merely comparing sets of (mono-tuple-, hence
scalar) reals. Then, by taking extrema, scalar testing abstracts even further to
a comparison of single scalars.

Clearly (vT
–) ⇒ (vT∗– ) ⇒ (vT1– ) ⇒ (v1

–). Our principal interest is in deter-
mining the situations in which the last is as powerful as all the others, that is
when the reverse implications also hold, giving equivalence: we ask

Under what conditions are scalar tests on their own sufficient to distin-
guish probabilistic automata?

In Sec. 5 we identify general criteria which suffice for scalar testing; then in
Secs. 6 and 7 we identify classes of automata on which we can achieve those
criteria. Sections 3 and 4 introduce “reward testing” for that purpose.

8 The Hoare order is defined by X ≤H Y iff ∀x∈X : ∃y ∈Y : x ≤ y; similarly the
Smyth order is defined by X ≤S Y iff ∀y ∈Y : ∃x∈X : x ≤ y [1].



370 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

3 Reward Testing of Finite-Dimensional Tuple Sets

Def. 5 gives tuple sets W.(M‖T), coming from a testee M and test T∈TIN; when
in fact T∈T∗ they can be considered to lie in some N -dimensional unit cube
[0, 1]N. We now abstract from automata, considering just those tuple sets; let
N be fixed. This section shows it sufficient, under suitable conditions, to record
only an “extremal expected reward” for each set of N -tuple outcomes, a single
scalar rather than the whole tuple-set.

Definition 7. A reward tuple is an N -tuple h ∈ [0, 1]N of real numbers; given
such an h we define two forms of extremal reward outcomes with respect to any
tuple set W ⊆ [0, 1]N :
− The Hoare outcome hH ·W is the supremum tw∈W (h ·w), and
− The Smyth outcome hS ·W is the infimum uw∈W (h ·w) ,

where within the extrema we write h ·w for the dot-product of the two tuples.
Given a reward-tuple h∈ [0, 1]N, the two forms of outcome give us two cor-

responding reward orders on tuple-sets W1,W2 ⊆ [0, 1]N :

W1 ≤h
may W2 iff hH ·W1 ≤ hH ·W2

W1 ≤h
must W2 iff hS ·W1 ≤ hS ·W2 ,

where (note) the comparison ≤ on the right has now been reduced to simple
scalars. As in Def. 6, this generalises so that we can define

W1 ≤N
– W2 iff ∀h∈ [0, 1]N : W1 ≤h

– W2 . ¶

We will now show that these preorders coincide with ≤H and ≤S , respectively,
provided the tuple-sets have a certain form of closure, as follows:

Definition 8. We say that a subset W of the N -dimensional Euclidean space
is p-closed (for probabilistically closed) iff
− It is convex, that is if w1, w2 ∈W and p∈ [0, 1] then the weighted average

w1 p⊕ w2 is also in W , and
− It is Cauchy closed, that is it contains all its limit points in the usual Eu-

clidean metric, and it is bounded.9 ¶

Our sets’ being p-closed will allow us to appeal to the Separating Hyperplane
Lemma from discrete geometry [11, Thm. 1.2.4 paraphrased]:10

Lemma 2. Let A and B be two convex- and Cauchy-closed subsets of Euclidean
N -space; assume that they are disjoint and that at least one of them is bounded.
Then there is a hyperplane that strictly separates them. ¶

Here a hyperplane is a set of the form {w∈ IRN | h·w = c} for certain h∈ IRN (the
normal of the hyperplane) and c∈ IR, and such a hyperplane strictly separates
A and B if for all a∈A and b∈B we have h · a < c < h · b or h · a > c > h · b.
9 Cauchy closure and boundedness together amounts to compactness.

10 The hyperplanes are motivated indirectly by a proof of McIver [14, Lem. 8.2].



Scalar Outcomes Suffice for Finitary Probabilistic Testing 371

Our main theorem is then a direct application of Lem. 2: the normal h of the
asserted hyperplane provides the rewards used in Def. 7.

Theorem 1. Let A,B be subsets of [0, 1]N ; then we have

A ≤H B iff A ≤N
may B if B is p-closed, and

A ≤S B iff A ≤N
must B if A is p-closed.

Proof. We consider first the only-if -direction for the Smyth/must case:

A ≤S B
⇔ ∀b∈B : ∃a∈A : a ≤ b defn. ≤S

⇒ ∀h∈ [0, 1]N : ∀b∈B : ∃a∈A : h · a ≤ h · b h ≥ 0

⇒ ∀h∈ [0, 1]N : ∀b∈B : hS ·A ≤ h · b hS ·A ≤ h · a
⇔ ∀h∈ [0, 1]N : hS ·A ≤ hS ·B defn. (hS ·); properties of u
⇔ ∀h∈ [0, 1]N : A ≤h

must B . defn. ≤h
must

⇔ A ≤N
must B . defn. ≤N

must

For the if -direction we use separating hyperplanes, proving the contrapositive:

A 6≤S B
⇔ ∀a∈A : ¬(a ≤ b) defn. ≤S ; for some b∈B

⇔ A ∩B′ = ∅ define B′ := {b′ ∈ IRN | b′ ≤ b}

⇔ ∃h∈ IRN , c∈ IR :
∀a∈A, b′ ∈B′ :

h · b′ < c < h · a ,

Lem. 2; A is p-closed ; B′ is convex and Cauchy-closed

where wlog the inequality can be in the direc-
tion shown, else we simply multiply h, c by −1.

We now argue that h is non-negative, whence
by scaling of h, c we obtain wlog that h∈ [0, 1]N.
Assume for a contradiction that hn < 0. Choose
scalar d ≥ 0 large enough so that the point
b′ := (b1, · · · , bn−d, · · · , bN ) falsifies h · b′ < c;
since b′ is still in B′, however, that contradicts
the separation. Thus we continue

⇔ ∃h∈ [0, 1]N , c∈ IR :
∀a∈A, b′ ∈B′ :

h · b′ < c < h · a ,

above comments concerning d

⇔ ∃h∈ [0, 1]N , c∈ IR : ∀a∈A : h · b < c < h · a set b′ to b; note b∈B′

⇒ ∃h∈ [0, 1]N , c∈ IR : h · b < c ≤ hS ·A defn. (hS ·); properties of u
⇒ ∃h∈ [0, 1]N , c∈ IR : hS ·B < c ≤ hS ·A b∈B, hence hS ·B ≤ h · b
⇔ ∃h∈ [0, 1]N : A 6≤h

must B defn. ≤h
must

⇔ A 6≤N
must B . defn. ≤N

must

The proof for the Hoare-case is analogous. ¶



372 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

4 Reward Testing of Automata

We now combine Secs. 2 and 3 by introducing preorders that use testing processes
and rewards together: we define

M1 vN
– M2 iff ∀T∈TN : W.(M1‖T) ≤N

– W.(M2‖T) .

We call the vN
– relations —and v∗–, vIN

– similarly— the reward-testing preorders
for automata. When N=1 this definition of v1

– is just scalar testing again (from
Sec. 2.5) as, in this case, the reward “vectors” are just scalars themselves: thus
the notations do not clash. The following is an immediate corollary of Thm. 1.

Corollary 1. If M1 and M2 are automata with the property that for any test
T∈T∗ the sets W.(M1‖T) and W.(M2‖T) are p-closed, then finite-dimensional
vector-based testing is equivalent to reward testing: from Thm. 1 we have

M1 vTN– M2 iff M1 vN
– M2 for all N,

which in turn implies that M1 vT∗– M2 iff M1 v∗– M2. ¶

5 Closure Suffices for Scalar Testing

We now show that scalar testing is equally powerful as finite-dimensional re-
ward testing which, with Cor. 1, implies that p-closure of the generated tuple-
sets W.(M‖T) is a sufficient condition for scalar testing to be as powerful as
finite-dimensional vector-based testing. In doing so, we assume that tests are
ω-terminal in the sense that they halt after execution of any success action.11

Theorem 2. For automata M1 and M2 we have that M1 v∗– M2 iff M1 v1
– M2.

Proof. The only-if is trivial in both cases. For if we prove the must-case in the
contrapositive; the may-case is similar.

Suppose thus that M1 6vN
must M2, i.e. that M1,M2 are must-distinguished by

some test T∈TN and reward h ∈ [0, 1]N , so that

W.(M1‖T) 6≤h
must W.(M2‖T) . (1)

Assuming wlog that the success ac-
tions are ω1, · · · , ωN we construct an au-
tomaton U such that
− The state space is {u0, · · · , uN} and u,
− The actions are ω1, · · ·ωN and ω, all external,
− The initial distribution u◦ is u0 and
− The transitions for 1 ≤ i ≤ N take u0 via action ωi to (ui hi⊕ u), thence

each ui via ω to deadlock at u.
11 This assumption is justified in App. A.



Scalar Outcomes Suffice for Finitary Probabilistic Testing 373

We now consider the test T‖U with ω as its only success action. In T‖U an
occurrence of ωi is with probability hi followed immediately by an occurrence
of ω (and with probability 1−hi by deadlock); and the overall probability of ω’s
occurrence, in any resolution of M1,2‖T‖U, is therefore the h-weighted reward
h ·w for the tuple w := (w1, · · · , wN ) in the corresponding resolution of M1,2‖T.

Thus from (1) we have that M1,M2 can be distinguished using the scalar
test T‖U with its single success action ω; that is, we achieve M1 6v1

must M2 as
required. ¶

6 Very Finite Testing is p-closed, hence Scalar

Say that an automaton is very finite if it is finite-state, finitely branching and
loop-free (no execution sequence repeats a state), so that there is a finite upper
bound on the length of its execution sequences.

In Thm. 3 below we show that scalar outcomes suffice when dealing with
very finite automata and tests, because the sets of success tuples are p-closed
and thus Thm. 2 applies. We rely on the fact that when a test T is very finite,
so are the composite automata T‖U and T‖V constructed in Sec. 5 and App. A.

Lemma 3. Let W1,···,N ⊆W be p-closed success-tuple sets, and let µ∈{1,· · ·, N}
be a discrete distribution over their indices. Then we have 12

1. The set {µ.f | f ∈ {1,· · · ,N}→W ∧ ∀i : f.i∈Wi} is p-closed, and
2. The set

⋃
µ∈{1,···,N} {µ.f | f ∈ {1,· · ·, N}→W ∧ ∀i : f.i∈Wi} is p-closed.

That is, a specific interpolation µ of p-closed sets is again p-closed (1), and the
union of all such interpolations is also p-closed (2).

Proof. Standard results on convex hulls of compact sets [2, Sec. 5.3]. ¶

Lemma 4. If M and T are very finite automata, then the set W.(M‖T) of success
tuples is p-closed.

Proof. (Sketch) Lem. 3 shows that p-closure is preserved in a fairly straightfor-
ward induction on the upper bound of the length of the execution sequences of
the very finite automata M‖T. The details are omitted here, because Thm. 4
subsumes Thm. 3 anyway. ¶

Theorem 3. For very finite tests and automata, scalar testing suffices: we have

M1 vTIN– M2 iff M1 v1
– M2 .

Proof. Any very finite test has only finitely many success actions, and thus
belongs to T∗. Consequently, we have M1 vTIN– M2 iff M1 vT∗– M2. Using this,
the result follows from Lem. 4, Cor. 1 and Thm. 2. ¶

12 Here we are taking the expected value of vectors: recall Footnote 2.



374 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

7 Also Finitary Testing is Scalar

We now remove the no-looping restriction of Sec. 6, retaining however that the
automata are finite-branching and have finitely many states:13 this allows their
execution sequences to become of infinite length. Such automata we call finitary.

The result depends on a connection with Markov Decision Processes (MDP ’s)
[16], abstracted here as a lemma implicitly using the more general probability
measures mentioned in Def. 3 (Footnote 6).

Lemma 5. Static resolutions suffice for finitary testing Say that a resolution
R of an automaton M is static if its associated resolving function f ∈ R→M is
injective, so that on every visit to a state m∈M any nondeterminism is resolved
in the same way, and does not interpolate. Then, for all reward tuples h ∈ [0, 1]N,
− There is a static resolution Rh of M so that hS ·(W.M) = hS ·(W.Rh) and
− There is a static resolution R′

h of M so that hH ·(W.M) = hH ·(W.R′
h).

Thus in both cases the extremum over all resolutions is attained statically.14

Proof. An automaton M = (M,m◦, E, I, T ) with a reward tuple h∈ [0, 1]IN
+

constitutes isomorphically an MDP [16, Sec. 2.1]: in the tuple at the end of
Sec. 2.1.3 take T := IN+, S := M , As := T.s for s∈S, pt(· | s, (α, µ)) := µ and
rt(s, (α, µ)) := hi if α = ωi, or 0 if α 6∈Ω. The values of p and r are independent
of t and s. Our resolutions are the (history-dependent, randomised) policies
of Sec. 2.1.5, and our Smyth- and Hoare-outcomes (Def. 7) are the optimal
outcomes accruing from such policies [Secs. 2.1.6, 4.1 and 5.2]; the Smyth-case is
obtained by using negative rewards so that “optimal” is supremum either way.

Theorem 7.1.9 [Sec. 7.1.4] states (paraphrased) Suppose that the state space
and the set of actions available at each state are finite. Then there is a stationary
deterministic optimal policy. “Stationary deterministic” equates to “static” in
our setting, and “optimal” means “attains the extremum”. ¶

The crucial lever that Lem. 5 gives us in our treatment of testing is that a finitary
automaton has only finitely many static resolutions (up to isomorphism), since
neither variation-by-visit nor interpolation is allowed for them. With infinitely
many resolutions in general, even for the finitary case, needing only finitely many
is a significant advantage — as we now see in the following lemmas.

Lemma 6. Let Wf.M be the convex closure of the statically generated success
tuples of M; then Wf.M ⊆ W.M. If M is finitary, then Wf.M is p-closed.

Proof. The first statement is trivial, since static resolutions are still resolutions
and from Lem. 1 we know that W.M is convex. For the second we note that as
13 Having finitely many states and transitions is an equivalent restriction. Finitely many

states does not on its own imply finite branching, however: there are infinitely many
distributions possible over even a finite state space.

14 More general work on games [12] led us to this; a similar result is argued directly
by Philippou, Lee & Sokolsky [15] and Cattani and Segala [3], in both cases in the
context of decision procedures for bisimulation.



Scalar Outcomes Suffice for Finitary Probabilistic Testing 375

M has only finitely many static resolutions, the set Wf.M is the convex-closure
of a finite number of points, and is thus p-closed by Lem. 3(2). ¶

Lemma 7. For all finitary automata M with N success actions, and reward
tuples h ∈ [0, 1]N, we have

hS ·(W.M) = hS ·(Wf.M) and hH ·(W.M) = hH ·(Wf.M) ,

hence W.M and Wf.M are equivalent under ≤N
–.

Proof. The ≤-case for Smyth is immediate from Lem. 6; from Lem. 5 there is
some static resolution Rh of M with hS ·(W.M) = hS ·(W.Rh) ≥ hS ·(Wf.M).

The Hoare-case is similar; the equivalence then follows from Def. 7. ¶

Lemmas 6 and 7 allow us to strengthen Cor. 1, effectively requiring p-closure
only of Wf.(M1,2‖T) rather than of W.(M1,2‖T).

Lemma 8. For finitary automata M1,M2 we have M1 vT∗– M2 iff M1 v∗– M2 .

Proof. For “only-if” apply Thm. 1 — this direction does not require p-closure.
For if we prove the must-case in the contrapositive; the may-case is similar.

M1 6vTN
must M2 for some N

⇔ W.(M1‖T) 6≤S W.(M2‖T) Def. 6, for some T ∈ TN

⇒ Wf.(M1‖T) 6≤S W.(M2‖T) Lem. 6, Wf.(M1‖T) ⊆ W.(M1‖T)

⇔ Wf.(M1‖T) 6≤N
must W.(M2‖T) Lem. 6, Wf.(M1‖T) is p-closed ; Thm. 1

⇔ W.(M1‖T) 6≤N
must W.(M2‖T) Lem. 7

⇒ M1 6vN
must M2 . Definition of reward testing. ¶

We can now establish the extension of Thm. 3 to finitary automata.

Theorem 4. For finitary tests and automata, scalar testing suffices.

Proof. As in the proof of Thm. 3 we observe that M1 vTIN– M2 iff M1 vT∗– M2

for (this time) finitary tests; we then apply Lem. 8 and Thm. 2. ¶

8 Beyond Finitary Testing

The principal technical ingredient of our results is p-closure of the result sets
in W, since that is what enables the hyperplane separation. Separation itself is
not inherently finitary, since Lem. 2 extends to countably infinite dimensions
[13, Lem. B.5.3 adapted], delivering a hyperplane whose normal is non-zero in
only finitely many dimensions — just as required for our constructions above
(although automaton V in App. A needs a slightly different approach).

It is the p-closure which (currently) depends essentially on finite dimensions
(hence a finite state space). For countably infinite dimensions, its convexity com-
ponent must be extended to infinite interpolations; but that happens automat-
ically provided the sets are Cauchy closed. And it is again the closure that
(within our bounded space) implies the compactness that separation requires.
Thus Cauchy closure is the crucial property.



376 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

When the automata are finitely branching (up to interpolation), we believe
a direct fixed-point construction of W.M (i.e. not indirectly via resolutions)
gives, via intersection of a ⊇-chain, a set whose up-closure (wrt ≤ over W) is
compact. Since must- (i.e. Smyth) testing is insensitive to up-closure, that would
seem to extend our results to countably-infinite dimensional must-testing. For
the may-testing case the analogous technique would be down-closure; but here,
unfortunately, the limit is via union of a ⊆-chain, and closure/compactness is not
obviously preserved. As further evidence for this we note that the MDP -based
results allow countably infinite state spaces in the infimum case (still however
with finite branching) [16, Thm. 7.3.6], whereas the supremum case requires a
finite state space.

Thus the key question is What conditions are necessary to establish p-closure
for infinitely many states? At present, may- seems harder than must-.

9 Conclusion

Our reduction of vector- to scalar testing uses geometry (hyperplanes), elemen-
tary topology (compactness) and game theory (MDP ’s); and it highlights the
importance of p-closure and static resolutions. That those techniques contribute
to probabilistic semantics is of independent theoretical interest; but our result
ultimately is practical — any program calculus/algebra, a fundamental tool for
rigorous software engineering, relies crucially on a tractable definition of equality.

A key feature is our use of expected values of “rewards” as outcomes for prob-
abilistic tests; this approach subsumes the usual direct probabilities because an
event’s probability is just the expected value of its characteristic function.15 It
has been suggested before both for sequential [10] and concurrent [8] applica-
tions; and we believe it deserves greater attention, since it can lead to significant
simplifications (of which this report provides an example).

We have shown that scalar testing suffices when requiring the tests, as well
as their testees, to be finitary, and one may wonder whether the same holds if
arbitrarily complex tests are allowed. We think this is indeed the case, for we
conjecture that if two finitary automata can be distinguished by an arbitrary
test, then they can be distinguished by a finitary test.

As stated in Sec. 2.4, Segala’s testing framework [17] differs from others’
[4, 21] not only in the number of success actions, but also in how to report
success. We claim that action- and state-based testing give rise to different must-
testing preorders when the tested processes display divergence, because a success
action ω may be delayed forever. Here we used action-based testing throughout,
although we could have obtained the same results for state-based testing.

Finally, we note that our reduction via Thms. 2–4 of vector-based testing to
extremal scalar testing has reduction to T1-testing as a corollary — thus showing
that, under our assumptions, single success actions suffice for Segala’s approach
even if it is otherwise unchanged.
15 For µ.X is the same whether X is taken as a set or as a characteristic function.



Scalar Outcomes Suffice for Finitary Probabilistic Testing 377

Acknowledgements

We thank Anna Philippou for corresponding with us about static resolutions,
and Kim Border for a hyperplane-related counterexample.

References

1. S. Abramsky & A. Jung (1994): Domain theory. In S. Abramsky, D.M. Gabbay
& T.S.E. Maibaum, editors: Handbook of Logic and Computer Science, volume 3,
Clarendon Press, pp. 1–168.

2. C.D. Aliprantis & K.C. Border (1999): Infinite Dimensional Analysis.
Springer, second edition.

3. S. Cattani & R. Segala (2002): Decision algorithms for probabilistic bisimula-
tion. In Proc. CONCUR 2002, LNCS 2421, Springer, pp. 371–85.

4. R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. The-
oretical Computer Science 34, pp. 83–133.

5. H. Hansson & B. Jonsson (1990): A calculus for communicating systems with
time and probabilities. In Proc. of the Real-Time Systems Symposium (RTSS ’90),
IEEE Computer Society Press, pp. 278–87.

6. He Jifeng, K. Seidel & A.K. McIver (1997): Probabilistic models for the
guarded command language. Science of Computer Programming 28, pp. 171–92.

7. C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice Hall.
8. B. Jonsson, C. Ho-Stuart & Wang Yi (1994): Testing and refinement for

nondeterministic and probabilistic processes. In Proc. Formal Techniques in Real-
Time and Fault-Tolerant Systems, LNCS 863, Springer, pp. 418–30.

9. B. Jonsson & Wang Yi (2002): Testing preorders for probabilistic processes can
be characterized by simulations. Theoretical Computer Science 282(1), pp. 33–51.

10. D. Kozen (1985): A probabilistic PDL. Jnl. Comp. Sys. Sciences 30(2), pp. 162–78.
11. J. Matoušek (2002): Lectures on Discrete Geometry. Springer.
12. A.K. McIver & C.C. Morgan (2002): Games, probability and the quantitative

µ-calculus qMu. In Proc. LPAR, LNAI 2514, Springer, pp. 292–310.
13. A.K. McIver & C.C. Morgan (2005): Abstraction, Refinement and Proof for

Probabilistic Systems. Tech. Mono. Comp. Sci., Springer.
14. C.C. Morgan, A.K. McIver & K. Seidel (1996): Probabilistic predicate trans-

formers. ACM Trans. on Programming Languages and Systems 18(3), pp. 325–53.
15. A. Philippou, I. Lee & O. Sokolsky (2000): Weak bisimulation for probabilistic

systems. In Proc. CONCUR 2000, Springer, pp. 334–49.
16. M.L. Puterman (1994): Markov Decision Processes. Wiley.
17. R. Segala (1996): Testing probabilistic automata. In Proc. CONCUR ’96, LNCS

1119, Springer, pp. 299–314.
18. R. Segala & N.A. Lynch (1994): Probabilistic simulations for probabilistic pro-

cesses. In Proc. CONCUR ’94, LNCS 836, Springer, pp. 481–96.
19. M.I.A. Stoelinga & F.W. Vaandrager (2003): A testing scenario for proba-

bilistic automata. In Proc. ICALP ’03, LNCS 2719, Springer, pp. 407–18.
20. M.Y. Vardi (1985): Automatic verification of probabilistic concurrent finite state

programs. In Proc. FOCS ’85, IEEE Computer Society Press, pp. 327–38.
21. Wang Yi & K.G. Larsen (1992): Testing probabilistic and nondeterministic pro-

cesses. In Proc. IFIP TC6/WG6.1 Twelfth Intern. Symp. on Protocol Specification,
Testing and Verification, IFIP Transactions C-8, North-Holland, pp. 47–61.



378 Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang

A One Success Never Leads to Another

Here we substantiate the claim made in Sec. 6 (Footnote 11) that wlog we can
assume that our testing automata halt after engaging in any success action.
The reward-testing construction requires this because the automaton U used in
Thm. 2 implementing a particular reward-tuple h effectively causes the compos-
ite automaton T‖U to halt after the reward is applied — hence for correctness
of the construction we required that the automaton T must have halted anyway.

Below we show that the may- and must testing preorders do not change
upon restricting the class of available tests to those that cannot perform multiple
success actions in a single run. A second reduction to tests that actually halt
after performing any success action is trivial: just change any transition of the
form (s, ωi, µ) into a transition (s, ωi, 0) leading to a deadlocked state 0.

Suppose our original testing automaton T has N success actions ω1, · · · , ωN .
By running it in parallel with another automaton V (below) we will convert it
to an automaton with the required property and corresponding success actions
ω′

1, · · · , ω′
N , and with success N -tuples that are exactly 1/N times the success

tuples of T; since testing is insensitive to scaling of the tuples, that will give us
our result. Note that the 1/N factor is natural given that we are making our
N success actions mutually exclusive: it ensures the tuple’s elements’ total does
not exceed one.

We construct the automaton V := (V, v◦, E, I, T ) as follows:
− The state space is V := P{ω1, . . . , ωn} ∪ (0, . . . , N), where the powerset-

states record which success actions have already occurred, the scalar states
1, . . . , N are “about-to-terminate” states, and 0 is a deadlock state;

− The actions are ω1, . . . , ωN and ω′
1, . . . , ω

′
N , all external; and

− The initial distribution v◦ is the Dirac’d powerset-state ∅.
The transitions of V are of three kinds:
− “Terminating” transitions take state n with probability one via action ω′

n

to the deadlocked state 0;
− “Do-nothing” transitions, from state v ∈P{ω1, · · · , ωN}, lead with probabil-

ity one via action ωn ∈ v back to v, implementing that second and subsequent
occurrences of any success action in T can be ignored; and

− “Success” transitions, from
state v ∈P{ω1, · · · , ωN}
lead via action ωn 6∈ v
with probability 1

N−#v
to state n, whence the
subsequent terminating
transition will emit ω′

n;
the remaining probability at v leads to state v ∪ {ωn}, recording silently
that ωn has now been taken care of.

When the original test T has finitely many states and transitions, so does the
composite test T‖V.


