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Abstract

An innovative concept of wind turbines, the flapping foil power generator that
exploits dynamic stall, is numerically studied at Reynolds number of 1100. The
combination of the kinematic parameters and the coupling between the foil
deformation and aerodynamic loads are investigated to uncover the physical
mechanism for high performance.

Firstly, the discrete vortex method (DVM) is improved to capture flow
separations at the leading and trailing edges of the foil. Its results compare
well with those of immersed boundary-lattice Boltzmann method (IB-LBM)
and experiments. Its computational cost is at least two orders of magnitude
less than that of the IB-LBM.

Then, kinematic parameters are optimized using a multi-fidelity evolution-
ary algorithm implemented with a dynamic stall model and the improved D-
VM. The results show that despite the use of low fidelity models and limited
budget of computational resources, the multi-fidelity strategy is capable of find-
ing kinematic conditions suitable for high performance. In addition, detailed
flow analysis using IB-LBM has revealed that high power extraction perfor-
mance is associated with the detachment of the leading edge vortex (LEV) n-
ear stroke reversal, resulting in a horseshoe-shaped vorticity wake with a width
approximating the swept distance of foil behind the turbine plane. When the

LEV detaches from the foil near mid stroke, both efficiency and power output
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suffer.

Finally, a flexible system consisting of a rigid foil and a passively actuated
flat plate tail connected through a torsional spring to the trailing edge of the
rigid foil is studied numerically using the IB-LBM for different mass densities
and natural frequencies under different kinematic conditions. The results show
that a tail with appropriate mass density and resonant frequency can improve
the maximum efficiency by 7.24% compared to the rigid system. This is be-
cause the deflection of the tail reduces the low pressure region on the pressure
surface caused by the LEV after the stroke reversal, resulting in a higher ef-
ficiency. In addition, a spring-connected tail with a low resonant frequency

improves the performance significantly at high flapping frequencies.
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Chapter 1

Introduction

1.1 General introduction

With the increase of pollution emitted into the atmosphere due to human
activities, air pollution and global warming threaten human and animal health
and intensify natural disasters. Among human activities, energy consumption
is the primary source of emission, producing 68% of global greenhouse gas in
2010 (IEA|]2016). Fossil fuels including petroleum, coal, and natural gas are
commonly used to generate power. In 2014, 82% of world energy was supplied
by fossil fuels (IEA|2016]). Besides greenhouse gases, a number of harmful
air pollutants, such as sulfur oxides and nitrogen oxides, are emitted during
energy production using fossil fuels. In order to address the problem associated
with the use of fossil fuels, it is crucial to move towards finding alternative
sustainable energy sources (Panwar et al.[2011). Renewable energy sources,
such as wind power, hydropower, solar power and geothermal power, create a
much less harmful impact on human health and the climate change (Jacobson
2009). In terms of the global installed capacity in 2016, wind power (487 GW)

ranks the second of the technologies applied to generate renewable electric

1
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power (2,017 GW in total), after hydropower (1,096 GW) (REN21/2017). Due
to its relatively competitive price and worldwide resource base, the commercial
and technical investment in wind energy increases rapidly in the power sector
(Pryor & Barthelmie 2010). By 2020 the growth rate of global cumulative wind
energy capacity will remain more than 10% (GWEC|[2014) and the installed
capacity in the European Union is expected to increase to 149% of that in
2014 (Giorgio et al.2015). Besides wind energy, tidal energy offers a reliable
energy source with a technical potential capacity of 500-1000 TW h/yr (Pelc
& Fujita 2002)). Since tidal power generators share many similarities to wind
turbines, technology of harvesting energy from water currents can benefit from
the advances in wind turbine designs (Rourke et al.|[2010)).

Although the use of wind energy can be traced back to 3,000 years ago,
the first wind turbine with rotating blades to generate electricity was built by
Poul la Cour in 1981 (Ackermann & Soder [2000) because of the complexity of
the wind energy technique. Since then rotary turbines have been commonly
used to harvest energy from air and water currents. In general, a high tip
speed ratio is desirable in rotary turbine design for high efficiency. However,
the high speed at the tip of the blade can result in considerable noise (Ragheb
& Ragheb| 2011)) and large centrifugal forces which may cause blade failure
(Schubel & Crossley|2012), especially for large scale wind turbines. To resolve
these issues, some efforts have been made on utilizing other mechanisms to har-
vest energy, e.g. bladeless turbines (El-Shahat|2016)) and flapping foil turbines
(Young et al.2014)). Also in 1981, the capability of harvesting energy from the
motion of a flapping foil was first demonstrated by McKinney & DeLaurier
(1981). The applications of flapping foil are inspired by aquatic creatures as
well as birds and insects, involving complex unsteady flows. Thanks to the

rapid development of flapping foil propulsive systems (Platzer et al./|2008], |Tri-
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antafyllou et al|2004), power generators harvesting energy from the motion
of flapping foils as an alternative to rotary turbines have been under active
investigation in the last 10 years (Young et al.[2014, Xiao & Zhu/2014).

In the concept of a flapping foil power generator, the foil generally under-
goes pitch and plunge motions. The performance is measured as the percentage
of power extracted from the fluid passing through the turbine plane, as for ro-
tary turbines. In contrast to rotary turbines which rely on attached flows for
high efficiencies, flapping foil turbines can benefit from exploiting flow sep-
arations for high aerodynamic loads, especially in laminar flows. Compared
to conventional turbines, the flapping power generator has several prominent

features:

e [t gives promising performance under low speed environment, potentially
expanding the applications in different flow regimes. The efficiency of
conventional turbines falls rapidly at low speeds (below 2 m/s for tidal
turbines (Lewis et al.[2015) and 5 m/s for wind turbines (Wright & Wood
2004, Akpinar & Akpinar| 2005)), while the flapping power generator
operated as a tidal turbine can provide relatively high efficiency (around
30% |Abiru & Yoshitake (2011d)) even at the cut-in speed (1 m/s) of
conventional turbines where little power is extracted (Lewis et al.|2015)).
Since the estimation of available wind and tidal power is based on the
flow speed limits of rotary turbines (6.9 m/s for wind energy Jacobson
(2009) and 2 m/s for tidal energy Pelc & Fujital (2002))), decreases in
flow speed limits by employing flapping foil power generators imply the
increase of usable energy resources. For instance, when the wind speed
of commercial applications decreases to 5.9 m/s, the global wind power

potential doubles (Archer & Jacobson|2005]).
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e As the velocity of a flapping foil is approximately the same along the
span, it operates at low tip speeds. This is beneficial to the environment
by reducing both noise and impact on aquatic creatures (Masters 2013]).
Further more, centrifugal forces which may lead to structure failure of

rotational blades are negligible on flapping blades.

e Untwisted flapping foil has a robust structure and low manufacturing
cost. In addition, the flapping foil power generator can be installed in

shallow water since the it sweeps a rectangular area (Xiao & Zhu/2014).

Thus, the flapping foil power generator is attractive as a supplement or
alternative to conventional turbines. Several international companies have de-
veloped prototypes to harvest energy from flapping motions, including Engi-
neering Business Ltd (UK) (Rostami & Armandei|2017)), Pulse Tidal Company
(UK) (Marsh/2009), BioPower System (Australia) (Kloos et al.|2009) and Festo

AG (Germany) (Send [2016)).

1.2 Research objectives

The aim of this study is to explore the high performance of the flapping foil
power generator and uncover the associated flow physics by numerical mod-
elling and simulations. Compared to conventional turbines which rely on at-
tached flow for high efficiencies, a flapping foil turbine can exploit the flow
separation near the nose of the foil to form leading edge vortices, resulting in
high efficiency, particularly at low flow velocities. Due to the sensitivity of the
leading edge vortex (LEV) dynamics to the kinematics of flapping foil genera-
tors, the performance of flapping foil turbines is affected by many parameters

including kinematics, foil geometry, material properties and environmental ef-
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fects. For example, the kinematics of a flapping foil undergoing sinusoidal pitch
and plunge motions is governed by five parameters, which will be discussed in
Section [2.2.1] However, previous studies on kinematic parameters generally
focused on two variables with others fixed. To compete against rotational
turbines, it is necessary to search for the optimal combination of kinematic
parameters since the trial and error approach is far from ideal. However, it
is computationally expensive to optimise kinematic parameters using Compu-
tational Fluid Dynamics (CFD) methods because of their high computational
cost. Moreover, analytical models based on the quasi-steady assumption and
potential flow theory are insufficient for flapping foil analysis under some cir-
cumstances (e.g. slow flow speeds) where the flow can be highly separated. In
addition, studies on propulsion systems based on flapping locomotion includ-
ing fish, rays and insect wings indicate that an appropriate degree of structural
flexibility can improve the propulsive performance. Considering the similarity
of locomotion in thrust and power generation applications, it is hypothesised
that an appropriate coupling between the foil deformation and the aerodynam-
ic load acting on the foil can improve the performance of a flapping foil power
generator.

Within the overall aim, the specific objectives are to:

e develop a low order model for the simulation of a flapping foil experienc-
ing deep dynamic stall, which takes into account of flow separations at

low flow speeds and consumes much less time than CFD methods;

e validate the low order model and determine the utility of approximate
models for prediction of the energy harvesting performance and aerody-

namic loads acting on the flapping foil;

e search for optimal kinematic parameters for high energy extraction per-
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formance using a generic population-based metaheuristic optimization

algorithm (evolutionary algorithm) with the validated low order models;

e investigate impacts of the flexibility on the aerodynamic loads and energy

harvesting performance of a flapping foil power generator; and

e explore the relationships between energy harvesting performance, kine-
matic and structure parameters and formation and convection of the

vortices.

1.3 Thesis outline

The structure of the remainder of this thesis is briefly outlined below.

In Chapter [2| the mechanisms and advantages of harvesting energy from a
fluid flow using a flapping foil are discussed. The recent progress in analytical,
numerical and lab-based experimental studies as well as prototype tests is
reviewed. In addition, the influence of kinematic parameters, foil geometry
and deformation and environmental effects is examined.

In Chapter [3, various methods employed in the thesis are presented and
validated against the data in the literature. Firstly, a reduced order model de-
veloped by [Bryant et al. (2013)) for flapping foil simulations is described. This
model is reproduced with Matlab and compared with the results of Bryant
et al.| (2013). The model is further validated by matching its results with the
CFD results of Kinsey & Dumas (2008]), to serve as a baseline. Then, an inno-
vative numerical method to simulate the fluid, the immersed boundary-lattice
Boltzmann method (IB-LBM), is presented. The space and time refinement
and validation of the in-house code using IB-LBM with multi-block technique

are conducted. Finally, the optimization solver of evolutionary algorithm using
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single and multi fidelity strategies is presented and compared with a classical
non-gradient optimisation method, the complex method (Krus & Andersson
2003)), for artificial non-linear functions.

In Chapter , the discrete vortex method (DVM) for flapping foil simula-
tions with large leading and trailing edge flow separations is developed. The
DVM is based on the potential flow theory and introduces a leading edge
suction force to incorporate the leading edge flow separation. In addition, cor-
rections using semi-empirical functions are employed to account for the effects
of trailing edge flow separation. To examine the time cost, the computational
time of the DVM is compared with that of IB-LBM under different kinematic
conditions. Then, instantaneous lift and power coefficient as well as the mean
power coefficient and efficiency predicted by the DVM with flow separation
corrections are compared with those given by the Bryant model (Bryant et al.
2013) reproduced in Chapter . The results are also validated against the CFD
simulations and experimental data in the literature as well as results given by
the IB-LBM code.

In Chapter [5, the multi-fidelity evolutionary algorithm (MFEA) is used
to search for high energy extraction performance solutions of a flapping foil
power generator. Solutions of different fidelity levels are evaluated by the
Bryant model reproduced in Chapter [3| and the DVM developed in Chapter
M A single objective problem with two variables is first used to illustrate
the benefits of the multi fidelity optimization strategy. Then, single-objective
and bi-objective optimization problems of five design variables are considered
and compared with the singe-objective problem of two variables. The best
solutions obtained by the bi-objective problem are evaluated with IB-LBM in
order to provide insight into the physics underpinning the performance of a

flapping foil power generator. The influence of the kinematic parameters on
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the performance of the flapping foil power generator is discussed through anal-
ysis of the non-dominated solutions. Finally, specified cases are investigated
through aerodynamic loads as well as the averaged flow fields to examine the
relationship between the kinematics and the performance of the flapping foil.

In Chapter [6] the influence of the flexibility on the performance of a flap-
ping foil power generator is examined at a Reynolds number of 1100. The
flexibility is modelled by a torsional spring connecting a passively actuated
plate to the trailing edge of the rigid foil, as described in Section [3.1] A para-
metric study on mass density and natural frequency is conducted under the
optimum kinematic condition of the rigid system identified from the literature
and numerical simulations using IB-LBM. Then the influence of passive defor-
mation of the tail under different kinematic conditions is examined through
comparison of the rigid system and the flexible system with different resonant
frequencies.

In Chapter [7| major conclusions from the research and recommendations

for further research are made.



Chapter 2

Background

As mentioned in Chapter [I the concept of harvesting energy from flapping
motions has been under active investigation in the last 10 years, and possesses
several advantages compared to rotary turbines. In this chapter, the funda-
mentals of harvesting energy from flapping motions and factors affecting the
performance of flapping foil turbines are examined. To clarify the difference
of flapping foil turbines from the rotary turbines, the mechanical behaviour
and classification of flapping foil systems are introduced in Section 2.1 Then,
parameters governing the kinematics of the flapping foil power generator with
different activation mechanisms are compared and discussed in Section [2.2]
In Section [2.3] geometries of the foil and system including deformation are

examined. Finally, environmental effects are briefly discussed in Section

2.1 Flapping foil fundamentals

Flapping motions are commonly utilized by animals like the tuna and the drag-
onfly to achieve effective propulsion (Lentink & Dickinson/|2009). Furthermore,

flexible structures such as fish fins are able to absorb energy from incoming
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vortices through flapping motions to develop thrust (Beal et al. [2006). The
concept of using a flapping foil to harvest energy from the incoming flow was
pioneered by McKinney & DeLaurier (1981). A later study by [Jones & Platzer
(1997) showed that a dual-mode (combined pitch and plunge motions) flapping
wing could extract power from the incoming flow when the pitch amplitude
exceeded the induced angle of attack due to plunge motion. Thus depending
on kinematics, a flapping foil undergoing pitch and plunge motions can oper-
ate in two modes: propulsion and power extraction. When energy is extracted
from the incoming flow, power output is defined as positive. Kinsey & Dumas
(2008) suggested a “feathering criterion” x to estimate the threshold:
0o

= 2.1
X arctan(Hocw/U)’ (2.1)

where U is the freestream velocity; Hy and 6, are respectively the plunge
and pitch amplitudes; and w is the angular frequency of the flapping motion.
When y is above 1, the flapping foil operates in power extraction mode and
the pitch amplitude is larger than the maximum angle of attack induced by
the plunge motion (Kinsey & Dumas|2008). This parameter can be used to
estimate the threshold of the pitch amplitudes for given frequencies and plunge
amplitudes, above which power is extracted (Young et al.|2014)). Comparison
between contours of efficiency predicted by inviscid methods (the Theodorsen’s
theory and the unsteady panel method) and viscous methods by solving Navier-
Stokes (NS) equations indicates that the flow stays attached near the threshold
(Young et al.|[2014)).

Since a high level of the flow separation reduces the efficiency of rotary
turbines (Make & Vaz |2015), a number of studies on rotary turbines were

performed focusing on active control to alleviate the flow separations (Mal-
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Fig. 2.1: Plunge motion H, pitch motion 6, angle of attack a, hydrodynamic lift L
and moment M about the pivot location, which is Xy, from the leading edge of the

foil with a chord length of ¢. Uy = v/ H2 + U2 is the effective velocity.

donado et al. 2010, [Wang et al.|[2013, |[Yen & Ahmed|[2013). However, studies
on flapping foil power generators show that the formation and evolution of the
leading edge vortex (LEV) resulting from the leading edge flow separation play
a significant role on the performance at least for low Reynolds number when y
is far above the threshold. Specifically, high performance occurs under defined
conditions governed by appropriate synchronization of the LEV shedding and
the foil motions (Kinsey & Dumas 2008, [Zhu [2011)). Thus, controlling the for-
mation of LEV may be a possible approach to improve the performance of a
flapping foil power generator (Kim et al.|2017)). Since it is related to the onset
of flow separation, the angle of attack «, due to combined pitch and plunge

motions (Fig. [2.2), is frequently adopted in flapping foil studies:

a=0—tan"Y(H/U), (2.2)

where H is the plunge velocity.
Despite the fact that propulsive and energy harvesting systems using flap-

ping foils exploit a mechanism akin to that in the locomotion of insects and
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ocean creatures, the energy flux of the two systems are in the opposite di-
rections. In the propulsive system, energy is consumed to generate thrust.
Thus its performance is characterized by the force generated in the travelling
direction and it creates a jet-like flow (reverse Karmén vortex street). On the
other hand, the energy harvesting system extracts power from the incoming
flow and creates a wake-like flow (Kdrman vortex street). Analogous to rotary
turbines, the performance of energy harvesting systems using flapping foils is
quantified by two non-dimensional parameters: the mean power coefficient C'p
and efficiency 7, defined as the ratio of the power P extracted to a reference
power P, available from the flow.

The cycle-averaged power coefficient C'p is expressed as:

. 1 to+T
Tp— = / Cp (1) dt, (2.3)

where T' is the period; and Cp (t) is the instantaneous power coefficient Cp

defined by

P Py (t) + Py (t)
Cp(t) = =
P (1) spUsc spU3c

(2.4)

where p is the freestream density ; ¢ is the chord length; P is the instantaneous
total power, P, (t) = LH (t) is the instantaneous power component due to the
plunge motion and Py (t) = M (t) is the instantaneous power component due
to the pitch motion; and L and M are respectively the lift and moment as
shown in Fig.

As noted by Kinsey & Dumas| (2014), there are 4 definitions for reference
power P, which is used to compute 7. In the first one, the reference power
available in the flow is measured as the kinetic energy of the flow passing

through the overall maximum distance d swept by any part of the foil during
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one flapping cycle. Then P, and n are expressed as:

1
P, :§pU3d, (2.5)
P —
— = 2.
=5 =Cp d (2.6)

In the second definition (Lu et al.|2014), P, is measured as the flux of
kinetic energy through the distance swept by the pivot point, which is twice

of the plunge amplitude Hy:

1
P =§PU3(2H0)a (2.7)
P _— c
=— = — 2
Up) 2} CP2HO ( 8)

In the other two definitions, the Betz limit (Betz(1919)), which states that
the maximum extractable power is 16/27 the available power in the flow, is

introduced:

16
P, 3d 2.
i=50 (5r0%). 29)
27— c
: 2.1
3 = 16 d ( 0)
27— ¢
== Cp—r. 2.12
™ =16 "2H, (2.12)

The first definition of 1 in Eq. is recommended by Kinsey & Dumas| (2014)
and is commonly used in studies of the flapping foil power generators.

With respect to the activating mechanism of the device, flapping foil pow-
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Prescribed pitch 1

Prescribed plunge

(a) System with prescribed pitch and plunge motion.

Prescribed pitch

Passive plunge

-
Ll

(b) System with prescribed pitch and passive plunge motion.

Passive pitch
~

Passive plunge

o
Ll

(c) System with passive pitch and plunge motion

Fig. 2.2: Schematics of a flapping foil power generator with prescribed, semi-passive
and fully passive motions, after Young et al.| (2014) and Xiao & Zhu| (2014)).
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er generators can be classified into three categories (Fig. [2.2): systems with
prescribed pitch and plunge motions, one motion prescribed and the other
flow-induced and fully flow induced pitch and plunge motions. In the fully
prescribed system (Fig. [2.2al), if the time averaged input power to drive the
foil is negative in one flapping cycle, the system is considered as extracting
power. Due to the specified pitch and plunge motions, models based on this
activation type are easy to implement and favoured in theoretical and nu-
merical studies. Generally, in the semi-passive system (Fig. , the pitch
motion is imposed and the foil responses to the hydrodynamic force by under-
going a plunge motion on which power is extracted via a electric generator.
Because of the requirement of power input to drive the pitch motion, the net
power extracted from the flow is the power extracted from the plunge motion
minus the power required for the pitch motion. The semi-prescribed system
is commonly implemented by a motor driving pitch motion in experimental
studies. Prototypes Stingray, bioStream and DualWingGenerator developed
respectively by Pulse Tidal Company (Marsh |2009), BioPower System (Kloos
et al.|2009) and Festo AG (Send [2016) employ the semi-passive system. In
the fully passive system (Fig. , no device is required to drive the motion
of the foil. In some studies (Jones et al.[|1999, [Young et al.2013)), a linkage
mechanism is employed to ensure a constant phase between pitch and plunge
motions during operation. The prototype tested by Kinsey et al.| (2011)) is a
single degree of freedom system with the constrained passive pitch and plunge
motions. A detailed list of representative studies on the fully prescribed sys-

tem, semi passive system and fully passive system is respectively summarized

in Table A1} [A.2] and [A3|




2.2 Governing kinematics

Table 2.1: Summary of optimal kinematic parameters (f*, 6y, ho, ¢ and x,;,) at which the highest efficiency using the definition in
Eq. 2.6]was achieved in studies on flapping foil power generators with prescribed pitch and plunge motions. 7, is the maximum
efficiency achieved by the corresponding method in the Method column and C'p,, is the power coeflicient corresponding to the
maximum efficiency. If ag was not given in the literature, it is calculated from other parameters using Eq. NA stands for not
available, NST stands for not stated, TT stands for Theodorsen’s theory (Theodorsen|1979), UPM stands for the unsteady panel
method, NS stands for Navier-Stokes solver, URANS stands for unsteady Reynolds averaged Navier-Stokes and EXP stands for
experiment.

Authors Year Method Re Geometry f* 60(°) ho e(°)  Tpiv a0(®) Cpm Nm

Fully prescribed system

Jones &

1999 UPM 00 NACAO0012 0.287* 71.3>  0.83¢ 90 0.5 15 0.52 25.7%
Platzer
Davids 1999, UPM 00 NACA0012 0.2388T 76.32 1 90 0.5 20 0.82 34.9%4

2Qriginal reduced frequency was defined as k = 27 f¢/U. The non-dimensional frequency f* is calculated using f* = fe/U.

bCalculated according to the amplitude of the angle of attack g, plunge amplitude hy and non-dimensional frequency f*.

¢Calculated according to the maximum non-dimensional plunge velocity khg and reduced frequency k.

dThe study by Davids|(1999) stated a peak efficiency of 30.0% in Table 1 on page 41. Here the efficiency of 34.9% listed in Appendix 2 on page 78 is

considered.
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Authors Year Method Re Geometry f* 60(°) ho e(®°) xpiv @0(®) CpPm NTm
UPM 00 02708 76.8 0.9 90 0.55 20 >0.6° >30%@
Lindsey 2002| NS 2.0 x 104 NACA0014 0.159%® NST 1.3 NST NST NA 0.53 17.2%
URANS 1.0 x 10° 0207 NST 1.3 NST NST NA 1.00 31.5%
UPM 00 0.223@ 7530 125 110 025 15 0.74 21.5%"
Jones et al. 2003| NS 2.0 x 10 NACA0014 o.135@ 73 1.3 90 025 25 0.91 28.9%0
URANS 1.0 x 10° 0.1048 73 1.3 90 025 324 125 39.8%
Kinsey &
2008, NS 1100 NACA0015 0.14 763 1.0 90 0.333 350  0.86 33.7%
Dumas
Simpson et al. 2008 EXP 1.3x 10* NACA0012 0.16 859 1.23 90 NST 344  1.06 <43%8
0.127 73 1.05 90 0.5 73.0  0.89 34%
Ashraf et al. 2011| NS 2.0 x 10*  NACA0014 .
0.127 73 1.05 90 0.5 73.0 144"  54%!

°Extracted from the contours given by [Lindsey|(2002).

fCalculated according to the power coefficient and swept distance computed from Eq. ‘

Eand

8Qriginal efficiency was given by Eq. Cannot recalculate the efficiency using the d
hTotal power coefficient of multiple foils.

iTotal efficiency of multiple foils.

efinition in Eq. Without pivot location zp;,.
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Authors Year Method Re Geometry f* 60(°) ho e(®°) xpiv @0(®) CpPm NTm
Zhu 2011 NS 1000 Joukowski  0.14 90 1.0 90 0.35 48.7 0.81 31%
Kinsey &
20126 URANS 5.0 x 10° NACA0015 0.14 75 1.0 90 0.333  33.7 1640 6490
Dumas
Xiao et al. 2012 NS 1.0 x 10% NACA0012 0.15% 63.3 1.0 90 0.333 20 0.98 39%!
Kinsey &
2014/ URANS 5.0 x 10° NACA0015 0.16 85 1.5 90 0.333 28.6 1.56 44.6%
Dumas
Lu et al. 2014/ NS 1.0 x 104 NACA0012 0.125K 470 0.8 90 0.333 15 0.46 21%™
0.11 70 1.0 90 NST 73.0 NST 35%
Xu et al. 2016 URANS 4.4 x10* NACA0015
0.14 70 1.0 90 NST 730 NST  54%0
Kim et al. 2017 EXP 5.0 x 10* Elliptical 0.13 70 0.8 90 0.50 36.8 0.740 38%

JCalculated according to the efficiency and swept distance computed from Eq. [2.13|and
kQOriginal frequency is given by the Strouhal number St = 2fho/U. The non-dimensional frequency f* is calculated using f* = fc/U

IThe definition of efficiency in the study by Xiao et al.|(2012) was the same as Eq. Since the curve of power coefficient (Fig.5) and that of efficiency

(Fig. 6) is different, definition in Eq. is considered here.
™ Qriginal efficiency was given by Eq. Recalculated the efficiency using the definition in Eq.
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Authors Year Method Re Geometry f* 60(°) ho e(®°) xpiv @0(®) CpPm NTm
NACAO0015 0.12 85 1.0 90 0.333 48.0 1.038 39.2%
Sun et al. 2017/ URANS 6.0 x 10°
NACA0025 0.14 100 1.0 90 0.333  58.7 1.498 54.0%
Wang et al. 2017 NS 1.3 x 10*  NACA0012 0.18 82.9 1.0 90 0.333 344 1.05 35.5%

Semi passive system

so1jewouIy SUIUIDAOY) *T'T

Shimizu 2004, TT 00 NACA0012 0.09= 50 NST NST 0.49 NA 0.34" 29%:°
TT 00 0.09 50 0.9 109 0.446 NA (.34 28.8%
Shimizu 2008 NACA0012
URANS 4.6 x 10° 0.09 50 1.4 108 0.465 NA 0.60M@ 35.39
Zhu &
2009| NS 1000 Joukowski  0.208 60 NST NST 0.333 NA 0.31 27%
Peng
Abiru &
2011a EXP 1.2 x 10° NACA0015 0.10® 50 0.49 90 0.5 NA 0.30P 2294
Yoshitake

1The power coefficient is computed from the dimensional power given by Shimizu|(2004) with an assumed air density of 1.225 kg/m?3.
°Original efficiency was given by Eq. Recalculated the efficiency using the definition in Eq. |2.6

—

PThe power coefficient is computed from the dimensional power given in |Abiru & Yoshitake (2011a) with an assumed water density of 998 kg/m?.
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Authors Year Method Re Geometry f* 60(°) ho e(°)  Tpiv a0(®) Cpm 7Mm
Huxham

2012 EXP 4.5 x10*  NACA0012 0.10 58 0.45 NST 0.25 46 0.294 24%
et al.
Deng

2015, NS 1000 NACA0015 0.16 75 NST 82 0.333 NA 0.57" 33.4%
et al.
Teng

2016/ NS NACAO0015 1000 0.16 75 NST NST NST NA NST 32%
et al.

Fully passive system

McKinney & 8.5 x 104 0.10 25 0.3 90 0.5% 14.3 0.13@  16%

1981 EXP NACAO0012
DeLaurier 1.1 x 10° 0.12 30 0.3 90 0.59 16.9 0.17/@ 1794
Davids 1999 EXP NST NACA0012 NST 49 0.53 92,5 0.51 NA 0.19 15.5%
Lindsey 2002) EXP 2.2x10* NACAO0014 ¢.1200 73 1.05 NST NST 340 0.25 <12%*

dCalculated from the input and output power coefficient and non-dimensionalized by 1/2pU3c.

'In the study by [Deng et al.| (2015), Cp,, is 0.42. Here Cp,, = 0.57 is considered since the original one is incorrect after communication with the

authors.

*Deducing from Eq. 16 in the study by [McKinney & DeLaurier|(1981)
tThe original efficiency in the study by [Lindsey|(2002) was 23%. However, according to the plunge amplitude of 1.05 and power coefficient of 0.25, the
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Authors Year Method Re Geometry f* 60(°) ho e(®°) xpiv @0(®) CpPm NTm
Jones et al. 2003| EXP 2.2x10* NACA0014 q.104® 73" 1.3W 90 0.250 324  0.23 8.0%H
Peng & Zhu 2009| NS 1000 Joukowski  0.12 40 NST NST 0.5 NA 0.14 20%
Kinsey 0.14 75 1 90 0.333 33.7 0.77v 30%
2011| EXP 4.8 x10° NACA0015
et al. 0.12 75 1 90 0.333 38.0 1.020l] 40978
Young NS 1100 0.19 90 1 90 0.5 40 NST 37.9%
2013 NACA0012
et al. URANS 1.1 x 108 0.19 90 1 90 0.5 40 NST 41.4%
Veilleux &
2017| URANS 5.0x 10° NACA0015 0.096 83 1.26 300 0.333 58 1.08 33.6%

Dumas

efficiency should be less than 12%
“Deducing from Section 2.2 in the study by |J0nes et al.|q2003r.
V(Calculated according to the efficiency and swept distance of 2.55 chord length mentioned in the study by |Kinsey et a1.|(]2011}.

WPeak-to-peak phase angle between the pitch and plunge motions extracted form Fig.15 in the study by |Veilleux & Dumas| (|2017I).

*Extracted form Fig.15 in the study by |Veilleux & Dumas|(12017p.
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Generally, the flapping foil power generator undergoes simple pitch and
plunge motions, while the surge motion (parallel to the oncoming flow) was
also considered in several studies (Wu et al|2016, |Jiang et al.2016). These
motions are governed by a large number of parameters which have a significant
impact on the performance of the flapping foil power generator. Depending
on the model used to describe the flapping motion, parameters affecting the
kinematics of the flapping foil can be different between studies, especially those
in the fully passive system. For comparison of the optimal operating condition
achieved in parametric studies on different activation modes, five optimal kine-
matic parameters (non-dimensional flapping frequency f*, pitch amplitude 6,
non-dimensional plunge amplitude kg, phase angle ¢ between the pitch and
plunge motions, non-dimensional pivot location x,;,) which are commonly used
in the literature are listed in Table As the mean power output Cp increas-
es linearly with hg when other parameters are fixed (Xiao & Zhu/[2014), the
optimal condition in Table is considered as that under which the highest

efficiency 7 defined in Eq. is achieved.

2.2.1 Fully prescribed system

The fully prescribed system is an ideal model for theoretical analysis of the
mechanisms for high energy harvesting performance since it does not take into
account structural dynamics in response to the aerodynamic loads, reducing
the complexity in a fluid-structure-interaction (FSI) system. The vertical po-

sition of the leading and trailing edge of the foil can be obtained simply from
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the motion via:

Hip(t) = H (t) — zppcsind (1), (2.13)

Hy () = H (£) + (1 — 2p0,)csiné (t) | (2.14)

where Hyp and Hrg are the vertical position of the leading and trailing edge
respectively; z,, = Xpi/c and X, is the distance from the leading edge
of the foil to the pivot point along the chord as shown in Fig. 2.1} Then
the swept distance d is computed as the peak to peak value of Hyp or Hrg
whichever is larger. As summarized in Table [A.1] this system is commonly
used in numerical studies.

In the fully prescribed system, the pitch and plunge motions are complete-
ly imposed via several kinematic parameters: the non-dimensional flapping
frequency f* = fe/U, the pitch amplitude 6y, the non-dimensional plunge am-
plitude hg = Hy/c, the phase angle ¢ between the pitch and plunge motions,
the non-dimensional pivot location z,;, and other adjustable parameters used
to alter the motion profiles (Xiao et al[[2012, Lu et al.2014). Since the pio-
neering study on the fully prescribed system conduced by |Jones et al.| (1999),
many efforts have been made to identify the optimal combination of kinematic
parameters to achieve high performance.

In the early parametric studies on the fully prescribed system (Jones et al.
1999, Davids|1999, Lindsey| 2002} Jones et al.[2003)), sinusoidal pitch and plunge
motions were imposed. The kinematics of the system were governed by on-
ly 5 parameters: f*, 6y, ho, ¢ and x,;,. In their study, an unsteady panel
method (UPM) based on the potential flow theory was used to search optimal
combinations of the kinematic parameters in the range of f* = 0.01 — 0.8,

0y = 8° —105°, hg = 0 — 5, p = 65° — 125° and z,;,, = —0.3 — 1.3. Since the
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UPM would fail when flow separations occurred, the amplitude of the angle of
attack ag was limited up to 20° (Davids |1999). Thus the formation of LEVs
was not taken into account in the UPM simulations. Due to the limitation of
computational resources, only around 15 specified cases were evaluated using
a NS solver at Reynolds numbers Re = 2 x 10* and 1 x 10°, giving the highest
efficiency of 39.8% at Re = 1 x 105, f* = 0.104, 6y = 73°, hg = 1.3, ¢ = 90°
and x,;, = 0.25 (Lindsey|2002, Jones et al.|[2003).

Kinsey & Dumas| (2008]) presented contours of efficiency in the range of
fr=10.01-0.25 6, = 0°—90° at Re = 1100, hg = 1.0, ¢ = 90° and
Tpipy = 0.333, giving the highest efficiency of 33.7% at f* = 0.14 and 6, = 76.3°.
In addition, they tested three pivot locations x,;, = 0.25,0.333 and 0.5 under
the optimal (f* = 0.14 and 6y = 76.3°) and non-optimal (f* = 0.18 and
0o = 60.0°) conditions and concluded that the pivot location was important
to the force evolutions and power extraction performance. The important role
of LEV in synchronization between the plunge velocity and the lift was first
proposed in this study. Zhul (2011)) extended the parametric study conducted
by |[Kinsey & Dumas (2008) in the range of f* = 0.05 — 0.25, 6y = 30° — 90°,
ho = 0.3—-2.0, ¢ = 60° —130° and x,;,, = 0.2 —0.5 at Re = 1100 and analysed
the stability of the wake behind the turbine plane by solving the inviscid Orr-
Sommerfeld equation. In this study, he mapped the influence of f* and 6,
on the efficiency with constant hy and z,;, and found that the peak efficiency
was achieved around f* = 0.15 regardless of other parameters. The analysis of
wake stability indicated that the most unstable frequency in the wake coincided
with the flapping frequency under the optimal operating condition.

Prescribed pitch and plunge motions of non-sinusoidal profiles have also
drawn some attention in recent years. In these studies (Ashraf et al. 2011,

Xiao et al. 2012, Deng et al.[2014, Fenercioglu et al. 2015, |Lu et al.| 2015,
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adjustable parameters were introduced to alter the motion profiles. To achieve
high performance, these parameters need to be adjusted under given condi-
tions since the optimal motion profiles are dependent on the pitch and plunge
amplitudes (Xiao et al.|2012, Deng et al.2014)) and the phase angle between
the pitch and plunge motions (Ashraf et al.2011). In addition, the experi-
ment conducted by [Fenercioglu et al.| (2015) suggested an optimal pivot point
location x,;, of 0.25 for sinusoidal motions and of 0.5 for non-sinusoidal mo-
tions. Adopting non-sinusoidal motion makes it possible to harvest energy via
the pitch motion (i.e. Cpy is positive Lu et al. (2015)) and improves the per-
formance of the flapping foil power generator(Ashraf et al.|[2011, Deng et al.
2014]).

Despite differences in motion profiles, parametric studies on the fully pre-
scribed system with sinusoidal and non-sinusoidal motions suggest a similar
range of optimal kinematic parameters f* = 0.11 — 0.18, 6, = 60° — 100° ,
ho = 0.8 —1.5, ¢ = 90° — 110° and x;, = 0.25— 0.5 for high efficiency (n) (Ta-
ble . In addition, the contribution of the power extracted via the plunge
motion (C'p;) dominates the overall power output (Cp) under the optimal

kinematic conditions.

2.2.2 Semi passive system

In the semi passive system, it is intuitive to impose the pitch motion and
harvest energy via the flow induced plunge motion since studies on the fully
prescribed system indicate power generated from the plunge motion is much
higher than that from the pitch motion. Asshown in Fig. [2.3] the foil responds
in the plunge direction to the lift generated by the pitch motion. The plunge

amplitude is constrained by the spring and the damper in the plunge direction
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s

Fig. 2.3: Schematic of a power generator with semi-passive motions, after Zhu et al.
(2009).
with a stiffness of K} and Rj respectively. The equation of the oscillation in

the plunge direction is expressed as (Shimizu et al.|[2008, Zhu et al.|2009)):
muH + RyH + K H = L + M foit (X — Xpiv) (8 cosf — 0% sin (9) ,  (2.15)

where my, is the mass of all the parts in the system undergoing the plunge
motion; myy; is the mass of the foil; Kj, is the spring stiffness in the plunge
direction; Ry, is the viscous damping in the plunge direction and X,, is the
distance between the leading edge of the foil and the foil mass center. To
simplify the problem, it is assumed m; = my,; and the system is governed by
seven non-dimensional parameters: the flapping frequency of the imposed pitch
motion (f*), the pitch amplitude (6y), the pivot location (z,;,), the location
of the foil mass center (z,, = X,,,/c), the mass ratio (f, = myou/ (pc?)), the
stiffness in the plunge direction (k;, = K/ (pU?)) and the damping in the
plunge direction (r, = Rp/(pUc)). In this system, the power is extracted

from the plunge motion via the damper. The net mean power output over
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one flapping cycle (P) is defined as the mean power output generated via the
plunge motion (Pj) minus the mean power consumed to maintain the pitch
motion (—Pp).

To achieve high performance, Shimizu (2004) and Shimizu et al.| (2008)
solved an optimization problem of 2 objectives (C'p and 1) using an evolution-
ary algorithm (EA). They assumed that the center of the foil mass coincided
with the the pivot point z,,, = x,;, and the pitch amplitude 6, = 50°. Thus
the design variables reduced from seven to five: f* =0 — 0.09%, 2, =0 — 1,
i = 4m,,/ (mpc?) = 5— 200, the frequency ratio w,/w = 0.5 — 1.5, where w, is
the natural angular velocity of the plunge motion and w = 27 f is the angular
velocity of the imposed pitch motion, and the structure damping coefficient in
the plunge direction 5, = 0 — 2 (the term RpH in Eq. [2.15| was replaced by
iKnB,H, where i = y/—1). In their study (Shimizu et al.[2008), 110,000 so-
lutions were evaluated using the Theodorsen’s theory (Theodorsen||1979) and
386 non-dominated solutions were obtained. Then 8 non-dominated solutions
were evaluated using an unsteady Reynolds averaged Navier-Stokes (URANS)
solver with Baldwin and Lomax turbulence model at Re = 4.6 x 10°. The
peak efficiency given by the simulations using the URANS solver was 35.3%P,
while the Theodorsen’s theory with planar wake assumption underestimated
the efficiency of the 8 non-dominated solutions with the peak efficiency of
28.8%H under a different condition from that given by the UNRANS simula-
tion. This demonstrated the important role of flow separation in performance
improvement since the Theodorsen’s theory did not account for LEV forma-

tion. Their results (Shimizu/[2004} Shimizu et al.[2008) indicated that when the

20rginal reduced frequency was defined as k = wfc/U.
PQOriginal efficiency was given by Eq. Recalculated the efficiency using the definition in

Eq. 2.6]
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power output was emphasized, the system underwent large plunge amplitudes
(ho > 0.9). In addition, Abiru & Yoshitake| (20116) experimentally studied the
influence of f* 6, and (3, using the same structure model as Shimizu (2004)
and Shimizu et al.| (2008) and achieved a highest efficiency of 22%.

Zhu et al| (2009) investigated the influence of 6y, z,;,, kn and 7, on the
performance of the semi passive system given by Eq. using the Theodors-
en’s theory and a 3-dimensional (3D) solver based on the potential flow theory,
suggesting the optimal parameters of x,,, = 0.5, k;, = 0 and 7, = 7. Due to
the limitation of the numerical methods, the pitch amplitude was limited up
to 30° to avoid flow separations. [Zhu & Peng (2009)) extended the work with
tm = 0, kp = 0, r, = m and Re = 1000 using a NS solver. The influence of
Zpiy = 0—1 and f* = 0.03 — 0.41 on the performance was first examined at
0y = 15°, where nn < 8%. They suggested the optimal range of f* = 0.13—0.228
and z,, = 0.2 —0.5. Then 0, = 5° — 60° with f* = 0.2, 2, = 0.333 was
investigated and the peak efficiency of 27% was achieved at 6y = 60°. The
role of the interaction between the LEV and the foil motions in the energy
harvesting performance at large pitch amplitudes was emphasized. Follow-
ing the work conducted by Zhu & Peng (2009)), Deng et al.| (2015) mapped
contours of efficiency in the range of f* = 0.08 — 0.22 and 6, = 60° — 90°,
giving the highest efficiency of 33.4% at f* = 0.16,60, = 75° and ¢ = 81.8°.
In addition, they found that the efficiency decreased monotonically with the
increase of the mass ratio. The study conduced by |Teng et al. (2016]) verified
the optimal f* = 0.16, 60y = 75° suggested by Deng et al. (2015), and showed
that the non-sinusoidal pitch motion could not increase the upper boundary of
the energy harvesting performance, while it improved the performance under
the non-optimal condition (f* = 0.12 or 6, = 45°).

Compared to the fully prescribed system, additional parameters x,,, fim,
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kp and 7j, are introduced in the semi passive system. Power is extracted via
the plunge motion while the pitch motion consumes power to maintain the
periodical flapping motion. In addition, hg and ¢ are determined by the plunge
response to the loads acting on the foil. However, it is noted that the optimal
parameters in the semi passive system (f* = 0.09 — 0.22, §, = 50 — 75°,
ho = 0.4 — 1.4, p =80 — 110° and xp;,, = 0.2 — 0.5 in Table are similar to

those in the fully prescribed system (Section [2.2.1]).

2.2.3 Fully passive system

According to the constraints applied on the pitch and plunge motions, the
fully passive system can operate as one degree of freedom (DOF) system or
two DOF' system. Fig. shows a typical one DOF system considered by
Young et al.| (2013). The pitch and plunge motions were modelled as functions
of the flywheel angle 5: H = f () and = ¢g(3). In the two DOF system,
there is no mechanical linkage between the DOFs and both DOFs (in the pitch
and plunge directions) freely respond to the aerodynamic loads (the lift and

moment) acting on the foil, as shown in Fig.

One degree of freedom system

The one DOF system is favoured in experimental studies (McKinney & De-
Laurier||1981, [Jones et al./[1999, Davids/|1999, Lindsey 2002, |[Jones et al. 2003,
Kinsey et al. 2011}, Young et al.2013) since the parameters are convenient to
compare with the optimal ones obtained from numerical studies on the ful-
ly prescribed system, especially the phase difference between the pitch and
plunge motions. It is verified by several studies (Ashraf et al.[2011} [Zhu/[2011))

that the optimal phase angle ¢ for high performance of the fully prescribed
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(b) Two degree of freedom system.

Fig. 2.4: Schmatics of a flapping foil power generator with flully passive motions,
after 'Young et al. (2013) and |Veilleux & Dumas| (2017).
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system is around 90° (Section [2.2.1). Thus, it is intuitive to impose ¢ = 90°

via the coupling of the pitch and plunge motions.

Plunge Actuator Arms Phase Angle Dial Phase Adjustment Knob

Pitch Actuator
Arms

[ Base

Fig. 2.5: Schematic of actuator arms and phase adjuster used in the experiment of

2009).

In the experimental study conducted by McKinney & DeLaurier (1981,

the pitch and plunge motions were linked via a Scotch yoke. They focused
on the influence of flapping frequency f* = 0.08 — 0.20 and phase angle ¢ =
60° — 135°, giving the highest efficiency of 17% at f* = 0.12 and ¢ = 90°.
Because of the small pitch and plunge amplitudes (6y < 30° and hy = 0.3),

the performance of this device did not show advantage over other types of

wind turbines (McKinney & DeLaurier| [1981). Around 20 years later,

et al.| (1999)), Davids (1999), Lindsey| (2002) and |Jones et al. (2003)) conducted

successive experimental studies for comparison with their parametric studies
using the UPM and NS solver. The phase angle ¢ was controlled by a phase

adjuster through pitch and plunge actuator arms (Lindsey|2002), as shown in
Fig. They verified the optimal ¢ was around 90° and increased 6y up to
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73° and hg up to 1.3. However, the peak efficiency experimentally achieved by
this lab-scale device was lower than 20%, which was much lower than that of
39.8% given by the URANS solver. The significant performance reduction in
the experiment was attributed to the limitations of the apparatus such as high
mechanical friction and defects of the aerofoil surface resulting from absorbed
water into the wood (Jones et al.|2003).

Kinsey et al.| (2011) tested a prototype mounted on a pontoon boat with
f* up to 0.2. Other kinematic parameters were chosen with respect to the
optimal condition at 6y = 75°, hy = 1, ¢ = 90° and z,, = 0.333 given
by their previous parametric study on the fully prescribed system (Kinsey &
Dumas| 2008)). The pitch motion was linked to the plunge motion through
a four-link mechanism. An energy harvesting efficiency of 30% for a single
foil was demonstrated. [Young et al. (2013) considered a similar one DOF
system (Fig. where the pitch and plunge motions were functions of the
flywheel angle: H = f(8+ ¢) and 0 = g (f3), with ¢ = 90°. They examined
the influence of 6y = 30° — 90°, x,;,, the damping coefficient of the flywheel
16R,/ (rpc®U) = 0 — 10 and the foil and flywheel masses on 7. In addition,
instead of linking the pitch angle to the flywheel angle, it was found that by
linking the angle of attack to the flywheel angle (a« = ¢ (5)), the peak efficiency

of the one DOF system increased from 29.6% to 41.4%.

Two degree of freedom system

In the 2 DOF system, the response in the plunge direction to the lift is given
by Eq. [2.15 the same as that in the semi passive system (Section [2.2.2)).

The response in the pitch direction to the moment is expressed as (Veilleux &
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Dumas|2017):

JO+ Rof + Kob = M + mijoi (X — Xpi) H cos 6, (2.16)

where J is the moment of the inertia, Ry is the viscous damping in the pitch
direction and Ky is the spring stiffness in the pitch direction. If it is assumed
mp = Mgy in Eq. [2.I5] the system is governed by eight non-dimensional
parameters: the pivot location (), the location of the foil mass center (z,,),
the mass ratio (i), the stiffness in the plunge direction (k, = K,/ (pU?)), the
damping in the plunge direction (r, = R,/ (pUc)), the moment of the inertia
(I = J/(pc*)) the stiffness in the pitch direction (kg = Ky/ (pU?c?)) and the
damping in the pitch direction (rg = Ry/ (pUc?)). In this system, the averaged
power due to the inertia from the plunge motion balances that from the pitch
motion (Veilleux & Dumas|2017). Thus the contribution of the inertia to the
mean power output C'p is zero.

Peng & Zhu (2009) analysed the stability of a 2 DOF system using the
Theodorsen’s theory in the range of xp;, = 0—1 and kg = 0—1 with my.; = 0,
I =0, k,=0,7r,=mand rp = 0. They concluded that when z,;, > 0.25
and ky was sufficiently small (depending on z,;,), the system was unstable. In
addition, results given by a NS solver at Re = 1000 showed that when z,;, =
0.4,0.5 and 0.6, the peak n was achieved around 20% at different ky = 0.022,
0.054, and 0.078 respectively. Zhu (2012) extended their work by considering
kn, = 1, 2 and 3 and the density ratio ps.i/p = 0,1 and 10, where pgo; is
the density of the foil, in the shear flow. It was found that kj, had impact on
the performance (e.g. the maximum efficiency increased from around 16% at
kp, = 1 to around 18% at kj, = 2). In addition, when the mass was concentrated

at the leading edge with pf.i/p = 10, the maximum efficiency increased from
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16% to 31% compared to the case with pfei/p = 0. This was attributed to
the increase of the moment of inertia. Compared to the case with negligible
Pfoit/ p, the case with high pfei/p showed decreases in f* from 0.29 — 0.31 to
0.16 — 0.25 and increases in 6y from 25° — 50° to 32° — 100°, approaching the
optimal parameters in the fully prescribed system (Section . However,
when x,, = x,,, increasing ji,, resulted in performance reduction, which was
also verified by |Jiang et al.| (2017)).

Veilleux & Dumas| (2017) performed a gradient-like optimization to maxi-
mize 7 and/or C'p where the trade off was not considered. A single parameter
called static imbalance s, = fim (T — Tpip) With z,;, = 1/3 was introduced in
their study and the number of design variables reduced to seven (Sin, fm, kn,
T, I, kg and rg). 71 solutions were evaluated using URANS at Re =5 x 105,
giving an optimal solution with n = 33.6% and Cp at s;, = —0.03, @, = 3.0,
kp,=12,r,=1.5,1=0.10, kg = 0.03 and rg = 0.12. Under the optimal con-
dition, the parameters determined by the structure responses were f* = 0.096,
0 = 83°, hp = 1.26 and ¢ = 300°°. It was found that ¢ = 300° under the
optimal condition was quite different from that of 90° in the fully prescribed
system. Wang, Du, Zhao & Sun| (2017) gave similar ¢ = 296° under the op-
timal condition (n = 30%), while the non-optimal case with n = 8% gave
¢ = 352°. Moreover, the study conducted by [Wang, Du, Zhao & Sun| (2017)
demonstrated that the performance was sensitive to x,;,, as was the structure
response region (also found by Peng & Zhu| (2009)). For instance, the peak
C'p in the range of r, = 0 — 6 increased from 0.06 to 0.92 when Tpiy increased
slightly from 0.33 to 0.35 at similar kj, and kg (i.e. kj and ky were proportional
to (f,c/U)* which is (1/2.9)% at z,;, = 0.33 and (1/3.0)* at 2, = 0.35, where

“Peak-to-peak phase angle between the pitch and plunge motions extracted form Fig.15 in
Veilleux & Dumas| (2017))
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fp is the natural frequency of the system in the plunge direction) and the same

T, Mm, I and ry.

2.3 Geometry of the foil and the system

2.3.1 Foil shape, aspect ratio and end plates

_ E— N —
NACAO0015 Joukowski
Sl . '
Elliptical Rectangular
Rounded rectangular Scallop shell

Fig. 2.6: Foil with different shapes of the cross section.

There have been several investigations on the cross section shape of the
foil. Besides aerofoils such as the NACA series and Joukowski foil, some other
cross sections considered in the studies of the flapping foil power generator are
shown in Fig. Kinsey & Dumas (2008)) considered three NACA 4 digit
aerofoils with a thickness of 2%, 15% and 20% under two conditions (Re =
1100): the non-optimal condition without LEVs and the optimal with LEV.
They concluded that the influence of aerofoil thickness on the performance
was insignificant. |Kim et al. (2017) experimentally examined an elliptical foil
and rectangular foil with different thickness and edge shapes in the range of
f*=10.09 —0.17 at Re = 5 x 10*, drawing the same conclusion as Kinsey &

Dumas| (2008). [Le et al] (2013) investigated scallop shell shaped (Fig. [2.6),
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NACAO0008 and cambered NACAO0012 foils in the range of f* = 0.1—-0.15,60, =
55° —65° and hg = 0.7 — 1.1 at Re = 9 x 10%. They found that the scallop shell
shaped foils did not give any advantage over NACAO0008 foil in the performance
and concluded that the performance of the flapping foil power generator was
primarily dependent on the kinematics. However, Sun et al.| (2017) found
that the situation was different at high Reynolds numbers Re = 6 x 10°.
They mapped the contours of efficiency in the range of f* = 0.08 — 0.26 and
0y = 50° — 110° using a UNRANS solver with the Spalart Allmaras turbulence
model, considering NACA 4 digit aerofoils with different thickness. It was
found that the peak efficiency of 39.2% was achieved at f* = 0.12 and 6§, = 85°
with the NACAQ0015 foil while that of 54.0% was achieved at f* = 0.14 and
0o = 100° with the NACA0025 foil.

Studies on a finite span wing with the aspect ratio (AR=b/c, where b is the
span) from 1 to 10 showed that the efficiency decreased with decreasing AR due
to three-dimensional (3D) effects (Simpson et al.2008, Kinsey & Dumas|2012¢,
Drofelnik & Campobasso 2015} 2016| Kim et al.|[2017)). Specifically, Deng et al.
(2014) found that when finite AR was considered, the fully prescribed system
undergoing sinusoidal pitch motion gave lower efficiency than that undergoing
non-sinusoidal pitch motion even if the system undergoing non-sinusoidal pitch
motion gave better efficiency when the span was infinite. This is because
the enhanced LEV observed in the system undergoing non-sinusoidal pitch
motion for 2D flows was susceptible to 3D instabilities due to the spanwise
flow reducing the streamwise velocity. In addition, the reduction in energy
harvesting performance due to 3D effects (e.g. lift reduction near the tip due
to the downwash associated with the tip vortex and variation in the vortex
structure across the span) was alleviated when end plates were mounted (Abiru

& Yoshitake 20110, Kinsey & Dumas [2012¢, Drofelnik & Campobasso| 2015,
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2016, Kim et al.[[2017)). |[Kim et al.| (2017)) examined different sizes of the end
plates and found that when the distance from the foil to the edge of the end
plate was 0.75¢, the efficiency of the flapping wing with AR=2.5, 3.5 and 4.5
was the highest. Even though the end plates were beneficial to the suppression
of the tip vortex effects, the increase of friction and interactions between the
end plates and the flow may balance this benefit. Thus there existed an optimal

size of end plates for performance improvement.

2.3.2 Active and passive deformation

In flapping foil propulsion, it has been demonstrated by a number of studies
that the deformation of the foil has beneficial effects on the force generation
(Shyy et al.2010)). However, studies on the effects of the foil deformation on
the energy harvesting performance are limited (Young et al.[|2014, Xiao & Zhu
2014]).

Liu et al.| (2013) controlled the deformation of the leading and trailing edges
of a NACAO0012 foil in the fully prescribed system, as shown in Fig. In

o

their study, oy was in the range of 0° — 10°, which was much lower than the
optimal ag = 30° — 40° given by the experimental study of Kim et al. (2017)).
A peak efficiency of 32% was achieved by controlling the deformation of the
trailing edge at f* = 0.2, compared to that of 13% for a rigid foil at f* = 0.16
with other kinematic parameters remaining the same, specifically oy = 10°.
Tian et al. (2014)) examined the influence of the active deformation of a
flat plate under the optimal condition of the fully prescribed system suggested
by Kinsey & Dumas (2008) (f* = 0.14, 6y = 76.3°, hy = 1.0, ¢ = 90° and
Tpipy = 0.333, resulting in oy = 35°). An efficiency of 38.2% was achieved via

controlling the leading segment, 11.3% higher than that of 33.4% given by
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(a) Control of camberline deformation at the leading and
trailing edges.

(b) Control of camberline deformation at the mid chord.

(c) Control of camberline deformation at the trailing edge.

Fig. 2.7: Active deformation via controlling the camberline at different chordwise
location, after Liu et al.| (2013), Hoke et al. (2015)) and |Zhu et al.|(2015). The dashed
line represents the camberline of the rigid foil and dash-dot line is the camberline of
the deformable foil.

Table 2.2: Comparison of deformation enhanced performance in the literature. If
ap was not given in the literature, it is calculated from other parameters using Eq.
7y and 7q are the maximum efficiency achieved by employing the rigid foil and
deformable foil, respectively. Cp, and Cpq are respectively the power coefficient
corresponding to the efficiency 7, and nq. NA stands for not available and NST
stands for not stated.

Authors Year o (°) m (%) na(%) 2 Cp. Cpq %
Active deformation

Liu et al. 2013 10 12 32 1.67 0.14 0.75 4.36

Tian et al. 2014 35 334 38.2 0.14 0.86 0.98 0.14

Hoke et al. 2015 35 329 37.9 0.16 0.84 0.97 0.15

Zhu et al. 2015 35 35.4 41.1 0.16 091 1.05 0.15
Passive deformation

Tian et al. 2014, 35 324 30.2 —0.09 0.86 0.82 —0.04

Wu et al. 2015 20  23.1 33 0.44 0.33 0.56 0.70

Wu et al. 2015 NST 15 20 0.33 0.22 0.41 0.86

Jeanmonod &

.. 2017 35 31.6 NST NA 0.81 0.83 0.02
Olivier
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the rigid plate under the same kinematic condition. Hoke et al| (2015) and
Zhu et al. (2015) performed the active control of the camberline deformation
at the mid chord (Fig. and the trailing edge (Fig. respectively
under the same optimal condition of the fully prescribed system, giving similar
increases in the efficiency by 15.8% and 16.1% to 37.9% (Re = 1100) and
41.1% (Re = 10%), respectively (see Table [2.2). In addition, [Hoke et al/ (2015)
noted that the power consumption for active deformation was significant (e.g.
the efficiency decreased from 37.9% to around 34.5%), which was generally
neglected in the studies of the active deformation.

The performance of the flexible system containing a rigid foil of 0.7¢ and
a flexible flat plate of 0.3c pinned to the trailing edge of the rigid foil under
non-optimal conditions was investigated by Wu, Shu, Zhao & Tian| (2015) in
the fully prescribed system and [Wu, Wu, Tian, Zhao & Li (2015) in the semi
passive system. In the fully prescribed system, the peak efficiency of n = 33%
was achieved at ag = 20° and f* = 0.2, 44% higher than that of 23% achieved
by the rigid system at f* = 0.15 with other parameters remaining the same.
In the semi passive system, the peak efficiency of around 20% was achieved at
0o = 40° (optimal 0y = 50° — 75° in Section , compared to that of around
15% given by the rigid system under the same kinematic condition.

Tian et al.| (2014) and |[Jeanmonod & Olivier| (2017) discussed the influ-
ence of the flexibility on the performance of the fully prescribed system under
the optimal kinematic condition suggested by Kinsey & Dumas (2008). Flat
plates with similar flexibility distributions were employed in their studies: a
uniformly flexible plate, a plate with a flexible leading segment and a plate
with a flexible trailing segment. In their studies, the flexible cases did not
show significant performance improvement under the optimal condition. In

contrast, |[Jeanmonod & Olivier| (2017)) demonstrated the capability of the flex-
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ibility to improvement the performance under non-optimal conditions, which
was similar to Wu, Shu, Zhao & Tian| (2015)).

In Table [2.2] it is noted that the improvement in the power output C'p by
employing deformable foils is greater than that in the efficiency n when oy <
20° since the swept distance increases significantly due to the foil deformation.
On the other hand, improvements in C'p and 7 are similar under the optimal

kinematic condition of the rigid foil where oy = 35°.

2.3.3 Multiple foil configurations

Interactions between flapping foil turbines may have significant impact on
the performance in the application of wind farms. Thus, the arrangement of
the turbines, such as the distance between the turbines X and the phase
difference 1) between the flapping motions needs to be considered. In the
tandem foil configurations, the foils generally undergoing pitch and plunge
motions with the same neutral position and different phase angles; thus the
swept distance used to compute the efficiency in Eq. is the same as the
single foil system. In the parallel foil configurations, the swept distance is
measured as the overall area swept by all the foils.

The system with two foils in tandem was first employed by |Lindsey| (2002)
and Jones et al.| (2003) in their experimental studies with a constant non-
dimensional distance xgp;rt = Xsnipe/c = 9.6 and 1 = 90°. |Ashraf et al|(2011)
conducted simulations of a tandem configuration with sinusoidal and non-
sinusoidal pitch and plunge motions in the range of x5t = 2—6, 1 = 0°—180°.
In their study, the peak efficiency of 50% for the system with sinusoidal motions
was achieved at xgp; s+ = 2 and ¢ = 180, while that of 54% for the system with

non-sinusoidal motions was achieved at xg;;y = 6 and ¢ = 135. Due to the
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interactions between the two foils, the front foil undergoing non-sinusoidal
motions gave higher C'p of 1.00 than that of 0.89 given by the single foil
under the same optimal kinematic condition. Moreover, the peak efficiency of
the tandem configuration with sinusoidal motions was achieved at ¢ = 110°,
larger than that of 90° in the single foil system.

Xu et al.| (2016) found that the arrangement of the two foils also influenced
the optimal value of f* when the system undergoing sinusoidal pitch and plunge
motions. In their work, the peak efficiency of 54%, 54% and 50% given by the
tandem system with different x4y = 4.5, 5.4 and 6.3 and the same ) = 180°
was achieved at f* = 0.16, 0.15 and 0.12 respectively. In addition, the fully
passive system of 1 DOF experimentally tested by Kinsey et al.|(2011)) achieved
the highest efficiency of 30% at f* = 0.14 for a single foil and that of 40% at
f* = 0.12 for two foils in tandem with xs5+ = 5.4 and ¢ = 180°. A similar
shift in the optimal f* was found in their numerical study using 2D RANS
(Kinsey & Dumas| |[2012b) where a peak efficiency of 64% was achieved at

* = 0.16 for two foils in tandem with ;5 = 5.4 and ¢ = 180° while that of
40% was achieved at f* = 0.14 for a single foil.

In the experiment conducted by |Abiru & Yoshitake| (2011d), a semi passive
system containing two foils in tandem was tested in the range of x4 = 0.6—5,
1 = 0° and 180°. They found that the amplitude of the imposed pitch motion
o had little impact on the performance when zg,;;; > 2. In the range of
Zshipe = 4 — 5, the influence of the interactions between the two foils on the
performance was negligible. In contrast to the optimal 6, = 50° of the single
foil system given by their previous experimental study (Abiru & Yoshitake
20118), the peak efficiency (9mqee = 46%) of the tandem system was achieved
at low 6y = 30° with x4 = 1.5 and ¢ = 180°.

Wu, Zhan, Wang & Zhao| (2015) and Wu, Chen & Zhao| (2015) numeri-
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cally investigated multiple foils in parallel configurations with auxiliary foils
of 0.5¢ undergoing the pitch motion in the fully prescribed and semi passive
systems. The phase difference and distance between the flapping foil turbine
and the auxiliary foils were adjusted to achieve high performance. In the fully
prescribed system, an auxiliary foil was placed below the flapping foil turbine.
With the auxiliary foil placed 0.85¢ from the neutral position of the flapping
foil and a phase angle of 135°, a highest efficiency of 34.7% was found at
f* = 0.18, while the single flapping foil achieved a peak efficiency of 29.1% at
f* = 0.16. In the semi passive system, two auxiliary foils were respectively
placed above and below the flapping foil, giving a highest efficiency of 43.1%.
In these studies, the contribution of the flapping foil and the auxiliary foils to
power output P was considered, while the available power in the flow P, only
contained the kinetic energy of the flow passing through the distance swept
by the flapping foil, neglecting that swept by the auxiliary foils. When the
swept distance is measured as the overall area swept by all the foils, the peak
efficiency given by the parallel configuration in the fully prescribed system is

27.6%.

2.4 Environmental effects

2.4.1 Reynolds number

The importance of the timing of the LEV formation, convection and interaction
with the flapping foil was numerically and experimentally demonstrated by
several studies in the laminar flow region (Re < 10*) (Kinsey & Dumas 2008,
Young et al.|2014, Fenercioglu et al[[2015). In addition, studies in the range

of Re =100 — 10,000 indicated that the efficiency increases with the increase
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of Re (Kinsey & Dumas 2008, |Zhu 2011, [Wu, Yang, Shu, Zhao & Yan 2015).
In the transitional flow region (10* < Re < 10°), the LEV dynamics was little
affected and the LEV dominated performance improvement observed in the
laminar flow region carried over to the transitional flow region (Ashraf et al.
2011} [Young et al.|2014)). The numerical study on a self-sustained pitch-plunge
flapping foil in the range of Re = 4 x 10* — 12 x 10* indicated that laminar
calculations agreed well with the experimental data while predictions of the
natural frequency and angle of attack made by URANS simulations were not as
good as those given by the laminar calculations when the aerodynamic forces
dominated the foil dynamics (Veilleux & Dumas|2013)). In addition, predictions
given by URANS with the SA (Spalart-Allmaras) and k — w SST (Menters
shear stress transport) turbulence model showed significant differences when
Re > 8 x 10%.

When the turbulent flow was considered (Re > 10°), the synchronization
of the LEV formation and foil motions was lost for high performance cases
(Campobasso et al.|2013] Kinsey & Dumas|2014)). Numerical study of Kinsey
& Dumas (2014) showed that high energy extraction performance was achieved
when oy was around 33° and the maximum non-dimensional rate of change
of the angle of attack ac/U was around 0.55, where no LEV was observed in
some cases. Sun et al.| (2017) numerically studied NACA 4 digit foils with
different thickness at Re = 6 x 10° (Section [2.3.1)). They found that without
the LEV formation, the thick foil (NACA0025) generated more power via the
plunge motion due to higher C7, resulting in better performance (n = 54%)
compared to the case using NACA0015 where LEV was observed (n = 39%).
The performance of a single foil predicted by 2D and 3D URANS simulations
conducted by |[Kinsey & Dumas| (20124d)) showed reasonable agreement with that

given by the prototype test conducted by Kinsey et al. (2011). However, both
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2D and 3D URANS simulations considering the tandem foil configuration over-
predicted the peak efficiency (n = 65% at f* = 0.14 for 2D and n = 55% at
f*=0.14 for 3D) compared to the experiment (Kinsey et al.2011) (n = 40%
at f* = 0.12). In addition, |[Kinsey & Dumas| (2012a) found that different
turbulence models (SA, k —w standard, k —w SST) predicted different timing

and position of flow separations, which was also verified by |Young et al.| (2013).

2.4.2 Boundary effects

Besides flow conditions such as the velocity and viscosity of the flow, inter-
actions between the flapping foil and the surrounding environment also have
impact on the energy harvesting performance. The influence of constrained
flow, where the foil was confined in a channel as shown in Fig. [2.8a] was
investigated by Karakas et al| (2016) and (Gauthier et al.| (2016). In the ex-
periment conducted by |[Karakas et al.| (2016)), two side walls were placed at
various distances from a flat plate undergoing pitch and plunge motions. Two
end plates were mounted at the top and bottom of the channel to eliminate 3D
effects. It was found that the wall effect reduced the efficiency of the flapping
foil turbine undergoing prescribed non-sinusoidal motions, while it improved
the efficiency of the turbine undergoing sinusoidal motions from around 13%
to 17%, compared to the turbine in the free flow. (Gauthier et al.| (2016) nu-
merically investigated a NACA0025 foil with AR=10 undergoing sinusoidal
pitch and plunge motions. The flow was constrained in a rectangular channel
consisting of horizontal planes. With the optimal distances between the solid
walls and the flapping foil (i.e. solid walls were placed 1.27 ¢ above and below

the neutral position of the plunge motion), a considerable efficiency of 77% ¢

dCalculated from the swept distance and the power ratio defined in |Gauthier et al.| (2016).
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Wall

Flapping foil

Wall

(a) A flapping foil placed in the constrained flow.

Flapping foil

Ground

\

(b) A flapping foil placed near the ground.

Free-surface

Flapping foil

Ground

\

(c) A flapping foil placed in the shallow water.

Fig. 2.8: Schematic of a flapping foil placed in the domain with different boundary
conditions, after Karakas et al.[(2016),[Wu, Yang, Shu, Zhao & Yan| (2015)) and |Liu
(2017).
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was achieved. Similar to studies on rotary turbines installed in channels, the
efficiency can exceed the Betz limit of 59.3% with the increase of the blockage
ratio (Vennell 2013).

Wu, Yang, Shu, Zhao & Yan|(2015)) numerically examined a 2D NACA0015
foil undergoing sinusoidal pitch and plunge motions placed near the ground,
leaving the flow above the flapping foil unconstrained (Fig. [2.8D]). By adjusting
the distance between the flapping foil and the ground, an efficiency of 24% was
achieved at f* = 0.2, ag = 20° when the flapping foil was placed 1.5¢ above
the ground (n = 20% in the fully free flow). The influence of the shear flow
on the performance of the 2 DOF fully passive system given by Eq. and
was numerically studied by |Zhu (2012). The results showed that with
the small shear (i.e. shear layer rate Sy = 0.05, where the inflow velocity
U(y) = U+ Byy), the response region for energy harvesting was enlarged.
In addition, the fully passive system achieved comparable efficiency of around
20% in the linear shear flow (8y = 0.05) as that of 20% in the uniform flow
performed by |Peng & Zhu| (2009).

Liu (2017)) considered a fully prescribed system of the tandem configura-
tion in the shallow water, as shown in Fig. Different from efficiency
improvement achieved by Wu, Yang, Shu, Zhao & Yan (2015) through the
ground effect, the interactions between the boundary layer of the ground and
the foil resulted in performance reduction under the near-optimal condition
fF=0.14, oy = 28.7°. In addition, the convection of the vortices generated

by the foils in the shallow water was slower than that in the free flow.
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2.5 Summary

2.5.1 Key findings in the literature

In this chapter, major numerical and experimental studies on the flapping foil
power generator have been reviewed with regard to kinematics, geometry and
environmental effects.

Even though parameters governing the kinematics of the flapping foil were
dependent on the model used to described the flapping motion, majority of
studies on semi passive and fully passive (one degree of freedom) systems
found that high energy extraction performance was achieved when the kine-
matic parameters approximated the optimal parameters found in the the fully
prescribed system. In addition, the importance of the leading edge vortex
(LEV) dynamics to the energy harvesting performance was verified in sys-
tems with different activating mechanisms, specifically in the laminar flow
regime. Considering the simplicity to implement prescribed motions, the ful-
ly prescribed system is commonly used for parametric studies to uncover the
physical mechanism for high energy extraction performance. Studies on the
fully prescribed system suggested a range of optimal values: non-dimensional
frequency f* = 0.11 — 0.18, pitch amplitude 6y, = 60° — 100°, plunge ampli-
tude hg = 0.8 — 1.5, phase difference between the pitch and plunge motions
¢ = 90° — 110° and non-dimensional pivot point location xp;, = 0.25 — 0.5.

In the laminar flow regime, the influence of the foil geometry on the energy
extraction performance is insignificant. On the contrary, the thickness of the
foil affects the energy extraction performance significantly when the turbulent
flow is considered. Studies on active deformation indicated that the local angle
of attack was increased by the foil deformation and the improvement in energy

extraction performance was achieved under different conditions, especially at
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low angles of attack (non-optimal condition of the rigid system). In these
studies, the power consumption for active deformation was generally neglected.
Performance improvement was also achieved by employing passive deformation
at low angles of attack, while the improvement under the optimal condition
of the rigid system was insignificant. In addition, the interactions between
multiple foils influence the energy extraction performance as well as the optimal
values of kinematic parameters.

When the flapping foil power generator operates in the laminar flow and
transitional flow regimes, good synchronization between the plunge motion and
LEV formation results in high power extraction performance. When it operates
in the turbulent flow regime, high performance can be associated with either
attached flow or separated flow involving LEVs. In addition, the uncertainty
over the prediction of flow separations by different turbulence models was found
in several studies using unsteady Reynolds averaged Navier Stokes (URANS)
methods. In constrained flows, the efficiency can exceed the Betz limit of 59.3%
and the interaction between the boundary layer and the foil may have either
positive or negative effects on the power extraction performance, depending

on the kinematics of the flapping foil.

2.5.2 DMotivation and major work of this study

Because of the substantial computational resources required in 3D simulations
(Kinsey & Dumas|2012¢, Xiao et al|[2014)) and uncertainties associated with
turbulence modelling, this study is focused on two-dimensional (2D) laminar
flow at the Reynolds number of 1100. Details of the physical problem will be

described in Section [3.11

As mentioned in Section one of the prerequisites for industrial applica-
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tion of the flapping foil power generator is to search for the optimal combina-
tion of kinematic parameters. However, due to the high computational cost of
computational fluid dynamics (CFD) simulations (Kinsey & Dumas 2008), it
is computationally prohibitive to use CFD method in parametric studies and
optimization involving multiple design variables (e.g. 5 kinematic parameters
in the prescribed system with sinusoidal pitch and plunge motions). To reduce
the time cost, potential flow based methods (e.g. unsteady panel method and
Theodorsen’s model) were employed to solve the flapping foil problem with
constraints to ensure that the flow is fully attached in several studies. To take
advantages of low computational cost and remove the constraints associated
with the attached flow resulting from potential flow based methods, a dynamic
stall model and an improved discrete vortex method for 2D simulations will be
described in Section [3.2]and Section [4.1] respectively. The advantages and dis-
advantages of these two methods will be discussed in Chapter [4] Considering
the non-linearity of the flapping foil problem, an evolutionary algorithm (EA)
is used to search for the optimal values of the kinematic parameters in Chapter
Bl A comparison of a traditional optimization method (complex method) and
the EA on solving a non-linear problem will be conducted in Section [3.4]

As discussed in Section [2.3.2] performance improvement by employing the
passive deformation of the foil was only achieved under the non-optimal condi-
tions of the rigid system (e.g. ap = 20° compared to the optimal oy > 30° given
by parametric studies on a rigid system). In addition, the role of flexibility in
enhancing energy harvesting performance and the associated with physics are
still not well understood, especially under the near optimal conditions of the
rigid system. This is the motivation of the work presented in Chapter [6] An
immersed boundary-lattice Boltzmann method (IB-LBM) is used to solve the

fluid-structure-interaction problem and provide flow fields for detailed analy-
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sis. The IB-LBM is efficient for simulations involving moving boundaries and
deformations since it avoids mesh regeneration. In addition, it is well suited
for computations on a parallel architecture. Details of the IB-LBM will be

discussed in Section 3.3l



Chapter 3

Validation of Methods Used

In this chapter, the physical models and computational methodologies used to
solve the flapping foil energy harvesting problem are introduced. The main
objective of this chapter is to validate the methods used in Chapters 45 In
Section , the modelling of a fully prescribed system (as mentioned in Chap-
ter [2) with a rigid aerofoil considered in Chapters [4 and [5is described. Then,
the aero-elastic model of a tail pinned to the rigid foil by a torsional spring
considered in Chapter [f is presented. In Section [3.2] a reduced order model
developed by Bryant et al| (2013]) used in Chapters [4] and [5|is described and
reproduced with Matlab. In Section the immersed boundary-lattice Boltz-
mann method (IB-LBM) with the multi-block technique (Tian, Luo, Zhu, Liao
& Lul2011} Tian, Luo, Zhu & Lu/[2011)) is presented and validated against data
in the literature. In Section the process of the multi-fidelity evolutionary
algorithm (MFEA) (Branke et al.|2017) used in Chapter 5| is introduced and

compared with a classical non-gradient optimization method.

51
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3.1 Physical problem and mathematical for-
mulation

In the flapping foil turbine problem of interest, a rigid system with a rigid
NACA0015 foil (Fig. and a flexible system with a rigid NACAO0015 foil
and a spring connected tail (Fig. in a uniform flow with velocity U are
considered. The mean power output C'p and efficiency n of the flapping foil
power generator are defined in Eq. and [2.6]

Fig. 3.1: Kinematic parameters and aerodynamic loads for a NACA0015 foil.

The rigid foil with a chord length of ¢ considered in Chapters [] and

undergoes simple sinusoidal pitch and plunge motions given by:

0 (t) = fosin (21 ft) , (3.1)

H (t) = Hysin (27 ft + ). (3.2)
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Fig. 3.2: Kinematic parameters and aerodynamic loads for a NACAO0015 foil with a
tail pinned to the trailing edge (T) by a torsional spring. The angular position of
the tail ap is passively determined by the fluid structure interactions.

The kinematics of this system is governed by 5 parameters: f*, 6g, hg, ¢ and
Tpiv- In Fig. the origin of the coordinates O is at the pivot location when
the foil is at its neutral position. The coordinates correspond to a right-hand
Cartesian coordinate system with x-axis rightward positive, y-axis upward
positive and the angle counter clockwise positive. «a defined in Eq. is the
angle of attack.

In the flexible system, the rigid foil undergoes sinusoidal pitch and plunge
motions given by Eq. and while the motion of the tail is passively
determined by the fluid-structure interactions. According to the study on
the propulsive system using flapping foils, the flexibility appears to be more
important in the chordwise direction than in the spanwise direction (Gursul
et al.[2014). Thus a 2D aero-elastic problem modelled by a torsional spring at

the trailing edge of the rigid foil (point T") is considered, as shown in Fig. 3.2
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The motion of the tail is then governed by

mltail

cos (0 + ar) ir

JdT + R(i/T + KSCYT :Mf —
(3.3)

Mltqil

+ SiH((g—FOéT)Li'T—Jé,

2

i, Ks and R are the moment inertia of the tail about the

where J = %ml
axis through point 7" normal to the x-y plane, spring stiffness and damping,
respectively; My is the fluid moment about the axis through the point 7" normal
to the x-y plane; m = pili.i is the mass of the tail, p; = piths and Iy, are
the linear density and the length of the tail respectively; p;i and hg are the
density and the thickness of the tail respectively; ijr and Zp are respectively
the vertical and horizontal accelerations of point T'; and a7, ar and é&p are
respectively the angular position, velocity and acceleration of the tail with
respect to the foil at point 7', determined by the fluid-structure interactions.
In Fig. the system of coordinates is the same as that in Fig. [3.1] Notice
that the chord length c is the total length of the foil and the tail. a.ss is
the angle between the line passing through the end of the tail and the leading
edge of the foil and the relative velocity Uecsp = V/ H? 4+ U2 In Eq. , My is
the moment acting on the tail computed by the fluid solver and coupled with
the structure solver, and the last three terms on the right hand side represent
the moment due to inertia effects resulting from the prescribed plunge and
pitch motions. This torsional spring model reduces the structural complexity

and converges to the non-linear Euler-Bernoulli beam with the increase of the

number of linked flat plates (Eldredge et al.|2010).
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3.2 Reduced order model

In numerical studies on the flapping foil power generator, computational flu-
id dynamics (CFD) methods are commonly used to predict the performance
of the flapping foil turbine and detailed information of the flow field on the
LEV formation and evolution. However, they require substantial computa-
tional resources, for example, a simulation of the flapping foil takes 100 hours
on a single P4/3.2-GHz processor (Kinsey & Dumas [2008)). Thus it is com-
putationally prohibitive in studies exploring a wide range of parameters. On
the other hand, reduced order models could reduce the computational time
to minutes, which provide an alternative way to remove the impediment in
optimization and engineering design because of their low computational costs.
As summarized in Chapter [2] several studies have employed methods based on
the potential flow theory to predict the performance of the flapping foil power
generator, assuming the flow is fully attached. However, these methods neglect
the formation of LEVs resulting from flow separations, which have significant
impacts on the energy harvesting performance.

Studies on reduced order aecrodynamic modelling when LEVs form are mo-
tivated by helicopter studies in which the phenomenon of dynamic stall is
observed (McCroskey||1981). In recent decades, several semi-empirical models,
for instance, Office National D’Etudes et de Recherches Aerospatiales (ONER-
A) model (McAlister et al.|1984) and Leishman-Beddoes model (Leishman &
Beddoes [1989) have been developed and modified for dynamic stall modelling
in subsonic flows. Considering the similarity of helicopter blades and flapping
foils, methods used in dynamic stall studies provide valuable references for
reduced-order-model development for flapping foil power generators.

The non-dimensional frequency f* and the pitch amplitude 6, in dynamic
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stall studies (0 < f* < 0.016, 0° < 6y < 10°) (Dyachuk et al.2013) are
generally smaller than those in studies on flapping foil power generators (0 <
f* <025, 0° < 6y < 90°) (Kinsey & Dumas| 2008). The large amplitude
oscillations of the flapping foil characterized by strong leading and trailing
edge flow separations present challenges for reduced order modelling. In order
to model flapping foil motions at low Reynolds numbers, Bryant et al.| (2013)
have modified a quasi-steady model using a method analogous to the ONERA
model. In this study, the Bryant model is employed in the optimization process
as a surrogate model to search the parameter space. The calculation procedure

using the Bryant model is summarised as follows.

Fig. 3.3: Aerodynamic loads for a NACAO0015 foil with the fixed coordinate system
(x,y) and the foil coordinate system (z’,y’) where the origin of the coordinates is
at the leading edge of the foil.

As shown in Fig. 3.3] in terms of the inflow velocity U and the motions of

the foil, the velocity components (u’,v’) in the foil coordinate system (2, 1/)
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are given by

u = —Ucosf — Hsin, (3.4)

v/ = —Usin® + H cos 6. (3.5)

Notice that the coordinate system used in Bryant et al.| (2013)) corresponds to
the system with x-axis leftward positive, y-axis upward positive and the angle
clockwise positive. Here, the coordinate system corresponds to one with x-
axis rightward positive, y-axis upward positive and the angle counter clockwise
positive, as defined in Section [3.I] The lift L in the fixed coordinate system
(x,y) is computed from the the normal force Fiy and the chord force F in the

foil coordinate system (2, y/'):

L = Fycosf — Fosind. (3.6)

The model expressed F, Fo and the moment M in a similar way to the

quasi-steady model used by |Andersen et al. (2005) as:

Fy = Z,oezéu' + pl'u — %pczi/ — Fys, (3.7)
Fo = —%pc@v' — pl'v' — %peQu’ — B, (3.8)
M = J,0 + pI' Ly — gpc3 (:Upiv — 5) v — MV, (3.9)

where e is the thickness of the foil; F, FY and MY are respectively the
normal force, chord force and moment due to the fluid viscosity; I' is the

circulation; Lt is the moment arm considering changes in the pressure center
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and J, is the added mass moment of inertia given by Brennen| (1982):
1
J, = %p (g + (2T i — 1)2) (& —e?)’ (3.10)

The circulation I' results from the translational velocity and rotational velocity
is:

1 .
I' = §CLCUeff -+ CRC2(9, (311)

where O, is the lift coefficient, Uesy = V H? 4+ U? is the effective incident
velocity and Cr = 7 (0.75 — x,;,) is the rotational circulation coefficient, as-
suming that the contribution of the pitch motion to the circulation is zero at
3/4 chord length from the leading edge of the foil (Sane & Dickinson| 2002)).
When the flow separations are taken into consideration, Cp, = Cps + Cpgq con-

tains the static lift coefficient C'1s and dynamic coefficient C'4 given by Bryant

et al. (2013):

Crs = 1.2sin (2a) (3.12)
. o . 402 U .
Cra+ 78b1CLd + b—2$b1CLd = zCLm (3.13)

where s3; and sy are empirical constants. The viscous forces (F]\’,is in Eq.
and F¥* in Eq. [3.8) and viscous moment (M"** in Eq. |3.9) are expressed by

Bryant et al.| (2013)):

F;\)[is 1 ) L ’U,
' = ipc (C’Dla:o cos” o+ Cpla=r/2 sin a) Uesy (3.14)
Fgls u/

. 1 ¢ . .
MY = §pCD|a:7r/2/ [v" + 10| (v' + 7’9) rdr (3.15)
0
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Table 3.1: Comparison of mean power coefficient and efficiency predicted by current
code, Bryant et al| (2013) and CFD simulations conducted by Kinsey & Dumas
(2008) at different f*, p and constant hg = 1, = 90°, xp;, = 0.333.

Kinematic fr=0.14 fF=0.18 fr=0.12 fr=0.06
condition 0y = 76.3° 0y = 60° 0y = 60° 0y = 76.3°
Method ap n Up n 613 n ap n
Current code 0.87 34.2% 0.24 10.1% 0.59 24.6% 0.28 11.8%
Bryant et al.| (2013) 0.87 34.1% 0.24 10.0% 0.59 24.4% 0.28 11.5%
CFD 0.86 33.7% 0.27 11.4% 059 24.5% — 12.3%

Kinsey & Dumas (2008))

where Cp is the static drag coefficient of the foil. The influence of the LEV
convection on the pressure center is introduced via two empirical constants
in the moment arm term Ly. By considering the the changes in the pressure

center resulting from the static and dynamic contributions Lr is expressed by

Bryant et al.| (2013) as:

c 1 T Th
Ly = 3 [2ajpw — 5 s (1 — Cos ( Tbl; >)} (3.16)

where 7, is the time variable to track the location of the LEV, T, is the empir-

ical constant corresponding to the instant at which the LEV is at the trailing
edge of the foil and sp3 is the empirical coefficient controlling the amplitude
of the dynamic pressure center migration. In the Bryant model (Bryant et al.
2013)), the empirical constants with respect to the dynamic stall effects have
been tuned using the CFD results of Kinsey & Dumas (2008)).

The Bryant model is reproduced with Matlab R2013b using the empirical
constants (sp; = 0.57, spe = 0.19, sp3 = 0.75 and Tj, = 1.8) suggested by
Bryant et al. (2013). The performance of the flapping foil power generator
predicted by the current code compares well with those of Bryant et al.| (2013)

and CFD simulations conducted by |[Kinsey & Dumas| (2008) in Table . The
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3. O , .
[|— Current code ]
| = =Kinsey & Dumas (2008) ]

5 dl= —Bryant et al. (2013) ]
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(b) Time history of Cs in one flapping cycle.

Fig. 3.4: Comparison of (a) lift and (b) moment coefficient given by current code
with those of Bryant et al.| (2013) and CFD results of Kinsey & Dumas (2008)) at
F*=0.14,00 = 76.3°, ho = 1.0, = 90° and ;, = 0.333.
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small difference between the results of the current code and those of Bryant
et al.| (2013)) may be due to the method used to solve the differential equation
(Eq. and the values of the constants Cpla—o and Cpla=r/2. The time
histories of C, = L/(1/2pU%c) and Cy; = M/(1/2pU?c?) in Fig. given by
the current code show reasonable agreement with those in |[Kinsey & Dumas
(2008)). The amplitude of C; given by the current code is a little smaller than
that given by Bryant et al. (2013) since Cp|a—o and Cp|a—r/2 Were not given
by Bryant et al. (2013)). Here Cpla—o = 0.13 and Cpla=r/2 = 2.3 are chosen
according to the drag coefficient C'p of the NACAQ0015 foil presented in Daniele
(2013). When Cpla—o = 0.5 and Cpla=r/2 = 1.8, Cj predicted by the current
code agrees well with that of Bryant et al.|(2013), but C'p increases from 0.87

to 0.89.

3.3 Immesrsed boundary-lattice Boltzmann

method

In this study, the incompressible flow is solved by a relatively new technique:
the lattice Boltzmann method (LBM) (Tian, Luo, Zhu, Liao & Lu/[2011} Tian
et al.2013). In addition, a multi-block technique is implemented to balance the
numerical accuracy and time cost. To couple the fluid and structure solvers,
the immersed boundary (IB) method is used to distribute the force to the grids

in the vicinity of the solid boundary.

3.3.1 Lattice Boltzmann method

Unlike conventional computational fluid dynamics (CFD) methods, which solve

the Navier-Stokes equation, the LBM simulates averaged macroscopic be-
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Fig. 3.5: Lattice arrangement for D2Q9 model.

haviour of the flow through the collision and propagation of fictive particles
over a discrete lattice mesh (Bosch & Karlin|2013). In the LBM, the statistical
behaviour of the particles is described by the distribution function f; (r,t) of
velocity ¢;, referring to the number of the particles positioned between r and
r+dr with the velocity from ¢; to ¢; +de; at instant ¢ (Mohamad|2011)), where
; indicates the direction of the velocity, as shown in Fig. [3.5 The difference
in f; (r,t) between the initial and final states after the collision is given by the

lattice Boltzmann equation:

~— s/ HH/_/
streaming collision

where €, (r,t) is the collision operator and f is the external force. To increase

the numerical stability of the LBM, the collision process is transformed from
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the velocity space to the momentum space (Lallemand & Luo|[2000):

fi(r+edt,t +dt) — fi (rt) = =M 5Sp [mp (r,t) — mS, (r, )] + fdt,
(3.18)
where Mg is the transformation matrix, S B is the diagonal matrix of the
relaxation rates, mpp is the vector of momentum and m$’g is the vector of
equilibrium momentum. For the D2Q9 model, where D2 represents the two

dimensional flow and Q9 represents the number of particle speeds as shown in

Fig. 3.5 the matrix Mg is given by [Liu et al| (2012):

-4 -1 -1 -1 -1 2 2 2 2

4 -2 -2 -2 =21 1 1 1

The diagonal matrix Spp is given by |Jami et al.| (2007) and Mohamad, (2011)

as:

Spp =diag (0,1.4,1.4,0,1.2,0,1.2,2/ (1 + 6v),2/ (1 +6v)), (3.19)
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where v is the kinematic viscosity. The vector of equilibrium momentum m$'y

is given by Mohamad| (2011)):

eq __ eq eq eq T
mi'p = (dp, M7y, Mgy, P, —pu, pv, —pv, Mg, puv) ",

where p is the density, w (u,v) are velocities in the fixed coordinate system
(2,9), %y = —2dp + 3p (u? +02), iy = dp — 3p (u® +12) and mily, =
p (u* —v?). In the numerical simulations, the process for solving Eq. is
split into the streaming and collision processes. Generally, these two steps are
computed separately.

At the nodes on the boundary of the computational domain, the velocity
is imposed as the inflow velocity; the pressure is obtained from the nearest
inner nodes; and the distribution function f; is computed through the non-

equilibrium extrapolation method (Guo et al.|2002)). When the flow is incom-

pressible, the pressure p and velocity w of the flow are given by

8
b= 0 (3.20)
1 Zzo
w=- Z fici. (3.21)
p 1=0

The process of LBM simulations is briefly summarized as: (a) initialize the
distribution function f; from macroscopic initial variables (pg, uo and vy); (b)
compute the streaming process on the left hand in Eq. 3.17} (¢) compute the

collision process in Eq. |3.17} and (d) calculate macroscopic variables p, v and
v through Eq. and
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Fig. 3.6: Interface structure between two blocks of different grid sizes.

3.3.2 Multi-block technique

In this study, the multi-block technique proposed by [Yu et al.| (2002) is imple-
mented into the LBM solver. The adjacent boundary of neighbouring blocks
with different time steps and grid spacings overlap and the information ex-
changed on the interface is implemented to ensure the mass conservation and
the continuity of stresses between blocks (Liu et al.2012). As shown in Fig.
, the nodes of grid spacing dz in the fine block overlap those of grid spacing
dx. in the coarse block in the vicinity of the interface. The distribution func-
tion f; at the nodes on the boundary of the fine block is exchanged with that
of the coarse block through interpolation using three-point Lagrangian formu-
lation. The streaming and collision processes of the LBM are firstly computed

in the coarse block. According to Eq. [3.19] the viscosity of the fluid is

v=2r,p—1)dz/6, (3.22)
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where 77,5 is the relaxation time. The relationship between the relaxation
times in the fine block T{ p and in the coarse block 775 are described by [Yu
et al.| (2002) as:
g = % + j—i (TEB - %) - (3.23)
In this study, the computational domain of 42¢ x 24¢ with the outer bound-
ary at 30c from the pivot location in Fig. is employed in the LBM to
predict energy harvesting performance, while that of 70c x 40c with the outer
boundary at 50c from the pivot location in Fig. is used to investigate the
vortices in the far downstream flow. As shown in Fig. [3.7 the computational
domain containing 17 blocks have 5 grid levels. Grid level 1 is the coarsest grid
in blocks I, II, I1I, IV; gird level 2 is in blocks VI, VII, VIII, IX; gird level 3 is
in the 4 blocks surrounded by blocks VI, VII, VIII, IX; gird level 4 is in the 4
blocks adjacent to block V; and gird level 5 is in block V. The time step and
grid spacing in the inner block are half of those in the adjacent outer block,

e.g. time step and grid spacing in block I, II, ITI, IV are half of those in block
VI, VII, VIII, IX.

3.3.3 Immersed boundary method

The fluid-structure interaction problem is simulated using the immersed bound-
ary (IB) method. Instead of adapting the grid to follow the movement of the
interface in body-conformed mesh methods, the IB method distributes the
stress exerted by the structure on the fluid to the stationary Cartesian gird
in the vicinity of the solid boundary. In the IB method, the velocity on the

Lagrangian boundary must satisfy the incompressible Navier-Stokes equation:

ou

Par +pu-Vu = —Vp+ pvViu + f, (3.24)
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(b) Computational domain with a size of 70c x 40c.

Fig. 3.7: Computational domain with 17 blocks and 5 grid levels used in the LBM
simulations.
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Fig. 3.8: The computational mesh near the foil.

where t is the time, w is the fluid velocity, f is the body force as a source
term. f on the Eulerian coordinate x (x,y) is related to the boundary force
f' exerted by the structure on the Lagrangian coordinate =’ (z’,y’). The
connection between the Eulerian mesh for the fluid solver and the Lagrangian

boundary for the solid solver is approximated by the Dirac § function (Liu

2012):
o) = /S Fs.t)6 (m—a (5,)) ds, (3.25)

where S is the enclosed solid boundary and 0 < s < 1 is the parameter tracking

the point on the Lagrangian boundary. This IB-LBM is efficient for solving

FSI problems involving large deformations (Peng & Luo| 2008, [Sotiropoulos &/

2014). The uniform orthogonal grid with immersed boundary is shown
in Fig. In Chapter [4 and [B], 2000 grid points are distributed over the foil
surface, while in Chapter [0 the same number of points is distributed over the

foil surface and 200 grid points are distributed over the tail.
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Table 3.2: Courant number N, and efficiency n with respect to the number of grid
points and At* at Re = 1100, f* = 0.14, 0y = 76.3°, ho = 1, o = 90°, 2p;, = 0.333.

At*\Total number of grid points 2.1 x 10® 3.3 x 10° 8.3 x 10°

Courant number N,

0.0020 0.040 0.050 0.080

0.0016 0.032 0.040 0.064

0.0010 0.020 0.025 0.040
efficiency n

0.0020 35.5% 35.1% 33.3%

0.0016 35.6% 35.5% 34.1%

0.0010 36.1% 36.1% 35.6%

Table 3.3: |Cp| and |Cp| with respect to the number of grid points and At* at
Re = 1100, f* = 0.14, 0y = 76.3°, hg = 1,0 = 90°, 24, = 0.333.

At*\Total number of grid points 2.1 x 10 3.3 x 10 8.3 x 10°

CL|
0.0020 1.3954 1.3861 1.3192
0.0016 1.4060 1.3955 1.3593
0.0010 1.4127 1.4050 1.3955
[
0.0020 0.2126 0.2045 0.1823
0.0016 0.2146 0.2146 0.1941
0.0010 0.2207 0.2205 0.2179

Table 3.4: \/C'i% and \/@ with respect to the number of grid points and At* at
Re = 1100, f* =0.14, 0y = 76.3°, hg = 1, = 90°, xp;,, = 0.333.

At*\Total number of grid points 2.1 x 10 3.3 x 10 8.3 x 10°

i
0.0020 1.4674 1.4619 1.3925
0.0016 14777 1.4675 1.4275
0.0010 1.4882 1.4830 1.4679
Ch
0.0020 0.2783 0.2609 0.2270
0.0016 0.2819 0.2817 0.2470

0.0010 0.2886 0.2883 0.2874
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Table 3.5: Computational results using different grid spacings in the outer blocks at
Re = 1100, f* =0.14, 0y = 76.3°, hg = 1, o = 90°, xp;,, = 0.333.

Case 7 IC.l  |Cu| RMSof C, RMS of Cyy
i 355% 1.3955 0.2146  1.4675 0.2817
i 35.2% 14159 0.2043  1.4921 0.2606
i 35.2% 1.4161 0.2045  1.4920 0.2609

3.3.4 Validations

The grid and time refinement is performed on a rigid foil with the computa-
tional domain size of 42¢ x 24c¢ at Re = 1100, f* = 0.14, hg = 1, 0y = 76.3°,
¢ = 90° and z,;, = 0.333. The convergence of hydrodynamic loads and 1 with
respect to the number of grid points and time steps is demonstrated respec-
tively in Table [3.2} Table where At* = At/Uc is the non-dimensional time
step size in the outermost blocks (I, I, IIT and TV). In the context of the multi
block technique, the non-dimensional time step size at the finest grid level in
the innermost block (block V in Fig. [3.7)) is At*/16. To justify the conver-
gence condition with respect to the Courant Friedrichs Lewy (CFL) condition,
Courant number Ny, = UAt/Az is listed in Table , where Az is the grid
spacing in the outermost block. For all the cases, Ny, is much less than 1.
The results in Table - indicate that when N, = 0.04, the efficiency
and hydrodynamic loads given by cases with different time and grid spacings
are almost identical. Hereafter a total number of 3.3 x 10° grid points and a
non-dimensional time step At* = At/Uc = 0.0016 are utilized. Simulations
with smaller grid spacing in the outer blocks are conducted to justify the in-
fluence of grid refinement. In Table B.5] the blocks of case i are the same as
those in the grid and time-step independence study; blocks I, IT, III and IV of
case ii use half the grid spacing of that used in the same blocks of case i; and

blocks VI, VII, VIII and IX of case iii use half the grid spacing of that used
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in the same blocks of case i. The differences in 7 of the 3 cases are less than
1%. The code using LBM is compiled with Intel Fortran on Linux system and
operated on a single Xeon/2.67-GHz processor. It takes 120 hours to compute

12 flapping cycles at f* = 0.14.

4

—1B-LBM
—-—Kinsey & Dumas (2008)

0 0.2 0.4 0.6 0.8 1
tT

Fig. 3.9: Comparison of lift coefficient with that of |Kinsey & Dumas| (2008).

The fluid solver is validated in predicting energy harvesting performance a-
gainst |[Kinsey & Dumas| (2008)) under the same condition as that in the previous
grid and time refinement analyses. As shown in Fig. [3.9] the instantaneous lift
coefficient C'y, given by the IB-LBM solver shows good agreement with that of
Kinsey & Dumas| (2008]). The simulation is converged after 12 flapping cycles
with the difference in efficiency of less than 1% between the last 5 cycles. Com-
pared with n = 33.7% and C, = 0.860 computed by [Kinsey & Dumas (2008)
using a Navier-Stokes solver provided in ANSYS Fluent 6.1, the LBM predict-
s a little higher = 35.5% and C, = 0.911. For validation of the IB-LBM
solver in solving fluid-structure interaction problems, a propulsion system of

two rigid elliptical foils linked through a torsional spring with non-dimensional
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[— IB-LBM .
15 ——Experiment (Toomey & Eldredge 2008) i

Fig. 3.10: Comparison of the tail angle with that of [Toomey & Eldredge| (2008)).

stiffness K,/ (pf2c') = 456 and non-dimensional damping R/ (pfc?) = 3.95 at
Rey = Uy pmazc/v = 1300 (Up may is the maximum translational velocity) investi-
gated by Toomey & Eldredge (2008)) is considered. One of the foils undergoes
prescribed motion driven by a two-axis motion stage with zp,, = 0.5. The
motion of the other foil is determined by FSI and the solid-to-fluid density
ratio of the passive foil is 5. The gap distance between the driven and the
passive foils is 0.049¢. The deflection of the passive foil was measured by an
HP HEDS-5540 encoder and 100 data points were recorded in each flapping
cycle. In this case, the mass and moment of inertia in Eq. are values per
unit span. As shown in Fig. [3.10] the displacement of the trailing foil agrees
well with the experiment data for a torsional flexibility model of [Toomey &

Eldredge| (2008).
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3.4 Multi-fidelity evolutionary algorithm

Evolutionary algorithms (EAs) are intelligent methods incorporating random
variation and selection inspired by biological evolution. They are commonly
used in various fields of science and engineering because they are applicable
for a wide range of problems and do not need assumptions on the mathe-
matical properties of the underlying functions (Fogel/[1997)). In addition, EAs
perform well in multi-objective problems since they evaluate several solutions
of the Pareto optimal set in a single run (Coello 2006). Due to the complex
influence of kinematic parameters on the performance of a flapping foil, native
use of evolutionary algorithms would require thousands of function evaluations
to achieve near optimal solutions. The high computational expense associat-
ed with repeated simulations, such as the Navier-Stokes equations, poses an
impediment to the application of evolutionary algorithms for the purpose of
design optimization. To reduce the computational expense, Shimizu et al.
(2008) implemented an EA with a low fidelity method with the assumptions
of planar wake and small amplitude given by Theodorsen (1979). The term
fidelity refers to the amount of physics or details implemented within the mod-
el. Generally, higher fidelity simulations are more accurate and require more
computational resources. For example, a simulation of a flapping foil power
generator using FLUENT by solving Navier-Stokes equations takes 100 hours
on a single P4/3.2-GHz processor (Kinsey & Dumas |2008), while the Bryan-
t model using semi-empirical functions takes less than 1 second on a single
Xeon/2.67-GHz processor (Liu et al.2016)). One promising way to reduce the
computational cost of such an optimization exercise is to use evaluation models
of different fidelities during the optimization process (Zhou et al. 2007, |Ong

et al.[[2003, [Loshchilovi2013)). Typically, the low fidelity solution can be ob-
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tained from data fitting, a physics based model and a simulation with coarser
mesh or relaxed criteria (Leifsson & Koziel |2015).

In this study, the fully prescribed system governed by Eq. and is
optimized using a probabilistic dominance based multi-fidelity optimization
algorithm. This multi-fidelity EA is implemented with physics based reduced
order models (the Bryant model reproduced in Section and the discrete
vortex method modified in Chapter . Compared to the function approxi-
mation model constructed by data fitting where substantial amount of data
samples is required to ensure the accuracy of the model, the physics based low

fidelity model requires less high fidelity solutions to obtain good accuracy.

Generation (Gga)=0, Used budget (Bga)=0

Compute probabilistic dominance based score

A 4

Generate child population (Cga) of pga individuals

A 4

Initialize population (Pga) of pga individuals \

Evaluate Cga with Fga;

A 4

Evaluate Pga with all fidelity levels (Fgai:Feam) v

Set Cga with Fgar-Fram as not evaluated
Cea(Feai:Feam)=Uga

A 4

Update Bga End

Bra<Total budget (Bramay

Yes
v

Gea=Geatl A

Y

T Set Pea with Fear-Feam as not evaluated
Pea(Fear:Feam)=Uga

A 4

Sea=Pea+Cea

Selection operator (SOga)

Fig. 3.11: Flowchart of evolutionary algorithm with multi fidelity method (main
progress). pupa is the population size and Fgy is the fidelity level from 1 to M
where M is the highest fidelity level.

The flowchart of the multi-fidelity evolutionary algorithm is shown in Figs.
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and [3.12] The proposed approach is an extension of the work described in
Branke et al.| (2017). The probabilistic score is derived based on the principles
discussed in Hughes| (2001) rather than from a logistic regression model in
Branke et al.| (2017). This method is based on (1 + A) evolutionary approach
which has a population of size upa and a recombination pool of size Ag4. As
shown in Fig. , the fitness values of all solutions (Pgs containing figa
individuals) are evaluated using all the fidelity levels (Fga; — Fran, where
a is the highest fidelity level) during initialization. The probabilistic score
and the standard error of the score computation involves prediction of highest
fidelity objective values of all solutions using the values of actually evaluated
neighbouring solutions at the highest fidelity level (Fgap). Crossover and
mutation operators are used to generate offspring solutions (Cga) of size g
from parent individuals (Pg4) for the next generation Gga. Then, the status of
parent and child individuals from the second to the highest fidelity levels (Fg o~
Franr) is marked as not evaluated (Uga). In the selection operator SOpy4 (Fig.
, the appropriate fidelity levels are selected in an iterative manner based
on the probabilistic dominance score. Based on the score, the solutions of
the parent and child populations (Sgpa=Pra+Cga) of 2ups individuals are
sorted based on evaluations at Fpa; — 1. Then the selection threshold (Tg4)
is computed based on the score. If the status of an individual is not evaluated
(Uga), the process to determine whether it needs to be evaluated at Fg4; will
be conducted. The solutions with the selection threshold (Tr4) within the
standard error threshold are identified to keep or discard: when the rank i is
less than or equal to the population size puga, the status of the individual is
marked as sure for keeping (K g4); otherwise it is marked as sure for discarding
(Dga). On the other hand, when T4 is greater than the standard error

threshold, the individual is identified for evaluation at the next higher fidelity
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level (Fga;). If the number of individuals marked as Kg4 or Dgy is sufficient
(equals to pga), individuals marked as Uga will be selected for evaluation
at the next higher fidelity level. This process continues till no solution is
selected for evaluation at the next higher fidelity level. A forcing method
(Branke et al. [2017)) is employed to reduce the risk that solutions based on
their low fidelity evaluations are approaching the optimum which is not truly
optimum if evaluated at the highest fidelity level. It updates the probabilistic
score by evaluating the solution with the smallest probabilistic score at the
highest fidelity level in each generation. Solutions (Sga) of 2uga individuals
are sorted and the parent population (Pg4) for the next generation is the
top ranked 1-ppga individuals. Even though the usage of time budget (Bga)
is updated in the selection operator (SOga in Fig. , the termination
criterion (Bga > Bpamaz) 1s at the end of each generation (Fig. . This
indicates that the actual time used Bgg, with the MFEA is larger than the
estimated time budget Bgama:. For comparison with SFEA, the best value
of the single objective function given by the MFEA when the estimated time
budget Bgamaz 18 used up is the interpolated value of the best objective values
at specified used time units (Bga at the end of each generation).

For comparison of the evolutionary algorithm with the classical optimiza-
tion method, a non-gradient based classical method, the complex method with
a randomization factor (Krus & Andersson |2003)), is reproduced with Matlab
R2013b. Non-linear functions of 3 fidelity levels (fi, fo and f3) proposed by

Branke et al.|(2017) are introduced to test the convergence of the optimization
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[=-=Fidelity 1 = =Fidelity 2 —Fidelity 3|
4 ) T T !

Function value

Fig. 3.13: Plot of the artificial functions of fidelity level 1-3, used to test the opti-
mization method. The global optima of the functions are marked with circles.

methods:
fi :min{ (x —2)* + 5sin (g (2+1)), (x+2) +5sin (g (@+1)) +§}
£ :min{ (¢ = 2)" +5sin (5 (2 +1)) + 4sin (w <x+g)> ,
oot ssimiess) e (e13) 2
1, :min{ (x — 2)% + 5sin (g (x—|—1)> +4sin (7? (:c—l—g))
+ 3sin <27T <x+£)) + 2sin (477 (x+§>) + sin (87 (z +2)),
(o 4+2)" + 5sin (5 (w+1)) + 4sin (7r <x—|— g))
| 3sin (27 <x+£)) 1 2sin (47 (w%)) + sin (87 (x + 2)) —2}

The artificial functions of fidelity level 1 and 2 (f; and fy) provide coarse

approximation to the function of the highest fidelity level (f3). In addition,
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the position of the global optimum of f3 is different from that of f; and f5 , as
shown in Fig. [3.13] It is assumed that solving f; and fs consumes respectively
1/3 and 2/3 computational time of solving f;.

In the complex method, the reflection coefficient determining the distance
between the reflection and the centroid points is 1.3 suggested by Box] (1965),
and the randomization factor used to generate random noise and repeat factor
used to prevent the complex from collapse are respectively 0.3 and 4 suggested
by |Andersson| (2001)). Following Branke et al. (2017) and [Deb et al. (2002),
the probability of crossover and mutation is set to 1 and 0.2, respectively in
the EA. The distribution indices for crossover (7.) and mutation (7,,) are set
as 20 and 30, respectively. The number of neighbours is set to three times the
number of design variables and the population size is 20 times the number of
objectives. The computational time budget is estimated based on the number
of simulations at the highest fidelity level, which is at least 100 times the
number of design variables.

Function values in the single-fidelity evolutionary algorithm (SFEA) and
the complex method are only given by f3, while function values of fidelity levels
1, 2 and 3 in the multi-fidelity evolutionary algorithm (MFEA) are respectively
given by fi, fo and f3. The number of vertices in the complex method and
the population size of the single-fidelity evolutionary algorithm (SFEA) and
multi-fidelity evolutionary algorithm (MFEA) are set to 20. A pre-defined
time budget equivalent to 3400 runs of f3 is employed in the single-objective
optimization problem solved by the three methods. The results in Fig.
are based on the average of 30 independent optimization runs with random
initial values. The convergence history shows that the starting points of the
optimization process using the complex method, SFEA and MFEA are the

same. Compared to the complex method where only one reflection point is
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Fig. 3.14: Convergence history of the singe-objective problem using the complex
method, single-fidelity evolutionary algorithm (SFEA) and multi-fidelity evolution-
ary algorithm (MFEA).



3.5. Summary 81

employed in each step, both the SFEA and MFEA provide better results at
the early stage of the optimization process (e.g. usage of budget less than 200,
Fig. due to the diversity of the individuals in each generation. Although
the rate of convergence of the SFEA and MFEA is similar, the MFEA is more

likely to converge to the global optimum of —16.5(Fig. [3.14al).

3.5 Summary

In this chapter, the physical problems investigated in Chapters were first
described. Then, the Bryant model (Bryant et al.|2013) was reproduced and
compared with results given by computational fluid dynamics (CFD) method
(Kinsey & Dumas |2008). Thirdly, an immersed boundary-lattice Boltzmann
method (IB-LBM) was presented and validated after grid and time step re-
finement against results given by the Navier-Stokes solver (Kinsey & Dumas
2008) and the experiment (Toomey & Eldredge 2008)). Finally, multi-fidelity
evolutionary algorithm (MFEA) was presented and a study on the convergence
of the complex method and the evolutionary algorithm using multi and single
fidelity strategies was conducted.

As mentioned in Chapter [2] it is computationally prohibitive to use compu-
tational fluid dynamics (CFD) methods for optimizing the energy extraction
performance of a flapping foil power generator. To reduce the time costs and
take into account the influence of the formation of leading edge vortices (LEV-
s), the the Bryant model which introduces dynamics stall effects was repro-
duced with Matlab. The Bryant model only took several seconds and agreed
well with CED results of Kinsey & Dumas| (2008) under specified conditions
when the constants are tuned appropriately. The Bryant model reproduced in

this chapter and an improved discrete vortex method in which empirical con-
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stants are independent of kinematics of the flapping foil developed in Chapter
will be implemented into the MFEA to optimize the energy extraction per-
formance.

To obtain details of the flow field and solve fluid-structure interaction (FSI)
problems, IB-LBM is used in this study. The IB-LBM is efficient to simulate a
flapping foil undergoing large displacement (i.e. the order of the amplitude of
the plunge motion is the same as that of the chord length) and large deforma-
tion (i.e. the order of the amplitude of the tail angle is the same as that of the
pitch motion) since it avoids mesh movement and regeneration. In addition,
a multi-block technique and parallelization using OpenMP were employed to
reduce time costs. The results of the IB-LBM showed good agreement with
those of the Navier-Stokes solver (Kinsey & Dumas 2008) and the experiment
(Toomey & Eldredge|2008).

Considering the non-linearity of the flapping foil problem, an evolutionary
algorithm is used to optimize the kinematic parameters of the flapping foil
power generator. A multi fidelity strategy is employed to reduce the number
of evaluations for optimization. The converge of the optimization problem
implemented with artificial functions showed that the MFEA converged faster
than the traditional optimization method, the complex method, and was more
likely to converge to the global optimum compared to the evolutionary algo-
rithm using single fidelity strategy. Further discussions on the convergence of
the evolutionary algorithm using multi and single fidelity strategies to solve

the flapping foil problem will be presented in Chapter [5



Chapter 4

Discrete Vortex Method with

Flow Separation Corrections

The Bryant model (Bryant et al.|[2013) reproduced in Section shows rea-
sonable agreement with the CFD results. However, the empirical constants
with respect to dynamic stall effects were tuned using the CEFD results of |[Kin-
sey & Dumas| (2008). These constants which are tied to both geometries and
kinematics effectively limit the application of the Bryant model to a range of
parameters validated by the CFD results. In this chapter, a physics-based
model which is only Reynolds number and foil geometry dependent for aero-
dynamic modelling is developed to reduce the computational cost for flapping
foil analysis and to pave the way to engineering design and optimization with
higher fidelity and range of applicability than provided by the Bryant or simi-

lar methods, but still with dramatically reduced computational cost compared

The following papers have been published from this chapter:

[1]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. A discrete vortex
method for flapping foil power generator modeling at low Reynolds numbers. In 24th Inter-
national Congress of Theoretical and Applied Mechanics, Montreal, Canada, August 2016.
[2]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. Discrete vortex
method with flow separation corrections for flapping-foil power generators. AITAA Journal,
55(2):410-418, 2017.
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to the CFD methods. In Section [4.1] the model based on the discrete vortex
method (DVM) is described, which incorporates the formation and evolution
of LEVs and empirical functions analogous to the Leishman-Beddoes model
(1989) to account for the trailing edge flow separation. In Section the com-
putational time of the DVM with flow separation corrections is compared with
that of the immersed boundary-lattice Boltzmann method (IB-LBM). Then re-
sults given by the modified DVM and the Bryant model reproduced in Section
3.2| are quantitatively compared against IB-LBM simulations and numerical

and experimental results in the literature under different flow conditions.

4.1 Code development

The discrete vortex method is a potential flow approach to model unsteady
flows. In this method, the foil is discretized by consecutive flat panels. Re-
duced order models based on this method were modified to model LEVs in
unsteady flows by introducing some criteria for the onset of vortex shedding,
for example, critical angle of attack (Hammer et al.|2014) and leading edge
suction parameter (Ramesh et al.|2014). Although with these criteria, rea-
sonable flow patterns can be obtained, aerodynamic loads acting on the foil
are generally over predicted (Pan et al.|2012). Since these models typically
assume only flow separation at the leading edge, neglecting the influence of
the trailing edge flow separation is not always physically realistic. In this sec-
tion, the fundamentals of the DVM and corrections in terms of the leading
edge flow separation are described and empirical functions proposed by Leish-
man & Beddoeg (1989) are introduced to take into account the reduction in

aerodynamic loads corresponding to the trailing edge flow separation.
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Fig. 4.1: Aerodynamic loads for a NACAO0015 foil with fixed coordinate system (z,y)
and foil coordinate system (2’,y") where its origin is at the leading edge of the foil.
Vortex shed from the trailing edge of the foil.

4.1.1 Large amplitude thin aerofoil theory

The Leishman-Beddoes model (Leishman & Beddoes||1989) has been developed
for helicopter blade analysis with a maximum angle of attack of 10° in the
majority of studies. In this model, the lift and moment coefficients of unsteady
attached flow are predicted by the Theodorsen’s theory (Theodorsen |(1979).
However, the application of this classical method is limited by the assumptions
of planar wake and small amplitude and is unsuitable for simulations of a
flapping foil power generator. To obtain unsteady attached flow solutions
at high angles of attack, the DVM outlined by [Katz & Plotkin| (2001) and
extended to non-planar wake and large amplitude simulations is used here.
The DVM attempts to model unsteady flows by discretization of the dis-

tributed vorticity by a finite number of small discrete vortex elements. The
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flapping foil and its wake are respectively modelled by bounded and free vor-
tices. According to the discrete vortex method, trailing edge vortices start to
shed from the trailing edge at each time step from time ¢ > 0. The free vortices
move downstream with the flow particles and their strength remains constant.
The velocity induced by each vortex element is obtained using the Bio-Savart
Law. Then the velocity field is computed as the sum of the velocities induced
by the bounded and free vortex elements.

The local velocity normal to the foil v/ (z,t) in the foil coordinate system
(',y') in Fig. can be computed according to the boundary condition (Katz
& Plotkin|2001):

0%, 0dr

v (2 t) = H cosf — Usine—l—é(x’—xpwc) — 8_3/’ _ a_y”

(4.1)

where @, and &1 are the velocity potentials with respect to leading and trailing
edge vortices. The chordwise position 2’ is transformed using the chordwise

coordinate transformation variable ¢ as (Katz & Plotkin/2001)):

(1 —cos?). (4.2)

l\DI(‘:

Based on this transformation, a solution to the vorticity distributions v (¢, t)
over the foil is proposed for the time dependent problem (Katz & Plotkin
2001):

14+cos?
v (9,t) =2U | Ao (t) o ZA )sin (nd) |, (4.3)

where the coefficients A,, (¢) which implicitly satisfy the Kutta condition (zero
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vorticity at the trailing edge) are computed by (Katz & Plotkin/[2001))

1 [™W (0,t
Ap (t) = —;/0 %dﬁ, (4.4)
2 s
A, (t) = ;/0 W cosnddd,n =1,2,3, ... (4.5)

The strength of the latest leading and trailing edge vortices can be calcu-
lated using Kelvin’s condition (i.e. the total circulation which must be zero

for a converged solution, Katz & Plotkin [2001)):
i—1
[ (t)+ Ty (t) + Z Lyi =0, (4.6)
k=1

where T'(t) is the circulation bounded on the foil, T'y; (t) is the circulation
of leading and trailing edge vortices at the current time step ¢;, and the last
term is the circulation of all the vortices I'y, shed in the previous time steps.
The circulation of the foil can be obtained by integrating 7 (¢,¢) along the

chordwise coordinate (Katz & Plotkin |2001])

I (t) = /0 " 9.4 dd = Uer [AO ) + Al;ﬂ | (@7

4.1.2 Criterion for LEV formation

Experiments (McCroskey| 1981} [Lee & Gerontakos |2004) have shown that the
leading edge separation is correlated to the reversed flow which develops down-
stream of the suction peak around the leading edge. Inspired by studies on the
separation at the leading edge, a criterion referring to the leading edge suction
force is introduced by Ramesh et al.| (2014]) to predict the formation of the

LEV. This criterion, named the leading edge suction parameter (LESP), is a
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non-dimensional measure of the suction at the leading edge

LESP (t) = Ay (1) (4.8)

A critical value of the leading edge suction parameter, named LESP, is
set such that discrete vortices start to shed from the leading edge when the
instantaneous |LESP (#) | is higher than LESP and terminate when |LESP (¢) |
falls below LESP,. LESP, is empirically determined by the aerofoil profile
and Reynolds number (Re) regardless of kinematic parameters (such as 6y, hg
and f*) and the pivot location. When LEV forms, the strengths of vortices
shedding from the leading and trailing edge are determined by solving Eq.
and |LESP (t) | = LESP,. Here, LESP, = 0.19 (NACAO0015 foil, Re = 1100)
suggested by Ramesh et al.| (2014)) is used. It should be noted that the leading
edge separation point is enforced exactly at the leading edge in this study.
The effect of this assumption on the accuracy of the DVM calculations may
be explored in a future study by determining the separation point based on

experimental data (see Katz| (1981)) and |Antonini et al.| (2014)).

4.1.3 Trailing edge flow separation

In the DVM with LESP, the influence of the flow separation point movement
starting from the trailing edge is neglected because vortex shedding is enforced
at the leading and trailing edge. Here, the Kirchhoff flow approximation mod-
ified by |Leishman & Beddoes| (1989)) is used for trailing edge flow separation
corrections (TEFSC). This simple method using semi-empirical functions to
account for unsteady flow separations gives the following expressions for nor-

mal force coefficient C”, chord force coefficient C” and moment coefficient
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C3 (Bauchau [2007)):

2

. 1 A/ fsep
Oﬁpzoﬁr( +2f ) |
Ce? = Cev/ fror, (4.10)

3 = [+ b (L= ) + ysin (7 (7)) CR7, - (411)

where f*? is the separation point, C{" is the circulatory normal coefficient
and C¢ is the leading edge suction force coefficient. Empirical constants k; =
—0.135 and ks = 0.04 (only data of NACAQ012 is available in Bauchau [2007,
independent of Re) represent the direct effect on the center of pressure due to
the growth of the separated flow region and the shape of the moment break
due to the stall effects respectively (Bauchau/2007)).

The position of steady-state separation point f; is generally a nonlinear
function of the angle of attack «. In principle, the function f3* could be
obtained from wind tunnel tests. In the Leishman-Beddoes model (1989),
the relationship between f; and « is generalized empirically as a piecewise

function (Dyachuk et al.[2013):

_ laj—aa
o _ 1 O.36Xp< o ) la| < ay

o , (4.12)
0.04 — 0.66exp (C”S;Zlal> la| = ay
where constant S; = 3.0, Sy = 2.3, a3 = 15.25° (only data of NACA0012
is available in Bauchau 2007, independent of Re) are determined from static
experimental data (Bauchau/2007)).
For unsteady flow conditions, the effective separation point f* differs from
the stationary value due to the boundary-layer convection lag. To capture the

transient dynamic effects, the movement of f*? can be described using a first
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order differential equation (Goman & Khrabrov|1994, Fan & Lutze [1996)):

dfsep
dt

R P = 7 (0 md), (4.13)

where 7 = 0.52¢/U and 1o = 4.5¢/U (NACAO0015, independent of Re) are

relaxation time constants (Goman & Khrabrov|/1994).

4.1.4 Integration of hydrodynamic loads

The pressure distributions on the foil can be computed from the unsteady

Bernoulli equation (Katz & Plotkin [2001):

) ) d

Ap(x')=p (—Hsin9+ U cosf + O + 0 T) v (2)
oz’ Oz

(4.14)

8 x/ / /
—i—pE/ v (z") da’.

The circulatory normal force coefficient C" due to the instantaneous cir-
culation and the non-circulatory normal force coefficient C'y"" including the
contribution of the time dependency are obtained by integrating the pressure

over the foil and normalising with (1/2) pUZc,

cir __ 2_7T ‘T 1
cy = i (—H sinf + U cos 9) (Ao (t) + 2A1 (t))
2 @ aq)L aCI)T / !
U2 ; ( B + op ) v (2’ t) da’, (4.15)
non 2mC (3 1. 1.

The leading edge suction force coefficient C¢ is calculated by the Blasius
formula (Garrick [1937):
Co =21 A (1) (4.17)
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Using Egs. (.9, and [£.16], the lift coefficient C'p is given by
CL = (CR"+ Cy") cos — CZPsind. (4.18)

When the effect of the trailing edge flow separation is introduced through

Eq. 4.11} the moment coefficient about x,;, can be expressed as

Car = [(pi0 + k1 (1— [*7) + kysin (r (fsep)g)) CN? + O i)

2

U(1+ fijK_Hgna+Umuﬂ(imﬂw+iAmn—éAﬂw>}

2| [T (0D, 0Dy L
_ 1 sep
U202< VI ) /0 (8:5’ * 8x’)7<$’t)xdx
2mc | 7 . 3 . 1 . 1 .

(4.19)

4.2 Code validation and discussion

4.2.1 Computational time

In the runtime test, the Bryant model, DVM and IB-LBM are all compiled
with Intel Fortran on Linux system and operated on a single Xeon/2.67-GHz
processor. As shown in Fig. when the non-dimensional time step At* =
AtU/c = 0.010 and 0.015, the differences in 7 of the three cases after seven
flapping cycles is less than 3% at Re = 1100, f* = 0.14,6y = 76.3°, hg = 1,0 =
90° and z,;, = 0.333. Thus At* = 0.015 is used for simulations of the DVM.
In the Bryant model, the same At* = 0.015 is used for comparison with the
DVM; and At* = 0.0015 is utilized in the IB-LBM to ensure the convergence
of the simulations. ¢ = 90°, z,;, = 0.333 and ho = 1 are fixed here.

The results of the Bryant model do not change with the increase of the
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flapping cycle

Fig. 4.2: Cycle-to-cycle convergence of the efficiency predicted by the discrete vortex
method at Re = 1100, f* = 0.14,0p = 76.3°, hg = 1, o = 90° and z;, = 0.333.

Table 4.1: Computational time of the DVM with TEFSC and the IB-LBM for
various number of simulated flapping cycles. LBM .vs. DVM stands for the ratio of
the computational time of the LBM to the computational time of the DVM.

Kinematics | Cycles |  DVM LBM LBM .vs. DVM
fr=0.18 1 2.6 (s) 28665.6 (s)  10831.1
0o = 60° 2 18.9 (s) 54948.7 (s) 2903.3
4 129.5 (s) 110994.8 (s) 857.0
8 418.0 (s) 226006.3 (s) 540.6
12 708.3 (s) 337389.2 (s) 476.3
fr=014 1 8.1 (s) 33274.1 (s) 4121.3
0y = 76.3° 2 53.9 (s) 66586.0 (s) 1235.7
4 334.2 (s) 139745.8 (s) 418.2
8 1062.4 (s) 284028.5 (s) 267.4
12 1813.8 (s) 433331.3 (s) 238.9
fr=012 1 10.0 (s) 42524.6 (s) 4244.6
0o = 60° 2 1.1 (s) 84443.2 (s) 1188.1
4 334.0 (s) 170784.7 (s) 511.3
8 882.5 (s) 352264.3 (s) 399.2
12 1456.8 (s) 511074.5 (s) 350.8
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number of flapping cycles simulated. Thus, only the first cycle of the Bryant
model is computed, which takes less than 1 second. 12 flapping cycles of DVM
and IB-LBM are computed here because IB-LBM converges after 12 cycles as
discussed in Section [3.3] Since the time step is fixed, the computational time
of the IB-LBM increases monotonically with decreasing f*, as shown in Table
for three different kinematics conditions, because the total number of time
steps per flapping cycle increases with decreasing f*. Table illustrates that
for the calculations of DVM with TEFSC, the computational time required
depends not only on the total number of time steps per cycle but also on the
number of leading edge vortices shed due to increasing resources required to
compute every vortex element shed from the leading edge and the trailing edge.
According to |[Kinsey & Dumas| (2008), when f* = 0.14 and 6, = 76.3°, strong
vortices form at the leading edge of the foil while no obvious LEV is observed
in the other two cases. Hence, for f* = 0.14 where there is a large number of
vortices, the computational time after 4 cycles is higher than that for f* = 0.12
and f* = 0.18 where there are a very small number of vortices. Nevertheless,
as shown in Table[4.1] the computational time required for DVM with TEFSC
with three different kinematic conditions spanning a range of very few LEVs to
many LEVs is at least two orders of magnitude less than that of the IB-LBM.
In addition, the rate of increase in computational time of the DVM is greater
than that of the IB-LBM when more cycles are simulated. However, the DVM
converges after 7 flapping cycles (Fig. while the IB-LBM converges after
12 flapping cycles. Thus in real applications, the time consumption of the

DVM is much less than that of the IB-LBM.
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Fig. 4.3: Comparison of (a) lift coefficient Cf, and (b) power coefficient Cp at f*

0.14, 6y = 76.3°, hg = 1, ¢ = 90° and xp;, = 0.333 given by the DVM with and
without TEFSC, Bryant model (Bryant et al.|2013) reproduced in Section and

CFD simulations conducted by Kinsey & Dumas| (2008)).
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Fig. 4.4: Comparison of (a) lift coefficient Cr, and (b) power coefficient Cp at f* =
0.14, 6y = 76.3°, hg = 1, ¢ = 90° and xp;, = 0.333 given by the DVM with and
without TEFSC, Bryant model (Bryant et al.|2013) reproduced in Section and
CFD simulations conducted by Kinsey & Dumas| (2008)).
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Table 4.2: Comparison of mean power coefficient C'p, efficiency n and root mean
square (RMS) error of the instantaneous power coefficient Cp given by the DVM
with TEFSC (DVM1), DVM without TEFSC (DVM2) and Bryant model (Bryant
et al.[[2013) reproduced in Section against CFD results of Kinsey & Dumas
(2008).

Kinematics | Parameter | Bryant DVM1 DVM2 CFD(Kinsey & Dumas|2008)

f*=0.14 Cp 0.87  0.86 1.12 0.86
6y = 76.3° n 34.1% 33.4% 43.8% 33.7%
RMS 0.55 0.19  0.45 -
f*=0.18 Cp 0.24 0.37 041 0.27
0y = 60° n 10.1%  15.6% 17.3% 11.4%
RMS 037 024  0.52 -

4.2.2 Averaged and instantaneous coefficients

To evaluate predictions provided by the DVM and Bryant model, two cases
are selected for comparison because strong LEVs are predicted in the first case
(f*=0.14, 6y = 76.3°) and no LEV is observed in the second case (f* = 0.18,
6y = 60°) with ¢ = 90°, z,;, = 0.333 and hy = 1. Both the DVM with
TEFSC and Bryant model (Bryant et al|?2013) give reasonable C'p and 7
while the DVM without TEFSC gives higher C'p and 7 compared with those
of [Kinsey & Dumas (2008) (Table [4.2)). Since a good synchronization of lift
force with the plunge and pitch rate gives a good performance of a flapping
foil power generator, it is worthwhile to examine the phase and amplitude of
instantaneous C. In both cases, the instantaneous C, and Cp predicted by
the DVM with TEFSC (solid line) give better approximations to the CFD
results (Kinsey & Dumas 2008) compared to the DVM without TEFSC and
the Bryant model (Bryant et al.2013). In addition, root mean square (RMS)
errors of instantaneous Cp in Table also demonstrates that the DVM with
TEFSC is superior to the Bryant model even if the Bryant model gives a better
Cp at f* = 0.18, 6y = 60°. In the first case (Fig. , the non-dimensional



4.2. Code validation and discussion 97

time at which the peaks of 'y and Cp appear obtained by the Bryant model
(Bryant et al.|2013)) is significantly different from those of the DVM and Kinsey
& Dumas (2008). In the second case (Fig. [£.4), the instantancous Cf, and
Cp predicted by the DVM without TEFSC are nearly doubled in half of one
stroke compared with those of |[Kinsey & Dumas (2008). This is attributed to
two factors: (a) although no LEV is observed in CFD simulations, C, is over
predicted because the leading edge suction parameter exceeds the critical value
LESP,, resulting in some LEVs for the DVM calculations; and (b) the influence
of the trailing edge flow separation resulting in lower aerodynamic loads is
neglected. When TEFSC is incorporated into the DVM, the overprediction
of C, and Cp has been significantly reduced by taking into account of the
trailing edge flow separation, but C; and Cp are still higher than those of
Kinsey & Dumas (2008]) because the leading suction parameter exceeds the
critical value LESP( resulting in some LEVs even though there are no LEVs
observed in CFD simulations. As shown in Fig. [4.4] results of the Bryant
model (Bryant et al.[|2013) give underestimated amplitudes of C, and Cp and
phase differences of the coefficient curves compared to results of Kinsey &
Dumas| (2008).

Since time histories of C; and Cp for different pivot locations are not avail-
able in Kinsey & Dumas| (2008]), the IB-LBM code is used here for validations.
The instantaneous C7, obtained by the Bryant model (Bryant et al.|2013) is
the same at the same ¢/T even though the pivot location is different when
Ty = 0.25 (Fig. , Ty = 0.333 (Fig. and z,, = 0.75 (Fig.
because the influence of the pivot location on the angle of attack has not been
taken into account in the Bryant model (Bryant et al.2013). On the other

hand, the DVM with TEFSC shows two obvious peaks near /7" = 0.1 and

t/T = 0.4 with x,;, = 0.25 (Fig. , Tpip = 0.333 (Fig. [4.3a) and one peak
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Fig. 4.5: Time histories of Cr, Cys and Cp predicted by the DVM with TEFSC, IB-LBM and Bryant model (Bryant et al.|[2013) when
Tpiw = 0.25 at f* = 0.14, 0y = 76.3°, hg = 1 and ¢ = 90°.
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Fig. 4.6: Time histories of Cr, Cys and Cp predicted by the DVM with TEFSC, IB-LBM and Bryant model (Bryant et al.|[2013) when
Tpiv = 0.75, with f* = 0.14, 6y = 76.3°, hg = 1 and ¢ = 90°.

UOISSNOSIP pue UOIjepI[eA 9PO)) "T'F

66



4.2. Code validation and discussion 100

near t/T = 0.5 with z,, = 0.75 (Fig. during the first half cycle which are
quite similar to those obtained by the IB-LBM. Furthermore, the peak value of
C'p, around t/T = 0.4 given by the DVM with TEFSC and IB-LBM increases
when z,;, move aft (Fig. and . Even though the trends of Cy,
obtained by the the Bryant model (Bryant et al.|2013), DVM with TEFSC
and IB-LBM are similar for different pivot locations (Fig. and [4.6)), the
peak location (Fig. [4.5) and amplitude (Fig. [4.6)) of Cp which contains the
contribution of C, and C); obtained by the Bryant model (Bryant et al.|2013)
are different from those obtained by the DVM with TEFSC and IB-LBM.
Results given by the reduced order models are also compared with the
experimental data of Simpson| (2009). In this experiment, the NACA0012
foil undergoes a non-sinusoidal plunge motion to keep the angle of attack «
sinusoidal at a Reynolds number of 13800. The instantaneous « and 6 are

given by

0 (t) = Oy sin (27 ft), (4.20)

a(t) = apsin (27 ft), (4.21)

where qg is the maximum angle of attack during one cycle. The plunge motion
H is obtained by integrating H
t t
H(t) = / H(t)dt = / tan (0 (t) — a(t)) Udt. (4.22)
0 0
Since the skin-friction coefficient from the experiment is unavailable, the
LESPy is determined using RMS errors in the lift coefficient between the ex-

perimental data and results of the DVM with TEFSC. The high efficiency case

(f* =0.133, ap = 38.9° and hy = 0.75) is used as the baseline motion for the
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Fig. 4.7: Influence of LESPy on the RMS error in C}, between experimental data
(Simpson|2009) and results of the DVM with TEFSC.

determination of LESP,. As shown in Fig. the RMS error is minimum at
LESPy = 0.22. Thus, LESPy is taken to be 0.22 here.

Similar to the validation against results of IB-LBM and Bryant model
(Bryant et al. 2013) in Fig. and Fig. [4.4] two cases of high efficiency
(f* = 0.133, ap = 38.9°) and of low efficiency (f* = 0.2, ap = 53°) with
ho = 0.75 and x,;, = 0.333 are selected for comparison of the lift coefficient C'y,
obtained by the Bryant model (Bryant et al.2013)) and the experimental data
of Simpson| (2009) with DVM with and without TEFSC in Fig. In both
cases, the DVM with TEFSC gives better predictions compared to the DVM
without TEFSC and Bryant model (Bryant et al.|2013)). In particular, when
the angle of attack is high (ap = 53°, Fig. , predictions given by the DVM
with TEFSC are reasonable while there are significant differences between C'p,
predicted by the DVM without TEFSC and the experimental data (Simpson
2009). It is also clear from Fig. that the Bryant model (Bryant et al.

2013)) fails to predict the trend of Cp. The discrepancies between predictions
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Fig. 4.8: Comparison of Cp, predicted by the DVM with and without TEFSC and
Bryant model (Bryant et al. 2013) against experimental results of Simpson| (2009))
at hg = 0.75, ¢ = 90° and xp;, = 0.333.
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of the Bryant model (Bryant et al.2013) and DVM without TEFSC and the
experimental data could be attributed to the significant effects of the trailing
edge flow separation at high o which are neglected in the Bryant model (Bryant
et al.|2013) and DVM without TEFSC. These results demonstrate that when
compared with the CFD and experimental results, the DVM with TEFSC pro-
vides reasonable results for the analysis of a flapping foil power generator, but

with substantially less computational resources (2 orders of magnitude less,

see Section [4.2.1]).

4.2.3 Kinematic parameters

For further validation of the DVM with TEFSC over a set of kinematic param-
eters, the contours of efficiency are compared with those of Kinsey & Dumas
(2014)) to examine predictions of the optimal kinematics. The results are also

compared with the Bryant model (Bryant et al.|2013)).

Fig. [4.10] and [.11] display contours of the efficiency as a function

of f* and 0y at hg = 0.75, hg = 1 and hy = 1.5 respectively. Both the D-
VM with TEFSC and Bryant model (Bryant et al.2013) predict the trend
that the region of positive and high efficiency (n > 30%) narrows and 6, for
high efficiency increases as hg is increased from 0.75 to 1.5 . This can be
partially explained as the optimal kinematic parameters share a similar maxi-
mum angle of attack approximated by the modulus of the quarter-period value
ar/s = |0 — arctan(wH,/U))| (Kinsey & Dumas |2014). In addition, the op-
timal f* around 0.14 regardless of hq differences and 6, around 75° at hy = 1
captured by these two reduced order models are the same. However, the opti-
mal 6y of around 70° and 90° at hy = 0.75 and hy = 1.5 respectively obtained

by the Bryant model (Bryant et al. 2013)) is different from that of around 75°
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and 85° obtained by the DVM witph TEFSC and Kinsey & Dumas (2014).
The similarity in major features of optimal kinematics captured by the DVM
with TEFSC and |[Kinsey & Dumas| (2014)) demonstrates the capability of the
DVM with TEFSC for kinematics optimization. Furthermore, in the Bryant
model (Bryant et al|2013]), constants in the equations accounting for dynam-
ic stall effects and the influence of varying pressure center caused by LEVs
transition on the moment are tuned to match the results of |Kinsey & Dumas
(2008) at f* = 0.14, 6y = 76.3°, hg = 1, ¢ = 90° and z,;, = 0.333 and tied
to the flow condition, foil geometry and, particularly, kinematic parameters.
This could partially explain the difference in optimal 8y obtained by the Bryant
model (Bryant et al.|2013) compared to the results of DVM with TEFSC and
Kinsey & Dumas (2014) when hq deviates from 1, thus limiting the applica-
tion of the Bryant model (Bryant et al.|2013) to parameter space validated by
CFD simulations or experiments of the flapping foil power generator. On the
other hand, empirical constants used in the DVM with TEFSC which govern
the LEVs formation (leading edge suction parameter, LESP) and trailing edge
flow separation (Kirchhoff flow approximation) only rely on the flow condi-
tion (Re = 1100, incompressible flow) and the foil profile (NACA0015). These
constants can be identified from skin friction analysis regardless of motion kine-
matics (critical LESP (Ramesh et al.|2014)) and ramp-up motion experiments

(constants used in the Kirchhoff flow approximation (Bauchau [2007)).

4.3 Summary

Modelling aerodynamic forces on the flapping foil by reduced order methods
based on physical mechanisms is useful in power extraction analysis when a

large number of cases are investigated, for instance, for design optimization. In
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this chapter, a reduced order model based on the discrete vortex method (D-
VM) and Leishman-Beddoes dynamic stall model (Leishman & Beddoes|1989)
to capture flow separations at both leading and trailing edges of a flapping
foil power generator has been presented. This DVM with trailing edge flow
separation corrections (TEFSC) takes far less computational time (at least
two orders of magnitude) compared to the immersed boundary-lattice Boltz-
mann method (IB-LBM) which is 15 times faster than the Navier-Stokes solver
(Barad et al.|2017)). Then, the Bryant reduced order model (Bryant et al.|[2013))
based on the quasi-steady model and ONERA dynamic stall model and DVM
with TEFSC were used for aerodynamic modelling and kinematic analysis of
a flapping foil power generator with prescribed pitch and plunge motions.
For kinematic conditions upon which the constants are tuned in the Bryant
model (Bryant et al.|2013), the mean power coefficient and efficiency obtained
by the Bryant model (Bryant et al|2013) and the DVM with TEFSC are in
good agreement with those of Kinsey & Dumasg| (2008)). However, for kinemat-
ic conditions outside the range on which the constants of the Bryant model
(Bryant et al.[|2013) are based such as changing the pivot location, results here
show that the DVM with TEFSC captures the physics of the flow much better
than Bryant model (Bryant et al.|2013]) compared with CFD simulations based
on the IB-LBM. Examination of the influence of the plunge amplitude shows
that the optimal frequency and pitch amplitude of a flapping foil power genera-
tor obtained by the DVM with TEFSC approximate results of [Kinsey & Dumas
(2014)) better than the Bryant model (Bryant et al.|2013) and demonstrate the
capability of the DVM with TEFSC to predict the optimal kinematic param-
eters for high performance of a flapping foil power generator. In addition, the
empirical constants used in the DVM with TEFSC are only dependent on the

Reynolds number and foil profile and the low computational cost makes the
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DVM with TEFSC an attractive tool for optimization, engineering design and

performance analysis of the flapping foil generator.



Chapter 5

Kinematic Parameters

Optimizations

In this chapter, the search for combination of kinematic parameters with high
energy extraction performance from a flapping foil is discussed. An in-house
multi-fidelity evolutionary algorithm (MFEA) code described in Section
is employed with the Bryant model (Bryant et al. 2013]) reproduced in Sec-
tion [3.2] and the discrete vortex method (DVM) modified in Chapter [l The
convergence performance of EA using single and multi fidelity strategies is
first examined through a single objective problem with two variables. Then,
five kinematic parameters are optimized using the multi-fidelity strategy for
two different cases: (a) maximization of efficiency (single objective problem);
and (b) maximization of efficiency and power output (bi-objective). The so-
lutions are further evaluated using the immersed boundary-lattice Boltzmann

method (IB-LBM described in Section and discussed in detail through

The following paper is based on this chapter:

[1]. Zhengliang Liu, Kalyan Shankar Bhattacharjee, Fang-Bao Tian, John Young, Tapabrata
Ray, and Joseph C.S. Lai. Kinematic optimization of a flapping foil power generator using
multi-fidelity evolutionary algorithm. Renewable Energy, submitted
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hydrodynamic loads and flow fields in order to provide insight into the physics

underpinning the performance of a flapping foil power generator.

5.1 Parameter settings of the evolutionary al-
gorithm

In the EA code, the probability of crossover and mutation are set to 1 and 0.2
respectively. The distribution indices for crossover (7.) and mutation (7,,) are
set as 20 and 30 respectively, as those in Section

As discussed in Chapter [4], the differences in 7 given by the modified DVM
are negligible after seven flapping cycles. Thus, the solution evaluated by the
DVM of 7 flapping cycles is considered as the highest fidelity estimate. There
are 8 fidelity levels for the solutions of the flapping foil problem. The lowest
fidelity estimate (fidelity 1) is based on the Bryant model, while the fidelity 2-8
estimates are based on modified DVM using 1-7 flapping cycles respectively.
Because of the substantial computational time required, the IB-LBM is only
used for detailed analysis of specific solutions. When the pre-defined budget
of computational cost is reached, the optimization process is terminated. An
equivalent cost unit is introduced to estimate the budget. A single evaluation
using the lowest fidelity level (Bryant model) is assumed to incur 1 unit of
computational cost, about 1 second of CPU time on a single Xeon/2.67-GHz
processor with 16 GB memory. Since the runtime of the DVM depends on the
total number of time steps as well as the number of vortex elements shed from
the leading and trailing edge of the foil and the LEV shedding is related to
the bounded circulation at the leading edge (Chapter [4)), it is hard to identify

the cost of DVM at the beginning of the optimization. For convenience, it is
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assumed that the cost of simulations using DVM is 10 units for each flapping
cycle (e.g. a simulation of 7 flapping cycles takes 70 units). Thus, the value of
the equivalent time unit is related to the number of simulations and the fidelity
levels with which these solutions are evaluated. For example, a budget of 140
units permits 140 evaluations using the Bryant model or 2 evaluations using
the DVM of 7 flapping cycles during the optimization process. A simulation at
higher fidelity levels can start from the closest check point if the individual has
been evaluated by the same model with lower fidelity levels. For instance, if a
solution has been evaluated with the DVM of 1, 2 and 5 flapping cycles, the
simulation of this solution using the DVM of 7 flapping cycles can be restarted

from DVM of 5 flapping cycles.

5.2 Convergence of optimization using single
and multi fidelity solutions

At the early stage of the optimization, low fidelity solutions are used extensive-
ly to search the entire space of the design variables. Thereafter, the approach
evaluates promising solutions at higher levels of fidelity. To investigate the
convergence of the approach using single (highest fidelity level) and multi fi-
delity models, a single objective (power generation efficiency n) problem is
studied. The population size pg4 is set to 20 (10 times 2 design variables) and
the computational budget Bg, is set to 14,000 time units. This corresponds
to about 200 simulations using DVM of 7 flapping cycles which is about 100
times the dimension of the search space (for two design variables). The two
design variables are f* and 6, in the range of 0.01 — 0.25 and 0° — 100°, re-

spectively which are the same as those in the parametric study conducted by
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Kinsey & Dumas| (2008). Re = 1100 and other kinematic parameters hg = 1,
@ = 90° and z,;, = 0.333 are fixed. Since EA includes random processes (e.g.,
random seeds are used to generate the initial population), to reduce the ran-
dom influences on the EA performance, 30-100 independent runs with random
initial values are generally used in the performance analysis of optimization
algorithms (Branke et al. 2017, Deb et al.|2002)). However, because of the sig-
nificant computational resources required for a large number of independent
runs, the results in this section are based on the average of five independent
optimization runs with random initial values to give an indication of the EA

performance.

MEEA
— —SFEA (fidelity 8)

31 2000 4000 6000 8000 10000 12000 14000
Evaluation budget (time unit)

Fig. 5.1: Convergence history of efficiency averaged over five runs with a budget of
14,000 time units.

Optimization using the highest fidelity model (i.e. DVM with 7 flapping
cycles) uses up the budget in 10 generations, while MFEA on average evolves
over 13.4 generations. At the end of runs, the best solution delivered by MFEA
gives a maximum efficiency of 36.4%, while that using single fidelity (highest
fidelity in this case) gives an efficiency of 36.3%. The convergence history in

Fig. shows that the starting point (1,400 time units for initialization of a
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population size pga of 20 individuals) of the optimization process using the
MFEA and SFEA is the same. All the individuals in the initial generation
are evaluated with 1-8 fidelity levels by MFEA. The difference in efficiency be-
tween each run is less than 1.2% and 0.5% for SFEA and MFEA respectively.
As shown in Fig. [5.1] MFEA only uses 71.4% of the available budget (10,000
time units) to achieve the same efficiency n = 36.3% as obtained by SFEA. To
gain a better understanding of the performance of MEFA, the number of so-
lutions evaluated with different fidelity levels during the optimization process
are investigated. As shown in Fig. [5.2a] the total number of highest fidelity
evaluations is about half of that of the lowest ones. In addition, the difference
in the number of evaluations between adjacent fidelity levels of 6-8 decreases
dramatically compared to that of 1-5 since the difference in the results given
by the DVM is insignificant after four flapping cycles. The test problem of two
design variables demonstrates the capability of MFEA to reduce the computa-
tional cost by only evaluating solutions at higher fidelity levels when there is
a need for discrimination. In addition, if solutions at the highest fidelity level
are evaluated by the IB-LBM of 12 flapping cycles which generally takes more
than 100 hours on a single Xeon/2.67-GHz processor with 16 GB memory (see
Chapter , the time budget should be at least 12,000,000 time units which
corresponds to around 20,000 CPU hours (200 simulations). The MFEA using
the DVM of 7 flapping cycles as the highest fidelity model makes it possible to
determine high performance solutions using realistic computational resources,
around 3 orders of magnitude lower than that using IB-LBM. Since the DVM
is a low order model which may not capture the flow physics accurately, the
efficiency and power output of the solutions identified by the MFEA are then

recalculated using the IB-LBM.
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Table 5.1: Optimal cases given by the multi-fidelity evolutionary algorithm when
single objective (1) problems with 2 (f*,0y) and 5 (f*, 6o, ho, ¢, Tpiv) design variables
are considered.

Design variables | f*  6o(°) ho  ¢(°)  @p, 7 (Bryant) n (DVM) p (IB-LBM)

#*,6 0.125 783 1.00 90.0 0.333  33.4% 36.5% 32.7%
£ 00, hos 0, T | 0175 718 052 114.6 0.303  14.8% 39.6% 35.6%

5.3 Optimization results
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Fig. 5.3: Plot of non-dominated solutions from the bi-objective problem with 5
variables using MFEA. Solutions are evaluated by the DVM using 7 flapping cycles.

In this section, single(n) and bi-objective (n and C'p) optimization problems
involving 5 design variables are considered. Since the aim of this study is to
search for some high energy extraction performance solutions which are found
within a limited but realistic time budget, results obtained by the MFEA in
this section are based on a single run consuming about 50 CPU hours for
the single-objective problem and 170 CPU hours for the bi-objective problem
with 16 GB memory and a single Xeon/2.67-GHz processor. The ranges of

the design variables are f* = 0.01 — 0.25,6y = 0° — 100°, hg = 0.5 — 2.0, =



Table 5.2: List of the non-dominated solutions given by the bi-objective problem in the last generation.

Case ‘ 5 6(°) ho @(°)  xpw n(Bryant) n (DVM) n (IB-LBM) C, (Bryant) C, (DVM) C, (IB-LBM)
1 0.146 79.7 1.77 81.6 0.253 6.1% 32.1% 18.4% 0.26 1.36 0.84
2 0.112 786 1.78 854 0.260 20.1% 32.2% 21.8% 0.84 1.34 0.91
3 0.112 81.7 1.77 100.5 0.254 35.0% 34.7% 29.3% 1.31 1.30 1.12
4 0.112 783 1.78 86.6 0.260 20.9% 32.3% 22.8% 0.86 1.34 0.95
5t 0.119 81.7 143 984 0.208 34.6% 35.8% 31.7% 1.14 1.18 1.04
6 0.118 783 1.50 94.8 0.249 32.0% 35.4% 29.5% 1.10 1.21 1.02
7 0.118 79.7 136 989 0.273 36.4% 36.5% 33.4% 1.12 1.12 1.02
8 0.118 81.7 1.77 95.5 0.254 32.8% 33.9% 28.5% 1.28 1.32 1.12
9 0.118 &81.8 1.43 99.5 0.210 34.4% 35.9% 31.2% 1.12 1.17 1.01
10 0.118 81.8 1.14 103.4 0.175 32.1% 36.6% 32.0% 0.89 1.00 0.88
11 0.118 819 1.50 93.2 0.249 31.2% 34.7% 32.5% 1.09 1.22 1.14
12 0.217 786 0.76 126.8 0.181 -9.6% 37.6% 25.7% -0.17 0.68 0.45
13 0.217 758 0.74 126.8 0.181 -4.8% 37.7% 27.3% -0.08 0.66 0.47
14 0.223 79.1 0.79 126.3 0.182 -12.1% 36.8% 22.9% -0.23 0.68 0.47

symsaa uorjezrwiydQ ‘¢'q
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45° — 135° and xp, = 0 — 1, in which power could be extracted from the
flow and many parametric studies on prescribed energy harvesting system are
conducted, as summarized in Table For comparison of single objective
problems involving 2 and 5 design variables, the same computational budget
of 14,000 units and population size of 20 as those in Section are used. The
solution providing the highest  among the 5 runs described in Section
for single objective and 2 design variables and the optimal solution (i.e., the
optimal values for the design variables) given by the MFEA (12 generations)
considering one objective and 5 variables are listed in Table [5.1 where 7 is re-
calculated by the Bryant model, DVM of 7 flapping cycles and IB-LBM of 12
flapping cycles. The results show that for the same budget, MFEA involving
5 variables lead to an n of 39.6% evaluated by the DVM using 7 flapping
cycles (the highest fidelity level used in the MFEA), which is 8.5% higher than
that achieved by the MFEA involving two variables. The increase of 8.5% in
efficiency achieved by increasing the number of design variables is more than
half of 15.8% increment achieved by controlling the camberline deformation
(Hoke et al.2015) when the power consumption of the active control is not
taken into account (see Section [2.3.2)). In addition, n = 35.6% under the
optimal condition given by the MFEA for the single objective case with five
variables is similar to the optimal n = 35.5% suggested by Kinsey & Dumas
(2008) under a different operating condition f* = 0.140,0y = 76.3°, hy =
1.0, 0 = 90.0° and x,;,, = 0.333 (both 7 are predicted by the IB-LBM).

Then, the energy harvesting system is optimized for high n and Cp. A
computational budget of 42,000 units and a population size of 40 (20 times 2
objectives) is considered for the bi-objective problem with five variables. The
budget is equivalent to about 600 simulations with DVM of 7 flapping cycles

which is 120 times the dimension of the search space (with 5 variables). After
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19 generations, the budget was used up and 14 non-dominated solutions were
obtained. The trade-off (Pareto front) of these solutions between 1 and C'p is
shown in Fig. [5.3] Each of these 14 solutions was further analysed using the
IB-LBM. The results in Table 5.2l show that the solutions evaluated with the
DVM of 7 flapping cycles are in the range of f* = 0.1—0.25, 60y = 75°—85°, hy =
0.7 —1.8,¢ = 80° — 130° and x,;, = 0.15 — 0.3. When 7 is emphasized, f* is
high but hq is small, while when power is emphasized, f* is low but hq is large.
For all cases, 0 is greater than 75°, providing large enough angles of attack for
LEV formation. The influence of hy on C'p dominates when 7 is similar, since
the total available power in the flow increases linearly with the increase of d
which relies heavily on hg (Eq. and 2.14)). All the solutions recalculated by
the IB-LBM show lower  and C'p in comparison with the values obtained by
the DVM. Although the Bryant model provides reasonable results in the range
of f* =0.1—-0.12,¢ = 85° — 105°, it gives poor results outside this range
since the empirical constants used in Bryant model are tuned to match the
optimal condition. These results indicate that the DVM is a useful surrogate
model to narrow down the search space at the early stage of optimization,
while the Bryant model is appropriate for engineering design since it performs
well near the optimum if the data used to tune the empirical constants can be
obtained from previous studies. However, the non-dominated solutions are not
necessarily optimal because the DVM is a low order model but it enables the
search for high performance solutions within a limited budget of computing
resources. When the budget was increased by 50% from 42,000 to 63,000
units, only one extra non-dominated solution (15 in total) was obtained after

28 generations (19 generations for 42,000 units).
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Table 5.3: Performance of a power generator with different kinematic parameters, in
descending order by n. H stands for high efficiency, M stands for moderate efficiency,
L stands for low efficiency and K stands for the case under the kinematic conditions
gvien by [Kinsey & Dumas| (2008)).

fo 0o(°) Lpiv n Cp dfc ome(®) [CLl Cpp
15 0.140 76.3 0.333 35.5% 0.91 2.56 35.0 1.40 0.84
16 0.146 83.5 0.250 33.8% 1.04 3.10 32.9 1.33 0.94
7 0.118 79.7 0.273 33.4% 1.02 3.07 35.0 1.33 0.86
17 0.113 78.3 0.253 23.2% 096 4.13 26.8 1.18 0.97
14 0.223 79.1 0.182 22.9% 043 1.86 46.8 1.32 0.90
1 0.146 79.7 0.253 18.4% 0.80 4.24 21.8 1.78 0.97
18 0.110 79.7 0.276 17.0% 0.74 4.23 29.3 1.30 0.78
19 0.180 60.0 0.333 11.6% 0.28 2.40 11.5 0.62 0.39

5.4 Mechanisms for high performance

Fig. 5.4: Changes in Cy, with a in the 12®® flapping cycle.

Case 15 (KH— Case 7 (H2-—= Case 14 (M2)
—— Case 1 (L1) == Case 19 (KL)

stall onset angle

Based on 7, the simulated cases are classified into high (n > 30%), mod-

erate (20% < n < 30%) and low (n < 20%) performance groups. To discuss

the physical mechanism for high performance of the flapping foil system, es-

pecially the influence of the LEV, Case 15 (KH) under the optimal operating

conditions given by |[Kinsey & Dumas (2008), two cases with similar 7 of each
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group showing strong LEVs and Case 19 (KL) of the low performance group
where no obvious LEV is observed in the study of Kinsey & Dumas| (2008)) are
examined in detail through time averaged values over the 12" flapping cycle
in Table B.3l Cases 16-18 are not non-dominated solutions but individuals
in the final population given by the MFEA. Note that the non-dimensional
swept distance d/c determining the maximum potential energy which can be
extracted from the flow highly depends on the plunge amplitude hy. Thus,
the flapping foil system with higher hy harvests more energy for the same 7.
As pointed out in the last section, the MFEA does not necessarily identify
the true optimum because of the use of the reduced order DVM and a lim-
ited but realistic budget of computing resources. Hence the best performing
non-dominated solution in Table [5.2] Case 7 (H2), has an efficiency of 33.4%,
slightly lower than the 35.5% under the optimal condition (Case 15) found by
Kinsey & Dumas (2008) but it does achieve 13% increase in Cp. For similar
reasons, non-dominated solutions such as Case 1 (L1) in Table can have
very low efficiency while individuals in the final population such as Case 17
(M1) can give moderate efficiency. Nevertheless, results here show that high
energy extraction performance solutions can be identified using the MFEA.
During one flapping cycle, Cases 1, 7, 14, 15, 16, 17 and 18 experience
angle of attack o much higher than the critical angle of static stall a, = 10° of
NACAO0015 aerofoil at Re = 42,900 (Jacobs & Sherman|[1937), leading to large
flow separations. However, a,,., of Case 19 is 11.5° and only a slight stall is
observed in Fig. [5.4] As shown in Fig. the maximum lift coefficient Cy, of
Cases 1, 7, 14, 15 and 19 is at a = 12.3°, 14.8°, 8.4°, 9.5° and 7.3° respectively
where the rate of change of a is 0.25 rad/s, —0.26 rad/s, 1.26 rad/s, —0.43
rad/s and 0.27 rad/s respectively. Following Jumper et al. (1989), the stall

onset angle is considered as the a exceeding the value where the foil experiences
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a sudden jump in C. For Case 19, the difference between the maximum C',
at a = 7.3° and the C, at quq, of 11.5° is only 0.27 (27%) while that of other
cases is at least 0.49 (40%); thus the foil of Case 19 is considered to experience
shallow stall. Since the maximum C7, is achieved after a reaches the maximum
(negative rate of change of «) for Cases 7 and 15, the o at which C reaches the
maximum is not considered as the stall onset angle. It is noted that Case 14 is
the only case for which the onset angle of deep dynamic stall (8.4°) is smaller
than the static stall angle a,. = 10° because of two reasons:(a) «a,. decreases
with the increase of Re (Jacobs & Sherman/|1937)); and (b) the stall onset angle
decreases as the pivot location is moved fore (Jumper et al.|1989) (x,, of Case
14 is the smallest among all cases). Table |5.3| shows that except for Case 19
(ICL] = 0.62), |CL| is much higher than the maximum Cy of 0.82 given by
the static experimental study (Jacobs & Sherman||1937) because the flapping
foil can exploit the LEV to achieve high lift in propulsive systems (Shyy &
Liu/ 2007). As expected, Case 19 gives much lower plunge power coefficient
contribution Cp,, which is the time average of the product of C}, and iz, than
other cases. For all cases, the contribution of the pitch motion to the power
coeflicient (Upg, the time average of the product of Cy; and 9) is small or even
negative. In addition, C'py of Case 14 is negative (i.e., consuming instead of
generating power) and its magnitude is the highest among all cases because:
(1) the maximum pitch rate fpq, = 27 f*6, of Case 14 is the highest; and (2)
the pivot location of Case 14 is near the leading edge of the foil, leading to a
long moment arm when the low pressure center resulting from LEV is at the
aft foil.

In order to understand the physics underpinning the performance of a flap-
ping foil power generator, five cases are examined in details through time

histories of the hydrodynamic loads and their contribution to the power out-
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Case 15 (KH— Case 7 (H2-= Case 14 (M2)
— = Case 1 (L1) == Case 19 (KL)

Fig. 5.5: Time histories of « given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. and

Case 15 (KH— Case 7 (H2y:= Case 14 (M2)
—=— Case 1 (L1) == Case 19 (KL)

t)T

Fig. 5.6: Time histories of Cf given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. and
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Case 15 (KH— Case 7 (H2:= Case 14 (M2)
—— Case 1 (L1) == Case 19 (KL)

Fig. 5.7: Time histories of Cpj, given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. and

Case 15 (KH— Case 7 (H2¥-= Case 14 (M2)
— = Case 1 (L1) == Case 19 (KL)

15

Fig. 5.8: Time histories of Cj; given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. and
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Case 15 (KH— Case 7 (H2:= Case 14 (M2)
—— Case 1 (L1) == Case 19 (KL)

t/)T

Fig. 5.9: Time histories of  given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. and

Case 15 (KH— Case 7 (H2y:= Case 14 (M2)
—=— Case 1 (L1) == Case 19 (KL)

Fig. 5.10: Time histories of Cpy given by Case 1, 7, 14, 15 and 19 listed in Table
The shaded region is the upstroke. The vertical black dash-dotted lines denote
time instants for examination of flow field in Figs. and
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Case 15 (KH— Case 7 (H2y:= Case 14 (M2)
== Case 1 (L1) == Case 19 (KL)

L I T R R B A L B B L S L

P 033 1048

/)

Cp

Fig. 5.11: Time histories of Cp given by Case 1, 7, 14, 15 and 19 listed in Table [5.3]
The shaded region is the upstroke. The vertical black dash-dotted lines denote time
instants for examination of flow field in Figs. [5.12] and [5.13}

put: Case 15 (KH) with optimal kinematic parameters suggested by Kinsey
& Dumas| (2008), Case 7 (H2) with the highest efficiency among all the non-
dominated solutions given by the optimization in Table [5.2) Case 14 (M2)
giving the lowest Cpg, Case 1 (L1) giving the largest [Cp| and Case 19 (KL)
with slight dynamic stall. In Figs. , t/T = 0 — 1 represents the last
flapping cycle (the 122 cycle) and ¢/T = 0 is the instant at the beginning of
the down stroke. Thus the normalized plunge velocity h / hmax is the same for
all the cases, while there are phase differences in the pitch velocity 6 due to
the differences in ¢ (see Fig. . As shown in Fig. , the time history
of the angle of attack («) for Case 7 is similar to that of Case 15, except for
a small phase shift. In Fig. Case 19 (KL) shows a smooth curve of C,
similar to that of « in Fig. 5.5 of which the amplitude is smaller compared
to other cases since the influence of flow separation is limited. Cases 7 (H2)

and 15 (KH) give similar lift curves with a small phase difference. In addi-
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tion, C, of Case 1 (L1) before the stroke reversal 0.36 < t/T° < 0.50 is in
the opposite direction of h/ hmax, resulting in a significant drop of Cpy, (Fig.
5.7). In Fig. 5.8, Cases 7 (H2), 14 (M2) and 15 (KH) show troughs of Cy at
instants ¢/T = 0.48,0.23 and 0.45 respectively, the same as where C7, is the
minimum in Fig. [5.6, However, due to the influence of the location of pressure
center, the minimum Cy, of Case 1 (L1) in Fig. [5.8]is at ¢/7 = 0.33 where
(', is neither the minimum nor the maximum in Fig. [5.6} Fig. [5.10]illustrates
that for Case 14 (M2), power is required to drive the pitch motion during the
entire flapping cycle, i.e. Cpy < 0, while other cases can harvest energy from
the pitch motion at some instants. The combination of C'p;, and Cpy is shown
in Fig. [p.11] Cases 1 (L1), 7 (H2), 14 (M2) and 15 (KH) with large flow
separations give larger amplitude of C'p compared to Case 19 (KL) where the
stall phenomena is slight. In contrast to the rotational turbines on which the
impact of flow separation needs to be reduced, the performance improvement
of a flapping foil system relies on the extent of benefits from exploiting the
flow separation.

To explore the influence of vortex shedding on the hydrodynamic loads,
non-dimensional vorticity (C, = cw,/U, where w, is the spanwise vorticity)
and relative pressure coefficient (C, = 2(p — po)/pU?) contours are presented
respectively in Fig. and Fig. [5.13] As the hydrodynamic loads, the
pitch motion and power output are symmetric/antisymmetric (Fig. to Fig.
, only the flow fields of the downstroke are presented (the upstroke is a
mirror image of the upstroke). Flow fields of Case 1 (L1), 7 (H2), 14 (M2),
15 (KH) and 19 (KL) near the flapping foil are investigated in details at four
typical non-dimensional time instants ¢/7° = 0.23 when Case 14 (M2) with
moderate efficiency (20% < n < 30%) shows a trough of C7 and C), in Fig.
and Fig. [5.8] respectively; t/T = 0.33 when Case 1 (L1) with low efficiency
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(n < 20%) shows a trough of Cy; (Fig. [5.8); ¢/T = 0.44 when Case 1 (L1)
shows a trough of Cp (Fig. ; and t/T = 0.48 when Case 7 (H2) with
high efficiency (n > 30%) shows a trough of C, and C), in Fig. and Fig.
.8 respectively. For Cases 1 (L1), 7 (H2), 14 (M2) and 15 (KH), vortices
form near the leading edge of the foil and shed into the wake at some instants,
while for Case 19 (KL) with the lowest n of 11.6%, no LEV is observed during
one flapping cycle. In addition, the pressure difference between the upper and
lower surface of the foil in Case 19 (KL) is smaller than that for the other
four cases in Fig. , resulting in small @ of 0.62 in Table . For Case
1 (L1) with low efficiency (n = 18.4%), even though |Cy| is less than 1/6 of
the amplitude of Cp, at t/T = 0.33 (Fig. [.6), Ci in Fig. reaches the
minimum (i.e. |C)y| is maximum) at that instant. This is because the low
pressure center is near the trailing edge of the foil at ¢/7" = 0.33 (Fig. [5.13b)),
resulting in a long moment arm. The LEV of Case 1 (L1) sheds into the wake
before the stroke reversal (t/T = 0.44 in Fig. and the pressure on the
lower surface is higher than that on the upper surface (Cf, is in the opposite
direction to A in Fig. , in contrast to Cases 7 (H2), 14 (M2) and 15 (KH) as
shown in Fig. [p.13d For Case 14 (M2) with moderate efficiency (n = 22.9%),
the LEV which has formed on the upper surface detaches from the foil near the
mid-downstroke where the foil is at the neutral position of the plunge motion
(Fig. [5.124)). Case 7 (H2) and Case 15 (KH) with high efficiency show similar
timing of LEV formation (Fig. and detachment (Fig. . Near the
stroke reversal (/7 = 0.48), since the low pressure center resulting from the
LEV in Case 7 (H2) is near the foil and the pitch angle is small (§ = 22°), the
projection of the pressure difference between the upper and lower surface of the

foil in the plunge direction (C7) reaches maximum when « is decreasing(Figs.

5.6). In addition, the low pressure center of Case 7 (H2) and Case 15 (KH)
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is after the pivot point, producing positive power through the pitch motion
(Cpy in Fig. [5.10). It is noted that for cases with high efficiency (Case 7
and 15), the LEV detaches from the foil near the stroke reversal, resulting in
good synchronization between the hydrodynamic loads (Cf, and C),) and the
motions (A and ).

Finally, the time-averaged non-dimensional vorticity contours over 4 flap-
ping cycles (13"-16") of all 8 cases listed in Table are examined in Fig.
All cases show distinct paths of vortices that persist from behind the
turbine plane to far downstream, except for Case 19 (KL) which shows much
weaker vortex shedding prominent only near the extreme positions of the foil

because the foil only experiences slight stall as a remains small during the

flapping cycle. In Fig. [5.14al [5.14b| and [5.14c, Case 15 (KL), Case 16 (H1)

and Case 7 (H2) with high n > 30% show a vorticity wake pattern of horse-
shoe shape behind the turbine plane. The LEVs detach from the foil near the
stroke reversal and convect downstream towards the neutral position of the
plunge motion (y=0). Then the vortices shed near the end of up and down
strokes interact at 5 (Case 7), 2.8 (Case 15) and 3.4 (Case 16) chord lengths
from the pivot location and continue to move downstream. The path of vor-
tices shedding near the end of the down stroke resembles a horseshoe with a
width approximating the swept distance d behind the turbine plane. Cases

with moderate efficiencies (Case 14 and Case 17, 20% < n < 30%) and low

efficiencies (Case 1 and Case 18, n < 20%) in Fig. |5.14d}Fig. [5.14g| show

significant differences in wake patterns compared to Cases 7, 15 and 16 with
high efficiencies (n > 30%): the upper and lower branches of the wake path
behind the turbine plan are close to each other (Cases 1, 17 and 18 in Fig.

Fig. [5.14d| and Fig. [5.14g| respectively) or break into 4 branches (Case
14 in Fig. |5.14€). Since the time-averaged wake patterns rely on the detach-
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(a) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency n = 35.5% (Case 15) with f* = 0.140,0p = 76.3°,hg =
1.00,¢ = 90.0° and xp;, = 0.333.

0 2 4 6 8 10 12 14 16 18 20

(b) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency n = 33.8% (Case 16) with f* = 0.146,6p = 83.5°,hg =
1.36, ¢ = 99.5° and z;, = 0.250.

x/c

(c¢) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of high efficiency n = 33.4% (Case 7) with f* = 0.118,6y = 79.7°, hg = 1.36, ¢ =
98.9° and xp, = 0.273.
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(d) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of moderate efficiency n = 23.2% (Case 17) with f* = 0.113,600 = 78.3°, hg =
1.78, ¢ = 86.1° and xp, = 0.259.

0 2 4 6 8 10 12 14 16 18 20
x/c

(e) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of moderate efficiency n = 22.9% (Case 14) with f* = 0.223,60y = 79.1°, hy =
0.79, ¢ = 126.3° and xp;, = 0.182.

0 2 4 6 10 12 14 16 18 20
x/c

(f) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency n = 18.4% (Case 1) with f* = 0.146,6y = 79.7°, hg = 1.77,p =
81.6° and xp, = 0.253.
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(g) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency n = 17.0% (Case 18) with f* = 0.110,6y = 79.7°, hg = 1.77, ¢ =
81.6° and xp, = 0.276.

0 2 4 6 8 10 12 14 16 18 20
x/c

(h) Non-dimensional time-averaged vorticity contours for the power extraction sys-
tem of low efficiency n = 11.6% (Case 19) with f* = 0.18,6y = 60.0°, hg = 1.00, ¢ =

90.0° and x4, = 0.333.

Fig. 5.14: Non-dimensnioal time-averaged vorticity contours of cases listed in Table

0. Ol
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ment and convection of the vortices, the horseshoe-shaped wake pattern with a
width approximating the swept distance d behind the turbine plane illustrates
that LEVs are only shed near the stroke reversal. Under this condition, the
hydrodynamic loads are in good synchronizations with the prescribed motions,
resulting in high efficiency. However, when the horseshoe-shaped wake is bro-
ken (Case 14) or two branches of the wake path approach each other behind
the turbine plane (Cases 1, 17 and 18), there are LEVs detaching from the foil
near the middle of the stroke. Under these situations, the hydrodynamic loads
can be in the opposite direction of the motion for a considerable time period,
resulting in significant reduction in power output; e.g. the product of C';, and

h for Case 1 and that of Cy; and 6 for Case 14 in Figs. 5.10,

5.5 Summary

The performance of a flapping foil power generator undergoing prescribed pitch
and plunge motions at Re = 1100 is optimized using a multi-fidelity evolution-
ary algorithm. Solutions of 1-8 fidelity levels are given by the Bryant model
and modified discrete vortex method of 1-7 flapping cycles respectively. The
non-dominated solutions identified by the multi-fidelity approach was further
assessed using the immersed boundary-lattice Boltzmann method to gain in-
sights to the physics underpinning the performance of a flapping foil power
generator through analysis of hydrodynamic loads and flow fields.

The convergence of the evolutionary algorithm using the multi and single
fidelity methods is first conducted via a single objective optimization prob-
lem (n) involving two variables (f* and 6y). The results show that during
the multi-fidelity optimization process, the number of the solutions evaluat-

ed with the highest fidelity level is roughly half of that evaluated with the
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lowest fidelity. This indicates that computationally expensive simulations can
be stopped at an early stage thereby saving computational time. With the
same computational time and initial values, the multi-fidelity evolutionary al-
gorithm delivers better results than that using the single fidelity strategy with
solutions evaluated by the highest fidelity level (i.e. DVM of 7 flapping cycles).
When 1 = 36.3% is considered as the termination criterion, the multi-fidelity
strategy offers 28.6% savings in computational time compared with a single
fidelity approach.

Then the flapping foil system is optimized under two scenarios, i.e a single
objective (1) and a bi-objective (n and Cp) formulation, with the following
ranges of parameter values: f* = 0.01—0.25,0, = 0°—100°, hg = 0.5—2.0,p =
45° — 135° and xp;, = 0 — 1. With the same evaluation budget for the single
objective case, the multi fidelity method with five design variables gives an
efficiency 7 that is 8.5% higher than the one obtained using two design variables
(f* =0.01 —0.25,09 = 0° — 100°). In the bi-objective optimization problem,
the non-dominated solutions show a set of trade-off solutions and solutions
with preferred n have low f* and small hy. On the contrary, solutions with
preferred Cp have high values of f* and ho. In addition, high performance is
achieved in the range of 0y = 70° — 90°, xp;, = 0.1 — 0.3 and ¢ = 80° — 110°.
Detailed study on hydrodynamic loads and flow fields for typical cases with
different efficiencies indicate that the formation of vortices can be exploited for
high lift, while the timing of vortex detachment influences the phase between
hydrodynamic loads and prescribed motions. When the LEVs detach from the
foil near the stroke reversal, the pattern of vorticity wake is horseshoe-shaped
with a width approximating the swept distance d behind the turbine plane,
resulting in high energy extraction performance. When the timing of vortex

detachment from the foil is near the mid stroke, the efficiency and power output
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decrease significantly.



Chapter 6

Flexibility Enhanced

Performance

Besides kinematics discussed in Chapter |5, deformation of the foil also has
impact on the energy harvesting performance. In this chapter, the influence
of structural flexibility on the performance of a flapping foil power generator
under different kinematic conditions is examined. The aero-elastic system
containing a spring-connected tail with a length of [;,; attached to a rigid foil
with a length of (¢—Iy4;) is described in Section . Since reduced order models
are not suitable for simulations involving fluid-structure interaction due to their
low accuracy, the aero-elastic problem is solved by the immersed boundary-
lattice Boltzmann method (IB-LBM). The optimal kinematic parameters of
a NACAO0015 foil with and without a tail are first identified to ensure that

any enhancement in efficiency can be attributed to the flexibility alone. Then,

The following papers have been published from this chapter:

[1]. Zhengliang Liu, Joseph C.S. Lai, John Young, and Fang-Bao Tian. Numerical study on
the performance of a flapping foil power generator with a passively flapping flat plate. In
20th Australasian Fluid Mechanics Conference, Perth, Australia, December 2016.

[2]. Zhengliang Liu, Fang-Bao Tian, John Young, and Joseph C.S. Lai. Flapping foil
power generator performance enhanced with a spring-connected tail. Physics of Fluids,
29(12):123601, 2017.
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the effects of the passive flexibility in terms of the mass density and natural
frequency on power-extraction efficiency are discussed in detail by considering
time averaged and instantaneous hydrodynamic loads and tail deformations

under various kinematic conditions.

6.1 Effects of flexibility on the performance
under the rigid-system optimal condition

As described in Section and Chapter [5] the performance of a flapping
foil power generator relies on a large number of parameters. In McKinney &
DeLaurier| (1981)), 6, is only considered up to 20°, resulting in a low efficiency of
around 17%. Results given by Davids| (1999) indicate that n initially increases
then decreases with the increase of f*, 6y and hg, whereas Fp increases linearly
with hg. To reduce the influence of parameters other than flexibility as much
as possible, optimal parameters of the rigid case including f*, hg, 0y, ¢ and z,;,
are first identified. Studies on power extraction systems with prescribed pitch
and plunge motions discussed in Section [2.2.3] suggest a range of parameters
(f*=0.11 -0.18, 6y = 60° — 100°, hg = 0.8 — 1 and z,;, = 0.25 — 0.5) with
constant ¢ = 90° for the optimal performance. According to the definition
of efficiency (Eq. and discussions in Section Cp increases with the
increase of d at the same 7, 6y and z,;, (d is determined by 6y, z,;, and hy).
Thus, hg = 1 is used in this study to produce high power output. Since the
optimal z,;, is case dependent (Young et al.|2014), x,, = 0.333 used here
is chosen based on studies for prescribed motion systems (Kinsey & Dumas
2008, Simpson| 2009, Xiao et al.|2012, |Le et al. |2013)). The optimal f* and

Oy at Re = 1100 are identified from the efficiency contours generated by IB-
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(b) Efficiency of a rigid NACA0015 foil with a fixed 0.3c flat plate tail.

Fig. 6.1: Contours of efficiency at hg =1, ¢ = 90° and xp;, = 0.333.
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LBM simulations in Fig. [6.1a] where simulated cases are shown with dots.
In the mapping of efficiency, the rigid foil with a fixed flat plate tail of 0.3¢
(Fig. shows higher efficiency compared with its counterpart under the
same kinematic conditions. This can be explained as the thickness of the rigid
foil with a tail is only 0.7 of that of the rigid foil with the same NACA0015
profile and the same chord length. The peak efficiencies of a rigid foil with
and without a tail identified from simulated cases are 37.3% and 36.9% under
the same operating condition of f* = 0.16 and 6, = 80°, which agrees with
the finding of McCroskey et al. (1981)) that the impact of the foil profile is

insignificant when the vortex-shedding phenomenon dominates.

6.1.1 Parametric study on the effects of flexibility

In this study, the flexibility of this system is governed by the stiffness K and
linear density of the tail p; = pieiihs which gives two non-dimensional param-
eters: the non-dimensional natural frequency fi = foc/U = c\/K,/J/(2rU)
and the structure-to-fluid density ratio u = p;/ (pc), where J is the moment
inertia of the tail about the the spring connection point. The length of the
tail l;,y = 0.3¢ (same as |Wu, Shu, Zhao & Tian 2015), thickness of the tail
hs = 0.06c and spring damping R = 0 are constants. It should be noted that
simulations have also been conducted for two other tail lengths l;,; = 0.1c
and 0.5¢ for a range of spring stiffness, giving a maximum efficiency of 38.0%
and 37.4% respectively, both lower than the maximum efficiency of 40.0% for
liair = 0.3c. Thus only results for l;,; = 0.3¢ are presented and discussed here.

The influence of the spring-connected tail on the energy extraction per-

formance is systematically studied by varying f; from 0.15 to 10 and g from

0.03 to 2.00. Note that fg , defined as ¢\/(K,/J) / (2nU), is the ratio of the
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Fig. 6.2: Contours of a flapping foil power generator with a spring-connected tail.
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restoring force to the structure inertia. The definition of the angular position
of the tail ar can be found in Section 3.1 We do not consider cases where
the inertia force is much larger than the restoring force (e.g. fi < 0.15 and
p > 4) because this would give a large maximum angular position az,q. (e.g.
Qpmaz > 80° at fi <= 0.05 and p = 4, see Fig. , leading to collision be-
tween the foil and the tail. This would give a large armas ( €.8. @rmar > 80°
at fi = 0.050 and p = 4.00), leading to a collision between the foil and the
tail. Contours of efficiency (1), mean power coefficient (C'p), maximum swept
distance (d) and maximum angular position of the tail (qgy,q.) are presented
in Fig. . In Fig. [6.2| (a) and (b), contours of  and Cp share several similar
features: (a)  and Cp initially increase then decrease with the increase of
f& at the same yu; (b) n and Cp approximate those given by the rigid case
(n = 37.3% and Cp = 0.966) when f; and p are high; (c) cases with low f;
and p show performance reduction compared to the rigid case; and (d) the
peak 7 = 40.0% and C'p = 1.03 are achieved at fi = 1.36 and pu = 2.00 where
the flapping frequency f* = 0.16 is about 12% of f; = 1.36. This is similar to
the study on propulsion system where the flapping frequency of the dragonfly
is about 16.0% of the natural frequency (Chen et al.2008). The dashed line
in Fig. is the non-dimensional stiffness defined as k, = K,/ (pU%c¢®). Fig.
shows that in the region of ks, > 1.0, appnaz is smaller than 10°. Moreover,
when k;, > 10.0, apyq. is smaller than 1° and the tail can be considered as
rigid and the differences in power extracting performance are less than 1%
(see Fig. (a) and (b)). In addition, performance improvements can be
observed in the range of ks = 0.316 — 1.00 (see Fig. (a) and (b)). The
non-dimensional swept distance d/c referring to the potential power available
in the inflow is shown in Fig. When 0.100 < kg < 0.316, d/c decreases

dramatically with the increase of f§; while for ks < 0.100, d/c highly depends
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Table 6.1: Performance of a power generator with a spring-connected tail (Case
1-3) compared to that with a rigid tail (Case 4) at the same optimal kinematic
conditions determined for the main rigid foil (f* = 0.16, 6y = 80°,hg = 1, =
90°, zpi, = 0.333).

Case f(>]k 1% ks f: n 613 d/C C_% 6Ph €P€ ATmaz (O) aeffmam (o)
1 1.36  0.60 0.393 1.180 40.0% 1.03 2.57 164 1.02 0.01 29.5 35.4
2 1.36 0.03 0.020 0.491 30.3% 0.76 2.50 1.13 0.74 0.02 42.9 30.0
3 0.15 0.60 0.005 0.130 33.9% 090 264 159 0.96 -0.06 46.0 33.5
4 - - - - 37.3% 097 259 157 095 0.02 0.00 34.8

on p. However, according to Eq. [2.6] the similarity of Fig. [6.2] (a) and (b) in-
dicates the influence of f; and p on Cp is more significant than on d/c. When
ks < 0.100, both d/c and appq, increase with the increase of p. Fig. [6.2d
shows that when ks > 0.100, the gradients of ar,,q, and k, are in the opposite
directions while the relationship between d/c and k, is ambiguous in the same
region. In addition, the peaks of d/c and arpmqe, are achieved at different fg.
The differences between maximum swept distance (Fig. and maximum
angular position (Fig. indicate that factors other than aru.. (e.g. the

direction of the tail deflection) also impact d/c when hq, 6y and ¢ are fixed.

6.1.2 Mechanism of performance improvement due to
flexibility

To further discuss how the flexibility (i.e. f; and p) affects the energy har-
vesting performance, cases with a spring-connected tail of different stiffness
values which improve (Case 1) or reduce (Case 2 and Case 3) the performance
and the rigid case (Case 4) are examined in detail through the time averaged
values (1 and Cp), time histories of the hydrodynamic loads (C7, and Cy;) and
the passive motion and the flow field at different instants ¢/7T" sequentially. In

all the figures showing time histories, ¢/T" = 0 — 1 represents the last flapping



6.1. Effects of flexibility under the optimal condition 145

cycle (the 12th cycle). Firstly, stiffness parameters and time averaged values
are presented in Table Case 1 is the case providing the highest efficien-
cy in Fig. [6.2a] Case 2 is selected with the same f; as Case 1 but with a
much lower p (lighter tail) than Case 1 so that the influence of fluid added
mass becomes more important. Case 3 is selected with the same pu (i.e. same
mass) as Case 1 but with a much lower kg (hence fg) so that the influence of
lower stiffness is assessed. An efficiency improvement of 7.24% with a similar
swept distance compared with the rigid tail (Case 4) is achieved at optimal f
and p (i.e. Case 1). However, a spring-connected tail with low p (Case 2) or
low fi (Case 3) degrades the performance of a flapping foil power generator
at the optimal condition of the rigid case. Since the lift force and prescribed
plunge velocity contribute significantly to the power extraction performance
(Kinsey & Dumas| 2008)), the root mean square of lift coefficient \/C:% is the
hydrodynamic load of interest since lift and plunge velocity contribute to the
power. As shown in Table , the lowest \/C’:% = 1.13 given by Case 2 is
accompanied with the poorest performance. However, n and C'p of Case 1, 3
and 4 which share similar \/C’:% of around 1.6 are different. In addition, only
Case 3 shows negative C'py even though \/C’:% and C'py, are similar to Case 4.
These observations indicate that in addition to the magnitude of (', there are
other factors (e.g., the phase angle between C, and h) that influence of the
performance of a flapping foil power generator.

To further investigate the impact of C7, on the performance, time histories

of C'p, are presented in Fig. [6.3a, As expected from \/C’_% in Table Case

2 shows the smallest amplitude of C, among the four cases. Cp, of Case 1, 3
and 4 are similar during the mid of up (gray region) and down (white region)
strokes. Near stroke reversals (¢/7 = 0,0.5), both Case 1 and Case 3 exhibit

peaks while Case 4 shows a smoother curve. After the end of strokes, even
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— Case = Case 2- - Case 3--— Case 4
T ———————

t/T
(b) Time history of Cpy,.

Fig. 6.3: Comparison of C;, and Cpy, of a rigid foil with a spring-connected or a rigid
tail at f* = 0.16, 0y = 80°, hg = 1, ¢ = 90° and xp;, = 0.333.
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(b) Time history of Cpg.

Fig. 6.4: Comparison of Cj; and Cpy of a rigid foil with a spring-connected or a
rigid tail at f* = 0.16, 6p = 80°, hg = 1, ¢ = 90° and x;, = 0.333.
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though Case 3 gives the highest peak of Cp, (t/T = 0.53), Case 3 and Case 4
share similar C'p;, while Case 1 provides higher Cpy, at t/7 = 0.59 (Fig. |6.3b)
because of the delayed peak of Cf, where h = H /c is higher (Fig. [6.3al). This

leads to the differences in C'pj, of Case 1, 3 and 4 sharing similar /C? (Table
. Similar to the time histories of C, in Fig. , Cyr in Fig. shows
some differences near stroke reversals. It can be noted that the peaks of Cy,
for Case 1, 2 and 3 occur at the same time instants ¢/7" where C, reaches the
peaks. However, (', for Case 4 also shows the peak after the end of strokes
where the curve of Cf is smooth. This indicates that the magnitude of the
force is the primary factor affecting C'y; while the location of the force center
also influences C'y;. In addition, drops of Cpy near the end of strokes where

0 = 0,00 in Fig. lead to negative Cp in Fig. . The sharp drops of

Cpg shown by Case 3 leads to the performance reduction compared to the rigid
case with a similar C'p;, (Table .

The differences in amplitudes of ar partially explain the increase of d/c
from 2.57 (Case 1) to 2.64 (Case 3), while factors (e.g. the phase between the
prescribed motion and ag) other than a4, also influence d/c (Case 1 and
Case 2, Table . To further investigate the influence of ar on d/c, time
histories of the passive pitch angle (ar, Fig. are illustrated in Fig. |6.5b]
Even though a4, of Case 2 is larger than that of Case 1, ar of Case 2 is in the
opposite direction of 8 before the middle of up and down strokes, resulting in
a small distance swept by the tail. The frequency components of the passively
flapping motion (ar) are analysed using a Fast Fourier Transform (FFT) de-
composition of the time-series data over 10 cycles (37500 points). As shown in
Fig. , the peaks of the 3 cases are at f* = f,c/U = 0.160, 0.480, 0.800, 1.12
and 1.44 which are 1, 3, 5, 7 and 9 times of the reduced flapping frequency

f*. It can be observed that even though f; for Case 1 and Case 2 is the same,
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Fig. 6.5: Comparison of Cp and ar of a rigid foil with a spring-connected or a rigid
tail at f* = 0.16, 0y = 80°, hg = 1, ¢ = 90° and xp;, = 0.333.
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Fig. 6.6: Frequency spectra of the passively flapping motions at f* = 0.16, g = 80°,
ho =1, ¢ = 90° and xp;, = 0.333.

the amplitude of the decomposed motions (A,) of Case 2 varies from less than
5° when f¥ > 1.44 to a maximum of 18.2° at f; = 0.480 whereas A, of Case
1 at fr = 0.480,0.800,1.12 are similar around 7.60°. Hence, for Case 1, the
decomposed motions with similar A, but with different f* and phase angles
lead to suppression in the tail deformation during the mid-strokes as shown in
Fig. [6.5bl To account for the energy required to accelerate the fluid around

the tail, the resonant frequency f is introduced as:

c | K
* 5 N
fr 27TU J—f—Jf7 (6 )

where J; = 9mpl}t,. /128 is an estimate of the moment of inertia due to fluid

acceleration (Brennen||1982). From Fig. it is noted that the maximum
amplitude of the passive motion of the tail for each case occurs close to the
resonant frequency: fF of 1.18 (Case 1), 0.49 (Case 2) and 0.13 (Case 3). This

partially explains the difference between Case 1 and Case 2 shown in Fig.
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even though their natural frequencies (f) are the same.

-3 25 -2 -15 -1 05 0 05 1 15 2 25 3

Case 1 Case 2 Case 3 Case 4

0 1 2 3 4 0 1 2 3 4,0 1 2 3 4 0 1 2 3 4
(a) t/T = 0.53
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(b) t/T = 0.59
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(c) t/T =0.82
Fig. 6.7: Instantaneous non-dimensional vorticity contours of Case 1-4 with f* =
0.16, 6y = 80°, hg = 1, ¢ = 90° and zp;, = 0.333 at ¢/T = 0.53, 0.59 and 0.82.
Finally, to investigate effects of the formation and convection of vortices on
the hydrodynamic load, non-dimensional vorticity (C, = cw,/U, where w, is
the spanwise vorticity) and relative pressure coefficient (C, = 2(p — pso)/pU?)
contours are presented in Fig. Fig. and Fig. As the hydrodynamic
load and tail deflection are symmetric/antisymmetric (Fig. to Fig. [6.5),
we only present the flow fields of the upstroke (the downstroke is a mirror
image of the upstroke). Flow fields of the four cases near the flapping foil are

investigated in detail at three typical non-dimensional time instants /7" = 0.53
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Fig. 6.8: Relative pressure coefficient contours of Case 1-4 with f* = 0.16, g = 80°,
ho =1, ¢ =90° and z;,, = 0.333 at t/T" = 0.53, 0.59 and 0.82.
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when Case 3 shows a peak of Cp (Fig. [6.3a)) and a sharp drop of Cpy (Fig.
; t/T = 0.59 when Case 1 shows a peak of C, (Fig. ; and t/T = 0.82
when the four cases share similar hydrodynamic load (Fig. to Fig. .
For all the four cases shown in Fig. [6.7] it is noted that three LEVs move
downward and shed into the wake during the upstroke. The first LEV and the
trailing edge vortex (TEV) constitute a vortex pair of opposite signs while the
other two LEVs (2 and 3) detach from the foil separately. After the stroke
reversal (t/T = 0.53 in Fig. , the first LEV is stretched by the interaction
with the tail in Case 1 and 4. Near the stroke reversal, the deflection of the
tail (Fig. of Case 3 is in the opposite direction of those of Case 1 and 2,
resulting in the strong LEV close to upper surface of the tail. The mapping of
C, is shown in Fig. . In Fig. , Case 3 shows a larger low pressure region
resulting from the strong LEV compared to the other three cases, leading to
high pressure differences between the upper and lower surface of the tail. At
t/T = 0.59, the second LEV reaches the trailing edge of the rigid foil (Fig.
, resulting in pressure discontinuity near the trailing edge of the foil for
all the cases (Fig. . In Fig. |6.8b} it is noted that the influence of the
second LEV for Case 1 is the smallest, partially explaining the highest Cp,
found in Fig. [6.3a] At ¢/T = 0.82 (Fig. [6.7d and Fig. [6.8d)), the four cases
show similar flow fields around the foil. Case 1 shows some differences in the
wake as the first LEV breaks into two vortices and one of them merges with
the second LEV which is detached from the tail (Fig. [6.7¢). The differences
in the flow fields can be explained by the rapid movement of the tail (Fig.
that influences the formation and the trajectory of the TEV as well as
the detachment of the LEVs, especially near the end of strokes (Fig. |6.7)).
The deflection of the tail with the appropriate flexibility (Case 1) reduces the

low pressure region at the pressure surface around the trailing edge caused



6.1. Effects of flexibility under the optimal condition 154

by the second LEV, resulting in high Cp at t/T = 0.59 where the plunge
velocity is h/hmaee = 0.536, producing a high performance (7.24% and 6.63%
improvement in 7 and C'p over the rigid tail). On the other hand, in Case
3 where the tail stiffness is low, the first LEV circumnavigates the tail near
the stroke reversal earlier than in other cases, resulting in high hydrodynamic
loads (Cp, and Cyy) at low h/ Fopae but high 9/ Oimas- As a consequence, the
power extracted from the plunge motion is low and more power is required for
the pitch motion.

Then, the vortices in the wake (20 chord lengths after the pivot point) are
examined at the end of downstroke in Fig. [6.9} For comparison, the vorticity
scale in Fig. is the same as Fig. [6.7 It is noted that the rotations of
the vortex pairs (the first LEV and the TEV) and the first LEV are in the
same direction which indicates that the strength of the first LEV is stronger
than that of the TEV in each pair. In the downstream region, differences
between Case 1 and the other 3 cases in the vortex structures are evident.
Different from a propulsive system where a reverse Karman vortex sheet is
observed (Zhang et al.|2010), a Kdrman vortex sheet occurs in Case 2, 3 and
4. However, Case 1 gives a different structure in the downstream with multiple
sequential vortices of the same sign rather than vortex pairs, but the resulting
structure downstream is still a wake. In Case 2, 3 and 4, the second LEV
dissipates after advecting 10 chord lengths while that of Case 1 can be found
even near 20 chord lengths since the strength of the second LEV is reinforced
by the first LEV which breaks into two vortices, as shown in Fig. and

0. (cl
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(b) Case 2

(d) Case 4

Fig. 6.9: Instantaneous non-dimensional vorticity contours of Case 1-4 at f* = 0.16,
0o = 80°, ho = 1, ¢ = 90° and zp;, = 0.333 and t/T = 0.5. Vorticity scale is the
same as that in Fig.
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6.2 Effects of flexibility on the performance

under different kinematic conditions
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Fig. 6.10: Comparison of 7 in the range of f* = 0.10 — 0.24 at hg = 1, ¢ = 90° and

Zpiv = 0.333.

To study the energy harvesting performance of the spring-connected system

under different kinematic conditions, 4 cases listed in Table are simulated

over a range of kinematic parameters (f* = 0.10 — 0.24, 6y = 60° — 90°). The

efficiency results in Fig. [6.10] show similar trends with f* at each 6, as the

power coefficient results in Fig. [6.11] This because efficiency is the product of
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Fig. 6.11: Comparison of C'p in the range of f* = 0.10 — 0.24 at hy = 1, ¢ = 90°
and xp;, = 0.333.
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the power coefficient and ¢/d (see Eq. but the change of the swept distance
d is limited as it is dependent on the plunge amplitude hy which is fixed.
Case 1 provides performance improvement in the optimal range of flapping
frequencies, i.e. f* =0.12—0.18, 60y = 80° and 90°. On the other hand, Case 3
gives the highest efficiency and power coefficient in the range of high flapping
frequencies f* = 0.20 — 0.24 regardless of 6 except at f* = 0.24, 6, = 90°. At
f* =10.22, Case 3 where the natural frequency of the tail (f; = 0.15) is close
to the flapping frequency achieves the highest efficiency among the 4 cases in
the range of 6y from 60° to 90°, which is consistent with findings of Wu, Shu,
Zhao & Tian (2015) that a tail with fi = 0.20 gives the highest efficiency
around 34% at the same f* but lower amplitudes for pitch (6, = 52.1°) and
plunge (hg = 0.5). In their study, the performance improvement is attributed
to the strengthened LEV resulting from the tail deformation. However, the
performance cannot be directly related to just the LEV strength in this study
with high 6, = 80° and hg = 1 where the strong LEV is observed in all the
four cases. In Fig. C'pp, of Case 3 increases with f* in the range of
f*=0.10—0.22 at 6y = 60° —90°, while other cases show significant reduction
in Cp, with increase of f* at 6, = 60°. In addition, Cpy of the four cases
is negative except for f* < 0.15 and decreases (i.e. more negative) almost
linearly with increase of f* at high flapping frequencies f* > 0.16 where Case
1 and Case 4 show relatively larger decrease compared to the other cases.
Even though C'py, of Case 1 and Case 4 increases with f* at 6, = 80° and 90°,
significant drop in C'py due to the increase of pitch rate results in mean power
output C'p reduction at high flapping frequencies. On the other hand, in the
range of f* = 0.18 — 0.24, Case 3 gives relatively high Cpy, at 6, = 60° and
70°, while it gives relatively low Cpg at fy = 80° and 90°, producing relatively

high C'p regardless of 6, as shown in Fig. [6.11] These results demonstrate that
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it is feasible to achieve good performance at different flapping frequencies by

tuning the natural frequencies of the spring-tail system.

Table 6.2: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f* = 0.14, 6y = 80°, hg = 1,9 =

90°, i = 0.333.

Case f§ w ks Ir n aP d/c C_% 6Ph 6139 aTmaw(o) O‘Effmax(o)
1 1.36  0.60 0.393 1.180 37.6% 0.99 2.63 1.73 0.89 0.10 38.8 38.3
2 1.36  0.03 0.020 0.491 26.3% 0.64 244 1.03 0.60 0.04 88.8 32.6
3 0.15 0.60 0.005 0.130 27.6% 0.73 2.64 1.56 0.71 0.02 68.8 35.3
4 - - - - 37.1% 096 259 164 0.86 0.10 0.00 38.7
Table 6.3: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f* = 0.20, 6y = 80° , hg = 1, =
90°, Tpip = 0.333.
Case fo w ks I n Cp dlc \JC? Cpn Cro 0rmac(®)  Ceffman(®)
1 1.36 0.60 0.393 1.180 28.6% 0.77 2.70 1.40 1.08 -0.31 20.3 29.0
2 1.36 0.03 0.020 0.491 29.9% 0.74 246 1.07 084 -0.11 46.6 24.7
3 0.15 0.60 0.005 0.130 36.6% 0.92 2.51 1.69 1.17 -0.25 73.6 31.7
4 - - - - 30.8% 0.80 2.59 145 1.06 -0.26 0.00 28.5
Table 6.4: Performance of a power generator with a spring-connected tail (Case 1-3)
compared to that with a rigid tail (Case 4) at f* = 0.24, 6y = 80°, hg = 1,9 =
90°, Tpip = 0.333.
Case f(>]k 2 ks f: n 6P d/C O_% 6Ph 6P@ aTmaz(o) aeffmar(o)
1 1.36 0.60 0.393 1.180 21.4% 0.57 265 188 1.32 -0.75 13.3 25.1
2 1.36  0.03 0.020 0.491 28.1% 0.66 2.36 097 0.87 -0.22 48.9 20.6
3 0.15 0.60 0.005 0.130 33.6% 0.84 2.50 1.59 1.30 -0.46 82.6 28.9
4 - - - - 15.5% 040 2.60 1.83 1.08 -0.69 0.00 23.6

To uncover the physics underpinning the performance of power extraction

under non-optimal conditions of the rigid case, the four cases at the same

0y = 80° as that used in Section but different f* = 0.14,0.20,0.24 are

further investigated (Table , and . In Table Cpp, of the
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four cases increases monotonically with the increase of f* since the plunge
velocity increases linearly with the increase of f*. However, C'py shows an
opposite trend, indicating that more power is required for the pitch motion at
high flapping frequencies. For all the four cases, Cpy is negligible at the low
flapping frequency f* = 0.14, while the absolute value of Cpy ranges from a
minimum of 38% of C'p for Case 2 to a maximum of 174% of C'p for Case 4 at
f*=0.24. In addition, the flapping frequencies where the highest n and Cp
of the four cases are achieved are different from those where the highest Cpy,
is observed. These observations illustrate that the contribution of the pitch
motion to the performance becomes more important with the increase of f*.
As expected, Case 1 with the highest stiffness (ks = 0.393) gives the smallest
OTmag in Table[6.116.41 At the low flapping frequency (f* = 0.14), Case 2 with
the lowest density ratio (u = 0.03) gives the largest arpq., while Case 3 gives
the largest e, at higher flapping frequencies (f* = 0.16 — 0.24). This can
be explained as the ratio between the inertia force and the restoring force of
Case 3 with large p and small f] is the highest and the inertia effect plays an
important role in the passive deflection when the acceleration is large at high
fr

To visualize the prescribed motion combined with the passive deflection of
the the tail, the effective angle of attack (a.rs) defined as the angle between
the relative inflow velocity and the secant connecting the leading edge of the
foil and the end of the tail, as shown in Fig. 3.2} is introduced. When the tail
is rigid (Case 4), the definition of a.y is the same as |Kinsey & Dumas| (2008]).
For all the cases, the maximum of aesy in Table to decreases with the
increase of f;. The time history of a.ss in Fig. [6.13|shows that the magnitude
of aepp for Case 1 (high stiffness) and Case 4 (rigid tail) before the stroke

reversal decreases dramatically at high flapping flapping frequencies (e.g. at
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I—- Case 1 == Case 2 == Case 3 == Case 4| fr=0.14 |— Case 1 == Case 2 == Case 3 == Case 4|

Fig. 6.13: Comparison of a.rs and Cf, of a rigid foil with a spring-connected or a
rigid tail at f* = 0.14 — 0.24, 6y = 80°, hg = 1, ¢ = 90° and zp;, = 0.333.
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t/T = 0.4, the magnitude of a.r; for Case 4 is respectively 19.7°,16.4°,10.6°
and 5.47° at f* = 0.14, 0.16, 0.20 and 0.24). In addition, before the stroke
reversal (t/1 = 0.4—0.5), Cp, of Case 1 and Case 4 increases dramatically, even
with the opposite sign to the plunge motion, at the high flapping frequencies
(f* = 0.20,0.24) compared to that at the low flapping frequencies (f* =
0.14,0.16). On the other hand, at the low flapping frequency (f* = 0.14),
even though Case 3 shows the largest amplitude of C7,, the peak of C7, is in
the opposite direction of the plunge velocity, resulting in a low Cpy, in Table[6.2]
At the high flapping frequencies (f* = 0.20,0.24), Case 3 gives relatively high
a.rf before the stroke reversal (t/T" = 0.4—0.5) since the large deflection of the
tail lags behind the pitch angle due to the inertia effects. At ¢t/T° = 0.2 —0.5
during the downstroke and ¢/T" = 0.75 — 1 during the upstroke, Case 3 gives
reasonable 'y in the the same direction as the plunge motion, resulting in
relatively high Cp;, among the four cases compared to that at the low flapping
frequencies. Among the four cases, Case 2 gives the smallest magnitude of
Ot f, resulting in the smallest magnitude of C'f, as well as the lowest \/C’:% and
Cpy, in Table [6.1}[6.4]

To further investigate the negative contribution of the pitch motion to the
performance which increases with the increase of f* for all the cases, the time
history of Cyy and Cpy is shown in Fig. [6.14] It is noted that for Case 1 and
Case 4, C'y; with the opposite sign to 6 after the mid of the up and down
stroke (/T = 0.75—1 and 0.25 — 0.5, respectively) increases with the increase
of f*, resulting in the large amount of power required for the pitch motion
at the high flapping frequencies. On the other hand, excluding the delayed
peak of Cy; at the high flapping frequencies of f* in Case 3, the change in
the magnitude of C'; of Case 2 and Case 3 after the mid of the stroke is

insignificant. At f* = 0.20 and 0.24, even though the magnitude of C';, in Case
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|— Case 1 == Case 2 = = Case 3 == Case 4| f* = 0.14[— Case 1 === Case 2 = = Case 3 == Case 4]

Fig. 6.14: Comparison of Cj; and Cpy of a rigid foil with a spring-connected or a
rigid tail at f* = 0.14 — 0.24, 6y = 80°, hg = 1, ¢ = 90° and zp;, = 0.333.
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2 and Case 3 is large before the stroke reversal (Fig. , the magnitude of
Cyr approaches 0, which is different from that observed in Case 1 and Case
4 where the magnitudes of both C'; and C); are large. Furthermore, due to
the smaller magnitude of C), after the mid of the stroke (¢/7° = 0.75 — 1 and
0.25 — 0.5), Case 2 and Case 3 gives higher Cpy as shown in the right column
of Fig. , thus higher C'pg in Table and .

The vorticity and pressure distribution of the four cases with f* = 0.14,
0.16, 0.20 and 0.24 at t/T = 0.9 where Cf and C); show major differences
between low stiffness cases (Case 2 and Case 3) and high stiffness cases (Case
1 and Case 4) as shown in Fig. and respectively. The mapping of
vorticity shows that at the same ¢/7T, the size and propagation distance of
the LEV decrease with the increase of f*. According to the review on the
dynamic stall (Choudhry et al|2014), the critical angle of attack increases
with the increase of the pitch rate. In addition, the angle of attack at the
pivot location with the same sign as the plunge motion, which is the same as
aegy of Case 4 in Fig. , at the low f* is greater than or equal to that at high
f*. Thus at the high f*, the formation of LEV is delayed. This explains the
decrease of the distance travelled by the LEV at the high flapping frequencies.
Since the time period of one flapping cycle is related to f*, the physical time
at the same ¢/7T increases with the decrease of f*. This implies that at the
low f*, the LEV is fed by the vortex filament for a longer time, resulting in
the larger LEV compared to that at the high f*. At ¢/T = 0.9, the strength
of the vortex filament shed into the wake at the high f* is stronger than that
at the low f*. In Fig. [6.15d] it is noted that due to the sharp change in the
curvature resulting from the deflection of the tail, the vortex filament in Case
2 and Case 3 detaches from the trailing edge of the foil instead of from the end

of the plate in Case 1 and Case 4. The vortex filament in Case 2 and Case 3
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-15-12.5-10 -7.5 -5 -25 0 25 5 7.5 10 125 15
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0 1 2 3 4 0 1 2 3 4,0 1 2 3 4 0 1 2 3 4
(d) f*=0.24

Fig. 6.15: Instantaneous non-dimensional vorticity contours of Case 1-4 at different
f* and 6y = 80°, hg =1, ¢ = 90° and zp;, = 0.333 and t/T = 0.9.
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-8 -72-64-56-48 -4 -32-24-16-08 0 0.8 1.6

Case 1 Case 2 Case 3 Case 4

3 4y, 0
(d) f* =0.24

Fig. 6.16: Relative pressure coefficient contours of Case 1-4 at different f* and
0o = 80°, hg =1, ¢ = 90° and s, = 0.333 and t/T = 0.9.
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suppresses the high pressure region on the upper surface of the tail, as shown
in Fig. [6.16d. At the high f*, the center of the low pressure region is near the
pivot, causing the small magnitude of C), (Fig. of Case 2 and Case 3
before the stroke reversal where C, is high (Fig. . In Case 1 and Case 4,
the high pressure region acting on the tail has long moment-arm to the pivot
point, resulting in the large magnitude of Cy; in Fig. [6.14] In Case 3, the
large deflection of the tail alleviates the rapid increase of power required for
the pitch motion by eliminating the high pressure region on the suction surface

of the tail when f* is higher than the optimal value of the rigid system.

6.3 Summary

The influence of fluid-structure interactions on the performance of a flap-
ping foil power generator has been numerically studied using the immersed
boundary-lattice Boltzmann method (IB-LBM). The flexibility is achieved by
using a flat plate pinned to the trailing edge of a rigid NACA0015 foil through
a torsional spring. The deformation of the tail is passively determined by
the hydrodynamic loading. As discussed in Section [2.3.2] performance im-
provement is achieved by several studies using active deformation. However,
if the power consumption of the active deformation is taken into account, the
improvement of the performance is limited. In addition, the simple torsion-
al spring model employed in this chapter only introduces 2 new parameters
(natural frequency and density ratio), while more parameters are required to
model the complicated passive motion of the attached tail (Fig. [6.5b)). Thus
the simple torsional spring model is used in this chapter for parametric study.

The optimum kinematic condi6tions of a rigid foil and a rigid foil with a

rigid tail are first identified by conducting simulations over a range of values
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for the flapping frequency f* and pitch amplitude 6y, with hg = 1, p = 90°
and z,;, = 0.333. Peak efficiencies of 36.9% and 37.3% respectively for the
rigid foil and the rigid foil with a rigid tail are found to occur at f* = 0.16,
6y = 80°. A parametric study on the structure-to-fluid density ratio () and
natural frequency (fg) shows that the performance improvement is achieved
in the range of stiffness k, = 0.316 — 1.00. In addition, when ks > 10, the
spring-connected system tends to be a rigid system. It is noted that a spring-
connected tail with appropriate mass density (1 = 0.6) and natural frequency
(f& = 1.36) enhances the maximum efficiency of a flapping power generator by
7.24% compared to a rigid tail.

The time history of Cp, under the rigid-system optimal condition shows
that the improvement in performance is due to the increase in the magnitude
of the hydrodynamic load and synchronization between the hydrodynamic load
and the prescribed motion. Analysis on the tail deformation indicates that the
major component of the passive motion relies on the resonant frequency (f;).
The movement of the tail influences vortex shedding, especially near stroke
reversals. For the case with the highest efficiency (f* = 1.18), the deflection
of the tail reduces the low pressure region on the pressure surface after the
stroke reversal, resulting in high pressure differences between the upper and
lower surface of the foil. For the case with low flexibility (f = 0.13), the
LEV prematurely circumnavigates the tail near the stroke reversal, leading to
a sharp drop in the power coefficient. In the near wake, interactions between
the leading edge and trailing edge vortex of case 1 which has the highest
efficiency are stronger than those of the other cases.

Finally, these four cases are simulated under different kinematic condition-
s. Compared to the rigid case, a tail with p = 0.60 and fj = 1.36 shows

performance improvement (up to 15.3%) over a range of operating conditions
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(f*=0.12—-0.18,6, = 60° — 90°). A spring-connected tail with x = 0.60 and
f& = 0.150 achieves good efficiencies n > 33.0% (up to 137% improvement
over that with a rigid tail at f* = 0.22,6, = 70°) in the range of frequencies
f* = 0.18 = 0.24 with 6y, = 70° and 80°. Under high flapping frequencies,
the deflection of the tail with the low stiffness increases the magnitude of the
effective angle of attack and eliminates the high pressure region acting on the
suction surface of the tail near the stroke reversal, reducing the power required
for the pitch motion. The results indicate that a spring-connected tail with
appropriate stiffness can improve the performance of a flapping foil power gen-
erator for a reasonable range of operating conditions. In addition, according
to the definition of the reduced frequency (f* = fc/U), a spring-connected tail
of low stiffness can benefit from low inflow velocity, which potentially expands

the exploitable energy resource base.



Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

In this study, a novel type of wind/tidal turbines harvesting energy from com-
bined pitch and plunge motions was investigated numerically. In contrast to
rotary turbines which rely on attached flow for high performance, power gen-
erators making use of flapping foil motions can benefit from the formation and
convection of leading edge vortices (LEVs), promising relatively high energy
harvesting performance in low speed flows. A review of the literature in Chap-
ter [2| introduced the fundamental concept of the flapping foil power generator
and recent advances in this innovative concept of wind turbines, covering pa-
rameters governing the kinematics of the system, geometries and deformation
of the foil and the system and environmental effects.

The kinematics of the foil are governed by different parameters depend-
ing on the activation mechanism of the flapping foil system. By tuning the

structure parameters (e.g. damping and stiffness) in the semi-passive system

171
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and fully passive system with one degree of freedom, high performance can
be achieved under the optimal conditions similar to those found in the fully-
prescribed system. Thus, the fully prescribed system is commonly considered
in studies on the flapping foil power generator, especially those focusing on
the influence of factors other than kinematics (e.g. geometry and environmen-
t) and the physical mechanisms for high performance.

Parametric studies on the fully prescribed system generally are focused on
two variables with others fixed because of the complex influence of the kine-
matic parameters on the performance and the high computational cost of CFD
methods (such as the Navier-Stokes solver or IB-LBM). These studies suggest
operating conditions for high performance in the range of non-dimensional
frequency f* = 0.11 — 0.18, pitch amplitude 6, = 60° — 100°, plunge ampli-
tude hy = 0.8 — 1.5, phase difference between the pitch and plunge motions
¢ = 90° — 110° and non-dimensional pivot point location x,;, = 0.25 — 0.5.
In addition, large flow separations are observed near the optimal condition
in many studies, of which simulations are beyond the capability of potential
flow based methods. Studies using methods based on the potential flow theory
generally constrain the maximum angle of attack to avoid the occurrence of
large flow separations.

Besides the kinematics, the geometry of the foil, the configuration of the
system and the operating environment also affect the performance of the flap-
ping foil power generator. According to results of propulsive system using
flapping foils, it is attractive to exploit the deformation of the foil to improve
the performance of the flapping foil power generator when a single foil system
in the unconstrained flow is considered. Several studies show that active de-
formation of the foil influences the formation of LEVs and appropriate phase

angle between the plunge motion and the deformation can improve power out-
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put under optimal and non-optimal conditions of the rigid system. However,
the power required to deform the foil is significant but generally neglected in
the performance analysis. In addition, recent studies show that the passive
deformation can enhance the performance of the flapping foil power generator
under the on-optimal conditions of the rigid system, while the improvement in
the maximum efficiency is negligible.

This study was, therefore, aimed at achieving high performance of the
flapping foil power generator through appropriate combination of kinematic
parameters and coupling between the foil deformation and the aerodynamic
loads. To achieve this goal, discrete vortex method was modified in Chapter
M] to capture the influence of flow separations for rapid performance estima-
tions; kinematic parameters were optimized using multi-fidelity evolutionary
algorithm in Chapter [5; and the influence of the passive motion of a spring
connected tail on the performance was examined in Chapter [6]

To remove the impediment for optimization due to the high computation-
al cost of CFD methods, the discrete vortex method based on potential flow
theory was developed in Chapter [d] The results given by the modified discrete
vortex method showed good agreement with the CFD simulations and the ex-
periment data for both optimal and non-optimal conditions with respect to
kinematic parameters and pivot point locations. The influence of the leading
edge vortex and trailing edge flow separation was successfully predicted by in-
troducing the leading edge suction parameter and trailing edge flow separation
corrections into the potential low based method. Moreover, the modified dis-
crete vortex method performed well under different kinematic conditions with
or without large flow separations, as demonstrated in Chapter 4| and Chap-
ter [5| since the empirical constants in this model were only dependent on the

Reynolds number and foil geometry. In addition, it took much less computa-
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tional time (at least two order of magnitudes) than CFD methods. Thus, the
modified discrete vortex method is an attractive tool for engineering design
and optimization of the flapping foil with large flow separations.

In Chapter [5, the multi-fidelity evolutionary algorithm implemented with
the low order models reproduced in Chapter |3| and developed in Chapter
was used to search for values of kinematic parameters that produced high
energy extraction performance. The results indicated that the use of multi-
fidelity strategy achieves a computational saving of 28.6%. Despite the use of
low fidelity models and limited budget of computational resources, the multi-
fidelity strategy was capable of finding kinematic conditions suitable for high
energy extraction performance from a flapping foil. In addition, detailed flow
analysis using immersed boundary-lattice Boltzmann method revealed that
high energy extraction performance was associated with the detachment of
the LEV near stroke reversal, resulting in a horseshoe-shaped vorticity wake
with a width approximating the swept distance of the foil behind the turbine
plane. When the LEV detached from the foil near mid stroke, both efficiency
and power output suffered.

Investigation in Chapter [ on the aero-elastic system containing a rigid foil
and a spring connected tail showed that under the rigid-system optimal kine-
matic condition, a tail with appropriate mass density (4 = 0.6) and resonant
frequency (f} = 1.18) could improve the maximum efficiency by 7.24% accom-
panied by an increase of 6.63% in power compared to those of a rigid foil with a
rigid tail. This was because the deflection of the tail reduced the low pressure
region on the pressure surface (i.e. the lower surface during the upstroke or
the upper surface during the downstroke) caused by the leading edge vortex
after the stroke reversal, resulting in a higher efficiency. In the rigid system,

the power required to pitch the foil increased significantly with the increase of
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the flapping frequency, resulting in low efficiency. At high flapping frequencies,
a spring-connected tail (f = 0.13) eliminated the large spike in the pitching
moment observed in high stiffness cases, reducing the power required for the
pitch motion, resulting in 117% improvement in efficiency over that with a

rigid tail at a reduced frequency of 0.24.

7.2 Recommendations for future work

In this thesis study, the influence of the kinematics and passive deformation
on the performance of the flapping foil power generator in two-dimensional
uniform flow was investigated. Some extended studies would be worthwhile to
be conducted in the future to further the understanding of the performance of
flapping foil power generators.

First of all, the influence of the foil deformation is not considered in the
discrete vortex method (DVM) modified in Chapter[d According to the DVM,
the local velocity normal to the foil corresponding to the change of the chord
line curvature is easy to implement, while it remains a challenge to predict the
foil deformation in response to the aerodynamic loads. Further modification
of the DVM considering fluid-structure interactions is worthwhile for studies
on foil deformation in both energy harvesting and propulsive systems using
flapping foils. In addition, the DVM assumes that the aspect ratio of the
wing is infinite, neglecting three-dimensional effects. The idea of introducing
the leading edge suction parameter and trailing edge flow separation correc-
tions considered in this study can be employed in the unsteady penal method
developed for three-dimensional potential flow to include the effects of flow
separations.

In Chapter 5, the highest fidelity model used in the optimization process is
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the modified DVM. Even though the modified DVM shows reasonable agree-
ment with the CFD methods and experiment, employing higher fidelity results
(e.g. CFD and experiment) in the optimization process may achieve better per-
formance since they contain more information (e.g. the flow field) which might
be neglected in low order models. In addition, besides parameters governing
the kinematics of the fully prescribed system, geometry and deformation of
the foil, configuration of multiple foils and parameters in the semi-passive and
fully passive system remain to be optimized for higher performance.
According to the studies using Reynolds averaged Navier Stokes methods
reviewed in Chapter [3] the formation of the leading edge vortex is not neces-
sary for high performance when turbulence is considered. Thus, more work
should be conducted in the turbulent flow region. In addition, since several
turbulence models give different timing and position of flow separations, large
eddy simulations or direct numerical simulations of the flapping foil power

generator remain to be accomplished.
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Appendix A

Summary of the literature

L6

Table A.1: Summary of studies on flapping foil power generators with prescribed pitch and plunge motions. 7,, is the maximum
efficiency achieved in the literature using the definition in Eq. and C pp, is the power coefficient corresponding to the maximum
efficiency. AR stands for aspect ratio and NST stands for not stated.

Authors Year Re rr 00(°) ho e(°)  Tpiv Cpm Nm Information

Numerical studies




Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Nm Information
Jones & 0.01-  15- 0.2- NACAO0012 foil. Simulations using
1999 00 90 0.5 0.52  26%
Platzer 0.40*  78P 4.0 panel method.
0.02- 8- 0.3- 65- -0.3- d NACAO0012 foil. Simulations using
Davids 1999 00 0.82  35%
0248 768 50 125 1.3 panel method.
00, NACAO0014 foil. The highest
0.01- 10- 0.0- 80- 0.13-
Lindsey 2002 2.0 x 10%, .00 32% efficiency was achieved at Re = 10°
0808 1058 50 110 08
1.0 x 108 using a NS solver.
00, NACAO0014 foil. The highest
0.01- 0- 0.0-  80-
Jones et al. 2003, 2.0 x 104, 0.25 1.25  40% efficiency was achieved at Re = 10°
032 odbl 50 110
1.0 x 108 using a NS solver.

2Q0riginal reduced frequency was defined as k = 27 f¢/U. The non-dimensional frequency f* is calculated using f* = fc/U.

bCalculated according to the amplitude of the angle of attack g, plunge amplitude hy and non-dimensional frequency f*.

¢Calculated according to the maximum non-dimensional plunge velocity khg and reduced frequency k.

dDavids| (1999) stated a peak efficiency of 30.0% in Table 1 on page 41. Here the efficiency of 34.9% listed in Appendix 2 on page 78 is considered.
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Nm Information
0.25, NACAO0015 foil. The influence of foil
Kinsey & 0.01-  0-
2008 1100 1.0 90 0.333, 0.86 33.7%  thickness is insignificant, while that
Dumas 0.25 90
0.5 of the pivot location is significant.
NACAO0014 foil. Non-sinusoidal pitch
0.04- 40, 0.5, 70- 0.89  34%
Ashraf et al. 2011, 2.0 x 10* 0.5 and plunge motions. Single foil and
032 73 1.05 130 1.44°  54%!
two foils in tandem.
Joukowski foil. Peak efficiency was
0.2,
0.05-  30- 0.3- 60- achieved when the most unstable
Zhu 2011 1000 0.35, 0.818 31%
0.25 90 2.0 130 frequency in the wake coincided with
0.5

¢Total power coefficient of multiple foils.

fTotal efficiency of multiple foils.

gCalculated according to the efficiency and swept distance computed from Eq. and

the flapping frequency.
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information
NACAO0015 foil. Single foil and foils in
Kinsey & 0.04- 60, tandem. Comparison of predictions
2012a) 5.0 x 10° 1 90 0.333  1.02  40%
Dumas 0.20 75 given by 2D and 3D URANS using
different turbulence models.
Kinsey & 0.04- 62- 0.75,
201256, 5.0 x 10° 90 0.333  1.648 64%0 NACAO0015 foil. Two foils in tandem.
Dumas 0.20 75 1.00
Kinsey &
2012¢, 5.0 x 10° 0.14 75 1.00 90 0.333  0.998 39%0 NACAO0015 foil. AR=5-10.
Dumas
0.01-  15- 0.5, . NACAOQ012 foil. Non-sinusoidal pitch
Xiao et al. 2012 1.0 x 104 90 0.333  0.98 39%!
0.25" 75 1.0 motion.

hOriginal frequency is given by the Strouhal number St = 2fho/U. The non-dimensional frequency f* is calculated using f* = fc/U

iThe definition of efficiency in [Xiao et al.|(2012) was the same as Eq. Since the curve of power coefficient (Fig.5) and that of efficiency (Fig. 6)

were different, definition in Eq. is considered here.
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information
NACAO0015 foil. Good synchronization
Campobasso 1100, 0.14, 76, between the plunge motion and LEVs
2013 1.0 90 0.333 1.01  40%
et al. 1.5 x 105 0.18 60 was not required for high performance
in the turbulent flow.
0.1, 55,
0.7- NACA 0008, cambered NACA0012
Le et al. 2013] 9.0 x 10* 0.125, 60, 90 0.333  0.688 39%
1.1 and corrugation foil.
0.15 65
NACAO0012 foil. High efficiency was
Liu 0.05- 9- 0.5, achieved at low angle of attack
2013, 1.0 x 106 . 90 0.333  0.75  32%
et al. 0.25 58 1.0 ap < 20° with active foil deformation.
Single foil and two foils in parallel.
NACAO0015 foil. AR=1-8. 3D effects
Deng 60-
2014 1100 0.16 1.23 90 0.333  1.11B 36% were stronger when non-sinusoidal
et al. 82

motion was imposed.

ICalculated according to the amplitude of the angle of attack cp, plunge amplitude hy and non-dimensional frequency f*.
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information
NACAO0015 foil. LEVs were not
Kinsey & 0.02-  35- 1.0-
2014, 5.0 x 10° 90 0.333 1.5  45% observed in most of the optimal
Dumas 0.28 105 3.0
turbulent cases.
0.03-  24- NACAO0012 foil. Non-sinusoidal pitch
Lu et al. 2014/ 1.0 x 104 0.8 90 0.333  0.46  21%kK
0.25% 67 and plunge motions.
0.06- 0- Elliptical foil. Pitch motion is given
Xie et al. 2014/ 1.0 x 104 1.0 90 0.5 0.90  30%
0.44 35 by 6 = 5 4+ 6p sin (wt + @) .
Flat plate. Passive and active
Tian et al. 2014 1100 0.14 76 1.0 90 0.333  0.98 38%
deformation
NACAOQ015 foil with and without end
Drofelnik & plates. AR=10. Loss due to finite span
2015 1.5 x 105 0.14 76 1.0 90 0.333 1.00  39%'

Campobasso

kQOriginal efficiency was given by Eq. Recalculated the efficiency using the definition in Eq. |2.6
ICalculated according to the power coefficient and swept distance computed from Eq. and

was caused by tip vortices and LEV

suppression.
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information
Hoke et al. 2015 1100 0.14 76 1.0 90 0.333  0.97 38% NACAO0015. Active deformation
0.12-  36- NACAO0015 foil. A auxiliary foil of 0.5
Wu et al. 2015 1100 0.5 90 0.333  0.56  35%
0.248 ¢l chord length below the flapping foil.
NACAOQ015 foil. A flexible flat plate
0.05-  19-
Wu et al. 2015 1100 0.5 90 0.333 0.56  33% modelled by the Euler-Bernoulli beam
0.258 54l
theory was attached to a rigid foil.
500- 0.05- 19- NACAOQ015 foil. The foil was placed
Wu et al. 2015 0.5 90 0.333  0.36 24%
4000 0.258 74 1-5 chord length from the ground.
1.0 x 104, 0.14, 51-  1.00, NACA0002 and NACA0015 foils.
Zhu et al. 2015 90 0.333 1.05  41%
14x10* 016 91l 1.23 Active deformation.
Drofelnik &
2016/ 1.5 x 105 0.14 76 1.0 90 0.333 1.00  39% NACAO0015 foil.
Campobasso
Gauthier 0.08- NACAQ0025 foil. AR=10. Constrained
2016/ 3.0 x 106 80 1.0 90 0.4 1.91m 777K
et al. 0.22 flow.

M(Calculated from the ratio between power extracted from constrained flow and unconstrained flow defined in |Gauthier et al.|(2016).
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information

0.1- NACAT15 foil. Combined pitch, plunge
Wu et al. 2016 1100 75 1.0 90 0.333  0.91B 36%

0.2 and surge motions.

0.08-
Xu et al. 22016, 4.4 x 10* 70 1.0 90 NST NST  54% NACAO0015 foil. Two foils in tandem.

0.22

0.08- NACAO0015 foil. Study on the
Chen et al. 2017 1100 60 1.0 90 0.333 093 3™

0.20 influence of the wind gust.
Jeanmonod & 0.08-  60-

2017 1100 1.0 90 0.333 0.88 NST Flat plate. Passive deformation.
Olivier 0.18 90
NACAO0015 foil. Two foils in tandem.
Liu 2017| 5.0 x 105 14 70 1.0 90 0.333 1.50@ g%
Efficiency reduced in shallow water.

0.05-  50- NACA 4 digit foil with different
Sun et al. 2017/ 6.0 x 10° 1.0 90 0.333 1490 54%

0.28 110 thickness.

0.06- 61- 0.5-
Wang et al. 2017 1.4 x 104 90 0.333 0.90 30% NACAO0012 foil.

02281 107 2.0
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Authors Year Re I* 00(°) ho e(°)  Tpiv Cpm Mm Information
Experimental studies
Simpson 0.08-  43-
2008 1.4 x 104 1.23 90 NST 1.06  <43%™ NACAO0012 foil. AR=4.1, 5.9 and 7.9.
et al. 0.240 111
NACAO0012 foil with end plates.
Fenercioglu 90, 0.25,
2015 1100 0.133 73 1.05 0.86 33% AR=6. Non-sinusoidal pitch and
et al. 110 0.5
plunge motions.
Flat plate with end plates. AR=3.
Karakas 90,
2016/ 1.0 x 10* 0.13®@ 73 1.05 0.40 0.43 1% Non-sinusoidal pitch and plunge
et al. 110
motions. Constrained flow.
Elliptical and rectangle foils with end
Kim 0.08-  45- 0.5-
2017/ 5.0 x 104 90 0.50 0.7481  38% plates of different sizes. AR=2.5, 3.5
et al. 0.20 85 1.0

and 4.5.

"Qriginal efficiency was given by Eq. [2.8] Cannot recalculate the efficiency using the definition in Eq. [2.6|without pivot location ;.
g y g P
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Table A.2: Summary of studies on flapping foil power generators with prescribed pitch and passive plunge motions. 7,, is the
maximum efficiency achieved in the literature using the definition in Eq. and Cpp, is the power coefficient corresponding to
the maximum efficiency. AR stands for aspect ratio and NST stands for not stated.

Authors Year Re r* 00(°) ho ©(°) Tpiw CpPm Nm Information

Numerical studies

NACAO0012 foil. Optimization using

0.0- 0.5- 100- 0.0-
Shimizu 2004 00 50 0.34>  29%¢ evolutionary algorithms with solutions
0.102 2.0 150 1.0
evaluated by the Theodorsen’s theory.
NACAQ012 foil. 8 non-dominated
Shimizu 00, 0.0- 0.5- 100- 0.0-
2008 50 0.54B  35%@  solutions were evaluated using a
et al. 4.6 x 10°  0.10® 20 150 1.0

Navier-Stokes solver.

2Qriginal reduced frequency was defined as k = wf¢/U. The non-dimensional frequency f* is calculated using f* = fc/U.
PThe power coefficient is computed from the dimensional power given by |Shimizu| (2004) and [Shimizu et al.| (2008) with an assumed air density of

1.225 kg/m3.
¢Original efficiency was given by Eq. Recalculated the efficiency using the definition in Eq.
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Authors Year Re r* 00(°) ho @(°) Tpiw CpPm Nm Information
Flat plate, NACA0005 and NACA0025
0.03- 10- 0- 0.0-
Zhu et al. 2009 00 NST 0.081  <13%° foils. Inertia of the foil was neglected.
0.642 30 0.4 1.0
2D and 3D inviscid flow.
Zhu & 0.03- 5- 0.0- Joukowski foil. Ry/ (pcU) = 7. Inertia of
2009 1000 NST NST 0.34d  27%
Peng 0.418 60 1.0 the foil was neglected.
Deng 0.08-  60- 75- NACAO0015 foil. Ry = w. Mass ratio was
2015 1000 NST 0.333  0.57"  33%
et al. 0.22 90 125 examined.
15, NACAO0015 foil. Two auxiliary foils of
Wu 0.16- 0-
2015 1100 30, NST 0.333 NST 43%®%  0.5c¢ in parallel. Ry/ (%ch) =,
et al. 0.248 0.5
45 Ky/ (%pU2) =1, myoir/ (%ch) =1.

4The power coefficient is computed from the ratio between the power output and the maximum net power generation capacity (7/8)62 and non-

dimensionalized by 1/2pU3c.
¢Original efficiency was given by Eq. Cannot recalculate the efficiency using the definition in Eq. without additional information.
In Deng et al.|(2015), Cp,, is 0.42. Here Cp,, = 0.57 is considered after communicated with the authors.

gTotal efliciency of multiple foils.
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Authors Year Re r* 00(°) ho @(°) Tpiw CpPm Nm Information
NACAO0015 foil with a flexible tail of 0.3c.
Wu 0.1- 20,
2015 1100 NST NST 0333 040 20%  Ry/(3pcU) ==, K/ (3pU%) =1,
et al. 0.3 40 .
mioaf (30¢%) =5.
Teng 0.08- NACAO0015 foil. Ry/ (pcU) =7, pfoit/p
2016 1000 45-90 NST NST NST NST 32%
et al. 0.22 = 4.7. Non-sinusoidal pitch motion.
Experimental studies
Abiru & 30- . NACAO0015 foil. Two foils in tandem.
2011a/ 1.0 x 10° 0.108@ NST 90 0.5 0.58M1  46%E
Yoshitake 50 AR=3.
Abiru & 0.6 x 105~ 0.08- 30- 0.15-
20115 90 0.5 0.308  22%@  NACA0015 foil. AR=3.
Yoshitake 1.2x10°  0.168 50 0.7
Huxham 0.03- O- 0.0- .
2012 4.5 x 10* NST 0.25 0.29 24% NACAO0012 foil. AR=34.
et al. 0.20 60 1.0

aanjeIa] ayy jo Arewrwing 'y xipuaddy

"The power coefficient is computed from the dimensional power given by |Abiru & Yoshitake|(2011a) and |Abiru & Yoshitake|(2011b) with an assumed

water density of 998 kg/m?.
iTotal power coefficient of multiple foils.
JCalculated from the input and output power coefficient and non-dimensionalized by 1/2pU3c.

80¢



Authors Year Re r* 06(°) ho ¥(°) ZTpiv CpPm Nm Information
1.67 NACAO0012 foil. AR=2.5. Prescribed
Lu 40, 90,
2015 3500 0.13& 2.5 0.75 0.455 14%K  sinusoidal plunge motion and self-
et al. 50 110
3.33 motivated pitch motion.

kDefinition was not stated in |Lu et al.|(2015). This value was given by numerical simluations and is extracted directly from Fig. 10 in Lu et al.|(2015).
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Table A.3: Summary of studies on flapping foil power generators with passive pitch and plunge motions. 7, is the maximum
efficiency achieved in the literature using the definition in Eq. and C pp, is the power coefficient corresponding to the maximum
efficiency. AR stands for aspect ratio, DFO stands for degree of freedom and NST stands for not stated.

Authors Year Re r* 00(°) ho ¥(°) Tpiv CpPm 7Tm Information
Numerical studies
Peng & 20- 0.4- Joukowski foil. 2 DOF.
2009 1000 0.08-0.15 NST NST 0.28%  20%
Zhu 90 0.9 Ry/ (pcU) = .
Joukowski foil. 2 DOF. Small shear
25- 0.02- 0.3-
Zhu 2012 1000 0.16-0.31 NST 0.348  31% expanded the response region for
100 0.06 0.6
energy harvesting. Ry/ (pcU) = .
NACAQ012 foil. 1 DOF. High
Young 1100, 0.0- 30- 0.0-
2013 1.0 90 NST 41% efficiency was achieved via the angle
et al. 1.1x10% 0.3° 90 1.0
of attack control.
100-
Jiang et al. 2016 1100 0.16-0.31 NST NST NST 0.8 29% Cambered elliptical foil. 2 DOF.
180

aThe power coefficient is twice of that in |Peng & Zhu|(2009) when non-dimensionalized by 1/2pU3c.

POriginal frequency is given by the Strouhal number St = 2fho/U. The non-dimensional frequency f* is calculated using f* = fc/U
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Authors Year Re r* 00(°) ho ©(°) Tpiv Cpm Mm Information
Jiang et al. 2017, 1.0 x 10* NST NST NST NST 0.50 0.32  20% Elliptical foil. 2 DOF.
NACAO0015 foil. 2 DOF.
Veilleux &
2017| 5.0 x 10> NST NST NST NST 0.333 1.08 34% Optimization using gradient-like
Dumas
method.
Wang 0- 0- 0.0-
2017 400 NST NST 095 32% NACAO0012 foil. 2 DOF.
et al. 100 1.6 1.0
Experimental studies
McKinney & 8.5 x 10%, 0.08- 25, 60-
1981 0.3 0.5¢ 0.174  17%e NACAO0012 foil. 1 DOF. AR=5.25.
DeLaurier 1.1 x 10>  0.20 30 135
Not 0.13- 35- 0.5-  80- 0.41,
Davids 1999 0.19  16% NACAO0012 foil. 1 DOF. AR=5.6.
Stated ~ 0.19f 608 09 110 0.1

°Deducing from Eq. 16 in [McKinney & DeLaurier|(1981)
dCalculated according to the efficiency and swept distance computed from Eq. and
¢QOriginal efficiency was given by Eq. Recalculated the efficiency using the definition in Eq.
fOriginal reduced frequency was defined as k = 27 fc/U. The non-dimensional frequency f* is calculated using f* = fe/U.

gCalculated according to the amplitude of the angle of attack aq, plunge amplitude hy and rnon-dimensional frequency f* .
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Authors Year Re r* 00(°) ho ¥(°) Tpiv CpPm 7Tm Information

0.03- 45- 1.1, NACA0014 foil. 1 DOF. AR=5.6.
Lindsey 2002 2.2 x 10% NST NST 025 <12%"

0.164 73 1.3 Tow foils in tandem.

0.10- , . NACA0014 foil. 1 DOF. AR=5.6.
Jones et al. 2003 2.2 x 10% 731 130 90 02580 025 8%

0.160 Tow foils in tandem.
Kinsey 0- 0.77%  30% NACAO0015 foil. 1 DOF. AR=T.

2011| 4.8 x 10° 75 1 90 0.333

et al. 0.20 1.020 400%™ Tow foils in tandem.

I The original efficiency in Lindsey|(2002) was 23%. Since the plunge amplitude was 1.05 and power coefficient was 0.25, the efficiency less than 12%

is considered here.

Deducing from Section 2.2 in |Jones et al.| (2003).

JCalculated according to the power coefficient and swept distance computed from Eq. Wand
kCalculated according to the efficiency and swept distance of 2.55 chord length.
ITotal efficiency of multiple foils. Calculated according to the efficiency and swept distance of 2.55 chord length.

mTotal efficiency of multiple foils.
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Time step (i)=1

=i+l ——yes

!

Calculate new trailing edge vortex
(TEV)

v

_| Calculate circulation
Eqs. 4.6 and 4.7

—Satisfy Kelvin conditio Yes A, exceeds LESP

End

Yes
L J
L Calculatg TEV strength | No Calculate new leading edge vortex
Eq. 4.7 (LEV)

_|Calculate circulation
Egs. 4.6 and 4.7

Calculate LEV and TEV strength
Eq. 4.7

atisfy Kelvin condition

l-NO ..
and Kutta condition

Yes

Calculate steady-state separation point |
Eq. 4.12 N
v
Calculate dynamic separation point
Eq. 4.13
v
Calculate aerodynamic loads
Eqs. 4.17-4.19

Fig. B.1: Flowchart of the improved discrete vortex method. The predefined number
of time step i;mqz is related to the number of flapping cycles and the time spacing
At.
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B.2 Matlab Code

% Discrete Vortex Method
WISTSTTITIIIIIITIIIIIIIIIITIITIIIITITITITTTTTT o
% NOTICE %
% Righthand and Upward is positive %
WSSTTTIIIIIIIIITIIIIIIIIIITIITIIIIITTITITTTTT o
clear ;

cle;

Y%lnput

%Constant Value

tstep =200;

global ro

ro=1;

global phn

phn=1;

global Iplate

Iplate=1;

bplate=Iplate /2;

global U0

U0=1; % Freestream velocity

%Kinetic Parameters

hO=1xlplate; % Heave amplitude

fstar=0.14; % Non—dimensional

frequency
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omega=2xpixfstar«U0/Iplate ;
Pitching velocity

phi=pi /2;

thetal=0/180%pi;

theta0=—-76.3/180%pi;

aplate=1/2;

%Program variables
global wmid
global umid
global v_core
v_core=0.02 ;
vortices
anmax=40;
vorticity at a location
dismax=100;
eps=0.00001;

lesp0=0.19;

%TE separation
alphal=15.25/180x%pi;
deltaalphal=2.1xpi/180;
S1=3.0xpi/180;
S2=2.3%pi/180;
tstar=Iplate /2/U0;

tl=1.04xtstar;

Y%Non—dimensional core

Y%Number of fourier

% Phase angle
% mean amplitude

% Pitch amplitude

radius of point

terms used to compute

on chord
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s t2=0xtstar;

s deltait=2%pi/omega/tstep*phn;
50 itace=0.97;

51 df=0.66/52;

s2 falphad2(1)=1;

s3 deltaalphaln (1)=0;

54

55 for i=1:tstep

56 apiv(i)=(14+aplate) /2;

57 t(1)=(i)#*2%pi/omega/(tstep)xphn;

58 theta(i)=thetal+thetaOxsin (omegaxt(i));

59 dtheta (i)=theta0sxomegaxcos (omegaxt (i));

60 d2theta(i)=0—thetalO*xomega 2xsin (omegaxt(i));
61

62 h(i)=hOxsin (omegaxt (i)+phi);

63 dh(i)=hO0*xomega*cos (omegaxt (1i)+phi);

64 d2h (i)=0-hOxomega " 2*sin (omegax*t (i)+phi);

65

66 Ueff(i)=sqrt (U0 24+dh(i) " 2);

67 alpha (i)=theta(i)+atan(dh(i)/U0);

68 dalpha (i)=dtheta (i)+d2h(i)/U0/(1+(dh(i)/U0)"2);
69 dalphanon (i)=alpha(i)*lplate /2/U0;

70

7 end

2 % plot (it ,alpha)

s % hold on



74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Appendix B. Flowchart and code of the DVM

218

% plot (it ,dalpha)
(

% grid on
% hold off

global jstep

jstep =50; %points on the foil
xtheta=zeros (1,jstep);

x=zeros (1,jstep);

ditadx=zeros ( )
inteAl=zeros (1,jstep);
inteA2=zeros ( )
inteAO=zeros ( )
x_bound=zeros (1,jstep);
z_bound=zeros (1,jstep);
downwash_bound=zeros (1, jstep);

gamma—=zeros (1,jstep);

n_tev=0;

n_lev=0;
lev_strength =[];
xdist_lev_bound =[];
zdist_lev_bound =[];
levflag=0;
Tau_enf=0;
dist_wind=0;

tev_iter (1)=0;
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tev_iter (2)=-0.01;
kelv_enf=0;

kelv (1)=0;

A0=0;
A1=0;
A2=0;
A3=0;
AO0_pre=0;
Al _pre=0;
A2 _pre=0;

A3 _pre=0;

deltat=2xpi/omega/(tstep )s*phn;
dxtheta=pi/(jstep —1);
for j=1:jstep

xtheta (j)=(j—1)xpi/(jstep —1);

x(j)=bplatex(l—cos(xtheta(j)));

end

for i=2:tstep

%Calculate bound vortex positions at this time step

dist-wind=dist_wind+UO0*(t (i)—t(i—1));

for j=1:jstep

x_-bound (j)=Ilplate(apiv(i)—1)*xcos(theta(i))+(x(]

)—apiv (i)*xlplate)xcos(theta(i))+dist_wind;
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z_bound (j)=(apiv (i)*lplate—x(j))#sin (theta(i))—
Iplate*(apiv(i)—1)*sin (theta(i))+h(i);

downwash_bound (j )=(U0xcos (theta (i))+dh(i)*sin (
theta(i)))—UOxsin (theta(i))—dtheta(i)x(x(]j)—
apiv(i)*lplate)+dh(i)*cos(theta(i));

end

%Distance travelled by LEV

n_tev=n_tev-+1;

if n_tev==
x_tev(n_tev)=x_bound (jstep)+(0.5%xU0(t(1i)—t(i—1)
)
z_tev(n_tev)=z_bound(jstep);
else
x_tev(n_tev)=x_bound(jstep)+1/3%(x_-tev(n_tev—1)—
x_bound (jstep));
z_tev(n_tev)=z_bound (jstep)+1/3%(z_tev(n_tev—1)—
z_bound (jstep));

end

%Distance between vortices and points on the foil
for j=1:jstep
for i_lev=1l:n_lev
xdist_lev_bound (j,i_lev)=x_lev(i_lev)—

x_bound (j);
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zdist_lev_bound (j,i_lev)=z_lev(i_lev)—
z_bound (j);
end
end
for j=1:jstep
for i_tev=I1:n_tev
xdist_tev_bound (j,i_tev)=x_tev(i_-tev)—
x_bound (j);
zdist_tev_bound (j,i_-tev)=z_tev(i_tev)—
z_bound (j);
end
end
%Distance between vortices
for i_lev=1l:n_lev

for j_lev=1l:n_lev

xdist_lev_lev (i_lev ,j_lev)=x_lev(j_lev)—

x_lev(i_lev);

zdist_lev_lev (i_lev ,j_lev)=z_lev(j_lev)—

z_lev(i_lev);
end
end
for i_tev=1l:n_tev

for j_tev=1l:n_tev

xdist_tev_tev(i_tev ,j_tev)=x_tev(j_tev)—

x_tev(i_tev);

zdist_tev_tev (i_tev ,j_tev)=z_tev(j_tev)—
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z_tev(i_tev);
end
end
for i_tev=Il:n_tev
for j_lev=1l:n_lev
xdist_lev_tev (i_tev,j_lev)=x_lev(j_lev)—
x_tev(i_tev);
zdist_lev_tev (i_tev ,j_lev)=z_lev(j_lev)—
z_tev(i_tev);
end

end

%lterate to find A0 when there’s no LEV
iter=1;

flagerro=1;

tev_iter (1)=0;

tev_iter (2)=-0.01;

while ( iter <1000 && flagerro>eps )
iter=iter+1;
tev_strength (n_tev)=tev_iter (iter);
thetamid=theta (1) ;
downwash=f_downwash (n_lev ,lev_strength ,

xdist_lev_bound , zdist_lev_bound ,n_tev ,

tev_strength ,xdist_tev_bound , zdist_tev_bound ,

theta (i) ,downwash_bound);
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for j=1:jstep
inteA0 (j)=downwash(j)/UO0;
inteA1l (j)=downwash(j)/UOxcos(xtheta(j));
inteA2(j)=downwash(j)/UOxcos(2*xxtheta(j));
inteA3(j)=downwash(j)/UOxcos(3xxtheta(j));
end
AO0=—1/pixtrapz (xtheta ,inteA0);
Al=2/pixtrapz (xtheta ,inteAl);

Tau_bound=UOxlplatexpi*(A0HALl/2);

kelv(iter)=kelv_enf;
for i_lev=1:n_lev

kelv(iter )=kelv(iter)+lev_strength(i_lev);
end
for i_tev=1l:n_tev

kelv(iter )=kelv(iter)+tev_strength(i_tev);
end
kelv (iter)=kelv(iter )+Tau_bound;
flagerro=abs( kelv(iter));

if flagerro>eps

dkelv=(kelv (iter)—kelv (iter —1))/(tev_iter (iter

)—tev_iter (iter —1));

tev_iter (iter+1)=tev_iter (iter)—(kelv(iter)/

dkelv);

end
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end

lesp=A0;

levx=UO—dtheta (i)=*sin (theta(i))*apiv(i)+umid(1);
levy=—(dtheta(i)*cos(alpha(i))*apiv(i))—dh(i)+wmid(1)

Y

if (abs(lesp)>lesp0)
n_lev=n_lev+1;
tev_iter (1

lev_iter (1

(1)
tev_iter (2)=-0.01;

(1)

(2)

lev_iter (2
if (levflag==0)
x_lev(n_lev)=x_bound (1) +(0.5*%levx*(t(i)—t (i
~1)));
z_lev(n_lev)=z_bound (1)+(0.5%levy*(t(i)—t(i
~1)));
else
x_lev (n_lev)=x_bound (1) +(1/3%(x_lev (n_lev —1)
—x_bound (1)));
z_lev (n_lev)=z_bound (1) +(1/3x(z_lev (n_lev —1)
—v_bound (1)));

end

levflag=1;

for j=1:jstep



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

Appendix B.

Flowchart and code of the DVM

225

xdist_lev_bound (j,n_lev)=x_lev(n_lev)—
x_bound (j);

zdist_lev_bound (j,n_lev)=z_lev(n_lev)—

z_bound (j);
end
for i_lev=I1:n_lev
xdist_lev_lev (i_lev ,n_lev)=x_lev(n_lev)—
x_lev(i_lev);
zdist_lev_lev (i_lev ,n_lev)=z_lev(n_lev)—
z_lev(i_lev);
end
for i_lev=I1:n_lev
xdist_lev_lev(n_lev  i_lev)=x_lev(i_lev)—
x_lev(n_lev);
zdist_lev_lev(n_lev ,i_lev)=z_lev (i_-lev)—
z_lev(n_lev);
end
for i_tev=Il:n_tev
xdist_lev_tev (i_tev ,n_lev)=x_lev(n_lev)—
x_tev(i_-tev);
zdist_lev_tev (i_tev ,n_lev)=z_lev(n_lev)—
z_tev(i_tev);
end
flagerro=1;

iter=1;
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clear kelv
kelv (1)=0;
kutta (1)=0;
while (iter <1000 && flagerro >eps)
iter=iter+1;
lev_strength (n_lev)=lev_iter (iter —1);
tev_strength (n_tev)=tev_iter (iter);
downwash=f_ downwash (n_lev ,lev_strength ,
xdist_lev_bound , zdist_lev_bound ,n_tev ,
tev_strength ,xdist_tev_bound ,
zdist_tev_bound ,theta(i),downwash_bound) ;
kelv_tev=kelv_enf;
for i_lev=I1:n_lev
kelv_tev=kelv_tev+tev_strength(i_lev);
end
for i_tev=Il:n_tev
kelv_tev=kelv_tevt+tev_strength(i_tev);
end
for j=1:jstep
inteAO (j)=downwash(j)/UO;
inteAl(j)=downwash(j)/UOxcos(xtheta(j));
inteA2 (j)=downwash(j)/UOxcos(2*xxtheta(j)
) ;
inteA3(j)=downwash(j)/UOxcos(3xxtheta(])
) ;

end
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AO0=—1/pixtrapz (xtheta (2:jstep) ,inteA0 (2:
jstep));

Al=2/pixtrapz (xtheta (2:jstep) ,inteAl (2:jstep
));

Tau_bound=UOxIplatexpi*x(A0+A1/2);

kelv_tev=kelv_tev+Tau_bound;

kutta_tev=A0-sign (lesp )x*lesp0;

dkelv_tev=(kelv_tev—kelv (iter —1))/(tev_iter (
iter )—tev_iter (iter —1));

dkutta_tev=(kutta_tev—kutta(iter —1)) /(

tev_iter (iter )—tev_iter (iter —1));

lev_strength (n_lev)=lev_iter (iter);
tev_strength (n_tev)=tev_iter (iter —1);
downwash=f_downwash (n_lev ,lev_strength ,
xdist_lev_bound , zdist_lev_bound ,n_tev ,
tev_strength ,xdist_tev_bound ,
zdist _tev_bound , theta(i),downwash_bound);
kelv_lev=kelv_enf;
for i_lev=1l:n_lev
kelv_lev=kelv_levtlev_strength (i_lev ,1);
end
for i_tev=1l:n_tev
kelv_lev=kelv_levttev_strength (i_tev ,1);
end

for j=1:jstep
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inteA0 (j)=downwash(j)/UO0;
inteA1l(j)=downwash(j)/UOxcos(xtheta(j));
inteA2(j)=downwash(j)/UOxcos(2xxtheta(])
) ;
inteA3 (j)=downwash(j)/UOxcos(3xxtheta(j)
) ;
end
AO=—1/pixtrapz(xtheta (2:jstep) ,inteA0 (2:
jstep));
Al=2/pixtrapz (xtheta (2:jstep) ,inteAl (2:jstep
));
Tau_bound=UOxIplatexpix(A0+A1l/2);
kelv_lev=kelv_lev+Tau_bound;
kutta_lev=A0-sign (lesp)*lespO0;
dkelv_lev=(kelv_lev—kelv (iter —1)) /(lev_iter (
iter )—lev_iter (iter —1));
dkutta_lev=(kutta_lev—kutta(iter —1)) /(

lev_iter (iter )—lev_iter (iter —1));

lev_strength (n_lev)=lev_iter (iter);
tev_strength (n_tev)=tev_iter (iter);
downwash=f_downwash (n_lev ,lev_strength ,
xdist_lev_bound , zdist_lev_bound ,n_tev ,
tev_strength ,xdist_tev_bound ,
zdist _tev_bound ,theta(i),downwash_bound);

kelv (iter)=kelv_enf;
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for

end

for

end

for

end

i_lev=1l:n_lev

kelv(iter )=kelv(iter)+lev_strength(i_lev

);

1_tev=1l:n_tev

kelv (iter )=kelv(iter)+tev_strength (i_tev

)

j=1:jstep

inteAO (j)=downwash(j)/U0;

inteAl(j)=downwash(j)/UOxcos(xtheta(j));

inteA2 (j)=downwash(j)/UOxcos(2*«xtheta(j)
) ;

inteA3(j)=downwash(j)/UOxcos(3xxtheta(])

);

AO0=—1/pixtrapz (xtheta ,inteA0);

Al=2/pixtrapz (xtheta ,inteAl);

Tau_bound=UOxIplatexpix(A0+A1l/2);

kelv (iter)=kelv(iter )+Tau_bound;

kutta(iter )=A0—sign (lesp )xlesp0;

tev_iter (iter+1)=tev_iter (iter) —((1/(

dkelv_tevxdkutta_lev—dkelv_levsdkutta_tev

))x((dkutta_levxkelv (iter))—(dkelv_levx
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kutta(iter))));

324 lev_iter (iter+1)=lev_iter (iter) —((1/(
dkelv_tevxdkutta_lev—dkelv_levxdkutta_tev
))*((—dkutta_tevskelv (iter))+(dkelv_tevx

kutta(iter))));

325

326 flagerro=max(abs(kelv(iter)),abs(kutta(iter)
) ;

327 end

328 else

329 levflag=0;

330 end

331 for j=1:jstep

332 inteA2(j)=downwash(j)/UOxcos(2xxtheta(j));

333 inteA3(j)=downwash(j)/UOxcos(3xxtheta(j));

334 end

335 A2=2/pixtrapz(xtheta ,inteA2);

336 A3=2/pixtrapz (xtheta ,inteA3);

wr dAn(1)=(A0-A0_pre) /(t(i)—t(i—1));
ws dAn(2)=(A1-Al_pre) /(t(i)—t(i—1));
s dAn(3)=(A2-A2 pre) /(t(i)—t(i—1));
s dAn(4)=(A3-A3_pre) /(t(i)—t(i—1));

341
342
343 1 f ( 1:: )

344 tev_strength (1)=0;
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end

An (5:anmax)=0;
An(1)= A0;
An(2)= Al;
An(3)= A2;
An(4)= A3;

for iAn=b5:anmax
for j=2:jstep
An(iAn)=An(iAn)+((((downwash(j)=*cos ((iAn—1)x
xtheta(j))) ...
+(downwash (j —1)xcos ((iAn—1)xxtheta(j—1))))
/2)*xdxtheta);
end

An(iAn)=(2./pi)*An(iAn);

end

AO_pre= AO0;
Al _pre= Al;
A2 _pre= A2;
A3 _pre= A3;

%Calculate bound vortex strengths
for j=1:jstep
gamma( j )=(A0*(1+cos (xtheta(j))));
for iAn=1:anmax

gamma( j )=gamma( j ) +(An(iAn)x*sin (iAnxxtheta(j))=*
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sin (xtheta(j)));
end
gamma ( j )=gamma( j )xlplate ;

end

for j=2:jstep
bound_mid_strength (j)=((gamma( j)+gamma(j—1))/2)x
dxtheta;
x_bound_mid (j)=(x_bound (j)+x_bound(j—1))/2;
z_bound_mid (j)=(z-bound (j)+z-bound(j—1))/2;

end

Y%Move speed of vitices
uind_tev (1:n_tev)=0;
wind_tev (l:n_tev)=0;
for i_tev=1l:n_tev
for j_tev=Il:n_tev
if (i-tev "= j_tev)
dist=xdist_tev_tev (i_tev ,j_tev) 2+
zdist_tev_tev (i_tev ,j_tev) 2;
uind_tev(i_tev)=uind_tev(i_tev)+...
((tev_strength (j_tev)x(—zdist_tev_tev (
i_tev,j_tev)))/(2«pixsqrt(v_core 4+
dist "2)));
wind_tev (i_-tev)=wind_tev(i_-tev)+...

((—tev_strength (j_tev)*(—xdist_tev_tev (
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i_tev,j_tev)))/(2«pixsqrt(v_core 4+
dist "2)));
end
end
for j=2:jstep
xdist_bound_mid_tev=x_tev(i_tev )—x_bound_mid(j)
zdist_bound _mid_tev=z_tev (i_tev )—z_bound _mid(j)
dist=xdist_bound_mid_tev "2+zdist_bound_mid_tev
"9,
uind _tev (i_tev)=uind_tev (i_tev)+((
bound_mid_strength (j)*xdist_bound_mid_tev)
/(2xpixsqrt (v_core 4+dist "2)));
wind_tev (i_tev)=wind_tev(i_tev)+((—
bound_mid_strength (j)*xdist_bound_mid_tev)

/(2xpixsqrt (v_core 4+dist "2)));

end
end
uind_lev (1:n_lev)=0;
wind_lev (1:n_lev)=0;

for i_lev=1l:n_lev
for j_lev=1l:n_lev
if (i_lev "= j_lev)
dist=xdist_lev_lev (i_lev ,j_lev ) 2+

zdist_lev_lev (i_lev ,j_lev) " 2;
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uind_lev (i_lev )=uind_lev (i_lev)+...
((lev_strength (j_lev)*x(—zdist_lev_lev (
ilev ,j_lev)))/(2xpixsqrt(v_core 4+
dist "2)));
wind_lev (i_lev)=wind_lev(i_lev)+...
((—lev_strength (j_-lev)x(—xdist_lev_lev (
i_lev ,j_lev)))/(2«pixsqrt(v_core 4+
dist "2)));
end
end
for j=2:jstep
xdist_bound_-mid_lev=x_lev (i_lev )—x_bound_mid ()
zdist_bound_mid_lev=z_lev (i_lev )—z_bound mid ()
dist=xdist_bound_mid_lev " 2+zdist_bound_mid_lev
"9,
uind _lev (i_lev)=uind_lev (i_lev)+((
bound_mid_strength (j)*xdist_bound_mid_lev)
/(2xpixsqrt (v_core 4+dist "2)));
wind_lev (i_-lev)=wind_lev(i_-lev )+((—
bound_mid_strength (j)*xdist_bound_mid_lev)
/(2xpixsqrt (v_core 4+dist "2)));
end
end

%Update the location of votices
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for i_tev=1l:n_tev
x_tev(i_tev)=x_tev(i_-tev)+(deltatxuind_tev(i_tev))

z_tev(i_-tev)=z_tev(i-tev)+(deltat*xwind_tev(i-tev))

end
for i_lev=Il:n_lev
x_lev(i_lev)=x_lev(i_lev)+(deltat*uind_lev(i_lev))

z_lev(i_lev)=z_lev(i_-lev)+(deltat*wind_lev(i_-lev))

end
%Remove TEVs and LEVs that have crossed a certain
distance and update Kelvin condition
if (x_tev(1l)—x_bound(jstep )>dismax)
for i_tev=1l:n_tev—1
tev_strength (i_tev)=tev_strength(i_tev+1);
x_tev(i-tev)=x_tev(i_-tev+1);
z_tev(i_tev)=z_tev(i_-tev+41);
end
n_tev=n_tev —1;
kelv_enf=kelv_enf+tev_strength (1);
end
if (x_lev(1)—x_bound(jstep )>dismax)
for i_lev=1l:n_lev—1

lev_strength (i_lev)=lev_strength (i_lev+1);
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x_lev(i_lev)=x_lev(i_lev+1);
z_lev(i_lev)=z_lev(i_lev+1);
end
n_lev=n_lev —1;
kelv_enf=kelv_enf+lev_strength (1);
end
CC=2xpixA0"2;
CNecirl (i)=2%pix*(Ulxcos(theta(i))+dh(i)*sin(theta(i))
x(A0+A1/2)) /U0;
CNecir2 (i )=sum((umid*cos(theta(i))—wmid*sin (theta(i)))
.«bound_mid_strength)*2/(U0"2x1plate) ;
CMecir2 (i )=sum ((umid*cos (theta (i))—wmidxsin (theta(i)))
.xx.xbound_mid_strength)*2/(U0"2xIplate "2);
CNmass(1)=(2xpi*((3*x1lplatexdAn(1) /(4*U0))+(lplate*dAn
(2)/(4%00)) +...
(IplatexdAn(3) /(8xU0))))/U0;

if (alpha(i)—t2xdalphanon(i)*U0/bplate)*sign (alpha(i)
)<0
Calphat2(i)=0;
else
Calphat2(i)=abs(alpha(i)—t2x«dalphanon (i)*U0/
bplate)*sign (alpha(i));

end
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162 if i==

463 Salpha (1i)=0;

164 else

465 Salpha (i)=abs(alpha(i))—abs(alpha(i));
166 end

467

468 if (abs(alpha(i))<alphal)

469 falpha (i)=1-0.3%xexp ((abs(alpha(i))—alphal)/S1);

470 else

e falpha (i) =0.04+0.66xexp ((alphal—abs(alpha(i)))/
52);

a72 end

473

474 if ((Salpha(i)>0))

475 deltaalphaln (i)=0;
476 else
ar7 deltaalphaln (i)=(abs(l—falphad2(i—1)) " 0.25%

deltaalphal);

a78 end

479 alphaln(i)=alphal—deltaalphaln(i);

180

481 if (abs(Calphat2(i))<=alphaln(i))

482 fx0(i)=1-0.3%xexp ((abs(Calphat2(i))—alphaln(i))/S1
) ;

483 else

484 fx0(i)=0.044+0.66«exp ((alphaln(i)—abs(Calphat2(i))
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)/S2);

end
falphad2 (i)=((2«xtl—deltait )xfalphad2(i—1)+2«xdeltait (

fx0(1)))/(2xt1+deltait);

if (i==1)
deltafmax (i)=0;
else
if (abs(dalphanon(i))>0.01)
deltafmax (1)=0.01D0*xdf*(t(1i)—t(i—1))xU0/
bplate;
else
deltafmax (i)=dalphanon (i)*xdf*(t(i)—t(i—1))=x
U0/ bplate;
end

end

if (i==1)
falphad2(i)=1;
else
if (abs(falphad2(i)—falphad2(i—1))>abs(deltafmax (
i)))
falphad2 (i)=falphad2(i—1)+abs(deltafmax(i))=*
sign (falphad2(i)—falphad2(i—-1)) ;
end

end
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505 KNn(i)=((1+sqrt (falphad2(i)))/2.D0) "2;

))

ws  CL(i)=((CNecirl (i)+CNeir2(i))+KNn(i)+CNmass(i))*cos (

theta (i))+itacc+CCxsqrt (falphad2(i));

w1 CON(i)=(CNeirl (i)+CNeir2(i))+KNn(i);

s08 Pivoffset=(—0.135%(1—falphad2 (i))+0.04sin (pix(
falphad2(i)°2)));

s CMadd(i)=(CN(i))*(apiv(i)+Pivoffset)+CNmass(i)+apiv (i
) —(2%pi*(((cos (theta(i)))+(dh(i)*sin (theta(i))/U0)
) ((A0/4)+(A1/4)—(A2/8) )+KNn(i)+(Iplate /U0 *((7x
dAn(1) /16)+(3+dAn(2) /16)+(dAn(3) /16)—(dAn(4) /64)))
)—CMecir2 (i) «KNn(i):

s10 end
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