
Efficient Influence Related Queries

Author:
Yang, Jianye

Publication Date:
2017

DOI:
https://doi.org/10.26190/unsworks/19847

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/58501 in https://
unsworks.unsw.edu.au on 2024-04-30

http://dx.doi.org/https://doi.org/10.26190/unsworks/19847
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/58501
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Efficient Influence Related Queries

by

Jianye Yang

B.E. Xidian University P.R.C, 2010

M.E. Xidian University P.R.C, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL

OF

Computer Science and Engineering

Monday 12th June, 2017

All rights reserved.

This work may not be reproduced in whole or in part,

by photocopy or other means, without the permission of the author.

c© Jianye Yang 2017

z8503529
Text Box

ii

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive

and to make available my thesis or dissertation in whole or part in the University

libraries in all forms of media, now or here after known, subject to the provisions

of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I

also retain the right to use in future works (such as articles or books) all or part

of this thesis or dissertation. I also authorise University Microfilms to use the 350

word abstract of my thesis in Dissertation Abstract International (this is applicable

to doctoral theses only). I have either used no substantial portions of copyright

material in my thesis or I have obtained permission to use copyright material; where

permission has not been granted I have applied/will apply for a partial restriction

of the digital copy of my thesis or dissertation.’

Signed ...

Date ...

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the

conversion to digital format.’

Signed ...

Date ...

iii

iv

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institu-

tion, except where due acknowledgement is made in the thesis. Any contribution

made to the research by others, with whom I have worked at UNSW or elsewhere,

is explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style, presentation and

linguistic expression is acknowledged.’

Signed ...

Date ...

v

vi

Abstract

Recently, there is a surge of interest on mining valuable information from the given

datasets. As one of the most important information mining tasks, influence anal-

ysis has drawn tremendous attention in both industry and academic communities.

Due to the large scale of dataset, there is an emerging call for efficient processing

influence related queries. In this thesis, we study three important influence related

problems regarding three types of data, i.e., product and user preference data,

spatio-textual objects, and set-valued data.

Firstly, for product and user preference data, we formulate the problem of

influence-based cost optimization on user preference functions, which is critical to

unlock the great scientific and social-economic value of these data. By utilizing

the classical k-level computation techniques, we show the solution space of our

problem can be reduced to a finite number of possible positions (points). To efficient

process this problem, we propose a traverse-based 2-dimensional algorithm with

linear time complexity. For general multi-dimensional spaces, we develop a space

partition based exact algorithm. To accelerate the computation, we further devise

a randomized sampling method which can efficiently generate solutions with high

accuracy.

Secondly, for spatio-textual objects, we present a novel definition of object influ-

ence in applications where objects are of different categories. Under this definition,

vii

we investigate the problem of finding the top-k most influential objects. We first

show that this problem is NP-hard with respect to the number of object categories.

To tackle the computational hardness, we then develop efficient nearest neighbor

set based exact as well as approximate algorithms. In particular, our polynomial

approximate algorithm has a 2-factor performance guarantee.

Finally, for set-valued data, we investigate the problem of set containment join

which is an essential and fundamental tool for set-valued data analysis. Based on

the computing paradigms, we classify the existing algorithms into two categories,

namely intersection-oriented and union-oriented, both of which have their limits.

By utilizing the property of skewness in real-life data, we propose a new union-

oriented method, namely TT-Join, which not only enhances the advantage of the

previous union-oriented methods but also integrates the goodness of intersection-

oriented methods by imposing a variant of prefix tree structure.

viii

Publications

• Jianye Yang, Ying Zhang, Wenjie Zhang, Xuemin Lin. Influence based cost

optimization on user preference. ICDE 2016. (Chapter 3)

• Jianye Yang, Wenjie Zhang, Ying Zhang, Xiaoyang Wang, Xuemin Lin.

Categorical top-k spatial influence query. WWWJ 2016. (Chapter 4)

• Jianye Yang, Wenjie Zhang, Shiyu Yang, Ying Zhang, Xuemin Lin. TT-

Join: Efficient set containment join. ICDE 2017. (Chapter 5)

• Jianye Yang, Wenjie Zhang, Shiyu Yang, Ying Zhang, Xuemin Lin. Efficient

set containment join. Under review by VLDBJ. (Chapter 5)

ix

Dedication

To my family

my parents

my relatives

my friends

For their love and support

x

xi

Acknowledgements

First of all, I would like to deliver my sincere gratitude to my supervisors Prof.

Xuemin Lin and Dr. Wenjie Zhang for their constant support and guidance. I

thank Prof. Xuemin Lin for providing me the great opportunity to study in such

a competitive research group and guiding me constantly through the road of my

research. Also, I learnt the characteristics of an excellent researcher from Prof.

Xuemin Lin - passion, diligence and earnestness in the research. I thank Dr. Wenjie

Zhang for her constant encouragement and helpful guidance in my research work.

Secondly, I would like to express my great gratitude to my co-supervisor Dr. Ying

Zhang for his constant encouragement and guidance. He has walked me through

all the stages of the writing of this thesis. I also learnt many research skills and

valuable research understandings from Dr. Ying Zhang. Without his consistent

and illuminating instruction, this thesis could not have reached its present form.

Thirdly, parts of the work in this thesis were conducted in collaboration with Dr.

Xiaoyang Wang and Dr. Shiyu Yang. I thank them for supporting the work

presented in this thesis.

Besides, special thanks go to the former group members:Dr. Xiang Zhao, Dr.

Wenren Yu, Dr. Liming Zhan, Dr. Chengyuan Zhang as well as fellow group

members: Dr. Lijun Chang, Dr. Lu Qin, Dr. Zengfeng Huang, Dr. Xin Cao, Dr.

Yang Wang, Mr. Long Yuan, Mr. Xing Feng, Ms. Shenlu Wang, Mr. Xiang Wang,

xii

Mr. Longbin Lai, Mr. Bi Fei, Ms. Chen Zhang, Mr. Xubo Wang, Mr. Fan Zhang,

Mr. Wei Li, Mr. Haida Zhang, and Mr. Yang Yang. The time we spent together

will be memorized forever.

Last but not least, I am very thankful to my beloved family, parents and relatives

for their love, support and encouragement during my PhD study.

xiii

Contents

Abstract vii

Publications ix

Dedication x

Acknowledgements xii

List of Figures xix

List of Tables xxii

List of Algorithms xxiii

1 Introduction 1

1.1 Motivations . 2

1.1.1 Influence based Cost Optimization on User Preference 2

1.1.2 Categorical Top-k Spatial Influence Query 5

1.1.3 Efficient Set Containment Join 7

1.2 Contributions . 10

1.3 Organization . 11

2 Related Work 13

xiv

2.1 Influence based Cost Optimization on User Preference 13

2.1.1 Feature Based Top-k Queries 13

2.1.2 Preference Based Influence Queries 15

2.1.3 Dominance Based Influence Queries 17

2.2 Categorical Top-k Spatial Influence Query 18

2.2.1 NN Search and RNN Search 18

2.2.2 Maximum Influence Problem 19

2.2.3 Spatial Keyword Queries . 21

2.3 Efficient Set Containment Join . 23

2.3.1 Set Containment Joins . 23

2.3.2 Set Containment Queries . 25

2.3.3 Set Similarity Joins . 26

2.3.4 Join Problems Using MapReduce 27

3 Influence based Cost Optimization on User Preference 29

3.1 Overview . 29

3.2 Background . 33

3.2.1 Problem Definition . 34

3.2.2 K-Level Problem . 36

3.2.3 Reduce the Search Space . 37

3.2.4 Naive Solutions . 38

3.3 Traverse Based Method (2 dimension) 40

3.3.1 Motivation . 40

3.3.2 Anchor-Pair Region . 42

3.3.3 Algorithm . 46

3.3.4 Indexing . 49

3.3.5 Discussion . 50

xv

3.4 Space Partition Based Method . 51

3.4.1 Motivation of Space Partition 51

3.4.2 Space Partition Based Pruning Techniques 52

3.4.3 Exact Algorithm . 54

3.4.4 Sampling Based Solution . 55

3.5 Experimental Study . 58

3.5.1 Experimental Setup . 58

3.5.2 Performance tuning . 61

3.5.3 Evaluating Accuracy . 63

3.5.4 Evaluating Efficiency . 64

3.6 Conclusion . 67

4 Categorical Top-k Spatial Influence Query 68

4.1 Overview . 68

4.2 Background . 71

4.2.1 Problem Statement . 71

4.2.2 R-tree Distance Metric Based Cost 73

4.3 Framework . 76

4.3.1 Problem Intractability . 76

4.3.2 Overall Framework . 78

4.4 Possible Participant Set Finding . 81

4.4.1 Expanding Entry Picking . 82

4.4.2 Pruning Distance Finding 83

4.4.3 Entry Influences Updating 88

4.4.4 Early Termination . 90

4.5 Optimal Functional Unit Computation 91

4.5.1 Exact Algorithm . 92

xvi

4.5.2 Approximate Algorithm . 93

4.6 Empirical Studies . 97

4.6.1 Experimental Setup . 98

4.6.2 Experimental Results . 99

4.7 Conclusions . 106

5 Efficient Set Containment Join 108

5.1 Overview . 108

5.2 Preliminaries . 111

5.3 Existing Solutions . 113

5.3.1 Intersection-Oriented Methods 113

5.3.2 Union-Oriented Methods . 119

5.3.3 Apply Set Similarity based Methods 123

5.4 Our Approach . 124

5.4.1 Motivation . 124

5.4.2 Inverted Index Based Method 125

5.4.3 Tree Based Method (TT-Join) 132

5.5 Distributed Processing . 138

5.5.1 Framework . 138

5.5.2 Distribution Scheme . 139

5.5.3 Load-Aware Partitioning . 144

5.6 Experimental Studies . 149

5.6.1 Centralized Evaluations . 149

5.6.2 Distributed Evaluations . 158

5.7 Conclusion . 165

6 Final Remarks 167

xvii

6.1 Conclusions . 167

6.2 Directions for Future Work . 168

6.2.1 Cost Constraint based Influence Maximization 169

6.2.2 General Distance Cost Function based Spatial Influence Query169

6.2.3 Spatio-textual Set Containment Join 169

Bibliography 171

xviii

List of Figures

3.1 A motivation example . 31

3.2 The 3-level of a set of hyperplanes 36

3.3 Anchor-pair(AP) regions . 42

3.4 Traverse AP-region . 42

3.5 Line intersection order . 49

3.6 Space partition . 49

3.7 Sampling Approach . 56

3.8 Comparing methods (2d) . 61

3.9 Evaluating pruning rule . 61

3.10 Tuning # of sampling rounds nr 62

3.11 Evaluating effect of cost function 63

3.12 Accuracy vs datasets . 64

3.13 Accuracy vs d . 64

3.14 Accuracy vs |W| . 64

3.15 Accuracy vs k . 64

3.16 Performance against different datasets 64

3.17 Performance vs dimensionality d 65

3.18 Performance vs |W| . 66

3.19 Performance vs k . 66

xix

4.1 Motivating Example . 69

4.2 Cost construction for index node . 74

4.3 Gap between edgeExistDist based pruning distance and the optimal

pruning distance . 85

4.4 Pruning distance construction for R-tree entries 87

4.5 An example of affecting state . 89

4.6 An example of early termination in Algorithm 5 90

4.7 Effect of Data Index Strategy on CA 100

4.8 Effect of |q.ψ| on CA . 101

4.9 Effect of |q.ψ| on GB . 101

4.10 Effect of |q.ψ| on SYN . 102

4.11 Scalability Test on CA . 103

4.12 Scalability Test on GB . 104

4.13 Scalability Test on SYN . 104

4.14 Effect of Expanding Strategy on CA 105

4.15 Effect of Expanding Strategy on GB 106

5.1 A motivation example where ei denotes a skill, R consists of four job

advertisements with required skills, and S represents four job-seekers

with their skills. 109

5.2 Inverted index on S . 116

5.3 Prefix tree on R . 116

5.4 Patrica trie on R . 117

5.5 Limited tree on R . 117

5.6 Augmented prefix tree on S . 117

5.7 Partition-based method . 122

5.8 Inverted index on R . 127

xx

5.9 Effect of data skewness . 127

5.10 2 least frequent elements based inverted index on R 130

5.11 Tree structures for tree based method 133

5.12 Example of different distribution schemes. 142

5.13 Effect of k on running time . 152

5.14 Processing Time . 154

5.15 Memory Usage . 156

5.16 Vary number of records . 157

5.17 Compare partition strategies . 160

5.18 Vary number of intervals (N) . 160

5.19 Vary number of records on Spark 162

5.20 Vary number of slave nodes on Spark 163

5.21 Vary number of records on Hadoop 164

5.22 Vary number of slave nodes on Hadoop 164

xxi

List of Tables

3.1 The summary of notations . 34

3.2 Experimental Parameters . 59

4.1 The summary of notations . 71

4.2 Summary of maxInf and minInf for Figure 4.5 89

4.3 Query Settings for Scalability Test 102

5.1 The summary of notations . 112

5.2 Characteristics of datasets . 150

5.3 Datasets statistics . 159

xxii

List of Algorithms

1 TraverseBased-2d(A, H, f , k) . 48

2 PartitionBased-Exact(H, f , k, N , D) 55

3 Sampling-Algorithm(Hc, ρ, nr) 57

4 TopInfluentialObjects . 78

5 Step 1 . 82

6 NNS-based TopInfluentialObjects 88

7 Step 2 . 92

8 NNS-Exact (q, o, P) . 94

9 NNS-Appro (q, o, P) . 96

10 RI-Join (R, S) . 114

11 PRETTI(TR, IS) . 115

12 PIEJoin(TR, TS) . 118

13 A framework of simple union-oriented method(R, S) 120

14 TT-Join(TR, TS, k) . 134

15 Framework . 138

16 Optimal partition . 147

17 Heuristic partition . 149

xxiii

xxiv

Chapter 1

Introduction

In this information age, data is enriched at a very rapid rate. Efficient mining

valuable information from the given data system is of great interest, which not

only opens a window to inspect the current state of the system, but also provides

useful tools for future decision-making. As one of the most important information

mining tasks, influence analysis has drawn tremendous attention in both industry

and academic communities. For instance, in the e-business, analyzing the influence

of a product regarding the user preferences and other competing products is fun-

damental in a wide range of applications such as marketing and advertising; in the

physical world, analyzing the influence of a facility (e.g., gas station, supermarket)

provides great value on applications such as decision support and resource alloca-

tion; in social media (e.g., Facebook, Twitter), analyzing the influence of a post is

useful for tracking trending topics.

In this thesis, we study three important influence related problems on three

types of datasets, namely product and user preference data, spatial object data,

and set-valued data. Specifically, for product and user preference data, we for-

mulate and investigate the problem of influence based cost optimization on user

1

2 Chapter 1. Introduction

preference, where each object is described by a point in a d-dimensional space and

each preference function is a linear function represented by a weight vector with

d components; for spatial object data, we study the problem of categorical top-k

spatial influence query, where each object is modeled as a point in 2-dimensional

Euclidean space with a specific type; for set-valued data, we investigate the prob-

lem of efficient set containment join, where each data record is described by a set

of terms.

In Section 1.1, we first briefly introduce the background and motivations of

investigating the above problems, and then explain the challenges encountered by

these problems. Section 1.2 summarizes the contributions of this thesis for each

studied problem. Thesis organization is presented in Section 1.3.

1.1 Motivations

1.1.1 Influence based Cost Optimization on User Prefer-

ence

With the proliferation of e-business and preference learning techniques, there is a

rapidly growing amount of product and preference data. Usually, an object (e.g.,

product) is described with multiple attributes (e.g., features). For instance, in

a typical laptop commercial website, each laptop is described by a collection of

features (e.g., CPU, RAM, Weight). On the other hand, the interest of a user

towards objects with multiple attributes may be quantitatively expressed by a

preference function. Given a user preference function w and an object p, we can

compute the score of p with respect to the user preference function. By doing this,

objects are ranked for a user according to her preference function. Generally, we say

an object is attractive/appealing to the user if it is ranked the first by her. Given

Chapter 1. Introduction 3

a set of preference functions which are learned or collected from users [QGJ15],

we can evaluate the influence/impact of an object by the number of users it can

attract. Analyzing the influence of an object regarding the user preference functions

and other competing objects is fundamental in a wide spectrum of applications

such as marketing and advertising. In recent year, there is a surge of interest

on the study of influence analysis on preference functions such as identifying the

most influential objects [VDNK10, ADV12, LKC13, PW15] and supporting why-

not questions [GLC+15].

In this thesis, we formulate the problem of influence-based cost optimization

on user preference functions. Given a set of n user preferences, a set of objects in

a d-dimensional space, and a cost function, we aim to find the cost optimal posi-

tion for a new object in the space such that it attracts at least k users competing

with the existing objects. This problem is of great practical value. For example,

marketers may often conduct marketing research studies to decide the new prod-

uct positioning by analyzing consumer preferences, the competitors’ products and

the manufacturing cost. In particular, a company wants to design a new type of

laptop to attract at least a certain amount of users (e.g., 40% of the market share),

and meanwhile, the manufacturing cost is lowest. Therefore, in this thesis, we

aim to efficiently process the problem of influence-based cost optimization on user

preference functions.

Challenges. The main challenges of influence based cost optimization on user

preference lie in the following three aspects. Firstly, the number of user preferences

n would be large. Given a target attracting number k, it is computational cost-

prohibitive to explicitly enumerate
(
n
k

)
possible groups of k out of n user preference

functions. Secondly, the position of new object can be anywhere in the space. It is

infeasible to enumerate the infinite possible positions of the new object. Thirdly, we

4 Chapter 1. Introduction

aim to support the general monotonic and convex cost function, which is challenging

because the existing methods can only support quadratic cost function.

Our Approach. In this thesis, we aim to develop efficient query processing tech-

niques to tackle the computational challenges. By taking advantage of the k-level

computing techniques (e.g., [Mul91, ADBMS98]) and the monotonicity and con-

vexity of the cost function, we reduce the solution space to a finite number of

points on the k-level of n hyperplanes derived from n preference functions and

objects. Although we can immediately come up with two baseline algorithms

by applying the on-the-shelf k-level computing techniques: traverse based algo-

rithm [AACS98, CSLZ14] for the 2-dimensional space and randomized incremental

algorithm [Mul91] for the general multi-dimensional space, the computational cost

is still expensive due to the high combinatorial complexity of k-level, O(nk1/3) and

O(nbd/2ckdd/2e) for 2 and d-dimensional spaces, respectively.

In this thesis, we develop an efficient traverse based algorithm for 2-dimensional

spaces with time complexity O(n) by exploiting the nice geometric properties of

our problem in 2-dimensional spaces. It significantly improves the time complexity

of the baseline approach, which is O(n2k1/3). To deal with the general multi-

dimensional spaces, we develop a space partition based algorithm. Although we

cannot improve the theoretical time complexity of the baseline solution, a variety

of pruning techniques are developed to significantly enhance the performance of the

algorithm by utilizing the cost bounds, influence bounds and local dominance rela-

tionship. Observe that it is cost expensive to maintain the k-level of hyperplanes in

a partition. We further devise a novel sampling based approach such that the prob-

lem can be reduced to the classical half-space intersection problem in each round

of samples. Empirical study shows that our sampling technique can significantly

outperform the exact algorithm with high accuracy for space with d ≥ 3.

Chapter 1. Introduction 5

1.1.2 Categorical Top-k Spatial Influence Query

With the advances in geo-positioning technologies, there is a rapidly growing num-

ber of spatial objects in many applications such as location based services (e.g.,

Google Map), where an object is described by its spatial location and a specific

type. For instance, in the GPS navigation system, a POI (point of interest) is a

geographically anchored pushpin that a user may find useful or interesting, which

is annotated with function information (e.g., gas station, supermarket). Analyzing

the influence of objects is an important spatial operator, which has been widely

studied ever since it was introduced in [KM00] due to a wide spectrum of appli-

cations such as decision support, profile-based marketing, resource allocation, etc.

Existing techniques define the influence of a facility as the number of users that

consider it as nearest neighbors, namely, the bichromatic reverse nearest neigh-

bor query. However, in practice several types of facilities exist and play different

roles in satisfying uses’ needs. Therefore, a more sophisticated way to evaluate the

influence of facilities is preferable.

Instead of considering all facilities as the same type (e.g., finding the most

influential supermarket among all supermarkets) as mentioned above, in this thesis,

we first present a novel definition to evaluate the influence of a facility by its

capacity of forming a functional unit together with facilities of other categories.

Consider the CBD area in Sydney. There are various types of business/facilities

such as restaurants, cafes, bookshops, supermarkets, etc. A customer may want

to spend a leisure afternoon by drinking coffee, reading/purchasing books, and

enjoying some sushi. Here, facilities of types book store, cafe, and Sushi shop form

a functional unit for this customer where one functional unit consists exactly one

facility from each category of desired services/facilities from the user.

After computing the optimal functional unit for each of the facilities, in this

6 Chapter 1. Introduction

thesis, we define the influence of a facility as the total number of optimal functional

units that the facility participants in. Such an influence value clearly represents

the importance of one facility in forming optimal functional units with other types

of facilities and thus offers a new angle to analyze the potential of one facility

in business strategies, urban planing, etc. In an extreme case, if a book store is

the only one of this type and is surrounded by many other types of facilities, the

influence value of this book store is high representing huge business potential.

Challenges. A straightforward approach is to compute the optimal functional unit

for each object and then sum up the number of optimal functional units that each

facility participates in. However, this approach is computational cost-prohibitive

due to the following two aspects. Firstly, as we shall show that finding the optimal

functional unit for a facility is an NP-hard problem regarding the number of types

in the query. Secondly, the number of spatial facilities is usually massive involving

a large number of categories.

Our Approach. To address the above challenges, it is critical to devise efficient

spatial indexing and query processing techniques to support categorical top-k spa-

tial influence query against a massive number of spatial objects. In this thesis,

we follow the filtering-and-refinement framework based on R-tree style spatial in-

dexes. Efficient and effective pruning techniques are developed to avoid the costly

verification as much as possible. In particular, our approach consists of two main

steps, namely possible participants finding and optimal feasible set computation.

The major challenge in the first step is to derive a tight pruning distance. We

find that the pruning distances derived by the common strategies are substantially

larger than the optimal pruning distance. Motivated by this, we propose a neigh-

bor set (NNS) based approach which leads to a performance acceleration by several

orders of magnitude. In the second step, we develop two algorithms: one is an effi-

Chapter 1. Introduction 7

cient exact algorithm and the other is an approximate algorithm with performance

guarantee.

1.1.3 Efficient Set Containment Join

Set-valued attributes play an important role in modeling database systems rang-

ing from commercial applications to scientific studies. For instance, a set-valued

attribute may correspond to the profile of a person, the tags of a post, the links or

domain information of a webpage, and the tokens or q-grams of a document. To

evaluate the influence of an object with a set of terms, one way is to compute the

number of other objects that are a subset of that object. For instance, in the social

media (e.g., Facebook, Twitter), a post that contains a large set of popular tags

may be important to the service users who express interests by a set of tags. Since

the number of posts and users is usually massive, we need to devise efficient query

processing techniques to identify the influential objects.

In this thesis, we focus on the problem of set containment join. Given two

collections Given two collections R and S of records, each of which contains a

set of elements, the set containment join, denoted by R ./⊆ S, retrieves all

pairs {(r, s)} where r ∈ R, s ∈ S, and r ⊆ s. As a fundamental opera-

tion on massive collections of set values, the set containment join has been ex-

tensively studied in the literature. According to the computing paradigms, the

existing algorithms can be classified into two categories, namely intersection-

oriented methods [Mam03, LFHDB15, BMGT15, KRS+16] and union-oriented

methods [RPNK00, MGM02, MGM03, Mam03, JP05]. Nevertheless, we observe

that two computing paradigms have their limits due to the nature of the intersec-

tion and union operators. Particularly, intersection-oriented method relies on the

intersection of the relevant inverted lists built on the elements of S. A nice prop-

8 Chapter 1. Introduction

erty of the intersection-oriented method is that the join computation is verification

free. However, the number of records explored during the join process may be large

because there are multiple replicas for each record in S. On the other hand, the

union-oriented method generates a signature for each record in R and the candi-

date pairs are obtained by the union of the inverted lists of the relevant signatures.

The candidate size of union-oriented method is usually small because each record

contributes only one replica in the index. Unfortunately, union-oriented method

needs to verify the candidate pairs, which may be cost expensive especially when

the join result size is large. As a matter of fact, the state-of-the-art union-oriented

solution is not competitive compared to the intersection-oriented ones.

Furthermore, due to the limited computational resources (e.g., memory or

CPU), it is often difficult to process large scale real-life datasets in a single ma-

chine. To alleviate this issue, a promising way is to extend the set containment

join algorithms on top of MapReduce framework (e.g., Hadoop and Spark), which

has attracted lots of interests in both academia and industry communities due to

its high efficiency and scalability for batch processing tasks.

Challenges. There are two main challenges to efficiently process set containment

join. Firstly, the existing methods have their limits due to the nature of intersection

and union operators. It is not easy to develop new techniques to take advantage

of their good properties, and meanwhile, avoid their limits as much as possible.

Secondly, as far as we know, there is no existing work on computing set containment

join using MapReduce framework. It is challenging on how to partition the two

record collections such that good load-balance on cluster nodes can be achieved at

a small communication cost.

Our Approach. In this thesis, we re-visit and design a new union-oriented

method, namely TT-Join, where an efficient set containment join algorithm is de-

Chapter 1. Introduction 9

veloped based on two different prefix trees built on R and S, respectively. Through

comprehensive cost analysis on simple intersection-oriented and union-oriented

methods, we show that the above two problems suffered by the intersection-oriented

methods can be easily addressed by a new simple union-oriented method which

uses the least frequent element as the signature. Not surprisingly, the new sim-

ple union-oriented method needs to verify candidates due to the inherent limit of

union-oriented computing paradigm. Moreover, its pruning capability is limited

by using only one element as the signature. To circumvent these limits, we propose

a new prefix tree structure based on the k least frequent elements of the records

within R such that we can (i) enhance the pruning power with a reasonable over-

head, and (ii) integrate the intersection semantics to directly validate a significant

number of join results without invoking the verification. To share the computa-

tional cost among records within S, we also build a regular prefix tree on S. Then

we develop an efficient TT-Join algorithm to perform set containment join against

two prefix trees.

To extend our techniques on top of MapReduce framework, we propose a novel

signature-based distribution scheme, which dispatch records based on the above

mentioned record signature (i.e., the least frequent element). Specifically, we first

partition the element domain into N disjoin intervals, each related to a reduce

node. Then, for a record r ∈ R, we find the interval where its signature falls

and dispatch r to the corresponding reduce node. For a record s ∈ S, it will be

dispatched to all reduce nodes whose corresponding intervals cover at least one ele-

ment of s. With the help of careful designed element domain partition approaches

that are guided by the join cost estimation on reduce nodes, our signature-based

distribution mechanism can achieve good load-balance, low communication cost,

and no duplicate in join results.

10 Chapter 1. Introduction

1.2 Contributions

In this section, we summarize our contributions in this thesis. We propose efficient

techniques to process three important influence related queries. For each of these

queries, we briefly describe our contributions.

Influence based Cost Optimization on User Preference. This is the first

work to systematically study the problem of influence-based cost optimization for

user preference functions, which is fundamental in many real applications such as

marketing and advertising. Although we show the solution space can be reduced to

a finite number of points by utilizing the classical k-level computation techniques,

the computation cost is still very expensive due to the nature of the high combina-

torial complexity of the k-level problem. To alleviate this issue, we develop a novel

traverse based exact algorithm with time complexity O(n) where n is the number

of users by exploiting nice geometric properties of the problem in 2-dimensional

spaces. To tackle the problem in general dimensional spaces (d ≥ 2), we develop a

space partition based exact algorithm following the random incremental paradigm,

where efficient pruning techniques are devised to significantly enhance the perfor-

mance. Then a sampling based approximate algorithm is devised to further speed

up the computation (by up to orders of magnitude) with high accuracy. The exten-

sive performance evaluation on real and synthetic data demonstrates the efficiency

of our new techniques proposed in this thesis.

Categorical Top-k Spatial Influence Query. This is the first work to evaluate

the influence of a facility regarding different categories of facilities. We show that

the problem is NP-hard with respect to the number of object categories in the func-

tional unit. To tackle the computational hardness, we develop an efficient frame-

work following two main steps, possible participants finding and optimal functional

Chapter 1. Introduction 11

unit computation. Based on this framework, for the first step, novel and efficient

pruning techniques are developed based on the nearest neighbor set approach. To

find the optimal functional unit, we propose two algorithms, an exact algorithm

and and efficient approximate algorithm with a factor of 2− 2

m
performance guar-

antee, where m is the number of object categories in the query. Comprehensive

experiments on both real and synthetic datasets demonstrate the effectiveness and

efficiency of our techniques.

Efficient Set Containment Join. In this thesis, we study the problem of set

containment join, which is fundamental and has many important applications in

commercial and scientific fields. After comprehensive analysis on the advantages

and limits of the existing solution, we propose a novel method, namely TT-Join.

Particularly, we design a k least frequent elements based prefix tree structure,

namely kLFP-Tree, to organize the records withinR. Together with a regular prefix

tree constructed on records from S, we develop an efficient set containment join

algorithm. We conduct extensive experiments on 20 real-life datasets by comparing

our method with 7 existing methods. The experiment results demonstrate that

TT-Join significantly outperforms the existing algorithms on most of the datasets,

and can achieve up to two orders of magnitude speedup. Furthermore, to support

large scale of datasets, we extend our techniques to distributed systems on top

of MapReduce framework. As far as we know, this is the first work to extend

containment join system to a distributed environment.

1.3 Organization

This dissertation is organized as follows.

• Chapter 2 provides a survey of the related work.

12 Chapter 1. Introduction

• Chapter 3 presents our algorithms for the problem of influence based cost

optimization on user preference.

• Chapter 4 describes our techniques for the problem of categorical top-k spatial

influence query.

• Chapter 5 presents our techniques for efficient set containment join problem.

• Chapter 6 concludes our research and provides several possible directions for

future work.

Chapter 2

Related Work

In this section, we provide an overview of the related work for each type of problems

we studied in this thesis. In specific, we introduce the related work about influence-

based queries on product and user preference data in Section 2.1. In Section 2.2, we

introduce existing work related to categorical spatial influence query. In Section 2.3,

we describe the existing techniques on set containment join related problems.

2.1 Influence based Cost Optimization on User

Preference

Firstly, in Section 2.1.1, we review existing techniques for feature based top-k

queries. Then, in Section 2.1.2, we introduce existing work on preference based

influence queries. Last, Section 2.1.3 covers the dominance based influence queries.

2.1.1 Feature Based Top-k Queries

Given a set of interesting objects O, Yiu et al. [YDMV07] propose the top-k spatial

preference queries, which retrieve the k objects in O with the highest scores. The

13

14 Chapter 2. Related Work

score of an object is defined by the quality of features in its spatial neighborhood,

where a feature is a type of facilities (e.g., restaurant or cafe). To efficiently process

the query, the propose several algorithms. Among them, the branch and bound

(BB) algorithm and feature joint (FJ) algorithm outperform others. BB achieves

the best performance when the objects dataset is small whereas FJ is the best

method when there are few and small feature datasets. Recently, Rocha-Junior et

al. [RJVDN10] propose novel technique to speed up the performance of top-k spatial

preference queries. To this end, they map the pairs of data and feature objects to a

distance-score space, which in turn allows us to identify and materialize the minimal

subset of pairs that is sufficient to answer a spatial preference query. Experimental

results show that their methods perform better than BB and FJ [YDMV07] in both

I/Os and execution time.

In many other applications (e.g., product data), an interesting object itself may

be described by a set of attributes/features. Given an object p and a user preference

function represented by a weight vector w, the score of an object p regarding w is

usually defined by a linear additive function as shown in the following equation:

w(p) = w · p =
d∑
i=1

w[i] · p[i], (2.1)

where d is the number of attributes for an object. Then given a user preference func-

tion w, a top-k query retrieves k most interesting objects that give the best scores.

As a crucial and fundamental tool in many applications, top-k query has been

extensively studied in the literature [FLN03, APV07, IBS08, TXP07, THPP07,

CBC+00, HKP01, HP04, YYY+03, MBP06].

Based on top-k query, several work are devoted to process interesting problems.

Mouratidis et al. [MP13] study the problem of computing immutable regions for

subspace top-k queries. Specifically, given a query preference function w, let R(w)

denote the result set of a top-k query. An update to any query weight w[i] may

Chapter 2. Related Work 15

induce a change for R(w) or the ordering among its members, in which case we say

that R(w) is perturbed; otherwise R(w) is preserved. Then for each dimension

j ∈ [1, d], the immutable region is defined at the widest range of w[j] values that

preserve R(w), assuming that all other weights w[i] for i 6= j remain constant.

The immutable regions can serve to profile the robustness of a recommendation

system to deviations in the query user preferences. A major limit of the above de-

fined immutable region is that the validity interval is computed for each dimension

separately (i.e., we assume all other weights remain constant while computing for

a dimension). To get rid of this limitation, Zhang et al. [ZMP14] propose global

immutable region, which aims to compute all possible query weight setting that

can preserve R(w). By exploiting the geometric properties of the problem, they

develop efficient algorithms for global immutable region computation. Recently,

Mouratidis et al. [MZP15] consider the maximum rank query. Given a query ob-

ject p, they compute the maximum rank it may achieve with respect to any possible

preference function. In addition, they also report all the regions in the preference

function domain where that rank is attained.

2.1.2 Preference Based Influence Queries

Given an object/product p, a reverse top-k query [VDKN10] returns a set of cus-

tomers that find p appealing (i.e., for each customer in the query result, p is in

the top-k query result set of the corresponding preference function). From the

definition of reverse top-k query, it is naturally to consider it as a way to eval-

uate the influence/impact of an object against the preference functions and ob-

jects. That is, if the query result size is large, large amount of customers find p

is attractive, which implies that p is popular. There are several follow-up work

(e.g., [VDNK13, GMC+13, CSLZ14]) aiming to improve the efficiency and scala-

16 Chapter 2. Related Work

bility of the reverse top-k query. To analyze the influence of the object for the

given user preference functions and objects, some variants of the reverse top-k

query has been studied in different scenarios. Vlachou et al. [VDNK10] introduce

the problem of identifying the top-m most influential data objects where the influ-

ence of an object is defined by the cardinality of its reverse top-k result set. Koh

et al. [KLC14] aim to find a set of products such that their total number of distinct

attracted customers is maximized, which is essentially to maximize the coverage of

the result set. Instead of coverage, Gkorgkas et al. [GVDN15] consider to select

a set of products such that their diversity to each other is maximized. Recently,

Wang et al. [WCZL15] combine those two criteria together and use a parameter

to trade-off the importance of each criterion. Instead of analyzing exact preference

function, Peng et al. [PW15] consider probabilistic preference functions and pro-

pose the k-Hit query which aims at finding a set of objects such that the sum of

preference function probability in the result set is greatest. So far, all studies focus

on the “hot” products that can be returned to some customers via reverse top-k

query, while a large proportion of “unpopular” products cannot find any matching

customers. Inspired by this observation, Zhang et al. [ZJK14] propose reverse k-

ranks query, which finds for a given product, the top-k customers whose rank for

the product is highest among all customers, to ensure 100% coverage for any given

product. A common property of above studies is that they aim at finding a set of

existing objects. Besides, none of them considers the cost function.

Recently, Gao et al. [GLC+15] investigate how to update a product at minimal

penalty cost based on the quadratic functions such that it can attract a specific

group of k users. It is worth mentioning that this is closest work to the problem

studied in this thesis. Nevertheless, their techniques cannot be applied to our

problem because we may attract arbitrary groups of k users and we aim to support

Chapter 2. Related Work 17

the general monotonic and convex cost function.

2.1.3 Dominance Based Influence Queries

Some existing work evaluate the influence of the objects based on the dominance

relationship. In [LJ12], Lu et. al study the problem of upgrading uncompetitive

products economically, such that a set of k products will not be dominated by

others. Ge et al. [GMC+15] introduce a new dominance function to evaluate the

goodness of a product and aim to find the best new product position under the

given budget. Wan et al. [WWI+09] introduce the problem of creating competi-

tive products where a newly created product is competitive if it is not dominated

by any existing products in the database. In order to maximize the profit, Wan

et al. [WWP11] consider price as one of the attribute of a product. In this work,

a set of k products are selected from the candidate set of products such that they

are not dominated by the existing products and meanwhile the profit of these k

products is maximized. In [LOTW06], Li et al. utilize the dominance relationship

between products and customers to help manufactures position their products in

the market. To this end, three types of queries called dominant relationship queries

(DRQs) are proposed. In [ADV12, LKC13], each user preference is modeled as a

point, and dominance relationships between products and user preferences are used

to evaluate the goodness of a product.

It is evident that the problem studied in this thesis is different from all the

dominance based influence queries because they either failed to consider user pref-

erence [LJ12, GMC+15, WWI+09, WWP11] or regard user preference as a point in

the product space [LOTW06, ADV12, LKC13]. In our problem, a user preference is

model as linear function represented by a weight vector. We argue that our model is

more reasonable in a real world application because a user may find it hard to give

18 Chapter 2. Related Work

specific preferred values for the attributes of a product. In this case, a normalize

weight vector to describe the preference on each attribute is recommended.

2.2 Categorical Top-k Spatial Influence Query

Our categorical top-k spatial influence query is closely related to several well studied

research directions in spatial database area. We give a brief review for related work

in this section.

2.2.1 NN Search and RNN Search

Nearest neighor search. In spatial database, an important and fundamental

operator is nearest neighbor search (NN search). Given a set of objects O and a

query object q, the NN search returns q’s nearest object in O, where the distance

between two objects is defined by the Euclidean distance between them. Formally:

NN(q) = {o ∈ O|∀p ∈ O : d(q, o) ≤ d(q, p)}. (2.2)

Two of the most popular algorithms are depth-first [RKV95] and best-first [HS99].

A direct work based on NN search is all nearest neighbor (ANN) query [CP07].

Given two datasets R and S, the ANN query finds a nearest neighbor in S for each

object r ∈ R. In this thesis, we shall use NN search as a building brick to compute

the optimal functional unit in our problem.

Reverse nearest neighor search. Given a set of object O and a query object q,

the reverse nearest neighor search (RNN search) aims to find all objects in O that

consider q as their nearest neighbor, which is defined as follows:

RNN(q) = {o ∈ O|∀p ∈ O : d(o, q) ≤ d(o, p)}. (2.3)

Chapter 2. Related Work 19

In some applications, the objects in O are of two different categories, such as ser-

vices facilities and customers. Based on this scenario, Korn et al. [KM00] propose

the bichromatic reverse nearest search (BRNN search). In specific, given a set of

facilities F , a set of customers C, and a query facility q ∈ F , the BRNN query aims

to find a set of customers whose nearest facility is q. Formally:

BRNN(q) = {c ∈ C|∀p ∈ F : d(c, q) ≤ d(c, p)}. (2.4)

As a primary operator in spatial databases, BRNN has been widely used to dis-

cover the most “influential” objects. Existing studies following this direction are

introduced in next section.

2.2.2 Maximum Influence Problem

Given a set of facilities/locations F and a set of customers C, the maximum in-

fluence (Max-Inf) problem aims to find the most influential facilities where the

influence of a facility f is defined by the number of customers in the BRNN of f .

Xia et al. [XZKD05] propose the top-k most influential sites problem. In particu-

lar, given a query region Q, they aim to find the k most influential facilities inside

region Q. A branch and bound method is developed, which takes advantage of a

novel R-tree based metric called minExistDNN. By browsing both R-trees that are

constructed on F and C, respectively, the method can find the top-k most influ-

ential sites. Under the same problem settings, Du et al. [DZX05] try to find an

optimal location. However, the work is limited to the L1-norm space. Instead of

inside a region, Gao et al. [GZCL09] aim to find k locations outside a region Q with

largest optimality. Here, the optimality of a location p is defined to be the number

of clients in Q whose distance to p is within a given threshold dc. Specifically,

each of the k retrieved locations has an optimality no less than that of any of the

20 Chapter 2. Related Work

remaining locations which are not in the result set. Instead of finding the most

influential locations in the existing facilities, Cabello et al. [CDbL+05] propose a

similar problem called MAXCOV, which is to find a region Q in the space such

that any location in Q has maximum influence. They give a theoretical analysis on

the complexity of computing this problem, but no efficient algorithm is presented.

In particular, they only give an algorithm whose running time is exponential to the

size of C. Later, Wong et al. [WÖY+09] revisit this problem. By utilizing the prin-

ciple of region-to-point transformation, which transforms the optimal region search

problem to an optimal point search problem, they propose a polynomial algorithm

to resolve the problem. Alternatively, Huang et al. [HWQ+11] consider the case

where there are a set of new candidate locationsN apart from the existing locations

F . They try to find the k most influential locations in N . Given a set of potential

locations, Qi et al. [QZK+12] also study this optimal location selection problem.

The main difference between their work and the above studies is the definition of

the objective function. They evaluate the goodness of a potential location by the

average distance of the clients to their respective nearest facilities. Intuitively, a

location can achieve the minimum average distance for the clients is optimal. More

recently, Zhan et al. [ZZZL12] extend this problem to uncertain objects. A filtering

and verification paradigm is applied to efficiently compute the k facilities with the

highest expected influence scores.

The problem studied in this thesis differs from Max-inf problem in two major

aspects. First, we consider facilities in different types rather than just one single

type. Second, we evaluate the influence of a facility by its capability of forming

the optimal functional unit of other facilities rather than the number of influenced

clients.

Chapter 2. Related Work 21

2.2.3 Spatial Keyword Queries

Recently, spatial keyword queries have attracted tremendous attention. Chen

et al. [CCJW13] give a comprehensive experimental evaluation to compare the

state-of-the-art geo-textual indices which are widely used in spatial keyword

queries. Let O be a set of spatial objects, each of which is associated with a

set of keywords and a location. Given a query q with a set of keywords and a loca-

tion, the related spatial keyword queries can be roughly divided into two categories:

soft cover and hard cover.

Soft cover. In this category, we do not require that the answer covers all query

keywords. A hybrid way, which uses a parameter α to trade off the balance be-

tween text relevancy and location proximity, is adopted to evaluate the quality

of a candidate result. Existing methods all focus on this type of query. Cong

et al. [CJW09, WCJ12] propose a new index structure called IR-Tree which ap-

plies a spatial-first strategy. That is, all objects/documents are organized into a

spatial index tree (e.g., R-tree), and then each tree node is augmented with an

inverted index to index all the documents contained in its minimum bounding

rectangle (MBR). Rocha-Junior et al. [RJGJN11], on the other hand, adopts the

textual-first strategy, where the search space of documents is first organized by

keywords, and then for each keyword, a spatial data structure is employed to index

the documents associated with this keyword. Very recently, Zhang et al. [ZCT14]

propose a new approach which is based on modeling the problem as a top-k aggre-

gation problem. Basically, they regard the spatial proximity as an extra keyword.

Then, together with the existing m keywords in the query, they use the classic

top-k aggregation algorithms to resolve the origin problem.

Hard cover. In this category, an answer must cover all query keywords. The

top-k spatial keyword search (TOPK-SK) [FHR08, ZZZL13, ZZZL16] aims to re-

22 Chapter 2. Related Work

trieve the k closest objects in O each of which contains all keywords in the query.

Zhang et al. [ZCM+09] propose the m-closest keywords (mCK) query, where each

object only contains one single keyword. Given a query by a user, which con-

sists of m keywords, mCK query aims to find the closest m objects each of which

matches a keyword in the query, where the distance cost function is defined as the

diameter of the m objects (i.e., the maximum distance between any two of the m

objects). Although they develop an efficient priori-based search strategy to reduce

the search space, their algorithm still runs exponential time in the worst case. This

is because the mCK query is a NP-hard problem as shown in [FX10, GCC15] Guo

et al. [GCC15] extend the mCK problem to the case where each object can have

multiple keywords. They propose exact and approximate algorithms to resolve the

problem. Most recently, Choi et al. [CPL16] propose SK-Cover problem, which con-

siders a more sophisticated distance cost function that can lead to fewer proximate

objects in the answer set. They prove that SK-Cover is not only NP-hard but also

does not allow an approximation better that O(logm) in polynomial time. They

develop a polynomial time approximation algorithm that achieves the asymptoti-

cally optimal approximation. Cao et al. [CCJO11] introduce the collective spatial

keyword queries (CoSKQ), which is an extension of mCK problem. Different from

mCK query, CoSKQ also specifies a query location. Accordingly, the distance cost

function takes both the query location and the answer set into consideration. They

present both exact algorithms and approximation algorithms along with the proof

of NP-hardness of CoSKQ. Long et al. [LWWF13] propose a distance owner-driven

approach for CoSKQ problem, which not only achieves much better scalability but

also improves the constant approximation factor.

In the past decade, there are also a series of variant queries following spatial

keyword queries, including but not limited to moving queries [WYJC11, WYJ13,

Chapter 2. Related Work 23

HLTF12, GCC15], reverse queries [LLC11, CCSC16, XLXJ17, CLZZ11, ZGC+17],

why-not queries [CLH+15, CXL+16, CLXJ17], and other ad-hoc queries [LFX12,

ZZZ+14, GZZC16, ZSZ+15].

If we regard the type of an object as a keyword contained in the object, a

subprocedure of our problem is to find a set of objects S such that S covers all

the query keywords and the cost of S is minimized. From this point of view,

our problem is much related to the above CoSKQ and mCK queries. The major

difference between our problem and the above studies is that we need to find the

closest object set for each object when evaluating the influence of objects, while

they are only interested in retrieving one closest object set. Besides, we use the

sum of pairwise distance as the distance cost function, which is not used by the

existing work.

2.3 Efficient Set Containment Join

Our efficient set containment join problem is related to query processing on set-

valued data. In this section, we cover previous work studied for set containment

joins, set containment queries, set similarity joins. In addition, we give brief review

on join problems using MapReduce framework, since it is also utilized in this thesis.

2.3.1 Set Containment Joins

As a fundamental operator for analyzing set-valued data, the set containment joins

have been well studied in the literature. In this section, we give brief review to

existing studies on this problem, and will discuss the state-of-the-art algorithms in

detail in Section 5.3.

Helmer et al. [HM97] are the first to directly investigate the implementation of

24 Chapter 2. Related Work

set containment joins. They evaluate several main memory algorithms following

the nested-loop computing paradigm, and suggest that the signature-hash based

method can achieve the best performance. Later, Ramasamy et al. [RPNK00]

propose a disk-based algorithm, called Partitioned Set Join (PSJ), which aims at

reduce the quadratic cost of nested-loop algorithms by utilizing the hash func-

tions to partition the record collections into different buckets. They adopt the

same in-memory processing strategy with that in [HM97]. Several follow-up stud-

ies [MGM02, MGM03] propose more sophisticated partitioning strategies (i.e., hash

functions) to reduce the number of candidates in the partition buckets. To acceler-

ate the signature based in-memory processing, Luo et al. [LFHDB15] recently pro-

pose a new algorithm based on a trie-based signature subsets enumeration method.

In [ZMR98], the authors show that the inverted file is significantly faster

than signature-based indexes for set containment joins. Following this direction,

Manoulis [Mam03] proposes a block nested loop join algorithm which first builds in-

verted index on the right-hand record collection S, and then applies the intersection

operator to calculate the join results for each record in the left-hand record collec-

tion R. Instead of processing each record in R individually, Jampani et al. [JP05]

propose PRETTI which builds a prefix tree on R to share computation cost while

handling similar records. To reduce the size of the prefix tree, Luo et al. [LFHDB15]

introduce an extension of PRETTI, namely PRETTI+, which employs a compact

prefix tree to replace the prefix tree in PRETTI. To avoid exploring many inverted

lists for the large size records within R, Bouros et al. [BMGT15] propose a new

algorithm, called LIMIT, which only builds a prefix tree with limited height, and

performs the join process following a two-phase procedure which involves candidates

generation and candidates verification. Most recently, Kunkel et al. [KRS+16] pro-

pose a two-tree based method to improve the performance of intersection based

Chapter 2. Related Work 25

method by exploiting advanced index technique on S.

2.3.2 Set Containment Queries

As a closely related problem, set containment query has also caught much research

interest in the literature. Yan et al. [YGM94] study the problem of selective dissem-

ination of information, which can be regarded as set containment query under the

boolean model. They investigate several index structures for disk implementations,

and provide analysis and simulation results to compare their performance under

different scenarios. In [TPVS06], the authors superimpose a trie-tree on top of the

classic inverted file, which optimize the indexing set-valued data with skewed item

distributions. Later, Terrovitis et al. [TBV+11] present a B+ tree based index-

ing structure, which aims to reduce the I/O cost for containment queries against

set-valued data with skewed item distributions. To facilitate the query processing,

Chaudhuri et al. [CCKS07] build inverted indexes for careful chosen frequent term

combinations in addition to the traditional single-term based inverted indexes. Li

et al. [LLL08] propose an efficient list merging algorithm to solve the generalized

T -occurrence query problem. By setting T to the size of the query record, their

techniques can be immediately employed to process set containment search. Follow-

ing the similar indexing strategies in [YGM94], Hmedeh et al. [HKC+12] develop

efficient main memory based algorithms for publish/subscribe systems. Ibrahim

et al. [IF13] study the containment queries on nested sets, where an element in a

record might be a set as well. Agrawal et al. [AAK10] study the problem of error-

tolerant set containment search. To boost the query performance, they propose an

frequent element based index structure that builds inverted index on careful chose

element set. Zhang et al. [ZCS+12] investigate the problem of probabilistic set

containment, where the contents of the sets are uncertain. Their proposed solution

26 Chapter 2. Related Work

relies on an inverted file that is augmented with item’s probability of belonging to

a certain record. Zhu et al. [ZNPM16] study the problem of domain search where

they use the Jaccard set containment score as the measure of relevance of two do-

mains. Locality sensitive hashing based index structure is developed to efficiently

process the problem against large scale domain datasets.

2.3.3 Set Similarity Joins

Set similarity join is fundamental. In the literature, two categories of set similarity

join problems are well studied, namely exact set similarity join and approximate

set similarity join.

Exact set similarity join. The existing solutions for exact set similarity

joins all follow the filtering-verification framework, which can be further classi-

fied into two categories based on the filtering mechanism, including prefix-filter

based algorithms and partition-filter based algorithms. Bayardo et al. citeba-

yardo2007scaling first propose prefix-filter based framework. Based the same frame-

work, Xiao et al. [XWLY08] introduce two more filter rules, namely positional

filter and suffix filter. Later, Mann et al. [MA14] devise an optimized length fil-

ter. In [WLF12], an adaptive length prefix is developed to strengthen filtering

power. Other heuristics [RH11, BGM12] are introduced to improve the algorithm.

By considering the relations of records to share computation cost in join process-

ing, Wang et al. [WQL+17] recently propose an efficient prefix-filter based algo-

rithm. In [MAB16], an efficient candidate verification algorithm is proposed that

is beneficial to all existing prefix-filter based algorithms. For partition-filter based

algorithms, a two-level algorithm with partitioning and enumeratiing to find ex-

act similar sets is devised in [AGK06]. Based on the pigeonhole principle, Deng

et al. [DLWF15] develop a efficient partition scheme to partition the sets into sev-

Chapter 2. Related Work 27

eral subsets. Then inverted lists on the subsets are utilized to filter the candidate

pairs.

Approximate set similarity join. The existing solutions for approximate set

similarity joins are mostly based on the locality sensitive hashing (LSH) tech-

nique [IM98], which is a probabilistic scheme by hashing similar records into the

same bucket with high probability. Broder [Bro97] propose MinHash to quickly

estimate the Jaccard similarity between two records. Zhai et al. [ZLG11] de-

velop a probabilistic algorithm for similarity search with a low threshold on records

with hight dimension. In [SP12], a Bayesian algorithm, called BayesLSH, is intro-

duced to extend LSH for candidate pruning and similarity estimation. Chakrabarti

et al. [CP15] utilize sequential hypothesis testing on LSH to adaptively prune can-

didates aggressively and provider tighter qualitative guarantees over BayesLSH.

Rather than Jaccard similarity, other MinHash based algorithms [SL15, ZNPM16]

are also developed for approximate set similarity search/join targeting set contain-

ment similarity.

2.3.4 Join Problems Using MapReduce

To the best of our knowledge, there is no existing work that extends set containment

join to MapReduce framework. Recently, Kunkel et al. [KRS+16] propose a parallel

algorithm PIEJoin to compute the set containment join. Nevertheless, they achieve

parallelization by creating a task thread for each recursive call of the crucial search

function in their approach. This method does not follow the MapReduce framework

which involves two important operations, namely map and reduce.

In the past decade, MapReduce has attracted tremendous interests in both

academia and industry communities. Its high efficiency and scalability for batch

processing tasks provides elegant solutions for many join problems. Here, we focus

28 Chapter 2. Related Work

on the set similarity join problem in MapReduce, which is closely related to our set

containment join problem. Vernica et al. [VCL10] propose a prefix-based partition

strategy for set similarity join based on prefix filter, which states that two records

must share at least one common element in their prefixes if they are similar. After

constructing the inverted index on elements of record prefix, records in the same

inverted list are then dispatched to the same task node. Metwally et al. [MF12]

present V-SMART-JOIN, which similarly builds inverted index on elements and

compute the similarity of record pairs by sharing the computation in the element

level using MapReduce. Deng et al. [DLH+14] propose a partition-based framework

to solve set similarity join in MapReduce. The element set of a record is partitioned

into U+1 disjoint segments, where U is a dissimilarity upper bound. Similar record

pairs would be distributed to at least one common task nodes where they share the

same segment. Afrati et al. [ASM+12] conduct theoretical analysis against multiple

MapReduce based similarity join algorithms, where they analyze the map, reduce,

and communication cost.

Chapter 3

Influence based Cost

Optimization on User Preference

3.1 Overview

In many real applications, the interest of a user towards objects (e.g., products)

with multiple attributes may be quantitatively expressed by a preference function.

For instance, as shown in Fig. 5.1(a), suppose users are interested in two features

of the laptop: product weight and heat emission. Then, a laptop p can be modeled

as a point in a 2-dimensional space in Fig. 5.1(c), where p[1] and p[2] denote the

weight and emission values of the laptop. Meanwhile, suppose we use the popular

linear function as the preference function. As shown in Fig. 5.1(b), a linear func-

tion w is a weighted vector where w[1] and w[2] denote the importance (weight)

of the product weight and the heat emission, respectively. Given a user preference

function w and an object p, we use w(p) to denote the score of p w.r.t the user

preference function, where w(p) = w[1]× p[1]+ w[2]× p[2]. By doing this, objects

are ranked for a user according to her preference function. Generally, we say an

29

30 Chapter 3. Influence based Cost Optimization on User Preference

object is attractive/appealing to the user if it is ranked the first by her. Given

a set of preference functions which are learned or collected from users [QGJ15],

we can evaluate the influence/impact of an object by the number of users it can

attract. Analyzing the influence of an object regarding the user preference func-

tions and other competing objects is fundamental in a wide range of applications

such as marketing and advertising. In recent years, there is a surge of interest

on the study of influence analysis on preference functions such as identifying the

most influential objects [VDNK10, ADV12, LKC13, PW15] and supporting why-

not questions [GLC+15].

In this chapter, we formulate the problem of influence-based cost optimization

on user preference functions. Given a set of n user preferences, a set of objects in a

d-dimensional space, and a cost function, we aim to find the cost optimal position

for a new object in the space such that it attracts at least k users competing with

the existing objects. Below is a motivating example in the context of marketing

analysis.

Example 3.1 (Product Positioning). Marketers may often conduct market-

ing research studies to decide the new product positioning by analyzing consumer

preferences, the competitors’ products and the manufacturing cost. As depicted in

Fig. 3.1, there are a set P of laptops {p1, p2, ..., p4} (Fig. 3.1(a)) where each laptop is

represented by a point in a 2-dimensional space (Fig. 3.1(c)) and the smaller value

is preferred. Meanwhile, there are a setW of customer preferences {w1,w2, ...,w5}

of 5 users where each w in W is a linear preference function (Fig. 3.1(b)). More-

over, we assume the cost function for a point p is f(p) = 1/p[1] + 1/p[2].

Suppose a company wants to design a new type of laptop (i.e., a point in the 2-

dimensional space) to attract at least 4 out of the 5 users; that is, occupying at least

80% of the market share in this example. Following the convention [GLC+15], we

Chapter 3. Influence based Cost Optimization on User Preference 31

Id weight heat
p1 0.6 3.6
· · · · · · · · ·
p4 3.5 3.3

(a) Laptops

Id weight heat top-1
w1 0.8 0.2 p1

· · · · · · · · · · · ·
w5 0.2 0.8 p3

(b) User preference functions

q1

q2

q3

p1

p2

p3

p4

H1 H2 H3

H4

H5

weight (d1)

heat (d2)

(c) Laptop space

20 40 60 80 100
1

2

3

cost

market share

(%)

(d) Optimal laptop cost

Figure 3.1: A motivation example

use a preference line Hi to represent a user linear preference function wi where Hi

is perpendicular to wi and contains its top-1 result. For example, in Fig 3.1(c), H1

is perpendicular to preference function w1 and contains p1 which is the top-1 result

of w1. Then, a new point q is attractive to a user wi if q is below or lies on Hi. It is

immediate that any point below and lying on at least 4 preference lines (e.g., q1 and

q2 in Fig. 3.1(c)) in this example satisfies the influence constraint. Considering the

manufacturing cost, it is desirable to identify the point which satisfies the influence

constraint and has the lowest cost, which is q1 in this example. Fig. 3.1(d) plots the

growth of the optimal manufacturing cost with the increase of the targeted market

share occupation rate (i.e., influence in this thesis), which provides a comprehensive

view for the new product positioning.

Challenges. A straightforward implementation of our problem is to explicitly

enumerate
(
n
k

)
possible groups of k out of n user preference functions. For each

group of k users, we find the cost optimal solution to attract these particular k

32 Chapter 3. Influence based Cost Optimization on User Preference

users. Then we may come up with the optimal solution. However, this approach is

computational cost-prohibitive for even a small n and k values. Moreover, we aim

to support the general monotonic and convex cost function, instead of a specific

one. These present great computational challenges to our problem.

Although efficient algorithms have been proposed to compute the influence of an

object (e.g., [VDKN10, GMC+13, VDNK13, CSLZ14]) and identify the most influ-

ential object [VDNK10, ADV12, KLC14], it is infeasible to enumerate the infinite

possible positions of the new object. Moreover, their techniques do not consider

the cost function. Recently, Gao et al. [GLC+15] develop a novel algorithm to find

the cost optimal point to attract a specific group of k users. However, we cannot

afford to enumerate
(
n
k

)
possible groups in our problem. Besides, their technique

only supports quadratic cost function since quadratic programming method is em-

ployed.

To tackle the computational challenge, we need to develop efficient query pro-

cessing techniques. By taking advantage of the k-level computing techniques

(e.g., [Mul91, ADBMS98]) and the monotonicity and convexity of the cost func-

tion, we reduce the solution space to a finite number of points on the k-level of

n hyperplanes derived from n preference functions and objects. Although we can

immediately come up with two baseline algorithms by applying the on-the-shelf

k-level computing techniques: traverse based algorithm [AACS98, CSLZ14] for the

2-dimensional space and randomized incremental algorithm [Mul91] for the gen-

eral multi-dimensional space, the computational cost is still expensive due to the

high combinatorial complexity of k-level, O(nk1/3) and O(nbd/2ckdd/2e) for 2 and

d-dimensional spaces, respectively.

In this thesis, we develop an efficient traverse based algorithm for 2-dimensional

spaces with time complexity O(n) by exploiting the nice geometric properties of

Chapter 3. Influence based Cost Optimization on User Preference 33

our problem in 2-dimensional spaces. It significantly improves the time complexity

of the baseline approach, which is O(n2k1/3).

To deal with the general multi-dimensional spaces, we also develop a space

partition based algorithm. Although we cannot improve the theoretical time com-

plexity of the baseline solution, a variety of pruning techniques are developed to

significantly enhance the performance of the algorithm by utilizing the cost bounds,

influence bounds and local dominance relationship. Observe that it is cost expen-

sive to maintain the k-level of hyperplanes in a partition, we further devise a novel

sampling based approach such that the problem can be reduced to the classical

half-space intersection problem in each round of samples. Empirical study shows

that our sampling technique can significantly outperform the exact algorithm with

high accuracy for space with d ≥ 3.

Raodmap. The rest of the chapter is organized as follows. In Section 3.2, we first

formally formulate the problem, and then introduce some preliminaries including

naive solutions. Traverse based method is introduced in Section 3.3. Space partition

based method is devised in Section 3.4. Extensive experiments are reported in

Section 3.5. Finally, Section 3.6 concludes this chapter.

3.2 Background

In Section 3.2.1 we propose and formulate the problem of influence-based cost

optimization. Section 3.2.2 introduces the k-level techniques, which is employed in

Section 3.2.3 to develop naive solutions. Table 3.1 summarizes the mathematical

notations used throughout this paper.

34 Chapter 3. Influence based Cost Optimization on User Preference

Notation Definition

p, P a tuple (point), a set of tuples (points)
p1 ≺ p2 point p1 dominates point p2

w (Hw) a user preference function (hyperplane)
W (HW) a set of user preference functions (hyperplanes)

n the number of preference functions/hyperplanes
m the number of anchor tuples
H,H hyperplane, a set of hyperplanes
f, f(p) a cost function (cost of point p)
I(p) influence score of point p

Table 3.1: The summary of notations

3.2.1 Problem Definition

Let P denote a set of tuples. Each tuple p ∈ P is described by a point

(p[1], p[2], ..., p[d]) in a d-dimensional space Rd where p[i] represents the i-th di-

mension (i.e., attribute) value of the point p. Without loss of generality, in this

thesis, we assume that smaller values are preferred and p[i] > 0 for 1 ≤ i ≤ d. In

the following, we use “tuple” to denote an element in P , and “point” to denote any

position in Rd, which might be an existing tuple in P .

Given two points p1 and p2, we say p1 dominates p2, denoted by p1 ≺ p2, if p1

is not larger than p2 on all dimensions and p1 is smaller than p2 on at least one

dimension.

For each user, we assume there is a preference function w which is a linear

function represented by a weight vector (w[1], w[2], . . ., w[d]) where w[i] indi-

cates the significance of the i-th dimension for the user. Following the conven-

tion [VDKN10, GLC+15], we assume w[i] ≥ 0(1 ≤ i ≤ d) and
∑d

i=1 w[i] = 1.

Then the score of a point p with respect to the preference function w, denoted by

w(p), is defined as their dot product, i.e., w(p) = w ·p =
∑d

i=1 w[i] ·p[i]. Therefore,

the smaller score values are preferred in this paper. By W , we denote the set of n

preference functions (users).

Chapter 3. Influence based Cost Optimization on User Preference 35

In this thesis, we say a point p is attractive to a user if p is ranked the first

regarding her/his preference function w, i.e., w(p) ≤ w(p′) for any point p′ ∈

P ∪ {p}. Note that p might be an arbitrary point in the space Rd.

Below we define the influence set of a point which reflects its popularity among

|W| users (i.e., preference functions).

Definition 3.1 (Influence set and Influence score). For a given point p ∈ Rd,

we use S(p) to denote the set of preference functions of W attracted by the point

p, namely influence set of p. More specifically, we have S(p) = {w| p is ranked the

first among points in P ∪ {p} w.r.t w ∈ W}. The influence score of p, denoted by

I(p), is the size of S(p).

Example 3.2. Consider point p2 in Fig. 3.2. The influence set S(p2) consists of

three preference functions, namely w1, w2, and w3. Therefore, I(p2) = 3.

We assume there is a cost function f where f(p) represents the cost of a point

p. In practice, the function f may vary with respect to different scenarios (e.g.,

different types of tuples). Here, we assume f is a monotonic function, i.e., f(p1) ≥

f(p2) if p1 ≺ p2 for any two points p1 and p2. This is rather intuitive because the

cost would not decrease if the point is upgraded. Moreover, we also assume f is a

convex function.

Suppose our target influence score of the new point is k. We say q is a k-critical

point if it is the most cost-effective choice, which is formally defined as follows.

Definition 3.2 (k-critical point). Given a set P of tuples, a set W of preference

functions, a cost function f and a number k (1 ≤ k ≤ |W|), we say a point q ∈ Rd

is a k-critical point if I(q) ≥ k and f(q) ≤ f(p) for any point p ∈ Rd with I(p) ≥ k.

Problem Statement. Given a set P of tuples, a set W of user preference func-

tions, a cost function f , and a number k (1 ≤ k ≤ |W|), we aim to efficiently

36 Chapter 3. Influence based Cost Optimization on User Preference

H1

H2

H3

H4

H5
d1

d2

p1 p2

p3 p4
p5 p6

p7

Figure 3.2: The 3-level of a set of hyperplanes

identify the most cost-effective point in Rd to attract at least k users; that is, find

the k-critical point.

3.2.2 K-Level Problem

Given a weight vector w and a point p in space Rd, we use H(w, p) to denote a

hyperplane which is perpendicular to the vector w and contains the point p. Given

a set H of hyperplanes, the upper score of a point p is the number of hyperplanes

in H which are above or contain p.

Definition 3.3 (k-level levk(H)). The k-level of a set of hyperplanes H, denoted

by levk(H), is defined to be the point set Q ⊂ (Rd ∩H) with upper score k.

Example 3.3. The bold segments in Fig. 3.2 denote the 3-level of a set of hyper-

planes in a 2-dimensional space.

The k-level problem is a classical problem and its computation is a core compo-

nent of a wide variety of algorithms (e.g., [Mul91, ADBMS98, AACS98]). Partic-

ularly, the current best known upper bound for the combinatorial complexity (i.e.,

the number of faces) of k-level is O(nk1/3) [Dey98] and O(nk5/3) [AACS98] for 2

and 3-dimensional spaces, respectively. It turns out to be O(nbd/2ckdd/2e) [CS89] in

Chapter 3. Influence based Cost Optimization on User Preference 37

higher dimensions where d ≥ 4. Recently, k-level has also been widely applied in the

database community to facilitate rank queries (e.g., [CSLZ14, DGKS07, YAY12]).

3.2.3 Reduce the Search Space

In this subsection, we show that our influence-based cost optimization problem

can be solved by taking advantage of the k-level technique, where we can identify a

finite number of possible points. Before that, we introduce the concept of preference

hyperplane.

Definition 3.4 (Preference hyperplane). For a given preference function (i.e.,

vector) w ∈ W, we say a hyperplane, denoted by Hw, is the preference hyperplane

of w, where Hw is perpendicular to w and contains the favorite tuple of w in the

tuple set P; that is, Hw = H(w, p) where p ∈ P and w(p) ≤ w(p′) for any p′ ∈ P.

By HW we denote the corresponding hyperplanes of the preference functions

in W , namely preference hyperplanes. For presentation simplicity, we may drop

the subscript of HW whenever it is clear in the context. Based on the geometric

property of Hw, it is immediate that a new point q ∈ Rd is attractive to w if it is

below or contained by Hw. Thus, we have the following Lemma.

Lemma 3.1. Given preference hyperplanes H, the influence score of point q ∈ Rd,

I(q), w.r.t H is equal to the upper score of q w.r.t H (i.e., the number of hyperplanes

containing or above q).

According to Definition 3.3, we have I(q) = k for any point q ∈ levk(H).

Following theorem indicates that we only need to check a limited number of points

in the space to identify the k-critical point.

Theorem 3.1. Given a number k with 1 ≤ k ≤ n, the k-critical point q can only

be one of the intersection points or tangent points on levk(H)’s faces.

38 Chapter 3. Influence based Cost Optimization on User Preference

Proof. First, we show q is on levk(H). According to Definition 3.3, we know that q

must be below or lying on levk(H). For any point p below levk(H), we can always

find a point p′ on levk(H) such that p ≺ p′ and hence f(p) > f(p′). Therefore, we

find that q is on levk(H).

Then, we show that q is one of the intersection points or tangent points on

levk(H)’s faces. As we know, levk(H) consists of 0-faces (vertices), 1-faces (edges),

..., and (d − 1)-faces (facets) in Rd. Given a l-face F , 0 ≤ l ≤ d − 1, the affine

hull of F is called a l-flat. The terms “points”, “lines”, and “planes” are used to

designate 0-flats, 1-flats, and 2-flats in R2 or R3 (See [EOS86] for details). For any

(d−1)-face F in levk(H), the cost function f can achieve the minimum value at the

tangent point po on the corresponding (d − 1)-flat (See [CC87] for the continuity

and differentiability of monotone real functions) because f is a convex function.

Since F is a closed region, po might locate outside of F . In this case, the minimum

value of f must be achieved on one of the (d−2)-face boundaries as f is monotonic

and convex. We repeat this process until we reach edges. If we still find that the

tangent point is not on the edge, we know the minimum cost point must be one

of the two end vertices which are the intersection points of the hyperplanes. Thus,

the proof is complete.

Example 3.4. As shown in Fig. 3.2, the 3-critical point q can only be one of

the points p1, p2, ..., p7 together with several possible tangent points on the bold

segments.

3.2.4 Naive Solutions

Following Theorem 3.1, we may visit the faces of the k-level to find the candidate

intersection points and tangent points. Then, the point with the lowest cost is

the k-critical point. In the literature, traverse based and randomized incremental

Chapter 3. Influence based Cost Optimization on User Preference 39

approaches have been proposed to construct the k-level of a set of hyperplanes,

which can be easily extended for our problem.

Traverse based Method. In [CSLZ14, AACS98], the k-level is constructed by

traveling along the adjacent faces on levk(H) in a 2-dimensional space. In general,

we start from the left most k-level point. Whenever we meet an intersection point

of two 1 hyperplanes (i.e., lines in a 2-dimensional space) on the way to the right, we

make a turn (i.e., switch to another line). We terminate this traveling process once

reaching the right most k-level point. The time complexity of the above traverse

algorithm is O(n2k1/3) because it takes O(n) time to identify the next intersection

point in the worst case and the number of faces on k-level is bounded by O(nk1/3).

Example 3.5. As illustrated in Fig. 3.2, to construct the 3-level of H, we start

from point p1 and traverse along H3. Then we meet an intersection point p2, and

therefore we make a turn to travel along H1. We repeat this process until we reach

the right most point p7.

The above algorithm can be easily extended to our problem with the same time

complexity O(n2k1/3), where the cost of the tangent point on each visited line on

k-level is also calculated. However, this traverse based method cannot effectively

take advantage of the minimum cost for the candidate points seen so far because we

have to visit these candidates along a fixed order. Thus, in Section 3.3, we propose

a novel algorithm for 2 dimensions where a flexible traverse order is employed to

utilize some pruning techniques.

As mentioned in [CSLZ14], it is difficult to apply the traverse based approach for

higher dimensional spaces. The main obstacles are the exponential growth of the

combinatorial complexity with the dimensionality and the difficulty to enumerate

the adjacent unvisited faces at each intersection point. Consequently, we resort to

1The technique can be trivially extended for intersection points with more than two lines

40 Chapter 3. Influence based Cost Optimization on User Preference

the randomized incremental approach for higher dimensional spaces (d > 2).

Randomized Incremental Method. Efficient algorithm has been proposed

in [Mul91] following the randomized incremental paradigm [CS88]. In a nutshell,

we start with d randomly sampled hyperplanes to construct the initial k-level struc-

ture. Then the remaining (n − d) hyperplanes are added one by one in a random

order. For each arriving hyperplane, we will refine the k-level structure for hyper-

planes seen so far by discarding the faces already above the current k-level. The

expected time complexity of the algorithm is O(nbd/2ckdd/2e) in a d-dimensional

space.

This randomized incremental algorithm can be trivially extended to identify the

k-critical point. Unfortunately, as shown in our empirical study, the performance

is unsatisfactory even for the low dimensional space because the time complexity

is very sensitive to n (i.e., the number of hyperplanes). In Section 3.4, we propose

the partition strategy and a variety of pruning techniques to reduce the number of

hyperplanes involved in the computation of each partition, and hence significantly

improve the performance. We also devise sampling method to further enhance the

computational performance by orders of magnitude with high accuracy.

3.3 Traverse Based Method (2 dimension)

In this section, we propose an efficient method for 2-dimensional spaces.

3.3.1 Motivation

As discussed in Section 3.2, the main drawback of the traverse based approach

is that we have to visit the k-level following the turning points sequentially, and

hence cannot prune candidate points based on the minimum cost seen so far. In

Chapter 3. Influence based Cost Optimization on User Preference 41

this section, we circumvent the problem by partitioning the solution space into a

number of groups such that we can prune some regions (i.e., candidate points in

these regions) during the computation. Meanwhile, we can also quickly identify

candidate points for each survived region without the knowledge of the previous

turning point. Below is the motivation of our method.

In this thesis, we say a tuple a ∈ P is an anchor tuple if a is attractive to at least

one user. Let A denote all m anchor tuples for the given tuples P and preferences

W . The preference hyperplanes (lines in this Section) H is partitioned into m

disjoint groups 2. By Ha, we denote the preference lines crossing the anchor tuple

a and we assume the lines are sorted by their slopes. For a pair of anchor tuples

ai and aj with i < j in A, we use Ri,j to denote the region constructed by their

boundary lines, namely anchor-pair region. In Fig. 3.3, we show three anchor-pair

regions (depicted in dashed quadrilaterals) constructed from three anchor tuples

a1, a2 and a3. Clearly, each line of levk(H) intersects with at least one region.

In general, we follow the branch and bound paradigm to identify the optimal

solution. For each anchor-pair region R, we can easily come up with the lower

bound of the cost for any point in R. A region is immediately pruned if its cost

lower bound is larger than the current lowest cost. Moreover, we can also prune a

region based on the upper and lower bounds of the influence scores for any point

in the region. Meanwhile, for each survived region, we can quickly identify the

candidate points because the lines from the same anchor tuple are sorted by their

slopes.

The key of our new method is that, by utilizing some nice geometric properties of

our problem in 2-dimensional spaces, we ensure that only 3m out of the m2

2
regions

are touched during the computation, while each line in H is visited at most twice.

2For the lines containing more than one anchor tuple, we randomly choose one.

42 Chapter 3. Influence based Cost Optimization on User Preference

a1

a2

a3

d1

d2

H1H2 H3 H4 H5 H6

H7
H8

H9

Figure 3.3: Anchor-pair(AP) regions

t

b

l

r
H1 H2 H3 H4 H5

d2
ai

H6

aj

H7

H8

H9
d1

H
ia
^ `1 5

,...,H H

H
ja
^ `6 9

,...,H H

Figure 3.4: Traverse AP-region

Thus, we come up with a new algorithm with time complexity O(m + n) = O(n)

since m ≤ n.

3.3.2 Anchor-Pair Region

In this subsection, we first introduce some geometric properties relevant to the

anchor-pair region. Then pruning and traverse methods are presented.

According to [CBC+00] and the fact that the addictive linear function (i.e.,

w[i] ≥ 0 with 1 ≤ i ≤ d) is adopted, A is a subset of the convex hull points of

P . Without loss of generality, we assume anchor tuples {a1, . . . , am} from A are

ordered by the values of their first dimension where ai[1] < aj[1] for any 1 ≤ i <

j ≤ m. Moreover, we have ai[2] > aj[2] because, otherwise, aj cannot be an anchor

tuple.

Below, we introduce two important lemmas.

Lemma 3.2 indicates that the slopes of the sorted preference lines are well

divided by the anchor tuples.

Lemma 3.2. We have slope(H) > slope(H ′) if H ∈ Hai and H ′ ∈ Haj where

Chapter 3. Influence based Cost Optimization on User Preference 43

i < j.

Proof. Let w and w′ be the preference functions of H and H ′ respectively. Accord-

ing to the definition of anchor tuple, we have that w ·ai < w ·aj and w′ ·aj < w′ ·ai.

We then have the following two inequalities.

w[1]ai[1] + w[2]ai[2] < w[1]aj[1] + w[2]aj[2] (3.1)

w′[1]aj[1] + w′[2]aj[2] < w′[1]ai[1] + w′[2]ai[2] (3.2)

By multiplying these two inequalities, we get (w[2]w′[1] − w[1]w′[2])(ai[2]aj[1] −

ai[1]aj[2]) < 0. Since ai[1] < aj[1] and ai[2] > aj[2], we have ai[2]aj[1]−ai[1]aj[2] >

0 and hence w[2]w′[1] − w[1]w′[2] < 0. Thus, w[1]/w[2] > w′[1]/w′[2] follows.

Therefore, we have slope(H) > slope(H ′).

For each anchor tuple a, we use l+(a) and l−(a) to denote its upper and lower

boundary lines, which have the largest and smallest slopes among Ha, respectively.

According to Lemma 3.2, the anchor-pair region is a convex region. Four corners

of an anchor-pair region, namely left, right, top and bottom points, are denoted as

l, r, t and b respectively when the context is clear (See Fig. 3.4).

The following lemma shows that if we traverse the intersection points of a

preference line H with increasing order of the first dimension (i.e., from left to

right), the slopes of the crossing lines will strictly decrease. We remark that this

property is essential to the time complexity of our algorithm.

Lemma 3.3. Given a preference line H, let H1 and H2 be two other preference

lines intersecting with H at points p1 and p2, respectively. We have slope(H1) >

slope(H2) if p1[1] < p2[1].

Proof. Consider the example in Fig. 3.5 where we assume that slope(H) >

slope(H1). According to the definition of preference hyperplane, we know that

44 Chapter 3. Influence based Cost Optimization on User Preference

there is no tuple in P lying below H or H1, which means there is no tuple be-

low curve ap1b. We now show that the following two cases do not hold. (i)

slope(H1) < slope(H2) < slope(H) (e.g., H ′2 in Fig. 3.5). As shown in Fig. 3.5, H ′2

is completely below curve ap1b, which means that there is no tuple in P lying on

H ′2. According to the definition of preference hyperplane, we know that H ′2 is not

valid. (ii) slope(H) < slope(H2) (e.g., H ′′2 in Fig. 3.5). Obviously, H ′′2 is completely

above p1a, which implies that there is at least one tuple in P (on p1a) below H ′′2 ,

which violates the definition of preference hyperplane. Therefore, H ′′2 is not valid.

From (i) and (ii), we have slope(H1) > slope(H2). Similarly, we can verify the case

where slope(H) < slope(H1). Thus, the lemma holds.

We have the following corollary based on Lemma 3.2 and Lemma 3.3.

Corollary 3.1. Given an anchor-pair region Ri,j constructed from ai and aj, only

preference lines from Hai and Haj cross the region Ri,j.

Influence-based Pruning. We use I+(R) and I−(R) to denote the upper and

lower influence bounds of a region R, respectively. We can safely prune a region if

I+(R) < k or I−(R) > k. Following theorem indicates that we can directly derive

them based on the number of preference lines in each anchor tuple.

Theorem 3.2. Given an anchor-pair region Ri,j, we have I+(Ri,j) =
∑

i≤s≤j |Has|

and I−(Ri,j) =
∑

i<s<j |Has|+ 2 respectively.

Proof. According to Lemma 3.2, for any point p ∈ Ri,j, p is above any preference

line lout from anchor tuple as with s < i because p[1] > ai[1], slope(lout) > l+(ai),

and p is above l+(ai). Similarly, we know p is above any line lout from anchor tuple

as with s > j. Therefore, we have I(p) ≤
∑

i≤s≤j |Has | which means I+(Ri,j) =∑
i≤s≤j |Has|. Now let lin be any preference line from anchor tuple as with i < s < j.

Chapter 3. Influence based Cost Optimization on User Preference 45

According to Lemma 3.2, we have slope(l−(ai)) > slope(lin) > slope(l+(aj)). With

Lemma 3.3, we know the intersecting point between lin and l−(ai) (resp. l+(aj))

must be on segment ait (resp. taj), from which we know that lin is above Ri,j.

Therefore, I(p) >
∑

i<s<j |Has|. Since p must be on or lie below l−(ai) as well as

l+(aj), we have I(p) ≥
∑

i<s<j |Has|+ 2 which means I−(Ri,j) =
∑

i<s<j |Has|+ 2.

Now we show the lower and upper bounds are tight. As shown in Fig. 3.4, I(b)

can achieve the upper bound which is
∑

i≤s≤j |Has|, while I(t) can reach the lower

bound which is
∑

i<s<j |Has|+ 2.

Cost-based Pruning. We use f+(R) and f−(R) to denote the upper and lower

cost bounds of a region R, respectively. As shown in Fig. 3.4, ltr (resp. lbr)

represents the upper (resp. lower) boundary of Ri,j. It is immediate that for any

point p ∈ Ri,j, there is a point p′ on ltr (resp. lbr) such that p dominates (resp.

is dominated by) p′. With the same argument in Theorem 3.1, we can derive the

cost lower (resp. upper) bound based on a few points obtained from ltr (resp. lbr).

Specifically, f−(R) is derived based on l, t, r as well as two possible tangent points

on lt and tr, while f+(R) relies only on three points l, b and r.

Traverse the Anchor-Pair Region. If an anchor-pair region Ri,j cannot be

pruned, we need to explore the preference lines among Hai and Haj to identify

levk(H) within Ri,j. Thanks to Corollary 3.1, we only need to consider the pref-

erence lines from Hai and Haj . Below, we show how to quickly find the turning

points of levk(H) (i.e., candidate points) with one scan of these preference lines in

the following two steps.

(i) Find the entrance line. Let ni and nj denote the size ofHai andHaj respectively.

Clearly, levk(H) must enter Ri,j from one of the ni + nj lines. To this end, we use

an array L to sequentially keep these lines based on their encountering order along

the boundary
−→
tlb. As shown in Fig. 3.4, we have L = {H5, . . . , H1, H6, . . . , H9 }.

46 Chapter 3. Influence based Cost Optimization on User Preference

Let ∆ = k − (I−(Ri,j)− 2). The entrance line is the ∆-th line in L. Note that we

only need to check the tangent point on the two boundary lines if k = 1. Regarding

the example in Fig. 3.4, the entrance line is H2 if I−(Ri,j) = 2 and k = 4. Similarly,

it is H8 when k = 8.

(ii) Traverse. Given the entrance line, we can sequentially visit the turning points

following levk(H) traverse algorithm in Section 3.2.4. By taking advantage of the

fact that preference lines are well divided by anchor tuples (Lemma 3.2), we can

immediately identify the next turning point in O(1) time, which is O(n) time for

the general levk(H) traverse problem. Particularly, let si and sj denote the current

subindex of two lines in Hai and Haj , respectively, which contribute to the current

turning point. We first assume the entrance line is from ai where si = ni −∆ + 1,

and hence sj = 1 (i.e., the boundary line l+(aj)). According to Lemma 3.3, we

can immediately identify the turning points by iteratively increasing si and sj. As

shown in Fig. 3.4, we have si = 2 and sj = 1 at the beginning. Similarly, we have

si = 1 and sj = ∆− ni if the entrance line is from aj. The above traverse process

terminates once the boundary line of ai or aj is reached (i.e., si = ni or sj = nj).

Note that if the line leaving the region Ri,j is from aj, the anchor tuple aj should

also be considered as a candidate. Moreover, the tangent points of the visited lines

are also considered according to Theorem 3.1.

In this way, we can enumerate the candidate points for an anchor-pair region

in O(ni + nj) time.

3.3.3 Algorithm

Intuitively, we may enumerate all possible pairs of anchor tuples to identify the

k-critical point; that is, we may access O(m2) anchor-pair regions, where m is the

number of anchor tuples in A. By utilizing the following lemma, we show that we

Chapter 3. Influence based Cost Optimization on User Preference 47

only need to access at most 3m pairs in our exact algorithm.

Lemma 3.4. Given an anchor-pair region Ri,j, we do not need to access an anchor-

pair region Ru,v with i < u < v < j if one of the following two conditions holds:

(i) I+(Ri,j) < k;

(ii) I−(Ri,j) ≤ k ≤ I+(Ri,j)

Proof. According to Theorem 3.2, for case (i), we have I+(Ru,v) =
∑

u≤s≤v |Has| <∑
i≤s≤j |Has | = I+(Ri,j) < k. Therefore we can prune Ru,v. Similarly, for case (ii),

we have I+(Ru,v) =
∑

u≤s≤v |Has| <
∑

i<s<j |Has| + 2 = I−(Ri,j) ≤ k. Thus, we

can prune Ru,v as well.

Algorithm 1 illustrates the details of our traverse based method. We use T to

keep the best solution seen so far, and a priority queue Q is used to maintain the

anchor-pair regions where the key is the cost lower bound (i.e., f−(R)). Let i and j

denote the subindexes of an anchor-pair region Ri,j which are initialized as 1 and 2.

Lines 2-10 illustrate how we enumerate the regions based on Lemma 3.4, together

with the fact that we have I−(Ri,j−1) ≤ k if I−(Ri,j) > k according to Lemma 3.4.

Since either i or j will be increased by 1 in each iteration and j will be decreased

by at most m times (Line 8), the number of iterations (i.e., possible regions) is

bounded by 3m, and there are at most 2m feasible regions to be explored. Then,

we derive the k-critical point by traversing the regions survived the cost-based

pruning (Line 14).

Complexity Analysis. We first show that the number of line segments (faces) of

levk(H) is bounded by 2n in our problem when d = 2.

Lemma 3.5. The combinatorial complexity of levk(H) is bounded by 2n.

Proof. We first show that any preference line H ∈ H appears at most twice on

levk(H) for 1 ≤ k ≤ n. As levk(H) consists of a set of consecutive segments, we

48 Chapter 3. Influence based Cost Optimization on User Preference

Algorithm 1: TraverseBased-2d(A, H, f , k)

Input : A : the anchor points of size m,

H : preference lines of size n,

f : the cost function, k : target influence score

Output : T : k-critical point

Q := ∅; i := 1; j := 2;1

while i < m do2

while j ≤ m do3

Compute cost and influence bounds for Ri,j ;4

if I−(Ri,j) ≤ k ≤ I+(Ri,j) then5

Q.enqueue(Ri,j);6

else if I−(Ri,j) > k then7

j ← j − 1; break;8

j ← j + 1;9

i← i+ 1;10

while !Q.isEmpty() do11

Ri,j ← Q.dequeue();12

if f−(Ri,j) < f(T) then13

Traverse Ri,j and update T ;14

return T15

can sequentially label these segments from left to right with 1, 2, ..., s if there are

s segments in total. Now, we divide them into two sets, one with odd ids and the

other with even ids. According to Lemma 3.3, we know that the slope of segments

in the same set strictly decreases from left to right. If H appears more than twice

on levk(H), there would be at least two segments of H appearing in the same set

which contradicts to the fact that the slope is strictly decreasing in the same set.

Chapter 3. Influence based Cost Optimization on User Preference 49

H

H1

H2

H'2

d2

p1

a

b

p2

d1

H''2

Figure 3.5: Line intersection order

d1

d2

H1

H4

H5

c

c

H2

H3

H6

Figure 3.6: Space partition

Thus, H appears at most twice on levk(H). Since there are n lines in total, we know

that the number of 1-faces (i.e., edges) is bounded by 2n. Clearly, the number of

0-faces (i.e., vertices) is also bounded by 2n. Therefore, the proof is complete.

As shown in the traverse algorithm for each individual anchor-pair region in

Section 3.3.2, it takes O(1) time to identify each turning point. Consequently, the

traverse cost of Algorithm 1 is O(n) since there are at most 2n line segments in

levk(H). Together with the facts that it takes O(m) time to construct candidate

anchor-pair regions, we have the following theorem since m ≤ n.

Theorem 3.3. The time complexity of Algorithm 1 is O(n).

3.3.4 Indexing

To deal with a large number of user preferences, we employ a B+ tree to organize

the preference lines for each anchor tuple. Then each tree node can be treated

as a virtual anchor tuple associated with a subset of consecutive preference lines.

Consequently, an anchor-pair region Ri,j can be decomposed into a set of virtual

anchor-pair regions (depicted as dashed quadrilaterals in Fig. 3.4) based on four

50 Chapter 3. Influence based Cost Optimization on User Preference

virtual anchor tuples from ai and aj. Consequently, we can conduct influence-based

and cost-based pruning for a pair of anchor tuples in a level by level fashion. Re-

garding each survived virtual region constructed from two leaf nodes, the traverse

algorithm is the same as the anchor-pair region based one, where the lower and up-

per bounds of its influence score are carefully maintained during the tree traversal.

Besides, we use an additional B+ tree to maintain the anchor tuples.

We can easily modify Algorithm 1 to accommodate the new data structures.

Specifically, Line 4 will use the root node of each anchor tuple to construct anchor-

pair regions. Moreover, if ai or aj at Line 14 is not a leaf node, we will expand

their child nodes to construct new anchor-pair regions and apply the cost and

influence based pruning. The survived regions will be pushed into Q for further

consideration. In case both ai and aj are leaf nodes, we will traverse this region to

identify k-critical point candidate.

Index Maintenance. Since the anchor tuple is one of the convex hull points

in P , we may continuously maintain them in O(logm) time in a 2-dimensional

space [PS85]. By doing this, we can easily handle the update of user preference

functions W and tuple set P .

3.3.5 Discussion

The concept of anchor-pair region can be generalized to higher dimensions (d ≥ 3)

where every d anchor tuples form a region. However, we cannot derive tight cost

and influence bounds because the preference hyperplanes are not well divided like

2-dimensional case. Moreover, as discussed in Section 3.2.4, the traverse based

approach is not suitable to higher dimensional space. Consequently, we resort to

the space-partition based approach for higher dimensions in Section 3.4.

Chapter 3. Influence based Cost Optimization on User Preference 51

3.4 Space Partition Based Method

In this section, we present the space partition based framework for efficiently com-

puting the k-critical point in general dimensional spaces. First, we present an exact

method which essentially computes the local k-level structure for each partitioned

hypercube. To accelerate the computation, we then propose a randomized sampling

method which can efficiently generate solutions with high accuracy.

3.4.1 Motivation of Space Partition

In this section, we briefly introduce the motivation of our space partition based

method.

As discussed in Section 3.2, the main obstacle of our problem is the high com-

binatorial complexity O(nbd/2ckdd/2e) [CS89] of the levk(H). Intuitively, we can

alleviate this problem by partitioning the space into hypercubes such that the

number of preference hyperplanes involved in each partition (i.e., hypercube) is

significantly reduced. Moreover, we can exploit the local dominance relationship

among the hyperplanes in a partition c to further reduce the number of hyperplanes

involved, which is denoted by nc. Here, we say hyperplane H1 locally dominates

hyperplane H2 regarding c if any point on H1∩c is lying on or below H2. Intuitively,

by counting the number of dominated hyperplanes, we can estimate the influence

score lower and upper bounds of a hyperplane within c, which can be utilized to

prune a hyperplane directly for the given k value. On the other hand, a partition

may be immediately pruned based on its influence score or cost lower and upper

bounds. Moreover, we can compute the kc-level against the hyperplanes within

the partition where k is reduced to kc by utilizing the influence score lower and

upper bounds as well as the local dominance relationship. Then the randomized

52 Chapter 3. Influence based Cost Optimization on User Preference

incremental method in Section 3.2 can be applied on the nc hyperplanes, denoted

by Hc, for the kc-level computation. In practice, nc and kc are much smaller than

n and k after a considerable number of space decompositions.

Example 3.6. Consider the example in Fig. 3.6. Assume that n = 100 and k = 50.

After a series of partitions, we reach partition c with influence score lower and

upper bounds being 46 and 52, respectively. Thus, we know that initially nc = 6

and kc = 4. By using the local dominance relationship, we derive two hyperplane

pruning rules. The first rule is essentially to prune hyperplanes that are totally

below kc-level in c (i.e., H6 in Fig. 3.6), while the other is employed to prune those

completely above kc-level (i.e., H1 and H2 in Fig. 3.6). Note that as long as we

prune a hyperplane above kc-level, we have to reduce kc by 1. After pruning these

hyperplanes, we have that nc = 3 and kc = 2 and only H3, H4, and H5 survived. We

then use the randomized incremental method introduced in Section 3.2 to compute

the kc-level in c.

3.4.2 Space Partition Based Pruning Techniques

In this section, we first introduce influence-based and cost-based pruning techniques

for each partition. Then the local dominance technique is presented to reduce the

number of hyperplanes involved.

Pruning A Partition. Given a partition c, we use I+(c) and I−(c) to denote

the upper and lower influence bounds of c respectively. f+(c) and f−(c) denote

the upper and lower cost bounds of c, respectively. Then, we can easily derive

these bounds by its lower left corner and upper right corner, denoted by cl and ch

respectively. For any point p in c, we have p dominates ch and is dominated by cl.

Thus, I+(c) = I(cl) and I− = I(ch). Similarly, f+(c) = f(cl) and f−(c) = f(ch).

Now, for a given partition c, we can use k as well as the current best solution cost

Chapter 3. Influence based Cost Optimization on User Preference 53

fk to check if c can be pruned based on these bounds.

Exploiting Local Dominance. Given two preference hyperplanes H1 and H2 in

a partition c, we say H1 dominates H2 if any point on H1 within c is lying on or

below H2. As shown in Fig. 3.6, H6 dominates all remaining hyperplanes except

H4, while H1 is dominated by any of other hyperplanes. Using the local dominance

relationship, we may exclude some hyperplanes from the computation. Below are

two local dominance pruning rules.

(1) Dominance Pruning Rule (lower bound). Given a hyperplane H ∈ Hc, if H

dominates at least kc hyperplanes in Hc, then we can prune H safely.

For any point p ∈ H ∩ c, we have I(p) ≥ I−(c) + kc as p is below or lying on at

least kc other hyperplanes. Therefore, H is below levk(H) within c (i.e., kc-level)

and we can safely exclude H from the computation of c.

(2) Dominance Pruning Rule (upper bound). Given a hyperplane H ∈ Hc, assume

H dominates i hyperplanes in Hc and intersects with j hyperplanes in Hc, if i+j <

kc − 1, then we can prune H safely and decrease kc by 1.

For any point p ∈ H ∩ c, we have I(p) ≤ I−(c) + i + j + 1 < I−(c) + kc = k if

i + j < kc − 1; that is, H is always above levk(H) within c. Consequently, we can

simply decrease kc by 1 and exclude H from further computation.

Example 3.7. In Fig. 3.6, since H6 dominates 4 hyperplanes and kc = 4, we know

H6 can be pruned. Similarly, we can prune H1 and H2 using the second pruning

rule where kc is set to 2.

Local dominance check. Given two hyperplanes H1 and H2 in a partition c, A

denotes the intersection points from H1 and c’s 1-faces (i.e., edges). We say H1

dominates H2 regarding c if every point in A is below or lying on H2. The time

complexity is O(2d−1d).

54 Chapter 3. Influence based Cost Optimization on User Preference

3.4.3 Exact Algorithm

In this thesis, we adopt the linear Quad-tree to recursively partition the space.

Algorithm 2 summarizes our space partition based exact approach. We maintain

a priority queue Q to store the partitions that might contain the optimal solution

where the key is the cost lower bound (i.e., f−(c)). When a partition c is popped,

we may prune c with the current best solution T (Line 4). It may be further

split based on the depth and the number of hyperplanes in c (Line 5) where the

influence lower and upper bounds of sub-partitions can be easily computed based on

Hc and I−(c). Otherwise, we conduct the local dominance pruning rules to reduce

the number of hyperplanes (Line 9) and then apply the randomized incremental

algorithm in Section 3.2.4 to find candidate k-critical point.

Time Complexity Analysis. By nc and kc, we denote the average number

of hyperplanes and level of the partitions. As shown in Section 3.2, the time

complexity of computing a survived partition c is O(n
bd/2c
c k

dd/2e
c) in d-dimensional

spaces, which is the dominant cost compared with the pruning techniques. Let α

be the number of partitions survived from cost-based and influence-based pruning,

the complexity of Algorithm 2 is O(α n
bd/2c
c k

dd/2e
c).

Indexing. Instead of partitioning the space on the fly for each influence-based

query, we can keep the Quad-tree in the disk where the related information of each

partition (e.g., influence lower and upper bounds) is maintained. The hyperplanes

are recorded in their corresponding leaf nodes where each hyperplane may appear in

multiple leaf nodes. In practice we cannot afford to keep the whole Quad-tree as the

depth required for a good performance is usually large and we support all possible

k values. Consequently, in our implementation, we only materialize the higher level

of the Quad-tree for a given space budget, and the nodes may be further split when

necessary. For a new user preference function w, we may immediately apply the

Chapter 3. Influence based Cost Optimization on User Preference 55

Algorithm 2: PartitionBased-Exact(H, f , k, N , D)

Input : H : a set of hyperplanes, f : the cost function,

k : target influence,

N : leaf node capacity, D : the maximum depth

Output : T : k-critical point

T := ∅; Initialize Q with the domain of P;1

while !Q.isEmpty() do2

c← Q.dequeue();3

if f−(c) < f(T) then4

if |Hc| > N and Depth(c) < D then5

SplitPartition(c);6

Push into Q sub-partitions which survive both influence and cost7

based pruning;

else8

Apply local dominance based pruning on c;9

Apply randomized incremental algorithm on c and update T ;10

return T11

existing top-k technique to identify its top-1 result and insert its corresponding

preference hyperplane to the Quad-tree. Regarding the arrival of a new tuple p, we

need to update the related preference hyperplanes by issuing a reverse top-1 query.

The Quad-tree will be updated accordingly. The deletion of user preferences and

tuples can be handled in a similar way.

3.4.4 Sampling Based Solution

Motivation. The space partition method can significantly reduce the local com-

putational cost for each individual partition c. Nevertheless, nc may be still con-

56 Chapter 3. Influence based Cost Optimization on User Preference

H1

H2

o

a p*

b
H3 H4

c

H5

H1

o
H4

H1

o H5

H1

H2

o

ÄaÅ ÄbÅOptimal ÄdÅInvalidÄcÅValid

a
p*

b

c

H4

b

c

p*

p
a

a
c

p'

b
H5

Figure 3.7: Sampling Approach

siderably large because a hyperplane may appear in multiple partitions and it is

not cost-effective to have many partitions. Consequently, the cost of Algorithm 2

is still expensive when there are a large number of hyperplanes, due to the inherent

high combinatorial complexity of O(n
bd/2c
c k

dd/2e
c) for the kc-level in the partition c.

This motivates us to devise sampling based approach for each partition such that,

instead of kc-level, we only need to maintain the half-space intersection of the sam-

pled hyperplanes. The combinatorial complexity is reduced to O(n
bd/2c
s) where ns

is the number of sampled hyperplanes in each round. In each round, we may come

up with a candidate solution which satisfies the influence constraint even if we miss

the optimal solution. Thus, as shown in our empirical study, we can quickly find

candidate solutions with high accuracy after a considerable number of sampling

rounds.

According to Theorem 3.1, the optimal solution is determined by at most d

hyperplanes. Suppose p∗ is the optimal solution in Fig. 3.7(a). We use R∗ to

represent the hyperplanes contributing to the optimal solution (i.e., H1 and H4 in

Fig. 3.7(a)), and B to denote the hyperplanes that are strictly below p∗ (i.e., H2

and H3 in Fig. 3.7(a)). By Hs, we denote the sampled hyperplanes from Hc in

each round. Then we say Hs is optimal if it contains (i) all hyperplanes in R∗

and (ii) none of the hyperplanes in B. Otherwise, we say Hs is valid if the final

Chapter 3. Influence based Cost Optimization on User Preference 57

solution is below or lying on kc-level, and invalid if the final solution is above kc-

level. As we can see, the instances of Hs in Fig. 3.7(b), Fig. 3.7(c), and Fig. 3.7(d)

are optimal, valid, and invalid, respectively. Note that we may come up with a

candidate solution (e.g., p in Fig. 3.7(c)) in a valid Hs.

Algorithm 3: Sampling-Algorithm(Hc, ρ, nr)

Input : Hc : a set of hyperplanes in partition c,

ρ : hyperplane sampling probability,

nr : number of sampling rounds

Output : T : current best solution

for i← 1 to nr do1

HI ← c; T ′ ← ch;2

for j ← 1 to nc do3

Sample Hj ∈ Hc with probability ρ;4

Update HI and T ′ with Hj if sampled;5

if I(T ′) ≥ kc and f(T ′) < f(T) then6

Update T by T ′;7

return T8

Sampling Algorithm. To devise the space partition based sampling method,

we only need to replace Line 10 in Algorithm 2 with sampling approach (i.e.,

Algorithm 3). In the algorithm, we sample nr rounds (Lines 1-7). In each round,

we maintain a half-space intersection HI and round optimal point T ′, which are

initialized as the partition c and its upper right corner ch (Line 2), respectively.

We pick a hyperplane Hj ∈ Hc with probability ρ (Line 4). If Hj is chosen, we

update HI using the existing half-space intersection technique [CS88], as well as

the candidate solution T ′ when necessary (Line 5). Note that we can terminate

the current round early if f(T ′) ≥ f(T) since f(T ′) is the cost lower bound of this

58 Chapter 3. Influence based Cost Optimization on User Preference

round due to half-space intersection shrink. After a sampling round, we update T

by T ′ (Line 7) if (i) the local influence of T ′ is not smaller than kc and (ii) the cost

of T ′ is smaller than that of the current best solution T .

Time Complexity. By nc and kc, we denote the average number of hyperplanes

and level of the partitions. The expected sampled size in each round is ρnc. Since

the time complexity of the half-space intersection problem is O((ρnc)
bd/2c+1), it

takes sampling approach O(nr(ρnc)
bd/2c+1) time to compute a partition where nr

is the number of sampling rounds.

Theoretical Analysis. Let ks = nc − kc. We have |B| = ks, and |R∗| ≤ d, where

B keeps the “bad” hyperplanes which are strictly below the optimal solution and

R∗ represents the hyperplanes contributing to the optimal solution p∗. Suppose

each hyperplane is picked from Hc with probability ρ = 1/ks, a set of sampled

hyperplanes Hs is optimal in each round with probability θ, where

θ = (
1

ks
)|R
∗|(1− 1

ks
)|B| ≥ 1

kds
(1− 1

ks
)ks ≥ 1

8kds
.

Since each round of the sampling is independent to others, when nr = 8kds ln 1
δ
,

we can identify the optimal solution with probability 1− δ.

3.5 Experimental Study

In this section, we empirically evaluate the efficiency and effectiveness of the pro-

posed techniques.

3.5.1 Experimental Setup

Algorithms. To the best of our knowledge, there is no existing work investigat-

ing influence based cost optimization problem. In this thesis, we implement and

evaluate following algorithms.

Chapter 3. Influence based Cost Optimization on User Preference 59

Parameter Values

Data dimensionality d 2, 3, 4, 5
Tuple set P COLOR (C), HOUSE (H)

Preference function set W Uniform (UN), Clustered (CL)
Cardinality |W| 10K, 0.2M, 0.4M, 0.6M, 0.8M, 1M

Target influence score k 0.1, 0.3, 0.5, 0.7, 0.9 (×|W|)
of sampling rounds nr 10, 100, 1000, 10000

of clusters for W 10
Variance σ2 0.052

f1(p) =
∑

1≤i≤d
1

p[i]
, [LJ12]

cost function f2(p) =
∏

1≤i≤d
1

p[i]
, [GMC+15]

f3(p) =
∑

1≤i≤d(p[i]− q[i])2, [GLC+15]

Table 3.2: Experimental Parameters

• TRAVERSE. The traverse based method proposed in Section 3.3, which

works for 2-dimensional spaces.

• PARTITION. The space partition based exact method devised in Sec-

tion 3.4.3.

• EXACT. We use EXACT to denote TRAVERSE (PARTITION) when d = 2

(d ≥ 3).

• SAMPLING. The space partition based sampling method proposed in Sec-

tion 3.4.4.

Note that the naive approaches proposed in Section 3.2.4 are very slow in prac-

tice. For instance, it takes more than one day to handle 800 preference functions

in 3 dimensions. Thus, they are excluded from our performance evaluation.

Datasets. We use two real datasets as the given tuples P . COLOR (C)

(http://kdd.ics.uci.edu) consists of 68,036 records in 9-dimensional space, while

HOUSE (H) (http://www.ipums.org) contains 127925 6-dimensional tuples. We

60 Chapter 3. Influence based Cost Optimization on User Preference

randomly select subspaces to generate tuples with lower dimensionality. Same

as [VDKN10, VDNK10, VDNK13], we generate two kinds of synthetic datasets

for user preference functions following two widely used data distributions, namely

uniform (UN) and clustered (CL). For the uniform dataset, we randomly generate

a normalized vector from a d-dimensional space. For the clustered dataset, we

first randomly select c cluster centroids each of which is a preference function in d-

dimensional space. Then, preference functions are generated around the centroids

by following a normal distribution with variance σ2 in each dimension. For ease of

presentation, we use the combination of the abbreviated names. For example, by

2d C/UN we denote the dataset where 2-dimensional COLOR and uniform data

are deployed as the tuple set and preference functions, respectively.

Parameters. We conduct experiments in different settings, including dimension-

ality d, the cardinality |W|, the value of k, and the number of sampling rounds

for SAMPLING (nr). The experimental parameters together with default values

(in bold) are shown in Table 3.2. Note that the space upper right corner is used

as q in cost function f3. During the computation of PARTITION, the leaf node

capacity and depth of Quad-tree are set to 100 and 17, respectively. Note that we

only materialize the Quad-tree with 100M space budget. In the experiment, we

evaluate three metrics, namely running time, I/Os, and accuracy.

All algorithms are implemented in standard C++ with STL library support

and compiled with GNU GCC. Our experiments are conducted on PCs with Intel

Xeon 3.4GHz CPU and 32GB RAM running Debian Linux. The block size is set

to 4KB for both B+ tree and Quad-tree.

Chapter 3. Influence based Cost Optimization on User Preference 61

10
-4

10
-3

10
-2

10
-1

10
0

200K 400K 600K 800K 1M

R
u

n
n

in
g

 T
im

e
 (

s
)

TRAVERSE (NP)
PARTITION
SAMPLING
TRAVERSE

Figure 3.8: Comparing methods (2d)

0

2000

4000

6000

8000

200K 400K 600K 800K 1M

R
u
n
n
in

g
 T

im
e
 (

s
)

PARTITION (ND)
PARTITION

Figure 3.9: Evaluating pruning rule

3.5.2 Performance tuning

Comparison of 2-d algorithms. We start the experiments by investigating four

methods in 2-dimensional spaces, namely TRAVERSE (NP), TRAVERSE, PAR-

TITION, and SAMPLING, where TRAVERSE (NP) stands for TRAVERSE algo-

rithm without cost based pruning techniques. It is worth mentioning that the time

complexity of TRAVERSE (NP) here is O(n) according to the proof of Theorem 3.3

since we can locate the next intersection point in O(1) time after sorting prefer-

ence lines. Fig. 3.8 shows that TRAVERSE significantly outperforms TRAVERSE

(NP), which justifies the effectiveness of our anchor-pair region based pruning tech-

niques. Meanwhile, TRAVERSE demonstrates superior performance (by an order

of magnitude) compared with space partition based methods (i.e., PARTITION

and SAMPLING) because the former can utilize the nice geometric properties of

our problem in 2-dimensional spaces. On the other hand, SAMPLING is slightly

better than PARTITION. In the following experiments, we use TRAVERSE as the

default EXACT algorithm in 2-dimensions.

Evaluation of local dominance pruning rule. We evaluate the effectiveness of

the local dominance rule by reporting the running time of two algorithms PARTI-

TION and PARTITION (ND) against the growth of the user preference functions,

62 Chapter 3. Influence based Cost Optimization on User Preference

where PARTITION (ND) means the PARTITION algorithm without local domi-

nance technique. It is shown in Fig. 3.9 that the local dominance technique can

save nearly half of the computation cost. Note that we do not report the effec-

tiveness of cost and influenced based pruning techniques for PARTITION, because

we cannot handle even small size dataset (say, n = 1000 and d = 3) without their

support.

0

10

20

30

10
1

10
2

10
3

10
4

C
o

s
t

o
f

S
o

lu
ti
o

n

EXACT SAMPLING

0.00112 0.00022 0.00008 0

(a) Accuracy

0

100

200

300

10
1

10
2

10
3

10
4

R
u

n
n

in
g

 T
im

e
 (

s
)

(b) Running Time

Figure 3.10: Tuning # of sampling rounds nr

Effect of sampling rounds. Fig. 3.10 evaluates the effect of number of sampling

rounds on the solution cost and running time with 10, 000 preference functions. Not

surprisingly, Fig. 3.10(a) shows that we can increase the accuracy by increasing nr

where the relative error between EXACT and SAMPLING are labeled on top of

their bar pairs. Meanwhile, the running time grows with the number of sampling

rounds (Fig. 3.10(b)). Although it takes 10, 000 sampling rounds (around 250

seconds) to achieve the optimal solution, we already achieve a relative error of

0.0002 with 37 seconds when nr = 100, which is sufficient in practice. Consequently,

we take 100 sampling rounds in the following experiments.

Effect of cost function. We evaluate the effect of cost function in Fig. 3.11.

Particularly, Fig. 3.11(a) reports the accuracy achieved by SAMPLING on three

different cost functions as shown in Table 3.2, where the number of preference

Chapter 3. Influence based Cost Optimization on User Preference 63

0

1

2

200K 400K 600K 800K 1M

R
e
la

ti
v
e
 e

rr
o
r

(1
0

-4
)

f1
f2
f3

(a) Accuracy vs |W|

0

2000

4000

6000

8000

f1 f2 f3

R
u
n
n
in

g
 T

im
e
 (

s
)

Datasets

EXACT
SAMPLING

(b) Running Time

Figure 3.11: Evaluating effect of cost function

functions (|W|) grows from 200K to 1M. It is reported that SAMPLING achieves

very high accuracy (less than around 0.0002 relative error under all settings) on

three functions, especially f3. Fig. 3.11(b) illustrates the running time of EXACT

and SAMPLING on three cost functions. It is interesting that two algorithms also

achieve the best performance on f3. This is because f3 is simply defined as the

distance between the searching point and a fixed point q. As a result, our methods

are easy to approach the optimal solution.

3.5.3 Evaluating Accuracy

We empirically evaluate the accuracy of SAMPLING algorithm on different set-

tings. We report the costs of EXACT and SAMPLING algorithms, as well as their

relative error on the top of their bar pairs, against different dataset (Fig. 3.12),

the growth of dimensionality (Fig. 3.13), the number of user preference functions

(Fig. 3.14), and the k values (Fig. 3.15). It is observed that the cost of the solution

from SAMPLING is very close to that of EXACT under all settings (say, less than

0.001 relative error). Sometimes, SAMPLING even successfully finds the optimal

solution. Note that we evaluate the effect of growth of dimensionality with 10, 000

user preferences such that EXACT can finish when d = 4.

64 Chapter 3. Influence based Cost Optimization on User Preference

0

50

100

150

200

2d C/UN 2d C/CL 3d H/UN 3d H/CL

C
o
s
t
o
f
S

o
lu

ti
o
n

EXACT

SAMPLING
0

0.00094 0.00052

0.00037

Figure 3.12: Accuracy vs datasets

0

50

100

150

200

2 3 4 5

C
o
s
t
o
f
S

o
lu

ti
o
n

EXACT

SAMPLING
0

0.00054

0.00037

0.00097

Figure 3.13: Accuracy vs d

0

10

20

30

40

200K 400K 600K 800K 1M

C
o
s
t
o
f
S

o
lu

ti
o
n

EXACT SAMPLING

0.00011 0.00003
0.00001

0.00004

0.00002

Figure 3.14: Accuracy vs |W|

0

20

40

60

0.1 0.3 0.5 0.7 0.9

C
o
s
t
o
f
S

o
lu

ti
o
n

EXACT

SAMPLING

0.00023 0
0.00038

0.00036

0.00048

Figure 3.15: Accuracy vs k

3.5.4 Evaluating Efficiency

In this subsection, we evaluate the running time and I/O efficiency of the proposed

algorithms under different experiment settings.

10
-4

10
-2

10
0

10
2

10
4

2d C/UN 2d C/CL 3d H/UN 3d H/CL

R
u
n
n
in

g
 T

im
e
 (

s
)

Datasets

EXACT
SAMPLING

(a) Running time

0

50

100

150

200

2d C/UN 2d C/CL 3d H/UN 3d H/CL

I/
O

s

Datasets

EXACT SAMPLING

(b) I/Os

Figure 3.16: Performance against different datasets

Evaluation on different datasets. The experiment results against different

datasets are reported in Fig. 3.16. It is very interesting that EXACT significantly

Chapter 3. Influence based Cost Optimization on User Preference 65

outperforms SAMPLING on two 2-dimensional datasets, with more than 2 orders

of magnitude faster. This is because EXACT (i.e., TRAVERSE in 2-dimensional

spaces) can utilize the nice geometry properties of 2-dimensional data and hence its

time complexity is linear to the number of user preference functions. Nevertheless,

SAMPLING beats EXACT (i.e., PARTITION for d ≥ 3) by a large margin on

3-dimensional data because it is inherently difficult to find optimal solution in

higher dimensional space due to the nature of the high combinatorial complexity

of our problem. We also report the I/O costs of two algorithms on four datasets

in Fig. 3.16(b). It demonstrates that the I/O cost of SAMPLING is always larger

than that of EXACT, especially in 2-dimensional space. This is because EXACT

can quickly approach the optimal solutions at the beginning stage and hence their

cost based techniques can save more I/O cost.

10
-5

10
-2

10
1

10
4

INF

2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s
)

EXACT
SAMPLING

(a) Running time

10
1

10
2

10
3

10
4

2 3 4 5

I/
O

s

EXACT
SAMPLING

(b) I/Os

Figure 3.17: Performance vs dimensionality d

Effect of dimensionality. The experiment results of effect of dimensionality are

presented in Fig. 3.17. Fig. 3.17(a) reports that EXACT is more than 2 orders

of magnitude faster than its counterpart in 2-dimensional space. However, as d

increases, SAMPLING outperforms its counterpart. For instance, it runs faster

than EXACT from 1 order of magnitude in 3-dimensions to 2-3 orders of magnitude

in 4-dimensional spaces. As we can see that EXACT fails to return the result when

66 Chapter 3. Influence based Cost Optimization on User Preference

d = 5 (we set allowed running time to be one day), while SAMPLING finishes in

less than one hour. Same as the observation in Fig. 3.16(b), Fig. 3.17(b) shows

that SAMPLING consumes more I/O cost than EXACT.

0

1000

2000

3000

4000

200K 400K 600K 800K 1M

R
u
n
n
in

g
 T

im
e
 (

s
)

EXACT
SAMPLING

Figure 3.18: Performance vs |W|

0

20

40

60

0.1 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 T

im
e
 (

s
)

EXACT

SAMPLING

Figure 3.19: Performance vs k

Effect of cardinality. Fig. 3.18 reports the running time of two algorithms where

the number of user preference functions (|W|) grows from 200K to 1M. It shows

that the margin becomes more significant when |W| increases, which implies that

SAMPLING is much more scalable to |W| compared with EXACT in 3-dimensional

spaces.

Effect of target influence score. Fig. 3.19 reports the running time with respect

to different percentage values (i.e., k values) which increase from 0.1 (i.e., k =

0.1×|W|) to 0.9 (i.e., k = 0.9×|W|). It is observed that the highest running time of

two algorithms comes from 0.3, which implies that the combinatorial complexity of

k-level peaks when k is around 0.3×|W|. Moreover, the performance of SAMPLING

is less sensitive to k compared to EXACT.

Chapter 3. Influence based Cost Optimization on User Preference 67

3.6 Conclusion

The investigation of e-business and user preference data has been of great interest

recently. In this chapter, we advocate the problem of influence-based cost opti-

mization problem, which aims to find a cost optimal position for a new product

such that it can occupy a required amount of market share. To deal with the high

combinatorial complexity nature of this problem, we develop efficient pruning and

query processing techniques to significantly improve the performance of our al-

gorithms. Specifically, an efficient traverse-based 2-dimensional algorithm and two

space partition based algorithms for general multi-dimensional spaces are proposed.

Extensive experiments demonstrate that our techniques achieve high efficiency and

effectiveness performance.

Chapter 4

Categorical Top-k Spatial

Influence Query

4.1 Overview

Finding influential objects has been widely studied as an important spatial opera-

tor ever since it was introduced in [KM00] due to a wide spectrum of applications

such as decision support, profile-based marketing, resource allocation, etc. Existing

techniques define the influence of a facility as the number of users that consider

it as nearest neighbors, namely, the bichromatic reverse nearest neighbor query.

Informally, given a set F of facilities (e.g., gas station, supermarket) and a set O

of users (e.g., persons, cars), the influence of a facility f can be defined by the

number of users whose nearest neighbors are f . However, in practice several types

of facilities exist and play different roles in satisfying uses’ needs. Therefore, a

more sophisticated way to evaluate the influence of facilities is preferable. Instead

of considering all facilities as the same type (e.g., finding the most influential super-

market among all supermarkets) as mentioned above, in this thesis, we propose a

68

Chapter 4. Categorical Top-k Spatial Influence Query 69

novel definition to evaluate the influence of a facility f by its capability of forming

a functional unit together with facilities of other categories.

c2
s1

s2

c1

c3
b2

b1

book store

coffee house

Sushi shop

Id OFUPs Inf

b1 c1, s1 0
b2 c3, s2 5
c1 b2, s1 2
c2 b2, s1 0
c3 b2, s2 2
s1 b2, c1 3
s2 b2, c3 2

Figure 4.1: Motivating Example

Example 4.1 (Motivating Example). Consider the CBD area in Sydney. There

are various types of business/facilities such as restaurants, cafes, bookshops, su-

permarkets, etc, as shown in Fig. 4.1. A customer may want to spend a leisure

afternoon by drinking coffee, reading/purchasing books, and enjoying some sushi.

Here, facilities of types book store, cafe, and Sushi shop form a functional unit for

this customer where one functional unit consists exactly one facility from each cat-

egory of desired services/facilities from the user. In Fig. 4.1, facilities {b1, c1, s1}

form a functional unit. One facility may be involved in many functional units. For

instance, b1 forms functional units {b1, c1, s1}, {b1, c2, s2}, {b1, c3, s2}, etc. If we

consider the cost to form a functional unit to be the sum of pairwise distance of

its facilities, clearly the optimal functional unit (OFU) is the one with minimum

cost1. In Fig. 4.1, {b1, c1, s1} is the optimal functional unit for b1. c1 and s1 are

called participants of b1’s optimal functional unit (OFUPs).

After computing the optimal functional unit for each of the facilities, in this

paper we define the influence of a facility f as the total number of optimal functional

1Ties break arbitrarily. We will study other cost models such as maximum pairwise distance

in future works.

70 Chapter 4. Categorical Top-k Spatial Influence Query

units that f participates in. As in Fig. 4.1, b1’s influence value is 0 since it does not

participate in any other facility’s OFU. b2’s influence value is 5 since it participates

in the OFUs of c1, c2, c3, s1 and s2. Such an influence value clearly represents the

importance of one facility in forming optimal functional units with other types of

facilities and thus offers a new angle to analyze the potential of one facility in

business strategies, urban planing, etc. In an extreme case, if a book store is the

only one of this type and is surrounded by many other types of facilities (thus, could

attract customers of various needs), the influence value of this book store is high

representing huge business potential.

Challenges. In this chapter, we study the problem of categorical top-k spatial

influential query as introduced above. A straightforward approach is to compute

the optimal functional unit for each object and then sum up the number of optimal

functional units that each facility participates in. However, this approach suffers

from two drawbacks. Firstly, as we shall show in Section 4.3.1, finding the optimal

functional unit for a facility f is an NP-hard problem. Secondly, the size of spatial

facilities is usually massive involving a large number of categories. For instance,

in the experiment, the real dataset we utilize consists of more than 1.4 million

facilities with 73 different categories.

To address the above challenges, it is critical to devise efficient spatial indexing

and query processing techniques to support top-k spatial influence query against

a massive number of spatial objects. In this paper, we follow the filtering-and-

refinement framework based on R-trees style spatial indexes. Efficient and effec-

tive pruning techniques are developed to avoid the costly verification as much as

possible. Specifically, the framework consists of two main steps, namely possible

participants finding and optimal feasible set computation. The major challenge

in the first step is to derive a tight pruning distance. We find that the pruning

Chapter 4. Categorical Top-k Spatial Influence Query 71

distances derived by common strategies are substantially larger than the optimal

pruning distance. Motivated by this, we propose a nearest neighbor set (NNS)

based approach which leads to a performance acceleration by several orders of

magnitude. In the second step, we develop two algorithms: one is an efficient exact

algorithm and the other is an approximate algorithm with performance guarantee.

Roadmap. The rest of this chapter is organized as follows. Section 4.2 presents

problem definition and background knowledge. Section 4.3 formulates the in-

tractability of the problem and presents an efficient framework. Two key steps

of our techniques are introduced in Sections 4.4 and 4.5, respectively. Section 4.6

gives the empirical study and Section 4.7 concludes the paper.

4.2 Background

We present problem definition and necessary preliminaries in this section. Table 4.1

summarizes the notations frequently used throughout this chapter.

Notation Definition

o (O) object (a set of objects)
o.λ the category of object o
Oi all objects in O with category i
q.ψ a set of categories specified by query q
Oq all objects in O relevant to query q

S (So) functional unit under a specific query (optimal functional unit)
d(o1, o2) the Euclidean distance between objects o1 and o2

Table 4.1: The summary of notations

4.2.1 Problem Statement

A facility object o ∈ O is a point in a d-dimensional numerical space with a

particular category, where O is a set of such facilities. Hereafter, we use object

72 Chapter 4. Categorical Top-k Spatial Influence Query

and facility interchangeably when there is no ambiguity. In this thesis, we focus on

2-dimensional spatial space. Suppose there are totally t categories of facilities, we

use Oi to denote all objects in O with category i (1 ≤ i ≤ t). Given two objects o1

and o2, d(o1, o2) denotes the Euclidean distance between them. A query q consists

of a set of desired facility categories {t1, t2, ..., tm} denoted by q.ψ. Given a query

q, a set S of objects is called a functional unit if it contains exactly one object from

each set Oti , 1 ≤ i ≤ m. A functional unit So is called optimal if the cost of So

is minimized among all possible candidate functional units. We define the facility

influence as follows.

Definition 4.1. (Facility Influence) Given a query q with facility categories

q.ψ = {t1, t2, ..., tm}, for each object o ∈ Oti (1 ≤ i ≤ m), let So denote the optimal

functional unit containing o regarding q. If an object o′ participates in So, then the

influence of o′ is increased by 1. The facility influence of an object is defined as the

final value of its influence after considering all objects in Ot1 ∪ ... ∪ Otm.

To define the optimal functional unit, in this paper we consider the cost function

as the sum of pairwise distance. This is because the sum of pairwise distance

denotes the expected cost of a route that visits all objects once in the functional

unit, and a functional unit with a small sum of pairwise distance cost has a small

expected route cost. Other cost functions, such as the maximum distance among

all pairwise distances, will be studied in future works.

Definition 4.2. (Sum of Pairwise Distance Cost) Given a set S of objects,

the sum of pairwise distance cost of S, denoted by costSum(S), is equal to the sum

of pairwise distance of objects in S. That is,

costSum(S) =
∑

oi,oj∈S,i<j

d(oi, oj) (4.1)

Chapter 4. Categorical Top-k Spatial Influence Query 73

Problem Statement Given set of facilities O, a query q with facility types q.ψ

= {t1, t2, ..., tm} an integer k, the categorical top-k Spatial Influence Query (SIn-

Query) problem is to find the k facilities with maximum facility influence values in

Ot1 .

Example 4.2. Consider the example in Figure 4.1. Given q.ψ = {b, c, s} and

k = 1, we aim to find the most influential object in Ob. To this end, for each

object not belonging to type b, we compute its optimal functional unit. Taking c1

for example, we find that its optimal functional unit is {c1, b2, s1}. We thus increase

the influence of b2 by 1. After considering the remaining objects similarly, we have

that the influence of b2 is 5 while that of b1 is 0. Hence, b2 is the most influential

object.

In the problem statement, we assume that a user is only concerned about com-

paring the importance of objects in the same category, which is meaningful. For

instance, a user maybe ask, among all coffee houses, which one is most investment

potential. Without loss of generality, we assume that the first category t1 is the

concerning one.

4.2.2 R-tree Distance Metric Based Cost

In this section, we introduce several R-tree distance metric based functional unit

cost computation methods.

Given a query q = ({t1, t2, ..., tm}) and a set N = {N1, N2, ..., Nm} of R-tree

nodes. Assume that Ni only contains objects of type ti for 1 ≤ i ≤ m. Without

loss of generality, we now are interested in finding a cost bound C for N1 such that

any object in N1 has a functional unit with cost no larger than C.

For ease of illustration, let’s consider the example in Figure 4.2 where we simply

assume that q = ({R, S, T}) and N = {R, S, T}. To get the cost bound of R, a

74 Chapter 4. Categorical Top-k Spatial Influence Query

Figure 4.2: Cost construction for index node

straightforward way is to use the maxDist metric. That is, C = maxDist(R, S) +

maxDist(R, T) + maxDist(S, T). Obviously, any object in R can find an object

in S within distance maxDist(R, S), and an object in T within maxDist(R, T).

Meanwhile, the distance between any pair of objects in S and T is smaller than

maxDist(S, T). Thus, C is indeed a cost bound for R.

However, the maxDist based cost bound is not tight enough. In the following,

we give two more R-tree distance metric based cost computation methods, which

can always achieve smaller cost than the maxDist based method.

MinExistDNN based cost. Recently, a new pruning distance metric, called

minExistDNN, has been proposed to resolve the nearest influential site prob-

lem [XZKD05], which has been generalized to arbitrary dimensions [CP07]. The

definition of minExistDNN(R, S) is as follows:

minExistDNN(R, S) = max{minMaxDist(r, S)|∀object r ∈ R} (4.2)

Given an object r ∈ R, we know that r can always find a neighbor in

S within distance minMaxDist(r, S) [RKV95]. It is also easy to verify that

minMaxDist(r, S) < maxDist(R, S). According to Equation 4.2, we have the

following conclusion. Metric minExistDNN(R, S) guarantees that, within this dis-

Chapter 4. Categorical Top-k Spatial Influence Query 75

tance, any object in R can find a neighbor object in S and minMaxDNN(R, S) <

maxDist(R, S). With this property, we derive a minExistDNN based cost, which

basically consists of two parts, the minExistDNN from the anchor node to other

nodes and the maxDist between each pair of other nodes. As shown in Fig-

ure 4.2(a), the minExistDNN based cost of node R is minExistDNN(R, S) +

minExistDNN(R, T) + maxDist(S, T). Clearly, this cost is always smaller than

the above maxDist based cost.

EdgeExistDist based cost. According to the definition of MBR, we know

that there exists at least one object on any edge of an MBR. From this property,

we immediately develop another method to compute the cost, which is called edge-

ExistDist based cost, as shown in Figure 4.2(b). The main idea of this method is

to pick an edge on each of the other nodes such that the cost is optimal, which are

edges g and h in this example. Here, edgeExistDist(R, S) is the maximum dis-

tance of R to the selected edge g in S and edgeDist(S, T) is the maximum distance

between edges g and h selected from S and T . The final edgeExistDist based cost

of R is edgeExistDist(R, S) + edgeExistDist(R, T) + edgeDist(S, T).

Since minMaxDist(R, S) is essentially to find an optimal edge of S for

objects in R, we have the intuition that edgeExistDist(R, S) is equal to

minExistDNN(R, S) in most cases if we select edges well. Further, we deduce

that the edgeExistDist based method can achieve smaller cost than the minEx-

istDNN based method because the second part edgeDist(S, T) is always smaller

or equal to maxDist(S, T). Specially, the advantage goes more obviously when

the number of query types increases. We conducted experiments using these two

methods. The results show that the edgeExistDist based method outperforms the

other.

It is worth mentioning that there are 4k−1 combinations of edge selections in

76 Chapter 4. Categorical Top-k Spatial Influence Query

total for the edgeExistDist based method if the query number is k. To avoid this

exhaustive search, we use a heuristic approach to solve this problem. For each

other nodes (i.e., S and T), we select the edge which is nearest to the anchor node.

By nearest, we mean that the maximum distance between any point in the edge

and any point in the anchor node is minimum. As shown in Figure 4.2, edges g

and h are the nearest edges selected from S and T respectively. Apparently, the

time complexity of this heuristic method is linear to k.

4.3 Framework

In this section, we first give the intractability of the SInQuery problem and then

present a 2-step framework to solve the problem efficiently.

4.3.1 Problem Intractability

Lemma 4.1. The SInQuery problem is NP-hard.

Proof. A procedure of SInQuery , which computes the optimal functional unit for

an object, can be formally described as follows. Given a query q with object

categories {t1, t2, ..., tm}, we aim at finding a set S of objects containing exactly

one object from each set Oti , 1 ≤ i ≤ m and costSum(S) is minimized. We first

give the corresponding decision problem as follows. Given a positive value η and

a query q where q.ψ = {t1, t2, ..., tm}, the problem is to determine whether there

exists a set S of objects in Oq such that S contains exactly one object from each

set Oti , 1 ≤ i ≤ m and costSum(S) ≤ η. For simplicity, we denote the decision

problem by SInQuery .

We then prove the NP-hardness of SInQuery by a reduction from the well-

known NP-C problem 3-SAT [GJ79], which is described as follows. Let U be a set

of literals {u1, u1, ..., um, um} where ui is the negation of ui. Given an expression

Chapter 4. Categorical Top-k Spatial Influence Query 77

E = C1 ∧ C2 ∧ ... ∧ Cm, where each clause Ci = {xi ∨ yi ∨ zi} and xi, yi, zi ∈ U

for 1 ≤ i ≤ m, it determines whether there exists a truth assignment for ui for

1 ≤ i ≤ m such that E is true.

Given an instance of the 3-SAT problem, we construct an SInQuery problem

instance as follows. For each clause Ci in E, we create 3 objects, each for its

3 literals xi, yi, zi, and let their category be ti. For any two objects oi and oj,

we assume the corresponding literals are ui and uj. We then assign the distance

d(oi, oj) of oi and oj according to the following rules. If ui and uj are in the same

clause, we let d(oi, oj) be any positive value as long as the triangle inequality holds.

Otherwise, if ui is the negation of uj, that is ui = uj, we let d(oi, oj) = 2. Otherwise,

d(oi, oj) = 1. We set η to be
m(m+ 1)

2
. Clearly, the above construction process

could be finished in polynomial time.

We now show that the above constructed SInQuery problem instance is equiv-

alent to its corresponding 3-SAT problem instance. Assume that the answer to

3-SAT is “yes”, that is, there exists a truth assignment A for the literals in U such

that E is true. Then, we construct S of Oq as follows. For each clause Ci, we

add in S the object oi corresponding to the literal ui with true value. Clearly, S

is of size m and contains exactly one object from each set Oti , 1 ≤ i ≤ m. For

any two objects oi and oj of S, we know that d(oi, oj) is either 1 or 2. We claim

that d(oi, oj) cannot be 2 since, otherwise, the corresponding literals ui and uj are

mutual negative, which can be denied by the fact that both ui and uj are true.

Therefore, costSum(S) =
m(m+ 1)

2
≤ η. Thus, the SInQuery problem is “yes”.

Consider the other direction. Assume that the answer to SInQuery is “yes”, that

is, there exists a set S of objects such that S contains exactly one object from each

set Oti , 1 ≤ i ≤ m and costSum(S) ≤ η. Then, we construct a truth assignment A

for the literals U as follows. For each object oi ∈ S, we let the corresponding literal

78 Chapter 4. Categorical Top-k Spatial Influence Query

ui be true and consequently ui is false. For the remaining literals, we arbitrarily

assign their truth value with the constraint that ui and ui have different truth

values. First, we show A is a valid assignment, that is, there exist no pairs of two

literals ui and u1 both being true. As costSum(S) ≤ η =
m(m+ 1)

2
, we know that

d(oi, oj) = 1 for any two objects oi and oj in S. Thus, any literal ui covered by S

satisfies the constraint that ui and ui have different truth values. For the remaining

literals that are not covered by S, we know that they meet the constraint as well

due to the way we construct A. Second, we show E is true under A. Since we add

into S one object from each set Oti , 1 ≤ i ≤ m and let the corresponding literal be

true, we know that the clause Ci is true for 1 ≤ i ≤ m. Therefore, E is true and

thus the answer to the 3-SAT problem is “yes”.

Therefore, the proof is complete.

4.3.2 Overall Framework

Algorithm 4 illustrates an outline of the framework which follows two steps, possible

participant set finding and optimal functional unit computation. Both our exact and

approximate algorithms follow this framework.

Algorithm 4: TopInfluentialObjects

Step 1: Possible Participant Set Finding. As long as unable to determine the final1

result, we select an unprocessed object o ∈ Ot1∪...∪tm \ Ot1 to find a set of

candidate objects which would become a member of its optimal functional unit.

Step 2: Optimal Functional Unit Computation. As long as unable to determine2

the final result, we select an unprocessed object o ∈ Ot1∪...∪tm \ Ot1 to compute its

optimal functional unit using the possible participant set.

Output: k most influential objects in Ot1 .3

Chapter 4. Categorical Top-k Spatial Influence Query 79

Data Structure. We adoptR-tree to index our dataset; that is the set of all facility

objects. Since the dataset contains facilities of different categories, naturally there

are two ways of indexing, multiple trees (i.e., one R-tree for each facility category)

and a single R-tree (i.e., use one R-tree to index all facility objects of different

categories). Considering the fact that the number of total categories would be

large and the number of categories specified in a query is usually small (e.g., in our

experiments a real dataset contains 73 categories and the query usually specifies

less than 15 categories), we choose to index the facility dataset using multiple trees,

one for each category of facilities in order to minimize node accesses during query

processing. Specifically, given a dataset, we index each category by an R-tree and

store the built trees on disk. When a query is invoked, we simply pick and load the

relevant R-trees to memory for computation. The experimental results show that

the use of single tree can achieve better performance than multiple trees in terms

of running time when the total number of categories is small (e.g., no more than 5

categories). However, in all other cases, the multiple trees strategy is better than

the other.

Algorithm Implementation. In order to terminate the process of finding the

top-k most influential objects as early as possible, we develop a top-down tree

traversal method in Algorithm 4. The main idea can be described as below. We

maintain a priority queue Qe, a mutable priority queue Qr, and a common first in

first out queue Qc.

• Qe = {e|e is a visited but not expanded index entry of all relevant R-trees }

• Qr = {e|e is a visited R-tree entry of category t1}.

• Qc = {e|e is a visited object entry of all relevant R-trees except category t1}

We discuss the sorting of Qe in Section 4.4.1 since the order of R-tree node ex-

80 Chapter 4. Categorical Top-k Spatial Influence Query

pansion has a significant effect to the performance of the algorithms. The elements

in Qr are in the decreasing order of their maxInf value. As the maxInf value of

entries keeps changing during the query, Qr is designed to be mutable.

Qe is initialized as root entries of all query relevant R-trees and Qr is initialized

as the root node entry of category t1. For each entry e in Qr, we store two values,

〈minInf,maxInf〉, denoting the minimum and maximum influence values of all fa-

cilities indexed by e respectively. Specifically, if e is an object, minInf and maxInf

are the lower bound and an upper bound of its influence value. If e is an index

entry, minInf and maxInf are the lower and upper bound of the influence of all

facility objects in the sub-tree rooted at e. We keep expanding the highest priority

entry in Qe and pushing into Qe its child index entries and Qc its object entries not

belonging to t1 respectively. At the same time, we update the maxInf and minInf

values of entries in Qr. We repeat this process until find k objects in Qr each of

which has a minInf no less than the largest maxInf of all remaining entries. If we

do not get the answer after expanding all tree index entries, we then compute the

optimal functional unit for objects in Qc one by one until we can determine to stop

the algorithm.

To implement Algorithm 4 efficiently, we store, for each entry e, two sets of entry

pointers, namely dstEnts and srcEnts. Specifically, dstEnts stores the entries that

are possible participants of e, where the formal definition of possible participants

is introduced in the following section. Reversely, srcEnts stores the entries, each

of which regards e as one of its possible participants. The implementation of two

steps in Algorithm 4 is discussed in Section 4.4 and Section 4.5 respectively.

There are two major issues to resolve SInQuery well.

• Tight possible participant pruning distance finding. Loose pruning distance

leads to a large size of possible participant set. Consequently, it will slow

Chapter 4. Categorical Top-k Spatial Influence Query 81

down the speed of estimating maxInf and minInf accurately. Moreover, it

will add heavier burden to Step 2.

• The computation of optimal functional unit for an object o is NP-hard as

shown in Lemma 4.1. Trivially enumerating all possible solutions is compu-

tationally expensive and slow.

4.4 Possible Participant Set Finding

Step 1 in Algorithm 4 aims to find the possible participant set for each object

o ∈ Oq \Ot1 , Given an object o, in order to find the optimal functional unit of o, we

need a set of candidate objects from which we can find o’s optimal functional unit.

We call these candidate objects o’s possible optimal functional unit participants,

shortly possible participants, and such a candidate set o’s possible participant

set. We can straightforwardly generalize the concept to tree entries. That is, for

a tree entry e, its possible participants are a set of tree entries which themselves

or their descendant objects would become an optimal functional unit member of

objects in e.

Apparently, the relationship between entry possible participants and the esti-

mations of maxInf and minInf is that the fewer of entry possible participants, the

more accurate estimations of maxInf and minInf. Therefore, we should always

keep as few possible participants as possible. Algorithm 5 outlines the main steps

to find the possible participant set. In the following subsections, we discuss the

three steps in detail.

82 Chapter 4. Categorical Top-k Spatial Influence Query

Algorithm 5: Step 1

Qe ← {all root index entries of relevant R-trees };1

Qr ← root entry of type t1; Qc ← ∅;2

while Qe 6= ∅ do3

Step 1.1: Picking An Entry to Expand. Dequeue the first entry e from Qe;4

Expand e and insert into Qe all e’s child index entries and Qc all e’s object

entries not belonging to t1;

Step 1.2: Pruning Distance Finding. For each relevant entry, find a tight5

pruning distance to prune its possible participant set;

Step 1.3: Updating maxInf and minInf. Update the maxInf and minInf values6

for relevant entries in Qr;

if the k entires in Qr with maximum maxInf are all objects, with minInf no less7

than the maxInf of all remaining entries then

C ← k objects with maximum maxInf ;8

return C9

4.4.1 Expanding Entry Picking

As long as there exists an index entry, we pick an entry e with the highest priority

to expand. Our aim is to make the maxInf and minInf estimations of entries as

accurate as possible. We consider entry area as the expanding priority of entries

in Qe. Intuitively, if e has a large area, it is easy to deduce that e would affect as

well as be affected by many other entries. However, lots of these affecting relations

are actually false positive. To expand e, we can prune these false positive affecting

relations. As a result, we can reduce the difference between maxInf and minInf for

relevant entries. To verify this intuition, we conduct comparison experiments using

entry weight, that is, the number of objects contained in the subtree rooted at the

Chapter 4. Categorical Top-k Spatial Influence Query 83

entry. The results show that the entry area always has the best performance.

4.4.2 Pruning Distance Finding

For each relevant entry e, we need to find a pruning distance to prune its possible

participant set. We start with the case how to prune the possible participant set of

an object o. We use the best known solution principle, which confines the possible

participants of o in a disk. Naively, if we have a functional unit S of o, then we

know that any object o′ with d(o, o′) > cost(S) can be pruned. Nevertheless, this

pruning bound is too loose. We present a much tighter pruning distance which is

optimal.

Lemma 4.2. Given an object o and a query q with m categories, let S be a current

best functional unit of o. Then, for any functional unit S ′ of o containing at least

one object p with d(o, p) ≥ cost(S)
m−1

, cost(S ′) ≥ cost(S), and this bound is optimal.

Proof. For any object p′ in the remaining m− 2 objects of S ′, d(p′, o) +d(p′, p) will

be only minimized when p′ is on segment (o, p) according to the triangle inequality,

and the minimum distance is d(o, p). Hence, for m−2 objects, the sum of minimum

distances is (m− 2)d(o, p). Let the sum of pairwise distance between these m− 2

objects be sum. It is obvious that sum will achieve its minimum value 0 only

when all these m− 2 objects are at the same position. Therefore, cost(S ′) = (m−

2)(d(p′, o) + d(p′, p)) + d(o, p) + sum ≥ (m− 1)d(o, p) + sum. Since d(o, p) ≥ cost(S)
m−1

and sum ≥ 0, it follows that cost(S ′) ≥ cost(S).

We now prove the optimality of this bound. Assume that there are m−1 objects

in the same location. Let p be one of the m − 1 objects and d(o, p) = cost(S)
m−1

− ε

where ε is an arbitrarily small positive value. We further assume that the m − 1

objects together with o form a functional unit. Denote these m objects by S ′.

84 Chapter 4. Categorical Top-k Spatial Influence Query

Clearly, cost(S ′) = (m − 1)d(o, p) = (m − 1)(cost(S)
m−1

− ε) < cost(S). Therefore, we

know that p might be one of the participants of o’s optimal functional unit when

d(o, p) < cost(S)
m−1

.

The above lemma suggests that all objects that o might choose to form its

optimal functional unit must be in a disk D(o, cost(S)
m−1

) with o being the center and

cost(S)
m−1

being the radius where S is o’s current best functional unit. All other objects

can be pruned safely.

Lemma 4.2 can be easily extended to a tree entry e. If the optimal functional

unit cost of any object in e can be bounded by Ū , then any entry e′ with minDist(e,

e′) > Ū
m−1

can be pruned from e’s possible participant set. Specially, this pruning

distance of an MBR R can be denoted by a round corner rectangle (RCR) which

consists of all points p with minDist(p, R)= Ū
m−1

and being outside of R.

With the above property, we know that we need to find a cost upper bound for

each relevant entry e to derive its pruning distance. This cost should satisfy two

conditions. (i) Within this cost, every object in e can find its optimal functional

unit; and (ii) It should be as small as possible. This reminds us of the functional

unit cost computation methods that we discussed in Section 4.2.2. However, while

they meet condition (i), both of the mentioned methods own two major drawbacks.

Drawback 1. Rectangle distance metric based cost is substantially larger than the

actual cost of object optimal functional unit.

Example 4.3. Consider Figure 4.3 where we want to find the pruning distance for

entry R. Suppose that entries S1 and T1 can achieve the optimal edgeExistDist based

cost which is l1 + l2 + l3. Then we can get the corresponding pruning distance for R,

which is l1+l2+l3
2

as depicted by the round corner rectangle RCR1 (Collapsed distance

is shown for interest of space). Nevertheless, if we know the optimal functional unit

Chapter 4. Categorical Top-k Spatial Influence Query 85

r1

r2

r3

R

S1

T1

l1

l2

l3

S2

S3

T2RCR1

RCR2

(l1+l2+l3)/2

Figure 4.3: Gap between edgeExistDist based pruning distance and the optimal
pruning distance

cost of each object in R, we can get the corresponding pruning distances, as depicted

in the dashed line circles. Using these pruning distances of objects, we can easily

derive the optimal pruning distance RCR2 of R, which is significantly smaller than

RCR1. As we can see, entries S2, S3 and T2 can be pruned by RCR2, while not by

RCR1.

Drawback 2. It is time consuming to dynamically find the best pruning distance.

Example 4.4. Recall Example 4.3. In order to find out the combination S1 and

T1 of R, we have to exhaustively verify all pairs from type S joining type T , which

is time consuming. This problem goes severely worse when the category number of

a query increases.

According to the above two drawbacks, for an object, we aim to efficiently find

a functional unit with a cost close to that of the optimal functional unit. Besides,

we can use this cost to construct the pruning distance of its ancestor tree entries.

Motivated by this, we propose a nearest neighbor set (NNS) based method,

which builds the entry pruning distance separately.

86 Chapter 4. Categorical Top-k Spatial Influence Query

Given an object o and type T , the T -type nearest neighbor of o, denoted

by NN(o, T), is defined to be the nearest neighbor of o in OT . Given a query

q = ({t1, t2, ..., tm}), without loss of generality, we always suppose that o.λ is t1.

We define the nearest neighbor set of o, denoted byN(o), to be the set containing

o’s T -type nearest neighbor for each T ∈ q.φ \ t1.

Lemma 4.3. Let S ⊆ O be an arbitrary set of m objects and o ∈ S be arbi-

trary. Define R = S \ {o} and sum(o,R) =
∑

r∈R d(o, r). Then, cost(S) ≤

(m− 1)sum(o,R).

Proof. For any two objects oi, oj ∈ R, we have d(oi, oj) ≤ d(o, oi) + d(o, oj). Since

there are (m−1)(m−2)
2

different pairs of oi, oj in total, we have the same number

of inequalities. By summing up all these inequalities, we have cost(R) ≤ (m −

2)sum(o,R). Therefore, cost(S) = cost(R) + sum(o,R) ≤ (m− 1)sum(o,R).

The above lemma suggests that the cost of an arbitrary set is bounded by the

sum of distance of an arbitrary object to others in the set, as long as the distance

triangle inequality holds.

Theorem 4.1. Given an object o and a query q with m types, let N(o) be o’s

nearest neighbor set and So be o’s optimal functional unit. Then, cost(N(o)∪{o}) ≤

(m− 1)cost(So).

Proof. We define sum(o, S) =
∑

o′∈S d(o, o′). According to Lemma 4.3, we know

that cost(N(o) ∪ {o}) ≤ (m − 1)sum(o,N(o)). On the other hand, we have

cost(So) = sum(o, So \ {o}) + cost(So \ {o}) ≥ sum(o, So \ {o}). For each type

T ∈ q.ψ\{t1}, we assume that the corresponding object in So is o′. According to the

definition of T -type nearest neighbor, we have d(o,NN(o, T)) ≤ d(o, o′). Therefore,

sum(o,N(o)) =
∑

T∈q.ψ\{t1} d(o,NN(o, T)) ≤
∑

o′∈So\{o} d(o, o′) = sum(o, So\{o}).

Chapter 4. Categorical Top-k Spatial Influence Query 87

r3

r2

r1

R1 r4

r5

R2

R0RCR1

RCR2

RCR0

Figure 4.4: Pruning distance construction for R-tree entries

From the above three relations, we have cost(N(o)∪{o}) ≤ (m−1)cost(So), which

completes the proof.

Theorem 4.1 says that the nearest neighbor set has a cost guarantee regarding

the optimal cost for an arbitrary object. At the same time, the nearest neighbors

can be efficiently computed in polynomial time. In order to avoid the Drawback 2,

we compute the entry pruning distance separately. That is, we build up the prun-

ing distance for all query relevant R-tree entries prior to Step 1 in Algorithm 4.

Algorithm 6 gives an outline of NNS based framework. For interest of context

clarity, we denote the inserted steps by Step 0a and Step 0b respectively. In Step

0a, we generalize the all nearest neighbor query method [CP07] to find the nearest

neighbor set for each object. Then, in step 0b, we build up the pruning distance

for every entry in the relevant R-trees in a bottom-up way.

Example 4.5. Consider Figure 4.4 containing five objects, namely r1, r2, r3, r4 and

r5. Suppose the dashed line circles are corresponding NNS-based pruning distances.

Using the pruning distance of objects, we build those (RCR1 and RCR2) of their

direct parents (R1 and R2). We continue this process until the tree root entry R0

For the specific pruning distance computation method, we refer the readers to

the previous work [QZK+12]. We note here that the time complexity to compute

88 Chapter 4. Categorical Top-k Spatial Influence Query

the pruning distance for one entry is linear to the number of its child entries which

can be bounded by the capacity of an R-tree node.

Now, in Step 1.2, we do not need to find the pruning distance on-the-fly any

more. Instead, we simply use the computed pruning distance to prune the possible

participant set.

Algorithm 6: NNS-based TopInfluentialObjects

Step 0a: Nearest Neighbor Set Finding. For each object o ∈ Oq, find its nearest1

neighbor set in a top-down multiway join manner;

Step 0b: Pruning Distance Building up. Build up the pruning distance for each2

entry e in the R-trees corresponding to Oq in a bottom-up manner;

Step 1: Possible Participant Set Finding. As long as unable to determine the final3

result, we select an unprocessed object o ∈ Oq to find a set of candidate objects

which would become a member of its optimal functional unit;

Step 2: Optimal Functional Unit Computation. As long as unable to determine4

the final result, we select an unprocessed object o ∈ Oq to compute its optimal

functional unit using the possible neighbor set;

Output: k most influential objects in Ot1 .5

4.4.3 Entry Influences Updating

In order to describe how to set and update the maxInf and minInf values, we

introduce a relation between two entries. For any two entries ei and ej of different

types, we say ei affects ej if ej is a possible participant of ei. Recall the two sets

dstEnts and srcEnts mentioned in Section 4.3. We know that ej is in ei’s dstEnts

and ei is in ej’s srcEnts.

From the definition of our problem, we can see that the influence of an object

o is the number of objects that pick o to form their optimal function unit. Hence,

Chapter 4. Categorical Top-k Spatial Influence Query 89

S1

S2

R2

R1

T1

Figure 4.5: An example of affecting state

maxInf minInf

S1 |R1|+ |R2|+ |T1| |R2|/|S1|
S2 |R1|+ |T1| 0

Table 4.2: Summary of maxInf and minInf for Figure 4.5

maxInf of entry e is the total weight of entries that affect e, which is the sum

of entry weights in e’s srcEnts. Here, the weight of an entry is the number of

objects in its MBR. minInf is much more complicated. It can be computed in the

following way. For each ei affects e, if it only affects e for the type e belongs to,

which means, for the type e belongs to, objects in ei will only choose objects in e to

form their function unit, we say ei contributes to e with weight |ei|. Then, we sum

the weight over all such entries. Finally, the minInf of e is
∑

ei affects only e |ei|/|e|.

This rationale can be explained by “pigeon hole” principle. That is, if n people

have m dollars in total, there must exist one person having at least m/n dollars.

Example 4.6. Consider Figure 4.5 where we ignore the affecting relationships

between type R and T . For type S, R1 affects both S1 and S2, and so does T1, while

R2 affects only S1. Table 4.2 summarizes the corresponding maxInf and minInf

values of S1 and S2.

When expanding an entry e, we have to update the affecting state of relevant en-

tries and further update their maxInf and minInf values. Apparently, the relevant

entries include the child entries of e and these affecting e. For each of these entries,

90 Chapter 4. Categorical Top-k Spatial Influence Query

we use the corresponding pruning distance that built in Step 0b of Algorithm 6 to

prune the possible participant set.

4.4.4 Early Termination

During the processing of Step 1 (i.e., Algorithm 5), we might have a chance to ter-

minate the algorithm early, which is illustrated in Line 7 of Algorithm 5. Formally,

when the k entries in Qr with maximum maxInf are all objects and their minInf

no less than the maxInf of remaining entries, we can terminate the algorithm safely

and return the k objects as results. We claim that this condition is necessary, which

can be justified by the following example.

r1

r2

r3

s1

s2

s3

r1

r2

r3

s1

s2

s3

(a) (b)

R R

S S

Figure 4.6: An example of early termination in Algorithm 5

Example 4.7. Consider the example in Figure 4.6 where we assume the query

consists of only two categories, namely r and s, each of which contains 3 objects.

Now, suppose we aim to find the best (i.e., top-1) object in r. Consider two cases

depicted in Figure 4.6(a) and Figure 4.6(b), respectively. Clearly, the best object

is r1 (Resp. r2) in Figure 4.6(a) (Resp. in Figure 4.6(b)). If we expend R, we

can compute the minInf and maxInf values for each object in R with the knowledge

of number of objects in S (and this is the only information we can get without

expanding S). Specifically, the minInf and maxInf values of r1 and r2 are the

same, which are 1 and 2 respectively in both Figure 4.6(a) and Figure 4.6(b) (the

Chapter 4. Categorical Top-k Spatial Influence Query 91

two values of r3 are clearly 0). Note that these values can be easily computed based

on some basic properties of MBR (e.g., there is at least one object on each boundary

of an MBR). Apparently, we are not able to determine the best object in R without

expanding S.

The above example tells us that even though the algorithm reaches a point

where k entries are found with maximum maxInf and their minInf no less than

the maxInf of remaining entries, we still need to continue the algorithm and expand

entries of other categories. It is not sufficient to focus only on the k entries of Qr.

The rationale here is as follows. In order to tighten the influential bounds minInf

and maxInf of entries belonging to t1, we have to accurate the candidate participant

set of other type entries. To this end, we have to expand entries from any other

types, not just t1.

4.5 Optimal Functional Unit Computation

A crucial phase in Algorithm 4 is to find the optimal functional unit for each object.

In order to terminate the algorithm as early as possible, we utilize the maxInf and

minInf values as we do in Algorithm 5. That is, we keep computing the optimal

functional unit for objects in Qc. Once we find there are k objects in Qr with

maximum maxInf have minInf no less than the maxInf of all remaining objects,

we terminate the algorithm and return the k objects as the answer. Algorithm 7

summarizes the key steps in optimal functional unit computation. While Steps 2.1

and 2.3 are relatively straightforward, Step 2.2 is critical in Algorithm 7. After

Step 1 of Algorithm 4, we have, for each object, a set of possible participants.

Among these possible participants, we need to find its optimal functional unit. We

propose both exact and approximate algorithms to resolve this problem.

92 Chapter 4. Categorical Top-k Spatial Influence Query

Algorithm 7: Step 2

Qc ← {all unprocessed objects};1

while Qc 6= ∅ do2

Step 2.1: Picking An Object to Compute. Dequeue the first object o from Qc;3

Step 2.2: Finding Optimal Functional Unit. Find the optimal functional unit4

of o from its possible participant set;

Step 2.3: Updating maxInf and minInf. Update the corresponding maxInf and5

minInf values for the relevant objects in Qr;

if the k objects in Qr with maximum maxInf have minInf no less than the6

maxInf of all remaining objects then

C ← k objects with maximum maxInf ;7

return C8

4.5.1 Exact Algorithm

In order to find the optimal functional unit, a naive way is to enumerate every

possible combinations. To make this process more efficient, we utilize a set enlarging

strategy which adds into the partial functional unit one object at a time and verifies

the validity of the enlarged partial functional unit.

Lemma 4.4. Given an object o and a query q with m categories, let S be a current

best functional unit of o and P be a partial functional unit which contains j(1 <

j < m) objects including o. If cost(P) ≥ j−1
m−1

cost(S), then, for any functional unit

S ′ with P being its subset, cost(S ′) ≥ cost(S), and this bound is optimal.

Proof. Let P ′ = S ′ − P . For each p′ ∈ P ′, it will contribute cost with at least

cost(P)
j−1

to cost(S ′) according to Lemma 4.3. Since |P ′| = m − j, cost(S ′) = (m −

j) cost(P)
j−1

+ cost(P) + cost(P ′) = m−1
j−1

cost(P) + cost(P ′) ≥ cost(S). We can prove

the optimality of this bound by a similar way in the proof of Lemma 4.2 .

Chapter 4. Categorical Top-k Spatial Influence Query 93

The above lemma suggests that when a partial unit already occupies relatively

high cost, there is no need to enlarge it to get a full functional unit. We note here

that Lemma 4.2 is a special case of Lemma 4.4. When P contains only one object

(excluding o), Lemma 4.4 becomes exactly Lemma 4.2. Algorithm 8 illustrates the

process of finding the optimal functional unit for an object o. We initially put o’s

possible participants into m− 1 lists (line 2) each of which contains the same type

of objects. We utilize o’s nearest neighbor set together with o to derive an initial

best known functional unit(line 4). Then we basically use a recursive method to

enumerate all possible functional units to get the optimal one (line 5). According

to Lemma 4.4, we verify each partial functional unit for further enlarging (line 17).

Every time we obtain a better functional unit, we use it to update the current

best unit S (line 9) as well as the pruning distance (line 10). Besides, we use this

pruning distance to prune the possible participant lists (lines 11 and 12).

Time Complexity. Let m be the number of types in a query q. We assume

that the number of objects for each type is the same, denoted by n. The cost of

line 4 is (m− 1) · log n (it issues m− 1 NN queries each of which takes O(log n)).

Let l be the number of objects in each neighbor list (line 2). Note that l << n

(since the pruned possible participant set is in a small region). Therefore, the

cost of procedure Trace is O(lm−1) since we have to enumerate at most O(lm−1)

functional units to find the optimal one. In conclusion, the time complexity of

NNS-Exact is O((m− 1) · log n+ lm−1).

4.5.2 Approximate Algorithm

In this section, we propose an approximate algorithm named NNS-Appro which

gives a (2 − 2
m

)-factor approximation where m is the number of categories in a

query.

94 Chapter 4. Categorical Top-k Spatial Influence Query

Algorithm 8: NNS-Exact (q, o, P)

Input : q : the query, o : the anchor object,

P : the possible participant set of o

Output : S : the optimal functional unit of o

m← |q.ψ|;1

Divide P into m− 1 lists L[1, 2, ...,m− 1] each of which consists of the same type2

of candidate participants;

C ← ∅;3

S ← N(o) ∪ {o};4

Trace(1);5

return S6

procedure Trace(i)7

if i ≥ m then8

S ← C ∪ {o};9

D ← cost(S)/(m− 1);10

for i← 1 to m− 1 do11

Prune from L[i] all objects p with d(p, o) ≥ D;12

else13

for each object o′ ∈ L[i] do14

C[i]← o′;15

S′ ← C[1, 2, ..., i] ∪ {o};16

if cost(S′) ≥ i
m−1cost(S) then17

continue;18

Trace(i+ 1);19

Before presenting the algorithm, we introduce the concept of “o-excluding

nearest neighbor set”. Given a query q, an anchor object o and an object p

Chapter 4. Categorical Top-k Spatial Influence Query 95

in o’s possible participant set, p’s o-excluding nearest neighbor set is defined to

be the set of objects each of which is the T -type nearest neighbor of p for each

T ∈ q.ψ − o.λ− p.λ.

Example 4.8. Consider Figure 4.1. Suppose the query q.ψ is {b, c, s} and the

anchor object is s1. Then, c1’s s1-excluding nearest neighbor set is {b1} since

q.ψ − s1.λ − c1.λ = {b} and c1’s b-type nearest neighbor is b1. Similarly, b2’s

s1-excluding nearest neighbor set is {c3}.

In algorithm 8, we have to exhaustively enumerate all possible functional units

of an anchor node to find the optimal one in the worst case, which is time consum-

ing. Instead, algorithm NNS-Appro, as described in Algorithm 9, utilizes a greedy

strategy to solve this problem. We initially set S to be o’s nearest neighbor set

together with o (line 1). With the current best functional unit, we can always get

a pruning distance to prune objects in the possible participant set of the anchor

object (line 4). For each of the remaining possible participant objects, we find its

o-excluding nearest neighbor set to construct a new functional unit S ′ (lines 5 and

6). We update S by S ′ as well as the pruning distance if S ′ has a smaller cost than

S (lines 7-9).

Example 4.9. Continue Example 4.8. We aim to find s1’s optimal functional unit.

First, we get s1’s nearest neighbor set {b2, c2}, from which we know that the initial

functional unit S is {b2, c2, s1}. According to Lemma 4.2, we can prune some un-

promising possible participants (e.g., b1 and c3) with the cost of S. We find that s1’s

remaining possible participant set is {c1, c2, b2}. Then, we check the s1-excluding

nearest neighbor set for each object in {c1, c2, b2} and verify the corresponding in-

termediate set S ′. We shall find that S is still {b2, c2, s1}.

According to Example 4.9, the best functional unit of s1 obtained by NNS-Appro

96 Chapter 4. Categorical Top-k Spatial Influence Query

is {b2, c2, s1}. However, the actual optimal one is {b2, c1, s1}, which means that the

cost of the functional unit obtained by NNS-Appro might not be minimized.

Algorithm 9: NNS-Appro (q, o, P)

Input : q : the query, o : the anchor object,

P : the possible participant set of o

Output : S : a functional unit of o

S ← N(o) ∪ {o};1

m← |q.ψ|;2

D ← cost(S)/(m− 1);3

for each object p ∈ P with d(p, o) < D do4

R← p’s o-excluding nearest neighbor set;5

S′ ← R ∪ {o} ∪ {p};6

if cost(S′) < cost(S) then7

S ← S′;8

D ← cost(S′)/(m− 1);9

return S10

Even though the set S returned by the NNS-Appro algorithm might have a

larger cost than the optimal functional unit, the difference is bounded.

Theorem 4.2. NNS-Appro gives a (2− 2
m

)-factor approximation for the SInQuery

problem, where m is the category number of a query.

Proof. Let So be the optimal functional unit of an anchor object o and S be

the solution returned by NNS-Appro. Let w ∈ So be arbitrary and define

M(w) =
∑

u∈So
d(w, u), we know that cost(So) = 1

2

∑
w∈So

M(w). Choose o′ ∈ So

such that M(o′) = minw∈SoM(w). Then, we have cost(So) = 1
2

∑
w∈So

M(w) ≥
1
2

∑
w∈So

M(o′) = m
2
M(o′).

Chapter 4. Categorical Top-k Spatial Influence Query 97

Now, we define and discuss an intermediate functional unit S ′ according to two

cases of the value of o′. Before that, we define Sum(o′, S ′\{o′}) =
∑

r∈S′\{o′} d(o′, r)

Case 1: o′ = o. Let S ′ be the set obtained in line 1 of Algorithm 9. According

to the definition of N(o), we can easily know that Sum(o′, S ′ \ {o′}) ≤M(o′).

Case 2: o′ 6= o. We claim that o′ will be processed in line 4 of Algorithm 9

since o′ ∈ So. Let S ′ be the corresponding set obtained in line 6 of Algorithm 9.

According to the definition of o-excluding nearest neighbor set as well as the fact

that o is in both So and S ′, we have Sum(o′, S ′ \ {o′}) ≤M(o′).

Thus, we have Sum(o′, S ′ \ {o′}) ≤ M(o′) in either case. According to

Lemma 4.3, we know that cost(S ′) ≤ (m − 1)Sum(o′, S ′ \ {o′}). Therefore, we

have cost(S ′) ≤ (m− 1)M(o′) ≤ (m− 1) 2
m
cost(So) = (2− 2

m
)cost(So).

Since S is the final solution returned by Algorithm 9, which means that

cost(S) ≤ cost(S ′). Thus, we know that cost(S) ≤ (2 − 2
m

)cost(So), which com-

pletes the proof.

Time Complexity. Let m be the number of categories in query q. We assume

that the number of objects for each type is the same, denoted by n. The cost of line

1 is (m−1)· log n (it issues m−1 NN queries each of which takes O(log n)). Let l be

the number of iterations (lines 4-9) in Algorithm 9. It is straightforward that the

cost in each iteration is (m− 2) · log n since we need to get the o-excluding nearest

neighbor set. Note that l << |Oq| since l is the number of possible participant of

the anchor object. Thus, the time complexity of NNS-Appro is O(l ·m · log n).

4.6 Empirical Studies

In this section, we empirically evaluate the efficiency and effectiveness of the pro-

posed techniques.

98 Chapter 4. Categorical Top-k Spatial Influence Query

4.6.1 Experimental Setup

Algorithms. As far as we know, there is no existing work investigating the prob-

lem of categorical top-k spatial influence query. In this thesis, we implement and

evaluate following 4 algorithms.

• NNS-Exact. Our nearest neighbor set based exact algorithm (Algorithm 8).

• NNS-Appro. Our nearest neighbor set based approximate algorithm (Al-

gorithm 9).

• Baseline1. Baseline algorithm that uses the edgeExistDist based cost (Sec-

tion 4.2.2).

• Baseline2. Baseline algorithm that uses the minExistDNN based cost (Sec-

tion 4.2.2).

Among the 4 algorithms, only NNS-Appro is approximate algorithm.

Datasets. We use two real datasets, CA and GB. CA consists of 104,770 locations

of 63 different categories (e.g., church, lake and school) each of which corresponds

to a facility type. GB dataset is obtained from G.B. Geological Survey and consists

of 1,410,124 locations with 73 types (e.g., Cinema, Bus Stop and Park). To study

the effect of data distribution, we also created synthetic datasets, denoted by SYN.

The objects were randomly generated in 2-dimensional space [0, 1]2. Specifically,

we fixed the number of objects N as 1,000,000 . According to the expectation

frequency of each type n̄i , which varies from 2,000 to 10,000 with difference

value 2,000 , we generated 5 datasets. The number of types of each dataset was

simply the value of N/n̄i. We then randomly assigned a type for each object.

Query Generation. Given a dataset O and a positive integer m, we can arbi-

trarily generate a query with m types. In order to control the scale of relevant

Chapter 4. Categorical Top-k Spatial Influence Query 99

objects, we generated a query under the constraint that for each type, the number

of objects (type frequency) is in a range, [nl, nu].

All algorithms are implemented in standard C++ with STL library support

and compiled with GNU GCC. Our experiments are run on a PC with Intel Xeon

2.9GHz (8 Cores) CPU and 32G memory running Debian Linux. In the experi-

ments, we adopt the least recent use (LRU) policy to replace pages when the buffer

is full where buffer size and page size are set to 0.5MB and 1KB respectively.

4.6.2 Experimental Results

We consider four measurements, namely, running time, approximation ratio (for

approximate algorithm only), I/O times, and MBR examination times. The last

two measurements are only considered for the scalability test on real dataset CA.

For each set of settings, we randomly generate 20 queries, run the algorithms with

each of these 20 queries, and average the measurements. The default value of

output size k is 10.

Effect of Data Index Strategy. In section 4.3.2, we mentioned that there

are two ways to index the dataset, namely a single tree and multiple trees. The

former one is to index the whole dataset with a single tree, while the latter is to

index the dataset using multiple trees (i.e., one R-tree for each object category).

Intuitively, the choice is ad-hoc and dependent to the total number of categories.

In order to evaluate the performance of these two strategies, we run NNS-Exact

algorithm on CA under the following settings.

We first sort the categories of CA in decreasing order of their frequency. For

the single tree strategy, we select the first T categories to build the tree, where

3 ≤ T ≤ t and t is the total number of categories. We fix the query containing the

3 largest categories. For an R-tree entry, we have to store 5 values, including entry

100 Chapter 4. Categorical Top-k Spatial Influence Query

identity (id, integer with 4 bytes), aggregate number of data objects (dn, integer

with 4 bytes), number of child entries (cn, integer with 4 bytes), signature (sig, 16

bytes to denote 128 categories at most), and minimum bounding rectangle (MBR,

2 ∗ 2 ∗ 8 = 32 bytes). Note, that when using multiple trees to index data, we do

not need to store sig any more.

1.0

1.2

1.4

1.6

1.8

3 4 5 6 7

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Selected No. of types T

Single Tree
Multiple Trees

(a) Running Time

0

50

100

150

200

3 4 5 6 7

I/
O

 t
im

e
s
 (

k
)

Selected No. of types T

Single Tree
Multiple Trees

(b) I/O Times

0

5

10

15

20

3 4 5 6 7

M
B

R
 e

x
a
m

in
a
ti
o
n
 t
im

e
s
 (

m
)

Selected No. of types T

Single Tree
Multiple Trees

(c) MBR Examination Times

Figure 4.7: Effect of Data Index Strategy on CA

From Figure 4.7, we can see that the single tree strategy runs faster than its

counterpart when T ≤ 5. However, the multiple trees strategy always achieves

better I/O performance and examines less MBRs than the other. From the ex-

perimental results, we reach the conclusion that it is a better way to index the

whole dataset as a single R-tree if the dataset contains only several categories of

facilities. However, in most real world applications, the category number might be

up to hundreds. As a result, the multiple trees strategy is the first choice.

Effect of |q.ψ|. We generate 5 types of queries according to different values of

|q.ψ|. The values we adopted are 3, 6, 9, 12 and 15. We set [100, 1000] and [1000,

15000] as the type frequencies of CA and GB respectively.

As demonstrated in Figure 4.8(a), the NNS based algorithms run faster than

the common solution derived algorithms by several orders of magnitude when |q.ψ|

is no smaller than 6. We do not show the running time of an algorithm if it

runs more than 10 days. Baseline1 and Baseline2 have comparable running time

Chapter 4. Categorical Top-k Spatial Influence Query 101

10
-2

10
0

10
2

10
4

10
6

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of types

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running Time

1

1.0002

1.0004

1.0006

1.0008

1.001

3 6 9 12 15

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of types

(b) Approximation Ratio

Figure 4.8: Effect of |q.ψ| on CA

10
-1

10
1

10
3

10
5

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of types

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running Time

1

1.0002

1.0004

1.0006

1.0008

1.001

3 6 9 12 15

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of types

(b) Approximation Ratio

Figure 4.9: Effect of |q.ψ| on GB

when |q.ψ| = 3. However, the gap increases when |q.ψ| increases. As we can see,

Baseline1 is more than 3 times faster than Baseline2 when |q.ψ| = 9. This result

verified our theoretical analysis that the edgeExistDist based cost is tighter than

the minExistDNN based cost. Besides, the running time of all 3 exact algorithms

increases exponentially due to the NP-hardness of the problem. NNS-Appro, on

the other hand, performs the best. For example, NNS-Appro runs less than 100s

for all settings, while NNS-Exact takes more than 10 days when |q.ψ| is larger than

12 and Baseline1 and Baseline2 runs more than 10 days when |q.ψ| is larger than 9.

According to Figure 4.8(b), the approximation ratio is under 1.0011 in all settings,

which shows that NNS-Appro algorithm can achieve extremely high accuracy in

102 Chapter 4. Categorical Top-k Spatial Influence Query

10
-1

10
1

10
3

10
5

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of types

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running Time

 1

 1.0005

 1.001

 1.0015

 1.002

 1.0025

3 6 9 12 15

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of types

(b) Approximation Ratio

Figure 4.10: Effect of |q.ψ| on SYN

practice.We note here that we were unable to give the approximation ratio when

|q.ψ| is 15 because all exact algorithms failed to give solution under this setting.

We have similar results on GB (Figure 4.9) but the running time gap between

NNS based algorithms and the common solution derived algorithms is more obvious.

NNS based algorithms survived when |q.ψ| is 12, while the common solution derived

algorithms failed when |q.ψ| is only 9. Interestingly, the performance result on SYN

(Figure 4.10) is extremely near that on GB, from which we can deduce that the

data distribution has no effect to the performance of our proposed techniques.

Scalability Test. We fix |q.ψ| to 5 in evaluating the scalability of proposed

algorithms. 5 types of queries are generated according to different type frequency

ranges for the real datasets CA and GB. Table 4.3 summarises the query settings.

We conduct the test on all 5 synthetic datasets with n̄i varying from 2,000 to

10,000 .

Dataset Type Frequency Ranges (k)

CA [0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]
GB [1, 10] [2, 20] [5, 50] [10, 100] [20, 200]

Table 4.3: Query Settings for Scalability Test

As shown in Figure 4.11(a), the performance of all 4 algorithms degrades linearly

Chapter 4. Categorical Top-k Spatial Influence Query 103

10
-1

10
0

10
1

10
2

10
3

10
4

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running Time

1.0008

1.0009

1.001

1.0011

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of objects for each type (k)

(b) Approximation Ratio

10
2

10
3

10
4

10
5

10
6

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

I/
O

 t
im

e
s

No. of objects for each type (k)

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(c) I/O Times

10
4

10
5

10
6

10
7

10
8

10
9

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

M
B

R
 e

x
a
m

in
a
ti
o
n
 t
im

e
s

No. of objects for each type (k)

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(d) MBR Examination Times

Figure 4.11: Scalability Test on CA

with the increase of the scale of type frequency. The results show that the NNS

based algorithms run faster than the common solution derived algorithms by 1-2

orders of magnitude. Besides, NNS-Appro performs 2-4 times faster than NNS-

Exact in the case when the scale is no less than [500, 5,000]. Figure 4.11(b) shows

that the approximation ratio of NNS-Appro is below 1.0011 in all settings, which

demonstrates that the accuracy of NNS-Appro is very high in practice. We note

here that the approximation ratio is only relevant to the value of |q.ψ|, while not

to the scalability (see Theorem 4.2). Therefore, the fluctuation in Figure 4.11(b)

is trivial.

In order to give a complete comprehension to our problem, we count the I/O

times as well as MBR examination times. From Figure 4.11(c), we can see that the

104 Chapter 4. Categorical Top-k Spatial Influence Query

10
0

10
1

10
2

10
3

10
4

[1, 10] [2, 20] [5, 50] [10, 100] [20, 200]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running Time

1.0007

1.00075

1.0008

1.00085

1.0009

[1, 10] [2, 20] [5, 50] [10, 100][20, 200]

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of objects for each type (k)

(b) Approximation Ratio

Figure 4.12: Scalability Test on GB

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

NNS-Appro
NNS-Exact
Baseline1
Baseline2

(a) Running time

1.0016

1.00165

1.0017

2 4 6 8 10

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

No. of objects for each type (k)

(b) Approximation Ratio

Figure 4.13: Scalability Test on SYN

NNS based algorithms have slightly larger I/O times than the baseline algorithms,

which can be explained by the fact that the former has to browser the query relevant

trees twice. The first time is to find the nearest neighbor set for each object and

the second is to find the possible participants for objects. However, considering

the fact that our proposed SInQuery problem is NP-hard, efficient algorithms in

terms of running time performance are needed. Therefore, NNS based algorithms

are desirable since they can achieve much better running time performance than

the baseline algorithms. Besides, in terms of the number of MBR accesses, our

proposed algorithms outperforms the baseline methods by 2-3 orders of magnitude

(Figure 4.11(d)). This is exactly why our proposed methods are much faster than

Chapter 4. Categorical Top-k Spatial Influence Query 105

10
0

10
1

10
2

10
3

10
4

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

Area
Area*Weight

Weight
Random

(a) Baseline1

10
-1

10
0

10
1

10
2

[0.1, 0.5] [0.2, 1] [0.5, 2.5] [1, 5] [2, 10]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

Area
Area*Weight

Weight
Random

(b) NNS-Exact

Figure 4.14: Effect of Expanding Strategy on CA

the baseline methods since the later keeps updating the pruning distance during

the expansion of R-tree nodes. On the other hand, the pruning distance is quite

loose as we discussed in Section 4.4.2. Thus, it can barely prune any neighbors in

each round.

Figure 4.12 shows the scalability test results on GB. Similar to CA, the common

solution derived algorithms have comparable running time. However, NNS-Exact

and NNS-Appro have more close running time, and we can barely notice any ad-

vantage of NNS-Appro. We note here that when |q.ψ| is relatively small, the time

cost of computing the nearest neighbor set for all objects dominates the overall

time cost. Since the only difference between NNS-Exact and NNS-Appro is to find

the optimal function unit when the possible participants are given, we can deduce

that they have close running time performance.

The scalability test results on SYN are shown in Figure 4.13, where we can

see that the NNS based algorithms run faster than the common solution derived

algorithms by more than 2 orders of magnitude. Besides, the performance gap

between Baseline1 and Baseline2 has been enlarged. In contrast, the NNS based

algorithms have more similar running time cost.

Effect of Expanding Strategy. In order to evaluate the effect of entry ex-

106 Chapter 4. Categorical Top-k Spatial Influence Query

10
2

10
3

10
4

[1, 10] [2, 20] [5, 50] [10, 100] [20, 200]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

Area
Area*Weight

Weight

(a) Baseline1

10
0

10
1

10
2

10
3

10
4

[1, 10] [2, 20] [5, 50] [10, 100] [20, 200]

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of objects for each type (k)

Area
Area*Weight

Weight
Random

(b) NNS-Exact

Figure 4.15: Effect of Expanding Strategy on GB

panding strategy, we choose Baseline1 and NNS-Exact to run the scalability test

on CA and GB. We evaluate 4 strategies, namely Random, Area, Weight and

Area∗Weight. Specifically, with Random strategy, we randomly pick an entry in

the priority queue to expand. For the rest 3 strategies, we prioritize elements

according to entry area, entry weight and product of entry area and weight respec-

tively. According to Figure 4.14 and Figure 4.15, Random strategy has the worst

performance, while Area strategy always achieves the best performance. From the

results, we know that entry area affects the speed of reducing the difference between

maxInf and minInf most. On the other hand, from Figure 4.14 and Figure 4.15,

we can see that the entry expanding strategy does not affect NNS-Exact as much as

Baseline1, which verifies the theoretical analysis that the common solution derived

methods are more dependent on the selection of entry expanding strategy.

4.7 Conclusions

In this chapter, we investigate the problem of categorical top-k spatial influential

objects query. We formally give the object influence definition under the setting

where data objects are in form of different categories. To resolve this problem

Chapter 4. Categorical Top-k Spatial Influence Query 107

efficiently, we present an efficient framework, which consists of two major steps,

possible neighbors finding and optimal functional unit computation. In the first

step, we derive a nearest neighbor set based pruning distance to get tight possible

neighbor sets for each tree entry. In the second step, we develop exact algorithms

and approximate algorithms with performance guarantee. Experimental results

demonstrate the effectiveness and efficiency of our techniques.

Chapter 5

Efficient Set Containment Join

5.1 Overview

Set-valued attributes play an important role in modeling database systems rang-

ing from commercial applications to scientific studies. For instance, a set-valued

attribute may correspond to the profile of a person, the tags of a post, the links or

domain information of a webpage, and the tokens or q-grams of a document. In this

chapter, we focus on the problem of set containment join. Given two collections

R and S of records, each of which contains a set of elements, the set containment

join, denoted by R ./⊆ S, retrieves all pairs {(r, s)} where r ∈ R, s ∈ S, and

r ⊆ s. As a fundamental operation on massive collections of set values, the set

containment join benefits many applications. For instance, companies may post a

list of positions on an online job market website, and each of which contains a set

of required skills. Let ei denote a skill, Table 5.1(a) shows the skills required in

four job advertisements in R. A job-seeker, on the other hand, can submit her/his

curriculum vitae to the website, which lists a set of her/his skills. Table 5.1(b)

illustrates the skill records of four job-seekers in S. Naturally, a company would

108

Chapter 5. Efficient Set Containment Join 109

id set
r1 {e1, e2, e3}
r2 {e1, e2, e4}
r3 {e1, e3, e4}
r4 {e2, e5}

(a) R sets

id set
s1 {e1, e2, e3, e5}
s2 {e1, e2, e4}
s3 {e1, e3, e6}
s4 {e2, e4, e5}

(b) S sets

Figure 5.1: A motivation example where ei denotes a skill, R consists of four job
advertisements with required skills, and S represents four job-seekers with their
skills.

like to consider a job-seeker if her/his skill set covers all required skills for a po-

sition. We call such a pair of job-seeker and position a containment match. By

executing a set containment join on the positions and job-seekers, the website is

able to identify all possible matches, i.e., R ./⊆ S, and make recommendations.

An algorithmic challenge is how to perform the set containment join in an ef-

ficient way. A naive algorithm is to compare every pair of records from R and

S, thus bearing a prohibitively O(nrns) time complexity where nr and ns de-

note the number of records in R and S, respectively. Recent research focuses on

the in-memory set containment join algorithms, and several techniques have been

developed following intersection-oriented or union-oriented computing paradigms.

Nevertheless, we observe that two computing paradigms have their limits due to the

nature of the intersection and union operators. Particularly, intersection-oriented

method relies on the intersection of the relevant inverted lists built on the elements

of S. A nice property of the intersection-oriented method is that the join com-

putation is verification free. However, the number of records explored during the

join process may be large because there are multiple replicas for each record in

S. On the other hand, the union-oriented method generates a signature for each

record in R and the candidate pairs are obtained by the union of the inverted

lists of the relevant signatures. The candidate size of the union-oriented method

110 Chapter 5. Efficient Set Containment Join

is usually small because each record contributes only one replica in the index. Un-

fortunately, union-oriented method needs to verify the candidate pairs, which may

be cost expensive especially when the join result size is large. As a matter of fact,

the state-of-the-art union-oriented solution is not competitive compared to the

intersection-oriented ones.

In this thesis, we re-visit and design a new union-oriented method, namely

TT-Join, where an efficient set containment join algorithm is developed based on

two different prefix trees built on R and S, respectively. Through comprehen-

sive cost analysis on simple intersection-oriented and union-oriented methods in

Section 5.4.2, we show that the above two problems suffered by the intersection-

oriented methods can be easily addressed by a new simple union-oriented method

which uses the least frequent element as the signature. Not surprisingly, the new

simple union-oriented method needs to verify candidates due to the inherent limit

of union-oriented computing paradigm. Moreover, its pruning capability is limited

by using only one element as the signature. To circumvent these limits, we propose

a new prefix tree structure based on the k least frequent elements of the records

within R such that we can (i) enhance the pruning power with a reasonable over-

head, and (ii) integrate the intersection semantics to directly validate a significant

number of join results without invoking the verification. To share the computa-

tional cost among records within S, we also build a regular prefix tree on S. Then

we develop an efficient TT-Join algorithm to perform set containment join against

two prefix trees.

Furthermore, to support large scale of datasets, we extend our techniques to

distributed systems on top of MapReduce framework We propose a novel signature-

based distribution scheme, which dispatch records based on the aforementioned

record signature (i.e., the least frequent element). Specifically, we first partition

Chapter 5. Efficient Set Containment Join 111

the element domain into N disjoin intervals, each related to a reduce node. Then,

for a record r ∈ R, we find the interval where its signature falls and dispatch r to the

corresponding reduce node. For a record s ∈ S, it will be dispatched to all reduce

nodes whose corresponding intervals cover at least one element of s. With the help

of careful designed element domain partition approaches that are guided by the

join cost estimation on reduce nodes, our signature-based distribution mechanism

can achieve good load-balance, low communication cost, and no duplicate in join

results.

Roadmap. The rest of the chapter is organized as follows. Section 5.2 presents the

preliminaries. Section 5.3 introduces the existing solutions. Our approach TT-Join

is devised in Section 5.4. Distributed set containment join algorithm is presented

in Section 5.5. Extensive experiments are reported in Section 5.6. Section 5.7

concludes this chapter.

5.2 Preliminaries

In this section, we introduce basic concepts and definitions used in this chapter.

Table 5.1 summarizes the important mathematical notations used throughout this

chapter.

In this chapter, each record x consists of a set of elements {e1, e2, . . . , e|x|} from

element domain E . We use X to denote a relation with a set-valued attribute, i.e.,

a collection of records. By default, elements in a record are in decreasing order of

their frequency in X . Following the convention, we use R (resp. S) to denote the

left (resp. right) side relation (i.e., a collection of records) for the set containment

join. Similar, we use r (resp. s) to denote a record within R (resp. S).

Given two records r and s, we say r is contained by s, denoted by r ⊆ s, if all

112 Chapter 5. Efficient Set Containment Join

Notation Definition

x,X ; r,R; s,S a record, a set of records
e, E an element, element domain
R(s) all records r ∈ R with r ⊆ s
S(r) all records s ∈ S with r ⊆ s
σ signature of a record

IR(σ) inverted list for signature σ in R
IS(e) inverted list for element e in S
TR, TS indexing tree on R / S
v, w a node in TR / TS

v.e, w.e record element in v / w
v.set, w.set elements from root to v / w

v.prefix, w.prefix elements from root to parent of v / w
v.list, w.list records stop at v / w

P (e) frequency distribution of elements
θ(l) distribution of record cardinality

|x|avg, |r|avg, |s|avg average size of records in X , R, S
|x|max, |r|max, |s|max maximal size of records in X , R, S

Table 5.1: The summary of notations

elements of r can be found in s. That is, for ∀e ∈ r, we have e ∈ s. In the thesis,

we also say r is a subset of s and s is a superset of r if r ⊆ s. For a record r ∈ R,

we use S(r) to denote all records s ∈ S with r ⊆ s. Similarly, R(s) denotes all

records r ∈ R with r ⊆ s.

Definition 5.1 (Set Containment Join). Given two collections R and S of

records, the set containment join between R and S, denoted by R ./⊆ S, is to find

all pairs (r, s), such that r ∈ R, s ∈ S, and r ⊆ s. That is R ./⊆ S = {(r, s)|r ∈ R,

s ∈ S, and r ⊆ s}.

Example 5.1. Consider the example in Fig. 5.1. The result of set containment

join is as follows: R ./⊆ S = {(r1, s1), (r2, s2), (r4, s1), (r4, s4)}.

Chapter 5. Efficient Set Containment Join 113

5.3 Existing Solutions

A brute-force solution for set containment join is to enumerate and verify |R||S|

pairs of records, which is cost-prohibitive. To improve the efficiency of computation,

many advanced algorithms are proposed in the literature. We classify them into

two categories based on their computing paradigms, namely intersection-oriented

methods [Mam03, JP05, LFHDB15, BMGT15, KRS+16] and union-oriented meth-

ods [HM97, RPNK00, MGM02, MGM03, LFHDB15]. We also review several meth-

ods proposed for string similarity search [LLL08, WLF12, AAK10].

5.3.1 Intersection-Oriented Methods

Given two record collections R and S, the key idea of intersection-oriented method

is to build inverted index on S and then apply the intersection operator to calcu-

late R ./⊆ S. In this thesis, we say these algorithms are S-driven methods because

their main index structures are built on S.

Algorithm 10 illustrates a simple intersection-oriented method [Mam03],

namely RI-Join1. We use IS(e) to denote the inverted list of an element e built

on records in S, which keeps IDs of the records containing the element e. Fig. 5.2

depicts the inverted index of S in the example of Fig. 5.1. Lines 1-2 build the

inverted index of S. Then for each record r ∈ R, we can immediately identify S(r)

(i.e., record s ∈ S with r ⊆ s) based on the intersection of the inverted lists for

elements within r (Lines 4-6).

The dominant cost of Algorithm 10 is the intersection of the inverted lists

1Algorithm 10 is named RI-Join in this paper since there is no index on R and an inverted

index is built on S.

114 Chapter 5. Efficient Set Containment Join

Algorithm 10: RI-Join (R, S)

Output : R ./⊆ S

for each record s ∈ S do1

Update inverted list IS(e) for every e ∈ s;2

J := ∅;3

for each r ∈ R do4

C :=
⋂
e∈r IS(e);5

J := J ∪ {(r, s)} for every record s ∈ C;6

return J7

(Line 5). We have

Cost(R ./⊆ S) =
∑
r∈R

∑
e∈r

|IS(e)|. (5.1)

Analysis. A nice property of the intersection-oriented approach is verification

free. On the downside, a significant drawback is that we need to consider every

element of a record for inverted index construction (Line 2). This may lead to long

inverted lists and hence a large number of records accessed during the join process

(Line 5).

Below are details of advanced intersection-oriented set containment join algo-

rithms.

Algorithm PRETTI. Jampani et al. [JP05] propose a method called PRETTI

to improve the performance of intersection-oriented method. Instead of processing

each individual record in R, a prefix tree TR is built on R to share the computa-

tional cost. We define a (regular) prefix tree as follows.

Definition 5.2 (Prefix Tree). Each node v in the tree (except root) is associated

to an element in E, denoted by v.e. We use v.set to denote the set of elements as-

sociated with v and its ancestors. Similarly, we denote all elements in its ancestors

Chapter 5. Efficient Set Containment Join 115

Algorithm 11: PRETTI(TR, IS)

Input : TR : prefix tree on R, IS : inverted indexes on S,

Output : R ./⊆ S

for each child node v of the root of TR do1

processNode(v, IS(v.e), J);2

return J3

procedure processNode(v, list, J)4

list← list ∩ IS(v.e);5

for each record r ∈ v.list do6

for each record s ∈ list do7

J ← J ∪ {(r, s)};8

for each child node vi of node v do9

processNode(vi, list, J);10

by v.prefix (i.e., v.prefix := v.set \ v.e). We also use a list, denoted by v.list, to

keep the IDs of all records {x} with x = v.set. Note that elements in each record

follow a global order, and hence each record is assigned to a unique tree node.

Fig. 5.3 shows the prefix tree for the record set R in Fig. 5.1(a). By utilizing

the prefix tree, we can share computation among records with the same prefix. For

instance, the intersection for inverted lists of IS(e1) and IS(e2) only needs to be

performed once when we compute the superset of r1 and r2.

Algorithm 11 illustrates the details of PRETTI, which traverses the prefix tree

on R in a depth-first manner. For each node v visited, we use list to denote the

intersection of the inverted lists of the elements in v.prefix, which is passed from

its parent node. Based on the intersection of list and the inverted list of the element

v.e IS(v.e) (Line 5), we obtain the list of records in S each of which contains all

116 Chapter 5. Efficient Set Containment Join

IS(e1)Ö

IS(e2)Ö

IS(e3)Ö

IS(e4)Ö

IS(e5)Ö

s1, s2, s3

s1, s2, s4

s1, s3

s2, s4

s1, s4

IS(e6)Ö s3

Figure 5.2: Inverted index on S

root

e2

e3

{r1} {r2}

{r4}

e5

{r3}

e4

e1

e2

e3 e4

Figure 5.3: Prefix tree on R

elements in v.set. Lines 6-8 generate the join results regarding the node v. Then

the join will continue through its child nodes where the updated list will be passed

(Lines 9-10).

Algorithm PRETTI+. To reduce the size of the prefix tree, Luo et

al. [LFHDB15] introduce an extension of PRETTI, namely PRETTI+. In par-

ticular, PRETTI+ employs a compact prefix tree, called Patricia trie, to replace

the prefix tree in PRETTI. This new prefix tree is the same as the previous one

except that the nodes along a single path are merged into one node. The Patricia

trie on the records set R in Fig. 5.1(a) is shown in Fig. 5.4. We omit the details

of PRETTI+, which are the same as PRETTI except that we may need to merge

inverted lists of multiple elements associated with a node.

Algorithm LIMIT. To avoid exploring many inverted lists for the large size

records within R, Bouros et al. [BMGT15] propose a new algorithm, called LIMIT.

Instead of building a complete prefix tree for R, LIMIT only builds a prefix tree

with limited height k; that is, only considers the prefix of record with a fixed length.

Fig. 5.5 shows a limited prefix tree with k = 2 for records set R in Fig. 5.1(a).

Chapter 5. Efficient Set Containment Join 117

root

e2e5

e3e4

{r1} {r2}

{r4}

e1

e2

{r3}e3 e4

Figure 5.4: Patrica trie on R

root

e2

e3

{r1, r2} {r4}

e5

e1

e2

{r3}

Figure 5.5: Limited tree on R

w0, [0,10], root

w1, [1,7], e1

w2, [2,5], e2 w6, [6,7], e3

w3, [3,4], e3

w4, [4,4], e5, {s1}

w5, [5,5], e4, {s2}

w7, [7,7], e6, {s3}

w9, [9,10], e4

w8, [8,10], e2

w10, [10,10], e5, {s4}

Figure 5.6: Augmented prefix tree on S

Based on the limited prefix tree, LIMIT performs the join process following

a two-phase procedure which involves candidates generation and candidates ver-

ification. In terms of algorithm implementation, LIMIT is basically the same as

Algorithm 11 except the generation of join results (Lines 8 in Algorithm 11). Par-

ticularly, LIMIT handles this by considering two scenarios. If |r| ≤ k, we output

the record pair (r, s) directly since the inverted lists of all elements in r participate

in the intersection. Otherwise, we have to verify the record pair (r, s). Although we

need to verify some candidate pairs in LIMIT due to the limited tree height, this

118 Chapter 5. Efficient Set Containment Join

Algorithm 12: PIEJoin(TR, TS)

Input : TR prefix tree on R, TS : prefix tree on S

Output : R ./⊆ S

search(TR.root, TS .root, J);1

return J2

procedure search(v, w, J)3

lookForOutput(v, w, J);4

for each child node vi of node v do5

W ← TS .findNodes(w, vi.e);6

for each child node wj ∈ W do7

search(vi, wj , J);8

procedure lookForOutput(v, w, J)9

if v.list 6= ∅ then10

list← TS .getRecords(w);11

for each tuple r ∈ v.list do12

for each tuple s ∈ list do13

J ← J ∪ {(r, s)};14

cost is well paid off by significantly reducing the number of inverted lists involved in

the intersection. As a matter of fact, our empirical study shows that LIMIT is the

most promising intersection-oriented method on most of the datasets evaluated.

Algorithm PIEJoin. Recently, Kunkel et al. [KRS+16] propose a two-tree based

method, called PIEJoin, which aims to improve the performance of intersection-

oriented method by exploiting advanced index technique on S. PIEJoin builds two

prefix trees TR and TS on relations R and S, respectively, together with auxiliary

structures on each tree node. In particular, for TR, each node is labeled with a

Chapter 5. Efficient Set Containment Join 119

preorder ID (e.g., v0, ..., v9 in Fig. 5.3), while for TS , there is a preorder interval on

each node. Fig. 5.6 shows the augmented prefix tree TS for S in Fig. 5.1(b).

The details of PIEJoin are illustrated in Algorithm 12, which traverses two prefix

trees simultaneously. The search starts from the root of TR and TS (Line 1). On

each tree node pair v and w, we check if there are some join pairs found (Line 4). In

particular, if v.list is not empty (Line 10), then we find all records in the subtree

rooted at w and enumerate join pairs (Lines 11-14). After collecting results in

current tree node pair, we go further by traversing the children of v. For each child

vi, we find the descendants of w such that the element contained in these nodes is

vi.e (Line 6). We then recursively conduct the search process for each node pair vi

and wj (Line 8).

Compared to the previous solutions, PIEJoin employs a tree structure on

records in S, instead of the inverted index. This alleviates the problem of the

large size inverted lists for S. However, some auxiliary structures have to be en-

gaged to facilitate the node match at Line 6. Note that we need to find the matches

within the whole subtree, which may be cost expensive. As reported in [KRS+16],

the performance of PIEJoin is not competitive compared with LIMIT [BMGT15],

which builds inverted index on S, under most of the datasets evaluated.

5.3.2 Union-Oriented Methods

In general, all methods in this category use signature-based techniques. Let L

denote the domain of the signature values, we use a hash function h to map a

record x into a subset of signature values, denoted by h(x), with h(x) ⊆ L. For

instance, in the partition-based containment join algorithm [RPNK00], a record x

will be mapped into a number between 0 and k − 1. These algorithms are also

named R-driven methods because the main index is built on records in R.

120 Chapter 5. Efficient Set Containment Join

Given two record collections R and S, the key idea of union-oriented method is

to generate candidate records withinR for each record s ∈ S by the union of the

inverted lists for the relevant signatures. Algorithm 13 illustrates a framework of

simple union-oriented method. Lines 1-2 build inverted lists for possible signatures

on R. For each record r ∈ R, Line 2 attaches its ID to the inverted list of the

corresponding signature, denoted by IR(σ). Then Lines 4-7 generate containment

join result candidates based on the union of the inverted lists of the signatures. For

a record s ∈ S, we consider the inverted lists of the signatures generated by s or

any of its subsets. Line 8 verifies the candidate pairs within J to remove the false

positives. Note that in the implementation, we usually do not need to explicitly

enumerate all subsets of s to generate Ms as shown at Line 5. Instead, Ms can

be generated efficiently by exploiting the characteristics of the specific signatures

used.

Algorithm 13: A framework of simple union-oriented method(R, S)

Output : R ./⊆ S

for each r ∈ R do1

σ ← h(r); Update IR(σ);2

J := ∅;3

for each s ∈ S do4

Ms ← all possible signatures can be generated by s or any of its subsets;5

C ←
⋃
σ∈Ms

IR(σ);6

J := J ∪ {(r, s)} for every record r ∈ C;7

Verify candidate pairs within J ;8

return J9

The dominant cost of Algorithm 13 is the union of the inverted lists (Line 5) ,

Chapter 5. Efficient Set Containment Join 121

denoted by Cfilter, and the verification cost (Line 8), denoted by Cvef . We have

Cost(R ./⊆ S) = Cfilter + Cvef

=
∑
s∈S

∑
σ∈Ms

|IR(σ)|+ Cvef . (5.2)

Analysis. Compared with the intersection-oriented method in Algorithm 10, we

need to verify the candidate pairs due to the nature of signature techniques, which

usually brings false positives. Nevertheless, the advantage is that there is only

one signature for each record. This leads to a smaller inverted index, and hence a

smaller number of records explored during the join process (Line 6).

Below are details of the existing union-oriented algorithms classified based on

their signature techniques.

Partition-based Techniques. In [RPNK00], a partition based method is pro-

posed, where the signature of a record x is a number between 0 and k − 1. For

a given record r ∈ R, the hash function h randomly selects an element e from r

and maps e to an integer value between 0 and k − 1 (Line 2 of Algorithm 13).

We use this value as the signature of r. For a given record s ∈ S, the signature

subset Ms (Line 5 of Algorithm 13) consists of different signatures generated by

all elements of s. Obviously, for two given collections R and S, we can divide the

candidate join pairs into k partitions. Fig. 5.7 shows the partitions for datasets in

Fig. 5.1 where we assume that k = 4 and an element ei is mapped into the value (i

mod k). Several follow-up studies [MGM02, MGM03] propose more sophisticated

partitioning strategies (i.e., hash function h) to reduce the number of candidates

in the partition pairs.

Bitmap-based Techniques. Helmer et al. [HM97] use a bitmap as the signature

of a record x, and a bitmap consists of fixed b bits. Given two bitmaps b1 and b2,

we say b1 ⊆ b2 if every 1 bit in b1 is also set to 1 in b2. An important property of

122 Chapter 5. Efficient Set Containment Join

partition

0

1

2

3

�Ri Si

{r2}

{r1}

{r4}

{r3}

{s2, s4}�

�

�

�

{s1, s2, s3, s4}

{s1, s2, s3, s4}

{s1, s3}

Figure 5.7: Partition-based method

bitmap-based signature is that we have h(x) ⊆ h(y) if x ⊆ y for any two records x

and y. This implies that, for a given record s ∈ S we can safely exclude a record

r ∈ R from containment join if h(r) 6⊆ h(s). However, the task of enumerating

all possible signatures by a record s or any of its subset (Line 5 of Algorithm 13)

would be a bottleneck for the bitmap-based union-oriented method, since the the

number of subsets of a signature is exponential to the bitmap length b. To avoid

such a straightforward way of enumerating the subsets of a signature, Luo et.

al [LFHDB15] recently propose a new algorithm, named PTSJ, based on a trie-

based subsets enumeration method. In this method, the signatures of records in R

are stored in a trie, where the leaf nodes store the record id in R. Then, given a

record s ∈ S, we employ a breath-first search on the trie. For each tree node v,

we store the bit values 0 and 1 in the left child and right child, respectively. If the

corresponding bit value of h(s) is 0, we only explore the left child. Otherwise, we

will visit both children. Once we finish this traversal, the records in leaf nodes we

accessed are the candidates.

Discussion. PTSJ algorithm proposed in [LFHDB15] is the state-of-the-art in-

memory union-oriented method which significantly enhances the previous solutions

in this category by advanced signature enumeration method and careful bitmap

length selection. Nevertheless, our empirical study shows that PTSJ is not com-

Chapter 5. Efficient Set Containment Join 123

petitive compared with other state-of-the-art intersection-oriented solutions. Ac-

cording to our analysis in Section IV-B2, PTSJ has two significant drawbacks: (i)

does not utilize the data distribution; and (ii) needs to verify all candidate pairs

obtained.

5.3.3 Apply Set Similarity based Methods

We are aware that existing set similarity search/join algorithms can be applied to

support set containment join by setting specific thresholds. Here, we consider three

representative works. It is worth mentioning that they are S-driven methods in

the sense that their main index structures are built on records from S.

Li et al. [LLL08] propose an efficient list merging algorithm, named DivideSkip,

to solve the generalized T -occurrence query problem. Given a query record Q, T -

occurrence problem is to find the set of record IDs that appear at least T times

on the inverted lists of the elements in Q, where the inverted lists are built on S.

By setting T to the size of Q, DivideSkip can be immediately employed to process

set containment search. Using a nested loop, DivideSkip can also be extended to

compute set containment join.

Wang et al. [WLF12] propose an adaptive framework for set similarity search,

which adaptively selects the length of record prefix to build the inverted index.

Since they apply the overlap similarity to handle different set similarity functions,

by setting the overlap threshold T to the size of query Q, this framework can also

be utilized to compute set containment join.

Agrawal et al. [AAK10] study the problem of error-tolerant set containment

search. To boost the query performance, they propose an frequent element set

based index structure that builds inverted index on careful chosen element set. By

setting the error-tolerate threshold as 1, this index structure can also be applied

124 Chapter 5. Efficient Set Containment Join

to answer exact set containment query, and therefore, is also applicable to set

containment join.

5.4 Our Approach

In this section, we introduce a new in-memory set containment join algorithm,

namely TT-Join, based on two tree structures constructed onR and S, respectively.

5.4.1 Motivation

Our empirical study suggests that the existing competitive in-memory set contain-

ment join algorithms follow the intersection-oriented computing paradigm. How-

ever, to enjoy the nice property of verification free, we need to keep the ID of a

record for each of its elements in the inverted index. This is an inherent limit of the

intersection-oriented method which may lead to a large number of records explored

during the join processing, especially when the number of inverted lists involved is

large. Although an augmented prefix tree has been proposed in PIEJoin [KRS+16]

to alleviate this issue, our empirical study suggests that the result is unsatisfac-

tory due to the complicated data structure and expensive search cost incurred.

Moreover, our analysis in Section IV-B2 also suggests that it is difficult for inter-

section-oriented methods to exploit the data distribution.

This motivates us to re-visit and design a new union-oriented approach. The

drawbacks of existing union-oriented methods are two-fold: (i) the signature tech-

niques used are data-independent, which cannot better exploit the distribution of

the elements; (ii) they need to verify all candidate pairs. In this chapter, we aim to

design a new union-oriented method which not only enhances the nice property of

union-oriented methods (i.e., small inverted list size) but also effectively addresses

Chapter 5. Efficient Set Containment Join 125

the above two issues.

In Section 5.4.2, we apply the ranked key [YGM94] technique to use the least

significant element as the signature of the record in the simple union-oriented

algorithm (Algorithm 13). Through comprehensive cost analysis, we show that the

performance of the new simple union-oriented method can significantly outperform

that of simple intersection-oriented method (Algorithm 10) when data becomes

skewed. It is rather intuitive to further enhance the filtering capacity by using k

least frequent elements. We extend the inverted indexing of the new simple union-

oriented method to accommodate the k least frequent elements based signature.

Nevertheless, we show that a simple extension of inverted index is not promising

due to the large overhead incurred.

This motivates us to impose a tree structure to accommodate the k least fre-

quent elements based signatures. In Section 5.4.3, we build a prefix tree based on

the k least frequent elements of the records inR. By doing so, we can (i) further re-

duce the candidate size with a small overhead; (ii) naturally apply the intersection

operator to validate a large number of candidates and hence reduce the verification

cost. Together with a regular prefix tree constructed on S, we develop an efficient

set containment join algorithm, namely TT-Join.

5.4.2 Inverted Index Based Method

In this section, we introduce a simple union-oriented algorithm in Section 5.4.2-A

which uses the least frequent element as the signature. Section 5.4.2-B conducts

cost comparison between two simple intersection-oriented and union-oriented al-

gorithms to reveal their inherent advantages and limits. Then Section 5.4.2-C

investigates an extension of the inverted index to use k least frequent elements as

the signature of a record such that the number of candidate pairs can be further

126 Chapter 5. Efficient Set Containment Join

reduced.

5.4.2-A Using the least frequent element (IS-Join)

As shown in Section 5.3.2, different signature techniques are employed by the exist-

ing solutions to improve the performance of simple union-oriented method. How-

ever, none of them consider the distribution of the elements. To take advantage

of the skewness of the real-life data, we apply the ranked key [YGM94] technique

to use the least significant element (i.e., least frequent element) as the signature of

the record in the simple union-oriented algorithm (Algorithm 13). Our new sim-

ple union-oriented method, namely IS-Join2, is immediate, based on two minor

changes of Algorithm 13: (1) at Line 2, the hash function h simply returns the

least frequent element as the signature; (2) at Line 5, Ms is the set of elements in

s, i.e., considering |s| signatures.

Algorithm correctness. For any result pair (r, s) (i.e., r ⊆ s), let σ be the

signature of r (i.e., the least frequent element), we have r ∈ I(σ). Since r ⊆ s, we

have σ ∈ s and hence σ ∈Ms at Line 5. It is immediate that r ∈ C (Line 6). After

verification at Line 8, IS-Join algorithm can identify the pair (r, s).

Next, we use the running example in Fig. 5.1 to show the advantage of our

least frequent element based simple union-oriented method by comparing with the

RI-Join (Algorithm 10).

Example 5.2. The inverted index on S and the least frequent inverted index on R

are shown in Fig. 5.2 and Fig. 5.8, respectively. According to Equation 5.1, we know

that the cost for simple intersection-oriented method is 28, which is obtained by

summing up the size of all inverted list in IS for each record. Similarly, we have that

2The new simple union-oriented method is named IS-Join because an inverted index is built

on R and there is no index on S.

Chapter 5. Efficient Set Containment Join 127

I�(e1)Ö

r2, r3

I�(e2)Ö

I�(e3)Ö

I�(e4)Ö

I�(e5)Ö r4

r1

Figure 5.8: Inverted index on R

30

60

90

120

0.2 0.4 0.6 0.8 1

R
u
n
n
in

g
 T

im
e
 (

s
)

Value of z

RI-Join
IS-Join

Figure 5.9: Effect of data skewness

the candidate size of union-oriented method is 8 according to Equation 5.2, which

means that the total cost is 8× Tvef , where Tvef is the cost to verify a candidate.

The above example shows the candidate set of our union-oriented IS-Join al-

gorithm is much smaller compared to that of intersection-oriented RI-Join algo-

rithm. When the verification cost of IS-Join algorithm is not expensive, it has a

good chance to outperform RI-Join algorithm.

5.4.2-B Cost comparison

We now theoretically compare the expected costs of RI-Join (i.e., a simple inter-

section-oriented method in Algorithm 10) and the IS-Join algorithm (i.e., a simple

union-oriented method in Algorithm 13 where the least significant element is used

as the signature), denoted by CRI and CIS, respectively. We use P (e) to denote the

frequency distribution of an element e ∈ X . Let θ(l) denote the probability that a

record has l elements with l ∈ [1, |x|max] where |x|max is the maximum cardinality

of a record in X . In the cost analysis of this paper, we assume that R and S have

the same distributions in terms of element frequency and record size. Moreover, we

assume |R|= |S| = n, |r|avg = |s|avg = m, and the distributions are independent.

128 Chapter 5. Efficient Set Containment Join

Estimating CRI . Since each element of any record in S leads to one entry in the

inverted lists IS , we know that the expected number of entries in the inverted index

is |S| × |s|avg where |s|avg =
∑|s|max

l=1 θ(l) × l is the average size of a record in S.

Therefore, the size of the inverted list IS(e) can be estimated as follows:

|IS(e)| = P (e)× |S| × |s|avg. (5.3)

According to Equation 5.1, we have

CRI =
∑
r∈R

∑
e∈r

|IS(e)|

= |R| × |r|avg ×
∑
e∈E

P (e)|IS(e)|

= |R| × |r|avg × |S| × |s|avg ×
∑
e∈E

P (e)2

= (nm)2 ×
∑
e∈E

P (e)2. (5.4)

Equation 5.4 shows that, when the number of records (n) and the average

size of the records (m) are fixed, RI-Join will achieve its best performance when

all elements have the same frequency because
∑

e∈E P (e) = 1. This implies that

the skewness of the frequency distribution will deteriorate the performance of this

simple intersection-oriented method, while it is well known that many real-life data

are skewed.

Estimating CIS. We first estimate the size of inverted list IR(e) for an element

e. Given a record r ∈ R, r is in IR(e) if and only if e ∈ r and there is no element

e′ ∈ r with lower frequency than e. Thus, the probability that r within IR(e),

denoted by P (r ∈ IR(e)), is

Chapter 5. Efficient Set Containment Join 129

P (r ∈ IR(e)) = P (e)× F (e)|r|−1

=

|r|max∑
l=1

θ(l)× l × P (e)× F (e)l−1, (5.5)

where F (e) =
∑

e′≺e P (e′) is the cumulative probability before e where elements

are ranked by frequency decreasing order; that is, F (e) is the probability that a

random chosen element has a higher frequency than e. Note that once an element e

appears within the record r, it will serve as the signature with probability F (e)|r|−1

due to the independent assumption. Thus, the expected size of list IR(e) is as

follows:

|IR(e)| =
∑
r∈R

P (r ∈ IR(e))

= |R| ×
|r|max∑
l=1

θ(l)× l × P (e)× F (e)l−1. (5.6)

According to Equation 5.2, we have

CIS =
∑
s∈S

∑
σ∈Ms

|IR(σ)|+ Cvef

=
∑
s∈S

∑
e∈s

|IR(e)|+ Cvef

= |S| × |s|avg ×
∑
e∈E

P (e)× |IR(e)|+ Cvef

(5.6)
= (nm)2 ×

∑
e∈E

P (e)2 × F (e)m−1 + Cvef . (5.7)

Compared with Equation 5.4, it is immediate that the number of records ex-

plored by our union-oriented RI-Join algorithm is smaller than that of intersec-

tion-oriented IS-Join algorithm since F (e) < 1. Our empirical study below clearly

shows that this gain will eventually pay off the verification cost (Cvef) when the

skewness of the data increases.

130 Chapter 5. Efficient Set Containment Join

I�(e1)Ö

I�(e2)Ö

I�(e3)Ö

r1, r2, r4

r1, r3

I�(e4)Ö

I�(e5)Ö

r2, r3

r4

Figure 5.10: 2 least frequent elements based inverted index on R

Empirical evaluation. To evaluate the impact of the skewness towards the per-

formance of two algorithms, we conduct a simple experiment on synthetic datasets.

In particular, we generate datasets where the frequency of the elements follow the

well-known Zipfian distribution with exponent z value varying from 0.2 to 1. Note

that the data skewness increases when z grows. The number of records and the

average record size are set to 100, 000 and 10, respectively.

It is observed in Fig. 5.9 that intersection-oriented IS-Join algorithm outper-

forms our simple union-oriented RI-Join algorithm when z is small due to the extra

verification cost of RI-Join. However, as z increases, the processing time of IS-Join

continuously grows, while RI-Join can take great advantage of the skewness.

5.4.2-C Extending to k least frequent elements (kIS-Join)

According to the above cost analysis, the least frequent element is a promising

signature for union-oriented methods. To enhance the pruning capacity, it is nat-

ural to consider k least frequent elements. Following the existing inverted index

technique, now each record is mapped to k elements (signatures). Fig. 5.10 shows

an example of the inverted index on R in Fig. 5.1(a) when k = 2.

Then, for a given record s ∈ S, we count the number of appearances for the

records in C (Line 6 in Algorithm 13). If a record r ∈ C appears k times (i.e., all

k least frequent elements of r are contained in s), r is a candidate. Otherwise, we

Chapter 5. Efficient Set Containment Join 131

can prune r directly. We use kIS-Join to denote this algorithm which corresponds

to IS-Join algorithm when k = 1.

Estimating CkIS. Similar to the cost analysis for IS-Join algorithm, we first

estimate the size of inverted list IR(e) for an element e. Note that IR is the

inverted index based on the k least frequent elements of records in R. Given a

record r ∈ R, r is in IR(e) iff e is one of r’s k least frequent elements. Thus, the

probability that r is in IR(e), denoted by P (r ∈ IR(e)), is:

P (r ∈ IR(e)) ≈ P (e)×
k∑
i=1

F (e)l−i

=

|r|max∑
l=1

θ(l)× l × P (e)×
k∑
i=1

F (e)l−i. (5.8)

Now, the size of list IR(e) is as follows:

|IR(e)| =
∑
r∈R

P (r ∈ IR(e))

(5.8)
= |R| ×

|r|max∑
l=1

θ(l)× l × P (e)×
k∑
i=1

F (e)l−i. (5.9)

According to Equation 5.2, we have

CkIS =
∑
s∈S

∑
σ∈Ms

|IR(σ)|+ Cvef

=
∑
s∈S

∑
e∈s

|IR(e)|+ Cvef

= |S| × |s|avg ×
∑
e∈E

P (e)× |IR(e)|+ Cvef

(5.9)
= (nm)2 ×

∑
e∈E

P (e)2 ×
k∑
i=1

F (e)m−i + Cvef . (5.10)

By comparing Equation 5.10 and Equation 5.7, we know that the later is a

special case of the former when k = 1. Clearly, on one hand, the pruning cost

of CkIS increases with k because kIS-Join touches more records due to the large

132 Chapter 5. Efficient Set Containment Join

inverted index size. On the other hand, the verification cost Cvef decreases with k

since a larger k can prune more non-promising records. Therefore, there is a trade-

off between these two costs. Our experimental results in Section 5.6.1 show that

the performance gain for Cvef brought by a larger k value usually cannot pay-off

the increased pruning costs.

5.4.3 Tree Based Method (TT-Join)

It is rather intuitive that the pruning power of our simple least frequent element

based union-oriented method can be enhanced by increasing k. However, as shown

in the above analysis and empirical study, the overhead cost brought by a straight-

forward extension of the inverted index is expensive and the gain of the enhanced

pruning capacity may not be well paid off. In this subsection, we aim to develop

a new union-oriented algorithm which enables us to: (i) enhance the pruning ca-

pacity with small overhead; and (ii) output some join result pairs during the tree

traversal without going to the verification phase. Section 5.4.3-A introduces the

k-length least frequent prefix tree structure, namely kLFP-Tree, which is built on

records inR. Together with a prefix tree constructed on records in S, Section 5.4.3-

B presents our TT-Join algorithm by traversing two prefix trees simultaneously.

Section 5.4.3-C conducts performance analysis on the TT-Join algorithm.

5.4.3-A k-length least frequent prefix tree (kLFP-Tree)

The kLFP-Tree is constructed based on the k-length least frequent prefix of each

record, which is defined as follows.

Definition 5.3 (k-length least frequent prefix). Given a record x = {e1, ..., en},

we define {en, ..., en−k+1} as its k-length least frequent prefix, denoted by LFPk(x).

Note that, LFPk(x) is the reverse of x if |x| ≤ k.

Chapter 5. Efficient Set Containment Join 133

root

{r1} {r2}{r3}{r4}

v1

e3 e5

e2 e3 e2e2

e4v2

(a) kLFP-Tree on R

{s3}{s1} {s2} {s4}

w1

w2

w3

w4

e1

e3e2

e6

e3 e4

e5

e2

e4

e5

root

(b) prefix tree on S

Figure 5.11: Tree structures for tree based method

Given a set of k-length least frequent prefixes of the records in R, the prefix tree

(kLFP-Tree) is built up following Definition 5.2. Specifically, for each record x, we

insert the last k elements (i.e., k least frequent elements in x) into the prefix tree

following the reverse order, and it takes O(1) time to insert each element as a hash

table is used to maintain child entries for each node in kLFP-Tree. Thus, the time

complexity to construct kLFP-Tree is O(|R|k). With the same time complexity,

we may remove a record x in kLFP-Tree by deleting its k least frequent elements

in order. Note that there is only one replica of a record x, whose ID is kept on the

corresponding node of kLFP-Tree based on LFPk(x).

Example 5.3. Take the relation R in Fig. 5.1(a) as an example. When k =

2, we have LFPk(r1) = {e3, e2}, LFPk(r2) = {e4, e2}, LFPk(r3) = {e4, e3},

and LFPk(r4) = {e5, e2}. Then the corresponding kLFP-Tree is illustrated in

Fig. 5.11(a).

134 Chapter 5. Efficient Set Containment Join

Algorithm 14: TT-Join(TR, TS, k)

Input : TR : index tree on R, TS : index tree on S,

k : length of least frequent prefix for R

Output : R ./⊆ S

for each child node w of the root of TS do1

processNode(w, ∅, J);2

return J3

procedure processNode(w, list, J)4

v ← findChild(TR.root, w.e);5

if v 6= NULL then6

list← list ∪ traverse(v, w);7

for each record s ∈ w.list do8

for each record r ∈ list do9

J ← J ∪ {(r, s)};10

for each child node wi of node w do11

processNode(wi, list, J);12

procedure traverse(v, w)13

list← ∅;14

for each record r ∈ v.list do15

if |r| ≤ k then16

list← list ∪ {r};17

else18

verify(r, w.set, list);19

for each child node vi of node v do20

if vi.e ∈ w.prefix then21

traverse(vi, w);22

return list23

Chapter 5. Efficient Set Containment Join 135

5.4.3-B TT-Join algorithm

We use TR to denote the kLFP-Tree built on relation R. To share computational

cost, we also build a regular prefix tree for records in S following Definition 5.2,

which is denoted by TS . Fig. 5.11 illustrates the example of TR and TS based on

the records in Fig. 5.1. Note that we use a circle (resp. rectangle) to represent the

node of the tree built on R (resp. S), and each tree node is denoted by vi (resp.

wi).

Algorithm 14 illustrates the details of TT-Join algoirthm. In general, we tra-

verse TS following a depth-first strategy (Lines 4-12). Lines 4-10 compute the

relevant join result for each visited node w. Specifically, for the record s associated

with w (i.e., s = w.set), we find all records in R(s). Recall that R(s) denotes

the records within R which are a subset of s. We use R1 to denote those records

within R(s) without element w.e, and R2 to denote the remaining records. In

the procedure processNode (Lines 4-12), the list passed from the parent node

corresponds to R1 because we have w.prefix ⊂ s and w.prefix = s \ w.e. Then

Lines 5-7 identify the records in R2. Particularly, Line 5 finds the node associated

with element w.e in TR. Then we only need to continue the search in its subtree

because w.e is the least frequent element in r. As shown in the procedure traverse

(Lines 13-23), for each node v in TR accessed, Line 17 can immediately validate a

record r in v.list if |r| ≤ k (i.e., r is reported without verification). Otherwise,

we need to verify if r ⊆ s at Line 19. At Lines 20-22, we continue to find potential

records within R2 if any of the child nodes matches an element in w.prefix. After

all records within R2 are identified, we use the updated list to keep all records

within R1 ∪ R2. Lines 8-10 output the join results associated with the node w

accessed.

Algorithm correctness. For any record s ∈ S, s must appear in one of the tree

136 Chapter 5. Efficient Set Containment Join

nodes, say w, in TS . Because we traverse TS in a depth-first manner, w must be

considered during the traversal. For each reocord s in w.list, we can find all records

r ∈ R with r ⊆ s. Particularly, every record r from R1, which does not contain

element w.e, will be passed from w’s parent node because we have r ⊆ w.set if

r ⊆ w.prefix and w.set = w.prefix ∪ w.e. For any record r ∈ R2, it must appear

within the subtree rooted at node v with v.e = w.e (Line 5) because w.e is the

least frequent element in r. Meanwhile, none of the record in R1 may appear in

this subtree since w.e 6∈ r for every r ∈ R1. For a record r ∈ R2, we use v to

denote the corresponding node of r in TR with r ∈ v.list. Since we explore all

child nodes vi with vi.e ∈ w.prefix in the procedure traverse, we will eventually

reach v and identify r. On the other hand, because we only explore child nodes

vi with vi.e ∈ w.prefix, this implies that v.set ⊆ w.set for every node v accessed

in the procedure traverse. Consequently, all results validated at Lines 16-17 are

correct. Thus, the join results on each node are complete and correct.

Example 5.4. Consider the example in Fig. 5.1. The index trees on R and S are

shown in Fig. 5.11(a) and Fig. 5.11(b), respectively. We traverse TS in a depth-first

manner starting from w1. We immediately turn to TR to see if there is a child node

of the root of TR matching the element of w1 (i.e., e1). The answer is no. We then

continue the traversal processing until at w3 where we find a child node v1 in TR

with w3.e = v1.e. Next, we switch to traverse TR starting from v1 in a depth-first

manner and find that v2 matches w2. At this point, we get a non-empty list (i.e.,

r1) in v2, which means that we get a candidate. We then conduct the verification

and find that the remaining element e1 of r1 is in w3.set. Therefore, r1 is a subset

of w3. After that, we continue traversing TS and reach w4 where we would get two

subsets r1 and r4. In particular, r1 is passed from w3 and r4 is collected at w4.

Since the list of w4 is not empty, we then generate join pairs, namely (r1, s1) and

Chapter 5. Efficient Set Containment Join 137

(r4, s1). We find the full join results after finishing traversing TS .

5.4.3-C Cost analysis

Next, we analyse the cost of TT-Join, followed by a cost comparison with IS-Join

and kIS-Join introduced in Section 5.4.2.

Estimating CTT . In TT-Join, we build the inverted index for the least frequent

prefix of each record in R, which means that the size of the inverted index is fixed

at |R|. Besides, because the inverted index is determined by the least frequent

element of each record in R, we have that the inverted index size is exactly the

same as shown in Equation 5.6. On the other hand, for each least frequent prefix,

we have to sequentially check whether a given record s ∈ S contains the remaining

k−1 least frequent elements in the worst case. Therefore the overall cost of TT-Join

is as follows:

CTT =
∑
s∈S

∑
σ∈Ms

|IR(σ)|+ Ccheck + Cvef

= (nm)2 ×
∑
e∈E

P (e)2 × F (e)m−1

+ Ccheck + Cvef , (5.11)

where Ccheck is the overhead to check the least frequent elements.

Comparison with IS-Join . Equation 5.11 and Equation 5.7 indicate that, TT-

Join and IS-Join have the same pruning cost. However, in terms of the verification

cost, Cvef in Equation 5.11 is smaller than that in Equation 5.7, because TT-Join

uses k least frequent elements as the signature of a record to enhance the pruning

capacity. Therefore, with a reasonable checking cost Ccheck, TT-Join may benefit

from increasing k.

Comparison with kIS-Join . Because both kIS-Join and TT-Join use the k

138 Chapter 5. Efficient Set Containment Join

Algorithm 15: Framework

procedure map(〈key, x〉)1

emit(list(〈nid, x〉));2

procedure reduce(〈nid, list(x)〉)3

split list(x) into two sets R and S;4

compute set containment join between R and S;5

output(〈key,R ./⊆ S〉);6

least frequent elements as signature, Cvef in Equation 5.10 and Equation 5.11 are

exactly the same. The experimental results in Section 5.6.1 show that the Ccheck is

insignificant compared with the growth of the number of explored records when k

increases. Therefore, compared with kIS-Join, TT-Join can achieve better trade-

off by increasing k within a reasonable range (e.g., 1 ≤ k ≤ 5 in our empirical

study).

5.5 Distributed Processing

In this section, we aim to support better scalability by deploying TT-Join on the

top of MapReduce framework. We first present the framework in Section 5.5.1. Our

novel distribution mechanism is proposed in Section 5.5.2. Load-aware partitioning

is introduced in Section 5.5.3.

5.5.1 Framework

Algorithm 15 illustrates the framework of computing set containment join on

MapReduce. In MapReduce framework, each iteration consists of three phases,

namely map phase, shuffle phase, and reduce phase. In the map phase as shown in

Chapter 5. Efficient Set Containment Join 139

Lines 1-2, each map node (i.e., mapper) sequentially reads record x (i.e., record in

R or S) from the file splits on this node and emits intermediate 〈nid, x〉 pairs, where

nid is the ID of a task. These intermediate 〈nid, x〉 pairs are then shuffled based

on the keys (i.e., nid) and transferred to the reduce nodes (i.e., reducers), where

intermediate 〈nid, x〉 pairs with the same keys are shuffled to the same reduce node.

Each reduce node then receives a key-value pair in the form of 〈nid, list(x)〉, where

list(x) contains a list of records sharing the same nid (Line 3). After dividing the

list(x) into two record sets R and S, local set containment join algorithm is then

applied on the reduce node to compute the join result (Lines 4-6). Note that there

might be an extra job to summarize the join results from all reduce nodes.

Challenges. Following the theoretical analysis in [ASM+12], we consider three

costs in a MapReduce iteration, which are map, reduce, and communication cost.

The distribution strategy (i.e., Line 2 in Algorithm 15) should be able to handle

load balance between the reduce nodes, since parallel computing is most important

property of a MapReduce system. In the meanwhile, the communication cost

should be as less as possible because the network band would become the bottleneck

for a large cluster with many reduce nodes.

5.5.2 Distribution Scheme

In this section, we present our distribution scheme which is employed by the map-

pers to dispatch records in R and S to relevant reducers for parallel processing. We

first discuss random distribution method which is most straightforward, followed

by a prefix based method which is extended from the approach for processing set

similarity join. We then propose a novel and efficient signature-based distribution

method, which is computation load-aware and communication cost saving. For

ease of explanation, we assume that there are N reduce tasks available for parallel

140 Chapter 5. Efficient Set Containment Join

processing. Our goal is to devise a good distribution scheme for the mappers to

dispatch records in R and S to the N reduce tasks, each of which is identified by

an ID in the range of [1, N]. To measure the communication cost, we count the

number of copies emitted to the reduce nodes for each record x, which is denoted

by C(x).

5.5.2-A Baseline Methods

Random based Distribution. A straightforward way to implement random

distribution is as follows. For each r ∈ R, we randomly dispatch r to one of the

N reduce nodes, and for each s ∈ S, we dispatch s to all N reduce nodes. It is

evident this distribution method generates no duplication in the join results, and

the communication costs are Crand(r) = 1 and Crand(s) = N , respectively. In the

following, we present an advanced random distribution scheme, which can decrease

the communication cost to
√
N , and at the same time, preserve the property of

introducing no duplication in the join results.

We randomly divide records in R into
√
N disjoint subsets. That is R =

∪1≤i≤
√
NRi, where for 1 ≤ i 6= j ≤

√
N ,Ri∩Rj = ∅. Similarly, records in S are also

randomly divided into
√
N disjoint subsets where S = ∪1≤i≤

√
NSi. Then, records

in each pair (Ri,Sj) with 1 ≤ i, j ≤
√
N , will be dispatched to uniquely one of the

N reducers since there are N pairs in total. Apparently, the communication cost

of random distribution is
√
N for records in both R and S; that is Crand(x) =

√
N .

Besides, there is no duplication in the reduce nodes. That is because, for any given

record pair (r, s), it will only be dispatched to one reducer.

Prefix based Distribution. In [VCL10], efficient prefix-based distribution

method is proposed for set similarity join. Given a record x and overlap simi-

larity threshold T , we can compute the prefix of x, denoted by Prefix(x), which

Chapter 5. Efficient Set Containment Join 141

consists of the first |x|−T +1 elements of x. Then, two records must share at least

one common element in their prefixes if they are similar. Given a hash function h,

record x is then dispatched to reduce node with ID h(ei) for each ei ∈ Prefix(x),

where h(ei) = i mod N+1 is widely used. This method is very efficient to process

set similarity join because the prefix length is very limited. However, in our set

containment join, the overlap similarity threshold T would be any value between

1 and |x| since any subset of x forms a set containment relation with x. There-

fore, to make the prefix based distribution strategy applicable for set containment

join, we have to consider x itself as its prefix. Thus, we dispatch x to the reduce

nodes corresponding to each element. Now, we estimate the communication cost

as follows. For any reduce node, the probability that at least one element in x is

dispatched to that node is 1 − (1 − 1

N
)|x|. Therefore, the communication cost on

N reduce nodes is

Cpre = N(1− (1− 1

N
)|x|). (5.12)

Note that this method might introduce duplicates in the join results because a

record pair might be dispatched to different reduce nodes.

5.5.2-B Our Signature-based Approach

Motivation. Even though the random distribution enjoys the nice property of

load balance on all reduce nodes, the corresponding communication cost is high,

which renders this method impractical for large scale datasets where we inevitably

have to increase the value of N . Prefix-based method, on the other hand, is not

able to handle dataset with large average record size, which is also verified by

our experimental studies. According to Equation 5.12, the communication cost is

approachingN when the record size (i.e., |x|) increases. The above limits of baseline

methods motivate us to devise a new approach such that (i) the communication

142 Chapter 5. Efficient Set Containment Join

cost is small; (ii) the workload on each reduce node is similar. By extending the

idea of least significant element that used by TT-Join, we propose a signature-

based distribution scheme in this section. Under the framework of this scheme,

we devise efficient element domain partitioning algorithms in next section, which

enable our signature-based approach to achieve the two goals (i) and (ii).

r = {e1, e4, e6} s = {e1, e4, e6, e7} h(ei) = i mod 4 + 1 1(r) = e6

r

1 2 3 4

Random

s r

1 2 3 4

Prefix

s r

1 2 3 4

Signature

s

[1,4] [5,8] [9,12] [13,16]

Figure 5.12: Example of different distribution schemes.

Our signature-based distribution scheme works as follows. We partition the

ordered element domain E = {e1, e2, ..., e|E|} into N disjoint intervals, i.e., [el1 , eh1],

[el2 , eh2], ..., [elN , ehN], where l1 = 1, hN = |E|, and li+1 = hi + 1 for 1 ≤ i ≤ N − 1.

We assume that there is a one-to-one relationship between element intervals and

reduce nodes. Now, given a record r ∈ R, let σ be the signature (i.e., the least

frequent element) of r. We find the interval where σ falls and dispatch r to the

corresponding reduce node. For each record s ∈ S, we dispatch s to all reduce

nodes whose corresponding intervals cover at least one element of s.

Theorem 5.1. Our signature-based distribution scheme is complete, i.e., it will

not miss any join results.

Proof: Given any result pair (r, s) (i.e., r ⊂ s), let σ be the signature of r (i.e.,

the least frequent element). Suppose σ falls into the i-th signature interval, which

means that r will be dispatched to i-th reduce node. Since r ⊂ s, we have σ ∈ s.

Chapter 5. Efficient Set Containment Join 143

Therefore, a copy of s will be dispatched to i-th reduce node as well. After the

execution of local join algorithm in i-th reduce node, we get the pair (r, s). �

Compared to the baseline methods, a key advantage of signature-based method

is that its communication cost is much lower. Specifically, Csig(r) = 1 for r ∈ R

since r is only transferred to exactly one reduce node. Csig(s) ∈ [1,min(|s|, N)] for

s ∈ S because s is only emitted to the reduce nodes that cover at least one element

of s. Note that the expected value of Csig(s) depends on how we partition the

element domain, which we will discuss in the following section. Besides, it is evi-

dent that signature-based approach does not generate duplicates in the join results

because each record r ∈ R is emitted to exactly one reduce node. Also, signature-

based scheme can pre-filter many unpromising candidate pairs by the signature

during the distribution phase, and thus reduce the local join cost substantially.

Example 5.5. Fig. 5.12 shows an example of all the distribution schemes. Suppose

N = 4, E = {e1, e2, ..., e16}, and two records r = {e1, e4, e6} and s = {e1, e4, e6, e7}.

For random scheme, r is dispatched to nodes 1 and 2, while s is distributed to

nodes 2 and 4. Note that we apply a round-robin strategy to ensure that, for any

record pair r and s, each of which will be dispatched to
√
N reduce nodes, and

they meet in exactly one reduce node. For prefix-based scheme, assuming h(ei) = i

mod N + 1, and therefore h(e1) = 2, h(e4) = 1, h(e6) = 3, and h(e7) = 4. Thus,

r is emitted to nodes 1, 2, 3, and s is emitted to all 4 nodes. For signature-

based method, we assume that the element domain is evenly partitioned for ease of

explanation. Therefore, r is dispatched to node 2, and s is dispatched to nodes 1

and 2. Clearly, our signature-based method introduce no replications, and has the

lowest communication cost in this example.

144 Chapter 5. Efficient Set Containment Join

5.5.3 Load-Aware Partitioning

Our signature-based method makes use of a partition of the element domain. To

find a good partition, a straightforward way is to partition E into N intervals

evenly. However, as suggested by our experimental results, this method yields very

poor performance. This is because many real-life data are skewed and therefore

the records will be dispatched to the reduce nodes unevenly. In this section, we

propose a judiciously-designed cost model which takes local join computation cost

into consideration to guide the partition of element domain, such that the reduce

nodes can take similar workload. We first devise a dynamic programming based

optimal partition method, which bears a time and space complexity of O(N |E|2).

The high time and space complexity of this method is not suitable to dataset with

large element domain size (i.e., |E|). Consequently, we then resort to a heuristic

partition algorithm, which is linear to the element domain size (i.e., O(|E|)) for

both time and space complexity.

Optimal Partition. In Section 5.4, given two collectionsR and S, we conduct cost

analysis for different join algorithms based on the element frequency distribution

P (e) and record length distribution θ(l). Now, we are interested in analysing the

cost on each interval given a specific local join algorithm. First, we define an

element partition instance as follows:

Definition 5.4. An element partition instance, denoted by P(el, eh, n), defines a

partition which splits the element range [el, eh] into n disjoint intervals, where each

interval is represented by [eli , ehi] for i ∈ [1, n], assuming l1 = l and hn = h.

Note that a single interval [el, eh] is a partition instance with n = 1, i.e.,

P(el, eh, 1).

Estimating Cost(P(el, eh, 1)). Given a single interval [el, eh], we now aim to esti-

Chapter 5. Efficient Set Containment Join 145

mate the join cost on the corresponding reduce node against a given join algorithm.

For ease of explanation, we use RI-Join algorithm to conduct the analysis because it

has the simplest cost model as shown in Equation 5.4. Clearly, in order to estimate

Cost(P(el, eh, 1)), we need to know the record collections received by the corre-

sponding reduce node. By R(el, eh) and S(el, eh), we denote the record sets from

R and S, respectively. First, we consider the unit intervals; that is el = eh = ei.

Based on the distribution scheme of our signature-based approach, R(ei, ei) con-

tains all records with ei as their least frequent element, where the size is shown in

Equation 5.6. On the other hand, S(ei, ei) consists of the records which contain ei,

where the size is shown in Equation 5.3. According to Equation 5.4, we have:

Cost(P(ei, ei, 1)) =
∑

r∈R(ei,ei)

∑
ej∈r

|IS(ei,ei)(ej)|

= |R(ei, ei)| × |r|avg ×
∑
j≤i

P (ej)|IS(ei,ei)(ej)|

(5.6)
= |R| ×

|r|max∑
l=1

θ(l)× l × P (ei)× F (ei)
l−1

× |r|avg ×
∑
j≤i

P (ej)|IS(ei,ei)(ej)|

(5.3)
= |R| ×

|r|max∑
l=1

θ(l)× l × P (ei)× F (ei)
l−1

× |r|avg ×
∑
j≤i

P (ej)
2 × |S| × P (ei)× |s|2avg

= |R| × |S| × |r|2avg × |s|2avg × P (ei)
2

× F (ei)
l−1 ×

∑
j≤i

P (ej)
2. (5.13)

Since the inverted index size is linear to the data size received by the corresponding

reduce node, it is implied that the join cost over an interval [el, eh] can be decom-

posed into the summation of the join cost over each unit interval [ei, ei], where

146 Chapter 5. Efficient Set Containment Join

ei ∈ [el, eh]. That is:

Cost(P(el, eh, 1)) =
∑
l≤i≤h

Cost(P(ei, ei, 1)). (5.14)

Before presenting our partition algorithm, we first define a function f over

P(el, eh, n) to compute the maximal interval cost among n intervals as follows:

f(P(el, eh, n)) = max
∀[eli ,ehi]∈P(el,eh,n)

Cost(P(eli , ehi , 1)). (5.15)

Since the overall performance of the system is affected by the slowest reduce node,

our goal is to find an instance P(e1, e|E|, N) such that f(P(e1, e|E|, N)) is minimized.

We denote the optimal solution that minimizes f(P(el, eh, n)) by P∗(el, eh, n).

Then, our goal is equivalent to finding P∗(e1, e|E|, N). To solve this problem, we

propose a dynamic programming algorithm based on the following key observation:

f(P∗(el, eh, n)) = min
l+n−2≤i<h

{max{f(P∗(el, ei, n− 1)), f(P∗(ei+1, eh, 1))}}. (5.16)

This observation indicates that the optimal partition of size n can be computed by

enumerating the rightmost boundary of the optimal partition of size n− 1.

Algorithm 16 illustrates our dynamic programming based optimal partition

method. Lines 1-2 computes the cost of single intervals based on Equation 5.14.

Lines 3-5 iteratively computes the optimal partition for a range with n intervals

based on Equation 5.16.

Time and space complexity. Based on Equation 5.14, it is easy to show that

Cost(P(ei, ej, 1)) can be computed in O(1) time if we compute and store the value

of Cost(P(e1, ej, 1)) for 1 ≤ j ≤ |E| in advance. Note that, this can be done in

O(|E|) time. Thus, Lines 1-2 can be finished in O(|E|2) time. The cost of Lines 3-5

is O(N |E|2). Therefore, the time complexity of our optimal partition is O(N |E|2).

Chapter 5. Efficient Set Containment Join 147

Algorithm 16: Optimal partition

Input : E = {e1, e2, ..., e|E|}: element domain to be partitioned; N : number of

intervals

Output : P∗(e1, e|E|, N): optimal partition

for 1 ≤ i ≤ j ≤ |E| do1

Compute f(P∗(ei, ej , 1)) by Cost(P(ei, ej , 1));2

for 2 ≤ n ≤ N − 1 do3

for n ≤ i ≤ |E| do4

Compute f(P∗(e1, ei, n)) based on Equation 5.16;5

Compute f(P∗(e1, e|E|, N)) based on Equation 5.16;6

return P∗(e1, e|E|, N)7

Evidently, the space complexity is O(N |E|2) as well because we have to maintain

a three dimensional array for the cost of each instance P(el, eh, n).

Heuristic Partition. The dynamic programming based method can find the op-

timal partition. Nevertheless, its high time and space complexities make it unsat-

isfactory for datasets with considerably large element domain size (e.g., |E| is in

millions). This motivates us to devise heuristic method to partition the element

domain with linear time and space complexities regarding the element domain size.

Based on the cost function shown in Equation 5.15 and the definition of optimal

partition P∗(e1, e|E|, N), it is evident that our goal is to find a partition such that

the cost on each interval is as even as possible. Formally,

Theorem 5.2. If there exists an element partition instance P(e1, e|E|, N), such

that each interval is with the same cost; that is, ∀i, j ∈ [1, N], Cost(P(eli , ehi , 1)) =

Cost(P(elj , ehj , 1)), then P(e1, e|E|, N) is an optimal partition.

Proof: It is easy to show that Cost(P(el, eh, 1)) is monotonic with respect to

148 Chapter 5. Efficient Set Containment Join

[l, h]; that is, if l′ ≤ l and h′ ≥ h, then Cost(P(el′ , eh′ , 1)) ≥ Cost(P(el, eh, 1)).

For simplicity, assume we only have two intervals, which are [el1 , eh1] and [el2 , eh2],

respectively. Suppose Cost(P(el1 , eh1 , 1)) > Cost(P(el2 , eh2 , 1)). Then, we can

keep decreasing the value of h1 and hence decreasing that of l2 to reduce the

value of Cost(P(el1 , eh1 , 1)) and increase that of Cost(P(el2 , eh2 , 1)), until we reach

Cost(P(el1 , eh1 , 1)) = Cost(P(el2 , eh2 , 1)). At this point, we obtain the optimal par-

tition since Cost(P(e1, e|E|, N)) = max{Cost(P(el1 , eh1 , 1)), Cost(P(el2 , eh2 , 1))}.

This proof generalizes to arbitrary N . �

The main idea of our heuristic method is that we sequentially generate the

intervals one by one from e1 to e|E|. In particular, to generate the i-th interval

Pi, we fix the starting value li and keep increasing the ending value hi until the

cost of Pi is no less than the value Cost(P(eli , e|E|, 1))/n, where n is the number

of intervals to partition for the rest of element range {eli , ..., e|E|}. The intuition

behind this method is that we use the cost of single interval on remaining element

range as an estimation for each of the n intervals. Every time after splitting an

interval off from it, we then re-estimate the cost for rest n− 1 intervals.

Algorithm 17 depicts the details of our heuristic method. Lines 4-11 iteratively

generate the N intervals. Note that, before generating a new interval, we first

compute the mean cost for the rest partitions, as shown in Line 2 and Line 10.

Time and space complexity. It is evident that the number of iterations (Lines 4-

11) in Algorithm 17 is bounded by |E| since h is increased by 1 in each iteration.

Meanwhile, the time complexity to compute Cost(P (el, e|E|, 1)) is O(1) as shown

before. Therefore, the time complexity of our heuristic partition method is O(|E|).

On the other hand, the space complexity is O(|E|) as well because we have to store

|E| values of Cost(P(e1, ej, 1)) for 1 ≤ j ≤ |E|.

Chapter 5. Efficient Set Containment Join 149

Algorithm 17: Heuristic partition

Input : E = {e1, e2, ..., e|E|}: element domain to be partitioned; N : number of

intervals

Output : P(e1, e|E|, N): a partition instance

l← h← 1;1

µ← Cost(P (e1, e|E|, 1))/N ;2

i← 1;3

while i < N do4

if Cost(P (el, eh, 1)) < µ then5

h← h+ 1;6

else7

Add interval [el, eh] into P(e1, e|E|, N);8

l← h← h+ 1;9

µ← Cost(P (el, e|E|, 1))/(N − i);10

i← i+ 1;11

Add interval [el, e|E|] into P(e1, e|E|, N);12

return P(e1, e|E|, N)13

5.6 Experimental Studies

5.6.1 Centralized Evaluations

In this section, we empirically evaluate the performance of TT-Join in a single

machine. All experiments are conducted on PCs with Intel Xeon 2x2.3GHz CPU

and 128GB RAM running Debian Linux.

5.6.1-A Experimental Setup

Algorithms. In the experiment, we evaluate the following algorithms.

150 Chapter 5. Efficient Set Containment Join

Dataset Abbr #Records AvgLen #Elements z-value

Amazon [Data] AMAZ 1,230,915 4.67 2,146,057 0.52

AOL [Datb] AOL 10,054,183 3.01 3,873,246 0.68

BMS [BMGT15] BMS 515,597 6.53 1,657 1.07

Bookcrossing [Datc] BOOKC 340,523 3.38 105,278 0.6

Delicious [Datd] DELIC 833,081 98.42 4,512,099 0.56

Discogs [Date] DISCO 1,754,823 3.02 270,771 0.75

Enron [Datf] ENRON 517,431 133.57 1,113,219 0.65

Flickr-L [BMGT15] FLICKR-L 1,680,490 9.78 810,660 0.75

Flickr-S [LFHDB15] FLICKR-S 3,546,729 5.36 618,970 0.63

Kosarak [BMGT15] KOSRK 990,001 8.10 41,269 0.9

Lastfm [Datg] LAST 1,084,620 4.07 992 0.51

Linux [Dath] LINUX 337,509 1.78 42,045 0.81

Livejournal [Dati] LIVEJ 3,201,203 35.08 7,489,073 0.62

Netflix [BMGT15] NETFLIX 480,189 209.25 17,770 0.33

Orkut [LFHDB15] ORKUT 1,853,285 57.16 15,293,693 0.13

Stack [Datj] STACK 545,196 2.39 96,680 0.54

Sualize [Datk] SUALZ 495,402 3.63 82,035 0.95

Teams [Datl] TEAMS 901,166 1.52 34,461 0.39

Twitter [LFHDB15] TWITTER 371,586 65.96 1,318 1.4

Webbase [LFHDB15] WEBBS 168,707 463.64 15,146,263 0.04

Table 5.2: Characteristics of datasets

• TT-Join. Our approach proposed in Algorithm 14 in Section 5.4.3, where

kLFP-Tree and a regular prefix tree are built on R and S, respectively. By

default, we set k=4 under all settings.

• LIMIT. Intersection-oriented algorithm proposed in [BMGT15] (Sec-

tion 5.3.1). The optimized version of LIMIT (OPJ) is employed for per-

formance evaluation.

• PIEJoin. Intersection-oriented algorithm proposed in [KRS+16] (Sec-

tion 5.3.1).

• PRETTI+. Intersection-oriented algorithm proposed in [LFHDB15] (Sec-

tion 5.3.1).

• PTSJ. Union-oriented algorithm proposed in [LFHDB15] (Section 5.3.2).

Chapter 5. Efficient Set Containment Join 151

• DivideSkip. Adapted algorithm proposed in [LLL08] (Section 5.3.3).

• Adapt. Adapted algorithm proposed in [WLF12] (Section 5.3.3).

• FreqSet. Adapted algorithm proposed in [AAK10] (Section 5.3.3).

Among the 8 algorithms, DivideSkip and Adapt are implemented in C++,

where the source codes are obtained from the authors of [LLL08] and [WLF12]

respectively. The rest 6 algorithms are all implemented in Java and the JVM max-

imum heap size is set to 32GB. For LIMIT and PIEJoin, we obtain the source codes

from the authors of [KRS+16] since the source code of LIMIT is implemented in

C++ and the authors of [KRS+16] re-implement LIMIT in Java. For PRETTI+

and PTSJ, we obtain the source code from the authors of [LFHDB15]. We imple-

ment FreqSet in Java, where FP-growth [HPY00] method is employed to compute

the frequent sets. Among the 4 state-of-the-art algorithms, PIEJoin and PRETTI+

are parameter free. For LIMIT, we follow the same strategy adopted by authors

of [KRS+16], where parameter tuning is carried out manually and individually for

each dataset. Particularly, for datasets used in [KRS+16], we use the parameters

tuned in [KRS+16], and for the rest datasets, we tune the best values individually.

For PTSJ, we follow the strategy proposed by the authors, which show that a suit-

able signature length is between 16 and 32 times of the average length of records.

In the experiments, we apply the middle value 24 for PTSJ. It is demonstrated

in [KRS+16] that the frequency order of elements in records had a huge impact for

LIMIT, PIEJoin, and PRETTI+. Therefore, we follow their empirical conclusion

to apply infrequent sort order for LIMIT and PIEJoin, and frequent sort order for

PRETTI+, which are stated optimal for the corresponding algorithms. Among the

three adapted algorithms, DivideSkip and Adapt are parameter free. For FreqSet,

the frequency threshold a is set to 1000.

152 Chapter 5. Efficient Set Containment Join

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s
)

IT-Join (k=1)
IT-Join

TT-Join

(a) DISCO

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s
)

IT-Join (k=1)
IT-Join

TT-Join

(b) KOSRK

0

400

800

1200

1600

1 2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s
)

IT-Join (k=1)
IT-Join

TT-Join

(c) NETFLIX

0

1000

2000

3000

1 2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s
)

IT-Join (k=1)
IT-Join

TT-Join

(d) TWITTER

Figure 5.13: Effect of k on running time

5.6.1-B Performance Tuning

Datasets. We deploy 20 real-life datasets selected from different domains with

various data properties. The detailed characteristics of the 20 datasets are shown

in Table 5.2. For each dataset, we show the type of the dataset, what the record

and element represent, the number of records in the dataset, the average record

length, and the number of unique elements in the dataset. We also report the

z-value (skewness) of the top 500 most frequent elements on each dataset by as-

suming that data follows Zipfian distribution. The datasets cover all datasets

deployed in the state-of-the-art algorithms. In specific, Flickr-set, Orkut, Twitter,

and Webbase are used in [LFHDB15] to evaluate PRETTI+ and PTSJ algorithms,

Chapter 5. Efficient Set Containment Join 153

while BMS, Flickr-london, Kosarak, and Netflix are used in [BMGT15] to evaluate

LIMIT algorithm. All of the eight datasets (with bold font in Table 5.2) are em-

ployed in [KRS+16] to evaluate PIEJoin. Same as the previous studies, we evaluate

the self set containment join on the 20 datasets.

To better evaluate the impact of k value as well as the advantage of kLFP-Tree

compared with the inverted index, we also implement an algorithm, namely IT-

Join, which is an extension of kIS-Join algorithm where records in S are organized

by a regular prefix tree. The traversal of the prefix tree is exactly the same as

TT-Join (Algorithm 14) and the process of each visited node is based on kIS-Join

algorithm in Section 5.4.2-C.

We choose four representative datasets from Table 5.2, including DISCO,

KOSRK, NETFLIX, and TWITTER, which cover different types of dataset, vari-

ous values of the average record size, as well as different z values. Note that, besides

TT-Join and IT-Join, we also report the performance of IT-Join with k = 1 to

see if the increase of k value in TT-Join and IT-Join algorithms got paid off.

Fig. 5.13 reports the running time of three algorithms on the above four datasets

with k increasing from 1 to 5. It is observed that IT-Join can only benefit from

small k values, such as 1 and 2, which implies that the performance gain from large

k value can not pay-off the growth of filtering costs, i.e., the increase of the number

of records explored on the inverted index. On the contrary, TT-Join performs

much better than IT-Join when k increases. In particular, it can continuously

benefit from the growth of k on KOSRK, while achieves the best performance

when k = 4, k = 2 and k = 3 on DISCO, NETFLIX and TWITTER, respectively.

This behaviour verifies our cost analysis in Section 5.4.2 and Section 5.4.3 that the

overhead of a straightforward extension of inverted index is expensive and the gain

may not be well paid off, while TT-Join can achieve a much better trade-off. Since

154 Chapter 5. Efficient Set Containment Join

1

10

100

1K

10K
INF

AM
AZ

AO
L

B
M
S

BO
O
KC

D
ELIC

D
ISC

O

EN
R
O
N

F
L
C
K
R
-L

F
L
C
K
R
-S

K
O
S
R
K

LAST

LIN
U
X

LIVEJ

N
E
T
F
L
IX

O
R
K
U
T

STAC
K

SU
ALZ

TEAM
S

T
W
IT
T
E
R

W
E
B
B
S

R
u

n
n

in
g

 t
im

e
 (

s
)

TT-Join LIMIT PIEJoin PRETTI+ PTSJ DivideSkip Adapt FreqSet

Figure 5.14: Processing Time

the performance of IT-Join is fully dominated by TT-Join under all datasets, it

is excluded from the following experiments. By default, we set k = 4 for TT-Join

algorithm for all datasets.

5.6.1-C Comparison with Existing Algorithms

In this subsection, we compare our TT-Join algorithm with four state-of-the-art

algorithms LIMIT, PIEJoin, PRETTI+, and PSTJ as well as three modified al-

gorithms DivideSkip, Adapt, and FreqSet on all 20 datasets. Recall that LIMIT,

PIEJoin, and PRETTI+ are intersection-oriented methods and PSTJ is union-

oriented method.

Processing Time. The experiment results in terms of processing time are re-

ported in Fig. 5.14. Besides the set containment join time, the processing time

also includes the index construction time because the indexes of all algorithms are

generated on the fly. It is reported that our TT-Join algorithm outperforms all

state-of-the-art algorithms on all datasets, except that it is slightly outperformed

by LIMIT on NETFLIX. Among the existing algorithms, LIMIT achieves the best

performance except on LINUX and SUALZ. The performance of PIEJoin is quite

stable on all datasets, but it is always suppressed by LIMIT except on LINUX

and SUALZ. The processing time of PRETTI+ and PTSJ is quite sensitive to

the record length [LFHDB15]. It is observed that PRETTI+ favors datasets with

small record size, such as AMAZ, DISCO, LINUX, SUALZ, and TEAMS. However,

Chapter 5. Efficient Set Containment Join 155

PRETTI+ is extremely slow on datasets with relatively large record size, such as

DELIC, ENRON, LIVEJ, NETFLIX, and TWITTER. It takes more than 10 hours

on NETFLIX in which the average record size is 209. As reported in [LFHDB15],

PTSJ, on the other hand, cannot efficiently handle datasets with small record size.

For example, it takes hours for PTSJ to process AOL, while TT-Join spends less

than 2 minutes. Generally, PTSJ has the worst overall performance. The reasons

are two-fold. First, PTSJ is a bitmap-signature based method, which is data-

independent and does not make use of the distribution of the elements. Second,

it considers records in S individually, which means there is no computation share

between records, even for identical records. The results show that DivideSkip sig-

nificantly outperform other two adapted algorithms. Interestingly, DivideSkip even

beats two state-of-the-art algorithms PRETTI+ and PTSJ on several datasets, such

as AOL, DELIC, ENRON, FLICKR-L, LIVEJ, and ORKUT. The reason is that

DivideSkip uses the same index strategy as PRETTI+, but DivideSkip can take

advantage of the careful processing of long and short inverted lists in different ways.

It is reported that Adapt and FreqSet are not competitive under all datasets. In

particular, FreqSet fails to return results on half of the 20 datasets (we set allowed

running time to be 10 hours).

As reported in Fig. 5.14, TT-Join has the best overall performance on 20 real-

life datasets and significantly outperforms other competitors on the majority of

the datasets. This is because TT-Join not only enhanced the nice properties of

the union-oriented approach, e.g., exploited the skewness of the data and had less

number of records explored, but also can directly validate a significant number of

pairs, which are verification free. In particular, TT-Join beats other algorithms

by at least around one order of magnitude on datasets with large z-values, such as

DISCO, KOSRK, LINUX, SUALZ, and TWITTER. This is because union-oriented

156 Chapter 5. Efficient Set Containment Join

10M

100M

1G

10G

100G

AM
AZ

AO
L

B
M
S

BO
O
KC

D
ELIC

D
ISC

O

EN
R
O
N

F
L
C
K
R
-L

F
L
C
K
R
-S

K
O
S
R
K

LAST

LIN
U
X

LIVEJ

N
E
T
F
L
IX

O
R
K
U
T

STAC
K

SU
ALZ

TEAM
S

T
W
IT
T
E
R

W
E
B
B
S

U
s
a

g
e

 o
f

M
e

m
o

ry
 (

B
y
te

)

TT-Join LIMIT PIEJoin PRETTI+ PTSJ DivideSkip Adapt FreqSet

Figure 5.15: Memory Usage

TT-Join can effectively exploit the skewness of the data distribution. It is very

interesting that TT-Join can also significantly outperform other competitors on

ORKUT and WEBBS although they are not skewed, with z values 0.13 and 0.04,

respectively. For instance, TT-Join outperforms other algorithms on WEBBS by

one order of magnitude. We observe that there are a large number of distinct ele-

ments in ORKUT and WEBBS, and the average size of the records is large, which

favour the least frequent element based signature technique. For some datasets

with moderate or small z-value, such as AMAZ, LAST, and TEAMS, TT-Join can

also achieve a superior performance, at least 2 times faster than the second ranked

algorithm. The reason is that the kLFP-Tree enables us to increase the filtering

capacity with small overhead and validate a significant number of join results with-

out explicitly invoking the verification during the join processing. NETFLIX is

the only dataset in which TT-Join is slightly outperformed by other competitors.

We observe that it is not skewed (z = 0.33) and the number of distinct element

(|E| = 17, 770) is small compared to the dataset size (n = 480, 189 and m = 209),

both of which are not in favour of TT-Join.

Memory Usage. Fig. 5.15 reports the memory usage of 8 algorithms. Same

as [LFHDB15], the used memory is measured by the difference between the to-

tal memory and free memory of JVM after indexes are constructed for algorithms

implemented in Java. For algorithms implemented in C++, we measure the maxi-

mum amount of used memory. It is observed that, DivideSkip consumes the small-

Chapter 5. Efficient Set Containment Join 157

10
-1

10
1

10
3

10
5

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

TT-Join
LIMIT

PIEJoin
PRETTI+

PTSJ
DivideSkip

Adapt

(a) DISCO

10
0

10
2

10
4

10
6

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

TT-Join
LIMIT

PIEJoin
PRETTI+

PTSJ
DivideSkip

Adapt

(b) KOSRK

10
1

10
2

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

TT-Join
LIMIT

PIEJoin
PRETTI+

PTSJ
DivideSkip

Adapt

(c) NETFLIX

10
0

10
2

10
4

10
6

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

TT-Join
LIMIT

PIEJoin
PRETTI+

PTSJ
DivideSkip

Adapt

(d) TWITTER

Figure 5.16: Vary number of records

est amount of memory under all datasets. Under most of the datasets, PTSJ and

Adapt consume the second smallest amount of memory because PTSJ only builds

Patricia trie index on R while Adapt only builds inverted list on S. They are fol-

lowed by TT-Join and PRETTI+. The memory usage of LIMIT and PIEJoin are

similar and relatively larger than that of the other algorithms. This is because both

of them use complicated index structures. Particularly, besides the prefix trees on

both R and S, PIEJoin also needs some auxiliary data structures to speed up the

join processing.

Scalability Evaluation. In the last set of experiments, we evaluate the scala-

bility of 7 algorithms on 4 representative datasets. FreqSet is excluded from the

evaluation because it fails to give response within allowed time on most of the ex-

158 Chapter 5. Efficient Set Containment Join

perimental settings. For each dataset, we randomly sample 20%, 40%, 60%, 80%,

100% of records from the original dataset, and conduct experiment on each sampled

dataset. Fig. 5.16 shows that the running time of the algorithms grow steadily as

the number of records increases on all datasets, and the performance ranks of the

algorithms remain the same under most of the settings.

5.6.2 Distributed Evaluations

In this section, we evaluate the performance of our distributed set containment join

algorithm. We implement algorithms with both Hadoop 2.7.2 and Spark 2.0.0. By

default, we run our experiments on Spark. All experiments are conducted on a

10-node (one namenode/master and nine datanodes/slavers) cluster. Each node in

the cluster is a Debian 6.0.10 server that has 3.4GHz Intel Xeon 8 cores CPU, 16GB

RAM, and gigabit Ethernet interconnect. For Hadoop, we allocate a JVM heap

space of 4MB for each mapper and reducer, and we allow at most 3 reducers running

concurrently in each machine. We use the default block size 64MB in HDFS, and

set the data replication factor of HDFS to 1. For Spark, we use standalone model

and allocate 14GB memory for each executor. On each executor, we allocate at

most 3 cores. In the experiments, we evaluate two metrics, namely, running time

and communication/shuffle cost.

Algorithms. We compare the following three distribution schemes.

• SIGNATURE. Our signature-based distribution approach proposed in Sec-

tion 5.5.2, where, by default, we apply the heuristic partition strategy pro-

posed in Section 5.5.3.

• RANDOM. Advanced random distribution approach proposed in Sec-

tion 5.5.2.

Chapter 5. Efficient Set Containment Join 159

Datasets TWEETS MEMES

#Records 74.6M 41.6M
#Elements 953K 2.4M
Average record size 6.3 14
Size in GB 2.7 2.7

Table 5.3: Datasets statistics

• PREFIX. Prefix-based distribution approach proposed in Section 5.5.2.

In the following experiments, we employ TT-Join as the local join algorithm,

since it achieves the best overall performance as demonstrated in our centralized

evaluation (Section 5.6.1). It is worth mentioning that PREFIX might introduce

duplicates in the join results because a record pair might be dispatched to different

reduce nodes. The running time in the experiments does not include the time for

eliminating the duplication.

Datasets. Two datasets are deployed to evaluate the algorithms. TWEETS is

a real-life dataset collected from Twitter, containing 74.6M tweets with an aver-

age number of terms being 6.3. MEMES is obtained from Memetracker [LBK09],

which tracks the quotes and phrases that appear most frequently over time across

the entire online news spectrum. The quotes and phrases used in this paper are

collected in April 2009, where we consider each meme as a record. The statistics

of two datasets are summarized in Table 5.3.

5.6.2-A Performance Tuning

We start the experiments by tuning the performance of our approach SIGNATURE.

Compare partition strategies. In Section 5.5.3, we propose two element do-

main partition methods. Recall that the optimal partition has a time complexity

of O(N |E|2) which is impractical on datasets with large element domain size. We

160 Chapter 5. Efficient Set Containment Join

20

40

60

80

100

10 20 30 40 50

R
u
n
n
in

g
 T

im
e
 (

s
)

of intervals (N)

OPTIMAL
HEURISTIC

EVEN

(a) Running Time

0

2

4

6

8

10 20 30 40 50C
o
m

m
u
n
ic

a
ti
o
n
 C

o
s
t
(G

B
)

of intervals (N)

OPTIMAL
HEURISTIC

EVEN

(b) Communication Cost

Figure 5.17: Compare partition strategies

0

200

400

600

800

200 600 1000 1400 1800

R
u
n
n
in

g
 T

im
e
 (

s
)

TWEETS MEMES

(a) Running Time

10

20

30

40

50

200 600 1000 1400 1800

C
o
m

m
u
n
ic

a
ti
o
n
 C

o
s
t
(G

B
)

TWEETS MEMES

(b) Communication Cost

Figure 5.18: Vary number of intervals (N)

therefore choose NETFLIX in Table 5.2, where the element domain size is 17, 770,

to conduct the experiments. Note that, we also implement the even partition strat-

egy, where the element domain is evenly partitioned intoN intervals. As reported in

Fig. 5.17(a), our heuristic partition method, denoted by HEURISTIC, can achieve

comparable performance as optimal partition method, denoted by OPTIMAL, in

terms of running time, while even partition method, denoted by EVEN, is always

beaten by other methods. That is because both OPTIMAL and HEURISTIC take

the computation cost into consideration such that reduce nodes can take similar

workload. It is interesting that all three methods have the similar communication

Chapter 5. Efficient Set Containment Join 161

cost under all settings as shown in Fig. 5.17(b). The reason is that the commu-

nication cost is mainly determined by the distribution scheme and the number

of intervals N . By default, we use HEURISTIC as the element domain partition

method.

Effect of number of partitions. In this experiment, we evaluate the effect of

number of intervals N to our approach SIGNATURE against the two datasets in

Table 5.3, namely TWEETS and MEMES, where the number of intervals is varied

from 200 to 1800. Fig. 5.18(a) reports that, SIGNATURE can continuously benefit

from growth of N on TWEETS regarding the running time, while it runs the fastest

when N = 1000 on MEMES. On the other hand, it is shown in Fig. 5.18(b) that the

communication cost increases gradually when N increases. The reason is obvious

because as N grows, we need to distribute records to more reduce nodes after map

phase. Taking both running time and communication cost into consideration, we

set N = 1000 for SIGNATURE for all datasets in the following experiments.

5.6.2-B Performance Evaluation

Scalability test. In this set of experiments, we evaluate the scalability of 3 ap-

proaches. For each datasets, we randomly sample 20%, 40%, 60%, 80%, 100% of

records from the original dataset, and conduct experiment on each sampled dataset.

It is worth mentioning that we also tune the best number of partitions for RAN-

DOM and PREFIX. In particular, for RANDOM, the numbers of partitions are

set to 12, 14, 16, 18, 20 on both R and S under the 5 settings, while the number

of intervals for SIGNATURE and PREFIX are set to 200, 400, 600, 800, 1000,

correspondingly.

It is reported in Fig. 5.19 that our approach SIGNATURE performs the best

under all settings with respect to both running time and communication cost. We

162 Chapter 5. Efficient Set Containment Join

0

2000

4000

6000

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(a) TWEETS

0

20

40

60

80

100

20% 40% 60% 80% 100%

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(G
B

)

SIGNATURE
RANDOM

PREFIX

(b) TWEETS

0

500

1000

1500

2000

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(c) MEMES

0

20

40

60

80

100

20% 40% 60% 80% 100%

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(G
B

)

SIGNATURE
RANDOM

PREFIX

(d) MEMES

Figure 5.19: Vary number of records on Spark

also observe that SIGNATURE can scale much better than RANDOM does on

TWEETS, and both RANDOM and PREFIX do on MEMES. Taking TWEETS

for instance (Fig. 5.19(a)), when dataset size is 20%, SIGNATURE and RANDOM

have comparable performance, and finish in 200 and 244 seconds, respectively. How-

ever, when dataset size grows to 100%, these numbers become 357 and 4493, which

means that SIGNATURE is more than one order of magnitude faster than RAN-

DOM. We have similar conclusion in terms of communication cost. Interestingly,

it is also observed from Fig. 5.19 that PREFIX has very difference performance

on the two datasets. In particular, PREFIX achieves much better performance on

TWEETS (Fig. 5.19(a) and Fig. 5.19(b)) than it does on MEMES (Fig. 5.19(c)

and Fig. 5.19(d)). Taking the running time for example, it is only slightly beaten

Chapter 5. Efficient Set Containment Join 163

by SIGNATURE on TWEETS, while significantly outperformed by SIGNATURE

on MEMES, where it is even marginally beaten by RANDOM when dataset size is

less than 80%. The reason is that PREFIX is not suitable for dataset with large

record size because it uses the entire record as prefix to build inverted index. Since

the average record sizes of TWEETS and MEMES are 6.3 and 14, respectively, this

explains why PREFIX performs better on TWEETS.

0

2000

4000

6000

8000

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(a) TWEETS

0

1000

2000

3000

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(b) MEMES

Figure 5.20: Vary number of slave nodes on Spark

Effect of number of slave nodes. In this experiment, we evaluate the effect

of number of slave nodes by varying it from 5 to 9. Note that, we only show

the running time for this experiment since the shuffle cost are the same for an

algorithm under different number of slave nodes. The experiment results are shown

in Fig. 5.20. When the number of slave nodes increases, the running time of all

algorithms decreases steadily, and it drops more sharply when the number of slave

nodes is small. Fig. 5.20(a) and Fig. 5.20(b) show that SIGNATURE is more than

one order of magnitude faster than RANDOM on TWEETS, and 5 times faster

than both RANDOM and PREFIX on MEMES under all settings, respectively.

Evaluations on Hadoop. Fig. 5.21 and Fig. 5.22 report the performance of the

algorithms running on Hadoop, which show similar behaviors as they do on Spark

164 Chapter 5. Efficient Set Containment Join

0

1000

2000

3000

4000

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(a) TWEETS

0

20

40

60

80

100

20% 40% 60% 80% 100%

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(G
B

)

SIGNATURE
RANDOM

PREFIX

(b) TWEETS

0

500

1000

1500

2000

2500

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(c) MEMES

0

40

80

120

160

20% 40% 60% 80% 100%

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(G
B

)

SIGNATURE
RANDOM

PREFIX

(d) MEMES

Figure 5.21: Vary number of records on Hadoop

0

2000

4000

6000

8000

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(a) TWEETS

0

1000

2000

3000

4000

5 6 7 8 9

R
u
n
n
in

g
 T

im
e
 (

s
)

SIGNATURE
RANDOM

PREFIX

(b) MEMES

Figure 5.22: Vary number of slave nodes on Hadoop

shown in Fig. 5.19 and Fig. 5.20. That is, the processing time increases when

the number of records increases, while decreases with the growth number of slave

Chapter 5. Efficient Set Containment Join 165

nodes.

Interestingly, it is observed that the performance gap between SIGNATURE

and other algorithms narrows on Hadoop. Take Fig. 5.19(a) and Fig. 5.21(a) for

example. At the setting where the number of records is 100%, it takes 357 and

4493 seconds for SIGNATURE and RANDOM to finish on Spark. However, the

numbers become 779 and 4058 on Hadoop. The reason is that SIGNATURE applies

a two-stage strategy to compute the set containment join. In the first stage, we

compute the element distribution, and based on that, we can find a good element

domain partition. In the second stage, we distribute the records to reduce nodes

according to the well partitioned element intervals and compute set containment

join locally on each reduce node. On the other hand, both RANDOM and PREFIX

only consist of one stage. Since Spark stores data in memory, it is more efficient for

processing multiple-stage jobs. Therefore, SIGNATURE performs better on Spark

than it does on Hadoop.

5.7 Conclusion

In this chapter, we study the problem of set containment join. Several in-memory

set containment join algorithms have been developed in the literature. Based on the

computing paradigms, we classify them into two categories, namely intersection-

oriented and union-oriented methods. Through a comprehensive analysis, we show

the advantages and limits of the algorithms in each category. Then we propose a

new union-oriented method, namely TT-Join, which can take advantage of both

union-oriented and intersection-oriented approaches. Extensive experiments on 20

real-life set-valued datasets from a variety of applications demonstrate the superior

performance of TT-Join compared with the state-of-the-art techniques. Further-

166 Chapter 5. Efficient Set Containment Join

more, to support large scale of datasets, we extend our techniques to distributed

systems on top of MapReduce framework. With the help of careful designed load-

aware distribution mechanisms, our distributed join algorithm can scale out well.

Chapter 6

Final Remarks

In this chapter, we summarize our research in this thesis and provide the possible

future research directions. Specifically, Section 6.1 concludes the major contribu-

tions of this thesis. Section 6.2 introduces several possible orientations for future

work.

6.1 Conclusions

As one of the most important information mining tasks, influence analysis has

attracted tremendous attention in both industry and academic communities. In

this thesis, we study three important influence related problems on three types

of datasets, namely product and user preference data, spatial object data, and

set-valued data. Below are the details.

Influence based Cost Optimization on User Preference. We advocate the

problem of influence based cost optimization on user preference. By taking advan-

tage of the k-level computing techniques and the monotonicity and convexity of

the cost function, we reduce the solution space to a finite number of points. By

exploiting the nice geometric properties of our problem in 2-dimensional spaces,

167

168 Chapter 6. Final Remarks

we develop an efficient traverse based algorithm for 2-dimensional spaces with time

complexity O(n). For general multi-dimensional spaces, we develop a space par-

tition based algorithm. To further boost the computation performance, we devise

a novel sampling based approach that can significantly outperform the exact algo-

rithm with high accuracy.

Categorical Top-k Spatial Influence Query. We study the problem of cat-

egorical top-k spatial influence query, which is NP-hard regarding the number of

types in the query. In the thesis, we follow the filtering-and-refinement framework

base on R-tree style spatial indexes. Efficient and effective pruning techniques

are developed to avoid the costly verification as much as possible. To tackle the

computation hardness in the verification phase, we develop two algorithms: one

is an efficient exact algorithm and the other is an approximate algorithm with

performance guarantee.

Efficient Set Containment Join. For the set-valued data, we study the problem

of set containment join which is fundamental. After a careful existing work review,

we classify the existing solutions into two categories, namely intersection-oriented

and union-oriented methods. Through a comprehensive analysis, we show the

advantages and limits of the algorithms in each category. Then we propose a new

union-oriented method, namely TT-Join, which can take advantage of both union-

oriented and intersection-oriented approaches. Furthermore, to support large scale

of datasets, we extend our techniques to distributed systems on top of MapReduce

framework.

6.2 Directions for Future Work

In this section, we propose several possible directions for future work.

Chapter 6. Final Remarks 169

6.2.1 Cost Constraint based Influence Maximization

Given an influence target (i.e., k), our influence based cost optimization is to find

a new object in the solution space such that its influence is at least k and the cost

is minimized. Oppositely, it is also interesting to find a new object in the solution

space such that its influence is maximized and the corresponding cost is under

a given value. This query can help the manufacturing companies to maximize

the profit of their manufacturing budget. Currently, there is no existing work

studying cost constraint based influence maximization. Thus effective and efficient

algorithms are needed to answer this query.

6.2.2 General Distance Cost Function based Spatial Influ-

ence Query

In Chapter 4, we have investigated the problem of categorical top-k spatial influence

query, where the distance cost function is the sum of pairwise distance of objects in

the functional unit. However, sometime it maybe inevitable to adopt other distance

cost functions, such as diameter, minimum disk etc. Thus, it is of great importance

to develop new pruning and indexing techniques to support different distance cost

functions.

6.2.3 Spatio-textual Set Containment Join

In Chapter 5, we have studied the problem of set containment join for set-valued

data. In other contexts, a record may also associate with location information. For

instance, a checkin post on Foursquare contains both spatial and textual informa-

tion. For such spatio-textual data, it is interesting to investigate the spatio-textual

set containment join. Specifically, given a distance threshold D, we aim to find the

170 Chapter 6. Final Remarks

record pairs such that the distance between two records is less than D, and their

textual sets form a set containment relation. To the best of our knowledge, there is

no existing work investigating this problem. Thus it is necessary to devise efficient

indexing and querying techniques to resolve this problem.

Bibliography

[AACS98] Pankaj K Agarwal, Boris Aronov, Timothy M Chan, and Micha

Sharir. On levels in arrangements of lines, segments, planes, and

triangles. Discrete & Computational Geometry, 19(3):315–331, 1998.

[AAK10] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing

error-tolerant set containment. In SIGMOD, pages 927–938, 2010.

[ADBMS98] Pankaj K Agarwal, Mark De Berg, Jiŕı Matousek, and Otfried

Schwarzkopf. Constructing levels in arrangements and higher order

voronoi diagrams. SIAM journal on computing, 27(3):654–667, 1998.

[ADV12] Anastasios Arvanitis, Antonios Deligiannakis, and Yannis Vassiliou.

Efficient influence-based processing of market research queries. In

CIKM, pages 1193–1202, 2012.

[AGK06] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact

set-similarity joins. In PVLDB, pages 918–929, 2006.

[APV07] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position

algorithms for top-k queries. In PVLDB, pages 495–506, 2007.

[ASM+12] Foto N Afrati, Anish Das Sarma, David Menestrina, Aditya

171

172 BIBLIOGRAPHY

Parameswaran, and Jeffrey D Ullman. Fuzzy joins using mapreduce.

In ICDE, pages 498–509, 2012.

[BGM12] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual

similarity joins. pages 1–12, 2012.

[BMGT15] Panagiotis Bouros, Nikos Mamoulis, Shen Ge, and Manolis Terrovitis.

Set containment join revisited. Knowledge and Information Systems,

pages 1–28, 2015.

[Bro97] Andrei Z Broder. On the resemblance and containment of documents.

In Compression and Complexity of Sequences 1997. Proceedings, pages

21–29. IEEE, 1997.

[CBC+00] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng

Li, Ming-Ling Lo, and John R Smith. The onion technique: indexing

for linear optimization queries. In SIGMOD, pages 391–402, 2000.

[CC87] Yves Chabrillac and J-P Crouzeix. Continuity and differentiability

properties of monotone real functions of several real variables. In

Nonlinear analysis and optimization, pages 1–16. Springer, 1987.

[CCJO11] Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. Col-

lective spatial keyword queries. In SIGMOD, pages 689–700, 2011.

[CCJW13] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. Spatial

keyword query processing: An experimental evaluation. In PVLDB,

pages 217–228, 2013.

[CCKS07] Surajit Chaudhuri, Kenneth Church, Arnd Christian König, and Liy-

ing Sui. Heavy-tailed distributions and multi-keyword queries. In

SIGIR, pages 663–670, 2007.

BIBLIOGRAPHY 173

[CCSC16] Farhana M Choudhury, J Shane Culpepper, Timos Sellis, and Xin

Cao. Maximizing bichromatic reverse spatial and textual k nearest

neighbor queries. In PVLDB, pages 456–467, 2016.

[CDbL+05] S. Cabello, J. M. Diaz-banez, S. Langerman, C. Seara, and I. Ventura.

Reverse facility location problem. In CCCG, 2005.

[CJW09] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k

most relevant spatial web objects. In PVLDB, pages 337–348, 2009.

[CLH+15] Lei Chen, Xin Lin, Haibo Hu, Christian S Jensen, and Jianliang Xu.

Answering why-not questions on spatial keyword top-k queries. In

ICDE, pages 279–290, 2015.

[CLXJ17] Lei Chen, Yafei Li, Jianliang Xu, and Christian S Jensen. Direction-

aware why-not spatial keyword top-k queries. In ICDE, pages 107–110,

2017.

[CLZZ11] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying

Zhang. Influence zone: Efficiently processing reverse k nearest neigh-

bors queries. In ICDE, pages 577–588, 2011.

[CP07] Yun Chen and Jignesh M. Patel. Efficient evaluation of all-nearest-

neighbor queries. In ICDE, pages 1056–1065, 2007.

[CP15] Aniket Chakrabarti and Srinivasan Parthasarathy. Sequential hypoth-

esis tests for adaptive locality sensitive hashing. In WWW, pages

162–172, 2015.

[CPL16] Dong-Wan Choi, Jian Pei, and Xuemin Lin. Finding the minimum

spatial keyword cover. In ICDE, pages 685–696, 2016.

174 BIBLIOGRAPHY

[CS88] Kenneth L Clarkson and Peter W Shor. Algorithms for diametral pairs

and convex hulls that are optimal, randomized, and incremental. In

SCG, pages 12–17. ACM, 1988.

[CS89] Kenneth L Clarkson and Peter W Shor. Applications of random sam-

pling in computational geometry, ii. Discrete & Computational Ge-

ometry, 4(1):387–421, 1989.

[CSLZ14] Muhammad Aamir Cheema, Zhitao Shen, Xuemin Lin, and Wenjie

Zhang. A unified framework for efficiently processing ranking related

queries. In EDBT, pages 427–438, 2014.

[CXL+16] Lei Chen, Jianliang Xu, Xin Lin, Christian S Jensen, and Haibo Hu.

Answering why-not spatial keyword top-k queries via keyword adap-

tion. In ICDE, pages 697–708, 2016.

[Data] http://liu.cs.uic.edu/download/data/.

[Datb] http://www.cim.mcgill.ca/~dudek/206/Logs/

AOL-user-ct-collection.

[Datc] http://www.informatik.uni-freiburg.de/~cziegler/BX/.

[Datd] http://dai-labor.de/IRML/datasets.

[Date] http://www.discogs.com/.

[Datf] http://www.cs.cmu.edu/~enron.

[Datg] http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

lastfm-1K.html.

[Dath] http://konect.uni-koblenz.de/networks/lkml_person-thread.

BIBLIOGRAPHY 175

[Dati] http://socialnetworks.mpi-sws.org/data-imc2007.html.

[Datj] http://www.clearbits.net/torrents/1881-dec-2011.

[Datk] http://vi.sualize.us/.

[Datl] http://wiki.dbpedia.org/Downloads.

[Dey98] Tamal K Dey. Improved bounds for planar k-sets and related prob-

lems. Discrete & Computational Geometry, 19(3):373–382, 1998.

[DGKS07] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Nikos Sarkas.

Ad-hoc top-k query answering for data streams. In PVLDB, pages

183–194, 2007.

[DLH+14] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua

Feng. Massjoin: A mapreduce-based method for scalable string simi-

larity joins. In ICDE, pages 340–351, 2014.

[DLWF15] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. An efficient

partition based method for exact set similarity joins. In PVLDB,

pages 360–371, 2015.

[DZX05] Y. Du, D. Zhang, and T. Xia. The optimal-location qeury. In SSTD,

pages 163–180, 2005.

[EOS86] Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Con-

structing arrangements of lines and hyperplanes with applications.

SIAM Journal on Computing, 15(2):341–363, 1986.

[FHR08] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search

on spatial databases. In ICDE, pages 656–665, 2008.

176 BIBLIOGRAPHY

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. Journal of computer and system sciences,

66(4):614–656, 2003.

[FX10] Rudolf Fleischer and Xiaoming Xu. Computing minimum diameter

color-spanning sets. In International Workshop on Frontiers in Algo-

rithmics, pages 285–292. Springer, 2010.

[GCC15] Tao Guo, Xin Cao, and Gao Cong. Efficient algorithms for answering

the m-closest keywords query. In SIGMOD, pages 405–418, 2015.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability:

a guide to the theory of np-completeness. 1979. San Francisco, LA:

Freeman, 1979.

[GLC+15] Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, and Linlin Zhou.

Answering why-not questions on reverse top-k queries. In PVLDB,

pages 738–749, 2015.

[GMC+13] Shen Ge, Nikos Mamoulis, David Wai-lok Cheung, et al. Efficient all

top-k computation-a unified solution for all top-k, reverse top-k and

top-m influential queries. TKDE, 25(5):1015–1027, 2013.

[GMC+15] Shen Ge, Nikos Mamoulis, David WL Cheung, et al. Dominance rela-

tionship analysis with budget constraints. Knowledge and information

systems, pages 409–440, 2015.

[GVDN15] Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil

Nørv̊ag. Finding the most diverse products using preference queries.

In EDBT, pages 205–216, 2015.

BIBLIOGRAPHY 177

[GZCL09] Yunjun Gao, Baihua Zheng, Gencai Chen, and Qing Li. Optimal-

location-selection query processing in spatial databases. IEEE Trans-

actions on Knowledge and Data Engineering, 21(8):1162–1177, 2009.

[GZZC16] Yunjun Gao, Jingwen Zhao, Baihua Zheng, and Gang Chen. Efficient

collective spatial keyword query processing on road networks. IEEE

Transactions on Intelligent Transportation Systems, 17(2):469–480,

2016.

[HKC+12] Zeinab Hmedeh, Harris Kourdounakis, Vassilis Christophides, Cédric

Du Mouza, Michel Scholl, and Nicolas Travers. Subscription indexes

for web syndication systems. In EDBT, pages 312–323, 2012.

[HKP01] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. Pre-

fer: A system for the efficient execution of multi-parametric ranked

queries. In SIGMOD, pages 259–270, 2001.

[HLTF12] Weihuang Huang, Guoliang Li, Kian-Lee Tan, and Jianhua Feng.

Efficient safe-region construction for moving top-k spatial keyword

queries. In CIKM, pages 932–941, 2012.

[HM97] Sven Helmer and Guido Moerkotte. Evaluation of main memory join

algorithms for joins with set comparison predicates. In VLDB, pages

386–395, 1997.

[HP04] Vagelis Hristidis and Yannis Papakonstantinou. Algorithms and ap-

plications for answering ranked queries using ranked views. VLDB

Journal, 13(1):49–70, 2004.

[HPY00] Jiawei Han, Jian Pei, and Yan Yin. Mining frequent patterns without

candidate generation. In SIGMOD, pages 1–12, 2000.

178 BIBLIOGRAPHY

[HS99] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial

databases. TODS, 24(2):265–318, 1999.

[HWQ+11] Jin Huang, Zeyi Wen, Jianzhong Qi, Rui Zhang, Jian Chen, and Zhen

He. Top-k most influential locations selection. In CIKM, pages 2377–

2380, 2011.

[IBS08] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey

of top-k query processing techniques in relational database systems.

ACM Computing Surveys (CSUR), 40(4):11, 2008.

[IF13] Ahmed Ibrahim and George HL Fletcher. Efficient processing of con-

tainment queries on nested sets. In EDBT, pages 227–238, 2013.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing, pages 604–

613. ACM, 1998.

[JP05] Ravindranath Jampani and Vikram Pudi. Using prefix-trees for effi-

ciently computing set joins. In DASFAA, pages 761–772, 2005.

[KLC14] Jia-Ling Koh, Chen-Yi Lin, and Arbee L Chen. Finding k most

favorite products based on reverse top-t queries. VLDB Journal,

23(4):541–564, 2014.

[KM00] Flip Korn and S. Muthukrishnan. Influence sets based on reverse

nearest neighbor queries. In SIGMOD, pages 201–212, 2000.

[KRS+16] Anja Kunkel, Astrid Rheinländer, Christopher Schiefer, Sven Helmer,

Panagiotis Bouros+3, and Ulf Leser. Piejoin: Towards parallel set

containment joins. In SSDBM, page 11, 2016.

BIBLIOGRAPHY 179

[LBK09] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking

and the dynamics of the news cycle. In SIGKDD, pages 497–506,

2009.

[LFHDB15] Yongming Luo, George HL Fletcher, Jan Hidders, and Paul De Bra.

Efficient and scalable trie-based algorithms for computing set contain-

ment relations. In ICDE, pages 303–314, 2015.

[LFX12] Guoliang Li, Jianhua Feng, and Jing Xu. Desks: Direction-aware

spatial keyword search. In ICDE, pages 474–485, 2012.

[LJ12] Hua Lu and Christian S Jensen. Upgrading uncompetitive products

economically. In ICDE, pages 977–988, 2012.

[LKC13] Chen-Yi Lin, Jia-Ling Koh, and Arbee LP Chen. Determining k-

most demanding products with maximum expected number of total

customers. TKDE, 25(8):1732–1747, 2013.

[LLC11] Jiaheng Lu, Ying Lu, and Gao Cong. Reverse spatial and textual k

nearest neighbor search. In SIGMOD, pages 349–360, 2011.

[LLL08] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient merging and filtering

algorithms for approximate string searches. In ICDE, pages 257–266,

2008.

[LOTW06] Cuiping Li, Beng Chin Ooi, Anthony KH Tung, and Shan Wang.

Dada: a data cube for dominant relationship analysis. In SIGMOD,

pages 659–670, 2006.

[LWWF13] Cheng Long, Raymond Chi-Wing Wong, Ke Wang, and Ada Wai-

Chee Fu. Collective spatial keyword queries: A distance owner-driven

approach. In SIGMOD, pages 689–700, 2013.

180 BIBLIOGRAPHY

[MA14] Willi Mann and Nikolaus Augsten. Pel: Position-enhanced length

filter for set similarity joins. In Grundlagen von Datenbanken, pages

89–94, 2014.

[MAB16] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empirical

evaluation of set similarity join techniques. In PVLDB, pages 636–647,

2016.

[Mam03] Nikos Mamoulis. Efficient processing of joins on set-valued attributes.

In SIGMOD, pages 157–168, 2003.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Con-

tinuous monitoring of top-k queries over sliding windows. In SIGMOD,

pages 635–646, 2006.

[MF12] Ahmed Metwally and Christos Faloutsos. V-smart-join: A scalable

mapreduce framework for all-pair similarity joins of multisets and vec-

tors. pages 704–715, 2012.

[MGM02] Sergey Melnik and Hector Garcia-Molina. Divide-and-conquer algo-

rithm for computing set containment joins. In EDBT, pages 427–444,

2002.

[MGM03] Sergey Melnik and Hector Garcia Molina. Adaptive algorithms for set

containment joins. TODS, 28(1):56–99, 2003.

[MP13] Kyriakos Mouratidis and HweeHwa Pang. Computing immutable re-

gions for subspace top-k queries. In PVLDB, pages 73–84, 2013.

[Mul91] Ketan Mulmuley. On levels in arrangements and voronoi diagrams.

Discrete & Computational Geometry, 6(1):307–338, 1991.

BIBLIOGRAPHY 181

[MZP15] Kyriakos Mouratidis, Jilian Zhang, and HweeHwa Pang. Maximum

rank query. pages 1554–1565, 2015.

[PS85] Franco P Preparata and Michael I Shamos. Computational geometry:

an introduction. 1985.

[PW15] Peng Peng and Raymong Chi-Wing Wong. k-hit query: Top-k query

with probabilistic utility function. In SIGMOD, pages 577–592, 2015.

[QGJ15] Li Qian, Jinyang Gao, and HV Jagadish. Learning user preferences

by adaptive pairwise comparison. In PVLDB, pages 1322–1333, 2015.

[QZK+12] Jianzhong Qi, Rui Zhang, Lars Kulik, Dan Lin, and Yuan Xue. The

min-dist location selection query. In ICDE, pages 366–377, 2012.

[RH11] Leonardo Andrade Ribeiro and Theo Härder. Generalizing prefix fil-

tering to improve set similarity joins. Information Systems, 36(1):62–

78, 2011.

[RJGJN11] João B Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil

Nørv̊ag. Efficient processing of top-k spatial keyword queries. In

Advances in Spatial and Temporal Databases, pages 205–222. Springer,

2011.

[RJVDN10] Joao B Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and

Kjetil Nørv̊ag. Efficient processing of top-k spatial preference queries.

In PVLDB, pages 93–104, 2010.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest

neighbor queries. In SIGMOD, pages 71–79, 1995.

182 BIBLIOGRAPHY

[RPNK00] Karthikeyan Ramasamy, Jignesh M Patel, Jeffrey F Naughton, and

Raghav Kaushik. Set containment joins: The good, the bad and the

ugly. In VLDB, pages 351–362, 2000.

[SL15] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for

indexing binary inner products and set containment. In WWW, pages

981–991, 2015.

[SP12] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensi-

tive hashing for fast similarity search. pages 430–441, 2012.

[TBV+11] Manolis Terrovitis, Panagiotis Bouros, Panos Vassiliadis, Timos Sellis,

and Nikos Mamoulis. Efficient answering of set containment queries

for skewed item distributions. In EDBT, pages 225–236, 2011.

[THPP07] Yufei Tao, Vagelis Hristidis, Dimitris Papadias, and Yannis Papakon-

stantinou. Branch-and-bound processing of ranked queries. Informa-

tion Systems, 32(3):424–445, 2007.

[TPVS06] Manolis Terrovitis, Spyros Passas, Panos Vassiliadis, and Timos Sellis.

A combination of trie-trees and inverted files for the indexing of set-

valued attributes. In CIKM, pages 728–737, 2006.

[TXP07] Yufei Tao, Xiaokui Xiao, and Jian Pei. Efficient skyline and top-k

retrieval in subspaces. IEEE Transactions on Knowledge and Data

Engineering, 19(8), 2007.

[VCL10] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-

similarity joins using mapreduce. In SIGMOD, pages 495–506, 2010.

[VDKN10] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil

Nørv̊ag. Reverse top-k queries. In ICDE, pages 365–376, 2010.

BIBLIOGRAPHY 183

[VDNK10] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørv̊ag, and Yannis Ko-

tidis. Identifying the most influential data objects with reverse top-k

queries. In PVLDB, pages 364–372, 2010.

[VDNK13] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørv̊ag, and Yannis Ko-

tidis. Branch-and-bound algorithm for reverse top-k queries. In SIG-

MOD, pages 481–492, 2013.

[WCJ12] Dingming Wu, Gao Cong, and Christian S Jensen. A framework for

efficient spatial web object retrieval. VLDB Journal, 21(6):797–822,

2012.

[WCZL15] Shenlu Wang, Muhammad Aamir Cheema, Ying Zhang, and Xuemin

Lin. Selecting representative objects considering coverage and diver-

sity. In GeoRich, pages 31–38, 2015.

[WLF12] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix

filtering?: an adaptive framework for similarity join and search. In

SIGMOD, pages 85–96, 2012.

[WÖY+09] Raymond Chi-Wing Wong, M Tamer Özsu, Philip S Yu, Ada Wai-

Chee Fu, and Lian Liu. Efficient method for maximizing bichromatic

reverse nearest neighbor. pages 1126–1137, 2009.

[WQL+17] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang.

Leveraging set relations in exact set similarity join. In PVLDB, pages

925–936, 2017.

[WWI+09] Qian Wan, Raymond Chi-Wing Wong, Ihab F Ilyas, M Tamer Özsu,

and Yu Peng. Creating competitive products. In PVLDB, pages 898–

909, 2009.

184 BIBLIOGRAPHY

[WWP11] Qian Wan, Raymond Chi-Wing Wong, and Yu Peng. Finding top-k

profitable products. In ICDE, pages 1055–1066, 2011.

[WYJ13] Dingming Wu, Man Lung Yiu, and Christian S Jensen. Moving spatial

keyword queries: Formulation, methods, and analysis. ACM Trans-

actions on Database Systems (TODS), 38(1):7, 2013.

[WYJC11] Dingming Wu, Man Lung Yiu, Christian S Jensen, and Gao Cong.

Efficient continuously moving top-k spatial keyword query processing.

In ICDE, pages 541–552, 2011.

[XLXJ17] Xike Xie, Xin Lin, Jianliang Xu, and Christian S Jensen. Reverse

keyword-based location search. In ICDE, pages 375–386, 2017.

[XWLY08] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient

similarity joins for near duplicate detection. In WWW, pages 131–140,

2008.

[XZKD05] Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. On

computing top-t most influential spatial sites. In PVLDB, pages 946–

957, 2005.

[YAY12] Albert Yu, Pankaj K Agarwal, and Jun Yang. Processing a large

number of continuous preference top-k queries. In SIGMOD, pages

397–408, 2012.

[YDMV07] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis.

Top-k spatial preference queries. In ICDE, pages 1076–1085, 2007.

[YGM94] Tak W Yan and Héctor Garćıa-Molina. Index structures for selec-

tive dissemination of information under the boolean model. TODS,

19(2):332–364, 1994.

BIBLIOGRAPHY 185

[YYY+03] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Efficient

maintenance of materialized top-k views. In ICDE, pages 189–200,

2003.

[ZCM+09] Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, Anthony K. H.

Tung, and Masaru Kitsuregawa. Keyword search in spatial databases:

Towards searching by document. In ICDE, pages 688–699, 2009.

[ZCS+12] Xiaolong Zhang, Ke Chen, Lidan Shou, Gang Chen, Yuan Gao, and

Kian-Lee Tan. Efficient processing of probabilistic set-containment

queries on uncertain set-valued data. Information Sciences, 196:97–

117, 2012.

[ZCT14] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. Processing

spatial keyword query as a top-k aggregation query. In SIGIR, pages

355–364, 2014.

[ZGC+17] Jingwen Zhao, Yunjun Gao, Gang Chen, Christian S Jensen, Rui

Chen, and Deng Cai. Reverse top-k geo-social keyword queries in

road networks. In ICDE, pages 387–398, 2017.

[ZJK14] Zhao Zhang, Cheqing Jin, and Qiangqiang Kang. Reverse k-ranks

query. In PVLDB, pages 785–796, 2014.

[ZLG11] Jiaqi Zhai, Yin Lou, and Johannes Gehrke. Atlas: a probabilistic

algorithm for high dimensional similarity search. In SIGMOD, pages

997–1008, 2011.

[ZMP14] Jilian Zhang, Kyriakos Mouratidis, and HweeHwa Pang. Global im-

mutable region computation. In SIGMOD, pages 1151–1162, 2014.

186 BIBLIOGRAPHY

[ZMR98] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted

files versus signature files for text indexing. TODS, 23(4):453–490,

1998.

[ZNPM16] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. Lsh

ensemble: Internet scale domain search. In PVLDB, pages 1185–1196,

2016.

[ZSZ+15] Kai Zheng, Han Su, Bolong Zheng, Shuo Shang, Jiajie Xu, Jiajun

Liu, and Xiaofang Zhou. Interactive top-k spatial keyword queries. In

ICDE, pages 423–434, 2015.

[ZZZ+14] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, Xuemin Lin, Muham-

mad Aamir Cheema, and Xiaoyang Wang. Diversified spatial keyword

search on road networks. In EDBT, pages 367–378, 2014.

[ZZZL12] Liming Zhan, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Find-

ing top k most influential spatial facilities over uncertain objects. In

CIKM, 2012.

[ZZZL13] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. In-

verted linear quadtree: Efficient top k spatial keyword search. In

ICDE, pages 1706–1721, 2013.

[ZZZL16] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. In-

verted linear quadtree: Efficient top k spatial keyword search. IEEE

Transactions on Knowledge and Data Engineering, 28(7):1706–1721,

2016.

	Title page - Efficient Influence Related Queries
	Abstract
	Acknowledgements
	Table of Contents

	Chapter 1 - Introduction
	Chapter 2 - Related Work
	Chapter 3 - Influence based Cost Optimization on User Preference
	Chapter 4 - Categorical Top-k Spatial Influence Query
	Chapter 5 - Efficient Set Containment Join
	Chapter 6 - Final Remarks
	Bibliography

