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Abstract

This thesis is concerned with the modelling of the term structure of interest rates, with

a particular focus on empirical aspects of the modelling.

In this thesis, we explore the θ-parameterised (θ being the length of time to matu-

rity) term structure of interest rates, corresponding to the traditional T -parameterised

(T being the time of maturity) term structure of interest rates. The constructions of

Australian yield curves are illustrated using generic yield curves produced by the Re-

serve Bank of Australia based on bonds on issue and by constructed yield curves of the

Commonwealth Bank of Australia derived from swap rates.

The data used to build the models is Australian Treasury yields from January 1996

to December 2001 for maturities of 1, 2, 3, 5 and 10 years, and the second data used

to validate the model is Australian Treasury yields from July 2000 to April 2004 for

maturities of all years from 1-10. Both data were supplied by the Reserve Bank of Aus-

tralia. Initially, univariate Generalised Autoregressive Conditional Heteroskedasticity

(GARCH), with models of individual yield increment time series are developed for a set

of fixed maturities. Then, a multivariate Matrix-Diagonal GARCH model with multi-

variate asymmetric t-distribution of the term structure of yield increments is developed.

This model captures many important properties of financial data such as volatility mean

reversion, volatility persistency, stationarity and heavy tails.

There are two innovations of GARCH modelling in this thesis: (i) the development of

the Matrix-Diagonal GARCH model with multivariate asymmetric t-distribution using

meta-elliptical distribution in which the degrees of freedom of each series varies with

maturity, and the estimation is given; (ii) the development of a GARCH model of term

structure of interest rates (TS-GARCH). The TS-GARCH model describes the param-

eters specifying the GARCH model and the degrees of freedom using simple smooth

functions of time to maturity of component series. TS-GARCH allows an empirical de-
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scription of complete interest rate yield curve increments therefore allowing the model

to be used for interpolation to additional maturity beyond those used to construct the

model. Diagnostics of TS-GARCH model are provided using Australian Treasury bond

yields.
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C Swap and Constructed Yield Curve of the Commonwealth Bank Aus-

tralia 130

C.1 Swap, Swap Rates and Valuation of Swaps . . . . . . . . . . . . . . . . . . 130

C.2 Money Market: Constructed Yield Curve of the Commonwealth Bank

Australia (CBA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3 An Example: “Yield Curve Builder” . . . . . . . . . . . . . . . . . . . . . 135

C.4 CBA Yields–Compared to the RBA Yields . . . . . . . . . . . . . . . . . . 138

D Acronyms 146

Bibliography 147

XIII



Chapter 1

Introduction

1.1 Background

Over the last two decades, the trading of interest rate derivatives has rapidly increased

and a number of new products have been introduced. The prices of interest rate deriva-

tives depend on interest rate levels and interest rate models. Therefore, efficient market

practice and financial theory rely on good statistical analysis and appropriate modelling

of interest rates.

There are two alternative philosophies for modelling interest rates dynamics. These

are: modelling of spot rates and modelling of term structure of interest rates (also called

yield curves).

The spot rate is a scalar stochastic process. Spot rate models are relatively simple,

and a variety of spot rate models have been proposed. However, most popular spot

rate models do not have enough degrees of freedom to fit the observed term structure of

interest rates, and empirical analysis of observed spot rate does not provide an adequate

description of the dynamics of the term structure of interest rates. Therefore, in recent

years the research focus has been on the modelling of term structure of interest rates

that describes the movements of the whole yield curves over time (Heath, Jarrow and

Morton 1992). The term structure of interest rates refers to the relationships of bonds

in different maturity. The interest rates of bonds (called yields) plotted against their

maturity are called yield curves. More generally, the term structure of interest rates or

yield curves is a general term used for bond prices, yields of bonds and forward interest

rates of different maturities. Economists and investors believe that the shape of the
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yield curve reflects the market’s future expectation for interest rates and the conditions

for monetary policy. (http://www.finpipe.com/termstru.htm, Financial Pipeline). Term

structure models provide a better way of capturing the dynamics of the term structure

of interest rates or yield curves. Since it is a function of the maturity level and the

time of evolution, the term structure of interest rates can be viewed as a function-valued

stochastic process.

1.2 Objective

This thesis is devoted to the modelling of the term structure of interest rates with a

particular focus on empirical aspects of the modelling. Bond yields data is used in the

models.

It is well known that financial time series contain trends and are strongly autocor-

related. Statistical models of financial and economic time series are often based on the

returns or increments (one-lag difference). The discrete-time model of the increments

also has the advantage of allowing the mean and variance of increments to depend directly

on the level of the financial time series in a way consistent with the continuous-time model

based on diffusion processes (See Section 3.6). Modelling the increments of financial time

series needs to account for certain empirical facts of financial time series. These include

heavy tailed distributions, volatility clustering or persistence, volatility mean reversion,

asymmetric impact on volatility by innovations, and possible influence of exogenous vari-

ables on volatility (Engle and Patton, 2001). In this thesis, yield increment series are

fitted with Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models,

using Australian Treasury yield data 1996-2001 from the Reserve Bank of Australia. And

the Australian Treasury yields from July 2000 to April 2004 for maturities of all years

from 1-10 are used to validate the models.

1.3 History and Motivation

The term structure of interest rates can be modelled by dynamic stochastic processes or

an empirical statistical approach. Firstly, it is necessary to clarify the source of data,

i.e. the derivation of term structure of interest rates. When dealing with interest rates

derivatives, the underlying variable, i.e. interest rates, cannot be traded in the financial

2
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market. As a matter of fact, it is only possible to trade interest rate instruments such

as bonds, options and swaps. Thus interest rates are derived from the market prices

of bonds, options or swaps. Chapter 4 describes one of the term structures of interest

rates available in Australia, that is, the generic yield curves produced by the Reserve

Bank of Australia (RBA) based on the bonds on issue. Chapter 4 analyses the statistical

properties of the yield curves, finding appropriate distributions and possible exogenous

innovation variables which can explain the variations of the yield increments. Another

constructed yield curves is by the Commonwealth Bank of Australia (CBA) derived from

swap rates, which is introduce in Appendix C.

The traditional parameters of term structure of interest rates are the time of matu-

rity T and the time of evolution t, which we refer to as the T -parameterisation. Based

on this parameterisation, the terminology of interest rates and interest rate derivatives

have been defined, and corresponding theory and models have been developed. They are

reviewed in Chapter 2, based on Musiela and Rutkowski (1997) and Hull (2003). In the

world of financial markets, media financial reports and existing financial databases, most

of the term structure of interest rates data are stored and displayed using two parame-

ters: the length of time to maturity θ and the time of evolution t. We refer to this as

the θ-parameterisation. Both yield data sets obtained from the Reserve Bank of Aus-

tralia and the Commonwealth Bank of Australia were stored in this θ-parameterisation.

The θ-parameterisation is mathematically convenient since all yield curves R(t, ·) evolve

over the same domain [θmin, θmax] as time t varies. Brace, Gatarek and Musiela (1997)

proposed this θ-parameterisation. They transformed the T -parameterised term structure

of interest rates models to the θ-parameterised term structure of interest rates models

by a transformation of T = t + θ, and studied the interest rate derivatives pricing by

the θ-parameterised term structure of interest rates. We have further developed the

θ-parameterisation of term structure of interest rates. Chapter 3 introduces the termi-

nology of interest rates and interest rate derivatives under the θ-parameterisation, and

develops corresponding pricing theory, including the no-arbitrage condition, martingale,

and term structure of interest rate modelling. This chapter systematically investigates

the θ-parameterised term structure of interest rates and their derivatives, which pro-

vides a convenient language for statistical analysis of yield curves and modelling in the

following chapters.

Reviewing the yield curves theory and diffusion process of yields, Chapter 2 and Chap-

3



ter 3 for the T -parameterised term structure of interest rates and the θ-parameterised

term structure of interest rates respectively, it has been known that volatility modelling

is a key aspect in yield curve’s modelling (Heath, Jarrow and Morton 1992). Section

3.6 addresses that the mean and variance of interest rate increments in the discrete-time

model depend directly on the level of the interest rates in a way consistent with the

continuous-time model based on diffusion processes. The GARCH model and its exten-

sions have been widely applied in volatility models over the last twenty years (Engle

1982). Referring to Engle and Patton (2001), Chapter 5 presents a univariate GARCH

model of the yield increments, incorporating the indicator variables representing the RBA

decisions of lowering and raising the target cash rate. Using Australian Treasury bond

yields over the period 1996-2001 provided by the RBA, GARCH models were derived for

individual yield increment time series with maturity levels of 1, 2, 3, 5, and 10 years.

The empirical results show that the GARCH models capture the most important phe-

nomena of financial yield series. It is observed that the estimated model parameters

vary functionally with times to maturity of the yields, especially the degrees of freedom

of t-distribution of yield increments linear increase along the times to maturity. This

functional dependence incorporates to a new model proposed, a GARCH model of term

structure of interest rates. We refer to this model as the GARCH model of Term Structure

of Interest Rates (TS-GARCH). The estimation of TS-GARCH involves the multivariate

GARCH modelling, using the whole data sets of term structure of interest rates (yield

increments).

Chapter 6 develops a multivariate GARCH model for term structure of yield incre-

ments. The multivariate GARCH model in available literatures and statistical softwares

are in normal or multivariate t-distribution. Univariate GARCH models for each individ-

ual yield increments in a certain maturity showed, in Chapter 5, that the t-distributions

are more appropriate than normal assumption and degrees of freedom of t-distributions

of yield increments in different maturity were different. The multivariate asymmetric

t-distribution using meta-elliptical distributions concepts (Fang, Fang and Kotz 2002) is

defined, that extends and modifies the multivariate asymmetric t-distribution presented

in Fang, Fang and Kotz (2002). The multivariate asymmetric t-distribution presented in

Fang, Fang and Kotz (2002) was in zero mean and a dispersion matrix specified as a cor-

relation matrix, and the original random vector and the constructed random vector have

the same dispersions. For our purpose of modelling the volatility of yield increments,
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we define the multivariate asymmetric t-distribution with general mean and covariance

matrix, and moreover, the original random vector and the constructed random vector

have the same variances. With the general multivariate asymmetric t-distribution, a

Matrix-Diagonal GARCH(1,1) model (Matrix-Diagonal GARCH-AMt model) is devel-

oped that allows the different distributions of marginals. The estimation is given based

on Australian Treasury bond yields data provided by the RBA. The diagnostics of the

Matrix-Diagonal GARCH-AMt model are presented and the key aspects of the model

are discussed such as the volatility mean reversion, volatility persistent, asymmetric im-

pact of lowering and raising target rate, and residuals stationarity. Likelihood ratio tests

are used to compare the nested models, Matrix-diagonal GARCH(1,1) with multivariate

asymmetric t-distribution (different t-df of marginals) vs. Matrix-diagonal GARCH(1,1)

with simple multivariate t-distribution (same t-df of marginals). The Akaike Informa-

tion Criterion (AIC) is used to measure the goodness of fit of the models, univariate

GARCH(1,1) models (The correlation of yield curves is ignored, and less parameters) vs.

Matrix-Diagonal GARCH(1,1) with multivariate asymmetric t-distribution (The corre-

lation of yield curves is taken into account, and more parameters).

Chapter 7 builds up the TS-GARCH model, corresponding to the Matrix-Diagonal

GARCH model with multivariate asymmetric t-distribution developed in Chapter 6. The

estimation of TS-GARCH model is given. The goodness of fit of the model is discussed.

The out-of-sample assessment of the model is presented using the TS-GARCH model.

Based on the concept of TS-GARCH model proposed in Chapter 5 and the estimators

of conditional covariance GARCH model from multivariate Matrix-Diagonal GARCH-

AMt modelling of Chapter 6, Chapter 7 extends the TS-GARCH model proposed from

Chapter 5 to conditional covariance processes. Estimations of the TS-GARCH model

base on multivariate Matrix-Diagonal GARCH-AMt modelling is given. The out-of-

sample assessment of TS-GARCH is examined based on diagnostics of the model for

both interpolation and forecasting in any possible middle-to-long-term maturity.

1.4 Thesis Outline

The thesis is organised as follows:

Chapter 2 reviews the fundamentals of derivatives pricing theory, the definitions of

interest rates and derivatives under the traditional notation, the fundamental spot rate
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models and term structure of interest rate models.

Chapter 3 presents a θ-parameterisation of the term structure interest rates proposed

by Brace and Musiela (1994) and Brace, Gatarek and Musiela (1997), which we will

develop further. Starting from the definition and terminology of interest rate and interest

rate derivatives under the θ-parameterisation, no-arbitrage condition and martingales are

developed upon the θ-parameterisation term structure of interest rates.

Chapter 4 studies the construction of the yield curves and the statistics of the yield

curves.

Chapter 5 summarises the properties of yield increments and presents an appropriate

GARCH(1,1)-t model for individual yield increment series. A model for the dependence

of GARCH parameters on times to maturity is proposed. It is called GARCH model of

term structures (TS-GARCH).

Chapter 6 defines the multivariate asymmetric t-distribution and develops a Matrix-

Diagonal GARCH model with multivariate asymmetric t-distribution, which allows dif-

ferent marginals. The estimation is given.

Chapter 7 extends the TS-GARCH model proposed in Chapter 5, and the estimation

of TS-GARCH is given.

Chapter 8 summarises the thesis. Possible topics of further research are pointed out.

6



Chapter 2

Fundamentals of Derivatives

Pricing and Interest Rates Models

This chapter commences with a summary of the theory of derivatives pricing. This is

followed by a review of various concepts of interest rates and derivative securities pricing.

It ends with a review of models for spot interest rates and term structure of interest rates

as identified in the literature.

Section 1 is a summary of the fundamentals of pricing, including the no-arbitrage

and martingale theory that more precisely characterises an arbitrage-free economy from

a mathematical perspective. Section 2 reviews the definitions of interest rate and interest

rate derivatives including swap and swap pricing. Swap rate and swaps valuation spe-

cialise the theory developed in section 1, which will be used for the construction of the

CBA yield curves in section 4.3. Section 3 considers a number of spot rate models. Most

spot rate models are described by a stochastic differential equation with simple time

invariant parameters. These do not have enough degrees of freedom to fit the observed

term structure of interest rates. The Hull and White (1990) spot rate model is given by a

stochastic differential equation with time changing parameter functions giving increased

degrees of freedom to fit the term structure of interest rates. Section 4 reviews the ap-

proach of Heath, Jarrow and Morton (HJM)(1992) of modelling forward interest rates,

which aims to match the initial yield curve with observed market data. HJM showed

that the no-arbitrage condition leads necessarily to a model of forward rates driven by

the volatility process only. Concepts such as the risk-neutral martingale measure and the

T -forward martingale measure are discussed with the arbitrage-free condition.
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Interest rates characterise the bond market. Issued bonds are of two different types:

(i) coupon or coupon-bearing instruments paying interest periodically with a principal

amount paid at maturity, and (ii) zero coupon or discount bonds that are discount se-

curities bearing no coupon and paying only the principal at maturity. Treasury issued

bonds with maturity of one year or less are zero-coupon bonds or discount bonds, and

Treasury bonds with maturity longer than one year are coupon-bearing bonds. In the

United States, zero coupon bonds are called bills, and coupon Treasury securities are

called notes if their maturity at issuance is from 2 to 10 years or bonds if maturity at

issuance is longer than 10 years. From a pricing point view, coupon-bearing bonds are

equivalent to a portfolio of zero coupon bonds. Without loss of generality, we assume

that the face value of the bond is 1 dollar and consider zero-coupon bonds only.

We also simply assume that the source of randomness in the markets is generated by

a single Brownian motion. The arbitrage-free condition is assumed. Much of the material

of this chapter is a review based primarily on the books of Musiela and Rutkowski (1997),

Hull (2003) and Moraleda (1997). Some extensions with proof are presented.

2.1 Theory of Derivative Pricing

An economy (or a market) consists of (d+1) assets with prices S0(t), . . . Sd(t) at time t,

considered on a time interval [0, T ∗], where T ∗ is a time horizon that is fixed once and for

all. All assets are continuous predictable processes defined on a filtered probability space

(Ω,F , IF, P ), where Ω denotes the sample space of all possible states, ω, of the world,

F is a σ-algebra of measurable events and P is a probability measure. We will assume

that the filtration IF = (Ft)t≤T ∗ is a completed filtration of a standard Wiener process

(Wt), that is W1 ∼ N(0, 1). Intuitively, the filtration IF can be thought of as the flow of

information in the economy that is, Ft includes all information on the economy available

at time t. We will also assume that all processes Si, i = 0, . . . , d are square integrable

semi-martingales.

A trading strategy is any locally bounded predictable vector process h(t) = (h0(t), · · · , hk(t)),

where hi(t) is the number of units of asset i (eg. currencies, bonds, stock indices) held

in the portfolio at time t. The value process corresponding to the trading strategy h is
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defined by

Vt(h) =
k∑

i=0

hi(t)Si(t).

Among all trading strategies we are interested in those that are self-financing, which

requires that

Vt(h) = V0(h) +

k∑
i=0

∫ t

0
hi(s)dSi(s), t ≤ T,

where T ≤ T ∗. Therefore, the changes in the portfolio value in a self-financing trading

strategy are only due to changes in the values of assets and not because of net buying or

selling.

So far all prices are given in terms of the local currency. Relative prices are given

in terms of a numeraire asset, S0(t), which is a (non-dividend paying) traded asset with

strictly positive values over the entire trading horizon t ∈ [0, T ]. A relative price is defined

as

Zi(t) = Si(t)/S0(t), i = 0, 1, . . . , d.

The value of the first relative asset is 1 at all times, i.e. Z0(t) = 1. The ratio 1/S0(t)

is called a discount factor. The relative value process corresponding to a portfolio h is

defined as

V Z
t (h) = Vt(h)/S0(t).

An arbitrage opportunity is a self-financing trading strategy h such that V0(h) = 0,

VT (h) ≥ 0 and P (VT (h) > 0) > 0. An arbitrage opportunity requires no investment

at time t = 0, its value at time T is non-negative with probability one, and strictly

positive with positive probability. It is reasonable to assume that there are no arbitrage

opportunities in the economy. Economies without arbitrage opportunities are called “no-

arbitrage”, “free of arbitrage” or “arbitrage-free”. The no-arbitrage assumption is a key

feature in option pricing theory. A no-arbitrage economy can be characterised in an

alternative way using the concept of an equivalent martingale measure. An equivalent

martingale measure Q is a probability measure on (Ω,F), such that

1. P and Q are equivalent, that is P (A) = 0 if and only if Q(A) = 0, for every A ∈ F .

2. The relative price processes Zi are Q-martingales, that is

EQ(Zi(s)|Ft) = Zi(t)

for all i = 0, 1, · · · , k and all 0 ≤ t ≤ s ≤ T ,
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where EQ stands for expectation with respect to the measure Q.

A derivative security or a claim Y is attainable if there exists a self-financing strategy

h such that VT (h) = Y . Such a strategy h is called a replicating or hedging strategy for

a given derivative security Y .

An economy (or market) is said to be complete if each derivative security or claim is

attainable. The following result, fundamental to the theory of derivatives pricing, shows

the importance of the concepts of completeness and equivalent martingale measure. See

Harrison and Pliska (1981, 1983) and Musiela and Rutkowski’s (1997) Corollary 3.12 and

Proposition 3.1.5.

Proposition 2.1 (I) An economy is arbitrage-free if and only if there exists an equivalent

martingale measure Q.

(II) An arbitrage-free economy is complete if and only if there exists a unique equivalent

martingale measure Q.

A derivative security or a contingent claim is an FT -measurable random variable

Y such that EQ(Y ) < ∞. Options, futures, and forwards are examples of derivative

securities.

2.2 Interest Rates and Interest Rate Derivatives

In this section we introduce the concepts of interest rates and interest rate derivatives

including swaps. We will also discuss pricing of swaps.

A bond is a contract between the issuer (borrower) and the investor (lender) with

• a face value, which is the amount that will be paid at the end of loan,

• a maturity date, which is the date on which the loan will be repaid to the holder,

and

• a coupon rate, which is the annual rate (percentage of the bond’s face value) of the

bond’s interest payment.

Because the face value, maturity date, and coupon rate of a bond are normally fixed

for the term of the loan, bonds are also known as fixed-income securities.
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2.2.1 Fixed-Income Securities and Their Derivatives

A zero coupon bond with maturity date T , is a contract which guarantees to pay holder

$1 at time T . The price of such an instrument at time t is denoted by B(t, T ), with

0 ≤ t ≤ T ≤ T ∗ and B(T, T ) = 1. We assume that, for any fixed maturity T , the coupon

price B(·, T ) is a strictly positive and adapted process on a filtered probability space

(Ω, IF, P ).

The market value of a bond assumed to be risk free varies through the loan period.

Investors who purchase bonds desire to obtain a certain yield (or rate of return) from the

investment. The desired yield is affected by the market value of the bond and financial

climate. Yield to maturity represents the percentage rate of return paid if the security

is held until its maturity date. This calculation is based on the coupon rate, the length

of time to maturity and the market price of the security.

The yield-to-maturity R(t, T ) of a zero-coupon bond maturing at time T (called also

a zero-coupon yield) is an adapted process defined on (Ω, IF, P ) by the formula

R(t, T ) = − 1

T − t ln(B(t, T )), ∀t ∈ [0, T ], (2.1)

or equivalently,

B(t, T ) = e−R(t,T )(T−t), ∀t ∈ [0, T ], (2.2)

which implies that the yield-to-maturity R(t, T ) corresponds to the fixed rate of return

at time t over the period [t, T ].

Denoted by F (t, S, T ), the forward interest rate for a period [S, T ], prevailing at time

t, t ≤ S ≤ T , satisfies,

eF (t,S,T )(T−S) =
B(t, S)

B(t, T )
,

which implies

F (t, S, T ) = − 1

T − S log
B(t, T )

B(t, S)
.

F (t, S, T ) corresponds to the rate contracted at time t, on a risk-free loan over the future

period time [S,T].

The instantaneous forward interest rate, denoted by f(t, T ), is the forward interest

rate prevailing at the date t, t ≤ T , for instantaneous risk-free borrowing or lending

at date T . It can be interpreted as the interest rate over the infinitesimal time interval

[T, T+dT ] as seen from time t. The instantaneous forward interest rate is a mathematical

11



idealisation rather than a quantity observable in practice. Given a family of instantaneous

forward interest rates f(t, T ), the zero coupon is

B(t, T ) = exp

(
−

∫ T

t
f(t, u)du

)
, ∀t ∈ [0, T ], (2.3)

provided that the integral on the right side of (2.3) exists for almost all ω.

On the other hand, if the family of zero coupon bonds B(t, T ) is sufficiently smooth

with respect to maturity T , the implied instantaneous forward interest rate f(t, T ) is

given by

f(t, T ) = −∂ logB(t, T )

∂T
. (2.4)

This formula may be taken as a definition of instantaneous forward rate f(t, T ). It is

easy to see that f(t, T ) is a limit of forward interest rates F (t, S, T ) as S ↑ T . The

instantaneous forward interest rate will be called the forward rate later, because typical

models of interest rates are formulated in terms of instantaneous forward rates.

Leaving the technical assumptions aside, from either one of B(t, T ), R(t, T ) or f(t, T ),

we can recover the others. The term structure of interest rates, known also as the yield

curve, is the function that relates the yield R(0, T ) and the time to maturity T .

The instantaneous spot interest rate or short rate, or simply spot rate, r(t) is defined

as

r(t) = f(t, t)

if it exists. Spot rate is the risk-free borrowing or lending rate prevailing at time t over

the infinitesimal time interval [t, t+ dt].

Suppose the dynamics for spot rate and forward rate are given by the following

stochastic differential equations:

df(t, T ) = μf (t, T )dt + σf (t, T )dWt,

dr(t) = μr(t)dt + σr(t)dWt,

where (Wt) is a standard Brownian motion. We will assume that all three functions

f(0, ·), μf and σf are jointly continuous together with their t derivatives. Then the

definition r(t) = f(t, t) yields the following relations:⎧⎨⎩ μr(t) = df(0,t)
dt + μf (t, t) +

∫ t
0

∂μf

∂t (s, t)ds +
∫ t
0

∂σf

∂t (s, t)dWs

σr(t) = σf (t, t)
, (2.5)

12



which means that the dynamics of the spot rate can be derived from the dynamics of the

forward rate.

Although an explicit expression for μf and σf cannot be derived from μr and σr, the

following relation holds. Let B(t, T ) be the time t price of a zero-coupon with maturity

at time T . Then the spot rate and zero coupon bonds are related by

B(t, T ) = EQ[e−
∫ T

t
r(s)ds|Ft]

EQ denotes expectation with respect to an appropriate equivalent martingale measure.

Taking into account that

f(t, T ) = −∂ logB(t, T )

∂T
,

we have found that the evolution of forward interest rate f(t, T ) is completely determined

by the spot interest rate process {r(t) : t ≤ T}. It follows that the modelling of the spot

rate and of the forward rate (modelling of the term structure of interest rates modelling)

are, given some technical assumptions, equivalent.

2.3 Spot Interest Rate Models

In this section we review some popular spot rate models. We concentrate on the spot rate

processes rt that are solutions of diffusion equations with time independent coefficients:

drt = μ(rt)dt+ σ(rt)dWt, (2.6)

where the functions μ and σ are, respectively, the drift and the diffusion of the process.

Wt is a standard Brownian motion under the real measure P .

The choice of drift and diffusion in (2.6) is often arbitrary. Despite an array of

models, relatively little is known about how these models compare in terms of their

ability to capture the actual behaviour of the spot rate and the accuracy of pricing the

interest rate derivatives. Table 2.1 below presents a list of spot interest rate models that

are popular and often referred to in the literature.

In Table 2.1, Model 1 (Merton 1973), is a stochastic process with a simple Brownian

motion. Model 2, used by Vasicek (1977), is an Ornstein-Uhlenbeck process. Volatility

is constant in both models 1 and 2. Model 3 is a square root process proposed by Cox,

Ingersoll and Ross (CIR) (1985). Model 4 is used by Dothan (1978). Model 5 is a
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Table 2.1: List of Spot Rate Models

Model Reference Drift function Diffusion function

μ(r) σ(r)

1 Merton (1973) α σ

2 Vasicek (1977) α+ βr σ

3 CIR SR (1985) α+ βr σr1/2

4 Dothan (1978) σr

5 GBM(Black and Scholes 1973) βr σr

6 Brennan and Schwartz(1980) α+ βr σr

7 CIR VR (1980) σr3/2

8 CEV (Cox and Ross 1976) βr σrγ

9 Chan (1992) α+ βr σrγ(γ ≥ 1)

10 Ait-Sahalia (1996b) α0 + α1r + α2r
2 + α3/r β0 + β1r + β2r

γ

11 Hull and White (1990) θ(t)− βr σ

12 Hull and White (1990) θ(t)− βr σ
√
r

13 Ait-Sahalia (1996a) α+ βr σ(t)
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Geometric Brownian Motion (GBM) of Black and Scholes (1973). Model 6 is used by

Brennan and Schwartz (1980) and also by Courtadon (1982).

The first six models in the table above assume a linear mean reverting drift of the form

μ(rt) = α + βrt, while some specifically assume α = 0 or β = 0. It has been recognised

in the finance literature that one of the most important problems in financial modelling

is the specification of the diffusion function σ(·) correctly. In the first six models the

diffusion functions are assumed either to be constant, or proportional to the square root

of the spot rate or to the spot rate itself. In model 7, introduced by Cox, Ingersoll

and Ross (CIR) (1980), the diffusion depends on spot rate with a power of three-halves.

Model 8 is the Constant Elasticity of Variance (CEV) process introduced by Cox and

Ross (1976).

In order to estimate and compare a variety of continuous-time models of the spot

interest rate using Generalised method of moments, Chan et al. (1992) proposed model

9 that provides a common framework in which models 1-8 in Table 2.1 can be nested.

This is given by

μ(rt) = α+ βr, σ(rt) = σrγ
t . (2.7)

Using annualised one-month US Treasury bill yield data from 1964 to 1989, he found

that the most successful models in capturing the dynamics of short-term interest rates

are those that allow the volatility of interest rate changes to be highly sensitive to the

level of the spot rate. This means that the models with γ ≥ 1 capture the dynamics of

the spot rate better than those with γ < 1. Chan’s unconstrained estimate of γ is 1.5.

Ait-Sahalia (1996b) tests parametric models by comparing their parametric density to

the same density estimated non-parametrically, and a Generalised parametric specifica-

tion of the spot rate model (model 10) was given which nested the single-factor diffusion

models 1-9 in Table 2.1. The general model is given by

μ(r, θ) = α0 + α1r + α2r
2 + α3/r, σ(r, θ) = β0 + β1r + β2r

γ , (2.8)

where

β0 ≥ 0 (and β2 > 0 if β0 = 0 and 0 < γ < 1, or β1 > 0 if β0 = 0 and γ > 1),

β2 > 0 if either γ > 1 or β1 = 0, and β1 > 0 if either 0 < γ < 1 or β2 = 0,

α2 ≤ 0 and α1 < 0 if α2 = 0,

α3 > 0 and 2γ ≥ β0 ≥ 0, or α3 = 0, α0 > 0,β0 = 0,γ > 1 and 2α0 ≥ β1 > 0.

These natural restrictions are necessary for σ2 to be positive in the neighbourhood of
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zero boundary, to ensure that the drift is mean-reverting at high interest rate values, and

to guarantee that σ is not zero.

Using the 7-day Eurodollar deposit rate 1973-1995, Ait-Sahalia empirically tested

several models in 2.8. He found the strong non-linearity of the drift and higher volatil-

ity when away from mean, which rejected the existing liner drift models and constant

elasticity of variance (CEV) model.

Models 1-10 in Table 2.1 have time-independent drift and diffusion and therefore do

not have enough degrees of freedom to fit the complete term structure of interest rates

(including the observed initial yield curve). Models 11-13 belong to the class denoted

as exogenous term structure models. They can be accurately fitted to the initial yield

curve as observed in the market through the time-dependent parameter function in their

drift. It is desirable for an interest rate model that it can match the initial term structure

of interest rate or initial yield curve. Another important property for an interest rate

model is that it can be used to price derivative securities. Hull and White (1990)’s spot

rate model is specified by a stochastic differential equation with time changing parameter

functions, which allows more freedom to fit the term structure of interest rates. The Hull

and White model, given by a stochastic differential equation, is

drt = [θ(t)− β(t)rt]dt + σ(t)rρ
t dWt, (2.9)

where θ(t), β(t) and σ(t) are deterministic functions, and Wt is a Brownian Motion. This

spot rate model exogenously incorporates both the initial structure of interest rates and

the derivative security pricing. Also, the Hull and White (1990) model is Generalised to

the model 1-10 in Table 2.1, and it has an affine term structure when ρ = 0 or ρ = 0.5

that corresponds to model 11 (the extended Vasicek model) or model 12 (the extended

CIR model) respectively. By an affine term structure model we mean a diffusion model

with the drift and square of the diffusion term described by linear functions.

Ait-Sahalia (1996a) proposed a nonparametric estimation procedure for a continu-

ous - time stochastic model to price interest rate derivatives, based on model 13 from

Table 2.1. Because pricing of derivative securities depends crucially on the form of the

instantaneous volatility of the underlying process, he did not assume a model for σ(t)

but rather estimated it non-parametrically. The drift and volatility functions are forced

to match the stationary density π of the process, which is assumed to exist. The pro-

cedure for estimation he used is : Assuming μ(rt) = α + βrt, firstly, estimate α, β
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by ordinary least square(OLS); Secondly, calculate the non-parametric Kernel estimator

of the density π(r) and, finally, using well known formulae for the stationary density

of one-dimensional diffusion, put σ2(r) = 2
π(r)

∫ r
0 μ(u, θ)π(u)du. Sahalia developed this

procedure taking the discrete character of the data into account while maintaining the

attractiveness of the continuous time model, and estimated non-parametrically the dif-

fusion function. The spot rate data used in his article is seven-day Eurodollar deposit

rate, bid-ask midpoint, from Bank of America (1/6/73 — 25/2/95). Discount bonds and

options on discount bonds were computed by Sahalia’s nonparametric model, compared

with CIR and Vasicek model.

2.4 Modelling of the Term Structure of Interest Rates

Most spot rate models, like models 1-10 in Table 2.1, are described by a stochastic dif-

ferential equation with simple, time invariant parameters. These spot rate models do

not have enough degrees of freedom to obtain realistic behaviour for the term struc-

ture of interest rates. Some denoted as exogenous spot rate models, like the Hull and

White model, can fit the initial term structure as observed in the market through the

complicated time-dependent parameter functions. However, estimation of general time-

dependent parameter functions is difficult.

In recent years, the research focus has been on the modelling of the term structure

of interest rates that is much more appropriate to capture the yield curves movements.

Moraleda and Pelsser (1997) presented an empirical comparison of term structure models

by forward interest rates versus spot interest rates. A significant contribution to term

structure modelling has been made by Heath, Jarrow and Morton (HJM). In this sec-

tion, we review the Heath, Jarrow and Morton (HJM) (1992) model, which allows the

modelling of the entire term structure at once. The HJM approach for modelling for-

ward interest rates matches perfectly the initial yield curve as observed in the markets.

With this approach, HJM showed that correct volatility modelling is the key point of the

interest rate modelling. Concepts such as the risk-neutral martingale measure and the

T -forward martingale measure are reviewed with the arbitrage-free condition.
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2.4.1 HJM Methodology and Risk-Neutral Measure P
∗

As defined in Section 2.2, the forward rate f(t, T ) is a strictly positive adapted process

on a filtered probability space (Ω, IF, P ). Suppose the term structure modelling is based

on an exogenous specification of dynamics of instantaneous forward rates f(t, T ). We

assume that, for any fixed maturity time T ≤ T ∗ <∞, the dynamics of the forward rate

f(t, T ) are described by

df(t, T ) = μf (t, T )dt + σf (t, T )dW (t), (2.10)

where μf (·, T ) and σf (·, T ) are real valued (Ft) adapted stochastic processes with t ∈
[0, T ] and σf > 0,

sup
t,T≤T ∗

(|μf (t, T ) + |σ2
f (t, T )|2) <∞.

Consequently, using formula (2.3) and the Ito formula, it can be shown that the

process of zero-coupon bond prices B(t, T ) is described by

dB(t, T ) = μB(t, T )B(t, T )dt + σB(t, T )B(t, T )dW (t). (2.11)

More precisely, we have the following lemma.

Lemma 2.1 The relation of the dynamics are

(I) if f(t, T ) satisfies (2.10), and the functions T → μf (t, T ) and T → σf (t, T ) are locally

integrable for every t, then the dynamics of discount bonds B(t, T ) are given by (2.11)

with ⎧⎨⎩ μB(t, T ) = r(t)− ∫ T
t μf (t, s)ds + 1

2(
∫ T
t σf (t, s)ds)2,

σB(t, T ) = − ∫ T
t σf (t, s)ds;

(2.12)

(II) conversely, by (2.4), if B(t, T ) satisfies (2.11), and the functions T → μB(t, T ) and

T → σB(t, T ) are continuously differentiable for every t, then the dynamics of forward-

rates f(t, T ) are given by (2.10) with⎧⎨⎩ μf (t, T ) = σB(t, T )∂μB(t,T )
∂T − ∂μB(t,T )

∂T ,

σf (t, T ) = −∂σB(t,T )
∂T .

(2.13)

The proof of this Lemma can be found in Musiela and Rutkowski (1997).

The fundamental theorems for an arbitrage-free economy are stated in, for example,

Musiela and Rutkowski (1997) and are briefly reviewed here.
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Theorem 2.1 The market is arbitrage-free (or, no-arbitrage) if and only if the relative

bond price Z(t, T ) = B(t,T )
B(t) , for any fixed T , T > 0, is a martingale under the unique

martingale measure P ∗ equivalent to the actual measure P , where B(t) = e
∫ t

0
r(u)du is the

risk-free asset (being a numeraire) and r(t) is a spot rate.

The measure P ∗ is called the risk-neutral measure. The Radon-Nikodym derivative

of measure P ∗ with respect to P is given in the next theorem.

Theorem 2.2 The relative bond price Z(t, T ) = B(t,T )
B(t) is a martingale under the risk-

neutral measure P ∗equivalent to P , if and only if there exists an adapted process ϕ(t),

0 ≤ t ≤ T ∗, which is independent of T ≤ T ∗, satisfying

μB(t, T ) + ϕ(t)σB(t, T )− r(t) = 0, (2.14)

or equivalently satisfying

μf (t, T ) = σf (t, T )

(
−ϕ(t) +

∫ T

t
σf (t, s)ds

)
. (2.15)

The unique risk-neutral measure P ∗, equivalent to the actual measure P , P ∗ ∼ P on FT ,

is given by

P ∗(A) =

∫
A
Z(T )dP, A ∈ FT

where

Z(t) = exp

{∫ t

0
ϕ(u)dW (u) − 1

2

∫ t

0
ϕ2(u)du

}
,

IEP (Z(T )) = 1.

And the process

W ∗
t = Wt −

∫ t

0
ϕ(u)du

is a Brownian motion under the risk-neutral measure P ∗.

Proof. The relative bond price is Z(t, T ) = B(t,T )
B(t) and the numeraire is B(t) = e

∫ t

0
r(u)du.

Then

dB(t) = r(t)B(t)dt,

dZ(t, T ) =
1

B(t)
dB(t, T )− B(t, T )

B2(t)
r(t)B(t)dt

=
B(t, T )

B(t)

(
dB(t, T )

B(t, T )
− r(t)dt

)
(2.11)
= Z(t, T )[(μB(t, T )− r(t))dt − σB(t, T )dWt,
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Thus Z(t, T ) = B(t,T )
B(t) is a martingale under the equivalent martingale measure P ∗, if

and only if there exists the function ϕ(t) satisfying

ϕ(t) = −μB(t, T )− r(t)
σB(t, T )

,

where ϕ(t) is independent of T . By the relation of bond price and forward rates (lemma 2.1),

we have

−
∫ T

t
μf (t, s)ds +

1

2
(

∫ T

t
σf (t, s)ds)2 − ϕ(t)

∫ T

t
σf (t, s)ds = 0,

and differentiating with respect to T yields,

μf (t, T ) = σf (t, T )

(
−ϕ(t) +

∫ T

t
σf (t, s)ds

)
.

Thus, we get the equation of (2.15), which means, in an arbitrage-free market, the drift

coefficient of forward rates is uniquely determined by the volatility coefficient and a

stochastic process interpreted as the market risk premium ϕ(t).

The next theorem was proved initially by Heath Jarrow and Morton (1992), see also

Musiela and Rutkowski (1997).

Theorem 2.3 (HJM) Under the risk-neutral measure P ∗, the stochastic differential

equation for f(t, T ), obtained for every maturity T , is

df(t, T ) = σf (t, T )σ∗f (t, T )dt + σf (t, T )dW ∗
t , (2.16)

and stochastic differential equation for B(t, T ), obtained for every maturity T , is

dB(t, T ) = r(t)B(t, T )dt − σ∗f (t, T )B(t, T )dW ∗
t , (2.17)

where W ∗
t is a Brownian motion under the risk-neutral measure P ∗, and

σ∗f (t, T ) =

∫ T

t
σf (t, u)du.

The approach described above was proposed in Heath, Jarrow and Morton (1992); it

shows that the volatility process of the forward rates plays a crucial role in the dynamics

of the term structures. The derivative securities can be calculated by the observable

forward rates at the initial time and the volatility process σf (t, T ).
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2.4.2 T-forward Martingale Measure and No-Arbitrage

In the previous section, we have introduced the actual measure P and the equivalent risk-

neutral martingale measure P ∗, P ∗ ∼ P , under which all relative bond price processes

B(t, T )

B(t)
, t ∈ [0, T ],

are strictly positive martingales. By Theorem 2.1 and Theorem 2.2, it can be concluded

that the market does not admit arbitrage if and only if there exists an adapted process

ϕ(t) satisfying (2.14) or (2.15).

Now we focus on the equivalent martingale measure P ∗ and introduce T -Forward

Measures.

Definition 2.1 An equivalent probability measure P T ∼ P ∗ on FT is called a T -forward

measure if
dP T

dP ∗
=

1

B(0, T )B(T )
.

This definition is based the observation that, for fixed T > 0,

1

B(0, T )B(T )
> 0, IEP ∗ [

1

B(0, T )B(T )
] = 1,

and for t ≤ T , we have

IEP ∗ [
dP T

dP ∗
|Ft] =

B(t, T )

B(0, T )B(t)
.

Lemma 2.2 For any S > 0,

B(t, S)

B(t, T )
, t ∈ [0, S ∧ T ]

is a P T -martingale.

Proof. Let s ≤ t ≤ S ∧ T . Bayes’ rule gives

IEP T [
B(t, S)

B(t, T )
|Fs] =

IEP ∗ [ 1
B(0,T )B(T )

B(t,S)
B(t,T ) |Fs]

IEP ∗[ 1
B(0,T )B(T ) ]|Fs

=
IEP ∗ [IEP ∗( 1

B(0,T )B(t)
B(t,S)
B(t,T ) |Ft)|Fs]

B(t,T )
B(0,T )B(t)

=
IEP ∗ [ B(t,T )

B(0,T )B(t)
B(t,S)
B(t,T ) |Fs]

B(t,T )
B(0,T )B(t)

=

B(s,S)
B(s)

B(s,T )
B(s)

=
B(s, S)

B(s, T )
.
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Lemma 2.3 For any S > 0,

B(t, S)

B(t, T )
, t ∈ [0, S ∧ T )],

is a P T -martingale, i.e. the market is no-arbitrage, if and only if, there exists a process

ψ(t) satisfying

μB(t, S)− μB(t, T )− σB(t, T )[σB(t, S)− σB(t, T )] = −ψ(t)[σB(t, S)− σB(t, T )]. (2.18)

If such a process ψ exists then
dP T

dP
= Z(T ),

where

Z(t) = exp

{∫ t

0
ψ(u)dWu − 1

2

∫ t

0
ψ2(u)du

}
, t ∈ [0, T ],

and

W T
t = Wt −

∫ t

0
ψ(s)ds

is a Brownian motion under the forward measure P T . By (2.12) the equivalence of bond

and forward rates, (2.18) can be expressed as

ψ(t) =

∫ T
t μf (t, s)ds − ∫ S

t μf (t, s)ds∫ T
t σf (t, s)ds − ∫ S

t σf (t, s)ds
− 1

2
(

∫ T

t
σf (t, s)ds −

∫ S

t
σf (t, s)ds). (2.19)

Proof. Let

FB(t, S, T ) =
B(t, S)

B(t, T )
=
B1

B2
= g(B1, B2).

By the Ito Lemma we obtain

dFB(t, S, T ) = dg(B1, B2)

=
∂g(B1, B2)

∂B1
dB1 +

∂g(B1, B2)

∂B2
dB2

+
∂2g(B1, B2)

2 · ∂B2
2

(dB2)
2 +

∂2g(B1, B2)

∂B1∂B2
dB1dB2

=
1

B2
B1[μB(t, S)dt + σB(t, S)dWt]− B1

B2
2

B2[μB(t, T )dt + σB(t, T )dWt]

+
2B1

2B3
2

B2
2σ

2
B(t, T )dt − 1

B2
2

B1B2σ(t, S)σ(t, T )dt

= FB{[μB(t, S) − μB(t, T )− σB(t, T )(σBB(t, S)− σB(t, T ))]dt

+[σB(t, S)− σB(t, T )]dWt},
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and FB(t, S, T ) = B(t,S)
B(t,T ) = B1

B2
is a martingale, if and only if, there is a T -independent

process ψ(t) such that

μB(t, S)− μB(t, T )− σB(t, T )[σB(t, S)− σB(t, T )] = −ψ(t)[σB(t, S)− σB(t, T )],

and then

dFB(t, S, T ) = FB(t, S, T )[σB(t, S)− σB(t, T )]dW T
t ,

where

W T
t = Wt −

∫ t

0
ψ(u)du

is a Brownian motion under the measure P T . By the Girsanov theorem

dP T

dP
= exp

{∫ t

0
ψ(u)dWu − 1

2

∫ t

0
ψ(u)du

}
.
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Chapter 3

θ-parameterisation of Term

Structure of Interest Rates

The definitions and the modelling of the term structure of interest rates with parameters

of time t and maturity time T are reviewed in Chapter 2. In financial markets, media,

financial reports and financial databases, the term structure of interest rates data are

often stored and displayed using two other parameters: the time t and the length of time

to maturity θ. Both yield data sets obtained from the Reserve Bank of Australia and from

the Commonwealth Bank of Australia are stored under (t, θ) format. We will refer to

the usual parameterisation of term structure of interest rates with time t and maturity

time T as a T -parameterisation, and to the parameterisation with time t and length

of time to maturity θ as a θ-parameterisation. θ-parameterisation is mathematically

convenient since all yield curves R(t, ·), evolve over the same “space” domain [θmin, θmax]

as time t varies. θ-parameterisation was proposed in Musiela (1993). We develop the

θ-parameterisation approach to the modelling of term structure of interest rates. This

chapter introduces the terminology of interest rates and interest rate derivatives under

the θ-parameterisation, and develops the corresponding pricing theories, including the

no-arbitrage condition and modelling of term structure of interest rates.

The theory and modelling of the term structure of interest rates in the T -parameterisation

in this chapter follows the book by Musiela and Rutkowski (1997). We investigate the

relationship of the dynamics of term structures under the θ-parameterisation vs. the

T -parameterisation, and then systematically investigate the θ-parameterised term struc-

ture of interest rates and their derivatives in order to provide a convenient language for
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statistical θ-parameterisation vs. the (t, T )-parameterisation.

As an application we will consider the volatility of the Australian Treasury bond

yields in θ-parameterisation. Using some ideas of Cont (1998) we will demonstrate that

the volatility has a maximum around θ = 1. This fact was also reported in other studies

(Bouchaud et al. 1997, Cont 2001) using data from European markets.

3.1 Background

A standard way to report the term structure of interest rates is to provide forward rates

f(t, T ) that depend on two variables, the prevailing time t and the maturity time T .

The term structure models and an appropriate non-arbitrage theory have been devel-

oped using this parameterisation (See Chapter 2). For any fixed maturity T ≤ T ∗,

the stochastic process of the forward rate f(t, T ) is described in HJM by a stochastic

differential equation

df(t, T ) = μ(t, T )dt + σ(t, T )dW (t), (3.1)

where the functions μ and σ satisfy technical conditions given in Section 2.4.1. HJM

showed that, in an arbitrage-free market, the drift coefficient μ(t, T ) of (3.1) is uniquely

determined by the volatility process σ(t, T ) and a stochastic process interpreted as the

market risk premium. Under the equivalent martingale risk-neutral measure P ∗, P ∗ is

independent of T ≤ T ∗, the process of forward rates is

df(t, T ) = σ(t, T )σ∗(t, T )dt + σ(t, T )dW ∗
t , (3.2)

where

σ∗(t, T ) =

∫ T

t
σ(t, τ)dτ

and W ∗
T is Brownian motion under the martingale measure P ∗. Hence the evolution of

the forward curve f(t, ·) is completely determined by the initial curve and the volatility

structure

f(t, T ) = f(0, T ) +

∫ t

0
σ(u, T )σ∗(u, T )dt +

∫ t

0
σ(u, T )dW ∗

u . (3.3)

By the relation between discount bond price and forward interest rates, see Sec-

tion.4.1, the stochastic process of the discount bond price B(t, T ) is

dB(t, T ) = r(t)B(t, T )dt − σ∗(t, T )B(t, T )dW ∗
t . (3.4)
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The solution of this equation is therefore determined by the initial condition B(0, T ),

the volatility structure, and the spot rate. The term structure of interest rates or yield

curve model is the model describing the evolution of the yield curve. The term yield

curve is ambiguous, since it could refer to a zero-coupon curve B(t, ·), a zero-coupon

yield curve R(t, ·), or a forward-rate curve f(t, ·). The domain of any yield curve X(t, S)

is S : S ∈ [t, T ] that shrinks with time t, which is sometimes mathematically inconvenient.

It is also well known that yields are often reported on the market in terms of time to

maturity θ = T − t. It was proposed in Musiela (1993) to study the yield curves in

terms of parameters (t, θ) instead of (t, T ). He defined a re-parameterised forward rate

r(t, θ) = f(t, t+ θ), and bond prices P (t, θ) = B(t, t+ θ). This parameterisation has the

advantage that the term structure process r(t, ·) or P (t, ·) evolves on the same “space”

domain [θmin, θmax]. Later, this approach was successfully applied in deriving the famous

BGM model of LIBOR rates in Brace, Gatarek and Musiela (1997). It was shown in BGM

that

dr(t, θ) =
∂

∂θ
[r(t, θ) +

1

2
(σ∗(t, θ))2]dt+ σ(t, θ)dW ∗

t , (3.5)

and

dP (t, θ) = [r(t, 0) − r(t, θ)]P (t, θ)dt − σ∗(t, θ)P (t, θ)dW ∗
t . (3.6)

Due to the fact that the new variable θ = T − t, is a function of the time t, the

drift and diffusion coefficients of the models for r(t, θ) and P (t, θ) are different from

those for f(t, T ) and B(t, T ). In order to study the dynamics of the term structure of

interest rates in θ-parameterisation, the fixed-income securities and derivatives will be

defined using θ-parameterisation. Under the θ-parameterisation, the corresponding term

structure theory and models will be developed. One advantage of θ-parameterisation, as

mentioned above, is that the yield curve movements are defined on the same domain. On

a more practical level, the θ-parameterised term structure allows statistical analysis and

modelling to be consistent with the data set formatted because, in the real world, most

term structure data are stored or formatted in terms of time of recording t and the time

to maturity θ. Obviously, we assume here that trading is continuous in time t and time

to maturity θ.
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3.2 Fixed-Income Securities and Derivatives under θ- pa-

rameterisation

This section is devoted to defining various fixed-income securities and derivatives using

θ-parameterisation, which depends on the pricing time t and the time to maturity θ. The

definitions correspond to these defined in (t, T ) format in Section 2.2.1

We define the interest rates on the filtered probability space (Ω, IF, P ) described in

Chapter 2.

Definition 3.1 The price of a zero coupon at time t with maturity in θ years ahead is

denoted by P (t, θ), t ∈ [0, T ∗∗], θ ∈ [0, θ∗] and P (t, 0) = 1. T ∗∗ is a fixed time horizon

and θ∗ is a fixed number of years, while T ∗∗+θ∗ = T ∗. For any fixed length to maturity θ,

0 ≤ θ < θ∗, P (·, θ) follows a strictly positive and adapted process on a filtered probability

space (Ω, IF, P ).

Definition 3.2 The forward interest rate in θ years contracted at time t for the period

[t+θ, t+θ+τ ], over the duration of τ years, is denoted by F (t, θ, τ) and defined to satisfy

eF (t,θ,τ)τ =
P (t, θ)

P (t, θ + τ)
, (3.7)

or equivalently

F (t, θ, τ) = −1

τ
log

P (t, θ + τ)

P (t, θ)
. (3.8)

The forward interest rate F (t, θ, τ) corresponds to the rate of return of a contract

agreed at time t for an investment of 1 dollar in θ years over duration of [t+ θ, t+ θ+ τ ].

To understand this point, we can establish the following portfolio at time t that sells 1

discount bond with maturity in θ years and buys P (t, θ)/P (t, θ+ τ) bonds with maturity

in θ + τ years. Thus the net investment is zero at time t because 1 · P (t, θ) is received

and P (t, θ)P (t, θ + τ)/P (t, θ + τ) is paid. This strategy implies the contract issued at

time t that invests 1 dollar in θ years and yield P (t,θ)
P (t,θ+τ) dollars in θ + τ years. So the

continuously compounded rate of return of this strategy is (3.7).

Definition 3.3 The yield-to-maturity R(t, θ) on a zero-coupon bond with maturity in θ

years is defined by the formula

P (t, θ)eR(t,θ)θ = 1, t, θ ≥ 0, (3.9)
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which implies

P (t, θ) = e−R(t,θ)θ , (3.10)

R(t, θ) = −1

θ
logP (t, θ). (3.11)

The yield-to-maturity R(t, T ) corresponds to the rate of return of an investment

at time t over the period θ years. By (3.8), (3.11) and P (t, 0) = 1, we also have

R(t, θ) = F (t, 0, θ).

Definition 3.4 The instantaneous forward interest rate, r(t, θ), prevailing at time t, for

the interest rate in θ years, t ≥ 0, θ ≥ 0, is defined as

r(t, θ) = −∂ logP (t, θ)

∂θ
, (3.12)

or

r(t, θ) = − 1

P (t, θ)

∂P (t, θ)

∂θ
, (3.13)

provided the family of zero coupon bonds P (t, θ) is sufficiently smooth with respect to

maturity θ.

We assume that r(t, θ) is locally bounded,

sup
t,θ≥0

|r(t, θ)| <∞, IP − a.s.

If ∂P (t, θ)/∂θ exists and is continuous, then there exists the limit of forward interest

rate F (t, θ, τ) as τ ↓ 0, and by equation (3.8), we have

r(t, θ) = lim
τ→0

F (t, θ, τ),

which means that the instantaneous forward interest rate corresponds to the forward

interest rate prevailing at time t, for the interest rate in θ years.

The relationship between discount bonds and instantaneous forward rates follows

from solving the differential equation (3.12) as

P (t, θ) = exp{−
∫ θ

0
r(t, τ)dτ}. (3.14)

We simply denote instantaneous forward interest rate as forward rate, because almost all

interest rate models in the literature consider instantaneous rates.
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Under some technical assumptions, on either P (t, θ), R(t, θ) or r(t, θ), we can recover

the others. Each of them characterises interest rates as a function of time and time to

maturity. This function, in any of its possible forms, is known as the term structure of

interest rates or yield curve.

Definition 3.5 The spot interest rate, or short rate, r(t), is defined as

r(t) = r(t, 0). (3.15)

3.3 Modelling of the θ-parameterised Term Structure of

Interest Rates

In analogy to the HJM modelling of the T -parameterised term structure of interest rates,

the θ-parameterised term structures modelling is supposed to be based on an exogenous

specification of dynamics of instantaneous forward rates r(t, θ). We assume that for any

fixed θ ∈ (0, θ∗), the dynamics of the forward rate r(t, θ) is described by the equation

dr(t, θ) = μr(t, θ)dt + σr(t, θ)dW (t), (3.16)

where (Wt) is Brownian motion with respect to the measure P , μr(·, θ) and σr(·, θ) are

real valued (Ft) adapted stochastic process, t, θ ≥ 0, σr(t, θ) > 0, and∫ t

0
|μr(u, θ)|du+

∫ t

0
σ2

r(u, θ)du <∞, P − a.s. (3.17)

μ(t, θ) is called drift function and σ(t, θ) is called volatility function or diffusion function.

Another possible starting point for building a term structure model is to assume that

for any θ the process of bond prices P (t, θ) is described by

dP (t, θ) = μP (t, θ)P (t, θ)dt + σP (t, θ)P (t, θ)dW (t). (3.18)

The following lemma establishes, under some technical conditions, the equivalence be-

tween the dynamics (3.16) of forward rates r(t, θ) and the dynamics (3.18) of zero coupon

prices P (t, θ).

Lemma 3.1 The relations of the dynamics of forward rate r(t, θ) and zero coupon bond

price P (t, θ) are as follows:
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(I) If r(t, θ) satisfies (3.16) and (3.17) holds then the discount bond dynamics are given

by (3.18) with ⎧⎨⎩ μP (t, θ) = − ∫ θ
0 μr(t, τ)dτ + 1

2

(∫ θ
0 σr(t, τ)dτ

)2
,

σP (t, θ) = − ∫ θ
0 σr(t, τ)dτ.

(3.19)

Putting ⎧⎨⎩ μ∗(t, θ) =
∫ θ
0 μr(t, τ)dτ,

σ∗(t, θ) =
∫ θ
0 σr(t, τ)dτ,

(3.20)

we obtain equivalent formulae for μP and σP :⎧⎨⎩ μP (t, θ) = −μ∗(t, θ) + 1
2(σ∗(t, θ))2,

σP (t, θ) = −σ∗(t, θ).
(3.21)

(II) Let P (t, θ) satisfy (3.18), and assume μP (t, θ) and σP (t, θ) are continuously differ-

entiable in θ and ∫ t

0

(∣∣∣∣∂μP

∂θ
(s, θ)

∣∣∣∣ +

∣∣∣∣∂σP

∂θ
(s, θ)

∣∣∣∣2
)
ds <∞, P − a.s.

Then the forward rate dynamics are given by (3.16) with⎧⎨⎩ μr(t, θ) = −∂μP (t,θ)
∂θ + σP (t, θ)∂σP (t,θ)

∂θ ,

σr(t, θ) = −∂σP (t,θ)
∂θ .

(3.22)

Proof.

(I) Since

P (t, θ) = exp{−
∫ θ

0
r(t, τ)dτ},

by the Itô formula in Appendix B, we have

dP (t, θ) = −e−
∫ θ

0
r(t,τ)dτ · d

(∫ θ

0
r(t, τ)dτ

)
+

1

2
e−

∫ θ

0
r(t,τ)dτd

〈∫ θ

0
r(·, τ)dτ

〉
t

Thus by (3.16)

dP (t, θ)

P (t, θ)
= −

(∫ θ

0
μr(t, τ)dτ

)
dt −

(∫ θ

0
σr(t, τ)dτ

)
dWt +

1

2

(∫ θ

0
σr(t, τ)dτ

)2

dt

=

(
−

∫ θ

0
μr(t, τ)dτ +

1

2
(

∫ θ

0
σ2

r (t, τ)dτ)
2

)
dt−

(∫ θ

0
σr(t, τ)dτ

)
dWt.
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So

μP (t, θ) = −
∫ θ

0
μr(t, τ)dτ +

1

2
(

∫ θ

0
σ2

r(t, τ)dτ)
2

= −α∗(t, θ) +
1

2
(σ∗(t, θ))2.

σP (t, θ) = −
∫ θ

0
σr(t, τ)dτ

= σ∗(t, θ).

(II)

r(t, θ) = −∂ logP (t, θ)

∂θ
,

dr(t, θ) = − ∂

∂θ
[d logP (t, θ)]

Itô
= − ∂

∂θ

[
1

P (t, θ)
dP (t, θ)− 1

2

1

P 2(t, θ)
d 〈P (·, θ)〉t

]
= − ∂

∂θ

[
μpdt+ σP dW − 1

2
σ2

Pdt

]
=

[
−∂μp

∂θ
+ σP

∂σP

∂θ

]
dt− ∂σP

∂θ
dWt.

So the forward rate r(t, θ) dynamics are given by

dr(t, θ) = μr(t, θ)dt + σr(t, θ)dW (t),

with ⎧⎨⎩ μr(t, θ) = −∂μP (t,θ)
∂θ + σP (t, θ)

∂σp

∂θ ,

σr(t, θ) = −∂σP (t,θ)
∂θ .

This lemma shows that, under the θ-parameterisation, the drift and volatility of

zero coupon prices P (t, θ) can be recovered from the drift and volatility of forward rate

prices r(t, θ). It is a simpler result than the relationship (2.12) between the dynamics

of T -parameterised forward rates f(t, T ) and those of zero coupon prices B(t, T ) which

involves the spot rate process r(t).

Since short rate r(t) = r(t, 0), the dynamics of short rates can be described by

dr(t) = μr(t)dt + σr(t)dW (t),
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where ⎧⎨⎩ μr(t) = μr(t, 0),

σr(t) = σr(t, 0),
(3.23)

which shows that, under the θ-parameterisation, the drift and volatility of spot rates

r(t) can be recovered from the drift and volatility of forward rates r(t, θ). It is a much

simpler result than the relationship (2.5) between the dynamics of spot rates f(t) and

those of T -parameterised forward rates f(t, T ) that involves the df(0,t)
dt ,

∫ t
0

∂μf

∂t (s, t)ds and∫ t
0

∂σf

∂t (s, t)dWs.

3.4 Relationships of the Dynamics of the Term Structures

Models: θ-parameterised term structures and T - pa-

rameterised term structures

Martingale measures and no-arbitrage conditions based on T -parameterised term struc-

tures were reviewed at Section 2.4. Accordingly, we are going to investigate the mar-

tingale measures and no-arbitrage conditions with θ-parameterised term structures in

the next section. Before doing so, we will study the relationships between the dynamics

of θ-parameterised term structure and T -parameterised term structure models in this

section.

Let us recall that

B(t, T ) is the zero coupon prices priced at time t and with maturity T ,

f(t, T ) is the forward rate prevailing at time t for interest rate borrowing at time T,

P (t, θ) = B(t, t+ θ) is the zero coupon price at time t and with maturity at t+ θ, and

r(t, θ) = f(t, t + θ) is the forward rate prevailing at time t for interest rate borrowing

in θ years after time t.

The dynamics of T -parameterised forward rates f(t, T ) and zero coupon prices B(t, T )

are described by

df(t, T ) = μf (t, T )dt + σf (t, T )dWt,

dB(t, T ) = μB(t, T )B(t, T )dt + σB(t, T )B(t, T )dWt.
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With θ = T − t, we let

μf (t, T ) = μf (t, t+ θ)
def
= μ̃f (t, θ), (3.24)

σf (t, T ) = σf (t, t+ θ)
def
= σ̃f (t, θ), (3.25)

μB(t, T ) = μB(t, t+ θ)
def
= μ̃B(t, θ), (3.26)

σB(t, T ) = σB(t, t+ θ)
def
= σ̃B(t, θ). (3.27)

Thus, the dynamics of f(t, T ) and B(t, T ) can be expressed as

df(t, T ) = μ̃f (t, θ)dt+ σ̃f (t, θ)dWt,

dB(t, T ) = μ̃B(t, θ)B(t, θ)dt+ σ̃B(t, θ)B(t, T )dWt.

Correspondingly, the dynamics of θ-parameterised forward rates r(t, θ) and zero

coupon prices p(t, θ) are described by

dr(t, θ) = μr(t, θ)dt+ σr(t, θ)dWt,

dP (t, θ) = μP (t, θ)P (t, θ)dt + σP (t, θ)P (t, θ)dWt.

And we have

Lemma 3.2 The relations of the dynamics of θ-parameterised term structures and T -

parameterised term structures are⎧⎨⎩ μr(t, θ) = μ̃f (t, θ) + ∂r(t,θ)
∂θ ,

σr(t, θ) = σ̃f (t, θ),
(3.28)

⎧⎨⎩ μP (t, θ) = μ̃B(t, θ)− r(t, θ),
σP (t, θ) = σ̃B(t, θ),

(3.29)

provided that r(t, θ) and P (t, θ) are differentiable in θ, and f(t, T ) and B(t, T ) are dif-

ferentiable in T .

Proof.
∂r(t, θ)

∂θ
=
∂f

∂T
(t, t+ θ)

∂T

∂θ
=
∂f

∂T
(t, t+ θ),

∂P (t, θ)

∂θ
=
∂B

∂T
(t, t+ θ)

∂T

∂θ
=
∂B

∂T
(t, t+ θ)
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Apply the Itô Lemma (Lemma A.1 in Appendix A) we obtain

dr(t, θ) = df(t, t+ θ)

= μ̃f (t, θ)dt + σ̃f (t, θ)dWt +
∂f

∂T
(t, t+ θ)dt

=

(
μ̃f (t, θ) +

∂r(t, θ)

∂θ

)
dt + σ̃f (t, θ)dWt,

and

dP (t, θ) = dB(t, t+ θ)

= μ̃B(t, θ)B(t, t+ θ)dt+ σ̃B(t, θ)B(t, t+ θ)dWt +
∂B

∂T
(t, t+ θ)dt

=

(
μ̃B(t, θ)B(t, t+ θ)dt+

∂P (t, θ)

∂θ

)
dt+ σ̃B(t, θ)B(t, t+ θ)dWt.

Since
∂P (t, θ)

∂θ
= −r(t, θ)P (t, θ),

So

dP (t, θ) = (μ̃B(t, θ)− r(t, θ))P (t, θ)dt+ σ̃B(t, θ)P (t, θ)dWt.

This lemma shows that the volatility processes of the term structure models under two

different parameterisations are identical. Shown by HJM modelling in Theorem 2.3, term

structure modelling crucially depends on the volatility modelling, and the drift function of

forward rate is determined by the volatility function of the forward rate. Term structure

data sets are mostly formatted using the θ-parameterisation in terms of (t, θ). Hence,

by the above lemma, if we can model the volatility process of the θ-parameterised term

structures accurately, we can obtain the volatility process of the T -parameterised term

structures successfully by the simple transformation θ = T − t.

3.5 Martingale Measures and No-Arbitrage Based on θ-

parameterised Term Structure of Interest Rates

In this section, we explore the martingale measures and no-arbitrage conditions based on

θ-parameterised term structure of interest rates.
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3.5.1 Risk-Neutral Martingale Measure P
∗

Heath, Jarrow and Morton (HJM, 1992) set up the fundamental martingale theory with

T -parameterised term structures. Under the risk-neutral measure P ∗, all discounted

bond price processes B(t, T )/B(t) are P ∗ martingales. i.e. numeraire is the risk-free

asset B(t) = exp{∫ t
0 r(u)du}, and r(t) is the spot rate.

In this section, we study the martingale theory with θ-parameterised term structure

of interest rates, parallel to martingale theory for the T -parameterised term structures.

We find that the discount bond price process P (t,θ)
B(t) is not a P ∗ martingale. To understand

this claim, let us consider a simple unrealistic special economic market with constant spot

rate r(t) = r, for all t ∈ [0, T ∗]. Under this assumption, the zero coupon bond price is

given by,

P (t, θ) = E[e−
∫ t+θ

t
r(u)du|Ft] = e−rθ,

and

r(t, θ) = − 1

P (t, θ)

∂P (t, θ)

∂θ)
= r.

It is obvious that P (t, θ) is a martingale under any measure, since it is independent

of time t. But P (t, θ)/B(t) is not a martingale under any measure, because for any s < t,

E

[
P (t, θ)

B(t)
|Fs

]
= E

[
e−tθ

ert
|Fs

]
= er(t−θ) �= er(s−θ) =

P (s, θ)

B(s)
.

This simple example illustrates that P (t, θ)/B(t) is not a martingale under the risk-

neutral measure, though the assumption of constant spot rate is, of course, not realistic.

Generally, if the spot rate rt is a stochastic process, we obtain the following result.

Lemma 3.3 P ∗ is the risk-neutral measure that ensures that B(t,T )
B(t) is a P ∗ martingale

for every fixed T , if and only if, P (t,θ)

B̃(t,θ)
is a P ∗ martingale for every θ > 0, where

B̃(t, θ) = exp{
∫ t

0
(r(u)− r(u, θ))du

that is a risk account accumulating the difference between the spot rate and the forward

rates.

Proof. Let

Y (t, θ) =
P (t, θ)

B̃(t, θ)
.
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Since

dB̃(t, θ) = B̃(t, θ)(r(t)− r(t, θ))dt,

we obtain

dY (t, θ) =
1

B̃(t, θ)
dP (t, θ) + P (t, θ)d

1

B̃(t, θ)

=
P (t, θ)

B̃(t, θ)
(μP (t, θ)dt− σP (t, θ)dWt)− P (t, θ)

1

B̃2(t, θ)
dB̃(t, θ)

= Y (t, θ){[μP (t, θ)− r(t) + r(t, θ)]dt+ σP (t, θ)dWt}.

If P ∗ is the risk -neutral measure equivalent to P , then by Theorem 2.2, there exists

an adapted process ϕ(t) satisfying condition (2.14), such that the process W ∗
t = Wt −∫ t

0 ϕ(u)du is a Brownian motion under the risk-neutral measure P ∗. By (2.14), (3.26),

(3.27), and Lemma 3.2, we obtain

ϕ(t) = − μ̃B(t, θ)− r(t)
σ̃B(t, θ)

= −μP (t, θ) + r(t, θ)− r(t)
σP (t, θ)

, (3.30)

and

dY (t, θ) = σP (t, θ)dW ∗
t ,

So

Y (t, θ) =
P (t, θ)

B̃(t, θ)

is a P ∗-martingale.

Assume now that Y is a P ∗-martingale for every θ > 0. Then defining φ (3.30) we obtain

by similar arguments that that B(t,T )
B(t) is a P ∗-martingale for every T .

By Lemma 3.2 and Lemma 3.3, under the risk-neutral measure P ∗, the stochastic

processes r(t, θ) and P (t, θ) satisfy the equations

dr(t, θ) =
∂

∂θ
[r(t, θ) +

1

2
(σ∗(t, θ))2]dt+ σ(t, θ)dW ∗

t , (3.31)

and

dP (t, θ) = [r(t, 0) − r(t, θ)]P (t, θ)dt − σ∗(t, θ)P (t, θ)dW ∗
t , (3.32)

where

σ∗(t, θ) =

∫ θ

0
σ(t, τ)dτ, (3.33)

and W ∗ is a Brownian motion under the risk-neutral measure P ∗.

36



3.5.2 T-forward Martingale Measure

Corresponding to Lemma 2.3 of the T-forward martingale measure P T , we have the

following:

Lemma 3.4 P T is the T-forward martingale measure that ensures that B(t,S)
B(t,T ) is a P T

martingale for any S ≥ 0, t ∈ [0, S ∧ T )], if and only if, P (t,τ)/B̃(t,τ)

P (t,θ)/B̃(t,θ)
is a P T martingale

for any τ ≥ 0, where τ = S − t and θ = T − t .

Proof. Let

FP (t, τ, θ) =
P (t, τ)/B̃(t, τ)

P (t, θ)/B̃(t, θ)
=
P (t, τ)

P (t, θ)
e
∫ t

0
(r(u,τ)−r(u,θ))du

Following the proof at Lemma 2.3, we find that

d(
B(t, S)

B(t, T )
) =

B(t, S)

B(t, T )
{[μB(t, S)− μB(t, T )− σB(t, T )(σB(t, S)− σB(t, T ))]dt

+[σB(t, S) − σB(t, T )]dWt},

and therefore

d(
P (t, τ)

P (t, θ)
) =

P (t, τ)

P (t, θ)
{[μP (t, τ)− μP (t, θ)− σP (t, θ)(σP (t, τ)− σP (t, θ))]dt

+[σP (t, τ)− σP (t, θ)]dWt}.

Then

dFP (t, τ, θ) = e
∫ t

0
(r(u,τ)−r(u,θ))dud(

P (t, τ)

P (t, θ)
) +

P (t, τ)

P (t, θ)
e
∫ t

0
(r(u,τ)−r(u,θ))du(r(t, τ)− r(t, θ))dt

= FP {[μP (t, τ) − μP (t, θ) + r(t, τ)− r(t, θ)
−σP (t, θ)(σPP (t, τ)− σPP (t, θ))]dt + [σP (t, τ)− σP (t, θ)]dWt.}

The function ψ(t), satisfying equation (2.18), changes the actual measure P to the

T-forward martingale measure P T by

dP̂

dP
= exp

{∫ t

0
ψ(u)dWu − 1

2

∫ t

0
ψ(u)du

}
,

and W P̂
t = Wt −

∫ t
0 ψ(u)du is a Brownian motion under the T-forward measure P T .

Let S = t + τ , T = t + θ, changing the parameter of the coefficient functions by

equations of (3.26) and (3.27), and by the relations of coefficient functions for the
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different processes in two different parameterisations (Lemma 3.2), we have

ψ(t) = −μB(t, S)− μB(t, T )− σB(t, T )(σB(t, S)− σB(t, T ))

σB(t, S)− σB(t, T )

= − μ̃B(t, τ)− μ̃B(t, θ)− σ̃B(t, θ)(σ̃B(t, τ)− σ̃B(t, θ))

σ̃B(t, τ)− σ̃B(t, θ)

= −μP (t, τ) + r(t, τ)− μP (t, θ)− r(t, θ)− σP (t, θ)(σP (t, τ)− σP (t, θ))

σP (t, τ) − σP (t, θ)
.

Hence

dFP (t, τ, θ) = FP [σP (t, τ)− σP (t, θ)]dW P̂
t ,

and FP (t, τ, θ) is P̂ -martingale.

By the dynamics of the zero-coupon bond price, it is derived from the above proof

that the market is no-arbitrage if the stochastic process ψ(t),

ψ(t) = −μP (t, τ) + r(t, τ)− μP (t, θ)− r(t, θ)− σP (t, θ)(σP (t, τ)− σP (t, θ))

σP (t, τ)− σP (t, θ)
(3.34)

is independent of τ, θ.

This condition can be expressed in terms of the parameters defining the dynam-

ics of the forward rates according to the transformation formula of bond and forward

rate (3.21). That is,

ψ(t) = −μ
∗(t, τ)− r(t, τ)− μ∗(t, θ)− r(t, θ)

σ∗(t, τ)− σ∗(t, θ) +
1

2
(σ∗(t, τ)− σ∗(t, θ)), (3.35)

where μ∗ and σ∗ are the integrals of μr and σr, respectively, as in (3.20).

3.6 Models of Term Structure of Interest Rates under the

θ-parameterisation

The Brace-Gatarek-Musiela Model (BGM) is a model for the London Interbank

Borrowing Rate (LIBOR) forward rates. The BGM model is popular since the LIBOR

forward rates are market observable quantities. For a fixed δ > 0, the forward LIBOR

L(t, θ) is defined to be the simple (forward) interest rate for the investment for period

[θ, θ + δ]. Let P be a risk-neutral measure and let Wt be a Brownian motion under P .

Brace, Gatarek and Musiela (BGM) (1997) model the forward rates r(t, θ) and bond

prices P (t, θ) with the choice of the volatility σ(t, θ) which ensures that the dynamics of

the forward LIBOR L(t, θ), t, θ ≥ 0 follows

dL(t, θ) =

[
∂

∂θ
L(t, θ) + γ(t, θ)L(t, θ)σ∗(t, θ) +

δL2(t, θ)γ2(t, θ)

1 + δL(t, θ)

]
dt+ L(t, θ)γ(t, θ)dW (t),
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where σ∗(t, θ) =
∫ θ
0 σ(t, u)du, γ(t, θ) is a forward LIBOR volatility function, t ≥ 0, θ ≥ 0.

For the relation between the forward rate r(t, θ) and LIBOR, and the choosing of σ(t, θ)

satisfying the above equation, see Brace, Gatarek and Musiela (BGM) (1997). Using

the BGM model, pricing of interest rate derivatives were given by BGM (1997). Goldys

and Musiela (2001) reformulated the interest rate model in terms of the new parameters

(t, θ), as a solution to a stochastic evolution equation in infinite dimensional space. Un-

der the risk-neutral measure P and under the appropriate regularity conditions, the time

evolution of the forward rates r(t, ·) is completely determined by the initial curve r(0, ·)
and the volatility structure. Prices of some contingent claims were obtained by solving

the related partial differential equation in an infinite number of variables.

Volatility Models. As shown by the HJM (1992) model, the evolution of the instan-

taneous forward rates depends crucially on the choice of the volatility process and the

risk premium. They provided a constant and exponentially decaying volatility structure

model given by

σf (t, T ) = σ exp(−λ(T − t)),

which implied

σr(t, θ) = σ̃f (t, θ) = σ exp(−λθ),

hence time independent.

Most empirical studies on interest derivatives have observed a humped shape in the

volatility structure of interest rates. Mercurio and Moraleda (1996) proposed a deter-

ministic and humped volatility model of forward rate, given by

σf (t, T ) = σ(γ(T − t) + 1) exp(−λ(T − t))

that implied

σr(t, θ) = σ̃f (t, θ) = σ(γθ + 1) exp(−λθ),

where σ, γ and λ are non-negative constants. This volatility structure suggests a humped

volatility if γ ≥ λ and a stationary process of the forward rate.

Rama Cont Model. In order to model the stochastic volatility as a process depending

on t and θ, Cont (1998) decomposed the variation of the term structure into the variations
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of the short rate, the long rate and the fluctuation of the curve around its average shape;

that is

r(t, θ) = r(t) + s(t)[Y (θ) +X(t, θ)],

with

Y (θmin) = 0, Y (θmax) = 1,

where Y is a deterministic shape function defining the average profile of the term struc-

ture, and

X(t, θmin) = 0, X(t, θmax) = 0.

X(t, θ) is an adapted process describing random fluctuation of the re-parameterised for-

ward rate around its long term average shape.

A family of models of the term structure dynamics were presented in Cont’s paper, de-

scribing several statistical features observed in empirical studies of these three processes,

r(t), s(t) and X(t, θ).

For example, we can decompose the term structure as

r(t, θ) = r(t, θmin) + [r(t, θmax)− r(t, θmin)]

·
{
E[

r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
] +

r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
− E[

r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
]

}
where

r(t) = r(t, θmin),

s(t) = r(t, θmax)− r(t, θmin),

Y (θ) = E[
r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
],

X(t, θ) =
r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
− E[

r(t, θ)− r(t, θmin)

r(t, θmax)− r(t, θmin)
],

and

E[X(t, θ)] = 0,

where it is assumed that the above expected values are conditional expected values con-

ditional on pre-information before time t. The volatility of X(t, θ) can be estimated by

the sample observed deviations. Based on Australia Treasury bond yields from 1996 to

2001, maturity in 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, and

10 years, this can be estimated using the average (over time t) of the squared deviations

X̂2(t, θ). Figure 3.1 strongly suggests that the volatility has a maximum around one year
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maturity. Other authors have made similar observations (Bouchaud et al. 1997, Cont

2001). Moraleda and Vorst (1997) presented a simple humped volatility model.

Discrete-time Approximation. Dietrich-Campbell and Schwartz (1986), Chan (1992)

and others estimated the parameters of continuous-time model of interest rates approx-

imately by using a discrete-time specification. This approach is under the assumption

that the drift and volatility are constant over each time period interval of time between

observations. For the continuous-time model of forward interest rate (3.16), if the con-

stant drift value and volatility value are computed at the beginning of each interval, the

discrete-time econometric specification is

r(t+ 1, θ)− r(t, θ) = μ(t, θ) + ε(t+ 1, θ) (3.36)

where

E[ε(t+ 1, θ)|Ft] = 0, E[ε2(t+ 1, θ)|Ft] = σ2(t, θ). (3.37)

The discrete-time model of the interest rate increments has the advantage of allowing

the mean and variance of the increments to depend directly on the interest rate in a way

consistent with the continuous-time model based on diffusion processes.

By HJM theory, modelling the volatility is crucial for term structure modelling. Many

researchers have investigated the characteristics of volatility to develop the modelling of

volatility. The Autoregressive conditional heteroskedasticity (ARCH) model developed

by Engle (1982) and other extended ARCH models study the time varying volatility and

capture many observed volatility behaviours in financial time series. Chapter 5 to chapter

7 will develop empirical models for Australian Treasury yields using GARCH technology.

3.7 Summary and Conclusions

This chapter presented the theoretical essentials of the term structure of interest rate

under the two parameters, the time evolution t and length of time to maturity θ, which

is referred to as the θ-parameterisation of term structures, corresponding to the T -

parameterisation of term structures that depend on the time evolution t and time of

maturity T . The volatility process under θ-parameterised term structure is identical to

the volatility process under T -parameterised term structures. Models of θ-parameterised
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term structures were proposed corresponding to the T -parameterised term structure mod-

els. The discounted bond price P (t, θ)/B̃(t, θ) is a martingale under the risk-neutral

measure P ∗, with the numeraire B̃(t, θ), being a risk account cumulating the difference

between the spot rate and forward rate. If B(t, S)/B(t, T ), S, T > 0 is a P T -martingale,

we derived that P (t,τ)/B̃(t,τ)

P (t,θ)/B̃(t,θ)
is a P T martingale. No-arbitrage conditions are given in

terms of the risk-neutral martingale measure P ∗ of P (t, θ)/B̃(t, θ) and the T-forward

martingale P T of P (t,τ)/B̃(t,τ)

P (t,θ)/B̃(t,θ)
.

The BGM model, Cont model, the HJM volatility model and the MM volatility model

were reviewed using θ-parameterisation. Relying on Cont decomposition approach, our

empirical analysis of the Australian Treasury yields confirmed what has been observed

in other markets, that the volatility of term structure is humped around 1 year. The

discrete-time specification of continuous-time diffusion processes model possesses the ad-

vantage that the mean and variance of the increments in discrete-time model depend

in a way consistent with these in continuous-time model. By HJM theory, modelling of

volatility plays a crucial rule for modelling term structure. Chapter 5 to chapter 7 will

develop empirical models for Australian Treasury yields increments using Generalised

Autoregressive conditional heteroskedasticity (GARCH) technology.

In this chapter, the stochastic of the term structure is assumed from one dimensional

Brownian motion. All theories and modelling can be easily extended to the general case

where the Brownian motion is d-dimensional and the volatility process takes values in

Rd.
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The average squared deviation of Australian Treasury Yield Curves

maturity in months
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Figure 3.1: Average of squared deviation, X2(t, θ), with a maximum at θ = 1 year

(maturity in 12 months)
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Chapter 4

Australian Yields and Stylised

Facts

It is a matter of fact that interest rates cannot be traded in the financial market. In-

stead, it is only possible to trade related instruments such as bond, options, and swaps.

Consequently, interest rates must be derived from the market prices of the associated

tradeable products. Methods of estimation vary from institute to institute, and country

to country. James and Webber (2000) estimated the yield curves using data from the

UK government bond (gilt) market and the US money market.

The author is aware of at least two methods of yield curves estimation used in Aus-

tralia. One method based on the bond market data with generic bond yields derived

from market bond prices, is provided by the Reserve Bank of Australia (RBA). A second

method based on the money market data with yield curves constructed from swaps, is

provided by the Commonwealth Bank of Australia (CBA).

This chapter introduces the yields data from RBA and analysis of its stylised facts,

that will be used in Chapter 5-7 for yield curves modelling. The yield curves constructed

from swaps provided by the CBA is introduced in Appendix C and a simple comparison

of RBA yields and CBA yields is given.

Section 1 reviews the definition of yield-to-maturity (or yield). Section 2 introduces

the generic bond yields derived from market bond prices provided by the RBA. Section

3 presents the statistics of yield curves and stylised facts. Section 4 summarises and

concludes the chapter.
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4.1 Reviewing of Yield

As addressed in Section 2.2.1, investors who purchased bonds desire to obtain a certain

yield that is the return provided by the investment. Yield-to-maturity represents the

percentage rate of return if the security is held until its maturity date. The calculation

of yield is based on the coupon rate, the length of time to maturity and the market

price of the security. Yield-to-maturity is defined (Musiela and Rutkowski 1997) in a

continuous-time framework as follows.

Definition 4.1 Suppose a coupon bearing bond pays the positive deterministic cash flows

c1, . . . , cm at dates T1 < · · · < Tm ≤ T ∗. Yield-to-maturity of the coupon bearing bond at

time t, Rc(t), is given implicitly by

Bc(t) =
∑
Tj>t

cje
−Rc(t)(Tj−t), (4.1)

where Bc(t) stands for the price at t of a coupon bond.

Let us recall that the yield-to-maturity R(t, T ) on a zero-coupon bond of maturity T

(or called zero-coupon yield), given implicitly in Chapter 2 by (2.2), has the form

B(t, T ) = e−R(t,T )(T−t), ∀t ∈ [0, T ],

where B(t, T ) stands for the price at time t < T of a zero coupon bond of maturity T .

Note the difference between coupon bond yield and zero-coupon bond yield. Zero-

coupon bond yield is a special case of coupon bond yield if m = 1 and cm = 1 in (4.1).

In this thesis, yield-to-maturity is simply referred to as yield.

4.2 Bond Market: Generic Bond Yields of the Reserve

Bank of Australia (RBA)

It is well known that bond yields can be derived from market prices of bonds using (4.1)

and (2.2).

Unlike the US Treasury bond market, which has several benchmark bond securities,

(such as at two years, three years,. . . , etc), there is only one ten year Treasury bond in

Australia, in addition to the short term Treasury Notes whose maturities are one month,

three months and six months. Because ‘benchmark’ securities do not exist, other generic
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Table 4.1: Treasury Fixed Coupon Bonds

Coupon Maturity Yield

9.50% Aug 2003 4.635

9.00% Sep 2004 4.580

7.50% Jul 2005 4.615

10.00% Feb 2006 4.700

6.75% Nov 2006 4.780

10.00% Oct 2007 4.920

8.75% Aug 2008 5.015

7.50% Sep 2009 5.155

5.75% Jun 2011 5.280

6.50% May 2013 5.375

6.25% Apr 2015 5.470

bond yields maturities less than ten years are calculated by linear interpolation between

the yields of actual government bonds on issue, and by the date of publication of the

generic bond data.

The Reserve Bank of Australia presents a daily statistical release of “Indicative Mid

Rates of Selected Commonwealth Government Securities”, the average of buy or sell rates

reported by bond dealers surveyed by the Bank at 4.30 pm AEST. An example of the

daily release is shown in Table 4.1, which is the Treasury Fixed Coupon Bonds released

on 18 March 2003.

The calculation of generic 5 year bond yields follows the method used by the RBA.

From 18 March 2003, the generic 5 year bond yield is calculated for the date 18 March

2008. This date falls between the maturity dates 15 Oct 2007 (10% Coupon of government

bonds issued) and 15 Aug 08 (8.75% Coupon of government bonds issued). On 18

March 2003, the 4:30 pm closing yields for these two securities were 4.920% and 5.015%

respectively. The number of days between 15 Oct 2007 and 18 Mar 2008 is 155 days,

and 150 days for between 18 Mar 2008 and 15 Aug 2008. Using linear interpolation of

relevant yields (4.920% and 5.015%) and corresponding numbers of days (155 and 150),

gives 4.97%, which is the rate for the generic 5 year bond on 18/3/08.
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In the same way, we can calculate all the generic 1 year, 2 years, ..., and 10 years

bond yields, and this allows us to construct a yield curve of Treasury bonds prevailing

on 18 March 2003.

Using released yields of fixed coupon bonds for each working day, generic yield curves

for maturity 1-10 years are derived by linear interpolation as explained above.

4.3 Statistics of Yield and Yield Increments

The objective of this section is to present the statistical features of Australian Treasury

yield curves obtained by the RBA maturities in 1 month, 3 months, 6 months, 1 year, 2

years, 3 years, 5 years, and 10 years, from 1996-2001. By short-term bill yield we mean

the yield of a bill with maturity less than one year and middle-to-long-term bond yield if

maturity is one year or more.

Autocorrelation function plots of yield series (Figure 4.1) show that each yield series

with a fixed maturity are highly autocorrelated. We will analyse the yield increments

R(t, θ)−R(t− 1, θ) that will be used for empirical statistical modelling in the following

chapters.

Short-term bill yield increments vs. middle-to-long-term bond yield increments. Auto-

correlation function plots of yield increments, Figure 4.2, show that the yield increments

are not autocorrelated. Autocorrelation function plots of squared yield increments, Fig-

ure 4.3, show that the squared middle-to-long-term bond yield increments are autocor-

related, but not for the short-term bill yield increments. The Ljung-Box autocorrelation

test (Ljung and Box 1979) is used to test the null hypothesis that all of the autocorre-

lations are zero. This test is based on the modified Q-statistic which is asymptotically

Chi-squared distributed. A simple Lagrange Multiplier (LM) test for autoregressive con-

ditional heteroskedasticity (ARCH) effects (Engle 1982) was constructed based on the

ARCH regression with the null hypothesis that there are no ARCH effects. Table 4.3

shows the results of Ljung-Box autocorrelation tests (Lag=12) and Lagrange Multiplier

(LM) ARCH effects tests, which confirm that squared middle-to-long-term bond yield

increments are autocorrelated and demonstrate ARCH effects of the middle-to-long-term

bond yield increments, but the squared short-term bill yield increments are not autocor-

related and therefore there are no ARCH effects with the short-term bill yield increments.

Cluster/Persistent. Time series plots (Figure 4.4) of yield increments indicate that
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Table 4.2: Tests of the RBA bill and bond yield increments

Test for Autocorrelation: Ljung-Box Null Hypothesis: no autocorrelation

(yield increments)

1m 3m 6m 1y 2y 3y 5y 10y

Test Stat 37.53 43.54 46.30 19.48 17.14 18.14 17.78 24.21

p.value 0.19 0.06 0.03 0.94 0.97 0.96 0.97 0.80

Test for Autocorrelation: Ljung-Box Null Hypothesis: no autocorrelation

(squared yield increments)

1m 3m 6m 1y 2y 3y 5y 10y

Test Stat 4.47 1.80 3.94 43.28 61.66 77.57 98.52 132.66

p.value 1.00 1.00 1.00 0.07 0.00 0.00 0.00 0.00

Test for ARCH Effects: LM Test Null Hypothesis: no ARCH effects

(yield increments)

1m 3m 6m 1y 2y 3y 5y 10y

Test Stat 4.31 1.75 3.62 37.78 57.89 72.19 90.58 118.16

p.value 1.00 1.00 1.00 0.18 0.00 0.00 0.00 0.00
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large changes were followed by large changes, and small changes were followed small

changes. This means that there are the volatility persistence and clustering. Auto-

correlation function plots (Figure 4.2) and (Figure 4.3)show that there is no autocor-

relation in the yield increments series themselves for all maturities, while there exists

auto-correlation for the squared middle-to-long-term bond yield increments. These indi-

cate that the conditional variance changes over time t for the middle-to-long-term bond

yield increments, exhibiting time varying conditional heteroskedasticity and volatility

clustering.

Normality. Quantile-quantile normal plots of yield increments, Figure 4.5, showed

that the increments of yield are heavy tailed. And the Kolmogorov-Smirnov tests confirm

that the yield increments reject that the yield increments are in normal distribution (p-

values are 0.000).

Correlation. The bond yields are correlated with RBA cash rate. The plot of corre-

lation between yields in a fixed maturity and cash rates, (top plot on Figure 4.6), shows

that the correlation decreases quickly when maturity level increases, and an exponentially

decaying correlation structure for yields and cash rates is plausible. The plots of corre-

lation between yield increment and cash rates increment, (bottom plot on Figure 4.6),

also show that the correlation decreases quickly when the maturity increases.

Exogenous variables. Figure 4.8 shows the RBA yield curves, along with the target

rates set by the RBA and the RBA Board meeting dates at which target rates are

adjusted. In Figure 4.8, the arrows indicate the RBA Board meeting dates and the

crosses indicate the RBA Board meeting dates at which decisions were made to adjust

the target rates. It is obvious that the changes in the yield curves follow the changes

in the target cash rate. From the time series plots (Figure 4.7) of yield increments we

can see that the larger increments occur right after the RBA cash rate was changed. It

appears that the yield increments may have larger variability around the RBA Board

meeting dates. This information is taken into account for modelling the yield increments

and their volatility. The variables that we use are:

R+
t : indicator of raising the target cash rate.

R−t : indicator of lowering the target cash rate.

Mt: indicator of the RBA Board meeting.
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Table 4.3: The Reserve Bank of Australia - Monetary Policy Changes

Cash Rate Target Released Change in cash rate New cash rate target

5 June 2002 +0.25 4.75

8 May 2002 +0.25 4.50

5 Dec 2001 -0.25 4.25

3 Oct 2001 -0.25 4.50

5 Sep 2001 -0.25 4.75

4 Apr 2001 -0.50 5.00

7 Mar 2001 -0.25 5.50

7 Feb 2001 -0.50 5.75

2 Aug 2000 +0.25 6.25

3 May 2000 +0.25 6.00

5 Apr 2000 +0.25 5.75

2 Feb 2000 +0.50 5.50

3 Nov 1999 +0.25 5.00

2 Dec 1998 -0.25 4.75

30 Jul 1997 -0.50 5.00

23 May 1997 -0.50 5.50

11 Dec 1996 -0.50 6.00

6 Nov 1996 -0.50 6.50

31 Jul 1996 -0.50 7.00

14 Dec 1994 +1.00 7.50

24 Oct 1994 +1.00 6.50

Since 1996, the Reserve Bank Board has met on the first Tuesday of each month

with the exception of 1996, when the “August meeting” was held on 30 July. (Prior

to 1997, the “August meetings” were held in late July to enable the Board to sign off

the Bank’s annual report which was traditionally issued two days after the Budget was

brought down in early August; with the Budget moving to May, meetings are now held

on the first Tuesday of August.)

For the indicators of raising or lowering the target cash rate, see Table 4.3, which is

available on the RBA web site. Monetary policy decisions are expressed in terms of a

target cash rate, which is the overnight money market interest rate.
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4.4 Conclusions

This chapter explains the derivation of term structure interest rates using the Australian

Treasury yield curves of the RBA. Statistics and characteristics of the yield curves are

explored based on the RBA yield maturities in 1 month, 3 months, 6 months, 1 year, 2

years, 3 years, 5 years, and 10 years, from 1996-2001.

The analysis shows that the dynamic process of the short-term bill yield increments

are not consistent with middle-to-long-term bond yield increments for RBA yield incre-

ments. For the short-term bill yield, both the Ljung-Box test and autocorrelation function

plots show that there is no autocorrelation left in bill yield increments and squared bill

yield increments. The simple Lagrange Multiplier (LM) tests confirm that there are no

ARCH effects in the short-term bill yield increments. But, for the middle-to-long-term

bond yield, both the Ljung-Box tests and autocorrelation function plots show that there

is no autocorrelation left in bond yield increments, while squared bond yield increments

are autocorrelated. The simple Lagrange Multiplier (LM) tests confirm that there are

ARCH effects in the middle-to-long-term bond yield increments.

The RBA middle-to-long term bond yield increments will used for intensive statistical

analysis and modelling in later chapters.
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Figure 4.1: ACF of the RBA bill and bond yields
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Figure 4.2: ACF of yield increments of the RBA bill and bond
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QQ normal plot of yield increments maturity in 6 months
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QQ normal plot of yield increments maturity in 1 year
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QQ normal plot of yield increments maturity in 10 years

Figure 4.5: QQ normal plots of the RBA yield increments
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Figure 4.6: Correlation between RBA target rate and Treasury bill/bond yields
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Figure 4.7: RBA yield increments, vertical lines indicate RBA decision making
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Chapter 5

Univariate GARCH Modelling of

Yield Increments

5.1 Introduction

Chapter 4 reviewed the statistical properties of the Australian yield rates. In particular

the volatility properties observed are similar to those observed in other instruments of

financial markets such as shares.

Engle (1982) introduced the autoregressive conditional heteroskedasticity (ARCH)

model as a way to model the volatility properties commonly encountered in financial time

series. Subsequently, numerous extensions of empirical models for stochastic volatility

have been applied to financial data series. These include the Generalised autoregres-

sive conditional heteroskedasticity (GARCH) model (Bollerslev 1986), the exponential

GARCH (EGARCH) model (Nelson 1991), the integrated GARCH (IGARCH) model

(Hamilton 1994), and the fractionally integrated GARCH (FIGARCH) model (Baillie,

Bollerslev and Mikkelsen 1996). These models have emphasised the role of persistence

of the shocks in the conditional variance (or, volatility) process. The objective of this

chapter is to develop GARCH type models for the Australian Treasury bond yield incre-

ments at each maturity level. The yield increments yt with a fixed maturity θ are the

difference between the successive daily yields, i.e. yt = R(t, θ)−R(t−1, θ), where R(t, θ)

is yield of maturity θ (see Section 4.1).

It is worth emphasising that the work in this chapter (and later Chapter 6-7) develops

a discrete-time model for the yield increments R(t, θ) − R(t − 1, θ). This approach has
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strong theoretical and empirical justification. On one hand the analysis of our data

set (see Chapter 4) shows that, unlike the yields R(t, θ), the increments yt form an

approximately stationary sequence (mean stationary, uncorrelated process) thus making

statistical modelling easier. On the other hand it provides a convenient starting point for

further work on modelling of yield curves in continuous time that describes behaviour of

an infinitesimal increment dR(t, θ) in time dt by multidimensional stochastic differential

equations (or stochastic PDEs), as discussed in Section 3.6 under the topic of discrete-

time approximation of term structure of interest rates in equations (3.36) and (3.37).

The discrete-time specification of a continuous-time diffusion process model possesses

the advantage that the mean and variance of the increments in the discrete-time model

depend in a way consistent with those in the continuous-time model. Further the yield

R(t, θ) can be derived from the appropriate GARCH model of yield increments R(t, θ)−
R(t− 1, θ) accordingly (See Section 5.3).

In this chapter, the statistical analysis and modelling of interest rates (or yields)

are based on yield increments. It is not surprising that the term structure of interest

rates are highly related to the economic climate, and are likely to demonstrate volatility

properties. The Reserve Bank of Australia target rate is the interest rate at which

overnight funds are borrowed and lent in the money market. Because RBA decisions to

change the target cash rates are likely to be crucial in modelling the volatility in bond

yield series, we incorporate variables to indicate the RBA Board meeting dates and the

RBA decisions to raise or lower target rates for yield increments and their volatility in

our models. Separate variables to indicate the raising or lowering of target rates allow us

to assess potential asymmetry of positive and negative innovations that have been found

by other researchers (Engle and Patton 2001, Kearns and Pagan 1993).

Chapter 4 showed that there are ARCH effects in the processes of middle-to-long-

term bond yield increments, and that there are no ARCH effects in the processes of

short-term bill yield increments. In this chapter, we focus on middle-to-long-term bond

yields and model the dynamics of yield increment series using GARCH technology. It has

been widely noted in the literature that financial data series are not, in general, normally

distributed. Instead, the t-distribution has often been suggested. Kolmogorov - Smirnov

tests confirm the non-normality of yield increments of RBA yield from Chapter 4. This

chapter develops GARCH(1,1) models, using t-distributions and exogenous variables to

indicate the changes in the RBA target rates, for yield increment series maturing in 1,
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2, 3, 5, or 10 years. These models can capture many important empirical features of the

interest rate increments series we have noted in Chapter 4.

A major finding of this analysis is that the parameters of the GARCH(1,1) models

used to specify the mean and variance equations and the degrees of freedom of the t-

distribution, are closely related to the length of time to maturity θ. We show that the

degrees of freedom of the fitted t-distribution is approximately linearly related to the

length of time to maturity, while other parameters depend approximately linearly on the

logarithm of maturity. The trends of these increasing or decreasing patterns appear to

be plausible and consistent with the financial economy.

The observed functional dependence of the GARCH parameters on time to maturity

suggests that the collection of GARCH models of yield increment series for a set of fixed

maturities can be linked in a GARCH model having parameters specified as a function

of time to maturity specified with new parameters ϕ. This model, which is referred to

as GARCH model of term structure of interest rate (TS-GARCH for short), can be used

to characterise the bond yield increment series at any middle-to-long-term maturity. To

estimate the new parameters ϕ in the TS-GARCH model, we need to use the whole

available yield curves data set that is indexed by time t and a discrete set of maturities

θj . A multivariate GARCH model is built up in Chapter 6 for the Australian Treasury

yield increments. The functional dependence of the multivariate GARCH parameters on

time to maturity are observed to be consistent with those from univariate GARCH model

from this chapter. The extension of the concept of TS-GARCH and estimation of it will

be discussed in Chapter 7 using the results from Chapter 6.

Section 2 reviews general concepts of GARCH modelling. Section 3 shows the results

of GARCH(1,1) models based on Australian Treasury yield increments over the six year

period 1996-2001 with maturities equal to 1, 2, 3, 5, and 10 years. Section 4 explores the

functional dependence of the term structured GARCH parameters. Section 5 proposes

a GARCH model of term structure of interest rates (TS-GARCH). Finally, Section 6

presents a summary of the results and discussion the future work.

5.2 GARCH Modelling

Engle and Patton (2001) suggested that a good volatility model might be able to forecast

volatility as the central requirement in almost all financial applications. They outline the
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major stylised facts about volatility that should be incorporated in the model; they are:

• Volatility persistence;

• Volatility mean reversion;

• Asymmetry in which the signs of previous innovations affect volatility;

• The possibility of exogenous or pre-determined variables influencing volatility;

• Excess Kurtosis in the distribution of yield increments relative to the Normal dis-

tribution (heavy tail).

We now explain each of these concepts in detail.

Volatility clustering/persistence. One feature of volatility is volatility persistence,

which means the clustering of large changes and small changes of financial time series.

Large changes tend to be followed by large changes, and small changes tend to be fol-

lowed by small changes. This property implies that the volatility comes and goes, and a

volatility shock today will influence the expectation of volatility many periods into the

future.

Volatility Mean Reversion. Financial markets may experience excessive volatility from

time to time. However, it appears that long run forecasts of volatility will eventually

converge to a certain normal level of volatility. Volatility mean reversion implies that

the volatility will settle down in the long run forecast that is not affected by the current

information. (See Engle and Patton 2000).

Market Asymmetry. An asymmetric effect of market activity upon volatility is that

the negative shocks lead to larger volatility than a numerically equivalent positive shocks.

Black (1976) found changes in stock return volatility to be negatively correlated, implying

that a decrease in return is likely to be accompanied by an increase in volatility and vice

versa. Other researchers have confirmed these results. Kearns and Pagan (1993) studied

the Australian market, and found that there is weaker evidence for the asymmetric effect

in Australian data than in the US data.

Exogenous or pre-determined variables. It is common knowledge that the financial

asset prices and their volatility are highly related to the economic climate. The variables

containing relevant information affecting the volatility of the financial series are referred

to as exogenous variables.
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Excess Kurtosis of yield returns (heavy tail). It is well known that the distributions

of high frequency financial time series usually have excess kurtosis in the conditional dis-

tribution of asset increments than those of the normal distribution. Large changes occur

more frequently than a normal distribution would imply. Typically kurtosis estimates

larger than 3 indicate non-normality. The volatility model used must be incorporated in

capable of allowing for fat tails in the conditional density of asset increments.

Autoregressive conditional heteroskedasticity (ARCH) models developed by Engle

(1982) and other extended ARCH models are able to model time varying volatility and

capture many observed volatility behaviours in financial time series.

Generalised autoregressive conditional heteroskedasticity GARCH (Bollerslev 1986)

models extended the ARCH class of models to allow for both a longer memory and a

more flexible lag structure. Let εt denote a real-valued discrete-time stochastic process,

and Ft the set of all available information through time t. A GARCH(p, q) process is

then given by

εt|Ft−1 ∼ N(0, ht), (5.1)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i, (5.2)

where

p ≥ 0, q > 0,

α0 > 0, αi ≥ 0, i = 1, · · · , q,

βi ≥ 0, i = 1, · · · , p.

Theorem 5.1 The GARCH(p, q) process defined by (5.1) and (5.2) is wide-sense sta-

tionary with E(εt) = 0, var(εt) = α0(1 −
∑q

i=1 αi −
∑p

i=1 βi)
−1 and cov(εt, εs) = 0 for

t �= s if and only if
∑q

i=1 αi +
∑p

i=1 βi < 1.

Proof. See Bollereslev (1986).

As noted above, financial data series often exhibit non-normal behaviour. For our

data series, we have assumed that the distribution of εt conditional on the past follows a

t-distribution with the degrees of freedom denoted by ν and the conditional variance by

ht. The conditional density function of the t-distribution with degrees of freedom ν is

fεt|Ft−1
(x|ht) =

Γ(ν+1
2 )

Γ(ν
2 )

√
π(ν − 2)ht

(1 +
x2

(ν − 2)ht
)−(ν+1)/2. (5.3)
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It should be noted that theorem 5.1 also holds if εt are independently and identically

distributed random variables with finite variance and a general distribution. This includes

the t-distribution with ν > 2.

The GARCH(p, q) regression model with the exogenous variables in both mean and

variance equations is

yt = a+ b
′

ut + εt, εt|Ft−1∼(0, ht),

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i + c
′

vt,

where yt is the dependent variable, ut and vt are vectors of explanatory variables, b and

c are unknown vector-valued parameters.

Diagnostic tests to examine the adequacy of the GARCH model explaining the volatil-

ity are based on the standardised residuals, εt/
√
ht, where ht is the estimated conditional

variance. To assess the correct distribution of εt, quantile-quantile plots of the standard-

ised residuals against an appropriate reference distribution (such as t-distribution) can

be used. The Ljung-Box test is used to test that there is no autocorrelation left in the

standardised residuals and squared standardised residuals series. The simple Lagrange

Multiplier (LM) test is used to check that there are no ARCH effects left with the stan-

dardised residuals of the model. The S+FinMetrics module is used to fit the models and

to conduct these tests.

5.3 A GARCH(1,1)-t Model of Yield Increments

In Chapter 4, we found that the dynamics of the short-term bill yield increments and the

middle-to-long-term bond yield increments behave differently. There are autoregressive

conditional heteroskedasticity (ARCH) effects with the middle-to-long-term bond yield

increment and no ARCH effects with short-term bill yield increments. In this section,

we model the increments of middle-to-long-term Australian Treasury bond yields using

GARCH modelling applied to the data set for the period 1996-2001 from the Reserve

Bank of Australia.

Usually a GARCH(1,1) model is adequate to obtain a good model fit for finan-

cial time series. However, Vilasuso (2002), for example, obtained a more accurate

forecast of the volatility of the exchange rate using a Fractionally Integrated GARCH

(FIGARCH) model (Baillie, Bollerslev, and Mikkelsen 1996) comparing with GARCH
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or Integrated GARCH (IGARCH) models. We initially compared the fit of simple

GARCH(1,1), FIGARCH(1,1), and GARCH(1,1)-t (assuming standardised residuals in t-

distribution) models. Then we add the exogenous innovation variables in GARCH(1,1),

FIGARCH(1,1), and GARCH(1,1)-t models. At all maturities of 1, 2, 3, 5, and 10

years, we found that the AIC, BIC and log-likelihood of FIGARCH(1,1) and QQ-plots of

residuals from FIGARCH were very close to those of GARCH(1,1). Among these three

models, the GARCH(1,1)-t gives the smallest AIC and BIC, the biggest likelihood, and

QQ-plots shows that the t-distribution is appropriate with the residuals. Because of this,

we concentrate on GARCH(1,1)-t for the remainder of this chapter.

The GARCH(1,1)-t model was extended to include exogenous innovation variables

incorporating variables to capture the decision making activities of the RBA regarding

the target cash rate. The equations for yield increments and for volatility are as follows:

yt = β1 + β2R
−
t + β3R

+
t + εt, εt|Ft−1∼tβ0

(0, ht),

ht = β4 + β5ε
2
t−1 + β6ht−1 + β7R

−
t + β8R

+
t + β9Mt, (5.4)

where R−t is an indicator variable taking the value 1 if RBA lowered its target rate and

value 0 otherwise, R+
t is similar but takes the value 1 when the RBA raised its target

rate, and, Mt is an indicator taking the value 1 if time t was a RBA Board meeting date

and 0 if it was not. Note that we have used separate variables, R−t and R+
t , to allow for

possible asymmetric effects on raising/lowering the target rate.

Fitting of GARCH processes is known to be computationally challenging (See Boller-

slev, 1986). S+FinMetrics was used to fit the GARCH(1,1)-t model (5.4). Estimates

of this GARCH model are shown in Table 5.1. Exogenous variables are added in the

models. The impact of R− and R+ on the mean yield increments are both statistically

significant, except for the impact on R+ for yields with a 10 year maturity. A likelihood

ratio test (H0: B2 = B3 v Ha: B2 �= B3) indicates that the coefficients of R− and R+

are statistically significantly different (p-values are 0.000, 0.001, 0.002, 0.002 and 0.024

for yield return maturities in 1, 2, 3, 5 and 10 years respectively), while a lowering of the

target rate having greater impact on the mean. The coefficients of R+ in the variance

equations have nearly zero negative values and are insignificant except for yields at 5

year maturity. The coefficients of R− in the variance equation are significantly positive

for all maturities. The likelihood ratio test indicates that the coefficients of R− and R+

are statistically significantly different (p-values are 0.049, 0.033, 0.026, 0.011 and 0.162
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Table 5.1: Output of the initial univariate GARCH(1,1)-t models

maturity 1 year 2 years 3 years 5 years 10 years

coefficient

t-distribution β0: df 4.92 5.52 5.51 6.34 8.08

Mean β1: Constant -0.0018 -0.0021 -0.0022 -0.0023 -0.0025

β2: R
−
t -0.0983 -0.0926 -0.0926 -0.0840 -0.0742

β3: R
+
t 0.0709 0.0622 0.0516 0.0379 0.0073

Variance β4: Constant 0.0008 0.0008 0.0008 0.0007 0.0005

β5: ARCH(1) 0.0818 0.0604 0.0593 0.0540 0.0527

β6: GARCH(1) 0.6649 0.7597 0.7772 0.8049 0.8382

β7: R
−
t 0.0100 0.0082 0.0076 0.0050 0.0024

β8: R
+
t 0.0016 -0.0007 -0.0014 -0.0028 -0.0013

β9: Mt 0.0007 0.0013 0.0014 0.0010 0.0009

p-value

mean β1: Constant 0.075 0.100 0.098 0.093 0.085

β2: R
−
t 0.000 0.000 0.000 0.000 0.001

β3: R
+
t 0.001 0.003 0.017 0.039 0.432

variance β4: Constant 0.000 0.004 0.007 0.010 0.019

β5: ARCH(1) 0.001 0.002 0.002 0.003 0.003

β6: GARCH(1) 0.000 0.000 0.000 0.000 0.000

β7: R
−
t 0.004 0.012 0.017 0.033 0.113

β8: R
+
t 0.289 0.381 0.254 0.024 0.249

β9: Mt 0.152 0.072 0.069 0.127 0.157
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for yield return maturities in 1, 2, 3, 5 and 10 years respectively), while a lowering of the

target rate having greater impact on the variance equation. It implies that a lowering of

the target rate leads to significant increasing volatility and a raising of the target rate

does not change volatility. Thus the response of volatility to RBA changes in target rates

are asymmetric. The RBA meeting date variable Mt in the variance equations is weakly

significant for maturities of 2 and 3 years, but insignificant for maturities of 1, 5, and

10 years. Also, all coefficients of the RBA Board meeting data variable are very close to

zero.

Because the indicator variables of raising cash rate R+
t and RBA Board meeting Mt

are mostly not significant and very small values of these estimated coefficients, these two

variables were excluded from the variance equation in our GARCH model. The final

resulting model is

yt = β1 + β2R
−
t + β3R

+
t + εt, εt|Ft−1∼tβ0

(0, ht),

ht = β4 + β5ε
2
t−1 + β6ht−1 + β7R

−
t . (5.5)

The estimated parameters of model (5.5) are shown in Table 5.2. Estimators of the

GARCH(1) coefficients β6 for 1-year to 10-years bond yield increments are in the range of

0.60 to 0.84 implying volatility persistence (See Chapter 7 of Zivot and Wang 2002). The

sums of ARCH(1) and GARCH(1) are less than 1 for all maturities, implying that the

residual processes εt are wide-sense stationary by Theorem 5.1 and show mean reversion

in volatility. The degrees of freedom for the t-distribution range from 5 to 8, implying

different distributions for each individual yield series.

Overall, the final GARCH(1,1)-t model captures the main characteristics of the

volatility of yield increments, namely heavy tails, asymmetry with negative or positive

innovations, mean reversion in volatility, persistent volatility and wide sense stationary

residuals.

Quantile-quantile (QQ-t plots, Figure 5.1) of the standardised residuals from the final

GARCH(1,1)-t models show graphically that the t-distributions provide a good model for

the distribution of the yield increment residuals. The QQ − t plots in Figure 5.1 shows

that the majority of standardised residuals fall on the straight line of QQ-t with a few out-

liers. Compared to the QQ-normal plots in Figure 5.2, the use of the t-distribution with

estimated degree of freedom shows a marked improvement. Even with this improvement,

Kolmogorov-Smirnov Tests reject the t-distributions of the residuals (p-values< 0.001),
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Table 5.2: Output of the final univariate GARCH(1,1)-t models

maturity 1 year 2 years 3 years 5 years 10 years

coefficient

t-distribution β0: df 5.0 5.4 5.4 6.3 7.9

mean β1: Constant -0.0017 -0.0021 -0.0022 -0.0022 -0.0024

β2: R
−
t -0.1001 -0.0910 -0.0907 -0.0836 -0.0736

β3: R
+
t 0.0728 0.0625 0.0512 0.0326 0.0123

variance β4: Constant 0.0010 0.0009 0.0008 0.0006 0.0006

β5: ARCH(1) 0.0931 0.0615 0.0608 0.0529 0.0536

β6: GARCH(1) 0.6036 0.7537 0.7760 0.8207 0.8400

β7: R
−
t 0.0119 0.0088 0.0081 0.0051 0.0026

ARCH(1)+GARCH(1) 0.6967 0.8152 0.8368 0.8736 0.8937

p-value

mean β1: Constant 0.087 0.099 0.100 0.096 0.087

β2: R
−
t 0.000 0.000 0.000 0.000 0.001

β3: R
+
t 0.000 0.003 0.024 0.160 0.402

variance β4: Constant 0.000 0.003 0.005 0.010 0.014

β5: ARCH(1) 0.001 0.002 0.002 0.003 0.002

β6: GARCH(1) 0.000 0.000 0.000 0.000 0.000

β7: R
−
t 0.005 0.008 0.011 0.021 0.083

69



Table 5.3: Tests of the RBA bill and bond yield increments

Ljung-Box test for Autocorrelation

Null Hypothesis: no autocorrelation of yield increments

1y 2y 3y 5y 10y

Test Stat 4.231 3.855 3.981 3.454 7.608

p.value 0.9789 0.9859 0.9838 0.9914 0.815

Ljung-Box test for Autocorrelation

Null Hypothesis: no autocorrelation of squared yield increments

1y 2y 3y 5y 10y

Test Stat 9.21 5.598 4.819 5.618 6.851

p.value 0.6849 0.935 0.9637 0.9341 0.8673

Lagrange Multiplier test for ARCH Effects

Null Hypothesis: no ARCH effects of yield increments

1y 2y 3y 5y 10y

Test Stat 9.108 5.776 5.026 5.799 6.613

p.value 0.6937 0.927 0.957 0.9259 0.8821

suggesting the t-distributions may not be sufficiently heavy tailed for these series. Future

work could be directed at improving the model by using a different distribution than the

t-distribution.

The ACF plots (Figure 5.3) show that the standardised residuals and squared stan-

dardised residuals are uncorrelated. The Ljung-Box tests (Brockwell and Davis 2002)

confirm the standardised residuals and squared standardised residuals are uncorrelated.

The Lagrange Multiplier tests (Lee, J. H. H. 1991) revealed no more ARCH effects in

the standardised residuals. See Table 5.3. All of these diagnostics support the conclu-

sion that the GARCH(1,1) model specified by model (5.5) is adequate for the 1-year to

10-years bond yield increments.

As we have emphasised in Section 1, the work in this chapter develops a discrete-time
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model for the yield increments yt = R(t, θ) − R(t− 1, θ) at each maturity. The process

of the yield R(t, θ) can be derived from the GARCH model of yield increments yt by

model (5.5) . That is

R(t, θ) = β1 + β2R
−
t + β3R

+
t +R(t− 1, θ) + εt, (5.6)

or

R(t, θ) = R(0, θ) + β1t+ β2

t∑
j=0

R−j + β3

t∑
j=0

R+
j +

t∑
j=0

εt, (5.7)

where εj |Fj−1∼tβ0
(0, hj) and hj = β4 + β5ε

2
j−1 + β6hj−1 + β7R

−
j .

5.4 Term Structured GARCH Parameters

In the last section, we presented a specific GARCH(1,1)-t model and showed that it is

adequate for the bond yield increments with maturity of 1, 2, 3, 5, and 10 years. In

this section, we will explore the functional patterns of the estimated parameters from the

GARCH(1,1)-t model as functions of the maturity levels. The estimates of the parameters

are given in Table 5.2.

Figure 5.4 shows plots of the estimated coefficients of GARCH(1,1) model (5.5) versus

time to maturity. It can be observed that the GARCH parameters are functionally

dependent on the length of time to maturity. Using least squares estimation, linear

functions of log time to maturity are obtained for the individual coefficients. In Figure

5.4, solid diamonds represent the estimated coefficients of the individual GARCH(1,1)

model (5.5), while the straight line in Panel (β0) represents the optimal fitting of the

linear regression of degree of freedom of t-distribution on length of time to maturity,

and other lines in Panel (β1)-(β7) represent linear regression of other parameters on the

logarithm of length of time to maturity. Regarding Figure 5.4, note that:

Panel (β0) shows that the degrees of freedom of the t-distribution linearly increases

with the length of time to maturity, which implies that the residual distribution is less

heavy tailed for longer term bond yield increments.

Panel (β1) shows that the absolute value of mean yield increments increases as the

maturity increases. However, the mean level of the yield increments, ignoring any changes

due to cash rates, have estimated values all close to zero (around -0.002, see Table 5.2 ).

These β1 are not significant from zero at the 5% level, implying that the mean levels of

yield increment are nearly zero if there are no RBA cash rates innovations.

71



Panel (β2) shows the change in mean yield increments associated with RBA decision

to lower the cash rate. Absolute values decrease linearly in mean along the logarithm

of length of time to maturity, which implies that the longer term bond average yield

increments are less impacted by the RBA’s decisions to lower target cash rates.

Panel (β3) shows the change in mean yield increments associated with a RBA decision

to raise the cash rate. Changes decrease linearly as the logarithm of length of time to

maturity increases. This implies that the longer term bond average yield increments are

less impacted by the RBA’s decisions to raise cash rates.

Panel (β4) shows that the mean levels of the conditional volatility of yield increments

decreases linearly with increasing values of the logarithm of length of time to maturity,

which implies that the longer term bond yields have smaller average volatility.

Panel (β5) suggests that the coefficients of the ARCH(1) (component ε2t−1) decrease

linearly with the logarithm of length of time to maturity, which implies that the longer

term bond yields are less affected by the previous squared residual ε2t−1. This also suggests

that as maturity increases, the more rapid is reversion to the mean. Note that the fit of

the linear log maturity line does not give as good a representation of ARCH(1) coefficients

as it does for other coefficients.

Panel (β6) gives the coefficients of the GARCH(1) (component ht−1). These increase

linearly with the logarithm of length of time to maturity, which imply that the longer

term bond yield increments have greater persistent volatility.

Panel (β7) shows that the change in volatility associated with the RBA’s decisions

to lower the cash rate decreases linearly with the logarithm of length of time to matu-

rity. This implies that the volatility of longer maturity bond yields is less impacted by

decreases in the cash rate.

In summary, the trend of the pattern of GARCH(1,1) coefficients shows that longer

maturity yield increment series are less heavy tailed, are more efficient in mean reversion

volatility, have greater persistent volatility, and are less impacted by changes in the cash

rates in both mean and volatility. Generally speaking, all of these observations appear

to be plausible.

Overall, the representation of model parameters (shown in Figure 5.4) by a linear

function in maturity (for the degrees of freedom) or by a linear function in the logarithm

of maturity (for all other parameters) is reasonable. Exceptions to this appears to be

for the ARCH(1) and GARCH(1) parameters for yields in 1 year maturity. However,
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the sum of these two parameters conforms more closely to the linear log relationship.

In view of these observations we will proceed on the assumption that the linear in log

representation provides a parsimonious depiction of the yield increments for all maturity.

From the individual estimated GARCH(1,1)-t coefficient, the estimates of the func-

tional patterns by least squares estimation is

βi0 = 0.3247θi + 4.6603,

βi1 = −0.0003 ln(θi)− 0.0018,

βi2 = 0.0111 ln(θi)− 0.1004,

βi3 = −0.0272 ln(θi) + 0.0773,

βi4 = −0.0002 ln(θi) + 0.001,

βi5 = −0.016 ln(θi) + 0.0826,

βi6 = 0.0983 ln(θi) + 0.6467,

βi7 = −0.0041 ln(θi) + 0.0119, (5.8)

where i represent i-th yield increment series maturity in θi months. These are the equa-

tions for the fitted lines on Figure 5.4. Also given in Figure 5.4 are the R2 measures.

These are typically indicative of high levels of fit (R2 > 0.9) except for ARCH β5 coeffi-

cients (R2 = 0.72) and GARCH β6 coefficients (R2 = 0.85).

5.5 A Proposed GARCH Model of Term Structure of In-

terest Rates

In the last section we described the patterns of the estimated parameters from the

GARCH(1,1)-t model as functions of time to maturity. In this section, we will propose

a single GARCH model with functional parameters depending on the maturity level in

terms of new parameters that can be applied to all yield increment series in any possible

middle-to-long-term maturity.

In Section 3, we found a GARCH(1,1)-t model described by model (5.5), which ade-

quately captures many important aspects of yield increments. The phenomena of func-

tional dependence of term structured GARCH parameters, from Section 4, suggests that

the collection of GARCH models for a set of fixed maturities can be linked to a single
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GARCH model with functional parameters depending on time to maturity specified with

new parameters ϕ. That is

yit = βi1 + βi2R
−
t + βi3R

+
t + εit,

εit|Ft−1∼tβi0
(0, hit)

hit = βi4 + βi5ε
2
i,t−1 + βi6hi,t−1 + βi7R

−
t ,

βi0 = ϕ10 + ϕ20θi = (1, θi)ϕ0,

βik = ϕ1k + ϕ2k ln(θi) = (1, ln(θi))ϕk, k = 1, . . . , 7,

(5.9)

where i represents the i-th yield increment series maturity in θi month, ϕ0 = (ϕ10, ϕ20)
′,

and ϕk = (ϕ1k, ϕ2k)′, k = 1, 2, . . . , 7, are new parameters. We refer to this model as

a GARCH model of term structure of interest rate (TS-GARCH) that will be further

developed in Chapter 7 .

A major advantage of the TS-GARCH model is that it can be applied to the complete

collection of all yield increment series for any possible maturity level, and this should be

of considerable practical utility. In particular, we can use data available at a subset of

maturities to fit the TS-GARCH model and use it to model interest rate increments at

any possible maturity.

5.6 Summary and Conclusions

We have shown that, for Australian Treasury bond yields at each fixed maturity, a

GARCH(1,1) model with exogenous variables reflecting the RBA’s decisions on cash

rate changes and residuals following a t-distribution, captures many important aspects

of the yield increments. Model diagnostics showed that GARCH(1,1)-t is adequate for

each of the middle-to-long-term bond yield increments series. No ARCH effects remain

in the standardised residuals. That is, there remains no autocorrelation in the stan-

dardised residuals or their squares. Moreover, it was shown that the parameters of the

GARCH(1,1)-t models are functionally dependent on the length of time to maturity.

The general shapes of these functional patterns observed appear to be plausible with

financial economics, but a theoretical explanation for the linear log relationship requires

development. A GARCH model of term structure of interest rates is proposed, referred

to as TS-GARCH, which is a GARCH model with parameters expressed as functions of

maturity in terms of new parameters.

74



Section 4 explored the patterns of the functional parameters of GARCH(1,1)-t model (5.5)

based on individual yield increment series of Australian Treasury bonds and maturity in

1, 2, 3, 5, or 10 years, and an estimate of TS-GARCH (5.9) was given by (5.8). This

estimation used a two step approach based on univariate GARCH models, which firstly

estimated the individual univariate GARCH coefficients by maximum log-likelihood es-

timation (MLE) and then estimated these new parameters describing the patterns of

GARCH coefficients by least squares estimation. However, by this approach, the possi-

ble correlation between yield increments at different maturities were ignored.

To estimate the new parameters ϕ in the TS-GARCH model ( 5.9), it is first necessary

to develop a multivariate GARCH model which uses the whole yield curve data set

indexed by time t and available maturities θ. This is done in Chapter 6. A Generalised

TS-GARCH model is proposed in Chapter 7 that expands the ideas of this chapter to the

conditional covariance GARCH processes. The estimation of the TS-GARCH parameters

is based on the estimation from a multivariate GARCH model developed in Chapter 6.
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Figure 5.1: QQ plots of GARCH(1,1) in t-distributions
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Figure 5.2: QQ plots of GARCH(1,1) in Normal distributions
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Figure 5.3: ACF of standardised residuals and squared standardised residuals
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Chapter 6

Multivariate GARCH Modelling

of Yield Increments

Chapter 5 showed that the yield increment series for middle-to-long-term bonds are

conditionally heteroskedastic, and that univariate GARCH(1,1)-t models could capture

most of the empirical properties of these series at each maturity level. Moreover, the

estimated coefficients of the GARCH(1,1)-t models, for each individual series at a fixed

maturity level, conform to simple functional patterns depending on the maturity levels.

In particular, the degrees of freedom for the t-distributions varied with maturity level.

However, the modelling in Chapter 5 ignores possible correlation between the squared

residuals of the series for different maturities. It is very likely that, when treated as a

multiple time series, the collection of squared yield increments at all observed maturities

will be cross correlated.

In this chapter, we extend the univariate GARCH(1,1)-t models of Chapter 5 to a

multivariate GARCH(1,1)-t model. The current literature and statistical software for

fitting the multivariate GARCH models cover the multivariate Normal distribution and

the multivariate t-distribution with the same degrees of freedom for each component

series. However, as Chapter 5 has demonstrated, this assumption is not appropriate

for analysis of the term structure of Australian Treasury yield increments. The yield

increments at different maturity levels require use of the t-distribution with different

degrees of freedom. In this chapter, we will develop a multivariate GARCH(1,1) model

for the term structure of yield increments in which the marginals have t-distributions

with different degrees of freedom. This extension of existing GARCH models is based
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on the concepts of copulas of elliptically contoured distributions and the meta-elliptical

t-distribution which have recently been developed for applications to financial studies of

complex multivariate system, see Kotz, S. and Seeger, J. P. (1991) and Fang, Fang and

Kotz (2002). We modify the definition of the multivariate asymmetric t-distribution for

our GARCH modelling purpose. The Matrix-Diagonal GARCH(1,1) model with multi-

variate asymmetric t-distribution allows for different degrees of freedom in each margin

of t-distribution. We refer to this new model as the Matrix-Diagonal GARCH(1,1)-AMt

model. The effectiveness of the Matrix-Diagonal GARCH(1,1)-AMt is demonstrated by

using standard statistical diagnostics on the standardised residuals. The stylised facts

about volatility such as volatility mean reversion and volatility persistence are discussed.

Section 1 presents the definition of multivariate asymmetric t-distribution. Section 2

presents the Matrix-Diagonal GARCH(1,1)-AMt model of yield increments for middle-

to-long-term Australian bonds. Section 3 provides the estimation. Section 4 provides the

estimated results and diagnostics of the model. Section 5 presents a summary.

6.1 The Multivariate Asymmetric t-distribution

Fang, Fang and Kotz (2002) presented the standard multivariate asymmetric t-distribution

as an application of meta-elliptical distribution, with zero mean and a dispersion matrix

specified as a correlation matrix without loss of generality. The fact that the transfor-

mation functions are the distribution functions of Student’s t-distribution implies that

both the original random variables and the transformed random variables have the same

unit dispersions. This section will present the definition of the multivariate asymmetric

t-distribution that generalises the multivariate asymmetric t-distribution given by Fang,

Fang and Kotz (2002). For our purpose of modelling the volatility of yield curves, we de-

fine the multivariate asymmetric t-distribution with general mean and general covariance

matrix, and moreover, the transformations ensure that the constructed random variables

have the same variances as original random variables .

The multivariate t-distribution

The d-dimensional random vector X = (X1, . . . ,Xd)
′ is said to have a multivariate t-

distribution with m degree of freedom, mean vector μ and positive-definite dispersion S,
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denoted X ∼ td(m,μ, S), if its density is given by

f(x) =
Γ(m+d

2 )

Γ(m
2 )

√
(πm)d|S|(1 +

(x− μ)′S−1(x− μ)

m
)−

m+d
2 , (6.1)

where m > 2. Note that in this standard parameterisation cov(X) = m
m−2S.

This definition reduces to univariate t-distribution when d = 1. The univariate ran-

dom variable X with a t-distribution with m degree of freedom, mean value μ and disper-

sion value s is denoted X ∼ tm(μ, s) where var(X) = m
m−2s. Specifically, X ∼ tm(0, 1) is

a Student’s t-distribution with degree of freedom m.

The multivariate asymmetric t-distribution

Based on the definition of a meta-elliptical distribution (see Definition 1.2 in Fang, Fang

and Kotz 2002), we define the multivariate asymmetric t-distribution with general mean

vector and covariance matrix as follows, where the transformations ensure that each com-

ponent of the constructed random vector Z has the same variance as that of the original

random vector X.

Let X = (X1, . . . ,Xd)
′ be a d-dimensional random vector with each component Xi

having t-distribution with degree of freedom mi, mean μi and variance hii, ie. Xi ∼
tmi

(μi, hii),mi > 2. The d-dimensional random vector X is said to have a multivari-

ate asymmetric t-distribution with (m;m1, . . . ,md) degrees of freedom, mean vector μ =

(μ1, . . . , μd)
′ and covariance matrixH = (hij)d×d, denoted X ∼ AMtd(m;m1, . . . ,md;μ, S),

S = m−2
m H, if its density is given by

f(x1, . . . , xd) = q̃m(Q−1
m,1(Qm1

(x1)), . . . , Q
−1
m,d(Qmd

(xd))) ·
d∏

i=1

qmi
(xi)

qm,i(Q
−1
m,i(Qmi

(xi)))
,

(6.2)

wherem > 2, q̃m is the d-variate density function of multivariate t-distribution td(m,μ, S),

qm,i, qmi
and Qm,i, Qmi

are density functions and distribution functions of tm(μi,
m−2

m hii)

and tmi
(μi,

mi−2
mi

hii), respectively, i = 1, ..., d.

Note that the marginals of the multivariate asymmetric t-distribution X have t-

distributions with different degrees of freedom m1, . . . ,md. The multivariate asym-

metric t-distribution AMtd(m;m1, . . . ,md;μ, S) reduces to a multivariate t-distribution

td(m,μ, S) when m = mi, i = 1, . . . , d.

If X ∼ AMtd(m;m1, . . . ,md;μ, S), let

Z = (Z1, . . . , Zd)
′ = (Q−1

m,1(Qm1
(X1)), . . . , Q

−1
m,d(Qmd

(Xd)))
′ . (6.3)
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Then it can be noted that

• S is the dispersion matrix of Z, the transformed vector of X given by ( 6.3).

• Z has a multivariate t-distribution with m degree of freedom, mean μ and disper-

sion S, ie. Z ∼ td(m,μ, S), S = m−2
m H and H = cov(Z).

• Xi and Zi have the same means μi and same variances hii, i = 1, . . . , d, and

degrees of freedom mi and m respectively, ie. Xi ∼ tmi
(μi,

mi−2
mi

hii) and Zi ∼
tm(μi,

m−2
m hii), i = 1, ..., d. One of the main features of our construction of the

multivariate asymmetric t-distribution is that the original random variable Xi and

transformed variable Zi have the same variances for each i, i = 1, . . . , d. As a result,

the GARCH process describing the temporal evaluation of the conditional variance

of Zi represents that of the original yield increment series Xi, i = 1, . . . , d. (Note:

TheXi and Zi have the same variances as discussed above, however, the dispersions

of Xi and Zi are different due to the different degrees of freedom of t-distributions,

mi and m respectively, of Xi and Zi, i = 1, ..., d. It is a feature different from the

multivariate asymmetric t-distribution constructed by Fang, Fang and Kotz 2002

that allows the same dispersions but different variances of Xi and Zi, i = 1, . . . , d.)

6.2 Matrix-Diagonal GARCH(1,1)-AMt Model

In Appendix A.1, we review the most popular multivariate GARCH models. They are

the diagonal VEC model (Bollerslev, Engle and Wooldridge, 1988), the Matrix-Diagonal

model (Ding 1994, Bollerslev, Engle and Nelson 1994), the BEKK model (Baba, Engle,

Kraft and Kroner 1991, Engle and Kroner 1995), the Constant Conditional Correlation

(CCC) model (Bollerslev 1990) and the Dynamical Conditional Correlation (DCC) model

(Engle and Sheppard 2001). Any one of these models could be generalised to allow

multivariate asymmetric t-distributions. For definiteness and to illustrate how this can be

done we selected the Matrix-Diagonal model to analyse the term structure of Australian

yield increments. The Matrix-Diagonal model allows the volatility process of each series

to follow a univariate GARCH process, while the covariance process follows a GARCH

model in terms of the product of two errors. The interpretation of the GARCH coefficient

matrices is clear and simple. Also, the Matrix-Diagonal model guarantees that the time

varying covariance matrixes Ht are positive-definite over all time t.
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It is assumed that the term structure of Australian yield increments follows a mul-

tivariate asymmetric t-distribution with given marginals in different degrees of freedom

of t-distributions. In this section we develop a Matrix-Diagonal GARCH(1,1) model

of d-dimensional Australian yield increment series yt, with a multivariate asymmetric

t-distribution, and we refer to it as the Matrix-Diagonal GARCH(1,1)-AMt model.

In view of the results presented in Chapter 5 for each individual maturity yield incre-

ment series, based on the multivariate Matrix-Diagonal GARCH-t model with exogenous

variables (Zivot and Wang 2003), we take as the starting point for the multivariate ex-

tension the general Matrix-Diagonal GARCH(1,1)-AMt model specified as

yt|Ft−1 ∼ AMtd(m;m1, . . . ,md;μt, St), St = m−2
m Ht,

μt = β1 + β2 ·R−t + β3 ·R+
t ,

Ht = A0A
′
0 + (AA′)⊗ (εt−1ε

′
t−1) + (BB′)⊗Ht−1 + cc′ · R−t ,

(6.4)

where εt = zt − μt and zt = (Q−1
m,1,t(Qm1,t(y1t)), . . . , Q

−1
m,d,t(Qmd,t(ydt)))

′, Qm,i,t and

Qmi,t are the cumulative distribution functions of tm(μit,
m−2

m hii,t) and tmi
(μit,

mi−2
mi

hii,t),

i = 1, ..., d; εt|Ft−1 ∼ td(m,0, St); And R+ and R− are indicator variables of raising and

lowering the target cash rate respectively (See Section 4.4) and the symbol ⊗ denotes

the Hadamard product, i.e. element-by-element multiplication. In (6.4), m1,m1, . . . ,md

and m are scalar parameters; β1, β2, β3 and c are d-dimensional vectors; A0, A and B

are d× d lower triangular matrices.

We simplified the above model using the following steps:

Step 1. Assuming that the degrees of freedom mi ≡ m (the symmetric t-distribution),

the Matrix-Diagonal GARCH(1,1)-AMt model (6.4) reduces to a simple multivari-

ate Matrix-Diagonal GARCH(1,1)-t model. We used S+Finmetrics to estimate the

parameters (scalars, vectors and matrices).

Step 2. The model in sStep 1 was simplified using the following principles:

- all non-significant coefficients removed,

- structural parameters retained.

In Step 1, we estimated the multivariate Matrix-Diagonal GARCH(1,1)-t model using

function mgarch in S+FinMetrics. Starting from the standard multivariate Matrix-

Diagonal GARCH(1,1)-t model (A.7) in Appendix A.2 where parameter matrices A0, A
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and B in the covariance equation are square lower triangular d × d matrices. The log

likelihood value of the estimated model is 19644. It is observed that all elements except

column 1 of B are not significant. By reducing the parameter matrix B to a 1-dimensional

vector b, the Matrix-Diagonal GARCH(1,1)-t model (A.8) showed a marked improvement

that with a larger log likelihood value (19748) and with 10 fewer parameters. Also the

estimated coefficients still posses a functional pattern of the maturity θ consistent with

that observed in Chapter 5 (β6 and β7) and also each component is significant. However,

if we further reduce the d×d matrix A to a 1-dimensional vector, there is no clear pattern

of the coefficients along the maturity θ that was observed in Chapter 5. The matrix A0

in S+Finmetrics must be a d × d matrix so that the Ht are positive-definite matrices.

The estimation results of the Matrix-Diagonal GARCH(1,1)-t model (A.8) are displayed

in Appendix A.2.

According to the results of simplifying the Matrix-Diagonal GARCH(1,1)-t model, the

Matrix-Diagonal GARCH(1,1)-AMt model of d-dimensional Australian yield increment

series yt (6.4) is simplified as

yt|Ft−1 ∼ AMtd(m;m1, . . . ,md;μt, St), St = m−2
m Ht,

μt = β1 + β2 ·R−t + β3 ·R+
t ,

Ht = A0A
′
0 + (AA′)⊗ (εt−1ε

′
t−1) + (bb′)⊗Ht−1 + cc′ ·R−t ,

(6.5)

where εt, zt, R
+ and R− are the same as those described in model (6.4). In Matrix-

Diagonal GARCH(1,1)-AMt model (6.5), β1, β2, β3, b and c are d-dimensional param-

eter vectors; A0 and A are lower triangular d× d parameter matrices.

In the rest of the Chapter, we use the Matrix-Diagonal GARCH(1,1)-AMt model (6.5).

6.3 Estimations

The preliminary analysis used to arrive at the model (6.5) used mgarch function in

S+FinMetrics. However, there is no currently available statistical software for estimating

the GARCH model with a multivariate asymmetric t-distribution. This section describes

an estimation approach for the Matrix-Diagonal GARCH(1,1)-AMt model (6.5) which

combines use of the Matlab function fmincon, to find the minimum of a constrained

nonlinear multivariate function, and S+FinMetrics function mgarch for estimation of

the Matrix-Diagonal GARCH model.
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Let ν = {m1, . . . ,md}, β = {β1,β2,β3, b, c, A0, A} and assume that m is fixed.

Conditional on initial conditions and values of R− and R+, the log likelihood function of

the Matrix-Diagonal GARCH(1,1)-AMt Model (6.5) is

L(ν,β) = L1(ν,β) + L2(ν,β) , (6.6)

where

L1(ν,β) =
∑N

t=1 log q̃m,t(zt1, . . . , ztd;m,ν,β, R
−
t , R

+
t ) ,

L2(ν,β) =
∑N

t=1 log qmi,t(yti;mi,β, R
−
t , R

+
t )−∑N

t=1 log qm,i,t(zti;m,mi,β, R
−
t , R

+
t ) ,

(6.7)

and, at time t,

q̃m(z1, . . . , zd) =
Γ(m+d

2
)

Γ(m
2

)
√

(πm)d|S|
(1 + (z−μ)′S−1(z−μ)

m )−
m+d

2 ,

qm,i(zi) =
Γ(m+1

2
)

Γ(m
2

)
√

π(m−2)hii

(1 + (zi−μi)2

(m−2)hii
)−

m+1

2 ,

qmi
(yi) =

Γ(
mi+1

2
)

Γ(
mi
2

)
√

π(mi−2)hii

(1 + (yi−μi)
2

(mi−2)hii
)−

mi+1

2 .

(6.8)

It is implicit in Fang, Fang and Kotz (2002) that the parameter m in asymmetric

multivariate t-distribution AMtd(m;m1, . . . ,md;μ, S) can be estimated from the data.

Our attempts to estimate m as well as m1, . . . ,md resulted in the estimate values did

not converge and the log likelihood values did not converge. This may suggest that m

is not identifiable when m1, . . . ,md are also free parameters. To overcome this difficulty,

we fixed m at 6.3, the estimate of the degrees of freedom of t-distribution of the Matrix-

Diagonal GARCH(1,1)-t model (A.8) from S+FinMetrics (SE=0.429236). The estimate

for this is that the transformed random vector Z in (6.3) has degrees of freedom typical

of the original random vector X; m is set as the ‘average’ of m1, . . . ,md.

Altogether there are 60 parameters in the Matrix-Diagonal GARCH(1,1)-AMt model (6.5).

It is hard to estimate the 60 parameters by minimizing the likelihood function over all

parameters simultaneously. This was attempted by minimizing the log-likelihood func-

tion (6.6) of Matrix-Diagonal GARCH(1,1)-AMt Model (6.5) using fmincon in Mat-

lab, but the computer algorithms failed to converge. Because of this, the estimation

of Matrix-Diagonal GARCH(1,1)-AMt model (6.5) implemented here uses an iteration

method. The steps are:
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Step A: For fixed values of the degrees of freedom of marginals ν, estimate GARCH

coefficients β in S+FinMetrics by optimising L1(ν,β) based on Matrix-Diagonal

GARCH(1,1)-t of Z. Call the result (ν, β̂(ν)).

Step B: Fixing β = β̂(ν), optimise the combined likelihood L(ν,β) = L1(ν,β) +

L2(ν,β) over ν. Optimisation uses Matlab. Result is ν̂.

Step C: Repeat Step 1 and Step 2 until convergence. Call the converged result (ν̂, β̂).

Step A estimates GARCH coefficients β in S+FinMetrics based on Matrix-Diagonal

GARCH(1,1)-t model of Z with common degree of freedom m, given a fixed ν =

{m1, . . . ,md}. However, Z is a transformed vector from vector y depending on the

parameters β. The estimation of Step A used an sub-iteration method in S+FinMetrics,

that is,

Step A1: Get initial values of β1,β2,β3, and variances matrix (hii,t), i = 1, . . . , d from

univariate GARCH(1,1)-t models of each yield increment series with given degrees

of freedom m1, . . . ,md, respectively.

Step A2: Calculate the mean vector μt = β1 + β2 · R−t + β3 · R+
t . Calculate zt =

(Q−1
m,1,t(Qm1,t(y1t)), . . . , Q

−1
m,d,t(Qmd,t(ydt)))

′ where Qm,i,t and Qmi,t are the cumu-

lative distribution functions of tm(μit,
m−2

m hii,t) and tmi
(μit,

mi−2
mi

hii,t), i = 1, ..., d;

Step A3: Estimate β and H from Matrix-Diagonal GARCH(1,1)-t model of Z using

function mgarch in S+FinMetrics. Output the log-likelihood value of the Matrix-

Diagonal GARCH(1,1)-t model of Z.

Step A4: Iterate Steps A2 and A3 until the log-likelihood value of the Matrix-Diagonal

GARCH(1,1)-t model of Z converge and estimated values β1, β2,β3, A0, A, b, c

converge.

Note that the converged result (ν̂, β̂) from the above iteration method may not be

the MLE of L(ν,β) in (6.6), because the estimate GARCH coefficients β, in Step A,

in S+FinMetrics, is optimizing L1(ν,β) instead of optimizing L(ν,β). In this sample,

L1(ν,β) = 19738 (99.924%) and L2(ν,β) = 15 (0.076%), and hence (ν̂, β̂) from the

above iteration method should be approximately the MLE maximazing L(ν,β) in (6.6).

L2(ν,β) presented in (6.6) is a very small value. The ratio
qmi,t(yti;mi,β,R−

t ,R+
t )

qm,i,t(zti;m,mi,β,R−

t ,R+
t )

is equal
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to 1, greater than 1 and less than 1 when mi = m, mi > m and mi < m respectively, and

is very close to 1 when mi is close to m. The product of the 5 ratios
qmi,t(yti;mi,β,R−

t ,R+
t )

qm,i,t(zti;m,mi,β,R−

t ,R+
t )

(i = 1, . . . , 5) is close to 1 when m is the ’average’ of m1, . . . , and m5, where m1, . . . ,

and m5 are not ver different. So L2(ν,β) is close to zero, which makes L(ν,β) nearly

equal to L1(ν,β). Hence (ν̂, β̂) from the above iteration method should be an approx-

imately efficient estimate of Matrix-Diagonal GARCH(1,1)-AMt model (6.5). Comte

and Lieberman (2003) established the asymptotic normality for the general multivariate

GARCH model under certain regularly conditions. In particular, εt would be required

to have finite 8th moment. We have observed that a t-distribution with between 5 to 8

degrees of freedom provides a good model. These do not satisfy the condition in Comte

and Lieberman (2003). As the result, the asymptotic normality of the estimation is not

guaranteed.

6.4 Results and Diagnostics of the Matrix-Diagonal GARCH-

AMt Model

This section presents the results of estimation of the Matrix-Diagonal GARCH(1,1)-AMt

model (6.5) using 5-dimensional Australian Treasury yield increments with maturity in

1, 2, 3, 5 and 10 years for the period from 1996 to 2001. A diagnostic assessment of this

model is provided by testing for no autocorrelation in the standardised residuals and the

squared standardised residuals, and testing no ARCH effect in the standardised residuals.

The stylised facts about volatility such as volatility asymmetry, volatility mean reversion

and volatility persistence are discussed.

The results of the estimation of the Matrix-Diagonal GARCH(1,1)-AMt model (6.5)

are m̂1 = 5.1782 (SE=0.4666), m̂2 = 5.9367 (SE=0.6565), m̂3 = 5.9921 (SE=0.6464),

m̂4 = 6.8607 (SE=0.8955) and m̂5 = 8.4470 (SE=1.3523). Note that the estimates of

(m1, . . . ,md) and their standard errors are obtained at the convergence of Step B using

Matlab and are therefore not the MLE SEs. The standard errors derived in this way may

underestimate the SE’s from MLE but at this stage we can’t derive the MLE SE’s. The

estimated GARCH coefficients are displayed in Table 6.1.

The Ljung-Box tests for squared standardised residuals show that, for yield increment

series with maturity in 1, 2, 3, 5 and 10 years, the squared standardised residuals are

not autocorrelated, and the Lagrange multiplier tests confirm there are no ARCH effects
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Table 6.1: Outputs of the Matrix-Diagonal GARCH(1,1)-AMt model

Value Std.Error t value Pr(> |t|)
β

1
(1) -0.00224 0.0012165 -1.8414 0.0658

β
1
(2) -0.00273 0.001483 -1.8412 0.0658

β
1
(3) -0.002731 0.0015414 -1.7719 0.0766

β
1
(4) -0.002819 0.0015517 -1.817 0.0694

β
1
(5) -0.002939 0.0016127 -1.8225 0.0686

β
2
(1) -0.077303 0.0274658 -2.8145 0.0049

β
2
(2) -0.061312 0.0311766 -1.9666 0.0494

β
2
(3) -0.057955 0.03029 -1.9133 0.0559

β
2
(4) -0.056295 0.0313548 -1.7954 0.0728

β
2
(5) -0.051871 0.0251595 -2.0617 0.0394

β
3
(1) 0.079483 0.0515967 1.5405 0.1237

β
3
(2) 0.070406 0.0626582 1.1236 0.2613

β
3
(3) 0.059669 0.0633119 0.9425 0.3461

β
3
(4) 0.043983 0.0688903 0.6385 0.5233

β
3
(5) 0.023504 0.0901604 0.2607 0.7944

A0(1, 1) 0.02108 0.0013057 16.1444 0.0000
A0(2, 1) 0.022855 0.0014414 15.8562 0.0000
A0(3, 1) 0.02338 0.0014605 16.0075 0.0000
A0(4, 1) 0.023035 0.0015494 14.8676 0.0000
A0(5, 1) 0.021327 0.0019111 11.1596 0.0000
A0(2, 2) 0.004983 0.0006957 7.1623 0.0000
A0(3, 2) 0.004853 0.0008221 5.9025 0.0000
A0(4, 2) 0.005366 0.0010004 5.3636 0.0000
A0(5, 2) 0.005531 0.0016636 3.324 0.0009
A0(3, 3) 0.002557 0.0002995 8.54 0.0000
A0(4, 3) 0.00312 0.0004451 7.01 0.0000
A0(5, 3) 0.004103 0.0011408 3.597 0.0003
A0(4, 4) 0.003598 0.0003603 9.984 0.0000
A0(5, 4) 0.006771 0.0010337 6.551 0.0000
A0(5, 5) 0.006611 0.0008771 7.537 0.0000
A(1,1) 0.259417 0.0167842 15.456 0.0000
A(2,1) 0.238178 0.015222 15.647 0.0000
A(3,1) 0.233945 0.0152581 15.333 0.0000
A(4,1) 0.221518 0.0151084 14.662 0.0000
A(5,1) 0.192439 0.0179142 10.742 0.0000
A(2,2) 0.052654 0.0078784 6.683 0.0000
A(3,2) 0.057371 0.009564 5.999 0.0000
A(4,2) 0.049485 0.0119074 4.156 0.0000
A(5,2) 0.041191 0.0199011 2.07 0.0386
A(3,3) 0.030198 0.0042291 7.14 0.0000
A(4,3) 0.018743 0.0071562 2.619 0.0089
A(5,3) 0.023614 0.0188112 1.255 0.2096
A(4,4) 0.021275 0.0076403 2.785 0.0054
A(5,4) 0.037484 0.0242057 1.549 0.1217
A(5,5) 0.04297 0.0103649 4.146 0.0000
b(1) 0.884575 0.0117526 75.267 0.0000
b(2) 0.90209 0.01022 88.244 0.0000
b(3) 0.90363 0.01005 89.908 0.0000
b(4) 0.90728 0.01096 82.772 0.0000
b(5) 0.91641 0.01495 61.294 0.0000
c(1) 0.06692 0.013 5.146 0.0000
c(2) 0.06336 0.0157 4.037 0.0001
c(3) 0.06055 0.01634 3.706 0.0002
c(4) 0.04841 0.01621 2.987 0.0029
c(5) 0.02584 0.01763 1.465 0.1430
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left with the standardised residuals. The estimators of the coefficients of the model

are displayed in Table 6.1. Most of the coefficients of the model (6.5) are significantly

different from zero with small standard errors.

The coefficient matrices of the multivariate Matrix-Diagonal GARCH(1,1)-AMt model (6.5),

are given below.

The constant coefficient matrix in covariance equation is close to zero, that is

A0A
′
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00044 0.00048 0.00049 0.00049 0.00045

0.00048 0.00055 0.00056 0.00055 0.00051

0.00049 0.00056 0.00058 0.00057 0.00054

0.00049 0.00055 0.00057 0.00058 0.00056

0.00045 0.00051 0.00054 0.00056 0.00059

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The ARCH(1) coefficient matrix is

AA′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.06730 0.06179 0.06069 0.05747 0.04992

0.06179 0.05950 0.05874 0.05537 0.04800

0.06069 0.05874 0.05893 0.05523 0.04810

0.05747 0.05537 0.05523 0.05232 0.04591

0.04992 0.04800 0.04810 0.04591 0.04254

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where all elements of AA′ are very close to zero, implying that the variance process hit

and covariance process hijt are slightly affected by lagged residuals given that most of all

elements of A are significantly different from zero.

The GARCH(1) coefficient matrix is

bb′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.78247 0.79797 0.79933 0.80255 0.81063

0.79797 0.81377 0.81515 0.81845 0.82669

0.79933 0.81515 0.81654 0.81984 0.82809

0.80255 0.81845 0.81984 0.82315 0.83144

0.81063 0.82669 0.82809 0.83144 0.83981

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where all elements, GARCH(1,1) coefficients, are significantly different from zero and

close to one (all are more than 0.8), implying that the conditional covariances are per-

sistent.

90



Also

AA′ + bb′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.84977 0.85976 0.86002 0.86002 0.86056

0.85976 0.87327 0.87390 0.87381 0.87469

0.86002 0.87390 0.87548 0.87507 0.87619

0.86002 0.87381 0.87507 0.87547 0.87735

0.86056 0.87469 0.87619 0.87735 0.88235

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.9)

The diagonal elements of AA′+bb′ are less than 1, implying that the individual GARCH(1,1)

process εit, i = 1, . . . , d are wide-sense variance stationary by Theorem 5.1 (Bollerslev

1986) and the volatility mean reverts to its long run level (see Zivot and Wang 2003).

We can also claim that d-dimensional process of εt is stationary by the multivariate

Matrix-Diagonal GARCH model by the theorem from Boussama (1998) and Theorem 1

of Comte and Lieberman (2003). That is,

let vech the vector-half operator that stacks the lower triangular portion of a matrix into

a vector, and ρ(A) the spectral radius of A, i.e., the largest modulus of eigenvalues of A.

Theorem 6.1 εt is a d-dimensional random vector, E(εt|Ft−1) = 0 a.s. and E(εtε
′
t|Ft−1) =

Ht. For the model given by

εt = H1/2ηt, ηt ∼ iid(0, Id) (6.10)

where Id is d× d identity matrix, and

vech(Ht) = vech(C) +

q∑
s=1

Ãvech(εt−sε
′
t−s) +

q∑
s=1

B̃vech(Ht−s), (6.11)

assume that the εt admit a density absolutely continuous with respect to the Lebesgue

measure, positive in a neighbourhood of the origin. Assume moreover that

ρ(

q∑
s=1

Ã+

q∑
s=1

B̃) < 1,

and let Y be defined by

Yt = (vech(Ht+1)
′, vech(Ht)

′, . . . , vech(Ht−p+2)
′, ε′t, ε

′
t−1, εt−q+1)

′.

Then the recurrence relations (6.10) and (6.11) for Y have an almost unique strictly

stationary causal solution which constitutes a positive Harris recurrent Markov chain

which is geometrically ergodic and β-mixing.
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The multivariate matrix diagonal GARCH model of Z in (6.5) can be rewritten as

vech(Ht) = vech(A0A
′
0) + Ãvech(εt−1ε

′
t−1) + B̃vech(Ht−1) + vech(cc′)R−t , (6.12)

where Ã = diag(vech(AA′)) and B̃ = diag(vech(bb′)). Note that ρ(Ã + B̃) < 1, be-

cause Ã+ B̃ = diag(vech(AA′ + bb′)) and the eigenvalues are the elements of the lower

triangular matrix AA′+bb′ which has all elements less than 1, see equation (6.9). By The-

orem 6.1, the d-dimensional process of εt is stationary by multivariate Matrix-Diagonal

GARCH(1,1)-AMt model (6.5).

The expression of unconditional covariance of εit and εjt can be given as follows.

Let A0A
′
0 = (aij), AA

′ = (αij) and bb′ = (βij) from Matrix-Diagonal GARCH(1,1)-

AMt model (6.5). For i, j = 1, . . . , d, E[εit|Ft−1] = 0, and E[εitεit|Ft−1] = hijt, and let

uijt = εitεjt − E(εitεit|Ft−1) be a white noise, the above equation of Matrix-Diagonal

model can be

εitεjt = aij + (αij + βij)εi(t−1)εj(t−1) + uijt − βijuij(t−1),

so

E[εitεjt] = aij + (αij + βij)E[εi(t−1)εj(t−1)].

Assuming εitεjt is stationary, then

E[εitεjt] = aij + (αij + βij)E[εitεjt].

Thus

cov(εit, εjt) = E[εitεjt] = aij/(1 − (αij + βij)).

Finally, the coefficient matrix of the indicator variable for lowering the cash rate in

the covariance equation is

cc′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00448 0.00424 0.00405 0.00324 0.00173

0.00424 0.00401 0.00384 0.00307 0.00164

0.00405 0.00384 0.00367 0.00293 0.00156

0.00324 0.00307 0.00293 0.00234 0.00125

0.00173 0.00164 0.00156 0.00125 0.00067

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The estimated coefficients of the mean equation and coefficient matrices of covariance

of the multivariate Matrix-Diagonal GARCH(1,1)-t model are shown in Figure 6.1. The

92



trends of coefficients of mean, panel (β1), (β2), and (β3), are very similar to those of the

univariate GARCH(1,1) models in Chapter 5 ( Figure 5.4).

Panels (β4), (β5), and (β6), and (β7) of Figure 6.1 are rows of the coefficient matrices

of A0A
′
0, AA

′, bb′, and cc′ along the maturity level. Figure 6.2 shows contour plots

of coefficient matrices of A0A
′
0, AA

′, bb′, and cc′ on 2-dimensions of time to maturity.

From these figures, patterns of the coefficient matrices of covariance are observed. When

the length of time to maturity increases, the elements of AA′ (ARCH(1)) decrease, the

elements of bb′ (GARCH(1)) slightly increase and the elements cc′ (lowering rates in

covariance) decrease.

Overall, the trends of the coefficients of mean and covariance of Matrix-Diagonal

GARCH(1,1) are consistent with the patterns of univariate GARCH(1,1) models in Chap-

ter 5. That is, both mean level and conditional variance of the increments of bond yield

with longer maturity are less impacted by the changing of RBA cash rates and are more

efficient in persistence of conditional covariances.

It needs to be emphasised that the GARCH processes of individual yield increments

at different maturities obtained by the univariate GARCH(1,1)-t models (5.4) use εt =

yt − μt and these are modelled using t-distributions with different degrees of freedom.

These are not exactly the same as the diagonal conditional variance GARCH processes

in Matrix-Diagonal GARCH(1,1)-AMt model (6.5) which uses εt = zt−μt, in which the

degrees of freedom for each component are the same.

An alternative specification of the Matrix-Diagonal GARCH(1,1)-AMt model would

use εt = yt − μt in equation (6.5). This alternative would provide equations for the

conditional variance of each component series that have a similar interpretation to those

former from univariate models (5.4). However, the disadvantage of this alternative (with

εt = yt−μt) is that the S+FinMetrics mgarch function can’t be used. Software for fitting

this alternative would need to be developed and that is a topic for further research.

Figure 6.4 presents the comparison of standard deviations ht from the univariate

GARCH-t (dot lines) and Matrix-Diagonal GARCH-AMt (solid lines), maturities in 1

year, 5 years and 10 years. The trends of the two time series are consistent, and the

univariate GARCH models provide larger standard deviations than the Matrix-Diagonal

GARCH-AMt model.
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6.5 Model Tests and Selection

6.5.1 Likelihood Ratio Tests for Degrees of Freedom Parameters

Note that the estimation of the Matrix-Diagonal GARCH(1,1)-AMt model (6.5) dis-

played in Table 6.1 are very close to those estimated by the simple Matrix-Diagonal

GARCH(1,1)-t model (6.5) displayed in Table A.2 in Appendix A.2, although the dis-

tributions are different. See Figure 6.3. The simple Matrix-Diagonal GARCH(1,1)-t

model (6.5) is nested within the Matrix-Diagonal GARCH(1,1)-AMt model (6.5) under

the assumption of the same degrees of freedom of the t-distribution of marginals. The

Matrix-Diagonal GARCH(1,1)-AMt model (6.5) gives a larger log-likelihood value of

19753 with four additional parameters, comparing to the Matrix-Diagonal GARCH(1,1)-

t model (A.8) that gives a log-likelihood value of 19748. The resulting likelihood ra-

tio test statistic for testing the null hypothesis H0: m1 = · · · = md = m is equal

to 10 which, using the χ2
(4) distribution, has an approximate p-value of 0.04. Hence

the Matrix-Diagonal GARCH(1,1)-AMt model (6.5) is significantly different from the

Matrix-Diagonal GARCH(1,1)-t (A.8) at 0.05 level.

6.5.2 Akaike Information Criterion (AIC) for Comparing the Univari-

ate Models with Multivariate Models

This section is to compare the Matrix-Diagonal GARCH(1,1)-AMt model (6.5) with

a set of univariate GARCH(1,1)-t models in Chapter5, marginals of both models are

in t-distributions with different degrees of freedom. Because the two models are not

nested, the Akaike Information Criterion (AIC) can be used as a criterion for selecting

models. The AIC is: AIC = −2Lq + 2q where Lq is the maximised log-likelihood

and q is the number of parameters in the model. A smaller value of AIC indicates

the preferred model. The Matrix-Diagonal GARCH(1,1)-AMt model which takes into

account correlation between increments volatilities and has more parameters has an AIC

value: AIC=-39385. This model is preferred to the set of univariate GARCH models

which ignores the correlation between increments but uses less parameters with an AIC=-

19517.
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6.6 Summary

In this chapter, we defined the multivariate asymmetric t-distribution using meta-elliptical

distribution concepts (Fang, Fang and Kotz 2002) which allows different marginals. The

univariate GARCH(1,1)-t model of Australian Treasury bond yield increments developed

in Chapter 5 is extended to a multivariate GARCH(1,1) model with multivariate asym-

metric t-distribution. We demonstrated that the Matrix-Diagonal GARCH(1,1)-AMt

model is appropriate for the term structure of yield increments of Australian Treasury

bonds. The estimation of the Matrix-Diagonal GARCH(1,1)-AMt model has been im-

plemented using a 2-stage method within which iterations are required. The estimated

results show that the Matrix-Diagonal GARCH(1,1)-AMt model captures the properties

of volatility mean reversion, volatility persistence and a stationary GARCH process. Also,

the likelihood ratio test shows that the Matrix-Diagonal GARCH(1,1)-AMt (A.8) is a sig-

nificant improvement to the simple Matrix-Diagonal GARCH(1,1)-t model (A.8). Based

on Akaike information criterion (AIC), the Matrix-Diagonal GARCH(1,1) with multi-

variate asymmetric t-distribution is the preferred model to a set of univariate GARCH

models.

The trends of the coefficients of mean and conditional variances GARCH process over

the maturity levels from the Matrix-Diagonal GARCH(1,1)-AMt model are consistent

with the results from individual univariate GARCH(1,1)-t models discussed in Chap-

ter 5. We will further investigate the patterns of coefficients of the Matrix-Diagonal

GARCH(1,1)-AMt in Chapter 7 with the aim of developing a covariance extension to

the TS-GARCH model proposed in Chapter 5.
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Figure 6.1: Coefficients of mean and variance: Matrix-Diagonal GARCH(1,1)-AMt
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Figure 6.2: Contour plots of coefficient matrices of covariance from Matrix-Diagonal

GARCH(1,1)-t
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Figure 6.3: Estimations: Matrix-Diagonal GARCH(1,1)-AMt vs. Matrix-Diagonal

GARCH(1,1)-t, combined-maturity=(θi + θj)/2
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Figure 6.4: Comparison of standard deviations from univariate GARCH-t (dot lines) and

Matrix-Diagonal GARCH-AMt (solid lines)99



Chapter 7

A GARCH Model of Term

Structures

7.1 Introduction

In Chapter 6, a multivariate GARCH model was developed for the collection of yield in-

crement series at the maturities available for model building purposes. This multivariate

model allowed for the conditional covariances between the individual series to be mod-

elled. We observed in Chapter 6 that the parameters of the multivariate Matrix-Diagonal

GARCH(1,1)-AMt model, characterising the GARCH process of conditional covariance,

varied as smooth patterns in time to maturity. The trends of these patterns (Figure 6.1),

except for the parameters of the constant term for the covariance, are similar to those

observed for the univariate GARCH models of Chapter 5 (Figure 5.3).

In Chapter 5, we developed univariate GARCH type models of the interest rate (or,

bond yield) increment time series for each fixed maturity. A major finding of this mod-

elling is that the collection of univariate GARCH models for a set of yield increment

series, each with fixed maturities, can be linked in a single GARCH model with param-

eters β expressed as functions of maturity in terms of new parameters ϕ. We proposed

a single GARCH model (5.9) in Chapter 5, and referred to it as a GARCH model of

term structure of interest rates (TS-GARCH). The TS-GARCH model of Chapter 5 con-

siders the conditional variance GARCH process only. The purpose of this chapter is

to extend the TS-GARCH model proposed in Chapter 5 to the conditional covariances

GARCH processes based on the multivariate GARCH(1,1)-AMt modelling of Chapter 6.
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The conditional covariance TS-GARCH is presented in Section 2. The estimation based

on the multivariate Matrix-Diagonal GARCH(1,1)-AMt modelling is given in Section 3.

Section 4 presents a generalised concept of the TS-GARCH model and Section 5 gives a

summary.

7.2 TS-GARCH Model

Chapter 6 developed a multivariate Matrix-Diagonal GARCH(1,1)-AMt model of d-

dimensional yield increment series yt described by Equation (6.5). Let

yt = (y1t, . . . , ydt)
′ ,

μt = (μ1t, . . . , μdt)
′ ,

εt = (ε1t, . . . , εdt)
′ ,

zt = (z1t, . . . , zdt)
′ ,

Ht = (hijt)i,j=1,...,d ,

β0 = (m1, . . . ,md)
′ ,

β1 = (β11, . . . , βd1)
′ ,

β2 = (β12, . . . , βd2)
′ ,

β3 = (β13, . . . , βd3)
′ ,

A0A
′
0 = (βij4)i,j=1,...,d ,

AA′ = (βij5)i,j=1,...,d ,

bb′ = (bibj) = (βij6)i,j=1,...,d ,

cc′ = (cicj) = (βij7)i,j=1,...,d .

(7.1)

According to the similarity of trends of parameters from multivariate Matrix-Diagonal

GARCH(1,1)-AMt model (Figure 6.1) and those from the univariate GARCH models

(Figure 5.3), the TS-GARCH model (5.9) proposed in Chapter 5 is extended to the

conditional covariance TS-GARCH as follow:

yt|Ft−1 ∼ AMtd(m;m1, . . . ,md;μt, St), St = m−2
m Ht,

μit = βi1 + βi2R
−
t + βi3R

+
t , i = 1, . . . , d

hijt = βij4 + βij5εi(t−1)εj(t−1) + βij6hij(t−1) + βij7R
−
t , i, j = 1, . . . , d, i ≤ j,

(7.2)

where

mi = ϕ10 + ϕ20θi, i = 1, . . . , d,

βik = ϕ1k + ϕ2k ln(θi), i = 1, . . . , d, k = 1, . . . , 3,

βijk = ϕ1k + ϕ2k ln(θij), θij =
θi+θj

2 , i, j = 1, . . . , d, i ≤ j, k = 4, . . . , 7,
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and εit = zit−μit, zit = Q−1
m,i,t(Qmi,t(yit)), Qm,i,t andQmi,t are the cumulative distribution

functions of tm(μit,
m−2

m hii,t) and tmi
(μit,

mi−2
mi

hii,t) respectively; and θi is the number of

years to maturity of i-th yields; i = 1, . . . , d.

The TS-GARCH model (7.2) implies that term structure interest rates increments are

described by a single GARCH model with functional parameters. The functional param-

eters of degrees of freedom of t-distribution of marginals {m1, . . . ,md} depend linearly

on maturity, the functional parameters of the mean equation {βi1, βi2, βi3} depend lin-

early on log maturity, and the functional parameters of conditional covariance equation

{βij4, βij5, βij6, βij7} depend linearly on the log combined-maturity of θi and θj denoted

as θij, while the average of maturities θi and θj is used as the combined-maturity of θi

and θj in the model. The choice of the combined-maturity satisfies the following criteria.

Firstly, the combined-maturity has to be a bivariate symmetric function of θi and θj

because of the equal contributions of the two maturities θi and θj in covariance of εit

and εjt. Secondly, the combined-maturity has to satisfy that θii = θi because the vari-

ance is a special covariance, var(εit) = cov(εit, εit). The average of θi and θj is the most

simple form of combined-maturity satisfying these two criteria. Other possible forms of

combined-maturity will be discussed in Section 4.

7.3 Estimations

This section presents a two step procedure for estimation of the TS-GARCH model (7.2)

based on the multivariate Matrix-Diagonal GARCH(1,1)-AMt model. We fixed m = 6.3

as explained in Chapter 6. The first step is, using the observed yield increment series

at available maturities, to estimate the parameters {m1, . . . ,md; β1,β2,β3, b, c, A0, and

A} of multivariate Matrix-Diagonal GARCH(1,1)-AMt (6.5) in Chapter 6, and calculate

the TS-GARCH coefficients m1, . . . ,ms, {βik|k = 1, 2, 3; i = 1, . . . , d} and {βijk|k =

4, 5, 6, 7; i, j = 1, . . . , d; i ≤ j} in (7.2) by equations in (7.1). Secondly, the new parameters

ϕ of TS-GARCH model (7.2) are estimated by least squares estimation (LSE).

In Figure 7.1, the estimates of the parameters of the degrees of freedom of the

marginals and the parameters of the mean equation {m1, . . . ,md;βik|k = 1, 2, 3; i =

1, . . . , d} are plotted using solid dots against the maturity θi in Panels labelled (β0)

to(β3). Panels labelled (β0) to(β3) give plots of the estimates of the parameters in the

covariance equation, {βijk|k = 4, 5, 6, 7; i, j = 1, . . . , d; i ≤ j }, against the combined-
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maturity {θij |i, j = 1, . . . , d; i ≤ j}. It is observed that log-linear trends exist clearly

for most estimated β. Least Squares Estimation (LSE) of the trend lines are added

on Figure 7.1. The estimated new parameters {ϕ1k, ϕ2k|k = 1, . . . , 7} of TS-GARCH

model (7.2) explaining the trends are the coefficients of the equations displayed on Fig-

ure 7.1. The R2 values are greater than 0.75, except for the term of the constant in

variance equation, showing that the log linear regressions are quite good for describing

the smooth patterns of the GARCH coefficients.

It is worth pointing out that the estimated trends of GARCH coefficients, displayed

in Figure 7.1, are consistent with the results obtained in Chapter 5. Panel (β2) and Panel

(β3) suggest that longer-term maturity yield increments are less impacted by RBA deci-

sions of lowering or raising cash rates. Panel (β5) suggests that the conditional covariance

of yield increments with longer-term combined-maturity are less affected by the previ-

ous cross residuals εi(t−1)εj(t−1), that is more rapid in mean reversion of the conditional

covariances. Panel (β6) suggests that the conditional covariances of yield increments

with longer-term combined-maturity have greater persistence. Panel (β7) suggests that

conditional covariance of yield increments with longer-term combined-maturity is less

impacted by RBA decisions of lowering the cash rate.

7.3.1 Using the Model for the Out of Sample Testing and Interpolates

The estimation of the TS-GARCH model (7.2) displayed in Figure 7.1 is based on RBA

Treasury bond yields with maturities of 1, 2, 3, 5 and 10 years and for the period

from January 1996 to December 2001. We now assess the performance of the model in

forecasting volatility into the future and interpolating the volatility for a finer grid of

maturities in the future.

Using the recently updated RBA Treasury bond yields from July 2000 to April 2004

maturity in yearly (from 1 year to 10 years), see Figure 7.4, the goodness of interpolation

and forecasting by the TS-GARCH model (7.2) are examined. The interpolation is for

the volatility of yield increments with additional maturities of 4, 6, 7, 8 and 9 years for

the period 3/07/2000-31/12/2001, and the forecasting is for yield increments maturity in

1, 2, 3, 5 and 10 years period January 2002 - April 2004. The standardised residuals for

the interpolated series and forecasted series are computed using the variances obtained

from the TS-GARCH model. There is no ARCH effects left in the standardised residuals,

and no correlation in the standardised residuals and squared standardised residuals for
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the interpolated series and forecasted series with a fixed maturity. QQ plots showed that

t-distribution is adequate with the standardised residuals.

These results demonstrate that the TS-GARCH model is adequate for fitting, in-

terpolation and forecasting of yield increments with any possible middle-to-long-term

maturity.

7.3.2 Other Estimations of TS-GARCH Model

For the TS-GARCH model (7.2), denote

β = (m1, . . . ,md︸ ︷︷ ︸
{βi0,i=1,...,d}

, β11, . . . , βd1︸ ︷︷ ︸
{βi1,i=1,...,d}

, . . . , β13, . . . , βd3︸ ︷︷ ︸
{βi3,i=1,...,d}

, β114, . . . , βdd4︸ ︷︷ ︸
{βij4,i,j=1,...,d,i≤j}

, . . . , β117, . . . , βdd7︸ ︷︷ ︸
{βij7,i,j=1,...,d,i≤j}

)′,

(7.3)

ϕ = (ϕ10, ϕ20, ϕ11, ϕ21, . . . , ϕ17, ϕ27)
′,

and denote l = dim(β) = 60, and s = dim(ϕ) = 16. The functional dependence of

GARCH coefficients β in terms of new TS-GARCH parameters ϕ can then be expressed

as

β = Aϕ, (7.4)

where A is a l× s full column rank matrix. Let β̂ is the estimate of β from the first step,

and assume β̂ = β + η. Then the LSE of ϕ at the second step is

ϕ̂ = (A′A)−1A′β̂. (7.5)

To discuss a consistent, asymptotically normal and efficient estimation of TS-GARCH

model, a multivariate diagonal VEC (DVEC) GARCH(1,1)-AMt model is described by

equations,

yt|Ft−1 ∼ AMtd(m;m1, . . . ,md;μt, St), St = m−2
m Ht,

μt = β1 + β2 · R−t + β3 · R+
t ,

Ht = β4 + β5 ⊗ (εt−1ε
′
t−1) + β6 ⊗Ht−1 + β7 · R−t ,

(7.6)

where εt is same as defined in (6.5), β1, β2, and β3 are d-dimensional vectors; β4 =

(βij4),β5 = (βij5),β6 = (βij6) and β7 = (βij7) are d× d symmetric matrices.

The estimation of {m1, . . . ,md, β1,β2,β3, b, c, A0, A} of the multivariate Matrix-

Diagonal GARCH(1,1)-AMt (6.5) from Section 6.3 is not guaranteed to be asymptotically

normal. However, given a consistent, asymptotically normal estimation of {m1, . . . ,md,

β1,β2,β3, b, c, A0, A} of the multivariate Matrix-Diagonal GARCH(1,1)-AMt (6.5), by
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δ-method (see Rao 1973), β̂ derived from the estimation by equations (7.1) and (7.3)

is a consistent, asymptotically normal estimation of the multivariate diagonal VEC

GARCH(1,1)-AMt model (7.6). Then the LSE of ϕ by (7.5) is a consistent, asymptot-

ically normal estimation of TS-GARCH model (7.2). However, the two step procedure

estimation method is generally not efficient.

We now describe an asymptotically normal and efficient estimation method for the

TS-GARCH model.

Comte and Lieberman (2003) established the consistent and asymptotic normality

for the general multivariate GARCH model under certain regularly conditions. Let β̂ be

the MLE of β0 of the above DVEC model (7.6), where β0 denotes the true value of the

parameters and β0 = Aϕ0 where ϕ0 are the true values of ϕ in TS-GARCH model (7.2).

The asymptotic consistency and asymptotic normality for β̂ are expressed as

β̂
p→ β0

and
√
n(β̂ − β0)

D→ N(0, J−1)

where J = E[∇β ln f(y|β0){∇β ln f(y|β0)}′] exists and is nonsingular.

Let ϕ̂ = (A′A)−1A′β̂ be the LSE of ϕ for the relation equation (7.4) at β̂. If the true

value of ϕ is ϕ0, ϕ0 = (A′A)−1A′β0. Then ϕ̂ is a consistent and asymptotically normal

estimator of covariance version TS-GARCH model (7.2), because

ϕ̂ = (A′A)−1A′β̂
p→ (A′A)−1A′β0 = ϕ0,

and
√
n(ϕ̂W −ϕ0)

D→ N(0, (A′A)−1A′J−1A(A′A)−1).

Unfortunately, this estimation is not asymptotically efficient because

E[∇ϕ ln f(y|ϕ0){∇ϕ ln f(y|ϕ0)}′] = A′E[∇β ln f(y|β0){∇β ln f(y|β0)}′]A
= A′JA

�= [(A′A)−1A′J−1A(A′A)−1]−1,

in general, since J �= σ2I (I is a unit matrix) and A is not square.

However, adjusting the LSE ϕ̂ to generalised (weighted) least squares estimation

(WLSE) ϕ̂W , it can provide an asymptotically normal and efficient estimation. Because

ϕ̂W = (A′JA)−1A′Jβ̂
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and

var(
√
n(ϕ̂−ϕ0)) = (A′JA)−1A′Jvar(

√
n(β̂ − β0))JA(A′JA)−1

→ (A′JA)−1A′JJ−1JA(A′JA)−1

= (A′JA)−1

= (E[∇ϕ ln f(y|ϕ0){∇ϕ ln f(y|ϕ0)}′])−1.

Thus, first estimating β of the DVEC model (7.6), by MLE and then estimating ϕ

by WLSE, will provide a consistent, asymptotically normal and asymptotically efficient

estimation of TS-GARCH.

However, there is difficulty to implement this method. Because,

• the estimation of the multivariate diagonal VEC GARCH(1,1)-AMt model (7.6)

derived from the estimation of the multivariate Matrix-Diagonal GARCH(1,1)-

AMt (6.5) in Section 6.3 by equations (7.1) and (7.3) is not guaranteed to be a

MLE or approximately MLE, although we have claimed that the estimation from

Section 6.3 should be approximately the MLE;

• one of the certain regularly conditions of the asymptotic normality (Comte and

Lieberman, 2003) requires εt have finite 8th moment. It was observed that a t-

distribution with between 5 to 8 degrees of freedom provides a good model. So, the

condition of εt having finite 8th moment is not satisfied; and,

• the estimation of the covariance matrix of estimates J is not available from the

multivariate GARCH model using S+FinMetrics.

To get an efficient estimation of TS-GARCH, we attempted to developed a MAT-

LAB program to get a maximum likelihood estimation (MLE) of the TS-GARCH model

directly for the parameters of m1, . . . ,md; ϕ10, ϕ20, ϕ11, ϕ21, . . . , ϕ17, ϕ27. Unfortunately,

the algorithm did not converge. It is a further study to develop an algorithm for efficient

estimation of TS-GARCH parameters using MLE on the constrained parameterisation

of (7.4).

7.4 Further Generalisation of the TS-GARCH Model

In this section, we discuss additional generalisations to the TS-GARCH model. The first

provides alternative specifications of the combined maturity for the covariance parameters
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functions and finds the functional patterns of TS-GARCH model that assure positive-

definite Ht. The second extension presents the general functions of TS-GARCH model.

The third extension discussed is use of other meta-elliptical distributions with given

marginals.

7.4.1 The First Extension: Alternative Specifications of the Combined

Maturity

Section 2 proposed a TS-GARCH(1,1) model (7.2) for covariances processes of RBA

Treasury bond yield increments under the assumption of multivariate asymmetric t-

distribution. In Figure 7.1, the log-linear functions for all TS-GARCH coefficients in

model (7.2) depend on the average combined-maturity of θi and θj given by θij =

(θi + θj)/2 (i, j = 1, . . . , d, i ≤ j), and θii = θi. In some Panels of Figure 7.1, the

individual parameter estimates represented by the solid dots are not well represented by

the fitted line. See for example, the parameters for the constant in the covariance equa-

tion in Panel (β4) and parameters for the GARCH(1) in the covariance equation in Panel

(β6). The TS-GARCH model (7.2) is implied by the multivariate diagonal VEC GARCH

model (7.6). However, the Ht in the diagonal VEC model (7.6) cannot be guaranteed to

be positive-definite if the coefficient matrices β4,. . . , β6 are not positive-definite. The

estimated β4, β6 and β7, calculated by the estimated coefficients in equations of the TS-

GARCH model displayed in Figure 7.1 and the formula in (7.2), are not positive-definite

matrices. Hence the estimated Ht are not positive-definite for many t. Alternative

definitions of combined-maturity for functional patterns are defined for describing the

coefficient matrices in covariance equation of the Matrix-Diagonal GARCH(1,1)-AMt

that guarantees the Ht are positive-definite. The alternative combined-maturity has to

retain the basic properties of (i) being a bivariate symmetric function of θi and θj , and

(ii) the combined-maturity is equal to the maturity when i=j, as θii = θi, i, j = 1, . . . , d.

One possibility is to include the difference of the two-maturity levels in a combined-

maturity as well as the average of the two-maturity levels. After some experiments, an

alternative combined-maturity θij = 1
2(θi + θj − 2

3 |θi + θj|), i, j = 1, . . . , d is proposed

for β4, β6, an alternative combined-maturity θij = 1
2 (θi + θj − 1

2 |θi + θj|), i, j = 1, . . . , d

is proposed for β7 and the average combined-maturity θij = 1
2 (θi + θj) is still used for

β5. These new choices make the fit displayed on Figure 7.2 better than Figure 7.1 and

produces estimated coefficients matrices being positive-definite, ensuring that Ht will be
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positive-definite for all time t.

7.4.2 The Second Extension: General Functions of TS-GARCH Model

An alternative approach to estimate TS-GARCH that directly guarantees the positive-

definite Ht is to find the pattern of A0, A, b and c of Matrix-diagonal GARCH(1,1)-AMt

model as functions of maturity and combined-maturity. The estimated b and c were

displayed on Figure 7.3 as functions of maturity by solid points. The trend lines of b and

c depending on the maturity are clear and displayed. R2(> 0.9) confirm that the trends

are significant and the trend lines fit very well. So the alternative proposed functions in

TS-GARCH can be

βij6 = (ϕ16 + ϕ26 ln(θi))(ϕ16 + ϕ26 ln(θj)),

and

βij7 = (ϕ17 + ϕ27θi)(ϕ17 + ϕ27θj).

However, it is difficult to find the patterns in the elements of A0 and A which are ap-

propriate functions of combined-maturity. If the matrix A is reduced to a d-dimensional

vector, the diagonal of AA′ loses the pattern as observed in univariate GARCH(1,1)-t

models in Chapter 5. The A0 is restricted to be a square lower triangular matrix in

S+FinMetrics.

In order to cover all theses variants, for a d-dimensional random vector yt, a gen-

eralised TS-GARCH model can be described by, assuming that there are in total s pa-

rameters in distribution, m parameters in the mean equation and n parameters in the

covariance GARCH equation,

(yit, hijt) ∼ GARCH(β
(1)
i , . . . , β

(m)
i ;β

(1)
ij , . . . , β

(n)
ij )

β
(k)
i = fk(θi,φk), k = 1, . . . ,m,

β
(k)
ij = gk(θi, θj ,ϕk), k = 1, . . . , n,

(7.7)

where i, j = 1, . . . , d; i ≤ j. fk, (k = 1, . . . ,m), are smooth functions describing the trend

of the k-th GARCH parameters {β(k)
1 , . . . , β

(k)
d } in mean equation, and gk, (k = 1, . . . ,m),

are functions describing the trend of k-th GARCH parameters {β(k)
ij , i �= j} in covariance

equation. A reasonable assumption is that dim(φk) < d, k = 1, . . . ,m and dim(ϕk) <

d(1 + d)/2, k = 1, . . . , n.
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The dimension of all β parameters is dim(β) = md+nd(1+ d)/2, and the dimension

of all new (φ,ϕ) parameters of TS-GARCH is

dim(φ,ϕ) =
m∑
1

dim(φk) +
n∑
1

dim(ϕk) < md+ nd(1 + d)/2 = dim(β).

Thus, the TS-GARCH not only smoothes the GARCH coefficients that provides the

possible interpolation and forecasting for any middle-to-long-term maturities, but also

reduces the number of parameters to be estimated.

For the generalised TS-GARCH model by equation (7.7), the MLE is to find (φ̂, ϕ̂)

which maximise the log likelihood function

L(φ,ϕ|y11, . . . , y1n, . . . , yd1, . . . , ydn), (7.8)

subject to the constraint that the covariance matrices Ht are positive-definite.

Further research is required to develop a reliable and convergent algorithm for the

MLE estimation of TS-GARCH.

7.4.3 The Third Extension: Other Meta-elliptical Distributions with

Given Marginals

It needs to be noted that the t-distribution was rejected by Kolmogorov-Smirnov Test

for the RBA Treasury bond yield increments, although the QQ− t plots indicate that the

t-distribution shows a marked improvement over normal distribution – See Chapter 5.

Further work could be to find an appropriate distribution for each individual yield incre-

ment series in univariate GARCH modelling, and replacing the multivariate asymmetric

t-distribution by a meta-elliptical distribution with given distributions of marginals for

multivariate GARCH modelling.

7.5 Conclusions

In this chapter, we developed the concept of GARCH model of term structure of inter-

est rates (TS-GARCH) initially proposed in Chapter 5. TS-GARCH is a parsimonious

specification for dealing with the GARCH parameters in relation to maturity. The pat-

terns exhibited in Figure 5.3 and Figure 7.1 justify such specification for both univariate

GARCH models and multivariate models. With such a specification, one can have a

predicted specification for yield increments under a different maturity even if the data
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on that particular maturity are absent. Thus, TS-GARCH is a single GARCH equa-

tion that characterises all covariance processes for any possible selection of maturities.

An estimation of the TS-GARCH was provided using a two-step method based on the

estimation of the multivariate Matrix-Diagonal GARCH(1,1)-AMt. This estimation is

generally not efficient. Using the WLSE, instead of the LSE, we have discussed a consis-

tent, asymptotic normal and efficient estimate of TS-GARCH by a two-step approach.

However, it is difficult to implement the estimation. It is worth developing a reliable

algorithm that pools the available yield curves data in a single maximum likelihood fit

to obtain a converging and efficient MLE of the TS-GARCH.

Based on sample and out-of-sample assessment of Australian Treasury bond yield

data, the TS-GARCH model provides an appropriate model for yield increment series in

any possible middle-to-long-term maturity.

As it stands, the TS-GARCH model we are proposing is empirically derived and is

not supported by financial theory as far as we can tell. Derivation of the log-linear (or

similar) relation from financial theory could be an interesting future research challenge.
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Figure 7.1: An estimate of TS-GARCH based on multivariate Matrix-Diagonal

GARCH(1,1)-AMt, combined-maturity=(θi + θj)/2
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Figure 7.2: Another estimates of TS-GARCH: covariance process
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b: GARCH(1)

y = 0.0132Ln(x) + 0.8889
R2 = 0.9215
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c: Lower rates in covariance
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Figure 7.3: Alternative TS-GARCH functions
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Chapter 8

Summary and Conclusions

This thesis has made contributions in the following areas

• Theoretical investigation of θ-parameterised term structure of interest rates;

• Derivations of yield curves;

• Univariate GARCH modelling and the specification of GARCH parameters to pro-

pose TS-GARCH;

• Definition of the multivariate asymmetric t-distribution using meta-elliptical dis-

tribution concepts (Fang, Fang and Kotz 2002);

• Development of Matrix-Diagonal GARCH(1,1) with multivariate asymmetric t-

distribution for yield increments;

• The estimation of Matrix-Diagonal GARCH(1,1) with multivariate asymmetric t-

distribution using an iterative approach which uses available software.

• Development of the concept of term structured GARCH models and a method of

estimation for it with application to RBA term structure of interest rates.

We now expand on each of these contributions.

The θ-parameterisation of term structure of interest rates provides a convenient

mathematical concept, as well as a convenient language for statistical reporting, anal-

ysis and modelling of yield curves. The volatility functions of the term structure in

θ-parameterisation and T -parameterisation are identified and made to correspond to
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each other by a simple transformation θ = T − t. Systematically investigating the term

structure of interest rates in the θ-parameterisation, under certain conditions, we find a

martingale process of the relative bond price and a martingale process of bond price ratio.

Consequently, we get a no-arbitrage condition in terms of the drift process and volatility

process of term structure of interest rates r(t, θ). Also, using a model of θ-parameterised

term structure of interest rates, we find that the volatility of Australian Treasury bond

yield is humped around the maturity in one year, a fact which has been found in other

literature.

The two types of yields data sets available in Australia are the generic yield curves

produced by the Reserve Bank of Australia (RBA) based on the Treasury bonds on

issue and the constructed yield curves of the Commonwealth Bank of Australia (CBA)

derived from swap rates. We use the RBA yield increments for statistical analysis and

empirical modelling. It is found that the short-term (having maturity less than one

year) bill yield increments have different volatility dynamics than do middle-to-long-term

(having maturity in one year or over one year) bond yield increments. The short-term

bill yield increment has no ARCH effects, while both yield increments and squared yield

increments are not autocorrelated. The middle-to-long term bond yield increment has

ARCH effects, while yield increments are not autocorrelated and squared yield increments

are autocorrelated. The distributions for all yield and yield increments are non-normal.

Using available middle-to-long-term Treasury bond yield data from the RBA we de-

velop individual GARCH models for yield increments for 1, 2, 3, 5, 10 year maturities.

These are GARCH(1,1) models with residuals in a t-distribution and exogenous vari-

ables indicating RBA decisions of lowering or raising target cash rate. We found, from

the process of GARCH modelling based on RBA yield data, that: a) The indicator of

RBA monthly Board meetings is not significant in both the mean and variance equation;

b) RBA decisions of lowering target rates is significant in both the mean and variance

equation; c) RBA decision of raising target rate only impacts on the mean equation; and

d) The effects, on both the mean increments and volatility, of RBA raising rates are

significant from lowering rates.

The GARCH(1,1) model effectively captures many important phenomena of the fi-

nancial series considered here such as heavy tails, volatility persistency, volatility mean

reversion, asymmetric impact of positive or negative innovations in mean and volatility,

and the wide stationarity of the residuals process. It is an important finding in this thesis
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that the GARCH coefficients of individual yield increment series with a fixed maturity

time θ are functionally dependent on the time to maturity θ. The functional patterns of

the parameter estimates can be interpreted as:

a) The degrees of freedom of t-distribution of longer-term bond yield increments is

greater, implying that longer-term bond yield increments are closer to being nor-

mally distributed;

b) A change in RBA cash target rate has less impact on longer-term yield increments;

c) The longer-term bond yield has smaller volatility;

d) The longer-term bond yields are less affected by the previous residuals in the yield

increments. i.e. are more efficient in mean reversion;

e) The longer-term bond yields are more persistent with the previous volatility;

f) RBA decisions to lower target rates have less impact on longer-term bond yields

volatility;

g) The residuals of GARCH(1,1) are wide-sense stationary;

h) The asymmetric impact, on both the mean increments and volatility, of the RBA

decisions of raising and lowering the RBA target cash rate. The RBA decision of

lowering the RBA target cash rate has significantly stronger impact on the mean

of yield increment then the decision of raising the RBA target cash rate. The

RBA decision of lowering the RBA target cash rate has significant impact on the

volatility of yield increment, while the RBA decision of raising the RBA target cash

rate has an insignificant impact on the volatility of yield increment.

Our investigation of the patterns of the GARCH parameters as functions of maturity

shows that the degrees of freedom depend linearly on the time to maturity, and other

GARCH parameters depend linearly on the logarithm of time to maturity. These em-

pirical observations lead us to propose a specification for a new model. This GARCH

model, having coefficients expressed as parametric functions of the time to maturity, can

characterise the volatility in a collection of yield increment series for any possible ma-

turity times. The model that was initially proposed in Chapter 5, for the conditional
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variance process only is referred to as GARCH model of term structure of interest rates

(the variance version of the TS-GARCH).

Chapter 6 studied the multivariate GARCH models of the dynamic conditional co-

variance of term structure of yield increments. Available literature in multivariate

GARCH modelling and statistical software for computing the estimation of the multivari-

ate GARCH models are based on the assumption of multivariate Normal distribution or

multivariate t-distribution with the same degrees of freedom for all marginals. However,

the univariate GARCH models developed in Chapter 5 for individual yield increment

time series at each maturity found that the degrees of freedom depend linearly on the

time to maturity, which implies the different marginal distributions of the multivariate

yield increments.

The multivariate asymmetric t-distribution using meta-elliptical distributions con-

cepts (Fang, Fang and Kotz 2002) is defined in Section 6.1, which allows different

marginals. It extends and modifies the multivariate asymmetric t-distribution presented

in Fang, Fang and Kotz (2002). The multivariate asymmetric t-distribution presented

in Fang, Fang and Kotz (2002) had zero mean and a dispersion matrix specified as a

correlation matrix without loss of generality. Also the transformation functions are the

distribution functions of Student’s t-distribution that implies the same dispersions for the

original random variables and for the constructed random variables, dispersions being 1.

For the purpose of modelling the volatility of yield curves, we define the multivariate

asymmetric t-distribution with general mean and covariance matrix, and moreover, the

original random vector and the constructed random vector have the same variances.

With the general multivariate asymmetric t-distribution, a Matrix-Diagonal GARCH(1,1)

model for RBA Treasury yields is developed that allows the different degrees of freedom

of t-distributions in Section 6.2. The estimation of the model using MLE is computation-

ally challenging. We have, alternatively, successfully implemented an iterative method

in Section 6.3. It is concluded in Section 6.4 that the Matrix-Diagonal GARCH (1,1)

model with multivariate asymmetric t-distribution and including exogenous variables in-

dicating RBA raising and lowing target cash rate (6.5) is an appropriate model. This

model captured the main characteristics of financial data series such as mean reversion,

persistency and stationarity of the conditional variances of the residual processes.

The likelihood ratio test shows that the Matrix-diagonal GARCH(1,1) with multi-

variate asymmetric t-distribution (different t-df of marginals) are significantly different
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from the simple Matrix-diagonal GARCH(1,1) with multivariate t-distribution (same t-df

of marginals). The Akaike Information Criterion (AIC) shows that the Matrix-diagonal

GARCH(1,1) model with multivariate asymmetric t-distribution (The correlation of yield

curves is taken into account, and having more parameters) fits better than the univariate

GARCH(1,1) models (The correlation of yield curves is ignored, and having less parame-

ters). The estimates of the parameters in the mean equation and covariance equation of

multivariate Matrix-Diagonal GARCH model also follow functional patterns depending

on the maturities, and the interpretation of these patterns is mostly consistent with those

of the univariate GARCH models. Combining the variance version TS-GARCH modelling

ideas of Chapter 5 with the conditional covariance GARCH process from multivariate

Matrix-Diagonal GARCH modelling of Chapter 6, Chapter 7 proposed the covariance

version TS-GARCH model which is a single GARCH model characterising a collection

of conditional covariance processes of term structure of yield increments.

TS-GARCH is a parsimonious specification dealing with the GARCH parameters in

relation to maturity. The patterns exhibited in Figure 5.3 and Figure 7.1 justify such

specification for both univariate GARCH models and multivariate models. With such a

specification, one can have a predicted specification for yield increments under a different

maturity even if the data on that particular maturity is absent. The main benefit of the

TS-GARCH modelling is, using the limited available observed yield data, to model the

dynamic conditional covariance processes of term structure of yield increments in any

possible maturities based on the smoothing functional GARCH parameters depending

on the maturities. Thus, TS-GARCH is a single GARCH equation that characterises

all covariance processes for any possible selection of maturities. Estimations of the TS-

GARCH was provided by a two-step approach based on the estimation of the multivariate

Matrix-Diagonal GARCH(1,1)-AMt model. We have tested the appropriateness of TS-

GARCH by diagnosis the model fitting, interpolation and forecasting. Based on sample

(1996-2001, maturities in 1, 2, 3, 5, 10 years) and out-of-sample (2000-2004, maturity in

yearly 1, 2, ..., 10 years) assessment of RBA Treasury bond yield data, the TS-GARCH

model provides an appropriate model for yield increment series in any possible middle-

to-long-term maturity. It is worth developing an algorithm that pools the available yield

curves data in a single maximum likelihood fit to obtain a converging and efficient MLE

of the TS-GARCH.
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It is interesting and challenging future work to further investigate of the derivation

of the smoothing functions of multivariate GARCH parameters in relation to maturity

and combined maturity, to describe and support from financial theory.
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Appendix A

Multivariate GARCH Models

A.1 Review of Multivariate GARCH Models

In this section, we review the most popular multivariate GARCH models. They are

the Diagonal VEC model (Bollerslev, Engle and Wooldridge, 1988), the Matrix-Diagonal

model (Ding 1994, Bollerslev, Engle and Nelson 1994), the BEKK model (BEKK 1991,

Engle and Kroner 1995), the CCC model (Bollerslev 1990) and the DCC model (Engle

and Sheppard 2001). This review is based substantially on Zivot and Wang (2003), as

well as the references cited.

Consider a multivariate (d-dimensional) time series εt, εt = (ε1t, · · · , εdt)
′, t = 1, · · · , T .

Assume that the εt have zero mean vector. The conditional covariance matrix of εt is

assumed to follow the time-varying structure given by

cov(εt|Ft−1) = Ht, (A.1)

where Ft is the information set at time t. The diagonal elements of Ht, hiit(= hit), are

the conditional variances of εit; and the non-diagonal elements, hijt, are the conditional

covariance of εit and εjt, where t = 1, · · · , T , i, j = 1, · · · , d, i �= j.

Diagonal VEC Model (DVEC). It was first proposed by Bollerslev, Engle and

Wooldridge (1988). It allows for a flexible and stationary model for time varying covari-

ance in the form

Ht = A0 +

p∑
i=1

Ai ⊗ (εt−iε
′
t−i) +

q∑
i=1

Bj ⊗Ht−j, (A.2)
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where the symbol ⊗ stands for the Hadamard product, i.e., element-by-element mul-

tiplication. All the coefficient matrices are d × d symmetric matrices. In this model,

the volatility process hit of each series follows a univariate GARCH process, while the

covariance process hijt follows a GARCH model in terms of the product of errors εitε
′
jt.

The coefficients of these GARCH processes are stored in matrices A0, Ai and Bj in the

corresponding position. Hence each element of the coefficient matrices can be easily in-

terpreted for the GARCH process. A covariance matrix must be positive semi-definite

(PSD). However, the Ht in the DVEC model cannot be guaranteed to be PSD even if

the lagged Ht−j are, which is a weakness of the DVEC model.

Matrix-Diagonal Model. To overcome the weakness of the DVEC model, Ding

(1994), and Bollerslev, Engle and Nelson (1994) proposed the Matrix-Diagonal model by

letting

Ht = A0A
′
0 +

p∑
i=1

(AiA
′
i)⊗ (εt−iε

′
t−i) +

q∑
i=1

(BjB
′
j)⊗Ht−j , (A.3)

where A0, Ai(i = 1, · · · , p) and Bj(j = 1, · · · , q) are all lower triangular matrices. Then

the coefficient matrices A0A0, AiA
′
i(i = 1, · · · , p) and BjB

′
j(j = 1, · · · , q) are positive-

definite matrices, and, as a result, the time varying covariance matrix Ht is positive-

definite (Zivot and Wang, 2003). Obviously, the Matrix-Diagonal model can be simplified

by restricting Ai(i = 1, · · · , p) and Bj(j = 1, · · · , q) to be vectors or positive scalars. The

Matrix-Diagonal model keeps the DVEC model’s main features that the volatility pro-

cess hit of each series follows a univariate GARCH process, while the covariance process

hijt follows a GARCH model in terms of the product of errors εitε
′
jt. The coefficients

of the GARCH processes are stored in matrices A0A0, AiA
′
i and BjB

′
j in corresponding

positions, and the interpretation of the GARCH coefficient matrices, A0A0, AiA
′
i and

BjB
′
j, is clear and simple.

BEKK Model. With the DVEC and Matrix-Diagonal models, the conditional vari-

ance and covariance are only dependent on their own lagged element and the corre-

sponding cross-product terms. To allow for inclusion of the variances and covariances

corresponding to other component series, Engle and Kroner (1995) formalised an alter-

native model of the conditional covariance process, denoted the BEKK (Baba, Engle,
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Kraft and Kroner) model:

Ht = A0A
′
0 +

p∑
i−1

Ai(εt−iε
′
t−i)A

′
i +

q∑
i−1

BjHt−jB
′
j, (A.4)

where A0 is a lower triangular matrix, and Ai(i = 1, · · · , p) and Bj(j = 1, · · · , q) are

unrestricted square matrices. It can be shown that Ht is guaranteed to be symmetric and

positive-definite matrix. The dynamics allowed in the BEKK model are richer than that

of the DVEC and Matrix-Diagonal models, and the conditional variance and covariance

implied by BEKK are more volatile then that implied by the DVEC and Matrix-Diagonal

models. The conditional variance and conditional covariance process are impacted by

their lagged process and cross-moments of errors, and other series’ lagged process and

cross-moments of errors as well. The weakness of the BEKK model is that there are a

large number of parameters to be estimated and interpretation of the individual coeffi-

cients is more difficult than the DVEC and Matrix-Diagonal models.

Univariate GARCH-based Model: CCC and DCC. The DVEC, Matrix-

Diagonal and BEKK models describe the conditional covariance directly, with a large

number of parameters to model the variances and covariances together. Another approach

is to separate the likelihood function of multivariate GARCH into the components of

uncorrelated GARCH (univariate based GARCH) and correlated GARCH, and then

apply the univariate GARCH models to each of those uncorrelated series.

A simple model of this approach is the Constant Conditional Correlation model

(CCC), proposed by Bollerslev (1990). It assumes that the conditional correlation ma-

trix is constant over time. The k × k covariance matrix Ht is decomposed according to

the equation:

Ht = DtRDt,

where R is the constant conditional correlation matrix, and Dt is the diagonal matrix

with vector (
√
h1t, · · · ,

√
hdt) on the diagonal, and hit is the conditional variance of the

i-th series at time t:

Dt =

⎡⎢⎢⎢⎣
√
h1t

. . .
√
hdt

⎤⎥⎥⎥⎦ (A.5)

with hit following a univariate GARCH process, for i = 1, · · · , d.
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Simply by requiring each univariate conditional variance to be positive and the con-

stant correlation matrix to be of full rank, the CCC model with the assumption of

constant conditional correlation makes the estimation of a large model feasible and guar-

antees the covariance matrix to be positive-definite. However, some literature has shown

that observed financial time series do not always exhibit constant conditional correlation.

For example, Tsui and Yu (1999) rejected the constant correlation assumption for stock

market increments. Fitting the CCC model to Australian yield curves, we have found

that the squared standardised residuals of the CCC model are still correlated, and the

corresponding ARCH effects remain in the standardised residuals. This implies that the

CCC model is not appropriate for Australian Treasury bond yield increments.

Engle and Sheppard (2001) proposed a Dynamical Conditional Correlation

model(DCC) which preserves the estimation based on univariate GARCH and allows

for the correlation matrix to change over time. The problem of multivariate conditional

covariance estimation can be achieved by using a two step method. Step one, estimate

univariate GARCH models for each asset; and step two, using transformed residuals

(referred to as standardised residuals) obtained in step one to estimate a conditional

correlation estimator. Let εt be the residual process of a d-dimensional process yt, then

Engle and Sheppard’s DCC model is formulated as follows:

εt|Ft∼N(0,Ht),

Ht = DtRtDt,

D2
t = diag{ωi}+ diag{κi} ⊗ εtε

′
t + diag{λi} ⊗D2

t−1,

rt = D−1
t εt,

Qt = S ⊗ (ll′ −A−B) +A⊗ rtr
′
t +B ⊗Qt−1,

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2,

(A.6)

where Dt is the d× d diagonal matrix (A.5), with i-th diagonal element
√
hit being the

time varying conditional standard deviation of the i-th series. Rt is the time varying

correlation matrix, with diagonal elements being ones and (i, j)-th element being the

time varying conditional correlation of i-th series and j-th series. The third equation

of (A.6) simply expresses the assumption that conditional variance of each series follows a

univariate GARCH process. The vector of standardised residuals, denoted by rt, is given

by the fourth equation of (A.6). The fifth equation of (A.6) expresses the dynamics of

correlation that depend on its own lagged element and the corresponding cross-product of

errors only, where matrix S is the unconditional covariance of the standardised residuals
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and l is a vector of ones. The last equation is used to ensure that Rt is a correlation

matrix. In theory, the covariance matrix of standardised residuals should be equal to their

correlation matrix, however this is normally not satisfied on a sample basis estimation

process. It is claimed that Qt will be PSD if A, B and (ll′-A-B) are PSD (Engle 2002).

The parameters of Dt, ωi, κi and λi, specify the time evolution of the univariate GARCH

process of the i-th series. The matrices A and B are the parameters describing the

correlation process Rt.

Engle (2002) developed estimation of the DCC model in the special case where the

matrices A and B are simply a scalar or diagonal rather than a whole matrix. This

assumes that the conditional correlations all follow the same dynamic structure, which

may be inappropriate in cases where there are many asset increments. Hafner and Franses

(2003) Generalised the estimation of the DCC model to the case where A equals αα′ (α

is a d-dimensional vector) and B is a scalar.

A.2 Matrix-Diagonal GARCH-t Model of Australian Trea-

sury Yield Increment

The Matrix-Diagonal GARCH(1,1)-t model for Australian bond yield increments is

yt = β1 + β2 · R−t + β3 · R+
t + εt, εt ∼ tm(0,Ht),

Ht = A0A
′
0 + (AA′)⊗ (εt−1ε

′
t−1) + (BB′)⊗Ht−1 + cc′ · R−t ,

(A.7)

where β1, β2, β3 and c are parameter vectors. A0, A and B are lower triangular param-

eter matrices.

The result of estimation from S+FinMetrics are: the estimated parameter m = 5.99

with standard error 0.429, and the log likelihood value is 19644. It is observed that all

elements except column 1 of B are not significant. By reducing the parameter matrix B

to a 1-dimensional vector b, the Matrix-Diagonal GARCH(1,1)-t model for Australian

bond yield increments is

yt = β1 + β2 · R−t + β3 ·R+
t + εt, εt ∼ tm(0,Ht),

Ht = A0A
′
0 + (AA′)⊗ (εt−1ε

′
t−1) + (bb′)⊗Ht−1 + cc′ ·R−t ,

(A.8)

where β1, β2, β3, c and b are parameter vectors. A0 and A are lower triangular parameter

matrices.
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The Matrix-Diagonal GARCH(1,1)-t model A.8 is the same as the Matrix-Diagonal

GARCH(1,1)-AMt (6.5) under the assumption of the same degrees of freedom of marginals,

m = m1 = m2 = · · · = md. Estimate the Matrix-Diagonal GARCH(1,1)-t model A.8,

the results are: the estimated parameter m = 6.233582 with standard error 0.429236,

and the log likelihood value is 19748. The estimators of the coefficients are displayed in

Table A.1. Matrix-Diagonal GARCH(1,1)-t model (A.8) showed a marked improvement

that has less parameters and larger log likelihood value.
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Table A.1: Outputs of the Matrix-Diagonal GARCH(1,1)-t model

Value Std.Error t value Pr(> |t|)
β

1
(1) -0.002304 0.0012048 -1.9123 0.028

β
1
(2) -0.002795 0.0014744 -1.8954 0.029

β
1
(3) -0.002805 0.0015361 -1.8260 0.034

β
1
(4) -0.002906 0.0015501 -1.8748 0.030

β
1
(5) -0.003047 0.0016175 -1.8840 0.029

β
2
(1) -0.077925 0.0253436 -3.0747 0.001

β
2
(2) -0.061143 0.0295956 -2.0660 0.019

β
2
(3) -0.058135 0.0285033 -2.0396 0.020

β
2
(4) -0.055957 0.0287820 -1.9442 0.026

β
2
(5) -0.052374 0.0251526 -2.0823 0.018

β
3
(1) 0.081739 0.0483859 1.6893 0.045

β
3
(2) 0.072150 0.0596670 1.2092 0.011

β
3
(3) 0.059969 0.0604605 0.9919 0.160

β
3
(4) 0.043436 0.0658144 0.6600 0.254

β
3
(5) 0.020096 0.0879205 0.2286 0.409

A0(1, 1) 0.020800 0.0012636 16.4610 0.000
A0(2, 1) 0.022560 0.0013982 16.1351 0.000
A0(3, 1) 0.023111 0.0014374 16.0781 0.000
A0(4, 1) 0.022852 0.0015433 14.8067 0.000
A0(5, 1) 0.021207 0.0019560 10.8421 0.000
A0(2, 2) 0.004980 0.0006785 7.3399 0.000
A0(3, 2) 0.004842 0.0008204 5.9014 0.000
A0(4, 2) 0.005329 0.0010295 5.1761 0.000
A0(5, 2) 0.005339 0.0017764 3.0054 0.001
A0(3, 3) 0.002536 0.0003002 8.4487 0.000
A0(4, 3) 0.003117 0.0004558 6.8386 0.000
A0(5, 3) 0.004003 0.0012285 3.2582 0.000
A0(4, 4) 0.003639 0.0003639 10.0014 0.000
A0(5, 4) 0.006721 0.0011159 6.0231 0.000
A0(5, 5) 0.006368 0.0009837 6.4738 0.000
A(1,1) 0.255469 0.0164353 15.5440 0.000
A(2,1) 0.237497 0.0150649 15.7649 0.000
A(3,1) 0.235170 0.0152702 15.4006 0.000
A(4,1) 0.226176 0.0154043 14.6826 0.000
A(5,1) 0.199620 0.0187390 10.6526 0.000
A(2,2) 0.050221 0.0078864 6.3681 0.000
A(3,2) 0.055298 0.0096606 5.7240 0.000
A(4,2) 0.047822 0.0119927 3.9876 0.000
A(5,2) 0.040133 0.0208356 1.9262 0.027
A(3,3) 0.029558 0.0042247 6.9966 0.000
A(4,3) 0.01816 0.007189 2.527 0.005
A(5,3) 0.02516 0.020096 1.252 0.105
A(4,4) 0.02062 0.008247 2.500 0.006
A(5,4) 0.04534 0.024759 1.831 0.033
A(5,5) 0.04573 0.010981 4.164 0.000
b(1) 0.88523 0.011351 77.985 0.000
b(2) 0.90313 0.009863 91.566 0.000
b(3) 0.90481 0.009784 92.481 0.000
b(4) 0.90828 0.010821 83.935 0.000
b(5) 0.91842 0.015056 61.001 0.000
c(1) 0.06209 0.011622 5.342 0.000
c(2) 0.05762 0.014147 4.073 0.000
c(3) 0.05472 0.014941 3.662 0.000
c(4) 0.04329 0.015313 2.827 0.002
c(5) 0.02257 0.017463 1.292 0.098
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Appendix B

Girsanov Theorem and Itô

Lemma

We recall the Girsanov’s Theorem, which allows changing the probability measure of a

given Itô process by changing its drift.

Theorem B.1 (Girsanov) Let Wt be a standard Brownian motion on a filtered proba-

bility space (Ω,F , P ). Suppose that ϕ(t) is an adapted real-valued stochastic process such

that

EP [ρ(t)] = 1

where

ρ(t) = exp

{∫ t

0
ϕ(s)dWs − 1

2

∫ t

0
ϕ(s)2ds

}
Define a probability measure P̃ on (Ω,F) equivalent to P by means of the Radon-Nikodym

derivative
dP̃

dP
= ρ(t), P − as

Then the process W̃ , which is given by the formula

W̃t = Wt −
∫ t

0
ϕ(s)ds, ∀t ∈ [0, T ]

follows a standard Bronwian motion on the space (Ω,F , P̃ ).

See Dothan (199) or Musiela and Rutkowski (1997).
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The Itô Lemma is a very useful tool and widely used in finance pricing. It shows

how to derive the stochastic dynamic process f(t, x), while x described by a stochastic

differential equation.

Lemma B.1 (Itô) Suppose a stochastic process x follows an Itô process

dx = μ(t, ω)dt + σ(t, ω)dW

Then any function f(∈ C2) of the process x and time t satisfies

df =

[
∂f(t, x)

∂t
+
∂f(t, x)

∂x
μ(t, ω) +

1

2

∂f2(t, x)

∂x2
σ2(t, ω)

]
dt +

∂f(t, x)

∂x
σ(t, ω)dW

provided the function is sufficiently differentiable.

See Dothan (1990).
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Appendix C

Swap and Constructed Yield

Curve of the Commonwealth

Bank Australia

C.1 Swap, Swap Rates and Valuation of Swaps

Swaps are popular interest rate derivatives that are important for the modelling of interest

rates, for the estimates of interest rates (or yield) can be derived from the market prices

of swaps. A method to construct a yield curve is introduced in Chapter 4.

A Swap is an agreement between two companies to exchange cash flows in the future.

The agreement defines the dates when the cash flows are to be paid and the way in which

they are to be calculated. The most common type of swap is a ‘plain vanilla’ interest

rate swap. In this contract, a company agrees to pay cash flows equal to interest at

a predetermined fixed rate on a notional principal for a number of years. In return, it

receives interest at a floating rate on the same notional principal for the same period of

time. The principal itself is not exchanged, so it is termed the notional principal. In

Europe, the floating rate in many interest rate swap agreements is the London Interbank

Offer Rate (LIBOR). The floating rate is usually set at the beginning of each period to

which it will apply and is paid at the end of the period. We say a swap is settled in

arrears if the payment is made at the end of each period. A swap is settled in advance

if payments are made at the beginning of each period. In that case, the payments are

discounted to the beginning of each period to correspond to a swap settled in arrears.
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A payer swap is the fixed-for-floating swap when the fixed rate is paid and the floating

rate is received. Similarly, a receiver swap is the floating-for-fixed swap when the floating

rate is paid and the fixed rate is received.

Let us consider a collection of future dates: T0 = T < T1 < . . . < Tn. A forward

interest rate swap is a swap agreement entered at trade date t , t ≤ T0 = T < T1 < . . . <

Tn. T0 is the start date of the swap, and T1, . . . , Tn are settlement (payment) dates. Let

δj , j = 1, . . . , n be the number of years of the j − th accrual period [Tj−1, Tj ]. Consider

the forward payer swap settled in arrears. The floating rate R(Tj, Tj+1) received at time

Tj+1 is set at time Tj by reference to the price of zero-coupon bond over that period,

so R(Tj , Tj+1) is treated as the zero rate (or yield-to maturity) over the time interval

[Tj , Tj+1], and satisfies

B(Tj , Tj+1)
−1 = 1 + δjR(Tj , Tj+1),

which agrees with the market LIBOR.

More generally, the forward rate F (t, Tj , Tj+1) satisfies

1 + δj+1 · F (t, Tj , Tj+1) =
B(t, Tj)

B(t, Tj+1)
,

R(Tj , Tj+1) = F (Tj , Tj , Tj+1).

Stipulated by the no-arbitrage theory, the value of a swap is zero at the initial time

t. But it may become positive or negative after it has been in existence for some time. A

swap contract is equivalent to a long position in one bond combined with a short position

in another bond or to a portfolio of forward rate agreements. In either case we use the

zero rate for discounting. Define:

• Bfix: value of fixed-rate bond underlying the swap,

• Bfl: value of floating-rate bond underlying the swap.

The value of the payer swap is

Vswap = Bfl −Bfix. (C.1)

Without loss of generality, assume that the principal is N = 1. At date Tj , j =

1, . . . , n, the cash flows of a payer swap are F (t, Tj−1, Tj)δj and −Kδj. The value at time
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t of a forward payer swap with discounting factors B(t, Tj), j = 1, . . . , n, is given by

VFS =

n∑
j=1

B(t, Tj) {F (t, Tj−1, Tj)δj −Kδj}

=

n∑
j=1

B(t, Tj)

{
B(t, Tj−1)

B(t, Tj)
− 1−Kδj

}

=
n∑

j=1

{B(t, Tj−1)−B(t, Tj)−KδjB(t, Tj)} (C.2)

= B(t, T0)−B(t, Tn)−
n∑

j=1

KδjB(t, Tj),

and after rearranging,

VFS = B(t, T0)−
n−1∑
j=1

KδjB(t, Tj)− (1 +Kδn)B(t, Tn). (C.3)

Equation (C.3) shows that a forward payer swap settled in arrears is a contract to

deliver a coupon-bearing bond and to receive in the same time t a zero-coupon bond. It

can be described by a replicating strategy (portfolio) as follows: at time t, t ≤ T0 = T <

T1 < . . . , Tn,

• Sell 1 zero-coupon bond with maturity T0,

• Buy a coupon-bearing bond which pays holder the amount Kδj (fixed interest) at

T1, . . . , Tn−1 and (interest plus principal) 1 +Kδnat date Tn, where K is the fixed

rate which makes the value of the portfolio zero at time t.

Similarly, for any notional principal N , the value of the forward swap is

VFS = N ·
⎧⎨⎩B(t, T0)−

n−1∑
j=1

KδjB(t, Tj)− (1 +KδnB(t, Tn))

⎫⎬⎭ .

For forward swaps settled in advance, payments will be made at the beginning of each

period; these payments are discounted back to the beginning of each period corresponding

the swap settled in arrears. The discount methods vary from country to country. The

discounting factors, for the cash flow at each payment date Tj, for both fixed or floating

parts are the same, which is 1/[1+F (t, Tj , Tj+1)δj+1]. The value at time t of the forward
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swap pay in advance is

V ∗FS =
n−1∑
j=0

B(t, Tj)
F (t, Tj , Tj+1)δj+1 −Kδj+1

1 + F (t, Tj , Tj+1)δj+1

=
n−1∑
j=0

B(t, Tj)
B(t, Tj)/B(t, Tj+1)− 1−Kδj+1

B(t, Tj)/B(t, Tj+1)

=

n−1∑
j=0

{B(t, Tj)−B(t, Tj+1)−Kδj+1B(t, Tj+1}

=

n∑
j=1

{B(t, Tj−1)−B(t, Tj)−KδjB(t, Tj)} ,

(C.4)

which exactly agrees with the value of the forward swap settled in arrears, in (C.2).

In the Australian market, the floating part is discounted by the floating rate and the

fixed part is discounted by the fixed rate K. The cash flows at each payment date Tj are

F (t, Tj , Tj+1)δj+1

1 + F (t, Tj , Tj+1)δj+1

and

− Kδj+1

1 +Kδj+1
.

The value at time t of such a forward swap settled in advance is

V ∗∗FS =

n−1∑
j=0

B(t, Tj)

{
F (t, Tj , Tj+1)δj+1

1 + F (t, Tj , Tj+1)δj+1
− Kδj+1

1 +Kδj+1

}

=
n−1∑
j=0

B(t, Tj)

{
B(t, Tj)/B(t, Tj+1)− 1

B(t, Tj)/B(t, Tj+1)
− Kδj+1

1 +Kδj+1

}

=
n−1∑
j=0

{
B(t, Tj)−B(t, Tj+1)− Kδj+1

1 +Kδj+1
B(t, Tj)

}

=

n−1∑
j=0

{
1

1 +Kδj+1
B(t, Tj)−B(t, Tj+1)

}

=

n∑
j=1

{
1

1 +Kδj
B(t, Tj−1)−B(t, Tj)

}
,

(C.5)

which is the value of the forward payer swap settled in arrears discounting at the fixed
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rate K, because

V ∗∗FS =
n∑

j=1

B(t, Tj)

1 +Kδj

{
B(t, Tj−1)

B(t, Tj)
− (1 +Kδj)

}
. (C.6)

From now on, we restrict our attention to the forward interest rate swap settled in

arrears.

The forward swap rate K(t, T, Tn) is the value of the fixed rate K which makes the

value of the forward swap at initiation zero. i.e. the value of K for which VFS(t) = 0.

By (C.3),

K(t, T, Tn) =
B(t, T )−B(t, Tn)∑n

j=1 δjB(t, Tj)
. (C.7)

A swap is the forward swap with t = T . The swap rate is the forward swap rate with

t = T , and

K(T, T, Tn) =
1−B(T, Tn)∑n
j=1 δjB(T, Tj)

. (C.8)

Forward swap rates and swap rates are quoted daily by the financial institutions that

offer the interest rate swap contract. Practically, the average of bid and offer fixed rates in

the forward swap (swap) market is called the forward swap rate (swap rate), respectively.

C.2 Money Market: Constructed Yield Curve of the Com-

monwealth Bank Australia (CBA)

Term structures of interest rates are usually derived from bond prices. However, the

bond market in Australia is underdeveloped, because only 10 year ’benchmark’ exists in

the Australian bond market. An alternative approach of estimating yield curves is used

by the Commonwealth Bank Australia, which uses bank notes to derive yield curves.

Under the generally accepted assumption of no-arbitrage, the yield curves obtained at

CBA should be consistent with those produced by RBA as introduced in the last section.

The method used in this section is based on the valuation of swaps discussed in

Section 2.2.2. We will show how the yield curve is derived from those bank’s notes, in

particular, how forward rates are deduced from swap rates. We will consider the interest

rate swap settled in arrears.

From (C.8), we have

K(T, T, Tn) =
1−B(T, Tn)∑n
j=1 δjB(T, Tj)

,
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and therefore solving for bond price B(T, Tn) (or called discount factor)

B(T, Tn) =
1−K∑n−1

j=1 δjB(T, Tj)

1 +Kδn
, (C.9)

the yield-to-maturity R(T, Tn) is obtained by

R(T, Tn) =
B−1(T, Tn)− 1

Tn − T . (C.10)

The procedure to construct the yield curve from an interest rate swap settled in

arrears uses the following steps.

Step a) Calculate the discount factor using the available market short-term bill rates.

Step b) Price the synthetic swap rates by formula (C.8).

Step c) Linearly interpolate intermediate swap rates using the synthetic swap rates and

already known long term swap rates.

Step d) Calculate corresponded discounting factors from swap rates by formula (C.9).

Step e) Find the yield-to-maturity from formula (C.10).

We test this approach on small data sets and show how it works in an Excel template

in Appendix B, which is called Yield Curve Builder by the RBA.

The forward interest rate F (t, T, Tn) can be similarly constructed by using the forward

swap rate K(t, T, Tn). The discounting factors B(t, Tn) can be solved from (C.7) to give

B(t, Tn) =
B(t, T )−K∑n−1

j=1 δjB(t, Tj)

1 +Kδn
, (C.11)

and forward interest rate is obtained by

F (t, T, Tn) =
1

Tn − t
{
B(t, T )

B(t, Tn)
− 1

}
.

C.3 An Example: “Yield Curve Builder”

As an example, we show a yield curve builder playing with inputs using the Excel spread

sheet.
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INPUTS

Bill

Dates Bill Rates

reference date 24-Jan-02

1 day 25-Jan-02 4.3100 %

1 month 24-Feb-02 4.3300 %

2 months 24-Mar-02 4.3583 %

3 months 24-Apr-02 4.3617 %

6 months 24-Jul-02 4.3915 %

Swaps

Frequency Swap Rates

1 year 4 5.220 %

3 years 4 5.595 %

4 years 2 5.835 %

5 years 2 5.970 %
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OUTPUTS: Yield curve builder

Step a) discounting factors B(t, Ti) (from the bill rates)

Dates Bill Rates discounting factors

reference date 24-Jan-02 1

1 day 25-Jan-02 4.3100 % 0.99988193

1 month 24-Feb-02 4.3300 % 0.99633594

2 months 24-Mar-02 4.3583 % 0.99300436

3 months 24-Apr-02 4.3617 % 0.98935956

6 months 24-Jul-02 4.3915 % 0.97868710

step a)

Step b) Pricing of 6 months Synthetic Swap by (C.8)

Principal 1,000,000.00

Freq 2

Fixed Rate 4.367816 %

step b)

Step c) Linear interpolate swap rates

Swaps Maturity Date Swap Fixed Linear Interpolated Swap Rates

Rates Fixed Swap rate

6 months 24-Jul-02 4.367816 % 4.3678 %

9 months 24-Oct-02 N/A 4.79391 % 4.7939 %

1 year 24-Jan-03 5.22000 % 5.2200 %

step c)
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Step d, e) calculate discounting factors by (C.9), and yield by (C.10)

Bill Rates Dates Bill Rates Length of period Discount factor

reference date 24-Jan-02 0 1

3 months 24-Apr-02 4.3617 % 0.246575342 0.98935956

6 months 24-Jul-02 4.3915 % 0.495890411 0.97868710

9 months 24-Oct-02 5.6711 % 0.747945205 0.95930943

1year 24-Jan-03 6.0570 % 1 0.94289155

step e) step d )

Results: Yield Curve Builded

Dates to Maturities Yield Rates

1 day 25-Jan-02 4.3100 %

1 month 24-Feb-02 4.3300 %

2 months 24-Mar-02 4.3583 %

3 months 24-Apr-02 4.3617 %

6 months 24-Jul-02 4.3915 %

9 months 24-Oct-02 5.6710 %

1year 24-Jan-03 6.0567 %

This sample is to construct the yield curve, input 3 months, 6 months zero rates and

1 year fixed swap rate, output 9 month, 12 month zero rates. By the same procedure,

we can construct 9 months, 12 months, 15 months, 18 months, 24 months zero rates if

input 3 months, 6 months zero rates and 2 years swap rate. For the accuracy of the

construction, we normally try to use short-term swap rate and linear interpolation for

other swap rates.

C.4 CBA Yields–Compared to the RBA Yields

This section is based on CBA yields and the RBA yields maturities in 1 month, 3 months,

3 years, 5 years and 10 years, from 02 Jan 1996 to 13 Jan 1999. Time series plots, see

Figure C.1, show that the yield curves of CBA have very similar trends to the RBA’s.

Typically, CBA yields are slightly higher than the RBA yields. Autocorrelation function

plots of yield series (Figure C.2) show that each yield series with a fixed maturity are
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highly autocorrelated.

Figure C.3 shows short-term bill yield increments of CBA vs. RBA, and Figure C.4

shows middle-to-long-term bond yield increments of CBA vs. RBA.

Figure C.5 shows that the autocorrelation functions (ACF) of the CBA yield incre-

ments are similar to those of the RBA yield increments. Both for the CBA and the RBA

series, yield increments and squared yield increments of short-term bill are uncorrelated.

For the middle-to-long-term bonds, yield increments are serially un-autocorrelated, but

squared yield increments are autocorrelated. This means that the middle-to-long-term

bond yield increments exhibit volatility.

Figure C.6 shows that the quantile-quantile (QQ) normal plots (Lee 1995) of CBA

yield increments are similar to those for RBA yield increments at each individual ma-

turity level. It is also clear from this figure that the yield increments are not normally

distributed.
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Figure C.2: ACF of CBA/RBA yield (1 month, 3 years and 10 years).

141



CBA 1-month yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

CBA 3-months yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

RBA 1-month yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

RBA 3-months yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

Figure C.3: CBA/RBA short-term bill yield increments

142



CBA 3-years yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

CBA 10-years yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

RBA 3-years yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5

RBA 10-years yield increments
(Jan 96 - Jan 99)

-0.5

-0.3

-0.1

0.1

0.3

0.5
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Figure C.5: ACF of CBA/RBA yield increments and squared yield increments.
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Appendix D

Acronyms

ARCH AutoRegressive Conditional Heteroskedasticity

BGM Brace, Gatarek and Musiela

CBA The Commonwealth Bank of Australia

CCC Constant Conditional Correlation

CIR Cox, Ingersoll and Ross

DCC Dynamic Conditional Correlation

DVEC Diagonal VEC

EBKK Baba, Y., Engle, R. F., Kraft, D. F. and K. F. Kroner

FIGARCH Fractionally Integrated GARCH

GARCH Generalised AutoRegressive Conditional Heteroskedasticity

HJM Heath-Jarrow-Morton, 1992

IGARCH Integrated GARCH

RBA The Reserve Bank of Australia
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