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Abstract

The wide-spread use of the web and mobile platforms and their high engagement in
human lives pose serious threats to the privacy and confidentiality of users. Service
providers use variety of technologies to collect a lot of information about their users;
from basic details like name and birthday to complete history of a user searches,
clicks, locations, and devices and often a very sensitive information such as health
and financial records. One obvious reason to collect such information is to create
personalized user experience with the goal of increasing revenue, but at the same
time this information is often used to profile users for targeted advertising, perform
aggregate measurement and analytics e.g. traffic statistics, or in some cases, sold
to third-parties in (un)anonymized form either for research or other purposes. This
plethora of collecting as much information about users, sometimes unknowingly to
them, has raised serious privacy concerns in the digital world. Among many, Online
Tracking is one of the glitches that may have devastating consequences on a user’s
private life. Research has shown that desktops and mobile devices, and associated
web browsers and mobile apps contain subtle information which allow them to be
“fingerprinted or tracked”.
As a matter of fact, online tracking is no longer limited to traditional mecha-

nisms of storing web browser cookies, or IP addresses. Now, advanced tracking
techniques such as behavioral-based tracking is being used to more precisely tar-
get users. Behavioral-based tracking is induced by the collection and monitoring of
users online activities and has the potential to track or identify the actual (physical)
person. In addition, first-party websites import a range of external resources from
various third-party domains that further load resources hosted on other domains.
For each website, this creates a dependency chain underpinned by a form of im-
plicit trust between the first-party and transitively connected third-parties. This
inter-connectivity of web services also leads to online tracking by various unknown
third-parties without user consent. Thus, the success of tracking mechanisms is a
clear indication that anonymization or obfuscation techniques to protect the privacy
of individuals, in reality, are not successful if the collected data contains potentially
unique combinations of attributes relating to specific individuals.
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Abstract

With this in view, this thesis focuses on understanding the privacy risks across
web and mobile platforms by identifying and quantifying the privacy leakages and
then designing privacy preserving frameworks against identified leakages. We first
investigate the potential of using touch-based gestures for tracking mobile device
users. For this purpose, we propose and develop an analytical framework that
quantifies the amount of information carried out by the user touch gestures. Our
findings highlight that user touch gestures exhibit high uniqueness and can help
re-identifying users with high accuracy.
We then quantify users’ privacy risk in web data using probabilistic methods that

incorporate three key privacy considerations: uniqueness, uniformity, and linkability
of web data. Our experimental results show that the proposed quantitative method
is effective in predicting privacy risks in web data. We also perform a large-scale
study of dependency chains in the web and find that a large proportion of web-
sites under-study load resources from suspicious third-parties that are known to
mishandle user data and risk privacy leaks.
The second half of the thesis addresses the abovementioned identified privacy risks

by designing and developing privacy preserving frameworks for the web and mobile
platforms. We propose an on-device privacy preserving framework that minimizes
privacy risks by bringing down the threat of tracking and identification of mobile
users while preserving the functionality of the existing apps/services. We formulate
our problem as time-series modeling and forecasting that overcomes the problem of
handling unpredictable data and balancing privacy-utility when sensor data is highly
dynamic. Rigorous experiments on datasets show that out framework limits user
tracking and identification threats while maintaining a reasonable level of utility.
We finally propose a privacy-aware obfuscation framework for the web data. Us-

ing differentially-private noise addition, our proposed framework is resilient against
adversaries who have knowledge about the obfuscation mechanism and the training
dataset. Our experimental study conducted on two real web datasets validates the
significance and efficacy of our framework. Our results indicate that some obfuscated
entries offer almost no privacy risk while achieving high utility.
We conclude this thesis with two key findings. First, we observe that users can

be tracked and identified through their unique behavior on the web and mobile
platforms. For instance, we show that touch sensors on mobile devices and data
entries on the web have an ability to uniquely identify users, leading to a threat of
online tracking. Second, we realize that new privacy-preserving methods are required
to handle tracking issues in an online web and mobile environment. The second half
of our thesis is dedicated to the design and development of such methods.
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Chapter 1

Introduction

The ever changing technological landscape, high user involvement, increased societal
visibility, and amalgamation of services has made privacy difficult to maintain in a
digital world. Preserving user identity from being tracked is a significant challenge
nowadays and has become more complex with the advancement in technologies that
have an ability to cross-link data sources to infer more information. Some examples
aggravating the privacy concerns include location-based tracking, face recognition,
mobile sensors to identify or track people, behavioural features, interactions and
gestures, and so on. Data analysis methods and the exponentially growing compu-
tational resources available for data mining tasks are another potential obstacle for
maintaining privacy. For example, huge cloud-based data centres have the ability
to process and compare user profiles among massive sets of records, to identify and
make sense of the relevant information. As the user models and predictions become
more accurate, and as the services increase their reliance on these predictions, user
privacy concerns may further increase.
This thesis is an attempt to highlight privacy concerns across web and mobile

platforms by identifying and quantifying the privacy leakages, and then design-
ing privacy preserving frameworks against the identified threats. We believe that
tracking-related privacy concerns, highlighted in this thesis, will take a more promi-
nent role and will attract research works and practical industry attention alike.

1.1 Motivation

The maturity and high acceptance of digital technologies, such as web and mobile
platforms, have finally made their way to user’s everyday life. According to a survey,
the internet user growth has reached 4.39 billion in 2019, representing an increase of
366 million (9%) since January 2018 [126]. Moreover, the ways in which people use
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the internet are evolving quickly too, with mobile phones accounting for an ever-
increasing share of our online activities. Now, there are 5.11 billion unique mobile
users with roughly 5.5 billion smartphones in use across the world [126]. However,
the high engagement of web and mobile technologies in personal lives comes with
risks. Privacy is one of the pertinent issues that has only been exacerbated with the
increasing use of mobile and web in our daily lives. Users have surely lost the ability
to control how their data is being stored, modified, used, and exchanged between
different parties. In general, online privacy refers to the right of an individual to
store, display, or provision third-parties, a selective amount of information on the
internet.
Recent years have seen massive privacy breaches from the tech-giant companies

such as Google and Facebook. For instance, computer-science researchers at Prince-
ton university confirmed that Google services on Android devices and iPhones store
user’s location data, even if users’ privacy setting prevent Google from locating a
user [9]. Similarly, Facebook has recently been often involved in scandals such as
Cambridge Analytica data harvesting, incitement to violence in Myanmar, Rus-
sian and Iranian meddling in the US elections, and several data-exposing bugs [15].
According to research from the International Computer Science Institute, roughly
17,000 Android apps collect identifying information about a user that creates a per-
manent record of the activity on a user device. The collected data can be used to
target users for advertising, tracking online activities, profiling, or selling data to
third-parties [97]. These examples indicate that user privacy breaches have subtle
and devastating effects on users personal lives.
Amongst several web and mobile privacy risks, online user tracking and identifi-

cation happens to have direct and disturbing consequences on a user’s life. Online
tracking has several meanings, but one of the most valid general definition is “fol-
lowing the trails and movements of someone on the internet through means such
as mobile phones, desktop, and smart devices, in order to gain unique information
about them for incentives such as target advertising, profiling, data exchange, etc”
[77]. It is also quite evident from the literature that mobile and web platforms
contain subtle information and measurable variation which allows them to be “fin-
gerprinted or tracked”. For-instance, it was found that more than 90% of Alexa
top-500 websites contain third-party tracking content [186]. Similarly, a user could
be identified or tracked from motion sensors signals produced from mobile phones
[57, 64, 159]. This tracking threat becomes more subtle when users are identified
from anonymized datasets through inference analysis by an eavesdropper or a re-
searcher who has access to the data. Few examples in the literature involving such
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threats are the re-identification of individuals in the anonymized AOL search his-
tories of 650,000 users [96], Netflix training data of 500,000 subscribers [165], and
Massachusetts hospital discharge data [205].
Behavioral-based tracking is a form of online tracking that constructs user profiles

through their gestures/actions to perform certain activities. Such gestures are col-
lected via many media, such as touch, motion, GPS, camera, mouse, search queries,
and more. As opposed to “regular” tracking mechanisms based on cookies, browser
fingerprints, logins and similar, which track virtual identities or browser profiles, this
type of tracking is subtle and risky. First, while regular tracking deals with virtual
identities and online profiles, behaviour-based tracking has the potential to track
and identify the actual (physical) person operating the device. It can track multiple
users accessing the same device. Second, behaviour-based tracking has the ability
to continuously track users. Third, it also leads to cross-device tracking, where the
same user can be tracked on multiple devices and user data can be collated and sent
to advertising companies and third-party entities to build more encompassing user
profiles.

1.2 Problem Statement

While device and web browser identification is an active area of research that has
been demonstrated in a number of current research works, there is still a pressing
need to understand privacy leakages that could lead to user tracking on the mobile
and web platforms. Illumination on these veins of research has important social,
ethical, and policy implications. We therefore, focus on understanding the privacy
risks involving user tracking and identification on the web and mobile platforms,
and then proposing privacy preserving frameworks to combat such risks. In essence,
we argue the following thesis:
Traditional tracking mechanisms have a proven ability to identify devices and

browsers, and in some cases, virtual identity of a user. Behavioural-based tracking,
on the other hand, has far more devastating consequences on the privacy of a user,
from tracking the actual (physical) identity of a person to cross-device tracking and
continuously monitoring every online movement. The concerns of behavioural-based
tracking go beyond commercial purposes, and can be used to unfairly discriminate
users for discounted/high prices, take advantage of vulnerable users e.g. by show-
ing bogus cures to a medically sick patient, or leave users vulnerable to warrantless
searches, identity thieves, etc. Despite these disturbing consequences, there is to our
knowledge no information in the public domain to quantify how much of a privacy
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problem is posed by user tracking or identification through his/her behaviour to per-
form certain actions on the web and mobile platforms. The user-specific behaviour
include activities such as swiping, typing, tapping on the mobile touchscreens or
making a web entry on search engines, social networks, forums etc. In addition, the
data collected from user online activities is not just held by a single entity/organi-
zation. For-instance, websites tend to import resources from a range of third-parties
that load further resources from other domains, creating a dependency chain. Not
explored is the fact that these third-parties in a chain may have a tendency to gather
sensitive user data without even informing a user or even a first-party website it-
self. There is a dire need to investigate the abovementioned privacy issues through
quantification and privacy preservation methods. The existing solutions to quantify
privacy and prevent tracking on web and mobile platforms have practical limitations
that often preclude their developers from striking a balance between privacy and util-
ity goals.

1.3 Proposed Solution

We corroborate our thesis within two volets of research. In the first part, we tend
to understand privacy issues involving user tracking and re-identification across web
and mobile platforms. We identify, quantify, and predict privacy risks that arise
from user unique and repeatable behavioural activities such as swiping on a mobile
phone, typing on a mobile phone, searching specific query in a search engine, etc.
In addition, we explore the web ecosystem to investigate malicious third-parties in
a dependency chain that could lead to privacy leaks such as tracking. The second
part of the thesis aims to reduce/lower the identified privacy risks by proposing
privacy-preserving frameworks for web and mobile platforms.
We further classify the first part of thesis, ‘Privacy Risk Identification and Quan-

tification’, into three subparts. The first subpart investigates the privacy leakages
induced by the collection and monitoring of touch gestures of mobile device users.
We propose and develop an analytical framework that quantifies the amount of in-
formation carried by the user touch gestures mainly swipes, keystrokes, taps, and
handwriting. Our findings highlight that user touch gestures exhibit high unique-
ness and users could be correctly re-identified with high accuracy, indicating that
touch-based tracking is possible. The second subpart proposes an adversarial re-
sistant, quantitative method that predicts privacy risks of users’ web data. The
proposed risk prediction method is applicable to any type of web application such
as social networks, search engines, blogs, product reviews etc. In the third sub-
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part, we conducted a large-scale study of dependency chains in the web to find
malicious/suspicious third-parties and their activities on the web.
In the second part of thesis, ‘Privacy-Preserving Frameworks’, we first design

and develop an on-device privacy preserving framework that minimizes the private
information of a mobile user before releasing to a server, whilst maintaining the
intended utility of an application/service. The framework addresses two privacy
risks, trackability and distinguishability by obfuscating raw data coming from various
apps. Finally, we develop an adversarial resistant obfuscation mechanism to improve
the privacy of web data. The proposed mechanism obfuscates high risk data entries
with semantically similar lower risk data entries and is shown to be effective against
adversary who has knowledge about the datasets, obfuscation mechanism and model
learned risk probabilities.

1.4 Thesis Contributions

This thesis makes the following contributions:

• Quantifying the Uniqueness of Touch Gestures for Tracking: We first
investigate the potential of using touch-based gestures for tracking the users
on mobile devices, which we refer to as touch-based tracking. To the best
of our knowledge, this is the first study considering the potential of touch
gestures to profile users. In order to demonstrate the likelihood of touch-
based tracking, we develop an analytical framework that quantifies the amount
of information contained in touch gestures, at different levels of granularity
i.e. individual features of gestures, samples of gestures, as well as samples of
combinations of gestures. We develop a game-like app called “TouchTrack”
for Android devices that specifically captures four widely used touch screen
gestures: i) swipes, ii) taps, iii) keystrokes, and iv) handwriting. Through
this app, users can check the uniqueness and tracking potential of his/her
gestures. We gather gesture samples from 89 users, and demonstrate that
touch gestures contain sufficient information to uniquely identify and track
users. Additionally, we also show that returning users could be correctly re-
identified with high accuracy, indicating that touch-based tracking is possible.
(cf. Chapter 4)

• Quantification of Privacy Risks of Web Data: While user privacy in web
has been an active area of research for the last two decades, much of these work
has been done on improving the anonymization methods or privacy preserving
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publishing of web data. Only limited studies have been done on evaluating
and predicting privacy risk of users in the web [175, 88, 13, 23, 164]. In
this thesis, we quantify and predict the privacy risk of users through their
web actions by using a probabilistic model, Hidden Markov Model (HMM)
that calculates probabilities of uniqueness, uniformity, and linkability learned
from the training data. Uniqueness refers to user web data entries that are
unique enough to reveal his identity, Uniformity refers to repetition of the same
web data entry by a user that puts more confidence in revealing his identity,
whereas Linkability refers to how much Personal Identifiable Information (PII)
is released by a user that could link him to the corresponding data. To the best
of our knowledge, no work has been done that quantifies risks by considering
these three key aspects of privacy. We measure the privacy risk associated
with search queries and apps reviews and the results show that our privacy
prediction method is reliable enough to identify high risk web entries via three
aspects. (cf. Chapter 5)

• Measuring and Analyzing the Chain of Implicit Trust: A modern web
ecosystem works by loading resources from a range of third-party domains
such as ad providers, tracking services, and analytics services. However, often
overlooked is the fact that these third-parties load resources from other do-
mains, forming a dependency chain. Although there has been extensive work
looking at the presence of third-parties in general [79, 168, 138], little work
has focused on how content is indirectly loaded and its impact on security
and privacy. In this thesis, we conduct a large-scale study on the dependency
chain of the Alexa’s top-200K domains to find out the presence of suspicious
third-party content. These suspicious or potentially malicious third-parties are
known to mishandle user data and risk privacy leaks as evident from real-life
incidents [96, 165, 205, 69, 35]. We then try to inspect what activities are un-
dertaken within the suspicious third-party resource, Javascript. The activities
of these scripts are diverse. For example, we find evidence of malicious search
poisoning activities when JavaScript codes are loaded from third-parties. (cf.
Chapter 6)

• Privacy Preserving Framework for Mobile Sensor’s Data: Sensors em-
bedded in smart devices monitor user’s environment with high accuracy and
provide variety of services to a device user, from finding routes, to health
monitoring and handwritten words recognition. These sensors have a poten-
tial of disclosing private information about a user, that eventually leads to
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user tracking or identification. To address this problem, we propose a pri-
vacy preserving framework that minimizes privacy leakages by bringing down
the risk of tracking and identification of individual users while preserving the
functionality of the existing apps/services. Our framework allows users to send
information to the server so as to (i) keep user and apps isolated of privacy
preserving mechanism, (ii) minimally affect the app’s utility/accuracy, while
(iii) providing privacy guarantee that they will not be identified via tracking or
distinguishing from other users. We formulate our problem as time-series mod-
eling and forecasting that overcomes the problem of handling unpredictable
data and balancing privacy-utility when where sensor data is highly dynamic.
The proposed framework is resilient against noise filtering attacks [215] as it
adds correlated noise-series to the forecasted time-series such that the noise
is indistinguishable by an adversary. Rigorous experiments on publicly avail-
able datasets show that out framework limits user tracking and identification
threats while maintaining a reasonable level of utility. (cf. Chapter 7)

• Incognito: A Method for Obfuscating Web Data: Web users uninten-
tionally leave digital traces of their personal information, interests, and intents
while using the online services, such as social networks, discussion forums,
blogs and knowledge sharing communities, product review sites, and search
engines. Users’ web data could therefore reveal private/sensitive information
about them based on inference analysis by an eavesdropper or a researcher
who gets access to these web data. Literature in web privacy also shows that
inference attack is possible even when the datasets are anonymised (i.e. user
identifiers are removed, encoded or masked). We propose a framework that
obfuscates high risk web data entries with semantically similar lower risk data
entries, with some utility loss. We use adversarial machine learning technique
in obfuscation method to make our framework reliable against adversary at-
tacks. The technique combines differential privacy-based noise addition with
our previously introduced HMM in chapter 5. Our adversary model assumes
that given a dataset, framework knowledge, and HMM based probabilities,
the adversary is able to estimate the privacy risk values and could differen-
tiate between the original and the altered data by getting all possible paths
in the HHM that have higher risks. Our obfuscation framework guarantees
privacy against adversarial attacks with high accuracy. (cf. Chapter 8)
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1.5 Published and Submitted Work

This thesis has resulted in the (submissions)publications (to)in peer reviewed venues
(ordered by chapter, indicated in bold):

• Rahat Masood, Shlomo Berkovsky, and Mohamed Ali Kaafar. Modern Socio-
Technical Perspectives on Privacy, chapter Tracking and Personalization.
Springer, 2019 (under review) (Chapter 2 & 3)

• Rahat Masood, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mo-
hamed Ali Kaafar. Touch and you’re trapp (ck) ed: Quantifying the uniqueness
of touch gestures for tracking. Proceedings on Privacy Enhancing Technologies,
2018(2):122–142, 2018 (Chapter 4)

• Rahat Masood, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and
Moahmed Ali Kaafar. Poster: Touchtrack: How unique are your touch ges-
tures? In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2555–2557. ACM, 2017 (Chapter 4)

• Rahat Masood, Dinusha Vatsalan, Muhammad Ikram, and Mohamed Ali Kaa-
far. Incognito: A method for obfuscating web data. In Proceedings of the 2018
World Wide Web Conference, pages 267–276. International World Wide Web
Conferences Steering Committee, 2018 (Chapter 5 & 8)

• Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. The chain of implicit trust: An analysis of the web
third-party resources loading. In The World Wide Web Conference, pages
2851–2857. ACM, 2019 (Chapter 6)

• Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, and
Noha Loizon. Measuring and analysing the chain of implicit trust: A study
of third-party resources loading. ACM Transactions on Privacy and Security
(TOPS), 2020 (under review) (Chapter 6)

• Rahat Masood, Dinusha Vatsalan, Hassan Jameel Asghar, and Mohamed Ali
Kaafar. Privacy preserving sensory data. Proceedings on Privacy Enhancing
Technologies, 2020 (under review) (Chapter 7)
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1.6 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, we define the context of this thesis by presenting the basic con-
cepts and techniques of online tracking and also discusses its privacy implications
and solutions.

In Chapter 3, we review the existing literature. We first discuss existing
techniques to fingerprint or track mobile, web, and other platforms. We then
summarize previously proposed privacy-preserving solutions for the mobile and web
data.

In Chapter 4, we introduce a new privacy threat, touch-based tracking, which
is induced by the collection of a user touch gestures on mobile devices. We present
an analytical framework that quantifies the amount of information about users
leaked by touch gestures and also show the accuracy of user tracking by correctly
identifying the returning users.

In Chapter 5, we present our method to measure and predict privacy risk
involving user web data entries. We also analyze privacy risk prediction results on
two real web datasets and validates the significance and efficacy of our method.

In Chapter 6, we analyze the Alexa’s top 200K domains to measure the exten-
siveness of dependency chains. We then further investigate suspicious third-party
domains and their possible activities in the dependency chain.

In Chapter 7, we present our privacy preserving framework to minimize the
privacy risks emanating from the mobile sensor’s data. We address two threats,
trackability (tracking) and distinguishability (identification) by obfuscating raw
data coming from various apps. We then show the validation of the proposed
framework through a series of experiments.

In Chapter 8, we propose an adversarial-resistant privacy preserving method
that obfuscates high risk user web data entries with semantically similar data. We
then show the effectiveness of our method by conducting experiments on two real
web datasets. Results indicate that privacy risk are significantly reduced however,at
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Chapter 1 Introduction

the cost of utility.

Finally, we conclude this thesis and frame future work in Chapter 9.
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Chapter 2

Preliminaries/Background

This chapter summarizes the background material that contributes to the under-
standing of basic concepts and techniques of online tracking followed by its privacy
implications and solutions. Section 2.1 overviews the types, techniques and various
entities involved in online tracking. We discuss privacy implications and generic
solutions to prevent online tracking in Section 2.2. We introduce a case-study of
relating online tracking with personalization in Section 2.3 and show how personal-
ization could be achieved by tracking users online.

2.1 Online Tracking

As mentioned earlier in the Section 1.1, online tracking is the ability of an adversary
to follow the trails and movements of a user through means such as mobile phones,
desktop, web browser etc. The subtle form of online tracking happens in a converged
online environment, where users are utilizing multiple devices to access the services.
In this situation, online tracking becomes more efficient, as multiple devices are
linked to the same user. We refer to this as “cross-device tracking". Online tracking
has various types and extensions: from detecting user interests when visiting a web
page to detailed analysis of user’s life, including location, social relations, health,
political beliefs, etc. A combination of such information increases the chances of
identifying and appropriately tracking a user online.
Web Tracking is one of the main sources of profiling that tracks users across

different visits or sites. There are various design, implementation, and deployment
methods that enable tracking. For instance, for an externally hosted website, a
service provider can embed third-party content, which is hosted on servers tracking
website visitors, or a website incorporates active content like JavaScripts snippets
or libraries supplied by third-party to implement the tracking functionality. It was
found that more than 90% of Alexa top-500 websites contain third-party tracking
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content [186] and that 70% of the cookies recorded were third-party cookies set by
just 25 third-party domains [75].
Mobile Tracking fingerprints and identifies users through the devices that are

equipped with sophisticated sensors, such as microphones, GPS, accelerometers and
so on, which generate highly sensitive data that can be used as unique fingerprints.
These devices are always connected and being carried everywhere by their users,
which not only makes them perfect targets for advertisers, but also often leads to
physical tracking of users. It has been shown that a user could be identified or
tracked from motion sensors signals produced from mobile phones [57, 64, 159].
Similar to web tracking, mobile devices contain various identifiers that solely or in
combination lead to user tracking and profiling. For example, researchers demon-
strated how the use of WiFi SSID (the Service Set IDentifier representing the WiFi
network devices connect to) in its active discovery mode can lead to revealing geo-
graphical location of users [187] or to enabling the physical tracking [62]. A follow-up
study has shown how to infer social relationship between mobile device owners by
tracking their WiFi fingerprints [52].
In addition, many third-parties are performing cross-device or cross-app tracking

that can provide a more complete view into user’s behaviour. In cross-device track-
ing, third parties link together the devices that belong to a user [32], whereas in
cross-app tracking an app identifies other apps installed on the device [4].

2.1.1 Tracking Techniques

In recent years, online tracking techniques have been extensively studied and it has
been found that these techniques use information such as IP addresses, cookies,
Javascript, and more for user identification purposes. In general, tracking could be
performed using the following techniques:

• Cookie is a text stored by a user’s web browser and transmitted as part
of an HTTP request. Cookies are essential to manage long user sessions;
however, they can also be used to uniquely identify a user’s browser. While
some purposes could be benign, service providers can use cookies to track
users and collect their web activity. One special form of cookie is persistent
cookie, which stores identifying information, such as user preferences for a long
period of time. Similarly, third-party cookies are set while fetching website
content like as images, frames, Javascripts, etc. Cookie syncing is another
type, where unique identifiers are correlated with each other, so that the same
user is identified in an external database. All these type of cookies raise serious
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privacy concerns as they could be used by websites to track users across visits
or multiple pages.

• Javascript codes can be loaded both from first- and third-party domains, and
are widely used by ad networks, content distribution networks (CDNs), track-
ing services, analytics platforms, and online social networks [109]. They have
the ability to track information about browsers such as cached objects, history
of visited links, user-agent strings, or language preferences. In addition, they
can read and write from/to a cookie database or reconstruct user identifiers.
Such information enables servers and third-party domains to regularly track
users using HTTP requests. The dynamic nature of Javascript also allows
service providers to construct a behavioural profile of a user. For example,
through Javascript event handlers, it is possible to obtain information about
a user’s mouse clicks and movements, scrolling, and so on [12].

• Cache stores the content of webpages and other information in the browser,
to minimize latency and redundant network activity. This technique improves
performance; however, it is possible for a server to associate a unique tracking
identifier with each client requesting content for the first time. A server can
then use Javascript and standardized messages to check if the content is cached
or not, in order to identify a user. This technique is usually implemented for
resources like images and is difficult to defend unless the cache content is
cleared regularly, e.g., when closing the browser.

• Supercookies also known as unique identifier headers, inject user information
into packets, which is then sent from a user device to a server. Some promi-
nent supercookie types are Flash Cookie and EverCookies, where the former
is maintained by the Adobe Flash plugin and the latter is a combination of
various tracking mechanisms. Local Shared Objects (LDOs) is another form,
supported by browser plugins, which can track users using unique identifiers.
These objects are invisible to the browser and therefore it is impossible to
examine their content. LDOs are retained in the browser even when the user
deletes cookies and browser storage. For this reason, LDOs are used to store
copies of browser cookies or other unique identifiers.

• Stateless tracking allows websites to track users based on information such
as user agent, fonts, screen resolution, and more. Common techniques to
track users using fingerprinting are as follows: (i) canvass fingerprinting de-
tects minor differences in display hardware by reading back rendered text
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from a storage area mapped to the display, (ii) font/plugin fingerprinting in-
volves detection of fonts or plugins supported by a browser, (iii) MediaStream
Fingerprinting is performed through Media Capture and Streams API that
generates a unique stream identifier, (iv) WebRTC determines local IP ad-
dress behind any firewall and can generate a unique tracking identifier, and
(v) user agents / IP address in combination can be used to identify the user
behind a browser. Although some of these techniques individually produce
medium-entropy identifiers, it has been shown that a combination of these is
unique enough to generate a high-entropy identifier.

Figure 2.1 shows the eco-system of an online tracking. We refer interested readers
to [35], for a survey and in-depth study of online tracking mechanisms.

Figure 2.1: Eco-System of Online Tracking

2.1.2 Tracking Entities

The above mentioned tracking techniques can be used by various entities for various
purposes. The most prominent entities are listed below:

• First-Party Tracking is performed by the service providers with which the
user directly interacts. This entity controls the web domain a user has explic-
itly visited. A naive example of first-party tracking is Google, which tracks
user interests via the search engine. Each time a user enters query in the search
bar, Google keeps record of this and shows related links and advertisements in
subsequent searches. A similar method is adopted by Facebook, where a user
could be tracked via interests shown through likes, comments, and more.
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• Third-Party Tracking is performed by the entities that track users across
different services, e.g., websites. It can also be an entity that provides resources
while a page is being displayed. Typical resources are the content embedded
in the page or external content accessed by script running in the page. For
instance, Google Analytics is a third-party entity that performs tracking to
obtain statistics and send them to website publishers.

• Online Social Networks also track users around the web. These networks
behave as publishers as well as ad networks. They allow advertisements to
be displayed on their websites and at the same time, track user interest, e.g.
via likes and comments, and sell them to advertisers. They also track users
outside their network by planting widgets on other websites [42].

• Mobile Devices are equipped with multiple sensors like microphones, cam-
eras, GPS, accelerometers, touch, and more [57, 58, 56, 157]. They also
store personal information about their users: phone numbers, current loca-
tion, owner’s name, unique phone ID number, and so on. A combination of
this information enables mobile app developers to track users without their
consent and awareness.

2.1.3 Why Tracking

Online Tracking has several potential incentives. First-party can track to personalize
user experience across sessions, to detect frauds, or to conform with law enforcement
requiring websites to log user activities for fraud prevention and anti-laundering.
However, there are cases where first-party websites voluntarily sell user identities.
For example, Datalogix buy user information from companies, compile user dossiers,
and then use it to target advertising [35]. Sometimes, a first-party can also act as a
third-party; for instance, Facebook enforces users to provide their real names. This
allows Facebook to identify user for personalizing widgets on external websites.
On the other hand, third-party tracking has a range of motivations, which can be

grouped into six main reasons:

• Advertising is one of the most common reasons to track and identify users
online. In order to sell products, gain revenues, or increase product aware-
ness, businesses and companies build associations with ad networks. To be
successful, it is however important to identify users and target the right ads
on a website. For example, a user interested in buying a pair of shoes should
be shown the ads related to shoes instead of other products.
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• Third-party measurement and analytics services offer first-party web-
sites to better understand their users. These services include demographics,
content view distribution, and more. Some analytic companies follow a paid
model, where an analytics company takes precautions to silo data between
clients. In contrast, other companies offer a free analytics service; for ex-
ample, Google Analytics tracks to obtain aggregate traffic statistics that are
sent to service providers to allow them improve their content or enhance their
services.

• Social Networks have become another way to track and identify users. These
networks allow websites to offer personalized content and single sign-on ser-
vices. Examples include Facebook’s like and comment widget and Google’s
like button. These are offered for free, to increase user engagement and con-
duct market research. However, there are social services, such as Disqus, that
exist almost exclusively in a third-party context [158]. The issues of collect-
ing usage data and selling it for ad targeting and market research have been
heavily debated recently.

• Content providers offer to host content such as video, maps, news, weather,
stocks, and other media for embedding into websites. Youtube, for example,
offers third-party widget to generate revenues through in-widget advertising.
Many others, such as the Associated Press, also charge for their content.

• Front-end services includes Javascript libraries and APIs to speedup web-
page loading and enable new page functionality, e.g., Google Feed API.

• Hosting platforms assist service providers to distribute their content. These
platforms include blogs and content distribution networks, such as Akamai.
All these services, in one way or another, help each other to track and identify
users with the purpose of attracting customers, gaining profits, improving user
experience, and increasing their business scope.

2.1.4 Behavioural Tracking: State-of-the-Art

Behaviour-based tracking has the ability to continuously and surreptitiously track
users while they are interacting with their devices. This type of tracking is performed
by data custodians, receivers, or consumers, in order to provide personalized services
to their customers with the goal of increasing revenues. For instance, advertising
companies take advantage of user behaviour profiles, user interests, characteristics,
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or activities to display advertisements that is relevant for the user. Examples of data
collected through user activities include the location of a user at a certain time, user
touchscreen interaction, duration of the calls, dialed numbers, mouse clicks, and so
on.
The ubiquity of smart devices and the fact that most data from touch and motion

sensors can be extracted by any web service makes behavioural-based tracking a
serious privacy threat. This not only represents a valuable source of information for
analytics and ad services, but also for app developers who can (mis)use the informa-
tion to track individuals on a single device or across devices. However, not all use
cases of behavioural-based tracking are negative. It can also be beneficial to users
and service providers alike. Some argue the benefits of behaviour-based tracking as
a way of receiving useful information, e.g. relevant ads or health monitoring. For
instance, monitoring a phone’s motion might reveal changes in gait, which could be
indicators of ailments or depression. Similarly, a child using their parent’s smart-
phone can automatically have parental control enabled. Behavioural-based tracking
could also bring commercial benefits to the user (e.g. displaying discounts and sales
on the product of interest to the user).
Nevertheless, behaviour-based tracking is still perceived as a threat to privacy,

mainly because of the continuous surveillance of users’ online and physical activities.
Imagine a user walking down a street who would like to know about interested places
in the vicinity that matches his profile, but at the same time, all of his activities are
under continuous surveillance.

2.2 Privacy Implications of Tracking

Although online tracking has been performed for a number of reasons that bring
tremendous value, it also raises serious privacy concerns having subtle and devas-
tating effects. Researchers, civil organizations, and policy-makers have identified
several ways tracking can cause privacy leaks.

• Global surveillance, performed by government for security reasons or by
companies for commercial benefits, is one such risk. Such a surveillance is not
only a threat to privacy but there may be chances that collected information
is distorted and leads to incorrect decisions. The potential dangers would be
error, abuse, and lack of transparency and accountability. Bujlow et al. [35]
explains how NSA is doing global surveillance through logins, cookies, Google
PREFIDs, or DoubleClick cookies.
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• Profiling, performed by service providers to personalize content for users, is
another risk. A news site may display news matching user’s previous items, a
merchant may propose products based on user’s previous shopping, or a search
engine may refine results based on user’s previous queries. Thus, content
and service personalization is a source of information leakage. Often, such a
profiling may seriously impact users. For example, it was shown that a person
discovered his teenage daughter’s pregnant when she received advertisement
of baby food. The teenager was profiled as pregnant based on her shopping
behaviour [69]. Similarly, Gmail was shown to use words from the sent and
received emails to target ads. The emails were scanned without a user’s explicit
permission and used to identify the themes and trends for ad targeting [35].

• Anonymized public data is required in several business applications and
research studies, to improve the provided services by utilizing the available
information and rich user data. However, studies have shown that users could
be identified even from anonymized datasets through inference analysis by an
eavesdropper. A few examples involving such threats are the re-identification
of users in the anonymized AOL search histories, Netflix training data that
was attacked, and Massachusetts hospital discharge data [96, 165, 205]. In
addition, eavesdroppers can violate privacy of users by tracking their activities,
thereby inferring their personal profiles. Therefore, a user’s privacy is at risk
when their data can be distinguised from other users and linked to the user.

• Personalized Search, which offers the benefit of presenting information that
the user would like to see based on their queries, is another reason to track.
However, it has been shown in [155] that even anonymized search queries
could lead to identification of users and their interests. Web measurements
and analytics used to enhance user experience not only lead to virtual user
tracking, but in some cases can disclose the user’s physical identity.

• Lastly, tracking was found to be the reason for price discrimination based
on geographical location, affluence of the user, and the referrer. Examples
include credit card interest rates, hotel bookings, and insurance coverage. A
case appeared in 2009 when Kevin Johnson reported to have his credit limit
in American Express lowered to $3800 from $10800 after he shopped online at
Walmart. American Express claimed that it was due to the fact that many
other Walmart customers have problems with paying the credit back [53].
Bujlow et al. [35] provides a detailed overview of how such implications occur.
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2.2.1 Privacy Preserving Solutions

There has been a continuous effort by researchers, businesses, and non-profit organi-
zations to provide efficient solutions to overcome user privacy/tracking issues. Some
of these efforts resulted in legal frameworks and policies, as well as in technological
products. These initiatives include:

• Blocking Tools: A number of browser tools and plugins have been developed
to protect users from tracking. These tools performed various functionalities
such as detecting or blocking list of third-party trackers, informing users how
much information is revealed to trackers, allowing only executable content
from trusted domains to run, detecting flash cookies and deleting them, and
more. Some noteworthy blocking tools are NoScript, BetterPrivacy, Ghostery,
Do Not Track Plus, AdBlock Plus, and PrivacyBucket. A detailed analysis
on these tools has been provided in [76]. There is also a Tracking Protection
List (TPL) approach that contains web addresses of misbehaving tracking sites
published by various organizations. Other ways to protect information include
tools like private browsing modes of major browsers and anonymity networks.

• Privacy-by-Design: This is deemed to be an essential step towards better
privacy protection, as it is based on the idea that privacy requirements should
be taken into account while designing a system. As any process, privacy by
design should have well-defined objectives, methodologies, and evaluation met-
rics. The privacy objectives of the system could be defined by conducting a
preliminary Privacy Impact Assessment (PIA) or a privacy risk analysis. A
range of methods for security risk analysis has been defined, but a few of them
are dedicated to privacy risk analysis. The methods that could be adapted
for privacy analysis are STRIDE or EBOIS. A few behavioural advertising
systems, like Adnostic, PrivAd and RePriv, consider privacy as a design re-
quirement. The main objective of these systems is to limit tracking, while still
serving behavioural advertisements. For instance, PrivAd includes a trusted
third-party that anonymizes clients and prevents ad network from identifying
them [84]. In Adnostic, the browser continuously updates user profiles [209],
allowing the ad network to offer several ads to the browser, where the browser
picks the most relevant to the profile ad.

• Do Not Track (DNT):Major browsers implement the DNT (Do Not Track)
methodology to show websites that are forbidden from tracking. DNT is a
technology and policy proposal that enables users to opt out of tracking by
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(all) websites they do not visit, including analytics services, advertising net-
works, and social platforms [71]. Technically, the implementation of DNT is
simple; a browser sends a DNT header in every HTTP request to websites
the user’s wish to opt out of tracking. This includes web pages and all the
objects/scripts embedded within a page. However, it is up to the discretion of
an advertiser to respect user preferences. There are several ways to validate if
an advertiser is following the instructions, ranging from self-regulation via the
Network Advertising Initiative, to supervised self-regulation or co-regulation,
to direct regulation.

• Consent-based Mechanisms are also used to inform users and/or prevent
them from being tracked [77]. However, one key issue with consent-based
mechanisms is that the entity that informs users is often not the only entity
to track users. For instance, third-party trackers also collects and share in-
formation about users, which the first-party may be not be aware of. In this
situation, either the service provider should ask all third-parties to declare the
purposes of their data collection, or the third-parties should inform users of
tracking before asking for a consent. Therefore, there could be two layers of
information which must be transparent for user when third-parties are called.
The first should explain why third-parties are called and which services rely on
these third-parties and the second should explain how the third-parties process
users data. A “tag manager” is also a technical implementation of the cookie
consent that could block third-party scripts if consent has not been obtained.

• Privacy-Preserving Methods: Several privacy enhancing technologies
(PETs) methods have been proposed to preserve the privacy of a user such
as anonymization, identity management systems, privacy proxies, encryption
mechanisms, differential privacy, and more. For example, GooPIR [67] and
PRivAcy model for the Web (PRAW) [196] are standalone applications, where
the former adds noise to Google queries and the latter generates fake queries
in different topics of interest of the user. A study by Chen et al. [47] in-
vestigated the effectiveness of different obfuscation strategies and policies for
online social networks and proposed a novel obfuscation strategy not requiring
knowledge about the classifier. Salman et al. [189] and Li et al. [141] proposed
methodologies that prevent inference attacks by distorting data before mak-
ing it publicly available. Raval et al. [183] proposed utility-aware obfuscation
framework that limits the risk of disclosing sensitive information from sensors
data. Another work proposed a privacy-preserved mechanism for user location
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data while reducing utility loss [30]. Similarly, Shokri et al. [26] tried to pro-
tect user trajectories by generating fake privacy-preserved location traces. A
framework that automatically selects location privacy-preserving mechanism
based on user requirement of privacy and utility has been proposed in [41]. In
another recent paper [54], Das proposed an obfuscation scheme [58] to defeat
fingerprinting based on motion sensors.

• User Agents can also prevent tracking by providing users with relevant
choices. Most user agents include functionalities that allow users to exam-
ine cookies associated with a domain or a web page, showing expiry duration,
their contents and the associated host domain [77]. Such information can
be presented as user agent settings through a user interface to get a valid
consent mechanism from the user. This has already been implemented by
a browser extension that uses DNT Consent API to take consent from user
before sending or receiving any data from the browser. Similarly, Content-
Security-Policy API (CSP) is another tracking prevention tool that prevents
cross-site scripting, click-jacking and other code injection attacks. CSP pro-
vides a standard method for first-party services to declare specific type of
content that user agents should be allowed to load on that website – covered
types are JavaScript, CSS, HTML frames, web workers, fonts, images, embed-
dable objects etc. If any of these content types are provided in the source list
within the CSP header, then user agent will load only that content type in a
browser and block rest of the types. In this way user agents can be told to
block iframes from being loaded when they have not been explicitly allowed
by the site designers or which refuse to respect the provided CSP. In general,
user agents can prevent tracking at various granularity levels. This includes
(i) items the user wants to block or take consent, like list of websites, tracking
companies, (ii) locations of blockage iii) types of data, or iv) purpose of data.

• Opt-Out: Some tracking companies allow users to set opt-out cookies. If
implemented properly, this option disables user tracking. However, opt-out
cookies are not considered reliable, as they are not supported by all ad networks
and are easy to interpret by those wishing to track users. Moreover, they have
a limited lifetime, so they must be periodically renewed. These cookies are
lost when the user cleans the cookies from their web browser.
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2.3 Personalization and Tracking: A Case Study

Personalized technologies are deployed nowadays by virtually every website and mo-
bile app. These technologies facilitate the “provision of content and services tailored
to individuals based on knowledge about their preferences and behaviour” [19]. While
personalized services started two decades ago with use cases like web content filter-
ing and eCommerce recommendations, they have spread since to applications like
music, tourism, eHealth, and many more [34].

2.3.1 Purpose of Personalization

Naturally, the tailoring of services offered by personalization can benefit both the
service provider and the end user. For the former, it allows to uplevel the quality
of the service, as it gets adjusted to the needs and preferences of the user. This can
lead to improved performance, such as increased revenues, higher click-through rate,
or returning customers. Likewise, the users also benefit from the personalization, as
the overall user experience is improved. For example, personalization can shorten
the discovery of a desired content or reduce the costs of buying a product.
Many algorithmic approaches for personalization have been developed, evaluated,

and deployed. Some of them rely on statistical correlations of past user behavior
[169], while others capitalize on extensive domain knowledge [60]. Regardless of
the underlying personalization algorithm, a necessary precondition for personalized
services is the availability of reliable and up-to-date representation of the user, i.e.,
their interests, preferences, and needs, as encapsulated by the user model [19].
The user models typically reflect the goals and domain of the personalized service.

For example, an email filtering plugin should be able to distinguish between genuine
senders and spammers, while a movie recommender should know what movie genres
are liked and disliked by the user. Thus, no one-size-fits-all representation of the user
model can be conceived and the target data is learned implicitly from observable
user interactions with the system and other users.

2.3.2 Personalization via Online Tracking

As mentioned earlier, Internet users are being increasingly tracked and their personal
data are extensively used in exchange for services. In the current era, when people
use real identities to communicate on the web, maintaining privacy has became a
complicated challenge. Service providers are using a variety of personal information
to personalize the content. The privacy challenge becomes more important with the
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Figure 2.2: Eco-System of Advertisement Network

dissemination of smart phones and devices offering new possibilities for personaliza-
tion. On the other hand, personalization algorithms and technologies are steadily
improving, making behavioral profiling more powerful, yet raising a multitude of
privacy challenges.
To understand the personalization system, Figure 2.2 shows an exemplary working

diagram of an advertisement network system. In an advertisement network system,
there are three main entities: the publisher, the advertiser, and the ad network.
The publisher is an entity that owns a website or service; the advertiser is an entity
that wants to advertise product to users; and the ad network actually collects adver-
tisements from an advertiser and displays them on a publisher’s website. If a user
clicks on an advertisement, the ad network collects money from an advertiser and
pays part of it to the publisher. It is thus important for the ad network to generate
accurate and complete profiles of users, in order to increase the click chances and
maximize the revenues. These three entities also exist in a mobile environment,
where a mobile app acts as a publisher, while the roles of an advertiser and ad
networks remain unchanged. It could be argued that, compared to desktop devices,
mobile devices pose serious threats to privacy as many apps record user sensitive
information like locations, movements, gestures, and more. Such an information is
more helpful to ad network companies for generating more accurate user profile with
the cost of privacy leaks for users.
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2.3.3 Relationship

Personalization is hard to achieve without some loss of privacy, since users personal
information is needed by a service provider to tailor or customize services. On the
contrary, it has been argued that users are willing to share their personal interests or
information in exchange for apparent benefits of using personalized products or ser-
vices [45, 18]. To build trust, service providers ensure anonymity of their customers
for the services usage, and in some cases, the anonymity is guaranteed for a lifetime.
However, research shows that linking anonymized data to other databases with per-
sonally identifiable information allows (re)identification of a user [155]. Therefore,
privacy risks are not just limited to a particular service provider, rather these risks
are pervasive concerns where personal information provided by users to different
services could be linked together to track/identify them ubiquitously.
Toch et al. [208] links privacy to three different personalization categories which

are social, behaviour, and mobile web.

• In a social-based personalization, providing privacy is a major concern be-
cause of three main reasons: (i) users are willing to reveal more information,
(ii) social networks compromise not only a single user’s privacy but also their
friend privacy, and (iii) social networks can reveal potentially embarrassing
information. An example here is a case of 2008, where 8% of US companies
fired 1000 workers because of information released on social networks [172].
Facebook Beacon advertising program [199] and Instant Personalization [125]
are two major cases that appeared in 2007 and 2010 and faced major criticism
from users, media, and lawsuits. Similarly, social search, personalized recom-
mendation, and targeted advertising are the most widely used forms of social
personalization [173].

• Behavioural-based personalization poses several privacy risks, such as
unsolicited marketing. Another risk involves linking behavioural profiles to
server-side user accounts, so that advertiseers can target users across different
devices. Cross-system personalization is yet another, risk where personalized
systems can use information from other systems to track users. For-example a
car rental company’s personalization system can exploit user’s GPS location
data to track their places of interests or driving patterns.

• Mobile-based personalization has increased with the spread of smart-
phones and phone sensors. With this, the ability of service providers to contin-
uously track users has also grown. Sensor data has been used in various ways
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for personalization. One way is the improvement of search results, such that
search results displayed on a smartphone are tuned according to the user’s
location, highlighting nearby venues and services. Similarly, installation of
various apps on mobile phones conveys user interests, helping app developers
to show targeted ads. Ullah et al. [210] performed a measurement study of
in-app advertisement and showed that GoogleAdMob has a higher proportion
of targeted than generic ads.

Friedman et al. [86] discussed the risks associated with recommender systems.
Authors mentioned that privacy breaches are either due to direct data access or due
to data sharing with third-parties. In both cases, effects of privacy breaches can be
significant, such as exposure of sensitive information, re-identification of anonymized
data, leaks through shared device, or service inference by the recommender.

2.3.4 Balancing Personalization and Privacy

It is reasonable to expect that if user information is collected and treated fairly,
they would be more inclined to share their personal data with service providers and
use the personalized services. However, striking the balance between privacy and
personalization is quite a challenge. In this section we discuss the technological
measures that could be taken to minimize tracking via personalization.

• Pseudonymous personalization is a basic yet common approach to hide
true user identity. It allows to use the same pseudonym across different sessions
and to create or maintain more than one pseudonym. This helps users to
separate different aspects of their online activity and control which service
provider can access which persona [10, 99]. However, anonymity is difficult
to maintain when payments or non-electronic services are involved. It has
also been shown that hiding explicit identities like usernames and emails, is
not sufficient to prevent tracking. There are cases where users have been
identified through their anonymized data [155].

• Client-side personalization is another way to prevent online tracking. This
type of privacy preservation implies data storage and subsequent personaliza-
tion processes to take place on client-side [87]. Since data collection and pro-
cessing occur at the client side rather than the server side, users may perceive
more control over their data and lower privacy risks. However, the challenge
with this approach is that existing personalization algorithms need to be re-
designed to fit the client-side model [211].
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• Distribution, Aggregation or Privacy Preserving Techniques have
been proposed as the means to maintain user privacy in recommender systems.
One strategy is to distribute user data across a set of machines; however, this
solution aggravates personalization based on data of other users [37]. Another
strategy is to use encrypted aggregation of user data [191]. As mentioned ear-
lier, privacy preserving approaches like obfuscation or perturbation is another
way to hide sensitive information while achieving a reasonable utility [20, 85].

• User controls and feedback is another way to preserve privacy in person-
alized systems. Kay et al. [123, 124] suggested adding scrutability to user
modeling and personalized systems. The term ‘scrutability’ signifies the abil-
ity of users to understand and control what goes into their user models, what
parts from their models are available to various services, and how the model
is managed and maintained. This allows users to restrict service providers in
accessing their sensitive data. However, achieving such a level of balance is
currently challenging due to poor user understanding of these notions.

2.4 Conclusion

This chapter studies the background material to understand the research problem
of this thesis by outlining the concept of online tracking specific to mobile and web
technologies, as well as the more advanced behavioral tracking. Privacy implications
of online tracking, highlighted by organizations and researchers, are also illustrated.
Following this, the chapter ties the streams of personalization and tracking together
and discusses various aspects of their relationships, including the currently deployed
tracking methods for personalization. Lastly, this chapter discusses the ways to
balance between personalization benefits and privacy concerns. This includes the
state-of-the-art practices, current challenges, and practical recommendation for sys-
tem developer willing to strike this balance. In the next chapter, we thoroughly
discuss the literature work in the area of mobile and web privacy, particularly fo-
cusing on tracking issues and privacy preserving solutions.
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Related Work

In this chapter, we conduct our literature survey in two main directions. First, we
consider the related work on tracking or fingerprinting mobile and web platforms.
We then discuss studies focusing on third-party domains and the possibility of web
tracking. Secondly, we present the existing literature on privacy-preserving solu-
tions for the web and mobile data. We conclude this chapter by highlighting the
limitations of existing literature and briefly discuss how this thesis sets out to bridge
the existing gaps through the proposed contributions.

3.1 Existing Online Tracking Techniques

Fingerprinting techniques have been numerously studied by the research community.
Perhaps, the pioneering work in the threat of tracking dates back to Sweeney, who
showed for the first time that coarse-grained information such as birthday, gender,
and ZIP code can uniquely identify a person [206]. This work was followed by
several studies that provided measurement insights into web and device tracking.
The success of such methods is a clear indication that anonymization techniques
to protect the privacy of individuals may fail if the collected data contains unique
combinations of attributes relating to specific individuals. In this section, we present
the existing online tracking technologies and categorize them based on the tracking
medium: web browser, mobile phones, or other devices.

3.1.1 Web Browser-based Tracking

In the past decade, several studies measured and analyzed web tracking. Krishnar-
murthy et al. [130] provided an early insight into web tracking, followed by continual
increase in third-party tracking techniques. Eckersley [70] quantified the uniqueness
of web browsers based on user agent and/or the browser configuration (plugins,
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fonts, cookies, screen resolution) and showed that 90% of browsers can be uniquely
identified by user agent, cookies, time zone, plugins, and fonts. The algorithm was
able to detect returning browsers, even if some features changed over time.
Following this, Yen et al. [223] quantified the amount of information revealed by

host identifiers including IP addresses, cookies, and user login IDs. Authors used
month-long datasets of a web-mail service and a search engine for the analyses.
Further, they discussed the implications of cookie-churn on privacy and security,
along with the utilization of host fingerprinting for improving security. An extended
approach by Boda et al. [28] showed that cross-browser fingerprinting could achieve
high uniqueness if enough data was collected by the operating system.
Olejnik et al. [170] performed a large-scale analysis of web browsing histories to

track users. Their results were shown to detect 97% of browsers by inspecting only
four web pages in the browser history. Akin to this, Laperdrix et al. [137] explored
browser fingerprints validity by collecting more than 100K fingerprints composed
of 17 attributes. Their results showed that HTML5 and Canvas API offer highly
distinguishable features. Similarly, Fifield et al. [80] proposed a fingerprint technique
based on the measurement of on-screen dimensions of font glyphs.
A crawler-based measurement study of online tracking at 1M websites was re-

ported by Englehardt in [72]. The analysis was based on stateful (cookies) and
stateless (fingerprinting) tracking, effect of browser privacy tools, and data exchange
between different sites (cookie syncing). The authors developed an open source pri-
vacy measurement tool, which simplifies data collection for privacy studies on a
scale of millions of websites. Similarly, Libert [146] studied the effect of third-party
HTTP request on the top 1M websites and showed that Google can track across
80% of websites through third-party domains. It has been shown that 80-90% of
browsers can be uniquely identified. Besides HTTP cookies, other entities such as
Flash cookies, WebGL, and HTML5 were also used as a tracking medium [186, 161].
It is important to mention that a number of side channel and timing attacks have

been launched on web browsers to leak the browser histories and cache information
[218, 224]. These attacks can de-anonymize users in social networks, uncover user
data, or reveal data to service providers or ad networks. Two different studies, [48]
and [178], showed that usernames and online social profiles can uniquely identify user
profiles and link users across different social platforms. In these works, fingerprinting
was based on device configuration, device settings, and device hardware. Table 3.1
summarizes popular web-based tracking techniques.
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Table 3.1: Summary of Existing Web-Based Online Tracking Techniques
Techniques
Applied

Firefox Plugin and Extensions, Host Tracking Graph, Font metric-based
fingerprinting, open-source web privacy measurement tool (OpenWPM),
Markov Chain, mitmproxy

Tracking
Metrics

Anonymity Sets, Entropy, Information Gain, Correlation, Normalized
Shannon’s entropy, Conditional Entropy, Information Surprisal

Datasets Alexa Websites, Hotmail, Bing, Operating Systems, Facebook profiles,
twitter profiles, Google, eBay, LDAP directory

Attributes Cookies, JavaScripts, Uniquely Identified URLs, User Agent, HTTP AC-
CEPT headers, Cookies enabled?,Screen resolution, Timezone, Browser
plugins, plugin versions and MIME types, System fonts, Partial super-
cookie test, IP address, ser login ID, locality, short user ID, timestamp,
OS, basic fonts, all fonts, Content encoding, Content language, List of
plugins, Use of local/session storage, color depth, List of HTTP head-
ers, Platform, Do Not Track, Canvas, WebGL Vendor, WebGL Ren-
derer, Use of an ad blocker, Unicode code points, tracker-owned cook-
ies, site-owned cookie, HTML5 Local Storage, Flash LSOs, battery level,
charge/discharge time readouts, gender, age, relationship status, Inter-
ested in, current city and current country, ToDataURL, fillText, stroke-
Text, URL of the caller script, navigator, screen object

Accuracy Precision, recall, false Positives, true Positives, Uniqueness, EnergyFull,
Voltage

3.1.1.1 Online Tracking from Third-Parties on the Web

There has been a wealth of research into the utilization and exploitation of third-
parties [109, 168, 138, 108, 203, 202]. Falahrastegar et al. [79] inspected the use of
third-parties across top Alexa websites, exploring how third-party operators differ
based on region. Nikiforakis et al. [168] demonstrated in 2012 that large proportions
of websites rely on JavaScript libraries hosted on ill-maintained external web servers,
making JavaScript exploits trivial. Lauinger et al. [138] led a further study, classi-
fying sensitive libraries and the vulnerabilities caused by them. Similarly, Ikram et
al. [109] proposed a machine-learning based tracking detection method that detects
tracking JavaScript programs on the web. Their method used one-class machine
learning classifier (SVM) that utilizes similarities between tracking JavaScript pro-
grams based on syntactic and semantic features. One key aspect of their work is
the ability of a classifier to discover previously unseen tracking JavaScript programs.
Further, Hozinger et al. [100] found 61 JavaScript exploits and empirically defined
three main attack vectors. Gomer et al. [90] analysed users’ exposure to tracking in
the context of search, showing that 99.5% of users are tracked by popular trackers
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within 30 clicks.
Bashir et al. [14] studied websites’ resource inclusion trees and analyzed retargeted

ads using crowdsourcing. This allowed them to identify and classify ad domains, as
well as predominant cookie matching partners in the ad exchange environment. Our
study is far broader, and sheds light on dependency chains across many different
types of websites rather than simply inspecting advertisements. More related is
Kumar et al. [132], who characterized websites’ resource dependencies on third-
party services. They found that dependency chains are widespread. This means,
for example, that 55% of websites are prevented from fully migrating to HTTPS
by their dependencies. Their focus was not, however, on identifying suspicious or
malicious activities.

3.1.2 Mobile-based Tracking

Mobile device fingerprinting, on the other hand, is a recent but emerging concern. In
general, the aforementioned techniques for browser fingerprinting can also be used
for mobile tracking. However, studies revealed that mobile browsers do not have such
distinguishable features as plugins, and fonts [70]. Thus, several studies proposed
alternative methods to fingerprint mobile devices. These techniques utilize different
physical characteristics of a mobile device, e.g., camera, sensors, microphones, and
speakers. For instance, a study by Kurtz [134] focused on device configurations.
Dey et al. [64] used the vibration motor to develop accelerometer fingerprints, and
then applied machine learning to extract features.
A study by Das et al. [57] proposed a fingerprint mechanism to uniquely identify

smartphones based on motion sensors (accelerometer and gyroscope) and inaudible
audio stimulation, along with a mechanism to obfuscate the fingerprints by cali-
brating sensors. Noise-based sensor fingerprinting for mobile devices has also been
discussed in [55, 56, 228], which focused on acoustic components such as speakers,
microphones, or cameras. These techniques require access to microphone which
needs a separate permission. Bojinov [29] utilized the noisy nature of hardware
sensors such as accelerometer and microphones. Similarly, images taken by mobile
phone camera were investigated to derive a noise pattern that is considered to be
different in each device sensor [51, 148].
A work in [157] focused on mobile users identification and tracking based on touch-

based gestures. A number of studies have also focused on privacy-preserved online
behavior targeting for various purposes, including advertising [84, 209]. Another
work by Spooren et al. [200] analyzed 59 mobile device fingerprints and concluded
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that “the fingerprints taken from mobile devices are far from unique”. However,
they did not consider canvas test for fingerprinting. A study by Simon et al. [198]
presented a new side-channel attack against smartphone keyboards that support
gesture typing. They identified returning users with 97% accuracy using a set of 35
sentences and the system also correctly predicted sentences.
A number of studies have focused on identifying mobile user traits and characteris-

tics using the information provided by mobile SDKs to third party-apps, such as the
running apps, device model, operating system, and so on [195]. Kurtz [134] showed
that mobile devices can be tracked through personalized configurations (installed
apps, top 50 songs, device, Wifi name, etc) without involving hardware identifiers
such as Unique Device Identifier (UDID), International Mobile Station Equipment
Identity (IMEI), and others. Although these approaches affect user privacy, they
are not directly related to our objective of identifying user based on behavioural bio-
metrics. A work by Zhao et al. [227] showed the existence of a diverse set of mobile
users using clustering and feature ranking. Their results identified 382 categories
of users based on their app usage patterns. Table 3.2 summarizes popular mobile
tracking techniques.

3.1.3 Other Tracking Techniques

Device or host fingerprinting tracks users or devices based on device properties,
such as hardware or configuration information. One of the prominent works on
remote device fingerprinting was presented by Kohno [129] and proposed a method
to measure device clock skew using ICMP and TCP traffic.
Some works also deal with remote fingerprinting based on wireless traffic; for ex-

ample, radiometric analysis of 802.11 transmitters [174], signal phase identification
of Bluetooth transmitters [92], or timing analysis of 802.11 probe request frames
[63]. For example, [174] utilized manufacturing defects in hardware to identify the
device and, by association, the end user. Many efforts on tracking wireless de-
vices focused on other hardware characteristics, such as radio frequency and drivers
[166, 3]. While these techniques can also be used to identify smartphones, on the
other hand, these calculations are resource intensive and require user cooperation.
In addition, identifiers such as network names and IP addresses also help in host
fingerprinting [174].
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Table 3.2: Summary of Existing Mobile-Based Online Tracking Techniques
Data Col-
lection
Methodol-
ogy

Online Mobile Data Collection App at Playstore, Public Available
Datasets Collection, Static Data Collection Test Environment (all test
users and test phones have same data collection environment), Specific
Test Mobile Data collection, Public Available Websites for Data Collec-
tion

Tracking
Metrics

Jaccard Similarity Coefficients, Machine Learning Classifiers (Support
Vector Machine (SVM), Naive-Bayes classifier, Multiclass Decision Tree,
k-Nearest Neighbor (k-NN), Quadratic Discriminant Analysis classifier,
Bagged Decision Trees, Gaussian mixture models (GMMs)), Euclidean
Distance, Cosine Distance, Entropy, L2 Distance, Maximum-Likelihood
Estimation, Correlation, Relative Information Gain, Information Gain,
Recurrent Neural Network, K-Means Clustering

Datasets Data from Mobile Phones (Motorola Droid, Apple, Samsung, Nokia,
Black Berry, LG, HTC, Nexus, Smart Chips) - Personalized Phone Set-
tings (e.g. installed apps, settings), Motion Sensors Data (Accelerome-
ter, Gyroscope, Magnetometer ), Touch-Sensors Data, Speaker/Micro-
phones Audio Data, Ambient light Data, GPS, Camera)

Attributes IMEI, Wifi Mac Address, Unique Device Identifier (UDID), WiFi MAC
Address, Closed Captioning Enabled, Guided Access Enabled, In-app
Purchases Allowed, Inverted Colors Enabled, Mono Audio Enabled,
Twitter Set-up, VoiceOver Enabled, VoIP Allowed, Jailbreak, Carrier
Name, Internet Connection Type, Current ISP, Current Public IP, De-
vice Country, Device Language, Device Model, Device Name, iOS Ver-
sion, Installed Apps (Icon Cache), Installed Apps (URL Schemes), In-
stalled Keyboards, Top 50 Songs, WiFi SSID, Calendar Names, Con-
tacts, Photo Album Titles, Reminder List Names, Twitter Account
Name, IMSI, Frequency –based Features (Spectral Centroid, Spectral
Spread, Spectral Skewness, Spectral Kurtosis, Spectral Entropy, Spec-
tral Flatness, Spectral Brightness, Spectral Rolloff, Spectral Rough-
ness, Spectral Irregularity, Spectral RMS, Low-Energy-Rate, Spectral
Flux, Spectral Attack Time, Spectral Attack Slop), Time-based Features
(Mean, Std-Dev, Average Deviation, Skewness, Kurtosis, RMS Ampli-
tude, Lowest Value, Highest Value, Percentiles, Min, Max, ZCR , Non-
negative Count), Audio Features (Spectral Flatness, MFCCs, Chroma-
gram, Tonal Centroid), Photo-response Non-uniformity Noise (PRNU),
Touch-based Features (Raw Area, Pressure, X and Y Coordiantes, De-
rived Statistical Features such as Max, Min, Average, Percentile)

Accuracy Fingerprint Stability, Discrimination Accuracy, Re-identification Accu-
racy, Precision, Recall, Average Precision, Average Recall, Accuracy,
ROC, F-Score, True Negative, False Negative, Confusion Matrix, False
Acceptance
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3.2 Privacy Preserving Solutions for Web and
Mobile Data

In this section, we discuss the extant privacy preserving techniques or mechanisms
proposed for the web and mobile data. It is to be noted that all the below-mentioned
solutions offer protection against virtual tracking/identification of users. For in-
stance, TrackMeNot (TMN) [103] and PRivAcy model for the Web (PRAW) [196]
prevent web browser tracking. Similarly, solutions proposed for mobile environments
are only confined to protect device rather than the actual user. In order to prevent
actual user being tracked, it is first necessary to identify the patterns or trends that
are common in user behaviour and then propose a solution that does not lead to
user tracking whilst maintaining utility of the functionality.

3.2.1 Privacy Preserving Solutions for Web Data

To counter the privacy risks in user web search histories, several privacy preserving
methods have been proposed which can be categorized based on their deployment,
the system-centirc, network-centric, and user-centric. In a system-centric approach,
several privacy preserving search engines have been developed that allow users to
obtain the results of their searches without revealing their search queries or their
search activities to the search engine [39, 89, 95, 135]. In a network centric-solution
an anonymous communication channel is used to hide the users’ identities in order to
make users’ comments or queries non-linkable [66, 185]. However, features extracted
from the users’ web browsers allow linkability. Therefore, in a user-centric approach,
the real queries or other web data are perturbed to reduce the linkability [70].
Most of the work in web search privacy is based on interleaving fake queries as

noise to the queries of the user. Such noise addition techniques send fake queries
either as inidividual search queries or modified user queries with fake keywords, such
that the privacy of user’s search queries is preserved. TrackMeNot (TMN) [103] is
proposed as a Firefox plugin to randomly issue dummy queries from predefined Rich
Site Summary (RSS) feeds. GooPIR is a standalone application for noise addition
to Google queries [68], which modifies the user queries by adding dummy keywords,
and then the search results are re-ranked locally based on the original user queries.
PRivAcy model for the Web (PRAW) [196] is another technique, which continuously
generates fake queries in different topics of interest of the user. This is done by
generating user profiles from user queries and corresponding responses and thus the
fake queries added will be in the general area of interest of the user in order to make
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the distinction between real and fake queries difficult. Bloom cookies is yet another
privacy preserving approach that encodes users’ profiles in a compact space with
privacy preserving Bloom filters to allow personalisation without being able to track
users [160].
Murugesan et al. [163, 164] presented an obfuscation technique of plausibly deni-

able search (PDS), where a user’s original query is combined with a set of unrelated
queries, sharing the similar characteristics as the original query. It supports a notion
of plausible deniability such that the probability of issuing an actual query is similar
to the probability of issuing one of the (k to support k-plausible deniability) gener-
ated cover queries. The paper used Latent Semantic Indexing (LSI) based approach
to generate fake queries and used DMOZ to show effectiveness of the approach. The
approach emphasized that subsequent search queries are important in revealing user
information; however they consider it as a future work of the PDS system.
Monedero et al. [184] formalized a model for an Optimized Query Forgery for

Private Information Retrieval (OQF-PIR) that obfuscates user profiles and thus
minimizes the privacy risk. The authors obfuscated user profile by making them
up to average population profile and calculated Kullback-Leiber divergence between
average population profile and the actual user profile. Similar to [184], Ye at al. [222]
also proposed an obfuscation method that first finds an optimal number of dummy
query distribution among finite set of categories and then injects these dummy
queries as a noise into original user queries. Their approach is called Noise Injection
for Search Privacy Protection (NISPP). In order to measure search privacy breach,
NISPP utilized mutual information as a metric between user original queries and
the diluted queries. Their results indicated that adding query noise reduced the
privacy breaches to much extent.
Roca et al. [40] presented a protocol that distorted user profiles to the web

search engine by enabling third parties to share queries with each other. Their
results showed an affordable query delays and overhead in terms of computational
and communications cost, whilst providing privacy benefits to the users. Al-Rfou
et al. [6] analyzed TMN dummy queries using clustering algorithm and measured
similarity between dummy queries with the set of recently issued queries by the user.
Their analysis did not take into account any obfuscation mechanism rather it just
computed similarity between queries. A drawback could be that fake queries having
similarity ratio equal to original query fall into same cluster.
Cerqueus et al. [179] followed a hybrid approach by proposing PEAS (private,

Efficient, and Accurate Web Search) system that provided an efficient unlinkability
protocol to hide user identities ( i.e. unlinking queries from the user), and an ac-
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curate indistinguishability (unidentification) protocol to hide the difference between
original and fake queries. The system showed promising results by decreasing 81.9%
the number of queries linked to original user and retrieving upto 95.3% of accurate
results through search engines.
A work by Xu et al. [221] demonstrated the ability of balancing between users’

privacy and search quality. The algorithm first organized user personal information
into hierarchical user profile, and ranked general terms to higher level than specific
terms. The hierarchical profile enabled users to select the portion of their private
information which should be exposed to server using a threshold. An additional
privacy metric was estimated that indicated the amount of information revealed with
the threshold value. The experimental results showed that user profiles are useful
in improving search quality while exposing a small portion of private information
about users.
Few studies have been conducted on obfuscation methods for other web data,

such as social networks. Weinsberg et al. [219] studied the impact of obfuscation on
the utility of recommendation systems with different classifiers. Salman et al. [189]
and Li et al. [141] proposed methodologies to prevent inference attacks against pub-
lished data by distorting data before making it publicly available while providing
utility guarantee. A study by Chen et al. [47] investigated the effectiveness of dif-
ferent obfuscation strategies and policies for online social networks and proposed a
novel obfuscation strategy based on the χ2 feature selection metric without requiring
knowledge about the classifier used by an adversary. The proposed strategy is able
to significantly reduce the inference accuracy as validated by a set of experiments
on Facebook dataset.
On the other hand, only limited works have considered quantifying privacy in web

data. Peddinti et al. [175] evaluated the privacy guarantees offered by the TMN
based on machine learning classifiers such as Logistic (Regression), Alternating De-
cision Trees (ADTree), and Random Forest. The study conducted on the AOL
search logs and queries generated by the TMN software demonstrated that a search
engine, equipped with a short history of user search queries, can bypass the obfusca-
tion techniques with an average accuracy of 48.88%, and an average misclassification
rate of 0.02% respectively.
Gervais et al. [88] also evaluated the query obfuscation techniques such as TMN

and fake query generation, by learning the linkability between users’ original and
fake queries via machine learning algorithms. The paper proposed a quantitative
framework that models attacks against web query obfuscation mechanisms and mea-
sures the privacy of user web search behaviour. The framework models user web
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search behaviour, obfuscation mechanism, adversary knowledge about the obfusca-
tion mechanism and the users’ history of web searches, linkage function that captures
and splits the fake and real queries, and a privacy metric to evaluate privacy at the
query level and the semantic level.
Balsa et al. [13] performed qualitative analysis on six existing obfuscation tech-

niques by investigating their privacy characteristics. The study provides insights
into the deficiencies of existing solutions however, it did not analyze and compare
the techniques quantitatively. The study also discussed a set of features that are
required to avoid pitfalls of previous techniques while designing obfuscation based
private web search techniques. Another study by Chow et al. [49] proposed two
features that could be used to differentiate TMN dummy queries from real user
queries.
A work by Biega et al. [23] studied quantifying privacy risk in web data by man-

ually developing rules for sensitive key-value pairs and performing probabilistic cal-
culation of the rules based on user’s search history. Rule-based approaches are
time-consuming as well as non-reliable for real-time risk prediction. A ranking-
based Information Retrieval-centric approach to privacy risk evaluation in online
communities is proposed by Biega et al. [24]. This approach uses ranking as a
means of modelling a rational adversary who targets the most afflicted users. In
[147], a framework for computing privacy scores of users in online social networks
was proposed based on the sensitivity and visibility of a set of profile items. The
proposed approach adapts the Item Response Theory (IRT) to calculate visibility
and sensitivity of a set of profile items, such as real name, email, relationship status,
and mobile phone number.
Murugesan et al. [164] studied inference attacks on web data and defined two

qualitative metrics to measure the accuracy of web search obfuscation mechanisms
against inference attacks, identifiability and linkability. Identifiability is referred to
as determining a person who issued a query whereas linkability is referred to as
associating a person to the query. Linkability in combination with identifiability
is a serious privacy concern which not only determines a user but also identifies
the interests and personal information of the user. In order to identify a user, the
most naive method is to use parameters such as IP addresses, HTTP cookies, and
client-side tools (for example, operating system and user name). Other methods are
profiling users based on their queries, click-through, user preferences (for example,
language and settings), and rich-client side (browsing history).
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3.2.2 Privacy Preserving Solutions for Mobile Data

We find a number of techniques that formulate obfuscation problem as a min-max
optimization and solve using adversarial networks. Raval et al. [183] proposed
utility-aware obfuscation framework, OLYMPUS, that limits the risk of disclosing
user sensitive information from sensors data such as images. The framework was
based on generative adversarial networks (GANS), with a game between obfuscator
and an attacker. Thus, given a training dataset and an access to target application
(for utility), OLYMPUS learns an obfuscation mechanism that minimizes both pri-
vacy and utility losses. The framework was tested on different benchmark datasets
and a real world handwriting recognition mobile application. Results indicate that
OLYMPUS successfully protect user information without compromising much of
application accuracy. However, the framework needs the data of other users to
train the obfuscation mechanism, (which is assumed to be gathered from publically
available datasets), and is applicable only to apps that are using machine learning
classifier to output utility classification score. Moreover, their framework is not gen-
eralized as the Deep Neural Network (DNN) needs to be tuned for different types
of applications. In addition, the framework is user-dependent where an input from
a user is required to specify privacy and utility labels. Their threat model trusts a
user/developer to hook up an application with a framework.
Malekzadeh et al. [152, 151, 150] proposed approaches to protect sensory data

using autoencoders. However, their schemes only work when public and private
data are clearly mentioned. Akin to [183], these approaches suffer from the same
drawback i.e. tuning different parameters against each data type. In addition, their
work is tested only on a specific data i.e. motion sensors, and did not discuss its
applicability for different mobile data types. Shokri [197] proposed a methodology
for designing optimal user-centric obfuscation mechanisms against adaptive inference
attacks. The mechanism is based on Stackelberg game that minimizes utility losses
under specified privacy constraints. This approach works well on certain data types
such as location trajectories that are discretized however, it is not clear how this
scheme works for continues data such as images, touch sensors, GPS locations etc.
A number of other adversarial approaches have also been proposed, e.g. [7]

uses GANS to obscure the difference between the real and synthesized datasets.
However, this approach does not offer privacy guarantees on the generated synthetic
data. Moreover, this approach works best for the batch and offline processing of
the data. Similarly, [104] also proposed utility aware privacy framework based
on GANS. The purpose of this framework is also to generate synthetic data with
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privacy and utility guarantees. AttriGuard [121] protects data from an attacker
that attempts to infer private attributes. This adversarial scheme is based on the
principle of transferability as it assumes that defeating a particular attacker should
defeat other similar attackers as well. Akin to other literature, these approaches are
only applicable for batch processing of the data and are not suitable for real-time
sensor data types.
Das et al. [57] studied the feasibility of conducting sensor fingerprinting on mobile

phones and also discussed countermeasures based on calibration and noise addition.
They showed the effect of obfuscation sensor data on fingerprinting and utility. In
another paper, Das et. al [58] proposed an obfuscation scheme to defeat motion
sensors based fingerprinting. The results indicate that accuracy of fingerprinting
device is reduced with no significant impact on the usability of motion sensors. In one
of his recent work [54], Das et. al studied sensor APIs and the scripts that use such
APIs in fingerprinting. He also evaluated the efficacy of current countermeasures
in blocking such scripts. Erdogdu [74] proposed a privacy-utility aware framework
for time series data using information theoretic approach. However, their scheme
relies on previous data entries of a user to generate an obfuscated data at time t.
In addition, the scheme does not clearly describe obfuscation steps and how their
framework behaves with different sensor data types.
Regarding location-based privacy, a recent paper proposed a privacy-preserved

mechanism for user location data while reducing utility loss [30]. Apart from fo-
cusing only on location data, this approach is only tested for a specific utility type
i.e. recommended places. Similarly, Shokri et al. [26] tried to protect user trajecto-
ries by generating fake yet semantically real privacy-preserved location traces. The
scheme was also tested against location inference attacks. However, this scheme
considered a threat model where the whole batch of synthetic data is to be re-
leased in public and did not consider real-time privacy-preserving of a location data.
A framework, PULP, has been proposed [41] that automatically selects location
privacy-preserved mechanism (LPPM) based on user requirement of privacy and
utility. The framework is tested on two LPPMs, GEO-I and Promesse [8, 182].
PULP also required offline profiling of LPPMs and investigated on specific privacy
and utility metrics. Similarly, Bilogrevic et al. [25] proposed a methodology to
design automatic personalized location privacy protection mechanisms. They stud-
ied the motivation of the user in sharing location information, and then predict
the utility implications of a privacy-protection mechanism. Similar location privacy
preserving mechanisms have been proposed in [98, 139].
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3.3 Conclusion

In this chapter, first, we discuss the existing web and mobile tracking techniques.
We observe that the existing literature is confined to fingerprinting virtual identities.
For-instance, the browser fingerprinting techniques utilized characteristics such as
plug-ins, fonts, caches, histories etc. to uniquely identify a browser. Likewise,
keystroke dynamics-based tracking focuses either on keyboard-equipped devices or
keystroke based gestures only. To the best of our knowledge, we do not find any
tracking technique that utilizes user behavioural activities, such as swiping or writing
on mobile devices or searching on the web, to reveal user identity. There is a
significant need to investigate various behavioural-based tracking methods on the
web and mobile platforms with the purpose to identify stealth-mode privacy leakages
that can even track the physical identity of a person.
We also discuss the existing studies focusing on third-party web tracking and found

that little work has been devoted to investigate the impact of indirect (implicit)
loading of the web resources from third-parties. Moreover, these prior studies ignore
the presence of dependency chains (cf. Chapter 6) and treat all third-parties as
“equal”, regardless of where they are loaded in the dependency chain. We also do
not find any work in literature that analyzes the role of dependency chains in loading
suspicious third-party content.
Next, we discuss the existing literature on privacy preserving mechanisms for web

data. However, none of these works focused on measuring or predicting privacy
risks at run-time when a user is actively participating in online web activities. The
existing web privacy quantification methods are not comprehensive and generic to
be applicable for different web data types for-instance, search queries, blogs, product
reviews, and social network comments. In addition, no work has handled the user
high-risk data entries at run-time i.e. predicting and then obfuscating the high
risk data entries. Though, adversarial machine learning has been an active area of
research, there is still a need to investigate this emerging technology in the context
of web data obfuscation.
Finally, we provide a literature on mobile sensor data obfuscation mechanisms.

There has been a continuous effort by researchers to provide efficient solutions to
overcome user identifiability issues emanating from mobile sensors data. However,
some of these solutions are not considered suitable for continuously released of mobile
sensory data whereas, some approaches are limited only to motion sensors, such as
gyroscope and accelerometer, as they are based on calibration errors, i.e. offset and
gain. Calibration errors do not hold true for other mobile data types such as GPS or
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touch sensors. Few recent studies proposed deep neural network (DNN) based on-
device data obfuscation. However, these mechanisms are either application specific
i.e. developers must hookup the obfuscation mechanism with their apps to balance
privacy and utility, or user-interactive i.e. user needs to train the learning mechanism
and provide privacy and utility labels for classification. Hence, these limitations raise
a concern of trusting application developers and users to appropriately implement
obfuscation mechanism. In addition, few solutions need the data of other users to
train the obfuscation mechanism, (which is assumed to be gathered from publically
available datasets). Finally, these mechanisms focus on a single privacy aspect
i.e. user distinguishability/identification and did not discuss the privacy notion of
trackability across different sessions.
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Chapter 4

Quantifying the Uniqueness of
Touch Gestures for Tracking

In this chapter, we introduce a new privacy threat, ‘touch-based tracking’, which is
induced by the collection and monitoring of touch gestures of mobile device users.
We demonstrate the likelihood of touch-based tracking by focusing on touch gestures
widely used to interact with touch devices such as swipes and taps. Our objective is
to quantify and measure the information carried by touch-based gestures which may
lead to tracking users. For this purpose, we develop an information theoretic method
that measures the amount of information about users leaked by gestures when mod-
elled as feature vectors. Our methodology allows us to evaluate the information
leaked by individual features of gestures, samples of gestures, as well as samples of
combinations of gestures. Through our purpose-built app, called TouchTrack, we
gather gesture samples from 89 users, and demonstrate that touch gestures contain
sufficient information to uniquely identify and track users.
In Section 4.1, we highlight the privacy problem of tracking users through touch

gestures and briefly discuss our contributions. Section 4.2 covers our methodology
of collecting data using TouchTrack app, and then presents the descriptive statis-
tics about our dataset. Section 4.3 outlines our proposed probabilistic analytical
framework in detail. In Section 4.4, we discuss the results on the amount of infor-
mation conveyed by the users of our dataset for different touch gestures and their
combinations. We summarize the results in Section 4.5. Finally, we conclude in
Section 4.6.
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4.1 Motivation

Touch gestures such as swipes, taps and keystrokes, are common modes of interaction
with smart touchscreen-enabled devices, e.g., smartphones, smart watches and smart
glasses. Major platforms including Android OS, iOS, watchOS and Android Wear
provide a variety of APIs to help app developers detect gestures aiming to enhance
the quality of experience of apps. Access to these APIs allows apps to collect raw
gesture data from different sensors available on the smart device. The fine-grained
nature of this data means that there is potential of learning more about users than
is perhaps necessary for the proper functioning of an app. Indeed one area where
touch gestures have been exploited is continuous authentication through which users
are authenticated by profiling their touch behaviour [27, 83].
In this chapter, we argue and verify that touch gestures constitute a privacy threat

as they enable a new form of tracking of individuals, which we refer to as “touch-
based tracking,” which is the ability to continuously and surreptitiously track and
distinguish users via their touch behaviour while they are interacting with their
devices. As compared to “regular” tracking mechanisms, e.g., based on cookies,
browser fingerprints, browser user agents, logins and IP addresses, several factors
make touch-based tracking potentially riskier. First, while regular tracking tracks
virtual identities such as online profiles [70, 171, 137], touch-based tracking has the
potential to track and identify the actual (physical) person operating the device.
It can distinguish and track multiple users accessing the same device. Second,
touch-based tracking possesses the capability to continuously track users. Third, it
also leads to cross-device tracking where the same user can potentially be traced
on multiple mobile devices. Cross-device tracking introduces additional privacy and
security risks, where user data can be collated and sent to advertising companies and
third party entities to build user profiles based on their activities on smartphones,
tablets, smart watches and various IoT devices. However, demonstrating this type
of tracking requires a more generalized approach, e.g. to validate the stability of
features across devices, which we leave as future work.
Not all use cases of touch-based tracking are negative. It can also be beneficial

to users and service providers alike. For instance, the identification of multiple
users using the same device may help in providing content more suitable for each of
them. A child using his/her parent’s smartphone can automatically have parental
control enabled. Touch-based tracking could also bring commercial benefits to the
user (e.g. displaying discounts and sales on the product of interest to the user). The
reader might notice a link between touch-based tracking and touch-based continuous
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authentication. There are major differences in the two notions. The latter verifies
a claimed identity based on prior knowledge of the identity and former tracks users
even without the knowledge of any disclosed identity.
The ubiquity of the touchscreen devices and the fact that most if not all data from

touch events and/or other sensors can be extracted by any mobile app without re-
questing special permission makes touch-based tracking a serious privacy threat for
users. This not only represents a valuable new source of information for analytics,
tracking, and ad services but also for app developers who can (mis)use the informa-
tion to track individuals on a single device or across multiple devices. The objective
of this chapter is to quantify the amount of information carried by user’s touch ges-
tures and hence to evaluate their tracking capabilities. Our main contributions are
summarised as follows.

• We investigate the potential of using touch-based gestures for tracking, which
we call touch-based tracking. We quantify the amount of information con-
tained in these gestures which could lead to user tracking. To the best of our
knowledge, this is the first study considering the potential of touch gestures
to profile users. Our work complements research on other forms of track-
ing such as through web browsers, host devices, and online social profiles
by fingerprinting browser features, device configurations, and user attributes
[70, 171, 178, 48, 55, 223, 129, 134, 170].

• We develop an analytical framework that measures the amount of identify-
ing information (in bits and relative mutual information) contained in touch
gestures, represented as feature vectors, at different levels of granularity. At
the finest level, our framework quantifies the information carried by individ-
ual features, e.g., pressure on screen and area covered by the gesture. At the
second level, our framework quantifies the information carried by a gesture
sample, e.g., a single swipe. At the third level, our framework calculates the
amount of information carried by multiple samples of the same gesture, e.g.,
a collection of swipes. Lastly, we measure the information carried by a col-
lection of samples from multiple gestures, e.g., swipes and taps. We apply
our framework on four widely used touch screen gestures: i) swipes, ii) taps,
iii) keystrokes, and iv) handwriting, and four sub-categories of swipe: i) up
swipe, ii) down swipe, iii) left swipe, and iv) right swipe. The framework is
generic enough to apply to any behavioural biometric modality which can be
expressed as feature vectors.
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• We develop and deploy a game-like app called “TouchTrack” for Android
powered devices. It consists of three well known open source games: 2048 (for
swipes),1 Lexica (for taps),2 Logo Maniac (for keystrokes),3 and one custom
built app for handwriting. These games were selected to capture touch ges-
tures in a natural way. Through our TouchTrack app the user can check the
uniqueness and tracking potential of his/her gestures.

• Using our TouchTrack app, we carry out a user study comprised of 89 partici-
pants and gathered a total of 40,600 samples of touch gestures. For each touch
gesture, we identify features that contain high amount of identifying
information using the maximum-relevancy minimum-redundancy (mRMR)
algorithm [177]. The algorithm attempts to constrain features to a subset
which are mutually dissimilar to each other, but similar to the classification
variable, which in our case was the set of users. We give details in Section
4.4.2. We find that the most revealing features were the 80th percentile of
area from left swipes, the 20th percentile of area and the 50th percentile of
pressure from downward swipes which yielded 56.1%, 55.50% and 46.13% of
information, respectively.

• With the same dataset, we measure the amount of information con-
tained in samples from the same gesture and from multiple ges-
tures.4 We find that 50 features in a single handwriting sample contribute
68.71% of information about users, which increases to 73.7% with multiple
samples. We further identify that two or three different gestures combined
together reveal more information about users. For instance swipes, handwrit-
ing, and keystrokes carry 98.5%, while handwriting, taps, and swipes disclose
95.1% of information. Among users who performed all the four gestures, our
framework revealed 98.89% of information about users.

• Finally, we also validate our framework in terms of correctly identi-
fying a returning user. This is important since the same user might have
two different samples from the same gesture that could be mutually dissimi-
lar (thus showing high uniqueness) but will not result in identifying the user.
We measure the true positive and false positive rates (TPR and FPR) of our
method. We define TPR as the rate at which a unique user (in our set of

1https://github.com/gabrielecirulli/2048
2https://github.com/lexica/lexica
3https://github.com/Luze26/LogoManiac
4We use the relative mutual information as our metric for identifying information. For details,
see Section 4.3.
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users) is identified as the correct user given a test sample (or set of samples).
Likewise, FPR is defined as the rate at which the wrong user is identified
as the target user or a set of more than one users is identified as the set of
possible users given a test sample (or set of samples). We observe that with
multiple samples, swipes and handwriting show a TPR of 90.0% and 91.0%,
respectively. For a combination of gestures we find that swipes and handwrit-
ing combined together had a TPR of 93.75%. In terms of FPR, we find that
swipes, handwriting, and keystrokes taken together had an FPR of only 0.8%.

4.2 Data Collection

To illustrate the potential of touch-based tracking, we developed and launched a
purpose-built app named TouchTrack to capture gesture samples. We first give an
overview of the TouchTrack app, followed by our data collection approach. We then
briefly describe some statistics about our dataset.

4.2.1 Selection of Gestures

Our selection of gestures was based on how frequently they are performed by users
of smartphones or other touchscreen devices. We narrowed our selection to swipes
(including left, right, upward and downwards swipes, and the group of four taken
together), taps, keystrokes and handwriting. Swipes and taps are by far the most
frequent gestures on smartphone apps. Keystrokes are also frequently used for typing
text messages or entering web addresses. Unlike tap, which could be performed at
any point on the touch screen, a keystroke is restricted to tapping on the mobile
keyboard. We therefore separated the two. Writing on the touchscreen using fingers
is an important alternative input method on a smartphone. We did not include
other less frequent gestures such as pinching (for zooming in or out).

4.2.2 The TouchTrack App

The purpose of TouchTrack is to collect gesture samples as raw readings from the
touch sensors, send them to our server, and finally inform the users about the
uniqueness of their gestures by displaying the results computed via our framework
at the server. To keep the user interested in using our app, we decided to design it
like a game. The app is made up of four games, three of them are based on popular
open-source games and a fourth game was purposely developed by us. We selected
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these four games so as to capture the user gestures in a most natural way. We briefly
describe each game in Appendix A.1 along with the screenshots of the games.
When a new user uses TouchTrack, he/she is required to sign up using a unique

username. The username together with the device ID is hashed and then stored in
our database. This is done to ensure that gesture samples from different users are
kept separate to establish the ground truth. This also helps us to identify returning
users and devices. For matters of ease and privacy, we did not require the user to
enter a password with the username. Even though our app sends data in HTTPs, we
did not want to collect any additional sensitive data, such as passwords, from users.
Once the user has played one or more games, the uniqueness of the corresponding
gestures are computed through our quantitative framework (described in Section 4.3)
and are shown to the user in both visual and tabular forms. Screen shots of results
are shown in Figure A.2 of Appendix A.1. For user convenience, our app starts
showing results after a single gesture. However, to get more accurate results, the
user is encouraged to perform more gestures. We would like to remark that our
results may still not be reflective of user touch behaviour in the real world, as
displaying uniqueness results might encourage the user to change touch behaviour
to avoid privacy leakage. Probable change in user behaviour due to feedback has
been acknowledged before in the case of browser-based tracking [70]. We have made
the TouchTrack app available on Google Play Store.

4.2.3 The Raw Dataset

To collect gesture samples, we invited participants through two means: via emails
to targeted participants and via social networking platforms. At first we uploaded
a closed testing version of TouchTrack on Google Play Store and invited colleagues
and acquaintances via email to install our app. A total of 25 participants responded
to the first phase. In the second phase, we published the first version on Google Play
Store and received a further 56 responses through our personal and social contacts.
We received 8 responses from the users who installed our app without invitation.
We also included them in our analysis. The app was available on Google Play Store
for two months for data collection purposes. Once the data is collected, we start
our analysis and results interpretation. The data collected from the 89 users served
two purposes: to identify features most effective in fingerprinting users and to train
our analytical framework to evaluate the uniqueness of gestures.
Table 4.1 shows the list of raw touch features gathered from the touch sensors of

the devices used by the users across all gestures. By default, these features can be
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Table 4.1: Raw Features

Raw Touch
Features

X-Coordinate, Y-Coordinate, Finger Pressure, Finger Area, Screen
Orientation, Finger Orientation, Stroke Time, X-Tilt , Y-Tilt

obtained from Android APIs without requiring any security permission. We used
the MotionEvent Android API to detect and collect touch data. We did not use
motion features for our analysis because we observed that certain motion sensors
such as accelerometer, gyroscope and rotation vector did not produce any raw data
in many phones, and returned a null value to the Android API.

4.2.4 Ethics Consideration

Prior to data collection, we underwent and obtained an ethics approval from the
ethics board of our organization, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Australia. The board accesses all types of human related
research, both within Australia and overseas and confirms if the data collection
strategy complies with the national Statement on Ethical Conduct on Human Re-
search and any relevant state and national legislation [167]. The users were informed
about the purpose of TouchTrack and what data is being collected through the Par-
ticipants Information Sheet (PIS) and privacy policy available within TouchTrack
app. Appendix C contains a detailed overview of both sheets.
Throughout data collection, we did not attempt to obtain the real identities of the

participants via, for instance, a linkage study. The data collected was not released
publicly. No identifying information other than the user selected username and
device ID was stored at our server side. Moreover, only the hash of the username
and device ID were stored. The only other information stored at the server were the
raw data from gestures from each username-device ID pair. A privacy disclaimer
was displayed as soon as the app was launched by a participant providing the above
details. The participant was allowed to opt-out. We informed users that their
personal information will remain anonymous and took their consent beforehand.

4.2.5 Data Statistics

Table 4.2 shows the summary statistics of our data collection. The numbers are
broken down into number of users, samples of gestures and features associated with
each gesture. We collected a total of 40,600 gesture samples. Among these samples,
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Table 4.2: Touch Gesture Data Statistics

Gesture Number of Number of Number of
Users Samples Features

Swipes 81 16611 229
Up Swipes 78 3568 229
Down Swipes 71 4781 229
Left Swipes 63 4252 229
Right Swipes 65 4010 229
Taps 89 16225 7
Keystrokes 49 6473 8
Handwriting 36 1291 241
All Gestures: 30 25186
Total: 89 40600

swipe and tap gestures had the most number of samples. There were a total of 89
users who downloaded and used our app; however, only 30 users used all four games
and hence provided samples for all gestures. Our app was installed on 49 different
smart phone models, with Google Nexus 5 being used by 11 users and Samsung
Galaxy S7 Edge by 8 users. Nine of the 11 users of Google Nexus 5 used our test
smartphone to record gesture samples as they did not have an Android powered
device. We could distinguish between users of the same device via their hashed user
ID.

4.3 Methodology for Computing the Uniqueness
of User Gestures

In this section we describe our methodology behind computing uniqueness of ges-
tures. We begin with an overview, followed by notations and then the methodology
in detail.

4.3.1 Overview

Recall that the purpose of calculating uniqueness is to demonstrate touch-based
tracking. For this, we need to show (a) the uniqueness of gestures, (b) similarity
of gestures from the same user. To do this, we first obtain gesture samples, i.e.,
series of raw data values captured from the sensors of the smart device from a set
of users. Once these samples are collected we extract a set of salient features, thus
representing each gesture by a feature vector. The set of selected features is the
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topic of Section 4.4.1. For now we assume that each gesture is associated with a
fixed set of features. Once we have populated our dataset with an initial list of
users and gesture samples as instances of feature vectors, we then proceed to find
the uniqueness of the gestures at different levels. At the smallest level, we assess
the uniqueness of single features, by checking how many users exhibit a given ‘test’
feature value among the total users in the dataset. At the next level we assess the
uniqueness of a feature vector, i.e., a gesture sample, by checking how many users
in the dataset are likely to exhibit a given test feature vector. Likewise, we do this
for a collection of samples from the same gesture, and finally for the collection of
samples from a set of different gestures. In what follows, we define an abstract
representation of our dataset, and how we compute the uniqueness of gestures at
multiple levels using this abstract dataset.

4.3.2 Background and Notations

We denote the set of users by U, the set of gestures by G, and the feature space
by F. We denote our dataset by D which is modelled as a multiset of rows. The
columns of D are indexed by a u ∈ U, followed by a g ∈ G, a feature vector f ∈ F,
and finally by an average feature vector f ∈ F. The average feature vector f is the
average of all feature vectors f under a gesture g ∈ G and a user u ∈ U. The ith
feature under F is denoted by Fi. The dataset is illustrated in Table 4.3. We define
a random variable U that takes on values from U, a random variable G that takes
on values of subsets of G, and a random variable Fg that takes on values of subsets
of feature vectors from the gesture g. When considering only a single gesture g, we
shall drop the subscript and denote the random variable as F . We use the notation
{a} to indicate a set of cardinality more than 1, whose generic element is denoted
by a. For instance, {f} is a set of two or more feature vectors. The random variable
F can take feature values as well. Abusing notation, we will denote this by F = fi,
where fi is the value of the ith feature. A predicate on a row from D denoted

(U = u,G = g,F1 = f1,F2 = f2, . . . ,F = f),

is the conjunction of clauses (U = u), (G = g), and so on. The predicate evaluates
to 1 if a row satisfies each clause, and 0 otherwise. We can have possibly empty
clauses. When considering a feature vector, we may simply use F to represent the
conjunction of its constituent clauses. For example, the predicate

(U = Alice,G = Swipe,F = (0.012,0.567,∗,∗, . . . ,∗)),
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Table 4.3: Structure of the Dataset D.

U G F FF1 F2 ⋯

Alice Swipe 0.012 0.567 ⋯ (0.021,0.770,⋯)

0.019 0.599 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

Bob Tap 0.023 0.608 ⋯ (0.010,0.660,⋯)

0.024 0.499 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

evaluates to 1 on the first row of Table 4.3, where ‘∗’ indicates that the corresponding
feature values are not part of the predicate. A fuzzy predicate is a function that
evaluates to 1, if the feature vector of a row is similar to the feature vector specified
in the clauses according to a similarity metric. Fuzzy predicates are distinguished
from predicates by replacing either the equality involving F or F by ≈. For instance,
the following is a fuzzy predicate

(U = Alice,G = Swipe,F ≈ (0.012,0.567, . . . ,0.314)).

We denote by #(⋅) the number of rows in D satisfying the predicate (or fuzzy
predicate). The entropy of the random variable U is defined as

H(U) = −∑
u∈U

Pr(U = u) log2 Pr(U = u)

= −∑
u∈U

1
∣U∣

log2
1
∣U∣

= log2 ∣U∣.

This is the minimum number of bits of information required to distinguish each user
in U. The mutual information or information gain between U and a realization a of
the random variable A is defined as

I(U ;A = a) =H(U) −H(U ∣ A = a),

where H(U ∣ A = a) is the conditional entropy given as

H(U ∣ A = a) = −∑
u∈U

Pr(U = u ∣ A = a) × log2 Pr(U = u ∣ A = a). (4.1)

Finally, the relative mutual information between a realization a of the random vari-
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able A is defined as

IR(U ;A = a) =
I(U ;A = a)

H(U)
= 1 − H(U ∣ A = a)

H(U)
. (4.2)

The above measures the uniqueness of a realization of a random variable A through
relative mutual information. To assess the uniqueness of all possible values the
random variable A can take, we make use of the conditional entropy

H(U ∣ A) = −∑
a∈A

Pr(A = a)H(U ∣ A = a) (4.3)

Here, Pr(A = a) is calculated from the probability distribution of the random vari-
able A. From this, the relative mutual information of the random variable A is

IR(U ;A) = 1 − H(U ∣ A)

H(U)
. (4.4)

Note that while mutual information should suffice as a measure to assess uniqueness,
our choice of relative mutual information is to account for the different number of
users for different gestures, thus enabling us to compare results across gestures on
the same scale. In what follows, we shall assess the uniqueness based on different
realizations of the random variables G and F . This will be done by first calculating
the conditional probabilities in Eq. 4.1 which are determined by predicates or fuzzy
predicates, then computing the conditional entropy in Eq. 4.1, which then directly
allows us to compute the relative mutual information in Eq. 4.2. A given realization
is considered highly unique if the relative mutual information is close to 1. We will
use percentages to represent the value of relative mutual information in the range
[0,1] in the natural way. To assess the uniqueness of the random variables G and
F in its entirety, we will make use of the relative mutual information defined by
Eq. 4.4.

4.3.3 Measuring Uniqueness

We measure uniqueness based on a single feature value from a gesture sample, a
single feature vector (i.e., a gesture sample), a set of feature vectors (i.e., a set
of gesture samples), and finally a set of feature vectors corresponding to a set of
gesture samples from multiple gestures. To measure uniqueness based on a single
continuous feature, we first bin its values within discrete bins and then calculate
the probability of a user producing the feature value within a bin. In contrast, to
evaluate uniqueness of features vector(s), we do not bin the features, and instead
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rely on fuzzy predicates. Our procedure to bin continuous features (for evaluating
uniqueness of single features) is described below.

4.3.3.1 Binning Feature Values:

If a feature is continuous, then the probability that its corresponding random vari-
able F has the value f is 0. In an actual implementation, continuous features
are replaced by their floating point analogues. Still, the probability that the ran-
dom variable exhibits the exact value f is negligibly small. This will result in our
uniqueness based measure returning every feature value as unique (even from the
same user). We therefore, bin features that are either continuous or have a large
domain. Let σ denote standard deviation. Fix a gesture g ∈ G, let n = #(G = g)

denote the number of samples of the feature. We use Scott’s formula [193] to obtain
the optimum bin size ∆f as

∆f =
3.49σ(F )

n
.

Given this bin width the total number of bins are then

⌈
maxF −minF

∆f ⌉ .

Given a feature value f , its bin is calculated as

b = ⌈
f −minF

∆f ⌉

The feature value f is then converted to the feature value

f̂ = b∆f +minF

The value f̂ is then stored in the dataset D instead of f .

4.3.3.2 Uniqueness based on a Feature value

Given a feature value fi corresponding to the ith feature of a gesture g ∈ G, the
uniqueness of the value is computed as follows. We first calculate the probability
that a u ∈ U is likely to have produced this feature value. This probability is
calculated by Eq 4.5.

Pr(U = u ∣ G = g,F = fi) =
#(U = u,G = g,Fi = fi)

#(G = g,Fi = fi)
(4.5)
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The conditional entropy in U given the feature value fi of a sample of the gesture
g is given by plugging the above conditional probability in Eq. 4.1 to obtain H(U ∣

G = g,F = fi), from which the relative mutual information I(U ;G = g,F = fi) can
be obtained from Eq. 4.2.

Example 1. Suppose our dataset has ∣U∣ = 128 users, giving us H(U) = log2 ∣U∣ = 7
bits. Suppose now we are looking at the swipe gesture, and we are interested in the
first feature having value f1 = 0.012. Further suppose that out of the 128 users, only
Alice and Bob have exhibited this value in the dataset, with Alice having exhibited
it twice (corresponding to two different samples of swipe), and Bob only once. We
have #(G = Swipe,F1 = 0.012) = 3, #(U = Alice,G = Swipe,F1 = 0.012) = 2, and
#(U = Bob,G = Swipe,F1 = 0.012) = 1. Then Pr(U = Alice ∣ G = Swipe, F = 0.012) =
2
3 and Pr(U = Bob ∣ G = Swipe, F = 0.012) = 1

3 . From this we get H(U ∣ G =

Swipe, F = 0.012) = −2
3 log2

2
3 −

1
3 log2

1
3 ≈ 0.92 And finally, IR(U ;G = Swipe, F =

0.012) = 0.8688. We say that the feature value f1 = 0.012 for the swipe gesture
reveals 87% of information.

To assess the uniqueness of the ith feature (and not just one particular feature
value) we calculate the probability that the random variable F corresponding to the
ith feature takes on the feature value fi as

Pr(F = fi ∣ G = g) =
#(G = g,Fi = fi)

∑f∈F #(G = g,Fi = f)
. (4.6)

That is we count all instances of the feature value fi and divide it by the sum of
all instances of feature values f in the range of F . By plugging this value and the
result of conditional entropy of feature values in Eq. 4.3, we obtain the conditional
entropy pertaining to F , from which we can compute the relative mutual information
I(U ;F ) from Eq. 4.4.

4.3.3.3 Uniqueness based on a Gesture Sample

To measure uniqueness of a gesture sample, we use the entire feature vector f cor-
responding to the gesture g, and check against all feature vectors of the user u.
Due to high dimensionality of the feature vector, it is unlikely that any two feature
vectors from the same user will be exactly the same. We therefore use the fuzzy
predicate in this case, which relies on a similarity metric. We postpone our choice
of the similarity metric to Section 4.3.4. The conditional probability is calculated
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as

Pr(U = u ∣ G = g,F = f) = #(U = u,G = g,F ≈ f)
#(G = g,F ≈ f)

, (4.7)

From this probability we can then compute the conditional entropy and relative
mutual information as before. Due to space limit we omit how the relative mutual
information for the entire gesture is computed, which is similar to the case of the
relative mutual information for a feature.

4.3.3.4 Uniqueness based on a Set of Gesture Samples

If we are given a set of feature vectors {f} from a gesture g, we first obtain the average
vector f from {f}. Then, we compare this average vector against the average vector
under F of the user u ∈ U (for the same gesture). Given this, the probability that
the set of gesture samples is from the user u ∈ U is

Pr(U = u ∣ G = g,F = {f}) = #(U = u,G = g,F ≈ f)
#(G = g,F ≈ f)

(4.8)

Notice the use of fuzzy predicates. Given this probability, the conditional entropy
and relative mutual information can be computed as before.

4.3.3.5 Uniqueness based on Multiple Gestures

Given a subset of gestures {g} and their corresponding sets of feature vectors {fg},
we first obtain an average feature vector for each gesture, denoted f g, and then
count the number of rows in D that satisfy the product of the fuzzy predicates
generated by the average feature vectors of the gestures involved. More specifically,
the probability of the collection belonging to a user u ∈ U is calculated as

Pr(U = u ∣ G = {g},{Fg = {fg}}) =
∏g(U = u,G = g,F ≈ f g)

∑u′∈U (∏g(U = u′,G = g,F ≈ f g))
(4.9)

The symbol ∏ stands for product. In this case the product is over all gestures in
{g}. For instance, if we have {Swipe,Tap} as two gestures, then we are essentially
checking if the product predicate

(G = Swipe,F ≈ fSwipe) × (G = Tap,F ≈ fTap)
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evaluates to 1, which is only possible if both the fuzzy predicates evaluate to 1 for a
given user in D. We divide this by summing the same product predicate for all users
in D. The conditional entropy and relative mutual information can be computed by
plugging in the above conditional probability.

4.3.4 Calculating Fuzzy Predicates

To demonstrate how fuzzy predicates are evaluated, we use a generic feature vector
f belonging to a gesture g ∈ G. This is tested against a feature vector f ′ belonging to
a row in D under F or F (in case of the latter, we have an average feature vector).
As mentioned before, evaluation of the fuzzy predicate is tied to a similarity metric.
We chose the cosine similarity metric. Assume the length of f is m, then the cosine
of the angle between f and f ′ is defined as

cos(f , f ′) = ∑
m
i=1 fif

′
i

√
∑
m
i=1 f

2
i

√
∑
m
i=1 f

′2
i

, (4.10)

which ranges between −1 and 1, the latter indicating complete similarity. Together
with a threshold τ ∈ [−1,1], the cosine similarity metric is then

scos(f , f ′, τ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if cos(f , f ′) ≥ τ

0, otherwise
(4.11)

Example 2. Given a row (u′, g′, f ′, ⋅) of the dataset D (ignoring the last column
under F), the fuzzy predicate (U = u,G = g,F ≈ f) evaluates to 1 if u′ = u, g′ = g and
scos(f , f ′, τ) = 1.

The threshold τ is set by balancing the true positive rate (TPR) and the false
positive rate (FPR), i.e., the value that returns the best equal error rate (EER).
Details on this appear in Section 4.4.5.

4.4 Results

In this section, we present and discuss the results of applying our framework to show
the uniqueness of gestures. Our goal is to show that touch gestures can be used to
track users. For this, we need to show (a) that they are highly unique and (b) their
ability to identify returning users. We first identify a set of features for each gesture.
Then we rank the features in terms of their distinguishing capacity and finallyapply
our methodology on the selected features to show uniqueness results.
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4.4.1 Feature Identification and Extraction

From the raw features described in Table 4.1 (cf. Section 4.2.3), we derived more fea-
tures to capture information such as averages, standard deviations, minimums and
maximums. These derived features are called extracted features. A gesture sample
generates a sequence of raw data points. The length of this sequence depends on the
duration of the gesture and the sampling rate (usually around a millisecond), which
is normally different across devices. This means that the sequences corresponding
to two samples from the same gesture may not be of the same length. We there-
fore performed spline polynomial interpolation [59] to ensure the same number of
data points (length of sequence) across samples from the same gesture. Since the
sequences from different gestures are expected to be of different lengths, we did a
separate interpolation for each gesture.
We identified a set of most commonly used features in literature (on gesture based

authentication). We extracted 229 features for swipes, 7 for taps, 8 for keystrokes,
and 241 for handwriting. Out of these, only 7 features are common across all gesture
categories. These features are Inter-Stroke Time, Stroke Duration, Start X, Start
Pressure, Start Y, Start Area, and Mid-Stroke Finger Orientation. Table A.2 in
Appendix A.3 shows the list of these features. A few of the extracted features are
Median of First 5 Acceleration Points, 80-percentile of pairwise X-Tilt, Std. Dev.
of Pairwise Change of Area-Position, Direct End to End Direction, End to End X
Distance, Median of Last 3 Velocities Points, 20-percentile pairwise Pressure etc.

4.4.2 Feature Subset Selection (FSS)

As a first step, we were interested in finding the uniqueness of gestures as a function
of increasing number of features. To do this, we needed a ranking of features in terms
of their distinguishing capacity.We use the maximum-relevance-minimal-redundancy
(mRMR) algorithm that attempts to constrain features to a subset which are mu-
tually as dissimilar to each other as possible, but as similar to the classification
variable as possible [177]. In our case, the classification variable is the set U of users
in our dataset. Given a set of m features F1, . . . , Fm to find the highest rank feature,
the mRMR algorithm finds the feature Fi that maximizes I(U ;Fi), where U takes
on values from U, and minimizes I(Fi;Fj), where j ≠ i. The mutual information
I(Fi;Fj) is calculated by using the joint distribution of features Fi and Fj through
our dataset. Likewise, for more than one feature, the algorithm returns the subset of
features that maximize, respectively minimize, the cumulative mutual information.
A more detailed description of the algorithm is given below.
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4.4.2.1 The mRMR Algorithm and Results

We intend to select features which have a potential to uniquely identify users based
on touch gestures. In order to select the most distinguishing and non-redundant
features from the given list, mRMR defines the subset of features that maximizes
mutual information with the class label I(F ;C) and minimizes the information be-
tween I(fi; fj)5 To apply mRMR, one must convert the features to discrete variables.
We discretize features using bin’s approach and use scott’s rule to get equally spaced
bins.
We input a list of features Stot = {f1, f2, ......fk} of dimension k and a gesture g to

mRMR algorithm, and receive a selected list of features Fsel with dimension m as an
output, where m ≤ k, and F ⊆ S. The subset F should produce high uniqueness and
better classification accuracy compared to feature set S. The algorithm starts with
an empty list and iteratively adds one feature at a time by keeping high relevancy
and minimum redundancy. The relevancy is determined by measuring the mutual
information of a feature with the class label I(fi;C) while redundancy is measured
between features I(fi; fj) . The algorithm terminates when all features in S are
exhausted. At the end, we obtain list of features F ranked merit-wise along with
their MRMR values. In our case, we picked the features which were giving high
relevancy, low redundancy, and where the improvement in mRMR values was not
significant. The mRMR algorithm for finding the best subset of m features using
forward selection strategy is formalized below.
Figure 4.1 shows resulting mRMR values corresponding to features of swipe, its

sub-types, and handwriting. It is clear that mRMR values become a lot consistent
after a certain range of features e.g. 170. Moreover, we observe a sharp decline
in mRMR values after a set of 50 features which indicates that features have low
relevancy to the class but high dependency to other features after a certain range.
Also, note that x-axis starts with the second feature instead of first; the reason is
that mRMR algorithm selects the first feature based only on the maximum relevancy
between a feature and a class, as mentioned in Steps 4 to 7. While this could
be a drawback of mRMR, we, however, validate selected features by applying our
framework and also by using classification metrics.

5mRMR follows filter-based approach with entropy and information gain being an inherent part
of feature selection.

6Incrementally select the jth feature from the remaining set S − Fsel that maximizes ∅(.) using
the eq. maxfj∈S−Fsel[I(fsel, c) − β ∗ I(fsel, fj)]
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Input: Set of all features Stot = {f1, f2, ......fk}, a gesture g ∈ G, and a Class c.
1 Initialize Fsel ← ∅, β ← 1.0

∣Stot∣ .
2 for i = 1 to ∣Stot∣ do
3 Compute feature relevancy I(fi; c) using I(S, c) = I({fi, i = 1,2, ...k}; c)
4 Select feature which has the highest value i.e. max(I(S; c))
5 if Fsel == ∅ then
6 Append Fsel ← Fsel + fmax
7 Set fsel ←max(I(S; c))
8 if Fsel == ∣Stot∣ then
9 break

10 for j = 1 to ∣Stot∣ do
11 if fj ∉ Fsel then
12 Compute I(fsel; fj).
13 Combine relevancy and redundancy as ∅(fj) = I(fsel; c) - β ∗ I(fsel; fj).
14 if fj ≥ fj−1 then
15 fsel ← fj

6

16 Append Fsel ← Fsel + fsel
17 Return Fsel

Algorithm 1: mRMR Feature Selection Algorithm

4.4.3 Effect of Number of Features on Uniqueness

In order to determine uniqueness of gestures as a function of features, we used
sets of top i features from each gesture according to their mRMR rank, where i
was incremented in discrete steps until m (the total number of features). We then
evaluated their relative mutual information using our framework for the uniqueness
of a single gesture sample (cf. Section 4.3.3.3) and multiple samples from the same
gesture (cf. Section 4.3.3.4).
To do this we first partitioned the data from each user-gesture pair into two

random but mutually exclusive sets. The first set had 80% of the gesture samples,
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Figure 4.1: MRMR Results of all Swipes Types and Handwriting
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and the second had the remaining 20% of the samples. The larger set was labelled
as our dataset D, and samples from the 20% set were used for “testing.” We shall
call this approach the 80-20 approach throughout the rest of this chapter. We call
the 20% set, the testing set. Thus, to evaluate our methodology, we select a sample
from the testing set (fixing a user and a gesture), and then check against the dataset
D.
Now to check the effect of an increasing number of features on the uniqueness of

gestures, we selected top i features from the mRMR ranking for incremental values
of i and then used the above mentioned 80-20 partitioning. We used an exhaustive
approach, i.e., for testing single samples, we selected each sample in the the testing
sets of all users, and then calculated the relative mutual information using Eq. 4.4.
For testing a set of gesture samples, we used the entire 20% testing set as one set
of gesture samples, and subsequently computed the relative mutual information. In
our methodology, the relative mutual information for both these categories requires
evaluating the fuzzy predicate, which in turn is determined by the threshold τ of
the cosine similarity metric. For these results we set a universal threshold of τ = 0.8,
since we wanted to check the effect of mutual information keeping everything else
fixed.
The outcome of this analysis is depicted in Table 4.4. We note that for all ges-

tures, the relative mutual information increases with increasing number of features.
Also, the uniqueness of a set of gesture samples is generally higher than single sam-
ples, and in all cases surpasses the uniqueness of single samples as we increase the
number of features. The uniqueness of multiple swipe samples is the highest, with
92.01% (highlighted green with *), followed by handwriting (85.93%) and downward
swipes (77.52%). On the other hand, samples of taps and keystrokes exhibit least
uniqueness carrying 34.73% and 41.02% of information. This may also be due to
the low number of features identified for these gestures. We observe that given a
single gesture sample, handwriting provides 79.49% (highlighted green with *) of
information about the user and a keystroke gives the least amount of information
i.e. 28.76%.
The above analysis does not take into account the true positive rate (TPR) of

the uniqueness measurement. Given a test sample from a user u ∈ U, we mark it
as a true positive if the corresponding predicate only evaluates to 1 on the user u.
Otherwise, we mark it as a false positive. Note that this means that if the predicate
evaluates to 1 for more than one user, then we consider it as a false positive even
if it evaluated to 1 on the user u. The TPR and FPR are then evaluated over
all possible test samples. Table 4.5 shows the TPRs and FPRs for different sets
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Table 4.4: Relative Mutual Information for a varying set of features. Green cells
with * indicate highest relative mutual information for a gesture sample
and a set of gesture samples. Blue highlighted rows indicate our final
selection of features.

Gesture # of Rel. Mutual Information of Gesture # of Rel. Mutual Information of
Features Gesture Sample Set of Gesture Samples Features Gesture Sample Set of Gesture Samples

Swipe 15 43.23% 40.09% Left Swipe 15 47.71% 52.89%
(Expected 20 45.53% 41.91% (Expected 20 50.59% 55.59%

IS: 6.32 bits) 25 46.09% 45.40% IS: 5.97 bits) 25 50.71% 56.85%
30 48.18% 45.60% 30 52.38% 60.03%
50 57.79% 63.39% 50 53.96% 68.66%
75 61.39% 75.34% 75 57.96% 70.62%
100 61.87% 83.28% 100 59.82% 71.11%
150 62.88% 88.50% 150 62.64% 71.55%
200 63.13% 91.23% 200 65.52% 74.23%
229 64.10% 92.01%* 229 65.77% 74.68%

Up Swipe 15 45.93% 43.30% Right Swipe 15 48.29% 53.71%
(Expected 20 48.05% 46.39% (Expected 20 50.03% 54.14%

IS: 6.28 bits) 25 48.26% 46.59% IS:6.02 bits) 25 50.44% 56.00%
30 48.56% 47.43% 30 51.24% 56.19%
50 49.02% 50.23% 50 52.27% 57.48%
75 55.09% 63.81% 75 55.59% 62.62%
100 58.68% 68.79% 100 56.58% 65.35%
150 58.74% 69.22% 150 57.11% 65.88%
200 61.53% 71.94% 200 59.88% 67.48%
229 61.68% 73.11% 229 60.12% 67.65%

Down Swipe 15 48.46% 46.85% Handwriting 15 47.06% 52.24%
(Expected 20 51.44% 49.89% (Expected 20 49.35% 52.78%

IS: 6.14 bits) 25 51.53% 51.17% IS:5.16 bits) 25 52.93% 55.94%
30 51.60% 51.43% 30 55.57% 58.99%
50 52.22% 54.58% 50 68.71% 73.72%
75 58.33% 67.51% 75 72.09% 77.19%
100 60.55% 70.05% 100 74.75% 79.34%
150 62.33% 71.35% 150 78.08% 83.47%
200 65.25% 75.59% 200 78.16% 85.36%
229 65.51% 77.52% 241 79.49%* 85.93%

Keystroke 1 23.92% 17.83% Tap 1 24.80% 15.17%
(Expected 2 26.29% 20.00% Expected 2 26.25% 25.23%
IS:5.61 bits) 3 26.62% 29.97% IS:6.47 bits) 3 27.85% 26.94%

4 26.86% 30.49% 4 28.75% 33.25%
5 26.86% 30.49% 5 29.48% 34.25%
6 27.25% 36.70% 6 29.55% 34.44%
7 27.34% 37.63% 7 29.58% 34.73%
8 28.76% 41.02%

of features corresponding to a single sample and multiple samples from a gesture.
We found that TPR decreases with the increase in number of features. The most
probable reason for this continual decrease is the variations in a user’s own touch
behaviour as the dimension of the feature space increases.
With only 15 features, the TPR is 89% or above for all gestures (with multiple

samples). In terms of FPR rates, we see that keystrokes and taps have relatively high
FPR rates (43% and 37%, respectively, for multiple samples). The FPR decreases as
we increase the number of features. We selected first 50 features for handwriting, 50
for swipes (all four types), 8 for keystrokes, and 7 for taps (highlighted blue in Tables
4.4 & 4.5) for further analysis, as these presented a good balance between TPR and
FPR. We also performed 10-fold cross-validation and splits such as 30-70, 40-60
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Table 4.5: TPR and FPR of Gesture for a varying number of features. Green cells
with * indicate highest TPR and low FPR for a gesture sample and a set
of gesture samples. Blue highlighted rows indicates our final selection of
features.

Gesture # of Gesture Sample Set of Gesture Samples Gesture # of Gesture Sample Set of Gesture Samples
Features TPR FPR TPR FPR Features TPR FPR TPR FPR

Swipe 15 0.67 0.15 0.92 0.20 Left Swipe 15 0.55 0.07 0.91 0.14
20 0.67 0.14 0.94 0.20 20 0.53 0.07 0.90 0.12
25 0.62 0.11 0.94 0.17 25 0.51 0.06 0.86 0.12
30 0.57 0.11 0.92 0.16 30 0.46 0.04 0.86 0.11
50 0.23 0.02 0.89 0.07 50 0.34 0.02 0.83 0.07
75 0.14 0.009 0.89 0.03 75 0.33 0.02 0.81 0.07
100 0.11 0.007 0.89 0.02 100 0.31 0.02 0.77 0.07
150 0.10 0.007 0.84 0.01 150 0.30 0.02 0.78 0.07
200 0.10 0.007 0.76 0.009 200 0.29 0.02 0.77 0.06
229 0.10 0.006* 0.76 0.009* 229 0.29 0.02 0.75 0.06

Up Swipe 15 0.56 0.10 0.89 0.16 Right Swipe 15 0.55 0.08 0.93 0.13
20 0.54 0.10 0.89 0.14 20 0.54 0.06 0.88 0.12
25 0.52 0.09 0.88 0.14 25 0.53 0.06 0.86 0.12
30 0.52 0.09 0.88 0.14 30 0.51 0.06 0.86 0.11
50 0.51 0.08 0.85 0.13 50 0.51 0.05 0.85 0.10
75 0.40 0.05 0.82 0.07 75 0.41 0.03 0.85 0.09
100 0.37 0.05 0.79 0.05 100 0.41 0.03 0.85 0.08
150 0.37 0.04 0.79 0.05 150 0.41 0.03 0.85 0.08
200 0.35 0.04 0.77 0.05 200 0.39 0.03 0.83 0.08
229 0.34 0.04 0.74 0.04 229 0.39* 0.03 0.83 0.08

Down Swipe 15 0.57 0.11 0.92 0.17 Handwriting 15 0.67 0.11 0.97 0.16
20 0.53 0.09 0.90 0.14 20 0.64 0.10 0.94 0.16
25 0.53 0.08 0.88 0.14 25 0.47 0.05 0.92 0.14
30 0.53 0.08 0.87 0.14 30 0.47 0.04 0.89 0.13
50 0.49 0.08 0.85 0.12 50 0.29 0.01 0.88 0.06
75 0.40 0.04 0.85 0.07 75 0.24 0.01 0.82 0.05
100 0.38 0.04 0.84 0.06 100 0.21 0.009 0.79 0.05
150 0.34 0.03 0.84 0.05 150 0.15 0.006* 0.73 0.04
200 0.32 0.03 0.82 0.04 200 0.14 0.006* 0.64 0.03
229 0.32 0.03 0.77 0.04 241 0.13 0.006* 0.61 0.03

Keystroke 1 0.46 0.23 0.96 0.43 Tap 1 0.54 0.26 0.95 0.37
2 0.44 0.21 0.96 0.40 2 0.53 0.22 0.94 0.35
3 0.43 0.18 0.95 0.37 3 0.53 0.21 0.94 0.34
4 0.41 0.17 0.93 0.36 4 0.32 0.10 0.85 0.27
5 0.40 0.17 0.93 0.36 5 0.31 0.10 0.85 0.27
6 0.22 0.09 0.83 0.32 6 0.31 0.10 0.85 0.26
7 0.22 0.09 0.83 0.32 7 0.31 0.10 0.85 0.26
8 0.18 0.08 0.79 0.27

using Weka to evaluate the relative mutual information, TPR and FPR of a single
gesture sample and multiple samples from the same gesture. The results gathered
from these approaches were similar to 20-80 approach. We are thus mentioning
results from 20-80 approach only.

4.4.4 Uniqueness of Individual Features

Before assessing the uniqueness of features we binned any continuous features or
features with a large domain. See Section 4.3.3.1 for details. To assess the uniqueness
of features, we again divided our dataset using the aforementioned 80-20 partition.
Then, we exhaustively computed the relative mutual information defined in Eq. 4.4
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as a measure of uniqueness for each feature value in the testing sets of all users.
We found that 80-percentile of area in left swipe reveals 56.10% of information

about a user, followed by 20-percentile of area in down swipe 55.50%. Similarly,
50-percentile of pressure yields 46.13% of information from down swipe. Among fea-
tures which are shared among all gestures,start area contains 52.5% of information,
followed by start pressure yielding 45.4% of information. On the other extreme,
inter-stroke time for a keystroke reveals minimum amount of user information, i.e,.
7%. We observe no trend (in terms of dependency) among features,except that
relative information decreases in decending order of the features.
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Figure 4.2: Cumulative Distribution Function (CDF) of Features. Y-axes represents
fraction of the participant population and X-axes are Relative Mutual
Information in percentage. The graph shows that Swipe, Left and Down
Swipe reveals more than 50% of information for half of the population,
respectively.

We also computed the cumulative distribution function (CDF) of the relative
mutual information through Eq. 4.2 for a given feature. We present the CDF of top
five features of every gesture in figure 4.2. It is evident that features corresponding
to different statistics of area and pressure, e.g., average, percentiles etc., reveal the
most information about a user, i.e., more than 40% of information for half of the
users in our database. As before, we notice that all types of swipes and handwriting
reveal the most information about users, and taps and keystrokes have relatively
less information leakage about users.
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4.4.5 Uniqueness of a Gesture Sample

Recall from Section 4.3.3.3 that for gesture sample, we need to calculate the fuzzy
predicate using the cosine similarity metric (cf. Section 4.3.4). Once we have fixed
the set of features, and hence fixed the feature space, we need to find the threshold
τ of the cosine similarity metric that balances uniqueness of gesture samples and
correctly (and uniquely) identifying a returning user. To do this, we once again split
the data into an 80-20 partition, and then evaluated the equal error rate (EER) (i.e.,
the rate at which 1 −TPR equals FPR) by varying the threshold. Table 4.6 shows
the threshold that gave the lowest EER against each gesture. We can see that our
methodology correctly re-identifies a returning user up to 81% (19% EER) of the
time if given a handwriting sample. The worst performance is a TPR of 61% (39%
EER) when a sample of keystroke is provided.
After fixing the threshold, we computed the uniqueness through our relative mu-

tual information metric, i.e., Eq. 4.3. The results showed that a handwriting sample
reveals the highest amount of information (68.71%), followed by swipes (57.77%).
The four types of swipes, i.e., left, up, down, and right swipes, yield 53.9%, 52.2%,
52.2%, and 48.5% of information, respectively. However, taps and keystroke reveal
only 29.5% and 26.2% of information, respectively.
Figure 4.3a shows the CDF of a gesture sample calculated for each of the ges-

ture (through the relative mutual information metric of Eq. 4.2). We observe a
considerable difference in the range of information revealed by different gestures,
with handwriting exposing more than 60% of information for half of the users in the
database. Following this, the swipes also show high uniqueness, revealing 30% to
65% of information about 75% of users. This suggests that handwriting and swipes
carry highly identifiable information about users. The ROC of a gesture sample for
all gesture types is shown in figure 4.4a.

Table 4.6: Thresholds of the cosine similarity metric for a gesture sample. τ =
Threshold, EER = Equal Error Rate.

Gesture τ EER Gesture τ EER
Swipe 0.38 22% Up Swipe 0.55 27%
Down Swipe 0.52 28% Left Swipe 0.48 22%
Right Swipe 0.58 22% Handwriting 0.40 19%
Tap 0.29 35% Keystroke 0.13 39%
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Figure 4.3: Cumulative Distribution Function (CDF) of Gesture Sample(s).

4.4.6 Uniqueness of a Set of Gesture Samples

We now consider the amount of information revealed by multiple samples of each
gesture. We computed a different threshold of the cosine similarity metric for this
category, and chose the one which resulted in the best EER. Table 4.7 shows the
threshold and the corresponding EER values. Comparing this table to Table 4.6,
we see that the rate of re-identifying a returning user is higher reaching up to 91%
(9% EER) for handwriting. This means that combining a few samples of the same
gesture may allow for more accurate tracking.
Based on the threshold values obtained, we then apply the cosine similarity metric

on the dataset and calculate relative mutual information through Eq. 4.4. Once
again handwriting reveals 73.7% of information, followed by left swipe which yields
68.6% of information of user gestures. In accordance with previous results, taps
and keystrokes reveal minimum amount of information about users, i.e., 34.71% and
41.0%, respectively. Looking at the CDF of relative mutual information in Figure
4.3b, we can observe that swipes, its subtypes, and handwriting consistently perform
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Table 4.7: Thresholds of the cosine similarity metric for a set of gesture samples. τ
= Threshold, EER = Equal Error Rate.

Gesture τ EER Gesture τ EER
Swipe 0.75 10% Up Swipe 0.77 16%
Down Swipe 0.78 14% Left Swipe 0.75 12%
Right Swipe 0.77 12% Handwriting 0.76 09%
Tap 0.85 20% Keystroke 0.85 23%

better in revealing information than taps and keystrokes. As discussed earlier, the
less information from keystrokes and taps can be due to the less number of features
identified for these gestures. The ROC of a set of gesture samples for all gesture
types is shown in figure 4.4b.

4.4.7 Uniqueness of Gesture Categories Combination

Next we consider multiple gestures in different combinations and measure their
uniqueness through our methodology outlined in Section 4.3.3.5. Figure 4.5a shows
the quantification results for different gesture combinations. We found that a com-
bination of all gestures reveal a maximum of 98.89% of information about users,
followed by the combination of swipes, handwriting & keystrokes that yield 98.5%
of information. In contrast, the combination of taps and keystroke reveals minimum
information, i.e., 33.5%. We would like to emphasise here that information revealed
by the combination of various gestures is dependent on the number of users who had
performed all gestures in the combination. This number was different for different
gesture combinations. For example, the total number of users who performed taps
was 89, whereas only 49 users submitted keystroke samples (cf. Table 4.2). Further-
more, the total number of users who had performed both taps and keystrokes were
45. This is one reason for our choice of the relative mutual information metric (as
opposed to simple mutual information) which “normalises” the mutual information.
We also tested these gesture combinations in terms of re-identifying returning

users. The thresholds for the cosine similarity metric for each gesture were as re-
ported in the previous section (Table 4.7). Figure 4.5b shows the TPR and FPR of
the different combinations of gestures. Since the threshold for the cosine similarity
metric for each gesture was already set, the figure does not report EER as TPR and
FPR are not balanced. For this reason, we also show the true negative and false
negative rates. We see that as we increase the number of gestures in our combina-

65



Chapter 4 Quantifying the Uniqueness of Touch Gestures for Tracking

All G
est

ure
s

Sw
ipe

s, K
ey

s &
 HW*

Sw
ipe

s, T
ap

s &
 HW

Ta
ps,

 Ke
ys 

& HW

Sw
ipe

s, T
ap

s &
 Ke

ys

Sw
ipe

s &
 HW

Ke
ys 

& HW

Ta
ps 

& HW

Sw
ipe

s &
 Ta

ps

Sw
ipe

s &
 Ke

ys

Ta
ps 

& Ke
ys

Gesture Combinations

0%

20%

40%

60%

80%

100%

Re
la

tiv
e 

M
ut

ua
l I

nf
or

m
at

io
n

*HW - Handwriting

(a) Uniqueness of Combination of Gestures

Sw
ipe

s &
 Ta

ps

Sw
ipe

s &
 Ke

ys

Sw
ipe

s &
 HW*

Ta
ps 

& Ke
ys

Ta
ps 

& HW

Ke
ys 

& HW

Sw
ipe

s, T
ap

s &
 Ke

ys

Sw
ipe

s, T
ap

s &
 HW

Sw
ipe

s, K
ey

s &
 HW

Ta
ps,

 Ke
ys 

& HW

All G
est

ure
s

Gesture Combinations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

es

*HW - Handwriting

True Positives
False Negatives

True Negatives
False Positives

(b) TPR and FPR for a Combination of Gestures

Figure 4.5: Results of Combining Gestures

tion, the FPR drastically decreases, but so does the TPR. For instance, all gestures
together yield 0.99% FPR but also a low TPR (just above 40%). The lowest FPR
was recorded by the combination of swipes, handwriting and keystrokes (0.85%).
The main reason for a big drop in TPR as compared to the rate of single gestures, is
mainly due to the rather strict metric of only labelling a given combination as being
from a user if the predicate for each gesture evaluates to 1 (cf. Section 4.3.3.4). This
can be changed by using, for instance, a majority rule.
We also investigate the impact of different users using the same device. We present

our results in Appendix A.2.

4.5 Discussion

Our results reveal some important findings which we enlist below.

1. Multiple samples of a gesture taken together reveal more accurate information
about a user than a single sample of a gesture. This means that tracking
based on collecting larger number of user samples is likely to be more accurate.
Having said that a single gesture sample or a single feature of a gesture also
reveal enough information (upto 68% and 56%, respectively) so as significantly
narrow down the set of possible users for tracking.

2. Swipes and handwriting carry more information as compared to taps and
keystrokes. This is largely due to the rich set of information that can be derived
as features from swipes and handwriting. In contrast, taps and keystrokes are
simpler gestures from which only a few characteristic features can be derived.
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3. Features based on the area and pressure of the finger performing the gesture are
the most informative. This shows that there is significant inter-user variation
in the area covered and the pressured exerted on the screen.

4. Overall, we show that tracking using touch gestures is highly feasible and
accurate. This is demonstrated by the fact that we can correctly identify a
returning user with a true positive rate of up to 91% with the handwriting
samples. Though, TPR is a critical metric for an authentication system that
evaluates the system’s ability to correctly identify users. However, in case of
tracking, a near 100% TPR is less critical, e.g., it may be acceptable for an
advertising company to correctly track 90% of users and display related ads,
whilst showing unrelated ads to 10%. This is indeed the case with our scheme,
where 9% of users will be incorrectly classified (receive irrelevant ads). Still,
our methodology would correctly classify 91% of the users to display relevant
ads. In future, we plan to expand the framework to improve the classification
results, and hence minimise the FPR.

5. Our data collection procedure did not impose any condition on how users
needed to interact with their smartphones such as sitting, standing, and walk-
ing postures. Our results are still able to show high uniqueness and accurate
re-identification of returning users.

Touch-based Tracking vs. Continuous/Implicit Authentication: The
reader might confuse the notion of touch-based tracking with touch-based contin-
uous or implicit authentication. Even though the main goal of this chapter is to
quantify the amount of information carried by touch gestures and hence to evaluate
the tracking capabilities using touch based features, in the following we would like
to clarify some major differences between the two notions. Conceptually, the goal
of authentication is to verify a claimed identity which assumes prior knowledge of
the identity. The aim of touch-based tracking is to track users with or without the
knowledge of any disclosed identity. Here we highlight further technical differences.

1. A typical continuous authentication scheme involves a classifier which is
trained on the data of a target user.7 This training data is gathered dur-
ing a preceding registration phase. The classifier knows which training model
to target for classification given a claimed identity. Touch-based tracking on
the other hand is supposed to function without knowing the identity of the
current user. This implies no registration phase and therefore the absence of

7Or a set of users using the same device, in which case each user has a separate training model.
See for instance [220].
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training models for target users. Thus, classification methods used for contin-
uous authentication are not readily applicable for touch-based tracking.

2. Continuous authentication schemes require a certain number of samples be-
fore an authentication decision can be made with confidence. This is less of
a stringent requirement on touch-based tracking, and tracking may proceed
with even a single observation. The probable user set may be large, but it
does not hinder tracking. Therefore, classification methods used in continuous
authentication schemes are too restricted for use in touch-based tracking.

3. As a corollary to above, high classification rate, i.e., near 100% TPR and low
FPR, is critical for the success of a continuous authentication scheme. In the
case of tracking, a high TPR or misclassification rate is less critical, e.g., it
may be acceptable for an advertising company to correctly track 90% of users
and display related ads, whilst showing unrelated ads to 10%.

4. A final point is around measuring uniqueness. The goal of touch-based track-
ing is to illustrate how tracking is probable. This involves measuring how touch
gestures, for instance, convey unique information. This needs to be measured
at all levels: from single features to a collection of samples from multiple
gestures. Our goal is to demonstrate how different granularity of informa-
tion contained in gestures contribute to uniqueness and subsequent tracking
of users. Some of this information does not lead to (successful) continuous
authentication, e.g., uniqueness of single features. On the other hand, for
touch-based tracking, this information is useful as it can be used in conjunc-
tion with other information (not necessarily from gestures) to more accurately
track users.

In light of the above, we argue that touch-based tracking requires a different
methodology from continuous authentication systems (to assess uniqueness of touch-
based gestures).

4.6 Conclusion

In this chapter, we argue and verify that touch-based gestures on touchscreen devices
enable the threat of a form of persistent and ubiquitous tracking which we call
touch-based tracking. We proposed and developed an analytical framework that
quantifies the amount of information carried by the user touch gestures mainly
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swipes, keystrokes, taps, and handwriting. We quantify uniqueness at four different
levels from a feature value to the combinations of gestures altogether. In addition,
we also developed an android app, called TouchTrack, that collects users gesture
data and provides real-time results about the uniqueness of their gestures. Our
findings highlight that user touch gestures exhibit high uniqueness. Additionally, we
also showed that returning users could be correctly re-identified with high accuracy,
indicating that touch-based tracking is possible. In the next chapter we investigate
the potential of tracking and identifying users through his/her online activities on
the web. We demonstrate that privacy risk to track a user is high even when the
data is anonymized.
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Chapter 5

Quantification of Privacy Risks of
Web Data

In the last chapter, we analyzed the potential of tracking users through their touch
gestures on mobile devices. In this chapter, we demonstrate the likelihood of dis-
tinguishing users through their activities on the web. Users leave a trail of their
personal data, interests, and intents while surfing or sharing information on the
web. Web data could therefore reveal some private/sensitive information about
users based on inference analysis. The identification of a user, through inference at-
tack, is still possible even if the user sensitive data is encoded or removed. Despite
having serious consequences, privacy risks concerning user behaviour on web plat-
forms have not been investigated in the literature comprehensively. In this chapter,
we use probabilistic methods to quantify privacy risks of web data that incorporates
the three key privacy aspects, which are uniqueness, uniformity, and linkability of
web data. Our results indicate that privacy risks to identify users are very high if
a user enters 10 sensitive web entries. We measure the privacy risk associated with
search queries and apps reviews and the results show that our risk quantification
method is reliable enough to predict high risk web entries.
We organize this chapter as follows. In Section 5.1, we highlight privacy issues

concerning user web data entries and briefly discuss about our contribution in this
chapter. Section 5.2 presents the methodology that we propose for quantifying
privacy risk of web users’ data. In Section 5.3, we first present our datasets (Sec-
tion 5.3.1), then experimental results (Section 5.3.2), and finally discussion summary
(Section 5.3.3). In Section 5.4, we conclude our work.
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5.1 Motivation

The wide-spread use of the web to search or share information online introduces var-
ious privacy and confidentiality threats. One such most persistent threat is users’
identification and tracking via their web behavioral data [44, 201, 96]. Users unin-
tentionally leave digital traces of their personal information, interests, and intents
while using the online services, such as social networks, discussion forums, product
reviews sites, and search engines, which could reveal sensitive information about
them. The threat becomes more subtle when users are identified from anonymized
datasets through inference analysis by an eavesdropper or a researcher who has
access to the data.
To this end, we provide answer to a key question: (1) What are the key features of

web data privacy; and how to quantify privacy risks by considering these features?.
To answer this, we propose a quantitative method that predicts privacy risks of
users’ web data. The proposed method is later used to minimize privacy risks
through obfuscation mechanism (detailed in Chapter 8 of this thesis.

Definition 5.1.1 (Privacy Risk in Web Data). We define privacy risk in
(anonymized) web data as a risk of identifying users and thereby learning their
sensitive/private information through (1) uniqueness (distinguishability) of the
sequences of a user’s web actions from other users’ web actions, (2) uniformity
(non-diversity) of the user in his web data, and (3) linkability of the user using his
personal identifiable information (PII)1 available in data.

A user’s privacy is at a high risk when his web data is distinguishable from other
users, has non-diversity in own data or actions, and is linkable to an individual with
high confidence based on the user’s PII. For example, if a user searches or comments
regarding a certain disease, drug, pregnancy, or terrorism, the web history of the
user could compromise privacy if the user’s data is distinguishable, uniform for the
user, and linkable to an individual based on PII available in previous search history.
The main contributions of this chapter are as follows:

• We quantify users’ privacy risk in web data using probabilistic methods, the
Hidden Markov Model (HMM) that calculates probabilities of uniqueness, uni-
formity, and linkability learned from training data. The model is generic (ap-
plicable) to any web data, such as posts, shares, tweets, search queries, reviews,
and clicks. Further, the model is dynamic in that the learned probabilities are

1Users often share or search for PII on the web including names, contact details, address/location
details of people, and ego-surfing [23]).
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updated with new data. To the best of our knowledge, no work has been done
that allows such generic, comprehensive, and dynamic risk prediction in web
data.

• We contribute a new large web dataset in the domain of online app reviews.
We implemented a Google Play crawler that collects apps identifiers and
apps meta-data by following a breadth-first-search approach. We retrieved
1,018,656 apps in a 4-week period of December 2016 and collected 16,335,480
reviews from 11,196,960 unique users. We will publish our dataset online for
future research.

• We conduct an extensive empirical study using two real web datasets, the AOL
dataset and our new app reviews dataset2. Our results indicate that privacy
risk increases with sharing more data on the web. For the AOL dataset, we
found that an average privacy risk reaches 100% when a user enters 10 queries.
For app reviews dataset, we found that average privacy risk associated with
just 1 sensitive review is 80.5%, which increases to 87.5% with 7 reviews.

5.2 The Methodology for Quantifying Privacy
Risks of Web Data

In this section, we describe how users’ privacy risk in web data can be predicted and
measured using probabilistic methods. We begin with an overview, followed by the
risk quantification.

5.2.1 Overview

Our aim is to develop a method to predict privacy risk of web data that compre-
hensively includes all key aspects of privacy and then obfuscate the high risk Web
data using probabilistic methods. An overview of our proposed method is shown in
Figure 5.1. The threat model we consider is the inference attack by a researcher or
an eavesdropper who has access to anonymized (i.e., user identifiers are removed or
encoded) web data as well as knowledge about our probabilistic model. The pro-
posed method is generic and can be applicable to various applications of web data,
such as online social networks, product reviews, forums, and professional networks.

2We contribute a new large web dataset in the domain of online app reviews by implementing a
Google Play crawler that collects apps identifiers and apps meta-data.
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Figure 5.1: Overview of our Privacy-Aware Obfuscation Method for Web Data

The privacy risk (see Definition 5.1.1) of a user in the web data is determined
by three key aspects: (1) uniqueness of the data, (2) uniformity of the user’s data,
and the (3) linkability of data to the user based on personal identifiable information
(PII) available in the web data. The probability of uniqueness or distinguishability
of a certain data or a sequence of data is measured as the non-likelihood of it by a
user being similar to web data of other users such that it is unique or distinguished
to reveal the user’s identity. For example, if a user data contains ‘Smith’ it is
less likely to be identifiable as it is a very common name in Australia, while data
containing ‘Dijith’ (which is a less common name) is more likely to be identifiable
(and therefore not anonymized). Similarly, if a user data contains a less common
topic (e.g., a specific drug) it is more likely to be re-identified and the probability
of distinguishability and linkability becomes even higher when the user’s previous
data contain personal information such as names and locations.
The probability of uniformness of a user based on the user’s previous data (i.e.,

history) is measured as the likelihood the user has entered the data (and thereby
interested in the data). The more the user has entered a certain data in previous
history, the more confidence of the inference that the user is interested in this data.
The joint probability of uniqueness and uniformity measures the probability of iden-
tifiability of the user in his web actions (i.e., inverse of privacy gain for the user).
The probability of linkability of a user’s data to an individual is based on how much
PII available in the user’s data. PII could reveal personal identity of a user and
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therefore allows linking the corresponding data to the user. The overall privacy risk
is measured as the joint probability of identifiability (uniqueness and uniformity)
and linkability probabilities.
The probability of inference from a sequence of web data is often conditional

probability on previous data and therefore the risk of inference becomes higher along
with the user’s sequence of web data (i.e., the probability of privacy preservation
becomes lower with the sequence of user’s data). The reason behind this intuition
is that a user learns or reveals more with the sequence of web actions and therefore
the data become more refined or specified to a certain topic enabling the web data
sequence to being highly linkable (less anonymized) to an individual. Therefore, the
inference probability becomes higher and the following web data/action by the user
might be at an even higher risk of disclosure.

5.2.2 Risk Prediction

The aim of our risk prediction module is to measure users’ risk of their web data be-
ing distinguishable, uniform and linkable as probabilities in a hidden Markov model
(HMM). A user is represented by ui and a data entered at a time t is represented
by Xt. We train the HMM model using previous web data in order to predict a
user’s privacy risk of his web data entered at the current time being. HMM is a
probabilistic model for representing probability distributions over sequences of ob-
servations. They are used in speech recognition systems, computational molecular
biology applications, computer vision applications, and other applications of artifi-
cial intelligence and pattern recognition [101]. Assume a sequence of events (web
data entered by a user) over time t as X1,X2,⋯,XT . These events satisfy the (first-
order) Markov property, i.e., the current event Xt is independent of all the events
prior to Xt−1. Each of these events Xt outputs observations Yt which also satisfy the
Markov property, i.e., Xt and Yt are independent of the events and observations at
all other time indices. These Markov properties state that the joint distribution of
a sequence of events and their observations can be factored as:

p(X1∶T , Y1∶T ) = p(X1)P (Y1∣X1)
T

∏
t=2
p(Xt∣Xt−1)p(Yt∣Xt). (5.1)

A web data entered by a user becomes a node and the probabilities of uniqueness,
uniformity, and linkability are modelled in the HMM. Figure 5.2 and Figure 5.3
show examples of HMM trained for search queries related to PII and a sensitive
topic cancer. The three probabilities modelled are:
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Figure 5.2: An Example of HMMmodel for PII topic in Web Search Data. Nodes are
queries containing PII and edges between nodes represent the transition
(conditional) probabilities. Each node contains observation probabilities
for different users (in this example these probabilities are shown only for
user u1).

1. Uniqueness is modelled as transition probabilities in the HMM. Transition
probabilities are conditional probabilities of a data by all users given previous
data sequence by all users. This is required to calculate the indistinguishability
or non-uniqueness of a user’s data from other users’ data. The risk of a data
being distinguishable depends on the previous data. The reason is that the
information gain from a data becomes higher if the previous data in the same
topic are considered. Nodes in the HMM include data at a time (Xt) related to
personal identifiable information topic, and/or a private/sensitive topic (such
as cancer, drugs, and pregnancy). Edges contain the transition probabilities
between nodes (p(Xt∣Xt−1)). These transition probabilities are weighted by
their confidence in terms of how many transitions have occurred, which is
wT = 1/count(Xt∣Xt−1). For calculating the privacy risk of a user with his web
data, the weighted transition probabilities are considered, i.e., wT ×p(Xt∣Xt−1).

2. Uniformity is modelled as observation probabilities in the HMM. Observation
probabilities are probabilities of the data found in previous web data by dif-
ferent users (ui) including the user whose risk is to be predicted (if available).
Each node contains a set of observations with observation probabilities. We
model these observation probabilities as different users’ probabilities of the
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Figure 5.3: An Example of HMM model for Cancer Topic in Web Search Data.
Nodes are cancer related queries and edges between nodes represent the
transition (conditional) probabilities. Each node contains observation
probabilities for different users (in this example these probabilities are
shown only for user u1).

given data, Xt, found in previous data (p(ui∣Xt)). This is required to incorpo-
rate the non-uniformity aspect of a user as the frequency of the data entered
by the user. The more a user has entered a specific data the more confidence
(and therefore higher risk) in the inference that the user is interested in this
data. Again these probabilities are weighted by wO = 1/count(ui∣Xt) and then
inversed (as more uniform a user is higher the privacy risk is and therefore
lower privacy probability), i.e., (1 −wO × p(ui∣Xt)).

3. In addition to these two probabilities, we have prior probabilities of the user
based on previous searches that include PII (names, locations, and organiza-
tions). In order for the web data (related to sensitive/private topics other
than PII topic) to be linkable to a user, the PII revealed by the user in his
previous data needs to be taken into account. This prior probability of risk
(of linkable using PII revealed) for a user ui is calculated from the HMM of
PII. The privacy risks of data related to PII topic are modelled in a separate
HMM.

For a given user ui, the prior risk probability is calculated by getting the
minimum privacy probability (maximum privacy risk) from all the paths in
the PII HMM which include nodes Xt that contain an observation probability
for the user, i.e., p(ui∣Xt) > 0. For users who do not have revealed any PII in
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previous search history the prior privacy probability becomes 1.0.

The overall privacy probability of a user ui along a sequence of web data X1 →

X2 → ⋯→Xt is calculated as, following the Markov probability in Equation (5.1):

p(X1,⋯,Xt∣ui) =min(HMMPII ∣ui) ×wT × p(X1)

×(1 −wO × p(ui∣X1)) ×
t

∏
x=2

wT × p(Xx∣Xx−1)

×(1 −wO × p(ui∣Xx)),

(5.2)

where HMMPII ∣ui returns a list of privacy probabilities calculated from the PII
HMM for all paths that include nodes where the user has an observation probability
of > 0.0.

5.3 Evaluation

In this section, we present and discuss our findings on quantifying the privacy risk
of web data. First, we present the datasets in use and then we discuss results of our
experiments.

5.3.1 Datasets

To measure the privacy risks associated with online web data, we use two datasets:
(1) AOL users’ search queries; and (2) reviews of Android applications on Google
Play3. We summarize our datasets in Table 5.1.
AOL Search Queries: In 2006, AOL released an anonymized version of 20 mil-

lion user search queries of more than 650,000 users over 3 months period. Usernames
were replaced by anonymous identifiers with the aim to protect user privacy. How-
ever, it failed to prevent de-anonymization for some users who performed ego-surfing,
or searched for personal details such as social security number, phone number, or
location directions. Therefore, we use this dataset to quantify sensitivity of web
data. Each line in the in AOL search query data contains five fields: anonymous
user ID, query string, query time, the rank of the item selected, and the domain of
the selected item’s URL path. We did not apply our method on the whole dataset,
rather we set a criteria that selects only those users who have queries greater than
100. The statistics of our sampled dataset is given in Table 5.1.

3https://play.google.com
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Table 5.1: Datasets in Use
AOL Search Queries Android Apps Reviews

# of Entries (E) 36,389,567 16,335,480
# of Users (U) 657,429 11,196,960
# of Apps (A) – 1,0186,560

5M Reviews where
Condition E ≥ 100 E ≥ 15 & E ≤ 20

Sampled dataset
# of Entries (E) 23,927,203 13128
# of Users (U) 90,818 773
# of Apps (A) – 6866

Moreover, to highlight the consequences of searching privacy sensitive topics that
could potentially reveal user information, we focus on three topics: Cancer, Preg-
nancy, and Alcohol. In order to extract queries in these topics, we need to identify
some must words for each topic. For this purpose, we used Free Keyword Tool
offered by Wordstream4 that utilizes the latest Google keyword API. We then per-
formed topic modeling on these keywords to get most accurate and relevant must
words. An example of must words for the cancer topic after applying topic modeling
is ‘Leukemia, Breast, Prostate, thyroid, Pancreatic, Bladder etc.’, based on which
cancer queries were extracted. We used NLTK [2] and gensim [1] to perform topic
modeling and to extract relevant queries.
Android Apps Reviews: In order to collect users’ reviews on Android apps

from Google Play Store, we leveraged the crawlers developed in [110] and used
the top 100 apps as a seed. Our crawler collects apps identifiers5 and apps meta-
data by following a breadth-first-search approach for the apps which are “similar”
in description or published by the same developer at Google Play. In summary, we
crawled 1,018,656 apps in a 4-week period of December 2016 and collected 16,335,480
reviews from 11,196,960 unique users. A given user review consists of anonymous
ID of a user, review text, review time and date, app ID, and app category.
We selected four categories of apps i.e., Social, Lifestyle, Health, and Games and

extracted 5 Million reviews from our crawled dataset and then applied a criterion to
select only those users that provide reviews in a range of 15 to 20 on different apps.
We found that most of the reviews have been given for games followed by Lifestyle
and Health apps.

4https://www.wordstream.com
5Each Android app has a unique identifier, termed as app ID in short.
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5.3.2 Experiments and Results

We analyze privacy risk prediction results from the three aspects of uniqueness,
uniformity, and linkability, and also present overall risk prediction results combining
all three.

5.3.2.1 Experimental Setting

Before applying our method, we first pre-processed the data by filtering the broken,
invalid, or empty sentences, and then re-ordered them based on time sequence. We
then split the data into 20-80 testing approach where 20% of the data were used
for testing, while 80% were used for training the HMM. Furthermore, to reduce
training time, we applied k-means clustering that partitions the training data into
k clusters, and then used multi-processing technique to run each training cluster
simultaneously [94]. k-means algorithm helps grouping similar web data i.e., queries
and reviews, based on the nearest mean (centroid). For our datasets, we selected 20
clusters using the elbow method [207]. Results from each multi-processed cluster are
then combined to create one training model. For AOL dataset, we used semantic
similarity algorithm for short sentences proposed by [142] to find similar queries,
while term frequency-inverse document frequency (TF-IDF) was used to evaluate
similarities of app reviews [94].

5.3.2.2 Privacy Risk Prediction

Our results indicate that privacy risk increases with sharing more data on the web.
For the AOL dataset, we found that an average privacy risk reaches to 100% (1.0
privacy risk) when a user enters 10 queries. An exemplary user is shown in Table 5.2
(user ID 3058504), where the risk becomes 100% after entering 10 queries. Moreover,
the average risk of predicting a user with just 1 sensitive query ranges between 78%
and 83% (0.78−0.83). This is because our framework calculates risks based on three
aspects, i.e., uniformity, uniqueness, and linkability. Even if a user does not have
uniform data, he might be identified through the unique pattern of entering data,
and vice versa. For instance, we can predict after 10 queries of the user shown in
Table 5.2 with user ID ‘3058504’ that either he or his family member is suffering
from thyroid cancer. Similarly, we observe that another user (with user ID ‘3612363’
as shown in Table 5.2) wants to know about Dr. Paul Mansfield, who worked at
MD Anderson Cancer Center. Further queries would reveal that he is interested in
prostate cancer at MD Anderson and its treatment. We also observe similar cases
for pregnancy and alcohol topics, and found that users could be identified through
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Table 5.2: Few Privacy Risk Evaluation Cases

User
Anon.
ID

Web Entries Topic

3058504 ‘do you need surgery for underactive thyroid’, ‘why is physical
therapy important after back surgery’, ‘why do you need physical
therapy after back surgery’, ‘had back surgery but when i went to
physical therapy my body hurt after’, ‘is it normal for my body to
hurt after first visit to physical therapy’, ‘not being use to exer-
cising can make physical therapy hurt’, ‘my husband did physical
therapy one time and didnt go back due to pain’, ‘i dont like phys-
ical therapy because my body hurts after’, ‘physical therapy can
be painful’, ’is it normal for my body to hurt after first visit to
physical therapy’

Cancer
(10
Queries)

3612363 ‘md anderson cancer center and dr. paul mansfield’ Cancer
(1 Query)

7894176 ‘getting pregnanct after being on birth control’, ‘getting preg-
nant with antiphospholipid disorder’, ‘having a healthy preg-
nancy with antiphosophlipid disorder’, ‘healthy pregnancy with
antiphosophlipid disorder’, ‘chances of having a baby with an-
tiphospholipid syndrome’, ‘costs of heparin during pregnancy’,
‘pregnancy and positive ana 1 640’, ‘’pregnancy and positive ana
1 640’, ‘does lupus effect fertility’, ‘if i quit smoking in the middle
of pregnancy will i miscarry’, ‘how much does smoking have an
effect on fertility’

Pregnancy
(10
Queries)

6143033 ‘pregnant no insurance denied by medicaid in florida’ Pregnancy
(1 Query)

4320454 ‘cocaine drug testing’, ‘harms from herion addiction’, ‘opiate drug
called suboxcine’, ‘national institute on drug abuse’, ‘how to clean
out your urine for acocaine drug test .’, ‘how can we beat a cocaine
urine drug test for employment’, ‘the longest time cocaine stays in
our system for a drug test’, ‘how many days or hours for cocaine
to leave the system to be clean for drug urine test for employment’

Alcohol
(8
Queries)

3305139 ‘new jersey drug treatment rehab flynn house’ Alcohol
(1 Query)

5995260 ‘Awesome app I am loving this app. Good work by the developers’,
‘Car wash for kids I am loving this app. Good work by the de-
velopers.’, ‘Awesome app I am loving this app. Good work by the
developers.’, ‘Awesome app I am loving this app. Good work by
the developers.’, ‘World hello Awesome game. I’m loving it. Good
work by the developers’, ‘Car Racing Awesome game. Loved it’

Games
(6 Re-
views)

1559229 ‘Very useful tool This app is great for anyone going through health
issues. Very easy to use, has many options for location of pain,
what you were doing, and you can add different options. It’s a
great app if you have Fibromyalgia.’

Health
(1 Re-
view)
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their unique web patterns. For instance, we discover that the user with ID ‘7894176’
(shown in Table 5.2) is pregnant but has antiphospholipid and smoking problems.
Likewise, the user with ID ‘4320454’ wants to defy drug test by finding some ways.
For app reviews dataset, we found that average privacy risk associated with just

1 sensitive review is 80.5% (0.805), which increases to 87.5% (0.875) with 7 reviews.
In Table 5.2, we observe that the user with ID ‘1559229’ has some kind of association
with Fibromyalgia disease and is using an app to improve his health issues. Similarly,
we analyze that the user with ID ‘5995260’ has the same writing pattern for all
reviews and thus his privacy risk reaches to 99% (0.99) with only six reviews.
Considering our overall risk prediction results, we found that any data entry which

contains words such as country name, person name, disease name, personal pronouns
or uniformity has privacy risk of 75% (0.75) or above and is highly risky/sensitive.
Therefore, we set our privacy risk threshold to 0.75, i.e., any entry which has a
privacy risk above 75% is considered as highly risky which requires to be obfuscated
with (semantically similar) entry.
Figure 5.4 shows the results of privacy risk prediction. It is clear in Figure 5.4a

that our method is capable of re-identifying users even if the users’ unique identities
are not known. Our results indicate that an average risk reaches to 100% (1.0)
if users have 10 or more data entries. The minimum average risk is 78% (0.78)
for alcohol with 1 query. For app reviews, we achieve maximum of 87.5% (0.875)
average risk with 7 reviews, and a minimum of 80.5% (0.805) with just 1 review.
Figure 5.4b shows the CDF of users with their predicted privacy risks. For cancer
and pregnancy, we found that more than 50% of users have risk higher than 0.85,
while alcohol has a prediction rate of 0.7 for more than 50% of users. We found
similar results for reviews dataset, where more than 50% of users have privacy risk
of 0.7 involved in their reviews.
Uniformity: We now discuss our results on the uniformity of users’ web entries.

As mentioned earlier, uniformity refers to the number of observations of data entry
by a user on the web. Our results compliment previous discussion, where users are
exposed to higher risk with uniform data. We found that users who entered same
entries two times have at least 85% (0.85) of privacy risk with all datasets. For
instance, we observe that a user enters the query ‘do i have liver disease if a small
amount of billirubin is in urine’ four times and thus gets the risk of 100% (1.0) being
identifiable. Similarly, we found that a user enters the review ‘NICE 1’ 5 times, and
has a privacy risk of 99.8% (0.998). Figure 5.5 shows the average risk for uniform
queries. Overall, our results indicate that users involved in alcohol and pregnancy
topics are 100% identifiable after entering 12 uniform queries, whereas users involved
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Figure 5.4: (5.4a) Average privacy risk with the increasing number of Web entries
and (5.4b) average privacy risk per user.

in cancer topics are 100% identifiable with 10 uniform queries. Similarly, we analyzed
that users who entered 10 similar reviews are 100% identifiable.
Uniqueness: Uniqueness refers to the distinctive sequence of a user’s data entries

on the web. Figure 5.6 shows the results. Our analysis shows that out of 700 unique
data sequences of pregnancy, 680 sequences are 100% (1.0 risk) identifiable, and
has the minimum average privacy risk of 98% (0.98). Likewise, cancer queries have
430 unique sequences out of which 410 are 100% identifiable and have the minimum
average risk of 98.5% (0.985). For instance, in pregnancy topic, we found that a user
is 98.5% identifiable after entering 7 unique queries in a sequence as shown below:

‘how to increase fertility naturally’, ‘increasing fertility naturally’, ‘increasing the
number of eggs released during ovulation naturally’, ‘increasing the number of eggs

released during ovulation naturally’, ‘conceiving twins without fertility drugs’,
‘getting a baby girl’, ‘choosing babys sex with ovulation’

For alcohol queries, we realize that 40 out of 180 data sequences have 1.0 risk,
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Figure 5.5: Risk Prediction Results of Uniform Web Entries.
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Figure 5.6: Risk Prediction Results of Unique Data Sequences

and these queries have the minimum average risk of 0.71. App reviews dataset has
the lowest number of unique sequences, i.e., 20. The minimum average risk is 0.79
and it shows 1.0 privacy risk for 2 unique sequences only.
Linkability: We now investigate the linkability of users’ web entries using their

PII. We found few users who have PII information available in their web entries. For
instance, a user in pregnancy topic entered a query ‘place son long island to have a
baby shower’, and another user in alcohol topic entered PII query ‘drug cases that
been through the US appellate court’. Similarly, for app reviews dataset, we found
that a number of users have entered either email IDs or names in their reviews.
Figure 5.7 shows the average privacy risk for the queries having PII available. We

also present results without linkability information i.e., we remove PII and evaluate
the privacy risk for the same set of entries. Our results indicate linking data with
PII has more privacy risk as compared to data with no PII. For instance, cancer has
the minimum average risk of 95% (0.95) for linkability, which reduces to 50% (0.5) if
we remove PII. Similarly, pregnancy has 89.5% (0.895) minimum privacy risk with
PII and 59% (0.59) without PII. We observe less difference in alcohol queries, i.e.,
a minimum of 98.5% (0.985) risk for linkability and 90.5% (0.905) for unlinkability.
For app reviews, the linkable reviews have 90.6% (0.906) of minimum average risk,
but reduces to 40.5% (0.405) without PII. However, we found that entries with or
without PII can reach to 100% identifiability (uniqueness and uniformity) except for
app reviews, for which the maximum risk involved with and without PII are 99%
(0.99) and 98.5% (0.985), respectively.

5.3.3 Discussion

Our results reveal some important findings which we enlist below.

1. Privacy risk increases with sharing more data on the web even if the users’
unique identities are not known. Users who share their personal interest in a
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Figure 5.7: Linkable and Unlinkable Average Privacy Risks against Web Entries
having PII.

specific field are likely to be more vulnerable to privacy attacks. For instance,
users who searched for information related to specific medical center in a spe-
cific area are more easily identifiable in terms of their location and disease.
For app review dataset, we found many users have same writing pattern in
their reviews, thus making them identifiable against other users.

2. Privacy risk increases with sharing same data on the web. Users who entered
same queries or reviews multiple times are easily recognizable. The identifica-
tion reaches to 100% with 10 uniform entries. Similarly, privacy risk increases
with the distinct sequence of web actions. This means that users who per-
formed web actions or shared data in a different way than others are likely to
be identifiable among others. Moreover, we found that users who share PII on
the web are 100% identifiable in most cases.

5.4 Conclusion

In this chapter, we demonstrate the likelihood of tracking or identifying users
through his web data actions e.g. search queries or comments on online forums.
Our privacy risk prediction method depends on three key aspects: i) the uniqueness
(or distinguishability) of a sequence of web data or activities by a user compared to
other users, ii) uniformity (or non-diversity) of a sequence of web data or activities
compared to the user’s previous history, and iii) linkability of a sequence of web data
to an individual using personal identifiable information (PII) available in the web
data. We validate our method through two real web datasets and show that high
privacy risk web data entries are likely to identify user, even if the user identities are
anonymized. Our next chapter is yet another series on identifying privacy issues on
the web. We explore potentially malicious third-party domains that are implicitly
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trusted by first-party websites and also investigate the activities performed by these
third-parties.
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Chapter 6

Measuring and Analyzing the
Chain of Implicit Trust

The web is a tangled mass of interconnected services, whereby websites import a
range of external resources from various third-party domains. The latter can also
load further resources hosted on other domains. For each website, this creates a
dependency chain underpinned by a form of implicit trust between the first-party
and transitively connected third-parties. The chain can only be loosely controlled
as first-party websites often have little, if any, visibility on where these resources
are loaded from. This chapter performs a large-scale study of dependency chains in
the web, to find that around 50% of first-party websites render content that they
did not directly load. We find that 73% of websites under-study load resources from
suspicious third-parties, and 24.8% of first-party webpages contain at least three
third-parties classified as suspicious in their dependency chain. By running sand-
boxed experiments, we observe a range of activities with the majority of suspicious
JavaScript codes downloading malware.
In Section 6.2, we present our data collection methodology consisting of two parts:

i) collecting information about websites and ii) classification of third-parties as sus-
picious vs. innocuous. Section 6.3 inspects the dependency chains across the Alexa’s
top-200K with the purpose to find the presence of implicitly trusted domains. We
then proceed to inspect if suspicious or even potentially malicious third-parties are
loaded via dependency chains in Section 6.4. In Section 6.5, we focus on what
activities are undertaken within the dependency chains, by specifically targeting
JavaScript programs. In Section 6.6, we summarize our key findings and finally
conclude the chapter in Section 6.7.
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6.1 Motivation

In the modern web ecosystem, websites often load resources from a range of third-
party domains such as ad providers, tracking services and analytics services. This is
a well known design decision that establishes an explicit trust between websites and
the domains providing such services. However, often overlooked is the fact that these
third-parties can further load resources from other domains, creating a dependency
chain. This results in a form of implicit trust between first-party websites and any
domains loaded further down the chain.
Consider the bbc.com webpage,1 which loads JavaScript program from

widgets.com, which, upon execution loads additional content from another third-
party, say ads.com. Here, bbc.com as the first-party website, explicitly trusts
widgets.com, but implicitly trusts ads.com. This can be represented as a sim-
ple dependency chain in which widgets.com is at level 1 and ads.com is at level
2. Past work tends to ignore this, instead collapsing these levels into a single set of
third-parties [79, 168].
Here, we argue that this overlooks a vital aspect of website design. For example,

it raises a notable security challenge, as first-party websites lack visibility on the
resources loaded further down their domain’s dependency chain. This potential
threat should not be underestimated as errant active content (e.g., JavaScript code)
opens the way to a range of further exploits, e.g., Layer-7 DDoS attacks [176] or
ransomware campaigns [120].
This chapter studies dependency chains in the web ecosystem. Although there has

been extensive work looking at the presence of third-parties in general [79, 168, 138],
little work has focused on how content is indirectly loaded. We start by inspecting
how extensive dependency chains are across the Alexa’s top-200K (Section 6.3).
We confirm their prominence, finding that around 50% of websites do include third-
parties (e.g., content delivery networks (CDNs) such as akamaihd.net and ad and
tracking services such as google-analytics.com) which subsequently load other
third-parties to form a dependency chain (i.e., they implicitly trust third-parties
they do not directly load). The most common implicitly trusted third-parties are
well known operators, e.g., google-analytics.com and doubleclick.net: these
are implicitly imported by 68.3% (134,510) and 46.4% (91,380) websites respec-
tively. However, we also observe a wide range of more obtuse third-parties such
as pippio.com and 51.la imported by 0.52% (1,146) and 0.51% (1,009) of websites.

1This is an example (i.e., hypothetical case) to elaborate the (suspicious) resource dependency
tree of bbc.com.
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Although the majority (84.91%) of websites have short chains (with levels of depen-
dencies below 3), we find first-party websites with dependency chains exceeding 30
in length. This not only complicates page rendering, but also creates notable attack
surface.
With the above in mind, we then proceed to inspect if suspicious or even poten-

tially malicious third-parties are loaded via these long dependency chains (Section
6.4). We do not limit this to just traditional malware, but also include third-parties
that are known to mishandle user data and risk privacy leaks [96, 165, 205, 69, 35].
For instance, example threats include the re-identification of users in the anonymised
AOL search histories, the Netflix training data that was attacked, and the Mas-
sachusetts hospital discharge data [96, 165, 205]. Furthermore, the collection of
sensitive data by third parties also had devastating impacts on people’s lives. For
instance, it was shown that a person discovered his teenage daughter’s pregnancy
by observing her targeted adverts [69]. Similarly, Gmail was shown to use words
from users’ emails to target ads, exposing the nature of private correspondence in
targeted ads [35].
Using the VirusTotal service [115] API, we classify third-party domains into in-

nocuous vs. suspicious. When using a classification threshold (i.e., VTscore ≥ 10,
further elaborated in Section 6.2.2 and 6.4.1), we find that 1.2% of third-parties are
classified as suspicious. Although seemingly small, we find that this limited set of
suspicious third-parties have remarkable reach. 73% of websites under-study load
resources from suspicious third-parties, and 24.8% of first-party webpages contain
at least 3 third-parties classified as suspicious in their dependency chain. This, of
course, is impacted by many considerations which we explore — most notably, the
power-law distribution of third-party popularity, which sees a few major players on
a large fraction of websites.
We also focus on what activities are undertaken within the dependency chains.

Hence, we sandbox all suspicious JavaScript programs to monitor their activi-
ties (Section 6.5). We build a sandbox and perform tests executing suspicious
JavaScript codes. We find that JavaScript codes loaded at higher levels in the
dependency chain (Level ≥2) generated a larger number of HTTP requests. This
is worrying as resources loaded at higher levels in the dependency chain are the
most opaque to the website operator (i.e., they rely on implicit trust). The ac-
tivities of these scripts are diverse. For example, we find evidence of first-party
websites performing malicious search poisoning activities when (implicitly) load-
ing some JavaScript codes. The most typical purpose of the suspicious JavaScript
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code is downloading dropfiles2. We also observe instances of very active JavaScript
codes, e.g., the most active (at level 4) downloads 129 files. We share all our
datasets, experimental testbed code and scripts with the wider research community:
https://wot19submission.github.io.

6.2 Dataset and Data Enrichment

We start by presenting our data collection methodology, and how we have vali-
dated its correctness. This consists of two key parts:(i) collecting information about
individual websites, such that we can extract their dependency chains; and (ii) clas-
sifying all dependencies (i.e., third-party domains) and suspicious vs. innocuous.

6.2.1 Alexa Dependency Dataset

We first present how we have obtained data on website dependencies, and how we
construct their dependency chain. This critical first step underpins all subsequent
analysis.

6.2.1.1 Data Collection

We obtain the resource dependencies of the Alexa top-200K websites’ main pages3

using the method described in [132]. This Chromium-based Headless [91] crawler
renders a given website and tracks resource dependencies by recording network re-
quests sent to third-party domains. The requests are then used to reconstruct the
dependency chains between each first-party website and its third-party URLs. Note
that each first-party can trigger the creation of multiple dependency chains (to form
a tree structure).
Figure 6.1 presents an example of a dependency chain with 3 levels; level 1 is

explicitly trusted by the first-party website, whilst level 2 and 3 are implicitly (or
indirectly) trusted. For simplicity, we refer to any domain that differs from the
first-party to be a third-party. More formally, to construct the dependency tree,
we identify third-party requests by comparing the second level domain of the page
(e.g., bbc.com) to the domains of the requests (e.g., cdn.com and ads.com via
widgets.com). Those with different second level domains are considered third-party.
We ignore the sub-domains so that a request to a domain such as player.bbc.com

2Dropfiles are executables (e.g., malware, Exploitkits, Trojans, etc.) exploiting the browser to
download and execute code without user consent (cf. Section 6.5.2.3).

3We select the top 200K as this gives us broad coverage of globally popular websites, whilst also
remaining tractable for our subsequent data enrichment activities.
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Figure 6.1: Example Dependency Chain of bbc.com. Arrows represent the inclusion
of resources with red ones showing suspicious resource inclusion. For
instance, ads.com is suspicious, and loaded by widgets.com, creating
an implicit line of trust.

is not considered as third-party. Due to the lack of purely automated mechanism to
disambiguate between site-specific sub-domains (e.g., player.bbc.com) or country-
specific domains (e.g., bbc.co.uk), we leverage the Mozilla Public Suffix list [204]
and tldextract [133] for this task. From the Alexa Top-200k websites, we collect
11,287,230 URLs which consist of 6,806,494 unique external resources that corre-
spond to 68,828 and 196,940, respectively, unique second level domains of third-
and first-parties.
Constructing the dependencies between objects in a webpage is a non-trivial task.

In cases where third-party JavaScript program gets loaded into a first-party context,
and then makes an AJAX request, the HTTP(S) request appears to be from the
first-party (i.e. the referrer will be the first-party). To overcome such cases and to
preserve the information on relations between the nested resource dependencies, we
allow the crawler to include the URL of the third-party from which the JavaScript
program was loaded by first-party.

6.2.1.2 Data Validation

As our main dataset relies on a single snapshot, we want to evaluate the stability
of the resources loaded by websites to ensure that a single snapshot does not miss
significant complexity within the ecosystem. Thus, we repeat the methodology
from Section 6.2.1.1 on a daily basis to study how the dependency chains evolve.
Unfortunately, performing daily crawls for the Alexa top-200k websites was not
possible due to scalability reasons. We therefore selected 1,500 domains as a seed for
the crawler. This list consists of the Alexa top-1K alongside 250 domains randomly
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Figure 6.2: Stability of Day-by-Day Dependency Trees Analyzed per Domain.

selected from the Alexa rank ranging from 1K to 50K, and a final 250 domains
randomly chosen from websites within the Alexa rank 50K–200K. This offers a
broad sampling of the Alexa sites covered. In total, on a daily basis from September
15 to October 2 2018, we have collected on average 225,035 unique URLs per daily
snapshot which covers 5,423 unique second level domains from the 1,500 first-parties.
Figure 6.2 presents the day-to-day stability of the domains we see within each

website.4 We observe that 95.07% of second level domains remain consistent across
consecutive days, and only an average of 4.93% domains are absent in any two
consecutive snapshots. On average, only 35 (0.66%) and 232 (4.27%) domains are
absent at explicit and implicit dependency levels, respectively. Hence, we take this
as a strong indicator that utilising a single snapshot is sufficient for gaining vantage
into the use of third-parties.

6.2.2 Meta-data Collection From VirusTotal

The next challenge is to classify domains as suspicious vs. innocuous.For this we use
VirusTotal — an online solution which aggregates the scanning capabilities provided
by 68 Anti-Virus (AV) tools, scanning engines and datasets. It has been commonly
used in the academic literature to detect malicious apps, executables, software and
domains [122, 114, 127, 106, 111]. For each domain, we use the VirusTotal report
API to obtain the VTscore for each third-party domain. This VTscore represents
the number of AV tools that flagged the website as malicious (max. 68). The reports
also contain meta-information such as the first scan date, scan history, domain name
resolution (DNS) history, website or domain category, reverse DNS, and whois infor-

4We define the (normalized) stability as the count of domains present in the dependency trees
crawled on day n and also present on day n + 1. More specifically, let C denoting the crawled
data then, stability =

Cn∩Cn+1
Cn∪Cn+1

.
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mation. We further supplement each domain with their WebSense [217] category5

provided by the VirusTotal’s record API. During the augmentation, we eliminate
repeating, unresponsive or invalid URLs in each dependency chain. Thus, we collect
the above metadata for each second level domain in our dataset. This results in a
final sample of 196,940 first-party websites, and 68,828 third-party domains.

6.3 Exploring the Chains

We begin by exploring the presence and usage of implicit trust chains. We first
confirm if websites do, indeed, rely on implicit trust and then explore how these
chains are used. To this end, at each level of the dependency chain, we choose
two metrics: number of requests and number of third-parties. The first metric, the
number of requests, shows the significance or volume of resources imported from
different levels, whereas the second metric characterizes coverage of third-parties in
different levels.

6.3.1 Do websites rely on implicit trust?

Overall, the Top-200k dataset makes 11,287,230 calls to 6,806,494 unique external
resources, with a median of 27 external resources per first-party website. To dissect
this, Table 6.1 presents the percentage of webpages in each Alexa range that load
explicitly and implicitly trusted third-parties. Confirming prior studies [79, 138], it
shows that 95% of websites import external resources, with 91% importing externally
hosted JavaScript codes. More important is that around 50% of the websites do rely
on implicit trust chains, i.e., they do include third-parties to load further third-
parties on their behalf. The propensity to form dependency chains is marginally
higher in more popular websites; for example, 55% in the Alexa top 10K have
dependency chains compared to 48% in the bottom 10K (i.e., rank 190-200K). In
other words, more popular websites tend to rely more on implicitly trusted third-
parties.
These implicitly trusted third-parties appear at various positions in the depen-

dency chain. Intuitively, long chains are undesirable as they typically have a dele-
terious impact on page load times [216] and increase attacks surface. Figure 6.3a
presents the CDF of chain length for all first-party websites. For context, websites
are separated into their sub-categories.6 It shows that 80% of the first-party web-

5For details on the websites or domains classification, we refer the reader to WebSense’s, also
known as ForcePoint, domains classification repository [81].

6We only include the most popular categories.
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Alexa Rank
1-200K 1-10K 190-200K 10-50K 50-100K 100-200K

First-parties that trust at least
one third-party which loads:
Any Resources:

Explicitly (Lvl. 1) 95% 95% 95% 94% 95% 95%
Implicitly (Lvl. ≥ 2) 49.7% 55.1% 47.9% 51.8% 50.23% 48%

JavaScript Resources:
Explicitly 91% 92% 91% 91% 91% 90%
Implicitly 49.5% 55% 47.8% 51.69% 50% 47.8%

Table 6.1: Overview of the Dataset for Different Ranges of the Alexa Ranking. The
rows indicate the proportion of Alexa’s Top-X websites that explicitly
and implicitly trust at least one third-party (i) resource (of any type);
and (ii) JavaScript code. It shows that 95% of websites import external
resources, with 91% importing externally hosted JavaScript codes. More-
over, around 50% of the websites do rely on implicit trust chains, i.e.,
they allow third-parties to load further third-parties on their behalf.

sites create chains of trust of length 3 or below. However, there is also a small
minority that dramatically exceed this chain length: we find that all website cate-
gories import ≈2% of their external resources from level 3 and above. In the most
extreme case, we see rg.ru (news) with a chain containing 38 levels, consisting
of mutual calls between adriver.ru (ad provider) and admelon.ru (IT website).
Other notable examples include thecrimson.com (Harvard’s student newspaper),
argumenti.ru (news), mundomax.com (IT news), lifestyle.bg (entertainment),
which have a maximum dependency level of 15. We argue that these complex con-
figurations make it extremely difficult to reliably audit such websites, as a first-party
cannot be assured of which objects are later loaded.
Briefly, we also note that Figure 6.3a reveals subtle differences between differ-

ent categories of third-party domains. For example, those classified as adverts are
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1 2 3 4 5 <=6
Levels

0%

10%

20%

30%

40%

Th
ird

-P
ar

ty
 D

ist
rib

ut
io

n Ads
Business
IT

SearchEngines
SocialNetworks

(b)

Figure 6.3: (a) CDF of Dependency Chain Lengths (broken down into categories
of first-party websites); and (b) Distribution of Third-party Websites
across Various Categories and Levels.
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most likely to be loaded at level 1; this is perhaps to be expected, as many ad
brokers naturally serve and manage their own content. In contrast, Social Net-
work plugins and widgets (e.g., Facebook plugins) are least likely to be loaded at
level 1. We found that social networks are typically ( 99% of the times) loaded
via CDNs (e.g., akamaihd.net which is hosting the JavaScript codes belonging to
Facebook) and in some cases (1% of the times) via third-parties, i.e., analytics ser-
vices (e.g., addthis.com). Business third-parties are also very common: As per the
Websense [81, 217] categorisation, this includes websites devoted to business firms,
business associations, industry groups, e.g., banks, credit unions, credit cards, and
insurance. This also includes websites that provide access to business-oriented web
applications and allow storage of sensitive data. Whilst the “IT” category includes
websites providing information about computers, software, the Internet and related
business firms, including sites supporting the sale of hardware, software, peripherals
and services.

6.3.2 What objects exist in the chain?

The previous section has confirmed that a notable fraction of websites create de-
pendency chains with (up to) tens of levels. We next inspect the types of resources
imported within these dependency chains. We classify resources into four main
types: Image, JavaScript codes, Data (consisting of HTML, JSON, XML, plain text
files), and CSS/Fonts.7 Overall, first-party websites import a median of 9 JavaScript
codes and/or 6 images from external websites. Table 6.2 presents the volume of each
resource type imported at each level in the trust chain. We observe that the make-
up of resources varies dramatically based on the level in the dependency chain. For
example, the fraction of images imported tends to increase with each level— this is
largely because third-parties are in-turn loading images (e.g., for adverts). In con-
trast, the fraction of JavaScript programs decreases as the level in the dependency
chain increases: 30.6% of resources at level 1 are JavaScript codes compared to just
12.3% at level 3. This trend is caused by the fact that new levels are typically
created by JavaScript code execution (thus the fraction of JavaScript codes is likely
to deplete along the chain).However, it remains at a level that should be of concern
to web engineers as this confirms a significant fraction of JavaScript code is loaded
from potentially unknown implicitly trusted domains (cf. Section 6.6 for further
discussion).
To build on this, we also inspect the categories of third-party domains hosting

7We classify using the HTTP headers and URL extensions (i.e.,*.js, *.html, *.css); this
allowed us to classify 85% of resources.
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# Unique # Unique JavaScript Font/ Uncategor-
Level Total Res. Calls Third-Parties Image Codes Data CSS ised

1 9,212,245 8,866,074 57,375 (83.36%) 34.4% 30.6% 16.0% 7.8% 11.3%
2 1,566,841 1,295,322 8,617 (12.52%) 48.8% 16.7% 11.7% 3.3% 19.4%
3 405,390 223,080 1,618 (2.35%) 45.0% 12.3% 11.1% 1.3% 30.2%
4 78,107 90,984 647 (0.94 %) 41.8% 18.4% 8.0% 8.1% 23.6%
5 14,413 8,928 310 (0.45%) 40.6% 18.0% 12.8% 2.0% 26.4%
≥6 10,208 4,764 548 (0.8%) 36.6% 12.3% 13.0% 1.2% 36.8%

Table 6.2: Breakdown of Resource Types Requested by the Top-200K Websites
across Each Level in the Dependency Chain. Total column refers to the
number of resource calls made at each level.

these resources. Figure 6.3b presents the make-up of third-party categories at each
level in the chain. It is clear that, across all levels, advertisement domains make
up the bulk of third-parties. We also notice other highly demanded third-party
categories such as search engines, Business and IT. These are led by well known
providers, e.g., google-analytics.com (web-analytics8) is on 68.3% of pages. The
figure also reveals that the distributions of categories vary across each dependency
level. For example, 23.1% of all loaded resources at level 1 come from advertisement
domains, 37.3% at level 2, and 46.2% at level 3. In other words, the proportion
increases across dependency levels. In contrast, social network third-parties (e.g.,
Facebook) are mostly presented at level 1 (9.58%) and 2 (13.57%) with a signif-
icant drop at level 3. The dominance of advertisements is not, however, caused
by a plethora of ad domains: there are far fewer ad domains than business or IT
(see Table 6.3). Instead, it is driven by the large number of requests to advertise-
ments: Even though ad domains only make-up 1.5% of third-parties, they generate
25% of resource requests. Importantly, these popular providers can trigger further
dependencies; for example, doubleclick.com imports 16% of its resources from
further implicitly trusted third-party websites. This makes such domains an ideal
propagator of malicious resources for any other domains having implicit trust in
it [144, 212, 120, 138].

6.4 Finding Suspicious Chains

The previous section has shown that the creation of dependency chains is widespread,
and there is extensive implicit trust within the web ecosystem. This, however, does
not shed light on the activity of resources within the dependency chains, nor does
it mean that the implicit trust is abused by third-parties. Thus, we next study the
existence of suspicious third-parties, which could lead to abuse of the implicit trust.

8Grouped as in business category as per VirusTotal reports.
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Within this section we use the term suspicious (to be more generic than malicious)
because VirusTotal covers activities ranging from low-risk (e.g., sharing private data
over unencrypted channels) to high-risk (malware).

6.4.1 Do chains contain suspicious parties?

First, we inspect the fraction of third-party domains that trigger a warning by
VirusTotal. From our third-party domains, 2.5% have a VTscore of 1 or above,
i.e., at least one virus checker classifies the domain as suspicious. If one treats the
VTscore as a ground truth, this confirms that popular websites do load content from
suspicious third-parties via their chains of trust. However, we are reticent to rely
on VTscore ≥ 1, as this indicates the remaining 67 virus checkers did not flag the
domain.9 Thus, we start by inspecting the presence of suspicious third-parties using
a range of thresholds.
Table 6.3 shows the fraction of third-parties that are classified as suspicious using

several VTscore thresholds. For context, we separate third-parties into their respec-
tive categories (using WebSense). The table confirms that a noticeable subset of
suspicious third-party domains exist; for example, if we classify any resource with a
VTscore ≥ 10 as suspicious, we find that 1.2% of third-party domains are classified as
suspicious with 6.2% of all resource calls in our dataset going to these third-parties.
Notably this only drops marginally (to 5.7%) with a very conservative VTscore of
≥ 40. We observe similar results when considering thresholds in the [3..50] range.
This confirms, with a high certainty, that approximately 6% of resource calls in the
dependency chains are towards domains that engage in suspicious activity (see Sec-
tion 6.5) for further details). We will conservatively refer to domains with a VTscore
≥ 10 as suspicious in the rest of this analysis.
The proportion of suspicious third parties and resource calls can be related to a

prominence metric defined in [73] that measures the frequency with which a user
browsing encounters the third-party. The paper showed that the top 5 third-parties
(doubleclick.net, google-analytics.com, gstatic.com, google.com, and
facebook.com) have a prominence of 5.7 on average. The exact relationship
between the prominence and the number of suspicious third-parties (and their
volume of resource calls) is not important to us. However, a high prominence of
a suspicious third party means that users have a high probability of becoming a
target, i.e., the effect of the 1.2% suspicious third parties becomes more devastating
when a user is accessing those websites multiple times. For instance, in table 6.5

9Diversity is likely caused by the virus databases used by the different virus checkers [38]
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we show that google-analytics.com is the top most suspicious third-party which
has a prominence of 6.20 implying that a user is hit 6.2 times by this website.
Additionally, we inspect first-party domains that inherit suspicious JavaScript re-

sources from the explicit and various implicit levels. We focus (cf. Section 6.5) on
JavaScript programs as active web content that poses great threats with significant
attack surfaces consisting of vulnerabilities related to client-side JavaScript codes,
such as cross-site scripting (XSS) and advanced phishing [138]. Table 6.4 shows
the top first-party domains, ranked according to the number of unique suspicious
third-parties in their chain of dependency. We note that the top ranked (most vul-
nerable) first-party domains belong to various categories such as Content Sharing,
News, or IT. This indicates that there is not any single category of domains that
inherits suspicious JavaScript codes. However, we note that first party websites cat-
egorised as “Business” represent the majority of most exposed domains at Level ≥2:
16% of first-party domains implicitly trusting suspicious JavaScript codes belonging
to the Business Category. The distant second is the “News & Media” Category,
and the third is “Adult”. The number of suspicious JavaScript codes loaded by
these first-party domains ranges from 4 to 31. For instance, we note the extreme
case of amateur-fc2.com, which implicitly imports 31 unique suspicious JavaScript
programs from 4 unique suspicious domains.

6.4.2 How widespread are suspicious parties?

We next inspect how widespread these suspicious third-parties are at each position
in the dependency chain, by inspecting how many websites utilize them. Figure 6.4a
displays the cumulative distribution (CDF) of resource calls to third-parties made by

Unique Suspicious Domains at Level = 1

Alexa # Malicious Unique
# First-party Domains Rank JSes Suspicious Domains Category Chain Length

1 theinscribermag.com 46,242 6 5 Blogs 5
2 skynet-system.com.ua 192,549 6 5 Busin. 4
3 nodwick.com 194,823 13 4 Enter. 4
4 iphones.ru 12,045 4 4 IT 4
5 privet-rostov.ru 193,024 6 4 LifeStyle 4

Unique Suspicious Domains at Level ≥ 2

1 traffic2bitcoin.com 33,513 6 5 Games 7
2 radionetplus.ru 166,003 8 4 SW Download 6
3 studiofow.tumblr.com 85,483 11 4 Adult 4
4 amateur-fc2.com 52,556 31 4 Adult 5
5 fasttorrent.ru 24,250 9 4 File Sharing 7

Table 6.4: Top 5 most exposed first-party domains (with VTscore ≥ 10) ranked by
the number of unique suspicious domains.
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Figure 6.4: CDF of Resources Loaded per-website from Various Categories of Third-
parties.

each first-party webpage in our dataset. Within the figure, we decompose the third-
party resources into various groups (including total vs. suspicious). As mentioned
earlier, we take a conservative approach and consider a resource suspicious if it
receives a VTscore ≥ 10. We purposefully select a relatively low VTscore threshold
to balance the need for broad coverage against high confidence10. Figure 6.4a reveals
that suspicious parties within the dependency chains are commonplace: 24.8% of
all first-party webpages contain at least 3 third-parties classified as suspicious in
their dependency chain. Remarkably, 73% of first-party websites load resources from
third-parties at least once. Hence, even though only 1.6% of third-party domains are
classified as suspicious, their reach covers nearly three quarters of websites (indirectly
via implicit trust).
The above is demonstrated in Table 6.5, which presents the top 10 most

frequently encountered suspicious third-party domains that are providing suspicious
JavaScript codes. It can be seen that popular third-party domains exist across
many first-party sites. The top 20% of third-party domains cover 86% (9,650,582)
of all resource calls. Closer inspection shows that it is driven by one prominent
third-party: google-analytics.com. At first, we thought that this was an error,
however, during the measurement period google-analytics.com obtained a
VTscore of 51, suggesting a high degree of certainty. This was actually caused
by google-analytics.com loading another third-party, sf-helper.net, which is
known to distribute adwares and spywares. It is unclear why Google was performing
this. We therefore repeated these checks in October 2018, to confirm that this
activity has ceased, and sf-helper.net is no longer loaded. To understand the
impact its new de-classification has, Figure 6.4b shows the distribution of resource
calls to third-party categories when google-analytics.com is benign. This reduces
the number of first-party websites exposed to suspicious resources by 63%. This

10Note that the difference between 3 and 10 only results in an increase of 0.2% resource calls
classified as malicious.
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Prevalence of Third-parties at Level = 1

# Third-party Domain Alexa Rank # First Parties Category

1 google-analytics.com 13,200 43,156 Business (Web Analytics)
2 gravater.com 2,292 3,520 IT
3 charter.com 12,714 3,425 Business
4 vk.com 13 2,815 Social Network
5 statcounter.com 2,265 2,327 Business (Web Analytics)

Prevalence of Third-parties at Level ≥ 2

1 charter.com 12,714 3,452 Business
2 vk.com 13 2,290 Social Network
3 livechatinc.com 888 851 Web Chat
4 onesignal.com 950 467 Business
5 rambler.ru 291 370 SearchEngine

Table 6.5: Top 5 most prevalent suspicious third-party domains (with VTscore ≥ 10)
on level 1 (explicit trust) and beyond (implicit trust) providing resources
to first-parties. Here, First-party domains having the corresponding sus-
picious third-party domain in their chain of dependency.

highlights effectively the impact of high centrality third-parties being permitted to
load further resources: the infection of just one can immediately effect a significant
fraction of websites.

6.4.3 How popular are suspicious third-parties?

We next test if widespread suspicious third-parties are also highly ranked
within Alexa. We treat this as a proxy for global popularity. Beyond
google-analytics.com we find several other suspicious third-party domains from
the Top 100 Alexa ranking. For-instance, vk.com, a social network website mostly
geared toward East European countries has been used by 3,094 first-parties and is
ranked 13 by Alexa. This website is found to be one of the most prevalent suspi-
cious third-party domains at both level 1 and levels ≥ 2. An obvious reason for this
domain’s presence is because of other infected (malware-based) apps that try to au-
thenticate users from such domains [181]. Other websites such as statcounter.com
or gravater.com are also among the most prevalent third party domains in level 1.
These websites were reported to contain malware in their JavaScript codes [78]. For
instance, users in statcounter forums reported it as malicious because a JavaScript
code running on its website redirects users to a malware website gocloudly.com,
and forces users to click the button [82].
More generally, we observe the presence of a wide range of Alexa ranks in the list
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of most prevalent domains at levels ≥ 2. In Figure 6.5a, we show the number of
suspicious JavaScript codes imported by the first-party domains (Y-axis) according
to their Alexa rank (X-axis). Overall, first-party domains import a larger number
of suspicious third-party JavaScript codes at levels ≥ 2. However, the first-party
domains seem to be equally vulnerable to the implicit importing of suspicious content
regardless of their rank. There are exceptions though, signified by the peaks in the
number of suspicious JavaScript codes — these are near exclusively driven by a
large number of ≥level-2 scripts (implicit trust). We also encounter an interesting
case, which we exclude from the graphs for readability purposes: The first-party
domain kikar.co.il imports 2,592 JavaScript codes originating from the third-
party hwcdn.net, a well-known browser hijacker that has been reported to force
users to visit spam pages [213]. The VirusTotal API indicates a VTscore of 22 for
this suspicious domain. We also note that 35 other first-party domains have this
domain in their chain of dependency. Again, this highlights the risk of implicit trust.
In Figure 6.5b we show the number of impacted first-party domains as a function

of the Alexa Rank of suspicious third-party domains (limited to a maximum Alexa
Rank of 1 million) — note the log scale of X-axis. Some very prevalent third-parties
have a high Alexa ranking (even excluding google-analytics.com). For instance,
note a spike around the 2000 rank, which reaches a prevalence of 3500 first-party
domains at level 1. This spike is caused by gravatar.com, propagating suspicious
Javascript resources. This supports our statements earlier (from Table 6.5) where
gravatar.com is ranked the second top most suspicious domain. Similarly, a spike
around 10K rank indicates the presence of charter.com both at level 1 and 2 re-
spectively. These findings demonstrate the wide variety of third-party suspicious
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Figure 6.5: Figure (a) depicts the number of suspicious JavaScript content imported
(explicitly and implicitly) by first-party domains shown according to
their Alexa ranking; and (b) shows the number of impacted first-party
domains as function of the ranking of domains of Suspicious JavaScript.
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JavaScript content loaded from various, not necessarily “obscure”, third-party do-
mains.

6.4.4 At which level do suspicious third-parties occur?

Next, we inspect the location(s) in the dependency chain where these suspicious
third-parties are situated. This is vital, as implicitly trusted (≥level 2) resources
are far more difficult for a first-party administrator to remove. Table 6.6 presents
the proportion of websites that import at least one resource with a VTscore ≥ 10.
We separate resources into their level in the dependency chain. The majority of
resources classified as suspicious are requested at level 1 in the dependency chain
(i.e., they are explicitly trusted by the first-party). 73% of websites containing
suspicious third-parties are “infected” via level 1. This might include websites that
purposefully utilise such third-parties [107]. Perhaps more important, the above
leaves a significant minority of suspicious resources imported via implicit trust (i.e.,
level ≥ 2). In these cases, the first-party is potentially unaware of their presence.
The most vulnerable category is news: over 15% of news sites import implicitly
trusted resources from level 2 with a VTscore ≥ 10. Notably, among the 56 news
websites importing suspicious JavaScript resources from trust level 3 and deeper, we
find 52 loading advertisements from adadvisor.net. One possible reason is that ad-
networks could be infected or victimized with malware to perform malvertising [145,
212].

All News Sports Entertainment Forums
Lv. All JS All JS All JS All JS All JS
1 61.30% 57.70% 75.40% 73.50% 75.70% 73.20% 69.30% 65.60% 67.40% 65.50%
2 5.20% 2.20% 13.40% 5.60% 11.10% 3.70% 8.60% 4.10% 9.10% 4.05%
3 1.30% 0.18% 2.90% 0.45% 3.60% 0.28% 2.70% 0.30% 3.20% 0.15%
4 0.22% ≤ 0.1% 0.64% 0.08% 0.80% ≤ 0.1% 0.70% 0.08% 0.60% 0.00%
≥ 5 ≤ 0.1% 0 0.002 ≤ 0.1% 0.001% ≤ 0.1% 0.002% ≤ 0.1% ≤0.001% 0.00%

Table 6.6: Proportion of Top-200K Websites Importing Resources Classified as Sus-
picious (with VTscore ≥ 10) at Each Level.

Similar, albeit less extreme, observations can be made across Sports, Entertain-
ment, and Forum websites. Briefly, Figure 6.6 displays the categories of (suspicious)
third-parties loaded at each level in the dependency chain — it can be seen that the
majority are classified as business. This is, again, because of several major providers
classified as suspicious such as convexity.net and charter.com. Furthermore, it
can be seen that the fraction of advertisement resources also increases with the
number of levels due to the loading of further resources (e.g., images).
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Figure 6.6: Distribution of Suspicious Third-Party Websites per Category at Each
Level, for all Top-200K Websites (Figure 6.6a) and most vulnerable first-
party categories (Figures 6.6b, 6.6c).

Next, we again focus on JavaScript content as, when loaded, it can represent
significant security risks: Our analysis is motivated by well known attack vectors
underpinned by JavaScript codes, e.g., malvertising [145], malware injection and
exploit kits redirection. These are exemplifed by the recent reporting that Equifax
and TransUnion were hit by a third-party web analytics script [136, 194]. Fig-
ure 6.7 presents the breakdown of the domain categories specifically for suspicious
JavaScript resources. Clear trends can be seen, with IT (e.g., dynaquestpc.com),
Business (e.g.,vindale.com), News and Media (e.g., therealnews.com), and En-
tertainment (e.g., youwatchfilm.net) dominating. Clearly, suspicious JavaScript
resources cover a broad spectrum of activities. We observe that 70% and 67%, re-
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Figure 6.7: Breakdown of Unique, Suspicious JavaScript Resources at Explicit and
Implicit Trust Levels. Previous work [54] used the domain category to
group suspicious JavaScript resources. In the same spirit, we use the do-
main category to group JavaScript resources into different groups such as
IT, Business, etc. Here, the Uncategorized category includes suspicious
JavaScript resources whose domain’s categories are unknown to Web-
Sense, e.g.,newmyvideolink.xyz and cooster.ru. We observe that the
suspicious JavaScript resources hosted by domains of IT, Business, News
and Media, and Entertainment dominate at explicit and implicit trust
levels.

spectively, of Business (Web analytics) and Ads JavaScript codes are loaded from
level ≥ 2 in contrast to 17% and 31% of JavaScript programs of Government and
Shopping loaded at level 1.
We next strive to quantify the level of suspicion raised by each of these JavaScript

programs. Intuitively, those with higher VTscores represent a higher threat as de-
fined by the 68 AV tools used by VirusTotal. Hence, Figure 6.8 presents the cumu-
lative distribution of the VTscores for all JavaScript resources loaded with VTscore
> 0. We separate the JavaScript programs into their location in the dependency
chain. Clear difference can be observed, with level 2 obtaining the highest VTscore
(median 52). In fact, 78% of the suspicious JavaScript resources loaded on trust
level 2 have a VTscore > 52 (indicating very high confidence).
This is a critical observation; whereas suspicious third-parties at level 1 can be

ultimately removed by first-party website operators if flagged as suspicious, this is
much more difficult for implicitly trusted resources further along the dependency
chain. If the intermediate (non-suspicious) level 1 resource is vital for the webpage,
it is likely that some operators would be unable or unwilling to perform this action.
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Figure 6.8: CDF of VTscores for JavaScript Programs (with VTscores > 0) at Dif-
ferent Levels in the Chain.

The lack of transparency and the inability to perform a vetting process on implicitly
trusted loaded resources further complicates the issue. It is also worth noting that
the VTscore for resources loaded further down the dependency chain is lower (e.g.,
level 4). For example, 80% of level 4 resources receive a VTscore below 5. This
suggests that the activity of these resources is more contentious, with a smaller
number of AV tools reaching consensus. It is impossible to state the reason for this,
hence in Section 6.5 we analyze the dynamic activities of these JavaScript content.

6.5 Analysis of Suspicious JavaScript resources

JavaScript codes are arguably the most dangerous resource to import, as JavaScript
codes have the potential to execute diverse functions (including the downloading of
further resources). Thus, we proceed to inspect the activities of the 7,166 JavaScript
resources that were classified as suspicious in our dataset. We achieve this by exe-
cuting the JavaScript resources in an isolated sandbox, and studying their activities.

6.5.1 Methodology

We use a dedicated testbed composed of three Virtual machines (VMs) that connect
to the Internet via a computer running the Cuckoo sandbox and tcpdump. These
VMs are configured with Windows 7, and are utilised to log all system-level events
and to intercept all traffic being transmitted between the virtual machines and the
Internet.Moreover, we use Volatility [214] to collect and analyse memory dumps of
JavaScript code running in the browser. Volatility allows us to reveal information
(i.e., kernel-level processes and network connections) about the analysed JavaScript
codes.This allows us to observe the traffic generated by each JavaScript code when
it is rendered by the browser. For instance, our logs keeps a record of the network
traffic generated, all file operations, memory changes, registry changes etc..
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For each test, we first create an HTML document and inject suspicious JavaScript
code via the <script> tag. We then load the HTML in the browser of our VM
testbed. We configured our testbed to wait 120 seconds for each target JavaScript
code, embedded in an HTML code, to be rendered by the VM browser. The yielded
logs are stored in a JSON object and pushed to our storage server for further analysis.
It took, on average, an additional 3 seconds transferring and saving data at our
server. Prior to each test, we turn-off and restore the VM to a clean snapshot.
This ensures that any malicious software downloaded by prior JavaScript code’s
test does not remain on the VM. We share the code and data for the testbed at
https://wot19submission.github.io.

6.5.2 Results

Using our sandbox testbed, we next measure which resources are accessed by suspi-
cious JavaScript programs, as well as any dropfiles that are generated on the VM.

6.5.2.1 HTTP Request Frequency

We start by inspecting the underlying HTTP requests triggered by the JavaScript
programs. Table 6.7 provides a list of the JavaScript resources that generate the most
HTTP requests (separated into implicit and explicitly trusted). There is significant
network activity generated by the suspicious JavaScript resources within our testbed,
with downloads initiated at various locations in the dependency chain: 44.7% of
requests are triggered at level 1 (explicit trust), whereas 55.3% at level ≥ 2 (implicit
trust).
To explore this further, Figure 6.9a presents the distribution of the number of

HTTP requests generated per suspicious JavaScript. The figure splits the JavaScript
programs into their respective positions in the dependency chains. Although 47%
of JavaScript resources generate fewer than 5 requests, there are notable differences
among the different levels. JavaScript resources at level 1 generate the fewest HTTP
requests (median 2), yet level ≥ 4 are extremely active (median 30 requests). 36% of
the JavaScript programs imported from level 5 generate at least 30 HTTP requests in
contrast to 15% of the JavaScript programs sourced from level 2. This is in contrast
to a typical behavior of legitimate JavaScript programs that have been previously
measured to generate on average just 4 HTTP requests [192].
Furthermore, VirusTotal shows that those at level 1 tend to have lower VTscores

(average 13), compared to those at ≥ 2, which tend to have a higher score (average
21). This is worrying as resources loaded further down the dependency chain are
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Figure 6.9: CDFs of number of HTTP requests generated per suspicious JavaScript
resources viewed across, (a) different levels of dependency chain and
categories of domains and dependency (b) Level = 1 and (c) Level ≥ 2.

the most opaque to the website operator. The most regularly observed JavaScript
at level 1 is new-play-1.js, a relatively highly ranked (22,574 Alexa) script which
downloads dropfiles. In contrast, at level ≥ 2, the most regularly observed JavaScript
is blog.js, which show intrusive adverts that perform click fraud.
We are also interested in how behaviours might differ across categories of website.

Hence, Figure 6.9b and 6.9c separate the JavaScript resources into their respec-
tive content categories. They then plot the distribution of number of requests per
JavaScript within these categories. Whereas those at level 1 (explicit trust) exhibit
relatively similar traits across all categories (Figure 6.9b), we find that those at
level ≥ 2 (implicit trust) have far more divergence across categories (Figure 6.9c).
Those classified as Business, IT or Adult are the most active, whereas News, Ads
and Download generate the fewest HTTP requests. This is largely driven by the
fact that most Business (i.e., a subcategory of web-analytics) domains download
more JavaScript codes, which then subsequently trigger further downloads (creating
a cumulative effect).In contrast, other categories (e.g., IT, Adult and Blogs) tend to
download more static content, e.g., images (which do not trigger further requests).
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When inspecting what exactly the requests contain, we find that the overwhelming
majority are downloading dropfiles (see Section 6.5.2.3). A remarkable 99.5% of all
suspicious JavaScript codes download at least one dropfile, with the vast majority
(98.62%) involving malvertising and click fraud (as identified via VirusTotal). This
creates a heavy traffic footprint: 22% of HTTP requests are downloading dropfiles
(further discussed in Section 6.5.2.3).

6.5.2.2 HTTP Request Targets

We next inspect the domains that these requests are accessing, i.e., the domains
hosting the content and files downloaded. For ease of presentation, we consider
the top 25 domains targeted by the suspicious JavaScript codes (in terms of total
number of HTTP requests targeting them). Figure 6.10 presents a heatmap illus-
trating the number of requests to them, with the X-axis showing the suspicious
JavaScript code and the Y-axis listing the targeted domains. The heat is defined as
the fraction of requests that each JavaScript issued to each domain. We find that
most JavaScript codes have a distinct preference towards a small set of domains.For
instance, 18% of JavaScript programs submit over 50% of their HTTP requests to a
single domain. One particularly popular domain is bing.com; 65% of all suspicious
JavaScript programs access this domain at least once. Closer inspection suggests
that most JavaScript resources targeting bing.com undertake some form of search
engine optimisation (SEO), e.g., launching exploits to elevate the ranking of certain
URLs in the results [102, 117].
Figure 6.11 also presents the count of HTTP requests across the top 25 targeted

domains. We separate JavaScript codes into level 1 vs. level ≥ 2. We observe that
the majority of fetches are triggered by level 1 (i.e., they are explicitly trusted by the
first party). However, we also note a large number of fetches to these domains are
from JavaScript resources loaded at level 2. Revisiting our earlier example, 79.5% of
HTTP requests to bing.com are triggered by level ≥ 2, indicating that the first party
domain might be unaware that they are responsible for this attack (these requests
are primarily for search engine manipulation [117]).As well as search engines, we
note the existence of various certification authorities. We leave further inspection
of these activities to future work, but conjecture that one of the reasons behind
sending requests to the certification authorities is that digitally signed suspicious
JavaScript resources can bypass system protection mechanisms that only install or
launch programs with valid signatures. Such malware could also evade anti-virus
programs which often forego scanning signed binaries.
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Figure 6.10: Heatmap of Number of Requests to Domains by Suspicious JavaScript
Codes and Histogram of Top 25 Contacted Domains by Suspicious
JavaScript Codes.

6.5.2.3 Analysis of Dropfiles

The above has revealed that a large number of suspicious JavaScript resources down-
load files. The use of these dropfiles is commonplace, and they are often used dur-
ing the infection process [16]. For instance, these files can potentially contain the
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Figure 6.11: Number of HTTP Fetch Requests Issued by Suspicious JavaScript Re-
sources, at Level = 1 vs. Level ≥ 2, to Top 25 Domains. Here X-axis
shows the sum over all the loads of all the JavaScript programs across
all analysed domains. The figure shows that most commonly occurring
HTTP fetch is to bing.com.
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unpacked malware binary that could potentially present worrisome vulnerabilities.
Hence, we next inspect the creation of local files by JavaScript.
We observe a significant number of active memory operations11. as depicted by

the number of dropped files. Note that dropfiles are executables (e.g., malware,
Exploitkits, Trojans, etc.) exploiting browsers to download and execute code with-
out user consent. As previously identified, 99.5% of the suspicious JavaScript codes
generate at least one dropfile, indicating that this is one of the most common ac-
tivities undertaken. We observe significant differences in the number of dropfiles
downloaded by each JavaScript. Figure 6.12 depicts the number of files dropped by
the JavaScript content as a CDF. Whereas the majority download below 5, a small
minority exceed 30. 22% of JavaScript codes generate at least 8 files from memory
by compiling the dynamically loaded code in active memory and saving them to OS
specific executables (i.e., a “Trojan”) confirming that memory exploits are being
used by these JavaScript codes.
Table 6.8 presents the top-10 JavaScript codes based on how many dropfiles

11Active memory operation mean processes that operates in memory. New types of malware differ
from the traditional ones in the sense that they dynamically load suspicious codes from servers
controlled by cybercriminals and run suspicious instructions from memory (i.e., random access
memory (RAM))
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Figure 6.12: CDF of Dropfiles Downloaded and Operated (i.e., Read/Write Opera-
tion) by Suspicious JavaScript Codes.
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Adware and Click Bots PUP Trojan Exploitkits
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Figure 6.13: Histogram of Type of Malware (i.e., Dropfiles) as per VirusTotal Re-
ports (cf. Section 6.2.2).

they generate. Some of these JavaScript codes are extremely active. For exam-
ple, xbigg.com/adv.js (loaded at level 1) downloads 16 files.Although there is not
any significant difference between the number of dropfiles per level, most active
JavaScript code (http://yourjavascript.com/3439241227/blog.js) is loaded at
level 4 and downloads 129 files." It is also interesting to observe that the resources
at level ≥ 2 tend to have higher VTscores, indicating that their activities are blocked
by a large number of virus checkers. The actual content of the files are quite di-
verse. Figure 6.13 plots the distribution of file types, as classified by VirusTotal
(cf. Section 6.2.2).We exclude the 8% which are encrypted, and therefore cannot
be examined. The vast majority of remaining files (98.62%) are Adware and Click
bots, suggesting that these types of financial gain are a major driving force in this
domain. The remainder are Potentially Unwanted Programs (0.52%), Exploitk-
its (0.36%), Adware and Click Bots (98.62%), and Trojan (0.50%).For instance,
videowood.tv/assets/js/poph.js uses and exploits eval() — JavaScript’s dy-
namic loading method — to download and execute 1832-fc204a9bcefeab3d.exe
(with VTscore=5). This then enables the attacker to take over web browser for
displaying a wide range of adverts and garner fraudulent clicks.

6.6 Discussion

In this Section, we summarise our key findings and explore simple solutions that
may mitigate the impact of the vulnerabilities discussed.
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Chapter 6 Measuring and Analyzing the Chain of Implicit Trust

6.6.1 Discussion and Mitigation

Our measurement results have identified a number of websites that load resources
via implicit trust (i.e., at level > 1 in the dependency chain). We have also con-
firmed that these chains often contain suspicious JavaScript resources, which expose
users to risks. Unfortunately, these are not necessarily trivial to identify without
appropriate expertise. Hence, the presence of these dependency chains can create
challenges for identifying and filtering such resources. From the perspective of the
first-party website, filtering an unwanted dependency can only be done by removing
an intermediate third-party in the chain. This can be problematic if the dependency
is performing a critical task (which may have taken a lot of development time to
integrate). Similarly, many developers may simply not be aware of this practice and
might therefore not know to check the dynamic loading of such resources.
To minimise such risks, users may leverage security and privacy preserving tools

such as NoScript [116] to reduce the risk of (suspicious) JavaScript execution. How-
ever, an ordinary user is not expected to be well aware of such risks, or to install
security tools. Hence, there are several methods that could be used by third-party
services, resource providers, websites or browser developers to minimise the adverse
impact of including resources from potentially suspicious third-parties. Most obvi-
ously, web developers and site operators should be made more aware of the risks
identified in this chapter. This is particularly the case as these stakeholders have the
capacity to curtail the problem by blocking any resources that depend on other ma-
licious domains. The challenge here is providing greater transparency. This could,
for example, be achieved by website operators running standard development tools
and using VirusTotal to classify each domain contacted. There would also be value
in sharing such information across websites (e.g., to crowd source a blacklist of sus-
picious third-party resources which depend on other third parties). Of course, this
list should be communicated to the third-party operators, as they may be unaware
themselves of their dependency chain. We argue that such operators should also
monitor their chains to ensure that they do not load any malicious resources.
Much of these checks could be automated within the browser. Existing AV tools

could be used to block malware blacklists that are loaded via implicit trust. Imple-
mentation of best practices such as sub-resource integrity checks can also mitigate
issues. Cross-origin resource sharing checks [162] could similarly be performed to
prevent third-party resources gaining access to the first party context (e.g., to access
cookies). Websites should also ensure they utilise appropriate security headers to
communicate their access policies (e.g., using Access-Control-Allow-Origin).
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6.7 Conclusion

This chapter has explored dependency chains in the web ecosystem. Inspired by the
lack of prior work focusing on how resources are loaded, we found that over 40% of
websites do rely on implicit trust. We classified the third-parties using VirusTotal
to find that 1.2% of third-parties are classified as potentially malicious. Worry-
ingly, our “confidence" in the classification actually increases for implicitly trusted
resources (i.e., trust level ≥ 2), where 78% of suspicious JavaScript resources have
a VTscore > 52. In other words, more implicitly trusted JavaScript resources have
high VTscores than explicitly trusted ones. We also performed sandbox experiments
on the suspicious JavaScript to understand their actions. We witnessed extensive
download activities, much of which consist of downloading dropfiles and malware.
Here, we end the first part of our thesis i.e. ‘Privacy Risk Identification and

Quantification’ for web and mobile platforms. The next two chapters are our con-
tributions towards the protection against the identified privacy leaks. The next
chapter presents a privacy preserving framework that reduces the user tracking and
identification issues on mobile devices.
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Chapter 7

Privacy Preserving Framework for
Mobile Sensor’s Data

Sensors embedded in smart devices monitor user’s environment with high accuracy
and provide variety of services to a device user, from finding routes, to health mon-
itoring and handwritten words recognition. However, as explained in chapter 4,
these sensors have a potential of disclosing private information about a user, that
eventually leads to user tracking or identification. To address this problem, in this
chapter, we propose a privacy preserving framework that minimizes privacy leak-
ages by bringing down the risk of trackability and distinguishability of individual
users while preserving the functionality of the existing apps/services. We formulate
our problem as time-series modeling and forecasting that overcomes the problem of
handling unpredictable data and balancing privacy-utility when sensor data is fluc-
tuating. The proposed framework is generic and keeps running in isolation without
the interaction of a user or service providers. In addition, the proposed framework
is resilient against noise filtering attacks by an adversary as it adds correlated noise-
series to the forecasted time-series such that the noise is indistinguishable by an
adversary. Rigorous experiments on benchmark datasets show that out framework
limits trackability and distinguishability threats while maintaining a reasonable level
of utility.
We organize this chapter by briefly highlighting the privacy problem and relating

this to our contribution. In Section 7.2, we describe mobile ecosystem (Background)
and then define the threat model of users information leakage from their mobile
devices. In Section 7.3, we first present a sketch of our system model and then
introduce our privacy-preserved framework that includes time-series data training
and time-series privacy preservation as main phases. In Section 7.4, we discuss
our experimental setup and then show results against privacy and utility metrics in
Section 7.5. Finally, we discuss the results and conclude our work in Section 7.6.
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7.1 Motivation

With the increasing use of mobile devices, a vast amount of temporal data gener-
ated by individuals through the use of applications on the mobile devices are being
collected, such as sensor data ranging from microphones and cameras to accelera-
tors, touch gestures and GPS trajectories. In many cases, service providers (app
owners) capture and analyze raw sensor data in order to perform the required app
functionalities or for other analytics purposes. For instance, a handwritten letter
recognition app needs raw sensors data, such as x and y coordinates, to recognize
letters or words written through a stylus or finger on a touch screen; a health mon-
itoring app needs motion sensor data to detect activity (sitting, walking, running
etc.) of a person. Some apps also require such data to personalize user experience,
for example, appsee is an in-app mobile analytics service that performs in-depth
analysis of user’s behavior using scroll and touch gestures [140]. On the contrary,
the collection of such mobile sensory data is highly associated with the privacy risk
of individuals being identified and tracked through their data. It is quite evident
from the literature that multiple sensors equipped within these devices contain sub-
tle information and measurable variation (highly sensitive data), which allows users
to be fingerprinted [57, 64, 159, 157]. For instance, a user could be identified from
motion sensors signals produced from mobile phones [57]. In some cases, the cap-
tured sensor data is exchanged with third-parties such as advertisers or publishers
for marketing and advertisement or various analytics purposes, for example, infer-
ring health information about a user from motion sensor data [180, 225] , or inferring
users’ shopping interest or place of interest from GPS location [69].
We consider a situation where a user performs some gesture (swipe, tap, write)

on a mobile device and data related to that gesture (raw x, y coordinates, finger
pressure) is sent to a server, in order to acquire a service in return. While the data
from a user gesture is essential to provide the desired functionality, there may be the
cases where this data is unnecessarily captured for some intended/hidden purposes.
For instance, Berend et.al [17] show that the sensors data, such as accelerometer and
gyroscope, can reveal mobile password and PIN numbers to the apps. Similarly, sen-
sor data can also be used to track physical location of the users even when the GPS
is turned off, or to detect bots [119, 54]. Although the user and the service might
not distrust each other, both parties sometimes appeal to symmetrically different
outcomes. It is always in the service’s best interest to gather knowledge about the
user. The user, on the other hand, has a better interest in leaking a sparse amount
of information. We illustrate this by looking at three concrete examples:
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• Bob would like a service which optimizes his journey by reducing the travel
time. The service does not need to know fined grained information e.g. favorite
restaurant, health condition, as they divulge a lot of private information about
Bob [131].

• Alice would like to use an app that transforms her handwritten letters into
a notebook document. The app service does not need to extract her writing
style as it may profile Alice and link her across different sessions [157].

• Georges would like to use a document reader service to read articles on his
mobile. The service does not need to know any biometric information about
Georges e.g. speed, duration, pressure of his finger, as it may lead to tracking
[118].

In this work, we investigate whether we can overcome user trackability and distin-
guishability issues associated with mobile sensory data release by providing a generic
on-device privacy preserving framework. Designing an on-device privacy-preserving
approach is a challenge as there exists no clear distinction between the data which
is required for the service to be functional and the one used for profiling purposes.
Another challenge in this scenario is that service providers must not be involved
in the privacy preserving mechanism. This assumption is justified since past inci-
dents have revealed the distribution of users’ data to third parties for tracking or
marketing purposes [35]. Moreover, a privacy preserving mechanism must have an
ability to preserve data without users’ active participation. We make the following
contributions in this chapter:

1. We design an on-device privacy preserving framework that minimizes the pri-
vate information of a user before releasing to a server, whilst maintaining the
intended utility of an application/service. The framework addresses two pri-
vacy risks, trackability and distinguishability by obfuscating raw data coming
from various apps.

2. To the best of our knowledge, our framework overcomes the drawback of pre-
vious solutions by solving the problems of application and data specifity, user
interaction with a privacy preserving mechanism, and trust issues with service
providers. While models such as Deep Neural Network (DNN) are convenient
to implement, they do not offer genercity as they are trained on known data
types and for specific scenarios.
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3. We formulate our problem as time-series data that utilizes time-series methods
such as TBATS modeling, Dickey and Fuller (ad-fuller) test, and time-series
forecasting. The representation of data as time-series enables our framework
to be generic and keeps running in isolation without the interaction of a user
or service providers. In addition, the framework uses box-cox transformation
method to stabilize the time-series data that in return helps in accurate fore-
casting and adding considerable level of noise for utility preservation.

4. Our framework is resilient against noise filtering attacks by an adversary as it
generates correlated noise-series which is added to the forecasted time-series
data. Correlated noise implies that the correlation of the noise series with
that of the original series is high and that they are indistinguishable by an
adversary. This means that the refinement methods such as filtering cannot
sanitize the noise in the released time-series. Thus, our framework offers two
levels of protection; first by replacing original time-series data with forecasted
data and then by adding correlated noise to the forecasted data.

5. Our framework provides a balance between privacy and utility by fine-tuning
parameter values. These parameters can be changed anytime, through OS
updates, to satisfy the requirements of privacy-utility tradeoff.

6. We empirically show the effectiveness of our framework through three different
scenarios: (i) Handwriting Letters, (ii) Handwriting Digits, and (iii) Touch
Swipes. We perform a comprehensive experimental study by evaluating our
framework in terms of trackability, indistinguishability, utility and efficiency.

7. Experiments show that our framework limits trackability and distinguishabil-
ity threats while mainitaining a reasonable level of utility. We found that
an average untrackability increases to 38 – 40%, while indistinguishability
on average increases from 19% to 50% for all the datasets. The utility loss
ranges from a mean absolute error (MAE) of 0.31 to 0.5 on average for all the
datasets. In general, we find that the maximum utility loss is 0.54 with 38%
of untrackability and 32% of indistinguishability.

7.2 Preliminaries

In this section, we begin with a description of mobile eco-system (Background).
Then, we define the threat model for users information leakage from their mobile
devices.
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7.2.1 Background

We assume a scenario where a user performs a certain task on his mobile device
to get a particular functionality, for example, scrolling the touchscreen to read an
article, writing or typing a message/email to send to a friend, tapping on a torch icon
to turn on mobile torch light, tweeting or commenting on a social network app, using
GPS to know the the nearby famous places or to get a route, etc. All these services
are either built-in in a phone or offered by various service providers via mobile apps.
In most of the situations, the data related to the task or a gesture performed by
a user on a mobile device has to be sent to a remote server (operated by a service
provider) on the fly to get a desired functionality. Moreover, users perform the same
tasks repeatedly either in regular or irregular intervals. For instance, turning on an
alarm clock every night, playing game after every few hours, checking emails every
other hour, posting something on social networks every week, etc. Figure 7.1 shows
the overview of a mobile device usage echo system. It is clear from the figure that
our mobile echo system revolves around four major entities. We define these entities
as follow:

1. Users: U = ∪i∈[1,k]ui corresponds to the set of users of mobile devices where k
corresponds to the total number of users.

Figure 7.1: Overview of a Mobile Usage Echo System
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2. Gestures: Let G = ∪i∈[1,j]gi be a finite succession of gestures performed by a
user on his mobile device. We assume that each time when data is sent to the
external server, a set of gestures G are being performed by a user. Intuitively,
the gesture corresponds to the data that a user is willing to release with the
expectation that the user’s privacy is not compromised.

3. Sessions: A session S ∈ S is a collection of gestures from a particular user ui.
Intuitively, this corresponds to one continuous use of the service. If a user is
writing on a mobile phone, his session can be decomposed into n tasks, where
each task consists of writing a word or a letter.

4. Time-Series: A time-series T = ∪i∈[1,l]ti is a data from gestures G of a user at
different point of time that is sent to a remote server at a fixed sampling rate.
The data is then processed by a server to provide the requested functionality.

7.2.2 Threat Model

It has been demonstrated in the past that releasing raw mobile sensor information
directly to service providers opens numerous ways for privacy leakage and user
tracking [157, 155, 58, 54, 57]. We describe this scenario in Fig.7.2, where a service
provider offers a service, e.g. an online food ordering, to a user on a mobile device.
However, at the backend, the service provider can use the information, such as
delivery destination, restaurants location, food menu, to analyze private information
about a user e.g. home address, favorite foods, ethnicity etc. Moreover, a service
provider can also exchange this information with third-parties (e.g. advertiser) to
maximize the revenues. In this case, user information is leaked for various purposes,
e.g. display related advertisements, link with another dataset to reveal health status
etc. This can lead to two possible threats: trackability and distinguishability.

• In a trackability attack, an adversary infers private information about a user in
one session, and then tries to link/track a user by maximizing the probability
of inferring private information in future sessions.

• In a distinguishability attack, an adversary tries to uniquely identify a user
from the data of other users in one session or a combination of all sessions.
The unique identification is extracted by measuring the amount of identifying
information in the data.
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Figure 7.2: An Exemplary Threat Model of User Privacy Leakage

7.2.2.1 Trackability

Each user’s u data is collected from various sessions S and can be characterized by
a distribution of public and private information Pub × Pri, where Pri corresponds
to the private information that the user does not wish to disclose and Pub is the
information that must be available to a service provider to provide a functionality.
For-example, Pub corresponds to writing words like {‘hello’, ‘hi’, ‘howdy’}, while
Pri is the calligraphy specificity of the user.
By looking at the data pub ∈ Pub in different sessions, a third party can gain

insights on user’s private information Pri, that could lead to user tracking or iden-
tifiablity. We call this as trackability attack where an adversary can link a set of
sessions S to a particular user u by observing data ∀S∈SpubS and inferring private
(uniquely identifiable) information Pri about a user. Here, we assume that the
user’s private information Pri is linked to his data Pub by the prior joint probabil-
ity distribution PPub,Pri.

Definition 7.2.1. Trackability Attack A trackability attack takes a set of similar or
matching observations from different sessions i.e. sim(pubSi , pubSj) ≥ τ

1, infers the
private information Pri, and outputs the probability distribution PPub,Pri, such that
the probability to link(track) Pub to user’s u′s Pri is maximized q∗ ∶ pri → [0,1]
from the set PPub,Pri of distributions.

1where, Si, andSj ∈ S

122



Chapter 7 Privacy Preserving Framework for Mobile Sensor’s Data

q∗ = arg max
S

P (Pri.Pub∣S ∈ S)

here q∗ is a belief distribution that Pub belongs to a user u with his Pri.

7.2.2.2 Distinguishability

The distinguishability attack uniquely identifies a user from a set of all other users by
quantifying the amount of unique information from the dataset. Consider a scenario
where an adversary gathers the data from all users with the purpose to uniquely
identify each user based on specific patterns that occur in a data e.g. writing style
or GPS locations. Let D denote the data of all users U in a dataset containing the
set of features F = ∪i∈[1,n]fi. Each feature fi is associated with a time-series t such
that ∀t∈Tf ti , then the probability of a feature time-series belonging to a users u is
given as:

Pr(U = u ∣ F = f t
i ) =

#(U = u,F ≈ f t
i )

#(F ≈ f t
i )

,

Now the mutual information or information gain between a user u and a set of
feature F is defined as:

IG(U = u;F) =H(U) −H(U = u ∣ F),

where H(U) is the entropy to indicate the minimum number of bits of information
required to distinguish each user in U and H(U = u ∣ F) is a conditional probability
given as:

H(U = u ∣ F) = −∑
f∈F

Pr(F = f)H(U ∣ F = f)

The given equations explain the methodology to quantify the unique information
against each user thus leading to user identification among others.

7.3 Methodology

In order to overcome the trackability and distinguishability attack, we propose a pri-
vacy preserving framework that prevents user tracking across different sessions and
also makes a user indistinguishable from other users. In this section, we first present
a sketch of our system model and then introduce our privacy-preserved framework
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that includes time-series data training and time-series privacy preservation as main
phases.

7.3.1 System Overview

To thwart privacy leakage, a standard strategy is to send a distorted version of the
data Pub called ˆPub to obfuscate the behavior [206, 189, 5, 190]. However, such
solutions suffer from the issues of balancing privacy and utility, handling fluctuation-
s/instability in mobile sensory data, and noise filtering attacks. Mobile sensor data
is fluctuating and is not always stable because of changing environment and user ac-
tivities. Therefore, a consistent obfuscation mechanism (that does not change over
time) is not suitable since it cannot correctly predict the future data and is tuned
to obfuscate based on previous learnings. Moreover, such obfuscation mechanisms
cannot balance between privacy and utility; consider for example, an obfuscation
mechanism that adds noise to the original data. If a mechanism is unable to predict
future data then adding a constant noise value may either impact utility or privacy
and thus cannot achieve a balance. Moreover, if a noise is independent and identi-
cally distributed (IID) then an adversary can separate the noise from the original
data [36].
We design a privacy preserving framework that covers the abovementioned issues.

We utilize the concept of time-series analysis where we consider mobile sensor data
as time-series and apply tme-series modeling and forecasting methods. The purpose
of modeling is to develop a model that captures the features of time-series based
on past observations, whereas the aim of forecasting is to accurately predict the
future and maintain stability across sensory data. The time-series analysis and
modeling is discussed further in Appendix B.1. Moreover, to overcome the threat
of noise filtering from obfuscated time-series data, we use the linear predictive filter
technique from digital signal processing (DSP) that adds correlated noise to the data.
The filter takes random white Gaussian noise as an input and produces correlated
noise that helps in reducing the threat of noise filtering by an adversary from the
obfuscated time-series. We provide more details about the noise filtering threat in
Appendix B.1.1.
Our proposed privacy preserving framework is deployed inside a device operating

system (OS) such that the data from any app is first processed at an OS level and
then sent to a remote server. A device OS receives numerous out-going data records
everyday which are sent to designated servers at fixed sampling rate. Depending
on restrictions and rules deployed at OS level, the data can be sent with or with-
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out processing. For our obfuscation framework, we assume that data coming from
apps must be first processed such that the privacy threat of tracking users online
is reduced to a sufficient level. We consider a scenario where our mechanism is
deployed at OS level with pre-trained models so that when a user starts using a
device, the privacy preservation level is maintained to some extent. Once sufficient
data is collected from a user, our mechanism then updates the trained models af-
ter specified intervals for-example, a day or a week. Once the models are created
and stored/updated at OS, our obfuscation framework then preserves user’s sen-
sitive data at run-time by using privacy preserving techniques. In particular, our
framework consists of the following two main phases:

• Time-Series Training: In this phase, pre-trained models for our obfuscation
mechanism are created and stored at OS. These models are called when apps
start sending data at run-time. Also, these training models keep updating
themselves at periodic intervals, for instance hourly, daily, or weekly. In par-
ticular, this phase includes building training models for time-series clustering
and time-series stability (discussed later in Sec. 7.3.2.1).

• Time-Series Privacy Perservation: This phase interrupts the incoming data
from apps and obscure at run-time before sending to a third-party server. It
includes time-series forecasting and adding correlated noise to forecasted series
(discussed later in Sec. 7.3.2.2).

Figures 7.3a and 7.3b show the system architecture of training and privacy-
preservation phases, respectively. We explain these in detail in the next Section.

7.3.2 Privacy-Preserving Framework

Our privacy preserving framework consists of the following two main phases namely:
i) Time-Series Training and ii) Time-Series Privacy Preservation. In this subsection,
we discuss in detail these two phases and their main components.

7.3.2.1 Time-Series Training

The Time-Series Training phase generates pre-trained models for our obfuscation
mechanism, stores these models at OS of a mobile device, and also updates at regular
intervals. In particular, the training phase has two main components namely: Time
Series Clustering and Stability.
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(a) In a time-series training phase, 1) time-series training data is fed into cluster model to generate
pre-trained cluster model, 2) clusters stability is checked using ADF test, 3) unstable clusters
are stabilized using box-cox transformation, 4) forecast modeling is performed on stable clusters
using TABTS/ARIMA model, and 5) Pre-trained cluster and forecast models are stored in
mobile OS

(b) In time-series privacy preservation phase, 1) pre-trained cluster, forecast models are readily
stored in mobile OS and new time-series (at run-time) is fed for cluster prediction, 2) Based
on the selected cluster, time-series forecasting is performed, 3) forecasted time-series is then
transformed back using inverse box-cox transformation, 4) auto-correlation matrix is calculated
for transformed time-series, 5) auto-correlation coefficients and white Gaussian noise is fed to
Linear Predictive (LP) filter to generate correlated noise, 6) correlated noise is added to a
time-series and 7) released to the server

Figure 7.3: System Overview

Time-Series Clustering refers to grouping similar time-series data into the same
cluster and storing the trained cluster model in a device. This step is necessary to
produce accurate forecasted time series at run-time. If the whole data is considered
equivalent, then time-series forecasting will give inappropriate results as OS does not
know what the data exactly is, for example if the data is a swipe, a word, a letter,
or a GPS coordinate. It is, therefore, the requirement of the obfuscation mechanism
to cluster similar time-series data during training phase and store the cluster model
on a device. Once trained, a new time-series is ready to be associated with a cluster
based on the trained model. We use Dynamic Time Wrapping (DTW) for grouping
similar time-series data however, selecting the appropriate number of clusters is a
challenge. Based on prior knowledge of the training dataset and the availability of
computing resources, the number of clusters could vary.
Time-Series Stability refers to analyzing the seasonality and stability in a time-

series and then making it stable for future predictions. The traditional classification
and regression predictive modeling assumes that the summary statistics of observa-
tions are consistent [33]. These assumptions can be easily violated in time-series due
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to the presence of trend, seasonality, and other time-dependent structures. In the
time-series terminology, this is known as the time series being stationary or stable.
Moreover, in the mobile sensory data, it is necessary to generate stable time-series
in order to maintain high utility by forecasting accurately. If the time-series is not
accurately forecasted then the utility of the functionality will be seriously affected.
We use augmented Dickey–Fuller test (ADF), a statistical test, to check the stability
of time-series data. Statistical tests make strong assumptions about the data. They
can only be used to inform the degree to which a null hypothesis can be rejected
or fail to be rejected. Moreover, they can provide a quick check and confirmatory
evidence whether the time-series is stationary or non-stationary.
Once a time-series is determined to be non-stationary or unstable, a transforma-

tion such as box-cox needs to be applied to make a time-series stable. Box-cox is a
data transformation technique used to stabilize variance and make the data look like
a normal distribution [188]. The one-parameter Box–Cox transformation is defined
as:

yλi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

yλi −1
λ , ifλ ≠ 0

log(yi), ifλ = 0,
(7.1)

where y is a time-series value and λ is a parameter with values ranging from -5 to
5. All values of λ are considered and the optimal value for the data is selected.
The “optimal value” is the one which results in the best approximation of a normal
distribution curve.
Once stabilized, the clusters of stabilized time-series data are then input into

forecasting models such as TBATS, to train the model. These trained models are
then used for time-series forecasting at run-time. The TBATS model basically
belong to a general class of different models, such as random walk, random trend,
seasonal and non-seasonal exponential smoothing and auto-regressive model, and
it uses a systematic procedure for identifying the best TBATS model for any given
time-series. These models are suitable for a huge amount of data that must be
stationarized by differencing or using other mathematical transformations [31]. The
most important step in such type of modeling is to select values for parameters of
various components such as seasonality, trends, moving average, etc. There exist sys-
tematic procedures that select suitable parameter values based on time-series data
[105], therefore, once the data is pre-processed (stationarized), an auto-forecasting
model is applied that selects the parameter values and then fits the model on a
time-series. Algorithm 2 illustrates the algorithmic description of the training phase.
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Input : T = time-series data for training,
U=number of users,
F = dataset features

Output: T ′= transformed/stabilized time-series,
V = pre-trained forecasted models,
C= pre-trained cluster models

1 for i← 1 to U do
2 for f ← 1 to F do
3 Perform clustering on T using Dynamic Time Wrapping (DTW)
4 Store Cluster model C
5 for c← 1 to C do
6 Check stability of time series in a cluster c w.r.t. variance σ using

Augmented Dickey–Fuller test (ADF)
7 if not-stable then
8 Apply box-cox transformation in a cluster c and get

transformed time-series T ′ using Eq. 7.1
9 Train ARIMA/TBATS model with transformed time-series T ′ to

get a trained model V
10 Store trained model V

Algorithm 2: Time-series Training

7.3.2.2 Time-Series Privacy Preservation

After training, the next phase is to preserve user’s sensitive data at run-time by
using privacy preserving techniques. All the upcoming data from a user is first
processed at OS and then sent to a remote server. The two main components in
this phase are to forecast a time-series data and then add correlated noise to the
forecasted time-series. Below we describe each of these in detail:
Time-Series Forecasting is an additional layer between original and perturbed

data. The purpose of forecasting is to add noise to a stablized/stationarized time-
series. User behavioural data such as swiping, typing, tapping, and writing is not
consistent across sessions. In this case, noise parameters that are selected based on a
certain training data, may not be suitable for data at run-time because inconsistency
in data may impact the utility results. It is thus, necessary to stabilize the data
before adding noise so that impact on utility has minimal effects.
In order to forecast, first the closest cluster to an upcoming data is predicted

based on the pre-trained cluster model. Once the cluster is selected, the pre-trained
forecasting model is called to forecast the future time-series. After forecasting,
the last step is to reverse the box-cox transformation (back-transformation). The
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purpose of back-transformation is to obtain forecasts on the original scale. The
reverse Box-Cox transformation is given by:

yi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(λyi + 1) 1
λ , ifλ ≠ 0

exp(yi), ifλ = 0
(7.2)

Correlated Noise is added to forecasted data to preserve the privacy. As de-
scribed in Appendix B.1.1, the purpose of adding correlated noise is to reduce the
privacy threat of getting estimated original series by filtering out noise from per-
turbed time-series data. Our correlated noise generation is based on the concept of
linear prediction (LP) of DSP. The purpose is to find linear filter coefficients based
on forecasted time-series such that when a random noise is passed through a filter,
a noise correlated to forecasted data is generated. We explain the process of LP
below:
Let X[n] denote the elements of a random process, having outcomes x[n]. The

goal of linear prediction is to find a set of coefficients a1, a2, .....aN such that

x̄[n] = a1x[n − 1] + a2x[n − 2] + ..........aNx[n −N] (7.3)

is as close as possible to x[n], for all n, and for all realizations of the underlying
random process. We say that x̄[n] is a “prediction” for the actual value of x[n] and
we refer to the a1 through aN as the LP coefficients of order N . There are many
applications of LP, however we use LP to find its coefficients through the prediction
error,

e[n] = x[n] − x̄[n] (7.4)

The prediction error reflects the idea that an ideal predictor would extract all
possible information from the m number of samples which have already been seen,
x[n − 1], x[n − 2], ...x[n −m]. To find a single set of coefficients which work for all
n and all realizations of the underlying random process, the condition is to make
X[n] stationary, and look for the coefficients which minimize the expected (mean)
squared prediction error. Once X[n] is stationarized (as done in previous steps),
the following auto-correlation equation is used to find the coefficients.
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which may be solved for the unknown coefficients, by setting

a = R−1
X0∶N

r (7.6)

The matrix, RX0∶N is the auto-correlation matrix of the random vector, X0∶N ,
whose elements are X[0] through X[N − 1]. We may call this the Nth order auto-
correlation matrix for the stationary random process, X[n].
To apply LP in our work, lets consider X[n] as forested time-series and RX0∶N as

its auto-correlation function. The coefficients a for N order could be extracted by
finding the values of RX0∶N and r from Eq. 7.6. It is to be noted that to find a linear
filter coefficients with the best correlation effects, the auto-correlation matrix of any
order from 1 to N should be tested. To do so, we use auto-correlation matrix from
1 to N order and select the one which gives correlation greater than a threshold.
Once coefficients are extracted, we then create a linear filter.
The next step is to generate a white Gaussian noise Z with mean (µ) of 0 and

different noise scale levels. The random noise Z is passed through a linear filter to
generate a correlated noise Z ′. The correlated noise is then added to the forecasted
data using Eq. 7.7.

X ′ =X +Z ′ (7.7)

The noisy correlated data is then released to remote servers. Algorithm 3 illus-
trates the algorithmic description of the privacy preservation phase.

7.4 Experiments Settings

In this section, we first present the datasets that are used in our experiments followed
by the definition of metrics that are used to evaluate our obfuscation mechanism.
We then explain our experimental procedure that includes data preprocessing and
experimental setup with different parametric values.

130



Chapter 7 Privacy Preserving Framework for Mobile Sensor’s Data

Input : X = time-series of length l,
V = pre-trained forecasted models,
C= pre-trained cluster models,
F = dataset features,
τ = correlation threshold

Output: X ′= obfuscated time-series
1 for f ← 1 to F do
2 Get a predicted cluster by giving time-series X as input to the

pre-trained cluster C
3 Forecast a time-series X ′ of length l using pre-trained forecasted model V
4 Perform inverse box-cox transformation on time-series X ′ using Eq. 7.2
5 for n← 1 to N do
6 Calculate auto-correlation matrices RX0∶n and r of X ′ for n order
7 Calculate coefficients a using Eq. 7.5
8 Create a linear filter F based on LP coefficients a
9 Generate white Gaussian Noise Z

10 Pass noise Z through linear filter F to get correlated noise Z ′

11 Calculate Correlation Corr between X ′ and Z ′

12 if Corr ≥ τ then
13 Add noise to the time-series X ′ using Eq. 7.7

Algorithm 3: Time-Series Privacy Preservation

7.4.1 Datasets

We use two datasets to demonstrate the effectiveness and comprehensiveness of our
obfuscation mechanism across three different scenarios. We use datasets containing
(a) Pen-based Gestures [22], and (b) Mobile Swipes [149] as our experimental
datasets. These two datasets demonstrate scenarios where a user is writing on a
touchscreen, or swiping touchscreen, respectively. All these tasks are performed
by users either using finger or stylus in different sessions. For readability, we use
handwriting and swipes to refer these datasets in the rest of the chapter. Table
7.1 shows the summary statistics of the two datasets. The values are shown for
total number of users, samples in each dataset, different functionality types (e.g.
alphabets, swipe direction), and raw features associated with each dataset. We
collected a total of 3,237,375 samples from a total of 95 users across all datasets.
Among them, handwriting dataset has the most number of recorded samples. We
now describe the context of each dataset in detail.
Handwriting Dataset: To demonstrate the applicability and effectiveness of our

obfuscation mechanism in a latest and user-centered technology such as stylus, we
use a dataset provided by [22]. The original purpose of collecting this dataset was to
help developers and designers in determining the most suitable gesture recognition
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Table 7.1: Statistics of Datasets

Dataset # of # of Possible # of Raw
Users Samples Types Features

Handwriting (L) 30 779,800 26 4
Handwriting (D) 30 299,900 10 4
Swipes 35 2,157,675 4 3
Total: 95 3,237,375

algorithm in various contexts/scenarios by fine-tuning different parameters such as
speed, human distinguishability, etc. The features used in this dataset could be
used in the context of end-user application where a user uses stylus pen to write
on his mobile device to perform a certain functionality. In our experiments, we use
gesture features for 26 letters of alphabets and 10 numeric digits of a total of 30
participants. Each alphabet and digit is recorded 10 times making a total of 300
gestures per letter/numeric digit.
Swipes Dataset: This dataset contains touch swipes performed by users on mo-

bile devices for various purposes such as scrolling documents, images, playing games,
etc. The dataset is provided by [149] with the purpose to investigate automated
user authentication techniques on mobile devices. We filter this dataset based on the
number of samples recorded2 against each user, with a total of 35 users. We filter
our all the swipes which have less than 5 data points, and finally extract 2,175,675
total number of samples. More details on the datasets is given in the paper [149].

7.4.2 Features Identification

Both datasets contain three common features i.e. x, y coordinates and pressure In
addition to these two features, we use pen angle from handwriting dataset. We use
these features because of two obvious reasons: i) these are the only raw features
available in the given datasets and ii) these features have wide usage and high diver-
sity across different applications. However, other features such as phone orientation,
Screen Orientation, Finger Orientation, X-Tilt , Y-Tilt, and Stroke Time could also
be used, if available. In general, the type and the number of features should not ef-
fect a privacy preserving mechanism. An ideal privacy preserving mechanism should
be effective against different range of features.

2A gesture sample generates a sequence of data points of different length. This length depends
on the sampling rate and duration of a sample, and varies across different devices.
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7.4.3 Evaluation Metrics

In this section, we define privacy and utility metrics to evaluate the efficacy of our
obfuscation framework. Privacy is indeed a subjective term and it varies greatly
from application to application. It is more often based on the requirements and goal
of applications. For-instance, one aspect of privacy is to protect a user from being
tracked using the data in different sessions, another aspect is not being identified
among group of users.
Hence, in our work, we use two different metrics for privacy in terms of untracka-

bility and indistinguishability. Similarly, utility is highly subjective and it depends
on the functionality that a user wants to achieve from a system. For-example, one
individual is interested to get nearby locations from a mobile app while another indi-
vidual only requires weather forecast based on his current location. We measure the
utility of data after being obfuscated by our method in terms of error rate between
original and obfuscated data. In the following, we describe these metrics in detail.
Untrackability: We define “untrackability” as an inability of an adversary/third-

party to track a user across different sessions, for example, a user that reads and
scrolls document at time t should not be identified by an adversary while reading
another document at time t+1 using his/her touch gestures. Similarly, letters or
words written across different sessions should not be linked to the same individual.
Theoretically, let’s denote X ′

t as an obfuscated time-series data of a user u1 at time
t consisting of n data points {x

′

t,1, x
′

t,2, ....x
′

t,n} whereas X ′

t+1 is another obfuscated
time-series of the same user at time t+ 1 having data points {x

′

t+1,1, x
′

t+1,2, ....x
′

t+1,n}.
We then define “untrackability” as an inability to identify and link X ′

t and X
′

t+1 as
corresponding to user u1 based on the distance/similarity between X ′

t and X
′

t+1.
There are several distance or similarity metrics, such as euclidean distance, DTW,

and cosine similarity, that could be used to measure the distance/similarity between
two data streams. For our work, we use the Mean Absolute Error (MAE) to measure
trackability of a user across sessions. MAE is a common measure of forecast error
in time series analysis. Given two series X ′

t and X
′

t+1 of a user u, MAE is calculated
as:

MAE/untrackability =
∑
n
t=1 ∣X

′

t −X
′

t+1∣

n
(7.8)

i.e. our obfuscation mechanism should have high MAE between different time-
serieses of the same user indicating that user cannot be tracked across his sessions.
Indistinguishability: This metric identifies whether an adversary is able to

uniquely identify/distinguish user’s data from a set of other users’ data. In other
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words, this metric checks the ability of an adversary to perform an inference attack
on user u′1s time-series data X ′

t , given a dataset of time-series D of multiple users
{u1, u2, u3, ....un}. Formally, the conditional probability of inferring an individual’s
time-series data X ′

t from a dataset D of n time-series data where k time-series in D
are highly likely to be X ′

t is:

H(X
′

t ∣D) ≥ log2 k

and the Information Gain (IG) is:

IG(X
′

t ∣D) ≤ log2 n − log2 k

IG(X
′

t ∣D) ≤ log2 n/k (7.9)

Thus, distinguishability indicates how much information an adversary can infer
about a user to distinguish him/her from other users and indistinguishability is
the inverse of it.
Utility: The utility refers to correctly identifying the input and performing the

intended functionality of an application, for instance, correctly recognizing letters
(such as a, b, c) and swipe directions (left, right, up, and down) after the data
obfuscation. In our experiments, we measure utility by computing MAE between
original time-series X and obfuscated time-series X ′ as given in Eq. 7.10.

MAE/Utility =
∑
n
i=1 ∣Xi −X

′

i ∣

n
, (7.10)

where X is an original time-series with data points {x1, x2, ....xn}, X
′ is an obfus-

cated time-series having {x
′

1, x
′

2, ....x
′

n} data points, and n is the number of data
points. A high value for MAE indicates low utility and vice versa.

7.4.4 Experimental Setup

We categorize our experimental setup into two parts: i) Data Pre-processing and ii)
Parameter Setting.
Data Pre-processing: This part involves preparing data to input into the obfus-

cation mechanism. First the data is filtered by removing broken, invalid, or empty
values. Next, each time-series data, for example a gesture such as a single swipe
or letter, is resampled to a fixed number of data points. This is necessary because
mobile devices send data at a fixed sampling rate. In order to mimic this behaviour,
we fixed sampling rate to 100 data points per gesture. After fixing sampling rate,
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we normalized datasets using min-max scaling. This step is performed to make il-
lustration of results consistent across different datasets. Finally, we partitioned the
data from each dataset into two random but mutually exclusive sets. The first set
has 80% of the samples, and the second has the remaining 20% of the samples. The
larger set – 80% was used as training dataset, while 20% of the samples were used
for “testing”. We shall call this approach as the ‘80-20 approach’ throughout the rest
of this chapter. The training samples are used to train cluster and forecasting mod-
els, whereas testing samples are used to check the effectiveness of our obfuscation
mechanism.
Parameter Setting: This part involves the procedure for parameter setting

to evaluate the effectiveness of obfuscation mechanism expalined in Sec. 7.3. For
each dataset, the obfuscation mechanism is evaluated against two parameters i.e.
“Gaussian Noise Scale”, and “Correlation Threshold”. For each of these parameter
values, the mechanism is run 10 and 5 times, respectively. The “Gaussian Noise
Scale” parameter generates random noise within a given scale. We therefore tested
our mechanism for different noise scales ranging from 0.1 to 1.0, with an interval of
0.1. The “Correlation Threshold” parameter decides the correlation level of noise
as mentioned in Sec. 7.3.2.2 and Algo. 3. This parameter sets the noise correlation
level with the data. We therefore, evaluated our mechanism for different threshold
values ranging from 0.1 to 0.5, with an interval of 0.1. The different values of these
two parameters explain the trade-off between privacy and utility of our obfuscation
mechanism i.e. an increase in noise scale value indicates high privacy but less utility,
and a decrease in scale value indicates good utility but less privacy. On contrary, an
increase in correlation threshold reflects low privacy and high utility and a decrease
in correlation threshold reflects high privacy and low utility.

7.5 Evaluation

In this section, we present and discuss the results of applying our privacy preser-
vation mechanism in three different scenarios of mobile sensory data. Our aim of
this experimental study is to show that a user tracking (privacy risk) from mo-
bile application data is (significantly) dropped after applying our privacy preserving
mechanism, with a reasonable level of utility of the mobile application functional-
ity. We specifically evaluate in terms of (a) the ability of the obfuscated data to
allow identifying/tracking returning user, (b) indistinguishability of an individual
user after data obfuscation, and (c) that the utility of the intended functionality is
preserved without much loss after the obfuscation.
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7.5.1 Privacy Evaluation

We start our discussion by first looking at the privacy aspects of original, forecasted,
and obfuscated time-series data.
Handwriting Dataset (Letters): Our results indicate that in the original data

users can be tracked across different sessions from the way they write. It indi-
cates that user writing styles are quite unique from each other such that they could
be recognized across sessions. We found similar results for forecasted data since
it is a stabilized version of the original data. However, untrackability is signifi-
cantly improved after applying obfuscation mechanism. Fig. 7.4a shows Cumulative
Distribution Function (CDF) of untrackability against original, forecasted, and ob-
fuscated data with 10 different noise scales and a fixed correlation threshold τ of
0.6. From the figure, it is clearly evident that increasing the noise scale increases
the untrackability, thus increasing privacy. In the original data, 50% of the users
have untrackability rate of just 4%, which slightly increases to 5% with forecasted
data and then eventually increases to 38% with a noise scale of 1.0. Untrackability
rate can be further increased using lower correlation threshold. It is worth noting
here that we are trying to minimize two different threats here i.e. inference attack
and noise filtering attack from an adversary. To reduce inference attack, a guassian
noise scale must have high value whereas to reduce noise filtering attack, correlation
threshold must have high value. Both of these parameters work in contrast to each
other for instance, increasing correlation threshold increases the chances of infer-
ence attack while reducing the likelihood of noise filtering attack. Moreover, the
above value are selected by keeping resulting utility loss parameter in mind as well.
Increasing noise level or lowering correlated threshold, adversely effects utility.
We also examine results with different correlation threshold values and a fixed

noise scale of 0.6. Results are shown in Fig. 7.4b indicating a clear trade-off between
untrackability and correlation threshold, i.e. increasing correlation between noise
and original data reduces privacy (decreases untrackability across sessions). The
untrackability rate is 23.6% for 50% of users with a correlation threshold of 0.5 and
increases to 38% with a correlation threshold of 0.1. The untrackability could be
increased further by increasing the noise scale (currently fixed at 0.6).
Next, we evaluate our mechanism against indistinguishability. We found that

an increase in noise scale increases indistinguishability and vice-versa. Similarly, a
decrease in correlation threshold increases indistinguishability. Fig. 7.4c and 7.4d
show CDF of indistinguishability against different noise scale and correlation values
respectively. From Fig. 7.4c, we can observe that indistinguishability increases
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Figure 7.4: Cumulative Distribution Function (CDF) of Handwriting Dataset (Let-
ters). Y-axes represents fraction of the participant population and X-
axes shows Untrackability, Indistinguishability, and Utility (MAE) of
varying noise scale levels (fig.(a), (c), (e)) and varying correlation thresh-
old values (fig.(b), (d), (f)), respectively.

with an increase in noise scale. We found that indistinguishability increases to
19% with a noise scale of 1.0. Though less, these results are an indication that
user uniqueness among other users can be decreased by our obfuscation mechanism.
The indistinguisability can be further increased by lowering the correlation threshold
from 0.6. In Fig. 7.4d, we observe similar trend across different correlation threshold
values, where a decrease in correlation increases indistinguishability and vice versa.
With a correlation threshold of 0.1 and a fixed noise scale of 0.6, 50% of users achieve
31% of indistinguishability, which starts decreasing with an increase in correlation
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threshold.
Handwriting Dataset (Digits): We also analyzed the applicability of our ob-

fuscation mechanism on digits (numeric) written with the stylus. Fig. 7.5a shows
untrackability results for different noise scales and correlation threshold values. The
untrackability rate of original and forecasted data is 3% approximately which in-
creases with an increase in noise scale. For instance, with a noise scale of 1.0,
untrackability reaches 38% for 60% of users. As mentioned earlier, untrackability
rate may further increase if the correlation threshold is decreased from a fixed value
of 0.6 to a lower value. However, to balance between the utility and indistinguisha-
bility, we used correlation threshold of 0.6 here. In Fig. 7.5b, we show untrackability
rate for different correlation thresholds. The maximum untrackability rate with a
correlation threshold of 0.1 is 38.5% for 60% of users.
We also evaluate indistinguishability after applying obfuscation mechanism and

found an expected trend i.e. an increase in noise scale increases indistinguishability.
With the noise scale of 1.0 and correlation threshold of 0.6, the mechanism achieves
21% of indistinguishability, whereas the correlation of 0.1 and a noise scale of 0.6,
offers indistinguishability of 38% for 60% of users. Fig. 7.5c and 7.5d show the
respective CDFs of results.
Swipes Dataset: We apply our obfuscation mechanism on swipes dataset and

found that untrackability and indistinguishability increases either with the increase
in noise scale or a decrease in correlation threshold. For-instance, with a noise scale
of 0.8, 80% of users have untrackability of 40% while indistinguishability reaches
50%. Similarly, if we decrease correlation to 0.1, untrackability reaches 35% for 60%
of users and indistinguishability is 50%. Figure 7.6 shows results from Swipe dataset.
These results indicate that a balance could be acheived between untrackability and
indistinguishability if parameters are properly tuned.

7.5.2 Utility Evaluation

This subsection discusses the utility of obfuscated time-series data. Our results on
preserving the functionality (utility) of an application after the obfuscation shows
that high/reasonable accuracy could be achieved by tuning the parameter values,
‘noise scale’, and ‘correlation threshold’.
Handwriting Dataset (Letters): The utility requirement in handwriting

dataset is to correctly recognize letters that are written from the stylus-pen. The
author of this dataset showed accuracy as high as 95% and as low as 20% with
different classification algorithms [22]. In our experiments, we want to analyze if
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Figure 7.5: Cumulative Distribution Function (CDF) of Handwriting Dataset (Dig-
its). Y-axes represents fraction of the participant population and X-axes
are Untrackability, Indistinguishability, and Utility (MAE) of varying
noise scale levels (fig.((a), (c), (e)) and varying correlation threshold
values (fig.(b), (d), (f)), respectively.

the MAE is low after the obfuscation. We observe the effect of our obfuscation
mechanism on MAE with different noise scale and correlation threshold values. Re-
sults are indicated in Fig. 7.4e and Fig. 7.4f, respectively. In Fig. 7.4e, we can see
that forecasted data has a MAE as low as 0.1. However, after the obfuscation, the
MAE starts increasing with the increase in noise scale value. With the noise scale
of 0.1, the MAE is 0.35 for 50% of users and 0.5 for 80% of users. We observe that
increasing noise scale to 1.0 results in MAE of 0.48 for 50% of users. As mentioned
earlier, we always have an option of increasing utility (decreasing MAE) by lower-
ing fixed correlation threshold of 0.6 with an adverse impact on privacy. Similarly,
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Figure 7.6: Cumulative Distribution Function (CDF) of Swipes Dataset. Y-axes rep-
resents fraction of the participant population and X-axes shows Untrack-
ability, Indistinguishability, and Utility (MAE) of varying noise scale
levels (fig.(a), (c), (e)) and varying correlation threshold values (fig.(b),
(d), (f)), respectively.

Fig.7.4f shows the effect of obfuscation mechanism on MAE with different correla-
tion threshold values. The increase in correlation threshold decreases MAE to some
extent but not as close to the original or forecasted data. The reason perhaps is
that obfuscation mechanism is bounded with a fixed noise scale value.
Handwriting Dataset (Digits): The utility (MAE) of digits for different noise

scales and correlation threshold values is shown in Fig. 7.5e and 7.5f, respectively.
As expected, the utility loss increases with an increase in noise scales for instance,
in Fig.7.5e the utility loss is 0.5 for 60% of users with the noise scale of 1.0 which
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eventually decreases with the decrease in noise scale values. Similarly, in Fig. 7.5f,
we see that an increase in correlation threshold, decreases utility loss. For instance,
with a correlation threshold of 0.5, the utility loss is 0.42 for 60% of users which
increases to 0.46 for a correlation threshold of 0.1.
Swipes Dataset: Our results on the utility of swipes dataset shows the MAE

of 0.6 for a noise scale of 1.0 which decreases with the decrease in noise scale. For
instance, 60% of users have an error of 0.3 with a noise scale of 0.5. Similarly, MAE
decreases with an increase in correlation threshold. With a correlation scale of 0.3,
MAE is 0.31 for 60% of users. Fig. 7.6e and 7.6f shows CDF of overall utility results.

7.5.3 Privacy-Utility Trade-Off

This subsection summarizes the results in terms of tradeoff between privacy (un-
trackability and indistinguishability) and utility across different noise and correla-
tion scale values. Fig.7.7 shows tradeoffs for all the datasets where the first row
presents the results of different noise scale values and second row presents the re-
sults of different correlation thresholds. It is quite clear that an increase in MAE
(x-axis) increases untrackability (y-axis right) and indistinguishability (y-axis left)
for all values of noise and correlation threshold.
Fig.7.7a and 7.7b show the tradeoff result of handwriting dataset (letters). With

different noise scale values (Fig.7.7a), the maximum achieved utility loss is 0.56
with 40% of untrackability and 19% indistinguishability, respectively. Similarly, for
different correlation threshold values (Fig.7.7b), the maximum utility loss is 0.54
with 38% of untrackability and 32% of indistinguishability. As mentioned earlier,
both privacy metrics are bounded by correlation and noise scales. This is necessary
to limit threats of noise filtering and inference attack.
Fig.7.7c and 7.7d are tradeoff results of digits in handwriting dataset. In Fig.7.7c,

results indicate a maximum utility loss of 0.52 with untrackability of 40% and in-
distinguishability of 22%, with different noise scale values. We observe similar trend
with different correlation threshold values i.e. untrackability rate and indistinguisha-
bility is 38% with a utility loss of 0.48 (Fig. 7.7d).
Similarly, Fig. 7.7e and 7.7f shows tradeoff results of swipes dataset. We find that

swipe achieves beteer utility-privacy tradeoff than handwriting dataset, particulalrly
because a user handwriting style is almost similar throughout sessions whereas a
swipe gesture is dependent on many factors such as mobile app, user environment,
user current physical state (sitting, walking, etc.). We therefore, get better tradeoff
results. For instance, with different noise scale, the average untrackability and
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Figure 7.7: Privacy and Utility Trade-off. First Row shows trade-off with differ-
ent Noise Scales (0.1 - 1.0), second row shows trade-off with different
Correlation Thresholds (0.1 - 0.5)

indistinguishability is 45% and 43% respectively. On the other hand, we see that
different correlation threshold performs better in terms of indistinguishability i.e.
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50%.
The trade-off results make it clear that our obfuscation mechanism is effective

in achieving balanced privacy-utility for mobile based time-series data. Therefore,
based on these results we select the default values of Gaussian noise and correlation
threshold to discuss further results i.e. effect of obfuscation on features and specific
functionality (letters, digits, swipe direction etc.) For handwriting datasets (letters
and digits), we first fixed noise scale and correlation threshold to 0.8 and 0.6, and
then also swap the values by fixing noise scale to 0.6 and correlation threshold to
0.8.

7.5.4 Effect on Features

This subsection discusses effect of our obfuscation mechanism on individual features.
For handwriting dataset (letters), results are shown in Fig.7.8. With the correlation
of 0.8, the highest untrackability rate is provided by Pressure followed by yPosition.
However, with the noise scale of 0.8, xPosition offers high untrackability. These
results indicate that Pressure and yPosition are effective against noise filtering at-
tacks, while xPosition works best against inference attacks. We observe similar
results for indistinguisbaility as illustrated in Fig.7.8b. We also found that MAE
is normally higher for correlation scales as compared to noise scales (Fig.7.8c), for
instance, Pressure is giving MAE of approximately 0.6 for a correlation scale of 0.8
whereas, it reduces to 0.56 for a noise scale. This trend is similar for other features
as well.
Figures 7.8d, 7.8e, and 7.8f show feature-based untrackability, indistinguishability,

and utility loss results of digits dataset. With the correlation threshold of 0.8, the
highest untrackability rate is offered by yPosition of 58% followed by pen angle
(55%). However, with the noise scale of 0.8, xPosition offers high untrackability
of 48%. We observe that pen angle provides high indistinguishability of 25% with
the correlation of 0.8 and xPosition offers indistinguishability of 22% with the noise
scale of 0.8. Figure 7.8f indicates that utility loss is higher for correlation scales, for
instance MAE of yPosition is 0.57 for a correlation of 0.8 which decreases to 0.51
for a nosie scale.
Results from the swipe dataset indicate that individual features offer better un-

trackability rate with a correlation threshold of 90.8. For instance, xPosition, offers
50% of average untrackability followed by Pressure. However, the untrackability
rate with a noise scale of 0.8 is 42% for yPosition. For distinguishability, results
from both parameters are quite comparable for example, Pressure achieves indis-
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Figure 7.8: Effect of obfuscation mechanism on individual features. First row are
the results from handwriting dataset (Letters), second row are the results
from handwriting dataset (Digits), third row are the reuslts from swipes
dataset.

tinguishability of 43% for both correlation threshold and noise scale value of 0.8.
Similar to other datasets, we see that correlation threshold of 0.8 gives high MAE
for all the features, but not more than 0.5.

7.5.5 Effect on Functionalities

We also analyze the effect of obfuscation on specific functionalities, for example,
letters, digits, or swipes direction. Similar to features, we fixed the values of privacy
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parameters and applied obfuscation. Table 7.2 shows results on functionalities for all
the datasets. We observe that letters such as j, t, and x provides high untrackability
rate of 40.2%, 40.8%, and 41.8% as well as high indistinguishablity of 61.3%, 59.5%,
and 59.9% respectively. The untrackability of individual letters increases to 35%
on average whereas indistinguishablity increases to 30% respectively. We find a
utility loss of 0.5 on average for all the letters. This indicates that our mechanism
is effectively balancing privacy and utility.
In digits datasets, we find that digit 8 provides high untrackability of 40.4% and

digit 5 offers high indistinguishability of 53.9% respectively. Overall, untrackability
rate is increased to 30%-32% whereas indistinguishability increases to 15%-17% from
the original dataset. On average, the utility loss for all the digits is 0.5.
For swipes dataset, we find that Down swipe is least distinguishable, untrackable

and also has low MAE. However, results from rest of the swipe directions, Left, Right,
and Up, are also comparable and offer a balanced tradeoff against each metric.

7.5.6 Time Execution

We showed that our obfuscation mechanism effectively provides a balance between
privacy and utility. However, the gain in accuracy comes with the cost of the
overhead of training the mechanism as well as applying the obfuscation at run-time.
The overhead of training is reasonable as it could be performed during off-peak hours
i.e. when a user is not using mobile device. On the other hand, the cost of applying
obfuscation on-the-fly needs attention. Fig. 7.9a shows the time (seconds) it takes
to obfuscate time-series data of handwriting dataset (letters). We find that 60% of
Pressure time-series is obfuscated in 0.5 seconds, whereas yPosition and pen angle
take 0.7 seconds for 50% of time-series. Overall, combining all the features, 50% of
time-series data is obfuscated in 0.5 seconds.
Figure 7.9b shows obfuscation time of handwriting datasets with digits. Here we

find that 60% of yPosition time-series is obfuscated in less than 0.5 seconds whereas
60% of pen angle takes 1 second for obfuscation. Overall, 50% of all time-series are
obfuscated in 0.5 seconds.
We observe that obfuscation time for swipes dataset is much less than the hand-

writing dataset. The average obfuscation time to obfuscate all the features is less
than 0.07 seconds for 80% of time-serieses whereas individual time-series takes no
more than 0.07 seconds for 60% of serieses.
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Figure 7.9: Obfuscation Time of Datasets

7.6 Conclusion

In this chapter, we propose a privacy preserving framework that protects user from
the threat of trackability and distinguishability from mobile sensor data. The pro-
posed framework overcomes the drawback of existing solutions by utilizing the con-
cept of time-series modeling and forecasting. The framework is designed to handle
unpredictable data and offers a balance between utility-privacy when sensors data
is fluctuating. Moreover, the framework works in isolation from user or service
providers/app developers and is data-type independent. We introduce correlated
time-series noise in a framework that overcome the threat of noise filtering by an
adversary. We empirically evaluate the framework on three different datasets and
show that the risk from trackability and distinguishability is reduced whilst preserv-
ing the functionalities of the app even on the obfuscated data. We also demonstrate
that our framework offers a balance between privacy-utility by fine-tuning correlation
and noise parameters. In the next chapter, we present another privacy preserving
method for protecting the privacy of web user data.
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Chapter 8

Incognito: A Method for
Obfuscating Web Data

Several works have been done on improving privacy of web data through obfuscation
methods [103, 68, 196, 47]. However, these methods are neither comprehensive,
generic to be applicable to any web data, nor effective against adversarial attacks. In
this chapter, we propose a privacy-aware obfuscation method for web data addressing
the identified drawbacks of existing methods. The web data with high predicted risk
(as mentioned in Chapter 5) are obfuscated by our method to minimize the privacy
risk using semantically similar data. Our method is resistant against adversary
who has knowledge about the datasets and model learned risk probabilities using
differential privacy-based noise addition. Experimental study conducted on two
real web datasets validates the significance and efficacy of our method. Our results
indicate that at most 0% privacy risk could be attained with our obfuscation method
at the cost of average utility loss of 64.3%.
We organize this chapter as follows. In Section 8.1, we highlight the drawbacks of

existing web obfuscation methods. Section 8.2 presents the methodology that we
propose for obfuscating web users’ data. In Section 8.3, we present our experimental
results (Section 8.3.1), and conclude our work in Section 8.4.

8.1 Motivation

While there have been several works done on improving the privacy of users’ web
data through obfuscation methods, these existing methods primarily lack in con-
sidering all key aspects/features of web data privacy and they are not applicable
to all the types of web data (e.g., search queries, posts, comments, reviews). Fur-
thermore, these obfuscation methods are not resilient against adversarial attacks,
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where given the adversary’s knowledge about the obfuscation mechanism and the
users’ web behavior, they break the guarantees of protecting the privacy of users’
web data.
This chapter tries to answer the question How to develop a resilient obfuscation

mechanism to improve the privacy of web data predicted with high risk, given the ad-
versary has access to anonymized web data and knowledge of obfuscation algorithm?.
We propose a privacy-aware obfuscation method for web data that obfuscate high
risk data entries with semantically similar lower risk data entries. The proposed ob-
fuscation method can be applicable to any type of web applications, such as social
networks, search engines, blogs, product review sites, and online forums. The main
contributions of this chapter are as follows:

• We propose a novel obfuscation method to obfuscate high risk (predicted) data
using semantically similar low risk data retrieved from the trained HMM at
the cost of some loss in utility. Using differentially-private noise addition, our
proposed method is resilient against adversary who has knowledge about the
method, HMM probabilities and the training dataset and therefore is able to
estimate the privacy risk values and could differentiate between the original
and the obfuscated data by getting all possible paths in the HMM that have
higher risks.

• We conduct an extensive empirical study using two real web datasets, the
AOL dataset and our new app reviews dataset. Our results indicate that some
obfuscated entries offer 0% privacy risk at the low cost of utility, however, there
are some cases where obfuscated entries totally change the meaning of original
entries. The addition of differentially private noise in the HMM model does
not show significant difference in risk prediction, however, we see significant
increase in utility loss for app reviews dataset i.e., 50% of the obfuscated entries
has the utility loss of 64.3%, which increases to 90% for the perturbed entries
by noise.

8.2 The Methodology for Obfuscating Web Data

In this Section, we describe how users’ privacy risk in web data can be obfuscated
if the predicted risk is high.
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8.2.1 Obfuscation

Once a user data is identified as a privacy risk by our method based on the predicted
privacy probability, the second step is to replace or modify the original high risk
data with alternative data from different paths in the HMM to overcome the privacy
risk with a loss in utility.
We quantify the utility loss (ul) in terms of semantic similarity between the orig-

inal data Xx and the suggested data Xy.

ul(Xx,Xy) = 1.0 − sim(Xx,Xy), (8.1)

where sim(Xx,Xy) is a semantic similarity function [143] which returns the sim-
ilarity value between the two data in the range 0 and 1. The larger the semantic
similarity is the lower the utility loss is by using the alternative data.
The obfuscation module generates a list of alternative data suggestions (learned

from the HMM model) along with their predicted privacy risk and calculated utility
loss, from which one alternative data is chosen by the system to overcome privacy
risk. It is important to note that the utility loss for the original data is 0.0 (1.0 −
sim(Xy,Xy) = 1.0 − 1.0 = 0.0).

8.2.2 Adversarial Machine Learning

Given the training datasets and the HMM model learned probabilities can be ac-
cessed by an adversary, similar to all other existing obfuscation techniques our
privacy-aware obfuscation technique can be susceptible to privacy attacks to learn
the original data. The adversary is able to calculate or estimate the privacy risk
values using the learned HMM probabilities and this could lead to privacy violation.
For example, if a user’s privacy risk increases with the data entered by the user and
suddenly if the risk gets lower then the adversary might be able to guess that this
could be a perturbed data by the system. In such a case, the adversary would be
able to guess the actual data by getting all possible paths in the HMM that have
higher risks.
In order to overcome this attack, we propose an adversarial machine learning

technique by combining differential privacy-based noise addition with our HMM
model. Noise is added in terms of counts/probabilities in the HMM model in order
to perturb the original probability distribution. The magnitude of the noise depends
on a privacy parameter ε and sensitivity S of query functions on the HMM model
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by an adversary.

Definition 8.2.1 (L1-sensitivity). Given two count dictionaries T1 and T2, such
that ∣T1∣ = ∣T2∣ and T1 and T2 differ in only one element/entry’s count, the L1-
sensitivity of q query functions on both dictionaries, is measured as:

S =max∀T1,T2

q

∑
i=1

∣Qi(T1) −Qi(T2)∣, (8.2)

where Q(⋅) is a query function on a dictionary and ∣ ⋅ ∣ denotes the cardinality of a
dictionary.

Theorem 8.1 (Noise addition with differential privacy). Let Q be a set of query
functions and S be the L1-sensitivity of Q. Then, ε-differential privacy can be
achieved by adding random noise r, i.e., QT

i ← QT
I + r, where r is a random, i.i.d.

variable drawn from a Laplace distribution with magnitude b ≥ S/ε.

A differentially private dictionary release (publishing) corresponds to issuing count
queries by an adversary:

select count(∗) from dictionary where count/probability ≥ x (8.3)

Given a set of query functions Q, differential privacy adds noise drawn from
Laplace distribution with magnitude b to the true response value. As shown in
Theorem 8.1, b is determined by two parameters: (1) a privacy parameter ε and
(2) the sensitivity S of Q. In this context, it is known that a single update in the
count/probability value of an element in a dictionary can change the result of at most
two count queries by a magnitude of at most one. Therefore, we add Laplace noise
to each element in the dictionaries with b = 2/ε. Positive noise is incorporated by
incrementing the count/probability values, while negative noise requires subtracting
the count probability values.

8.3 Evaluation

In this section, we present and discuss our findings on adversarial machine learning
based differentially private web data obfuscation method. We have already explain
the datasets and experimental settings in Section 5.3.1 and Section 5.3.2.1 of Chapter
5. Here, we discuss only results of our experiments.

151



Chapter 8 Incognito: A Method for Obfuscating Web Data

8.3.1 Experiments and Results

We first discuss our results on differentially private web data obfuscation method
using some validation cases. We then present the efficiency results. For experimental
purposes, we used ε-differential privacy based noise addition for adversarial machine
learning where the privacy budget parameter is set to ε = 0.3.

8.3.1.1 Obfuscation

In this Section, we discuss our results on the obfuscation of high risk web entries.
We first present results for adversarial resistant obfuscation method and then move
to few validation cases where original web entries are altered to low risk entries. As
mentioned in Section 8.2, we obfuscated the data entries having higher privacy risk
with lower risk entries that are semantically similar to original entries.
We compare original and obfuscated web entries using two metrics i.e., privacy

risk and utility loss. We found that some obfuscated entries offer 0% privacy risk at
the low cost of utility, however, there are some exceptions where obfuscated entries
totally change the meaning of original entries. Moreover, our results indicate that
the addition of differentially private noise in HMM model does not show significant
difference in the risk calculations of web entries. However, we see a significant
increase in utility loss for app reviews dataset, i.e., 50% of the altered entries has
the utility loss of 64.3% (0.643), which increases to 90% (0.9) for the perturbed
entries by noise. For AOL dataset, the utility loss remains between 58% to 63%
(0.58 − 0.63) for 50% of both the perturbed entries with and without noise. The
utility loss comparison between obfuscated data with and without noise for each
topic is shown in Figure 8.1. Thus, these results indicate that the obfuscated entries
come with the cost of loosing the original meaning of the data. We however are able
to attain lower privacy risk, where the risk of all alternative entries suggested by
our method are below 75% (0.75) and do not contain any name, location, specific
writing pattern, uniformity in entries etc. On average, the privacy risk is reduced
to almost 30% to 40% (0.3 − 0.4), however at the cost of utility.
Table 8.1 shows validation cases where some web entries are obfuscated to preserve

privacy by our method at the cost of utility. We compare privacy risks of original
and obfuscated web entries along with the utility loss before and after the addition
of differentially-private noise. We take three cases (best, average, worst) from AOL
topics and two cases (average, worst) from app reviews dataset. These cases indicate
that the addition of noise not only improves privacy but also helps in securing the
obfuscation method against adversary attacks. Similarly, in Figure 8.2 we show that
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Figure 8.1: Comparison of Utility Loss Between Obfuscated Data with and without
Noise for Adversarial Machine Learning

the addition of noise dodges adversary by changing the original risk to perturbed
risk. Even if the adversary has access to datasets, HMM probabilities, and knowledge
of framework, our addition of differential-private noise does not allow the adversary
to guess the original risk as well as the difference between original and obfuscated
web data. Consider an example in Figure 8.2a where original risk reaches 83%
(0.83) and suddenly falls down to 0% (0.0) risk by replacing original entry with
obfuscated low risk entry. In this case, adversary is able to differentiate between
original and obfuscated entries since sudden fall is an indication of obfuscated data.
The inclusion of differential noise perturbs the risk such that it becomes difficult for
an adversary to guess if it is an original or obfuscated entry. When a risk is above
a certain threshold, the adversary model certainly replaces the original entry with
low risk entries, however the addition of noise confuses the adversary to get to the

153



Chapter 8 Incognito: A Method for Obfuscating Web Data

original entry.
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Figure 8.2: Improving Privacy and Resistance against Adversarial Attack

8.3.1.2 Efficiency

Finally, we investigate the time efficiency of our method. We found that time in-
creases with the increasing number of data entries. The average time to predict,
add noise, and then alternate high risk web entries is 0.0302, 0.0454, 0.0304, 0.0118
seconds per query of cancer, pregnancy, and alcohol, and app reviews, respectively.
We found that the time to evaluate and obfuscate a query gets stable after entering
certain number of queries. This is because either queries are repeating or we are
training/updating our model continuously. However, when a new query comes in,
which is not already seen by the training model, then it might take more time. Fig-
ure 8.3a shows the average time for each topic against the number of data entries.
The maximum average time is 224 seconds for 47 cancer queries.
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Chapter 8 Incognito: A Method for Obfuscating Web Data

Figure 8.3b shows the distribution of users against average time. We found that
85% of AOL users are processed within 50 seconds, while 62.5% of app reviews
users are processed in 0.002 seconds. The significant time difference between the
two datasets is because of two different techniques used for semantic matching. The
TF-IDF approach [94] is pretty faster than the semantic similarity function [142]
used for AOL because of various functions involved (word order, sentence order,
NLTK semantic dictionary etc.).
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Figure 8.3: (8.3a) Average time in seconds in the increasing order of Web entries;

and (8.3b) CDF average time per user.

8.4 Conclusion

Web data privacy has received much attention in the recent times due to the wide
spread use of the internet and the growing concerns of privacy and confidentiality.
Several works on obfuscation methods to counter privacy risks of web data have
been conducted in the literature. However, these methods are not generic and ap-
plicable to any web data and they do not consider obfuscation for high risk predicted
data using semantically similar data. In addition, adversarial machine learning for
web data obfuscation has not been studied in the literature. In this chapter, we
propose a privacy-aware obfuscation method that addresses the shortcomings of ex-
isting methods. We conducted experiments using two real web datasets and our
experiment results show that our method is effective in predicting privacy risk in
web data and obfuscating data that are predicted with high risk.
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Chapter 9

Conclusion and Future Directions

This thesis analyzed the privacy issues in mobile and web platforms by specifically
targeting the user tracking and identifiability problem. In addition, this thesis at-
tempts to exploit suspicious third-party domains in a web dependency chain with
a purpose to reveal their malicious intent such as malware execution, web tracking,
and other privacy leaks. Finally, this thesis proposed privacy preserving frameworks
for web and mobile platforms with an aim to reduce the identified privacy issues of
user tracking and identifiability.

9.1 Summary and Conclusion

User touch gestures contain sufficient unique information for tracking

In chapter 4, we demonstrated that touch gestures can be used to uniquely identify
(or fingerprint) users with high accuracy. This illustrates the threat of tracking
based on touch gestures in general. Our results show that writing samples (on a
touch pad) can reveal 73.7% of information (when measured in bits), and left swipes
can reveal up to 68.6% of information. Combining different combinations of gestures
results in higher uniqueness, with the combination of keystrokes, swipes and writing
revealing up to 98.5% of information about users. We further show that, through
our methodology, we can correctly re-identify returning users with a success rate of
more than 90%. In summary, our results reveal some important findings, such as:
i) Multiple samples of a gesture taken together reveal more accurate information
about a user than a single sample of a gesture, ii) Swipes and handwriting carry
more information as compared to taps and keystrokes, and iii) Features based on
the area and pressure of the finger performing the gesture are the most informative.
Limitations: We have only used the cosine similarity metric to evaluate unique-

ness. We have not investigated other similarity metrics such as Euclidean distance,
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manhattan distance, and Jaccard index for comparison. Our main goal was to
demonstrate the feasibility of touch-based tracking, and for that fixing a represen-
tative similarity metric was sufficient. Our quantitative methodology can also be
extended by replacing the similarity metric with a machine learning classifier such
as support vector machines (SVM) or k-nearest neighbours (kNN). Moreover, our
focus in chapter 4 has been on four commonly used touch gestures. It is possible
that other not-so widely used gestures such as pinch-in, pinch-out, drag, touch and
hold, and multi-finger touches may lead to better unique identification rates of users
and consequently user tracking.
We also need to verify the reliability and accuracy of our methodology as more

users and more gesture data is collected through out TouchTrack app. Moreover,
we did not at present take motion sensor features into account. There is likely
a possibility that user uniqueness increases with the addition of these features.
Our framework heavily relies on raw features extracted from android API; it
assumes that raw features can be accessed from API’s without requiring security
permissions. While this assumption is valid for now, a number of other ways could
be identified and used to extract raw features from mobile API’s. Finally, we did
not apply our framework on other mobile operating systems (OS) such as iOS and
Windows, as we cannot access the raw features from these OS without having
security permissions.

User web data entries may have high privacy risk even when the data is
anonymized

In chapter 5, we presented a comprehensive privacy risk evaluation method for web
data. We conducted experiments on two datasets, AOL search query and Android
app reviews. The results show that our privacy prediction method is reliable enough
to identify high risk web entries via three aspects of uniqueness, uniformity, and link-
ability. In general, our results reveal some important findings, such as: i) Privacy
risk increases with sharing more data on the web even if the users’ unique identities
are not known, and ii) Privacy risk increases with sharing same data on the web
i.e. users who entered same queries or reviews multiple times are easily recogniz-
able. Therefore, user’s privacy is at high risk when his web data is distinguishable
from other users and is linkable with high confidence based on his previous history.
Moreover, users who share or search for personal identifiable information (PII) on
the web including names contact details, and address/location details of people are
likely to be a victim of inference attack than users who do not share PII.
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Limitations: Our proposed method has only used the basic HMM model to mea-
sure privacy probabilities and corresponding privacy risk. We have not investigated
different probabilistic models such as Gaussian distribution, Dirichlet distribution,
and maximum entropy Markov model (MEMM) for comparison. Our method can
be extended by replacing the HMM model with other probabilistic methods. In
addition, the AOL dataset (as used in most of the other related work) is outdated.
Latest web datasets from search engines such as Google, and Yahoo as well as from
social platforms such as Facebook may lead to high privacy risk rates. We also did
not test our framework in an online environment.
We used fixed privacy budget parameter for our differentially private obfuscation

method. Similarly, we fixed our privacy risk threshold to 0.75. We need to further
investigate different parameter settings. Moreover, the semantic similarity function
is not efficient to calculate risk in milliseconds, which requires other efficient and
effective similarity measure approaches to be studied for real-time applications.

Trusted Websites unknowingly loading malicious content from ’suspi-
cious’ third-party domains

Chapter 6 explored the existence of dependency chains in the web ecosystem. By
analyzing the Alexa’s top-200K websites’ dependency chains, we find that over 40%
of websites have dependency chains, and therefore rely on an implicit trust model.
Although the majority (84.91%) of websites have short chains (with levels of de-
pendencies below 3), we found first-party websites with chains exceeding 30 levels.
The most common implicitly trusted third-parties are well known operators (e.g.,
doubleclick.net), but we also observed various less known implicit third-parties.
Overall, 1.2% of all domains are classified as suspicious, yet their reach impacts 73%
of Alexa websites. We hypothesised that this might create notable attack surfaces.
These resources have remarkable reach — largely driven by the presence of highly
central third-parties, e.g., google-analytics.com. It was also particularly worry-
ing to see that JavaScript resources loaded at level ≥ 2 in the dependency chain
tended to have more aggressive properties, particularly as exhibited by their higher
VTscore. This exposes the need to tighten the loose control over indirect resource
loading and implicit trust: it creates exposure to risks such as malware distribution,
search engine optimization (SEO) poisoning, malvertising and exploit kit redirec-
tion. We argue that ameliorating this can only be achieved through transparency
mechanisms that allow web developers to better understand the resources on their
webpages (and the related risks).
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Limitations: Our study is dependent of the VirusTotal reports (and therefore
the classification by various antivirus tools in VirusTotal)1. However, we acknowl-
edge that VirusTotal is not perfect and therefore there may be noise within our
classifications. To limit any issues, we do not rely on classifications by a single AV
and, instead, set a VTscore threshold of above 10. This parameter was derived from
a number of experiments and, where possible, we have presented results for multiple
VTscore settings.
We also highlight the target of our study is a potentially dynamic landscape. Our

reports from VirusTotal were captured in 2016, and our measurement are likely to
not include domains which have been tagged as malicious in other years or periods
that were not scanned by VirusTotal in 2016. Additionally, domains can be given an
abnormally high VTscore for reasons identified earlier in this chapter (e.g., malver-
tizing campaigns, etc.). While more accurate measurements could be achieved by
scanning all URLs (rather than all domains) using VirusTotal’s API, this solution
might not be viable for a large-scale analysis due to limitations in the allowable
request rate of the VirusTotal API.
Moreover, we would also like to highlight that similar issues exist when categoris-

ing websites (e.g., as Business, IT, Adult etc.). WebSense did not return proper
categories for 10% of third-party websites, and 15% of resources loaded in the
dependency dataset. From these uncategorised websites, we found that 10% were
deemed suspicious by VirusTotal, yet limitations in our methodoloy prevented us
from a deeper understanding of their purpose.

Privacy preserving methods can protect web and mobile users from
identification and tracking problems

The obfuscation method presented in the chapter 8 highlights two key aspects: (1)
semantic similarity for obfuscated data and (2) resilient against adversarial machine
learning. We obfuscate high risk entries by conducting experiments of our framework
on two datasets, AOL search query and Android app reviews. The results show
that our obfuscation method guarantees privacy against adversarial attacks with
high effectiveness. Similarly, in chapter 7, we show that an effective privacy-utility
balance can be achieved if time-series modeling and forecasting methods are used

1This was because malicious domains may circumvent a specific antivirus (AV) tool and, as
suggested by previous studies [11, 21], some AV tools may not always report reliable results.
Our experiments confirm this, as we found that AV tools often gave conflicting results (i.e.,
they did not necessarily agree on classifications). We therefore used the VTscore records as an
indicator of whether a domain (third party domains in this study) is benign or suspicious.
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with privacy techniques. We have developed a framework that obfuscates mobile
sensor data before sending to a remote server.
Limitations: Our proposed method used fixed privacy budget parameter for our

differentially private obfuscation. Similarly, we fixed our privacy risk threshold to
0.75. We need to further investigate different parameter settings. Moreover, the
semantic similarity function is not efficient to calculate risk in milliseconds, which
requires other efficient and effective similarity measure approaches to be studied for
real-time applications. We also did not test our framework in an online environment,
and thus another important aspect for future investigation is to develop a real-time
privacy risk prediction and obfuscation system where web entries are evaluated and
obfuscated at run-time with or without user involvement. Perhaps a browser plug-in
could be developed for our proposed method.

9.2 Future Directions

This thesis frames a number of avenues for future works.

Touch Gesture based Cross-Device Tracking on Mobile Devices

In chapter 4, we specifically focus on single-user single-device tracking scenario.
An important aspect for future investigation is to verify our methodology for
more complex scenario such as multi-device single-user tracking. This scenario
tracks the same user across multiple devices and is quite realistic as the average
number of connected devices per person is 3.5 [43]. Therefore, tracking user across
multiple devices can create a potential risk to user privacy. Cross-device tracking
is not straightforward to evaluate as it requires a more generalized approach. For
example, it requires selecting “stable” features across all types of devices. This
requires significantly more work in data collection and measurement to validate the
stability of features across devices, which we intend to work on in the future. The
stability of the gesture based fingerprint with time also needs to be investigated, as
the user behaviour normally changes with time and it may have an impact on the
accuracy of the uniqueness.

Mobile Bots Detection Using Touch Gestures

We can utilize our methodology given in chapter 4 to detect mobile bots. A
Mobile bot is a fastest growing and most widespread types of mobile fraud. It runs

161



Chapter 9 Conclusion and Future Directions

automatically once installed on a mobile device. These bots are embedded within
seemingly legit mobile apps or websites. Recent advancements in mobile bots
include i) Click Farms where a user can buy fake likes, dislikes, comments, or ratings
of their published content, ii) Malicious Chatbots that can hack users credentials,
iii) CrowdSource Bots that can perform tasks which are supposed to be performed
by a user. A more advanced threat from Mobile Bots is Mobile Ad Fraud (for the
advertisers) which are performed by bots hiding in legitimate apps. Examples of
such threats include Click Spam, Click Injections, Fake Installs and SDK Spoofing.
In this context, a future venue of work is to investigate users touch gestures to
detect Bots action from a real user action. The aim is to utilize user touch gestures
to identify a real user and a bot behavior. The crowd sourcing applications such
as Mechanical Turk (Mturk) can be used for the data collection. Once data is
collected having both Bot and real-user data, the uniqueness framework defined in
chapter 4 can be used to identify bots from real users.

Measurement and Analysis of Mobile Apps and User Behaviour Study

Another possible future work is to perform static and dynamic analysis of mobile
apps hosted on Google Play Store (perhaps Apple store as well) with the purpose
to investigate if these apps are extracting raw sensor features for various purposes
such as analytics, user experience, or tracking. Additionally, a study can be
performed on users different touch behaviours while interacting with mobile. For
this purpose, a framework should be designed that comprehensively investigate user
touch behaviours in relation privacy and Human Computer Interaction (HCI).

Exploring the Temporal Behavior of Dependency Chains along with
Dynamic Analysis of JavaScript Codes

In chapter 6, we do not investigate the impact of time on dependency chains. In
future, we wish to perform longitudinal measurements to understand how these
metrics of maliciousness evolve over time. We are particularly interested in un-
derstanding the (potentially) ephemeral nature of threats besides the inspection of
temporal dynamics of resource dependency chains (cf. Section 6.2.1.2). Without
this, we are reticent to draw long-term conclusions. Another line of work is un-
derstanding how level ≥ 1 JavaScript content creates inter-dependencies between
websites. This is particularly noteworthy among hypergiants (e.g., Google), who
are present on a large number of first-party websites. Deep diving into other forms
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of vulnerabilities (e.g., cascading style-sheets (CSS)) would also be key for obtaining
a wider understanding.
Similarly, it would be interesting to analyze the JavaScript running in the actual

context, however, we are aware of the complexity that may be dealt to analyze
the behavior of specific JavaScript code i.e., it becomes difficult to extract all
activities related to the individual JavaScript code. As a future work it would be
interesting to further investigate their behaviour. For instance, performing graph
analysis to understand how removing these hypergiants may impact the presence
of interconnected suspicious third-parties. We are also keen to explore the efficacy
of strategies like the same-origin policy, e.g., to see how much third-party code is
running in the first-party’s context and thus can access its cookies. By opening
our datasets and scripts to the wider research community, we hope that this will
engender further research to help address the issues observed.

Privacy-Preserving Web Browser Plugin for Online Data

Based on our results from chapters 5 and 8, a possible future direction is to design
and implement a browser plugin to predict privacy risks of user’s online web data at
run-time and then obscure high risk entries using probabilistic methods. The first
part of this work learns privacy risk of users’ Web entries at the run-time, using
the probabilistic calculations of three different types of users’ private/sensitive
information: uniformity, uniqueness, and linkability of data. Based on the risk
score predicted in the first part, the second part is to obscure high risk data
entries by recommending alternative data entries that have low risk as calculated
from our model. The utility loss of the recommended Web entries will also be
presented to the user along with the calculated risk scores. The framework is made
resilient to adversarial attacks, where the adversary with the knowledge of the
model and calculated probabilities can make inferences about the actual data and
the obfuscated data. This is achieved by adding noise to the probabilities using
differential privacy method.

163



Bibliography
[1] gensim: Topic modelling for humans. https://radimrehurek.com/gensim/,

2018. Accessed on: 12-01-2018. (On page 78.)

[2] Natural language toolkit. http://www.nltk.org, 2018. Accessed on: 12-01-
2018. (On page 78.)

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. Fpdetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 1129–1140. ACM, 2013. (On page 31.)

[4] Jagdish Prasad Achara, Gergely Acs, and Claude Castelluccia. On the unicity
of smartphone applications. In Proceedings of the 14th ACM Workshop on
Privacy in the Electronic Society, pages 27–36. ACM, 2015. (On page 12.)

[5] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.
In ACM Sigmod Record, volume 29, pages 439–450. ACM, 2000. (On page 124.)

[6] Rami Al-Rfou, William Jannen, and Nikhil Patwardhan. Trackmenot-so-good-
after-all. arXiv preprint arXiv:1211.0320, 2012. (On page 34.)

[7] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. Sensegen: A
deep learning architecture for synthetic sensor data generation. In Perva-
sive Computing and Communications Workshops (PerCom Workshops), 2017
IEEE International Conference on, pages 188–193. IEEE, 2017. (On page 37.)

[8] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Geo-indistinguishability: Differential privacy for
location-based systems. arXiv preprint arXiv:1212.1984, 2012. (On page 38.)

[9] AP. Google has been tracking your movements even if you told it not to.
https://www.news.com.au/technology/gadgets/mobile-phones/google-
has-been-tracking-your-movements-even-if-you-told-it-not-to/
news-story/bb9eb906387ffd2295e8b17b24b7d883, Aug 2018. (On page 2.)

[10] Robert M Arlein, Ben Jai, Markus Jakobsson, Fabian Monrose, and Michael K
Reiter. Privacy-preserving global customization. In Proceedings of the 2nd
ACM conference on Electronic commerce, pages 176–184. ACM, 2000. (On
page 25.)

164

https://radimrehurek.com/gensim/
http://www.nltk.org
https://www.news.com.au/technology/gadgets/mobile-phones/google-has-been-tracking-your-movements-even-if-you-told-it-not-to/news-story/bb9eb906387ffd2295e8b17b24b7d883
https://www.news.com.au/technology/gadgets/mobile-phones/google-has-been-tracking-your-movements-even-if-you-told-it-not-to/news-story/bb9eb906387ffd2295e8b17b24b7d883
https://www.news.com.au/technology/gadgets/mobile-phones/google-has-been-tracking-your-movements-even-if-you-told-it-not-to/news-story/bb9eb906387ffd2295e8b17b24b7d883


Bibliography

[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad
Rieck, and CERT Siemens. Drebin: Effective and explainable detection of
android malware in your pocket. In Ndss, volume 14, pages 23–26, 2014. (On
page 160.)

[12] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. Knowing the user’s
every move: user activity tracking for website usability evaluation and implicit
interaction. In Proceedings of the 15th international conference on World Wide
Web, pages 203–212. ACM, 2006. (On page 13.)

[13] Ero Balsa, Carmela Troncoso, and Claudia Díaz. OB-PWS: obfuscation-based
private web search. In IEEE Symposium on Security and Privacy, SP 2012,
21-23 May 2012, San Francisco, California, USA, pages 491–505, 2012. (On
pages 6 and 36.)

[14] Muhammad Ahmad Bashir, Sajjad Arshad, William Roebertson, and Christo
Wilson. Tracing information flows between ad exchanges using retargeted ads.
In USENIX Security Symposium, 2016. (On page 30.)

[15] BBC. Facebook’s data-sharing deals exposed. https://www.bbc.com/news/
technology-46618582, Dec 2018. (On page 2.)

[16] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi.
Duqu: Analysis, detection, and lessons learned. In ACM European Workshop
on System Security (EuroSec), volume 2012, 2012. (On page 110.)

[17] David Berend, Shivam Bhasin, and Bernhard Jungk. There goes your pin:
Exploiting smartphone sensor fusion under single and cross user setting. In
Proceedings of the 13th International Conference on Availability, Reliability
and Security, page 54. ACM, 2018. (On page 117.)

[18] Shlomo Berkovsky, Nikita Borisov, Yaniv Eytani, Tsvi Kuflik, and Francesco
Ricci. Examining users’ attitude towards privacy preserving collaborative fil-
tering. In Workshop on Data Mining for User Modeling, Online Proceedings,
page 28, 2007. (On page 24.)

[19] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Mediation of user models
for enhanced personalization in recommender systems. User Model. User-
Adapt. Interact., 18(3):245–286, 2008. (On page 22.)

[20] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. The impact of data
obfuscation on the accuracy of collaborative filtering. Expert Syst. Appl.,
39(5):5033–5042, 2012. (On page 26.)

[21] Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum, editors. 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1. IEEE Computer Society, 2015.
(On page 160.)

165

https://www.bbc.com/news/technology-46618582
https://www.bbc.com/news/technology-46618582


Bibliography

[22] François Beuvens and Jean Vanderdonckt. Usigesture: An environment for
integrating pen-based interaction in user interface development. In Research
Challenges in Information Science (RCIS), 2012 Sixth International Confer-
ence on, pages 1–12. IEEE, 2012. (On pages 131 and 138.)

[23] Joanna Biega, Ida Mele, and Gerhard Weikum. Probabilistic prediction of
privacy risks in user search histories. In Proceedings of the First International
Workshop on Privacy and Secuirty of Big Data, PSBD@CIKM 2014, Shang-
hai, China, November 7, 2014, pages 29–36, 2014. (On pages 6, 36, and 71.)

[24] Joanna Asia Biega, Krishna P. Gummadi, Ida Mele, Dragan Milchevski, Chris-
tos Tryfonopoulos, and Gerhard Weikum. R-susceptibility: An ir-centric ap-
proach to assessing privacy risks for users in online communities. In Pro-
ceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’16, pages 365–374, New York,
NY, USA, 2016. ACM. (On page 36.)

[25] Igor Bilogrevic, Kévin Huguenin, Stefan Mihaila, Reza Shokri, and Jean-Pierre
Hubaux. Predicting users’ motivations behind location check-ins and utility
implications of privacy protection mechanisms. In 22nd Network and Dis-
tributed System Security Symposium (NDSS), 2015. (On page 38.)

[26] Vincent Bindschaedler and Reza Shokri. Synthesizing plausible privacy-
preserving location traces. In Security and Privacy (SP), 2016 IEEE Sym-
posium on, pages 546–563. IEEE, 2016. (On pages 21 and 38.)

[27] C Bo, L Zhang, and X SilentSense Li. Silent user identification via dynamics of
touch and movement behavioral biometrics. In The 19th Annual International
Conference on Mobile Computing and Networking (MobiCom), pages 187–190,
2013. (On page 42.)

[28] Karoly Boda, Adam Mate Foeldes, Gabor Gyoergy Gulyas, and Sandor Imre.
User Tracking on the Web via Cross-Browser Fingerprinting. Information
Security Technology for Applications, 7161:31–46, 2012. (On page 28.)

[29] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. Mobile
device identification via sensor fingerprinting. arXiv preprint arXiv:1408.1416,
2014. (On page 30.)

[30] Antoine Boutet and Mathieu Cunche. A privacy-preserving mechanism for
requesting location data provider with wi-fi access points. 2018. (On pages 21
and 38.)

[31] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.
Time series analysis: forecasting and control. John Wiley & Sons, 2015. (On
pages 127, 191, and 192.)

[32] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung. Cross-
device tracking: Measurement and disclosures. Proceedings on Privacy En-
hancing Technologies, 2:113–128, 2017. (On page 12.)

166



Bibliography

[33] Jason Brownlee. How to check if time series data is stationary with python.
https://machinelearningmastery.com/time-series-data-stationary-
python/, December 2016. (On page 126.)

[34] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The Adaptive
Web, Methods and Strategies of Web Personalization, volume 4321 of Lecture
Notes in Computer Science. Springer, 2007. (On page 22.)

[35] Tomasz Bujlow, Valentín Carela-Español, Josep Sole-Pareta, and Pere Barlet-
Ros. A survey on web tracking: Mechanisms, implications, and defenses.
Proceedings of the IEEE, 105(8):1476–1510, 2017. (On pages 6, 14, 15, 17, 18,
88, and 118.)

[36] Fei Cai, Shangsong Liang, and Maarten De Rijke. Time-sensitive personal-
ized query auto-completion. In Proceedings of the 23rd ACM international
conference on conference on information and knowledge management, pages
1599–1608. ACM, 2014. (On pages 124 and 193.)

[37] John Canny. Collaborative filtering with privacy via factor analysis. In Pro-
ceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 238–245. ACM, 2002. (On
page 26.)

[38] Julio Canto, Marc Dacier, Engin Kirda, and Corrado Leita. Large scale mal-
ware collection: lessons learned. In IEEE SRDS Workshop on Sharing Field
Data and Experiment Measurements on Resilience of Distributed Computing
Systems. Citeseer, 2008. (On page 97.)

[39] Jordi Castellà-Roca, Alexandre Viejo, and Jordi Herrera-Joancomartì. Pre-
serving user’s privacy in web search engines. Computer Communications,
32(13):1541–1551, 2009. (On page 33.)

[40] Jordi Castellà-Roca, Alexandre Viejo, and Jordi Herrera-Joancomartí. Pre-
serving user’s privacy in web search engines. Computer Communications,
32(13-14):1541–1551, 2009. (On page 34.)

[41] Sophie Cerf, Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar, Robert
Birke, Sara Bouchenak, Lydia Y Chen, Nicolas Marchand, and Bogdan Robu.
Pulp: achieving privacy and utility trade-off in user mobility data. In Reliable
Distributed Systems (SRDS), 2017 IEEE 36th Symposium on, pages 164–173.
IEEE, 2017. (On pages 21 and 38.)

[42] Abdelberi Chaabane, Mohamed Ali Kaafar, and Roksana Boreli. Big friend is
watching you: Analyzing online social networks tracking capabilities. In Pro-
ceedings of the 2012 ACM workshop on Workshop on online social networks,
pages 7–12. ACM, 2012. (On page 15.)

[43] Dave Chaffey. How many connected devices do consumers use
today?. http://www.smartinsights.com/traffic-building-strategy/

167

https://machinelearningmastery.com/time-series-data-stationary-python/
https://machinelearningmastery.com/time-series-data-stationary-python/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/


Bibliography

integrated-marketing-communications/many-connected-devices-use-
today-chartoftheday/, 2016. (On page 161.)

[44] Prima Chairunnanda, Nam Pham, and Urs Hengartner. Privacy: Gone with
the typing! identifying web users by their typing patterns. In PASSAT/Social-
Com 2011, Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third
International Conference on and 2011 IEEE Third International Conference
on Social Computing (SocialCom), Boston, MA, USA, 9-11 Oct., 2011, pages
974–980, 2011. (On page 71.)

[45] Ramnath K Chellappa and Raymond G Sin. Personalization versus privacy:
An empirical examination of the online consumer’s dilemma. Information
technology and management, 6(2-3):181–202, 2005. (On page 24.)

[46] Jingdong Chen, Jacob Benesty, Yiteng Huang, and Simon Doclo. New insights
into the noise reduction wiener filter. IEEE Transactions on audio, speech,
and language processing, 14(4):1218–1234, 2006. (On page 193.)

[47] Terence Chen, Roksana Boreli, Mohamed Ali Kâafar, and Arik Friedman.
On the effectiveness of obfuscation techniques in online social networks. In
Privacy Enhancing Technologies - 14th International Symposium, PETS 2014,
Amsterdam, The Netherlands, July 16-18, 2014. Proceedings, pages 42–62,
2014. (On pages 20, 35, and 148.)

[48] Terence Chen, Abdelberi Chaabane, Pierre Ugo Tournoux, Mohamed Ali Kaa-
far, and Roksana Boreli. How much is too much? Leveraging ads audience
estimation to evaluate public profile uniqueness. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7981 LNCS:225–244, 2013. (On pages 28 and 43.)

[49] Richard Chow and Philippe Golle. Proceedings of the 2009 ACM Workshop
on Privacy in the Electronic Society, WPES 2009, Chicago, Illinois, USA,
November 9, 2009, chapter Faking contextual data for fun, profit, and privacy,
pages 105–108. 2009. (On page 36.)

[50] John H Cochrane. Time series for macroeconomics and finance. Manuscript,
University of Chicago, pages 1–136, 2005. (On page 191.)

[51] J.R. Corripio, D.M.A. González, A.L.S. Orozco, L.J.G. Villalba, J. Hernandez-
Castro, and S.J. Gibson. Source smartphone identification using sensor pattern
noise and wavelet transform. 5th International Conference on Imaging for
Crime Detection and Prevention, ICDP 2013, 2013. (On page 30.)

[52] M. Cunche, Mohamed Ali Kaafar, and R. Boreli. I know who you will meet
this evening! linking wireless devices using wi-fi probe requests. In 2012 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Net-
works (WoWMoM), pages 1–9, June 2012. (On page 12.)

168

http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/
http://www.smartinsights.com/traffic-building-strategy/integrated-marketing-communications/many-connected-devices-use-today-chartoftheday/


Bibliography

[53] Chris Cuomo, Jay Shaylor, Mary Mcguirt, and Chris Francesani. ‘gma’ gets
answers: Some credit card companies financially profiling customers. https:
//abcnews.go.com/GMA/TheLaw/gma-answers-credit-card-companies-
financially-profiling-customers/story?id=6747461, Jan 2009. (On
page 18.)

[54] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The web’s
sixth sense: A study of scripts accessing smartphone sensors. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1515–1532. ACM, 2018. (On pages 21, 38, 104, 117, and 121.)

[55] Anupam Das and Nikita Borisov. Poster : Fingerprinting Smartphones
Through Speaker. 35th IEEE Symposium on Security and Provacy, pages
2–3, 2014. (On pages 30 and 43.)

[56] Anupam Das, Nikita Borisov, and Matthew Caesar. Do you hear what i
hear?: Fingerprinting smart devices through embedded acoustic components.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 441–452. ACM, 2014. (On pages 15 and 30.)

[57] Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking Mobile Web
Users Through Motion Sensors : Attacks and Defenses. Ndss, (February):21–
24, 2016. (On pages 2, 12, 15, 30, 38, 117, and 121.)

[58] Anupam Das, Nikita Borisov, and Edward Chou. Every move you make: Ex-
ploring practical issues in smartphone motion sensor fingerprinting and coun-
termeasures. Proceedings on Privacy Enhancing Technologies, 2018(1):88–108,
2018. (On pages 15, 21, 38, and 121.)

[59] Carl De Boor. A practical guide to splines, volume 27 of Applied mathematical
sciences. Springer-Verlag New York, 1978. (On page 56.)

[60] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and
Giovanni Semeraro. Semantics-aware content-based recommender systems. In
Recommender Systems Handbook, pages 119–159. 2015. (On page 22.)

[61] Alysha M De Livera, Rob J Hyndman, and Ralph D Snyder. Forecasting time
series with complex seasonal patterns using exponential smoothing. Jour-
nal of the American Statistical Association, 106(496):1513–1527, 2011. (On
page 192.)

[62] Loh Chin Choong Desmond, Cho Chia Yuan, Tan Chung Pheng, and Ri Seng
Lee. Identifying unique devices through wireless fingerprinting. In Proceedings
of the First ACM Conference on Wireless Network Security, WiSec ’08, pages
46–55, New York, NY, USA, 2008. ACM. (On page 12.)

[63] Loh Chin Choong Desmond, Cho Chia Yuan, Tan Chung Pheng, and Ri Seng
Lee. Identifying unique devices through wireless fingerprinting. Proceedings of
the first ACM conference on Wireless network security - WiSec ’08, page 46,
2008. (On page 31.)

169

https://abcnews.go.com/GMA/TheLaw/gma-answers-credit-card-companies-financially-profiling-customers/story?id=6747461
https://abcnews.go.com/GMA/TheLaw/gma-answers-credit-card-companies-financially-profiling-customers/story?id=6747461
https://abcnews.go.com/GMA/TheLaw/gma-answers-credit-card-companies-financially-profiling-customers/story?id=6747461


Bibliography

[64] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari
Nelakuditi. AccelPrint: Imperfections of Accelerometers Make Smartphones
Trackable. Network and Distributed System Security Symposium (NDSS),
(February):23–26, 2014. (On pages 2, 12, 30, and 117.)

[65] David A Dickey and Wayne A Fuller. Distribution of the estimators for au-
toregressive time series with a unit root. Journal of the American statistical
association, 74(366a):427–431, 1979. (On page 192.)

[66] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, Naval Research Lab Washington
DC, 2004. (On page 33.)

[67] Josep Domingo-Ferrer, Agusti Solanas, and Jordi Castellà-Roca. h (k)-private
information retrieval from privacy-uncooperative queryable databases. Online
Information Review, 33(4):720–744, 2009. (On page 20.)

[68] Josep Domingo-Ferrer, Agusti Solanas, and Jordi Castellà-Roca. h (k)-private
information retrieval from privacy-uncooperative queryable databases. Online
Information Review, 33(4):720–744, 2009. (On pages 33 and 148.)

[69] Charles Duhigg. How companies learn your secrets.
https : / / www.nytimes.com / 2012 / 02 / 19 / magazine / shopping -
habits.html?pagewanted=all, Feb 2012. (On pages 6, 18, 88, and 117.)

[70] Peter Eckersley. How Unique Is Your Browser? Proc. of the Privacy Enhancing
Technologies Symposium (PETS), pages 1–18, 2010. (On pages 27, 30, 33, 42,
43, and 46.)

[71] Electronic Frontier Foundation (EFF). Do Not Track (DNT). https://
www.eff.org/issues/do-not-track. (On page 20.)

[72] Steven Englehardt and Arvind Narayanan. Online Tracking: A 1-million-site
Measurement and Analysis. Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS’16, pages 1388–1401, 2016.
(On page 28.)

[73] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security, pages 1388–1401. ACM, 2016.
(On page 97.)

[74] Murat A Erdogdu, Nadia Fawaz, and Andrea Montanari. Privacy-utility trade-
off for time-series with application to smart-meter data. In AAAI Workshop:
Computational Sustainability, 2015. (On page 38.)

[75] European Commission (EU). COOKIE SWEEP COMBINED ANALYSIS,
REPORT. https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_-
id=640605, Nov 2016. (On page 12.)

170

https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=all
https://www.eff.org/issues/do-not-track
https://www.eff.org/issues/do-not-track


Bibliography

[76] European Union Agency For Network and Information Security (ENISA). On-
line privacy tools for the general public, Dec 2015. (On page 19.)

[77] European Union Agency For Network and Information Security (ENISA). On-
line tracking and user protection mechanisms, Dec 2017. (On pages 2, 20,
and 21.)

[78] IBM XForce Exchange. Statcounter session hijack. https : / /
exchange.xforce.ibmcloud.com / vulnerabilities / 20506, 2005. (On
page 100.)

[79] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard Mortier.
Anatomy of the third-party web tracking ecosystem. Traffic Measurements
Analysis Workshop (TMA), 2014. (On pages 6, 29, 87, and 92.)

[80] David Fifield and Serge Egelman. Fingerprinting web users through font met-
rics. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8975:107–124,
2015. (On page 28.)

[81] Forcepoint. Master database url categories | forcepoint. https :
/ / www.forcepoint.com / product / feature / master - database - url -
categories, 2019. (On pages 92 and 94.)

[82] Stat Counter Forum. http://www.statcounter.com/ counter/counter.js has
malware inside it ! https://forum.statcounter.com/threads/http-www-
statcounter-com-counter-counter-js-has-malware-inside-it.43792/,
2016. (On page 100.)

[83] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral biomet-
ric for continuous authentication. IEEE Transactions on Information Foren-
sics and Security, 8(1):136–148, 2013. (On page 42.)

[84] Matthew Fredrikson and Benjamin Livshits. Repriv: Re-imagining content
personalization and in-browser privacy. In 32nd IEEE Symposium on Security
and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA, pages
131–146, 2011. (On pages 19 and 30.)

[85] Arik Friedman, Shlomo Berkovsky, and Mohamed Ali Kâafar. A differential
privacy framework for matrix factorization recommender systems. User Model.
User-Adapt. Interact., 26(5):425–458, 2016. (On page 26.)

[86] Arik Friedman, Bart P Knijnenburg, Kris Vanhecke, Luc Martens, and Shlomo
Berkovsky. Privacy aspects of recommender systems. In Recommender Systems
Handbook, pages 649–688. Springer, 2015. (On page 25.)

171

https://exchange.xforce.ibmcloud.com/vulnerabilities/20506
https://exchange.xforce.ibmcloud.com/vulnerabilities/20506
https://www.forcepoint.com/product/feature/master-database-url-categories
https://www.forcepoint.com/product/feature/master-database-url-categories
https://www.forcepoint.com/product/feature/master-database-url-categories
https://forum.statcounter.com/threads/http-www-statcounter-com-counter-counter-js-has-malware-inside-it.43792/
https://forum.statcounter.com/threads/http-www-statcounter-com-counter-counter-js-has-malware-inside-it.43792/


Bibliography

[87] Simon Gerber, Michael Fry, Judy Kay, Bob Kummerfeld, Glen Pink, and
Rainer Wasinger. Personisj: mobile, client-side user modelling. In Interna-
tional Conference on User Modeling, Adaptation, and Personalization, pages
111–122. Springer, 2010. (On page 25.)

[88] Arthur Gervais, Reza Shokri, Adish Singla, Srdjan Capkun, and Vincent
Lenders. Quantifying web-search privacy. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14,
pages 966–977, New York, NY, USA, 2014. ACM. (On pages 6 and 35.)

[89] Ian Goldberg. Improving the robustness of private information retrieval. In
IEEE Symposium on Security and Privacy, pages 131–148. IEEE, 2007. (On
page 33.)

[90] Richard Gomer, Eduarda Mendes Rodrigues, Natasa Milic-Fraying, and M.C.
Schrafel. Network analysis of third party tracking: User exposure to tracking
cookies through search. In WI-IAT, 2013. (On page 29.)

[91] Google. Headless chromium. https://chromium.googlesource.com/
chromium/src/+/lkgr/headless/README.md, 2018. (On page 89.)

[92] Jeyanthi Hall, Michel Barbeau, and Evangelos Kranakis. Detection of transient
in radio frequency fingerprinting using signal phase. Wireless and Optical
Communications, pages 13–18, 2003. (On page 31.)

[93] Coşkun Hamzaçebi. Improving artificial neural networks’ performance in sea-
sonal time series forecasting. Information Sciences, 178(23):4550–4559, 2008.
(On page 191.)

[94] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques, 3rd edition. Morgan Kaufmann, 2011. (On pages 79 and 156.)

[95] Africa Hands. Duckduckgo. Technical Services Quarterly, 29(4):345–347, 2012.
(On page 33.)

[96] Saul Hansell. Aol removes search data on vast group of web
users. http : / / query.nytimes.com / gst / fullpage.html?res =

9504e5d81e3ff93ba3575bc0a9609c8b63, 2006. (On pages 3, 6, 18, 71,
and 88.)

[97] Laura Hautala. These android apps have been tracking you, even when you
say stop. https://www.cnet.com/news/these-android-apps-have-been-
tracking-you-even-when-you-say-stop/, Feb 2019. (On page 2.)

[98] Michael Herrmann, Alfredo Rial, Claudia Diaz, and Bart Preneel. Practical
privacy-preserving location-sharing based services with aggregate statistics. In
Proceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks, pages 87–98. ACM, 2014. (On page 38.)

172

https://chromium.googlesource.com/ chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/ chromium/src/+/lkgr/headless/README.md
http://query.nytimes.com/gst/fullpage.html?res=9504e5d81e3ff93ba3575bc 0a9609c8b63
http://query.nytimes.com/gst/fullpage.html?res=9504e5d81e3ff93ba3575bc 0a9609c8b63
https://www.cnet.com/news/these-android-apps-have-been-tracking-you-even-when-you-say-stop/
https://www.cnet.com/news/these-android-apps-have-been-tracking-you-even-when-you-say-stop/


Bibliography

[99] Michael Hitchens, Judy Kay, Bob Kummerfeld, and Ajay Brar. Secure identity
management for pseudo-anonymous service access. In International Confer-
ence on Security in Pervasive Computing, pages 48–55. Springer, 2005. (On
page 25.)

[100] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An in-
depth study of more than ten years of java exploitation. In Proceedings of the
2016 ACM Conference on Computer and Communications Security, CCS ’16,
2016. (On page 29.)

[101] Bunke Horst and Caelli Terry Michael. Hidden Markov models: Applications
In Computer Vision, volume 45. World Scientific, 2001. (On page 74.)

[102] Fraser Howard and Onur Komili. Poisoned search results: How hackers have
automated search engine poisoning attacks to distribute malware. Sophos
Technical Papers, pages 1–15, 2010. (On page 109.)

[103] Daniel C Howe and Helen Nissenbaum. Trackmenot: Resisting surveillance in
web search. Lessons from the Identity Trail: Anonymity, Privacy, and Identity
in a Networked Society, 23:417–436, 2009. (On pages 33 and 148.)

[104] Chong Huang, Peter Kairouz, Xiao Chen, Lalitha Sankar, and Ram Rajagopal.
Context-aware generative adversarial privacy. Entropy, 19(12):656, 2017. (On
page 37.)

[105] Rob J Hyndman, Yeasmin Khandakar, et al. Automatic time series for fore-
casting: the forecast package for R. Number 6/07. Monash University, Depart-
ment of Econometrics and Business Statistics, 2007. (On page 127.)

[106] Damilola Ibosiola, Ignacio Castro, Gianluca Stringhini, Steve Uhlig, and
Gareth Tyson. Who watches the watchmen: Exploring complaints on the
web. In Web Conference, 2019. (On page 91.)

[107] Damilola Ibosiola, Benjamin Steer, Alvaro Garcia-Recuero, Gianluca Stringh-
ini, Steve Uhlig, and Gareth Tyson. Movie pirates of the caribbean: Exploring
illegal streaming cyberlockers. International AAAI Conference on Web and
Social Media (ICWSM), 2018. (On page 102.)

[108] Muhammad Ikram, Hassan Asghar, Mohamed Ali Kaafar, and Anirban Ma-
hanti. On the intrusiveness of javascript on the web. In CoNEXT Student
Workshop, 2014. (On page 29.)

[109] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban
Mahanti, and Balachandar Krishnamurthy. Towards seamless tracking-free
web: Improved detection of trackers via one-class learning. Proceedings on
Privacy Enhancing Technologies, 2017(1):79–99, 2017. (On pages 13 and 29.)

[110] Muhammad Ikram and Mohamed Ali Kâafar. A first look at mobile ad-
blocking apps. In 16th IEEE International Symposium on Network Computing

173



Bibliography

and Applications, NCA 2017, Cambridge, MA, USA, October 30 - November
1, 2017, pages 343–350, 2017. (On page 78.)

[111] Muhammad Ikram and Mohamed Ali Kaafar. A first look at mobile ad-
blocking apps. In Network Computing and Applications (NCA), 2017 IEEE
16th International Symposium on, pages 1–8. IEEE, 2017. (On page 91.)

[112] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, and
Noha Loizon. Measuring and analysing the chain of implicit trust: A study
of third-party resources loading. ACM Transactions on Privacy and Security
(TOPS), 2020. (Not cited.)

[113] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar,
Noha Loizon, and Roya Ensafi. The chain of implicit trust: An analysis of
the web third-party resources loading. In The World Wide Web Conference,
pages 2851–2857. ACM, 2019. (Not cited.)

[114] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mo-
hamed Ali Kaafar, and Vern Paxson. An analysis of the privacy and security
risks of android vpn permission-enabled apps. In IMC, 2016. (On page 91.)

[115] VirusTotal Inc. Virustotal public api. https://www.virustotal.com/en/
documentation/public-api/, 2019. (On page 88.)

[116] InformAction. Noscript - javascript/java/flash blocker for a safer firefox ex-
perience! - what is it? https://noscript.net, 2019. Accessed: 2019-08-09.
(On page 114.)

[117] Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christopher
Kruegel, Marco Cova, and Giovanni Vigna. Evilseed: A guided approach
to finding malicious web pages. In 2012 IEEE symposium on Security and
Privacy, pages 428–442. IEEE, 2012. (On page 109.)

[118] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An empirical
study of privacy-violating information flows in javascript web applications. In
Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS ’10, pages 270–283, New York, NY, USA, 2010. ACM. (On
page 118.)

[119] Andrea Day Jennifer Schlesinger. How gps can track you, even when you turn
it off. https://www.cnbc.com/2018/07/13/gps-can-spy-on-you-even-
when-you-turn-it-off.html, Jul 2018. (On page 117.)

[120] Sequa Jerome. Large angler malvertising campaign hits top publishers. https:
//blog.malwarebytes.com/threat-analysis/20/16/03/large-angler-
malvertising-campaign-hits-top-publishers/, 2019. Accessed: 2019-
01-18. (On pages 87 and 95.)

174

https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://noscript.net
https://www.cnbc.com/2018/07/13/gps-can-spy-on-you-even-when-you-turn-it-off.html
https://www.cnbc.com/2018/07/13/gps-can-spy-on-you-even-when-you-turn-it-off.html
https://blog.malwarebytes.com/threat-analysis/20/16/03/large-angler-malvertising-campaign-hits-top-publishers/
https://blog.malwarebytes.com/threat-analysis/20/16/03/large-angler-malvertising-campaign-hits-top-publishers/
https://blog.malwarebytes.com/threat-analysis/20/16/03/large-angler-malvertising-campaign-hits-top-publishers/


Bibliography

[121] Jinyuan Jia and Neil Zhenqiang Gong. Attriguard: A practical defense
against attribute inference attacks via adversarial machine learning. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 513–529,
2018. (On page 38.)

[122] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D Joseph, and J Doug Tygar. Better
malware ground truth: Techniques for weighting anti-virus vendor labels. In
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security,
pages 45–56. ACM, 2015. (On page 91.)

[123] Judy Kay. Scrutable adaptation: Because we can and must. In International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, pages
11–19. Springer, 2006. (On page 26.)

[124] Judy Kay, Bob Kummerfeld, and Piers Lauder. Managing private user models
and shared personas. In UM03 Workshop on User Modeling for Ubiquitous
Computing, pages 1–11. Citeseer, 2003. (On page 26.)

[125] Meghan Keane. Instant personalization brings more privacy issues to facebook.
https : / / econsultancy.com / facebook - s - instant - personalization -
brings-yet-another-privacy-issue-to-the-site/, Apr 2010. (On
page 24.)

[126] Simon Kemp. Digital 2019: Global internet user accelerates. https:
//wearesocial.com/blog/2019/01/digital-2019-global-internet-use-
accelerates, Jan 2019. (On pages 1 and 2.)

[127] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 3–24. Springer, 2015. (On page 91.)

[128] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In
Proceedings of the 2011 ACM SIGMOD International Conference on Manage-
ment of data, pages 193–204. ACM, 2011. (On page 193.)

[129] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote physical de-
vice fingerprinting. IEEE Transactions on Dependable and Secure Computing,
2(2):93–108, 2005. (On pages 31 and 43.)

[130] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the web: a
longitudinal perspective. In Proceedings of the 18th international conference
on World wide web, pages 541–550. ACM, 2009. (On page 27.)

[131] John Krumm. Inference attacks on location tracks. In Anthony LaMarca,
Marc Langheinrich, and Khai N. Truong, editors, Pervasive Computing, pages
127–143, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. (On page 118.)

175

https://econsultancy.com/facebook-s-instant-personalization-brings-yet-another-privacy-issue-to-the-site/
https://econsultancy.com/facebook-s-instant-personalization-brings-yet-another-privacy-issue-to-the-site/
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates


Bibliography

[132] Deepak Kumar, Zane Ma, Ariana Mirian, Joshua Mason, J Alex Halderman,
and Michael Bailey. Security Challenges in an Increasingly Tangled Web. In
Proceedings of the 2017 World Wide Web Conference on World Wide Web,
2017. (On pages 30 and 89.)

[133] John Kurkowski. Accurately separate the TLD from the registered domain
and subdomains of a url, using the public suffix list. https://github.com/
john-kurkowski/tldextract, 2019. (On page 90.)

[134] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling.
Fingerprinting Mobile Devices Using Personalized Configurations. Proceedings
on Privacy Enhancing Technologies, 2016(1):4–19, 2016. (On pages 30, 31,
and 43.)

[135] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In Foundations of
Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 364–
373. IEEE, 1997. (On page 33.)

[136] Malwarebytes Labs. Malvertising on equifax, transunion tied to third party
script (updated). https://blog.malwarebytes.com/threat-analysis/
2017/10/equifax- transunion- websites- push- fake- flash- player/,
2017. (On page 103.)

[137] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the
Beast: Diverting ModernWeb Browsers to Build Unique Browser Fingerprints.
Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016, pages
878–894, 2016. (On pages 28 and 42.)

[138] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson,
Christo Wilson, and Engin Kirda. Thou shalt not depend on me: Analysing
the use of outdated javascript libraries on the web. In NDSS, 2017. (On
pages 6, 29, 87, 92, 95, and 98.)

[139] Byoungyoung Lee, Jinoh Oh, Hwanjo Yu, and Jong Kim. Protecting location
privacy using location semantics. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1289–
1297. ACM, 2011. (On page 38.)

[140] Hannah Levenson. Touch heatmap analytics: The future of mobile app usabil-
ity testing. https://blog.appsee.com/touch-heatmap-analytics-future-
mobile-app-usability-testing/, December 2017. (On page 117.)

[141] Chen Li, Houtan Shirani-Mehr, and Xiaochun Yang. Protecting individual
information against inference attacks in data publishing. In Proceedings of
the 12th International Conference on Database Systems for Advanced Applica-
tions, DASFAA’07, pages 422–433, Berlin, Heidelberg, 2007. Springer-Verlag.
(On pages 20 and 35.)

176

https://github.com/john-kurkowski/tldextract
https://github.com/john-kurkowski/tldextract
https://blog.malwarebytes.com/threat-analysis/2017/10/equifax-transunion-websites-push-fake-flash-player/
https://blog.malwarebytes.com/threat-analysis/2017/10/equifax-transunion-websites-push-fake-flash-player/
https://blog.appsee.com/touch-heatmap-analytics-future-mobile-app-usability-testing/
https://blog.appsee.com/touch-heatmap-analytics-future-mobile-app-usability-testing/


Bibliography

[142] Yuhua Li, David McLean, Zuhair A. Bandar, James D. O’Shea, and Keeley
Crockett. Sentence similarity based on semantic nets and corpus statistics.
IEEE Trans. on Knowl. and Data Eng., 18(8):1138–1150, August 2006. (On
pages 79 and 156.)

[143] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley
Crockett. Sentence similarity based on semantic nets and corpus statistics.
IEEE transactions on knowledge and data engineering, 18(8):1138–1150, 2006.
(On page 150.)

[144] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the 2012 ACM conference on Computer and communications
security, pages 674–686. ACM, 2012. (On page 95.)

[145] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the 2012 ACM conference on Computer and communications
security, pages 674–686. ACM, 2012. (On pages 102 and 103.)

[146] Timothy Libert. Exposing the Hidden Web: An Analysis of Third-Party
HTTP Requests on 1 Million Websites. International Journal of Communica-
tion, 9(October):3544–3561, 2015. (On page 28.)

[147] Kun Liu and Evimaria Terzi. A framework for computing the privacy scores
of users in online social networks. ACM Trans. Knowl. Discov. Data, 5(1):6:1–
6:30, December 2010. (On page 36.)

[148] Jan Lukáš, Jessica Fridrich, and Miroslav Goljan. Digital camera identification
from sensor pattern noise. IEEE Transactions on Information Forensics and
Security, 1(2):205–214, 2006. (On page 30.)

[149] Upal Mahbub, Sayantan Sarkar, Vishal M Patel, and Rama Chellappa. Active
user authentication for smartphones: A challenge data set and benchmark
results. In 2016 IEEE 8th International Conference on Biometrics Theory,
Applications and Systems (BTAS), pages 1–8. IEEE, 2016. (On pages 131
and 132.)

[150] Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and
Hamed Haddadi. Mobile sensor data anonymization. arXiv preprint
arXiv:1810.11546, 2018. (On page 37.)

[151] Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and Hamed
Haddadi. Protecting sensory data against sensitive inferences. In Proceedings
of the 1st Workshop on Privacy by Design in Distributed Systems, page 2.
ACM, 2018. (On page 37.)

[152] Mohammad Malekzadeh, Richard G Clegg, and Hamed Haddadi. Replace-
ment autoencoder: A privacy-preserving algorithm for sensory data analysis.

177



Bibliography

In Internet-of-Things Design and Implementation (IoTDI), 2018 IEEE/ACM
Third International Conference on, pages 165–176. IEEE, 2018. (On page 37.)

[153] Rahat Masood, Shlomo Berkovsky, and Mohamed Ali Kaafar. Modern Socio-
Technical Perspectives on Privacy, chapter Tracking and Personalization.
Springer, 2019. (Not cited.)

[154] Rahat Masood, Dinusha Vatsalan, Hassan Jameel Asghar, and Mohamed Ali
Kaafar. Privacy preserving sensory data. Proceedings on Privacy Enhancing
Technologies, 2020. (Not cited.)

[155] Rahat Masood, Dinusha Vatsalan, Muhammad Ikram, and Mohamed Ali Kaa-
far. Incognito: A method for obfuscating web data. In Proceedings of the 2018
World Wide Web Conference, pages 267–276. International World Wide Web
Conferences Steering Committee, 2018. (On pages 18, 24, 25, and 121.)

[156] Rahat Masood, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and
Moahmed Ali Kaafar. Poster: Touchtrack: How unique are your touch ges-
tures? In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2555–2557. ACM, 2017. (Not cited.)

[157] Rahat Masood, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, and Mo-
hamed Ali Kaafar. Touch and you’re trapp (ck) ed: Quantifying the uniqueness
of touch gestures for tracking. Proceedings on Privacy Enhancing Technologies,
2018(2):122–142, 2018. (On pages 15, 30, 117, 118, and 121.)

[158] Jonathan R Mayer and John C Mitchell. Third-party web tracking: Policy
and technology. In 2012 IEEE Symposium on Security and Privacy, pages
413–427. IEEE, 2012. (On page 16.)

[159] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. Tapprints: your finger taps have fingerprints. ACM
Mobisys, page 323, 2012. (On pages 2, 12, and 117.)

[160] Nitesh Mor, Oriana Riva, Suman Nath, and John Kubiatowicz. Bloom cook-
ies: Web search personalization without user tracking. In NDSS, 2015. (On
page 34.)

[161] Keaton Mowery and Hovav Shacham. Pixel Perfect : Fingerprinting Canvas
in HTML5. Web 2.0 Security & Privacy 20 (W2SP), pages 1–12, 2012. (On
page 28.)

[162] Mozilla. Cross-origin resource sharing (cors) - http. https : / /
developer.mozilla.org/en-US/docs/Web/HTTP/CORS, 2019. (On page 114.)

[163] Mummoorthy Murugesan and Chris Clifton. Plausibly deniable search. In
Proceedings of the Workshop on Secure Knowledge Management (SKM 2008),
2008. (On page 34.)

178

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS


Bibliography

[164] Mummoorthy Murugesan and Chris Clifton. Providing Privacy through Plau-
sibly Deniable Search. Proceedings of the 2009 SIAM International Conference
on Data Mining, pages 768–779, 2009. (On pages 6, 34, and 36.)

[165] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In Proceedings of the 2008 IEEE Symposium on Security and
Privacy, SP ’08, pages 111–125, Washington, DC, USA, 2008. IEEE Computer
Society. (On pages 3, 6, 18, and 88.)

[166] Nam Tuan Nguyen, Guanbo Zheng, Zhu Han, and Rong Zheng. Device Finger-
printing to Enhance Wireless Security using Nonparametric Bayesian Method.
Infocom, pages 1404–1412, 2011. (On page 31.)

[167] NHMRC. National statement on ethical conduct in human research (2007)
- updated 2018. https://www.nhmrc.gov.au/about-us/publications/
national-statement-ethical-conduct-human-research-2007-updated-
2018, 2018. (On page 47.)

[168] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
You are what you include: Large-scale evaluation of remote javascript inclu-
sions. In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS’12, 2012. (On pages 6, 29, and 87.)

[169] Xia Ning, Christian Desrosiers, and George Karypis. A comprehensive survey
of neighborhood-based recommendation methods. In Recommender Systems
Handbook, pages 37–76. 2015. (On page 22.)

[170] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. The
leaking battery: A privacy analysis of the HTML5 battery status API. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9481:254–263, 2016. (On
pages 28 and 43.)

[171] Łukasz Olejnik, Claude Castelluccia, and Artur Janc. Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing History Patterns. 5th
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2012),
pages 1–16, 2012. (On pages 42 and 43.)

[172] Adam Ostrow. Facebook fired: 8% of us companies have sacked social media
miscreants. https://mashable.com/2009/08/10/social-media-misuse/,
Aug 2009. (On page 24.)

[173] Georgios Paliouras. Discovery of web user communities and their role in per-
sonalization. User Modeling and User-Adapted Interaction, 22(1-2):151–175,
2012. (On page 24.)

[174] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Seshan Srinivasan,
and David Wetherall. 802. 11 User Fingerprinting. Proceedings of the 13th

179

https://www.nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
https://www.nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
https://www.nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
https://mashable.com/2009/08/10/social-media-misuse/


Bibliography

Annual ACM International Conference on Mobile Computing and Networking,
9:99–110, 2007. (On page 31.)

[175] Sai Teja Peddinti and Nitesh Saxena. On the privacy of web search based
on query obfuscation: A case study of trackmenot. In Proceedings of the 10th
International Conference on Privacy Enhancing Technologies, PETS’10, pages
19–37, Berlin, Heidelberg, 2010. Springer-Verlag. (On pages 6 and 35.)

[176] Giancarlo Pellegrino, Christian Rossow, Fabrice J. Ryba, Thomas C. Schmidt,
and Matthias Wählisch. Cashing out the great cannon? on browser-based ddos
attacks and economics. In USENIX, 2015. (On page 87.)

[177] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on
mutual information: criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence,
(8):1226–1238, 2005. (On pages 44 and 56.)

[178] Daniele Perito, Claude Castelluccia, Mohamed Ali Kaafar, and Pere Manils.
How unique and traceable are usernames? In International Symposium on
Privacy Enhancing Technologies Symposium, pages 1–17. Springer, 2011. (On
pages 28 and 43.)

[179] Albin Petit, Thomas Cerqueus, Sonia Ben Mokhtar, Lionel Brunie, and Harald
Kosch. PEAS: Private, efficient and accurate web search. Proceedings - 14th
IEEE International Conference on Trust, Security and Privacy in Computing
and Communications, TrustCom 2015, 1:571–580, 2015. (On page 34.)

[180] Kurt Plarre, Andrew Raij, Syed Monowar Hossain, Amin Ahsan Ali, Motohiro
Nakajima, Mustafa Al’Absi, Emre Ertin, Thomas Kamarck, Santosh Kumar,
Marcia Scott, et al. Continuous inference of psychological stress from sensory
measurements collected in the natural environment. In Proceedings of the 10th
ACM/IEEE International Conference on Information Processing in Sensor
Networks, pages 97–108. IEEE, 2011. (On page 117.)

[181] Bogdan Popa. 85 infected android apps stealing social network passwords
found on play store. https://news.softpedia.com/news/85-infected-
android-apps-stealing-social-network-passwords-found-on-play-
store-518984.shtml, 2017. (On page 100.)

[182] Vincent Primault, Sonia Ben Mokhtar, Cédric Lauradoux, and Lionel Brunie.
Time distortion anonymization for the publication of mobility data with high
utility. In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 539–546.
IEEE, 2015. (On page 38.)

[183] Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan. Olympus: Sensor
privacy through utility aware obfuscation. Proceedings on Privacy Enhancing
Technologies, 2019(1):5–25, 2019. (On pages 20 and 37.)

180

https://news.softpedia.com/news/85-infected-android-apps-stealing-social-network-passwords-found-on-play- store-518984.shtml
https://news.softpedia.com/news/85-infected-android-apps-stealing-social-network-passwords-found-on-play- store-518984.shtml
https://news.softpedia.com/news/85-infected-android-apps-stealing-social-network-passwords-found-on-play- store-518984.shtml


Bibliography

[184] David Rebollo-Monedero and Jordi Forné. Optimized query forgery for private
information retrieval. IEEE Transactions on Information Theory, 56(9):4631–
4642, 2010. (On page 34.)

[185] Michael K Reiter and Aviel D Rubin. Anonymous web transactions with
crowds. Communications of the ACM, 42(2):32–48, 1999. (On page 33.)

[186] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and
defending against third-party tracking on the web. Proc. of the USENIX Con-
ference on Networked Systems Design and Implementation (NSDI), (Nsdi):12,
2012. (On pages 2, 12, and 28.)

[187] Ian Rose and Matt Welsh. Mapping the urban wireless landscape with argos.
In Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’10, pages 323–336, New York, NY, USA, 2010. ACM. (On
page 12.)

[188] RM Sakia. The box-cox transformation technique: a review. Journal of the
Royal Statistical Society: Series D (The Statistician), 41(2):169–178, 1992.
(On pages 127 and 192.)

[189] Salman Salamatian, Amy Zhang, Flávio du Pin Calmon, Sandilya Bhamidi-
pati, Nadia Fawaz, Branislav Kveton, Pedro Oliveira, and Nina Taft. How
to hide the elephant- or the donkey- in the room: Practical privacy against
statistical inference for large data. In IEEE Global Conference on Signal and
Information Processing, GlobalSIP 2013, Austin, TX, USA, December 3-5,
2013, pages 269–272, 2013. (On pages 20, 35, and 124.)

[190] Salman Salamatian, Amy Zhang, Flávio du Pin Calmon, Sandilya Bhamidi-
pati, Nadia Fawaz, Branislav Kveton, Pedro Oliveira, and Nina Taft. Managing
your private and public data: Bringing down inference attacks against your
privacy. IEEE Journal of Selected Topics in Signal Processing, 9:1240–1255,
2015. (On page 124.)

[191] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative
filtering recommender systems. In The adaptive web, pages 291–324. Springer,
2007. (On page 26.)

[192] Fabian Schneider, Sachin Agarwal, Tansu Alpcan, and Anja Feldmann. The
new web: characterizing ajax traffic. In International Conference on Passive
and Active Network Measurement, pages 31–40. Springer, 2008. (On page 106.)

[193] David W. Scott. On optimal and data-based histograms. Biometrika, 66:605–
610, 1979. (On page 52.)

[194] SecurityWeek. Malicious redirects on equifax, transunion sites caused by third-
party scripts. https://www.securityweek.com/malicious-redirects-
equifax-transunion-sites-caused-third-party-script, 2017. (On
page 103.)

181

 https://www.securityweek.com/malicious-redirects-equifax-transunion-sites-caused-third-party-script
 https://www.securityweek.com/malicious-redirects-equifax-transunion-sites-caused-third-party-script


Bibliography

[195] Suranga Seneviratne, Aruna Seneviratne, Prasant Mohapatra, and Anirban
Mahanti. Predicting user traits from a snapshot of apps installed on a smart-
phone. ACM SIGMOBILE Mobile Computing and Communications Review,
18(2):1–8, 2014. (On page 31.)

[196] Bracha Shapira, Yuval Elovici, Adlay Meshiach, and Tsvi Kuflik. PRAW - A
privacy model for the web. Journal of the American Society for Information
Science and Technology (JASIST), 56(2):159–172, 2005. (On pages 20, 33,
and 148.)

[197] Reza Shokri. Privacy games: Optimal user-centric data obfuscation. Proceed-
ings on Privacy Enhancing Technologies, 2015(2):299–315, 2015. (On page 37.)

[198] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t interrupt me while
i type: Inferring text entered through gesture typing on android keyboards.
Proceedings on Privacy Enhancing Technologies, 2016(3):136–154, 2016. (On
page 31.)

[199] Ryan Singel. Facebook beacon tracking program draws privacy lawsuit.
https://www.wired.com/2008/08/facebook-beacon/, Aug 2008. (On
page 24.)

[200] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Mobile Device Finger-
printing Considered Harmful for Risk-based Authentication. 2015 European
Workshop on System Security (EuroSec 2015), (EuroSec):6:1–6:6, 2015. (On
page 30.)

[201] Jessica Su, Ansh Shukla, Sharad Goel, and Arvind Narayanan. De-
anonymizing web browsing data with social networks. In Proceedings of the
26th International Conference on World Wide Web, (WWW) 2017, Perth,
Australia, April 3-7, 2017, pages 1261–1269, 2017. (On page 71.)

[202] Jingxiu Su, Zhenyu Li, Stephane Grumbach, Muhammad Ikram, Kave Sala-
matian, and Gaogang Xie. Web tracking cartography with dns records. In
IEEE 37th International Performance Computing and Communications Con-
ference (IPCC), 2018. (On page 29.)

[203] Jingxiu Su, Zhenyu Li, Stephane Grumbach, Muhammad Ikram, Kave Sala-
matian, and Gaogang Xie. A cartography of web tracking using dns records.
Computer Communications, 134:83 – 95, 2019. (On page 29.)

[204] Mozilla Public Suffix. View the public suffix list. https://publicsuffix.org/
list/, 2019. (On page 90.)

[205] Latanya Sweeney. Weaving technology and policy together to maintain confi-
dentiality. The Journal of Law, Medicine & Ethics, 25(2-3):98–110, 1997. (On
pages 3, 6, 18, and 88.)

182

https://www.wired.com/2008/08/facebook-beacon/
https://publicsuffix.org/list/
https://publicsuffix.org/list/


Bibliography

[206] Latanya Sweeney. Simple demographics often identify people uniquely.
Carnegie Mellon University, Data Privacy Working Paper 3. Pittsburgh 2000,
pages 1–34, 2000. (On pages 27 and 124.)

[207] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.
(On page 79.)

[208] Eran Toch, Yang Wang, and Lorrie Faith Cranor. Personalization and privacy:
a survey of privacy risks and remedies in personalization-based systems. User
Modeling and User-Adapted Interaction, 22(1-2):203–220, 2012. (On page 24.)

[209] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and
Solon Barocas. Adnostic: Privacy preserving targeted advertising. In Pro-
ceedings of the Network and Distributed System Security Symposium (NDSS),
San Diego, California, USA, 28th February - 3rd March 2010. The Internet
Society, 2010. (On pages 19 and 30.)

[210] Imdad Ullah, Roksana Boreli, Mohamed Ali Kaafar, and Salil S Kanhere.
Characterising user targeting for in-app mobile ads. In 2014 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages 547–
552. IEEE, 2014. (On page 25.)

[211] David Vallet, Arik Friedman, and Shlomo Berkovsky. Matrix factorization
without user data retention. In Advances in Knowledge Discovery and Data
Mining - 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May
13-16, 2014. Proceedings, Part I, pages 569–580, 2014. (On page 25.)

[212] Ashlee Vance. Times web ads show security breach. https : / /
www.nytimes.com/2009/09/15/technology/internet/15adco.html, 2009.
(On pages 95 and 102.)

[213] Quick Remove Virus. How do i remove hwcdn.net from my pc. https://
quickremovevirus.com/how-do-i-remove-hwcdn-net-from-my-pc/, 2017.
(On page 101.)

[214] volatilityfoundation. volatilityfoundation/volatility: An advanced mem-
ory forensics framework. https://github.com/volatilityfoundation/
volatility, 2019. Accessed: 2019-08-09. (On page 105.)

[215] Hao Wang and Zhengquan Xu. Cts-dp: Publishing correlated time-series data
via differential privacy. Knowledge-Based Systems, 122:167–179, 2017. (On
pages 7 and 193.)

[216] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and
David Wetherall. Demystify page load performance with wprof. In Proc.
of the USENIX conference on Networked Systems Design and Implementation
(NSDI), 2013. (On page 92.)

183

https://www.nytimes.com/2009/09/15/technology/internet/15adco.html
https://www.nytimes.com/2009/09/15/technology/internet/15adco.html
https://quickremovevirus.com/how-do-i-remove-hwcdn-net-from-my-pc/
https://quickremovevirus.com/how-do-i-remove-hwcdn-net-from-my-pc/
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility


Bibliography

[217] Websense. Real-time threat analysis with csi: Ace insight. https://
csi.websense.com/, 2018. (On pages 92 and 94.)

[218] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh Jayaraman, and Collin
Jackson. I still know what you visited last summer: Leaking browsing history
via user interaction and side channel attacks. In 2011 IEEE Symposium on
Security and Privacy, pages 147–161. IEEE, 2011. (On page 28.)

[219] Udi Weinsberg, Smriti Bhagat, Stratis Ioannidis, and Nina Taft. Blurme:
Inferring and obfuscating user gender based on ratings. In Proceedings of the
Sixth ACM Conference on Recommender Systems, RecSys ’12, pages 195–202,
New York, NY, USA, 2012. ACM. (On page 35.)

[220] Hui Xu, Yangfan Zhou, and Michael R Lyu. Towards Continuous and Pas-
sive Authentication via Touch Biometrics: An Experimental Study on Smart-
phones. SOUPS ’14: Proceedings of the Tenth Symposium On Usable Privacy
and Security, pages 187–198, 2014. (On page 67.)

[221] Yabo Xu, Ke Wang, Benyu Zhang, Zheng Chen, and Ke Wang. Privacy-
enhancing personalized web search. Proceedings of the 16th international con-
ference on World Wide Web - WWW ’07, page 591, 2007. (On page 35.)

[222] Shaozhi Ye, Felix Wu, Raju Pandey, and Hao Chen. Noise injection for search
privacy protection. Proceedings - 12th IEEE International Conference on
Computational Science and Engineering, CSE 2009, 3:1–8, 2009. (On page 34.)

[223] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi.
Host fingerprinting and tracking on the web: Privacy and security implica-
tions. In NDSS, volume 62, page 66. Citeseer, 2012. (On pages 28 and 43.)

[224] Michal Zalewski. Browser security handbook, part 2. Google, 2008. (On
page 28.)

[225] Andong Zhan, Marcus Chang, Yin Chen, and Andreas Terzis. Accurate caloric
expenditure of bicyclists using cellphones. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, pages 71–84. ACM, 2012.
(On page 117.)

[226] G Peter Zhang. Time series forecasting using a hybrid arima and neural
network model. Neurocomputing, 50:159–175, 2003. (On pages 191 and 192.)

[227] Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang, Shijian Li, Zhaohui Wu,
Gang Pan, and Anind K. Dey. Discovering different kinds of smartphone users
through their application usage behaviors. Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing - UbiComp
’16, pages 498–509, 2016. (On page 31.)

[228] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang. Acoustic finger-
printing revisited: Generate stable device id stealthily with inaudible sound.

184

https://csi.websense.com/
https://csi.websense.com/


Bibliography

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 429–440. ACM, 2014. (On page 30.)

185



Appendix A

This supplementary section gives more insights on the information presented in
chapter 4.

A.1 TouchTrack App Overview

The TouchTrack app consists of three well-known games and one purpose-built game.
A brief description of games are given below:

1. 2048: We used this game to collect swipes. It is a free and open-source game
which is played on a 4 by 4 grid having numbered tiles that need to be swiped
in any of the four directions. We selected this game since it is widely known
and it captures swipes mimicking their usage in a natural way, i.e., while
reading emails or swiping through an image gallery.

2. Lexica: We used this game to collect taps. It is another open-source free word
game that gives the user three minutes to find as many words as possible on
a 5 by 5 grid of random letters. The original behaviour of the game requires
user to drag letters to make a single word. For our work, we changed the drag
operation to a tap, and ask user to tap on the letter to select it, or tap on
again the same letter for de-selection. The grid of 5*5 allows user to tap on
almost every point of screen, thus simulating natural taps.

3. Logo Maniac: We used this game to collect keystrokes. The game tests the
user’s ability to recall popular brands by showing logos and asking them to
type the brand name. We modify this game by only having the most popular
brands in our database, and providing hints to user if they cannot recall it. We
modified the keyboard layout of the game to make it similar to the keyboard
layout used for entering texts in Android phones, to capture the user’s natural
typing behaviour on phones.

4. Write Something: We used this game to collect handwriting samples. This
game was purpose-built by us. It asks users to write a word shown at top left
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corner of the screen with a finger. User is provided with a large area on the
screen to write in any direction or from any point.

The screen shots of the TouchTrack App are displayed in figure A.1, while figure
A.2 shows the shots of result screen. We show uniqueness results for a feature, set
of gesture samples, and multiple gestures to our app users.

(a) 2048 (b) Logo Maniac (c) Write Something (d) Lexica
Figure A.1: TouchTrack Game Screens

(a) Results Overview (b) Gesture Results (c) Graphs (d) Summary
Figure A.2: TouchTrack Result Screens

A.2 Users using Same Devices

We select “Nexus 5” as our primary device to analyze uniqueness results for users
accessing our app through the same device. We chose “Nexus 5” because it is was
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(a) CDF of Set of Gesture Samples on a Single
Device. Relative Information of Respective
Categories are: -●- Swipes: 95.8%, -9- Up
Swipes: 54.0%, -◾- Down Swipes: 80.9%, -+-
Left Swipes: 83.7%, -⋆- Right Swipes: 66.0%,
-◆- Taps: 77.7%, -▴- Keystrokes: 87.5%, -×-
Handwriting: 100%
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(b) CDF of a Gesture Sample on a Single Device.
Relative Information of Respective Categories
are: -●- Swipes: 80.8%, -9- Up Swipes: 52.4%,
-◾- Down Swipes: 77.9%, -+- Left Swipes:
87.1%, -⋆- Right Swipes: 82.0%, -◆- Taps:
14.4%, -▴- Keystrokes: 09.1%, -×- Handwrit-
ing: 100%

Figure A.3: Cumulative Distribution Function (CDF) of Gesture Sample(s) on a
Single Device.

most used model of phone in our study, primarily because our test smartphone is
also Nexus 5, which were given to users who did not possess an Android phone, for
data collection. Table A.1 shows the statistics of analyzed data.
Our results indicate that users are highly recognizable on the same device. For

a set of gesture samples, the performance of keystrokes and taps are fairly better
on a single device as compared to multiple devices. We found that features with a
single data point, such as Start X, Start Y, Start Pressure, Start Area, etc. highly
contributes towards user uniqueness for keystroke and taps. Similarly, handwriting
and overall swipes also show improved performance with the Finger Area being most
prominent feature.
Figure A.3a shows the CDF of a set of gesture samples. We observe that hand-

writing reflects 100% of user identification followed by swipes with 95.83% of mutual
relative information. Keystrokes and taps reveal 85.5% and 77.7% of user informa-
tion respectively. The performance of swipe sub-types are also improved except for
the up swipes (54%).
Figure A.3b is the CDF of a gesture sample. We found that the performance of a

Table A.1: Touch Data Statistics

Gesture Users Sp. Gesture Users Sp.

Swipes 08 920 Up Swipes 08 244
Down Swipes 07 217 Left Swipes 07 214
Right Swipes 08 245 Handwriting 08 259
Taps 09 2653 Keystrokes 08 1614
Total Samples: 6366 Sp. = Samples
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handwriting and a swipe is overall improved, with 100% and 80.8% of identification
respectively. It is noted that these results reflect a subset of the user data for a
single Nexus 5X device. It could be concluded that these results are influenced from
the device type and size of the subset. In order to confidently verify our suspicions,
we need to collect and analyze data from other types of devices with more user data
and consider it as part of future work.

A.3 Results Summary

Table A.2 and A.3 represent the summary of results corresponding to each gesture
and combinations.
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Table A.2: Summary of Results - Gesture Sample
Gesture Gesture Sample Set of Gesture Samples Features List

Rel. Inf. TPR Rel. Inf. TPR
Swipe 57.79% 76.11% 63.33% 89.85% Stop Area, 80-percentile pairwise X-Tilt, Start Area, Mid-Stroke Pressure, 80-percentile pairwise Area, Std. Dev. of Pairwise Veloc-

ity, Std. Dev. of Pairwise Change of Area-Position, 20-percentile pairwise Area, 50-percentile pairwise Area, End to End Acc.*, Dis-
tance, Start Pressure, End Point of Pairwise Area, Start Point of Pairwise Area, Mid-Stroke Area, Std. Dev. of Pairwise Area, Av-
erage of Pairwise X-Tilt, Average of Pairwise Area, 50-percentile pairwise Pressure, 20-percentile pairwise Change of Area-Position,
80-percentile pairwise Pressure, Median of Last 3 Velocities Points, 20-percentile pairwise Pressure, Average of Pairwise Pressure,
80-percentile pairwise Change of Area-Position, Start Point of Pairwise Pressure, Stop Pressure, Start Point of Pairwise X-Tilt,
Start Point of Pairwise Change of Area-Position, Std. Dev. of Pairwise Change of Pressure-Position, Start Point of Pairwise Veloc-
ity, End Point of Pairwise Pressure, 80-percentile pairwise Y-Tilt, Std. Dev. of Pairwise Pressure, Start Point of Pairwise Direction,
Average of Pairwise Change of Area-Position, Start Y, 50-percentile pairwise X-Tilt, End to End Pressure Distance, 20-percentile
pairwise X-Tilt, Start Point of Pairwise Change of Pressure-Position, Median of First 5 Acc. Points, Average of Pairwise Change of
Pressure-Position, Start Point of Pairwise Y Velocity, Average Velocity, 20-percentile pairwise Change of Pressure-Position, Average
of Pairwise Y-Tilt, 80-percentile pairwise Change of Pressure-Position, End Point of Pairwise X-Tilt, Direct End To End Direction,
Average of Pairwise Y, Start Point of Pairwise Y-Tilt

Up Swipe 48.56% 74.11% 50.23% 84.44% Stop Pressure, Std. Dev. of Pairwise X-Tilt, Average Velocity, Start Pressure, Start Y, Average of Pairwise X-Tilt, Std. Dev. of
Pairwise Area, 20-percentile pairwise Pressure, 80-percentile pairwise Area, 20-percentile pairwise Area, Phone Orientation, End
Point of Pairwise Pressure, Average of Pairwise Area, End Point of Pairwise X-Tilt, Stop Y, End Point of Pairwise Area, Start
Point of Pairwise Pressure, Start X, Median of First 5 Acceleration Points, Average of Pairwise Pressure, 50-percentile pairwise
Area Acc., 50-percentile pairwise Y Acc., 50-percentile pairwise Pressure Acc., 50-percentile pairwise Change of X-Tilt Position,
Std. Dev. of Pairwise Pressure, Start Point of Pairwise X-Tilt, Start Point of Pairwise Area, Stop X, Average of Pairwise Direction,
80-percentile pairwise Pressure, Std. Dev. of Pairwise Y-Tilt, End to End Y Distance, 80-percentile pairwise Y Acc., 20-percentile
pairwise X-Tilt, Length of Trajectory, 50-percentile pairwise Acc., 80-percentile pairwise Pressure Acc., Average of Pairwise Y-Tilt,
50-percentile pairwise X Acc., Std. Dev. of Pairwise X-Tilt Acc., 20-percentile pairwise Change of Area-Position, Start Point of
Pairwise Y-Tilt, 20-percentile pairwise Direction, End to End X Distance, 50-percentile pairwise Area, End Point of Pairwise Y-
Tilt, 50-percentile pairwise X, 20-percentile pairwise Change of Pressure-Position, Direct End To End Direction, 20-percentile pair-
wise Raw Y-Tilt

Down Swipe 52.22% 72.64% 54.58% 86.12% Start Point of Pairwise Area, 50-percentile pairwise Acc., Median of First 5 Acc. Points, Start Y, Stop Pressure, Start Point of Pair-
wise Change of Area-Position, Start Pressure, 50-percentile pairwise Acc., 50-percentile pairwise Pressure Acc., Average Velocity,
Std. Dev. of Pairwise Area, 80-percentile pairwise Pressure Acc., End Point of Pairwise Area, Average of Pairwise X-Tilt, Average
of Pairwise Area, Start Point of Pairwise Pressure, Average of Pairwise Direction, 20-percentile pairwise Area, 20-percentile pair-
wise Pressure, 20-percentile pairwise Change of Area-Position, End Point of Pairwise Pressure, Start Point of Pairwise X-Tilt, 80-
percentile pairwise Area, 50-percentile pairwise Y Acc., End to End Y Distance, Average of Pairwise Pressure, Start X, Stop Y, Av-
erage of Pairwise Change of Area-Position, Std. Dev. of Pairwise X-Tilt, Std. Dev. of Pairwise Pressure, Average of Pairwise Veloc-
ity, 80-percentile pairwise Y Acc., Ratio of End2End Dist. and Len of Trajectory, 80-percentile pairwise Pressure, 50-percentile pair-
wise Area, Average of Pairwise Y-Tilt, Average of Pairwise Y Velocity, End to End X Distance, Average of Pairwise X-Tilt Velocity,
20-percentile pairwise X-Tilt, 80-percentile pairwise Change of Y-Position, Start Area, 50-percentile pairwise Pressure, Start Point
of Pairwise Y-Tilt, Start Point of Pairwise Change of Pressure-Position, 50-percentile pairwise Y, Std. Dev. of Pairwise X-Tilt Acc.,
Average of Pairwise Y, End Point of Pairwise X-Tilt

Left Swipe 53.96% 74.60% 68.66% 88.52% 20-percentile pairwise Area, Average of Pairwise X-Tilt, Stop Pressure, 80-percentile pairwise Area, Start Pressure, Average Veloc-
ity, 50-percentile pairwise Pressure Acc., Std. Dev. of Pairwise X-Tilt, Start Point of Pairwise Area, Median of First 5 Acc. Points,
Start X, Std. Dev. of Pairwise Area, End Point of Pairwise Area, 80-percentile pairwise Pressure Acc., 50-percentile pairwise Acc.,
Average of Pairwise Area, 20-percentile pairwise Pressure, 20-percentile pairwise Change of Area-Position, 50-percentile pairwise
Area Acc., End Point of Pairwise Pressure, Start Point of Pairwise Change of Area-Position, 50-percentile pairwise Y Acc., 80-
percentile pairwise Area Acc., Start Y, 20-percentile pairwise X-Tilt, End to End Y Distance, Start Point of Pairwise Pressure,
50-percentile pairwise Change of X-Tilt Position, Average of Pairwise Pressure, Stop Y, Average of Pairwise Y-Tilt, 50-percentile
pairwise Area, Std. Dev. of Pairwise Pressure, Start Point of Pairwise X-Tilt, 80-percentile pairwise Change of X-Tilt Position,
80-percentile pairwise Pressure, Average of Pairwise Change of Area-Position, Start Point of Pairwise Y, 50-percentile pairwise X-
Tilt Acc., 80-percentile pairwise Y Acc., Average of Pairwise X-Tilt Velocity, Average of Pairwise Y Velocity, 20-percentile pair-
wise Y-Tilt, Average of Pairwise X-Tilt Acc., End Point of Pairwise X-Tilt, 20-percentile pairwise Change of Pressure-Position, 50-
percentile pairwise X Acc., Start Point of Pairwise X-Tilt Velocity, Std. Dev. of Pairwise Y-Tilt, Average of Pairwise Velocity

Right Swipe 52.27% 76.37% 57.48% 86.24% 50-percentile pairwise Pressure Acc., Average of Pairwise X-Tilt, Stop Pressure, Start Pressure, 80-percentile pairwise Pressure Acc.,
Median of First 5 Acc. Points, Std. Dev. of Pairwise X-Tilt, Start Point of Pairwise Area, 20-percentile pairwise Area, Start Y, 80-
percentile pairwise Area, End Point of Pairwise Area, Start X, Average of Pairwise Area, Std. Dev. of Pairwise Area, 50-percentile
pairwise Area Acc., 20-percentile pairwise Pressure, Start Point of Pairwise Change of Area-Position, End Point of Pairwise Pres-
sure, 80-percentile pairwise Change of X-Tilt Position, Average of Pairwise Direction, Average of Pairwise Pressure, Start Point
of Pairwise X-Tilt, Average Velocity, End to End Y Distance, 20-percentile pairwise X-Tilt, 50-percentile pairwise Y Acc., Start
Point of Pairwise Pressure, Average of Pairwise X-Tilt Velocity, 50-percentile pairwise Area, Average of Pairwise Y-Tilt, Stop Y,
Std. Dev. of Pairwise Y-Tilt, 80-percentile pairwise Y Acc., 50-percentile pairwise Acc., 50-percentile pairwise X Acc., Std. Dev. of
Pairwise Pressure, Average of Pairwise Change of Area-Position, 80-percentile pairwise Pressure, 80-percentile pairwise Area Acc.,
50-percentile pairwise X-Tilt Acc., 50-percentile pairwise Change of X-Tilt Position, 20-percentile pairwise Y-Tilt, Average of Pair-
wise Velocity, 20-percentile pairwise X-Tilt Velocity, Start Point of Pairwise Y-Tilt, Start Point of Pairwise Y, End to End X Dis-
tance, End Point of Pairwise X-Tilt, Start Point of Pairwise Change of Pressure-Position

Keystroke 26.25% 60.00% 41.02% 75.00% Inter-Stroke Time, Stroke Duration, Start X, Start Pressure, Start Y,Start Area, Mid-Stroke Finger Orientation, Key Error Rate
Tap 29.58% 63.33% 34.73% 79.54% Inter-Stroke Time, Stroke Duration, Start X, Start Pressure, Start Y,Start Area, Mid-Stroke Finger Orientation

Handwriting 68.71% 81.16% 73.73% 91.11% Average Pressure, Average Y, End Point of Pairwise X-Tilt, 80-percentile pairwise Pressure, 20-percentile pairwise Pressure, 80-
percentile pairwise Area, Mid-Stroke Pressure, drawing width, 50-percentile pairwise Pressure, 80-percentile pairwise Y, Average
of Pairwise Pressure, Std. Dev. of Pairwise X-Tilt, Start Pressure, Stop Pressure, End to End Y Distance, Start Point of Pairwise
Pressure, End Point of Pairwise Y-Tilt, 20-percentile pairwise Y, End Point of Pairwise Pressure, 80-percentile pairwise X-Tilt, Std.
Dev. of Pairwise Pressure, Start Point of Pairwise Direction, 50-percentile pairwise Y, 80-percentile pairwise X-Tilt Velocity, std.
Dev. of Pairwise Change of Area-Position, TMP, Std. Dev. of Pairwise Change of Pressure-Position, Average of Pairwise Y, Std.
Dev. of Pairwise X-Tilt Velocity, 20-percentile pairwise Area, Start Y, Std. Dev. of Pairwise Y-Tilt, 80-percentile pairwise Y-Tilt,
drawing area, End to End Pressure Distance, 50-percentile pairwise Direction, 80-percentile pairwise Direction, 80-percentile pair-
wise Y-Tilt Velocity, Direct End To End Distance, Average of Pairwise X-Tilt, Start Point of Pairwise Y, Std. Dev. of Pairwise Y-
Tilt Velocity, Stop Y, LMP, Stroke Duration, Start Point of Pairwise Change of Pressure-Position, 20-percentile pairwise Direction,
50-percentile pairwise X-Tilt, 80-percentile pairwise Change of X-Tilt Position, 20-percentile pairwise Change of Area-Position

* Acc. refers to Acceleration.

Table A.3: Summary of Results - Gestures Combinations
Gesture Rel. Inf. TPR FPR Gesture Rel. Inf. TPR FPR

Combinations
Swipes, Taps 48.11% 72.72% 16.75% Swipes, Keystrokes 46.80% 91.10% 22.40%

Swipes, Handwriting 72.75% 93.75% 10.88% Taps, Keystrokes 33.55% 91.11% 33.83%
Taps, Handwriting 66.31% 88.57% 12.68% Keystrokes, Handwriting 68.26% 72.41% 13.17%

Swipes, Taps, Keystrokes 93.87% 39.4% 2.3% Swipes, Taps, Handwriting 96.10% 68.75% 1.8%
Swipes, Keystrokes, Handwriting 98.54% 51.85% 0.85% Taps, Keystrokes, Handwriting 95.06% 51.72% 2.46%

All Gestures 98.93% 40.74% 0.99%
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This supplementary section gives more insights on the information presented in the
chapter 7.

B.1 Time-Series Analysis

The procedure to understand a time-series through a number of observations and
then to make useful forecasting is known as time-series analysis. Time-series anal-
ysis has gained indispensable attention over last few decades in the fields such as
business, economics, finance, science and engineering. Time-series analysis has two
major goals: modeling and forecasting. The time-series modeling helps us develop-
ing a model that describes the inherent structure of the series while studying past
observations. This model is then used to generate future values for the series i.e. to
make forecasts. A variety of time-series forecasting models have been proposed in
the literature with the aim to improve forecasting accuracy [31, 226, 50, 93].
In our obfuscation framework, we utilize the concept of time-series processing

where we consider data as time-series that is being sent to a remote server to get
some functionality. A time series is a sequence of data points, measured typically
over successive times. It is mathematically defined as a set of vectors x(t), where
t = 0,1,2, ... representing the time elapsed and variable x(t) is treated as a random
variable. A time-series x(t), t = 0,1,2, ..., generally follows a probability model
which describes the joint distribution of the random variable xi. Mathematically,
this structure is termed as stochastic process, where the sequence of observations of
the series is a sample realization of the stochastic process that produced it [50].
An important concept here is the stationary of a stochastic process which

states that statistical properties of the process (mean and variance) do not change
over time. This condition helps in making useful future forecasting and also re-
duces the mathematical complexity of a model. A process x(t), t = 0,1,2, ...
is said to be strongly stationary if the joint probability distribution function
{xt−s, xt−s+1, ..., xt, ...xt+s−1, xt+s} is independent of t for all s. There are some mathe-
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matical tests such as Dickey and Fuller [65] that are generally used to detect station-
ary in a time series data. In order to design a proper model and perform adequate
forecasting, the underlying time series is expected to be stationary. Usually if a time
series shows trend or seasonal patterns, then it is considered as non-stationary and
methods such as differencing or power transformations are used to make the series
stationary. A number of models have been proposed to address non-stationary in
time-series data [31, 226, 61].
In this regard, one of the most well-known stochastic time series models is the

TBATS model, which accounts for multi-seasonality (Trigonometric, Box-Cox trans-
form, ARMA errors, Trend, and Seasonal components) in time-series data [61].
TBATS can cater a wide variety of seasonal patterns and can also avoid falling
into non-linearity problems through the use of Box-Cox transformation [188]. The
TBATS model can be expressed as follows:

y
(w)
t =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xt(w)−1
w , (xt) − 1 ≠ 0

log(xt), w = 0
(B.1)

Here, y(w)
t represents the Box and Cox transformed observation with parameter w

and xt is the observation at time t. If the arguments are listed, the TBATS model is
written as : TBATS(w,φ, p, q,{m1, k1},{m2, k2}, .....{mt, kt}), where w is the Box-
Cox parameter, φ is damping parameter, p and q are ARMA model parameters, and
mi, i = 1,2,⋯, t are seasonal periods with the number of harmonics ki, i = 1,2,⋯, t
for the seasonal component, respectively. For more understanding on the TBATS
model and its parameters, we refer the readers to De Livera et al.’s work [61].

B.1.1 Correlated Noise in a Time Series

In many situations, the behaviour of sequential data points in time-series affects
each other in a dependent manner. For example, when a user writes a letter “a”
on his mobile touchscreen using a stylus or a finger, the data points in this time-
series are correlated, as there is a specific pattern associated with the writing. The
deviation from a pattern can make it hard for a user to understand and also affects
the functionality of a system. Similarly, in a GPS system, new coordinates (xt, yt)

are dependent on previous ones (xt−1, yt−1) in order to make a clear route. In general,
we can say that a time-series data coming from mobile or smart devices is highly
correlated because of two reasons: i) human-beings naturally perform tasks in a
certain manner ii) data must be input in a certain pattern or a format in order to
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get a desired functionality or quality output. From a privacy perspective, Kifer et
al. [128] demonstrated that ignoring the correlation in the dataset lowers the privacy
of the published data This condition holds true for not only offline time-series but
also makes sense for a time-series that is released/published on the fly i.e. at run
time.
Wang et al. [215] presented an attack model where an adversary can easily sep-

arate independent and identically distributed (IID) noise (which is being added for
privacy preservation) from a correlated time-series data. The correlation of a time-
series can be represented by its auto-correlation function [36]. Let’s assume that an
original time-series X and a released time-series X ′ (after the noise addition) has
an auto-correlation function of RXX(τ) and RX′X′(τ), respectively. The IID noise
series Z has an auto-correlation function Rz(τ) which can be expressed as;

RZ(τ) = N0δ(τ), (B.2)

where N0 is the Power Spectral Density (PSD) of Z and δ(τ) is the impulse
function. Now if, the original series X is also IID, then the IID noise in the time-
series guarantees that the auto-correlation functions of X, X ′ , and Z are the same,
as mentioned in Equation B.3.

RXX(τ) = RX′X′(τ) = RZ(τ) = N0δ(τ) (B.3)

In other words, the noise retains the consistency of the noise and original series
in terms of the statistical properties [215]. Thus, an attacker cannot make use of
refinement methods to filter the noise from the released time-series to increase the
probability of a successful attack.
However, on the other hand, if X is a correlated time-series but a noise series Z is

still IID, then an attacker who has background knowledge and knows about the auto-
correlation function RXX(τ)1, can easily filter the noise from the released series using
an optimal waveform estimation filter (e.g., a Wiener linear filter) [46]. After filtering
noise, the attacker can get a sanitized estimation X̃ of X ′. Therefore, privacy-
preserving techniques developed for correlated time series data need to address the
correlation of data in the time-series.

1Here, the RXX(τ) becomes a bilateral attenuation function of X.
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C.1 TouchTrack Privacy Policy:

The goal of this project is to measure and study the uniqueness of touch-based
behavioral biometric of a mobile device user. We are committed to protect the
privacy of users of TouchTrack. All of the data for the project will be collected in an
anonymized form which ensures that it is not Personally Identifiable Information,
nor otherwise likely to lead to the exploitation of user identities.
We have established this TouchTrack Privacy Policy to explain what information

we collect through the mobile app and how it is used. In this policy, “we” refers
to the TouchTrack Team, i.e. Principal Investigator, Co-Investigator, Researchers,
Interns, Developers, all of whom are bound by law or contract to keep information
they receive as confidential.

C.1.1 Information Gathered by TouchTrack Mobile App

In general, TouchTrack collects anonymous raw data against four types of touch
gestures i.e. swipes (left, right, up, down), tap, keystrokes, and handwriting. We
use the term “raw data” for the touch data that is collected directly through Android
API. This raw data, corresponding to each gestures, is collected when you play games
provided in an app. The games (2048, Lexica, Logo Maniac) are very widely known
and universally popular.
When you interact with a mobile device while playing games, our app collects raw

data and sends it to a server, located in the networks group of data61-CSIRO (over
HTTPS), for estimating a user uniqueness. When a user taps on “Results” button,
the server processes the raw data to calculate uniqueness value and sends results
back to the app for display. The specific list of raw features we collect includes:

• Screen Coordinates (i.e. X & Y positions)

• User Finger Pressure on a Screen
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• User Finger Size on a Screen

• Screen Orientation (portrait or landscape)

• Finger Movement Type (up, down, move)

• Values from Sensors (Accelerometer, Gyroscope)

• Device Orientation (phone position in terms of angle)

Although these raw data may form a ‘fingerprint’ that could in principle be com-
bined with information about mobile device or browser fingerprinting in order to
track individuals, We will never do so. In addition, we collect ‘housekeeping’ infor-
mation to assist us in analyzing the fingerprint data. The housekeeping information
is:

• Event Timestamp

• User ID

• Android ID

• Mobile Model Name

Our practices and purposes for collecting these housekeeping records are discussed
below:

Event Timestamp
TouchTrack collects a timestamp each time a user performs any gesture. This
will be used to measure time-series features, such as stroke time, key hold time,
duration of performing a swipe etc.

User ID
TouchTrack requests its users to register with a unique username so that their
touch information is saved and retrieved afterwards. For security purposes, we are
storing one-way cryptographic hash (SHA1) of usernames in our database. The
main purpose of keeping username is to keep track of game progress such that a
user can resume again. Moreover, we also want to determine how often user touch
behavior change, when a user returns over time. Another temporary purpose is to
establish a ground truth for our research and to know how reliable our uniqueness
framework is. TouchTrack links the username with his/her touch gestures such
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that a user can see previous results, whenever a user logs in.

Android ID
TouchTrack does not log Android ID, but we do compute cryptographic hash of
each Android ID, using SHA1 and storing that hash in a database. This hashed
Android ID will allow us to collect an anonymous dataset about a user interacting
on multiple devices e.g. tablet and a mobile phone. We actually want to study
how user behavior changes when they interact on multiple devices. Additionally,
we may need to retain this information for situations such as app testing, diagnosis
of technical problems, and handling a spike in traffic or other abnormal, short-term
circumstances.

Mobile Model Name
We are collecting mobile model name to validate the study described in the above
section. Additionally, we want to check what touch features are offered by different
mobiles. This information is very necessary since we need common features that
could be collected for every type of mobile device. For-example, few mobile phones
have only accelerometer sensor while others have both accelerometer and gyroscope.
This information is necessary to collect in order to show consistency among features.
Sharing of TouchTrack data
We will not share the data collected through TouchTrack with any external entities.
It will remain within the boundaries of CSIRO research environment.

Security
Although we make good faith efforts to store information collected by TouchTrack
in a secure operating environment, we cannot guarantee complete security. Infor-
mation collected will be maintained for a length of time appropriate to our needs.

Should you have any questions about this privacy policy or any use of the data
collected, please contact us.
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Research	Participant	Information	Sheet	
Implicit	Tracking	Using	Behavioural	Biometrics	

Project	overview		
This	 is	 the	 data	 collection	 phase	 of	 our	 project	 entitled	 “TouchTrack:	 Implicit	 Tracking	 using	 Behavioural	
Biometrics”.		By	participating,	you	will	find	out	how	unique	your	touch	gestures	are	and	how	traceable	you	could	
be	just	by	the	use	of	specifics	of	your	behavioural	gestures.	We	call	this	notion	Implicit	Tracking!		The	purpose	of	
our	project	is	to	quantify	the	uniqueness	of	touch-based	behavioural	biometrics	of	mobile	device	users	such	that	
their	physical	identification	is	possible.	Findings	from	the	study	will	help	us	protect	the	privacy	of	mobile	device	
users	by	developing	privacy-preserving	techniques	so	that	user	mobile	device	interactions	are	not	enabling	user	
tracking.	The	study	 is	being	 funded	by	CSIRO,	 the	Australian	Commonwealth	Scientific	and	 Industrial	Research	
Organization.	We	would	also	like	to	ask	you	to	spread	the	word	about	this	project	and	encourage	friends,	relatives,	
and	colleagues	to	download	and	participate	in	this	study.		More	information	about	the	project	is	available	on	the	
project	website.	

What	does	participation	involve?	
Your	responses	to	this	project	will	help	us	evaluate	the	uniqueness	of	user	behavioural	gestures	on	mobile	devices	
such	as	 tablets	 and	phones.	Participation	 in	 this	project	will	 involve	downloading	and	 installing	a	mobile	app,	
named	“TouchTrack”,	on	your	mobile	phones.	We	have	developed	a	TouchTrack,	which	incorporates	three	widely	
known	games	namely,	“2048”,	“Lexica	(find	a	word)”,	“Logo	Maniac	(Guess	a	Logo),”	and	one	digital	handwriting	
module.	The	purpose	of	selecting	and	using	these	games	is	to	capture	user	touch	gestures	such	as	swipes,	taps,	
keystrokes,	 and	 handwriting,	 in	 a	 most	 natural	 way.	 When	 you	 play	 these	 games,	 your	 touch	 interaction	
information	will	be	send	to	our	database	server,	in	a	complete	secure	way	using	HTTPS.	

How	to	Use	TouchTrack?	
TouchTrack	is	available	on	the	Google	Play	Store.	You	can	download	it	either	by	searching	with	the	name	or	by	
visiting	the	given	link.	The	estimated	time	you	need	to	play	all	four	games	is	5-7	minutes,	but	you	do	not	need	to	
play	all	games	in	one	session.	Rather,	you	can	keep	using	the	app	as	per	your	convenience.	You	can	constantly	
check	updated	uniqueness	value	anytime	after	a	minimum	number	of	interaction	has	been	scored.	 

Risk	and	benefits	
Aside	 from	giving	up	your	 time,	 there	are	no	 foreseeable	 risks	associated	with	participating	 in	 this	 study	 (see	
Confidentiality	section).	

Withdrawal	from	the	research	project	
Participation	in	this	study	is	completely	voluntary.	Your	decision	whether	to	participate	will	not	affect	your	current	
or	 future	 relationship	with	 the	 researchers	or	 anyone	else	 at	CSIRO.	 Similarly,	 you	are	 free	 to	 stop	using	 and	
uninstalling	the	app	anytime.	If	you	wish	to	withdraw	your	data	from	the	database,	simply	notify	the	researchers	
listed	below	and	your	data	will	be	destroyed.	You	may	withdraw	from	this	study	at	any	time	up	until	publication	
of	the	final	outputs.		
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CONTACT	US	
t		 1300	363	400	
	 +61	3	9545	2176	
e		 csiroenquiries@csiro.au	
w		www.csiro.au	

AT	CSIRO,	WE	DO	THE		
EXTRAORDINARY	EVERY	DAY	
We	innovate	for	tomorrow	and	help	
improve	today	–	for	our	customers,		
all	Australians	and	the	world.		
We	imagine.	We	collaborate.	We	innovate.	

FOR	FURTHER	INFORMATION	
Insert	Business	Unit	name	
Insert	contact	name	
t		 +61	0	0000	0000	
e		 first.last@csiro.au	
w		www.csiro.au/	businessunit		

Confidentiality	
Please	note	that	we	are	committed	to	protect	the	privacy	of	participants	of	our	project.	All	of	the	data	will	be	
collected	in	an	anonymized	form	which	ensures	that	it	is	not	Personally	Identifiable	Information,	nor	otherwise	
likely	 to	 lead	 to	 the	 exploitation	 of	 user	 identities.	 All	 information	 about	 your	 gestures	 will	 be	 treated	
confidentially.	We	are	not	 storing	any	personal	 information;	even	usernames	and	android	 id	 is	hashed	before	
storing	 in	 a	database.	 The	username	has	no	 link	 to	 your	 real	 identity	 as	 you	 can	 create	a	username	with	any	
combination	of	strings.	The	username	and	android	id	will	not	be	included	in	any	publications	resulting	from	the	
study.	All	data	collected	in	this	study	will	be	analysed	and	reported	in	such	a	way	that	responses	will	not	be	able	
to	be	linked	to	any	individuals.	De-identified,	non-sensitive	data	collected	by	the	project	may	be	shared	with	other	
researchers	 for	 the	purposes	of	verifying	published	results	or	advancing	other	 research	on	this	 topic.	To	 learn	
more	about	the	project’s	privacy	policy,	visit	this	link.	

How	will	my	information	be	used?	
It	 is	 anticipated	 that	 the	 information	obtained	 through	 the	mobile	 app	will	 be	published	 and/or	presented	 in	
several	research	venues.	This	includes	scientific	journals,	conferences	presentations,	seminars,	and	invited	talks	
about	security	and	privacy	of	emerging	technologies,	such	as	mobile	devices,	 Internet	of	Things,	and	wearable	
devices,	along	with	internet	measurement	and	security	venues.	Data	collected	through	the	mobile	app	may	also	
be	used	in	future	research	being	undertaken	by	CSIRO	on	privacy	and	security	of	mobile	and	wearable	devices.	

Ethical	clearance	and	contacts	
This	study	has	been	approved	by	CSIRO’s	Social	Science	Human	Research	Ethics	Committee	in	accordance	with	
Australia’s	National	Statement	on	Ethical	Conduct	in	Human	Research	(2007).	If	you	have	any	questions	concerning	
your	participation	in	the	study	please	contact	the	researchers	via	their	contact	details	below.	Alternatively	any	
concerns	or	complaints	about	the	conduct	of	this	study	can	be	raised	with	the	Manager	of	Social	Responsibility	
and	Ethics	on	(+61	7)	3833	5693	or	by	email	at	csshrec@csiro.au.		
	

Prof.	Dali	Kaafar	 Dr.	Hassan	Jameel	Asghar																														Rahat	Masood				
Project	Principal	Investigator	 Project	Co-Investigator																	 Researcher	
Networks	Group	 Networks	Group																																													Networks	Group	
Cyber	Physical	Systems	Program										 Cyber	Physical	Systems	Program										 Cyber	Physical	Systems	Program										
CSIRO	Data61																																											 CSIRO	Data61																																											 CSIRO	Data61																																											
Level	5,	13	Garden	Street																						 Level	5,	13	Garden	Street																						 Level	5,	13	Garden	Street																						
Eveleigh,	NSW	2015	 Eveleigh,	NSW	2015	 Eveleigh,	NSW	2015	
Ph:	+61	2	9490	5635	 Ph:	+61	2	9490	5889																																							Ph:	+61	2	9490	5705	
Email:	Dali.Kaafar@data61.csiro.au	 Email:	Hassan.Asghar@data61.csiro.au    	Email:	Rahat.Masood@data61.csiro.au	 
	
Thank	you	for	your	time	and	we	look	forward	for	your	responses.	Should	you	have	any	questions,	please	do	not	
hesitate	to	contact	us.	
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