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ABSTRACT

Climate models often exhibit spurious long-term changes independent of either internal variability or

changes to external forcing. Such changes, referred to as model ‘‘drift,’’ may distort the estimate of forced

change in transient climate simulations. The importance of drift is examined in comparison to historical trends

over recent decades in theCoupledModel Intercomparison Project (CMIP). Comparison based on a selection

of metrics suggests a significant overall reduction in the magnitude of drift from phase 3 of CMIP (CMIP3) to

phase 5 of CMIP (CMIP5). The direction of both ocean and atmospheric drift is systematically biased in some

models introducing statistically significant drift in globally averaged metrics. Nevertheless, for most models

globally averaged drift remains weak compared to the associated forced trends and is often smaller than the

difference between trends derived from different ensemblemembers or the error introduced by the aliasing of

natural variability. An exception to this is metrics that include the deep ocean (e.g., steric sea level) where

drift can dominate in forced simulations. In such circumstances drift must be corrected for using information

from concurrent control experiments. Many CMIP5 models now include ocean biogeochemistry. Like

physical models, biogeochemical models generally undergo long spinup integrations to minimize drift.

Nevertheless, based on a limited subset of models, it is found that drift is an important consideration andmust

be accounted for. For properties or regions where drift is important, the drift correction method must be

carefully considered. The use of a drift estimate based on the full control time series is recommended to

minimize the contamination of the drift estimate by internal variability.

1. Introduction

Model drift refers to spurious long-term changes in

general circulation models that are unrelated to either

changes in external forcing or internal low-frequency

variability. Drift can be caused by a number of factors.

For example, a simulation’s initial state may not be in

dynamical balance with the representation of physics

in the model; ‘‘coupling shock’’ may occur during the

coupling of model components resulting in discontinu-

ities in surface fluxes (e.g., Rahmstorf 1995) or numeri-

cal errors may exist in the model that mean that heat

or moisture is not fully conserved (e.g., Lucarini and

Ragone 2011; Liepert and Previdi 2012). In these cases,

a model may drift from its initial state toward a quasi-

steady state over some period of time (although in the

case of nonconserved heat or water a steady solution

may not be attainable). The time scale over which the

climate system adjusts will be determined by the time it
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takes for anomalies to be advected or mixed through

the ocean, which may be many thousands of years [e.g.,

Peacock and Maltrud (2006); the adjustment of the at-

mosphere and land surface is many orders of magnitude

faster]. Given the complexity and resolution of modern

climate models, spinup periods of thousands of years are

prohibitive given the available computational resources

and the requirement for numerous transient simulations

[e.g., as part of phase 5 of the Coupled Model Inter-

comparison Project (CMIP5); Taylor et al. (2012); see

the appendix for a complete list of model names and

expansions]. Instead, models are generally spun up for

a few hundred years (although multimillennium spinups

and complex multistage spinups are sometimes per-

formed; Table 1). As a result, externally forced climate

model experiments (e.g., where changes are made to

greenhouse gases, aerosols, ozone, or insolation) are un-

dertaken in models that are often not fully equilibrated

and may exhibit changes that are associated with the

adjustment process, in addition to any changes that are

directly related to external forcing or internal variability.

A primary use of climate models is to help us un-

derstand how and why changes in external forcing drive

changes to the climate system, both in the past (hind-

casts) or the future (projections). However, drift can

contaminate the externally forced signal, masking the

resulting climate change. It is therefore necessary to

understand how large drift is in comparison to any

forced signal, under what circumstances drift may be

neglected, andwhere drift cannot be neglected, how best

to correct for that drift.

The relative importance of drift has been recently

assessed by Sen Gupta et al. (2012, hereafter SG12)

for models from phase 3 of the Coupled Model Inter-

comparison Project (CMIP3) that were used to pro-

vide projections for the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report

(Solomon et al. 2007) and prior to that by Covey et al.

(2006) for the suite of models from phase 21 of the

Coupled Model Intercomparison Project (CMIP21).

Here, we extend this work to examine the selected

models taking part in the latest CMIP5 intercomparison

that will be used to inform the IPCC Fifth Assessment

Report. We assess to what extent, and where, drift

continues to be important in these latest model runs.

SG12 put forward some general conclusions with re-

gard to the CMIP3 suite of models. These include:

d Drift shows little systematic directional bias either

from region to region or from model to model. As

a result, drift generally becomes less important (com-

pared to any forced trend) for larger regions or when

considering averages across multiple models.

d Given that drift affects the full ocean, while forced

changes, at least over the historical period, are usually

confined to the upper few hundred meters (except in

high-latitude regions), drift generally dominates any

forced signal below 1–2 km. As such, any examination

of subsurface changes or depth-integrated changes

(e.g., steric sea level) must pay particular attention

to drift and themethod used for the correction of drift.

SG12 gave examples of drift correction reversing the

sign of both regional and globally averaged steric sea

level rise.
d Even though the adjustment time scale of the atmo-

sphere is fast, as the ocean is coupled to the atmosphere,

if surface ocean properties drift then atmospheric

properties will also drift.

The aim of this study is to document the scale of drift in

a selection of physical and biogeochemical properties

and provide advice on under what circumstances it is

important to correct for drift and under what circum-

stances drift can be neglected.

2. Method

In our examination of climate drift we use output from

the CMIP5 (Taylor et al. 2012) and CMIP3 (Meehl et al.

2007) initiatives of the World Climate Research Pro-

gramme to bring together output from an unprecedented

array of climate and Earth system models (ESMs).

To assess the importance of model drift with respect

to forced trends in the CMIP5 models, we examine

the period 1945–2005 from the historical simulations

(which are generally forced by historical observations of

greenhouse gases, aerosols, ozone, and insolation). The

1945–2005 period is chosen as it is primarily over the

latter half of the twentieth century that a forced signal

has become distinguishable from multidecadal- to

centennial-scale climate variability (e.g., Hegerl et al.

1996). We use a longer period than SG12 (who exam-

ined 1950–2000) as the CMIP5 historical simulations are

integrated to at least 2005 (as opposed to 2000 for

CMIP3), and by using the longer period the error asso-

ciated with the aliasing of internal variability in the

calculation of trends is reduced.

The drift corresponding to this historical period is

estimated using a number of different methods.

d The ‘‘150-yr linear drift’’ uses a 150-yr linear trend

(1900–2050) bracketing the historical (1945–2005)

period. We also examine a shorter 100-yr period. This

method was used in SG12 and in other studies (e.g.,

Downes et al. 2010; Sen Gupta et al. 2009).
d The ‘‘quadratic or cubic drift’’ uses a quadratic or

cubic polynomial fit to the full available control time
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series. Cubic or quadratic drift curves have been used

to remove drift in previous studies examining sea level

change (e.g., Gregory et al. 2001, 2006; Ammann et al.

2007; Gleckler et al. 2012). The effective drift corre-

sponding to the 1945–2005 period is the linear trend of

the quadratic or cubic curve over this period.
d The ‘‘full linear drift’’ uses a linear trend based on the

entire available control time series (e.g., Wang 2013).

The drift estimated using one of the above methods

can be subtracted from the 1945–2005 historical trend to

obtain an estimate of the true forced response. This

method assumes that the drift component that is present

in the preindustrial control remains relatively unmodified

in the associated transient simulation.

Simulated forced trends usually become stronger in

the future (as a result of increased greenhouse forcing),

TABLE 1. Available information on model spinup. See appendix for complete expansions of model names.

Model Spinup information Reference

ACCESS1.0 — Bureau of Meteorology (2010)

BCC-CSM1.1 The initial condition is derived from a 200-yr control run with

external forcings fixed at 1850.

http://q.cmip5.ceda.ac.uk/

CanESM2 — Chylek et al. (2011)

CCSM4 After coupling, model integrated for few 100 yr with adjustments

made to sea ice albedo and relative humidity threshold to

achieve radiative balance at the top of atmosphere. Model

was then spunup for a further few 100 yr followedby.1000-yr

control simulation.

Gent et al. (2011)

CNRM-CM5 The 200-yr coupled spinup simulation from World Ocean

Database 2005 ocean state at rest. Ten historical ensemble

simulations were initialized at 50-yr intervals after the spinup

(as such the last ensemble had the equivalent of a 700-yr

spinup).

Voldoire et al. (2013)

CSIRO Mk3.6.0 The 260-yr spinup run to allow the model to equilibrate after

the inclusion of a new interactive aerosol scheme from previous

model version (Mk3.5.0).

Rotstayn et al. (2010, 2012)

EC-EARTH — Hazeleger et al. (2010)

GFDL-CM3 Coupled spinup of ;2000 yr. S. Griffies (2011, personal communication);

Donner et al. (2011)

GFDL-ESM2G Started from year 1601 of a spinup run. http://q.cmip5.ceda.ac.uk/

GFDL-ESM2M Started from year 2401 of a spinup run. http://q.cmip5.ceda.ac.uk/

GISS-E2-H — Schmidt et al. (2006)

GISS-E2-R — Schmidt et al. (2006)

HadGEM2-CC Ocean model initialized from earlier model version and

integrated for 400 yr. Coupled spinup length not specified.

Martin et al. (2011); Collins et al. (2011)

HadGEM2-ES

INM-CM4.0 Initial condition for control obtained as final point of long run

(;200 yr) with preindustrial conditions.

http://q.cmip5.ceda.ac.uk; Volodin et al. (2010)

IPSL-CM5A-LR Four stages: (i) 2500-yr spinup of ocean (without carbon cycle),

(ii) 600-yr spinup with carbon cycle, (iii) few thousand

years off line spinup of ocean and land carbon cycle models

(using output from 600-yr spinup above) to equilibrate

biogeochemistry, and (iv) 400-yr fully coupled.

Dufresne et al. (2013)

MIROC-ESM Multistage spinup using coupled and standalone models for

a few thousand years followed by 180-yr coupled spinup in

low-resolution model version, followed by 100-yr online

spinup of full-resolution model.

Watanabe et al. (2011)

MIROC-ESM-CHEM Offline integration of atmospheric chemistry model for;40 yr.

Chemistry spinup was coupled to MIROC-ESM at year 20 of

piControl and integrated for 4 yr to reach equilibrium.

Watanabe et al. (2011)

MIROC5 Ocean and atmosphere spun up independently (530 yr for

ocean). Followed by coupled spinup of ;1000 yr (while

parameter values tuned to achieve a realistic climate).

Watanabe et al. (2010)

MPI-ESM-LR — Raddatz et al. (2007)

MPI-ESM-P — Raddatz et al. (2007)

MRI-CGCM3 — Yukimoto et al. (2011)

NorESM1-M Model spinup of 700 yr with 1850 forcing conditions, from

prescribed initial conditions.

http://q.cmip5.ceda.ac.uk/
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while drift might be expected to diminish (moving closer

toward equilibration; although we demonstrate below

that this may not necessarily be the case). As such, our

analysis represents a worst-case limit for the importance

of drift relative to the forced signal; the importance of

drift will generally be reduced when considering climate

projections resulting from the presence of much larger

magnitude forced changes.

Historical and control data were annually averaged

prior calculating linear trends or other least squares fits.

Metadata information (including the historical simula-

tion branch time) was used to temporally align the

control simulation to the historical simulations for all

ensemble members. Multimodel means or medians are

calculated by first averaging across ensemble members

(where available) for individual models and then aver-

aging across ensemble means. The significance of linear

trends are tested using a Student’s t test (at 90% level)

where the degrees of freedom are adjusted to account

for lag-1 autocorrelation (Santer et al. 2000 and refer-

ences therein). We note however that the estimation of

statistical significance may be inflated by the presence of

long-term persistence (e.g., Cohn and Lins 2005). Model

variable and ensemble information is provided in Table 2

with tracking information for model, variable, and en-

semble combinations provided in Table S1 of the sup-

plemental material.

There is a large spread in the length of the control time

series made available by the different modeling groups,

ranging from 100 years for the high-resolution

MIROC4h model to over 1000 years. The median avail-

able control simulation length has increased from 375

years for CMIP3 (based on 22 models) to 500 years for

CMIP5 (based on 30 models). A simulation length of 500

years (after a suitable spinup period) is the minimum

recommended control simulation length for inclusion in

CMIP5 (Taylor et al. 2012). The length of the spinup

period also varies substantially across the models (see

discussion).

3. Results

a. Sea surface temperature

Figure 1a shows the temporal evolution of globally

averaged SST for preindustrial control simulations, fil-

tered using a cubic polynomial. It is clear that for SST

the low-frequency evolution is generally nonlinear. In

some models (e.g., MIROC5 or CNRM-CM3), it would

seem that the rate of change is decreasing with time, as

we might expect for a model moving toward a steady

state. However, this is not the case for many models,

some of which exhibit an increasing rate of change over

time (e.g., GFDL-CM3), while others showmore complex

behavior. Figures 2a–c show examples of annually av-

eraged SST control time series for three models that

have accelerating, decelerating, and an oscillatory rate

of change over the duration of the control. Similar to

the problem of separating externally forced trends

from internal climate variability either in observations

or transient climate simulations, it is not possible to

categorically determine what component of the control

simulation evolution is drift (and so would be coherent

across coincident portions of forced simulations ini-

tialized from the control run) and what part is internal

variability (and so would not be coherent in coincident

forced simulations). In principle, it should be possible to

separate drift from internal variability with a perturbed

initial state ensemble of control runs (in the same way

historical simulation ensembles are used to isolate forced

trends from internal variability); however, such ensembles

TABLE 2. Number of historical ensemble members used for each

model variable [sea surface temperature (Tos), steric sea level

(Zossga), precipitation (Pr), sea ice concentration (Sic), IntDIC, and

O2] and length of available piControl simulation (right column).

Only a single ensemble member is available for each piControl

simulation.

Model Tos Zossga Pr Sic IntDIC O2

piControl

length (yr)

ACCESS1.0 1 1 1 1 500

BCC-CSM1.1 3 3 3 400

BCC-CSM1.1(m) 3 500

CCSM4 4 5 6 501

CMCC-CM 1 500

CMCC-CMS 1 330

CNRM-CM5 10 7 10 10 850

CSIRO Mk3.6.0 10 10 10 500

CanESM2 5 5 5 1 996

EC-EARTH 10 451

GFDL-CM3 1 5 5 500

GFDL-ESM2G 1 3 500

GFDL-ESM2M 1 1 500

GISS-E2-H 5 5 1 480

GISS-E2-R 10 4 1 849

HadGEM2-CC 1 1 4 1 240

HadGEM2-ES 2 4 1 1 1 576

INM-CM4.0 1 1 1 500

IPSL-CM5A-LR 4 6 4 2 1 1 1000

IPSL-CM5A-MR 3 300

MIROC-ESM 3 3 1 255

MIROC-ESM-

CHEM

1 1 531

MIROC4h 3 1 1 100

MIROC5 3 5 3 1 670

MPI-ESM-LR 3 3 1 1000

MPI-ESM-MR 3 1000

MPI-ESM-P 2 2 1156

MRI-CGCM3 3 3 3 1 500

NorESM1-M 3 3 3 3 252

NorESM1-ME 1 1 1 501
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are not available for CMIP5 and are probably impractical

to achieve.

A comparison of the control and historical integra-

tions for the Institute of Atmospheric Physics (IAP)

model fromCMIP3, for example (Fig. 2c), might suggest

that the initial downward trend followed by a weaker

upward trend evident in the first 150 years of the control

simulation may also form part of the transient response

in the historical simulation. However, this similaritymay

simply be coincidental, and the low-frequency changes

in the control simulation may just be internal variability

that is not coherent across the historical simulation.

Understanding the temporal evolution of the drift is

important as the assumed structure can make a large

difference when adjusting for drift. Figures 2d–f show

the size of the estimated drift correction that would be

associated with a concurrent 60-yr period of forced

simulation (for different periods along the control time

series) based on the 100-yr linear, 150-yr linear, qua-

dratic, cubic, and full control linear drift estimation

techniques (see methods). Similar correction techniques

to these have been used in previous studies. In general,

FIG. 1. (a) Cubic polynomial fit to globally averaged SST control time series for CMIP3 (black) and CMIP5 (red),

relative to start point; (b) associated CMIP5 1945–2005 historical simulation trend vs associated drift estimate (using

cubic drift estimate); (c) annually averaged steric sea level control time series for CMIP5 models, relative to start

point; and (d) associated CMIP5 1945–2005 historical simulation trend vs associated drift estimate (using cubic fit).

Ensemble members are shown in same color. The asterisk next to a model indicates the models for which the full

linear drift estimation is not significant at 90% level (all linear drifts are significant for sea level).
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the methods listed above exhibit higher-to-lower tem-

poral variability. Based on the GFDL model, for ex-

ample (Fig. 2d), the full control linear drift estimate

would result in an approximate 0.045K (50yr)21 reduc-

tion of a historical or projection simulation trend (irre-

spective of the time period under consideration), whereas

the 100-yr linear drift estimate would result in a correc-

tion anywhere from an approximate 0.05K (50 yr)21

increase to an approximate 0.175K (50 yr)21 decrease

in the forced simulation trend, depending on the time

period. To put this into context, the 1945–2005 histor-

ical simulation trend for this GFDL model is approxi-

mately 0.16K (50 yr)21. Without knowing the structure

of the drift we cannot say which of these drift estima-

tion methods is more valid.

Based on linear trends through the full globally av-

eraged SST control time series, 15 of the 22 models have

statistically significant drifts (at a 90% level, where lag-1

autocorrelation has been accounted for). Despite this,

the importance of drift is relatively small for most

FIG. 2. (a)–(c) Annual averaged SST from preindustrial control for selected models [(c) also shows historical SST]. Superimposed are

linear trend, cubic fit, and 150-yr filtered time series. (d)–(f) Moving trends based on linear (black solid), quadratic (gray solid), and cubic

(black dashed) fits, and 100- (thick black dashed) and 150-yr (thick gray dashed) moving averages for corresponding models. Dark gray

circles indicate year 1975 for historical simulation ensemble members. (g)–(i) Annual averaged steric sea level from control and historical

simulations for selectedmodels, cubic fit superimposed. (j)–(l)Moving trends based on linear, quadratic, and cubic fits and 100- and 150-yr

moving averages for corresponding models.
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models. Figure 1b shows the percentage error associated

with drift for the 1945–2005 historical simulation trends.

Given the very low-frequency variability inherent in the

SST control time series (Fig. 1a), we have chosen to use

a cubic drift estimate. For most models the estimated

drift makes up less than 10% of the historical trend.

Moreover, for models with multiple ensemble members

the drift is generally considerably smaller than the

spread in historical trends across the members. In a few

models/ensemble members the drift is more important,

although this also relates to the relatively weak his-

torical trends in these models. For example, in the

ACCESS1.0 model drift accounts for over 30% of

the historical trend (based on a cubic drift estimate).

Similar results are found if a full linear drift estimate

were used instead of a cubic estimate (figure not

shown), although the details for individual models do

change (e.g., drift importance reduces to about 20%

for ACCESS1.0, while that for GFDL-CM3 increases

to about 25%).

Figure 3 shows spatially resolved SST drift estimates

for GFDL-CM3, which has a relatively large globally

averaged SST drift andCCSM4whose globally averaged

drift is relatively weak (Fig. 1b). Using the 150-yr linear

trend as the drift proxy, we find that both models have

regions of strong drift. Using the longer-term (cubic and

FIG. 3. SST drift in the preindustrial control [8C (100 yr)21; 1945–2005] estimated using

(a),(b) 150-yr linear trend (1900–2050); (c),(d) cubic fit to full control time series; (e),(f) linear

trend over full control time series; and (g)–(j) annual time series, cubic fit, linear 150-yr, and full

time series fit for selected regions (indicated by circles on maps) for (left) GFDL-CM3 and

(right) CCSM4. Mottling indicates regions of significant trend (90% level) using a t test using

effective degrees of freedom estimated from the time series lag-1 autocorrelation (following

Mitchell et al. 1966).
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full linear) estimates we see that the GFDL-CM3 drift

remains large in many regions while it becomes much

weaker in the CCSM4, suggesting that even when using

a relatively long 150-yr window to calculate drift, large

values exist as a result of the aliasing of internal vari-

ability. This is clearly seen in Figs. 3d–f, which show

gridpoint drift time series at different locations. At some

locations the sign of the drift estimate is reversed when

using different drift methods. While drift may indeed

contain centennial-scale variability, we would suggest

that avoiding the often large trends associated with in-

ternal variability aliasing is desirable. The full time se-

ries metrics are a more conservative choice that is less

likely to be contaminated by internal variability not as-

sociated with the drift and is probably a safer choice,

particularly at local scales where internal variability will

be large.

A comparison of CMIP3 and CMIP5 full linear drift

estimates suggests a significant reduction in the magni-

tude of SST drift. The multimodel mean of globally

averaged SST drift magnitudes (i.e., the absolute value is

taken after globally averaging the local drift) for CMIP5

is 0.028C (100 yr)21 compared to 0.068C (100 yr)21 for

CMIP3. Alternatively, by taking the absolute value of

the drift at each grid cell prior to globally averaging and

taking a multimodel mean, we have a measure of the

typical strength of local drift. In this case, the multimodel

mean has reduced from 0.098C (100yr)21 for CMIP3 to

0.028C (100 yr)21 for CMIP5. This improvement is clear

from Fig. 4 that shows the area-weighted frequency dis-

tribution of SST drift values for CMIP3 and CMIP5. It

is also evident that while many of the distributions are

centered around zero (i.e., there is no systematic drift

direction from one location to another), many models do

have an SST drift that is biased toward warming or

cooling. Indeed, it is the models that have large areas of

consistent drift direction that have the largest globally

averaged drift magnitudes. Across different models pos-

itive and negative biases tend to cancel out and conse-

quently the effect of drift on the multimodel mean

becomes negligible.

While the direction of drift tends to be nonsystematic

across different models, there appear to be common

regions where the magnitude of drift is larger or smaller.

Figure 5 shows the multimodel mean drift magnitude

(i.e., the absolute value of the local drift is taken prior

to averaging across models). Previous studies (e.g.,

Rahmstorf 1995; Cai and Chu 1996; Cai and Gordon

1999) have noted that drift in ocean temperatures are

often relatively large in the region of vigorous convec-

tive mixing in the Southern Ocean and North Atlantic.

These convective regions are sensitive to small changes

in the vertical density structure of the ocean. As a result

drift related changes can become large in these regions.

Consistent with the CMIP3 (see SG12), we find that for

the CMIP5 models the relative importance of SST drift

is smallest in the tropics with the strongest drift magni-

tudes in the North Atlantic and Pacific and throughout

the Southern Ocean. In the Northern Hemisphere,

the drift-to-trend ratio (not shown) is largest between

408 and 608N because of enhanced drift magnitudes.

In the Southern Hemisphere, drift is particularly im-

portant south of about 508S because of both the en-

hancedmidlatitude drift magnitudes and relatively weak

forced trends. Projections suggest that warming of the

Southern Ocean will remain small over the twenty-first

century, compared to the global-mean warming, with no

significant warming in some regions (Sen Gupta et al.

FIG. 4. Area-weighted probability distribution function of local

SST drift (based on full linear drift estimate; 8Ccentury21; normalized

by maximum value) for CMIP5 and CMIP3 preindustrial controls.
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2009). Drift is therefore likely to remain an important

consideration for this region. The 150-yr CMIP5 drift

estimates shown in Fig. 5b can be compared to Fig. 4b of

SG12 for CMIP3. Again it is apparent that in most re-

gions the magnitude of drift is considerably reduced

in the new generation of models. While local drift

magnitudes based on the full linear method (Fig. 5d) are

considerably weaker compared to the 150-yr linear

method (Fig. 5b), the longer time period used to calcu-

late the trends means that a much larger surface area

shows statistically significant drift, particularly in those

regions of high drift magnitudes, as described above.

b. Precipitation

A strong relationship exists between full linear drift in

globally averaged SST and precipitation across the

models (Fig. 6a), which suggest that atmospheric drift

can be largely explained by long-term change in SST.

The majority of models have a globally averaged drift

magnitude that is less than 10% of the historical trend

(Fig. 7). Although the MIROC4h model has the largest

drift, it is not statistically significant as the available

control is only 100 years in duration. The largest drift

associated error (where both drift and trend are signifi-

cant) is associated with the two MIROC-ESM models,

where the drift makes up over 30% of the historical

trend.

Figures 5f–h show the multimodel mean local drift

magnitudes for precipitation. As with SST, drift esti-

mates are usually considerably reduced using the full

control methods and in particular the linear estimate. As

noted by SG12 for the CMIP3 models, drift magnitudes

FIG. 5. (a)Multimodel mean 1945–2005 SST trend and correspondingmultimodelmean local drift magnitude using

(b) 150-yr linear trend, (c) full time series cubic fit, and (d) full time series linear fit. (e)–(h) As in (a)–(d), but for

precipitation. Mottling indicates regions where (a),(b),(d) 50% or (e),(f),(h) 33% of the models have significant

trends (at 90% level).
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tend to be largest at low latitudes, in regions of high pre-

cipitation variability. This is also the case for the CMIP5

models.Despite this, the drift estimates at low latitudes are

usually not significant. As with SST, statistically significant

drift ismost likely in theNorthAtlantic and PacificOceans

and throughout the Southern Ocean. Moreover, pre-

cipitation drift is rarely significant over land areas. This is

again consistent with the idea that the precipitation drift is

primarily a forced response to drift in SST.

c. Steric sea level

For the CMIP3 models, SG12 showed that subsurface

drift in temperature and salinity below about 1–2 km

generally dominates over any forced changes at these

depths. As a consequence drift may constitute a large

component of historical simulation trends in the deep

ocean or in depth-integrated properties such as ocean

heat content or steric sea level. While data availability

FIG. 6. Globally averaged SST drift vs (a) globally averaged precipitation drift and (b) Antarctic sea ice area drift (all

using full linear drift estimates). Dashed line indicates the line of best fit.

FIG. 7. Full linear drift vs 1945–2005 trend for precipitation. In brackets next to the model

names, t denotes a significant multiensemble-mean historical trend, and d denotes a significant

full linear drift.
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constraints have precluded the examination here of

three-dimensional temperature and salinity fields for

CMIP5, we examine the globally averaged steric sea

level that integrates the effect of subsurface temperature

and salinity changes.

Figure 1d shows the historical trend and drift in-

formation (based on a cubic fit) for steric sea level. All

but 7 of the 24 available models (ensemble means) have

globally averaged drift that exceeds 20% of the histori-

cal trend, and 5models exceed 60%.Wewould note that

because of the large effect of drift on this variable, it is

routinely removed during the calculation of forced

trends (e.g., Solomon et al. 2007). The two MIROC-

ESM models have the largest overall drift magnitudes

that spuriously inflate steric sea level increases by over

1mmyr21. Unlike the globally averaged surface metrics

described above, the error introduced by drift is for most

models larger than the spread in historical trends from

different ensemble members. Based on full linear drift

estimates, all models except for the IPSL-CM5A-MR

have statistically significant drift.

As with the other metrics examined above, there ap-

pears to be a substantial overall reduction in the size of

drift in steric sea level in CMIP5 as compared to CMIP3.

Based on a linear trend over the full preindustrial control

period, the mean or median magnitude of the globally

averaged drift is almost twice as large for CMIP3 com-

pared to CMIP5, with the multimodel mean drifts sig-

nificantly different at the 90% level. The median drift

magnitude for CMIP5 is approximately 2.5 cmcentury21

and forCMIP3 is approximately 4 cmcentury21, although

the maximum drift magnitude is about 10 cmcentury21

for both CMIP3 and CMIP5 models.

The temporal evolution of globally averaged steric

sea level is much more linear than for SST, and the

variability about the long-term trend is much smaller

(Figs. 1c and 2g,h,i). As such, for most models different

drift estimation methods result in quite similar drift

estimates (e.g., Fig. 2j). This is not always true however.

For the MIROC5 model, for example (Figs. 2h,k), drift

becomes weaker over the course of the 700-yr control

simulation. Consequently, a correction based on a linear

fit to the full control time series would not be appro-

priate, while a quadratic or cubic drift correction would

probably bemore suitable. For theMRI-CGCM3model

(Figs. 2i,l), it is not obvious what the most appropriate

correction method would be (i.e., what is drift and what is

internal variability). Even cubic and quadratic methods

would result in quite large drift estimate differences over

some periods. As steric sea level rise is approximately

proportional to the global ocean heat content, the quasi-

linear drift inmost models could also come about through

a nearly constant energy leak. Indeed, significant spurious

nontransient energy imbalances have been identified in

the various model components for the CMIP3 models

(Lucarini and Ragone 2011).

d. Sea ice

Previous studies (e.g., Cai and Gordon 1999) have

noted significant drift in sea ice. Here, we examine the

Antarctic sea ice area, where historical trends in models

and observations are weaker than in the Arctic and as

such drift may be a more important source of error.

Historical trends for sea ice area around Antarctica

for 15 models are presented in Fig. 8a. Most model/

ensembles indicate a large-scale reduction in sea ice area

FIG. 8. (a) Full linear drift and 1945–2005 trend for Antarctic sea ice maximum (for the 3-month period of largest

sea ice area). Circle indicates multiensemble mean and lines indicate the range across all ensemble members. In

brackets next to themodel names, t denotes a significant multiensemble-mean trend, and d denotes a significant drift.

(b) As in (a), but for 308 longitudinal segments around Antarctica. Region/model points are only shown where both

the trend and the drift is statistically significant (;40% of all regions/model combinations).
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over the 1945–2005 period, consistent with results from

CMIP3 (Arzel et al. 2006). Only two ensemble members

of the GFDL-CM3 model have nonsignificant increases

in area, related to the large multidecadal variability in-

herent in the different ensemble members. Unlike

the models, observations of Antarctic sea ice indicate a

small increase over the satellite era (Comiso and Nishio

2008; Parkinson and Cavalieri 2012). Given the limited

length of the observational record (;30 yr) and the large

natural variability inherent across models with multiple

ensemble members (even for the longer 60-yr window

used in our analysis), it seems plausible that the ob-

served sea ice reduction may be a consequence of nat-

ural variability rather than a forced change.

For many models, drift (calculated as a linear trend

over the full control) makes up less than 10% of the

historical trends. This ratio is high (.;40%) for the

GFDL-CM3 and MRI-CGCM3 models; however, while

the drift is statistically significant, the trend over the

60-yr historical period is not. Only the MIROC-ESM

model has a drift-to-trend ratio that exceeds 20% when

both trend and drift are statistically significant. For the

models for which there are multiple historical ensemble

members, the drift magnitudes are again smaller than

the spread in historical trends across the ensemble

members. For example, the GFDL-CM3 has a relatively

large linear drift [about 24 3 105 km2 (50 yr)21]; how-

ever, the trends in the various historical ensemble

members range over approximately 40 3 105 km2

(50 yr)21 [from about 23.6 3 106 to about 7 3 105 km2

(50 yr)21]. That is, the differences in trend related to

internal decadal variability are larger than the error in-

troduced by drift (at least for the subset of models ex-

amined here). As with globally averaged SST, some

models show high levels of low-frequency variability in

the control simulations. These models are particularly

sensitive to the drift estimation method. For example,

the ensemble-mean GFDL-CM3 cubic drift estimate for

the 1945–2005 period is almost half that calculated using

a full linear drift, while for MIROC-ESM, which has

weak low-frequency variability, the drift estimates are

very similar.

The trends around Antarctica show regions of both

decreasing and increasing ice area. Figure 8b examines

trends and associated drifts for twelve 308 longitudinal
segments around the poles (based on ensemble means

where available). Only regions for which both the his-

torical trend and the drift are statistically significant are

shown: approximately 40% of regional segments across

the models. Of these, only four models have drift-to-

trend ratios that exceed 30% for a limited number of

regions (between 1 and 3 out of 12) around Antarctica.

In summary, while there is statistically significant

drift in many regions, it only makes up a relatively small

component of the forced trend in those regions where

the historical trends are discernible.

e. Biogeochemistry

Anumber of ESMs that incorporate interactive ocean

biogeochemistry have been included in CMIP5 (Taylor

et al. 2012). The ocean biogeochemistry also has its own

long time-scale processes. At the time of retrieval, only

a small subset of models have archived biogeochemical

properties. To illustrate the possible importance of

drift, we examine two biogeochemical variables: depth-

integrated dissolved inorganic carbon (IntDIC) and

dissolved oxygen (O2).

As anthropogenic CO2 levels increase in the atmo-

sphere, a large proportion of that CO2 is absorbed by the

ocean (Sabine et al. 1999) forming various species of

dissolved inorganic carbon (DIC). DIC is transported

into the ocean interior via both physical processes (re-

lated to vertical mixing, subduction, and advection by

ocean circulation) and biological processes (export

production in the upper ocean and subsequent re-

mineralization of sinking organic material in the deeper

ocean). As the ocean plays such a large role in the global

carbon cycle, small changes in the uptake of CO2 by the

ocean could substantially affect the rate of future

warming. Although still a matter of contention, there is

some evidence that the rate of uptake by the ocean may

have decreased over recent years (Le Quere et al. 2007,

2008; Law et al. 2008). To investigate thesematters using

climate models, it will be necessary to not only identify

trends but also changes in trends over time.

Figure 9 shows globally averaged trend and drift for

depth-integrated DIC. For all six models shown (Fig.

9d), both the globally averaged historical trends and the

drift are highly significant. Despite this, the drift usually

makes up less than 20% of the historical trend magni-

tude. The largest globally averaged drift-to-trend ratio is

for the IPSL-CM5A-LR model at about 23%. It is in-

teresting to note that the latter model does not have

significant global drift for any of the physical properties

discussed above, which suggests that the biogeochemical

drift can occur independently of changes in the physical

environment and that the equilibrium time scales of the

physical and biogeochemical model components can be

very different. Figures 9a–c show the trend, drift, and

spatially resolved drift-to-trend ratio for this model for

illustrative purposes (the associated drift and drift-to-

trend ratio are different for other models). The trend in

integrated DIC shows large uptake in well-ventilated

regions of the North Atlantic and Southern Ocean. This

is similar to the pattern of observed accumulation of

anthropogenic CO2 [e.g., Sabine et al. (2004); although
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this does not include the effect of possible changes in

natural DIC]; although uptake rates in the North At-

lantic in particular appear to be underestimated in the

model. It is clear that regionally the importance of drift

can be larger than for the global average. This is most

evident where the historical trends are relatively weak.

In these regions, drift can make up a substantial fraction

of the historical trend. For two of the six models, the

Pacific basin-averaged drift makes up about 50% or

more of the forced trend (Fig. 9d; although in the case of

GFDL-ESM2M the historical trend is not significant).

There has been considerable interest in recent

changes to subsurface oxygen concentrations and the

spatial extent of low oxygen regions in the tropical

oceans (Stramma et al. 2008; Keeling et al. 2010; Helm

et al. 2011), and we briefly examine this metric here for

two models. Figures 10a and 10f show the evolution of

globally averaged dissolved oxygen by depth, relative to

the first year of the historical simulation in two models.

For both these models there is a strong reduction in

subsurface oxygen concentration over the course of the

historical period. Examination of the control simulation

evolution, where both linear (Figs. 10b,g) and cubic

(Figs. 10d,i) smoothing has been applied, clearly shows

that the subsurface historical simulation changes are

spurious and are not driven by changes in external

forcing. Indeed, historical changes in other models (not

shown) do not in general exhibit a similar subsurface

reduction. Figures 10c and 10h and Figs. 10e and 10j

show the drift-corrected evolution based on full linear

and cubic methods, respectively. Correcting for drift in

both models substantively changes the signal. While the

HadGEM2 model is relatively insensitive to the drift

correction method, the IPSLmodel shows very different

corrected forced responses depending on the correction

method.

4. Discussion

Model drift is still a problem for many climate models

when computational resources are limited. Climate

models may take thousands of model years to reach

equilibrium, beyond practical integration times at many

institutes, or they may have chronic problems related

to energy or moisture not being fully conserved (e.g.,

Liepert and Previdi 2012; Lucarini and Ragone 2011).

Liepert and Previdi (2012), for example, found that

imbalances in the moisture balance in some CMIP3

models caused spurious latent heating or cooling of the

atmosphere leading to net energy imbalances with mag-

nitudes of a few watts per square meter that changes over

time. Drift exists not only during spinup simulations but

FIG. 9. (a) The 1945–2005 trend in IntDIC, (b) associated drift calculated using linear trend over full control period

[mottling in (a) and (b) signifies trends are significant at 90% level], (c) drift-to-trend ratio (%) in regions where the

historical trend is significant, and (d) scatterplot of global average (circles), Pacific basin average (diamonds), and

Atlantic basin (crosses) drift vs trend for six models.
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persists in forced climate change simulations. When

trying to isolate forced trends, it is important to know

how large drift is to determine when drift can be safely

ignored and when it must be corrected for. Here, we

have examined the drift in a variety of variables using

both global and local metrics. We have also examined

the differences in selected drift metrics in moving from

CMIP3 to CMIP5. By examining the historical period,

we are looking at a worst-case scenario for the impor-

tance of drift. The importance of drift relative to pro-

jected trends is likely to be considerably smaller as the

external forcing is much larger for representative

concentration pathway (RCP) simulations compared

to historical simulations. As a result, drift should be

carefully considered in detection and attribution stud-

ies of past climate change, for example.

FIG. 10. Evolution of globally averaged O2 at different depth levels over time for the IPSL-CM5A-LR model

(a) historical simulation, (b) control simulation (with linear filtering over full length of the control simulation), (c) drift-

corrected concentrations [see (a),(b)], (d) control simulation (with cubic filtering over full length of the control sim-

ulation), and (e) drift-corrected concentrations [see (a)–(d)]. (f)–(j) As in (a)–(e), but for the HadGEM2-ES model.
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Based on SST, precipitation, and steric sea level, there

is a clear overall reduction in the magnitude of drift

in the newer generation of models. In particular, for

globally averaged steric sea level, which integrates the

drift throughout the ocean, the average size of drift in

CMIP5 is about half of that in CMIP3, although there

are still a few outlier models with high drift magnitudes.

For somemodels this improvement may in part relate to

longer spinup periods. For example all four of the

GFDL climate models were spun up in a coupled con-

figuration for around 2000 yr (S. Griffies 2012, personal

communication) compared to around 300 yr for the

CMIP3 GFDL models. Similarly the new generation

of CCCma models were spun up for around 800 yr

(O. Saenko 2012, personal communication) compared

to ,250 yr for the previous generation models. Un-

fortunately, information regardingmodel spinup is often

not easily available for many of the models (see Table 1).

As such making a quantitative comparison of spinup

times between CMIP3 and CMIP5 is not possible. For

future assessment it would be useful for model de-

velopers to provide more detailed spinup information

as part of their model descriptions, preferably collated

at a central repository [e.g., at the Program for Climate

Model Diagnosis and Intercomparison (PCMDI)] as

was done for CMIP3. The reduced drift may also result

from improved representation of physical parameteriza-

tions (e.g., cloud microphysics) and numerical schemes

(e.g., advection or diffusion) and/or higher horizontal and

vertical resolution (see references in Table 1 for in-

dividual model developments). Knutti and Sedlacek

(2013) suggest that greater computational resources

have been expended on more complete representation

of physical and chemical processes than on spatial reso-

lution.However, despite the inclusion of more climate

processes underpinned by improved physical un-

derstanding, the spread in the mean climate state

across the CMIP5 simulations have not reduced and

many of the biases inherent in CMIP3 persist.

For the surface properties examined here, the di-

rection of drift is often spatially coherent over large

regions and across ensemble members of a given model.

Consequently, globally averaged drift will often be sta-

tistically significant. However, while significant the im-

portance of drift tends to be relatively small. In particular,

the drift in the globally averaged surface properties con-

sidered here was in most instances smaller than the dif-

ferences in historical simulation trends calculated from

different ensemble members of a particular model. That

is, errors in the calculation of forced trends resulting from

the aliasing of natural variability (at least for the 60-yr

time period assessed here) are greater than the errors

introduced by drift and as a result the use of multiple

ensemble members to calculate trends provides greater

benefit than applying a drift correction. The direction of

drift across different models does not appear systematic

across models for the variables considered. Therefore, the

problem of drift is often negligible when considering

multimodel means. For example, despite the large posi-

tive drifts in steric sea level (particularly for the MIROC

models), the multimodel mean drift is still not statistically

different from zero. By averaging across multiple models,

drift (like internal variability) is substantially reduced. For

SST the multimodel mean historical and drift-corrected

trends are practically identical.

There is a clear relationship between SST drift and

both precipitation and Antarctic sea ice area drift. It

appears that slow changes in the ocean manifest as drift

in the atmosphere and cryosphere. Moreover, the re-

gions where drift is significant tend to be coincident

between SST and precipitation, particularly in the North

Atlantic and Pacific and over the Southern Ocean. For

most models drift contributes less than 10% to historical

precipitations trends, although it can be of greater im-

portance in some models and regions. Similarly, the

error introduced by drift when examining sea ice area

trends is smaller than the uncertainty associated with

natural variability.

The problem of drift is most pronounced when con-

sidering applications associated with the deep ocean

including depth-integrated properties. As pointed out

by SG12, drift below 1–2km in the ocean usually domi-

nates over any forced signal for historical time periods.

Here, we examined drift in steric sea level. The relatively

small drifts associated with CMIP5 compared to CMIP3

meant that unlike CMIP3 drift was in no cases large

enough to change the direction of the historically simu-

lated global sea level rise. However, at a global scale the

drift in most models still exceeded 30% of the historical

trend, with a number of models exceeding 60%.

Given the recent inclusion of ocean biogeochemical

processes into a number of the CMIP5 models, we also

examined depth-integrated dissolved inorganic carbon

and dissolved oxygen. In the case of DIC, historical

trends are large and positive across most of the upper

ocean in all models, while drift varies regionally in sign

andmagnitude.As a consequence, the drift only becomes

important in certain regions and models. In the case of

dissolved oxygen however, which has a less systematic

response to changes in anthropogenic forcing, drift

clearly dominates the historical simulation response in

the subsurface ocean.

Particularly for properties where drift makes up a

large part of the historical change (e.g., steric sea level

rise or dissolved oxygen), the assumed temporal evolution

of drift can be important. We have demonstrated that
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the method of drift correction can have a substantial

effect on the outcome. Using a short time period over

which to compute drift may mean that estimates still

contain a substantial contamination from the internal

variability component. We have shown that this is the

case even when using 150-yr control simulation linear

trends as the proxy for drift. As a result, a more con-

servative estimate of drift calculated using the full

available control might be less prone to contamination

from low-frequency variability. However, even when

using the full control, the drift estimate can be sensitive

to the correction method (i.e., linear, quadratic, or

cubic), as we demonstrated for dissolved oxygen.

Based on our results we would offer some recom-

mendations for the treatment of drift.

d Our results suggest that when estimating forced

changes, the use of multiple ensemble members from

a historical simulation to minimize the influence of

natural variability will often have a larger effect than

drift correction. Drift is both model and region de-

pendent. As such, the importance of drift should be

assessed based on the application. In many circum-

stances, such as when considering multimodel means

of surface properties, drift is negligible. Even where

a clear drift signal can be identified and is statistically

significant, its importance may be small.
d The temporal evolution of drift appears to be model

and variable dependent. For example globally aver-

aged steric sea level evolution is often quite linear and

possesses much less low-frequency variability than

SST evolution.Where accurate determination of trends

is required—for example, when studying changes in

trends over time or in the examination of detection and

attribution—the sensitivity of the drift estimatemethod

should be tested. Indeed we have shown that the

method of drift correction can substantively change

the resulting estimate of a forced trend in some cases.

While drift would ideally be assessed on a model-by-

model and variable-by-variable basis, in general the use

of long portions of the control simulation (if not the full

control time series) is recommended to guard against

contamination from internal variability. We would

suggest that drift estimates based on relatively short

periods of control simulation (e.g., 100-yr trends have

been commonly used) are probably insufficient to get

a robust estimate of drift.
d The structure of drift could in principle be identified

using ensembles of perturbed control simulations. As

greater precision in trend estimates become necessary

such simulations should be considered.
d Careful treatment of drift needs to be considered for

more than just physical ocean variables. For some

models and in certain regions, drift in atmospheric

properties can be important. This has become impor-

tant as climate models are increasingly being used for

the regional assessment of climate change or regional

detection and attribution. Indeed, some regional as-

sessments have started using drift size as one of the

metrics of model skill (e.g., Irving et al. 2012; Brown

et al. 2012). With respect to detection and attribution,

drift is important both in the isolation of the climate

change signal and in estimating the magnitude of

internal variability [which is often estimated from

the control simulation; e.g., Santer et al. (2012)].

Biogeochemical properties within the ocean may also

be strongly affected by drift, particularly in the sub-

surface ocean where forced signals are weak.
d A common method for assessing models is to compare

their mean state to observations (usually over the end of

the twentieth century). Given that many models are

initialized from some observed state and will drift away

from this state, care must be taken when interpreting

model fidelitywheredrift is present.Amodelwitha short

spinup would have greater fidelity than one with a long

spinup, given the same rate of drift. The rate of drift may

in itself be a useful metric to gauge model fidelity.
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APPENDIX

Model Expansions

ACCESS1.0 Australian Community Climate and

Earth-System Simulator, version 1.0

BCC-CSM1.1 Beijing Climate Center (BCC), Climate

System Model, version 1.1
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BCC-

CSM1.1(m)

BCC Climate System Model, version

1.1 (moderate resolution)

CanESM2 Canadian Centre for Climate Model-

ling and Analysis (CCCma) Second

Generation Earth System Model

CCSM4 Community Climate System Model,

version 4

CMCC-CM Centro Euro-Mediterraneo per I

Cambiamenti Climatici (CCMC)

Climate Model

CMCC-CMS CMCC Climate Model with resolved

stratosphere

CNRM-CM3 Centre National de Recherches

M�et�eorologiques (CNRM) Coupled

Global Climate Model, version 3

CNRM-CM5 CNRMCoupledGlobal ClimateModel,

version 5

CSIRO

Mk3.6.0

Commonwealth Scientific and Industrial

Research Organisation (CSIRO)

Mark, version 3.6.0

EC-EARTH European Consortium Earth system

model

GFDL-CM3 Geophysical FluidDynamicsLaboratory

(GFDL) Climate Model, version 3

GFDL-

ESM2G

GFDL Earth System Model with

Generalized Ocean Layer Dynamics

(GOLD) component (ESM2G)

GFDL-

ESM2M

GFDL Earth System Model with

Modular Ocean Model 4 (MOM4)

component (ESM2M)

GISS-E2-H Goddard Institute for Space Studies

(GISS) Model E2, coupled with the

HYCOM ocean model

GISS-E2-R GISS Model E2, coupled with the

Russell ocean model

HadGEM2-

CC

Hadley Centre Global Environment

Model, version 2, Carbon Cycle

HadGEM2-

ES

Hadley Centre Global Environment

Model, version 2, Earth System

INM-CM4.0 Institute of Numerical Mathematics

Coupled Model, version 4.0

IPSL-CM5A-

LR

L’Institut Pierre-Simon Laplace (IPSL)

Coupled Model, version 5, coupled

with NEMO, low resolution

IPSL-CM5A-

MR

IPSL Coupled Model, version 5, cou-

pled with NEMO,medium resolution

MIROC-ESM Model for Interdisciplinary Research

on Climate (MIROC) Earth System

Model

MIROC-ESM-

CHEM

MIROC Earth System Model, chem-

istry coupled

MIROC4h MIROC, version 4 (high resolution)

MIROC5 MIROC, version 5

MPI-ESM-P Max Planck Institute (MPI) Earth Sys-

tem Model, paleo

MPI-ESM-LR MPIEarth SystemModel, low resolution

MPI-ESM-MR MPI Earth System Model, medium

resolution

MRI-CGCM3 Meteorological Research Institute

(MRI) Coupled Atmosphere–Ocean

General Circulation Model, version 3

NorESM1-M NorwegianClimateCentre (NCC)Earth

SystemModel, version 1 (intermediate

resolution)

NorESM1-

ME

NCC Earth System Model, version 1

(intermediate resolution), with prog-

nostic biogeochemical cycling
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