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Abstract

An innovative concept of wind turbines, the flapping foil power generator that

exploits dynamic stall, is numerically studied at Reynolds number of 1100. The

combination of the kinematic parameters and the coupling between the foil

deformation and aerodynamic loads are investigated to uncover the physical

mechanism for high performance.

Firstly, the discrete vortex method (DVM) is improved to capture flow

separations at the leading and trailing edges of the foil. Its results compare

well with those of immersed boundary-lattice Boltzmann method (IB-LBM)

and experiments. Its computational cost is at least two orders of magnitude

less than that of the IB-LBM.

Then, kinematic parameters are optimized using a multi-fidelity evolution-

ary algorithm implemented with a dynamic stall model and the improved D-

VM. The results show that despite the use of low fidelity models and limited

budget of computational resources, the multi-fidelity strategy is capable of find-

ing kinematic conditions suitable for high performance. In addition, detailed

flow analysis using IB-LBM has revealed that high power extraction perfor-

mance is associated with the detachment of the leading edge vortex (LEV) n-

ear stroke reversal, resulting in a horseshoe-shaped vorticity wake with a width

approximating the swept distance of foil behind the turbine plane. When the

LEV detaches from the foil near mid stroke, both efficiency and power output

i



ii

suffer.

Finally, a flexible system consisting of a rigid foil and a passively actuated

flat plate tail connected through a torsional spring to the trailing edge of the

rigid foil is studied numerically using the IB-LBM for different mass densities

and natural frequencies under different kinematic conditions. The results show

that a tail with appropriate mass density and resonant frequency can improve

the maximum efficiency by 7.24% compared to the rigid system. This is be-

cause the deflection of the tail reduces the low pressure region on the pressure

surface caused by the LEV after the stroke reversal, resulting in a higher ef-

ficiency. In addition, a spring-connected tail with a low resonant frequency

improves the performance significantly at high flapping frequencies.
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Chapter 1

Introduction

1.1 General introduction

With the increase of pollution emitted into the atmosphere due to human

activities, air pollution and global warming threaten human and animal health

and intensify natural disasters. Among human activities, energy consumption

is the primary source of emission, producing 68% of global greenhouse gas in

2010 (IEA 2016). Fossil fuels including petroleum, coal, and natural gas are

commonly used to generate power. In 2014, 82% of world energy was supplied

by fossil fuels (IEA 2016). Besides greenhouse gases, a number of harmful

air pollutants, such as sulfur oxides and nitrogen oxides, are emitted during

energy production using fossil fuels. In order to address the problem associated

with the use of fossil fuels, it is crucial to move towards finding alternative

sustainable energy sources (Panwar et al. 2011). Renewable energy sources,

such as wind power, hydropower, solar power and geothermal power, create a

much less harmful impact on human health and the climate change (Jacobson

2009). In terms of the global installed capacity in 2016, wind power (487 GW)

ranks the second of the technologies applied to generate renewable electric

1
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power (2,017 GW in total), after hydropower (1,096 GW) (REN21 2017). Due

to its relatively competitive price and worldwide resource base, the commercial

and technical investment in wind energy increases rapidly in the power sector

(Pryor & Barthelmie 2010). By 2020 the growth rate of global cumulative wind

energy capacity will remain more than 10% (GWEC 2014) and the installed

capacity in the European Union is expected to increase to 149% of that in

2014 (Giorgio et al. 2015). Besides wind energy, tidal energy offers a reliable

energy source with a technical potential capacity of 500-1000 TW h/yr (Pelc

& Fujita 2002). Since tidal power generators share many similarities to wind

turbines, technology of harvesting energy from water currents can benefit from

the advances in wind turbine designs (Rourke et al. 2010).

Although the use of wind energy can be traced back to 3,000 years ago,

the first wind turbine with rotating blades to generate electricity was built by

Poul la Cour in 1981 (Ackermann & Söder 2000) because of the complexity of

the wind energy technique. Since then rotary turbines have been commonly

used to harvest energy from air and water currents. In general, a high tip

speed ratio is desirable in rotary turbine design for high efficiency. However,

the high speed at the tip of the blade can result in considerable noise (Ragheb

& Ragheb 2011) and large centrifugal forces which may cause blade failure

(Schubel & Crossley 2012), especially for large scale wind turbines. To resolve

these issues, some efforts have been made on utilizing other mechanisms to har-

vest energy, e.g. bladeless turbines (El-Shahat 2016) and flapping foil turbines

(Young et al. 2014). Also in 1981, the capability of harvesting energy from the

motion of a flapping foil was first demonstrated by McKinney & DeLaurier

(1981). The applications of flapping foil are inspired by aquatic creatures as

well as birds and insects, involving complex unsteady flows. Thanks to the

rapid development of flapping foil propulsive systems (Platzer et al. 2008, Tri-



1.1. General introduction 3

antafyllou et al. 2004), power generators harvesting energy from the motion

of flapping foils as an alternative to rotary turbines have been under active

investigation in the last 10 years (Young et al. 2014, Xiao & Zhu 2014).

In the concept of a flapping foil power generator, the foil generally under-

goes pitch and plunge motions. The performance is measured as the percentage

of power extracted from the fluid passing through the turbine plane, as for ro-

tary turbines. In contrast to rotary turbines which rely on attached flows for

high efficiencies, flapping foil turbines can benefit from exploiting flow sep-

arations for high aerodynamic loads, especially in laminar flows. Compared

to conventional turbines, the flapping power generator has several prominent

features:

• It gives promising performance under low speed environment, potentially

expanding the applications in different flow regimes. The efficiency of

conventional turbines falls rapidly at low speeds (below 2 m/s for tidal

turbines (Lewis et al. 2015) and 5 m/s for wind turbines (Wright & Wood

2004, Akpinar & Akpinar 2005)), while the flapping power generator

operated as a tidal turbine can provide relatively high efficiency (around

30% Abiru & Yoshitake (2011a)) even at the cut-in speed (1 m/s) of

conventional turbines where little power is extracted (Lewis et al. 2015).

Since the estimation of available wind and tidal power is based on the

flow speed limits of rotary turbines (6.9 m/s for wind energy Jacobson

(2009) and 2 m/s for tidal energy Pelc & Fujita (2002)), decreases in

flow speed limits by employing flapping foil power generators imply the

increase of usable energy resources. For instance, when the wind speed

of commercial applications decreases to 5.9 m/s, the global wind power

potential doubles (Archer & Jacobson 2005).
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• As the velocity of a flapping foil is approximately the same along the

span, it operates at low tip speeds. This is beneficial to the environment

by reducing both noise and impact on aquatic creatures (Masters 2013).

Further more, centrifugal forces which may lead to structure failure of

rotational blades are negligible on flapping blades.

• Untwisted flapping foil has a robust structure and low manufacturing

cost. In addition, the flapping foil power generator can be installed in

shallow water since the it sweeps a rectangular area (Xiao & Zhu 2014).

Thus, the flapping foil power generator is attractive as a supplement or

alternative to conventional turbines. Several international companies have de-

veloped prototypes to harvest energy from flapping motions, including Engi-

neering Business Ltd (UK) (Rostami & Armandei 2017), Pulse Tidal Company

(UK) (Marsh 2009), BioPower System (Australia) (Kloos et al. 2009) and Festo

AG (Germany) (Send 2016).

1.2 Research objectives

The aim of this study is to explore the high performance of the flapping foil

power generator and uncover the associated flow physics by numerical mod-

elling and simulations. Compared to conventional turbines which rely on at-

tached flow for high efficiencies, a flapping foil turbine can exploit the flow

separation near the nose of the foil to form leading edge vortices, resulting in

high efficiency, particularly at low flow velocities. Due to the sensitivity of the

leading edge vortex (LEV) dynamics to the kinematics of flapping foil genera-

tors, the performance of flapping foil turbines is affected by many parameters

including kinematics, foil geometry, material properties and environmental ef-
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fects. For example, the kinematics of a flapping foil undergoing sinusoidal pitch

and plunge motions is governed by five parameters, which will be discussed in

Section 2.2.1. However, previous studies on kinematic parameters generally

focused on two variables with others fixed. To compete against rotational

turbines, it is necessary to search for the optimal combination of kinematic

parameters since the trial and error approach is far from ideal. However, it

is computationally expensive to optimise kinematic parameters using Compu-

tational Fluid Dynamics (CFD) methods because of their high computational

cost. Moreover, analytical models based on the quasi-steady assumption and

potential flow theory are insufficient for flapping foil analysis under some cir-

cumstances (e.g. slow flow speeds) where the flow can be highly separated. In

addition, studies on propulsion systems based on flapping locomotion includ-

ing fish, rays and insect wings indicate that an appropriate degree of structural

flexibility can improve the propulsive performance. Considering the similarity

of locomotion in thrust and power generation applications, it is hypothesised

that an appropriate coupling between the foil deformation and the aerodynam-

ic load acting on the foil can improve the performance of a flapping foil power

generator.

Within the overall aim, the specific objectives are to:

• develop a low order model for the simulation of a flapping foil experienc-

ing deep dynamic stall, which takes into account of flow separations at

low flow speeds and consumes much less time than CFD methods;

• validate the low order model and determine the utility of approximate

models for prediction of the energy harvesting performance and aerody-

namic loads acting on the flapping foil;

• search for optimal kinematic parameters for high energy extraction per-
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formance using a generic population-based metaheuristic optimization

algorithm (evolutionary algorithm) with the validated low order models;

• investigate impacts of the flexibility on the aerodynamic loads and energy

harvesting performance of a flapping foil power generator; and

• explore the relationships between energy harvesting performance, kine-

matic and structure parameters and formation and convection of the

vortices.

1.3 Thesis outline

The structure of the remainder of this thesis is briefly outlined below.

In Chapter 2, the mechanisms and advantages of harvesting energy from a

fluid flow using a flapping foil are discussed. The recent progress in analytical,

numerical and lab-based experimental studies as well as prototype tests is

reviewed. In addition, the influence of kinematic parameters, foil geometry

and deformation and environmental effects is examined.

In Chapter 3, various methods employed in the thesis are presented and

validated against the data in the literature. Firstly, a reduced order model de-

veloped by Bryant et al. (2013) for flapping foil simulations is described. This

model is reproduced with Matlab and compared with the results of Bryant

et al. (2013). The model is further validated by matching its results with the

CFD results of Kinsey & Dumas (2008), to serve as a baseline. Then, an inno-

vative numerical method to simulate the fluid, the immersed boundary-lattice

Boltzmann method (IB-LBM), is presented. The space and time refinement

and validation of the in-house code using IB-LBM with multi-block technique

are conducted. Finally, the optimization solver of evolutionary algorithm using
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single and multi fidelity strategies is presented and compared with a classical

non-gradient optimisation method, the complex method (Krus & Andersson

2003), for artificial non-linear functions.

In Chapter 4, the discrete vortex method (DVM) for flapping foil simula-

tions with large leading and trailing edge flow separations is developed. The

DVM is based on the potential flow theory and introduces a leading edge

suction force to incorporate the leading edge flow separation. In addition, cor-

rections using semi-empirical functions are employed to account for the effects

of trailing edge flow separation. To examine the time cost, the computational

time of the DVM is compared with that of IB-LBM under different kinematic

conditions. Then, instantaneous lift and power coefficient as well as the mean

power coefficient and efficiency predicted by the DVM with flow separation

corrections are compared with those given by the Bryant model (Bryant et al.

2013) reproduced in Chapter 3. The results are also validated against the CFD

simulations and experimental data in the literature as well as results given by

the IB-LBM code.

In Chapter 5, the multi-fidelity evolutionary algorithm (MFEA) is used

to search for high energy extraction performance solutions of a flapping foil

power generator. Solutions of different fidelity levels are evaluated by the

Bryant model reproduced in Chapter 3 and the DVM developed in Chapter

4. A single objective problem with two variables is first used to illustrate

the benefits of the multi fidelity optimization strategy. Then, single-objective

and bi-objective optimization problems of five design variables are considered

and compared with the singe-objective problem of two variables. The best

solutions obtained by the bi-objective problem are evaluated with IB-LBM in

order to provide insight into the physics underpinning the performance of a

flapping foil power generator. The influence of the kinematic parameters on
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the performance of the flapping foil power generator is discussed through anal-

ysis of the non-dominated solutions. Finally, specified cases are investigated

through aerodynamic loads as well as the averaged flow fields to examine the

relationship between the kinematics and the performance of the flapping foil.

In Chapter 6, the influence of the flexibility on the performance of a flap-

ping foil power generator is examined at a Reynolds number of 1100. The

flexibility is modelled by a torsional spring connecting a passively actuated

plate to the trailing edge of the rigid foil, as described in Section 3.1. A para-

metric study on mass density and natural frequency is conducted under the

optimum kinematic condition of the rigid system identified from the literature

and numerical simulations using IB-LBM. Then the influence of passive defor-

mation of the tail under different kinematic conditions is examined through

comparison of the rigid system and the flexible system with different resonant

frequencies.

In Chapter 7 major conclusions from the research and recommendations

for further research are made.



Chapter 2

Background

As mentioned in Chapter 1, the concept of harvesting energy from flapping

motions has been under active investigation in the last 10 years, and possesses

several advantages compared to rotary turbines. In this chapter, the funda-

mentals of harvesting energy from flapping motions and factors affecting the

performance of flapping foil turbines are examined. To clarify the difference

of flapping foil turbines from the rotary turbines, the mechanical behaviour

and classification of flapping foil systems are introduced in Section 2.1. Then,

parameters governing the kinematics of the flapping foil power generator with

different activation mechanisms are compared and discussed in Section 2.2.

In Section 2.3, geometries of the foil and system including deformation are

examined. Finally, environmental effects are briefly discussed in Section 2.4.

2.1 Flapping foil fundamentals

Flapping motions are commonly utilized by animals like the tuna and the drag-

onfly to achieve effective propulsion (Lentink & Dickinson 2009). Furthermore,

flexible structures such as fish fins are able to absorb energy from incoming

9
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vortices through flapping motions to develop thrust (Beal et al. 2006). The

concept of using a flapping foil to harvest energy from the incoming flow was

pioneered by McKinney & DeLaurier (1981). A later study by Jones & Platzer

(1997) showed that a dual-mode (combined pitch and plunge motions) flapping

wing could extract power from the incoming flow when the pitch amplitude

exceeded the induced angle of attack due to plunge motion. Thus depending

on kinematics, a flapping foil undergoing pitch and plunge motions can oper-

ate in two modes: propulsion and power extraction. When energy is extracted

from the incoming flow, power output is defined as positive. Kinsey & Dumas

(2008) suggested a “feathering criterion” χ to estimate the threshold:

χ =
θ0

arctan(H0cω/U)
, (2.1)

where U is the freestream velocity; H0 and θ0 are respectively the plunge

and pitch amplitudes; and ω is the angular frequency of the flapping motion.

When χ is above 1, the flapping foil operates in power extraction mode and

the pitch amplitude is larger than the maximum angle of attack induced by

the plunge motion (Kinsey & Dumas 2008). This parameter can be used to

estimate the threshold of the pitch amplitudes for given frequencies and plunge

amplitudes, above which power is extracted (Young et al. 2014). Comparison

between contours of efficiency predicted by inviscid methods (the Theodorsen’s

theory and the unsteady panel method) and viscous methods by solving Navier-

Stokes (NS) equations indicates that the flow stays attached near the threshold

(Young et al. 2014).

Since a high level of the flow separation reduces the efficiency of rotary

turbines (Make & Vaz 2015), a number of studies on rotary turbines were

performed focusing on active control to alleviate the flow separations (Mal-
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Fig. 2.1: Plunge motion H, pitch motion θ, angle of attack α, hydrodynamic lift L
and moment M about the pivot location, which is Xpiv from the leading edge of the

foil with a chord length of c. Ueff =
√
Ḣ2 + U2 is the effective velocity.

donado et al. 2010, Wang et al. 2013, Yen & Ahmed 2013). However, studies

on flapping foil power generators show that the formation and evolution of the

leading edge vortex (LEV) resulting from the leading edge flow separation play

a significant role on the performance at least for low Reynolds number when χ

is far above the threshold. Specifically, high performance occurs under defined

conditions governed by appropriate synchronization of the LEV shedding and

the foil motions (Kinsey & Dumas 2008, Zhu 2011). Thus, controlling the for-

mation of LEV may be a possible approach to improve the performance of a

flapping foil power generator (Kim et al. 2017). Since it is related to the onset

of flow separation, the angle of attack α, due to combined pitch and plunge

motions (Fig. 2.2), is frequently adopted in flapping foil studies:

α = θ − tan−1(Ḣ/U), (2.2)

where Ḣ is the plunge velocity.

Despite the fact that propulsive and energy harvesting systems using flap-

ping foils exploit a mechanism akin to that in the locomotion of insects and
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ocean creatures, the energy flux of the two systems are in the opposite di-

rections. In the propulsive system, energy is consumed to generate thrust.

Thus its performance is characterized by the force generated in the travelling

direction and it creates a jet-like flow (reverse Kármán vortex street). On the

other hand, the energy harvesting system extracts power from the incoming

flow and creates a wake-like flow (Kármán vortex street). Analogous to rotary

turbines, the performance of energy harvesting systems using flapping foils is

quantified by two non-dimensional parameters: the mean power coefficient CP

and efficiency η, defined as the ratio of the power P extracted to a reference

power Pr available from the flow.

The cycle-averaged power coefficient CP is expressed as:

CP =
1

T

∫ t0+T

t0

CP (t) dt, (2.3)

where T is the period; and CP (t) is the instantaneous power coefficient CP

defined by

CP (t) =
P

1
2
ρU3c

=
Ph (t) + Pθ (t)

1
2
ρU3c

, (2.4)

where ρ is the freestream density ; c is the chord length; P is the instantaneous

total power, Ph (t) = LḢ (t) is the instantaneous power component due to the

plunge motion and Pθ (t) = Mθ̇ (t) is the instantaneous power component due

to the pitch motion; and L and M are respectively the lift and moment as

shown in Fig. 2.1

As noted by Kinsey & Dumas (2014), there are 4 definitions for reference

power Pr which is used to compute η. In the first one, the reference power

available in the flow is measured as the kinetic energy of the flow passing

through the overall maximum distance d swept by any part of the foil during
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one flapping cycle. Then Pr and η are expressed as:

Pr =
1

2
ρU3d, (2.5)

η =
P

Pr
= CP

c

d
. (2.6)

In the second definition (Lu et al. 2014), Pr is measured as the flux of

kinetic energy through the distance swept by the pivot point, which is twice

of the plunge amplitude H0:

Pr2 =
1

2
ρU3(2H0), (2.7)

η2 =
P

Pr
= CP

c

2H0

. (2.8)

In the other two definitions, the Betz limit (Betz 1919), which states that

the maximum extractable power is 16/27 the available power in the flow, is

introduced:

Pr3 =
16

27

(
1

2
ρU3d

)
, (2.9)

η3 =
27

16
CP

c

d
(2.10)

Pr4 =
16

27

(
ρU3H0

)
, (2.11)

η4 =
27

16
CP

c

2H0

. (2.12)

The first definition of η in Eq. 2.6 is recommended by Kinsey & Dumas (2014)

and is commonly used in studies of the flapping foil power generators.

With respect to the activating mechanism of the device, flapping foil pow-
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(a) System with prescribed pitch and plunge motion.

(b) System with prescribed pitch and passive plunge motion.

(c) System with passive pitch and plunge motion

.

Fig. 2.2: Schematics of a flapping foil power generator with prescribed, semi-passive
and fully passive motions, after Young et al. (2014) and Xiao & Zhu (2014).
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er generators can be classified into three categories (Fig. 2.2): systems with

prescribed pitch and plunge motions, one motion prescribed and the other

flow-induced and fully flow induced pitch and plunge motions. In the fully

prescribed system (Fig. 2.2a), if the time averaged input power to drive the

foil is negative in one flapping cycle, the system is considered as extracting

power. Due to the specified pitch and plunge motions, models based on this

activation type are easy to implement and favoured in theoretical and nu-

merical studies. Generally, in the semi-passive system (Fig. 2.2b), the pitch

motion is imposed and the foil responses to the hydrodynamic force by under-

going a plunge motion on which power is extracted via a electric generator.

Because of the requirement of power input to drive the pitch motion, the net

power extracted from the flow is the power extracted from the plunge motion

minus the power required for the pitch motion. The semi-prescribed system

is commonly implemented by a motor driving pitch motion in experimental

studies. Prototypes Stingray, bioStream and DualWingGenerator developed

respectively by Pulse Tidal Company (Marsh 2009), BioPower System (Kloos

et al. 2009) and Festo AG (Send 2016) employ the semi-passive system. In

the fully passive system (Fig. 2.2c), no device is required to drive the motion

of the foil. In some studies (Jones et al. 1999, Young et al. 2013), a linkage

mechanism is employed to ensure a constant phase between pitch and plunge

motions during operation. The prototype tested by Kinsey et al. (2011) is a

single degree of freedom system with the constrained passive pitch and plunge

motions. A detailed list of representative studies on the fully prescribed sys-

tem, semi passive system and fully passive system is respectively summarized

in Table A.1, A.2 and A.3.
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2.2 Governing kinematics

Table 2.1: Summary of optimal kinematic parameters (f ∗, θ0, h0, ϕ and xpiv) at which the highest efficiency using the definition in
Eq. 2.6 was achieved in studies on flapping foil power generators with prescribed pitch and plunge motions. ηm is the maximum
efficiency achieved by the corresponding method in the Method column and CPm is the power coefficient corresponding to the
maximum efficiency. If α0 was not given in the literature, it is calculated from other parameters using Eq. 2.2. NA stands for not
available, NST stands for not stated, TT stands for Theodorsen’s theory (Theodorsen 1979), UPM stands for the unsteady panel
method, NS stands for Navier-Stokes solver, URANS stands for unsteady Reynolds averaged Navier-Stokes and EXP stands for
experiment.

Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Fully prescribed system

Jones &

Platzer
1999 UPM ∞ NACA0012 0.287a 71.3b 0.83c 90 0.5 15 0.52 25.7%

Davids 1999 UPM ∞ NACA0012 0.238aT 76.3b 1 90 0.5 20 0.82 34.9%d

aOriginal reduced frequency was defined as k = 2πfc/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U .
bCalculated according to the amplitude of the angle of attack α0, plunge amplitude h0 and non-dimensional frequency f∗.
cCalculated according to the maximum non-dimensional plunge velocity kh0 and reduced frequency k.
dThe study by Davids (1999) stated a peak efficiency of 30.0% in Table 1 on page 41. Here the efficiency of 34.9% listed in Appendix 2 on page 78 is

considered.
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Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Lindsey 2002

UPM

NS

URANS

∞

2.0× 104

1.0× 106

NACA0014

0.270a

0.159a

0.207a

76.8b

NST

NST

0.9

1.3

1.3

90

NST

NST

0.55

NST

NST

20

NA

NA

>0.6e

0.53

1.00

>30%e

17.2%

31.5%

Jones et al. 2003

UPM

NS

URANS

∞

2.0× 104

1.0× 106

NACA0014

0.223a

0.135a

0.104a

75.3b

73

73

1.25

1.3

1.3

110

90

90

0.25

0.25

0.25

15

25

32.4

0.74

0.91

1.25

21.5%f

28.9%f

39.8%f

Kinsey &

Dumas
2008 NS 1100 NACA0015 0.14 76.3 1.0 90 0.333 35.0 0.86 33.7%

Simpson et al. 2008 EXP 1.3× 104 NACA0012 0.16 85.9 1.23 90 NST 34.4 1.06 <43%g

Ashraf et al. 2011 NS 2.0× 104 NACA0014
0.127

0.127

73

73

1.05

1.05

90

90

0.5

0.5

73.0

73.0

0.89

1.44h

34%

54%i

eExtracted from the contours given by Lindsey (2002).
fCalculated according to the power coefficient and swept distance computed from Eq. 2.13 and 2.14.
gOriginal efficiency was given by Eq. 2.8. Cannot recalculate the efficiency using the definition in Eq. 2.6 without pivot location xpiv.
hTotal power coefficient of multiple foils.
iTotal efficiency of multiple foils.
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Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Zhu 2011 NS 1000 Joukowski 0.14 90 1.0 90 0.35 48.7 0.81j 31%

Kinsey &

Dumas
2012b URANS 5.0× 105 NACA0015 0.14 75 1.0 90 0.333 33.7 1.64h 64%i

Xiao et al. 2012 NS 1.0× 104 NACA0012 0.15k 63.3 1.0 90 0.333 20 0.98 39%l

Kinsey &

Dumas
2014 URANS 5.0× 105 NACA0015 0.16 85 1.5 90 0.333 28.6 1.56 44.6%

Lu et al. 2014 NS 1.0× 104 NACA0012 0.125k 47b 0.8 90 0.333 15 0.46 21%m

Xu et al. 2016 URANS 4.4× 104 NACA0015
0.11

0.14

70

70

1.0

1.0

90

90

NST

NST

73.0

73.0

NST

NST

35%

54%i

Kim et al. 2017 EXP 5.0× 104 Elliptical 0.13 70 0.8 90 0.50 36.8 0.74f 38%

jCalculated according to the efficiency and swept distance computed from Eq. 2.13 and 2.14.
kOriginal frequency is given by the Strouhal number St = 2fh0/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U
lThe definition of efficiency in the study by Xiao et al. (2012) was the same as Eq. 2.8. Since the curve of power coefficient (Fig.5) and that of efficiency

(Fig. 6) is different, definition in Eq. 2.6 is considered here.
mOriginal efficiency was given by Eq. 2.8. Recalculated the efficiency using the definition in Eq. 2.6.
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Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Sun et al. 2017 URANS 6.0× 105
NACA0015

NACA0025

0.12

0.14

85

100

1.0

1.0

90

90

0.333

0.333

48.0

58.7

1.03f

1.49f

39.2%

54.0%

Wang et al. 2017 NS 1.3× 104 NACA0012 0.18 82.9 1.0 90 0.333 34.4 1.05 35.5%

Semi passive system

Shimizu 2004 TT ∞ NACA0012 0.09a 50 NST NST 0.49 NA 0.34n 29%o

Shimizu 2008
TT

URANS

∞

4.6× 105
NACA0012

0.09a

0.09a

50

50

0.9

1.4

109

108

0.446

0.465

NA

NA

0.34n

0.60n

28.8%o

35.3%o

Zhu &

Peng
2009 NS 1000 Joukowski 0.20a 60 NST NST 0.333 NA 0.31 27%

Abiru &

Yoshitake
2011a EXP 1.2× 105 NACA0015 0.10a 50 0.49 90 0.5 NA 0.30p 22%o

nThe power coefficient is computed from the dimensional power given by Shimizu (2004) with an assumed air density of 1.225 kg/m3.
oOriginal efficiency was given by Eq. 2.10. Recalculated the efficiency using the definition in Eq. 2.6.
pThe power coefficient is computed from the dimensional power given in Abiru & Yoshitake (2011a) with an assumed water density of 998 kg/m3.
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Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Huxham

et al.
2012 EXP 4.5× 104 NACA0012 0.10 58 0.45 NST 0.25 46 0.29q 24%

Deng

et al.
2015 NS 1000 NACA0015 0.16 75 NST 82 0.333 NA 0.57r 33.4%

Teng

et al.
2016 NS NACA0015 1000 0.16 75 NST NST NST NA NST 32%

Fully passive system

McKinney &

DeLaurier
1981 EXP

8.5× 104

1.1× 105
NACA0012

0.10

0.12

25

30

0.3

0.3

90

90

0.5s

0.5s

14.3

16.9

0.13n

0.17n

16%

17%o

Davids 1999 EXP NST NACA0012 NST 49 0.53 92.5 0.51 NA 0.19 15.5%

Lindsey 2002 EXP 2.2× 104 NACA0014 0.122a 73 1.05 NST NST 34.0 0.25 <12%t

qCalculated from the input and output power coefficient and non-dimensionalized by 1/2ρU3c.
rIn the study by Deng et al. (2015), CPm is 0.42. Here CPm = 0.57 is considered since the original one is incorrect after communication with the

authors.
sDeducing from Eq. 16 in the study by McKinney & DeLaurier (1981)
tThe original efficiency in the study by Lindsey (2002) was 23%. However, according to the plunge amplitude of 1.05 and power coefficient of 0.25, the
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Authors Year Method Re Geometry f∗ θ0(
◦) h0 ϕ(◦) xpiv α0(

◦) CPm ηm

Jones et al. 2003 EXP 2.2× 104 NACA0014 0.104a 73u 1.3u 90 0.25u 32.4 0.23 8.0%f

Peng & Zhu 2009 NS 1000 Joukowski 0.12 40 NST NST 0.5 NA 0.14 20%

Kinsey

et al.
2011 EXP 4.8× 105 NACA0015

0.14

0.12

75

75

1

1

90

90

0.333

0.333

33.7

38.0

0.77v

1.02v,h

30%

40%i

Young

et al.
2013

NS

URANS

1100

1.1× 106
NACA0012

0.19

0.19

90

90

1

1

90

90

0.5

0.5

40

40

NST

NST

37.9%

41.4%

Veilleux &

Dumas
2017 URANS 5.0× 105 NACA0015 0.096 83 1.26 300w 0.333 58x 1.08 33.6%

efficiency should be less than 12%
uDeducing from Section 2.2 in the study by Jones et al. (2003).
vCalculated according to the efficiency and swept distance of 2.55 chord length mentioned in the study by Kinsey et al. (2011).
wPeak-to-peak phase angle between the pitch and plunge motions extracted form Fig.15 in the study by Veilleux & Dumas (2017).
xExtracted form Fig.15 in the study by Veilleux & Dumas (2017).



2.2. Governing kinematics 22

Generally, the flapping foil power generator undergoes simple pitch and

plunge motions, while the surge motion (parallel to the oncoming flow) was

also considered in several studies (Wu et al. 2016, Jiang et al. 2016). These

motions are governed by a large number of parameters which have a significant

impact on the performance of the flapping foil power generator. Depending

on the model used to describe the flapping motion, parameters affecting the

kinematics of the flapping foil can be different between studies, especially those

in the fully passive system. For comparison of the optimal operating condition

achieved in parametric studies on different activation modes, five optimal kine-

matic parameters (non-dimensional flapping frequency f ∗, pitch amplitude θ0,

non-dimensional plunge amplitude h0, phase angle ϕ between the pitch and

plunge motions, non-dimensional pivot location xpiv) which are commonly used

in the literature are listed in Table 2.1. As the mean power output CP increas-

es linearly with h0 when other parameters are fixed (Xiao & Zhu 2014), the

optimal condition in Table 2.1 is considered as that under which the highest

efficiency η defined in Eq. 2.6 is achieved.

2.2.1 Fully prescribed system

The fully prescribed system is an ideal model for theoretical analysis of the

mechanisms for high energy harvesting performance since it does not take into

account structural dynamics in response to the aerodynamic loads, reducing

the complexity in a fluid-structure-interaction (FSI) system. The vertical po-

sition of the leading and trailing edge of the foil can be obtained simply from
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the motion via:

HLE (t) = H (t)− xpivc sin θ (t) , (2.13)

HTE (t) = H (t) + (1− xpiv)c sin θ (t) , (2.14)

where HLE and HTE are the vertical position of the leading and trailing edge

respectively; xpiv = Xpiv/c and Xpiv is the distance from the leading edge

of the foil to the pivot point along the chord as shown in Fig. 2.1. Then

the swept distance d is computed as the peak to peak value of HLE or HTE

whichever is larger. As summarized in Table A.1, this system is commonly

used in numerical studies.

In the fully prescribed system, the pitch and plunge motions are complete-

ly imposed via several kinematic parameters: the non-dimensional flapping

frequency f ∗ = fc/U , the pitch amplitude θ0, the non-dimensional plunge am-

plitude h0 = H0/c, the phase angle ϕ between the pitch and plunge motions,

the non-dimensional pivot location xpiv and other adjustable parameters used

to alter the motion profiles (Xiao et al. 2012, Lu et al. 2014). Since the pio-

neering study on the fully prescribed system conduced by Jones et al. (1999),

many efforts have been made to identify the optimal combination of kinematic

parameters to achieve high performance.

In the early parametric studies on the fully prescribed system (Jones et al.

1999, Davids 1999, Lindsey 2002, Jones et al. 2003), sinusoidal pitch and plunge

motions were imposed. The kinematics of the system were governed by on-

ly 5 parameters: f ∗, θ0, h0, ϕ and xpiv. In their study, an unsteady panel

method (UPM) based on the potential flow theory was used to search optimal

combinations of the kinematic parameters in the range of f ∗ = 0.01 − 0.8,

θ0 = 8◦ − 105◦, h0 = 0 − 5, ϕ = 65◦ − 125◦ and xpiv = −0.3 − 1.3. Since the
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UPM would fail when flow separations occurred, the amplitude of the angle of

attack α0 was limited up to 20◦ (Davids 1999). Thus the formation of LEVs

was not taken into account in the UPM simulations. Due to the limitation of

computational resources, only around 15 specified cases were evaluated using

a NS solver at Reynolds numbers Re = 2× 104 and 1× 106, giving the highest

efficiency of 39.8% at Re = 1 × 106, f ∗ = 0.104, θ0 = 73◦, h0 = 1.3, ϕ = 90◦

and xpiv = 0.25 (Lindsey 2002, Jones et al. 2003).

Kinsey & Dumas (2008) presented contours of efficiency in the range of

f ∗ = 0.01 − 0.25, θ0 = 0◦ − 90◦ at Re = 1100, h0 = 1.0, ϕ = 90◦ and

xpiv = 0.333, giving the highest efficiency of 33.7% at f ∗ = 0.14 and θ0 = 76.3◦.

In addition, they tested three pivot locations xpiv = 0.25, 0.333 and 0.5 under

the optimal (f ∗ = 0.14 and θ0 = 76.3◦) and non-optimal (f ∗ = 0.18 and

θ0 = 60.0◦) conditions and concluded that the pivot location was important

to the force evolutions and power extraction performance. The important role

of LEV in synchronization between the plunge velocity and the lift was first

proposed in this study. Zhu (2011) extended the parametric study conducted

by Kinsey & Dumas (2008) in the range of f ∗ = 0.05 − 0.25, θ0 = 30◦ − 90◦,

h0 = 0.3− 2.0, ϕ = 60◦− 130◦ and xpiv = 0.2− 0.5 at Re = 1100 and analysed

the stability of the wake behind the turbine plane by solving the inviscid Orr-

Sommerfeld equation. In this study, he mapped the influence of f ∗ and θ0

on the efficiency with constant h0 and xpiv and found that the peak efficiency

was achieved around f ∗ = 0.15 regardless of other parameters. The analysis of

wake stability indicated that the most unstable frequency in the wake coincided

with the flapping frequency under the optimal operating condition.

Prescribed pitch and plunge motions of non-sinusoidal profiles have also

drawn some attention in recent years. In these studies (Ashraf et al. 2011,

Xiao et al. 2012, Deng et al. 2014, Fenercioglu et al. 2015, Lu et al. 2015),
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adjustable parameters were introduced to alter the motion profiles. To achieve

high performance, these parameters need to be adjusted under given condi-

tions since the optimal motion profiles are dependent on the pitch and plunge

amplitudes (Xiao et al. 2012, Deng et al. 2014) and the phase angle between

the pitch and plunge motions (Ashraf et al. 2011). In addition, the experi-

ment conducted by Fenercioglu et al. (2015) suggested an optimal pivot point

location xpiv of 0.25 for sinusoidal motions and of 0.5 for non-sinusoidal mo-

tions. Adopting non-sinusoidal motion makes it possible to harvest energy via

the pitch motion (i.e. CPθ is positive Lu et al. (2015)) and improves the per-

formance of the flapping foil power generator(Ashraf et al. 2011, Deng et al.

2014).

Despite differences in motion profiles, parametric studies on the fully pre-

scribed system with sinusoidal and non-sinusoidal motions suggest a similar

range of optimal kinematic parameters f ∗ = 0.11 − 0.18, θ0 = 60◦ − 100◦ ,

h0 = 0.8−1.5, ϕ = 90◦−110◦ and xpiv = 0.25−0.5 for high efficiency (η) (Ta-

ble 2.1). In addition, the contribution of the power extracted via the plunge

motion (CPh) dominates the overall power output (CP ) under the optimal

kinematic conditions.

2.2.2 Semi passive system

In the semi passive system, it is intuitive to impose the pitch motion and

harvest energy via the flow induced plunge motion since studies on the fully

prescribed system indicate power generated from the plunge motion is much

higher than that from the pitch motion. As shown in Fig. 2.3, the foil responds

in the plunge direction to the lift generated by the pitch motion. The plunge

amplitude is constrained by the spring and the damper in the plunge direction
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Fig. 2.3: Schematic of a power generator with semi-passive motions, after Zhu et al.
(2009).

with a stiffness of Kh and Rh respectively. The equation of the oscillation in

the plunge direction is expressed as (Shimizu et al. 2008, Zhu et al. 2009):

mhḦ +RhḢ +KhH = L+mfoil (Xm −Xpiv)
(
θ̈ cos θ − θ̇2 sin θ

)
, (2.15)

where mh is the mass of all the parts in the system undergoing the plunge

motion; mfoil is the mass of the foil; Kh is the spring stiffness in the plunge

direction; Rh is the viscous damping in the plunge direction and Xm is the

distance between the leading edge of the foil and the foil mass center. To

simplify the problem, it is assumed mh = mfoil and the system is governed by

seven non-dimensional parameters: the flapping frequency of the imposed pitch

motion (f ∗), the pitch amplitude (θ0), the pivot location (xpiv), the location

of the foil mass center (xm = Xm/c), the mass ratio (µm = mfoil/ (ρc2)), the

stiffness in the plunge direction (kh = Kh/ (ρU2)) and the damping in the

plunge direction (rh = Rh/ (ρUc)). In this system, the power is extracted

from the plunge motion via the damper. The net mean power output over
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one flapping cycle (P ) is defined as the mean power output generated via the

plunge motion (P h) minus the mean power consumed to maintain the pitch

motion (−P θ).

To achieve high performance, Shimizu (2004) and Shimizu et al. (2008)

solved an optimization problem of 2 objectives (CP and η) using an evolution-

ary algorithm (EA). They assumed that the center of the foil mass coincided

with the the pivot point xm = xpiv and the pitch amplitude θ0 = 50◦. Thus

the design variables reduced from seven to five: f ∗ = 0 − 0.09a, xpiv = 0 − 1,

µm = 4mp/ (πρc2) = 5−200, the frequency ratio ωp/ω = 0.5−1.5, where ωp is

the natural angular velocity of the plunge motion and ω = 2πf is the angular

velocity of the imposed pitch motion, and the structure damping coefficient in

the plunge direction βp = 0 − 2 (the term RhḢ in Eq. 2.15 was replaced by

iKhβpH, where i =
√
−1). In their study (Shimizu et al. 2008), 110,000 so-

lutions were evaluated using the Theodorsen’s theory (Theodorsen 1979) and

386 non-dominated solutions were obtained. Then 8 non-dominated solutions

were evaluated using an unsteady Reynolds averaged Navier-Stokes (URANS)

solver with Baldwin and Lomax turbulence model at Re = 4.6 × 105. The

peak efficiency given by the simulations using the URANS solver was 35.3%b,

while the Theodorsen’s theory with planar wake assumption underestimated

the efficiency of the 8 non-dominated solutions with the peak efficiency of

28.8%b under a different condition from that given by the UNRANS simula-

tion. This demonstrated the important role of flow separation in performance

improvement since the Theodorsen’s theory did not account for LEV forma-

tion. Their results (Shimizu 2004, Shimizu et al. 2008) indicated that when the

aOrginal reduced frequency was defined as k = πfc/U .
bOriginal efficiency was given by Eq. 2.8. Recalculated the efficiency using the definition in
Eq. 2.6.
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power output was emphasized, the system underwent large plunge amplitudes

(h0 ≥ 0.9). In addition, Abiru & Yoshitake (2011b) experimentally studied the

influence of f ∗, θ0 and βp using the same structure model as Shimizu (2004)

and Shimizu et al. (2008) and achieved a highest efficiency of 22%.

Zhu et al. (2009) investigated the influence of θ0, xpiv, kh and rh on the

performance of the semi passive system given by Eq. 2.15 using the Theodors-

en’s theory and a 3-dimensional (3D) solver based on the potential flow theory,

suggesting the optimal parameters of xpiv = 0.5, kh = 0 and rh = π. Due to

the limitation of the numerical methods, the pitch amplitude was limited up

to 30◦ to avoid flow separations. Zhu & Peng (2009) extended the work with

µm = 0, kh = 0, rh = π and Re = 1000 using a NS solver. The influence of

xpiv = 0 − 1 and f ∗ = 0.03 − 0.41 on the performance was first examined at

θ0 = 15◦, where η < 8%. They suggested the optimal range of f ∗ = 0.13−0.22a

and xpiv = 0.2 − 0.5. Then θ0 = 5◦ − 60◦ with f ∗ = 0.2, xpiv = 0.333 was

investigated and the peak efficiency of 27% was achieved at θ0 = 60◦. The

role of the interaction between the LEV and the foil motions in the energy

harvesting performance at large pitch amplitudes was emphasized. Follow-

ing the work conducted by Zhu & Peng (2009), Deng et al. (2015) mapped

contours of efficiency in the range of f ∗ = 0.08 − 0.22 and θ0 = 60◦ − 90◦,

giving the highest efficiency of 33.4% at f ∗ = 0.16, θ0 = 75◦ and ϕ = 81.8◦.

In addition, they found that the efficiency decreased monotonically with the

increase of the mass ratio. The study conduced by Teng et al. (2016) verified

the optimal f ∗ = 0.16, θ0 = 75◦ suggested by Deng et al. (2015), and showed

that the non-sinusoidal pitch motion could not increase the upper boundary of

the energy harvesting performance, while it improved the performance under

the non-optimal condition (f ∗ = 0.12 or θ0 = 45◦).

Compared to the fully prescribed system, additional parameters xm, µm,
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kh and rh are introduced in the semi passive system. Power is extracted via

the plunge motion while the pitch motion consumes power to maintain the

periodical flapping motion. In addition, h0 and ϕ are determined by the plunge

response to the loads acting on the foil. However, it is noted that the optimal

parameters in the semi passive system (f ∗ = 0.09 − 0.22, θ0 = 50 − 75◦,

h0 = 0.4− 1.4, ϕ = 80− 110◦ and xpiv = 0.2− 0.5 in Table 2.1) are similar to

those in the fully prescribed system (Section 2.2.1).

2.2.3 Fully passive system

According to the constraints applied on the pitch and plunge motions, the

fully passive system can operate as one degree of freedom (DOF) system or

two DOF system. Fig. 2.4a shows a typical one DOF system considered by

Young et al. (2013). The pitch and plunge motions were modelled as functions

of the flywheel angle β: H = f (β) and θ = g (β). In the two DOF system,

there is no mechanical linkage between the DOFs and both DOFs (in the pitch

and plunge directions) freely respond to the aerodynamic loads (the lift and

moment) acting on the foil, as shown in Fig. 2.4b.

One degree of freedom system

The one DOF system is favoured in experimental studies (McKinney & De-

Laurier 1981, Jones et al. 1999, Davids 1999, Lindsey 2002, Jones et al. 2003,

Kinsey et al. 2011, Young et al. 2013) since the parameters are convenient to

compare with the optimal ones obtained from numerical studies on the ful-

ly prescribed system, especially the phase difference between the pitch and

plunge motions. It is verified by several studies (Ashraf et al. 2011, Zhu 2011)

that the optimal phase angle ϕ for high performance of the fully prescribed
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(a) One degree of freedom system.

(b) Two degree of freedom system.

Fig. 2.4: Schmatics of a flapping foil power generator with flully passive motions,
after Young et al. (2013) and Veilleux & Dumas (2017).
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system is around 90◦ (Section 2.2.1). Thus, it is intuitive to impose ϕ = 90◦

via the coupling of the pitch and plunge motions.

Fig. 2.5: Schematic of actuator arms and phase adjuster used in the experiment of
Lindsey (2002).

In the experimental study conducted by McKinney & DeLaurier (1981),

the pitch and plunge motions were linked via a Scotch yoke. They focused

on the influence of flapping frequency f ∗ = 0.08 − 0.20 and phase angle ϕ =

60◦ − 135◦, giving the highest efficiency of 17% at f ∗ = 0.12 and ϕ = 90◦.

Because of the small pitch and plunge amplitudes (θ0 < 30◦ and h0 = 0.3),

the performance of this device did not show advantage over other types of

wind turbines (McKinney & DeLaurier 1981). Around 20 years later, Jones

et al. (1999), Davids (1999), Lindsey (2002) and Jones et al. (2003) conducted

successive experimental studies for comparison with their parametric studies

using the UPM and NS solver. The phase angle ϕ was controlled by a phase

adjuster through pitch and plunge actuator arms (Lindsey 2002), as shown in

Fig. 2.5. They verified the optimal ϕ was around 90◦ and increased θ0 up to
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73◦ and h0 up to 1.3. However, the peak efficiency experimentally achieved by

this lab-scale device was lower than 20%, which was much lower than that of

39.8% given by the URANS solver. The significant performance reduction in

the experiment was attributed to the limitations of the apparatus such as high

mechanical friction and defects of the aerofoil surface resulting from absorbed

water into the wood (Jones et al. 2003).

Kinsey et al. (2011) tested a prototype mounted on a pontoon boat with

f ∗ up to 0.2. Other kinematic parameters were chosen with respect to the

optimal condition at θ0 = 75◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 given

by their previous parametric study on the fully prescribed system (Kinsey &

Dumas 2008). The pitch motion was linked to the plunge motion through

a four-link mechanism. An energy harvesting efficiency of 30% for a single

foil was demonstrated. Young et al. (2013) considered a similar one DOF

system (Fig. 2.4a) where the pitch and plunge motions were functions of the

flywheel angle: H = f (β + ϕ) and θ = g (β), with ϕ = 90◦. They examined

the influence of θ0 = 30◦ − 90◦, xpiv, the damping coefficient of the flywheel

16Rfly/ (πρc3U) = 0− 10 and the foil and flywheel masses on η. In addition,

instead of linking the pitch angle to the flywheel angle, it was found that by

linking the angle of attack to the flywheel angle (α = g (β)), the peak efficiency

of the one DOF system increased from 29.6% to 41.4%.

Two degree of freedom system

In the 2 DOF system, the response in the plunge direction to the lift is given

by Eq. 2.15, the same as that in the semi passive system (Section 2.2.2).

The response in the pitch direction to the moment is expressed as (Veilleux &
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Dumas 2017):

Jθ̈ +Rθθ̇ +Kθθ = M +mfoil (Xm −Xpiv) Ḧ cos θ, (2.16)

where J is the moment of the inertia, Rθ is the viscous damping in the pitch

direction and Kθ is the spring stiffness in the pitch direction. If it is assumed

mh = mfoil in Eq. 2.15, the system is governed by eight non-dimensional

parameters: the pivot location (xpiv), the location of the foil mass center (xm),

the mass ratio (µm), the stiffness in the plunge direction (kh = Kh/ (ρU2)), the

damping in the plunge direction (rh = Rh/ (ρUc)), the moment of the inertia

(I = J/ (ρc4)) the stiffness in the pitch direction (kθ = Kθ/ (ρU2c2)) and the

damping in the pitch direction (rθ = Rθ/ (ρUc3)). In this system, the averaged

power due to the inertia from the plunge motion balances that from the pitch

motion (Veilleux & Dumas 2017). Thus the contribution of the inertia to the

mean power output CP is zero.

Peng & Zhu (2009) analysed the stability of a 2 DOF system using the

Theodorsen’s theory in the range of xpiv = 0−1 and kθ = 0−1 with mfoil = 0,

I = 0, kh = 0, rh = π and rθ = 0. They concluded that when xpiv ≥ 0.25

and kθ was sufficiently small (depending on xpiv), the system was unstable. In

addition, results given by a NS solver at Re = 1000 showed that when xpiv =

0.4, 0.5 and 0.6, the peak η was achieved around 20% at different kθ = 0.022,

0.054, and 0.078 respectively. Zhu (2012) extended their work by considering

kh = 1, 2 and 3 and the density ratio ρfoil/ρ = 0, 1 and 10, where ρfoil is

the density of the foil, in the shear flow. It was found that kh had impact on

the performance (e.g. the maximum efficiency increased from around 16% at

kh = 1 to around 18% at kh = 2). In addition, when the mass was concentrated

at the leading edge with ρfoil/ρ = 10, the maximum efficiency increased from
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16% to 31% compared to the case with ρfoil/ρ = 0. This was attributed to

the increase of the moment of inertia. Compared to the case with negligible

ρfoil/ρ, the case with high ρfoil/ρ showed decreases in f ∗ from 0.29 − 0.31 to

0.16− 0.25 and increases in θ0 from 25◦ − 50◦ to 32◦ − 100◦, approaching the

optimal parameters in the fully prescribed system (Section 2.2.1). However,

when xm = xpiv, increasing µm resulted in performance reduction, which was

also verified by Jiang et al. (2017).

Veilleux & Dumas (2017) performed a gradient-like optimization to maxi-

mize η and/or CP where the trade off was not considered. A single parameter

called static imbalance sim = µm (xm − xpiv) with xpiv = 1/3 was introduced in

their study and the number of design variables reduced to seven (sim, µm, kh,

rh, I, kθ and rθ). 71 solutions were evaluated using URANS at Re = 5× 105,

giving an optimal solution with η = 33.6% and CP at sim = −0.03, µm = 3.0,

kh = 1.2, rh = 1.5, I = 0.10, kθ = 0.03 and rθ = 0.12. Under the optimal con-

dition, the parameters determined by the structure responses were f ∗ = 0.096,

θ = 83◦, h0 = 1.26 and ϕ = 300◦c. It was found that ϕ = 300◦ under the

optimal condition was quite different from that of 90◦ in the fully prescribed

system. Wang, Du, Zhao & Sun (2017) gave similar ϕ = 296◦ under the op-

timal condition (η = 30%), while the non-optimal case with η = 8% gave

ϕ = 352◦. Moreover, the study conducted by Wang, Du, Zhao & Sun (2017)

demonstrated that the performance was sensitive to xpiv, as was the structure

response region (also found by Peng & Zhu (2009)). For instance, the peak

CP in the range of rh = 0− 6 increased from 0.06 to 0.92 when xpiv increased

slightly from 0.33 to 0.35 at similar kh and kθ (i.e. kh and kθ were proportional

to (fpc/U)2 which is (1/2.9)2 at xpiv = 0.33 and (1/3.0)2 at xpiv = 0.35, where

cPeak-to-peak phase angle between the pitch and plunge motions extracted form Fig.15 in
Veilleux & Dumas (2017)
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fp is the natural frequency of the system in the plunge direction) and the same

xm, µm, I and rθ.

2.3 Geometry of the foil and the system

2.3.1 Foil shape, aspect ratio and end plates

Fig. 2.6: Foil with different shapes of the cross section.

There have been several investigations on the cross section shape of the

foil. Besides aerofoils such as the NACA series and Joukowski foil, some other

cross sections considered in the studies of the flapping foil power generator are

shown in Fig. 2.6. Kinsey & Dumas (2008) considered three NACA 4 digit

aerofoils with a thickness of 2%, 15% and 20% under two conditions (Re =

1100): the non-optimal condition without LEVs and the optimal with LEV.

They concluded that the influence of aerofoil thickness on the performance

was insignificant. Kim et al. (2017) experimentally examined an elliptical foil

and rectangular foil with different thickness and edge shapes in the range of

f ∗ = 0.09 − 0.17 at Re = 5 × 104, drawing the same conclusion as Kinsey &

Dumas (2008). Le et al. (2013) investigated scallop shell shaped (Fig. 2.6),
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NACA0008 and cambered NACA0012 foils in the range of f ∗ = 0.1−0.15, θ0 =

55◦−65◦ and h0 = 0.7−1.1 at Re = 9×104. They found that the scallop shell

shaped foils did not give any advantage over NACA0008 foil in the performance

and concluded that the performance of the flapping foil power generator was

primarily dependent on the kinematics. However, Sun et al. (2017) found

that the situation was different at high Reynolds numbers Re = 6 × 105.

They mapped the contours of efficiency in the range of f ∗ = 0.08 − 0.26 and

θ0 = 50◦− 110◦ using a UNRANS solver with the Spalart Allmaras turbulence

model, considering NACA 4 digit aerofoils with different thickness. It was

found that the peak efficiency of 39.2% was achieved at f ∗ = 0.12 and θ0 = 85◦

with the NACA0015 foil while that of 54.0% was achieved at f ∗ = 0.14 and

θ0 = 100◦ with the NACA0025 foil.

Studies on a finite span wing with the aspect ratio (AR=b/c, where b is the

span) from 1 to 10 showed that the efficiency decreased with decreasing AR due

to three-dimensional (3D) effects (Simpson et al. 2008, Kinsey & Dumas 2012c,

Drofelnik & Campobasso 2015, 2016, Kim et al. 2017). Specifically, Deng et al.

(2014) found that when finite AR was considered, the fully prescribed system

undergoing sinusoidal pitch motion gave lower efficiency than that undergoing

non-sinusoidal pitch motion even if the system undergoing non-sinusoidal pitch

motion gave better efficiency when the span was infinite. This is because

the enhanced LEV observed in the system undergoing non-sinusoidal pitch

motion for 2D flows was susceptible to 3D instabilities due to the spanwise

flow reducing the streamwise velocity. In addition, the reduction in energy

harvesting performance due to 3D effects (e.g. lift reduction near the tip due

to the downwash associated with the tip vortex and variation in the vortex

structure across the span) was alleviated when end plates were mounted (Abiru

& Yoshitake 2011b, Kinsey & Dumas 2012c, Drofelnik & Campobasso 2015,
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2016, Kim et al. 2017). Kim et al. (2017) examined different sizes of the end

plates and found that when the distance from the foil to the edge of the end

plate was 0.75c, the efficiency of the flapping wing with AR=2.5, 3.5 and 4.5

was the highest. Even though the end plates were beneficial to the suppression

of the tip vortex effects, the increase of friction and interactions between the

end plates and the flow may balance this benefit. Thus there existed an optimal

size of end plates for performance improvement.

2.3.2 Active and passive deformation

In flapping foil propulsion, it has been demonstrated by a number of studies

that the deformation of the foil has beneficial effects on the force generation

(Shyy et al. 2010). However, studies on the effects of the foil deformation on

the energy harvesting performance are limited (Young et al. 2014, Xiao & Zhu

2014).

Liu et al. (2013) controlled the deformation of the leading and trailing edges

of a NACA0012 foil in the fully prescribed system, as shown in Fig. 2.7a. In

their study, α0 was in the range of 0◦ − 10◦, which was much lower than the

optimal α0 = 30◦ − 40◦ given by the experimental study of Kim et al. (2017).

A peak efficiency of 32% was achieved by controlling the deformation of the

trailing edge at f ∗ = 0.2, compared to that of 13% for a rigid foil at f ∗ = 0.16

with other kinematic parameters remaining the same, specifically α0 = 10◦.

Tian et al. (2014) examined the influence of the active deformation of a

flat plate under the optimal condition of the fully prescribed system suggested

by Kinsey & Dumas (2008) (f ∗ = 0.14, θ0 = 76.3◦, h0 = 1.0, ϕ = 90◦ and

xpiv = 0.333, resulting in α0 = 35◦). An efficiency of 38.2% was achieved via

controlling the leading segment, 11.3% higher than that of 33.4% given by
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(a) Control of camberline deformation at the leading and
trailing edges.

(b) Control of camberline deformation at the mid chord.

(c) Control of camberline deformation at the trailing edge.

Fig. 2.7: Active deformation via controlling the camberline at different chordwise
location, after Liu et al. (2013), Hoke et al. (2015) and Zhu et al. (2015). The dashed
line represents the camberline of the rigid foil and dash-dot line is the camberline of
the deformable foil.

Table 2.2: Comparison of deformation enhanced performance in the literature. If
α0 was not given in the literature, it is calculated from other parameters using Eq.
2.2. ηr and ηd are the maximum efficiency achieved by employing the rigid foil and
deformable foil, respectively. CP r and CPd are respectively the power coefficient
corresponding to the efficiency ηr and ηd. NA stands for not available and NST
stands for not stated.

Authors Year α0 (◦) ηr (%) ηd (%) ηd−ηr
ηr

CP r CPd
CPd−CP r

CP r

Active deformation
Liu et al. 2013 10 12 32 1.67 0.14 0.75 4.36
Tian et al. 2014 35 33.4 38.2 0.14 0.86 0.98 0.14
Hoke et al. 2015 35 32.9 37.9 0.16 0.84 0.97 0.15
Zhu et al. 2015 35 35.4 41.1 0.16 0.91 1.05 0.15

Passive deformation
Tian et al. 2014 35 32.4 30.2 −0.09 0.86 0.82 −0.04
Wu et al. 2015 20 23.1 33 0.44 0.33 0.56 0.70
Wu et al. 2015 NST 15 20 0.33 0.22 0.41 0.86
Jeanmonod &
Olivier

2017 35 31.6 NST NA 0.81 0.83 0.02
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the rigid plate under the same kinematic condition. Hoke et al. (2015) and

Zhu et al. (2015) performed the active control of the camberline deformation

at the mid chord (Fig. 2.7b) and the trailing edge (Fig. 2.7c) respectively

under the same optimal condition of the fully prescribed system, giving similar

increases in the efficiency by 15.8% and 16.1% to 37.9% (Re = 1100) and

41.1% (Re = 104), respectively (see Table 2.2). In addition, Hoke et al. (2015)

noted that the power consumption for active deformation was significant (e.g.

the efficiency decreased from 37.9% to around 34.5%), which was generally

neglected in the studies of the active deformation.

The performance of the flexible system containing a rigid foil of 0.7c and

a flexible flat plate of 0.3c pinned to the trailing edge of the rigid foil under

non-optimal conditions was investigated by Wu, Shu, Zhao & Tian (2015) in

the fully prescribed system and Wu, Wu, Tian, Zhao & Li (2015) in the semi

passive system. In the fully prescribed system, the peak efficiency of η = 33%

was achieved at α0 = 20◦ and f ∗ = 0.2, 44% higher than that of 23% achieved

by the rigid system at f ∗ = 0.15 with other parameters remaining the same.

In the semi passive system, the peak efficiency of around 20% was achieved at

θ0 = 40◦ (optimal θ0 = 50◦−75◦ in Section 2.2.2), compared to that of around

15% given by the rigid system under the same kinematic condition.

Tian et al. (2014) and Jeanmonod & Olivier (2017) discussed the influ-

ence of the flexibility on the performance of the fully prescribed system under

the optimal kinematic condition suggested by Kinsey & Dumas (2008). Flat

plates with similar flexibility distributions were employed in their studies: a

uniformly flexible plate, a plate with a flexible leading segment and a plate

with a flexible trailing segment. In their studies, the flexible cases did not

show significant performance improvement under the optimal condition. In

contrast, Jeanmonod & Olivier (2017) demonstrated the capability of the flex-
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ibility to improvement the performance under non-optimal conditions, which

was similar to Wu, Shu, Zhao & Tian (2015).

In Table 2.2, it is noted that the improvement in the power output CP by

employing deformable foils is greater than that in the efficiency η when α0 ≤

20◦ since the swept distance increases significantly due to the foil deformation.

On the other hand, improvements in CP and η are similar under the optimal

kinematic condition of the rigid foil where α0 = 35◦.

2.3.3 Multiple foil configurations

Interactions between flapping foil turbines may have significant impact on

the performance in the application of wind farms. Thus, the arrangement of

the turbines, such as the distance between the turbines Xshift and the phase

difference ψ between the flapping motions needs to be considered. In the

tandem foil configurations, the foils generally undergoing pitch and plunge

motions with the same neutral position and different phase angles; thus the

swept distance used to compute the efficiency in Eq. 2.6 is the same as the

single foil system. In the parallel foil configurations, the swept distance is

measured as the overall area swept by all the foils.

The system with two foils in tandem was first employed by Lindsey (2002)

and Jones et al. (2003) in their experimental studies with a constant non-

dimensional distance xshift = Xshift/c = 9.6 and ψ = 90◦. Ashraf et al. (2011)

conducted simulations of a tandem configuration with sinusoidal and non-

sinusoidal pitch and plunge motions in the range of xshift = 2−6, ψ = 0◦−180◦.

In their study, the peak efficiency of 50% for the system with sinusoidal motions

was achieved at xshift = 2 and ψ = 180, while that of 54% for the system with

non-sinusoidal motions was achieved at xshift = 6 and ψ = 135. Due to the
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interactions between the two foils, the front foil undergoing non-sinusoidal

motions gave higher CP of 1.00 than that of 0.89 given by the single foil

under the same optimal kinematic condition. Moreover, the peak efficiency of

the tandem configuration with sinusoidal motions was achieved at ϕ = 110◦,

larger than that of 90◦ in the single foil system.

Xu et al. (2016) found that the arrangement of the two foils also influenced

the optimal value of f ∗ when the system undergoing sinusoidal pitch and plunge

motions. In their work, the peak efficiency of 54%, 54% and 50% given by the

tandem system with different xshift = 4.5, 5.4 and 6.3 and the same ψ = 180◦

was achieved at f ∗ = 0.16, 0.15 and 0.12 respectively. In addition, the fully

passive system of 1 DOF experimentally tested by Kinsey et al. (2011) achieved

the highest efficiency of 30% at f ∗ = 0.14 for a single foil and that of 40% at

f ∗ = 0.12 for two foils in tandem with xshift = 5.4 and ψ = 180◦. A similar

shift in the optimal f ∗ was found in their numerical study using 2D RANS

(Kinsey & Dumas 2012b) where a peak efficiency of 64% was achieved at

f ∗ = 0.16 for two foils in tandem with xshift = 5.4 and ψ = 180◦ while that of

40% was achieved at f ∗ = 0.14 for a single foil.

In the experiment conducted by Abiru & Yoshitake (2011a), a semi passive

system containing two foils in tandem was tested in the range of xshift = 0.6−5,

ψ = 0◦ and 180◦. They found that the amplitude of the imposed pitch motion

θ0 had little impact on the performance when xshift > 2. In the range of

xshift = 4 − 5, the influence of the interactions between the two foils on the

performance was negligible. In contrast to the optimal θ0 = 50◦ of the single

foil system given by their previous experimental study (Abiru & Yoshitake

2011b), the peak efficiency (ηmax = 46%) of the tandem system was achieved

at low θ0 = 30◦ with xshift = 1.5 and ψ = 180◦.

Wu, Zhan, Wang & Zhao (2015) and Wu, Chen & Zhao (2015) numeri-
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cally investigated multiple foils in parallel configurations with auxiliary foils

of 0.5c undergoing the pitch motion in the fully prescribed and semi passive

systems. The phase difference and distance between the flapping foil turbine

and the auxiliary foils were adjusted to achieve high performance. In the fully

prescribed system, an auxiliary foil was placed below the flapping foil turbine.

With the auxiliary foil placed 0.85c from the neutral position of the flapping

foil and a phase angle of 135◦, a highest efficiency of 34.7% was found at

f ∗ = 0.18, while the single flapping foil achieved a peak efficiency of 29.1% at

f ∗ = 0.16. In the semi passive system, two auxiliary foils were respectively

placed above and below the flapping foil, giving a highest efficiency of 43.1%.

In these studies, the contribution of the flapping foil and the auxiliary foils to

power output P was considered, while the available power in the flow Pr only

contained the kinetic energy of the flow passing through the distance swept

by the flapping foil, neglecting that swept by the auxiliary foils. When the

swept distance is measured as the overall area swept by all the foils, the peak

efficiency given by the parallel configuration in the fully prescribed system is

27.6%.

2.4 Environmental effects

2.4.1 Reynolds number

The importance of the timing of the LEV formation, convection and interaction

with the flapping foil was numerically and experimentally demonstrated by

several studies in the laminar flow region (Re ≤ 104) (Kinsey & Dumas 2008,

Young et al. 2014, Fenercioglu et al. 2015). In addition, studies in the range

of Re = 100− 10, 000 indicated that the efficiency increases with the increase
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of Re (Kinsey & Dumas 2008, Zhu 2011, Wu, Yang, Shu, Zhao & Yan 2015).

In the transitional flow region (104 < Re ≤ 105), the LEV dynamics was little

affected and the LEV dominated performance improvement observed in the

laminar flow region carried over to the transitional flow region (Ashraf et al.

2011, Young et al. 2014). The numerical study on a self-sustained pitch-plunge

flapping foil in the range of Re = 4 × 104 − 12 × 104 indicated that laminar

calculations agreed well with the experimental data while predictions of the

natural frequency and angle of attack made by URANS simulations were not as

good as those given by the laminar calculations when the aerodynamic forces

dominated the foil dynamics (Veilleux & Dumas 2013). In addition, predictions

given by URANS with the SA (Spalart-Allmaras) and k − ω SST (Menters

shear stress transport) turbulence model showed significant differences when

Re > 8× 104.

When the turbulent flow was considered (Re > 105), the synchronization

of the LEV formation and foil motions was lost for high performance cases

(Campobasso et al. 2013, Kinsey & Dumas 2014). Numerical study of Kinsey

& Dumas (2014) showed that high energy extraction performance was achieved

when α0 was around 33◦ and the maximum non-dimensional rate of change

of the angle of attack α̇c/U was around 0.55, where no LEV was observed in

some cases. Sun et al. (2017) numerically studied NACA 4 digit foils with

different thickness at Re = 6 × 105 (Section 2.3.1). They found that without

the LEV formation, the thick foil (NACA0025) generated more power via the

plunge motion due to higher CL, resulting in better performance (η = 54%)

compared to the case using NACA0015 where LEV was observed (η = 39%).

The performance of a single foil predicted by 2D and 3D URANS simulations

conducted by Kinsey & Dumas (2012a) showed reasonable agreement with that

given by the prototype test conducted by Kinsey et al. (2011). However, both
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2D and 3D URANS simulations considering the tandem foil configuration over-

predicted the peak efficiency (η = 65% at f ∗ = 0.14 for 2D and η = 55% at

f ∗ = 0.14 for 3D) compared to the experiment (Kinsey et al. 2011) (η = 40%

at f ∗ = 0.12). In addition, Kinsey & Dumas (2012a) found that different

turbulence models (SA, k−ω standard, k−ω SST) predicted different timing

and position of flow separations, which was also verified by Young et al. (2013).

2.4.2 Boundary effects

Besides flow conditions such as the velocity and viscosity of the flow, inter-

actions between the flapping foil and the surrounding environment also have

impact on the energy harvesting performance. The influence of constrained

flow, where the foil was confined in a channel as shown in Fig. 2.8a, was

investigated by Karakas et al. (2016) and Gauthier et al. (2016). In the ex-

periment conducted by Karakas et al. (2016), two side walls were placed at

various distances from a flat plate undergoing pitch and plunge motions. Two

end plates were mounted at the top and bottom of the channel to eliminate 3D

effects. It was found that the wall effect reduced the efficiency of the flapping

foil turbine undergoing prescribed non-sinusoidal motions, while it improved

the efficiency of the turbine undergoing sinusoidal motions from around 13%

to 17%, compared to the turbine in the free flow. Gauthier et al. (2016) nu-

merically investigated a NACA0025 foil with AR=10 undergoing sinusoidal

pitch and plunge motions. The flow was constrained in a rectangular channel

consisting of horizontal planes. With the optimal distances between the solid

walls and the flapping foil (i.e. solid walls were placed 1.27 c above and below

the neutral position of the plunge motion), a considerable efficiency of 77% d

dCalculated from the swept distance and the power ratio defined in Gauthier et al. (2016).
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(a) A flapping foil placed in the constrained flow.

(b) A flapping foil placed near the ground.

(c) A flapping foil placed in the shallow water.

Fig. 2.8: Schematic of a flapping foil placed in the domain with different boundary
conditions, after Karakas et al. (2016), Wu, Yang, Shu, Zhao & Yan (2015) and Liu
(2017).
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was achieved. Similar to studies on rotary turbines installed in channels, the

efficiency can exceed the Betz limit of 59.3% with the increase of the blockage

ratio (Vennell 2013).

Wu, Yang, Shu, Zhao & Yan (2015) numerically examined a 2D NACA0015

foil undergoing sinusoidal pitch and plunge motions placed near the ground,

leaving the flow above the flapping foil unconstrained (Fig. 2.8b). By adjusting

the distance between the flapping foil and the ground, an efficiency of 24% was

achieved at f ∗ = 0.2, α0 = 20◦ when the flapping foil was placed 1.5c above

the ground (η = 20% in the fully free flow). The influence of the shear flow

on the performance of the 2 DOF fully passive system given by Eq. 2.15 and

2.16 was numerically studied by Zhu (2012). The results showed that with

the small shear (i.e. shear layer rate βU = 0.05, where the inflow velocity

U (y) = U + βUy), the response region for energy harvesting was enlarged.

In addition, the fully passive system achieved comparable efficiency of around

20% in the linear shear flow (βU = 0.05) as that of 20% in the uniform flow

performed by Peng & Zhu (2009).

Liu (2017) considered a fully prescribed system of the tandem configura-

tion in the shallow water, as shown in Fig. 2.8c. Different from efficiency

improvement achieved by Wu, Yang, Shu, Zhao & Yan (2015) through the

ground effect, the interactions between the boundary layer of the ground and

the foil resulted in performance reduction under the near-optimal condition

f ∗ = 0.14, α0 = 28.7◦. In addition, the convection of the vortices generated

by the foils in the shallow water was slower than that in the free flow.
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2.5 Summary

2.5.1 Key findings in the literature

In this chapter, major numerical and experimental studies on the flapping foil

power generator have been reviewed with regard to kinematics, geometry and

environmental effects.

Even though parameters governing the kinematics of the flapping foil were

dependent on the model used to described the flapping motion, majority of

studies on semi passive and fully passive (one degree of freedom) systems

found that high energy extraction performance was achieved when the kine-

matic parameters approximated the optimal parameters found in the the fully

prescribed system. In addition, the importance of the leading edge vortex

(LEV) dynamics to the energy harvesting performance was verified in sys-

tems with different activating mechanisms, specifically in the laminar flow

regime. Considering the simplicity to implement prescribed motions, the ful-

ly prescribed system is commonly used for parametric studies to uncover the

physical mechanism for high energy extraction performance. Studies on the

fully prescribed system suggested a range of optimal values: non-dimensional

frequency f ∗ = 0.11 − 0.18, pitch amplitude θ0 = 60◦ − 100◦, plunge ampli-

tude h0 = 0.8 − 1.5, phase difference between the pitch and plunge motions

ϕ = 90◦ − 110◦ and non-dimensional pivot point location xpiv = 0.25− 0.5.

In the laminar flow regime, the influence of the foil geometry on the energy

extraction performance is insignificant. On the contrary, the thickness of the

foil affects the energy extraction performance significantly when the turbulent

flow is considered. Studies on active deformation indicated that the local angle

of attack was increased by the foil deformation and the improvement in energy

extraction performance was achieved under different conditions, especially at
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low angles of attack (non-optimal condition of the rigid system). In these

studies, the power consumption for active deformation was generally neglected.

Performance improvement was also achieved by employing passive deformation

at low angles of attack, while the improvement under the optimal condition

of the rigid system was insignificant. In addition, the interactions between

multiple foils influence the energy extraction performance as well as the optimal

values of kinematic parameters.

When the flapping foil power generator operates in the laminar flow and

transitional flow regimes, good synchronization between the plunge motion and

LEV formation results in high power extraction performance. When it operates

in the turbulent flow regime, high performance can be associated with either

attached flow or separated flow involving LEVs. In addition, the uncertainty

over the prediction of flow separations by different turbulence models was found

in several studies using unsteady Reynolds averaged Navier Stokes (URANS)

methods. In constrained flows, the efficiency can exceed the Betz limit of 59.3%

and the interaction between the boundary layer and the foil may have either

positive or negative effects on the power extraction performance, depending

on the kinematics of the flapping foil.

2.5.2 Motivation and major work of this study

Because of the substantial computational resources required in 3D simulations

(Kinsey & Dumas 2012c, Xiao et al. 2014) and uncertainties associated with

turbulence modelling, this study is focused on two-dimensional (2D) laminar

flow at the Reynolds number of 1100. Details of the physical problem will be

described in Section 3.1.

As mentioned in Section 1.2, one of the prerequisites for industrial applica-
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tion of the flapping foil power generator is to search for the optimal combina-

tion of kinematic parameters. However, due to the high computational cost of

computational fluid dynamics (CFD) simulations (Kinsey & Dumas 2008), it

is computationally prohibitive to use CFD method in parametric studies and

optimization involving multiple design variables (e.g. 5 kinematic parameters

in the prescribed system with sinusoidal pitch and plunge motions). To reduce

the time cost, potential flow based methods (e.g. unsteady panel method and

Theodorsen’s model) were employed to solve the flapping foil problem with

constraints to ensure that the flow is fully attached in several studies. To take

advantages of low computational cost and remove the constraints associated

with the attached flow resulting from potential flow based methods, a dynamic

stall model and an improved discrete vortex method for 2D simulations will be

described in Section 3.2 and Section 4.1 respectively. The advantages and dis-

advantages of these two methods will be discussed in Chapter 4. Considering

the non-linearity of the flapping foil problem, an evolutionary algorithm (EA)

is used to search for the optimal values of the kinematic parameters in Chapter

5. A comparison of a traditional optimization method (complex method) and

the EA on solving a non-linear problem will be conducted in Section 3.4.

As discussed in Section 2.3.2, performance improvement by employing the

passive deformation of the foil was only achieved under the non-optimal condi-

tions of the rigid system (e.g. α0 = 20◦ compared to the optimal α0 > 30◦ given

by parametric studies on a rigid system). In addition, the role of flexibility in

enhancing energy harvesting performance and the associated with physics are

still not well understood, especially under the near optimal conditions of the

rigid system. This is the motivation of the work presented in Chapter 6. An

immersed boundary-lattice Boltzmann method (IB-LBM) is used to solve the

fluid-structure-interaction problem and provide flow fields for detailed analy-
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sis. The IB-LBM is efficient for simulations involving moving boundaries and

deformations since it avoids mesh regeneration. In addition, it is well suited

for computations on a parallel architecture. Details of the IB-LBM will be

discussed in Section 3.3.



Chapter 3

Validation of Methods Used

In this chapter, the physical models and computational methodologies used to

solve the flapping foil energy harvesting problem are introduced. The main

objective of this chapter is to validate the methods used in Chapters 4-5. In

Section 3.1, the modelling of a fully prescribed system (as mentioned in Chap-

ter 2) with a rigid aerofoil considered in Chapters 4 and 5 is described. Then,

the aero-elastic model of a tail pinned to the rigid foil by a torsional spring

considered in Chapter 5 is presented. In Section 3.2, a reduced order model

developed by Bryant et al. (2013) used in Chapters 4 and 5 is described and

reproduced with Matlab. In Section 3.3, the immersed boundary-lattice Boltz-

mann method (IB-LBM) with the multi-block technique (Tian, Luo, Zhu, Liao

& Lu 2011, Tian, Luo, Zhu & Lu 2011) is presented and validated against data

in the literature. In Section 3.4, the process of the multi-fidelity evolutionary

algorithm (MFEA) (Branke et al. 2017) used in Chapter 5 is introduced and

compared with a classical non-gradient optimization method.

51
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3.1 Physical problem and mathematical for-

mulation

In the flapping foil turbine problem of interest, a rigid system with a rigid

NACA0015 foil (Fig. 3.1) and a flexible system with a rigid NACA0015 foil

and a spring connected tail (Fig. 3.2) in a uniform flow with velocity U are

considered. The mean power output CP and efficiency η of the flapping foil

power generator are defined in Eq. 2.3 and 2.6.

Fig. 3.1: Kinematic parameters and aerodynamic loads for a NACA0015 foil.

The rigid foil with a chord length of c considered in Chapters 4 and 5

undergoes simple sinusoidal pitch and plunge motions given by:

θ (t) = θ0 sin (2πft) , (3.1)

H (t) = H0 sin (2πft+ ϕ) . (3.2)
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Fig. 3.2: Kinematic parameters and aerodynamic loads for a NACA0015 foil with a
tail pinned to the trailing edge (T) by a torsional spring. The angular position of
the tail αT is passively determined by the fluid structure interactions.

The kinematics of this system is governed by 5 parameters: f ∗, θ0, h0, ϕ and

xpiv. In Fig. 3.1, the origin of the coordinates O is at the pivot location when

the foil is at its neutral position. The coordinates correspond to a right-hand

Cartesian coordinate system with x-axis rightward positive, y-axis upward

positive and the angle counter clockwise positive. α defined in Eq. 2.2 is the

angle of attack.

In the flexible system, the rigid foil undergoes sinusoidal pitch and plunge

motions given by Eq. 3.1 and 3.2 while the motion of the tail is passively

determined by the fluid-structure interactions. According to the study on

the propulsive system using flapping foils, the flexibility appears to be more

important in the chordwise direction than in the spanwise direction (Gursul

et al. 2014). Thus a 2D aero-elastic problem modelled by a torsional spring at

the trailing edge of the rigid foil (point T ) is considered, as shown in Fig. 3.2.
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The motion of the tail is then governed by

Jα̈T +Rα̇T +KsαT =Mf −
mltail

2
cos (θ + αT ) ÿT

+
mltail

2
sin (θ + αT ) ẍT − Jθ̈,

(3.3)

where J = 1
3
ml2tail, Ks and R are the moment inertia of the tail about the

axis through point T normal to the x-y plane, spring stiffness and damping,

respectively; Mf is the fluid moment about the axis through the point T normal

to the x-y plane; m = ρlltail is the mass of the tail, ρl = ρtailhs and ltail are

the linear density and the length of the tail respectively; ρtail and hs are the

density and the thickness of the tail respectively; ÿT and ẍT are respectively

the vertical and horizontal accelerations of point T ; and αT , α̇T and α̈T are

respectively the angular position, velocity and acceleration of the tail with

respect to the foil at point T , determined by the fluid-structure interactions.

In Fig. 3.2, the system of coordinates is the same as that in Fig. 3.1. Notice

that the chord length c is the total length of the foil and the tail. αeff is

the angle between the line passing through the end of the tail and the leading

edge of the foil and the relative velocity Ueff =
√
Ḣ2 + U2. In Eq. 3.3, Mf is

the moment acting on the tail computed by the fluid solver and coupled with

the structure solver, and the last three terms on the right hand side represent

the moment due to inertia effects resulting from the prescribed plunge and

pitch motions. This torsional spring model reduces the structural complexity

and converges to the non-linear Euler-Bernoulli beam with the increase of the

number of linked flat plates (Eldredge et al. 2010).



3.2. Reduced order model 55

3.2 Reduced order model

In numerical studies on the flapping foil power generator, computational flu-

id dynamics (CFD) methods are commonly used to predict the performance

of the flapping foil turbine and detailed information of the flow field on the

LEV formation and evolution. However, they require substantial computa-

tional resources, for example, a simulation of the flapping foil takes 100 hours

on a single P4/3.2-GHz processor (Kinsey & Dumas 2008). Thus it is com-

putationally prohibitive in studies exploring a wide range of parameters. On

the other hand, reduced order models could reduce the computational time

to minutes, which provide an alternative way to remove the impediment in

optimization and engineering design because of their low computational costs.

As summarized in Chapter 2, several studies have employed methods based on

the potential flow theory to predict the performance of the flapping foil power

generator, assuming the flow is fully attached. However, these methods neglect

the formation of LEVs resulting from flow separations, which have significant

impacts on the energy harvesting performance.

Studies on reduced order aerodynamic modelling when LEVs form are mo-

tivated by helicopter studies in which the phenomenon of dynamic stall is

observed (McCroskey 1981). In recent decades, several semi-empirical models,

for instance, Office National D’Etudes et de Recherches Aerospatiales (ONER-

A) model (McAlister et al. 1984) and Leishman-Beddoes model (Leishman &

Beddoes 1989) have been developed and modified for dynamic stall modelling

in subsonic flows. Considering the similarity of helicopter blades and flapping

foils, methods used in dynamic stall studies provide valuable references for

reduced-order-model development for flapping foil power generators.

The non-dimensional frequency f ∗ and the pitch amplitude θ0 in dynamic
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stall studies (0 < f ∗ < 0.016, 0◦ < θ0 < 10◦) (Dyachuk et al. 2013) are

generally smaller than those in studies on flapping foil power generators (0 <

f ∗ < 0.25, 0◦ < θ0 < 90◦) (Kinsey & Dumas 2008). The large amplitude

oscillations of the flapping foil characterized by strong leading and trailing

edge flow separations present challenges for reduced order modelling. In order

to model flapping foil motions at low Reynolds numbers, Bryant et al. (2013)

have modified a quasi-steady model using a method analogous to the ONERA

model. In this study, the Bryant model is employed in the optimization process

as a surrogate model to search the parameter space. The calculation procedure

using the Bryant model is summarised as follows.

Fig. 3.3: Aerodynamic loads for a NACA0015 foil with the fixed coordinate system
(x, y) and the foil coordinate system (x′, y′) where the origin of the coordinates is
at the leading edge of the foil.

As shown in Fig. 3.3, in terms of the inflow velocity U and the motions of

the foil, the velocity components (u′, v′) in the foil coordinate system (x′, y′)
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are given by

u′ = −U cos θ − Ḣ sin θ, (3.4)

v′ = −U sin θ + Ḣ cos θ. (3.5)

Notice that the coordinate system used in Bryant et al. (2013) corresponds to

the system with x-axis leftward positive, y-axis upward positive and the angle

clockwise positive. Here, the coordinate system corresponds to one with x-

axis rightward positive, y-axis upward positive and the angle counter clockwise

positive, as defined in Section 3.1. The lift L in the fixed coordinate system

(x, y) is computed from the the normal force FN and the chord force FC in the

foil coordinate system (x′, y′):

L = FN cos θ − FC sin θ. (3.6)

The model expressed FN , FC and the moment M in a similar way to the

quasi-steady model used by Andersen et al. (2005) as:

FN =
π

4
ρe2θ̇u′ + ρΓu′ − π

4
ρc2v̇′ − F vis

N , (3.7)

FC = −π
4
ρc2θ̇v′ − ρΓv′ − π

4
ρe2u̇′ − F vis

C , (3.8)

M = Jaθ̈ + ρΓu′LΓ −
π

4
ρc3

(
xpiv −

1

2

)
v̇′ −M vis, (3.9)

where e is the thickness of the foil; F vis
N , F vis

N and M vis are respectively the

normal force, chord force and moment due to the fluid viscosity; Γ is the

circulation; LΓ is the moment arm considering changes in the pressure center
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and Ja is the added mass moment of inertia given by Brennen (1982):

Ja =
πρ

4

(
1

8
+ (2xpiv − 1)2

)(
c2 − e2

)2
(3.10)

The circulation Γ results from the translational velocity and rotational velocity

is:

Γ =
1

2
CLcUeff + CRc

2θ̇, (3.11)

where CL is the lift coefficient, Ueff =
√
Ḣ2 + U2 is the effective incident

velocity and CR = π (0.75− xpiv) is the rotational circulation coefficient, as-

suming that the contribution of the pitch motion to the circulation is zero at

3/4 chord length from the leading edge of the foil (Sane & Dickinson 2002).

When the flow separations are taken into consideration, CL = CLs + CLd con-

tains the static lift coefficient CLs and dynamic coefficient CLd given by Bryant

et al. (2013):

CLs = 1.2 sin (2α) , (3.12)

C̈Ld +
2U

c
sb1ĊLd +

4U2

b2
sb1CLd =

U

c
ĊLs, (3.13)

where sb1 and sb2 are empirical constants. The viscous forces (F vis
N in Eq. 3.7

and F vis
C in Eq. 3.8) and viscous moment (M vis in Eq. 3.9) are expressed by

Bryant et al. (2013):

 F vis
N

F vis
C

 =
1

2
ρc
(
CD|α=0 cos2 α + CD|α=π/2 sin2 α

)
Ueff

 v′

u′

 (3.14)

M vis =
1

2
ρCD|α=π/2

∫ c

0

|v′ + rθ̇|
(
v′ + rθ̇

)
rdr (3.15)
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Table 3.1: Comparison of mean power coefficient and efficiency predicted by current
code, Bryant et al. (2013) and CFD simulations conducted by Kinsey & Dumas
(2008) at different f∗, θ0 and constant h0 = 1, ϕ = 90◦, xpiv = 0.333.

Kinematic
condition

f ∗ = 0.14

θ0 = 76.3◦
f ∗ = 0.18

θ0 = 60◦
f ∗ = 0.12

θ0 = 60◦
f ∗ = 0.06

θ0 = 76.3◦

Method CP η CP η CP η CP η
Current code 0.87 34.2% 0.24 10.1% 0.59 24.6% 0.28 11.8%
Bryant et al. (2013) 0.87 34.1% 0.24 10.0% 0.59 24.4% 0.28 11.5%
CFD
Kinsey & Dumas (2008)

0.86 33.7% 0.27 11.4% 0.59 24.5% − 12.3%

where CD is the static drag coefficient of the foil. The influence of the LEV

convection on the pressure center is introduced via two empirical constants

in the moment arm term LΓ. By considering the the changes in the pressure

center resulting from the static and dynamic contributions LΓ is expressed by

Bryant et al. (2013) as:

LΓ =
c

2

[
2xpiv −

1

2
− sb3

(
1− cos

(
πτbv
Tbv

))]
(3.16)

where τbv is the time variable to track the location of the LEV, Tbv is the empir-

ical constant corresponding to the instant at which the LEV is at the trailing

edge of the foil and sb3 is the empirical coefficient controlling the amplitude

of the dynamic pressure center migration. In the Bryant model (Bryant et al.

2013), the empirical constants with respect to the dynamic stall effects have

been tuned using the CFD results of Kinsey & Dumas (2008).

The Bryant model is reproduced with Matlab R2013b using the empirical

constants (sb1 = 0.57, sb2 = 0.19, sb3 = 0.75 and Tbv = 1.8) suggested by

Bryant et al. (2013). The performance of the flapping foil power generator

predicted by the current code compares well with those of Bryant et al. (2013)

and CFD simulations conducted by Kinsey & Dumas (2008) in Table 3.1. The
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Fig. 3.4: Comparison of (a) lift and (b) moment coefficient given by current code
with those of Bryant et al. (2013) and CFD results of Kinsey & Dumas (2008) at
f∗ = 0.14, θ0 = 76.3◦, h0 = 1.0, ϕ = 90◦ and xpiv = 0.333.
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small difference between the results of the current code and those of Bryant

et al. (2013) may be due to the method used to solve the differential equation

(Eq. 3.13) and the values of the constants CD|α=0 and CD|α=π/2. The time

histories of CL = L/(1/2ρU2c) and CM = M/(1/2ρU2c2) in Fig. 3.4 given by

the current code show reasonable agreement with those in Kinsey & Dumas

(2008). The amplitude of CM given by the current code is a little smaller than

that given by Bryant et al. (2013) since CD|α=0 and CD|α=π/2 were not given

by Bryant et al. (2013). Here CD|α=0 = 0.13 and CD|α=π/2 = 2.3 are chosen

according to the drag coefficient CD of the NACA0015 foil presented in Daniele

(2013). When CD|α=0 = 0.5 and CD|α=π/2 = 1.8, CM predicted by the current

code agrees well with that of Bryant et al. (2013), but CP increases from 0.87

to 0.89.

3.3 Immesrsed boundary-lattice Boltzmann

method

In this study, the incompressible flow is solved by a relatively new technique:

the lattice Boltzmann method (LBM) (Tian, Luo, Zhu, Liao & Lu 2011, Tian

et al. 2013). In addition, a multi-block technique is implemented to balance the

numerical accuracy and time cost. To couple the fluid and structure solvers,

the immersed boundary (IB) method is used to distribute the force to the grids

in the vicinity of the solid boundary.

3.3.1 Lattice Boltzmann method

Unlike conventional computational fluid dynamics (CFD) methods, which solve

the Navier-Stokes equation, the LBM simulates averaged macroscopic be-
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Fig. 3.5: Lattice arrangement for D2Q9 model.

haviour of the flow through the collision and propagation of fictive particles

over a discrete lattice mesh (Bösch & Karlin 2013). In the LBM, the statistical

behaviour of the particles is described by the distribution function fi (r, t) of

velocity ci, referring to the number of the particles positioned between r and

r+dr with the velocity from ci to ci+dci at instant t (Mohamad 2011), where

i indicates the direction of the velocity, as shown in Fig. 3.5. The difference

in fi (r, t) between the initial and final states after the collision is given by the

lattice Boltzmann equation:

fi (r + cidt, t+ dt)− fi (r, t)︸ ︷︷ ︸
streaming

= Ωi (r, t)︸ ︷︷ ︸
collision

+fdt. (3.17)

where Ωi (r, t) is the collision operator and f is the external force. To increase

the numerical stability of the LBM, the collision process is transformed from
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the velocity space to the momentum space (Lallemand & Luo 2000):

fi (r + cidt, t+ dt)− fi (r, t) = −M−1
LBŜLB [mLB (r, t)−meq

LB (r, t)] + fdt,

(3.18)

where MLB is the transformation matrix, ŜLB is the diagonal matrix of the

relaxation rates, mLB is the vector of momentum and meq
LB is the vector of

equilibrium momentum. For the D2Q9 model, where D2 represents the two

dimensional flow and Q9 represents the number of particle speeds as shown in

Fig. 3.5, the matrix MLB is given by Liu et al. (2012):



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



,

The diagonal matrix ŜLB is given by Jami et al. (2007) and Mohamad (2011)

as:

ŜLB = diag (0, 1.4, 1.4, 0, 1.2, 0, 1.2, 2/ (1 + 6ν) , 2/ (1 + 6ν)) , (3.19)
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where ν is the kinematic viscosity. The vector of equilibrium momentum meq
LB

is given by Mohamad (2011):

meq
LB = (dρ,meq

LB1,m
eq
LB2, ρu,−ρu, ρv,−ρv,m

eq
LB7, ρuv)T ,

where ρ is the density, u (u, v) are velocities in the fixed coordinate system

(x, y), meq
LB1 = −2dρ + 3ρ (u2 + v2), meq

LB2 = dρ − 3ρ (u2 + v2) and meq
LB7 =

ρ (u2 − v2). In the numerical simulations, the process for solving Eq. 3.17 is

split into the streaming and collision processes. Generally, these two steps are

computed separately.

At the nodes on the boundary of the computational domain, the velocity

is imposed as the inflow velocity; the pressure is obtained from the nearest

inner nodes; and the distribution function fi is computed through the non-

equilibrium extrapolation method (Guo et al. 2002). When the flow is incom-

pressible, the pressure p and velocity u of the flow are given by

p =
1

3

8∑
i=0

fi, (3.20)

u =
1

ρ

8∑
i=0

fici. (3.21)

The process of LBM simulations is briefly summarized as: (a) initialize the

distribution function fi from macroscopic initial variables (ρ0, u0 and v0); (b)

compute the streaming process on the left hand in Eq. 3.17; (c) compute the

collision process in Eq. 3.17; and (d) calculate macroscopic variables p, u and

v through Eq. 3.20 and 3.21.
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Fig. 3.6: Interface structure between two blocks of different grid sizes.

3.3.2 Multi-block technique

In this study, the multi-block technique proposed by Yu et al. (2002) is imple-

mented into the LBM solver. The adjacent boundary of neighbouring blocks

with different time steps and grid spacings overlap and the information ex-

changed on the interface is implemented to ensure the mass conservation and

the continuity of stresses between blocks (Liu et al. 2012). As shown in Fig.

3.6, the nodes of grid spacing dxf in the fine block overlap those of grid spacing

dxc in the coarse block in the vicinity of the interface. The distribution func-

tion fi at the nodes on the boundary of the fine block is exchanged with that

of the coarse block through interpolation using three-point Lagrangian formu-

lation. The streaming and collision processes of the LBM are firstly computed

in the coarse block. According to Eq. 3.19, the viscosity of the fluid is

ν = (2τLB − 1) dx/6, (3.22)
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where τLB is the relaxation time. The relationship between the relaxation

times in the fine block τ fLB and in the coarse block τ cLB are described by Yu

et al. (2002) as:

τ fLB =
1

2
+

dxc
dxf

(
τ cLB −

1

2

)
. (3.23)

In this study, the computational domain of 42c×24c with the outer bound-

ary at 30c from the pivot location in Fig. 3.7a is employed in the LBM to

predict energy harvesting performance, while that of 70c× 40c with the outer

boundary at 50c from the pivot location in Fig. 3.7b is used to investigate the

vortices in the far downstream flow. As shown in Fig. 3.7, the computational

domain containing 17 blocks have 5 grid levels. Grid level 1 is the coarsest grid

in blocks I, II, III, IV; gird level 2 is in blocks VI, VII, VIII, IX; gird level 3 is

in the 4 blocks surrounded by blocks VI, VII, VIII, IX; gird level 4 is in the 4

blocks adjacent to block V; and gird level 5 is in block V. The time step and

grid spacing in the inner block are half of those in the adjacent outer block,

e.g. time step and grid spacing in block I, II, III, IV are half of those in block

VI, VII, VIII, IX.

3.3.3 Immersed boundary method

The fluid-structure interaction problem is simulated using the immersed bound-

ary (IB) method. Instead of adapting the grid to follow the movement of the

interface in body-conformed mesh methods, the IB method distributes the

stress exerted by the structure on the fluid to the stationary Cartesian gird

in the vicinity of the solid boundary. In the IB method, the velocity on the

Lagrangian boundary must satisfy the incompressible Navier-Stokes equation:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ ρν∇2u+ f , (3.24)
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(a) Computational domain with a size of 42c× 24c.

(b) Computational domain with a size of 70c× 40c.

Fig. 3.7: Computational domain with 17 blocks and 5 grid levels used in the LBM
simulations.
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Fig. 3.8: The computational mesh near the foil.

where t is the time, u is the fluid velocity, f is the body force as a source

term. f on the Eulerian coordinate x (x, y) is related to the boundary force

f ′ exerted by the structure on the Lagrangian coordinate x′ (x′, y′). The

connection between the Eulerian mesh for the fluid solver and the Lagrangian

boundary for the solid solver is approximated by the Dirac δ function (Liu

et al. 2012):

f (x, t) =

∫
S

f ′ (s, t) δ (x− x′ (s, t)) ds, (3.25)

where S is the enclosed solid boundary and 0 < s < 1 is the parameter tracking

the point on the Lagrangian boundary. This IB-LBM is efficient for solving

FSI problems involving large deformations (Peng & Luo 2008, Sotiropoulos &

Yang 2014). The uniform orthogonal grid with immersed boundary is shown

in Fig. 3.8. In Chapter 4 and 5, 2000 grid points are distributed over the foil

surface, while in Chapter 6, the same number of points is distributed over the

foil surface and 200 grid points are distributed over the tail.
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Table 3.2: Courant number Ncour and efficiency η with respect to the number of grid
points and ∆t∗ at Re = 1100, f∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦, xpiv = 0.333.

∆t∗\Total number of grid points 2.1× 106 3.3× 106 8.3× 106

Courant number Ncour

0.0020 0.040 0.050 0.080
0.0016 0.032 0.040 0.064
0.0010 0.020 0.025 0.040

efficiency η
0.0020 35.5% 35.1% 33.3%
0.0016 35.6% 35.5% 34.1%
0.0010 36.1% 36.1% 35.6%

Table 3.3: |CL| and |CM | with respect to the number of grid points and ∆t∗ at
Re = 1100, f∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦, xpiv = 0.333.

∆t∗\Total number of grid points 2.1× 106 3.3× 106 8.3× 106

|CL|
0.0020 1.3954 1.3861 1.3192
0.0016 1.4060 1.3955 1.3593
0.0010 1.4127 1.4050 1.3955

|CM |
0.0020 0.2126 0.2045 0.1823
0.0016 0.2146 0.2146 0.1941
0.0010 0.2207 0.2205 0.2179

Table 3.4:

√
C2
L and

√
C2
M with respect to the number of grid points and ∆t∗ at

Re = 1100, f∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦, xpiv = 0.333.

∆t∗\Total number of grid points 2.1× 106 3.3× 106 8.3× 106√
C2
L

0.0020 1.4674 1.4619 1.3925
0.0016 1.4777 1.4675 1.4275
0.0010 1.4882 1.4830 1.4679√

C2
M

0.0020 0.2783 0.2609 0.2270
0.0016 0.2819 0.2817 0.2470
0.0010 0.2886 0.2883 0.2874
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Table 3.5: Computational results using different grid spacings in the outer blocks at
Re = 1100, f∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦, xpiv = 0.333.

Case η |CL| |CM | RMS of CL RMS of CM
i 35.5% 1.3955 0.2146 1.4675 0.2817
ii 35.2% 1.4159 0.2043 1.4921 0.2606
iii 35.2% 1.4161 0.2045 1.4920 0.2609

3.3.4 Validations

The grid and time refinement is performed on a rigid foil with the computa-

tional domain size of 42c × 24c at Re = 1100, f ∗ = 0.14, h0 = 1, θ0 = 76.3◦,

ϕ = 90◦ and xpiv = 0.333. The convergence of hydrodynamic loads and η with

respect to the number of grid points and time steps is demonstrated respec-

tively in Table 3.2-Table 3.4 where ∆t∗ = ∆t/Uc is the non-dimensional time

step size in the outermost blocks (I, II, III and IV). In the context of the multi

block technique, the non-dimensional time step size at the finest grid level in

the innermost block (block V in Fig. 3.7) is ∆t∗/16. To justify the conver-

gence condition with respect to the Courant Friedrichs Lewy (CFL) condition,

Courant number Ncour = U∆t/∆x is listed in Table 3.2, where ∆x is the grid

spacing in the outermost block. For all the cases, Ncour is much less than 1.

The results in Table 3.2 - 3.4 indicate that when Ncour = 0.04, the efficiency

and hydrodynamic loads given by cases with different time and grid spacings

are almost identical. Hereafter a total number of 3.3 × 106 grid points and a

non-dimensional time step ∆t∗ = ∆t/Uc = 0.0016 are utilized. Simulations

with smaller grid spacing in the outer blocks are conducted to justify the in-

fluence of grid refinement. In Table 3.5, the blocks of case i are the same as

those in the grid and time-step independence study; blocks I, II, III and IV of

case ii use half the grid spacing of that used in the same blocks of case i; and

blocks VI, VII, VIII and IX of case iii use half the grid spacing of that used
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in the same blocks of case i. The differences in η of the 3 cases are less than

1%. The code using LBM is compiled with Intel Fortran on Linux system and

operated on a single Xeon/2.67-GHz processor. It takes 120 hours to compute

12 flapping cycles at f ∗ = 0.14.
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Fig. 3.9: Comparison of lift coefficient with that of Kinsey & Dumas (2008).

The fluid solver is validated in predicting energy harvesting performance a-

gainst Kinsey & Dumas (2008) under the same condition as that in the previous

grid and time refinement analyses. As shown in Fig. 3.9, the instantaneous lift

coefficient CL given by the IB-LBM solver shows good agreement with that of

Kinsey & Dumas (2008). The simulation is converged after 12 flapping cycles

with the difference in efficiency of less than 1% between the last 5 cycles. Com-

pared with η = 33.7% and Cp = 0.860 computed by Kinsey & Dumas (2008)

using a Navier-Stokes solver provided in ANSYS Fluent 6.1, the LBM predict-

s a little higher η = 35.5% and Cp = 0.911. For validation of the IB-LBM

solver in solving fluid-structure interaction problems, a propulsion system of

two rigid elliptical foils linked through a torsional spring with non-dimensional
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Fig. 3.10: Comparison of the tail angle with that of Toomey & Eldredge (2008).

stiffness Ks/ (ρf 2c4) = 456 and non-dimensional damping R/ (ρfc4) = 3.95 at

Ret = Ut,maxc/ν = 1300 (Ut,max is the maximum translational velocity) investi-

gated by Toomey & Eldredge (2008) is considered. One of the foils undergoes

prescribed motion driven by a two-axis motion stage with xpiv = 0.5. The

motion of the other foil is determined by FSI and the solid-to-fluid density

ratio of the passive foil is 5. The gap distance between the driven and the

passive foils is 0.049c. The deflection of the passive foil was measured by an

HP HEDS-5540 encoder and 100 data points were recorded in each flapping

cycle. In this case, the mass and moment of inertia in Eq. 3.3 are values per

unit span. As shown in Fig. 3.10, the displacement of the trailing foil agrees

well with the experiment data for a torsional flexibility model of Toomey &

Eldredge (2008).
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3.4 Multi-fidelity evolutionary algorithm

Evolutionary algorithms (EAs) are intelligent methods incorporating random

variation and selection inspired by biological evolution. They are commonly

used in various fields of science and engineering because they are applicable

for a wide range of problems and do not need assumptions on the mathe-

matical properties of the underlying functions (Fogel 1997). In addition, EAs

perform well in multi-objective problems since they evaluate several solutions

of the Pareto optimal set in a single run (Coello 2006). Due to the complex

influence of kinematic parameters on the performance of a flapping foil, native

use of evolutionary algorithms would require thousands of function evaluations

to achieve near optimal solutions. The high computational expense associat-

ed with repeated simulations, such as the Navier-Stokes equations, poses an

impediment to the application of evolutionary algorithms for the purpose of

design optimization. To reduce the computational expense, Shimizu et al.

(2008) implemented an EA with a low fidelity method with the assumptions

of planar wake and small amplitude given by Theodorsen (1979). The term

fidelity refers to the amount of physics or details implemented within the mod-

el. Generally, higher fidelity simulations are more accurate and require more

computational resources. For example, a simulation of a flapping foil power

generator using FLUENT by solving Navier-Stokes equations takes 100 hours

on a single P4/3.2-GHz processor (Kinsey & Dumas 2008), while the Bryan-

t model using semi-empirical functions takes less than 1 second on a single

Xeon/2.67-GHz processor (Liu et al. 2016). One promising way to reduce the

computational cost of such an optimization exercise is to use evaluation models

of different fidelities during the optimization process (Zhou et al. 2007, Ong

et al. 2003, Loshchilov 2013). Typically, the low fidelity solution can be ob-
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tained from data fitting, a physics based model and a simulation with coarser

mesh or relaxed criteria (Leifsson & Koziel 2015).

In this study, the fully prescribed system governed by Eq. 3.1 and 3.2 is

optimized using a probabilistic dominance based multi-fidelity optimization

algorithm. This multi-fidelity EA is implemented with physics based reduced

order models (the Bryant model reproduced in Section 3.2 and the discrete

vortex method modified in Chapter 4). Compared to the function approxi-

mation model constructed by data fitting where substantial amount of data

samples is required to ensure the accuracy of the model, the physics based low

fidelity model requires less high fidelity solutions to obtain good accuracy.

Fig. 3.11: Flowchart of evolutionary algorithm with multi fidelity method (main
progress). µEA is the population size and FEA is the fidelity level from 1 to M
where M is the highest fidelity level.

The flowchart of the multi-fidelity evolutionary algorithm is shown in Figs.
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3.11 and 3.12. The proposed approach is an extension of the work described in

Branke et al. (2017). The probabilistic score is derived based on the principles

discussed in Hughes (2001) rather than from a logistic regression model in

Branke et al. (2017). This method is based on (µ + λ) evolutionary approach

which has a population of size µEA and a recombination pool of size λEA. As

shown in Fig. 3.11, the fitness values of all solutions (PEA containing µEA

individuals) are evaluated using all the fidelity levels (FEA1 − FEAM , where

M is the highest fidelity level) during initialization. The probabilistic score

and the standard error of the score computation involves prediction of highest

fidelity objective values of all solutions using the values of actually evaluated

neighbouring solutions at the highest fidelity level (FEAM). Crossover and

mutation operators are used to generate offspring solutions (CEA) of size µEA

from parent individuals (PEA) for the next generation GEA. Then, the status of

parent and child individuals from the second to the highest fidelity levels (FEA2-

FEAM) is marked as not evaluated (UEA). In the selection operator SOEA (Fig.

3.12), the appropriate fidelity levels are selected in an iterative manner based

on the probabilistic dominance score. Based on the score, the solutions of

the parent and child populations (SEA=PEA+CEA) of 2µEA individuals are

sorted based on evaluations at FEAi − 1. Then the selection threshold (TEA)

is computed based on the score. If the status of an individual is not evaluated

(UEA), the process to determine whether it needs to be evaluated at FEAi will

be conducted. The solutions with the selection threshold (TEA) within the

standard error threshold are identified to keep or discard: when the rank i is

less than or equal to the population size µEA, the status of the individual is

marked as sure for keeping (KEA); otherwise it is marked as sure for discarding

(DEA). On the other hand, when TEA is greater than the standard error

threshold, the individual is identified for evaluation at the next higher fidelity
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level (FEAi). If the number of individuals marked as KEA or DEA is sufficient

(equals to µEA), individuals marked as UEA will be selected for evaluation

at the next higher fidelity level. This process continues till no solution is

selected for evaluation at the next higher fidelity level. A forcing method

(Branke et al. 2017) is employed to reduce the risk that solutions based on

their low fidelity evaluations are approaching the optimum which is not truly

optimum if evaluated at the highest fidelity level. It updates the probabilistic

score by evaluating the solution with the smallest probabilistic score at the

highest fidelity level in each generation. Solutions (SEA) of 2µEA individuals

are sorted and the parent population (PEA) for the next generation is the

top ranked 1-µEA individuals. Even though the usage of time budget (BEA)

is updated in the selection operator (SOEA in Fig. 3.12), the termination

criterion (BEA > BEAmax) is at the end of each generation (Fig. 3.11). This

indicates that the actual time used BEAa with the MFEA is larger than the

estimated time budget BEAmax. For comparison with SFEA, the best value

of the single objective function given by the MFEA when the estimated time

budget BEAmax is used up is the interpolated value of the best objective values

at specified used time units (BEA at the end of each generation).

For comparison of the evolutionary algorithm with the classical optimiza-

tion method, a non-gradient based classical method, the complex method with

a randomization factor (Krus & Andersson 2003), is reproduced with Matlab

R2013b. Non-linear functions of 3 fidelity levels (f1, f2 and f3) proposed by

Branke et al. (2017) are introduced to test the convergence of the optimization
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Fig. 3.13: Plot of the artificial functions of fidelity level 1-3, used to test the opti-
mization method. The global optima of the functions are marked with circles.
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The artificial functions of fidelity level 1 and 2 (f1 and f2) provide coarse

approximation to the function of the highest fidelity level (f3). In addition,
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the position of the global optimum of f3 is different from that of f1 and f2 , as

shown in Fig. 3.13. It is assumed that solving f1 and f2 consumes respectively

1/3 and 2/3 computational time of solving f3.

In the complex method, the reflection coefficient determining the distance

between the reflection and the centroid points is 1.3 suggested by Box (1965),

and the randomization factor used to generate random noise and repeat factor

used to prevent the complex from collapse are respectively 0.3 and 4 suggested

by Andersson (2001). Following Branke et al. (2017) and Deb et al. (2002),

the probability of crossover and mutation is set to 1 and 0.2, respectively in

the EA. The distribution indices for crossover (ηc) and mutation (ηm) are set

as 20 and 30, respectively. The number of neighbours is set to three times the

number of design variables and the population size is 20 times the number of

objectives. The computational time budget is estimated based on the number

of simulations at the highest fidelity level, which is at least 100 times the

number of design variables.

Function values in the single-fidelity evolutionary algorithm (SFEA) and

the complex method are only given by f3, while function values of fidelity levels

1, 2 and 3 in the multi-fidelity evolutionary algorithm (MFEA) are respectively

given by f1, f2 and f3. The number of vertices in the complex method and

the population size of the single-fidelity evolutionary algorithm (SFEA) and

multi-fidelity evolutionary algorithm (MFEA) are set to 20. A pre-defined

time budget equivalent to 3400 runs of f3 is employed in the single-objective

optimization problem solved by the three methods. The results in Fig. 3.14

are based on the average of 30 independent optimization runs with random

initial values. The convergence history shows that the starting points of the

optimization process using the complex method, SFEA and MFEA are the

same. Compared to the complex method where only one reflection point is



3.4. Multi-fidelity evolutionary algorithm 80

Evaluation budget

F
u
n
ct
io
n
va
lu
e

 

 

500 1000 1500 2000 2500 3000
−17

−16

−15

−14

−13

−12

−11

−10
Complex method (Fidelity 3)
SFEA (Fidelity 3)
MFEA

(a)

Evaluation budget

F
u
n
ct
io
n
va
lu
e

 

 

100 200 300 400 500
−17

−16

−15

−14

−13

−12

−11

−10
Complex method (Fidelity 3)
SFEA (Fidelity 3)
MFEA

(b)

Fig. 3.14: Convergence history of the singe-objective problem using the complex
method, single-fidelity evolutionary algorithm (SFEA) and multi-fidelity evolution-
ary algorithm (MFEA).
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employed in each step, both the SFEA and MFEA provide better results at

the early stage of the optimization process (e.g. usage of budget less than 200,

Fig. 3.14b) due to the diversity of the individuals in each generation. Although

the rate of convergence of the SFEA and MFEA is similar, the MFEA is more

likely to converge to the global optimum of −16.5(Fig. 3.14a).

3.5 Summary

In this chapter, the physical problems investigated in Chapters 4-6 were first

described. Then, the Bryant model (Bryant et al. 2013) was reproduced and

compared with results given by computational fluid dynamics (CFD) method

(Kinsey & Dumas 2008). Thirdly, an immersed boundary-lattice Boltzmann

method (IB-LBM) was presented and validated after grid and time step re-

finement against results given by the Navier-Stokes solver (Kinsey & Dumas

2008) and the experiment (Toomey & Eldredge 2008). Finally, multi-fidelity

evolutionary algorithm (MFEA) was presented and a study on the convergence

of the complex method and the evolutionary algorithm using multi and single

fidelity strategies was conducted.

As mentioned in Chapter 2, it is computationally prohibitive to use compu-

tational fluid dynamics (CFD) methods for optimizing the energy extraction

performance of a flapping foil power generator. To reduce the time costs and

take into account the influence of the formation of leading edge vortices (LEV-

s), the the Bryant model which introduces dynamics stall effects was repro-

duced with Matlab. The Bryant model only took several seconds and agreed

well with CFD results of Kinsey & Dumas (2008) under specified conditions

when the constants are tuned appropriately. The Bryant model reproduced in

this chapter and an improved discrete vortex method in which empirical con-
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stants are independent of kinematics of the flapping foil developed in Chapter

4 will be implemented into the MFEA to optimize the energy extraction per-

formance.

To obtain details of the flow field and solve fluid-structure interaction (FSI)

problems, IB-LBM is used in this study. The IB-LBM is efficient to simulate a

flapping foil undergoing large displacement (i.e. the order of the amplitude of

the plunge motion is the same as that of the chord length) and large deforma-

tion (i.e. the order of the amplitude of the tail angle is the same as that of the

pitch motion) since it avoids mesh movement and regeneration. In addition,

a multi-block technique and parallelization using OpenMP were employed to

reduce time costs. The results of the IB-LBM showed good agreement with

those of the Navier-Stokes solver (Kinsey & Dumas 2008) and the experiment

(Toomey & Eldredge 2008).

Considering the non-linearity of the flapping foil problem, an evolutionary

algorithm is used to optimize the kinematic parameters of the flapping foil

power generator. A multi fidelity strategy is employed to reduce the number

of evaluations for optimization. The converge of the optimization problem

implemented with artificial functions showed that the MFEA converged faster

than the traditional optimization method, the complex method, and was more

likely to converge to the global optimum compared to the evolutionary algo-

rithm using single fidelity strategy. Further discussions on the convergence of

the evolutionary algorithm using multi and single fidelity strategies to solve

the flapping foil problem will be presented in Chapter 5.



Chapter 4

Discrete Vortex Method with

Flow Separation Corrections

The Bryant model (Bryant et al. 2013) reproduced in Section 3.2 shows rea-

sonable agreement with the CFD results. However, the empirical constants

with respect to dynamic stall effects were tuned using the CFD results of Kin-

sey & Dumas (2008). These constants which are tied to both geometries and

kinematics effectively limit the application of the Bryant model to a range of

parameters validated by the CFD results. In this chapter, a physics-based

model which is only Reynolds number and foil geometry dependent for aero-

dynamic modelling is developed to reduce the computational cost for flapping

foil analysis and to pave the way to engineering design and optimization with

higher fidelity and range of applicability than provided by the Bryant or simi-

lar methods, but still with dramatically reduced computational cost compared

The following papers have been published from this chapter:
[1]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. A discrete vortex
method for flapping foil power generator modeling at low Reynolds numbers. In 24th Inter-
national Congress of Theoretical and Applied Mechanics, Montreal, Canada, August 2016.
[2]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. Discrete vortex
method with flow separation corrections for flapping-foil power generators. AIAA Journal,
55(2):410-418, 2017.
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to the CFD methods. In Section 4.1, the model based on the discrete vortex

method (DVM) is described, which incorporates the formation and evolution

of LEVs and empirical functions analogous to the Leishman-Beddoes model

(1989) to account for the trailing edge flow separation. In Section 4.2, the com-

putational time of the DVM with flow separation corrections is compared with

that of the immersed boundary-lattice Boltzmann method (IB-LBM). Then re-

sults given by the modified DVM and the Bryant model reproduced in Section

3.2 are quantitatively compared against IB-LBM simulations and numerical

and experimental results in the literature under different flow conditions.

4.1 Code development

The discrete vortex method is a potential flow approach to model unsteady

flows. In this method, the foil is discretized by consecutive flat panels. Re-

duced order models based on this method were modified to model LEVs in

unsteady flows by introducing some criteria for the onset of vortex shedding,

for example, critical angle of attack (Hammer et al. 2014) and leading edge

suction parameter (Ramesh et al. 2014). Although with these criteria, rea-

sonable flow patterns can be obtained, aerodynamic loads acting on the foil

are generally over predicted (Pan et al. 2012). Since these models typically

assume only flow separation at the leading edge, neglecting the influence of

the trailing edge flow separation is not always physically realistic. In this sec-

tion, the fundamentals of the DVM and corrections in terms of the leading

edge flow separation are described and empirical functions proposed by Leish-

man & Beddoes (1989) are introduced to take into account the reduction in

aerodynamic loads corresponding to the trailing edge flow separation.



4.1. Code development 85

Fig. 4.1: Aerodynamic loads for a NACA0015 foil with fixed coordinate system (x, y)
and foil coordinate system (x′, y′) where its origin is at the leading edge of the foil.
Vortex shed from the trailing edge of the foil.

4.1.1 Large amplitude thin aerofoil theory

The Leishman-Beddoes model (Leishman & Beddoes 1989) has been developed

for helicopter blade analysis with a maximum angle of attack of 10◦ in the

majority of studies. In this model, the lift and moment coefficients of unsteady

attached flow are predicted by the Theodorsen’s theory (Theodorsen 1979).

However, the application of this classical method is limited by the assumptions

of planar wake and small amplitude and is unsuitable for simulations of a

flapping foil power generator. To obtain unsteady attached flow solutions

at high angles of attack, the DVM outlined by Katz & Plotkin (2001) and

extended to non-planar wake and large amplitude simulations is used here.

The DVM attempts to model unsteady flows by discretization of the dis-

tributed vorticity by a finite number of small discrete vortex elements. The
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flapping foil and its wake are respectively modelled by bounded and free vor-

tices. According to the discrete vortex method, trailing edge vortices start to

shed from the trailing edge at each time step from time t > 0. The free vortices

move downstream with the flow particles and their strength remains constant.

The velocity induced by each vortex element is obtained using the Bio-Savart

Law. Then the velocity field is computed as the sum of the velocities induced

by the bounded and free vortex elements.

The local velocity normal to the foil v′ (x, t) in the foil coordinate system

(x′, y′) in Fig. 4.1 can be computed according to the boundary condition (Katz

& Plotkin 2001):

v′ (x′, t) = Ḣ cos θ − U sin θ + θ̇ (x′ − xpivc)−
∂ΦL

∂y′
− ∂ΦT

∂y′
, (4.1)

where ΦL and ΦT are the velocity potentials with respect to leading and trailing

edge vortices. The chordwise position x′ is transformed using the chordwise

coordinate transformation variable ϑ as (Katz & Plotkin 2001):

x′ =
c

2
(1− cosϑ) . (4.2)

Based on this transformation, a solution to the vorticity distributions γ (ϑ, t)

over the foil is proposed for the time dependent problem (Katz & Plotkin

2001):

γ (ϑ, t) = 2U

[
A0 (t)

1 + cosϑ

sinϑ
+
∞∑
n=1

An (t) sin (nϑ)

]
, (4.3)

where the coefficients An (t) which implicitly satisfy the Kutta condition (zero
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vorticity at the trailing edge) are computed by (Katz & Plotkin 2001)

A0 (t) = − 1

π

∫ π

0

W (ϑ, t)

U
dϑ, (4.4)

An (t) =
2

π

∫ π

0

W (ϑ, t)

U
cosnϑdϑ, n = 1, 2, 3, ... (4.5)

The strength of the latest leading and trailing edge vortices can be calcu-

lated using Kelvin’s condition (i.e. the total circulation which must be zero

for a converged solution, Katz & Plotkin 2001):

Γ (t) + ΓV i (t) +
i−1∑
k=1

ΓV k = 0, (4.6)

where Γ (t) is the circulation bounded on the foil, ΓV i (t) is the circulation

of leading and trailing edge vortices at the current time step ti, and the last

term is the circulation of all the vortices ΓV k shed in the previous time steps.

The circulation of the foil can be obtained by integrating γ (ϑ, t) along the

chordwise coordinate (Katz & Plotkin 2001)

Γ (t) =

∫ π

0

γ (ϑ, t) dϑ = Ucπ

[
A0 (t) +

A1 (t)

2

]
. (4.7)

4.1.2 Criterion for LEV formation

Experiments (McCroskey 1981, Lee & Gerontakos 2004) have shown that the

leading edge separation is correlated to the reversed flow which develops down-

stream of the suction peak around the leading edge. Inspired by studies on the

separation at the leading edge, a criterion referring to the leading edge suction

force is introduced by Ramesh et al. (2014) to predict the formation of the

LEV. This criterion, named the leading edge suction parameter (LESP), is a
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non-dimensional measure of the suction at the leading edge

LESP (t) = A0 (t) . (4.8)

A critical value of the leading edge suction parameter, named LESP0, is

set such that discrete vortices start to shed from the leading edge when the

instantaneous |LESP (t) | is higher than LESP0 and terminate when |LESP (t) |

falls below LESP0. LESP0 is empirically determined by the aerofoil profile

and Reynolds number (Re) regardless of kinematic parameters (such as θ0, h0

and f ∗) and the pivot location. When LEV forms, the strengths of vortices

shedding from the leading and trailing edge are determined by solving Eq. 4.6

and |LESP (t) | = LESP0. Here, LESP0 = 0.19 (NACA0015 foil, Re = 1100)

suggested by Ramesh et al. (2014) is used. It should be noted that the leading

edge separation point is enforced exactly at the leading edge in this study.

The effect of this assumption on the accuracy of the DVM calculations may

be explored in a future study by determining the separation point based on

experimental data (see Katz (1981) and Antonini et al. (2014)).

4.1.3 Trailing edge flow separation

In the DVM with LESP, the influence of the flow separation point movement

starting from the trailing edge is neglected because vortex shedding is enforced

at the leading and trailing edge. Here, the Kirchhoff flow approximation mod-

ified by Leishman & Beddoes (1989) is used for trailing edge flow separation

corrections (TEFSC). This simple method using semi-empirical functions to

account for unsteady flow separations gives the following expressions for nor-

mal force coefficient Csep
N , chord force coefficient Csep

C and moment coefficient
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Csep
M (Bauchau 2007):

Csep
N = Ccir

N

(
1 +
√
f sep

2

)2

, (4.9)

Csep
C = CC

√
f sep, (4.10)

Csep
M =

[
xpiv + k1 (1− f sep) + k2 sin

(
π (f sep)2)]Csep

N , (4.11)

where f sep is the separation point, Ccir
N is the circulatory normal coefficient

and CC is the leading edge suction force coefficient. Empirical constants k1 =

−0.135 and k2 = 0.04 (only data of NACA0012 is available in Bauchau 2007,

independent of Re) represent the direct effect on the center of pressure due to

the growth of the separated flow region and the shape of the moment break

due to the stall effects respectively (Bauchau 2007).

The position of steady-state separation point f sep0 is generally a nonlinear

function of the angle of attack α. In principle, the function f sep0 could be

obtained from wind tunnel tests. In the Leishman-Beddoes model (1989),

the relationship between f sep0 and α is generalized empirically as a piecewise

function (Dyachuk et al. 2013):

f sep0 =


1− 0.3exp

(
|α|−α1

S1

)
|α| < α1

0.04− 0.66exp
(
α1−|α|
S2

)
|α| > α1

, (4.12)

where constant S1 = 3.0, S2 = 2.3, α1 = 15.25◦ (only data of NACA0012

is available in Bauchau 2007, independent of Re) are determined from static

experimental data (Bauchau 2007).

For unsteady flow conditions, the effective separation point f sep differs from

the stationary value due to the boundary-layer convection lag. To capture the

transient dynamic effects, the movement of f sep can be described using a first



4.1. Code development 90

order differential equation (Goman & Khrabrov 1994, Fan & Lutze 1996):

τ1
df sep

dt
+ f sep = f sep0 (α− τ2α̇) , (4.13)

where τ1 = 0.52c/U and τ2 = 4.5c/U (NACA0015, independent of Re) are

relaxation time constants (Goman & Khrabrov 1994).

4.1.4 Integration of hydrodynamic loads

The pressure distributions on the foil can be computed from the unsteady

Bernoulli equation (Katz & Plotkin 2001):

∆p (x′) = ρ

(
−Ḣ sin θ + U cos θ +

∂ΦL

∂x′
+
∂ΦT

∂x′

)
γ (x′)

+ ρ
∂

∂t

∫ x′

γ (x′) dx′.

(4.14)

The circulatory normal force coefficient Ccir
N due to the instantaneous cir-

culation and the non-circulatory normal force coefficient Cnon
N including the

contribution of the time dependency are obtained by integrating the pressure

over the foil and normalising with (1/2) ρU2c,

Ccir
N =

2π

U

(
−Ḣ sin θ + U cos θ

)(
A0 (t) +

1

2
A1 (t)

)
+

2

U2c

∫ x′

0

(
∂ΦL

∂x′
+
∂ΦT

∂x′

)
γ (x′, t) dx′, (4.15)

Cnon
N =

2πc

U

(
3

4
Ȧ0 (t) +

1

4
Ȧ1 (t) +

1

8
Ȧ2 (t)

)
. (4.16)

The leading edge suction force coefficient CC is calculated by the Blasius

formula (Garrick 1937):

CC = 2πA0 (t)2 . (4.17)
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Using Eqs. 4.9, 4.10 and 4.16, the lift coefficient CL is given by

CL = (Csep
N + Cnon

N ) cos θ − Csep
C sin θ. (4.18)

When the effect of the trailing edge flow separation is introduced through

Eq. 4.11, the moment coefficient about xpiv can be expressed as

CM =
[(
xpiv + k1 (1− f sep) + k2 sin

(
π (f sep)2))Csep

N + Cnon
N xpiv

]
− 2π

U

(
1 +

√
f sep

)2
[(
−Ḣ sin θ + U cos θ

)(1

4
A0 (t) +

1

4
A1 (t)− 1

8
A2 (t)

)]
− 2

U2c2

(
1 +

√
f sep

)2
[∫ x′

0

(
∂ΦL

∂x′
+
∂ΦT

∂x′

)
γ (x′, t)x′dx′

]

+
2πc

U

[
7

16
Ȧ0 (t) +

3

16
Ȧ1 (t) +

1

16
Ȧ2 (t)− 1

64
Ȧ3 (t)

]
.

(4.19)

4.2 Code validation and discussion

4.2.1 Computational time

In the runtime test, the Bryant model, DVM and IB-LBM are all compiled

with Intel Fortran on Linux system and operated on a single Xeon/2.67-GHz

processor. As shown in Fig. 4.2, when the non-dimensional time step ∆t∗ =

∆tU/c = 0.010 and 0.015, the differences in η of the three cases after seven

flapping cycles is less than 3% at Re = 1100, f ∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ =

90◦ and xpiv = 0.333. Thus ∆t∗ = 0.015 is used for simulations of the DVM.

In the Bryant model, the same ∆t∗ = 0.015 is used for comparison with the

DVM; and ∆t∗ = 0.0015 is utilized in the IB-LBM to ensure the convergence

of the simulations. ϕ = 90◦, xpiv = 0.333 and h0 = 1 are fixed here.

The results of the Bryant model do not change with the increase of the
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Fig. 4.2: Cycle-to-cycle convergence of the efficiency predicted by the discrete vortex
method at Re = 1100, f∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.

Table 4.1: Computational time of the DVM with TEFSC and the IB-LBM for
various number of simulated flapping cycles. LBM .vs. DVM stands for the ratio of
the computational time of the LBM to the computational time of the DVM.

Kinematics Cycles DVM LBM LBM .vs. DVM

f ∗ = 0.18 1 2.6 (s) 28665.6 (s) 10831.1
θ0 = 60◦ 2 18.9 (s) 54948.7 (s) 2903.3

4 129.5 (s) 110994.8 (s) 857.0
8 418.0 (s) 226006.3 (s) 540.6
12 708.3 (s) 337389.2 (s) 476.3

f ∗ = 0.14 1 8.1 (s) 33274.1 (s) 4121.3
θ0 = 76.3◦ 2 53.9 (s) 66586.0 (s) 1235.7

4 334.2 (s) 139745.8 (s) 418.2
8 1062.4 (s) 284028.5 (s) 267.4
12 1813.8 (s) 433331.3 (s) 238.9

f ∗ = 0.12 1 10.0 (s) 42524.6 (s) 4244.6
θ0 = 60◦ 2 71.1 (s) 84443.2 (s) 1188.1

4 334.0 (s) 170784.7 (s) 511.3
8 882.5 (s) 352264.3 (s) 399.2
12 1456.8 (s) 511074.5 (s) 350.8
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number of flapping cycles simulated. Thus, only the first cycle of the Bryant

model is computed, which takes less than 1 second. 12 flapping cycles of DVM

and IB-LBM are computed here because IB-LBM converges after 12 cycles as

discussed in Section 3.3. Since the time step is fixed, the computational time

of the IB-LBM increases monotonically with decreasing f ∗, as shown in Table

4.1 for three different kinematics conditions, because the total number of time

steps per flapping cycle increases with decreasing f ∗. Table 4.1 illustrates that

for the calculations of DVM with TEFSC, the computational time required

depends not only on the total number of time steps per cycle but also on the

number of leading edge vortices shed due to increasing resources required to

compute every vortex element shed from the leading edge and the trailing edge.

According to Kinsey & Dumas (2008), when f ∗ = 0.14 and θ0 = 76.3◦, strong

vortices form at the leading edge of the foil while no obvious LEV is observed

in the other two cases. Hence, for f ∗ = 0.14 where there is a large number of

vortices, the computational time after 4 cycles is higher than that for f ∗ = 0.12

and f ∗ = 0.18 where there are a very small number of vortices. Nevertheless,

as shown in Table 4.1, the computational time required for DVM with TEFSC

with three different kinematic conditions spanning a range of very few LEVs to

many LEVs is at least two orders of magnitude less than that of the IB-LBM.

In addition, the rate of increase in computational time of the DVM is greater

than that of the IB-LBM when more cycles are simulated. However, the DVM

converges after 7 flapping cycles (Fig. 4.2) while the IB-LBM converges after

12 flapping cycles. Thus in real applications, the time consumption of the

DVM is much less than that of the IB-LBM.
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Fig. 4.3: Comparison of (a) lift coefficient CL and (b) power coefficient CP at f∗ =
0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 given by the DVM with and
without TEFSC, Bryant model (Bryant et al. 2013) reproduced in Section 3.2 and
CFD simulations conducted by Kinsey & Dumas (2008).
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Fig. 4.4: Comparison of (a) lift coefficient CL and (b) power coefficient CP at f∗ =
0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 given by the DVM with and
without TEFSC, Bryant model (Bryant et al. 2013) reproduced in Section 3.2 and
CFD simulations conducted by Kinsey & Dumas (2008).
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Table 4.2: Comparison of mean power coefficient CP , efficiency η and root mean
square (RMS) error of the instantaneous power coefficient CP given by the DVM
with TEFSC (DVM1), DVM without TEFSC (DVM2) and Bryant model (Bryant
et al. 2013) reproduced in Section 3.2 against CFD results of Kinsey & Dumas
(2008).

Kinematics Parameter Bryant DVM1 DVM2 CFD(Kinsey & Dumas 2008)

f ∗ = 0.14 CP 0.87 0.86 1.12 0.86
θ0 = 76.3◦ η 34.1% 33.4% 43.8% 33.7%

RMS 0.55 0.19 0.45 -

f ∗ = 0.18 CP 0.24 0.37 0.41 0.27
θ0 = 60◦ η 10.1% 15.6% 17.3% 11.4%

RMS 0.37 0.24 0.52 -

4.2.2 Averaged and instantaneous coefficients

To evaluate predictions provided by the DVM and Bryant model, two cases

are selected for comparison because strong LEVs are predicted in the first case

(f ∗ = 0.14, θ0 = 76.3◦) and no LEV is observed in the second case (f ∗ = 0.18,

θ0 = 60◦) with ϕ = 90◦, xpiv = 0.333 and h0 = 1. Both the DVM with

TEFSC and Bryant model (Bryant et al. 2013) give reasonable CP and η

while the DVM without TEFSC gives higher CP and η compared with those

of Kinsey & Dumas (2008) (Table 4.2). Since a good synchronization of lift

force with the plunge and pitch rate gives a good performance of a flapping

foil power generator, it is worthwhile to examine the phase and amplitude of

instantaneous CL. In both cases, the instantaneous CL and CP predicted by

the DVM with TEFSC (solid line) give better approximations to the CFD

results (Kinsey & Dumas 2008) compared to the DVM without TEFSC and

the Bryant model (Bryant et al. 2013). In addition, root mean square (RMS)

errors of instantaneous CP in Table 4.2 also demonstrates that the DVM with

TEFSC is superior to the Bryant model even if the Bryant model gives a better

CP at f ∗ = 0.18, θ0 = 60◦. In the first case (Fig. 4.3), the non-dimensional
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time at which the peaks of CL and CP appear obtained by the Bryant model

(Bryant et al. 2013) is significantly different from those of the DVM and Kinsey

& Dumas (2008). In the second case (Fig. 4.4), the instantaneous CL and

CP predicted by the DVM without TEFSC are nearly doubled in half of one

stroke compared with those of Kinsey & Dumas (2008). This is attributed to

two factors: (a) although no LEV is observed in CFD simulations, CL is over

predicted because the leading edge suction parameter exceeds the critical value

LESP0, resulting in some LEVs for the DVM calculations; and (b) the influence

of the trailing edge flow separation resulting in lower aerodynamic loads is

neglected. When TEFSC is incorporated into the DVM, the overprediction

of CL and CP has been significantly reduced by taking into account of the

trailing edge flow separation, but CL and CP are still higher than those of

Kinsey & Dumas (2008) because the leading suction parameter exceeds the

critical value LESP0 resulting in some LEVs even though there are no LEVs

observed in CFD simulations. As shown in Fig. 4.4, results of the Bryant

model (Bryant et al. 2013) give underestimated amplitudes of CL and CP and

phase differences of the coefficient curves compared to results of Kinsey &

Dumas (2008).

Since time histories of CM and CP for different pivot locations are not avail-

able in Kinsey & Dumas (2008), the IB-LBM code is used here for validations.

The instantaneous CL obtained by the Bryant model (Bryant et al. 2013) is

the same at the same t/T even though the pivot location is different when

xpiv = 0.25 (Fig. 4.5), xpiv = 0.333 (Fig. 4.3a) and xpiv = 0.75 (Fig. 4.6)

because the influence of the pivot location on the angle of attack has not been

taken into account in the Bryant model (Bryant et al. 2013). On the other

hand, the DVM with TEFSC shows two obvious peaks near t/T = 0.1 and

t/T = 0.4 with xpiv = 0.25 (Fig. 4.5), xpiv = 0.333 (Fig. 4.3a) and one peak



4
.2

.
C

o
d
e

v
a
lid

a
tio

n
a
n
d

d
iscu

ssio
n

9
8

t/T

C
L

 

 

0 0.5 1
−4

−2

0

2

4

t/T

C
M

0 0.5 1
−3

−2

−1

0

1

2

3

t/T

C
P

0 0.5 1
−1

0

1

2

3

DVM with TEFSC IB-LBM Bryant model

Fig. 4.5: Time histories of CL, CM and CP predicted by the DVM with TEFSC, IB-LBM and Bryant model (Bryant et al. 2013) when
xpiv = 0.25 at f∗ = 0.14, θ0 = 76.3◦, h0 = 1 and ϕ = 90◦.
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near t/T = 0.5 with xpiv = 0.75 (Fig. 4.6) during the first half cycle which are

quite similar to those obtained by the IB-LBM. Furthermore, the peak value of

CL around t/T = 0.4 given by the DVM with TEFSC and IB-LBM increases

when xpiv move aft (Fig. 4.5, 4.3a and 4.6). Even though the trends of CM

obtained by the the Bryant model (Bryant et al. 2013), DVM with TEFSC

and IB-LBM are similar for different pivot locations (Fig. 4.5 and 4.6), the

peak location (Fig. 4.5) and amplitude (Fig. 4.6) of CP which contains the

contribution of CL and CM obtained by the Bryant model (Bryant et al. 2013)

are different from those obtained by the DVM with TEFSC and IB-LBM.

Results given by the reduced order models are also compared with the

experimental data of Simpson (2009). In this experiment, the NACA0012

foil undergoes a non-sinusoidal plunge motion to keep the angle of attack α

sinusoidal at a Reynolds number of 13800. The instantaneous α and θ are

given by

θ (t) = θ0 sin (2πft) , (4.20)

α (t) = α0 sin (2πft) , (4.21)

where α0 is the maximum angle of attack during one cycle. The plunge motion

H is obtained by integrating Ḣ

H (t) =

∫ t

0

Ḣ (t) dt =

∫ t

0

tan (θ (t)− α (t))Udt. (4.22)

Since the skin-friction coefficient from the experiment is unavailable, the

LESP0 is determined using RMS errors in the lift coefficient between the ex-

perimental data and results of the DVM with TEFSC. The high efficiency case

(f ∗ = 0.133, α0 = 38.9◦ and h0 = 0.75) is used as the baseline motion for the
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Fig. 4.7: Influence of LESP0 on the RMS error in CL between experimental data
(Simpson 2009) and results of the DVM with TEFSC.

determination of LESP0. As shown in Fig. 4.7, the RMS error is minimum at

LESP0 = 0.22. Thus, LESP0 is taken to be 0.22 here.

Similar to the validation against results of IB-LBM and Bryant model

(Bryant et al. 2013) in Fig. 4.3 and Fig. 4.4, two cases of high efficiency

(f ∗ = 0.133, α0 = 38.9◦) and of low efficiency (f ∗ = 0.2, α0 = 53◦) with

h0 = 0.75 and xpiv = 0.333 are selected for comparison of the lift coefficient CL

obtained by the Bryant model (Bryant et al. 2013) and the experimental data

of Simpson (2009) with DVM with and without TEFSC in Fig. 4.8. In both

cases, the DVM with TEFSC gives better predictions compared to the DVM

without TEFSC and Bryant model (Bryant et al. 2013). In particular, when

the angle of attack is high (α0 = 53◦, Fig. 4.8b), predictions given by the DVM

with TEFSC are reasonable while there are significant differences between CL

predicted by the DVM without TEFSC and the experimental data (Simpson

2009). It is also clear from Fig. 4.8b that the Bryant model (Bryant et al.

2013) fails to predict the trend of CL. The discrepancies between predictions
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Bryant model (Bryant et al. 2013) against experimental results of Simpson (2009)
at h0 = 0.75, ϕ = 90◦ and xpiv = 0.333.
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of the Bryant model (Bryant et al. 2013) and DVM without TEFSC and the

experimental data could be attributed to the significant effects of the trailing

edge flow separation at high α which are neglected in the Bryant model (Bryant

et al. 2013) and DVM without TEFSC. These results demonstrate that when

compared with the CFD and experimental results, the DVM with TEFSC pro-

vides reasonable results for the analysis of a flapping foil power generator, but

with substantially less computational resources (2 orders of magnitude less,

see Section 4.2.1).

4.2.3 Kinematic parameters

For further validation of the DVM with TEFSC over a set of kinematic param-

eters, the contours of efficiency are compared with those of Kinsey & Dumas

(2014) to examine predictions of the optimal kinematics. The results are also

compared with the Bryant model (Bryant et al. 2013).

Fig. 4.9, 4.10 and 4.11 display contours of the efficiency as a function

of f ∗ and θ0 at h0 = 0.75, h0 = 1 and h0 = 1.5 respectively. Both the D-

VM with TEFSC and Bryant model (Bryant et al. 2013) predict the trend

that the region of positive and high efficiency (η > 30%) narrows and θ0 for

high efficiency increases as h0 is increased from 0.75 to 1.5 . This can be

partially explained as the optimal kinematic parameters share a similar maxi-

mum angle of attack approximated by the modulus of the quarter-period value

αT/4 = |θ0 − arctan(ωH0/U))| (Kinsey & Dumas 2014). In addition, the op-

timal f ∗ around 0.14 regardless of h0 differences and θ0 around 75◦ at h0 = 1

captured by these two reduced order models are the same. However, the opti-

mal θ0 of around 70◦ and 90◦ at h0 = 0.75 and h0 = 1.5 respectively obtained

by the Bryant model (Bryant et al. 2013) is different from that of around 75◦
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(a)

(b)

(c)

Fig. 4.9: Contours of efficiency given by (a) the DVM with TEFSC (b) Kinsey
& Dumas (2014) and (c) the Bryant model (Bryant et al. 2013), with h0 = 0.75,
ϕ = 90◦ and xpiv = 0.333.
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(a)

(b)

(c)

Fig. 4.10: Contours of efficiency given by (a) the DVM with TEFSC (b) Kinsey &
Dumas (2014) and (c) the Bryant model (Bryant et al. 2013), with h0 = 1, ϕ = 90◦

and xpiv = 0.333.
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(a)

(b)

(c)

Fig. 4.11: Contours of efficiency given by (a) the DVM with TEFSC (b) Kinsey &
Dumas (2014) and (c) the Bryant model (Bryant et al. 2013), with h0 = 1.5, ϕ = 90◦

and xpiv = 0.333.
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and 85◦ obtained by the DVM witph TEFSC and Kinsey & Dumas (2014).

The similarity in major features of optimal kinematics captured by the DVM

with TEFSC and Kinsey & Dumas (2014) demonstrates the capability of the

DVM with TEFSC for kinematics optimization. Furthermore, in the Bryant

model (Bryant et al. 2013), constants in the equations accounting for dynam-

ic stall effects and the influence of varying pressure center caused by LEVs

transition on the moment are tuned to match the results of Kinsey & Dumas

(2008) at f ∗ = 0.14, θ0 = 76.3◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 and tied

to the flow condition, foil geometry and, particularly, kinematic parameters.

This could partially explain the difference in optimal θ0 obtained by the Bryant

model (Bryant et al. 2013) compared to the results of DVM with TEFSC and

Kinsey & Dumas (2014) when h0 deviates from 1, thus limiting the applica-

tion of the Bryant model (Bryant et al. 2013) to parameter space validated by

CFD simulations or experiments of the flapping foil power generator. On the

other hand, empirical constants used in the DVM with TEFSC which govern

the LEVs formation (leading edge suction parameter, LESP) and trailing edge

flow separation (Kirchhoff flow approximation) only rely on the flow condi-

tion (Re = 1100, incompressible flow) and the foil profile (NACA0015). These

constants can be identified from skin friction analysis regardless of motion kine-

matics (critical LESP (Ramesh et al. 2014)) and ramp-up motion experiments

(constants used in the Kirchhoff flow approximation (Bauchau 2007)).

4.3 Summary

Modelling aerodynamic forces on the flapping foil by reduced order methods

based on physical mechanisms is useful in power extraction analysis when a

large number of cases are investigated, for instance, for design optimization. In
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this chapter, a reduced order model based on the discrete vortex method (D-

VM) and Leishman-Beddoes dynamic stall model (Leishman & Beddoes 1989)

to capture flow separations at both leading and trailing edges of a flapping

foil power generator has been presented. This DVM with trailing edge flow

separation corrections (TEFSC) takes far less computational time (at least

two orders of magnitude) compared to the immersed boundary-lattice Boltz-

mann method (IB-LBM) which is 15 times faster than the Navier-Stokes solver

(Barad et al. 2017). Then, the Bryant reduced order model (Bryant et al. 2013)

based on the quasi-steady model and ONERA dynamic stall model and DVM

with TEFSC were used for aerodynamic modelling and kinematic analysis of

a flapping foil power generator with prescribed pitch and plunge motions.

For kinematic conditions upon which the constants are tuned in the Bryant

model (Bryant et al. 2013), the mean power coefficient and efficiency obtained

by the Bryant model (Bryant et al. 2013) and the DVM with TEFSC are in

good agreement with those of Kinsey & Dumas (2008). However, for kinemat-

ic conditions outside the range on which the constants of the Bryant model

(Bryant et al. 2013) are based such as changing the pivot location, results here

show that the DVM with TEFSC captures the physics of the flow much better

than Bryant model (Bryant et al. 2013) compared with CFD simulations based

on the IB-LBM. Examination of the influence of the plunge amplitude shows

that the optimal frequency and pitch amplitude of a flapping foil power genera-

tor obtained by the DVM with TEFSC approximate results of Kinsey & Dumas

(2014) better than the Bryant model (Bryant et al. 2013) and demonstrate the

capability of the DVM with TEFSC to predict the optimal kinematic param-

eters for high performance of a flapping foil power generator. In addition, the

empirical constants used in the DVM with TEFSC are only dependent on the

Reynolds number and foil profile and the low computational cost makes the
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DVM with TEFSC an attractive tool for optimization, engineering design and

performance analysis of the flapping foil generator.



Chapter 5

Kinematic Parameters

Optimizations

In this chapter, the search for combination of kinematic parameters with high

energy extraction performance from a flapping foil is discussed. An in-house

multi-fidelity evolutionary algorithm (MFEA) code described in Section 3.4

is employed with the Bryant model (Bryant et al. 2013) reproduced in Sec-

tion 3.2 and the discrete vortex method (DVM) modified in Chapter 4. The

convergence performance of EA using single and multi fidelity strategies is

first examined through a single objective problem with two variables. Then,

five kinematic parameters are optimized using the multi-fidelity strategy for

two different cases: (a) maximization of efficiency (single objective problem);

and (b) maximization of efficiency and power output (bi-objective). The so-

lutions are further evaluated using the immersed boundary-lattice Boltzmann

method (IB-LBM described in Section 3.3) and discussed in detail through

The following paper is based on this chapter:
[1]. Zhengliang Liu, Kalyan Shankar Bhattacharjee, Fang-Bao Tian, John Young, Tapabrata
Ray, and Joseph C.S. Lai. Kinematic optimization of a flapping foil power generator using
multi-fidelity evolutionary algorithm. Renewable Energy, submitted
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hydrodynamic loads and flow fields in order to provide insight into the physics

underpinning the performance of a flapping foil power generator.

5.1 Parameter settings of the evolutionary al-

gorithm

In the EA code, the probability of crossover and mutation are set to 1 and 0.2

respectively. The distribution indices for crossover (ηc) and mutation (ηm) are

set as 20 and 30 respectively, as those in Section 3.4.

As discussed in Chapter 4, the differences in η given by the modified DVM

are negligible after seven flapping cycles. Thus, the solution evaluated by the

DVM of 7 flapping cycles is considered as the highest fidelity estimate. There

are 8 fidelity levels for the solutions of the flapping foil problem. The lowest

fidelity estimate (fidelity 1) is based on the Bryant model, while the fidelity 2-8

estimates are based on modified DVM using 1-7 flapping cycles respectively.

Because of the substantial computational time required, the IB-LBM is only

used for detailed analysis of specific solutions. When the pre-defined budget

of computational cost is reached, the optimization process is terminated. An

equivalent cost unit is introduced to estimate the budget. A single evaluation

using the lowest fidelity level (Bryant model) is assumed to incur 1 unit of

computational cost, about 1 second of CPU time on a single Xeon/2.67-GHz

processor with 16 GB memory. Since the runtime of the DVM depends on the

total number of time steps as well as the number of vortex elements shed from

the leading and trailing edge of the foil and the LEV shedding is related to

the bounded circulation at the leading edge (Chapter 4), it is hard to identify

the cost of DVM at the beginning of the optimization. For convenience, it is
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assumed that the cost of simulations using DVM is 10 units for each flapping

cycle (e.g. a simulation of 7 flapping cycles takes 70 units). Thus, the value of

the equivalent time unit is related to the number of simulations and the fidelity

levels with which these solutions are evaluated. For example, a budget of 140

units permits 140 evaluations using the Bryant model or 2 evaluations using

the DVM of 7 flapping cycles during the optimization process. A simulation at

higher fidelity levels can start from the closest check point if the individual has

been evaluated by the same model with lower fidelity levels. For instance, if a

solution has been evaluated with the DVM of 1, 2 and 5 flapping cycles, the

simulation of this solution using the DVM of 7 flapping cycles can be restarted

from DVM of 5 flapping cycles.

5.2 Convergence of optimization using single

and multi fidelity solutions

At the early stage of the optimization, low fidelity solutions are used extensive-

ly to search the entire space of the design variables. Thereafter, the approach

evaluates promising solutions at higher levels of fidelity. To investigate the

convergence of the approach using single (highest fidelity level) and multi fi-

delity models, a single objective (power generation efficiency η) problem is

studied. The population size µEA is set to 20 (10 times 2 design variables) and

the computational budget BEA is set to 14,000 time units. This corresponds

to about 200 simulations using DVM of 7 flapping cycles which is about 100

times the dimension of the search space (for two design variables). The two

design variables are f ∗ and θ0 in the range of 0.01 − 0.25 and 0◦ − 100◦, re-

spectively which are the same as those in the parametric study conducted by
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Kinsey & Dumas (2008). Re = 1100 and other kinematic parameters h0 = 1,

ϕ = 90◦ and xpiv = 0.333 are fixed. Since EA includes random processes (e.g.,

random seeds are used to generate the initial population), to reduce the ran-

dom influences on the EA performance, 30-100 independent runs with random

initial values are generally used in the performance analysis of optimization

algorithms (Branke et al. 2017, Deb et al. 2002). However, because of the sig-

nificant computational resources required for a large number of independent

runs, the results in this section are based on the average of five independent

optimization runs with random initial values to give an indication of the EA

performance.
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Fig. 5.1: Convergence history of efficiency averaged over five runs with a budget of
14,000 time units.

Optimization using the highest fidelity model (i.e. DVM with 7 flapping

cycles) uses up the budget in 10 generations, while MFEA on average evolves

over 13.4 generations. At the end of runs, the best solution delivered by MFEA

gives a maximum efficiency of 36.4%, while that using single fidelity (highest

fidelity in this case) gives an efficiency of 36.3%. The convergence history in

Fig. 5.1 shows that the starting point (1,400 time units for initialization of a
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Fig. 5.2: Number of evaluations with different fidelity levels in the MFEA optimiza-
tion process with 1 objective and 2 variables.
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population size µEA of 20 individuals) of the optimization process using the

MFEA and SFEA is the same. All the individuals in the initial generation

are evaluated with 1-8 fidelity levels by MFEA. The difference in efficiency be-

tween each run is less than 1.2% and 0.5% for SFEA and MFEA respectively.

As shown in Fig. 5.1, MFEA only uses 71.4% of the available budget (10,000

time units) to achieve the same efficiency η = 36.3% as obtained by SFEA. To

gain a better understanding of the performance of MEFA, the number of so-

lutions evaluated with different fidelity levels during the optimization process

are investigated. As shown in Fig. 5.2a, the total number of highest fidelity

evaluations is about half of that of the lowest ones. In addition, the difference

in the number of evaluations between adjacent fidelity levels of 6-8 decreases

dramatically compared to that of 1-5 since the difference in the results given

by the DVM is insignificant after four flapping cycles. The test problem of two

design variables demonstrates the capability of MFEA to reduce the computa-

tional cost by only evaluating solutions at higher fidelity levels when there is

a need for discrimination. In addition, if solutions at the highest fidelity level

are evaluated by the IB-LBM of 12 flapping cycles which generally takes more

than 100 hours on a single Xeon/2.67-GHz processor with 16 GB memory (see

Chapter 4), the time budget should be at least 12,000,000 time units which

corresponds to around 20,000 CPU hours (200 simulations). The MFEA using

the DVM of 7 flapping cycles as the highest fidelity model makes it possible to

determine high performance solutions using realistic computational resources,

around 3 orders of magnitude lower than that using IB-LBM. Since the DVM

is a low order model which may not capture the flow physics accurately, the

efficiency and power output of the solutions identified by the MFEA are then

recalculated using the IB-LBM.
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Table 5.1: Optimal cases given by the multi-fidelity evolutionary algorithm when
single objective (η) problems with 2 (f∗, θ0) and 5 (f∗, θ0, h0, ϕ, xpiv) design variables
are considered.

Design variables f ∗ θ0(◦) h0 ϕ(◦) xpiv η (Bryant) η (DVM) η (IB-LBM)

f ∗, θ0 0.125 78.3 1.00 90.0 0.333 33.4% 36.5% 32.7%
f ∗, θ0, h0, ϕ, xpiv 0.175 71.8 0.52 114.6 0.303 14.8% 39.6% 35.6%

5.3 Optimization results
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Fig. 5.3: Plot of non-dominated solutions from the bi-objective problem with 5
variables using MFEA. Solutions are evaluated by the DVM using 7 flapping cycles.

In this section, single(η) and bi-objective (η and CP ) optimization problems

involving 5 design variables are considered. Since the aim of this study is to

search for some high energy extraction performance solutions which are found

within a limited but realistic time budget, results obtained by the MFEA in

this section are based on a single run consuming about 50 CPU hours for

the single-objective problem and 170 CPU hours for the bi-objective problem

with 16 GB memory and a single Xeon/2.67-GHz processor. The ranges of

the design variables are f ∗ = 0.01 − 0.25, θ0 = 0◦ − 100◦, h0 = 0.5 − 2.0, ϕ =
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Table 5.2: List of the non-dominated solutions given by the bi-objective problem in the last generation.

Case f ∗ θ0(◦) h0 ϕ(◦) xpiv η (Bryant) η (DVM) η (IB-LBM) Cp (Bryant) Cp (DVM) Cp (IB-LBM)

1 0.146 79.7 1.77 81.6 0.253 6.1% 32.1% 18.4% 0.26 1.36 0.84
2 0.112 78.6 1.78 85.4 0.260 20.1% 32.2% 21.8% 0.84 1.34 0.91
3 0.112 81.7 1.77 100.5 0.254 35.0% 34.7% 29.3% 1.31 1.30 1.12
4 0.112 78.3 1.78 86.6 0.260 20.9% 32.3% 22.8% 0.86 1.34 0.95
5 0.119 81.7 1.43 98.4 0.208 34.6% 35.8% 31.7% 1.14 1.18 1.04
6 0.118 78.3 1.50 94.8 0.249 32.0% 35.4% 29.5% 1.10 1.21 1.02
7 0.118 79.7 1.36 98.9 0.273 36.4% 36.5% 33.4% 1.12 1.12 1.02
8 0.118 81.7 1.77 95.5 0.254 32.8% 33.9% 28.5% 1.28 1.32 1.12
9 0.118 81.8 1.43 99.5 0.210 34.4% 35.9% 31.2% 1.12 1.17 1.01
10 0.118 81.8 1.14 103.4 0.175 32.1% 36.6% 32.0% 0.89 1.00 0.88
11 0.118 81.9 1.50 93.2 0.249 31.2% 34.7% 32.5% 1.09 1.22 1.14
12 0.217 78.6 0.76 126.8 0.181 -9.6% 37.6% 25.7% -0.17 0.68 0.45
13 0.217 75.8 0.74 126.8 0.181 -4.8% 37.7% 27.3% -0.08 0.66 0.47
14 0.223 79.1 0.79 126.3 0.182 -12.1% 36.8% 22.9% -0.23 0.68 0.47
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45◦ − 135◦ and xpiv = 0 − 1, in which power could be extracted from the

flow and many parametric studies on prescribed energy harvesting system are

conducted, as summarized in Table A.1. For comparison of single objective

problems involving 2 and 5 design variables, the same computational budget

of 14,000 units and population size of 20 as those in Section 5.2 are used. The

solution providing the highest η among the 5 runs described in Section 5.2

for single objective and 2 design variables and the optimal solution (i.e., the

optimal values for the design variables) given by the MFEA (12 generations)

considering one objective and 5 variables are listed in Table 5.1, where η is re-

calculated by the Bryant model, DVM of 7 flapping cycles and IB-LBM of 12

flapping cycles. The results show that for the same budget, MFEA involving

5 variables lead to an η of 39.6% evaluated by the DVM using 7 flapping

cycles (the highest fidelity level used in the MFEA), which is 8.5% higher than

that achieved by the MFEA involving two variables. The increase of 8.5% in

efficiency achieved by increasing the number of design variables is more than

half of 15.8% increment achieved by controlling the camberline deformation

(Hoke et al. 2015) when the power consumption of the active control is not

taken into account (see Section 2.3.2). In addition, η = 35.6% under the

optimal condition given by the MFEA for the single objective case with five

variables is similar to the optimal η = 35.5% suggested by Kinsey & Dumas

(2008) under a different operating condition f ∗ = 0.140, θ0 = 76.3◦, h0 =

1.0, ϕ = 90.0◦ and xpiv = 0.333 (both η are predicted by the IB-LBM).

Then, the energy harvesting system is optimized for high η and CP . A

computational budget of 42,000 units and a population size of 40 (20 times 2

objectives) is considered for the bi-objective problem with five variables. The

budget is equivalent to about 600 simulations with DVM of 7 flapping cycles

which is 120 times the dimension of the search space (with 5 variables). After
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19 generations, the budget was used up and 14 non-dominated solutions were

obtained. The trade-off (Pareto front) of these solutions between η and CP is

shown in Fig. 5.3. Each of these 14 solutions was further analysed using the

IB-LBM. The results in Table 5.2 show that the solutions evaluated with the

DVM of 7 flapping cycles are in the range of f ∗ = 0.1−0.25, θ0 = 75◦−85◦, h0 =

0.7 − 1.8, ϕ = 80◦ − 130◦ and xpiv = 0.15 − 0.3. When η is emphasized, f ∗ is

high but h0 is small, while when power is emphasized, f ∗ is low but h0 is large.

For all cases, θ0 is greater than 75◦, providing large enough angles of attack for

LEV formation. The influence of h0 on CP dominates when η is similar, since

the total available power in the flow increases linearly with the increase of d

which relies heavily on h0 (Eq. 2.13 and 2.14). All the solutions recalculated by

the IB-LBM show lower η and CP in comparison with the values obtained by

the DVM. Although the Bryant model provides reasonable results in the range

of f ∗ = 0.1 − 0.12, ϕ = 85◦ − 105◦, it gives poor results outside this range

since the empirical constants used in Bryant model are tuned to match the

optimal condition. These results indicate that the DVM is a useful surrogate

model to narrow down the search space at the early stage of optimization,

while the Bryant model is appropriate for engineering design since it performs

well near the optimum if the data used to tune the empirical constants can be

obtained from previous studies. However, the non-dominated solutions are not

necessarily optimal because the DVM is a low order model but it enables the

search for high performance solutions within a limited budget of computing

resources. When the budget was increased by 50% from 42,000 to 63,000

units, only one extra non-dominated solution (15 in total) was obtained after

28 generations (19 generations for 42,000 units).
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Table 5.3: Performance of a power generator with different kinematic parameters, in
descending order by η. H stands for high efficiency, M stands for moderate efficiency,
L stands for low efficiency and K stands for the case under the kinematic conditions
gvien by Kinsey & Dumas (2008).

Case f ∗0 θ0(◦) h0 ϕ(◦) xpiv η CP d/c αmax(
◦) |CL| CPh CPθ

15 (KH) 0.140 76.3 1.00 90.0 0.333 35.5% 0.91 2.56 35.0 1.40 0.84 0.07
16 (H1) 0.146 83.5 1.36 99.5 0.250 33.8% 1.04 3.10 32.9 1.33 0.94 0.10
7 (H2) 0.118 79.7 1.36 98.9 0.273 33.4% 1.02 3.07 35.0 1.33 0.86 0.16
17 (M1) 0.113 78.3 1.78 81.6 0.253 23.2% 0.96 4.13 26.8 1.18 0.97 -0.01
14 (M2) 0.223 79.1 0.79 126.3 0.182 22.9% 0.43 1.86 46.8 1.32 0.90 -0.47
1 (L1) 0.146 79.7 1.77 81.6 0.253 18.4% 0.80 4.24 21.8 1.78 0.97 -0.17
18 (L2) 0.110 79.7 1.77 81.6 0.276 17.0% 0.74 4.23 29.3 1.30 0.78 -0.04
19 (KL) 0.180 60.0 1.00 90.0 0.333 11.6% 0.28 2.40 11.5 0.62 0.39 -0.11
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Fig. 5.4: Changes in CL with α in the 12th flapping cycle.

Based on η, the simulated cases are classified into high (η > 30%), mod-

erate (20% < η ≤ 30%) and low (η ≤ 20%) performance groups. To discuss

the physical mechanism for high performance of the flapping foil system, es-

pecially the influence of the LEV, Case 15 (KH) under the optimal operating

conditions given by Kinsey & Dumas (2008), two cases with similar η of each
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group showing strong LEVs and Case 19 (KL) of the low performance group

where no obvious LEV is observed in the study of Kinsey & Dumas (2008) are

examined in detail through time averaged values over the 12th flapping cycle

in Table 5.3. Cases 16-18 are not non-dominated solutions but individuals

in the final population given by the MFEA. Note that the non-dimensional

swept distance d/c determining the maximum potential energy which can be

extracted from the flow highly depends on the plunge amplitude h0. Thus,

the flapping foil system with higher h0 harvests more energy for the same η.

As pointed out in the last section, the MFEA does not necessarily identify

the true optimum because of the use of the reduced order DVM and a lim-

ited but realistic budget of computing resources. Hence the best performing

non-dominated solution in Table 5.2, Case 7 (H2), has an efficiency of 33.4%,

slightly lower than the 35.5% under the optimal condition (Case 15) found by

Kinsey & Dumas (2008) but it does achieve 13% increase in CP . For similar

reasons, non-dominated solutions such as Case 1 (L1) in Table 5.2 can have

very low efficiency while individuals in the final population such as Case 17

(M1) can give moderate efficiency. Nevertheless, results here show that high

energy extraction performance solutions can be identified using the MFEA.

During one flapping cycle, Cases 1, 7, 14, 15, 16, 17 and 18 experience

angle of attack α much higher than the critical angle of static stall αc = 10◦ of

NACA0015 aerofoil at Re = 42, 900 (Jacobs & Sherman 1937), leading to large

flow separations. However, αmax of Case 19 is 11.5◦ and only a slight stall is

observed in Fig. 5.4. As shown in Fig. 5.4, the maximum lift coefficient CL of

Cases 1, 7, 14, 15 and 19 is at α = 12.3◦, 14.8◦, 8.4◦, 9.5◦ and 7.3◦ respectively

where the rate of change of α is 0.25 rad/s, −0.26 rad/s, 1.26 rad/s, −0.43

rad/s and 0.27 rad/s respectively. Following Jumper et al. (1989), the stall

onset angle is considered as the α exceeding the value where the foil experiences
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a sudden jump in CL. For Case 19, the difference between the maximum CL

at α = 7.3◦ and the CL at αmax of 11.5◦ is only 0.27 (27%) while that of other

cases is at least 0.49 (40%); thus the foil of Case 19 is considered to experience

shallow stall. Since the maximum CL is achieved after α reaches the maximum

(negative rate of change of α) for Cases 7 and 15, the α at which CL reaches the

maximum is not considered as the stall onset angle. It is noted that Case 14 is

the only case for which the onset angle of deep dynamic stall (8.4◦) is smaller

than the static stall angle αc = 10◦ because of two reasons:(a) αc decreases

with the increase of Re (Jacobs & Sherman 1937); and (b) the stall onset angle

decreases as the pivot location is moved fore (Jumper et al. 1989) (xpiv of Case

14 is the smallest among all cases). Table 5.3 shows that except for Case 19

(|CL| = 0.62), |CL| is much higher than the maximum CL of 0.82 given by

the static experimental study (Jacobs & Sherman 1937) because the flapping

foil can exploit the LEV to achieve high lift in propulsive systems (Shyy &

Liu 2007). As expected, Case 19 gives much lower plunge power coefficient

contribution CPh, which is the time average of the product of CL and ḣ, than

other cases. For all cases, the contribution of the pitch motion to the power

coefficient (CPθ, the time average of the product of CM and θ̇) is small or even

negative. In addition, CPθ of Case 14 is negative (i.e., consuming instead of

generating power) and its magnitude is the highest among all cases because:

(1) the maximum pitch rate θ̇max = 2πf ∗θ0 of Case 14 is the highest; and (2)

the pivot location of Case 14 is near the leading edge of the foil, leading to a

long moment arm when the low pressure center resulting from LEV is at the

aft foil.

In order to understand the physics underpinning the performance of a flap-

ping foil power generator, five cases are examined in details through time

histories of the hydrodynamic loads and their contribution to the power out-
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Fig. 5.5: Time histories of α given by Case 1, 7, 14, 15 and 19 listed in Table 6.2.
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. 5.12 and 5.13.
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The shaded region is the upstroke. The vertical black dash-dotted lines denote time
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Fig. 5.11: Time histories of CP given by Case 1, 7, 14, 15 and 19 listed in Table 5.3.
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put: Case 15 (KH) with optimal kinematic parameters suggested by Kinsey

& Dumas (2008), Case 7 (H2) with the highest efficiency among all the non-

dominated solutions given by the optimization in Table 5.2, Case 14 (M2)

giving the lowest CPθ, Case 1 (L1) giving the largest |CL| and Case 19 (KL)

with slight dynamic stall. In Figs. 5.5-5.11, t/T = 0 − 1 represents the last

flapping cycle (the 12th cycle) and t/T = 0 is the instant at the beginning of

the down stroke. Thus the normalized plunge velocity ḣ/ḣmax is the same for

all the cases, while there are phase differences in the pitch velocity θ̇ due to

the differences in ϕ (see Fig. 5.9). As shown in Fig. 5.5, the time history

of the angle of attack (α) for Case 7 is similar to that of Case 15, except for

a small phase shift. In Fig. 5.6, Case 19 (KL) shows a smooth curve of CL

similar to that of α in Fig. 5.5, of which the amplitude is smaller compared

to other cases since the influence of flow separation is limited. Cases 7 (H2)

and 15 (KH) give similar lift curves with a small phase difference. In addi-
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tion, CL of Case 1 (L1) before the stroke reversal 0.36 < t/T < 0.50 is in

the opposite direction of ḣ/ḣmax, resulting in a significant drop of CPh (Fig.

5.7). In Fig. 5.8, Cases 7 (H2), 14 (M2) and 15 (KH) show troughs of CM at

instants t/T = 0.48, 0.23 and 0.45 respectively, the same as where CL is the

minimum in Fig. 5.6. However, due to the influence of the location of pressure

center, the minimum CM of Case 1 (L1) in Fig. 5.8 is at t/T = 0.33 where

CL is neither the minimum nor the maximum in Fig. 5.6. Fig. 5.10 illustrates

that for Case 14 (M2), power is required to drive the pitch motion during the

entire flapping cycle, i.e. CPθ ≤ 0, while other cases can harvest energy from

the pitch motion at some instants. The combination of CPh and CPθ is shown

in Fig. 5.11. Cases 1 (L1), 7 (H2), 14 (M2) and 15 (KH) with large flow

separations give larger amplitude of CP compared to Case 19 (KL) where the

stall phenomena is slight. In contrast to the rotational turbines on which the

impact of flow separation needs to be reduced, the performance improvement

of a flapping foil system relies on the extent of benefits from exploiting the

flow separation.

To explore the influence of vortex shedding on the hydrodynamic loads,

non-dimensional vorticity (Cv = cωz/U , where ωz is the spanwise vorticity)

and relative pressure coefficient (Cp = 2(p− p∞)/ρU2) contours are presented

respectively in Fig. 5.12 and Fig. 5.13. As the hydrodynamic loads, the

pitch motion and power output are symmetric/antisymmetric (Fig. 5.6 to Fig.

5.11), only the flow fields of the downstroke are presented (the upstroke is a

mirror image of the upstroke). Flow fields of Case 1 (L1), 7 (H2), 14 (M2),

15 (KH) and 19 (KL) near the flapping foil are investigated in details at four

typical non-dimensional time instants t/T = 0.23 when Case 14 (M2) with

moderate efficiency (20% < η ≤ 30%) shows a trough of CL and CM in Fig.

5.6 and Fig. 5.8, respectively; t/T = 0.33 when Case 1 (L1) with low efficiency
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(η ≤ 20%) shows a trough of CM (Fig. 5.8); t/T = 0.44 when Case 1 (L1)

shows a trough of CL (Fig. 5.6); and t/T = 0.48 when Case 7 (H2) with

high efficiency (η > 30%) shows a trough of CL and CM in Fig. 5.6 and Fig.

5.8, respectively. For Cases 1 (L1), 7 (H2), 14 (M2) and 15 (KH), vortices

form near the leading edge of the foil and shed into the wake at some instants,

while for Case 19 (KL) with the lowest η of 11.6%, no LEV is observed during

one flapping cycle. In addition, the pressure difference between the upper and

lower surface of the foil in Case 19 (KL) is smaller than that for the other

four cases in Fig. 5.13, resulting in small |CL| of 0.62 in Table 5.3. For Case

1 (L1) with low efficiency (η = 18.4%), even though |CL| is less than 1/6 of

the amplitude of CL at t/T = 0.33 (Fig. 5.6), CM in Fig. 5.8 reaches the

minimum (i.e. |CM | is maximum) at that instant. This is because the low

pressure center is near the trailing edge of the foil at t/T = 0.33 (Fig. 5.13b),

resulting in a long moment arm. The LEV of Case 1 (L1) sheds into the wake

before the stroke reversal (t/T = 0.44 in Fig. 5.12c) and the pressure on the

lower surface is higher than that on the upper surface (CL is in the opposite

direction to ḣ in Fig. 5.6), in contrast to Cases 7 (H2), 14 (M2) and 15 (KH) as

shown in Fig. 5.13c. For Case 14 (M2) with moderate efficiency (η = 22.9%),

the LEV which has formed on the upper surface detaches from the foil near the

mid-downstroke where the foil is at the neutral position of the plunge motion

(Fig. 5.12a). Case 7 (H2) and Case 15 (KH) with high efficiency show similar

timing of LEV formation (Fig. 5.12b) and detachment (Fig. 5.12d). Near the

stroke reversal (t/T = 0.48), since the low pressure center resulting from the

LEV in Case 7 (H2) is near the foil and the pitch angle is small (θ = 22◦), the

projection of the pressure difference between the upper and lower surface of the

foil in the plunge direction (CL) reaches maximum when α is decreasing(Figs.

5.4-5.6). In addition, the low pressure center of Case 7 (H2) and Case 15 (KH)
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is after the pivot point, producing positive power through the pitch motion

(CPθ in Fig. 5.10). It is noted that for cases with high efficiency (Case 7

and 15), the LEV detaches from the foil near the stroke reversal, resulting in

good synchronization between the hydrodynamic loads (CL and CM) and the

motions (ḣ and θ̇).

Finally, the time-averaged non-dimensional vorticity contours over 4 flap-

ping cycles (13th-16th) of all 8 cases listed in Table 5.3 are examined in Fig.

5.14. All cases show distinct paths of vortices that persist from behind the

turbine plane to far downstream, except for Case 19 (KL) which shows much

weaker vortex shedding prominent only near the extreme positions of the foil

because the foil only experiences slight stall as α remains small during the

flapping cycle. In Fig. 5.14a, 5.14b and 5.14c, Case 15 (KL), Case 16 (H1)

and Case 7 (H2) with high η > 30% show a vorticity wake pattern of horse-

shoe shape behind the turbine plane. The LEVs detach from the foil near the

stroke reversal and convect downstream towards the neutral position of the

plunge motion (y=0). Then the vortices shed near the end of up and down

strokes interact at 5 (Case 7), 2.8 (Case 15) and 3.4 (Case 16) chord lengths

from the pivot location and continue to move downstream. The path of vor-

tices shedding near the end of the down stroke resembles a horseshoe with a

width approximating the swept distance d behind the turbine plane. Cases

with moderate efficiencies (Case 14 and Case 17, 20% < η ≤ 30%) and low

efficiencies (Case 1 and Case 18, η ≤ 20%) in Fig. 5.14d-Fig. 5.14g show

significant differences in wake patterns compared to Cases 7, 15 and 16 with

high efficiencies (η > 30%): the upper and lower branches of the wake path

behind the turbine plan are close to each other (Cases 1, 17 and 18 in Fig.

5.14f, Fig. 5.14d and Fig. 5.14g respectively) or break into 4 branches (Case

14 in Fig. 5.14e). Since the time-averaged wake patterns rely on the detach-
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(a) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency η = 35.5% (Case 15) with f∗ = 0.140, θ0 = 76.3◦, h0 =
1.00, ϕ = 90.0◦ and xpiv = 0.333.

(b) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency η = 33.8% (Case 16) with f∗ = 0.146, θ0 = 83.5◦, h0 =
1.36, ϕ = 99.5◦ and xpiv = 0.250.

(c) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency η = 33.4% (Case 7) with f∗ = 0.118, θ0 = 79.7◦, h0 = 1.36, ϕ =
98.9◦ and xpiv = 0.273.
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(d) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of moderate efficiency η = 23.2% (Case 17) with f∗ = 0.113, θ0 = 78.3◦, h0 =
1.78, ϕ = 86.1◦ and xpiv = 0.259.

(e) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of moderate efficiency η = 22.9% (Case 14) with f∗ = 0.223, θ0 = 79.1◦, h0 =
0.79, ϕ = 126.3◦ and xpiv = 0.182.

(f) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency η = 18.4% (Case 1) with f∗ = 0.146, θ0 = 79.7◦, h0 = 1.77, ϕ =
81.6◦ and xpiv = 0.253.
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(g) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency η = 17.0% (Case 18) with f∗ = 0.110, θ0 = 79.7◦, h0 = 1.77, ϕ =
81.6◦ and xpiv = 0.276.

(h) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency η = 11.6% (Case 19) with f∗ = 0.18, θ0 = 60.0◦, h0 = 1.00, ϕ =
90.0◦ and xpiv = 0.333.

Fig. 5.14: Non-dimensnioal time-averaged vorticity contours of cases listed in Table
5.3
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ment and convection of the vortices, the horseshoe-shaped wake pattern with a

width approximating the swept distance d behind the turbine plane illustrates

that LEVs are only shed near the stroke reversal. Under this condition, the

hydrodynamic loads are in good synchronizations with the prescribed motions,

resulting in high efficiency. However, when the horseshoe-shaped wake is bro-

ken (Case 14) or two branches of the wake path approach each other behind

the turbine plane (Cases 1, 17 and 18), there are LEVs detaching from the foil

near the middle of the stroke. Under these situations, the hydrodynamic loads

can be in the opposite direction of the motion for a considerable time period,

resulting in significant reduction in power output; e.g. the product of CL and

ḣ for Case 1 and that of CM and θ̇ for Case 14 in Figs. 5.6-5.10.

5.5 Summary

The performance of a flapping foil power generator undergoing prescribed pitch

and plunge motions at Re = 1100 is optimized using a multi-fidelity evolution-

ary algorithm. Solutions of 1-8 fidelity levels are given by the Bryant model

and modified discrete vortex method of 1-7 flapping cycles respectively. The

non-dominated solutions identified by the multi-fidelity approach was further

assessed using the immersed boundary-lattice Boltzmann method to gain in-

sights to the physics underpinning the performance of a flapping foil power

generator through analysis of hydrodynamic loads and flow fields.

The convergence of the evolutionary algorithm using the multi and single

fidelity methods is first conducted via a single objective optimization prob-

lem (η) involving two variables (f ∗ and θ0). The results show that during

the multi-fidelity optimization process, the number of the solutions evaluat-

ed with the highest fidelity level is roughly half of that evaluated with the
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lowest fidelity. This indicates that computationally expensive simulations can

be stopped at an early stage thereby saving computational time. With the

same computational time and initial values, the multi-fidelity evolutionary al-

gorithm delivers better results than that using the single fidelity strategy with

solutions evaluated by the highest fidelity level (i.e. DVM of 7 flapping cycles).

When η = 36.3% is considered as the termination criterion, the multi-fidelity

strategy offers 28.6% savings in computational time compared with a single

fidelity approach.

Then the flapping foil system is optimized under two scenarios, i.e a single

objective (η) and a bi-objective (η and CP ) formulation, with the following

ranges of parameter values: f ∗ = 0.01−0.25, θ0 = 0◦−100◦, h0 = 0.5−2.0, ϕ =

45◦ − 135◦ and xpiv = 0 − 1. With the same evaluation budget for the single

objective case, the multi fidelity method with five design variables gives an

efficiency η that is 8.5% higher than the one obtained using two design variables

(f ∗ = 0.01 − 0.25, θ0 = 0◦ − 100◦). In the bi-objective optimization problem,

the non-dominated solutions show a set of trade-off solutions and solutions

with preferred η have low f ∗ and small h0. On the contrary, solutions with

preferred CP have high values of f ∗ and h0. In addition, high performance is

achieved in the range of θ0 = 70◦ − 90◦, xpiv = 0.1 − 0.3 and ϕ = 80◦ − 110◦.

Detailed study on hydrodynamic loads and flow fields for typical cases with

different efficiencies indicate that the formation of vortices can be exploited for

high lift, while the timing of vortex detachment influences the phase between

hydrodynamic loads and prescribed motions. When the LEVs detach from the

foil near the stroke reversal, the pattern of vorticity wake is horseshoe-shaped

with a width approximating the swept distance d behind the turbine plane,

resulting in high energy extraction performance. When the timing of vortex

detachment from the foil is near the mid stroke, the efficiency and power output
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decrease significantly.



Chapter 6

Flexibility Enhanced

Performance

Besides kinematics discussed in Chapter 5, deformation of the foil also has

impact on the energy harvesting performance. In this chapter, the influence

of structural flexibility on the performance of a flapping foil power generator

under different kinematic conditions is examined. The aero-elastic system

containing a spring-connected tail with a length of ltail attached to a rigid foil

with a length of (c−ltail) is described in Section 3.1. Since reduced order models

are not suitable for simulations involving fluid-structure interaction due to their

low accuracy, the aero-elastic problem is solved by the immersed boundary-

lattice Boltzmann method (IB-LBM). The optimal kinematic parameters of

a NACA0015 foil with and without a tail are first identified to ensure that

any enhancement in efficiency can be attributed to the flexibility alone. Then,

The following papers have been published from this chapter:
[1]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. Numerical study on
the performance of a flapping foil power generator with a passively flapping flat plate. In
20th Australasian Fluid Mechanics Conference, Perth, Australia, December 2016.
[2]. Zhengliang Liu, Fang-Bao Tian, John Young, and Joseph C.S. Lai. Flapping foil
power generator performance enhanced with a spring-connected tail. Physics of Fluids,
29(12):123601, 2017.
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the effects of the passive flexibility in terms of the mass density and natural

frequency on power-extraction efficiency are discussed in detail by considering

time averaged and instantaneous hydrodynamic loads and tail deformations

under various kinematic conditions.

6.1 Effects of flexibility on the performance

under the rigid-system optimal condition

As described in Section 2.2 and Chapter 5, the performance of a flapping

foil power generator relies on a large number of parameters. In McKinney &

DeLaurier (1981), θ0 is only considered up to 20◦, resulting in a low efficiency of

around 17%. Results given by Davids (1999) indicate that η initially increases

then decreases with the increase of f ∗, θ0 and h0, whereas Cp increases linearly

with h0. To reduce the influence of parameters other than flexibility as much

as possible, optimal parameters of the rigid case including f ∗, h0, θ0, ϕ and xpiv

are first identified. Studies on power extraction systems with prescribed pitch

and plunge motions discussed in Section 2.2.3 suggest a range of parameters

(f ∗ = 0.11 − 0.18, θ0 = 60◦ − 100◦, h0 = 0.8 − 1 and xpiv = 0.25 − 0.5) with

constant ϕ = 90◦ for the optimal performance. According to the definition

of efficiency (Eq. 2.6) and discussions in Section 5.3, CP increases with the

increase of d at the same η, θ0 and xpiv (d is determined by θ0, xpiv and h0).

Thus, h0 = 1 is used in this study to produce high power output. Since the

optimal xpiv is case dependent (Young et al. 2014), xpiv = 0.333 used here

is chosen based on studies for prescribed motion systems (Kinsey & Dumas

2008, Simpson 2009, Xiao et al. 2012, Le et al. 2013). The optimal f ∗ and

θ0 at Re = 1100 are identified from the efficiency contours generated by IB-
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(a) Efficiency of a rigid NACA0015 foil.

(b) Efficiency of a rigid NACA0015 foil with a fixed 0.3c flat plate tail.

Fig. 6.1: Contours of efficiency at h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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LBM simulations in Fig. 6.1a, where simulated cases are shown with dots.

In the mapping of efficiency, the rigid foil with a fixed flat plate tail of 0.3c

(Fig. 6.1b) shows higher efficiency compared with its counterpart under the

same kinematic conditions. This can be explained as the thickness of the rigid

foil with a tail is only 0.7 of that of the rigid foil with the same NACA0015

profile and the same chord length. The peak efficiencies of a rigid foil with

and without a tail identified from simulated cases are 37.3% and 36.9% under

the same operating condition of f ∗ = 0.16 and θ0 = 80◦, which agrees with

the finding of McCroskey et al. (1981) that the impact of the foil profile is

insignificant when the vortex-shedding phenomenon dominates.

6.1.1 Parametric study on the effects of flexibility

In this study, the flexibility of this system is governed by the stiffness Ks and

linear density of the tail ρl = ρtailhs which gives two non-dimensional param-

eters: the non-dimensional natural frequency f ∗0 = f0c/U = c
√
Ks/J/(2πU)

and the structure-to-fluid density ratio µ = ρl/ (ρc), where J is the moment

inertia of the tail about the the spring connection point. The length of the

tail ltail = 0.3c (same as Wu, Shu, Zhao & Tian 2015), thickness of the tail

hs = 0.06c and spring damping R = 0 are constants. It should be noted that

simulations have also been conducted for two other tail lengths ltail = 0.1c

and 0.5c for a range of spring stiffness, giving a maximum efficiency of 38.0%

and 37.4% respectively, both lower than the maximum efficiency of 40.0% for

ltail = 0.3c. Thus only results for ltail = 0.3c are presented and discussed here.

The influence of the spring-connected tail on the energy extraction per-

formance is systematically studied by varying f ∗0 from 0.15 to 10 and µ from

0.03 to 2.00. Note that f ∗0 , defined as c
√

(Ks/J) / (2πU), is the ratio of the
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Fig. 6.2: Contours of a flapping foil power generator with a spring-connected tail.
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restoring force to the structure inertia. The definition of the angular position

of the tail αT can be found in Section 3.1. We do not consider cases where

the inertia force is much larger than the restoring force (e.g. f ∗0 < 0.15 and

µ > 4) because this would give a large maximum angular position αTmax (e.g.

αTmax > 80◦ at f ∗0 <= 0.05 and µ = 4, see Fig. 6.2d), leading to collision be-

tween the foil and the tail. This would give a large αTmax ( e.g. αTmax > 80◦

at f ∗0 = 0.050 and µ = 4.00), leading to a collision between the foil and the

tail. Contours of efficiency (η), mean power coefficient (CP ), maximum swept

distance (d) and maximum angular position of the tail (αTmax) are presented

in Fig. 6.2. In Fig. 6.2 (a) and (b), contours of η and CP share several similar

features: (a) η and CP initially increase then decrease with the increase of

f ∗0 at the same µ; (b) η and CP approximate those given by the rigid case

(η = 37.3% and CP = 0.966) when f ∗0 and µ are high; (c) cases with low f ∗0

and µ show performance reduction compared to the rigid case; and (d) the

peak η = 40.0% and CP = 1.03 are achieved at f ∗0 = 1.36 and µ = 2.00 where

the flapping frequency f ∗ = 0.16 is about 12% of f ∗0 = 1.36. This is similar to

the study on propulsion system where the flapping frequency of the dragonfly

is about 16.0% of the natural frequency (Chen et al. 2008). The dashed line

in Fig. 6.2 is the non-dimensional stiffness defined as ks = Ks/ (ρU2c3). Fig.

6.2d shows that in the region of ks > 1.0, αTmax is smaller than 10◦. Moreover,

when ks > 10.0, αTmax is smaller than 1◦ and the tail can be considered as

rigid and the differences in power extracting performance are less than 1%

(see Fig. 6.2 (a) and (b)). In addition, performance improvements can be

observed in the range of ks = 0.316 − 1.00 (see Fig. 6.2 (a) and (b)). The

non-dimensional swept distance d/c referring to the potential power available

in the inflow is shown in Fig. 6.2c. When 0.100 < ks < 0.316, d/c decreases

dramatically with the increase of f ∗0 ; while for ks < 0.100, d/c highly depends
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Table 6.1: Performance of a power generator with a spring-connected tail (Case
1-3) compared to that with a rigid tail (Case 4) at the same optimal kinematic
conditions determined for the main rigid foil (f∗ = 0.16, θ0 = 80◦, h0 = 1, ϕ =
90◦, xpiv = 0.333).

Case f ∗0 µ ks f ∗r η CP d/c

√
C2
L CPh CPθ αTmax(

◦) αeffmax(
◦)

1 1.36 0.60 0.393 1.180 40.0% 1.03 2.57 1.64 1.02 0.01 29.5 35.4
2 1.36 0.03 0.020 0.491 30.3% 0.76 2.50 1.13 0.74 0.02 42.9 30.0
3 0.15 0.60 0.005 0.130 33.9% 0.90 2.64 1.59 0.96 -0.06 46.0 33.5
4 - - - - 37.3% 0.97 2.59 1.57 0.95 0.02 0.00 34.8

on µ. However, according to Eq. 2.6, the similarity of Fig. 6.2 (a) and (b) in-

dicates the influence of f ∗0 and µ on CP is more significant than on d/c. When

ks < 0.100, both d/c and αTmax increase with the increase of µ. Fig. 6.2d

shows that when ks > 0.100, the gradients of αTmax and ks are in the opposite

directions while the relationship between d/c and ks is ambiguous in the same

region. In addition, the peaks of d/c and αTmax are achieved at different f ∗0 .

The differences between maximum swept distance (Fig. 6.2c) and maximum

angular position (Fig. 6.2d) indicate that factors other than αTmax (e.g. the

direction of the tail deflection) also impact d/c when h0, θ0 and ϕ are fixed.

6.1.2 Mechanism of performance improvement due to

flexibility

To further discuss how the flexibility (i.e. f ∗0 and µ) affects the energy har-

vesting performance, cases with a spring-connected tail of different stiffness

values which improve (Case 1) or reduce (Case 2 and Case 3) the performance

and the rigid case (Case 4) are examined in detail through the time averaged

values (η and CP ), time histories of the hydrodynamic loads (CL and CM) and

the passive motion and the flow field at different instants t/T sequentially. In

all the figures showing time histories, t/T = 0− 1 represents the last flapping
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cycle (the 12th cycle). Firstly, stiffness parameters and time averaged values

are presented in Table 6.1. Case 1 is the case providing the highest efficien-

cy in Fig. 6.2a. Case 2 is selected with the same f ∗0 as Case 1 but with a

much lower µ (lighter tail) than Case 1 so that the influence of fluid added

mass becomes more important. Case 3 is selected with the same µ (i.e. same

mass) as Case 1 but with a much lower ks (hence f ∗0 ) so that the influence of

lower stiffness is assessed. An efficiency improvement of 7.24% with a similar

swept distance compared with the rigid tail (Case 4) is achieved at optimal f ∗0

and µ (i.e. Case 1). However, a spring-connected tail with low µ (Case 2) or

low f ∗0 (Case 3) degrades the performance of a flapping foil power generator

at the optimal condition of the rigid case. Since the lift force and prescribed

plunge velocity contribute significantly to the power extraction performance

(Kinsey & Dumas 2008), the root mean square of lift coefficient

√
C2
L is the

hydrodynamic load of interest since lift and plunge velocity contribute to the

power. As shown in Table 6.1, the lowest

√
C2
L = 1.13 given by Case 2 is

accompanied with the poorest performance. However, η and CP of Case 1, 3

and 4 which share similar

√
C2
L of around 1.6 are different. In addition, only

Case 3 shows negative CPθ even though

√
C2
L and CPh are similar to Case 4.

These observations indicate that in addition to the magnitude of CL, there are

other factors (e.g., the phase angle between CL and ḣ) that influence of the

performance of a flapping foil power generator.

To further investigate the impact of CL on the performance, time histories

of CL are presented in Fig. 6.3a. As expected from

√
C2
L in Table 6.1, Case

2 shows the smallest amplitude of CL among the four cases. CL of Case 1, 3

and 4 are similar during the mid of up (gray region) and down (white region)

strokes. Near stroke reversals (t/T = 0, 0.5), both Case 1 and Case 3 exhibit

peaks while Case 4 shows a smoother curve. After the end of strokes, even
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Fig. 6.3: Comparison of CL and CPh of a rigid foil with a spring-connected or a rigid
tail at f∗ = 0.16, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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Fig. 6.4: Comparison of CM and CPθ of a rigid foil with a spring-connected or a
rigid tail at f∗ = 0.16, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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though Case 3 gives the highest peak of CL (t/T = 0.53), Case 3 and Case 4

share similar CPh while Case 1 provides higher CPh at t/T = 0.59 (Fig. 6.3b)

because of the delayed peak of CL where ḣ = Ḣ/c is higher (Fig. 6.3a). This

leads to the differences in CPh of Case 1, 3 and 4 sharing similar

√
C2
L (Table

6.1). Similar to the time histories of CL in Fig. 6.3a, CM in Fig. 6.4a shows

some differences near stroke reversals. It can be noted that the peaks of CM

for Case 1, 2 and 3 occur at the same time instants t/T where CL reaches the

peaks. However, CM for Case 4 also shows the peak after the end of strokes

where the curve of CL is smooth. This indicates that the magnitude of the

force is the primary factor affecting CM while the location of the force center

also influences CM . In addition, drops of CPθ near the end of strokes where

θ̇ = θ̇max in Fig. 6.4b lead to negative CP in Fig. 6.5a. The sharp drops of

CPθ shown by Case 3 leads to the performance reduction compared to the rigid

case with a similar CPh (Table 6.1).

The differences in amplitudes of αT partially explain the increase of d/c

from 2.57 (Case 1) to 2.64 (Case 3), while factors (e.g. the phase between the

prescribed motion and αT ) other than αTmax also influence d/c (Case 1 and

Case 2, Table 6.1). To further investigate the influence of αT on d/c, time

histories of the passive pitch angle (αT , Fig. 3.2) are illustrated in Fig. 6.5b.

Even though αTmax of Case 2 is larger than that of Case 1, αT of Case 2 is in the

opposite direction of θ before the middle of up and down strokes, resulting in

a small distance swept by the tail. The frequency components of the passively

flapping motion (αT ) are analysed using a Fast Fourier Transform (FFT) de-

composition of the time-series data over 10 cycles (37500 points). As shown in

Fig. 6.6, the peaks of the 3 cases are at f ∗α = fαc/U = 0.160, 0.480, 0.800, 1.12

and 1.44 which are 1, 3, 5, 7 and 9 times of the reduced flapping frequency

f ∗. It can be observed that even though f ∗0 for Case 1 and Case 2 is the same,
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Fig. 6.5: Comparison of CP and αT of a rigid foil with a spring-connected or a rigid
tail at f∗ = 0.16, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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Fig. 6.6: Frequency spectra of the passively flapping motions at f∗ = 0.16, θ0 = 80◦,
h0 = 1, ϕ = 90◦ and xpiv = 0.333.

the amplitude of the decomposed motions (Aα) of Case 2 varies from less than

5◦ when f ∗α ≥ 1.44 to a maximum of 18.2◦ at f ∗α = 0.480 whereas Aα of Case

1 at f ∗α = 0.480, 0.800, 1.12 are similar around 7.60◦. Hence, for Case 1, the

decomposed motions with similar Aα but with different f ∗α and phase angles

lead to suppression in the tail deformation during the mid-strokes as shown in

Fig. 6.5b. To account for the energy required to accelerate the fluid around

the tail, the resonant frequency f ∗r is introduced as:

f ∗r =
c

2πU

√
Ks

J + Jf
, (6.1)

where Jf = 9πρl4tail/128 is an estimate of the moment of inertia due to fluid

acceleration (Brennen 1982). From Fig. 6.6, it is noted that the maximum

amplitude of the passive motion of the tail for each case occurs close to the

resonant frequency: f ∗r of 1.18 (Case 1), 0.49 (Case 2) and 0.13 (Case 3). This

partially explains the difference between Case 1 and Case 2 shown in Fig. 6.6
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even though their natural frequencies (f ∗0 ) are the same.

Case 1 Case 2 Case 3 Case 4

(a) t/T = 0.53

(b) t/T = 0.59

(c) t/T = 0.82

Fig. 6.7: Instantaneous non-dimensional vorticity contours of Case 1-4 with f∗ =
0.16, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 at t/T = 0.53, 0.59 and 0.82.

Finally, to investigate effects of the formation and convection of vortices on

the hydrodynamic load, non-dimensional vorticity (Cv = cωz/U , where ωz is

the spanwise vorticity) and relative pressure coefficient (Cp = 2(p− p∞)/ρU2)

contours are presented in Fig. 6.7, Fig. 6.8 and Fig. 6.9. As the hydrodynamic

load and tail deflection are symmetric/antisymmetric (Fig. 6.3 to Fig. 6.5),

we only present the flow fields of the upstroke (the downstroke is a mirror

image of the upstroke). Flow fields of the four cases near the flapping foil are

investigated in detail at three typical non-dimensional time instants t/T = 0.53
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Case 1 Case 2 Case 3 Case 4

(a) t/T = 0.53

(b) t/T = 0.59

(c) t/T = 0.82

Fig. 6.8: Relative pressure coefficient contours of Case 1-4 with f∗ = 0.16, θ0 = 80◦,
h0 = 1, ϕ = 90◦ and xpiv = 0.333 at t/T = 0.53, 0.59 and 0.82.
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when Case 3 shows a peak of CL (Fig. 6.3a) and a sharp drop of CPθ (Fig.

6.4b); t/T = 0.59 when Case 1 shows a peak of CL (Fig. 6.3a); and t/T = 0.82

when the four cases share similar hydrodynamic load (Fig. 6.3a to Fig. 6.5).

For all the four cases shown in Fig. 6.7, it is noted that three LEVs move

downward and shed into the wake during the upstroke. The first LEV and the

trailing edge vortex (TEV) constitute a vortex pair of opposite signs while the

other two LEVs (2 and 3) detach from the foil separately. After the stroke

reversal (t/T = 0.53 in Fig. 6.7a), the first LEV is stretched by the interaction

with the tail in Case 1 and 4. Near the stroke reversal, the deflection of the

tail (Fig. 6.5b) of Case 3 is in the opposite direction of those of Case 1 and 2,

resulting in the strong LEV close to upper surface of the tail. The mapping of

Cp is shown in Fig. 6.8. In Fig. 6.8a, Case 3 shows a larger low pressure region

resulting from the strong LEV compared to the other three cases, leading to

high pressure differences between the upper and lower surface of the tail. At

t/T = 0.59, the second LEV reaches the trailing edge of the rigid foil (Fig.

6.7b), resulting in pressure discontinuity near the trailing edge of the foil for

all the cases (Fig. 6.8b). In Fig. 6.8b, it is noted that the influence of the

second LEV for Case 1 is the smallest, partially explaining the highest CL

found in Fig. 6.3a. At t/T = 0.82 (Fig. 6.7c and Fig. 6.8c), the four cases

show similar flow fields around the foil. Case 1 shows some differences in the

wake as the first LEV breaks into two vortices and one of them merges with

the second LEV which is detached from the tail (Fig. 6.7c). The differences

in the flow fields can be explained by the rapid movement of the tail (Fig.

6.5b) that influences the formation and the trajectory of the TEV as well as

the detachment of the LEVs, especially near the end of strokes (Fig. 6.7).

The deflection of the tail with the appropriate flexibility (Case 1) reduces the

low pressure region at the pressure surface around the trailing edge caused



6.1. Effects of flexibility under the optimal condition 154

by the second LEV, resulting in high CL at t/T = 0.59 where the plunge

velocity is ḣ/ḣmax = 0.536, producing a high performance (7.24% and 6.63%

improvement in η and CP over the rigid tail). On the other hand, in Case

3 where the tail stiffness is low, the first LEV circumnavigates the tail near

the stroke reversal earlier than in other cases, resulting in high hydrodynamic

loads (CL and CM) at low ḣ/ḣmax but high θ̇/θ̇max. As a consequence, the

power extracted from the plunge motion is low and more power is required for

the pitch motion.

Then, the vortices in the wake (20 chord lengths after the pivot point) are

examined at the end of downstroke in Fig. 6.9. For comparison, the vorticity

scale in Fig. 6.9 is the same as Fig. 6.7. It is noted that the rotations of

the vortex pairs (the first LEV and the TEV) and the first LEV are in the

same direction which indicates that the strength of the first LEV is stronger

than that of the TEV in each pair. In the downstream region, differences

between Case 1 and the other 3 cases in the vortex structures are evident.

Different from a propulsive system where a reverse Kármán vortex sheet is

observed (Zhang et al. 2010), a Kármán vortex sheet occurs in Case 2, 3 and

4. However, Case 1 gives a different structure in the downstream with multiple

sequential vortices of the same sign rather than vortex pairs, but the resulting

structure downstream is still a wake. In Case 2, 3 and 4, the second LEV

dissipates after advecting 10 chord lengths while that of Case 1 can be found

even near 20 chord lengths since the strength of the second LEV is reinforced

by the first LEV which breaks into two vortices, as shown in Fig. 6.7b and

6.7c.
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(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

Fig. 6.9: Instantaneous non-dimensional vorticity contours of Case 1-4 at f∗ = 0.16,
θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 and t/T = 0.5. Vorticity scale is the
same as that in Fig. 6.7.
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6.2 Effects of flexibility on the performance

under different kinematic conditions
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Fig. 6.10: Comparison of η in the range of f∗ = 0.10− 0.24 at h0 = 1, ϕ = 90◦ and
xpiv = 0.333.

To study the energy harvesting performance of the spring-connected system

under different kinematic conditions, 4 cases listed in Table 6.1 are simulated

over a range of kinematic parameters (f ∗ = 0.10− 0.24, θ0 = 60◦ − 90◦). The

efficiency results in Fig. 6.10 show similar trends with f ∗ at each θ0 as the

power coefficient results in Fig. 6.11. This because efficiency is the product of
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Fig. 6.11: Comparison of CP in the range of f∗ = 0.10 − 0.24 at h0 = 1, ϕ = 90◦

and xpiv = 0.333.
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Fig. 6.12: Comparison of CPh nd CPθ in the range of f∗ = 0.10 − 0.24 at h0 = 1,
ϕ = 90◦ and xpiv = 0.333.
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the power coefficient and c/d (see Eq. 2.6) but the change of the swept distance

d is limited as it is dependent on the plunge amplitude h0 which is fixed.

Case 1 provides performance improvement in the optimal range of flapping

frequencies, i.e. f ∗ = 0.12−0.18, θ0 = 80◦ and 90◦. On the other hand, Case 3

gives the highest efficiency and power coefficient in the range of high flapping

frequencies f ∗ = 0.20− 0.24 regardless of θ0 except at f ∗ = 0.24, θ0 = 90◦. At

f ∗ = 0.22, Case 3 where the natural frequency of the tail (f ∗0 = 0.15) is close

to the flapping frequency achieves the highest efficiency among the 4 cases in

the range of θ0 from 60◦ to 90◦, which is consistent with findings of Wu, Shu,

Zhao & Tian (2015) that a tail with f ∗0 = 0.20 gives the highest efficiency

around 34% at the same f ∗ but lower amplitudes for pitch (θ0 = 52.1◦) and

plunge (h0 = 0.5). In their study, the performance improvement is attributed

to the strengthened LEV resulting from the tail deformation. However, the

performance cannot be directly related to just the LEV strength in this study

with high θ0 = 80◦ and h0 = 1 where the strong LEV is observed in all the

four cases. In Fig. 6.12, CPh of Case 3 increases with f ∗ in the range of

f ∗ = 0.10−0.22 at θ0 = 60◦−90◦, while other cases show significant reduction

in CPh with increase of f ∗ at θ0 = 60◦. In addition, CPθ of the four cases

is negative except for f ∗ < 0.15 and decreases (i.e. more negative) almost

linearly with increase of f ∗ at high flapping frequencies f ∗ > 0.16 where Case

1 and Case 4 show relatively larger decrease compared to the other cases.

Even though CPh of Case 1 and Case 4 increases with f ∗ at θ0 = 80◦ and 90◦,

significant drop in CPθ due to the increase of pitch rate results in mean power

output CP reduction at high flapping frequencies. On the other hand, in the

range of f ∗ = 0.18 − 0.24, Case 3 gives relatively high CPh at θ0 = 60◦ and

70◦, while it gives relatively low CPθ at θ0 = 80◦ and 90◦, producing relatively

high CP regardless of θ0 as shown in Fig. 6.11. These results demonstrate that
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it is feasible to achieve good performance at different flapping frequencies by

tuning the natural frequencies of the spring-tail system.

Table 6.2: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f∗ = 0.14, θ0 = 80◦, h0 = 1, ϕ =
90◦, xpiv = 0.333.

Case f ∗0 µ ks f ∗r η CP d/c

√
C2
L CPh CPθ αTmax(

◦) αeffmax(
◦)

1 1.36 0.60 0.393 1.180 37.6% 0.99 2.63 1.73 0.89 0.10 38.8 38.3
2 1.36 0.03 0.020 0.491 26.3% 0.64 2.44 1.03 0.60 0.04 88.8 32.6
3 0.15 0.60 0.005 0.130 27.6% 0.73 2.64 1.56 0.71 0.02 68.8 35.3
4 - - - - 37.1% 0.96 2.59 1.64 0.86 0.10 0.00 38.7

Table 6.3: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f∗ = 0.20, θ0 = 80◦ , h0 = 1, ϕ =
90◦, xpiv = 0.333.

Case f ∗0 µ ks f ∗r η CP d/c

√
C2
L CPh CPθ αTmax(

◦) αeffmax(
◦)

1 1.36 0.60 0.393 1.180 28.6% 0.77 2.70 1.40 1.08 -0.31 20.3 29.0
2 1.36 0.03 0.020 0.491 29.9% 0.74 2.46 1.07 0.84 -0.11 46.6 24.7
3 0.15 0.60 0.005 0.130 36.6% 0.92 2.51 1.69 1.17 -0.25 73.6 31.7
4 - - - - 30.8% 0.80 2.59 1.45 1.06 -0.26 0.00 28.5

Table 6.4: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f∗ = 0.24, θ0 = 80◦, h0 = 1, ϕ =
90◦, xpiv = 0.333.

Case f ∗0 µ ks f ∗r η CP d/c

√
C2
L CPh CPθ αTmax(

◦) αeffmax(
◦)

1 1.36 0.60 0.393 1.180 21.4% 0.57 2.65 1.88 1.32 -0.75 13.3 25.1
2 1.36 0.03 0.020 0.491 28.1% 0.66 2.36 0.97 0.87 -0.22 48.9 20.6
3 0.15 0.60 0.005 0.130 33.6% 0.84 2.50 1.59 1.30 -0.46 82.6 28.9
4 - - - - 15.5% 0.40 2.60 1.83 1.08 -0.69 0.00 23.6

To uncover the physics underpinning the performance of power extraction

under non-optimal conditions of the rigid case, the four cases at the same

θ0 = 80◦ as that used in Section 6.1 but different f ∗ = 0.14, 0.20, 0.24 are

further investigated (Table 6.2, 6.3 and 6.4). In Table 6.1-6.4, CPh of the
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four cases increases monotonically with the increase of f ∗ since the plunge

velocity increases linearly with the increase of f ∗. However, CPθ shows an

opposite trend, indicating that more power is required for the pitch motion at

high flapping frequencies. For all the four cases, CPθ is negligible at the low

flapping frequency f ∗ = 0.14, while the absolute value of CPθ ranges from a

minimum of 38% of CP for Case 2 to a maximum of 174% of CP for Case 4 at

f ∗ = 0.24. In addition, the flapping frequencies where the highest η and CP

of the four cases are achieved are different from those where the highest CPh

is observed. These observations illustrate that the contribution of the pitch

motion to the performance becomes more important with the increase of f ∗.

As expected, Case 1 with the highest stiffness (ks = 0.393) gives the smallest

αTmax in Table 6.1-6.4. At the low flapping frequency (f ∗ = 0.14), Case 2 with

the lowest density ratio (µ = 0.03) gives the largest αTmax, while Case 3 gives

the largest αTmax at higher flapping frequencies (f ∗ = 0.16 − 0.24). This can

be explained as the ratio between the inertia force and the restoring force of

Case 3 with large µ and small f ∗0 is the highest and the inertia effect plays an

important role in the passive deflection when the acceleration is large at high

f ∗.

To visualize the prescribed motion combined with the passive deflection of

the the tail, the effective angle of attack (αeff ) defined as the angle between

the relative inflow velocity and the secant connecting the leading edge of the

foil and the end of the tail, as shown in Fig. 3.2, is introduced. When the tail

is rigid (Case 4), the definition of αeff is the same as Kinsey & Dumas (2008).

For all the cases, the maximum of αeff in Table 6.1 to 6.4 decreases with the

increase of f ∗0 . The time history of αeff in Fig. 6.13 shows that the magnitude

of αeff for Case 1 (high stiffness) and Case 4 (rigid tail) before the stroke

reversal decreases dramatically at high flapping flapping frequencies (e.g. at
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Fig. 6.13: Comparison of αeff and CL of a rigid foil with a spring-connected or a
rigid tail at f∗ = 0.14− 0.24, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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t/T = 0.4, the magnitude of αeff for Case 4 is respectively 19.7◦, 16.4◦, 10.6◦

and 5.47◦ at f ∗ = 0.14, 0.16, 0.20 and 0.24). In addition, before the stroke

reversal (t/T = 0.4−0.5), CL of Case 1 and Case 4 increases dramatically, even

with the opposite sign to the plunge motion, at the high flapping frequencies

(f ∗ = 0.20, 0.24) compared to that at the low flapping frequencies (f ∗ =

0.14, 0.16). On the other hand, at the low flapping frequency (f ∗ = 0.14),

even though Case 3 shows the largest amplitude of CL, the peak of CL is in

the opposite direction of the plunge velocity, resulting in a low CPh in Table 6.2.

At the high flapping frequencies (f ∗ = 0.20, 0.24), Case 3 gives relatively high

αeff before the stroke reversal (t/T = 0.4−0.5) since the large deflection of the

tail lags behind the pitch angle due to the inertia effects. At t/T = 0.2 − 0.5

during the downstroke and t/T = 0.75 − 1 during the upstroke, Case 3 gives

reasonable CL in the the same direction as the plunge motion, resulting in

relatively high CPh among the four cases compared to that at the low flapping

frequencies. Among the four cases, Case 2 gives the smallest magnitude of

αeff , resulting in the smallest magnitude of CL as well as the lowest

√
C2
L and

CPh in Table 6.1-6.4.

To further investigate the negative contribution of the pitch motion to the

performance which increases with the increase of f ∗ for all the cases, the time

history of CM and CPθ is shown in Fig. 6.14. It is noted that for Case 1 and

Case 4, CM with the opposite sign to θ̇ after the mid of the up and down

stroke (t/T = 0.75− 1 and 0.25− 0.5, respectively) increases with the increase

of f ∗, resulting in the large amount of power required for the pitch motion

at the high flapping frequencies. On the other hand, excluding the delayed

peak of CM at the high flapping frequencies of f ∗ in Case 3, the change in

the magnitude of CM of Case 2 and Case 3 after the mid of the stroke is

insignificant. At f ∗ = 0.20 and 0.24, even though the magnitude of CL in Case
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Fig. 6.14: Comparison of CM and CPθ of a rigid foil with a spring-connected or a
rigid tail at f∗ = 0.14− 0.24, θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333.
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2 and Case 3 is large before the stroke reversal (Fig. 6.13), the magnitude of

CM approaches 0, which is different from that observed in Case 1 and Case

4 where the magnitudes of both CL and CM are large. Furthermore, due to

the smaller magnitude of CM after the mid of the stroke (t/T = 0.75− 1 and

0.25− 0.5), Case 2 and Case 3 gives higher CPθ as shown in the right column

of Fig. 6.14, thus higher CPθ in Table 6.3 and 6.4.

The vorticity and pressure distribution of the four cases with f ∗ = 0.14,

0.16, 0.20 and 0.24 at t/T = 0.9 where CL and CM show major differences

between low stiffness cases (Case 2 and Case 3) and high stiffness cases (Case

1 and Case 4) as shown in Fig. 6.15 and 6.16 respectively. The mapping of

vorticity shows that at the same t/T , the size and propagation distance of

the LEV decrease with the increase of f ∗. According to the review on the

dynamic stall (Choudhry et al. 2014), the critical angle of attack increases

with the increase of the pitch rate. In addition, the angle of attack at the

pivot location with the same sign as the plunge motion, which is the same as

αeff of Case 4 in Fig. 6.13, at the low f ∗ is greater than or equal to that at high

f ∗. Thus at the high f ∗, the formation of LEV is delayed. This explains the

decrease of the distance travelled by the LEV at the high flapping frequencies.

Since the time period of one flapping cycle is related to f ∗, the physical time

at the same t/T increases with the decrease of f ∗. This implies that at the

low f ∗, the LEV is fed by the vortex filament for a longer time, resulting in

the larger LEV compared to that at the high f ∗. At t/T = 0.9, the strength

of the vortex filament shed into the wake at the high f ∗ is stronger than that

at the low f ∗. In Fig. 6.15d, it is noted that due to the sharp change in the

curvature resulting from the deflection of the tail, the vortex filament in Case

2 and Case 3 detaches from the trailing edge of the foil instead of from the end

of the plate in Case 1 and Case 4. The vortex filament in Case 2 and Case 3
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Case 1 Case 2 Case 3 Case 4

(a) f∗ = 0.14

(b) f∗ = 0.16

(c) f∗ = 0.20

(d) f∗ = 0.24

Fig. 6.15: Instantaneous non-dimensional vorticity contours of Case 1-4 at different
f∗ and θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 and t/T = 0.9.
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Case 1 Case 2 Case 3 Case 4

(a) f∗ = 0.14

(b) f∗ = 0.16

(c) f∗ = 0.20

(d) f∗ = 0.24

Fig. 6.16: Relative pressure coefficient contours of Case 1-4 at different f∗ and
θ0 = 80◦, h0 = 1, ϕ = 90◦ and xpiv = 0.333 and t/T = 0.9.
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suppresses the high pressure region on the upper surface of the tail, as shown

in Fig. 6.16d. At the high f ∗, the center of the low pressure region is near the

pivot, causing the small magnitude of CM (Fig. 6.14) of Case 2 and Case 3

before the stroke reversal where CL is high (Fig. 6.13). In Case 1 and Case 4,

the high pressure region acting on the tail has long moment-arm to the pivot

point, resulting in the large magnitude of CM in Fig. 6.14. In Case 3, the

large deflection of the tail alleviates the rapid increase of power required for

the pitch motion by eliminating the high pressure region on the suction surface

of the tail when f ∗ is higher than the optimal value of the rigid system.

6.3 Summary

The influence of fluid-structure interactions on the performance of a flap-

ping foil power generator has been numerically studied using the immersed

boundary-lattice Boltzmann method (IB-LBM). The flexibility is achieved by

using a flat plate pinned to the trailing edge of a rigid NACA0015 foil through

a torsional spring. The deformation of the tail is passively determined by

the hydrodynamic loading. As discussed in Section 2.3.2, performance im-

provement is achieved by several studies using active deformation. However,

if the power consumption of the active deformation is taken into account, the

improvement of the performance is limited. In addition, the simple torsion-

al spring model employed in this chapter only introduces 2 new parameters

(natural frequency and density ratio), while more parameters are required to

model the complicated passive motion of the attached tail (Fig. 6.5b). Thus

the simple torsional spring model is used in this chapter for parametric study.

The optimum kinematic condi6tions of a rigid foil and a rigid foil with a

rigid tail are first identified by conducting simulations over a range of values
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for the flapping frequency f ∗ and pitch amplitude θ0, with h0 = 1, ϕ = 90◦

and xpiv = 0.333. Peak efficiencies of 36.9% and 37.3% respectively for the

rigid foil and the rigid foil with a rigid tail are found to occur at f ∗ = 0.16,

θ0 = 80◦. A parametric study on the structure-to-fluid density ratio (µ) and

natural frequency (f ∗0 ) shows that the performance improvement is achieved

in the range of stiffness ks = 0.316 − 1.00. In addition, when ks > 10, the

spring-connected system tends to be a rigid system. It is noted that a spring-

connected tail with appropriate mass density (µ = 0.6) and natural frequency

(f ∗0 = 1.36) enhances the maximum efficiency of a flapping power generator by

7.24% compared to a rigid tail.

The time history of CL under the rigid-system optimal condition shows

that the improvement in performance is due to the increase in the magnitude

of the hydrodynamic load and synchronization between the hydrodynamic load

and the prescribed motion. Analysis on the tail deformation indicates that the

major component of the passive motion relies on the resonant frequency (f ∗r ).

The movement of the tail influences vortex shedding, especially near stroke

reversals. For the case with the highest efficiency (f ∗r = 1.18), the deflection

of the tail reduces the low pressure region on the pressure surface after the

stroke reversal, resulting in high pressure differences between the upper and

lower surface of the foil. For the case with low flexibility (f ∗r = 0.13), the

LEV prematurely circumnavigates the tail near the stroke reversal, leading to

a sharp drop in the power coefficient. In the near wake, interactions between

the leading edge and trailing edge vortex of case 1 which has the highest

efficiency are stronger than those of the other cases.

Finally, these four cases are simulated under different kinematic condition-

s. Compared to the rigid case, a tail with µ = 0.60 and f ∗0 = 1.36 shows

performance improvement (up to 15.3%) over a range of operating conditions
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(f ∗ = 0.12− 0.18, θ0 = 60◦ − 90◦). A spring-connected tail with µ = 0.60 and

f ∗0 = 0.150 achieves good efficiencies η > 33.0% (up to 137% improvement

over that with a rigid tail at f ∗ = 0.22, θ0 = 70◦) in the range of frequencies

f ∗ = 0.18 − 0.24 with θ0 = 70◦ and 80◦. Under high flapping frequencies,

the deflection of the tail with the low stiffness increases the magnitude of the

effective angle of attack and eliminates the high pressure region acting on the

suction surface of the tail near the stroke reversal, reducing the power required

for the pitch motion. The results indicate that a spring-connected tail with

appropriate stiffness can improve the performance of a flapping foil power gen-

erator for a reasonable range of operating conditions. In addition, according

to the definition of the reduced frequency (f ∗ = fc/U), a spring-connected tail

of low stiffness can benefit from low inflow velocity, which potentially expands

the exploitable energy resource base.



Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

In this study, a novel type of wind/tidal turbines harvesting energy from com-

bined pitch and plunge motions was investigated numerically. In contrast to

rotary turbines which rely on attached flow for high performance, power gen-

erators making use of flapping foil motions can benefit from the formation and

convection of leading edge vortices (LEVs), promising relatively high energy

harvesting performance in low speed flows. A review of the literature in Chap-

ter 2 introduced the fundamental concept of the flapping foil power generator

and recent advances in this innovative concept of wind turbines, covering pa-

rameters governing the kinematics of the system, geometries and deformation

of the foil and the system and environmental effects.

The kinematics of the foil are governed by different parameters depend-

ing on the activation mechanism of the flapping foil system. By tuning the

structure parameters (e.g. damping and stiffness) in the semi-passive system

171
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and fully passive system with one degree of freedom, high performance can

be achieved under the optimal conditions similar to those found in the fully-

prescribed system. Thus, the fully prescribed system is commonly considered

in studies on the flapping foil power generator, especially those focusing on

the influence of factors other than kinematics (e.g. geometry and environmen-

t) and the physical mechanisms for high performance.

Parametric studies on the fully prescribed system generally are focused on

two variables with others fixed because of the complex influence of the kine-

matic parameters on the performance and the high computational cost of CFD

methods (such as the Navier-Stokes solver or IB-LBM). These studies suggest

operating conditions for high performance in the range of non-dimensional

frequency f ∗ = 0.11 − 0.18, pitch amplitude θ0 = 60◦ − 100◦, plunge ampli-

tude h0 = 0.8 − 1.5, phase difference between the pitch and plunge motions

ϕ = 90◦ − 110◦ and non-dimensional pivot point location xpiv = 0.25 − 0.5.

In addition, large flow separations are observed near the optimal condition

in many studies, of which simulations are beyond the capability of potential

flow based methods. Studies using methods based on the potential flow theory

generally constrain the maximum angle of attack to avoid the occurrence of

large flow separations.

Besides the kinematics, the geometry of the foil, the configuration of the

system and the operating environment also affect the performance of the flap-

ping foil power generator. According to results of propulsive system using

flapping foils, it is attractive to exploit the deformation of the foil to improve

the performance of the flapping foil power generator when a single foil system

in the unconstrained flow is considered. Several studies show that active de-

formation of the foil influences the formation of LEVs and appropriate phase

angle between the plunge motion and the deformation can improve power out-
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put under optimal and non-optimal conditions of the rigid system. However,

the power required to deform the foil is significant but generally neglected in

the performance analysis. In addition, recent studies show that the passive

deformation can enhance the performance of the flapping foil power generator

under the on-optimal conditions of the rigid system, while the improvement in

the maximum efficiency is negligible.

This study was, therefore, aimed at achieving high performance of the

flapping foil power generator through appropriate combination of kinematic

parameters and coupling between the foil deformation and the aerodynamic

loads. To achieve this goal, discrete vortex method was modified in Chapter

4 to capture the influence of flow separations for rapid performance estima-

tions; kinematic parameters were optimized using multi-fidelity evolutionary

algorithm in Chapter 5; and the influence of the passive motion of a spring

connected tail on the performance was examined in Chapter 6.

To remove the impediment for optimization due to the high computation-

al cost of CFD methods, the discrete vortex method based on potential flow

theory was developed in Chapter 4. The results given by the modified discrete

vortex method showed good agreement with the CFD simulations and the ex-

periment data for both optimal and non-optimal conditions with respect to

kinematic parameters and pivot point locations. The influence of the leading

edge vortex and trailing edge flow separation was successfully predicted by in-

troducing the leading edge suction parameter and trailing edge flow separation

corrections into the potential flow based method. Moreover, the modified dis-

crete vortex method performed well under different kinematic conditions with

or without large flow separations, as demonstrated in Chapter 4 and Chap-

ter 5, since the empirical constants in this model were only dependent on the

Reynolds number and foil geometry. In addition, it took much less computa-
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tional time (at least two order of magnitudes) than CFD methods. Thus, the

modified discrete vortex method is an attractive tool for engineering design

and optimization of the flapping foil with large flow separations.

In Chapter 5, the multi-fidelity evolutionary algorithm implemented with

the low order models reproduced in Chapter 3 and developed in Chapter 4

was used to search for values of kinematic parameters that produced high

energy extraction performance. The results indicated that the use of multi-

fidelity strategy achieves a computational saving of 28.6%. Despite the use of

low fidelity models and limited budget of computational resources, the multi-

fidelity strategy was capable of finding kinematic conditions suitable for high

energy extraction performance from a flapping foil. In addition, detailed flow

analysis using immersed boundary-lattice Boltzmann method revealed that

high energy extraction performance was associated with the detachment of

the LEV near stroke reversal, resulting in a horseshoe-shaped vorticity wake

with a width approximating the swept distance of the foil behind the turbine

plane. When the LEV detached from the foil near mid stroke, both efficiency

and power output suffered.

Investigation in Chapter 6 on the aero-elastic system containing a rigid foil

and a spring connected tail showed that under the rigid-system optimal kine-

matic condition, a tail with appropriate mass density (µ = 0.6) and resonant

frequency (f ∗r = 1.18) could improve the maximum efficiency by 7.24% accom-

panied by an increase of 6.63% in power compared to those of a rigid foil with a

rigid tail. This was because the deflection of the tail reduced the low pressure

region on the pressure surface (i.e. the lower surface during the upstroke or

the upper surface during the downstroke) caused by the leading edge vortex

after the stroke reversal, resulting in a higher efficiency. In the rigid system,

the power required to pitch the foil increased significantly with the increase of



7.2. Recommendations for future work 175

the flapping frequency, resulting in low efficiency. At high flapping frequencies,

a spring-connected tail (f ∗r = 0.13) eliminated the large spike in the pitching

moment observed in high stiffness cases, reducing the power required for the

pitch motion, resulting in 117% improvement in efficiency over that with a

rigid tail at a reduced frequency of 0.24.

7.2 Recommendations for future work

In this thesis study, the influence of the kinematics and passive deformation

on the performance of the flapping foil power generator in two-dimensional

uniform flow was investigated. Some extended studies would be worthwhile to

be conducted in the future to further the understanding of the performance of

flapping foil power generators.

First of all, the influence of the foil deformation is not considered in the

discrete vortex method (DVM) modified in Chapter 4. According to the DVM,

the local velocity normal to the foil corresponding to the change of the chord

line curvature is easy to implement, while it remains a challenge to predict the

foil deformation in response to the aerodynamic loads. Further modification

of the DVM considering fluid-structure interactions is worthwhile for studies

on foil deformation in both energy harvesting and propulsive systems using

flapping foils. In addition, the DVM assumes that the aspect ratio of the

wing is infinite, neglecting three-dimensional effects. The idea of introducing

the leading edge suction parameter and trailing edge flow separation correc-

tions considered in this study can be employed in the unsteady penal method

developed for three-dimensional potential flow to include the effects of flow

separations.

In Chapter 5, the highest fidelity model used in the optimization process is
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the modified DVM. Even though the modified DVM shows reasonable agree-

ment with the CFD methods and experiment, employing higher fidelity results

(e.g. CFD and experiment) in the optimization process may achieve better per-

formance since they contain more information (e.g. the flow field) which might

be neglected in low order models. In addition, besides parameters governing

the kinematics of the fully prescribed system, geometry and deformation of

the foil, configuration of multiple foils and parameters in the semi-passive and

fully passive system remain to be optimized for higher performance.

According to the studies using Reynolds averaged Navier Stokes methods

reviewed in Chapter 3, the formation of the leading edge vortex is not neces-

sary for high performance when turbulence is considered. Thus, more work

should be conducted in the turbulent flow region. In addition, since several

turbulence models give different timing and position of flow separations, large

eddy simulations or direct numerical simulations of the flapping foil power

generator remain to be accomplished.
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Appendix A

Summary of the literature

Table A.1: Summary of studies on flapping foil power generators with prescribed pitch and plunge motions. ηm is the maximum
efficiency achieved in the literature using the definition in Eq. 2.6 and CPm is the power coefficient corresponding to the maximum
efficiency. AR stands for aspect ratio and NST stands for not stated.

Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Numerical studies
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Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Jones &

Platzer
1999 ∞

0.01-

0.40a

15-

78b

0.2-

4.0c
90 0.5 0.52 26%

NACA0012 foil. Simulations using

panel method.

Davids 1999 ∞
0.02-

0.24a

8-

76b

0.3-

5.0

65-

125

-0.3-

1.3
0.82 35%d

NACA0012 foil. Simulations using

panel method.

Lindsey 2002

∞,

2.0× 104,

1.0× 106

0.01-

0.80a

10-

105b

0.0-

5.0

80-

110

0.13-

0.8
1.00 32%

NACA0014 foil. The highest

efficiency was achieved at Re = 106

using a NS solver.

Jones et al. 2003

∞,

2.0× 104,

1.0× 106

0.01-

0.32a

0-

99b

0.0-

5.0

80-

110
0.25 1.25 40%

NACA0014 foil. The highest

efficiency was achieved at Re = 106

using a NS solver.

aOriginal reduced frequency was defined as k = 2πfc/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U .
bCalculated according to the amplitude of the angle of attack α0, plunge amplitude h0 and non-dimensional frequency f∗.
cCalculated according to the maximum non-dimensional plunge velocity kh0 and reduced frequency k.
dDavids (1999) stated a peak efficiency of 30.0% in Table 1 on page 41. Here the efficiency of 34.9% listed in Appendix 2 on page 78 is considered.
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Kinsey &

Dumas
2008 1100

0.01-

0.25

0-

90
1.0 90

0.25,

0.333,

0.5

0.86 33.7%

NACA0015 foil. The influence of foil

thickness is insignificant, while that

of the pivot location is significant.

Ashraf et al. 2011 2.0× 104
0.04-

0.32

40,

73

0.5,

1.05

70-

130
0.5

0.89

1.44e

34%

54%f

NACA0014 foil. Non-sinusoidal pitch

and plunge motions. Single foil and

two foils in tandem.

Zhu 2011 1000
0.05-

0.25

30-

90

0.3-

2.0

60-

130

0.2,

0.35,

0.5

0.81g 31%

Joukowski foil. Peak efficiency was

achieved when the most unstable

frequency in the wake coincided with

the flapping frequency.

eTotal power coefficient of multiple foils.
fTotal efficiency of multiple foils.
gCalculated according to the efficiency and swept distance computed from Eq. 2.13 and 2.14.
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Kinsey &

Dumas
2012a 5.0× 105

0.04-

0.20

60,

75
1 90 0.333 1.02 40%

NACA0015 foil. Single foil and foils in

tandem. Comparison of predictions

given by 2D and 3D URANS using

different turbulence models.

Kinsey &

Dumas
2012b 5.0× 105

0.04-

0.20

62-

75

0.75,

1.00
90 0.333 1.64e 64%f NACA0015 foil. Two foils in tandem.

Kinsey &

Dumas
2012c 5.0× 105 0.14 75 1.00 90 0.333 0.99e 39%f NACA0015 foil. AR=5-10.

Xiao et al. 2012 1.0× 104
0.01-

0.25h

15-

75

0.5,

1.0
90 0.333 0.98 39%i

NACA0012 foil. Non-sinusoidal pitch

motion.

hOriginal frequency is given by the Strouhal number St = 2fh0/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U
iThe definition of efficiency in Xiao et al. (2012) was the same as Eq. 2.8. Since the curve of power coefficient (Fig.5) and that of efficiency (Fig. 6)

were different, definition in Eq. 2.6 is considered here.
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Campobasso

et al.
2013

1100,

1.5× 106

0.14,

0.18

76,

60
1.0 90 0.333 1.01 40%

NACA0015 foil. Good synchronization

between the plunge motion and LEVs

was not required for high performance

in the turbulent flow.

Le et al. 2013 9.0× 104

0.1,

0.125,

0.15

55,

60,

65

0.7-

1.1
90 0.333 0.68g 39%

NACA 0008, cambered NACA0012

and corrugation foil.

Liu

et al.
2013 1.0× 106

0.05-

0.25

9-

58j

0.5,

1.0
90 0.333 0.75 32%

NACA0012 foil. High efficiency was

achieved at low angle of attack

α0 ≤ 20◦ with active foil deformation.

Single foil and two foils in parallel.

Deng

et al.
2014 1100 0.16

60-

82
1.23 90 0.333 1.11g 36%

NACA0015 foil. AR=1-8. 3D effects

were stronger when non-sinusoidal

motion was imposed.

jCalculated according to the amplitude of the angle of attack α0, plunge amplitude h0 and non-dimensional frequency f∗.
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◦) h0 ϕ(◦) xpiv CPm ηm Information

Kinsey &

Dumas
2014 5.0× 105

0.02-

0.28

35-

105

1.0-

3.0
90 0.333 1.5 45%

NACA0015 foil. LEVs were not

observed in most of the optimal

turbulent cases.

Lu et al. 2014 1.0× 104
0.03-

0.25h

24-

67
0.8 90 0.333 0.46 21%k

NACA0012 foil. Non-sinusoidal pitch

and plunge motions.

Xie et al. 2014 1.0× 104
0.06-

0.44

0-

35
1.0 90 0.5 0.90 30%

Elliptical foil. Pitch motion is given

by θ = π
2 + θ0 sin (ωt+ ϕ) .

Tian et al. 2014 1100 0.14 76 1.0 90 0.333 0.98 38%
Flat plate. Passive and active

deformation

Drofelnik &

Campobasso
2015 1.5× 106 0.14 76 1.0 90 0.333 1.00 39%l

NACA0015 foil with and without end

plates. AR=10. Loss due to finite span

was caused by tip vortices and LEV

suppression.

kOriginal efficiency was given by Eq. 2.8. Recalculated the efficiency using the definition in Eq. 2.6.
lCalculated according to the power coefficient and swept distance computed from Eq. 2.13 and 2.14.
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◦) h0 ϕ(◦) xpiv CPm ηm Information

Hoke et al. 2015 1100 0.14 76 1.0 90 0.333 0.97 38% NACA0015. Active deformation

Wu et al. 2015 1100
0.12-

0.24a

36-

67j
0.5 90 0.333 0.56 35%

NACA0015 foil. A auxiliary foil of 0.5

chord length below the flapping foil.

Wu et al. 2015 1100
0.05-

0.25a

19-

58j
0.5 90 0.333 0.56 33%

NACA0015 foil. A flexible flat plate

modelled by the Euler-Bernoulli beam

theory was attached to a rigid foil.

Wu et al. 2015
500-

4000

0.05-

0.25a

19-

78j
0.5 90 0.333 0.36 24%

NACA0015 foil. The foil was placed

1-5 chord length from the ground.

Zhu et al. 2015
1.0× 104,

1.4× 104

0.14,

0.16

51-

91j

1.00,

1.23
90 0.333 1.05 41%

NACA0002 and NACA0015 foils.

Active deformation.

Drofelnik &

Campobasso
2016 1.5× 106 0.14 76 1.0 90 0.333 1.00 39% NACA0015 foil.

Gauthier

et al.
2016 3.0× 106

0.08-

0.22
80 1.0 90 0.4 1.91m 77%k

NACA0025 foil. AR=10. Constrained

flow.

mCalculated from the ratio between power extracted from constrained flow and unconstrained flow defined in Gauthier et al. (2016).
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◦) h0 ϕ(◦) xpiv CPm ηm Information

Wu et al. 2016 1100
0.1-

0.2
75 1.0 90 0.333 0.91g 36%

NACA15 foil. Combined pitch, plunge

and surge motions.

Xu et al. 22016 4.4× 104
0.08-

0.22
70 1.0 90 NST NST 54% NACA0015 foil. Two foils in tandem.

Chen et al. 2017 1100
0.08-

0.20
60 1.0 90 0.333 0.93 37%

NACA0015 foil. Study on the

influence of the wind gust.

Jeanmonod &

Olivier
2017 1100

0.08-

0.18

60-

90
1.0 90 0.333 0.88 NST Flat plate. Passive deformation.

Liu 2017 5.0× 105 14 70 1.0 90 0.333 1.5l,e 60% f
NACA0015 foil. Two foils in tandem.

Efficiency reduced in shallow water.

Sun et al. 2017 6.0× 105
0.05-

0.28

50-

110
1.0 90 0.333 1.49l 54%

NACA 4 digit foil with different

thickness.

Wang et al. 2017 1.4× 104
0.06-

0.22h

61-

107

0.5-

2.0
90 0.333 0.90 30% NACA0012 foil.



A
p
p

e
n
d
ix

A
.

S
u
m

m
a
ry

o
f

th
e

lite
ra

tu
re

2
0
5

Authors Year Re f∗ θ0(
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Experimental studies

Simpson

et al.
2008 1.4× 104

0.08-

0.24h

43-

119j
1.23 90 NST 1.06 <43%n NACA0012 foil. AR=4.1, 5.9 and 7.9.

Fenercioglu

et al.
2015 1100 0.13a 73 1.05

90,

110

0.25,

0.5
0.86 33%

NACA0012 foil with end plates.

AR=6. Non-sinusoidal pitch and

plunge motions.

Karakas

et al.
2016 1.0× 104 0.13a 73 1.05

90,

110
0.40 0.43 17%

Flat plate with end plates. AR=3.

Non-sinusoidal pitch and plunge

motions. Constrained flow.

Kim

et al.
2017 5.0× 104

0.08-

0.20

45-

85

0.5-

1.0
90 0.50 0.74g 38%

Elliptical and rectangle foils with end

plates of different sizes. AR=2.5, 3.5

and 4.5.

nOriginal efficiency was given by Eq. 2.8. Cannot recalculate the efficiency using the definition in Eq. 2.6 without pivot location xpiv.
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Table A.2: Summary of studies on flapping foil power generators with prescribed pitch and passive plunge motions. ηm is the
maximum efficiency achieved in the literature using the definition in Eq. 2.6 and CPm is the power coefficient corresponding to
the maximum efficiency. AR stands for aspect ratio and NST stands for not stated.

Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Numerical studies

Shimizu 2004 ∞
0.0-

0.10a
50

0.5-

2.0

100-

150

0.0-

1.0
0.34b 29%c

NACA0012 foil. Optimization using

evolutionary algorithms with solutions

evaluated by the Theodorsen’s theory.

Shimizu

et al.
2008

∞,

4.6× 105

0.0-

0.10a
50

0.5-

2.0

100-

150

0.0-

1.0
0.54b 35%c

NACA0012 foil. 8 non-dominated

solutions were evaluated using a

Navier-Stokes solver.

aOriginal reduced frequency was defined as k = πfc/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U .
bThe power coefficient is computed from the dimensional power given by Shimizu (2004) and Shimizu et al. (2008) with an assumed air density of

1.225 kg/m3.
cOriginal efficiency was given by Eq. 2.10. Recalculated the efficiency using the definition in Eq. 2.6.
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◦) h0 ϕ(◦) xpiv CPm ηm Information

Zhu et al. 2009 ∞
0.03-

0.64a

10-

30

0-

0.4
NST

0.0-

1.0
0.08d <13%e

Flat plate, NACA0005 and NACA0025

foils. Inertia of the foil was neglected.

2D and 3D inviscid flow.

Zhu &

Peng
2009 1000

0.03-

0.41a

5-

60
NST NST

0.0-

1.0
0.34d 27%

Joukowski foil. Rh/ (ρcU) = π. Inertia of

the foil was neglected.

Deng

et al.
2015 1000

0.08-

0.22

60-

90
NST

75-

125
0.333 0.57f 33%

NACA0015 foil. Rh = π. Mass ratio was

examined.

Wu

et al.
2015 1100

0.16-

0.24a

15,

30,

45

0-

0.5
NST 0.333 NST 43%g

NACA0015 foil. Two auxiliary foils of

0.5c in parallel. Rh/
(

1
2ρcU

)
= π,

Kh/
(

1
2ρU

2
)

= 1, mfoil/
(

1
2ρc

2
)

= 1.

dThe power coefficient is computed from the ratio between the power output and the maximum net power generation capacity (π/8) θ20 and non-

dimensionalized by 1/2ρU3c.
eOriginal efficiency was given by Eq. 2.8. Cannot recalculate the efficiency using the definition in Eq. 2.6 without additional information.
fIn Deng et al. (2015), CPm is 0.42. Here CPm = 0.57 is considered after communicated with the authors.
gTotal efficiency of multiple foils.
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◦) h0 ϕ(◦) xpiv CPm ηm Information

Wu

et al.
2015 1100

0.1-

0.3a

20,

40
NST NST 0.333 0.40 20%

NACA0015 foil with a flexible tail of 0.3c.

Rh/
(

1
2ρcU

)
= π, Kh/

(
1
2ρU

2
)

= 1,

mfoil/
(

1
2ρc

2
)

= 5.

Teng

et al.
2016 1000

0.08-

0.22
45-90 NST NST NST NST 32%

NACA0015 foil. Rh/ (ρcU) = π, ρfoil/ρ

= 4.7. Non-sinusoidal pitch motion.

Experimental studies

Abiru &

Yoshitake
2011a 1.0× 105 0.10a

30-

50
NST 90 0.5 0.58h,i 46%c,g

NACA0015 foil. Two foils in tandem.

AR=3.

Abiru &

Yoshitake
2011b

0.6× 105-

1.2× 105

0.08-

0.16a

30-

50

0.15-

0.7
90 0.5 0.30h 22%c NACA0015 foil. AR=3.

Huxham

et al.
2012 4.5× 104

0.03-

0.20

0-

60

0.0-

1.0
NST 0.25 0.29j 24% NACA0012 foil. AR=3.4.

hThe power coefficient is computed from the dimensional power given by Abiru & Yoshitake (2011a) and Abiru & Yoshitake (2011b) with an assumed

water density of 998 kg/m3.
iTotal power coefficient of multiple foils.
jCalculated from the input and output power coefficient and non-dimensionalized by 1/2ρU3c.
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Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Lu

et al.
2015 3500 0.13a

40,

50

1.67

2.5

3.33

90,

110
0.75 0.45k 14%k

NACA0012 foil. AR=2.5. Prescribed

sinusoidal plunge motion and self-

motivated pitch motion.

kDefinition was not stated in Lu et al. (2015). This value was given by numerical simluations and is extracted directly from Fig. 10 in Lu et al. (2015).
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Table A.3: Summary of studies on flapping foil power generators with passive pitch and plunge motions. ηm is the maximum
efficiency achieved in the literature using the definition in Eq. 2.6 and CPm is the power coefficient corresponding to the maximum
efficiency. AR stands for aspect ratio, DFO stands for degree of freedom and NST stands for not stated.

Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Numerical studies

Peng &

Zhu
2009 1000 0.08-0.15

20-

90
NST NST

0.4-

0.9
0.28a 20%

Joukowski foil. 2 DOF.

Rh/ (ρcU) = π.

Zhu 2012 1000 0.16-0.31
25-

100

0.02-

0.06
NST

0.3-

0.6
0.34a 31%

Joukowski foil. 2 DOF. Small shear

expanded the response region for

energy harvesting. Rh/ (ρcU) = π.

Young

et al.
2013

1100,

1.1× 106

0.0-

0.3b

30-

90
1.0 90

0.0-

1.0
NST 41%

NACA0012 foil. 1 DOF. High

efficiency was achieved via the angle

of attack control.

Jiang et al. 2016 1100 0.16-0.31
100-

180
NST NST NST 0.8 29% Cambered elliptical foil. 2 DOF.

aThe power coefficient is twice of that in Peng & Zhu (2009) when non-dimensionalized by 1/2ρU3c.
bOriginal frequency is given by the Strouhal number St = 2fh0/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U



A
p
p

e
n
d
ix

A
.

S
u
m

m
a
ry

o
f

th
e

lite
ra

tu
re

2
1
1

Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Jiang et al. 2017 1.0× 104 NST NST NST NST 0.50 0.32 20% Elliptical foil. 2 DOF.

Veilleux &

Dumas
2017 5.0× 105 NST NST NST NST 0.333 1.08 34%

NACA0015 foil. 2 DOF.

Optimization using gradient-like

method.

Wang

et al.
2017 400 NST

0-

100

0-

1.6
NST

0.0-

1.0
0.95 32% NACA0012 foil. 2 DOF.

Experimental studies

McKinney &

DeLaurier
1981

8.5× 104,

1.1× 105

0.08-

0.20

25,

30
0.3

60-

135
0.5c 0.17d 17%e NACA0012 foil. 1 DOF. AR=5.25.

Davids 1999
Not

Stated

0.13-

0.19f

35-

60g

0.5-

0.9

80-

110

0.41,

0.51
0.19 16% NACA0012 foil. 1 DOF. AR=5.6.

cDeducing from Eq. 16 in McKinney & DeLaurier (1981)
dCalculated according to the efficiency and swept distance computed from Eq. 2.13 and 2.14.
eOriginal efficiency was given by Eq. 2.10. Recalculated the efficiency using the definition in Eq. 2.6.
fOriginal reduced frequency was defined as k = 2πfc/U . The non-dimensional frequency f∗ is calculated using f∗ = fc/U .
gCalculated according to the amplitude of the angle of attack α0, plunge amplitude h0 and rnon-dimensional frequency f∗ .
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Authors Year Re f∗ θ0(
◦) h0 ϕ(◦) xpiv CPm ηm Information

Lindsey 2002 2.2× 104
0.03-

0.16f

45-

73

1.1,

1.3
NST NST 0.25 <12%h

NACA0014 foil. 1 DOF. AR=5.6.

Tow foils in tandem.

Jones et al. 2003 2.2× 104
0.10-

0.16f
73i 1.3i 90 0.25i 0.25 8%j

NACA0014 foil. 1 DOF. AR=5.6.

Tow foils in tandem.

Kinsey

et al.
2011 4.8× 105

0-

0.2f
75 1 90 0.333

0.77k

1.02l

30%

40%m

NACA0015 foil. 1 DOF. AR=7.

Tow foils in tandem.

hThe original efficiency in Lindsey (2002) was 23%. Since the plunge amplitude was 1.05 and power coefficient was 0.25, the efficiency less than 12%

is considered here.
iDeducing from Section 2.2 in Jones et al. (2003).
jCalculated according to the power coefficient and swept distance computed from Eq. 2.13 and 2.14.
kCalculated according to the efficiency and swept distance of 2.55 chord length.
lTotal efficiency of multiple foils. Calculated according to the efficiency and swept distance of 2.55 chord length.
mTotal efficiency of multiple foils.
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Fig. B.1: Flowchart of the improved discrete vortex method. The predefined number
of time step imax is related to the number of flapping cycles and the time spacing
∆t.
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B.2 Matlab Code

1 % Dis c r e t e Vortex Method

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % NOTICE %

4 % Righthand and Upward i s p o s i t i v e %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 c l e a r ;

7 c l c ;

8

9 %Input

10 %Constant Value

11 t s t ep =200;

12 g l o b a l ro

13 ro =1;

14 g l o b a l phn

15 phn=1;

16 g l o b a l l p l a t e

17 l p l a t e =1;

18 bp late=l p l a t e /2 ;

19 g l o b a l U0

20 U0=1; % Freestream v e l o c i t y

21

22 %Kinet i c Parameters

23 h0=1∗ l p l a t e ; % Heave amplitude

24 f s t a r =0.14; % Non−dimens iona l

f requency
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25 omega=2∗pi ∗ f s t a r ∗U0/ l p l a t e ; %

Pitch ing v e l o c i t y

26 phi=pi /2 ; % Phase ang le

27 theta1 =0/180∗ pi ; % mean amplitude

28 theta0 =−76.3/180∗ pi ; % Pitch amplitude

29 ap la t e =1/2;

30

31 %Program v a r i a b l e s

32 g l o b a l wmid

33 g l o b a l umid

34 g l o b a l v co r e

35 v co r e =0.02 ; %Non−dimens iona l core rad iu s o f po int

v o r t i c e s

36 anmax=40; %Number o f f o u r i e r terms used to compute

v o r t i c i t y at a l o c a t i o n on chord

37 dismax =100;

38 eps =0.00001;

39 l e sp0 =0.19;

40

41 %TE sepa ra t i on

42 alpha1 =15.25/180∗ pi ;

43 de l taa lpha1 =2.1∗ pi /180 ;

44 S1=3.0∗ pi /180 ;

45 S2=2.3∗ pi /180 ;

46 t s t a r=l p l a t e /2/U0 ;

47 t1 =1.04∗ t s t a r ;
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48 t2=9∗ t s t a r ;

49 d e l t a i t =2∗pi /omega/ t s t ep ∗phn ;

50 i t a c c =0.97;

51 df =0.66/S2 ;

52 fa lphad2 (1 ) =1;

53 de l taa lpha1n (1) =0;

54

55 f o r i =1: t s t ep

56 apiv ( i )=(1+ap la t e ) /2 ;

57 t ( i )=( i ) ∗2∗ pi /omega /( t s t ep )∗phn ;

58 theta ( i )=theta1+theta0 ∗ s i n ( omega∗ t ( i ) ) ;

59 dtheta ( i )=theta0 ∗omega∗ cos ( omega∗ t ( i ) ) ;

60 d2theta ( i )=0−theta0 ∗omegaˆ2∗ s i n ( omega∗ t ( i ) ) ;

61

62 h( i )=h0∗ s i n ( omega∗ t ( i )+phi ) ;

63 dh( i )=h0∗omega∗ cos ( omega∗ t ( i )+phi ) ;

64 d2h ( i )=0−h0∗omegaˆ2∗ s i n ( omega∗ t ( i )+phi ) ;

65

66 Uef f ( i )=s q r t (U0ˆ2+dh( i ) ˆ2) ;

67 alpha ( i )=theta ( i )+atan (dh( i ) /U0) ;

68 dalpha ( i )=dtheta ( i )+d2h ( i ) /U0/(1+(dh( i ) /U0) ˆ2) ;

69 dalphanon ( i )=alpha ( i )∗ l p l a t e /2/U0 ;

70

71 end

72 % plo t ( i t , alpha )

73 % hold on
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74 % plo t ( i t , dalpha )

75 % gr id on

76 % hold o f f

77

78 g l o b a l j s t e p

79 j s t e p =50; %po in t s on the f o i l

80 xtheta=ze ro s (1 , j s t e p ) ;

81 x=ze ro s (1 , j s t e p ) ;

82 ditadx=ze ro s (1 , j s t e p ) ;

83 inteA1=ze ro s (1 , j s t e p ) ;

84 inteA2=ze ro s (1 , j s t e p ) ;

85 inteA0=ze ro s (1 , j s t e p ) ;

86 x bound=ze ro s (1 , j s t e p ) ;

87 z bound=ze ro s (1 , j s t e p ) ;

88 downwash bound=ze ro s (1 , j s t e p ) ;

89 gamma=ze ro s (1 , j s t e p ) ;

90

91 n tev =0;

92 n l ev =0;

93 l e v s t r e n g t h = [ ] ;

94 xd i s t l ev bound = [ ] ;

95 z d i s t l e v b o u n d = [ ] ;

96 l e v f l a g =0;

97 Tau enf =0;

98 d i s t w ind =0;

99 t e v i t e r (1 ) =0;
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100 t e v i t e r (2 ) =−0.01;

101 k e l v e n f =0;

102 ke lv (1 ) =0;

103

104 A0=0;

105 A1=0;

106 A2=0;

107 A3=0;

108 A0 pre =0;

109 A1 pre =0;

110 A2 pre =0;

111 A3 pre =0;

112

113 d e l t a t =2∗pi /omega /( t s t ep )∗phn ;

114 dxtheta=pi /( j s t ep −1) ;

115 f o r j =1: j s t e p

116 xtheta ( j )=(j−1)∗ pi /( j s t ep −1) ;

117 x ( j )=bplate ∗(1− cos ( xtheta ( j ) ) ) ;

118 end

119

120 f o r i =2: t s t ep

121 %Calcu la te bound vortex p o s i t i o n s at t h i s time step

122 d i s t w ind=di s t w ind+U0∗( t ( i )−t ( i −1) ) ;

123 f o r j =1: j s t e p

124 x bound ( j )=l p l a t e ∗( apiv ( i )−1)∗ cos ( theta ( i ) )+(x ( j

)−apiv ( i )∗ l p l a t e )∗ cos ( theta ( i ) )+d i s t w ind ;
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125 z bound ( j )=(apiv ( i )∗ l p l a t e−x ( j ) )∗ s i n ( theta ( i ) )−

l p l a t e ∗( apiv ( i )−1)∗ s i n ( theta ( i ) )+h( i ) ;

126 downwash bound ( j )=(U0∗ cos ( theta ( i ) )+dh( i )∗ s i n (

theta ( i ) ) )−U0∗ s i n ( theta ( i ) )−dtheta ( i ) ∗(x ( j )−

apiv ( i )∗ l p l a t e )+dh( i )∗ cos ( theta ( i ) ) ;

127 end

128

129 %Distance t r a v e l l e d by LEV

130 n tev=n tev +1;

131

132 i f n tev==1

133 x tev ( n tev )=x bound ( j s t e p ) +(0.5∗U0∗( t ( i )−t ( i −1)

) ) ;

134 z t ev ( n tev )=z bound ( j s t e p ) ;

135 e l s e

136 x tev ( n tev )=x bound ( j s t e p ) +1/3∗( x tev ( n tev−1)−

x bound ( j s t e p ) ) ;

137 z t ev ( n tev )=z bound ( j s t e p ) +1/3∗( z t ev ( n tev−1)−

z bound ( j s t e p ) ) ;

138 end

139

140 %Distance between v o r t i c e s and po in t s on the f o i l

141 f o r j =1: j s t e p

142 f o r i l e v =1: n l ev

143 xd i s t l ev bound ( j , i l e v )=x l e v ( i l e v )−

x bound ( j ) ;
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144 z d i s t l e v b o u n d ( j , i l e v )=z l e v ( i l e v )−

z bound ( j ) ;

145 end

146 end

147 f o r j =1: j s t e p

148 f o r i t e v =1: n tev

149 xd i s t t ev bound ( j , i t e v )=x tev ( i t e v )−

x bound ( j ) ;

150 zd i s t t ev bound ( j , i t e v )=z t ev ( i t e v )−

z bound ( j ) ;

151 end

152 end

153 %Distance between v o r t i c e s

154 f o r i l e v =1: n l ev

155 f o r j l e v =1: n l ev

156 x d i s t l e v l e v ( i l e v , j l e v )=x l e v ( j l e v )−

x l e v ( i l e v ) ;

157 z d i s t l e v l e v ( i l e v , j l e v )=z l e v ( j l e v )−

z l e v ( i l e v ) ;

158 end

159 end

160 f o r i t e v =1: n tev

161 f o r j t e v =1: n tev

162 x d i s t t e v t e v ( i t e v , j t e v )=x tev ( j t e v )−

x tev ( i t e v ) ;

163 z d i s t t e v t e v ( i t e v , j t e v )=z t ev ( j t e v )−
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z t ev ( i t e v ) ;

164 end

165 end

166 f o r i t e v =1: n tev

167 f o r j l e v =1: n l ev

168 x d i s t l e v t e v ( i t e v , j l e v )=x l e v ( j l e v )−

x tev ( i t e v ) ;

169 z d i s t l e v t e v ( i t e v , j l e v )=z l e v ( j l e v )−

z t ev ( i t e v ) ;

170 end

171 end

172

173

174 %I t e r a t e to f i n d A0 when there ’ s no LEV

175 i t e r =1;

176 f l a g e r r o =1;

177 t e v i t e r (1 ) =0;

178 t e v i t e r (2 ) =−0.01;

179 whi le ( i t e r <1000 && f l a g e r r o>eps )

180 i t e r=i t e r +1;

181 t e v s t r e n g t h ( n tev )=t e v i t e r ( i t e r ) ;

182 thetamid=theta ( i ) ;

183 downwash=f downwash ( n lev , l e v s t r e n g t h ,

xd i s t l ev bound , zd i s t l ev bound , n tev ,

t ev s t r eng th , xd i s t tev bound , zd i s t t ev bound ,

theta ( i ) , downwash bound ) ;
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184

185 f o r j =1: j s t e p

186 inteA0 ( j )=downwash ( j ) /U0 ;

187 inteA1 ( j )=downwash ( j ) /U0∗ cos ( xtheta ( j ) ) ;

188 inteA2 ( j )=downwash ( j ) /U0∗ cos (2∗ xtheta ( j ) ) ;

189 inteA3 ( j )=downwash ( j ) /U0∗ cos (3∗ xtheta ( j ) ) ;

190 end

191 A0=−1/p i ∗ t rapz ( xtheta , inteA0 ) ;

192 A1=2/pi ∗ t rapz ( xtheta , inteA1 ) ;

193 Tau bound=U0∗ l p l a t e ∗ pi ∗(A0+A1/2) ;

194

195 ke lv ( i t e r )=k e l v e n f ;

196 f o r i l e v =1: n l ev

197 ke lv ( i t e r )=ke lv ( i t e r )+l e v s t r e n g t h ( i l e v ) ;

198 end

199 f o r i t e v =1: n tev

200 ke lv ( i t e r )=ke lv ( i t e r )+t e v s t r e n g t h ( i t e v ) ;

201 end

202 ke lv ( i t e r )=ke lv ( i t e r )+Tau bound ;

203 f l a g e r r o=abs ( ke lv ( i t e r ) ) ;

204 i f f l a g e r r o>eps

205 dkelv=(ke lv ( i t e r )−ke lv ( i t e r −1) ) /( t e v i t e r ( i t e r

)−t e v i t e r ( i t e r −1) ) ;

206 t e v i t e r ( i t e r +1)=t e v i t e r ( i t e r )−(ke lv ( i t e r ) /

dkelv ) ;

207 end



Appendix B. Flowchart and code of the DVM 224

208 end

209 l e s p=A0 ;

210 l evx=U0−dtheta ( i )∗ s i n ( theta ( i ) )∗ apiv ( i )+umid (1) ;

211 l evy=−(dtheta ( i )∗ cos ( alpha ( i ) )∗ apiv ( i ) )−dh( i )+wmid(1 )

;

212

213 i f ( abs ( l e s p )>l e sp0 )

214 n l ev=n l ev +1;

215 t e v i t e r (1 ) =0;

216 t e v i t e r (2 ) =−0.01;

217 l e v i t e r (1 ) =0. ;

218 l e v i t e r (2 ) =0.01;

219 i f ( l e v f l a g ==0)

220 x l e v ( n l ev )=x bound (1) +(0.5∗ l evx ∗( t ( i )−t ( i

−1) ) ) ;

221 z l e v ( n l ev )=z bound (1) +(0.5∗ l evy ∗( t ( i )−t ( i

−1) ) ) ;

222 e l s e

223 x l e v ( n l ev )=x bound (1) +(1/3∗( x l e v ( n lev −1)

−x bound (1) ) ) ;

224 z l e v ( n l ev )=z bound (1) +(1/3∗( z l e v ( n lev −1)

−y bound (1) ) ) ;

225 end

226 l e v f l a g =1;

227

228 f o r j =1: j s t e p
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229 xd i s t l ev bound ( j , n l ev )=x l e v ( n l ev )−

x bound ( j ) ;

230 z d i s t l e v b o u n d ( j , n l ev )=z l e v ( n l ev )−

z bound ( j ) ;

231 end

232 f o r i l e v =1: n l ev

233 x d i s t l e v l e v ( i l e v , n l ev )=x l e v ( n l ev )−

x l e v ( i l e v ) ;

234 z d i s t l e v l e v ( i l e v , n l ev )=z l e v ( n l ev )−

z l e v ( i l e v ) ;

235 end

236 f o r i l e v =1: n l ev

237 x d i s t l e v l e v ( n lev , i l e v )=x l e v ( i l e v )−

x l e v ( n l ev ) ;

238 z d i s t l e v l e v ( n lev , i l e v )=z l e v ( i l e v )−

z l e v ( n l ev ) ;

239 end

240 f o r i t e v =1: n tev

241 x d i s t l e v t e v ( i t e v , n l ev )=x l e v ( n l ev )−

x tev ( i t e v ) ;

242 z d i s t l e v t e v ( i t e v , n l ev )=z l e v ( n l ev )−

z t ev ( i t e v ) ;

243 end

244

245 f l a g e r r o =1;

246 i t e r =1;
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247 c l e a r ke lv

248 ke lv (1 ) =0;

249 kutta (1 ) =0;

250 whi le ( i t e r <1000 && f l a g e r r o>eps )

251 i t e r=i t e r +1;

252 l e v s t r e n g t h ( n l ev )=l e v i t e r ( i t e r −1) ;

253 t e v s t r e n g t h ( n tev )=t e v i t e r ( i t e r ) ;

254 downwash=f downwash ( n lev , l e v s t r e n g t h ,

xd i s t l ev bound , zd i s t l ev bound , n tev ,

t ev s t r eng th , xd i s t tev bound ,

zd i s t t ev bound , theta ( i ) , downwash bound ) ;

255 k e l v t e v=k e l v e n f ;

256 f o r i l e v =1: n l ev

257 k e l v t e v=k e l v t e v+t e v s t r e n g t h ( i l e v ) ;

258 end

259 f o r i t e v =1: n tev

260 k e l v t e v=k e l v t e v+t e v s t r e n g t h ( i t e v ) ;

261 end

262 f o r j =1: j s t e p

263 inteA0 ( j )=downwash ( j ) /U0 ;

264 inteA1 ( j )=downwash ( j ) /U0∗ cos ( xtheta ( j ) ) ;

265 inteA2 ( j )=downwash ( j ) /U0∗ cos (2∗ xtheta ( j )

) ;

266 inteA3 ( j )=downwash ( j ) /U0∗ cos (3∗ xtheta ( j )

) ;

267 end
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268 A0=−1/p i ∗ t rapz ( xtheta ( 2 : j s t e p ) , inteA0 ( 2 :

j s t e p ) ) ;

269 A1=2/pi ∗ t rapz ( xtheta ( 2 : j s t e p ) , inteA1 ( 2 : j s t e p

) ) ;

270 Tau bound=U0∗ l p l a t e ∗ pi ∗(A0+A1/2) ;

271 k e l v t e v=k e l v t e v+Tau bound ;

272 kut ta t ev=A0−s i gn ( l e s p )∗ l e sp0 ;

273 dke lv t ev =( ke lv tev−ke lv ( i t e r −1) ) /( t e v i t e r (

i t e r )−t e v i t e r ( i t e r −1) ) ;

274 dkutta tev=(kutta tev−kutta ( i t e r −1) ) /(

t e v i t e r ( i t e r )−t e v i t e r ( i t e r −1) ) ;

275

276 l e v s t r e n g t h ( n l ev )=l e v i t e r ( i t e r ) ;

277 t e v s t r e n g t h ( n tev )=t e v i t e r ( i t e r −1) ;

278 downwash=f downwash ( n lev , l e v s t r e n g t h ,

xd i s t l ev bound , zd i s t l ev bound , n tev ,

t ev s t r eng th , xd i s t tev bound ,

zd i s t t ev bound , theta ( i ) , downwash bound ) ;

279 k e l v l e v=k e l v e n f ;

280 f o r i l e v =1: n l ev

281 k e l v l e v=k e l v l e v+l e v s t r e n g t h ( i l e v , 1 ) ;

282 end

283 f o r i t e v =1: n tev

284 k e l v l e v=k e l v l e v+t e v s t r e n g t h ( i t e v , 1 ) ;

285 end

286 f o r j =1: j s t e p
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287 inteA0 ( j )=downwash ( j ) /U0 ;

288 inteA1 ( j )=downwash ( j ) /U0∗ cos ( xtheta ( j ) ) ;

289 inteA2 ( j )=downwash ( j ) /U0∗ cos (2∗ xtheta ( j )

) ;

290 inteA3 ( j )=downwash ( j ) /U0∗ cos (3∗ xtheta ( j )

) ;

291 end

292 A0=−1/p i ∗ t rapz ( xtheta ( 2 : j s t e p ) , inteA0 ( 2 :

j s t e p ) ) ;

293 A1=2/pi ∗ t rapz ( xtheta ( 2 : j s t e p ) , inteA1 ( 2 : j s t e p

) ) ;

294 Tau bound=U0∗ l p l a t e ∗ pi ∗(A0+A1/2) ;

295 k e l v l e v=k e l v l e v+Tau bound ;

296 k u t t a l e v=A0−s i gn ( l e s p )∗ l e sp0 ;

297 d k e l v l e v =( k e l v l e v−ke lv ( i t e r −1) ) /( l e v i t e r (

i t e r )− l e v i t e r ( i t e r −1) ) ;

298 dkut ta l ev =( kut ta l ev−kutta ( i t e r −1) ) /(

l e v i t e r ( i t e r )− l e v i t e r ( i t e r −1) ) ;

299

300 l e v s t r e n g t h ( n l ev )=l e v i t e r ( i t e r ) ;

301 t e v s t r e n g t h ( n tev )=t e v i t e r ( i t e r ) ;

302 downwash=f downwash ( n lev , l e v s t r e n g t h ,

xd i s t l ev bound , zd i s t l ev bound , n tev ,

t ev s t r eng th , xd i s t tev bound ,

zd i s t t ev bound , theta ( i ) , downwash bound ) ;

303 ke lv ( i t e r )=k e l v e n f ;
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304 f o r i l e v =1: n l ev

305 ke lv ( i t e r )=ke lv ( i t e r )+l e v s t r e n g t h ( i l e v

) ;

306 end

307 f o r i t e v =1: n tev

308 ke lv ( i t e r )=ke lv ( i t e r )+t e v s t r e n g t h ( i t e v

) ;

309 end

310

311 f o r j =1: j s t e p

312 inteA0 ( j )=downwash ( j ) /U0 ;

313 inteA1 ( j )=downwash ( j ) /U0∗ cos ( xtheta ( j ) ) ;

314 inteA2 ( j )=downwash ( j ) /U0∗ cos (2∗ xtheta ( j )

) ;

315 inteA3 ( j )=downwash ( j ) /U0∗ cos (3∗ xtheta ( j )

) ;

316 end

317 A0=−1/p i ∗ t rapz ( xtheta , inteA0 ) ;

318 A1=2/pi ∗ t rapz ( xtheta , inteA1 ) ;

319 Tau bound=U0∗ l p l a t e ∗ pi ∗(A0+A1/2) ;

320 ke lv ( i t e r )=ke lv ( i t e r )+Tau bound ;

321 kutta ( i t e r )=A0−s i gn ( l e s p )∗ l e sp0 ;

322

323 t e v i t e r ( i t e r +1)=t e v i t e r ( i t e r ) −((1/(

dke lv t ev ∗ dkutta l ev−d k e l v l e v ∗ dkutta tev

) ) ∗ ( ( dkut ta l ev ∗ ke lv ( i t e r ) )−( d k e l v l e v ∗
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kutta ( i t e r ) ) ) ) ;

324 l e v i t e r ( i t e r +1)=l e v i t e r ( i t e r ) −((1/(

dke lv t ev ∗ dkutta l ev−d k e l v l e v ∗ dkutta tev

) ) ∗((− dkutta tev ∗ ke lv ( i t e r ) )+( dke lv t ev ∗

kutta ( i t e r ) ) ) ) ;

325

326 f l a g e r r o=max( abs ( ke lv ( i t e r ) ) , abs ( kutta ( i t e r )

) ) ;

327 end

328 e l s e

329 l e v f l a g =0;

330 end

331 f o r j =1: j s t e p

332 inteA2 ( j )=downwash ( j ) /U0∗ cos (2∗ xtheta ( j ) ) ;

333 inteA3 ( j )=downwash ( j ) /U0∗ cos (3∗ xtheta ( j ) ) ;

334 end

335 A2=2/pi ∗ t rapz ( xtheta , inteA2 ) ;

336 A3=2/pi ∗ t rapz ( xtheta , inteA3 ) ;

337 dAn(1) =(A0−A0 pre ) /( t ( i )−t ( i −1) ) ;

338 dAn(2) =(A1−A1 pre ) /( t ( i )−t ( i −1) ) ;

339 dAn(3) =(A2−A2 pre ) /( t ( i )−t ( i −1) ) ;

340 dAn(4) =(A3−A3 pre ) /( t ( i )−t ( i −1) ) ;

341

342

343 i f ( i ==2)

344 t e v s t r e n g t h (1 ) =0;
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345 end

346

347 An( 5 : anmax) =0;

348 An(1)= A0 ;

349 An(2)= A1 ;

350 An(3)= A2 ;

351 An(4)= A3 ;

352 f o r iAn=5:anmax

353 f o r j =2: j s t e p

354 An( iAn )=An( iAn ) +(((( downwash ( j )∗ cos ( ( iAn−1)∗

xtheta ( j ) ) ) . . .

355 +(downwash ( j−1)∗ cos ( ( iAn−1)∗xtheta ( j−1) ) ) )

/2)∗dxtheta ) ;

356 end

357 An( iAn ) =(2./ p i )∗An( iAn ) ;

358 end

359 A0 pre= A0 ;

360 A1 pre= A1 ;

361 A2 pre= A2 ;

362 A3 pre= A3 ;

363

364 %Calcu la te bound vortex s t r eng th s

365 f o r j =1: j s t e p

366 gamma( j )=(A0∗(1+ cos ( xtheta ( j ) ) ) ) ;

367 f o r iAn=1:anmax

368 gamma( j )=gamma( j )+(An( iAn )∗ s i n ( iAn∗xtheta ( j ) )∗
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s i n ( xtheta ( j ) ) ) ;

369 end

370 gamma( j )=gamma( j )∗ l p l a t e ;

371 end

372

373 f o r j =2: j s t e p

374 bound mid strength ( j ) =((gamma( j )+gamma( j−1) ) /2)∗

dxtheta ;

375 x bound mid ( j )=(x bound ( j )+x bound ( j−1) ) /2 ;

376 z bound mid ( j )=(z bound ( j )+z bound ( j−1) ) /2 ;

377 end

378

379 %Move speed o f v i t i c e s

380 u ind tev ( 1 : n tev ) =0;

381 wind tev ( 1 : n tev ) =0;

382 f o r i t e v =1: n tev

383 f o r j t e v =1: n tev

384 i f ( i t e v ˜= j t e v )

385 d i s t=x d i s t t e v t e v ( i t e v , j t e v )ˆ2+

z d i s t t e v t e v ( i t e v , j t e v ) ˆ2 ;

386 u ind tev ( i t e v )=uind tev ( i t e v ) + . . .

387 ( ( t e v s t r e n g t h ( j t e v )∗(− z d i s t t e v t e v (

i t e v , j t e v ) ) ) /(2∗ pi ∗ s q r t ( v co r eˆ4+

d i s t ˆ2) ) ) ;

388 wind tev ( i t e v )=wind tev ( i t e v ) + . . .

389 ((− t e v s t r e n g t h ( j t e v )∗(− x d i s t t e v t e v (
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i t e v , j t e v ) ) ) /(2∗ pi ∗ s q r t ( v co r eˆ4+

d i s t ˆ2) ) ) ;

390 end

391 end

392 f o r j =2: j s t e p

393 xdi s t bound mid tev=x tev ( i t e v )−x bound mid ( j )

;

394 zd i s t bound mid tev=z t ev ( i t e v )−z bound mid ( j )

;

395 d i s t=xdis t bound mid tevˆ2+zd i s t bound mid tev

ˆ2 ;

396 u ind tev ( i t e v )=uind tev ( i t e v ) +((

bound mid strength ( j )∗ xdi s t bound mid tev )

/(2∗ pi ∗ s q r t ( v co r eˆ4+ d i s t ˆ2) ) ) ;

397 wind tev ( i t e v )=wind tev ( i t e v )+((−

bound mid strength ( j )∗ xdi s t bound mid tev )

/(2∗ pi ∗ s q r t ( v co r eˆ4+ d i s t ˆ2) ) ) ;

398 end

399 end

400 u ind l ev ( 1 : n l ev ) =0;

401 wind lev ( 1 : n l ev ) =0;

402 f o r i l e v =1: n l ev

403 f o r j l e v =1: n l ev

404 i f ( i l e v ˜= j l e v )

405 d i s t=x d i s t l e v l e v ( i l e v , j l e v )ˆ2+

z d i s t l e v l e v ( i l e v , j l e v ) ˆ2 ;
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406 u ind l ev ( i l e v )=u ind l ev ( i l e v ) + . . .

407 ( ( l e v s t r e n g t h ( j l e v )∗(− z d i s t l e v l e v (

i l e v , j l e v ) ) ) /(2∗ pi ∗ s q r t ( v co r eˆ4+

d i s t ˆ2) ) ) ;

408 wind lev ( i l e v )=wind lev ( i l e v ) + . . .

409 ((− l e v s t r e n g t h ( j l e v )∗(− x d i s t l e v l e v (

i l e v , j l e v ) ) ) /(2∗ pi ∗ s q r t ( v co r eˆ4+

d i s t ˆ2) ) ) ;

410 end

411 end

412 f o r j =2: j s t e p

413 xd i s t bound mid l ev=x l e v ( i l e v )−x bound mid ( j )

;

414 zd i s t bound mid l ev=z l e v ( i l e v )−z bound mid ( j )

;

415 d i s t=xd i s t bound mid l evˆ2+zd i s t bound mid l ev

ˆ2 ;

416 u ind l ev ( i l e v )=u ind l ev ( i l e v ) +((

bound mid strength ( j )∗ xd i s t bound mid l ev )

/(2∗ pi ∗ s q r t ( v co r eˆ4+ d i s t ˆ2) ) ) ;

417 wind lev ( i l e v )=wind lev ( i l e v )+((−

bound mid strength ( j )∗ xd i s t bound mid l ev )

/(2∗ pi ∗ s q r t ( v co r eˆ4+ d i s t ˆ2) ) ) ;

418 end

419 end

420 %Update the l o c a t i o n o f v o t i c e s
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421 f o r i t e v =1: n tev

422 x tev ( i t e v )=x tev ( i t e v )+( d e l t a t ∗ u ind tev ( i t e v ) )

;

423 z t ev ( i t e v )=z t ev ( i t e v )+( d e l t a t ∗wind tev ( i t e v ) )

;

424 end

425 f o r i l e v =1: n l ev

426 x l e v ( i l e v )=x l e v ( i l e v )+( d e l t a t ∗ u ind l ev ( i l e v ) )

;

427 z l e v ( i l e v )=z l e v ( i l e v )+( d e l t a t ∗wind lev ( i l e v ) )

;

428 end

429 %Remove TEVs and LEVs that have c ro s s ed a c e r t a i n

d i s t ance and update Kelvin cond i t i on

430 i f ( x tev (1 )−x bound ( j s t e p )>dismax )

431 f o r i t e v =1: n tev−1

432 t e v s t r e n g t h ( i t e v )=t e v s t r e n g t h ( i t e v +1) ;

433 x tev ( i t e v )=x tev ( i t e v +1) ;

434 z t ev ( i t e v )=z t ev ( i t e v +1) ;

435 end

436 n tev=n tev −1;

437 k e l v e n f=k e l v e n f+t e v s t r e n g t h (1 ) ;

438 end

439 i f ( x l e v (1 )−x bound ( j s t e p )>dismax )

440 f o r i l e v =1: n lev−1

441 l e v s t r e n g t h ( i l e v )=l e v s t r e n g t h ( i l e v +1) ;
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442 x l e v ( i l e v )=x l e v ( i l e v +1) ;

443 z l e v ( i l e v )=z l e v ( i l e v +1) ;

444 end

445 n l ev=n lev −1;

446 k e l v e n f=k e l v e n f+l e v s t r e n g t h (1 ) ;

447 end

448 CC=2∗pi ∗A0ˆ2 ;

449 CNcir1 ( i )=2∗pi ∗(U0∗ cos ( theta ( i ) )+dh( i )∗ s i n ( theta ( i ) )

∗(A0+A1/2) ) /U0 ;

450 CNcir2 ( i )=sum ( ( umid∗ cos ( theta ( i ) )−wmid∗ s i n ( theta ( i ) ) )

.∗ bound mid strength ) ∗2/(U0ˆ2∗ l p l a t e ) ;

451 CMcir2 ( i )=sum ( ( umid∗ cos ( theta ( i ) )−wmid∗ s i n ( theta ( i ) ) )

.∗ x .∗ bound mid strength ) ∗2/(U0ˆ2∗ l p l a t e ˆ2) ;

452 CNmass( i ) =(2∗ pi ∗ ((3∗ l p l a t e ∗dAn(1) /(4∗U0) )+( l p l a t e ∗dAn

(2) /(4∗U0) ) + . . .

453 ( l p l a t e ∗dAn(3) /(8∗U0) ) ) ) /U0 ;

454

455

456 i f ( alpha ( i )−t2∗dalphanon ( i )∗U0/ bp late )∗ s i gn ( alpha ( i )

)<0

457 Calphat2 ( i ) =0;

458 e l s e

459 Calphat2 ( i )=abs ( alpha ( i )−t2∗dalphanon ( i )∗U0/

bp late )∗ s i gn ( alpha ( i ) ) ;

460 end

461
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462 i f i==1

463 Salpha ( i ) =0;

464 e l s e

465 Salpha ( i )=abs ( alpha ( i ) )−abs ( alpha ( i ) ) ;

466 end

467

468 i f ( abs ( alpha ( i ) )<alpha1 )

469 f a lpha ( i ) =1−0.3∗exp ( ( abs ( alpha ( i ) )−alpha1 ) /S1 ) ;

470 e l s e

471 f a lpha ( i ) =0.04+0.66∗ exp ( ( alpha1−abs ( alpha ( i ) ) ) /

S2 ) ;

472 end

473

474 i f ( ( Salpha ( i )>0) )

475 de l taa lpha1n ( i ) =0;

476 e l s e

477 de l taa lpha1n ( i )=(abs(1− fa lphad2 ( i −1) ) ˆ0 .25∗

de l taa lpha1 ) ;

478 end

479 alpha1n ( i )=alpha1−de l taa lpha1n ( i ) ;

480

481 i f ( abs ( Calphat2 ( i ) )<=alpha1n ( i ) )

482 fx0 ( i ) =1−0.3∗exp ( ( abs ( Calphat2 ( i ) )−alpha1n ( i ) ) /S1

) ;

483 e l s e

484 fx0 ( i ) =0.04+0.66∗ exp ( ( alpha1n ( i )−abs ( Calphat2 ( i ) )
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) /S2 ) ;

485 end

486 fa lphad2 ( i ) =((2∗ t1−d e l t a i t )∗ fa lphad2 ( i −1)+2∗ d e l t a i t ∗(

fx0 ( i ) ) ) /(2∗ t1+d e l t a i t ) ;

487

488 i f ( i ==1)

489 deltafmax ( i ) =0;

490 e l s e

491 i f ( abs ( dalphanon ( i ) ) >0.01)

492 deltafmax ( i ) =0.01D0∗df ∗( t ( i )−t ( i −1) )∗U0/

bp late ;

493 e l s e

494 deltafmax ( i )=dalphanon ( i )∗df ∗( t ( i )−t ( i −1) )∗

U0/ bp late ;

495 end

496 end

497

498 i f ( i ==1)

499 fa lphad2 ( i ) =1;

500 e l s e

501 i f ( abs ( fa lphad2 ( i )−fa lphad2 ( i −1) )>abs ( deltafmax (

i ) ) )

502 fa lphad2 ( i )=fa lphad2 ( i −1)+abs ( deltafmax ( i ) )∗

s i gn ( fa lphad2 ( i )−fa lphad2 ( i −1) ) ;

503 end

504 end
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505 KNn( i )=((1+ s q r t ( fa lphad2 ( i ) ) ) /2 .D0) ˆ2 ;

506 CL( i ) =((CNcir1 ( i )+CNcir2 ( i ) )∗KNn( i )+CNmass( i ) )∗ cos (

theta ( i ) )+i t a c c ∗CC∗ s q r t ( fa lphad2 ( i ) ) ;

507 CN( i )=(CNcir1 ( i )+CNcir2 ( i ) )∗KNn( i ) ;

508 P i v o f f s e t =(−0.135∗(1− fa lphad2 ( i ) ) +0.04∗ s i n ( p i ∗(

fa lphad2 ( i ) ˆ2) ) ) ;

509 CMadd( i )=(CN( i ) ) ∗( apiv ( i )+P i v o f f s e t )+CNmass( i )∗ apiv ( i

)−(2∗pi ∗ ( ( ( cos ( theta ( i ) ) )+(dh( i )∗ s i n ( theta ( i ) ) /U0)

) ∗ ( (A0/4)+(A1/4)−(A2/8) )∗KNn( i )+( l p l a t e /U0) ∗ ((7∗

dAn(1) /16) +(3∗dAn(2) /16)+(dAn(3) /16)−(dAn(4) /64) ) )

)−CMcir2 ( i )∗KNn( i ) ;

510 end
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