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ABSTRACT 

Recent advances in basic and clinical science have driven epigenetics to the forefront of 

cancer research. Together with genetic changes, the disruption of epigenetic mechanisms is 

now established as a hallmark of human cancer. Colorectal cancer, long a classical model for 

the genetic basis of cancer, is now providing researchers with the opportunity to view 

epigenetic events in the context of human neoplasia. Knowledge of the heritable changes in 

gene expression that result from epigenetic events is of increasing relevance to clinical 

practice, particularly in terms of diagnostic and prognostic molecular markers, as well as 

novel therapeutic targets. 
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INTRODUCTION  

Colorectal cancer, for many years a prototypic model for the genetic basis of cancer, is now 

increasingly cited as an exemplar of the role of epigenetic alterations in tumorigenesis. In 

part, this is because colorectal neoplasia provides a wide range of accessible lesions, from 

aberrant crypt foci to carcinoma. But colorectal neoplasia serves also as a poster child for 

epigenetic change because of the likely role that DNA methylation plays in the initiation and 

progression of this disease. For both of these reasons, it also provides an excellent opportunity 

to understand how epigenetics and genetics collude to produce malignancy. 

This review will provide a broad overview of common epigenetic processes as they occur in 

the normal cell as well as in the cancer cell, and will highlight recent findings in the 

epigenetics of colorectal neoplasia. It will briefly discuss the clinical implications of 

epigenetic changes, in terms of both the identification of disease predisposition, and the 

therapeutic opportunities that a better understanding of these changes may provide. The term 

epigenetics, while variously defined (1), will be used in this review to describe those heritable 

changes in gene function that do not entail a change in DNA sequence (2). By way of context, 

the key historical milestones in the field of cancer epigenetics are shown in Table 1. 

Table 1. Milestones in cancer genetics and epigenetics, in relation to the clinical management 
of colorectal cancer. 

 

Decade Genetics (3) Epigenetics (4) Clinical 

1940 Proposed existence of 
cancer stem cells 

CH Waddington coins the terms 
epigenetics and epigenome 

Dukes’ staging 1932 

1950 Two hit hypothesis  No touch technique for 
colon surgery 

1960 Chromosomal 
translocations 

Description of X chromosome 
inactivation  

Flexible sigmoidoscopy 
and colonoscopy 

1970 First human oncogene  
Tumour suppressor 
genes 

5-methylcytosine as mechanism of 
gene control in mammals 

Therapeutic 
polypectomy 

1980 Oncogene cooperation Global hypomethylation of cancer cells 
Hypermethylation of RB 
Chromatin modification linked to DNA 
methylation 

Total mesorectal 
excision for rectal 
cancer 

1990 Genetic basis for 
cancer predisposition 

Invention of bisulphite technique 
First imprinted genes identified 
DNA methylation involved in genomic 
imprinting 
Loss of imprinting in cancer 

Adjuvant chemotherapy 
introduced 

2000 Cancer gene 
expression profiling 

Human drug trials target the epigenetic 
modifications in DNA 

Biological and targeted 
therapies 
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EPIGENETIC EVENTS IN NORMAL HUMAN CELLS 

While the nucleotide sequence of the human genome has long been recognised as the 

blueprint from which all macromolecular structures are derived, it has also been apparent that 

there are other factors within the material of the cell nucleus that can also determine gene 

expression, and hence the structure and function of the cells and tissues that they form. 

Because these factors are heritable, in that they can be passed from cell to cell, they have been 

referred to as the “epigenetic code”. Ingeniously, this code marks the DNA sequence in ways 

which do not involve modification of the DNA sequence itself. The repertoire of epigenetic 

marks includes modifications to histone proteins, methylation of DNA and the phenomenon 

of RNA interference as described in plants (5) and fungi (6), and possibly in mammalian cells 

(7) (Figure 1). While the genetic code provides the blueprint for all cellular elements, the 

epigenetic code controls elaboration of that blueprint, including the particular suites of 

“luxury” proteins that set apart one differentiated cell from the next (8). In effect, this means 

that individuals have a single genome but many “epigenomes”. 

Histone modifications and the histone code 
Much of the epigenetic code is carried through chemical modifications of individual amino 

acids on the tails of proteins called histones. The basic unit of human chromatin, the 

nucleosome, consists of a 146 base pair loop of DNA wrapped over an octamer of core 

histones (H2A/H2B dimers and H3/H4 tetramer). Covalent modifications of histone proteins 

can change densely compacted, inactive heterochromatin to the open and active configuration 

of euchromatin, and vice versa (Figure 2). These modifications, which include acetylation, 

methylation, phosphorylation, and ubiquitinylation, are reversible events that occur at the N- 

and C-terminal domains of all core histones. Each of these modifications can be subjected to 

further variations that can alter function. For instance, methylation of arginine can involve the 

addition of 1, 2 or 3 methyl groups each conferring subtly different functional consequences. 

The histone modifications are made possible by a number of families of enzymes, including 

histone acetyltransferases (HATs), histone deacetylases (HDACs) and histone 

methyltransferases. The balanced activity of these enzymes and related proteins is pivotal to 

normal cellular function, and alteration in their function is known to cause diverse and often 

profound disorders (9).  

Generally, the active chromatin structure corresponding to increased transcriptional activity is 

associated with increased histone acetylation (Figure 2). HATs such as P300 and CBP are 

known to catalyze acetylation of lysine (lys) residues on H3 and H4 (10). Acting 
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antagonistically to HATs, HDACs produce transcriptional repression by a complicated 

mechanism that involves interaction with DNMTs (11, 12) and MBDs (13, 14). Likewise, 

methylation and phosphorylation of histones are also involved in regulation of the activation 

state of chromatin (9). Methylation at lys 4 and lys 14 as well as phosphorylation of serine 10 

on H3 have all been linked to gene activation, whereas methylation of lys 9 on H3 has been 

associated with gene silencing (15). Taken together, it is this pattern of histone modifications 

that is said to constitute the ‘histone code’, and that complements the primary DNA sequence 

in defining transcription states (16, 17).  

DNA Methylation 
Among all mechanisms of epigenetic modification, enzymatic modification of cytosine bases 

in DNA to form 5-methylcytosine is perhaps the most widely studied and the best understood 

(Figure 3). In the mammalian genome, methylation of cytosine residues occurs most 

commonly at the 5’-CG-3’ dinucleotides (also termed CpG dinucleotides) and occasionally at 

5’-CA-3’ or 5’-CT-3’ residues(18). The resultant base, 5-methylcytosine, is relatively 

unstable, and prone to spontaneous deamination to form thymine (Figure 3), and in this way 

DNA methylation can be seen as an endogenous mutagen. Over 70% of all CpG dinucleotides 

in the human genome are heavily methylated (19), and the remainder are typically seen in 

CpG rich regions of 200 bp or more that span the promoters and sometimes the first exons of 

genes. These regions, known as CpG islands (20), are found in association with about 60% of 

all human genes. It is thus apparent that the configuration of CpG methylation in the genome 

produces a recognisable pattern of non-methylated CpG islands scattered on a background of 

DNA that is methylated at low density (Figure 4). These genomic patterns of CpG 

methylation are reprogrammed in the early embryo, but maintained with considerable fidelity 

thereafter, and are of great functional relevance in normal cells. Patterns of methylation 

cooperate in the regulation of the differential expression of genes, such as the silencing of 

genes on the inactive X chromosome, and the production of age-related and tissue-specific 

gene expression (21).  

Genomic imprinting is a variant of the process of DNA methylation that allows monoallelic 

gene expression in a parent-of-origin specific manner. Over 80 imprinted loci have now been 

described, and they are typically characterised by tissue and stage-specific patterns of 

expression (22). This is clearly a key epigenetic process, and one which has been extensively 

reviewed elsewhere (21, 23).  
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Patterns of genomic methylation are of vital important in both health and disease, and an 

understanding of the mechanism by which methylation leads to transcriptional silencing is 

developing rapidly (24). However, there is relatively less known about the factors that 

determine the positioning and de novo development of these epigenetic marks within the 

genome. There has been considerable interest in the role of transposable elements in inducing 

methylation events, but there is limited data to support this contention in higher organisms 

(25). Others have suggested that de novo development of DNA methylation is the result of 

loss of transcription from the gene itself (26).  

EPIGENETIC EVENTS AND MECHANISMS IN COLORECTAL CARCINOGENESIS  

Given the powerful role of epigenetic changes in altering gene expression, as well as their 

close relationship to development, it is not surprising that cancer cells show a significant 

alteration in the configuration of epigenetic marks on their genome (8, 27, 28). Historically, 

much work has focused on the changes in DNA methylation patterns seen in cancer, both in 

terms of global hypomethylation and focal hypermethylation at CpG islands. More recently, 

work has begun to elucidate the changes to chromatin structure seen in this disease. Both of 

these will be reviewed briefly. 

DNA hypomethylation 
In the late 1970s, a number of workers showed that the genome of tumour cells showed a 

progressive and global decrease in the number of cytosine bases that had been methylated to 

form 5-methylcytosine (28-31). This phenomenon, usually referred to as DNA 

hypomethylation, is a typical finding in all neoplasms, both benign and malignant (4). In the 

particular case of colorectal neoplasia, global hypomethylation has been found in lesions 

across the neoplastic spectrum, from adenomatous polyps to carcinomas (32), as well as in 

hyperplastic polyps (33). 

Hypomethylation has been linked to a number of mechanisms that could drive neoplastic 

progression. In contrast to normal cells, hypomethylation in tumour cells typically occurs at 

the repetitive sequences residing in satellite or pericentromeric regions. This pattern of 

hypomethylation may make chromosomes more susceptible to breakage, and therefore lead 

directly to genomic instability (34, 35). Hypomethylation can also result in reactivation of 

previously silenced retrotransposons, leading to the disruption of normal gene structure and 

function (36, 37). Furthermore, it is possible that the activity of transposable elements governs 

the methylation state of their neighboring genes through the phenomenon of transcriptional 
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interference, which has been observed in maize and wheat (38, 39) but not to date in animals. 

DNA hypomethylation can also lead to the activation of oncogenes; an event that has been 

documented with the S100A4 metastasis-associated gene in colorectal carcinoma, as well as 

cyclin D2 (40) and Maspin (41) genes in gastric carcinoma. Finally, decreased methylation of 

DNA can lead to loss of imprinting, and this can drive cellular proliferation in cancer. The 

clearest example of this phenomenon is the loss of imprinting at IGF2/H19 region as a result 

of hypomethylation at the differentially methylated region (DMR) of IGF2 (42), an event seen 

in over 40% of colorectal cancer (43).  

Hypermethylation 
In concert with global hypomethylation, focal hypermethylation at CpG islands is also 

regarded as a critical event in cancer development (44-46) (Figure 4). Not surprisingly, 

research in this area has focused on tumor suppressor genes, as promoter silencing by 

hypermethylation provides a mechanism other than sequence mutation for the inactivation of 

these key genes. Since the demonstration of methylation-induced silencing of the RB gene in 

cancer (47), many more tumour suppressor genes have been identified as targets for this 

process, including p16INK4A, VHL, APC, CDH1 (E-cadherin) and MLH1 (4). Yet silencing 

of tumour suppressor genes is not the only mechanism by which hypermethylation can favour 

the development of cancer. Hypermethylation can also lead to loss of imprinting in cancer. In 

Wilms' tumour, for example, hypermethylation at the IGF2 DMR causes loss of imprinting of 

the normally silenced maternal allele of IGF2 (48, 49). Similar events are seen with the p73 

gene in haematological malignancies (50), and ARH1 in follicular carcinoma of the thyroid 

(51) 

CpG island methylation is of course a common epigenetic event in colorectal neoplasia, with 

MLH1 promoter methylation representing a classical example of this phenomenon. A long list 

of hypermethylated genes has been associated with colorectal neoplasia, including tumor 

suppressor, mismatch repair and cell cycle regulatory genes (Table 2). This list is likely to 

grow as methods for the discovery of methylation targets are improved. Importantly, and as 

recently summarised by Baylin and Ohm, these genes have been drawn from many the key 

functional groupings that define the cancer phenotype, including Wnt signaling (SRFP genes), 

mismatch repair (MLH1), cell cycle regulation (CDKN2A), epithelial differentiation 

(GATA4,5), p53 mediated damage responses (HIC1) and cell-matrix interactions (TIMP3) 

(52).  
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Table 2. Some of the genes silenced by promoter methylation in colorectal neoplasia 

Gene Function Frequency (%) Reference 

APC Signal transduction, beta-catenin regulation 10-50 (53-58) 

CDH13  Cell signalling (cell recognition and adhesion) 30-40 (59) 

CDKN2A Cell cycle regulation 15-30 (56, 60, 61) 

CHFR Mitotic stress checkpoint 30-40 (62, 63) 

HIC1 Regulation of DNA damage responses ~80 (64, 65) 

HPP1 Transmembrane TGF-beta antagonist ~80 (66) 

LKB1 Cell signalling, cell polarity 5-10 (67) 

MGMT Repair of DNA guanosine methyl adduct 30-40 (56, 57, 68-70) 

MLH1 Mismatch repair 10-20 (57, 71-73) 

P14ARF Cell cycle regulation 20-30 (56, 74, 75) 

RASSF1A DNA repair, cell cycle regulation  >50 (56, 76, 77) 

SOCS-1  Cell signaling 5-10 (59) 

THBS1 Angiogenesis 10-20 (56, 57) 

TIMP3 Matrix remodeling, tissue invasion 10-30 (56, 78) 

 

Interesting recent observations have challenged the dogma that hypermethylation is confined 

to discrete CpG islands. Frigola et al. showed many colorectal cancers exhibited epigenetic 

silencing of an entire 4 Mb band of chromosome 2. This finding demonstrates that epigenetic 

silencing can be a regional phenomenon with an impact on the expression of multiple rather 

than single genes (79).  

Dysregulation of histone modification 
In comparison to DNA methylation, current knowledge regarding dysregulation of the histone 

code in cancer is less advanced. At a simplistic level this involves replacement of histones 

with variants, or changes in the decorations on the histone tails through chemical 

modifications of individual amino acids. Certainly, aberrant methylation of tumour suppressor 

genes is accompanied by two key modifications in the histone code, namely deacetylation and 

methylation of the lysine (K) 9 residue of histone H3 (H3-K9). These two moieties are 

mutually exclusive, since they affect the same position. Acetylation of H3-K9 correlates with 

gene expression, whereas methylation of this residue is associated with gene silencing and 

acts by recruiting heterochromatin-associated proteins (80). Changes of these types are well 

documented in colorectal cancer(81-83). More recently, a pattern of changes to the core 

histone H4, characterised by the loss of both monoacetylation from lys 16 and trimethylation 



Page 9 of 30 

from lys 20, has been proposed as universal markers for malignant transformation (84). Other 

workers have demonstrated overexpression of a putative histone methyltransferase SMYD3 

that methylates H3 lys 4 in colorectal cancer (85). Since methylation of H3 lys 4 has been 

associated with gene activation (4), this suggests that the increased activity of SMYD3 can 

potentially promote transcription of oncogenes, homeobox genes and cell-cycle regulatory 

genes. These types of changes in histone modification are characteristic of many human 

tumours (86). Individual histones may be replaced by histone variants such as H3.3 for the 

canonical H3 histone (87) or the H2A.Z variant for H2A. The latter histone variant plays a 

crucial role in embryogenesis (88), and also by depositing at the 5’ end of genes can retain the 

boundaries that prevent the spread of heterochromatin into euchromatic regions (89). It is 

possible that inappropriate inclusion of histone variants disturb the boundaries between 

euchromatin and heterochromatin. The disturbances in the epigenetic machinery that induce 

these changes are the focus of much current research (84, 86), as are the consequences of such 

changes.  

RELATIONSHIP BETWEEN EPIGENETIC EVENTS, GENETIC CHANGE AND 
PATHOLOGY IN COLORECTAL NEOPLASIA 

The epigenetics of microsatellite and chromosomal instability 
It is apparent that there is a close interplay between genetic mutations and epigenetic 

modifications within the neoplastic cell. For example, by silencing one allele of a tumour 

suppressor gene, methylation can work in concert with sequence mutation of the other allele 

to fulfill Knudson’s two hit hypothesis. Yet while it is possible to consider the epigenetic 

events seen in colorectal cancer in isolation, it is perhaps more informative to see these 

changes within the existing framework of established pathways for the development and 

progression of colorectal neoplasms. 

Current paradigms of colorectal cancer progression suggest at least two distinct pathways for 

progression, the traditional chromosomal instability pathway, and the more recently 

elucidated microsatellite instability (MSI) pathway (90). These pathways represent divergent 

patterns, in terms of underlying genetics as well as tumour biology, including precursor 

lesions and morphology (91) (Figure 5). Epigenetic events are clearly at work in the 

chromosomal instability pathway, with hypomethylation establishing opportunities for 

chromosomal instability, and for activation of oncogenes such as c-myc (92). However, it is 

the MSI pathway, characterised by early loss of mismatch repair activity within the tumour 
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clone, and thus by the accumulation of errors at microsatellite loci, that serves as an exemplar 

of epigenetic carcinogenesis.  

The microsatellite instability pathway was recognised largely because of its occurrence in the 

cancer predisposition syndrome of hereditary non-polyposis colorectal cancer (HNPCC), and 

it was only several years later that CpG island methylation was recognised as being critical to 

the development of the 15% of sporadic cancers that also followed this pathway (93). It is 

now well established that biallelic methylation of MHL1 followed by transcriptional 

inactivation of the gene is seen in nearly all sporadic MSI cancers. Like HNPCC tumours, 

sporadic MSI colorectal carcinomas have distinctive clinicopathological features, including 

poor differentiation, intra-epithelial lymphocytic infiltrates and location in the proximal colon 

(94). Curiously however, they occur predominantly in elderly women, and a recent systematic 

review has confirmed they have a significantly better outcome than those with microsatellite 

stable cancers of similar stage and grade (95).  

While MLH1 methylation is the hallmark of the MSI pathway for colorectal cancer and 

epigenetic silencing of other genes is common (Table 2), it is noteworthy that these tumours 

also show particular types of genetic change. For instance, activating mutations of the BRAF 

gene are very common in sporadic MSI cancers (96-99), even though this gene is rarely if 

ever mutated in cancers arising in individuals with HNPCC. Likewise an interdependence has 

been reported between MGMT hypermethylation and TP53 mutations (100).The precise 

interrelationship between genetics and epigenetics in the MSI pathway, including the 

chronology of key events, remains to be elucidated.  

The CpG island methylator phenotype (CIMP) 
In 1999, Toyota, Issa and colleagues identified a set of CpG islands that could be methylated 

in tumours (MINTs), but that were not methylated in normal epithelial cells (101). They were 

able to show that many of these loci were heavily methylated in a subset of colorectal cancers, 

and they coined the acronym CIMP to describe those tumours characterised by multiple, 

concordant methylation events (101). Subsequent population-based studies of colorectal 

cancer patients have suggested that CIMP tumours are clinically, pathologically and 

genetically distinct. They are characterised by many of the features typical of MSI tumours, 

such as right-sidedness, high grade, mucinous type, and increased frequency in the elderly and 

in females (102-104). However, over half of the tumours which display widespread CpG 

island methylation are microsatellite stable (Figure 5). There is also evidence to suggest that 

they may be unique in terms of behaviour. Our group has reported difference in outcome 
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between subgroups of CIMP tumours depending on microsatellite status (105), and 

highlighted the poor prognosis of individuals with CIMP positive, microsatellite stable 

tumours.  

The CIMP concept has not been accepted by all researchers in this field, and over the past few 

years there has been much debate as to whether CIMP tumours represent a biologically 

distinct group of colorectal cancers, or are an artificially selected group from a continuum of 

tumours showing different degrees of methylation at particular loci (106). Underpinning this 

debate is the important issue of whether the cell(s) that give rise to CIMP tumours have a 

definable alteration in their machinery of methylation that produces what Issa has referred to 

as “epigenetic instability” (107), and whether this is integral to tumour initiation and 

progression. This is an important question, since if it were true, then a better understanding of 

CIMP tumours would shed more light on the mechanisms that control of CpG island 

methylation, and potentially on the appropriate management of this type of cancer. An 

affirmative answer would also support the concept that predisposition to CIMP may in part be 

hereditary, an observation initially suggested by some (108) but not confirmed in larger 

studies (104, 109). At present, it is clear that issues regarding the operational definition of 

CIMP are limiting the attainment of consensus on these important matters (107), and the 

biological basis of CIMP remains uncertain. 

Chronology of genetic and epigenetic events in colorectal cancer 
Research over the past decade has shown consistently that epigenetic changes such as 

promoter hypermethylation (68, 110, 111) and loss of imprinting (43) can occur in 

histologically normal colonic epithelium, and that these changes are more likely in individuals 

with CIMP or MSI cancers (112). The early occurrence of these epigenetic events, and their 

relevance to the emerging field of stem cell biology, serve to highlight their theoretical 

significance in neoplastic development. Baylin and Ohm have recently advocated the primacy 

of epigenetic events in colorectal neoplasia(52), arguing that such epigenetic alterations in 

stem cells may predetermine the nature of subsequent genetic events. Such a concept, if true, 

would help to explain the distinctive pattern of genetic changes in colorectal carcinogenesis 

made famous by Vogelstein and Fearon (113). Feinberg has also recently highlighted the 

early role of epigenetic change in neoplastic progression, suggesting that epigenetic 

modifications within stem cells and their progeny are responsible for forming a polyclonal 

cellular milieu from which neoplastic clones can develop (114). 



Page 12 of 30 

CAUSES OF EPIGENETIC CHANGES IN COLORECTAL NEOPLASIA 

Clearly, if epigenetic events are present at the earliest stages of colorectal tumorigenesis, then 

this holds important implications for both the recognition of cancer predisposition, and 

possibly for the chemoprevention of this disease. At a minimum, it appears important to 

understand the factors that may induce epigenetic alterations. 

Environmental factors influencing epigenetic changes in colorectal neoplasia  
The influence of environmental factors on the epigenetic state of cells (epimutagens) is a 

rapidly expanding field, and will only be discussed briefly in this review. With regards to 

dietary factors, folate is perhaps the best-studied link to colorectal neoplasia. As an essential 

donor of one-carbon units, folate is important in methylation reactions as well as DNA 

synthesis and repair. Epidemiological and experimental studies have both shown that dietary 

folate correlates inversely with risk of colorectal neoplasia (115-117), but the effect of folate 

intake on tumorigenesis remains complex, and may depend in part on the stage of tumor 

development (118, 119). From an epigenetic viewpoint, increased methylation secondary to 

dietary folate supplementation may have contradictory effects, from the beneficial restoration 

of gene hypomethylation to the disadvantageous silencing of genes. The complexity of this 

situation is compounded by related dietary factors such as alcohol consumption, which may 

abrogate the protective role of folate (120, 121). Finally, in considering dietary factors, it must 

be recognised that early maternal nutrition impacts significantly on epigenetic patterning in 

the fetus, and it has been hypothesized that this in turn can influence adult phenotypes, 

through the persistence of epigenetic changes at susceptible loci (122). 

Advancing age also correlates closely with epigenetic changes in normal colorectal mucosa. 

In these tissues, methylation of many genes including the ESR1  (112, 123), MLH1 (71), 

HIC1 and IGF2 (124) have been shown to increase progressively with age. For at least some 

of these genes, this process appears to be accelerated in individuals with colorectal cancer 

(101, 125). These epigenetic changes may reflect the clinical truism that colorectal carcinoma 

is a disease of the elderly. 

Inherited factors in the epigenetics of colorectal cancer  
Given that epigenetic changes are stable and potentially heritable through meiosis, it is worth 

considering some of the ways in which inheritance may influence epigenetic changes 

associated with colorectal neoplasia. As discussed above, there has been considerable interest, 

albeit scant supporting evidence, for the proposition that the changes that underpin CpG 
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island methylator phenotype, be they genetic or epigenetic, may be hereditable. Perhaps a 

clearer example of inherited epigenetic risk is seen in the case of loss of imprinting at IGF2. 

Certainly, individuals with widespread LOI for this gene have an increased risk of developing 

colorectal cancer (43), and are also more likely to have a family history of colorectal 

neoplasia (126). However, it is unclear whether LOI is a germline or somatic event. 

Our group has recently found germline epimutations of MLH1 which predispose to young 

onset MSI tumours in the large bowel and at extra-colonic sites (127, 128). These germline 

epimutations manifest as soma-wide uniparental methylation of the MLH1 promoter in the 

absence of an intragenic sequence mutation (127), and cause transcriptional silencing of the 

affected allele (128). These observations indicate that germline epigenetic change can mimic 

hereditary cancer syndromes, and may be hereditable (127-131). To date, such soma-wide 

epimutations have not been found in other genes such as APC (131), and further research on 

the family members of individuals with this abnormality is required to better understand this 

phenomenon.  

CLINICAL IMPORTANCE OF EPIGENETIC CHANGE IN COLORECTAL NEOPLASIA 

Given the increasing recognition of epigenetic changes in histologically normal colorectal 

mucosa, as well as in precursor lesions such as aberrant crypt foci, adenomas and serrated 

polyps, it is clear that these changes may serve as a marker for individuals at risk of colorectal 

cancer (112). Epigenetic markers are also increasingly being used in screening tests for 

colorectal neoplasia (110), yet much work remains before such observations can be 

meaningfully translated into routine clinical practice.  

It is also possible that the epigenetic events in colorectal cancer may soon come to influence 

treatment decisions. For instance, while still controversial (132), there is growing evidence 

from retrospective analyses that MSI tumours respond differently to traditional 

chemotherapeutic agents (133, 134), and indeed that outcomes for some individuals with 

these cancers may be worse with standard treatments (135). Such observations may reflect 

fundamental differences in drug responsiveness that are driven not by MSI per se, but rather 

by underlying and as yet unrecognised epigenetic mechanisms (136, 137). 

Not surprisingly, a better understanding of the epigenetic events in carcinogenesis, and the 

recognition that these events are potentially reversible, has brought with it a plethora of 

potential “epigenetic” therapies. Currently there are two broad classes of epigenetic drugs, 

designed to inhibit either DNA methylation or histone deacetylation. At least some of these 
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drugs are in current clinical practice, and many more are in the clinical trials pipeline. 

Although only transient(138), inhibitors of DNA methylation such as 5- azacytidine (139) 

inactivate DNA methyltransferases, and can thus revert methylation-induced silencing (140), 

Inhibitors of histone deacetylase, such as SAHA and newer derivatives (9) have been slower 

to emerge, and it is likely that combination therapy approaches may also be beneficial, given 

the interdependence of these epigenetic processes (9). Whether these treatments will have 

sufficient specificity in practice to provide a useful therapeutic window awaits the outcome of 

current and future trials. Nevertheless, the experience gained in this process is likely to inform 

the mechanism of action of these drugs, and indeed the significance of epigenetic events in 

colorectal carcinogenesis.  

CONCLUSIONS  

While our knowledge of the molecular genetics of colorectal neoplasia has developed rapidly 

over the past several decades, it is only in recent years that we have begun to understand the 

epigenetic events that underpin neoplastic initiation and progression in the large bowel. 

Currently, colorectal cancer epigenetics is a bourgeoning field, and as was the case with the 

genetics of cancer, the lessons learned from colorectal neoplasia are serving to throw light on 

the epigenetics of other common cancers. It is difficult to predict the extent to which 

knowledge of epigenetics gained over the next decade will transform our understanding of the 

disease and its precursors, but it is clear that it does have the potential to entirely rework our 

current paradigms of cancer development, if not management. 
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LEGENDS FOR FIGURES  

 
Figure 1: Schematic of the interrelated cellular processes that constitute the epigenetic code. 
RNA modification includes the roles of RNA interference and microRNA in altering gene 
expression. 

Figure 2: A model of epigenetic modifications and their effect on transcription.  

The nucleosome is assembled from DNA and histones, and chemical modification of histone 

tails induces conformational changes that can cause either activation or repression of 

transcription. Repressive modifications include H3K9, H3K27 and H4K20 methylation, in 

association with DNA methylation. Changes such as acetylation at H3K9 (shown) are 

associated with open chromatin formation (euchromatin). 

Figure 3: Methylation of cytosine residues and its consequences.  

De novo methyltransferase (DNMT) catalyses the methylation at position 5 of cytosine, using 

S-adenosylmethionine (SAM) as the methyl donor. Spontaneous deamination of 5-

methylcytosine results in its conversion to thymine, an event which is in itself mutagenic, and 

which has caused progressive depletion of cytosine bases from the eukaryotic genome 

throughout evolution. 

Figure 4: Organisation and consequences of CpG methylation in normal and cancer cells. 

The upper panel shows a normal cell, in which a cluster of C-G dinucleotides (CpG island) 

remains unmethylated (pale pins), while scattered cytosines elsewhere are methylated (red 

pins). In the absence of methylation of this CpG island, DNA in the promoter region remains 

accessible to transcription factors, and the gene is expressed. In the lower panel, a cancer cell 

shows characteristic CpG island methylation, with concomitant compact chromatin structure 

in the promoter region, causing silencing of gene expression.  

Figure 5: Proposed pathways for colorectal tumorigenesis and their relationship to the CpG 

island methylator phenotype (CIMP).  

A working model of the dichotomy between chromosomal instability and microsatellite 

instability pathways in colorectal carcinogenesis, and the common morphological and genetic 

changes that accompany each subtype. A subgroup of tumours is shown in the centre of the 

figure that are characterised by CpG island methylation (CIMP +ve) and microsatellite 

stability (MSS). It is not clear whether these tumours arise from either or both of the main 



Page 27 of 30 

pathways, or whether they develop separately. MSI - microsatellite instability; Serrated polyp 

- hyperplastic polyp or serrated adenoma. 
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