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Abstract

By 3,000 B.C. there is evidence of the use of divisibility in Egypt and Meso-
potamia, see for example [58]. Divisibility naturally led to the concepts of
primality, common divisors and eventually, polynomial irreducibility. In this
thesis, we explore some modern results regarding these three concepts.

In Chapter 2, we explore pairwise coprimality and pairwise non-coprimality.
Given a subset A of the set {1, . . . , k}2 we say that (a1, . . . , ak) ∈ Zk exhibits
pairwise coprimality over A if gcd(ai, aj) = 1 for all (i, j) ∈ A. When the
set A is obvious we might just say that (a1, . . . , ak) exhibits pairwise coprim-
ality. We say that (a1, . . . , ak) is totally pairwise coprime if gcd(ai, aj) = 1
for all 1 ≤ i < j ≤ k. We say that (a1, . . . , ak) is pairwise non-coprime if
gcd(ai, aj) 6= 1 for all 1 ≤ i < j ≤ k. Pairwise coprimality has a long history.
It is a requirement of the Chinese remainder theorem whose proof has been
known for at least 750 years (see [58, p. 131–132]). The Chinese remainder
theorem is important in many areas of modern day mathematics. Some applic-
ations in modular multiplication, bridging computations, coding theory and
cryptography can be found in [22, p. 33–184] and some comments regarding
modular multiplication applications can be found in [59, p. 287–290]. To date
pairwise coprimality calculations have also been necessary for quantifying k-
tuples that are pairwise non-coprime (see [51], [43] and [70] and its comments
regarding [32]).

We start Chapter 2 by giving pairwise primality results for triples and
show that the methods are not generally suitable for larger tuples. We then
use more advanced techniques to give general results for larger tuples. This
leads to results for tuples of polynomials over finite fields that exhibit pairwise
coprimality. We finish the chapter with a brief discussion regarding tuples with
both pairwise coprime and pairwise non-coprime conditions.

In Chapter 3, we study the greatest common divisor of shifted sets. Our
main result is a dual problem to the approximate common divisor problem
which has applications in cryptography. Given a set of k positive integers
{a1, . . . , ak} and an integer parameter H, we study the greatest common di-
visor of small additive shifts of its elements by integers hi with |hi| ≤ H,
i = 1, . . . , k. In particular, we show that for any choice of a1, . . . , ak there are
shifts of this type for which the greatest common divisor of a1+h1, . . . , ak+hk
is much larger than H. We end the chapter with some related results.
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In Chapter 4, we consider integer coefficient polynomial irreducibility.
Some of the analysis could be the basis for further results for polynomials
with rational coefficients, due to Gauss’s lemma [36, Article 42]. It is well
known that almost all polynomials in rather general families of Z[x] are ir-
reducible, see [1, 20, 84] and references therein. There are also known poly-
nomial time irreducibility tests and polynomial time factoring algorithms, see
for example [60]. However, it is always interesting to study large classes of
polynomials that are known to be irreducible.

In Section 4.1, we study the number of polynomials of bounded height
that are irreducible by the Eisenstein criterion. In Section 4.2 we study the
number of polynomials of bounded height that are irreducible by the Eisenstein
criterion after the additive shift of a variable. In Section 4.3 we consider the
Dumas criterion; in this context a generalisation of the Eisenstein criterion.
Our main results in this section are estimates of the number of polynomials
of bounded height that are irreducible due to the Dumas criterion. Finally,
in Section 4.4, we give various enumerations of the number of irreducible
binomials in finite fields.
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Chapter 1

Notation

We indicate below notation that is common to chapters in this thesis.
For any integer s ≥ 1, we denote by ω(s), ϕ(s) and τ(s) the number of

distinct prime factors, the Euler totient function and the number of divisors
of s respectively (we also set ω(1) = 0). We also use µ to denote the Möbius
function, that is

µ(s) =

{
(−1)ω(s) if s is square free,

0 otherwise.

As usual, the Riemann zeta function is given by

ζ(s) =
∞∑
j=1

1

js
,

for all complex numbers s whose real part is greater than 1.
We recall that the notation f(x) = O(g(x)) or f(x) � g(x) is equivalent

to the assertion that there exists a constant c > 0 such that |f(x)| ≤ c|g(x)|
for large enough x. The notation f(x) = o(g(x)) is equivalent to the assertion
that

lim
x→∞

f(x)

g(x)
= 0.

The notation f(x) ∼ g(x) is equivalent to the assertion that

lim
x→∞

f(x)

g(x)
= 1.

We use p, with or without subscript, to denote a prime number and q,
with or without subscript, to denote a prime power (that is, q = pr for some
positive integer r).

Finally, we use |A| to denote the cardinality of a set A.
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Chapter 2

Pairwise coprimality

2.1 Pairwise non-coprimality of triples

2.1.1 Introduction

Let a1, a2, a3 be positive integers less than H. We obtain an asymptotic for-
mula for the number of (a1, a2, a3) that are pairwise non-coprime. We do
this by estimating the number of triples that possess certain pairwise coprim-
ality conditions and applying the inclusion-exclusion principle. The density
of pairwise non-coprime positive integer triples is approximately 17.4%. We
also give an upper bound on the error term in an asymptotic formula for∑H

n=1(ϕ(n)/n)m for m ≥ 2 and as H →∞.

The result regarding the density of pairs of coprime positive integers is
generally ascribed to E. Cesáro, although J. J. Sylvester and P. D. L. Dirichlet
also contributed to the result (for a recent comment see [66, page 1320]). A
proof of the result is given in [41, Theorem 332]). More formally, if

C(H) =
∑

1≤a1,a2≤H
gcd(a1,a2)=1

1, P (H) =
∑

1≤a1,a2≤H
1 = H2,

then

lim
H→∞

C(H)

P (H)
=

6

π2
.

Nymann [72] gave the following result.

∑
1≤a1,...,ak≤H
gcd(a1,...,ak)=1

1 =
Hk

ζ(k)
+

{
O(H logH) if k = 2,

O
(
Hk−1) if k ≥ 3.

(2.1)

This naturally leads to the enumeration of tuples with pairwise coprimality.

3



Tóth [81] showed that for each integer k ≥ 2∑
1≤a1,...,ak≤H
gcd(ai,aj)=1

i 6=j

1 = ϑ(k)Hk +O(Hk−1 (logH)k−1), (2.2)

where

ϑ(k) =
∏

p prime

(
1− 1

p

)k−1(
1 +

k − 1

p

)
. (2.3)

In this section we enumerate the number of triples of maximum height H that
are pairwise non-coprime. Let

Nk(H) =
∑

1≤a1,...,ak≤H
gcd(ai,aj)6=1
1≤i<j≤k

1.

Our main result is the following.

Theorem 2.1.1. Suppose H is a positive integer. We have

N3(H) = ρH3 +O
(
H2 (logH)2

)
,

where

ρ = 1− 3

ζ(2)
+ 3

∏
p prime

(
1− 2p− 1

p3

)
−

∏
p prime

(
1− 3p− 2

p3

)
.

The three products (where ζ(2) can, of course, be expressed as a product
over primes) are easily checked against the more general Theorem 2.2.1 in the
next section. According to Moree [70, Page 9], Freiberg [32] also gives a result
for the density of triples of positive integers that are pairwise non-coprime.

For the remainder of this section we will ease notation in summations by
using (a, b) to indicate the greatest common divisor of integers a and b.

2.1.2 Preparatory Lemma

Kac [57] attributes to I. Schur the following result. For m ≥ 2,

lim
H→∞

1

H

H∑
n=1

(
ϕ(n)

n

)m
=

∏
p prime

(
1 +

(1− 1/p)m − 1

p

)
.

For Theorem 2.1.1 we require an upper bound on the error term in an asymp-
totic formula for

H∑
n=1

(
ϕ(n)

n

)2

.

4



An upper bound on the error term in the general case is known (see [12]) and
it has since been improved using analytic tools (see, for example, [7], [62]).
We provide a different elementary proof to that of [12].

Lemma 2.1.2. Let m ≥ 2. We have

H∑
n=1

(
ϕ(n)

n

)m
= H

∏
p prime

(
1 +

(1− 1/p)m − 1

p

)
+O ((logH)m) .

Proof. Let m ≥ 2. Then

H∑
n=1

(
ϕ(n)

n

)m
=

H∑
n=1

∏
p|n

(1− 1/p)m

=

H∑
n=1

∏
p|n

(1 + f(p)) , (2.4)

where

f(n) =

{∏
p|n ((1− 1/p)m − 1) if n is square free,

0 otherwise.

We will freely use the fact that

|f(n)| ≤
∏
p|n

m

p
=
mω(n)

n
.

Returning to (2.4) we have

H∑
n=1

(
ϕ(n)

n

)m
=

H∑
n=1

∑
d|n

f(d)

=
∑
d≤H

f(d)

(
H

d
+O (1)

)

= H
∑
d≤H

f(d)

d
+O

∑
d≤H
|f(d)|

 . (2.5)

For the error term in (2.5) we note from [80, III.3 Theorem 6] that

H∑
l=1

mω(l) = O
(
H(logH)m−1

)
. (2.6)

Using (2.6) and partial summation the error term in (2.5) can given by∑
d≤H
|f(d)| = O ((logH)m) . (2.7)

5



For the main term in (2.5) we observe that∑
d≤∞

f(d)

d

is absolutely convergent since∑
d>H

∣∣∣f(d)

d

∣∣∣ ≤∑
d>H

mω(d)

d2
≤
∑
d>H

do(1)

d2
≤
∑
d>H

1

d2+o(1)
= H−1+o(1).

Thus ∑
d≤H

f(d)

d
=
∑
d<∞

f(d)

d
−
∑
d>H

f(d)

d

=
∏

p prime

(
1 +

f(p)

p

)
+O

(
H−1+o(1)

)
=

∏
p prime

(
1 +

(1− 1/p)m − 1

p

)
+O

(
H−1+o(1)

)
. (2.8)

Combining (2.5), (2.7) and (2.8) completes the proof.

2.1.3 Proof of Theorem 2.1.1

It is clear that

N3(H) = H3 −
∑

1≤a1,a2,a3≤H
(ai,aj)=1

for some 1≤i<j≤3

1.

Then, using the inclusion-exclusion principle, we have∑
1≤a1,a2,a3≤H

(ai,aj)=1
for some 1≤i<j≤3

1 =
∑

1≤a1,a2,a3≤H
1≤i<j≤3

∑
(ai,aj)=1

1−
∑

1≤a1,a2,a3≤H
1≤i<j<k≤3

∑
(ai,aj)=1
(aj ,ak)=1

1

+
∑

1≤a1,a2,a3≤H
(a1,a2)=1
(a1,a3)=1
(a2,a3)=1

1.

Using symmetry, we obtain

N3(H) = H3 − 3
∑

1≤a1,a2,a3≤H
(a1,a2)=1

1 + 3
∑

1≤a1,a2,a3≤H
(a1,a2)=1
(a1,a3)=1

1−
∑

1≤a1,a2,a3≤H
(a1,a2)=1
(a1,a3)=1
(a2,a3)=1

1. (2.9)

6



Using (2.1), the first summation of (2.9) is given by

∑
1≤a1,a2,a3≤H

(a1,a2)=1

1 =
H3

ζ(2)
+O

(
H2 logH

)
. (2.10)

Using (2.2), the third summation of (2.9) is given by∑
1≤a1,a2,a3≤H

(a1,a2)=1
(a1,a3)=1
(a2,a3)=1

1 = ϑ(3)H3 +O
(
H2(logH)2

)
, (2.11)

where ϑ(3) is calculated using (2.3).
It remains to express the middle summation of (2.9) as a multiple of H3

and a suitable error term. If we let

ϕ(n,H) =
∑

1≤a≤H
(a,n)=1

1, (2.12)

then we have∑
1≤a1,a2,a3≤H

(a1,a2)=1
(a1,a3)=1

1 =
∑

1≤n≤H

∑
1≤a2,a3≤H
(n,a2)=1
(n,a3)=1

1 =
∑

1≤n≤H

∑
1≤a3≤H
(n,a3)=1

1
∑

1≤a2≤H
(n,a2)=1

1

=
∑

1≤n≤H
ϕ(n,H)2. (2.13)

The following is well-known (or see [44, Lemma 4]).

ϕ(n,H) =
Hϕ(n)

n
+O

(
2ω(n)

)
.

Substituting into (2.13) we have

∑
1≤a1,a2,a3≤H

(a1,a2)=1
(a1,a3)=1

1 =
∑

1≤n≤H

(
Hϕ(n)

n
+O

(
2ω(n)

))2

= H2
∑

1≤n≤H

(
ϕ(n)

n

)2

+O

H ∑
1≤n≤H

ϕ(n)2ω(n)

n


+O

 ∑
1≤n≤H

(
2ω(n)

)2 .

(2.14)

7



Appealing to (2.6) we have

O

 ∑
1≤n≤H

ϕ(n)2ω(n)

n

 = O

 ∑
1≤n≤H

2ω(n)

 = O (H logH) , (2.15)

and also ∑
1≤n≤H

(
2ω(n)

)2
= O

(
H (logH)3

)
. (2.16)

Substituting equations (2.15) and (2.16) into (2.14) yields

∑
1≤a1,a2,a3≤H

(a1,a2)=1
(a1,a3)=1

1 = H2
∑

1≤n≤H

(
ϕ(n)

n

)2

+O
(
H (logH)3

)
. (2.17)

Using Lemma 2.1.2, setting m = 2, and substituting into (2.17) we obtain∑
1≤a1,a2,a3≤H

(a1,a2)=1
(a1,a3)=1

1 = H3
∏

p prime

(
1− 2p− 1

p3

)
+O

(
H2 (logH)2

)
. (2.18)

Substituting (2.10), (2.11) and (2.18) into (2.9) completes the proof.

2.1.4 Comments

By using Theorem 2.1.1, we see that the density of triples of positive integers
that are pairwise non-coprime is given by ρ ≈ 0.1742.

In this section we have only considered N3(H). Our approach does not
seem particularly well suited to higher tuples (that is Nk(H) for k > 3). If
we examine (2.9) we observe that finding a suitable expression for N3(H) in-
volved 3 different summations. The expression of two of these summations as
a multiple of H3 with a suitably bound error term was provided by previously
known results. For N4(H) we have 10 summations (each summation corres-
ponds to one of the, up to isomorphism, 10 non-null undirected graphs of 4
vertices). Of these 10 summations 6 can be obtained by natural extensions of
the techniques in this section. The remaining 4, namely∑

1≤a1,...,a4≤H
(a1,a2)=1
(a2,a3)=1
(a3,a4)=1

1,
∑

1≤a1,...,a4≤H
(a1,a2)=1
(a2,a3)=1
(a3,a4)=1
(a4,a1)=1

1,
∑

1≤a1,...,a4≤H
(a1,a2)=1
(a2,a3)=1
(a2,a4)=1
(a3,a4)=1

1 and
∑

1≤a1,...,a4≤H
(a1,a2)=1
(a1,a3)=1
(a1,a4)=1
(a2,a3)=1
(a2,a4)=1

1,

would appear to require techniques such as those shown in Section 2.2.
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2.2 Tuples of integers with pairwise coprimality
conditions

2.2.1 Introduction

This section is entirely based on [2]. We study tuples whose elements are pos-
itive integers of maximum value H and impose certain coprimality conditions
on pairs of elements. In contrast to the rest of this thesis, we will use v, rather
than k, to denote the number of elements of arrays due to the strong link to
the number of vertices of various graphs.

Fernández and Fernández, in [31] and in subsequent discussions with the
author, have shown how to calculate the density of v-tuples of positive integers
that exhibit coprimality across given pairs. That is, how to calculate ρG in
Theorem 2.2.1 below. In Appendix 1, we give an example of these calcula-
tions. Their approach is non-inductive. Hu [51] has estimated the number of
(a1, . . . , av) with 1 ≤ a1, . . . , av ≤ H that satisfy given coprimality conditions
on pairs of elements of the v-tuple. His inductive approach gives an asymptotic
formula with an upper bound on the error term of O(Hv−1 logv−1H).

In significantly many cases, our main result gives a better error term than
that of [51]. Unlike [51] our approach is non-inductive.

We use a graph to represent the required primality conditions as fol-
lows. Let G = (V,E) be a graph with v vertices and e edges. The set
of vertices, V , will be given by V = {1, . . . , v} whilst the set of edges of
G, denoted by E, is a subset of the set of pairs of elements of V . That is,
E ⊆ {{1, 2}, {1, 3}, . . . , {r, s}, . . . , {v−1, v}}. We admit isolated vertices (that
is, vertices that are not adjacent to any other vertex). An edge is always of
the form {r, s} with r 6= s and {r, s} = {s, r}. For each real H > 0 we define
the set of all tuples that satisfy the primality conditions by

G(H) := {(a1, . . . , av) ∈ Nv : ar ≤ H, gcd(ar, as) = 1 if {r, s} ∈ E}.

We also let g(H) = |G(H)| and denote with d the maximum degree of the
vertices of G. Finally, let QG(z) = 1 + B2z

2 + · · · + Bvz
v be the polynomial

associated to the graph G, defined by

QG(z) =
∑
F⊆E

(−1)|F |zv(F ), (2.19)

where v(F ) is the number of non-isolated vertices of graph F .
Our main result is as follows.

Theorem 2.2.1. For real H > 0 we have

g(H) = HvρG +O(Hv−1 logdH),

where

ρG =
∏

p prime

QG

(
1

p

)
.
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The quantity ρG gives the asymptotic proportion of v random positive in-
tegers that exhibit the given pairwise coprimality conditions. This proportion
is calculable. For example, consider the ‘square’ 4-tuple. That is, 4-tuples
with gcd(a1, a2) = gcd(a2, a3) = gcd(a3, a4) = gcd(a4, a1) = 1. Then the
asymptotic proportion of such 4-tuples is given by

ρG =
∏

p prime

(
1− 4

p2
+

4

p3
− 1

p4

)
= 0.217778 . . . (2.20)

Further details can be found in Subsection 2.2.5.

2.2.2 Preparations

Let P+(s) denote the largest prime factor of any integer s > 1. By convention
P+(1) = 1.

For each F ⊆ E, a subset of the edges of G, let v(F ) be the number of
non-isolated vertices of F . We define two polynomials QG(z) and Q+

G(z) by

QG(z) =
∑
F⊆E

(−1)|F |zv(F ), Q+
G(z) =

∑
F⊆E

zv(F ).

In this way, we associate two polynomials to each graph. It is clear that the
only F ⊆ E for which v(F ) = 0 is the empty set. Thus, the constant terms
of QG(z) and Q+

G(z) are always 1. If F is non-empty then there is some edge
a = {r, s} ∈ F so that v(F ) ≥ 2. Therefore, the coefficients of z in QG(z) and
Q+
G(z) are zero. Since we do not allow repeated edges the only case in which

v(F ) = 2 is when F consists of one edge. Thus, the coefficient of z2 in Q+
G(z)

is e, that is, the number of edges e in G. The corresponding z2 coefficient in
QG(z) is −e.

As a matter of notation we shall sometimes use r and s to indicate vertices.
The letter v will always denote the last vertex and the number of vertices in
a given graph. Edges will sometimes be denoted by a or b. As previously
mentioned, we use d to denote the maximum degree of any vertex and e to
denote the number of edges. We use terms like ej to indicate the j-th edge.

We associate several multiplicative functions to any graph. To define these
functions we consider functions E → N. That is, to any edge a in the graph we
associate a natural number na. We call any of these functions, a 7→ na, an edge
numbering of the graph. Given an edge numbering we assign a corresponding
vertex numbering function r 7→ Nr by the rule Nr = lcm(nb1 , . . . , nbu), where
Er = {b1, . . . , bu} ⊆ E is the set of edges incident to r. We note that in the
case where r is an isolated vertex we will have Er = ∅ and Nr = 1. With these
notations we define

fG(m) =
∑

N1N2···Nv=m

µ(n1) · · ·µ(ne) (2.21)
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and

f+G (m) =
∑

N1N2···Nv=m

|µ(n1) · · ·µ(ne)|. (2.22)

In this and similar summations in this section, the summation is extended to
all edge numberings (that is, for all 1 ≤ n1, . . . , ne <∞) satisfying the condi-
tion written under the summation symbol, usually expressed in terms of the
corresponding vertex numberings. As an example, again consider the ‘square’
4-tuple. That is, 4-tuples with gcd(a1, a2) = gcd(a2, a3) = gcd(a3, a4) =
gcd(a4, a1) = 1. We have fG(p4) = −1 and f+G (p4) = 7. Detailed calculations
of both fG(p4) and f+G (p4) for this ‘square’ 4-tuple are shown in Subsection
2.2.5. We will see in Lemma 2.2.3 that it is not a coincidence that fG(p4) is
the coefficient of 1/p4 in (2.20).

The following is interesting in its own right but will also be used to prove
Theorem 2.2.1.

Lemma 2.2.2. Let h : N→ C be a multiplicative function. For any graph G
the function

gh,G(m) =
∑

N1N2···Nv=m

h(n1) · · ·h(ne)

is multiplicative.

Proof. Let m = m1m2 where gcd(m1,m2) = 1. Let us assume that for a
given edge numbering of G we have N1 · · ·Nv = m. For any edge a = {r, s}
we have na|Nr and na|Ns. Therefore, n2a|m. It follows that we may express
na as na = n1,an2,a with n1,a|m1 and n2,a|m2. In this case gcd(n1,a, n2,a) = 1,
and we will have

Nr = lcm(nb1 , . . . , nbv) = lcm(n1,b1 , . . . , n1,bv) lcm(n2,b1 , . . . , n2,bv),

h(n1) · · ·h(ne) = h(n1,1) · · ·h(n1,e) · h(n2,1) · · ·h(n2,e).

Since each edge numbering na splits into two edge numberings n1,a and n2,a,
we have

m1 = N1,1 · · ·N1,v, m2 = N2,1 · · ·N2,v.

Thus

gh,G(m1m2) = gh,G(m)

=
∑

N1N2···Nv=m

h(n1) · · ·h(ne)

=
∑

N1,1···N1,v ·N2,1···N2,v=m1m2

h(n1,1) · · ·h(n1,e) · h(n2,1) · · ·h(n2,e)

=
∑

N1,1···N1,v=m1

h(n1,1) · · ·h(n1,e)
∑

N2,1···N2,v=m2

h(n2,1) · · ·h(n2,e)

= gh,G(m1)gh,G(m2),
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which completes the proof.

For h = µ we will denote gh,G by fG and for h = |µ| we will denote gh,G
by f+G . We now draw the link between f+G (pk) and Q+

G(z).

Lemma 2.2.3. For any graph G and prime p the value f+G (pk) is equal to the
coefficient of zk in Q+

G(z). In the same way the value of fG(pk) is equal to the
coefficient of zk in QG(z).

Proof. First we consider the case of fG(pk). Recall that

QG(z) =
∑
F⊆E

(−1)|F |zv(F ), fG(pk) =
∑

N1···Nv=pk

µ(n1) · · ·µ(ne),

where the last sum is on the set of edge numberings of G. In the second sum we
shall only consider edge numberings of G giving a non null term. This means
that we only consider edge numberings with na squarefree numbers. Notice
also that if N1 · · ·Nv = pk, then each na | pk. So the second sum extends
to all edge numbering with na ∈ {1, p} for each edge a ∈ E and satisfying
N1 · · ·Nv = pk.

We need to prove the equality∑
F⊆E, v(F )=k

(−1)|F | =
∑

N1···Nv=pk

µ(n1) · · ·µ(ne). (2.23)

To this end we shall define for each F ⊆ E with v(F ) = k a squarefree
edge numbering σ(F ) = (na) with N1 · · ·Nv = pk, na ∈ {1, p} and such
that (−1)|F | = µ(n1) · · ·µ(ne). We will show that σ is a bijective mapping
between the set of F ⊆ E with v(F ) = k and the set of edge numberings (na)
with N1 · · ·Nv = pk. Thus, equality (2.23) will be established and the proof
finished.

Assume that F ⊆ E with v(F ) = k. We define σ(F ) as the edge numbering
(na) defined by

na = p for any a ∈ F , na = 1 for a ∈ E r F .

In this way it is clear that µ(n1) · · ·µ(ne) = (−1)|F |. Also Nr = p or Nr = 1.
We will have Nr = p if and only if there is some a = {r, s} ∈ F . So that
N1 · · ·Nv = pv(F ) because by definition v(F ) is the cardinality of the union⋃
{r,s}∈F {r, s}.

The map σ is invertible. For let (na) be an edge numbering of squarefree
numbers with N1 · · ·Nv = pk and na ∈ {1, p}. If σ(F ) = (na) necessarily we
will have F = {a ∈ E : na = p}. It is clear that defining F in this way we will
have v(F ) = k and σ(F ) = (na).

Therefore the coefficient of zk in QG(z) coincides with the value of fG(pk).
The proof for f+G is the same observing that for σ(F ) = (na) we will have

1 = |(−1)|F || = |µ(n1) · · ·µ(ne)|.
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2.2.3 Proof of Theorem 2.2.1

We prove the theorem in the following steps.

1. We show that

g(H) =
∑

n1,...,ne

µ(n1) · · ·µ(ne)
v∏
r=1

⌊
H

Nr

⌋
.

2. We show that

g(H) = Hv
∞∑

n1=1

· · ·
∞∑

ne=1

µ(n1) · · ·µ(ne)

v∏
r=1

1

Nr
+R+O

(
Hv−1 logdH

)
,

where

|R| ≤ Hv−1
e∑
j=1

∞∑
n1=1

· · ·
∞∑

nj−1=1

∑
nj>H

∞∑
nj+1=1

· · ·
∞∑

ne=1

µ(n1) · · ·µ(ne)
v∏
r=1

1

Nr
.

3. We show that |R| = O(Hv−1 logdH).

We start with the following sieve result which generalises the sieve of Eratosthenes.

Lemma 2.2.4. Let X be a finite set, and let A1, A2, . . . , Ak ⊆ X. Then

|X\
k⋃
j=1

Aj | =
∑

J⊆{1,2,...,k}

(−1)|J |BJ ,

where B∅ = X, and for J ⊆ {1, 2, . . . , k} nonempty

BJ =
⋂
j∈J

Aj .

To prove Theorem 2.2.1, let X be the set

X = {(a1, . . . , av) ∈ Nv : ar ≤ H, 1 ≤ r ≤ v}.

Our set G(H), associated to the graph G, is a subset of X. Now for each
prime p ≤ H and each edge a = {r, s} ∈ G define the following subset of X.

Ap,a = {(a1, . . . , av) ∈ X : p|ar, p|as}.

Therefore, the tuples in Ap,a are not in G(H). In fact it is clear that

G(H) = X\
⋃
a∈E
p≤H

Ap,a,
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where E denotes the set of edges in our graph G. We note that we have an
Ap,a for each prime number less than or equal to H and each edge a ∈ E.
Denoting PH as the set of prime numbers less than or equal to H we can
represent each Ap,a as Aj with j ∈ PH × E. We now apply Lemma 2.2.4 and
obtain

g(H) =
∑

J⊆PH×E
(−1)|J |BJ . (2.24)

We compute BJ and then |J |. For BJ , we have

J = {(p1, e1), . . . , (pm, em)}, BJ =
m⋂
j=1

Apj ,ej .

Therefore (a1, . . . , av) ∈ BJ is equivalent to saying that pj |arj , pj |asj for all
1 ≤ j ≤ m, where ej = {rj , sj}. We note that if pi1 , . . . , pi` are the primes
associated in J with a given edge a = {r, s}, then the product of pi1 · · · pi`
must also divide the values ar and as associated to the vertices of a. Let
Ta ⊆ PH consist of the primes p such that (p, a) ∈ J . In addition, we define

na =
∏
p∈Ta

p,

observing that when Ta = ∅ we have na = 1. Then (a1, . . . , av) ∈ BJ is
equivalent to saying that for each a = {r, s} appearing in J we have na | ar
and na | as. In this way, we can define J by giving a number na for each edge
a. We note that na will always be squarefree, and all its prime factors will be
less than or equal to H. We also note that (a1, . . . , av) ∈ BJ is equivalent to
saying that na|ar for each edge a that joins vertex r with another vertex.

Then for each vertex r, consider all the edges a joining r to other vertices,
and denote the least common multiple of the corresponding na’s by Nr. So
(a1, . . . , av) ∈ BJ is equivalent to saying that Nr|ar. The number of multiples
of Nr that are less than or equal to H is bH/Nrc, so we can express the number
of elements of BJ as

BJ =
v∏
r=1

⌊
H

Nr

⌋
. (2.25)

We now compute |J |. This is the total number of prime factors across all
the nj . As mentioned before nj is squarefree, so

(−1)|J | = (−1)
∑e
j=1 ω(nj) = µ(n1) · · ·µ(ne), (2.26)

where the summations are over all squarefree nj with P+(nj) ≤ H. Substi-
tuting (2.25) and (2.26) into (2.24) yields

g(H) =
∞∑

n1=1

· · ·
∞∑

ne=1

µ(n1) · · ·µ(ne)
v∏
r=1

⌊
H

Nr

⌋
.
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At first the sum extends to the (n1, . . . , ne) that are squarefree and have all
prime factors less than or equal to H. But we may extend the sum to all
(n1, . . . , ne), because if these conditions are not satisfied then the correspond-
ing term is automatically 0. In fact we may restrict the summation to the
na ≤ H, because otherwise for a = {r, s} we have na | Nr and bH/Nrc = 0.
Therefore,

g(H) =
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
v∏
r=1

⌊
H

Nr

⌋
.

We now seek to express g(H) as a multiple of Hv plus a suitable error term.
Observe that for all real z1, z2, z3 > 0,

bz1cbz2cbz3c = z1z2z3 − z1z2{z3} − z1{z2}bz3c − {z1}bz2cbz3c,

where {y} denotes the fractional part of a number y.
Applying a similar procedure, with v factors instead of 3, we get

g(H) =
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
v∏
r=1

H

Nr

−
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)

{
H

N1

} v∏
r=2

⌊
H

Nr

⌋

−
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
H

N1

{
H

N2

} v∏
r=3

⌊
H

Nr

⌋
· · ·

−
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
H

N1
· · · H

Nv−1

{
H

Nv

}

= Hv
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)

v∏
r=1

1

Nr
+

v∑
k=1

Rk, (2.27)

where for 1 ≤ k ≤ v,

Rk = −
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
H

N1
· · · H

Nk−1

{
H

Nk

}⌊
H

Nk+1

⌋
· · ·
⌊
H

Nv

⌋
,

with the obvious modifications for j = 1 and j = v. We then have

|Rk| ≤
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

|µ(n1) · · ·µ(ne)|
H

N1
· · · H

Nk−1

H

Nk+1
· · · H

Nv

≤ Hv−1
∑

P+(m)≤H

CG,k(m)

m
,

15



where
CG,k(m) =

∑
m=

∏
1≤r≤v,r 6=k Nr

|µ(n1) · · ·µ(ne)|.

By similar reasoning to that of Lemma 2.2.2 the function CG,k(m) can be
shown to be multiplicative. The numbers CG,k(p

α) = CG,k,α do not depend
on p, and CG,k(p

α) = CG,k,α = 0 for α > v. So we have∑
P+(m)≤H

CG,k(m)

m
≤
∏
p≤H

(
1 +

CG,k,1
p

+
CG,k,2
p2

+ · · ·
CG,k,v
pv

)
= O(logCG,k,1 H),

where CG,k(m) is the number of solutions (n1, . . . , ne), with nj squarefree, to∏
1≤r≤v,r 6=k

Nr = m. (2.28)

Let hk denote the degree of vertex k. It is easy to see that for a prime p
we have CG,k,1 = CG,k(p) = hk. The solutions are precisely those with all
nj = 1, except one n` = p, where ` should be one of the edges meeting at
vertex k. Therefore, the maximum number of solutions occurs when k is one
of the vertices of maximum degree. So if we let d be this maximum degree,
then the maximum value of CG,k(p) is d. Therefore,

|Rk| = O(Hv−1 logdH). (2.29)

Substituting (2.29) into (2.27) we obtain

g(H) = Hv
∑

1≤n1≤H
· · ·

∑
1≤ne≤H

µ(n1) · · ·µ(ne)
v∏
r=1

1

Nr
+O(Hv−1 logdH).

(2.30)

We require the following lemma.

Lemma 2.2.5. We have

lim
H→∞

∑
1≤n1≤H

· · ·
∑

1≤ne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

1

Nr
<∞.

Proof. Let

f+G (m) =
∑

m=
∏v

r=1Nr

|µ(n1) · · ·µ(ne)|.

We note that f+G (m) is multiplicative by Lemma 2.2.2. It is clear that f+G (1) =
1. Also, each edge joins two vertices r and s and thus nj |Er and nj |Es. This
means that

n2j
∣∣ v∏
r=1

Nr.
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It follows that
v∏
r=1

Nr 6= p,

for any prime p and so f+G (p) = 0. We also note that a multiple (n1, . . . , ne)
only counts in f+G (m) if |µ(n1) · · ·µ(ne)| = 1. Therefore each nj is squarefree.
So each factor in

v∏
r=1

Nr (2.31)

brings at most a p. So the greatest power of p that can divide (2.31) is pv. So
f+G (pα) = 0 for α > v. Recall that f+G (pα) is equal to the coefficient of xα in
Q+
G(x). So, by Lemma 2.2.3, we note that f+G (pα) depends on α but not on p.

Putting all this together we have

∞∑
m=1

f+G (m)

m
=

∏
p prime

(
1 +

f+G (p2)

p2
+ . . .+

f+G (pv)

pv

)
<∞. (2.32)

Next, we observe that the sequence

{ ∑
1≤n1≤H

· · ·
∑

1≤ne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

1

Nr

}∞
H=1

is an increasing sequence. It is also a bounded sequence since

∑
1≤n1≤H

· · ·
∑

1≤ne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

1

Nr
≤
∞∑
m=1

f+G (m)

m

for any H ∈ N. So, by the monotone convergence theorem, the limit

lim
H→∞

∑
1≤n1≤H

· · ·
∑

1≤ne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

1

Nr
(2.33)

exists and is bounded by
∞∑
m=1

f+G (m)

m
.

With a little more work one can show that

lim
H→∞

∑
1≤n1≤H

· · ·
∑

1≤ne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

1

Nr
=
∞∑
m=1

f+G (m)

m
.
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Returning to (2.30), it is now clear from Lemma 2.2.5 that

ρG = lim
H→∞

∑
1≤n1≤H

· · ·
∑

1≤ne≤H
µ(n1) · · ·µ(ne)

v∏
r=1

1

Nr

is absolutely convergent. In fact,

g(H) = HvρG +R+O(Hv−1 logdH), (2.34)

where

ρG =
∞∑

n1=1

· · ·
∞∑

ne=1

µ(n1) · · ·µ(ne)
v∏
r=1

1

Nr
,

and

|R| ≤ Hv−1
e∑
j=1

∞∑
n1=1

· · ·
∞∑

nj−1=1

∑
nj>H

∞∑
nj+1=1

· · ·
∞∑

ne=1

|µ(n1) · · ·µ(ne)|
v∏
r=1

1

Nr
.

Now

ρG =

∞∑
m=1

1

m

∑
N1···Nv=m

µ(n1) · · ·µ(ne) =

∞∑
m=1

fG(m)

m
.

We note that fG(m) is multiplicative by Lemma 2.2.2. In a similar way to
Lemma 2.2.5, we have fG(1) = 1, fG(p) = 0 and fG(pα) = 0, for all α > v.
Thus, by the multiplicativity,

ρG =

∞∑
m=1

fG(m)

m
=

∏
p prime

(
1 +

fG(p2)

p2
+ . . .+

fG(pv)

pv

)
.

Therefore, by Lemma 2.2.3, we have

ρG =
∏

p prime

QG

(
1

p

)
. (2.35)

Substituting (2.35) into (2.34), it only remains to show that |R| = O(Hv−1 logdH).
We have

|R| ≤ Hv−1
e∑
j=1

∞∑
n1=1

· · ·
∞∑

nj−1=1

∑
nj>H

∞∑
nj+1=1

· · ·
∞∑

ne=1

|µ(n1) · · ·µ(ne)|
v∏
r=1

1

Nr
.

All terms in the sum on j are analogous; so assuming that the first is the
largest, we have

|R| ≤ C1H
v−1

∑
n1>H

∞∑
n2=1

∞∑
nj+1=1

· · ·
∞∑

ne=1

|µ(n1) · · ·µ(ne)|
v∏
r=1

1

Nr
,
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where C1 is a function of e and not H. So it will suffice to show that

R1 :=
∑
n1>H

∞∑
n2=1

· · ·
∞∑

ne=1

|µ(n1) · · ·µ(ne)|
v∏
r=1

1

Nr
= O(logdH). (2.36)

We will treat an edge e1 = {u, s} differently to the other edges. For a given
(n1, . . . , ne) of squarefree numbers we have two special integers,

Nu = lcm(n1, nα1 , . . . nαk
), Ns = lcm(n1, nβ1 , . . . nβk).

We also remark that we may have Nu = lcm(n1) or Ns = lcm(n1).
For any edge ej with 2 ≤ j ≤ e we define dj = gcd(n1, nj). Since the nj

are squarefree, we have

nj = djn
′
j , dj |n1, gcd(n1, n

′
j) = 1.

Then it is clear that

Nu = lcm(n1, dα1n
′
α1
, . . . , dαk

n′αk
) = n1 lcm(n′α1

, . . . , n′αk
)

and
Ns = n1 lcm(n′β1 , . . . , n

′
βl

).

For any other vertex with t 6= u and t 6= s, we have

Nt = lcm(nt1 , . . . , ntm) = lcm(dt1n
′
t1 , . . . , dtmn

′
tm)

= lcm(dt1 , . . . , dtm) lcm(n′t1 , . . . , n
′
tm),

where m will vary with t. Substituting the equations for Nu, Ns and Nt into
the definition of R1 in (2.36) we obtain

R1 =
∑
n1>H

∞∑
n2=1

· · ·
∞∑

ne=1

|µ(n1) · · ·µ(ne)|
1

Nu

1

Ns

∏
1≤t≤v
t6=u, t 6=s

1

Nt

=
∑
n1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

∞∑
n′2=1

· · ·
∞∑

n′e=1

|µ(n2) · · ·µ(ne)|
lcm(n′α1

, . . . , n′αk
) lcm(n′β1 , . . . , n

′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm) lcm(n′t1 , . . . , n
′
tm)

=
∑
n1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

∏
1≤t≤v
t6=r, t6=s

1

lcm(dt1 , . . . , dtm)

×
∞∑

n′2=1

· · ·
∞∑

n′e=1

(
|µ(d2n

′
2) · · ·µ(den

′
e)|

lcm(n′α1
, . . . , n′αk

) lcm(n′β1 , . . . , n
′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

)
.
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It follows that

R1 ≤
∑
n1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)

×
∞∑

n′2=1

· · ·
∞∑

n′e=1

(
|µ(n′2) · · ·µ(n′e)|

lcm(n′α1
, . . . , n′αk

) lcm(n′β1 , . . . , n
′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

)
.

The expression

∞∑
n′2=1

· · ·
∞∑

n′e=1

|µ(n′2) · · ·µ(n′e)|
lcm(n′α1

, . . . , n′αk
) lcm(n′β1 , . . . , n

′
βl

)

∏
1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

is finite by Lemma 2.2.5 (but this time considering the graph G without the
edge {u, s}). Thus, for some constant C2, we have

R1 ≤ C2

∑
n1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)

= C2

∑
n1>H

|µ(n1)|
n21

fG,e(n1), (2.37)

where the arithmetic function fG,e is defined as follows.

fG,e(n) =
∑
d2|n

· · ·
∑
de|n

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)
.

We note that there is a factor lcm(dt1 , . . . , dtm) for each vertex other than u or
s. The function fG,e is a multiplicative function. We have fG,e(p

k) = fG,e(p)
for any power of a prime p with k ≥ 2, because in the definition of fG,e(p

k)
only the divisors 1 and p of pk give non null terms. When n = p we have

fG,e(p) = 1 +
A1

p
+ · · ·+ Av−2

pv−2
,

where Ai is the number of ways that∏
1≤t≤v
t6=u, t 6=s

|µ(d2) · · ·µ(de)| lcm(dt1 , . . . , dtm) = pi,
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where every divisor in the product dh | n = p can only be 1 or p. The
inequality Ai ≤ 2e−1 does not depend on p, and so there must be a number
w, independent of p, such that

fG,e(p
k) = fG,e(p) ≤

(
1 +

1

p

)w
.

Since fG,e is multiplicative we have, for any squarefree n,

fG,e(n) ≤
∏
p|n

(
1 +

1

p

)w
=

(
σ(n)

n

)w
, |µ(n)| = 1. (2.38)

Substituting (2.38) into (2.37) yields

R1 ≤ C2

∞∑
n>H

|µ(n)|
n2

(
σ(n)

n

)w
≤ C2

∞∑
n>H

1

n2

(
σ(n)

n

)w
.

It is well known that σ(n) = O(n log logn) (see, for example, [40]), and thus

R1 = O

(
(log logH)w

H

)
. (2.39)

Comparing (2.39) with (2.36) completes the proof of Theorem 2.2.1.

2.2.4 The spectrum of ρG

For any n > 1, let Sn = {ρG : |G| = n}. We state some obvious results
without proof. For any n > 1, we have 0 6∈ Sn and 1 ∈ Sn. We also observe
that

minSn =
∏

p prime

(
1− 1

p

)n−1(
1 +

n− 1

p

)
→ 0 as n→∞,

and
S2 ( S3 ( · · · .

Next, we obtain an upper bound for |Sn|.

Theorem 2.2.6. For any ε > 0 and sufficiently large n we have

|Sn| ≤ (1 + ε)

(
2(n2)

n!

)
.

Proof. For any n > 1 let Tn be the equivalence set of graphs with n vertices
partitioned by isomorphism. It is clear that

|Sn| ≤ |Tn|. (2.40)

Harary and Palmer [42, Equation 9.1.1] credit Pólya with the following.

|Tn| ∼ 2(n2)/n!. (2.41)

Combining (2.40) and (2.41) concludes the theorem.
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We note that non-isomorphic graphs do not necessarily yield different dens-
ities. That is, G1 6∼ G2 6⇒ ρG1 6= ρG2 . To see this, we exhibit graphs

G1 = ({{1, 2}, {2, 3}, {3, 4}, {1, 4}}, {1, 2, 3, 4})

and

G2 = ({{1, 2}, {2, 3}, {1, 3}, {1, 4}}, {1, 2, 3, 4}).

It is clear that G1 is not isomorphic to G2. As shown in Subsection 2.2.5

ρG1 =
∏

p prime

(
1− 4

p2
+

4

p3
− 1

p4

)
,

and using similar calculations we can show that ρG2 gives an identical res-
ult (alternatively see the calculations in Chapter 5). A consequence is that
equation (2.40) can be improved to a strict inequality for n > 3.

2.2.5 Calculations

We calculate the asymptotic proportion that 4 random positive integers ex-
hibit ‘square’ pairwise coprimality conditions. That is, 4-tuples with

gcd(a1, a2) = gcd(a2, a3) = gcd(a3, a4) = gcd(a4, a1) = 1. (2.42)

Here G(V,E) is given by

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

As shown in equation (2.19),

QG

(
1

p

)
=
∑
F⊆E

(−1)|F |
(

1

p

)v(F )

,

where v(F ) is the number of non-isolated vertices of F .

Next we examine each F ⊆ E to compute its contribution to QG(z). This
is shown in Table 2.1.
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Table 2.1: Subsets of edges and calculation of the polynomial QG(z)

F ⊆ E |F | v(F ) (−1)|F |zv(F )

∅ 0 0 1

{{1, 2}}, {{2, 3}}, {{3, 4}}, {{4, 1}} 1 2 −4z2

{{1, 2}, {2, 3}},
{{2, 3}, {3, 4}},
{{3, 4}, {4, 1}},
{{4, 1}, {1, 2}}

2 3 4z3

{{1, 2}, {3, 4}},
{{2, 3}, {4, 1}},

2 4 2z4

{{1, 2}, {2, 3}, {3, 4}},
{{2, 3}, {3, 4}, {4, 1}},
{{3, 4}, {4, 1}, {1, 2}},
{{4, 1}, {1, 2}, {2, 3}}

3 4 −4z4

E 4 4 z4

QG(z) = 1− 4z2 + 4z3 − z4

Putting this all together we have

ρG =
∏

p prime

(
1− 4

p2
+

4

p3
− 1

p4

)
.

This gives ρG as an Euler product. As shown in [83], Euler products such as
ρG can be computed to high precision.

As foreshadowed in Subsection 2.2.2, we now give an example of the cal-
culation of fG and f+G . In particular, we calculate fG(p4) and f+G (p4). Again
G is the ‘square’ 4-tuple (see (2.42)). Using (2.21) we have the following 2
tables.
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Table 2.2: Calculation of fG(p4)

F ⊆ E (n1, . . . , n4) (N1, . . . , N4) µ(n1) · · ·µ(n4)

{{1, 2}, {3, 4}} (p, 1, p, 1) (p, p, p, p) 1

{{2, 3}, {4, 1}} (1, p, 1, p) (p, p, p, p) 1

{{1, 2}, {2, 3}, {3, 4}} (p, p, 1, p) (p, p, p, p) -1

{{2, 3}, {3, 4}, {4, 1}} (1, p, p, p) (p, p, p, p) -1

{{1, 2}, {3, 4}, {4, 1}} (p, 1, p, p) (p, p, p, p) -1

{{1, 2}, {2, 3}, {4, 1}} (p, p, 1, p) (p, p, p, p) -1

{{1, 2}, {2, 3}, {3, 4}, {4, 1}} (p, p, p, p) (p, p, p, p) 1

fG(p4) = −1

Table 2.3: Calculation of f+G (p4)

F ⊆ E (n1, . . . , n4) (N1, . . . , N4) |µ(n1) · · ·µ(n4)|
{{1, 2}, {3, 4}} (p, 1, p, 1) (p, p, p, p) 1

{{2, 3}, {4, 1}} (1, p, 1, p) (p, p, p, p) 1

{{1, 2}, {2, 3}, {3, 4}} (p, p, 1, p) (p, p, p, p) 1

{{2, 3}, {3, 4}, {4, 1}} (1, p, p, p) (p, p, p, p) 1

{{1, 2}, {3, 4}, {4, 1}} (p, 1, p, p) (p, p, p, p) 1

{{1, 2}, {2, 3}, {4, 1}} (p, p, 1, p) (p, p, p, p) 1

{{1, 2}, {2, 3}, {3, 4}, {4, 1}} (p, p, p, p) (p, p, p, p) 1

f+G (p4) = 7
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2.3 Tuples of polynomials over finite fields with
pairwise coprimality conditions

2.3.1 Introduction

Given that this thesis canvasses pairwise coprimality and polynomial irredu-
cibility, it is natural to consider arrays of monic polynomials over finite fields
that satisfy certain pairwise coprimality conditions. Another motivation arises
from the very recent articles, [24] and [67], that use function fields over a finite
field to calculate densities of integer coefficient polynomials that are irreducible
by the Eisenstein criterion and the shifted Eisenstein criterion respectively. In
this subsection we seek to estimate the number of arrays of degree bounded
monic polynomials (b1, . . . , bv) ∈ (Fq[x])v with q a prime power that satisfy
given pairwise coprimality conditions. We use the methods of Section 2.2.
This section is joint work with Igor Shparlinski.

For the remainder of this section all references to polynomials will refer
to monic polynomials. We use a graph to represent the required primality
conditions as follows. Let G = (V,E) be a graph with v vertices and e edges.
The set of vertices, V , will be given by V = {1, . . . , v} whilst the set of edges
of G, denoted by E, is a subset of the set of pairs of elements of V . That
is, E ⊆ {{1, 2}, {1, 3}, . . . , {r, s}, . . . , {v − 1, v}}. We admit isolated vertices
(that is, vertices that are not adjacent to any other vertex). An edge is always
of the form {r, s} with r 6= s and {r, s} = {s, r}. Let

b = {(b1, . . . , bv) ∈ (Fq[x])v : br monic, 1 ≤ r ≤ v}.

For each real H > 0 and any prime power q, we define the set of all tuples
that satisfy the primality conditions by

G(H) := {b ∈ (Fq[x])v : deg br ≤ H, gcd(br, bs) = 1 if {r, s} ∈ E},

We also let g(H) = |G(H)|, and denote with d the maximum degree of the
vertices of G. Finally, let QG(z) = 1 + B2z

2 + · · · + Bvz
v be the polynomial

associated to the graph G, defined by

QG(z) =
∑
F⊆E

(−1)|F |zv(F ), (2.43)

where v(F ) is the number of non-isolated vertices of graph F .
Our main result is as follows.

Theorem 2.3.1. For real H > 0 and a constant w we have

g(H) = qHvρG +O

(
qHv (log logH)w

H

)
,

where

ρG =
∏

p prime

QG

(
1

qp

)
.
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2.3.2 Preparations

Denote the degree of the maximum prime factor of a polynomial b with deg b >
0 by

degP+(b) = max
bi|b

deg bi 6=deg b

deg bi.

By convention, P+(b) = 1 for any b with deg b = 0.
As a matter of notation we shall sometimes use r and s to indicate vertices.

The letter v will always denote the last vertex and the number of vertices in
a given graph. Edges will sometimes be denoted by a or b. As previously
mentioned, we use d to denote the maximum degree of any vertex and e to
denote the number of edges. We use terms like ej to indicate the j-th edge.

We associate several multiplicative functions to any graph. To define these
functions, we consider functions E → Fq[x], that is, to any edge a in the graph
we associate a polynomial na. We call any of these functions, a 7→ na, an edge
labeling of the graph. Given an edge labeling, we assign a corresponding
vertex labeling function r 7→ Nr by the rule Nr = lcm(nc1 , . . . , ncu), where
Er = {c1, . . . , cu} ⊆ E is the set of edges incident to r. We note that in
the case where r is an isolated vertex we will have Er = ∅ and Nr = 1. In
this and similar summations in this section, the summation is extended to
all edge labels (that is, for all 0 ≤ deg n1, . . . ,deg ne < ∞) satisfying the
condition written under the summation symbol, usually expressed in terms of
the corresponding vertex labeling.

2.3.3 Proof of Theorem 2.3.1

We start by showing that

g(H) =
∑

degn1,...,degne

µ(n1) · · ·µ(ne)

v∏
r=1

bqH−degNrc,

where µ(n), with n a polynomial over a finite field, is calculated analogously
to µ of an integer.

Let X be the set

X = {b : deg br ≤ H, 1 ≤ r ≤ v}.

Our set G(H), associated to the graph G, is a subset of X. Now for each
prime polynomial p with deg p ≤ H and each edge a = {r, s} ∈ G define the
following subset of X.

Ap,a = {(b1, . . . , bv) ∈ X : p|ar, p|as}.

Therefore, the tuples in Ap,a are not in G(H). In fact it is clear that

G(H) = X\
⋃
a∈E

deg p≤H

Ap,a,
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where E denotes the set of edges in our graph G. We note that we have an
Ap,a for each prime polynomial with degree less than or equal to H and each
edge a ∈ E. Denoting PH as the set of prime polynomials with degree less
than or equal to H we can represent each Ap,a as Aj with j ∈ PH × E. We
now apply Lemma 2.2.4 and obtain

g(H) =
∑

J⊆PH×E
(−1)|J |BJ . (2.44)

We compute BJ and then |J |. For BJ , we have

J = {(p1, e1), . . . , (pm, em)}, BJ =

m⋂
j=1

Apj ,ej .

Therefore, (b1, . . . , bv) ∈ BJ is equivalent to saying that pj |brj , pj |bsj for all
1 ≤ j ≤ m, where ej = {rj , sj}. We note that if pi1 , . . . , pi` are the prime
polynomials associated in J with a given edge a = {r, s}, then the product of
pi1 · · · pi` must also divide the polynomials ar and as associated to the vertices
of a. Let Ta ⊆ PH consist of the prime polynomials p such that (p, a) ∈ J . In
addition, we define

na =
∏
p∈Ta

p,

observing that when Ta = ∅ we have na = 1. Then (b1, . . . , bv) ∈ BJ is
equivalent to saying that for each a = {r, s} appearing in J we have na | br
and na | bs. In this way we can define J by giving a polynomial na for each
edge a. We note that na will always be squarefree, and all its prime factors
will have degree less than or equal to H. We also note that (b1, . . . , bv) ∈ BJ is
equivalent to saying that na|br for each edge a that joins vertex r with another
vertex.

Then for each vertex r, consider all the edges a joining r to other vertices,
and denote the least common multiple of the corresponding na’s by Nr. So
(b1, . . . , bv) ∈ BJ is equivalent to saying that Nr|ar. If degNr ≤ degH then
the number of multiples of Nr that are of degree less than or equal to H is
qH−degNr If degNr > degH then the number of multiples of Nr that are
of degree less than or equal to H is zero. So we can express the number of
elements of BJ as

BJ =
v∏
r=1

bqH−degNrc. (2.45)

We now compute |J |. This is the total number of prime factors across all
the nj . As mentioned before nj is squarefree, so

(−1)|J | = (−1)
∑e
j=1 ω(nj) = µ(n1) · · ·µ(ne), (2.46)
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where the summations are over all squarefree nj with degP+(nj) ≤ H. Sub-
stituting (2.45) and (2.46) into (2.44) yields

g(H) =
∞∑

degn1=0

· · ·
∞∑

degne=0

µ(n1) · · ·µ(ne)
v∏
r=1

bqH−degNrc.

At first, the sum extends to the (n1, . . . , ne) that are squarefree and have all
prime factors with degree less than or equal to H. But we may extend the
sum to all (n1, . . . , ne), because if these conditions are not satisfied then the
corresponding term is automatically 0. In fact, we may restrict the summation
to na with deg na ≤ H, because otherwise for a = {r, s} we have na | Nr and
bqH−degNrc = 0. Therefore,

g(H) =
∑

0≤degn1≤H
· · ·

∑
0≤degne≤H

µ(n1) · · ·µ(ne)

v∏
r=1

qH−degNr

= qHv
∑

0≤degn1≤H
· · ·

∑
0≤degne≤H

µ(n1) · · ·µ(ne)
v∏
r=1

q− degNr . (2.47)

We require the following lemmas to show absolute convergence before pro-
ceeding.

Lemma 2.3.2. For any graph G the function

hµ,G(m) =
∑

deg(N1···Nv)=m

µ(n1) · · ·µ(ne)

is multiplicative.

Proof. Let m = m1m2 where gcd(m1,m2) = 1. Let us assume that for a given
edge numbering of G we have deg(N1 · · ·Nv) = m. For any edge a = {r, s} we
have na|Nr and nb|Ns. Therefore n2a|m. It follows that we may express na as
na = n1,an2,a with n1,a|m1 and n2,a|m2. In this case gcd(n1,a, n2,a) = 1, and
we will have

Nr = lcm(nb1 , . . . , nbv) = lcm(n1,b1 , . . . , n1,bv) lcm(n2,b1 , . . . , n2,bv),

h(n1) · · ·µ(ne) = µ(n1,1) · · ·µ(n1,e) · µ(n2,1) · · ·µ(n2,e).

Since each edge numbering na splits into two edge numberings n1,a and n2,a,
we have

m1 = deg(N1,1 · · ·N1,v), m2 = deg(N2,1 · · ·N2,v).
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Thus,

hµ,G(m1m2) = hµ,G(m)

=
∑

deg(N1···Nv)=m

µ(n1) · · ·µ(ne)

=
∑

deg(N1,1···N1,v ·N2,1···N2,v)=m1m2

µ(n1,1) · · ·µ(n1,e) · µ(n2,1) · · ·µ(n2,e)

=
∑

deg(N1,1···N1,v)=m1

µ(n1,1) · · ·µ(n1,e)
∑

deg(N2,1···N2,v)=m2

µ(n2,1) · · ·µ(n2,e)

= hµ,G(m1)hµ,G(m2),

which completes the proof.

Lemma 2.3.3.

lim
H→∞

∑
0≤degn1≤H

· · ·
∑

0≤degne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

q− degNr <∞.

Proof. Let

h+G(m) =
∑

deg(N1···Nv)=m

|µ(n1) · · ·µ(ne)|.

We note that h+G(m) is multiplicative by a similar proof to that shown in
Lemma 2.3.2. It is clear that h+G(0) = 1 and h+G(1) = 0. Also, each edge joins
two vertices s and t and thus nj |Ns and nj |Nt. This means that

n2j
∣∣ v∏
r=1

Nr.

It follows that
v∏
r=1

Nr 6= p,

for any prime p and so h+G(p) = 0. We also note that a multiple (n1, . . . , ne)
only counts in h+G(m) if |µ(n1) · · ·µ(ne)| = 1. Therefore, each nj is squarefree.
So each factor in

v∏
r=1

Nr (2.48)

brings at most a p. So the greatest power of p that can divide (2.48) is pv. So
h+G(pα) = 0 for α > v. Recall that h+G(pα) is equal to the coefficient of xα in
Q+
G(x). So, by Lemma 2.2.3, we note that h+G(pα) depends on α but not on p.

Next, we observe that the sequence{ ∑
0≤degn1≤H

· · ·
∑

0≤degne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

q− degNr

}∞
H=0
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is an increasing sequence. It is also a bounded sequence since

∑
0≤degn1≤H

· · ·
∑

0≤degne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

q− degNr ≤
∞∑
m=0

h+G(m)

qm

for any H ∈ N. So, by the monotone convergence theorem, the limit

lim
H→∞

∑
0≤degn1≤H

· · ·
∑

0≤degne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

q−degNr (2.49)

exists and is bounded above by

∞∑
m=0

h+G(m)

qm
.

With a little more work one can show that

lim
H→∞

∑
0≤degn1≤H

· · ·
∑

0≤degne≤H
|µ(n1) · · ·µ(ne)|

v∏
r=1

q− degNr =
∞∑
m=0

h+G(m)

qm
.

Now combining the lemma with (2.47) we obtain

g(H) = qHvρG +R, (2.50)

where

ρG =
∑

0≤degn1≤∞
· · ·

∑
0≤degne≤∞

µ(n1) · · ·µ(ne)
v∏
r=1

q− degNr ,

and

|R| = qHv
∑

0≤degn1≤∞
· · ·

∑
0≤degne≤∞

µ(n1) · · ·µ(ne)

v∏
r=1

q− degNr

− qHv
∑

0≤degn1≤H
· · ·

∑
0≤degne≤H

µ(n1) · · ·µ(ne)
v∏
r=1

q−degNr .

Now

ρG =

∞∑
m=0

1

qm

∑
deg(N1···Nv)=m

µ(n1) · · ·µ(ne) =

∞∑
m=0

hG(m)

qm
,

where for m ≥ 0 we have

hG(m) =
∑

deg(N1···Nv)=m

µ(n1) · · ·µ(ne).
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We note that the function hG(m) is multiplicative by Lemma 2.3.2. In a
similar way to Lemma 2.2.5 we have hG(0) = 1, hG(1) = 0, hG(p) = 0 and
hG(pα) = 0, for all α > v. Thus, by the multiplicativity,

ρG =
∞∑
m=0

hG(m)

m
=

∏
p prime

(
1 +

fG(p2)

q2p
+ . . .+

fG(pv)

qpv

)
.

Therefore, by Lemma 2.2.3, we have

ρG =
∏

p prime

QG

(
1

qp

)
. (2.51)

It only remains to estimate |R|.

Lemma 2.3.4. We have |R| = O
(
qHv(log logH)w

H

)
, for some constant w that

does not depend on H.

Proof. We have

|R| ≤ qH(v−1)
e∑
j=1

∞∑
degn1=0

· · ·
∞∑

degnj−1=0

∑
degnj>H

∞∑
degnj+1=0

· · ·
∞∑

degne=0

|µ(n1) · · ·µ(ne)|
v∏
r=1

q−Nr .

All terms in the sum on j are analogous; so assuming that the first is the
largest, we have

|R| ≤ C1 q
H(v−1)

∑
degn1>H

∞∑
n2=0

∞∑
nj+1=0

· · ·
∞∑

ne=0

|µ(n1) · · ·µ(ne)|
v∏
r=1

q−Nr ,

(2.52)

where C1 is a function of e and not H. Let

R1 :=
∑

degn1>H

∞∑
degn2=0

· · ·
∞∑

degne=0

|µ(n1) · · ·µ(ne)|
v∏
r=1

q−Nr . (2.53)

We will treat an edge e1 = {u, s} differently to the other edges. For a given
(n1, . . . , ne) of squarefree numbers we have two special integers,

Nu = lcm(n1, nα1 , . . . nαk
), Ns = lcm(n1, nβ1 , . . . nβk).

We also remark that we may have Nu = lcm(n1) or Ns = lcm(n1).

For any edge ej with 2 ≤ j ≤ e we define dj = gcd(n1, nj). Since the nj
are squarefree, we have

nj = djn
′
j , dj |n1, gcd(n1, n

′
j) = 1.
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Then it is clear that

Nu = lcm(n1, dα1n
′
α1
, . . . , dαk

n′αk
) = n1 lcm(n′α1

, . . . , n′αk
)

and

Ns = n1 lcm(n′β1 , . . . , n
′
βl

).

For any other vertex with t 6= u and t 6= s, we have

Nt = lcm(nt1 , . . . , ntm) = lcm(dt1n
′
t1 , . . . , dtmn

′
tm)

= lcm(dt1 , . . . , dtm) lcm(n′t1 , . . . , n
′
tm),

where m will vary with t. Substituting the equations for Nu, Ns and Nt into
the definition of R1 in (2.54) we obtain

R1 =
∑

degn1>H

∞∑
degn2=0

· · ·
∞∑

degne=0

|µ(n1) · · ·µ(ne)|q− degNuq− degNs
∏

1≤t≤v
t6=u, t 6=s

q−Nt

=
∑

degn1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

∞∑
degn′2=0

· · ·
∞∑

degn′e=0

|µ(n2) · · ·µ(ne)|
lcm(n′α1

, . . . , n′αk
) lcm(n′β1 , . . . , n

′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm) lcm(n′t1 , . . . , n
′
tm)

=
∑

degn1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

∏
1≤t≤v
t6=r, t6=s

1

lcm(dt1 , . . . , dtm)

×
∞∑

degn′2=0

· · ·
∞∑

degn′e=0

(
|µ(d2n

′
2) · · ·µ(den

′
e)|

lcm(n′α1
, . . . , n′αk

) lcm(n′β1 , . . . , n
′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

)

≤
∑

degn1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)

×
∞∑

degn′2=0

· · ·
∞∑

degn′e=0

(
|µ(n′2) · · ·µ(n′e)|

lcm(n′α1
, . . . , n′αk

) lcm(n′β1 , . . . , n
′
βl

)

×
∏

1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

)
.
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The expression

∞∑
degn′2=0

· · ·
∞∑

degn′e=0

|µ(n′2) · · ·µ(n′e)|
lcm(n′α1

, . . . , n′αk
) lcm(n′β1 , . . . , n

′
βl

)

∏
1≤t≤v
t6=u, t 6=s

1

lcm(n′t1 , . . . , n
′
tm)

is finite by Lemma 2.3.3 (but this time considering the graph G without the
edge {u, s}). Thus, for some constant C1, we have

R1 ≤ C2

∑
degn1>H

|µ(n1)|
n21

∑
d2|n1

· · ·
∑
de|n1

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)

= C2

∑
degn1>H

|µ(n1)|
n21

fG,e(n1), (2.54)

where the arithmetic function fG,e is defined as follows.

fG,e(n) =
∑
d2|n

· · ·
∑
de|n

|µ(d2) · · ·µ(de)|
∏

1≤t≤v
t6=u, t 6=s

1

lcm(dt1 , . . . , dtm)
.

We note that there is a factor lcm(dt1 , . . . , dtm) for each vertex other than u or
s. The function fG,e is a multiplicative function. We have fG,e(p

k) = fG,e(p)
for any power of a prime p with k ≥ 2, because in the definition of fG,e(p

k)
only the divisors 1 and p of pk give non null terms. When n = p we have

fG,e(p) = 1 +
A1

p
+ · · ·+ Av−2

pv−2
,

where Ai is the number of ways that∏
1≤t≤v
t6=u, t 6=s

|µ(d2) · · ·µ(de)| lcm(dt1 , . . . , dtm) = pi,

where every divisor in the product dh | n = p can only be 1 or p. The
inequality Ai ≤ 2e−1 do not depend on p, and so there must be a number w,
independent of p, such that

fG,e(p
k) = fG,e(p) ≤

(
1 +

1

p

)w
.

Since fG,e is multiplicative we have, for any squarefree n,

fG,e(n) ≤
∏
p|n

(
1 +

1

p

)w
=

(
σ(n)

n

)w
, |µ(n)| = 1. (2.55)
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Substituting (2.55) into (2.54) yields

R1 ≤ C2

∞∑
degn>H

|µ(n)|
n2

(
σ(n)

n

)w
≤ C2

∞∑
degn>H

1

n2

(
σ(n)

n

)w
≤ C2 q

H
∞∑
j>H

1

j2

(
σ(j)

j

)w
.

It is well known that σ(j) = O(j log log j) (see, for example, [40]), and thus

R1 = O

(
qH(log logH)w

H

)
. (2.56)

Combining (2.56), (2.52) and (2.53) completes the proof of Lemma 2.3.4.

Combining (2.50), (2.51) and Lemma 2.3.4 concludes the proof of Theorem
2.3.1.
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2.4 Combined pairwise coprime and non-coprime
conditions

Section 2.2 and Subsection 2.1.4 suggest that counting arrays that are pairwise
non-coprime can be done via the counting of arrays that possess pairwise
coprimality conditions. In fact, we can easily generalise our analysis to tuples
with coprimality conditions on some pairs of elements and non-coprimality
conditions on other pairs of elements.

Suppose we wish to estimate the number of arrays with a fixed number
of bounded elements that have both pairwise coprimality and pairwise non-
coprimality conditions. Using the notation of Section 2.2, we consider a set G1

with vertices V = {1, . . . , v} and edges E1 ⊆ {{1, 2}, {1, 3}, . . . , {v − 1, v}}.
The set E1 dictates the required pairwise coprimality conditions, as shown
below. Another set G2 with vertices V and edges E2 ⊆ {{1, 2}, {1, 3}, . . . , {v−
1, v}} is used to determine the pairwise non-coprimality conditions, as shown
below. Clearly, E1 ∩ E2 = ∅ since no pair of elements can be both coprime
and non-coprime. Next, we define

G1(H) := {(a1, . . . , av) ∈ Nv : ar ≤ H, gcd(ar, as) = 1 if {r, s} ∈ E1},

and

G2(H) := {(a1, . . . , av) ∈ Nv : ar ≤ H, gcd(ar, as) 6= 1 if {r, s} ∈ E2}.

Since we want to estimate arrays that satisfy both pairwise coprimality and
pairwise non-coprimality conditions, we want to estimate |G1(H) ∩ G2(H)|.
We select an arbitrary {r1, s1} ∈ E2. Let

(G1 ∪ {r1, s1})(H)

:= {(a1, . . . , av) ∈ Nv : ar ≤ H, gcd(ar, as) = 1 if {r, s} ∈ (E1 ∪ {r1, s1})},

and

(G2/{r1, s1})(H)

:= {(a1, . . . , av) ∈ Nv : ar ≤ H, gcd(ar, as) 6= 1 if {r, s} ∈ E2/{r1, s1}},

It clear that

|G1(H) ∩G2(H)|
= |G1(H) ∩ (G2/{r1, s1})(H)| − |(G1 ∪ {r1, s1})(H) ∩ (G2/{r1, s1})(H)|.

Notice that |E2/{r1, s1}| = |E2| − 1. If |(G2/{r1, s1})(H)| 6= 0 we repeat
the process for both G1(H) ∩ (G2/{r1, s1})(H) and (G1 ∪ {r1, s1})(H) ∩
(G2/{r1, s1})(H). Eventually, the process will terminate. We will be left
with a calculation only involving subsets of G1(H); all whose cardinality can
be estimated by Section 2.2.
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Chapter 3

GCD of shifted sets

3.1 The GCD of shifted sets

3.1.1 Introduction

With the exception of Section 3.2, this section is entirely based on [47]. Sec-
tion 3.2 is joint work with Igor Shparlinski. Let a = (a1, . . . , an) ∈ Zn be
a nonzero vector. The approximate common divisor problem, introduced by
Howgrave-Graham [49] for n = 2, can generally be described as follows. Sup-
pose we are given two bounds D > H ≥ 1. Assuming that for some hi with
|hi| ≤ H, i = 1, . . . , n, we have

gcd(a1 + h1, . . . , an + hn) > D, (3.1)

the task is to determine the shifts h1, . . . , hn. If it is also requested that
h1 = 0, then we refer to the problem as the partial approximate common
divisor problem (certainly in this case the task is to find the shifts faster than
via complete factorisation of a1 6= 0).

This problem has a strong cryptographic motivation as it is related to some
attacks on the RSA and some other cryptosystems, see [11, 15, 18, 49, 77]
and references therein for various algorithms and applications. In particular,
much of the current motivation for studying approximate common divisor
problems stems from the search for efficient and reliable fully homomorphic
encryption, that is, encryption that allows arithmetic operations on encrypted
data, see [21, 37, 67]. In Subsection 3.1.7, we give a brief overview of the
approximate common divisor problem and its application to an attack on
RSA and to fully homomorphic encryption.

Here we consider a dual question and show that for any a = (a1, . . . , an) ∈
Zn, there are shifts |hi| ≤ H, i = 1, . . . , n, for which (3.1) holds with a
relatively large value of D. We also give results for some related questions.

Throughout we use gcd(x) to mean gcd(x1, . . . , xn) for any x ∈ Zn. We
also denote the height of x with H(x) = max{|x1|, . . . , |xn|}.
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The implied constants in the symbols ‘O’, ‘�’ and ‘�’ may occasion-
ally, where obvious, depend on the integer parameter n and the real positive
parameter ε, and are absolute otherwise.

Our treatment of this question is based on some results of Baker and
Harman [5] (see also [4]). For an integer n > 1 and real positive ε < 1, we
define κ(n, ε) as the solution κ > 0 to the equation

n(εκ− 1)

n− 1
=

1

22+max{1,κ} − 4
. (3.2)

The solution is unique, as the left hand side of (3.2) is monotonically increasing
(as a function of κ) from −n/(n − 1) to +∞ on [0,∞) whilst the right hand
side of (3.2) is positive and monotonically non-increasing.

We also set

ϑ(n, ε) =
1

(n− 1)

(
1− 1

εκ(n, ε)

)
.

It easy to see from (3.2) that εκ(n, ε) > 1, so ϑ(n, ε) > 0.

Our main results is as follows.

Theorem 3.1.1. For any vector a ∈ Zn, any real positive ε < 1 and

H ≥ H(a)ε,

there exists a vector h = (h1, . . . , hn) ∈ Zn of height

H(h) ≤ H

such that

gcd(a + h)� H(h)Hϑ(n,ε).

Next, we are interested in asking for which h the shifted set is pairwise
coprime.

For a ∈ Zn we denote by L(a) the smallest H such that there is an h ∈ Zn
with H(h) = H such that

gcd(ai + hi, aj + hj) = 1, 1 ≤ i < j ≤ n.

For n = 2, and thus a = (a1, a2) ∈ Z2, Erdős [30, Equation (3)] has given the
bound

L(a)� log min{|a1|, |a2|}
log log min{|a1|, |a2|}

.

However the method of [30] does not seem to generalise to n ≥ 3.

Theorem 3.1.2. For an arbitrary a ∈ Zn we have

L(a)� log2H(a).
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Note that our argument allows the replacement of H(a) by H∗(a), where
H∗(a) is the second largest |ai|, i = 1, . . . , n.

It is also interesting to investigate as for Theorem 3.1.2 but with a relative
primality condition. For a ∈ Zn we denote by `(a) the smallest H such that
there is a vector h ∈ Zn with H(h) = H and

gcd(a1 + h1, . . . , an + hn) = 1.

A very simple argument, based on the Chinese Remainder Theorem, im-
plies the following result, which generalises [30, Equation (2)].

Theorem 3.1.3. For infinitely many a ∈ Zn we have

`(a)�
(

logH(a)

log logH(a)

)1/n

.

Note that Theorem 3.1.3 is essentially an explicit version of a result of
Huck and Pleasants [52].

Finally, we give a result regarding the greatest common divisor of a set
of integers. A probabilistic method using random sets of integers, as shown
below, was discussed in 1999, see [17]. It is clear that for non-zero vector
a ∈ Zn and arbitrary vectors x,y ∈ Zn we have

gcd(a1, . . . , an) | gcd(a · x,a · y),

where

a · x =
n∑
i=1

aixi and a · y =
n∑
i=1

aiyi.

Let R(a, h) be the number of vectors x,y ∈ Zn with positive components and
of height H(x),H(y) ≤ h for which

gcd(a1, . . . , an) = gcd(a · x,a · y). (3.3)

By [35, Theorem 3] we have

|R(a, h)− ζ(2)−1h2n| ≤ h2n−1/n(hH(a))o(1)

as max{h,H(a)} → ∞, and where ζ(s) is the Riemann zeta function.

We now claim the following (rather modest) improvement.

Theorem 3.1.4. Let n ≥ 2 and let a ∈ Zn. Then, for max{h,H(a)} → ∞,

|R(a, h)− ζ(2)−1h2n| ≤ h2n−n/(n2−n+1)(hH(a))o(1).
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3.1.2 Proof of Theorem 3.1.1

Let ‖ξ‖ denote the distance between a real ξ and the closest integer.

We first give a short outline of the proof. Our argument is based on a result
of Baker and Harman [5]. In particular, we infer from [5, Theorem 1] that for
an arbitrary R, not too small compared to H(a) and another parameter Q,
not too large compared to R there is an integer r ∈ [R,QR] such that∥∥∥ai

r

∥∥∥ ≤ Q−1/n, i = 1, . . . , n. (3.4)

This means that for some integers hi ∈ [−rQ−1/n, rQ−1/n] we have

ai
r

+
hi
r
∈ Z, i = 1, . . . , n,

which immediately implies that

r | gcd(a1 + h1, . . . , an + hn).

We now give qualitative estimates and optimise the parameters.

We note that by [5, Theorem 1], see also [5, Equation (2.1)] that gives an
explicit formula for the constant γ(K) below, we have

Lemma 3.1.5. Suppose that for fixed n > 1 and K > 0, and for some suffi-
ciently large real positive Q and R we have(

n∑
i=1

a2i

)1/2

≤ RK and C1(K,n) ≤ Q ≤ Rγ(K),

where

γ(K) =
1

22+max{1,K} − 4
.

Let ψ1, . . . , ψn be positive real numbers with

ψi ≤ c2(K,n)(logQ)−n, i = 1, . . . , n, and ψ1 · · ·ψn = Q−1.

Then there exists a positive integer r ∈ [R, 2QR] with∥∥∥ai
r

∥∥∥ ≤ ψi, i = 1, . . . , n,

where C1(K,n) and c2(K,n) depend on at most K and n.

To prove Theorem 3.1.1, we choose some parameters Q and R that satisfy
the assumptions of Lemma 3.1.5 with K = κ(n, ε), where κ(n, ε) is given
by (3.2), and we then set ψi = Q−1/n, i = 1, . . . , n. Then by Lemma 3.1.5,
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there exists an integer r with R ≤ r ≤ 2QR such that (3.4) holds. So for some
integers hi with |hi| ≤ rQ−1/n we have

ai + hi ≡ 0 (mod r), i = 1, . . . , n.

More precisely, suppose that for some constant A ≥ 1 we choose R such
that for

Q = (0.5)n/(n−1)A−1Rγ(K), (3.5)

we have

2Q1−1/nR = H. (3.6)

We note from (3.5) that Q ≤ Rγ(K). Then, we see from (3.5) and (3.6) that

R = A(n−1)/(nγ(K)−γ(K)+n)Hn/(nγ(K)−γ(K)+n).

Then, taking A to satisfy

A(n−1)/(nγ(K)−γ(K)+n) = n1/2K ,

due to our choice of K = κ(n, ε), we have

R = n1/2KHn/(nγ(K)−γ(K)+n) = n1/2KH1/εK . (3.7)

Using (3.7), we derive (
n∑
i=1

a2i

)1/2

≤ n1/2H1/ε = RK .

Thus, R satisfies the conditions of Lemma 3.1.5. We also have

Q1/n � Rγ(K)/n � Hγ(K)/εnK . (3.8)

In particular, by increasing H, we can make sure that Q ≥ C1(K,n) and
Q−1/n ≤ c2(K,n)(logQ)−n. Therefore, Lemma 3.1.5 indeed applies. Hence
for h = (h1, . . . , hn) we have

H(h) ≤ rQ−1/n ≤ 2Q1−1/nR = H

and

gcd(a + h) ≥ r ≥ H(h)Q1/n. (3.9)

We now see from (3.2) that

γ(K)

εnK
=

εK − 1

ε(n− 1)K
,

which together with (3.9) and (3.8) completes the proof.
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3.1.3 Proof of Theorem 3.1.2

We recall the following well-known result of Iwaniec [54] on the Jacobsthal
problem. For a given r, let C(r) be the maximal length of a sequence of consec-
utive integers, each divisible by one of r arbitrarily chosen primes. Iwaniec [54]
gives the following bound on C(r).

Lemma 3.1.6. For a given r > 1 we have

C(r)� (r log r)2.

We are now ready to prove Theorem 3.1.2. It is based on the following
inductive construction.

We set h1 = 0. Now, for i = 2, . . . , n, assuming that h1, . . . , hi−1 are
chosen and we define hi, as the smallest non-negative integer with

gcd

i−1∏
j=1

(aj + hj), ai + hi

 = 1.

We consider the Jacobsthal sequence starting at ai with the prime factors of

i−1∏
j=1

(aj + hj).

Therefore, hi can be bounded by the maximal length of such a sequence with

r = ω

i−1∏
j=1

(aj + hj)


prime factors.

We now show that if n is a positive integer and a = H(a) then

H(h)� log2 a. (3.10)

Let ω(k), as usual, denote the number of distinct prime divisors of an
integer k ≥ 1. So, by Lemma 3.1.6,

C(ω(k))� (ω(k) log(ω(k))2 � log2 k.

for any k > 1. From the trivial bound ω(k)! ≤ k and the Stirling formula we
have

ω(k)� log k

log log k

for any integer k ≥ 1. Now a straight forward inductive argument, after simple
calculations, implies (3.10) and concludes the proof.
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3.1.4 Proof of Theorem 3.1.3

Let us choose a sufficiently large parameter H and the first (2H + 1)n primes
pi1,...,in > H for −H ≤ i1, . . . , in ≤ H.

For each k = 1, . . . , n we define ak as the smallest positive integer with

ak ≡ −ik (mod pi1,...,in), −H ≤ i1, . . . , in ≤ H.

Set a = (a1, . . . , an). For any h ∈ Zn with H(h) ≤ H, we have

ph1,...,hn | gcd(a1 + h1, . . . , an + hn).

This implies that `(a) ≥ H.
It remains to estimate H(a). We have pi1,...,in � Hn logH for −H ≤

i1, . . . , in ≤ H. Therefore,

H(a) ≤
∏

−H≤i1,...,in≤H
pi1,...,in = exp(O(Hn logH)) = exp(O(`(a)n log `(a))),

which completes the proof.

3.1.5 Proof of Theorem 3.1.4

It is enough to consider the case where gcd(a1, . . . , an) = 1.
We can certainly assume that n ≤ log h, for otherwise the bound is trivial.
Let µ denote the Möbius function, that is µ(1) = 1, µ(d) = 0 if d ≥ 2 is

not squarefree, and µ(d) = (−1)ω(d) otherwise, where ω(d), as before, is the
number of prime divisors of an integer d ≥ 1.

As in the proof of [35, Theorem 3], by the inclusion exclusion principle we
have

R(a, h) =
∑
d≥1

µ(d)Ud(a, h)2,

where for an integer d ≥ 1, we denote by Ud(a, h) the number of vectors
x ∈ Zn with positive components and of height H(x) ≤ h for which d | a · x.

We now recall from [35] some estimates on Ud(a, h).
More precisely, for 1 ≤ d ≤ 2h/3n we have∣∣∣∣Ud(a, h)2 − h2n

d2

∣∣∣∣ ≤ 8nd−1h2n−1, (3.11)

see [35, Equation (8)]. The proof of (3.11) also relies on the bound

Ud(a, h) ≤ dn−1 (h/d+ 1)n . (3.12)

that holds for any integer d ≥ 1.
For any squarefree d ≥ 1 we also have the bound

Ud(a, h) ≤ hn−1
(
hd−1/n + 1

)
, (3.13)
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see [35, Equation (10)].

Therefore, choosing some parameter D, we write

R(a, h) = M +O(∆1 + ∆2) (3.14)

where

M =
∑

d≤2h/3n

µ(d)Ud(a, h)2,

∆1 =
∑

2h/3n<d≤D

µ(d)Ud(a, h)2,

∆2 =
∑
d>D

µ(d)Ud(a, h)2.

Using (3.11), we derive

M =
∑

d≤2h/3n

µ(d)

(
h2n

d2
+O

(
h2n−1d−1

))

= h2n
∑

d≤2h/3n

µ(d)

d2
+O

(
h2n−1 log h

)
.

Since ∑
d≤2h/3n

µ(d)

d2
=
∞∑
d=1

µ(d)

d2
+O (1/h) = ζ(2)−1 +O (1/h) ,

see [41, Theorem 287], we derive

M = h2nζ(2)−1 +O
(
h2n−1 log h

)
. (3.15)

To estimate ∆1 we apply the bound (3.12), which for d ≥ 2h/3n can be
simplified as Ud(a, h) = O(dn−1). Therefore,

∆1 �
∑

2h/3n<d≤D

dn−1Ud(a, h) ≤ Dn−1
∑

2h/3n<d≤D

Ud(a, h). (3.16)

Using the same argument as the proof of [35, Theorem 3], based on a bound
of the divisor function τ(k), we obtain∑
d>2h/3n

Ud(a, h) =
∑

d>2h/3n

∑
H(x)≤h
d|a·x

1

=
∑

h(x)≤h

∑
d>2h/3n
d|a·x

1 ≤
∑

h(x)≤h

τ(a · x) ≤ hn(hH(a))o(1), (3.17)
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where x runs through integral vectors with positive components. Hence, we
see that (3.16) yields the estimate

∆1 � Dn−1hn(hH(a))o(1). (3.18)

Finally, to estimate ∆2 we apply the bound (3.13) and, as before, derive

∆2 � hn−1
(
hD−1/n + 1

)∑
d>D

Ud(a, h) ≤ h2n−1
(
hD−1/n + 1

)
(hH(a))o(1).

(3.19)
Substituting the bounds (3.15), (3.18) and (3.19) into (3.14), we obtain

R(a, h) = h2nζ(2)−1 +O
((
h2n−1 +Dn−1hn + h2nD−1/n

)
(hH(a))o(1)

)
.

Now, choosing
D = hn

2/(n2−n+1),

we conclude the proof.

3.1.6 Comments

We remark that it is also interesting to study analogous questions for poly-
nomials with integer coefficients or over finite fields, see [29, 34, 71] for some
polynomial versions of the approximate common divisor problem. Some of our
techniques can be extended to this case. However some important ingredients,
such as the results of Baker and Harman [4, 5], are missing.

3.1.7 The approximate common divisor problem and
cryptography

In this subsection, we make a few comments about solving the approximate
common divisor problem. We also discuss the problem’s applications to both
an attack on RSA and fully homomorphic encryption. Given that this sub-
section is peripheral to this chapter, the comments are neither comprehensive
nor rigorous.

Howgrave-Graham [49] discussed two methods of solving the approxim-
ate common divisor problem; the continued fraction approach and the lattice
approach. To illustrate the continued fraction approach, consider the follow-
ing algorithm. We wish to input two similar bit-sized integers a0, b0. The
algorithm outputs all integers d = bα0 , α > 1/2 such that there exist integers
x0, y0 with

|xo|, |y0| < X = b
max{2α−1,1−α}
0 ,

and d divides both a0 + x0 and b0 + y0, or report that no such d exists.
We recall from the study of continued fractions that for a0/b0 there are only
finitely many gi, hi, i = 1, . . . ,m such that∣∣∣a0

b0
− gi
hi

∣∣∣ < 1

2h20
.
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Moreover each fraction gi/hi is a convergent of a0/b0. The values of d can
then be calculated as

di = min
k
{max{|kgi − a0|, |khi − b0|}}, i = 1, . . . ,m.

Next we illustrate the lattice approach method on the partial approximate
common divisor problem. Here we input integers a0, b0 and ε, α ∈ (0, 1) and
seek to output all integers d < M = bα0 such that there exists an x0 with

|x0| < X = bα
2−ε

0 , d|(a0 + x0), d|b0, or report no such d exists. We start by
reframing the problem from integers to polynomials. Let q1(x) = a0 + x and
q2(x) = b0. We require a x0 such that q1(x0) ≡ q2(x0) ≡ 0 (mod d). Now let

r(x) = r0 + r1(x) + . . .+ rhx
h

=
∑

0≤i≤u
µi(x)q1(x)u−iq2(x)i,

where u, h are functions of α and ε. Note that if q1(x0) ≡ q2(x0) ≡ 0 (mod d)
then r(x) ≡ 0 (mod du). Also there is considerable scope to vary µi(x). So we
now use lattice/matrix methods to find a r(x) with small enough coefficients
r0, . . . , rh so that the roots of r(x) over Z are less than du. Thus, r(x) ≡ 0
(mod du) when x is a root of r(x) (in practice we can use the LLL algorithm
to find the roots, see [60]). The roots of this r(x) are therefore possible roots
of q1(x) and q2(x).

Coron and May [18] outline a possible attack on RSA code using the
approximate common divisor problem. For RSA, we keep two primes p and
q private but we let N = pq and N is made public. We also make public an
encoding key e and keep private a decoding key f . The decoding key f is
calculated (privately) as the inverse of e modulo ϕ(N). To use RSA we take
a message and raise it to a power modulo N . The power to be used is e to
encode, and f to decode.

The attack on RSA we discuss was the first polynomial time algorithm to
find p, q given N, e, f with p, q being the same bit-size. We have N = pq and
we let s = p+q−1. Given N, s it is easy to find p, q. We let U = ef−1 and note
that since ef ≡ 1 (mod ϕ)(N), it follows that ϕ(n)|U . Also N − s = ϕ(n).
So we have (N − s)|(N − s) and (N − s)|U . Letting a0 = N, x0 = −s and
b0 = U allows us to use the Howgrave-Graham algorithm to solve what is now
an approximate common divisor problem.

Finally, we make some comments about fully homomorphic encryption
based on [21]. This encryption is described as the holy grail of encryption,
see [67]. This form of encryption allows repeated addition and multiplica-
tion of encoded data. In turn this holds the prospect of many applications
such as minimizing non-interactive zero-knowledge proofs, see [39], improved
delegation of computing, see [13], cloud computing, see [63] and voting, see
[67].
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A simple example of fully homomorphic encryption would be to pick an
arbitrary odd integer, p, not necessarily prime. To encode a message m ∈
{0, 1}, pick random s, r ∈ Z with 2r < p/2, and encode m to ps + 2r + m.
To decode the encoded message, we calculate (ps+2r+m (mod p)) (mod 2).
Since modular arithmetic respects addition and multiplication so will this one
addition or multiplication encryption (we discuss multiple operations shortly).
Specifically, suppose we encode m1 and m2 to get n1 and n2 respectively and
pass the two encoded messages on to a separate entity. The entity responds
with n1 + n2 and n1n2. On decoding these two messages, we obtain m1 +m2

and m1m2 respectively.
To turn this into a public key system, we publicise arbitrary xi = psi +

2ri, i = 1, . . . , n such that xα1 + · · ·+xαk
+m, xαi ∈ {x1, . . . , xk} sufficiently

masks the value of m for certain choices of xi. To encode m, we calculate
xα1 + · · ·+ xαk

+m using one of these choices. To decode, we simple proceed
as before, by the application of modulo p and then modulo 2. The recovery
of p from the public values of xi, and hence an attack on the encryption, is
then a classic approximate common divisor problem. The p can be calculated
from the values of xi using the algorithm ideas proposed by Howgrave-Graham
mentioned previously.

For repeated addition and/or multiplication this encryption will fail as
the ri terms will exceed p, thereby invalidating the process. Gentry [37] pro-
posed a solution for repeated addition and/or multiplication using the ideas
of ‘bootstrapping’ and ‘squashing the decryption circuit’.
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3.2 The GCD of sets shifted by a positive integer

In this subsection, we study positive integer translations applied to a. That
is,

(a1, . . . , an), (a1 + 1, . . . , an + 1), . . .

We investigate t(a); the smallest non-negative integer j such that

gcd(a1 + j, . . . , an + j) = 1.

We note for all a with gcd(a) = 1 we have t(a) = 0. So a lower bound for
t(a) is t(a) ≥ 0. We also note that t(a) always exists; we just take j to be the
distance from H(a) to the lowest prime number greater than H(a). Using this
fact and [6, Theorem 1] gives t(a) = O(H(a)0.525).

Denote by j(s) the Jacobsthal function; the smallest integer t such that
any sequence of t consecutive integers contains an element that is coprime to
s.

Theorem 3.2.1. Let a = (a1, . . . , an) consist of at least 2 distinct elements.
Then

t(a)� (logH(a))2 . (3.20)

Proof. We start by showing that

t(a) < L(a) := min
ar,as∈{a1,...,an}

ar>as

j(ar − as).

Without loss of generality rearrange the elements of a, so that a1 ≥ a2 ≥ . . . ≥
an. Suppose to the contrary we have t(a) ≥ L(a). Fix two integers, r and s,
such that L(a) = j(ar − as). It follows that there exists positive integers qj
such that

gcd(ar + j, as + j) = qj 6= 1, 0 ≤ j ≤ L(a)− 1.

Since ar + j = (as + j)− (ar − as), we have

gcd(ar + j, as + j) = gcd(ar − as, as + j).

So

gcd(ar − as, as + j) = qj 6= 1, 0 ≤ j ≤ L(a)− 1.

But now the j(ar − as) consecutive integers as, as + 1, . . . , as + j(ar − as)− 1
are all not coprime to ar − as; contradicting the definition of the Jacobsthal
function. This proves that t(a) < L(a).
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Using the corollary in [54], we have

t(a)� min
ar,as∈{a1,...,an}

ar>as

(ω(ar − as) logω(ar − as))2

� (ω(H(a)) logω(H(a)))2 . (3.21)

By taking logarithms of both sides of the inequalities(
ω(m)

2

)ω(m)
2

≤ ω(m)! ≤ m

we obtain ω(m) logω(m)� logm. Combining this result with (3.21) yields

t(a)� (logH(a))2 ,

which completes the proof.
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Chapter 4

Polynomial irreducibility

4.1 The Eisenstein criterion

4.1.1 Introduction

This section is entirely based on [44]. We obtain a more precise version of
an asymptotic formula of A. Dubickas for the number of monic Eisenstein
polynomials of fixed degree d and of height at most H, as H → ∞. In
particular, we give an explicit bound for the error term. We also obtain an
asymptotic formula for arbitrary Eisenstein polynomials of height at most
H. The Eisenstein criterion [28] is a simple well-known sufficient criterion to
establish that an integer coefficient polynomial (and hence a polynomial with
rational coefficients) is irreducible, see also [19]. We recall that

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x] (4.1)

is called an Eisenstein polynomial if for some prime p we have

(i) p | ai for i = 0, . . . , n− 1,

(ii) p2 - a0,

(iii) p - an.

For integers d ≥ 2 and H ≥ 1, we let En(H) be the set of all Eisen-
stein polynomials with an = 1 and of height at most H, that is, satisfying
max{|a0|, . . . , |an−1|} ≤ H.

Dubickas [26] has given an asymptotic formula for the cardinality En(H) =
|En(H)|, see also [23]. Here we address this question again and obtain a
more precise version of this result with an explicit error term. Using tech-
niques different to those in [26], we also obtain an asymptotic formula for the
number of polynomials, whether monic or non-monic, that satisfy the Eisen-
stein criterion. We also observe that, since the publication of [44], Dotti and
Micheli [24] have used a function field analogue of these results to calculate
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densities for both monic and arbitrary Eisenstein polynomials (that is, ϑn in
Theorem 4.1.1 and ρn in Theorem 4.1.2).

Theorem 4.1.1. We have,

En(H) = ϑn2nHn +

{
O
(
Hn−1) , if n > 2,

O(H(logH)2), if n = 2,

where

ϑn = 1−
∏

p prime

(
1− p− 1

pn+1

)
.

We remark that our argument is quite similar to that of Dubickas [26],
and in fact the method of [26] can also produce a bound on the error term
in an asymptotic formula for En(H). However we truncate the underlying
inclusion-exclusion formula differently. This allows us to get a better bound
on the error term than that which follows from the approach of [26].

We also obtain an asymptotic formula for the cardinality Fn(H) = |Fn(H)|
of the set Fn(H) of Eisenstein polynomials of the form (4.1) of height at most
H, that is, satisfying max{|a0|, . . . , |an|} ≤ H. This result does not seem to
have any predecessors.

Theorem 4.1.2. We have,

Fn(H) = ρn2n+1Hn+1 +

{
O (Hn) , if n > 2,
O(H2(logH)2), if n = 2,

where

ρn = 1−
∏

p prime

(
1− (p− 1)2

pn+2

)
.

4.1.2 Preparations

We start by deriving a formula for the number of monic polynomials for which
a given positive number satisfies conditions that are similar, but not equival-
ent, to the Eisenstein criterion. Let s be a positive integer. Let Gn(s,H) be
the set of monic polynomials of the form (4.1), of height at most H, and such
that

(i) s | ai for i = 0, . . . , n− 1,

(ii) gcd (a0/s, s) = 1.

It is easy to see that [26, Lemma 2] immediately implies the following
result.
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Lemma 4.1.3. For s ≤ H, we have

|Gn(s,H)| = 2nHnϕ(s)

sn+1
+O

(
Hn−12ω(s)

sn−1

)
.

We now derive a version of Lemma 4.1.3 for arbitrary polynomials. Let
Hn(s,H) be the set of polynomials of the form (4.1), of height at most H,
and such that

(i) s | ai for i = 0, . . . , n− 1,

(ii) gcd (a0/s, s) = 1,

(iii) gcd(an, s) = 1.

We also use the well-known identity∑
d|s

µ(d)

d
=
ϕ(s)

s
, (4.2)

see [41, Section 16.3].
We now define the following generalisation of the Euler function,

ϕ(s,H) =
∑
|a|≤H

gcd(a,s)=1

1,

and use the following well-known consequence of the sieve of Eratosthenes.

Lemma 4.1.4. For any integer s ≥ 1, we have

ϕ(s,H) =
2Hϕ(s)

s
+O

(
2ω(s)

)
.

Proof. Using the inclusion-exclusion principle we write

ϕ(s,H) =
∑
d|s

µ(d)
∑
|a|≤H
d|a

1 =
∑
d|s

µ(d)

(
2

⌊
H

d

⌋
+ 1

)
.

Therefore,

ϕ(s,H) =
∑
d|s

µ(d)

(
2H

d
+O(1)

)
= 2H

∑
d|s

µ(d)

d
+O

∑
d|s

|µ(d)|

 .

Recalling (4.2) and that ∑
d|s

|µ(d)| = 2ω(s),

see [41, Theorem 264], we obtain the desired result.
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We also recall that
2ω(s) ≤ τ(s) = so(1) (4.3)

as s→∞, see [41, Theorem 317].
Next, we obtain an asymptotic formula for |Hn(s,H)|.

Lemma 4.1.5. For s ≤ H, we have

|Hn(s,H)| = 2n+1Hn+1ϕ2(s)

sn+2
+O

(
Hn

sn−1
2ω(s)

)
.

Proof. Fix a n > 1. For every i = 1, . . . , n − 1, the number of admissible
values of ai (that is, with |ai| ≤ H and s | ai) is equal to

2

⌊
H

s

⌋
+ 1 =

2H

s
+O(1). (4.4)

We now consider the admissible values of a0. Writing a0 = sm with an
integer m satisfying |m| ≤ H/s and gcd(m, s) = 1, we see from Lemma 4.1.4
that a0 takes

ϕ(s, bH/sc) =
2Hϕ(s)

s2
+O

(
2ω(s)

)
(4.5)

distinct values.
Lemma 4.1.4 also implies that ad takes

ϕ(s,H) =
2Hϕ(s)

s
+O

(
2ω(s)

)
(4.6)

distinct values.
Combining (4.4), (4.5) and (4.6), we obtain

|Hn(s,H)| =
(

2H

s
+O(1)

)n−1(2Hϕ(s)

s2
+O

(
2ω(s)

))
(

2Hϕ(s)

s
+O

(
2ω(s)

))
=

((
2H

s

)n−1
+O

((
H

s

)n−2))(2Hϕ(s)

s2
+O

(
2ω(s)

))
(4.7)(

2Hϕ(s)

s
+O

(
2ω(s)

))
.

Hence, using the trivial bound ϕ(s) ≤ s and that by (4.3) we have 2ω(s) =
O(H), we see that(

2Hϕ(s)

s2
+O

(
2ω(s)

))(2Hϕ(s)

s
+O

(
2ω(s)

))
=

4H2ϕ2(s)

s3
+O

(
H2ω(s)

)
.

Substituting into (4.7), and using that ϕ(s) ≤ s again, we obtain

|Hn(s,H)| = 2n+1Hn+1ϕ2(s)

sn+2
+O

(
Hn

sn−1
+
Hn−1

sn−2
2ω(s) +

Hn

sn−1
2ω(s)

)
.

Taking into account that s ≤ H, we conclude the proof.
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4.1.3 Proof of Theorem 4.1.1

We now prove the main result for monic Eisenstein polynomials.
The inclusion-exclusion principle implies that

En(H) = −
H∑
s=2

µ(s) |Gn(s,H)|.

Substituting the asymptotic formula of Lemma 4.1.3 for |Gn(s,H)|, yields

En(H) = −
H∑
s=2

µ(s)

(
2nHnϕ(s)

sn+1

)
+O

(
H∑
s=2

(
H

s

)n−1
2ω(s)

)

= −2nHn
∞∑
s=2

µ(s)ϕ(s)

sn+1
+O

(
Hn

∞∑
s=H+1

ϕ(s)

sn+1
+Hn−1

H∑
s=2

2ω(s)

sn−1

)
.

(4.8)

(since ϕ(s) ≤ s, the series in the main term converges absolutely for n ≥ 2).
Since µ(s)ϕ(s)/sn+1 is a multiplicative function, it follows that

−
∞∑
s=2

µ(s)ϕ(s)

sn+1
= 1−

∞∑
s=1

µ(s)ϕ(s)

sn+1

= 1−
∏

p prime

(
1− ϕ(p)

pn+1

)
= 1−

∏
p prime

(
1− p− 1

pn+1

)
. (4.9)

We also have
∞∑

s=H+1

ϕ(s)

sn+1
≤

∞∑
s=H+1

1

sn
= O

(
H−n+1

)
. (4.10)

Recalling (4.3), for n > 2 we immediately obtain

H∑
s=2

2ω(s)

sn−1
= O(1). (4.11)

For n = 2, we recall that∑
s≤t

2ω(s) ≤
∑
s≤t

τ(s) = (1 + o(1))t log t

as t→∞, see [41, Theorem 320].
Thus, via partial summation, we derive

H∑
s=2

2ω(s)

s
= O

(
H∑
t=2

log t

t

)
= O

(
(logH)2

)
. (4.12)

Substituting (4.9), (4.10), (4.11) and (4.12) into (4.8), we conclude the proof.
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4.1.4 Proof of Theorem 4.1.2

The inclusion-exclusion principle implies that

|Fn(H)| = −
H∑
s=2

µ(s)|Hn(s,H)|.

Using the asymptotic formula of Lemma 4.1.5 yields

|Fn(H)| = −
H∑
s=2

µ(s)

(
2n+1Hn+1ϕ2(s)

sn+2

)
+O

(
H∑
s=2

Hn 2ω(s)

sn−1

)

= −2n+1Hn+1
∞∑
s=2

µ(s)ϕ2(s)

sn+2

+O

(
Hn+1

∞∑
s=H+1

ϕ2(s)

sn+2
+Hn

H∑
s=2

2ω(s)

sn−1

) (4.13)

(since ϕ(s) ≤ s, the series in the main term converges absolutely for n ≥ 2).
In a similar manner to that used for (4.9), we note that µ(s)ϕ2(s)/sn+2 is a
multiplicative function, so it follows that

−
∞∑
s=2

µ(s)ϕ2(s)

sn+2
= 1−

∞∑
s=1

µ(s)ϕ2(s)

sn+2

= 1−
∏

p prime

(
1− ϕ2(p)

pn+2

)
= 1−

∏
p prime

(
1− (p− 1)2

pn+2

)
. (4.14)

Since ϕ(s) ≤ s, we also have

∞∑
s=H+1

ϕ2(s)

sn+2
≤

∞∑
s=H+1

1

sn
= O

(
H−n+1

)
. (4.15)

Substituting (4.14) and (4.15) into (4.13), and recalling (4.11) and (4.12), we
conclude the proof.

4.1.5 Further Comments on ϑn and ρn

As n→∞,

ϑn = 1−
∏

p prime

(
1− p− 1

pn+1

)
=

∞∑
s=2

µ(s)ϕ(s)

sn+1

=
1

2n+1
− 2

3n+1
+
∞∑
s=4

µ(s)ϕ(s)

sn+1
=

1

2n+1
− 2

3n+1
+O

(∫ ∞
3

1

σn−1
dσ

)
=

1

2n+1
− 2

3n+1
+O

(
1

n3n

)
=

1

2n+1
+O

(
1

3n

)
.
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Similarly,

ρn =
1

2n+2
+O

(
1

3n

)
, n→∞.

We have computed in Table 4.1 the approximate values of ϑn and ρn for
n = 2, . . . , 10. The first 10,000 primes have been used in the calculations. The
values of ϑn are consistent with those given in [26], but the values of ρn seems
to be new.

Table 4.1: Approximate values of ϑn and ρn for n = 2, . . . , 10.

n ϑn ρn
2 0.2515 0.1677
3 0.0953 0.0556
4 0.0409 0.0224
5 0.0186 0.0099
6 0.0088 0.0046
7 0.0042 0.0022
8 0.0021 0.0010
9 0.0010 0.0005
10 0.0005 0.0003
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4.2 Eisenstein shifted polynomials

4.2.1 Introduction

This section is entirely based on [45]. We study polynomials with integer
coefficients which become Eisenstein polynomials after the additive shift of
a variable. We call such polynomials shifted Eisenstein polynomials. We de-
termine an upper bound on the maximum shift that is needed given a shifted
Eisenstein polynomial and also provide a lower bound on the density of shifted
Eisenstein polynomials, which is strictly greater than the density of classical
Eisenstein polynomials. We also show that the number of irreducible degree
n polynomials that are not shifted Eisenstein polynomials is infinite.

We recall that

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 ∈ Z[x] (4.16)

is called an Eisenstein polynomial, or is said to be irreducible by Eisenstein if
for some prime p we have

(i) p | ai for i = 0, . . . , n− 1,

(ii) p2 - a0,

(iii) p - an.

We sometimes say that f is irreducible by Eisenstein with respect to prime
p if p is one such prime that satisfies the conditions (i), (ii) and (iii) above
(see [19] regarding the early history of the irreducibility criterion).

Recently, motivated by a question of Dobbs and Johnson [23] several stat-
istical results about the distribution of Eisenstein polynomials have been ob-
tained. Dubickas [26] has found the asymptotic density for monic polynomials
f of a given degree deg f = n and growing height

H(f) = max
i=0,...,n

|ai|. (4.17)

In Section 4.1 we gave an improvement in the error term in the asymptotic
formula of [26] and also calculated the density of general Eisenstein polyno-
mials.

Clearly, the irreducibility of polynomials is preserved under shifting of the
argument by a constant. Thus, it makes sense to investigate polynomials which
become Eisenstein polynomials after shifting the argument. More precisely,
here we study polynomials f(x) ∈ Z[x] for which there exists an integer s such
that f(x+ s) is an Eisenstein polynomial. We call such f(x) ∈ Z[x] a shifted
Eisenstein polynomial. We call the corresponding s an Eisenstein shift of f
with respect to p.

For example, for f(x) = x2 + 4x + 5, it is easy to see that s = −1 is an
Eisenstein shift with respect to p = 2.
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Here we estimate the smallest possible s which transfers a shifted Eisen-
stein polynomial f(x) into an Eisenstein polynomial f(x+s). We also estimate
the density of shifted Eisenstein polynomials and show that it is strictly greater
than the density of Eisenstein polynomials. On the other hand, we show that
there are irreducible polynomials that are not shifted Eisenstein polynomials.

More precisely, let In, En and En denote the set of irreducible, Eisenstein
and shifted Eisenstein polynomials, of degree n over the integers.

Trivially,

En ⊆ En ⊆ In.

We show that all inclusions are proper and that En \ En is quite “massive”.

4.2.2 Notation

We define In(H), En(H) and En(H) as the subsets of In, En and En, respect-
ively, consisting of polynomials of height at most H (where the height of a
polynomial (4.16) is given by (4.17)).

Throughout Section 4.2, we will change our standard notation and use
both letters p and q to represent primes.

Finally, we denote the discriminant of the function f by D(f).

4.2.3 A bound on Eisenstein shifts via the discriminant

It is natural to seek a bound on the largest shift required to find a shift if it
exists. In fact, for any polynomial, there is a link between the maximum shift
that could determine irreducibility and the discriminant.

The following result is well-known and, in wider generality, can be proven
by the theory of Newton polygons. Here we give a concise elementary proof.

Lemma 4.2.1. Suppose f ∈ Z[x] is of degree n. If f(x) is a shifted Eisenstein
polynomial then there exists a prime p with pn−1 | D(f) and f(x + s) is
irreducible by Eisenstein for some 0 ≤ s < q, where q is the largest of such
primes.

Proof. Since f(x) is a shifted Eisenstein polynomial there exists an integer t
and a prime p such that f(x + t) is irreducible by Eisenstein with respect to
p.

Recall that the discriminant of a n degree polynomial can be expressed
as the determinant of the 2n − 1 by 2n − 1 Sylvester matrix. Using the
Leibniz formula to express the determinant, and examining each summand, it
immediately follows that pn−1 | D(f(x + t)). Also, the difference of any two
roots of a polynomial is unchanged by increasing both roots by any integer u.
So, using the definition of the discriminant, we get D(f(x)) = D(f(x+u)) for
any integer u. So it follows that pn−1 | D(f(x)).

59



By expanding f(x+ t+ kp) for an arbitrary integer k and examining the
divisibility of coefficients, it follows that if f(x+ t) is Eisenstein with respect
to prime p then so is f(x+ t+ kp).

By appropriate choice of k, we can therefore find an integer s with

0 ≤ s < p ≤ max{p prime : pn−1 | D(f)}

such that the polynomial f(x+ s) is irreducible by Eisenstein.

We also recall a classical bound of Mahler [64] on the discriminant of
polynomials over Z.

For f(x) of the form (4.16), we define the length L(f) = |a0|+ |a1|+ . . .+
|an|.

Lemma 4.2.2. Suppose f ∈ Z[x] is of degree n. Then

|D(f)| ≤ nnL(f)2n−2.

Combining Lemmas 4.2.1 and 4.2.2 we derive the following.

Theorem 4.2.3. Suppose f(x) ∈ Z[x]. If f(x + s) is not irreducible by Eis-
enstein for all s with

0 ≤ s ≤ nn/(n−1)L(f)2,

then f is not a shifted Eisenstein polynomial.

We also remark that the shift s which makes f(x+ s) irreducible by Eis-
enstein with respect to prime p satisfies f(s) ≡ 0 (mod p), which can further
reduce the number of trials (however a direct irreducibility testing of f(x) via
the classical algorithm of Lenstra, Lenstra and Lovász [60] is still much more
efficient).

4.2.4 Density of shifted Eisenstein polynomials

In this section, we show that as polynomial height grows, the density of poly-
nomials that are irreducible by Eisenstein shifting is strictly larger than the
density of polynomials that are irreducible by Eisenstein. We start by cal-
culating a maximum height for f(x) such that f(x + 1) is of height at most
H.

Lemma 4.2.4. For f ∈ Z[x] of degree n, we denote f+1(x) = f(x+ 1). Then
H(f+1) ≤ 2nH(f).

Proof. Let f(x) be of the form (4.16). For i = 0, . . . , n, the absolute value of
the coefficient of xn−i in f+1 can be estimated as∑

0≤j≤i

(
n− j
i− j

)
|an−j | ≤ 2nH(f),

as required.
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We also need the number of polynomials, of given degree and maximum
height, that are irreducible by Eisenstein. Let

ρn = 1−
∏
p

(
1− (p− 1)2

pn+2

)
. (4.18)

In Section 4.1, we proved the following result.

Lemma 4.2.5. We have,

|En(H)| = ρn2n+1Hn+1 +

{
O (Hn) , if n > 2,
O(H2(logH)2), if n = 2.

We also require the following two lemmas.

Lemma 4.2.6. Suppose that f(x) is irreducible by Eisenstein with respect to
prime p. Then f(x+ 1) is not irreducible by Eisenstein with respect to p.

Proof. Let

f(x) =
n∑
i=0

aix
i ∈ En

be irreducible by Eisenstein with respect to prime p. The coefficient of x0 in
f(x + 1) is an + an−1 + . . . + a1 + a0, which is clearly not divisible by p. So
f(x+ 1) is not irreducible by Eisenstein with respect to p.

Let

τn =

(∑
p

(p− 1)2

pn+2

)2

−
∑
p

(p− 1)4

p2n+4
. (4.19)

Lemma 4.2.7. Let

Fn(H) = {f(x) ∈ En(H) : f(x+ 1) ∈ En}.

Then for n ≥ 2,

|Fn(H)| ≤ (τn + o(1)) (2H)n+1.

Proof. Fix some sufficiently large H and let

f(x) =

n∑
i=0

aix
i ∈ En(H).

Consequently,

f(x+ 1) =
n∑
i=0

Aix
i,
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with Ai = ai + Li(an, an−1, . . . , ai+1) where Li(an, an−1, . . . , ai+1) is a linear
form in an, an−1, . . . , ai+1 for i = 0, . . . , n. In particular,

An = an, An−1 = nan + an−1, An−2 =
n(n− 1)

2
an + (n− 1)an−1 + an−2.

There are at most O(Hn) polynomials f ∈ In(H) for which the condition

2An−2 − (n− 1)An−1 = (n− 1)an−1 + 2an−2 6= 0. (4.20)

is violated. Thus
|Fn(H)| = |F∗n(H)|+O(Hn), (4.21)

where F∗n(H) is the set of polynomials f ∈ Fn(H) for which (4.20) holds.
Now, given two primes p and q, we calculate an upper bound on the number

Nn(H, p, q) of f ∈ F∗n(H) such that

• f(x) is irreducible by Eisenstein with respect to prime p;

• f(x+ 1) is irreducible by Eisenstein with respect to prime q.

We see from Lemma 4.2.6 that Nn(H, p, q) = 0 if p = q. So we now always
assume that p 6= q.

To do so, we estimate (inductively over i = n, n − 1, . . . , 0) the number
of possibilities for the coefficient ai of f , provided that higher coefficients
an, . . . , ai+1 are already fixed.

• Possible values of an: We know that an 6≡ 0 (mod p) and an 6≡ 0
(mod q). Therefore, we conclude that the number of possible values
of an is 2H(p− 1)(q − 1)/pq +O(1).

• Possible values of ai, 1 ≤ i < n: Fix arbitrary an, an−1, . . . , ai+1. The
relations

ai ≡ 0 (mod p) and Ai = ai + Li(an, an−1, . . . , ai+1) ≡ 0 (mod q)

put ai in a unique residue class modulo pq. It follows that the number of
possible values of ai for i = n−1, n−2, . . . , 1 cannot exceed 2H/pq+O(1).

• Possible values of a0: We argue as before but also note that for a0 we
have the additional constraints that A0 6≡ 0 (mod p2), a0 6≡ 0 (mod q2)
and so a0 can take at most 2H(q − 1)(p− 1)/p2q2 +O(1) values.

So, for primes p and q we have

Nn(H, p, q) ≤
(

2H(p− 1)(q − 1)

pq
+O(1)

)(
2H

pq
+O(1)

)n−1
(

2H(p− 1)(q − 1)

p2q2
+O(1)

)
=

2n+1Hn+1(p− 1)2(q − 1)2

pn+2qn+2
+O(Hn).
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We also see from (4.20) that if pq > (n+ 1)H then Nn(H, p, q) = 0. Hence,

|F∗n(H)| ≤
∑
p 6=q

pq≤(n+1)H

(
2n+1Hn+1(p− 1)2(q − 1)2

pn+2qn+2
+O(Hn)

)

≤ (2H)n+1
∑
p 6=q

pq≤(n+1)H

(
(p− 1)2(q − 1)2

pn+2qn+2

)
+O

(
Hn+1 log logH

logH

)
,

as there are O(Q(logQ)−1 log logQ) products of two distinct primes pq ≤ Q,
see [80, Chapter II.6, Theorem 4]. Therefore,

|F∗n(H)| ≤ (2H)n+1
∑
p6=q

pq≤(n+1)H

(p− 1)2(q − 1)2

pn+2qn+2
+ o(Hn+1).

Since the above series converges, we derive

|F∗n(H)| ≤ (2H)n+1
∑
p 6=q

(p− 1)2(q − 1)2

pn+2qn+2
+ o(Hn+1)

= (2H)n+1

(∑
p,q

(p− 1)2(q − 1)2

pn+2qn+2
−
∑
p

(p− 1)4

p2n+4

)
+ o(Hn+1),

which concludes the proof.

We can now prove the main result of this section. We recall that ρn and
τn are defined by (4.18) and (4.19), respectively.

Theorem 4.2.8. For n ≥ 2 we have

lim inf
H→∞

|En(H)|
|En(H)|

≥ 1 + γn,

where

γn =
1

2n2+n

(
1− τn

ρn

)
> 0.

Proof. We see from Lemma 4.2.4 that for h = H/2n we have

En(H)
⋃

(En(h) \ Fn(h)) ⊆ En(H),

where Fn(h) is defined as in Lemma 4.2.7. Therefore, since Fn(h) ⊆ En(h),
we have

|En(H)| ≥ |En(H)|+ |En(h)| − |Fn(h)|.

Recalling Lemmas 4.2.5 and 4.2.7, we derive the desired inequality.
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It now remains to show that γn > 0. So it suffices to show that

ρn − τn > 0.

From (4.18) and (4.19), we have

ρn − τn = 1−
∏
p

(
1− (p− 1)2

pn+2

)
−

(∑
p

(p− 1)2

pn+2

)2

+
∑
p

(p− 1)4

p2n+4

≥ 1−
∏
p

(
1− (p− 1)2

pn+2

)
−

(∑
p

(p− 1)2

pn+2

)2

=

∞∑
k=1

(−1)k+1
∑

p1<...<pk

k∏
j=1

(pj − 1)2

pn+2
j

−

(∑
p

(p− 1)2

pn+2

)2

.

Discarding from the first sum all positive terms (corresponding to odd k)
except for the first one, we obtain

ρn − τn ≥
∑
p

(p− 1)2

pn+2
−
∞∑
k=1

∑
p1<...<p2k

2k∏
j=1

(pj − 1)2

pn+2
j

−

(∑
p

(p− 1)2

pn+2

)2

≥
∑
p

(p− 1)2

pn+2
−
∞∑
k=1

1

(2k)!

(∑
p

(p− 1)2

pn+2

)2k

−

(∑
p

(p− 1)2

pn+2

)2

≥
∑
p

(p− 1)2

pn+2
−
∞∑
k=1

(∑
p

(p− 1)2

pn+2

)2k

−

(∑
p

(p− 1)2

pn+2

)2

.

Hence, denoting

Pn =
∑
p

(p− 1)2

pn+2
,

we derive

ρn − τn ≥ Pn −
P 2
n

1 + P 2
n

− P 2
n .

Since

Pn ≤ P2 ≤ 0.18,

the result now follows.

It is certainly easy to get an explicit lower bound on γn in Theorem 4.2.8.
Various values of γn using the first 10,000 primes are given in Table 4.2.
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Table 4.2: Approximations to γn for some n

n γn
2 1.33× 10−2

3 2.36× 10−4

4 9.44× 10−7

5 9.28× 10−10

10 7.70× 10−34

This prompts the following question. Is it possible to obtain tighter bound
or exact values of

lim inf
H→∞

|En(H)|
(2H)n+1

and lim sup
H→∞

|En(H)|
(2H)n+1

(4.22)

(they most likely coincide)? Very recently, prompted by [45], Micheli and
Schnyder [68] have answered these questions using a local to global principle
for density computations over a free Z-module of finite rank.

4.2.5 Infinitude of In \ En
We note that a consequence of Lemma 4.2.1 is that any polynomial belongs
to In \ En if its discriminant is n− 1 free. Hence, we would expect the size of
In \ En to be “massive”. In fact, for a fixed degree greater than or equal to 2,
we can prove that the number of irreducible polynomials that are not shifted
Eisenstein polynomials is infinite.

Theorem 4.2.9. The set In \ En is infinite for all n ≥ 2.

Proof. Let f(x) = xn + x + p for some n ≥ 2 and some prime p. Then f is
irreducible (see [73, Lemma 9]). Since no prime can divide the coefficient of
x it follows that f is not an Eisenstein polynomial.

We show that f cannot be an Eisenstein shift polynomial. Suppose this is
not the case. Then for some integer s the polynomial f(x+s) is an Eisenstein
polynomial with respect to some prime q. We have

f(x+ s) = xn + nsxn−1 + . . .+ (nsn−1 + 1)x+ sn + s+ p.

However, the congruences ns ≡ 0 (mod q) and nsn−1 + 1 ≡ 0 (mod q) cannot
hold simultaneously.

So we conclude that for any n ≥ 2, the infinite set

{f(x) = xn + x+ p : p prime}

consists of irreducible polynomials that are not shifted Eisenstein polynomials.
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We also expect that

lim
H→∞

|In(H) \ En(H)|
|In(H)|

> 0.

For example, it is natural to expect that there is a positive proportion of poly-
nomials In(H) with a square-free discriminant, which by Lemma 4.2.1 puts
them in the set In(H) \ En(H). However, even the conditional (under the
ABC-conjecture) results of Poonen [75] about square-free values of multivari-
ate polynomials are not sufficient to make this claim.

We can, however, prove an inferior result, for degrees greater than 2, in-
volving height constrained polynomials that can be shifted to a height con-
strained Eisenstein polynomial.

Theorem 4.2.10. Let

Cn(H) = {f(x) ∈ En(H) : f(x+ s) ∈ En(H) for some s ∈ Z}.

Then for n > 2,

lim sup
H→∞

|Cn(H)|
2H(2H + 1)n

< 1.

Proof. Let Cn(d,H) be the set of all polynomials

f(x+ s) = an(x+ s)n + an−1(x+ s)n−1 + . . .+ a1(x+ s) + a0 ∈ Z[x]

such that

(i) s ∈ Z,

(ii) H(f(x+ s)) ≤ H,

(iii) f(x) is Eisenstein with respect to all the prime divisors of d,

(iv) H(f(x)) ≤ H,

(v) |s| < d.

Note that each element of Cn(d,H) may come from several pairs (f, s).

We also observe that the set of all f(x) described in (iii) and (iv) is precisely
Hn(d,H), where Hn(d,H) is the set of polynomials (4.16) of height at most
H and such that

(a) d | ai for i = 0, . . . , n− 1,

(b) gcd (a0/d, d) = 1,

(c) gcd(an, d) = 1.
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It then follows from the condition (v) in the definition of Cn(d,H) that

|Cn(d,H)| ≤ 2d|Hn(d,H)|.

Using the inclusion-exclusion principle implies that

|Cn(H)| ≤
∑

2≤d≤H
µ(d)=−1

|Cn(d,H)|,

and so
|Cn(H)| ≤

∑
2≤d≤H
µ(d)=−1

2dHn(d,H). (4.23)

From [44], we have

|Hn(d,H)| = 2n+1Hn+1ϕ2(d)

dn+2
+O

(
Hn

dn−1
2ω(d)

)
. (4.24)

Combining (4.23) and (4.24), we have

|Cn(H)| ≤
∑

2≤d≤H
µ(d)=−1

2d

(
2n+1Hn+1ϕ2(d)

dn+2
+O

(
Hn2ω(d)

dn−1

))

= 2
∑

2≤d≤H
µ(d)=−1

(
2n+1Hn+1ϕ2(d)

dn+1
+O

(
Hn2ω(d)

dn−2

))
.

Hence,

|Cn(H)|
2H(2H + 1)n

≤ 2
∑

2≤d≤H
µ(d)=−1

(
ϕ2(d)

dn+1
+O

(
2ω(d)

Hdn−2

))

= 2
∑

2≤d≤H
µ(d)=−1

ϕ2(d)

dn+1
+O

 1

H

H∑
2≤d≤H

2ω(d)

dn−2

 ,

for all n > 2. It’s easy to see that

H∑
d=2

2ω(d)

dn−2
= o(H),

for all n > 2. Hence,

|Cn(H)|
2H(2H + 1)n

≤ 2
∑

2≤d≤H
µ(d)=−1

ϕ2(d)

dn+1
+ o(1).

67



So

lim sup
H→∞

|Cn(H)|
2H(2H + 1)n

≤ 2
∑

µ(d)=−1

ϕ2(d)

dn+1
≤ 2

∑
µ(d)=−1

1

dn−1
= 2

∞∑
k=0

∑
ω(d)=2k+1

1

dn−1

≤ 2
∞∑
k=0

 1

(2k + 1)!

(∑
p

1

pn−1

)2k+1


≤ 2 sinh

(∑
p

1

pn−1

)
≤ 2 sinh

(∑
p

1

p2

)
.

As direct calculations show that∑
p

1

p2
< 0.46,

the result follows.

We infer from [14, Theorem 1] that

lim
H→∞

|In(H)|
2H(2H + 1)n

= 1,

which when combined with Theorem 4.2.10 yields

lim inf
H→∞

|In(H) \ Cn(H)|
|In(H)|

> 0,

for n > 2.

4.2.6 Comments

It is easy to see that the results of the work can be extended to monic poly-
nomials.

We note that testing whether f ∈ En can be done in an obvious way via
several greatest common divisor computations. We, however, do not know any
efficient algorithm to test whether f ∈ En. The immediate approach, based
on Lemma 4.2.1 involves integer factorisation and thus does not seem to lead
to a polynomial time algorithm. It is possible though, that one can get such
an algorithm via computing greatest common divisor of pairwise resultants of
the coefficients of f(x+ s) (considered as polynomials in s).

We also note that it is interesting and natural to study the affine Eisenstein
polynomials, which are polynomials f such that

(cx+ d)nf

(
ax+ b

cx+ d

)
∈ En
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for some a, b, c, d ∈ Z. Very recently, prompted by [45], Micheli and Schnyder
[68] have produced results regarding the density of affine Eisenstein polynomi-
als. However the estimation of the number of polynomials of bounded height
that are affine Eisenstein polynomials is still an interesting open question.

Studying the distribution of Galois groups of Eisenstein polynomials or the
statistics of Eisenstein polynomials with bounded roots, are also of interest.
For arbitrary monic polynomials, these questions are investigated in [20, 84]
and [1], respectively.
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4.3 The Dumas criterion

4.3.1 Introduction

This section on the Dumas criterion is entirely based on [46]. We study integer
coefficient polynomials of fixed degree and maximum height H that are irredu-
cible by the Dumas criterion. We call such polynomials Dumas polynomials.
We derive upper bounds on the number of Dumas polynomials as H → ∞.
We also show that, for a fixed degree, the density of Dumas polynomials in
the set of all irreducible integer coefficient polynomials is strictly less than 1.

The two most well-known polynomial irreducibility criteria based on coef-
ficient prime divisibility are probably the Eisenstein criterion and the Dumas
criterion. In this section, we explore densities of polynomials that satisfy the
Dumas criterion. This criterion is a sufficient condition for polynomial irre-
ducibility over Z (and hence Q). It can be thought of as a generalization of
the Eisenstein criterion since the Eisenstein criterion is an easy consequence
of the Dumas criterion.

We can now state the Dumas criterion. Let

f(x) =

n∑
i=0

aix
i ∈ Z[x] (4.25)

be such that a0an 6= 0.

If the Newton polygon for f with respect to any prime is a single segment
and contains no points with integer coordinates except the end points, then
f is irreducible. The proof of the Dumas criterion is often based on the
Newton diagram for a polynomial. The Newton diagram is similar to, but
lesser known than, the Newton polygon. Construction of the Newton diagram
and the proof of the Dumas criterion can be found in the book of Prasolov
[76, Subsection 2.2.1]. Interested readers can also consult the 1906 paper by
Dumas [27].

Whilst we will use the Newton polygon throughout this section, we note
in passing that the Dumas criterion can also be expressed algebraically (see
for example [9]) as follows. For any integer s and prime number p we denote
by υp(s) the largest integer j such that pj | s (by convention υp(0) = 0).

Lemma 4.3.1. Let p be a prime number and f(x) as in (4.25). If

(i)
υp(ai)
i >

υp(an)
i for i = 1, . . . , n− 1,

(ii) υp(a0) = 0,

(iii) gcd(υp(an), n) = 1,

then f is irreducible over Z.
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By way of example, the polynomial f(x) = x4 + 8 with respect to the
prime number 2 has a Newton polygon without integer coordinates (other
than endpoints). Therefore, f is irreducible by the Dumas criterion. By
contrast, the reducible polynomial f(x) = x4 + 4 cannot satisfy the Dumas
criterion since the coordinate (2, 2) or (2, 0) will appear in any Newton polygon
of f . So the determination of irreducibility using the Dumas criterion is not
possible for f(x) = x4 + 4. For integers n ≥ 2 and H ≥ 1, let Dn(H) be
the number of Dumas polynomials of height at most H, that is, satisfying
max{|a0|, . . . , |an|} ≤ H. Our main result is the following theorem.

Theorem 4.3.2. We have

Dn(H) ≤ (2H)n+1τn +

{
O
(
H2(logH)2

)
, if n = 2,

O (Hn) , if n ≥ 3,

where

τn =

1−
∏
p prime

(
1− 1

p

)2 (
1 + 2

p

)
, if n = 2,

1− 1
ζ(n−1) , if n ≥ 3.

We have already noted that the number of polynomials that satisfy the Ei-
senstein criterion, calculated in Section 4.1, provides a lower bound on Dn(H).
Specifically,

Lemma 4.3.3. We have

Dn(H) ≥ ϑn2nHn +

{
O
(
Hn−1) , if n > 2,

O(H(logH)2), if n = 2,

where

ϑn = 1−
∏

p prime

(
1− p− 1

pn+1

)
.

We note the appearance of values of the zeta function in the main term of
the estimate in Theorem 4.3.2. This arises from the fact that estimates of the
densities of k-tuples of positive integers that are relatively prime play a major
role in the proof of Theorem 4.3.2.

In Theorem 4.3.2, we also observe that the result for quadratics is quite
different to the result for higher degree polynomials. For polynomials of degree
greater than 2, we can use gcd conditions about the coefficients of the non-
leading and non-constant terms to enumerate the number of Dumas polyno-
mials. This is clearly not possible for quadratics and we are forced to consider
the coefficients of the leading and non-constant terms as well.
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4.3.2 Notation

Let f(x) be as in (4.25). We define the height of the polynomial f as

H(f) = max
0≤i≤n

|ai|.

4.3.3 Preparations

Lemma 4.3.4. Fix n = 2. Suppose that f(x) is as in (4.25) with H(f) ≤ H
and a1 6= 0. If f is a Dumas polynomial then gcd(aj , ak) 6= 1 for every j, k ∈
{0, 1, 2}.

Proof. Suppose there exists a polynomial with the property that gcd(aj , ak) =
1 for some distinct j, k ∈ {0, 1, 2}. If for any prime p we have p | a1 then clearly
p - a0 and p - a2. So the Newton polygon passes through the point (1, 0), since
it lies on the segment from (0, 0) to (2, 0). Thus, f is not a Dumas polynomial.
On the other hand, if for any prime p we have p - a1 then the Newton polygon
includes the point (1, 0). So again f is not a Dumas polynomial, completing
the proof.

Lemma 4.3.5. Fix n ≥ 2. Suppose f(x) is as shown in (4.25) with H(f) ≤
H, and we have a1a2 · · · an−1 6= 0. If f is a Dumas polynomial then it follows
that gcd(a1, a2, . . . , an−1) 6= 1.

Proof. Suppose f is as described above with gcd(a1, a2, . . . , an−1) = 1. For
any prime p, we must have p - ai for some 1 ≤ i ≤ n − 1. So the Newton
diagram for f with respect to p includes the point (ai, 0). Thus, the Newton
diagram with respect to any prime p does not consist of a single segment.
Therefore f is not a Dumas polynomial.

4.3.4 Proof of Theorem 4.3.2

Let f(x) be as in (4.25) with H(f) ≤ H. We prove Theorem 4.3.2 for n = 2
and n ≥ 3 separately.

We start with the n = 2 case. To ease notation we use gcd∗(a0, a1, a2) 6= 1
to mean that a0, a1 and a2 are not pairwise coprime, that is, gcd(a0, a1) 6= 1
or gcd(a0, a2) 6= 1 or gcd(a1, a2) 6= 1. We also use gcd∗(a0, a1, a2) = 1 to mean
that a0, a1 and a2 are pairwise coprime, that is, gcd(a0, a1) = gcd(a0, a2) =
gcd(a1, a2) = 1.

There are O(H2) polynomials with a0a1a2 = 0. If we have a0a1a2 6= 0
then, by Lemma 4.3.4, the polynomial f can only be a Dumas polynomial if
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gcd∗(a0, a1, a2) 6= 1. Therefore,

D2(H)−O(H2) ≤
∑

1≤|a0|,|a1|,|a2|≤H
gcd∗(a0,a1,a2)6=1

1

=
∑

1≤a0,a1,a2≤H
gcd∗(a0,a1,a2)6=1

8

= (2H)3 −
∑

1≤a0,a1,a2≤H
gcd∗(a0,a1,a2)=1

8. (4.26)

From the paper of Tóth [81, Corollary 2] we have∑
1≤a0,a1,a2≤H

gcd∗(a0,a1,a2)=1

1 = H3
∏

p prime

(
1− 1

p

)2(
1 +

2

p

)
+O

(
H2(logH)2

)
,

from which we obtain∑
1≤|a0|,|a1|,|a2|≤H
gcd∗(a0,a1,a2)=1

1 = (2H)3
∏

p prime

(
1− 1

p

)2(
1 +

2

p

)
+O

(
H2(logH)2

)
.

(4.27)

Substituting (4.27) into (4.26) completes the proof for the n = 2 case.
Now fix n ≥ 3. There are O(Hn) polynomials for which a1a2 · · · an−1 = 0.

If a1a2 · · · an−1 6= 0 then, by Lemma 4.3.5, the polynomial f can only be a
Dumas polynomial if gcd(a1, a2, . . . , an−1) 6= 1. Therefore,

Dn(H)−O(Hn) ≤
∑

1≤|a1|,|a2|,...,|an|≤H
gcd(a1,a2,...,an−1)6=1

1. (4.28)

We infer from Nymann [72] that∑
1≤|a1|,|a2|,...,|an|≤H
gcd(a1,a2,...,an−1)6=1

1 = (2H)n+1

(
1− 1

ζ(n− 1)

)
+O(Hn). (4.29)

Substituting (4.29) into (4.28) completes the proof for the n ≥ 3 case. Thus
Theorem 4.3.2 is proven.

4.3.5 Comments

Let Pn(H) be the number of polynomials of degree n and maximum height H.
Let In(H) be the number of irreducible polynomials of degree n and maximum
height H. Two results immediately follow from Theorem 4.3.2.
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Firstly, we note that Pn(H) is precisely (2H)(2H + 1)n and infer from
Cohen [14, Theorem 1] that for n ≥ 2

lim
H→∞

In(H)

Pn(H)
= 1.

Thus, for n ≥ 2,

lim sup
H→∞

Dn(H)

Pn(H)
= lim sup

H→∞

Dn(H)

In(H)
≤ τn.

Secondly, τn < 1 for all n ≥ 2 and so for n ≥ 2

lim sup
H→∞

Dn(H)

Pn(H)
= lim sup

H→∞

Dn(H)

In(H)
< 1.

Table 1 shows some calculated values of upper bounds on the limit su-
perior of Dn(H)/Pn(H) as H goes to infinity. It also includes limit inferior
calculations derived from Section 4.1. Specifically, for various values of n,
lower bounds on the limit inferior of Dn(H)/Pn(H) as H goes to infinity. All
summations are over all primes less than 100,000.

Table 4.3: Some lower bounds on lim inf Dn(H)/Pn(H) as H →∞ and upper
bounds on lim supDnH/Pn(H) as H →∞

n Lower bound Upper bound

2 0.1677 0.7133
3 0.0556 0.3922
4 0.0224 0.1681
5 0.0099 0.0766
6 0.0046 0.0357
7 0.0022 0.0181
8 0.0010 0.0079
9 0.0005 0.0049
10 0.0003 0.0020

This prompts the following question. Is it possible to obtain tighter bounds
or the exact values of

lim inf
H→∞

Dn(H)

Pn(H)
and lim sup

H→∞

Dn(H)

Pn(H)

(they most likely coincide)?
We also note that it is possible to find upper bounds on

lim sup
H→∞

Dn(H)/Pn(H)
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by directly calculating the number of Dumas polynomials for an arbitrary
single segment Newton polygon that contains no points with integer coordin-
ates other than endpoints, and then summing over all possible single segment
Newton polygons that contain no points with integer coordinates other than
endpoints. There are substantial problems using the inclusion-exclusion prin-
ciple with this approach; a Dumas polynomial with respect to more than one
prime may exhibit a different Newton polygon for each of these primes. Whilst
results for degree n > 3 are obtainable without the inclusion-exclusion prin-
ciple, it has not been possible to find any results that are superior to Theorem
4.3.2.

We also note that it is also interesting to study polynomials f such that

(cx+ d)nf

(
ax+ b

cx+ d

)
are Dumas polynomials for some a, b, c, d ∈ Z. There does not seem to be
enumeration results regarding these polynomials. But there has been some
progress in determining which polynomials do and do not give Dumas poly-
nomials after such an affine shift, see [56] and [8] and references therein.
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4.4 Irreducible binomials in finite fields

4.4.1 Introduction

This section is entirely based on [48]. We consider various counting questions
for irreducible binomials over finite fields. We use various results from analytic
number theory to investigate these questions.

It is reasonably easy to obtain an asymptotic formula for the total num-
ber of irreducible polynomials over the finite field Fq of q elements, see [61,
Theorem 3.25].

Studying irreducible polynomials with some prescribed coefficients is much
more difficult, yet remarkable progress has also been achieved in this direction,
see [16, 53, 74] and references therein.

Here we consider a special case of this problem and investigate some count-
ing questions concerning irreducible binomials over the finite field Fq of q ele-
ments. More precisely, for an integer t and a prime power q, let Nt(q) be the
number of irreducible binomials over Fq of the form Xt − a ∈ Fq[X].

We use a well known characterisation of irreducible binomials Xt− a over
Fq of q elements to count the total number of such binomials on average over q
or t. In fact, we consider several natural regimes, for example, when t is fixed
and q varies or when both vary in certain ranges t ≤ T and q ≤ Q. There
has always been very active interest in binomials, see [61, Notes to Chapter 3]
for a survey of classical results. Irreducible binomials have been used in [78]
as building blocks for constructing other irreducible polynomials over finite
fields, and in [10] for characterising the irreducible factors of Xn − 1 (see
also [3, 65] and references therein for more recent applications). However,
the natural question of investigating the behaviour of Nt(q) has never been
addressed in the literature.

Our methods rely on several classical and modern results of analytic num-
ber theory; in particular the distribution of primes in arithmetic progressions.

4.4.2 Notation

As usual, for any integer n > 0, let Λ(n) denote the von Mangoldt function.
That is,

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.

For positive integersQ and s, we denote the number of primes in arithmetic
progression by

π(Q; s, a) =
∑
p≤Q

p≡a (mod s)

1.
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We also denote
ψ(Q; s, a) =

∑
p≤Q

p≡a (mod s)

Λ(p).

In regard to big-Oh notation or �, the constant c > 0 may depend on the
real parameter ε > 0.

We define logX as logX = max{lnX, 2} where lnX is the natural logar-
ithm, For an integer k ≥ 2, we define recursively logkX = log(logk−1X).

Finally, we use Σ] to indicate that the summation is only over squarefree
arguments in the range of summation.

4.4.3 Main results

We denote the radical of an integer t 6= 0, the largest square-free number that
divides t, by rad(t). It is also convenient to define

rad4(t) =

{
rad(t) if 4 - t,
2rad(t) otherwise.

We start with an upper bound on the average value of Nt(q) for a fixed t
averaged over q ≤ Q.

Theorem 4.4.1. For any fixed ε > 0 uniformly over real Q and positive
integers t with rad4(t) ≤ Q1−ε, we have∑

q≤Q
Nt(q) ≤ (1 + o(1))

Q2

rad4(t) log(Q/rad4(t))

as Q→∞.

We also present the following lower bound (which has ϕ(rad(t))2 instead
of the expected ϕ(rad(t))).

Theorem 4.4.2. There exists an absolute constant L > 0 such that uniformly
over real Q and positive integers t with Q ≥ tL we have∑

q≤Q
Nt(q)�

Q2

ϕ(rad(t))2(logQ)2
.

We also investigate Nt(q) for a fixed q averaged over t ≤ T .

Theorem 4.4.3. For any fixed positive A and ε and a sufficiently large real
q and T with

T ≥ (log(q − 1))(1+ε)A log3 q/ log4 q

we have ∑
t≤T

Nt(q) ≤ (q − 1)T/(log T )A.
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Finally, we obtain an asymptotic formula for the double average of Nt(q)
over q ≤ Q and squarefree t ≤ T in a rather wide range of parameters Q and
T . With more work similar results can also be obtained for the average value
of Nt(q) over all integers t ≤ T . However, to exhibit the ideas and simplify
the exposition, we limit ourselves to this special case, in particular we recall
our notation Σ] from Section 4.4.2.

Theorem 4.4.4. For any fixed ε > 0 and any

T ≤ Q1/2/(logQ)5/2+ε

we have ∑
t≤T

] ∑
q≤Q

Nt(q) = (1 + o(1))
Q2 log T

2ζ(2) logQ
,

as T →∞.

It seems difficult to obtain the asymptotic formula of Theorem 4.4.4 for
larger values of T (even under the Generalised Riemann Hypothesis). How-
ever, here we show that a result of Mikawa [69] implies a lower bound of right
order of magnitude for values of T of order that may exceed Q1/2.

Theorem 4.4.5. For any fixed β < 17/32 and T ≤ Qβ, we have

∑
T≤t≤2T

] ∑
q≤Q

Nt(q)�
Q2

logQ
.

We note that Theorem 4.4.5 means that for a positive proportion of fields
Fq with q ≤ Q there is a positive proportion of irreducible binomials whose
degrees do not exceed Qβ.

4.4.4 Characterisation of irreducible binomials

Let ordq a denote the multiplicative order of a ∈ F∗q .
Our main tool is the following characterisation of irreducible binomials

(see [61, Theorem 3.75]).

Lemma 4.4.6. Let t ≥ 2 be an integer and a ∈ F∗q. Then the binomial Xt−a
is irreducible in Fq[X] if and only if the following three conditions are satisfied.

1. rad(t) | ordq a,

2. gcd (t, (q − 1)/ ordq a) = 1,

3. if 4 | t then q ≡ 1 (mod 4).
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Lemma 4.4.7. Suppose that q is a prime power. Then

Nt(q) =


ϕ(t)

t
(q − 1), if rad4(t) | (q − 1),

0, otherwise.

Proof. We can assume that rad4(t) | (q − 1) (or equivalently rad(t) | (q − 1)
and if 4 | t then q ≡ 1 (mod 4)), as in the opposite case the result follows
immediately from Lemma 4.4.6.

From Lemma 4.4.6 we see that

Nt(q) =
∑
a∈F∗q

rad(t)|ordq a
gcd(t,(q−1)/ ordq a)=1

1.

Since F∗q is a cyclic group, there are ϕ(ordq a) elements of F∗q that have order
equal to ordq a. Hence, we obtain

Nt(q) =
∑

j|(q−1)
rad(t)|j

gcd(t,(q−1)/j)=1

ϕ(j).

We now write q − 1 = RS, where R is the largest divisor of q − 1 with
gcd(R, rad(t)) = 1 (thus all prime divisors of S also divide t). Now, for every
integer j | (q−1) the conditions rad(t) | j and gcd(t, (q−1)/j) = 1 mean that
j = Sd for some d | R. Since gcd(S,R) = 1, we have

Nt(q) =
∑
d|R

ϕ(Sd) = ϕ(S)
∑
d|R

ϕ(d) = ϕ(S)R =
ϕ(t)

t
SR =

ϕ(t)

t
(q − 1),

which concludes the proof.

4.4.5 Analytic number theory background

We recall a quantitative version of the Linnik theorem, see [55, Corollary 18.8],
which is slightly stronger than the form which is usually used.

Lemma 4.4.8. There is an absolute constant L such that if a positive integer
k is sufficiently large and Q ≥ kL, then uniformly over all integers a with
gcd(k, a) = 1 we have

ψ(Q; k, a)� Q

ϕ(k)
√
k
.

On average over k, we have a much more precise result given by the
Bombieri–Vinogradov theorem which we present in the form that follows from
the work of Dress, Iwaniec, and Tenenbaum [25] combined with the method
of Vaughan [82].
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Lemma 4.4.9. For any A > 0, α > 3/2 and T ≤ Q we have∑
t≤T

max
gcd(a,t)=1

max
R≤Q

∣∣∣∣π(R; t, a)− π(R)

ϕ(t)

∣∣∣∣ ≤ Q(logQ)−A +Q1/2T (logQ)α.

The following result follows immediately from much more general estimates
of Mikawa [69, Bounds (4) and (5)].

Lemma 4.4.10. For any fixed β < 17/32, u ≤ zβ and for all but o(u) integers
k ∈ [u, 2u] we have

π(2z; k, 1)− π(z; k, 1)� z

ϕ(k) log z
.

We also have a bound on the number ρT (n) of integers t ≤ T with rad(t) |
n, which is due to Grigoriev and Tenenbaum [38, Theorem 2.1]. We note
that [38, Theorem 2.1] is formulated as a bound on the number of divisors
t | n with t ≤ T . However, a direct examination of the argument reveals
that it actually provides an estimate for the above function ρT (n). In fact, we
present it in simpler form given by [38, Corollary 2.3]

Lemma 4.4.11. For any fixed positive A and ε and a sufficiently large positive
integer n and a real T with

T ≥ (log n)(1+ε)A log3 n/ log4 n

we have ρT (n) ≤ T/(log T )A.

4.4.6 Proof of Theorem 4.4.1

For the case where 4 - t, we denote s = rad(t). Using Lemma 4.4.7, we have∑
q≤Q

Nt(q) =
ϕ(t)

t

∑
q≤Q
s|(q−1)

(q − 1) =
ϕ(t)

t

∑
q≤Q
s|(q−1)

q +O(Q/s). (4.30)

So, with

` =

⌊
logQ

log 2

⌋
and λ = 2ε−1,

we have ∑
q≤Q
s|(q−1)

q =
∑
p≤Q
s|(p−1)

p+
∑

2≤r≤`

∑
pr≤Q
s|(pr−1)

pr. (4.31)

Using the Brun-Titchmarsh bound, see [55, Theorem 6.6] and partial summa-
tion we obtain ∑

p≤Q
s|(p−1)

p ≤ (1 + o(1))
Q2

ϕ(s) log(Q/s)
, (4.32)
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provided that s/Q→ 0.
We now estimate the contribution from other terms with r ≥ 2.
The condition s | pr − 1 puts p in at most rω(s) arithmetic progressions

modulo s. Extending the summation to all integers n ≤ Q1/r in these pro-
gressions, we have ∑

pr≤Q
s|(pr−1)

pr � rω(s)Q(Q1/rs−1 + 1).

We use this bound for r ≤ λ. Since

ω(s)� log s

log log(s+ 2)
,

for r ≤ λ we have

rω(s) = exp

(
O

(
log s

log log(s+ 2)

))
.

The total contribution from all terms with 2 ≤ r ≤ λ is at most∑
2≤r≤λ

∑
pr≤Q
s|(pr−1)

pr ≤ Q(Q1/2s−1 + 1) exp

(
O

(
log s

log log(s+ 2)

))

= Q1+o(1)(Q1/2s−1 + 1). (4.33)

For λ ≤ r ≤ ` we use the trivial bound∑
λ≤r≤`

∑
pr≤Q
s|(pr−1)

pr ≤ `Q1+1/λ. (4.34)

Combining (4.33) and (4.34), we see that∑
2≤r≤`

∑
pr≤Q
s|(pr−1)

pr � Q3/2+o(1)s−1 +Q1+o(1) +Q1+ε/2 logQ

� Q3/2+o(1)s−1, (4.35)

provided that s ≤ Q1−ε and Q→∞. Recalling (4.30), (4.31) and (4.32) and
that

ϕ(t)

tϕ(s)
=

1

s
,

we conclude the proof for the case where 4 - t.
In the event that 4 | t then, returning to (4.30), we have∑

q≤Q
Nt(q) =

ϕ(t)

t

∑
q≤Q
s|(q−1)
4|(q−1)

(q − 1) =
ϕ(t)

t

∑
q≤Q

lcm(4,rad(t))|(q−1)

(q − 1).

Since lcm(4, rad(t)) = 2rad(t), the proof now continues as before, replacing s
with 2s.
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4.4.7 Proof of Theorem 4.4.2

Combining (4.30) and (4.31), we have

∑
q≤Q

Nt(q) ≥
∑
p≤Q

Nt(p) =
ϕ(t)

t

∑
p≤Q

rad4(t)|(p−1)

(p− 1)

≥ ϕ(t)

t

∑
p≤Q

2s|(p−1)

(p− 1), (4.36)

where, as before, s = rad(t).

It immediately follows from Lemma 4.4.8 that

π(Q; 2s, 1)� Q

ϕ(2s)
√

2s logQ
≥ Q

ϕ(s)
√
s logQ

.

Thus

∑
p≤Q

2s|(p−1)

p ≥
π(Q;s,1)∑
k=1

(2ks+ 1) ≥ 2s
π(Q; s, 1)2

2
� Q2

ϕ2(s)(logQ)2
.

Combining this lower bound with (4.36) completes the proof.

4.4.8 Proof of Theorem 4.4.3

Fix any positive T and q. For q−1 ≡ 0 (mod 4) we have, using Lemma 4.4.7,

∑
t≤T

Nt(q) = (q − 1)
∑
t≤T

rad(t)|(q−1)

ϕ(t)

t
≤ (q − 1)

∑
t≤T

rad(t)|(q−1)

1. (4.37)

For q − 1 6≡ 0 (mod 4) we have, using Lemma 4.4.7,

∑
t≤T

Nt(q) = (q − 1)
∑
t≤T

rad(t)|(q−1)
4-t

ϕ(t)

t
≤ (q − 1)

∑
t≤T

rad(t)|(q−1)

ϕ(t)

t

≤ (q − 1)
∑
t≤T

rad(t)|(q−1)

1. (4.38)

Combining (4.37), (4.38) and Lemma 4.4.11 completes the proof.
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4.4.9 Proof of Theorem 4.4.4

Using (4.30), (4.31) and (4.35), we have

∑
t≤T

] ∑
q≤Q

Nt(q) =
∑
t≤T

] ϕ(t)

t

∑
p≤Q
t|(p−1)

p+O

Q3/2+o(1)
∑
t≤T

t−1


=
∑
t≤T

] ϕ(t)

t

∑
p≤Q
t|(p−1)

p+O
(
Q3/2+o(1)

)
, (4.39)

as T ≤ Q1/2.
Using partial summation, we have∑

p≤Q
t|(p−1)

p = (Kt+ 1)π(Kt+ 1; t, 1)− t
∑

1≤k≤K
π(kt; t, 1), (4.40)

where K = b(Q− 1)/tc.
We now write

E(Q, t) = max
R≤Q

∣∣∣∣π(R; t, 1)− π(R)

ϕ(t)

∣∣∣∣ .
With this notation, we derive from (4.40) that∑

p≤Q
t|(p−1)

p =
Qπ(Q)

ϕ(t)
− t

ϕ(t)

∑
1≤k≤K

π(kt) +O (tKE(Q, t)) . (4.41)

By the prime number theorem and [55, Corollary 5.29], and noting that for
1 ≤ k ≤ K we have kt ≤ Q, we also conclude that∑

1≤k≤K
π(kt) = t

∑
1≤k≤K

k

log(kt)
+O(Q2(logQ)−2)

= t
∑

K/(logQ)2≤k≤K

k

log(kt)
+O(Q2(logQ)−2).

Now, for K/(logQ)2 ≤ k ≤ K we have

1

log(kt)
=

1

logQ+O(log logQ)
=

1

logQ
+O

(
log logQ

(logQ)2

)
.

Therefore,∑
1≤k≤K

π(kt) =

(
1

2
+ o(1)

)
t

logQ
K2 =

(
1

2
+ o(1)

)
Q2

t logQ
.

83



Substituting this in (4.41) and using π(Q) ∼ Q/ logQ, we obtain

∑
p≤Q
t|(p−1)

p =

(
1

2
+ o(1)

)
Q2

ϕ(t) logQ
+O (QE(Q, t)) .

Using this bound in (4.39) yields

∑
t≤T

] ∑
q≤Q

Nt(q) =

(
1

2
+ o(1)

)
Q2

2 logQ

∑
t≤T

] 1

t

+O

Q3/2+O(1) +Q
∑
t≤T
E(Q, t)

 .

By Lemma 4.4.9, with A = 1 + ε and α = 3/2 + ε/2, there is some B > 0 such
that ∑

t≤T
E(Q, t)� Q(logQ)−A +Q1/2T (logQ)α � Q(logQ)−1−ε/2.

Hence∑
t≤T

] ∑
q≤Q

Nt(q) =

(
1

2
+ o(1)

)
Q2

logQ

∑
t≤T

] 1

t
+O

(
Q(logQ)−1−ε/2

)
. (4.42)

A simple inclusion-exclusion argument leads to the asymptotic formula∑
t≤T

] 1

t
=

(
1

ζ(2)
+ o(1)

)
log T, (4.43)

see [79] for a much more precise result. Substituting (4.43) into (4.42) com-
pletes the proof.

4.4.10 Proof of Theorem 4.4.5

We proceed as in the proof of Theorem 4.4.4, but instead of (4.39) we write∑
T≤t≤2T

] ∑
q≤Q

Nt(q) ≥
∑

T≤t≤2T

] ∑
Q/2≤p≤Q

Nt(p) =
∑

T≤t≤2T

] ϕ(t)

t

∑
Q/2≤p≤Q
t|(p−1)

p

� Q
∑

T≤t≤2T

] ϕ(t)

t
(π(Q; t, 1)− π(Q/2; t, 1)) .

Using Lemma 4.4.10, we easily conclude the proof.
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Chapter 5

Appendix 1

We say that (a1, . . . , a4) is pairwise non-coprime if gcd(ai, aj) 6= 1 for all
1 ≤ i < j ≤ 4. We use the methodology of [31] to calculate the densities of
4-tuples of positive integers that pairwise non-coprime.

This density is given by

N(4) = lim
H→∞

1

H4

∑
1≤a1,...,a4≤H
gcd(ai,aj)6=1
1≤i<j≤4

1.

Let H be a positive integer and A a set of ordered pairs (i, j) with 1 ≤ i <
j ≤ H. Define

NA = lim
H→∞

1

H4

∑
1≤a1,...,a4≤H
gcd(ai,aj)=1

(i,j)∈A

1.

Let

At =

(
1

p

)t(
1− 1

p

)4−t
, t = 0, 1, 2, 3,

and

Ci1,...,i4 =
∏

p prime

(i1A1 + · · ·+ i4A4) .

We note that for each set A we have NA = Ci1,...,i4 , where i1, . . . i4 are calcu-
lated by the process outlined in [31] and shown below. Using the inclusion-
exclusion principle, and appealing to symmetry, we have

N(4) = 1− 6N{(1,2)} + 12N{(1,2),(1,3)} + 3N{(1,2),(3,4)} − 12N{(1,2),(2,3),(3,4)}
− 4N{(1,2),(2,3),(2,4)} − 4N{(1,2),(2,3),(3,1)} + 3N{(1,2),(2,3)(3,4),(4,1)}

+ 8N{(1,2),(2,3),(1,3),(1,4)} − 6N{(1,2),(1,3),(1,4),(2,3),(2,4)}
+N{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.
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Then, using Figures 5.1 to 5.7 and Tables 5.1 to 5.7, we have

N(4) = 1− 6C1,4,5,2 + 12C1,4,4,1 + 3C1,4,4,0 − 12C1,4,3,0 − 4C1,4,3,1 − 4C1,4,3,0

+ 3C1,4,2,0 + 12C1,4,2,0 − 6C1,4,1,0 + C1,4,0,0

= 1− 6C1,4,5,2 + 12C1,4,4,1 + 3C1,4,4,0 − 16C1,4,3,0 − 4C1,4,3,1 + 15C1,4,2,0

− 6C1,4,1,0 + C1,4,0,0

≈ 0.0790,

where the products are over all primes less than 100,000.

Figure 5.1: Graph for N{(1,2)}

a3

a2 a1

a4

Table 5.1: Calculation of N{(1,2)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 1 0
1 0 0 1
0 1 0 1 5A2

0 1 1 0
0 0 1 1

p divides exactly three ai
1 0 1 1 2A3

0 1 1 1

Required density C1,4,5,2
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Figure 5.2: Graph for N{(1,2),(1,3)}

a3

a2 a1

a4

Table 5.2: Calculation of N{(1,2),(1,3)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 0 1
0 1 1 0
0 1 0 1 4A2

0 0 1 1

p divides exactly three ai 0 1 1 1 A3

Required density C1,4,4,1

Figure 5.3: Graph for N{(1,2),(3,4)}

a3

a2 a1

a4

Table 5.3: Calculation of N{(1,2),(3,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 1 0
1 0 0 1 4A2

0 1 0 1
0 1 1 0

Required density C1,4,4,0
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Figure 5.4: Graph for N{(1,2),(2,3),(3,4)}

a3

a2 a1

a4

Table 5.4: Calculation of N{(1,2),(2,3),(3,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 1 0
0 1 0 1 3A2

1 0 0 1

Required density C1,4,3,0

Figure 5.5: Graph for N{(1,2),(2,3),(2,4)}

a3

a2 a1

a4

Table 5.5: Calculation of N{(1,2),(2,3),(2,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 1 0
0 0 1 1 3A2

1 0 0 1

p divides exactly three ai 1 0 1 1 A3

Required density C1,4,3,1
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Figure 5.6: Graph for N{(1,2),(2,3),(1,3)}

a3

a2 a1

a4

Table 5.6: Calculation of N{(1,2),(2,3),(1,3)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

0 1 0 1
0 0 1 1 3A2

1 0 0 1

Required density C1,4,3,0

Figure 5.7: Graph for N{(1,2),(2,3),(3,4),(1,4)}

a3

a2 a1

a4

Table 5.7: Graph for N{(1,2),(2,3),(3,4),(1,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai

1 0 1 0 2A2

0 1 0 1

Required density C1,4,2,0
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Figure 5.8: Graph for N{(1,2),(2,3),(1,3),(1,4)}

a3

a2 a1

a4

Table 5.8: Calculation of N{(1,2),(2,3),(1,3),(1,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai
0 0 1 1 2A2

0 1 0 1

Required density C1,4,2,0

Figure 5.9: Graph for N{(1,2),(1,3),(2,3),(2,4),(1,4)}

a3

a2 a1

a4

Table 5.9: Calculation of N{(1,2),(1,3),(2,3),(2,4),(1,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

p divides exactly two ai 0 0 1 1 A2

Required density C1,4,1,0
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Figure 5.10: Graph for N{(1,2),(1,3),(2,3),(2,4),(1,4),(3,4)}

a3

a2 a1

a4

Table 5.10: Calculation of N{(1,2),(1,3),(2,3),(2,4),(1,4),(3,4)}

Element divisibility condition Matrix Formula

p does not divide any ai 0 0 0 0 A0

p divides exactly one ai

1 0 0 0
0 1 0 0 4A1

0 0 1 0
0 0 0 1

Required density C1,4,0,0
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