
Energy-Aware Task Scheduling for MPSoC-based Embedded
Systems

Author:
Abd Ishak, Suhaimi

Publication Date:
2018

DOI:
https://doi.org/10.26190/unsworks/20627

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/60284 in https://
unsworks.unsw.edu.au on 2024-05-04

http://dx.doi.org/https://doi.org/10.26190/unsworks/20627
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/60284
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Energy-Aware Task Scheduling for

MPSoC-based Embedded Systems

Suhaimi Abd Ishak

A thesis in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

July 2018

Thesis/Dissertation Sheet

Surname/Family Name : Abd Ishak

Given Name/s : Suhaimi

Abbreviation for degree as give in the University calendar : PhD

Faculty : Faculty of Engineering

School : School of Computer Science and Engineering

Thesis Title : Energy-Aware Task Scheduling for MPSoC-based Embedded Systems

Abstract 350 words maximum: (PLEASE TYPE)

Energy reduction is a critical factor in designing embedded systems. One technique to reduce the total energy
consumption of the systems is Dynamic Voltage and Frequency Scaling (DVFS). However, different models require
different approaches to maximize its effectiveness in reducing energy consumption. In this thesis, we investigate the
following three problems: energy-aware scheduling for applications with precedence and deadline constraints on
homogeneous Multiprocessor Systems-on-Chips (MPSoCs), energy-aware scheduling for applications with precedence
and deadline constraints on heterogeneous Network-on-Chip (NoC)-based MPSoCs and energy-aware scheduling for
streaming applications on NoC-based MPSoCs. Firstly, we propose an energy-aware task scheduling approach to the
problem of reducing the energy consumption for homogeneous MPSoCs assuming continuous frequencies under two
power models: total dynamic power and total power. This approach uses a novel priority scheme for task assignment
and a convex Non-Linear Programming (NLP) to assign an optimal execution frequency to each task. Secondly, we
propose two energy-aware task scheduling approaches for heterogeneous MPSoCs considering discrete frequency
model. Initially, both approaches use a heuristic to assign each task to a processor, and compute an optimal frequency
for each task and message under the continuous frequency model using convex NLP. Based on the frequencies of each
task and message under the continuous frequency model, the first approach uses Integer Linear Programming (ILP) to
select an optimal discrete frequency, and the second approach uses a polynomial-time heuristic to select a discrete
frequency for each task and message. Thirdly, we propose an energy-aware task scheduling approach for streaming
applications on homogeneous MPSoCs considering discrete frequencies under memory capacity constraints. This
approach integrates task-level software pipelining with DVFS and features a novel retiming technique to transform intra-
period dependencies into inter-period dependencies considering the task mapping to enhance parallelism. It uses NLP
and ILP to assign discrete frequencies to all tasks and messages. An iterative approach is employed to resolve memory
capacity violation. We have implemented our proposed approaches and compared them with state-of-the-art
approaches. Results indicate that the proposed approaches perform significantly better, in terms of total energy
consumption.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part
in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights,
such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

……………………………………………………………
 Signature

……………………………………..………………
 Witness Signature

……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction
for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and
require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive and to
make available my thesis or dissertation in whole or part in the University libraries in all
forms of media, now or here after known, subject to the provisions of the Copyright Act
1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in
future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Disser-
tation Abstract International (this is applicable to doctoral theses only).

I have either used no substantial portions of copyright material in my thesis or I have
obtained permission to use copyright material; where permission has not been granted
I have applied/will apply for a partial restriction of the digital copy of my thesis or
dissertation.’

Suhaimi Abd Ishak
July 24, 2018

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final officially
approved version of my thesis. No emendation of content has occurred and if there are any
minor variations in formatting, they are the result of the conversion to digital format.’

Suhaimi Abd Ishak
July 24, 2018

Buat Mak dan Ayah
(To My Parents)

i

Acknowledgments

I would like to take this opportunity to appreciate many people who has supported me
either directly or indirectly throughout my PhD life. This thesis would not have reached
this point without their continuous support.

First of all, I would like to express my heartfelt gratitude to my supervisor Dr. Hui Wu
for his invaluable advices, guidance and support. His patience and commitment are truly
admirable. Also, thanks to my second supervisor, Prof. Dr. Boualem Benatallah for his
time and suggestions during the early time of my PhD studies.

Not to forget, thanks to all my colleagues and friends in the university with whom I have
exchanged helpful thoughts and feedback. I really appreciate the productive culture.

Thanks to my sponsors, the Ministry of Higher Education Malaysia and Universiti Tun
Hussein Onn Malaysia for giving me this great opportunity to learn abroad, which helped
me achieving my goals toward a successful career.

Last but not the least, I would like to thank my whole family members for their constant
love and encouragement. Specially for my wonderful wife; Mrs Zainab Jaafar, my lovely
children; Syamil, Syafi, Fatihah and Ariana, my parents; Hj Abd Ishak Maasab, Hjh
Supiah Iksan, and my parents-in-law; Hj Jaafar Md Tap, Hjh Satariah Hasan, for their
love and prayer. You are truly my source of inspiration and motivation.

ii

Publications

• Suhaimi Abd Ishak, Hui Wu. Energy-Aware Task Scheduling with Precedence and
Deadline Constraints on MPSoCs. The 18th IEEE International Conference on High
Performance Computing and Communications (HPCC), 2016.

• Suhaimi Abd Ishak, Hui Wu, Umair Ullah Tariq. Energy-Aware Task Scheduling on
Heterogeneous NoC-Based MPSoCs. The 35th IEEE International Conference on
Computer Design (ICCD), 2017.

• Umair Ullah Tariq, Hui Wu, Suhaimi Abd Ishak. Energy-Aware Scheduling of Con-
ditional Task Graphs on NoC-Based MPSoCs. The 51st IEEE Hawaii International
Conference on System Sciences (HICSS), 2018.

iii

Abstract

Energy reduction is a critical factor in designing embedded systems. One technique used
to reduce the total energy consumption of the system is Dynamic Voltage and Frequency
Scaling (DVFS). However, different system models require different approaches to max-
imize its potential and effectiveness in reducing the energy consumption. In this thesis,
we investigate the following three problems: energy-aware task scheduling for applica-
tions with precedence and deadline constraints on homogeneous Multiprocessor Systems-
on-Chips (MPSoCs) assuming continuous frequencies, energy-aware task scheduling for
applications with precedence and deadline constraints on heterogeneous Network-on-Chip
(NoC)-based MPSoCs considering discrete frequencies and the energy-aware task schedul-
ing for streaming applications on NoC-based MPSoCs.

Firstly, we propose an energy-aware task scheduling approach to the problem of reducing
the energy consumption for homogeneous MPSoCs assuming continuous frequencies under
two power models: total dynamic power and total power. Our approach employs a novel
priority scheme for task assignment and uses a convex Non-Linear Programming (NLP)-
based algorithm to assign an optimal execution frequency to each task. We have evaluated
this approach and compared it with two state-of-the-art approaches, LL-ES-GREEDY
shorten as LESG [1] which considers the dynamic energy dissipation, and EES [2] which
considers the total energy consumption, using a set of synthetic and real-world bench-
marks. The experimental results indicate that the maximum, average and minimum
improvements of our proposed approach compared to the LESG approach are 42.44%,
30.46% and 9.46%, respectively, and the maximum, average and minimum improvements
of our proposed approach compared to the EES approach are 75.98%, 39.74% and 7.08%,
respectively.

Secondly, we propose two energy-aware task scheduling approaches for heterogeneous
Network-on-Chip (NoC)-based MPSoCs considering discrete frequency model. Initially,
both approaches use a heuristic to assign each task to a processor, and compute an op-
timal frequency for each task and each message under the continuous frequency model
using convex NLP. Based on the frequencies of each task and each message under the
continuous frequency model, the first approach uses Integer Linear Programming (ILP)-
based algorithm to select an optimal discrete frequency, and the second approach uses a
polynomial-time heuristic to select a discrete frequency to each task and each message.
We have implemented our approaches and compared them with two state-of-the-art ap-

iv

proaches, ETFGBF [3] and CA-TMES-Search [4], using a set of synthetic benchmarks.
Experimental results indicate that the maximum, average and minimum improvements
of our proposed approach using ILP compared to the ETFGBF are 69.40%, 46.30% and
18.45%, respectively. The maximum, average and minimum improvements of our proposed
approach using ILP compared to the CA-TMES-Search are 48.35%, 34.98% and 13.52%,
respectively. Moreover, the performance of our proposed approach using the heuristic is
very close to that of our proposed approach using ILP.

Thirdly, we propose an energy-aware task scheduling approach for streaming applications
on homogeneous NoC-based MPSoCs considering discrete frequencies under memory ca-
pacity constraints. Our proposed integrated approach uses task-level software pipelining
with DVFS. Initially, our approach constructs an initial schedule under maximum frequen-
cies such that the workload across all the processors is balanced. Next, we employ a novel
retiming technique to transform intra-period dependencies into inter-period dependencies
considering the task mapping to enhance parallelism. Then, our approach uses NLP and
ILP to assign optimal discrete frequencies to all the tasks and messages. An iterative
algorithm is employed to resolve memory capacity violations. We have implemented this
approach and compared it with two state-of-the-art approaches, RDAG+GeneS [5] and
JCCTS [6], using a set of real and synthetic benchmarks. Experimental results suggest
that the maximum, average and minimum improvements of our proposed approach com-
pared to RDAG+GeneS are 40.82%, 17.31% and 7.53%, respectively. The maximum,
average and minimum improvements of our proposed approach compared to the JCCTS
are 46.46%, 21.67% and 10.75%, respectively.

Keywords

Embedded Systems, MPSoC, NoC, Task Scheduling, Energy, Inter-processor Communi-
cation, Non-Linear Programming,Integer Linear Programming, Streaming Applications,
Software Pipelining, Retiming, Heuristic, Polynomial Time

v

Contents

1 Introduction 1

2 Background 11

2.1 Multiprocessor System-on-Chip (MPSoC) 12

2.1.1 MPSoC Communication Subsystems 14

2.2 Real-Time Embedded Applications . 18

2.2.1 Task Model . 19

2.3 Energy-aware Task Scheduling . 20

2.4 Dynamic Voltage and Frequency Scaling (DVFS) 23

2.4.1 Task Mapping and Scheduling . 25

2.4.2 Slack allocation and frequency assignment 28

2.5 Task-level Software Pipelining . 30

3 Literature Review 34

3.1 Energy-aware Task Scheduling on Homogeneous Multiprocessors 35

3.1.1 Aperiodic Tasks with Precedence Constraints 35

3.1.2 Periodic Tasks with Precedence Constraints 39

3.2 Energy-aware Task Scheduling on Heterogeneous Multiprocessors 43

3.2.1 Aperiodic Tasks with Precedence Constraints 43

vi

3.2.2 Periodic Tasks with Precedence Constraints 51

4 Energy-aware Task Scheduling on Homogeneous MPSoCs 56

4.1 Introduction . 57

4.2 Problem, Definitions and Models . 58

4.2.1 System Model . 58

4.2.2 Task Model . 60

4.2.3 Power Model . 60

4.2.4 Successor-Tree-Consistent Deadline 61

4.3 A Motivational Example . 62

4.4 Scheduling Approach . 64

4.4.1 Task Scheduling Phase . 64

4.4.2 Voltage and Frequency Selection Phase 66

4.4.3 An Illustrative Example . 68

4.5 Experimental Results . 70

4.5.1 Experimental Setup . 71

4.5.2 Results and Discussions . 73

4.6 Summary . 77

5 Energy-aware Task Scheduling on Heterogeneous MPSoCs 79

5.1 Introduction . 80

5.2 Problem, Definitions and Models . 81

5.3 Motivational Examples . 84

5.3.1 Communication Contention Awareness 84

5.3.2 Discrete Voltage and Frequency Selection 85

5.4 Task Scheduling . 86

vii

5.4.1 Computing Priorities . 86

5.4.2 Task Assignment and Scheduling . 88

5.4.3 Optimal Frequency Assignment . 88

5.5 Discrete Voltage and Frequency Selection 91

5.5.1 ILP-based Approach . 91

5.5.2 Heuristic . 93

5.6 Experimental Results . 96

5.6.1 Experimental Setup . 97

5.6.2 Results and Discussions . 100

5.7 Summary . 105

6 Energy-aware Task Scheduling for Streaming Applications 107

6.1 Introduction . 108

6.2 Problem, Definitions and Models . 109

6.2.1 System Model . 109

6.2.2 Power Model . 113

6.3 Motivational Examples . 114

6.4 Scheduling Approach . 117

6.4.1 Computing Priorities . 118

6.4.2 Task Assignment and Scheduling . 120

6.4.3 Retiming . 121

6.4.4 Discrete Frequency Selection . 124

6.4.5 Repair Approach . 130

6.5 Experimental Results . 133

6.5.1 Experimental Setup . 133

6.5.2 Results and Discussions . 135

viii

6.6 Summary . 140

7 Conclusion and Future Work 143

7.1 Conclusion . 143

7.2 Future Work . 146

Bibliography 149

ix

Abbreviations

AET Actual Execution Time

DAG Directed Acyclic Graph

DPM Dynamic Power Management

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

ILP Integer Linear Programming

MPSoC Multiprocessor System-on-Chip

NLP Non-Linear Programming

NoC Network-on-Chip

WCET Worst-Case Execution Time

x

List of Figures

2.1 A Xilinx Zynq UltraScale+ MPSoC [7] and embedded system applications
in automotive [8], avionics [9] and robotics [10]. 12

2.2 Two distinct architecture models of multiprocessor embedded systems. . . . 13

2.3 A diagram of a two-dimension NoC. 15

2.4 Examples of XY routing. 17

2.5 Examples of application codes and the corresponding task graph. 19

2.6 Several mapping options of a task graph in Figure 2.5b on two processors. . 21

2.7 Two possible task orderings. 23

2.8 Communication message scheduling without contention. 27

2.9 Contention-aware communication message scheduling: (a) non-aligned mes-
sage scheduling model, and (b) aligned message scheduling model. 29

2.10 Examples of DVFS approaches. 30

2.11 Examples of Scenario 1: (a) an initial schedule before retiming, and (b) the
initial schedule after retiming. 32

2.12 Examples of Scenario 2: (a) an initial schedule before retiming, and (b) the
initial schedule after retiming. 33

4.1 Examples of (a) a Directed Acyclic Graph (DAG), (b) the successor-tree of
t2 of the DAG. 62

4.2 Example of a task graph. 68

4.3 The successor-tree of t1 of the DAG. 69

xi

4.4 The backward schedule of the successor-tree of t1 in Figure 4.3. 69

4.5 The initial schedule based on the successor-tree-consistent deadlines. 70

4.6 The schedule after the voltage and frequency selection. 70

4.7 Total dynamic energy consumption of our approach and LESG [1] for syn-
thetic benchmarks on 5-processors platform. 74

4.8 Total dynamic energy consumption of our approach and LESG [1] for syn-
thetic benchmarks on 8-processors platform. 74

4.9 Total dynamic energy consumption of our approach and LESG [1] for syn-
thetic benchmarks on 10-processors platform. 75

4.10 Total dynamic energy consumption of our approach and LESG [1] for real
benchmarks on (a) 5-processors platform, (b) 8-processors platform and (c)
10-processors platform. 76

4.11 Total energy consumption of our approach and EES [2] for synthetic bench-
marks on 5-processors platform. 77

4.12 Total energy consumption of our approach and EES [2] for synthetic bench-
marks on 8-processors platform. 77

4.13 Total energy consumption of our approach and EES [2] for synthetic bench-
marks on 10-processors platform. 77

4.14 Total energy consumption of our approach and EES [2] for real benchmarks
on (a) 5-processors platform, (b) 8-processors platform and (c) 10-processors
platform. 78

5.1 (a) A non-contention-aware schedule, and (b) a contention-aware schedule. . 84

5.2 Different approaches to discrete voltage and frequency assignment: (a)
intra-task assignment, (b) a naive inter-task assignment using higher fre-
quencies, (c) inter-task assignment using our approach. 86

5.3 Total energy consumption of (a) Ours-ILP, Ours-Heu and CA-TMES-Search
[4] and (b) Ours-ILP, Ours-Heu and ETFGBF [3]. 102

5.4 Total communication energy consumption of (a) Ours-ILP and CA-TMES-
Search [4] and (b) Ours-ILP and ETFGBF [3]. 103

6.1 Examples of (a) a task graph, and (b) a 3-by-3 mesh NoC architecture . . 112

xii

6.2 (a) An initial schedule with balanced workloads across all processors, (b)
an initial schedule with unbalanced workloads across all processors. (c)
A retimed schedule of Figure 6.2a, (d) a retimed schedule of Figure 6.2b.
(e) Slack reclamation of schedule in Figure 6.2c, (f) Slack reclamation of
schedule in Figure 6.2d . 116

6.3 Total energy consumption of Ours for all benchmarks on three different
NoC architectures. 135

6.4 Total energy consumption of Ours, RDAG+GeneS [5] and JCCTS [6] for all
benchmarks on (a) 2-by-2 mesh NoC, (b) 3-by-3 mesh NoC, and (c) 4-by-4
mesh NoC. 137

6.5 (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of
Ours and Ours-WR, for all benchmarks on 2-by-2 mesh NoC. 139

6.6 (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of
Ours and Ours-WR, for all benchmarks on 3-by-3 mesh NoC. 140

6.7 (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of
Ours and Ours-WR, for all benchmarks on 4-by-4 mesh NoC. 141

xiii

List of Tables

4.1 Notations used. 59

4.2 WCETs of the tasks for the task graph in Figure 4.2. 68

4.3 Constants of 0.07 µm processor technology. 70

4.4 The characteristics of benchmarks. 71

4.5 Average running times of our approach and LESG for dynamic energy sim-
ulations . 72

4.6 Average running times of our approach and EES for total energy simulations 72

5.1 Notations used. 82

5.2 The characteristics of benchmarks. 98

5.3 Constants of 0.07 µm processor technology. 98

5.4 Constants of 0.18 µm processor technology. 99

5.5 Voltage and frequency levels of 0.07 µm processor and 0.18 µm processor. . 99

5.6 Constants of repeater-based communication link. 99

5.7 Scenario configurations. 100

5.8 Average running times of our approaches, CA-TMES-Search [4] and ET-
FGBF [3] on each architecture. 105

5.9 Average running times of our discrete frequency assignment approaches,
ILP and Heuristic on each architecture. 105

6.1 Notations used. 110

xiv

6.2 The characteristics of benchmarks. 134

6.3 Average running times of Ours, RDAG+GeneS [5] and JCCTS [6] on each
architecture. 140

xv

c©Suhaimi Abd Ishak, 2018

xvi

Chapter 1

Introduction

This chapter discusses the advantages of Multiprocessor System-on-Chip (MPSoC) in cur-

rent applications of embedded systems, the importance of the problems investigated in

this thesis and our major contributions to the problems. In addition, it provides the thesis

structure.

Multiprocessor Systems-on-Chips (MPSoCs) are ideal and being increasingly used in com-

plex embedded systems. An MPSoC is an integrated circuit consisting of multiple proces-

sors. It is designed for a specific application with special hardware and software. Exam-

ples of commercial MPSoCs include Samsung Exynos SoC [11] which powers the Samsung

Galaxy smart phone series and Xilinx Zynq UltraScale+ MPSoC devices [7] which have

been used in robots. MPSoCs have the potential to achieve the best trade-off among

computational performance, energy efficiency, and costs, when designed carefully.

Current embedded system applications are typically complex and have precise real-time

performance requirements. Applications such as high-speed data communication and mul-

timedia not only require high performance but also require the implementations to meet

strict design constraints such as time, energy and heat constraints. Multiprocessor archi-

tectures provide parallel processing capability to handle concurrent application tasks in

1

1. Introduction

real time to meet timing constraints. In contrast, a system with a single processor archi-

tecture is more suited to run a simple application. With parallel processing capability, an

MPSoC could increase its throughput. In addition, with the whole system on the same

chip, an MPSoC reduces communication overheads among its components.

An MPSoC also consumes low energy. With all the components are on the same chip and

tightly integrated, the required power supply is small. Moreover, it can conserve the energy

in many ways and at all levels of abstraction i.e. on device, circuit, and logic levels. Dy-

namic Power Management (DPM) reduces the energy consumption by switching off system

components when they are idle. Dynamic Voltage and Frequency Scaling (DVFS) reduces

energy consumption by lowering supply voltage and frequency. By disabling portions of

a circuit so that the flip-flops in them do not have to switch states, clock-gating reduces

parts of power consumption of the circuit [12]. An MPSoC uses specialized mechanisms

such as specialized memory systems, specialized logic or application-specific instructions

tailored for a specific application. Various optimisations can be employed to simplify the

hardware, further reducing the energy consumption.

In addition, an MPSoC can reduce die area and improve system reliability through exten-

sive analyses and optimizations on the hardware, including interconnects and interfaces

as the requirements of its application are known at design stage. Furthermore, via low

power design, an MPSoC can significantly reduce operating costs.

Embedded systems have a wide range of applications, from large industrial control sys-

tems, and autonomous mobile robots, to small wearable devices. Energy consumption of

the system is a critical factor and an important consideration for system engineers when

designing embedded real-time systems. Most systems are powered by batteries and are de-

ployed in remote locations. In general, standalone systems that are autonomous in terms

of energy are affected by the disparity between their energy needs and their available

power resources. The number of battery powered embedded devices, as well as their com-

plexity, continues to expand. Complex real-time applications require high computational

2

1. Introduction

resources, with compute-intensive tasks usually deplete batteries faster. Consequently, the

requirement for energy is increasing at a faster rate. These systems use electronic compo-

nents, such as processors, that operate at increasingly high frequencies to increase their

performance, at the expense of energy consumption. This is evident as the power required

by new devices increases by 35% to 40% per annum but the capacity of batteries increases

by only 10% to 15% per annum [13]. For MPSoC, the energy consumed by processors

and communication subsystems consumes significant percentage of the energy consumed

by the whole system [14].

Therefore, instead of attempting to increase the capacity of batteries, another direction to

address this problem is to reduce the energy consumption of the system. An energy-aware

embedded system increases its battery lifetime, due to the reduction in current drawn

from the batteries.

Moreover, the cost of replacing battery packs is high when the batteries that power these

systems fail. Therefore, it is not always practical to replace or recharge the battery packs.

Even for an embedded system which has continuous power support connected directly to

the electrical grid, it is desirable to minimize its energy consumption since it shall reduce

the cost of operation.

Furthermore, a significant amount of the energy consumed is converted to heat. If this is

not controlled, heating can cause defects in the electronic chips, resulting in the reliability

of the system to be compromised [15]. Consequently, extra efforts and additional costs

are needed to cancel out the heat such as attaching cooling subsystem to the embedded

system.

While minimizing the energy consumption for real-time embedded systems is of great

importance, the accuracy of the system must not be compromised. Besides, this must

be balanced against the need for real-time responsiveness. The software of a real-time

embedded system typically consists of a set of real-time application tasks with deadlines

3

1. Introduction

and precedence constraints. Deadlines of application tasks are defined to guarantee the

responsiveness of the system. Real-time systems can be grouped into three categories as

follows [16].

• Hard real-time systems: an overrun in response time leads to catastrophic conse-

quences. An example is an avionic control system, in which a failure may cause an

accident.

• Firm real-time systems: the result produced by the corresponding task ceases to be

useful as soon as the deadline expires, but the consequences of not achieving the

deadline are not severe. An example is a weather forecasting system, in which an

analysis is obsolete over time.

• Soft real-time systems: the use of results produced by a task with a soft deadline

decreases over time after the deadline expires. It is tolerable, but not desired. An

example is a video streaming application, when the deadline is not met, may not

have serious impacts, but do affect the quality of the output.

There is communication among application tasks in the form of precedence constraints.

These constraints enforce the ordering of application tasks. A child task requiring an

output from its parent task cannot be executed until the completion of its parent task

and upon receiving the output. Accordingly, both tasks cannot run in parallel on differ-

ent processors. These dependencies need to be taken into account when attempting to

minimize the energy consumption.

The execution of application tasks on processors or communication messages on commu-

nication subsystems, uses higher processing power than what is necessary needed. This

is due to the processors and communication subsystems being idle during certain time

intervals. Conceptually the operating frequency and its corresponding supply voltage of

the processors and communication subsystems for executing a task or a message could be

4

1. Introduction

lower provided that its deadline constraint is satisfied. The availability of the idle time

intervals, also known as slack provides the opportunity and potential for a reduction in

energy consumption.

Dynamic Voltage and Frequency Scaling (DVFS) is a powerful technique used to reduce

the energy consumption of real-time embedded systems. Modern processors and commu-

nication subsystems are equipped with DVFS. This technique facilitates the adjustment of

supply voltage and operating frequency of the processors and communication subsystems

to support the system requirements. However, the deployment of DVFS affects the execu-

tion time of application tasks and communication messages. This is due to the execution

time being inversely proportional to the operating frequency. Therefore, the DVFS should

be performed carefully with respect to the task scheduler, to ensure predefined constraints

of the embedded application are maintained.

The challenge in scheduling a set of real-time tasks on multiprocessors is to determine

where and when each task is executed. It is a well known Non-deterministic Polynomial

time (NP)-complete problem [17], which is intractable as there may not exist an algorithm

which can find an optimal solution within polynomial time. As a result, previous studies

focus on heuristics to address the computational complexity. Considering energy reduction

on top of the scheduling adds a new dimension to these design issues.

Numerous approaches have been proposed to construct an energy-efficient task schedule.

In general, the approaches can be classified into two categories, those are: offline ap-

proaches and online approaches. The main difference between these two categories is that

the offline scheduling approach constructs a schedule for a set of application tasks during

the design stage, while an online scheduling approach schedules tasks during the runtime.

In offline scheduling, timing information of all application tasks is made available during

the design stage, thus enabling the system performance and energy needs to be predicted

before implementation. The actual execution time (AET) of each task cannot be predicted

in advance, resulting in the offline scheduling approaches to use the worst-case execution

5

1. Introduction

time (WCET), which is defined as the maximum length of time a task could take to run

under maximum frequency on a processor.

The energy-aware task scheduling problem involves three major sub-problems as follows:

• Mapping: determine the assignment of each application task to a processor and

communication messages to communication links.

• Scheduling: determine the execution sequence of application tasks i.e. the start time

of each application task on its assigned processor and communication messages on

communication links.

• Slack allocation and frequency assignment: determine the amount of processor slack

to be given to tasks or communication slack to be given to communication messages.

Also, to assign an appropriate operating frequency and its corresponding supply

voltage to each task and each communication message for slack reclamation.

It is important to map each task to an appropriate processor. For distributed systems, the

mapping has a significant impact on the inter-processor communication overhead. Besides,

the combination of mapping and scheduling have large impacts on the creation of reusable

slack thus achievable energy savings. There are two kinds of slack available during the

scheduling of a real-time system: static slack and dynamic slack. Static slack is produced

as a result of under-utilized system workloads, assuming all the tasks are executed at the

worst-case execution time. Dynamic slack is produced as a result of variations in execution

times of the tasks i.e. when a task completes earlier than expected during the runtime.

An offline scheduling approach is used to claim static slack, and an online scheduling

algorithm is used to claim dynamic slack. Furthermore, there are two passes in selecting

an operating frequency for each application task and each communication message. For

a scheduling approach assuming the continuous frequency model, a task may be assigned

with any frequency within a specific range of frequencies. For a scheduling approach

6

1. Introduction

considering discrete frequency model, a task can only use a specific frequency which may

not be able to claim the whole slack.

It is also important to compute the right continuous frequency or discrete frequency for

each task and each message during slack reclamation. This is because lowering the fre-

quency and its corresponding supply voltage indefinitely may not be beneficial in reducing

the total energy consumption and affects the feasibility of the schedule.

The problem of energy-aware task scheduling is not only applicable to embedded systems

but also to other general purpose systems or domains, e.g. high-performance computers,

cloud computing and grid computing. This thesis focuses the discussion on embedded

systems. Embedded systems must not only implement the desired function, but must also

satisfy a diversity of constraints, such as power consumption, performance, safety, size,

cost, and flexibility, which usually compete with each other.

Therefore, with all the aforementioned facts, it is an important research problem to op-

timize the total energy consumption of the processors and communication subsystems of

the MPSoCs. Moreover, there is no one-size-fits-all solution to the energy-aware task

scheduling problem, since the requirements of each system model are different.

We address three different problems in this thesis as follows.

1. Energy-aware task scheduling for a set of application tasks with precedence and dead-

line constraints on a homogeneous MPSoC assuming continuous frequency model.

2. Energy-aware task scheduling for a set of application tasks with precedence and

deadline constraints on a heterogeneous NoC-based MPSoC considering discrete fre-

quency model.

3. Energy-aware task scheduling for a set of periodic application tasks with precedence

and deadline constraints on a homogeneous NoC-based MPSoC considering discrete

frequency model.

7

1. Introduction

We make the following major contributions in this thesis as follows.

1. Firstly, we propose a unified approach to the problem of scheduling a set of ap-

plication tasks with precedence and deadline constraints on a homogeneous MPSoC

assuming continuous frequencies such that the energy consumption of all the tasks is

minimized under two power models specifically the total dynamic power and the to-

tal power. We present a novel priority scheme to construct an initial schedule under

maximum frequencies. The priority of each task is its approximate successor-tree-

consistent deadline, which is the approximate upper bound on its latest completion

time in any feasible schedule for a relaxed problem where only the precedence con-

straints between the task and all its successors are considered. Furthermore, we

present an approach by using a convex Non-Linear Programming (NLP)-based algo-

rithm to assign an optimal supply voltage and frequency to each task. Furthermore,

we present experimental results indicating the effectiveness of this approach in min-

imizing not only the total dynamic energy, but also the total energy consumption.

2. Secondly, we propose two unified approaches to the problem of scheduling a set

of application tasks with precedence and deadline constraints on a heterogeneous

NoC-based MPSoC considering discrete frequencies such that the total energy con-

sumption of all the tasks is minimized. Both approaches use an iterative NLP-based

algorithm for assigning and scheduling each task to a processor, and computing its

optimal continuous frequency. Then, for the selection of discrete frequencies, one ap-

proach uses a novel Integer Linear Programming (ILP)-based algorithm to select an

optimal discrete frequency for each task and each communication message. The sec-

ond approach uses a polynomial time heuristic to select a discrete frequency for each

task and each communication message. Moreover, we present experimental results

showing that our proposed approaches perform significantly better than state-of-the-

art approaches in terms of total energy consumption. Besides, the performance of

our proposed approach using the polynomial time heuristic is very close to that of our

8

1. Introduction

proposed approach using the ILP-based algorithm for computing discrete frequencies

for all tasks and messages, and achieving a better running time.

3. Lastly, we propose a novel approach combining task-level software pipelining with

DVFS to the problem of scheduling a set of periodic dependent application tasks

on a homogeneous NoC-based MPSoC considering discrete frequencies such that the

total energy consumption of all the tasks is minimized under memory capacity con-

straints. To the best of our knowledge, this study is the first that investigates this

problem. This approach is supported by a set of novel techniques, which include

constructing an initial schedule under maximum frequencies such that the workload

across all the processors is balanced using a list-based scheduling, where the pri-

ority of each task is its approximate successor-tree-consistent deadline, a retiming

approach based on the task mapping to transform intra-period dependencies into

inter-period dependencies for enhancing parallelism, assigning an optimal discrete

frequency for each task and each message using a Non-Linear Programming (NLP)-

based algorithm and an Integer-Linear Programming (ILP)-based algorithm, and an

iterative algorithm to resolve memory capacity violations. In addition, we correlate

the problem to compute the memory usage of a schedule into the problem of Maxi-

mum Weight Clique which is NP-hard [18]. Also, we present extensive experimental

results showing the effectiveness of this approach in terms of minimizing the total

energy consumption while satisfying all the constraints.

This thesis is organized as follows. Chapter 2 presents the background. Chapter 3 gives

a survey of the related work on energy-aware task scheduling. Chapter 4 describes our

proposed unified approach for minimizing the total energy consumption of a set of applica-

tion tasks with precedence and deadline constraints on a homogeneous MPSoC. Chapter 5

proposes our two approaches for minimizing the total energy consumption of a set of ap-

plication tasks with precedence and deadline constraints on a heterogeneous NoC-based

MPSoC. Chapter 6 explores the problem of minimizing the total energy consumption of

9

1. Introduction

real-time streaming applications on a homogeneous NoC-based MPSoC under memory

capacity constraints. Finally, Chapter 7 presents the conclusion and future work.

10

Chapter 2

Background

This chapter elaborates on the background knowledge of the Multiprocessor System-on-

Chip (MPSoC) with Dynamic Voltage and Frequency Scaling (DVFS) and details the key

challenges of the problems we investigate in this thesis.

An embedded system is a microprocessor-based system combining computer hardware and

application software. It is designed to perform a specific function or a set of functions and

interacts with its surrounding environment. A real-time embedded system has additional

constraints such as precedence constraints and timing constraints, which are required to be

satisfied in addition to the functional aspects, for the overall system to be considered cor-

rect. Embedded systems are widely deployed on small and large devices. Typical examples

include applications in vehicles, airplanes or robots, as shown in Figure 2.1. Traditionally,

an embedded system is powered by a single processor. The growing demands for more

complex applications, has resulted in most modern embedded systems to be driven by

multiprocessor architectures. Moreover, multiprocessor architectures such as Multiproces-

sor System-on-Chip (MPSoC) have received attention due to their high performance and

low power requirements.

11

2. Background

Figure 2.1: A Xilinx Zynq UltraScale+ MPSoC [7] and embedded system applications in

automotive [8], avionics [9] and robotics [10].

2.1 Multiprocessor System-on-Chip (MPSoC)

A Multiprocessor System-on-Chip (MPSoC) is an integrated circuit with multiple proces-

sors. However, it is not simply a traditional multiprocessor fitted into a single chip, but

designed to complete the unique requirements of embedded applications in terms of com-

putational performance, power efficiency and real-time performance. All the processors

may implement the same or different Instruction Set Architecture (ISA). ISA defines the

arithmetic and logic operations, data handling, memory operations, control flow and other

necessary operations.

When all the processors implement the same ISA, it is considered a homogeneous archi-

tecture. All the processors have the same computational performance and power profile.

However, when all the processors employ different ISA, it forms a heterogeneous architec-

ture. The computational performance, as well as the power profile of all the processors

are different.

MPSoCs can be classified into two distinct models as follows.

12

2. Background

Shared Memory Model: This model enables all processors to share the same location

in memory for read and write operations. Communication among processors is done

by means of access to shared variables in the shared memory. The general layout of

this model is shown in Figure 2.2a. The processors, represented by P1, P2 and P3

access a single memory (Mem) through a shared bus architecture.

Distributed Memory Model: This model relies on explicit message-passing among

processors, each of which possesses a local private memory. Message-passing is

performed through communication networks. The general layout of this model is

shown in Figure 2.2b. The processors, represented by P1, P2 and P3 have access to

their own local memory M1, M2 and M3, respectively, while communication among

processors is achieved using a shared bus or communication links.

P2P1 P3

Mem

Bus

Bus

Arbiter

(a) General layout of a shared memory model.

P2P1 P3

M1 M2 M3

Bus

Bus

Arbiter

(b) General layout of a distributed memory

model.

Figure 2.2: Two distinct architecture models of multiprocessor embedded systems.

Most modern MPSoC processors are Dynamic Voltage and Frequency Scaling (DVFS)-

enabled, which allows the adjustment of frequencies and corresponding supply voltages

dynamically to reduce energy consumption.

13

2. Background

2.1.1 MPSoC Communication Subsystems

All the processors in an MPSoC are connected through a system-on-chip interconnect.

There are various types of MPSoC interconnect architectures such as single shared-bus,

crossbar and Network-on-Chip. Traditionally, all processors are connected via a shared

bus. However, single shared-bus architecture can quickly turn into a bottleneck. In addi-

tion, this architecture faces scalability issues. An improved crossbar architecture can guar-

antee maximum bandwidth, but large crossbars run into a problem known as spaghetti

wiring issues [19], which hinder the achievable frequency of operation and pose severe phys-

ical design problems. Furthermore, large crossbars are expensive to implement. Network-

on-Chip (NoC) is inspired from the wide area network which is based on packet-switched

paradigm. NoC offers virtually unlimited scalability, higher bandwidth and also allows

customization. NoC is composed of three main components as follows.

• Communication links: A communication link connects two routers in the network.

It consists of one or more channels, each of which is composed of a set of wires.

• Router: A NoC router is composed of a set of global input and output ports which

connect to other routers, a switching matrix connecting the input ports to the output

ports, and local input and output ports to connect to the processor attached to the

router. It includes several policies for data communication, such as flow control,

routing algorithms and buffering policies.

• Network interface: This module provides a logical, as well as physical connections

between a processor and the network.

A two-dimensional |r|-by-|c| NoC architecture consists of |r||c| number of processors each

of which associated with a router, where |r| and |c| are the number of rows and number

of columns, respectively. A router has at most five ports: one local port and four global

ports. A communication link connecting between two routers is known as a global link

14

2. Background

while a communication link connecting a router to a processor is known as a local link.

An example of a 3-by-3 mesh NoC is shown in Figure 2.3 which has nine processors

{P1, · · · , P9} each with its Cartesian coordinate, network interfaces (NI) and routers (R).

R R R

R R R

R R R

P7
NI

(0,2)

P7
NI

(0,2)

P8
NI

(1,2)

P8
NI

(1,2)

P9
NI

(2,2)

P9
NI

(2,2)

P4
NI

(0,1)

P5
NI

(1,1)

P6
NI

(2,1)

P1
NI

(0,0)

P2
NI

(1,0)

P3
NI

(2,0)

Figure 2.3: A diagram of a two-dimension NoC.

From the programmer’s perspective, a communication message is needed to relay an output

of a source task to a destination task if both the source task and destination task reside

on different processors. It is first generated after the completion of the source task. Then,

it is transmitted from the source processor where the application task is executed, to

its associated router via a network interface (NI). On the router, the communication

message is kept in a buffer for servicing. The router makes a routing decision i.e. the

path to the destination based on its policies. Next, the communication message moves to

the next router. These steps are repeated until the communication message reaches the

destination processor. The communication latency much depends on the characteristics of

the application such as the message data size and the network characteristics such as the

network bandwidth and the router buffer size [20] as well as the communication traffic in

the network.

There are two major policies on how NoC works on servicing a communication message:

switching and routing.

Switching: A switching mechanism determines how and when an input channel is con-

15

2. Background

nected to an output channel for data transmission. Switching mechanisms can be

classified into two categories: circuit switching and packet switching [21]. In circuit

switching, the communication path is determined by a routing algorithm. Thus, a

single communication message takes the same circuit or route. On the other hand,

packet switching breaks a communication message into several fixed-sized packets,

each containing header flit and data flit. Routing decisions are made separately for

every packet. There are various packet switching strategies with the most popular

are store-and-forward, virtual cut-through and wormhole described as follows [22].

Store-and-forward: In this strategy, the router stores the complete packet before

forwarding it to the next router in the path. The buffer size at each router

should be sufficient to keep the whole packet. Otherwise, the packet is stalled.

Virtual cut-through: In this strategy, a router first checks whether a whole packet

can be accepted by the next router. If so, the router forwards the packet to the

next router. Otherwise, the whole packet is stored in the current router buffer

without blocking any communication links. This strategy requires significant

router buffer size but has lower latency and higher link utilization.

Wormhole: In this strategy, a router immediately forwards a packet as soon as its

header flit arrives and the subsequent flits follow i.e. worm its way through

the network. The disadvantage with this strategy is that when contention

occurs, a stalling packet blocks all the communication links that the worm

spans, resulting in low link utilization.

Routing: A routing algorithm decides the path of a communication message from the

source processor (via its associated router) to the destination processor (via its as-

sociated router). Consider the NoC architecture in Figure 2.3, to relay a mes-

sage from P1 to P8, can go through the routers of {P1, P2, P5, P8} or routers of

{P1, P4, P7, P8} or routers of {P1, P4, P5, P8}. Routing schemes can be classified

into two categories: deterministic and adaptive [22].

16

2. Background

Deterministic routing: In this scheme, packet always uses the same path between

the source and destination routers. An example is XY routing. XY routing

scheme works based on the Cartesian coordinates. If the source router and

the destination router are on different X-axis and Y-axis, the packet traverses

the X-axis first, then moves along the Y-axis towards the destination router.

Otherwise, if both routers are on the same X-axis or Y-axis, the packet only

traverses along the X-axis or Y-axis, respectively. Figure 2.4 shows examples

of XY routing scheme. Figure 2.4a shows the path from P4 to P6, which

only traverses along X-axis, Figure 2.4b shows the path from P1 to P6, which

traverses both X-axis and Y-axis, and Figure 2.4c shows the path from P9 to

P3, which only traverses Y-axis.

Adaptive routing: This scheme involves a dynamic evaluation of the link load

and implies a dynamic load balancing strategy. In other words, different path

between the source and destination routers may be used in case of the original

path is congested.

Most NoCs employ deterministic routing in particular the XY routing because of its

simplicity.

R R R

R R R

R R R

P7
NI

P8
NI

P9
NI

P4
NI

P5
NI

P6
NI

P1
NI

P2
NI

P3
NI

1 2

(a) Routing from P4 to P6.

R R R

R R R

R R R

P7
NI

P8
NI

P9
NI

P4
NI

P5
NI

P6
NI

P1
NI

P2
NI

P3
NI

3

1 2

(b) Routing from P1 to P6.

R R R

R R R

R R R

P7
NI

P8
NI

P9
NI

P4
NI

P5
NI

P6
NI

P1
NI

P2
NI

P3
NI

1

2

(c) Routing from P9 to P3.

Figure 2.4: Examples of XY routing.

17

2. Background

Like processors, advanced communication subsystems of MPSoCs are also DVFS-enabled.

This allows the reduction of not only the computational energy, but also communication

energy of MPSoCs.

2.2 Real-Time Embedded Applications

The application software of an embedded system is tightly coupled with the system hard-

ware. It contains all the programs, known as the firmware, to give functionality to the

system hardware. This firmware is stored in a non-volatile memory and is not able to be

modified by the end users.

The firmware can be extracted into a number of smaller programs, called tasks. Each

task performs a specific function in the system and requires the use of hardware resources.

The set of application tasks can be represented as a Directed Acyclic Graph (DAG),

also known as task graph. A vertex in the graph denotes a task and a directed edge

between two vertices represents the dependency and precedence constraint between the

two corresponding tasks. Figure 2.5 shows an example of the software extraction into a

task graph, with t1, t2, t3 and t4 representing the tasks.

One important feature emerging from this software extraction is the potential parallelism

between application tasks. In a multiprocessor architecture, application tasks that are not

restricted by dependencies can be executed in parallel, resulting in better performance.

Typical parameters used for real-time application software are as follows.

Release Time: This parameter defines the time at which an application task is ready

for execution.

Deadline: This parameter defines the time after a triggered event by which an application

task should complete its execution.

18

2. Background

(a) An example of application codes.

A

B C

D

t1

t2 t3

t4
(b) An example of a task graph.

Figure 2.5: Examples of application codes and the corresponding task graph.

Period: This parameter defines the exact inter-arrival time between successive invoca-

tions of an application task.

Worst-Case Execution Time: This parameter refers to an estimated maximum exe-

cution time required to complete an application task under maximum frequency,

assuming that its execution is not preempted. It is expressed in the same units as

deadline and period.

2.2.1 Task Model

A task is a sequential program that is triggered for execution by the occurrence of a

particular event. Several task models are described as below.

Precedent-Tasks Model: This model dictates the ordering of tasks. A set of tasks

under this model can be represented as a weighted Directed Acyclic Graph (DAG)

or task graph, in which a vertex denotes a task and a directed edge is added between

two tasks to denote the precedence constraint between the two tasks.

Periodic Tasks Model: A periodic task is a continuous stream of task instances initi-

19

2. Background

ated at a regular time interval. Each task has an exact inter-arrival time between

its successive instances which is defined by its period.

Sporadic Tasks Model: A sporadic task is a continuous stream of task instances. The

period defines the minimum inter-arrival time between its consecutive instances, thus

removing the restriction of generating instances at a regular time interval.

Aperiodic Tasks Model: An aperiodic task model does not have a period parameter.

A task is known as a constrained-deadline task if the period is greater than or equal to its

deadline. It is known as implicit-deadline task if the period is equal to its deadline.

The demand for more complex systems requiring higher power has increased significantly

over recent years. However, the development of the capacity of batteries has lagged behind.

Therefore, it is important to minimize the energy consumption required by embedded

systems. We elaborate on the general framework for energy-aware task scheduling and

two major techniques: the Dynamic Voltage and Frequency Scaling (DVFS) and task-level

software pipelining which aid in the conservation of energy consumption in the following

sections.

2.3 Energy-aware Task Scheduling

In general, the problem of energy-aware scheduling for a set of tasks with precedence and

deadline constraints involves three common sub-problems as follows.

Task mapping: determine the assignment of each application task to a processor and

communication messages to communication links.

Task scheduling: determine the execution sequence of application tasks i.e. the start

time of each application task on its assigned processor and communication messages

on communication links.

20

2. Background

Slack allocation and frequency assignment: determine the amount of processor slack

to be given to tasks or communication slack to be given to communication messages.

Using Dynamic Voltage and Frequency Scaling (DVFS), assign an appropriate op-

erating frequency and its corresponding supply voltage to each task and each com-

munication message for slack reclamation.

P2

Frequency

P1 t1 t2

t4t3

0 1 2

1.5 2.5 3.5

Time
M1,3 M2,4

1 1.5 2.52

L

(a) Mapping option 1.

P2

Frequency

P1 t1 t2 t4t3

0 1 2

Time

3 4

L

(b) Mapping option 2.

P2

Frequency

P1 t1 t2 t4

t3

0 1 2

1.5 2.5

Time
M1,3 M3,4

1 1.5 2.5 3

L

3 4

(c) Mapping option 3.

P2

Frequency

P1 t1 t2

t4

t3

0 1 2

3.5

Time
M2,4 M3,4

2.52

L

3

3 3.5

4.5

(d) Mapping option 4.

Figure 2.6: Several mapping options of a task graph in Figure 2.5b on two processors.

For a uniprocessor architecture, only task scheduling and slack allocation and frequency

assignment are required. A multiprocessor architecture requires all three sub-problems.

Consequently, the quality of an energy-aware schedule is dependent on three major factors:

the mapping of application tasks to the processors, the ordering of the application tasks

on processors, and the selection of frequencies and supply voltages of all the application

tasks. Each of this sub-problem brings about its own challenges.

21

2. Background

Consider a simple scenario to map an application consisting four dependent tasks as in

Figure 2.5 on two processors. The worst-case execution time of each task is one time

unit. Each task has two available processors for its execution, thus the design space

of this simple scenario is 24 = 16. The design space grows with increasing number of

tasks and processors. Figure 2.6 depicts Gantt charts of four possible mappings of the

simple scenario. The height of each task and each message resembling Y-axis represents

its operating frequency while X-axis represents the time. A resource label with a letter P

denotes a processor and a resource label with a letter L denotes a communication link. In

case the common deadline of the application is 3.5 time unit, solutions in Figures 2.6b,

2.6c and 2.6d are infeasible. Furthermore, the figures also show that different mappings

incur different inter-processor communication overhead. Moreover, the mapping affects

the availability of slack. If the common deadline of the application is 4 time unit, only

mapping in Figure 2.6a has a static slack of 0.5 which can be utilized for frequency scaling.

Hence, an efficient algorithm is needed to obtain a good mapping.

Furthermore, the order of tasks also affects the feasibility of the schedule as well as the

potential for reducing the energy consumption. Consider a scenario with three tasks tx, ty

and tz each of which has an individual deadline of 3, 8 and 6 time units, respectively. All

the three tasks have the same worst-case execution time of two time units and they have

been mapped to a processor P1. Figure 2.7 shows two possible orderings of the scenario

each having different energy reduction potential. On one hand, Figure 2.7a depicts that

the available slack cannot be utilized by all the three tasks because tz has reached its

deadline. Tasks tx and ty are blocked from stretching their executions. On the other

hand, Figure 2.7b depicts a situation which allows all the three tasks to slowdown their

executions until their deadlines to reduce the energy consumption.

Considering each sub-problem separately may produce a suboptimal solution. Therefore,

a unified algorithm is needed to solve the energy-aware task scheduling problem.

22

2. Background

Frequency

P1 tx

0 1 2

Time

ty tz

3 4 5 6
Time

8

dx = 3 dz = 6 dy = 8

(a) Ordering option 1.

Frequency

P1 tx

0 1 2

Time

tytz

3 4 5 6
Time

8

dx = 3 dz = 6 dy = 8

(b) Ordering option 2.

Figure 2.7: Two possible task orderings.

2.4 Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS) is a powerful technique for reducing

the energy consumption of real-time embedded systems. This technique was originally

designed for a uniprocessor architecture, but later extended to multiprocessor platforms.

It is widely used in modern processors, as well as communication subsystems. Some

examples of processors with DVFS capability are Intel Speedstep, Marvells XScale R

technology-based embedded processors, ARM, AMD PowerNow! and Transmeta Crusoe.

The fundamental idea behind this technique is based on two properties as follows.

• The dynamic power consumption of CMOS circuits have a direct relationship with

the square of the supply voltage multiplied by the operating frequency.

• The processors or communication subsystems may be idle during certain time in-

tervals, also known as slack, which can be utilized to slowdown the execution of

application tasks or communication messages.

Enabling the adjustment of the frequency and supply voltage based on the system re-

23

2. Background

quirements over time provides an opportunity to conserve energy. However, lowering the

operational frequency and supply voltage of an application task or communication mes-

sage indefinitely may not be beneficial in reducing the energy consumption due to several

reasons as follows.

Critical frequency: There exists a minimum frequency, which is known as the critical

frequency, for each application task or each communication message. Previously

reported studies demonstrate the existence of critical frequency for an application

task beyond which the processor slowdown is no longer beneficial. Not only the

performance of the task degraded, but its energy consumption is also increased [23].

Leakage energy: A longer execution time which decreases the dynamic energy consump-

tion, increases the leakage energy. Leakage current, which is the source of static

power, is increasing with the advances of CMOS technology miniaturization. It is

predicted that the static power increases five fold over each generation of technol-

ogy [24]. Hence, it is important to take into account the existence of static energy.

The power consumption of a CMOS circuit can be categorised into three types which

are dynamic power, static power and short-circuit power [25]. Dynamic power resulting

from switching activities within the circuit and is approximated to be proportional to the

square of the supply voltage multiplied by the operating frequency. Static power is due

to the leakage current that exists even in the absence of switching activities in the circuit.

Short-circuit power is dissipated during signal transitions which is small, and therefore

negligible.

The selection of a frequency and supply voltage for an application task and a commu-

nication message has a direct impact on its execution time and communication time,

respectively. Hence, DVFS needs to be tightly coupled to a task scheduler to ensure the

feasibility of the application task.

24

2. Background

2.4.1 Task Mapping and Scheduling

One of the key challenges to this problem is to generate a feasible task schedule with

minimum energy consumption in accordance with all the constraints. A schedule is feasible

if the precedence and deadline constraints are satisfied. The schedule can then be generated

by compilers and statically loaded into processors or integrated into real-time operating

systems. Without considering the energy, task scheduling is already a well known Non-

deterministic Polynomial time (NP)-complete problem [17]. This means the problem is

intractable as there may not exist an algorithm which can find an optimal solution within

polynomial time.

Task scheduling on a multiprocessor architecture poses more challenges than task schedul-

ing on a single processor. Not only does it need an additional step for task-to-processor

mapping, but also more difficult to be solved as the design space is larger. Moreover, the

precedence and deadline constraints limit the flexibility in scheduling all the tasks.

Therefore, in order to guarantee the feasibility of the schedule, common approaches tend

to firstly construct an initial schedule under the maximum frequencies. If there exists a

feasible schedule, the next step is to claim available slack with frequency scaling for energy

reduction.

Task mapping: Given a set of tasks with precedence and deadline constraints, each task

needs to be mapped to a specific processor. Different task mappings lead to different

schedules with different amounts of slack available. Poor task mapping may lead to

an infeasible schedule and impact the potential for reducing the energy consumption.

Therefore, an efficient algorithm is required to map each task to a processor such

that a feasible schedule can be constructed.

Task scheduling: For each set of tasks mapped to a specific processor, a feasible schedule

satisfying all the timing constraints needs to be constructed. The sequence of tasks

25

2. Background

impacts the feasibility and the potential for reducing the energy consumption.

Offline task scheduling can be grouped into two categories: heuristic-based and guided

random search-based algorithms. Heuristic-based algorithms can be further grouped into

three categories as follows [26].

List-based Scheduling: A heuristic in this group involves a step to prioritize all the

application tasks. It maintains a list of all the tasks according to their priorities. It

then schedules each task on a processor and a time slot based on its readiness and

priority.

Clustering-based Scheduling: A heuristic under this group assigns all the application

tasks to a number of clusters. All the tasks in the same cluster are mapped to the

same processor. All the tasks are then ordered on their respective processors.

Duplication-based Scheduling: This heuristic makes several copies of a task which are

executed on different processors in order to remove the inter-processor communica-

tion overhead.

Guided Random Search-based Scheduling: An algorithm under this group improves

the scheduling result iteratively until it satisfies a stop criteria. It uses the knowl-

edge gained from previous search steps and make a reconfiguration to generate a new

solution according to random features. It then accepts a scheduling result based on

a predefined metric. Examples include the Genetic Algorithm (GA) and Simulated

Annealing (SA). These algorithms may produce a good scheduling result. Never-

theless, their time complexities are much greater than heuristic-based scheduling

and the control parameters, that lead to the best solution need to be determined

accordingly.

Another major challenge in task scheduling is the communication message scheduling. A

communication message is required to pass the data of a parent application task to a

26

2. Background

child application task if both tasks are mapped on distinct processors. Different from

task scheduling which assigns an application task to a processor, message scheduling may

assigns a message on several communication links. This is because a message may traverse

several communication links resembling a path to reach its destination. Hence, a message

should be scheduled on all the links on its path following the order. Also, the correctness

of the message schedule depends on causality conditions [21] as follows.

• The start time of a message on its subsequent links should not be earlier than its

start time on the current link.

• The finish time of a message on its subsequent links should not be earlier than its

start time on the current link.

Figure 2.8 shows a simple scenario for task and message scheduling without contention.

An application task t1 on processor P1 transmits a message M1,3 to an application task

t3 on processor P6 on a NoC platform as in Figure 2.3. Hence, the message traverses

links L1,2, L2,3 and L3,6 in which the subscript indexes denote the source processor (via

its associated router) and destination processor (via its associated router).

P6

Frequency

P1 t1

0 1 2

Time

M1,3
L1,2

L2,3

L3,6

M1,3

M1,3

t3

2 3

2

2

3

3

3 4

Figure 2.8: Communication message scheduling without contention.

Communication contention may exists when a message encounter other messages along its

path. There are two major issues that need to be handled in contention-aware scheduling.

27

2. Background

Firstly, among the contended messages, which one should be given the higher priority for

accessing the network resources i.e. communication link. Secondly, on how to determine

the start time and finish time of those messages.

There are two common models for the determination of the scheduling times on a path

in contention-aware scheduling: non-aligned model and aligned model [21] described as

follows.

Non-aligned model: In this model, the start times and finish times of a message on

all links of its path are not synchronize, but follow the causality conditions. The

message is delayed on the link with contention. Figure 2.9a depicts a simple scenario

using non-aligned model. It shows that the message M1,3 on link L1,2 starts at time

2, but on the subsequent link L2,3 it is delayed by message Mx,y thus forcing it to

start at time 2.5.

Aligned model: In this model, the contention on all its link is resolved first. Then, its

start times and finish times on all the links of its path are synchronized. Figure 2.9b

depicts a simple scenario using aligned model. It shows that the start times of

message M1,3 on all links of its path are the same at time 2.5.

2.4.2 Slack allocation and frequency assignment

There are two types of slack: static slack and dynamic slack. Static slack is produced due

to an under-utilized system workload assuming all the tasks are executed for the worst-

case execution time. Dynamic slack is produced due to variations in the execution time

of tasks i.e. when a task completes earlier than expected during runtime. There are two

distinct schemes for slack reclamation which are inter-task DVFS and intra-task DVFS as

below.

28

2. Background

P6

Frequency

P1 t1

0 1 2

Time

M1,3
L1,2

L2,3

L3,6

M1,3

M1,3

t3

2 3

Mx,y

1 2.5 3.5

3.52.5

3.5 4.5

(a)

P6

Frequency

P1 t1

0 1 2

Time

M1,3
L1,2

L2,3

L3,6

M1,3

M1,3

t3

Mx,y

1 2.5 3.5

3.52.5

3.5 4.5

2.5 3.5

(b)

Figure 2.9: Contention-aware communication message scheduling: (a) non-aligned message

scheduling model, and (b) aligned message scheduling model.

Inter-task DVFS Scheme

Inter-task DVFS scheme controls the frequency and supply voltage on a task-by-task

basis. The scheme assigns a constant frequency and its corresponding voltage during

the execution of each task. The transition energy overhead and transition time overhead

occur between two tasks with different frequencies. Examples of this scheme are shown

in Figure 2.10b, which assumes a continuous frequency model and Figure 2.10d, which

assumes a discrete frequency model.

Intra-task DVFS Scheme

Intra-task DVFS scheme determines the frequency and supply voltage within an individual

task boundary. This scheme assigns multiple frequencies during the execution of a task.

However, it has been shown that at most two frequencies and supply voltages minimize the

energy consumption of a single task under a timing constraint [27]. This scheme is efficient,

in terms of energy reduction, for a system with a single task and when the execution time of

any one task dominates the whole execution time of all tasks [28]. Nevertheless, the impact

29

2. Background

of enabling the adjustment of frequency within task executions may increase transition

energy overhead, as well as the transition time overhead, which occur during the change

between frequencies.

P1

P2

t1

t4

Frequency

L

t2

m1,4

0
Time

5 10 15

t3

(a) An initial schedule.

P1

P2

t1

t4

Frequency

L

t2

m1,4

0
Time

5 10 15

t3

(b) Lowering the frequency of t3 under a

continuous frequency model.

P1

P2

t1

t4

Frequency

L

t2

m1,4

0
Time

5 10 15

t3
1

t3
2

(c) Lowering the frequency of t3 using

combination of discrete frequencies i.e.

intra-task scaling.

P1

P2

t1

t4

Frequency

L

t2

m1,4

0
Time

5 10 15

t3

(d) Lowering the frequency of t3 using a

discrete frequency i.e. inter-task scaling.

Figure 2.10: Examples of DVFS approaches.

2.5 Task-level Software Pipelining

Task-level software pipelining is another technique used to supplement the reduction of

energy consumption for real-time embedded systems. The potential of reducing the energy

consumption can be increased by enhancing parallel processing on multiprocessors. This

technique is applicable to periodic dependent tasks, which process a continuous stream

of data repetitively. The fundamental idea of this technique is to change intra-period

dependencies into inter-period dependencies by scheduling certain task instances to ear-

30

2. Background

lier periods. Consequently, the precedence constraints among tasks within a period are

removed, allowing some flexibility in using the available slack for frequency scaling. A

technique to make this possible is known as retiming.

Retiming was first proposed to minimize the cycle period of a synchronous circuit [29]. It

distributes registers evenly on a circuit while preserving the functional behaviour of the

entire circuit. As for the problem of energy-aware task scheduling, it redistributes the

instances of tasks to different periods, while ensuring the dependencies among the tasks

are preserved. These dependencies then appear between different periods. With this, the

amount of usable slack can be increased and utilized during frequency scaling. Examples

are shown in Figure 2.11. Figure 2.11a shows a common initial schedule of the task graph

in Figure 2.5b with its period equal to 3 time units on two processors. The subscript of

each task instance denotes the task index followed by its instance index. The schedule

produces only one time unit of slack within each period. After redistributing the task

instances of t1,1, t1,2, t2,1 and t3,1 to earlier periods named prologue, the available slack

become two time units, each on different processors. This implies that retiming may be

beneficial in reducing the energy consumption.

However, this technique comes with extra costs as follows.

Prologue latency: The latency is caused by rescheduling certain task instances to earlier

periods. As shown in Figure 2.11b, the latency is the number of periods in the

prologue multiplied by the period length which is equal to 6 time units.

Memory capacity overhead: Extra memory space is required to keep data caused by

grouping different task instances from different periods into one period. Data may

be kept for a longer time in memory as the sender task instance and the receiver

task instance are on different periods. For example, in Figure 2.11, the time to keep

the data of task instance t2,1 to task instance t4,1 in memory before the retiming is

one time unit, which is computed as the difference between the completion time of a

31

2. Background

P2

Frequency

P1 t1,1

Period=1

t2,1

t4,1t3,1

0 1 2

1 2 3

t1,2 t2,2

t4,2t3,2

4 5

4 5 6

t1,3 t2,3

t4,3t3,3

7 8

7 8 9

slackslackslack

Not usable
slack

Not usable
slack

Not usable
slack

Period=2 Period=3

Time

(a)

P2

Frequency

P1 t1,1

Period=1

0 1

3

t1,2 t2,1

t3,1

4 5

4 6

t1,3 t2,2

t4,1t3,2

7 8

7 8

3 6

prologue

slack

slack

Time

Period=2 Period=3

(b)

Figure 2.11: Examples of Scenario 1: (a) an initial schedule before retiming, and (b) the

initial schedule after retiming.

child task and the completion of a parent task. These times are the time when the

data is produced by the parent task and the time when the child task has consumed

the data. After retiming, it takes three time units.

The quality of the solution, in terms of increasing the parallelism under memory capacity

constraints, depends on how the assignment of a retiming value for each task is done. The

retiming value of a task represents the number of times it is executed in the prologue. In

addition, the maximum retiming value of all the tasks can show the amount of latency

incurred by the schedule, when using retiming.

The distribution of application tasks among processors has an influence on how well re-

timing increases the parallelism to reduce the energy consumption. Consider a different

32

2. Background

P2

Frequency

P1 t1,1

Period=1

t2,1 t4,1

t3,1

0 1 2

1 2

3

t1,2 t2,2 t4,2

t3,2

4 5

4 5

6

t1,3 t2,3 t4,3

t3,3

7 8

7 8

Period=2 Period=3

Time

(a) An initial schedule before retiming.

P2

Frequency

P1 t1,1

Period=1

0 1

t1,2 t2,1

t3,1

4 5

4

t1,3 t2,2 t4,1

t3,2

7 8

763

slack

prologue

Time

Period=2 Period=3

(b) An initial schedule after retiming.

Figure 2.12: Examples of Scenario 2: (a) an initial schedule before retiming, and (b) the

initial schedule after retiming.

schedule as in Figure 2.12. Compared to Figure 2.11, task t4 is now mapped on processor

P1. The available slack after retiming under this scenario is also two time units, but only

on processor P2. The energy consumption of processor P1 cannot be reduced due to the

task execution reaching the limit.

As discussed above, the problems of energy-aware task scheduling for a set of tasks with

precedence and deadline constraints on a homogeneous MPSoC, energy-aware task schedul-

ing for a set of tasks with precedence and deadline constraints on a heterogeneous NoC-

based MPSoC and energy-aware task scheduling for a set of periodic dependent tasks on

a homogeneous NoC-based MPSoC pose many challenges which are difficult to address.

This thesis proposes a set of efficient approaches to address these problems.

33

Chapter 3

Literature Review

This chapter provides a survey on the previous energy-aware task scheduling approaches

focusing on applications with precedence and deadline constraints on multiprocessors. It

discusses the key idea, results and limitations of each approach.

A considerable amount of literature has been published describing energy-aware task

scheduling since Yao et al. [23] seminal work on this topic for a single processor assuming

continuous frequencies. They consider the problem of scheduling a set of tasks with re-

lease times, deadlines and amount of works in clock cycles. Different from the traditional

task scheduling studies, the solution is not only the time at which each task is scheduled,

but also the frequency at which the task is executed such that the energy consumption is

minimized. They propose a simple polynomial-time algorithm in which the optimality of

its solution depends upon the convexity of the objective function.

This chapter divides the previous approaches into two broad categories based on the plat-

form model, which are the energy-aware task scheduling on homogeneous multiprocessors,

and energy-aware task scheduling on heterogeneous multiprocessors, each of which is fur-

ther divided into two task models, namely aperiodic tasks with precedence constraints and

periodic tasks with precedence constraints.

34

3. Literature Review

3.1 Energy-aware Task Scheduling on Homogeneous Multi-

processors

3.1.1 Aperiodic Tasks with Precedence Constraints

Zhang et al. [30] propose PEDF which integrates task scheduling with voltage scaling

to minimize the total dynamic energy consumption. They consider a set of tasks with

precedence and individual deadline constraints on a homogeneous multiprocessors platform

with discrete voltage levels. They propose a two-phase framework. In the first phase, they

attempt to construct an initial schedule under maximum frequencies with high potential

during slack reclamation. To achieve this, tasks are prioritize based on the deadline,

dependencies and usage of processors. Next, they employ an intra-task voltage scaling by

using an Integer Linear Programming (ILP)-based algorithm. Results indicate that PEDF

gives more opportunity for slowing down compared to an Earliest Deadline First (EDF)

algorithm for multiprocessors. However, using an intra-task voltage scaling may introduce

additional transition overhead which affect the feasibility of the schedule. Moreover, their

study does not account for inter-processor communication overhead.

Mishra et al. [31] investigate the problem of slack reclamation for task schedules consisting

of a set of dependent tasks with a common deadline to minimize the total dynamic energy

consumption. They focus on homogeneous distributed multiprocessors assuming contin-

uous frequency model. They propose a static slack allocation approach named P-SPM

and two dynamic slack allocation approaches. P-SPM iteratively distributes static slack

to different sections of the schedule according to the degree of parallelism. In each step,

the heuristic distributes more slack to the sections with a greater degree of parallelism to

reduce the total dynamic energy consumption. The results indicate that this approach can

save an average 10% more energy compared to an approach that distributes static slack

proportionally among the tasks. However, not all available static slack can be claimed by

P-SPM, impacting the potential for reducing the total dynamic energy consumption.

35

3. Literature Review

Leung et al. [32] study the problem of minimizing the total dynamic energy consumption

for a set of aperiodic dependent tasks with individual deadlines on homogeneous multi-

processors assuming ideal frequencies. They propose a unified approach for task map-

ping, scheduling and voltage assignment using Mixed Integer Non-Linear Programming

(MINLP)-based algorithm. In addition, they propose a polynomial-time heuristic based

on a divide-and-conquer strategy, due to the MINLP-based algorithm is not scalable. Sim-

ulation results suggest that these approaches perform better, in terms of total dynamic

energy consumption compared to the PEDF approach [30]. However, their study also

considers only the total dynamic energy consumption and assumes that communication

time and communication energy are negligible.

Alexandru et al. [33] focus on the problem of allocating slack to a set of tasks with prece-

dence and a common deadline constraints. They present four different voltage selection

schemes to minimize the total computation energy consumption by using a combination

of Dynamic Voltage Scaling (DVS) and Adaptive Body Biasing (ABB). The DVS reduces

the dynamic power and the ABB reduces the static power. The first scheme assumes con-

tinuous frequencies without transition overhead. The second scheme considers continuous

frequencies with transition overhead. The third scheme assumes discrete frequencies with-

out transition overhead. The last scheme considers discrete frequencies with transition

overhead. The first and second schemes which assume continuous frequencies to compute

an optimal frequency for each task use Non-Linear Programming (NLP)-based algorithm.

The third and fourth schemes which assume discrete frequencies use Mixed Integer Linear

Programming (MILP)-based algorithm, to select an optimal discrete frequency for each

task. However, they do not consider inter-processor communication overhead which may

deteriorates the resultant schedule in terms of its feasibility.

Su et al. [2] study a similar problem of minimizing the total computation energy con-

sumption for High Performance Computing (HPC) systems. They propose a three-phase

approach consisting of task mapping under maximum frequencies, slack-room distribution

36

3. Literature Review

and slack reclamation. In the first phase, tasks are assigned to processors by using the

HEFT algorithm [26]. In the second phase, the static slack between the makespan and

common deadline is proportionally distributed across the tasks on the critical-path. Dur-

ing the last phase, the heuristic reallocates slack to tasks in a global manner and assigns

an optimal operating frequency to each task. The experimental results indicate that the

heuristic conserves more energy, compared to the greedy slack reclamation approach [34]

and the path-based slack reclamation approach [35].

Han et al. [4] explore both offline and online contention-aware energy management schemes

for homogeneous Voltage Frequency Island (VFI) and NoC-based multicore processors

with discrete frequencies. They consider dependent tasks with a common deadline. They

propose two offline heuristics: CA-TMES-Quick and CA-TMES-Search. CA-TMES-Quick

initially constructs an initial schedule under maximum frequencies by considering the

worst-case traffic congestion. It uses a list-based scheduling where the priority of each

task is its longest path to a sink task while the priority of each communication message

is its ready time and its longest path to a sink task. The CA-TMES-Search exhaustively

search for the best task and message schedule in terms of makespan but has greater time

complexity compared to CA-TMES-Quick. After task assignment, both heuristics adopt

a uniform slowdown strategy which assigns the same low frequencies to all processors and

communication links. Results suggest that these offline approaches perform better, in

terms of energy consumption depending on the factor of network congestion, compared

to an approach which employs task mapping based on Integer Non-Linear Programming

(INLP).

Li [1] studies a similar problem for clouds and data centers. He considers two prob-

lems: minimizing the total dynamic energy consumption with a deadline constraint and

minimizing the schedule length with an energy constraint. The target platform is a ho-

mogeneous multiprocessors with continuous frequencies. For the problem of minimizing

the energy consumption of applications with precedence and a deadline constraints, he

37

3. Literature Review

presents LL-ES-GREEDY, shorten as LESG heuristic. This approach schedules as many

tasks as possible for simultaneous executions and is based on level-by-level scheduling

technique. Firstly, it partitions the task graph into levels. All tasks at the same level are

independent of each other. Secondly, each level is allocated a time slot such that all the

tasks at the same level are executed within the time slot. Lastly, all the tasks on each

level are assigned with the same frequencies as long as the deadline is met. Analytical

results indicate that this approach can minimize the total dynamic energy consumption.

However, this study does not come with simulation results and it works only to reduce the

total dynamic energy consumption.

Li and Wu [3] deal with the problem to minimize the total energy consumption of a set

of dependent tasks with a common deadline on a homogeneous NoC-based MPSoC with

discrete frequencies. They propose a two-phase approach. First, they employ a Quadratic

Programming (QP)-based algorithm to map each task to a processor, with the aim of

minimizing the total weighted distance of communication among the tasks. The total

weighted distance from task ti to task tj is computed as Li,jci,j , where Li,j is the distance

while ci,j is the communication data size between ti and tj . Genetic Algorithm (GA) is

then used to schedule each task on its mapped processor and assign a discrete frequency to

each task and each message. The GA iteratively constructs a schedule using a list-based

scheduling with an Earliest Task First (ETF) strategy. In each step, the following fitness

function is used to evaluate the schedule s.

fitnesss =

1
εs
, if Ls ≤ D
1
εs

10(Ls
D

)2
, if Ls > D

(3.1)

where Ls and εs are the makespan and total energy consumption, respectively, of a schedule

s, and D is the common deadline. The fitness implies that a feasible schedule consuming

less total energy consumption is preferred, compared to one that is not feasible or with a

larger total energy consumption. They evaluate this approach with four different variants

and the results indicate that it can reduce the total energy consumption. However, their

38

3. Literature Review

mapping approach is guided by communication rather than energy consumption which

may degrades the solution in terms of energy consumption. Furthermore, GA is based on

natural selection and it does not necessarily produce an optimal result.

3.1.2 Periodic Tasks with Precedence Constraints

Luo and Jha [36] examine the problem of minimizing the total dynamic energy consump-

tion for multiple applications comprising periodic tasks and aperiodic tasks on homo-

geneous distributed MPSoCs assuming continuous frequencies. The periodic tasks are

assumed to be hard deadline while the aperiodic tasks may have hard or soft deadlines.

Firstly, it constructs an initial schedule for tasks and messages along hyper-period us-

ing a slack-based list scheduling under maximum frequencies. This is done to guarantee

the feasibility of the schedule. Then, it applies DVS to distribute available static slack

proportionately among all tasks and scale the supply voltage of each task accordingly.

Results suggest this approach can save up to 68% of total dynamic energy compared to

non-power-aware approaches. Nevertheless, this approach does not necessarily lead to the

best energy savings, as every task contributes differently to the overall energy savings.

Xu et al. [37] study the problem to minimize the total computation energy consumption

composed of dynamic energy and static energy for streaming applications while satisfy-

ing both throughput and response time. They consider a homogeneous distributed Chip

Multiprocessors (CMPs) with discrete frequency model. They present two integrated

task mapping and frequency assignment approaches: Scheduling1D for linear task graphs

and Scheduling2D for general task graphs. The Scheduling2D works on two dimensions:

pipelining and parallel processing. Firstly, it partitions all the tasks into levels. Secondly,

it computes the optimal number of pipeline stages which guarantees the timing constraint

and assigns tasks on each level to a pipeline stage. Thirdly, for each pipeline stage, it

computes the optimal number of processors, assigns each task to a processor and selects a

discrete frequency for each task. Results suggest that Scheduling2D reduces the total en-

39

3. Literature Review

ergy consumption more effectively, compared to non-energy-aware approaches. However,

this study does not explicitly consider the impact of the communication which may affect

the feasibility of the schedule and the utilization of slack for frequency scaling.

Watanabe et al. [38] investigate the problem of minimizing the total energy consumption

comprising computation energy and communication energy for periodic dependent tasks

with latency and throughput constraints on homogeneous Globally Asynchronous Locally

Synchronous (GALS) MPSoCs considering discrete frequencies. They propose a pipelined

scheduling approach using a Mixed Integer Linear Programming (MILP)-based algorithm

to compute an optimal solution. In addition, they propose an approach based on Simulated

Annealing (SA) to find a near-optimal solution. Results indicate that the solution of

their SA-based algorithm is close to the optimal solution computed by the MILP-based

algorithm, with a faster running time.

Liu et al. [39] work on the problem of joint energy and performance optimization. They

focus on periodic dependent tasks on homogeneous distributed multiprocessors considering

discrete frequencies. They present a two-phase approach named RDAG+SpringS, that

combines task-level software pipelining with Dynamic Voltage Scaling (DVS). Firstly, they

use a retiming technique, RDAG, to transform all intra-period dependencies into inter-

period dependencies. It assigns an integer for each task to represent the retiming value

which is based on its height in the task graph. Starting from a sink task, they calculate

the retiming value Ri of each task ti in a breadth-first manner as follows.

Ri =

max(Ri, Rj + 1), if task ti is a parent of task tj

0, if task ti is a sink task

(3.2)

Secondly, they use a heuristic named SpringS which iteratively generates a feasible sched-

ule by adjusting the voltage, assignment and ordering of each task simultaneously. Results

show that this approach can achieve better energy savings and better schedulability, com-

pared to an approach which does not employ task-level software pipelining [40]. However,

transforming all the intra-period dependencies into inter-period dependencies consumes

40

3. Literature Review

large memory overhead. In addition, the proposed retiming function, which only consid-

ers the height factor of tasks, may introduce unnecessary memory capacity overhead.

Wang et al. [5] investigate the energy-aware task scheduling problem for streaming appli-

cation composed of periodic dependent tasks on homogeneous distributed multiprocessors

such that the total energy consumption is minimized. They present a two-step approach,

RDAG+GeneS that combines task-level software pipelining with DVFS. Firstly, they em-

ploy a retiming technique, RDAG from a previous work in [39] to transform all intra-period

dependencies in task graphs into inter-period dependencies. Secondly, they employ Ge-

netic Algorithm (GA) to find the best task mapping and frequency assignment of each

task. The GA runs iteratively until a termination condition is met. At each step, each

schedule s is assessed based on its fitness as below.

fitnesss =

1
Es
, if D ≤ Ls

0, if D > Ls

(3.3)

where Es, Ls and D are the total energy consumption of a schedule s, the makespan

of a schedule s and the common deadline, respectively. Results suggest this approach

can significantly reduce the total energy consumption and increase task schedulability,

but requires more memory capacity overhead, compared to the approaches in [39], which

uses a heuristic for task scheduling and [30], which does not employ task-level software

pipelining.

Qiu et al. [41] study the problem of minimizing the total dynamic energy consumption

for periodic dependent tasks on homogeneous chip multiprocessors (CMPs) with discrete

frequency model. All processors are connected through a shared bus. They assume the

relative deadline of the application is greater than one period. They propose a three-

phase scheme. First, it constructs an initial schedule under maximum frequencies within

one period using the Min-Min algorithm [42]. Second, it iteratively reduces the discrete

frequency of each task by one level, provided that the schedule is feasible. In each step, it

tentatively computes an optimal frequency for each task based on the extendable factor

41

3. Literature Review

of its path and selects a discrete frequency not less than its optimal frequency. Then, it

chooses the task with a potentially higher energy saving to use the next lower discrete

frequency. Third, it extends the schedule task graph to represent its execution in several

periods to accommodate the tasks which have their deadlines larger than one period. Then,

it repeats the second step for this new extended task graph to further reduce the energy

consumption. The approach is compared to another approach which considers one period

and the results indicate improvement in total dynamic energy consumption. However, an

explanation of the need of the third step is not given, and it is not understood why the

third step is required given the requirements of the application are fulfilled by the first

two steps. Also, they employ a naive approach in selecting a discrete frequency which may

degrade the quality of the solution.

Wang et al. [6] explore the problem to totally remove the inter-processor communica-

tion overhead. They focus on periodic dependent tasks on homogeneous multiprocessors

connected via a shared bus. They present a retiming approach named JCCTS by using

Integer Linear Programming (ILP). Firstly, they do schedulability analysis to compute the

minimum and maximum retiming values for each task. Then, the ILP-based algorithm

incorporates the bounds as constraints in order to minimize the maximum retiming value.

The approach can be extended to minimize the total dynamic energy consumption by

applying any DVFS techniques. The slack resulting from the removal of inter-processor

communication overhead can be fully utilized to minimize the total computation energy

consumption.

42

3. Literature Review

3.2 Energy-aware Task Scheduling on Heterogeneous Mul-

tiprocessors

3.2.1 Aperiodic Tasks with Precedence Constraints

Hu and Marculescu [43] investigate the problem of scheduling both tasks and communi-

cation messages such that the total energy consumption (computation energy plus com-

munication energy) is minimized on a heterogeneous NoC-based MPSoC. They assume

dependent tasks with individual deadlines. They propose a heuristic, EAS, composed of

three major steps: budget slack allocation for each task, level-based scheduling and, a

search and repair step. The key idea of this approach is to distribute more slack to tasks

whose mapping onto processors has a potentially larger impact on the total energy con-

sumption and the performance of the application. The first step computes the weight,

which is the priority of each task and is also used for allocating the slack to each task. It

is computed as follows.

ωi = σEi σ
R
i (3.4)

where σEi and σRi are the variance of the energy consumption of task ti on different

processors and the variance of the execution time of ti on different processors, respectively.

The second step simultaneously schedules tasks and communication messages. It computes

the earliest finish time which includes the data ready time of each task among different

processors and assigns each task to a processor with minimum total energy consumption.

The third step is initiated when the first two steps results in deadline violations. It

iteratively swaps the ordering of tasks or migrates tasks to other processors, until all

deadlines are satisfied. Results show that this approach significantly outperforms the

schedule generated by an Earliest-Deadline First (EDF) approach in terms of total energy

consumption. Nevertheless, task priorities based only upon the variance of energy and

execution time only may result in deadline violations, and fixing the schedule may take

significant running time.

43

3. Literature Review

Yan et al. [44] propose a two-phase approach to minimize the total computation energy

consumption. They consider a set of tasks with precedence and deadline constraints on

heterogeneous multiprocessors assuming continuous frequencies. Firstly, they construct an

initial schedule by using list-based scheduling under maximum frequencies. The priority

of each task is the inverse of its as-late-as-possible start time. Then, they employ an

iterative slack allocation algorithm with the combination of Dynamic Voltage Scaling

(DVS) and Adaptive Body Biasing (ABB) to minimize both dynamic power and static

power, simultaneously. In each iteration, it selects a task with the highest energy gradient

for voltage scaling. It stops when there is no slack to be utilized. Results indicate that

this approach can further reduce the total energy consumption, compared to an approach

that only uses DVS.

Kianzad et al. [45] deal with a set of tasks with precedence and deadline constraints on

either homogeneous or heterogeneous multiprocessors with discrete voltage levels. The pro-

cessors are connected through a shared bus. They present an approach named CASPER,

which consolidates task mapping, scheduling and Dynamic Voltage Scaling (DVS) under

Genetic Algorithm (GA) to search for the most energy-efficient solution. The GA runs it-

eratively. In each step, it constructs an initial schedule under maximum frequencies where

the ordering of each task is based on its height in the task graph. Then, it uses a slack

allocation algorithm, depending on the platform to minimize the total dynamic energy

consumption. On homogeneous platform, they use the algorithm in [46] while on hetero-

geneous platform, they use a power variation DVS algorithm in [47]. Next, it evaluates the

schedule based on its fitness. The GA stops when the termination condition is met, i.e.

the maximum number of generations is reached or the total dynamic energy saving in two

consecutive generations is less than 1%. Results indicate that this single loop CASPER

saves more energy, compared to the approach which combines task scheduling and DVS

in the inner loop and leaves task assignment in the outer loop [48].

Gorjiara and Bagherzadeh [49] investigate the problem of minimizing the total dynamic

44

3. Literature Review

energy consumption for tasks with precedence and hard deadline constraints on homoge-

neous distributed multiprocessors considering discrete frequencies. They suggest that a

greedy slack allocation scheme which depends only on the energy gradient does not nec-

essarily produce good results for discrete frequency model. Thus, they present ASG-VTS,

a stochastic-based scheduling heuristic which not only considers energy gradient, but also

execution delay simultaneously. Given a static schedule under maximum frequencies, the

heuristic iteratively allocates slack to tasks. At each step, task that can save the most

energy and with the least execution delay is assigned a higher slowdown probability. The

heuristic stops when there is no more usable slack. Results indicate that this approach

produces a slightly better schedule, in terms of energy savings, with fewer number of dis-

crete voltage transitions, compared to the approach in [48]. In addition, their approach

results in near-optimal solution as compared to the approach in [33] for a real benchmark.

However, the study would have been more convincing if they assess the actual transition

overhead in terms of time and energy instead of evaluating the number of transitions only.

Liu et al. [50] study the problem of minimizing the total dynamic energy consumption for

a set of tasks with precedence and individual deadline constraints. The target system is a

heterogeneous distributed multiprocessors assuming continuous frequencies. They propose

two algorithms: CPSS for offline scheduling and CPDS for online scheduling. The key idea

of the CPSS is to allocate slack evenly among tasks based on their path scaling factor.

The scaling factor of a path is defined as follows.

Sk =
dk − rk − (

∑
ti∈k wi +

∑
Mi,j∈k wi,j)∑

ti∈k wi
(3.5)

where dk, rk are the deadline of a sink task and the arrival time of a source task in path

k, respectively. Terms
∑

ti∈k wi and
∑

Mi,j∈k wi,j are the total worst-case execution time

(wcet) of all tasks and the total worst-case communication time on path k, respectively.

Firstly, they construct an initial schedule under maximum frequencies using a list-based

scheduling, where the priority of each task is the inverse of its slack-time ratio. Secondly,

they employ CPSS which iteratively distribute slack to tasks. At each step, it identifies

45

3. Literature Review

a critical path which is defined as the path with minimum scaling factor, computes its

scaling factor and allocates the slack for each tasks on the path according to the scaling

factor. The path is then removed. The heuristic stops when the frequencies of all the tasks

are determined. Results suggest that CPSS performs slightly better in terms of energy

savings and is significantly better in terms of running time than the approach in [51],

which also perform frequency scaling based on critical-path information.

Chang et al. [52] propose a heuristic named ETAHM to minimize the total dynamic

energy consumption. They consider tasks with precedence and deadline constraints on a

heterogeneous multiprocessors with discrete voltage levels. The processors are connected

through a shared bus. They employ ant-colony optimization (ACO) for simultaneous task

mapping, scheduling and voltage scaling. It runs iteratively until the improvement rate is

too slow or reaches the maximum repetitions. In each iteration, it constructs a schedule

according to the task merit, and then assess its total dynamic energy consumption. Results

suggest that ETAHM performs better than [45] in terms of the total dynamic energy

consumption, but requires greater running time. However, ACO-based approach may not

necessarily find an optimal solution as some parameters are randomly chosen.

Goh et al. [53] develop two heuristics, EGMS and EGMSIV to solve the problem of min-

imizing the total dynamic energy for dependent tasks with a common deadline. They

consider a heterogeneous MPSoC with discrete supply voltage. The processors are con-

nected to a shared bus. Both heuristics integrate task mapping, scheduling and voltage

scaling simultaneously. They construct an initial schedule under maximum frequencies

based on information from the critical-path. Then, they improve the schedule iteratively.

In each step, they select a task to be reassigned to another processor or another voltage

level such that the total energy consumption is reduced without any deadline violations.

For EGMS, it employs inter-task voltage scaling and the reassignment is decided based on

the energy gradient, while the EGMSIV uses intra-task voltage scaling and uses a Linear

Programming (LP)-based algorithm. Both heuristics stop when the improvement rate is

46

3. Literature Review

low. Results indicate that both heuristics improve the total dynamic energy and running

time as compared to the approaches in [48], [49], [54].

Ghosh et al. [55] study the problem of minimizing the total energy consumption of a set of

tasks with precedence and a common deadline on heterogeneous NoC-based MPSoC with

discrete frequencies. They propose two approaches; an MILP-based algorithm to compute

an optimal solution and a unified heuristic employing MILP relaxation and randomized

rounding. They consider solving the following sub-problems in a unified manner instead

of a sequential manner: mapping of tasks to processors, mapping of processors to the

routers, assigning voltages to tasks and routing of communication data. Results suggest

that their unified heuristic is slightly better than an approach using sequential steps in

reducing the total energy consumption. However, this study does not offer an adequate

explanation on the heuristic that uses MILP relaxation and randomized rounding.

Huang et al. [56] investigate the problem of minimizing the total energy consumption

(computation plus communication) for a set of dependent tasks with individual deadlines

on a heterogeneous NoC-based MPSoC. Initially, they extend an Integer Linear Program-

ming (ILP)-based algorithm to take into account computation energy and communication

energy. Then, based on the analyses of the ILP-based algorithm, they propose a Simulated

Annealing with Timing Adjustment (SA-TA) heuristic. The heuristic runs iteratively and

instead of starting the SA optimization from a random mapping, they first compute a

baseline mapping. The baseline mapping is constructed using a list-based scheduling.

The priority of each task is the difference between its minimum execution time and the

second minimum execution time across all processors. In each step, a probability Ps to

determine if a schedule is accepted is used. The probability is computed as follows.

Ps =

1, if Enew < Ecur

10(Ecur−Enew)/T , Otherwise

(3.6)

where Ecur, Enew, T are the total energy consumption of the current schedule, the total

energy consumption of the new schedule and a temperature parameter, respectively. This

47

3. Literature Review

probability ensures that if the new schedule has lower energy, it is always accepted. Oth-

erwise, a worse schedule could be accepted with some probability to prevent it from being

stuck at a local optimum. The heuristic stops when a maximum iteration is achieved.

The temperature parameter T is decreased after each iteration by multiplying itself with

a cooling factor. Experimental results suggest that the SA-TA heuristic performs similarly

to the optimal result computed by the ILP-based algorithm, but with better running time.

He et al. [57] work on the problem to optimize the total energy consumption and schedule

length for dependent tasks with a common deadline on a general NoC-based MPSoCs.

They present a new graph model, Labelled Graph, considers a general network and es-

timates the communication energy and latency. The model is used for a Mixed Integer

Linear Programming (MILP)-based algorithm, a unified approach to assign each task to a

processor and scheduling. In addition, they propose a polynomial-time heuristic to reduce

the running time. Results indicate that their approach can produce higher performance

schedule with comparable energy consumption as compared to approaches in [58] and [59]

for custom, regular mesh and irregular mesh NoC.

Pietri and Sakellariou [60] study similar problem for minimizing the total energy consump-

tion of scientific workflow applications on heterogeneous distributed multiprocessors with

discrete frequencies. They consider scientific workflow applications consisting of dependent

tasks with a common deadline. They propose a two-step approach. Firstly, they construct

an initial schedule under maximum frequencies by using the HEFT [26] algorithm. Sec-

ondly, they present an algorithm named ESFS to scale the frequencies of all the tasks

to reduce the energy consumption. It performs iteratively, starting from the maximum

frequencies downwards. In each iteration, a task can use the next lower discrete frequency

instead of its current frequency, if this results in the highest energy saving compared to

other tasks. It stops when there is no more slack to be utilized. Results suggest that this

approach can further reduce the energy consumption compared to the approach in [61]

which does not account for the difference in energy-profile of heterogeneous systems.

48

3. Literature Review

Lin et al. [62] consider similar problem for mobile cloud computing. They assume applica-

tions with precedence and a common deadline constraints on heterogeneous multiproces-

sors with discrete frequencies. They propose an energy-efficient task scheduling heuristic

consisting of three steps: constructing an initial schedule under maximum frequencies

using HEFT algorithm [26], an iterative procedure for migrating tasks to another proces-

sors under maximum frequencies to reduce the total dynamic energy consumption and,

reclaiming static slack to further reduce the total dynamic energy consumption.

Zheng and Huang [63] consider the same problem as in [60], and propose an efficient

heuristic which takes the system and application characteristics and the overall energy

consumption into account when making a frequency scaling decision. They present a three-

phase heuristic named AGTI. Firstly, they construct an initial schedule under maximum

frequencies by using the HEFT [26] algorithm. Secondly, it scales the frequencies of tasks

by group (processor) if the schedule task graph satisfies a rule based on its structure and

the number of processors. In each step during this phase, it reduces the discrete frequencies

of all the tasks on a processor with the maximum energy saving potential, by one level.

Thirdly, it scales the frequency of each task individually and iteratively finds tasks with

maximum energy savings and rescaling the tasks whilst maintaining the feasibility of the

schedule. Results suggest that this approach performs better than the approaches in [61]

and [60], in terms of conserving the total energy consumption.

Singh et al. [64] work on the problem of minimizing the total energy consumption compos-

ing of computation energy and communication energy for a set of dependent tasks with

individual deadlines on a heterogeneous distributed MPSoC. They propose CEEDMIP,

a duplication-based approach using Mixed Integer Programming (MIP). Besides, they

present a clustering-based heuristic, FastCEED to reduce the time complexity in solving

the problem. The key idea of CEEDMIP is to duplicate the execution of tasks on differ-

ent processors to reduce communication congestion on links as well as the communication

energy consumption. Results indicate that FastCEED can reduce the total energy con-

49

3. Literature Review

sumption of communication intensive applications compared to other duplication-based

approaches in [65] and [66]. However, duplication-based approach may not work for com-

putation intensive applications. Duplicating tasks may increase the computation energy

consumption significantly, particularly on heterogeneous multiprocessors where each pro-

cessor has its own energy profile. Consequently, the total energy could increase.

Zhao et al. [67] propose a clustering approach to minimize inter-processor communications

between tasks. They consider the total computation energy consumption (dynamic plus

static energy). The key idea of this approach is to map each task to a processor with

the most of its required input data. In addition, they propose a metric named Task

Requirement Degree (TRD) to improve the utilization of processors through load balancing

and reduce the energy consumption during scheduling.

Tang et al. [68] present DEWTS consisting of three phases: constructing an initial sched-

ule using the HEFT [26] algorithm, processors merging phase to minimize the number of

processors being used, and task slacking phase to minimize the total dynamic energy con-

sumption. This approach shuts down under-utilized processors by merging the processors

provided that the schedule does not violate the deadline.

Xie et al. [69] work on the problem of minimizing the total dynamic energy consumption

of dependent tasks on heterogeneous distributed multiprocessors with discrete frequencies.

They propose an approach named NDES+GDES. Firstly, it constructs an initial schedule

under maximum frequencies by using HEFT algorithm [26]. Secondly, if there exists

available static slack, it iteratively reassigns tasks to processors to find a schedule with

minimum total dynamic energy. However, they make no attempt to explain on what

basis they reassign task since enumerating all possible schedule require exponential time.

Results suggest that this approach outperforms the approach in [68] in terms of total

dynamic energy consumption.

50

3. Literature Review

3.2.2 Periodic Tasks with Precedence Constraints

Schmitz and Al-Hashimi [70] study the problem of minimizing the total dynamic energy

consumption for periodic dependent tasks with individual deadlines on heterogeneous dis-

tributed multiprocessors with continuous frequencies. They propose PV-DVS algorithm

which considers power variations among tasks. It distributes static slack to tasks based

on their energy gradients.

Schmitz et al. [48] extend their work in [70]. They present an energy-efficient genetic

list scheduling algorithms (EE-GLSA) that constructs and evaluates different schedules

during an iterative optimization. Each schedule is assessed using a fitness function based

on its total dynamic energy consumption and its time penalty. However they consider

continuous frequency model.

Luo et al. [51] investigate the problem of minimizing the total dynamic energy consump-

tion of multi-rate periodic task sets i.e. multiple task graphs with different periods and

aperiodic task sets with individual deadlines on heterogeneous multiprocessors embedded

system with continuous frequencies. They propose a heuristic based on critical path anal-

ysis and task execution order refinement. Firstly, the heuristic identifies the critical path

from an initial schedule and computes its frequency reduction ratio. Then, it refines the

task execution order if further energy reduction is possible.

Luo and Jha [71] address the problem to minimize the total dynamic energy consumption

on heterogeneous multiprocessors with continuous voltage connected via a shared bus.

They assume multi-rate periodic tasks. Firstly, they assume a given task assignment.

Next, they construct a schedule using a list scheduling based on the critical-path. Then,

the algorithm iteratively allocates slack to a task with the highest energy gradient.

Schmitz et al. [47] explore the problem of minimizing the total dynamic energy consump-

tion for multi-rate applications on distributed MPSoCs assuming continuous frequency

51

3. Literature Review

model. They consider all the processors are connected through a single bus. They pro-

pose an integrated approach for task mapping, scheduling and voltage assignments. The

heuristic is built using two nested genetic algorithms (GAs) where the outer GA generates

the task assignments and the inner GA examines various task orderings. In each step

where a schedule is generated, they employ a PV-DVS heuristic [70] which iteratively al-

locates slack to tasks with the highest energy savings. An energy difference metric, 4Ei

for each task ti is defined as follows.

4Ei = Ei(e)− Ei(e+4e) (3.7)

where Ei(e) and Ei(e +4e) are the energy consumption of task ti with execution time

e and when extended to e+4e, respectively. Results show that their approach is better

than an approach that distributes slack evenly among tasks in terms of energy savings.

However, the time complexity of their approach is higher because they attempt to find

various energy-efficient schedules. Moreover, GA is based on natural selections which does

not necessarily find an optimal solution.

Shin and Kim [72] investigate the problem of minimizing the communication energy con-

sumption of heterogeneous NoC-based MPSoCs. They consider periodic dependent real-

time applications with deadline constraints. They propose an approach consisting of four

components as follows.

• Task mapping using a GA-based task assignment algorithm (GA-TA) to assign each

task to a processor.

• Network assignment using a GA-based tile mapping algorithm (GA-TM) to map each

processor to a tile and a GA-based routing path allocation algorithm (GA-RPA).

• List-based task scheduling where the priority of each task is its mobility defined as

the difference between its as-soon-as-possible (ASAP) start time and the as-late-as-

possible (ALAP) finish time.

52

3. Literature Review

• Frequency scaling for communication messages by using the approach in [70].

However, they offer no explanation on the fitness function of each GA in order to evalu-

ate the solution. Results indicate that this approach could significantly reduce the total

communication energy, compared to an extended approach in [73].

Luo and Jha [40] investigate the problem of minimizing the total dynamic energy con-

sumption of multi-rate applications with individual deadlines on heterogeneous MPSoCs

with discrete voltages. All the processors are connected through a shared bus. Firstly,

they employ a critical-path-based list scheduling as in [74] to construct an initial sched-

ule within one hyper-period under maximum frequencies. Then, they employ an iterative

power-profile and timing-constraint driven approach to select a discrete voltage for each

task. In each step, a task with the highest energy gradient is chosen to use the next lower

voltage than its current voltage. The algorithm stops when there is no usable slack in the

schedule. Secondly, they attempt to improve the resultant schedule by using an iterative

Simulated-Annealing (SA)-based approach. In each step, the priority of each task is modi-

fied using a random parameter, reordering of the tasks on their respective processors based

on the new priorities, reassignment of discrete voltages to all the tasks, and reassessment

of the energy consumption of the schedule. The following probability is used as follows.

1/(1 + 10(Enew−Ecur)/T) (3.8)

where Enew, Ecur and T are the energy consumption of the new solution and the current

solution, respectively, while T is a temperature parameter which is initialized and decreases

in every step. This algorithm stops when there is no further significant improvement in the

total dynamic energy consumption or the temperature parameter is equal to zero. Results

indicate that this approach performs better than the approach in [70]. Nevertheless, SA-

based algorithm accepts an inferior solution with some probability, which may affect the

quality of the solution.

Kumar et al. [75] explore the problem of assigning frequency and modulation levels to tasks

53

3. Literature Review

in order to minimize the total energy consumption (computation and communication) of

periodic dependent tasks on heterogeneous multiprocessors connected via wireless network.

They propose a slack allocation scheme for tasks and messages based on their normalized

energy gain. The heuristic allocates slack in an incrementally fashion. In each iteration,

slack is given to the task or message with the highest normalized energy gain.

Huang et al. [76] address the problem of minimizing the total dynamic energy consump-

tion for streaming applications composed of periodic dependent tasks under throughput

constraint on heterogeneous distributed multiprocessors. They consider a given initial

schedule with maximum frequencies. Then, they formulate the slack allocation problem

for multiprocessors with local DVFS switches using a Mixed Integer Linear Programming

(MILP)-based algorithm. For multiprocessors with a global DVFS switch, they propose

a three-phase heuristic combining the MILP. Results suggest that this approach perform

better in reducing the total dynamic energy consumption for streaming applications with

cross-period precedence constraints as compared to an approach that adapting a deadline-

constrained within one period. This is due to the manipulation of available static slack

that exists across different periods. However, the impact of significant inter-processor com-

munication towards the resultant schedule in terms of total energy consumption has not

been addressed in this study, since the applications considered not only have intra-period

dependencies but also cross-period dependencies.

Singh et al. [77] consider concurrent multimedia applications composed of periodic, cyclic

and multi-rate dependencies between tasks modelled as Synchronous Dataflow Graph

(SDFG). The target platform is heterogeneous NoC-based multiprocessors. They pro-

pose a design-time strategy that generates a set of task mappings with different resource

requirements, throughput and energy consumption (dynamic energy plus communication

energy) to handle dynamism during runtime. A runtime algorithm then selects a map

according to its requirements with minimum energy consumption.

Liu et al. [78] investigate the problem to minimize the total energy consumption while

54

3. Literature Review

guaranteeing latency and throughput constraints. They consider streaming applications

composed of periodic dependent tasks with deadline constraints on a cluster heteroge-

neous MPSoC. Each cluster consists of either identical performance-efficient processors or

identical energy-efficient processors. They propose a combined partitioned scheduling and

global scheduling in which tasks are statically assigned to a cluster and globally scheduled

within a cluster. Tasks are assigned to clusters based on the First-Fit-Decreasing (FFD)

algorithm to form an initial schedule. Then, they remap tasks to the unused clusters to

balance the workload in order to further scale down the clusters operating frequencies and

thus reducing the total energy consumption.

55

Chapter 4

Energy-aware Task Scheduling on

Homogeneous MPSoCs

This chapter elaborates our energy-aware task scheduling approach for applications con-

sisting tasks with precedence and individual deadline constraints on homogeneous DVFS-

enabled MPSoCs. We propose a list-based scheduling algorithm to construct an initial

schedule under maximum frequencies and a Non-Linear Programming (NLP)-based al-

gorithm for minimizing the energy of the initial schedule. This chapter is organized as

follows. Section 4.1 introduces the objectives of our tasks scheduling and describes our ma-

jor contributions. Section 4.2 specifies the system models and introduces some definitions.

Section 4.3 provides a motivational example of our novel priority scheme. Section 4.4

proposes our algorithm for constructing the offline schedule. Section 4.5 presents the

experimental results and analyses. Section 4.6 summarizes this chapter.

56

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

4.1 Introduction

There are three major components to the problem of constructing an offline task schedule

such that its energy is minimized. Those components are mapping each task to a pro-

cessor, ordering each task on its assigned processor and selecting an operating frequency

and its corresponding supply voltage of each task. The task mapping and ordering aim to

construct a feasible schedule. Next, operating frequencies of all tasks can be assigned con-

sidering the available slack and thus the energy can be minimized. Hence, it is important

to compute a good initial schedule during task mapping and ordering that can provide

enough slack for frequency scaling. This translates into the problem of constructing a

schedule with the minimum completion time which is NP-complete [17].

For a list-based scheduling, the priority of each task plays an important role for task

mapping and task ordering. Most of the previous approaches employ a priority for each

task according to its critical-path length. The length is computed either from an entrance

task to the task, known as downward rank of the task, or from the task to an exit task,

known as upward rank of the task. Nonetheless, the priority based on the critical-path

does not necessarily represent the importance of each task.

In this chapter, we investigate the problem of constructing an offline schedule for a set of

non-preemptible tasks with precedence and individual deadline constraints to be executed

on a distributed MPSoC with continuous frequencies such that the total processor energy

consumption of all the tasks is minimized under two power models, namely the dynamic

power model and the total power model. We make the following major contributions.

1. We present a novel priority scheme for task assignment. The priority of each task is

its approximate successor-tree-consistent deadline which is the approximate upper

bound on its latest completion time in any feasible schedule for a relaxed problem,

where only the precedence constraints between the task and all its successors are

57

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

considered.

2. We propose a unified approach by using a convex Non-Linear Programming (NLP)

formulation to assign an optimal execution frequency and its corresponding supply

voltage to each task.

3. We have evaluated our approach and compared it with two state-of-the-art ap-

proaches, the LL-ES-GREEDY approach, shorten as LESG [1] which considers the

dynamic energy dissipation, and the EES approach [2] which considers the total

energy consumption, by using a set of synthetic and real-world benchmarks. The

experimental results show that the maximum improvement, the average improve-

ment and the minimum improvement of our approach over the LL-ES-GREEDY

approach are 42.44%, 30.46% and 9.46%, respectively, and the maximum improve-

ment, the average improvement and the minimum improvement of our approach over

the EES approach are 75.98%, 39.74% and 7.08%, respectively.

4.2 Problem, Definitions and Models

The problem we investigate is described as follows. Given a set T = {t1, · · · , tn} of n non-

preemptible tasks with precedence constraints and individual deadlines, find a feasible

schedule on a target MPSoC such that the total dynamic processor energy or the total

processor energy of all the tasks is minimized. A feasible schedule is a schedule that

satisfies all the constraints.

Table 4.1 shows a list of notations used throughout this chapter.

4.2.1 System Model

The target MPSoC is composed of a set P = { p1, p2, · · · , pm} of m identical processors

interconnected via a network. There is no shared memory among the processors. We

58

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

Table 4.1: Notations used.

Notation Description Notation Description

T A set of application tasks P A set of processors

ti The ith application task pk The kth processor

di Predefined deadline of ti d′i The successor-tree-consistent

deadline of ti

λi,j Communication time of trans-

ferring one unit of data from

pi to pj

cij Data size between ti and tj

WCET (ti) Worst-case execution time of

ti

si Start time of ti

ei Execution time of ti cci Number of clock cycles of ti

pred(ti) All predecessors of ti succ(ti) All successors of ti

Vddmin
The minimum supply voltage

of a processor

Vddmax The maximum supply voltage

of a processor

Vddi The supply voltage of ti fi The operating frequency of ti

Edyn The total dynamic energy

consumption

Etot The total energy consumption

Ceff The average switched capaci-

tance of a processor

Lg Number of logic gates in a cir-

cuit

Vth1 The threshold voltage Vbs The body-bias voltage

Ld The logic depth Ij The body junction leakage

current

Kl(l = 1, · · · , 6),α Processor technology constants

ignore the transition overhead between two different frequencies as it takes only 30 - 150

µs [79]. The operating frequency of each processor can be continuously adjusted. We

employ a communication cost matrix λ, where λi,j denotes the communication time of

transferring one unit of data from processor pi to processor pj . We assume that λi,j does

59

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

not depend on the operating frequencies of pi and pj . If a task ti on processor ps sends

cij units of data to another task tj on processor pt, (ps 6= pt), the communication time is

cijλs,t. If ti and tj are scheduled on the same processor, the communication time between

ti and tj is 0.

4.2.2 Task Model

The embedded software of the target embedded system consists of a set of tasks with

precedence constraints and individual deadlines. The task set is represented by a weighted

DAG G = (T , E, W , C), where each node in T denotes a task, each edge in E denotes

precedence between two tasks, each node weight in W represents the worst-case execution

time (WCET) of the corresponding task, and each edge weight in C denotes the size of

the data transferred between the two tasks via the network. We assume that all the tasks

are non-preemptible.

4.2.3 Power Model

The total power of a processor is the sum of the dynamic power due to switching activity,

and the static power as a result of leakage. The dynamic power, denoted by Pdyn, is

specified as follows [25].

Pdyn = CeffV
2
ddf (4.1)

where Ceff is the average switched capacitance, Vdd is the supply voltage and f is the

operating frequency. The total power, denoted by Ptot, can be calculated by the following

equation [25].

Ptot = CeffV
2
ddf + Lg(VddK3e

K4VddeK5Vbs + |Vbs|Ij) (4.2)

60

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

where Lg is the number of logic gates in the circuit, K3, K4 and K5 are parameters for

a specific processor technology, Vbs and Ij are the body-bias voltage and body junction

leakage current, respectively. The relation between the operating frequency and the supply

voltage is given by the following equation [25].

f = ((1 +K1)Vdd +K2Vbs − Vth1)α/(LdK6) (4.3)

where K1, K2, K6 and α are the processor constants, Vth1 is the threshold voltage, and

Ld is the logic depth.

Notice that both the dynamic power function and the total power function are convex.

Under the dynamic power model, the processor dynamic energy decreases as the processor

frequency decreases. Under the total power model, there is an optimal minimum processor

frequency fmin such that the processor total energy increases as the processor frequency

lower than fmin further decreases [25].

4.2.4 Successor-Tree-Consistent Deadline

Let pred(ti) be the set of all the predecessors of a task ti, succ(ti) the set of all the

successors of a task ti, and WCET (ti) the worst-case execution time of a task ti at the

maximum operating frequency.

Definition 4.2.1 Given a weighted task graph G = (T , E, W , C) and a task ti ∈ T , the

successor-tree of ti is a weighted tree ST(G, ti)= (T ′, E′, W ′, C ′), where T ′ = {ti}
⋃

succ(ti), E′ = {(ti,tj) : tj ∈ succ(ti)}, W ′ = {WCET (tj) : WCET (tj) ∈W and tj ∈ T ′}

and C ′ = {c′ij : if tj is an immediate successor of ti, c
′
ij = cij; otherwise, c′ij = 0}.

Definition 4.2.2 Given a problem instance P , the successor-tree-consistent deadline of

a task ti, denoted by d′i, is recursively defined as follows. If ti is a sink task without any

successor, d′i is equal to its pre-assigned deadline di; otherwise, d′i is the upper bound on

61

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

the latest completion time of ti in any feasible schedule for the relaxed problem instance

P (ti): a set T ′ = {ti}
⋃

succ(ti) of tasks with precedence constraints in the form of the

successor-tree of ti and individual deadlines where the deadline of each successor of ti

is equal to its successor-tree-consistent deadline, and the same MPSoC. Formally, d′i =

min{di,max{σj(ti) +WCET (ti) : σj is a feasible schedule for P (ti)}}.

Notice that it is NP-complete to compute the successor-tree-consistent deadline of a task

as the problem of constructing a schedule with the minimum makespan on multiple proces-

sors is NP-complete [17]. Therefore, we compute the approximate successor-tree-consistent

deadline of each task and use it as the priority of the task. Compared to the priority

schemes used in the previous task scheduling approaches, the approximate successor-tree-

consistent deadlines not only consider the precedence constraints, but also take the re-

source constraints into account. As a result, they capture the importance of each task

better than the previous priority schemes.

4.3 A Motivational Example

In this section, we illustrate that it is essential to take into account the resource constraints

when computing the priority of each task for list-based scheduling.

t1 t2 t3

t6

t4 t5

t7 t8 t9 t10 t11

(a)

t2

t6t4 t5 t7 t8 t9 t10 t11

(b)

Figure 4.1: Examples of (a) a Directed Acyclic Graph (DAG), (b) the successor-tree of t2

of the DAG.

Consider a task graph as in Figure 4.1a with each task ti has its worst-case execution time

62

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

(wcet) of three time units WCET (ti) = 3(i = 1, . . . , 11) and a common deadline of 30

time units to be scheduled on a 3-processor platform. Intuitively, task t5 should be given

higher priority than task t4 due to the fact that it has more successors and offers higher

degree of parallelism.

One approach which does not consider resource constraints is to use the longest path as a

guide to prioritize each task. For example, the bottom-level priority bli of each task ti is

the length of the longest path between itself to a sink task. Higher value implies higher

priority. Based on this concept, the priority of each task ti(i = 1, . . . , 11) in Figure 4.1a is

bl1 = bl2 = bl3 = 9, bl4 = bl5 = 6, bl7 = bl8 = bl9 = bl10 = bl11 = 3.

Next, consider when the priority scheme takes into account not only the precedence con-

straints and deadline constraints, but also the resource constraints such as our approach

using approximate successor-tree-consistent deadline. Our approach defines a concept of

successor-tree as in Figure 4.1b and considers the availability of the three processors.

Smaller value implies higher priority. Based on this aspect, the priority of each task

ti(i = 1, . . . , 11) in Figure 4.1a is d′1 = 23, d′2 = 20, d′3 = 21, d′4 = 26, d′5 = 24, d′6 = d′7 =

d′8 = d′9 = d′10 = d′11 = 30.

According to these two priorities, the one that considers the resource constraints perform

better as it assigns a higher priority to task t5 than t4 as task t5 has more influence than

task t4 in terms of its parallelism degree. On the other hand, bottom-level approach needs

to find another metric to break the tie between task t4 and task t5. Thus, it is important to

consider not only the precedence and deadline constraints, but also the resource constraints

when computing the priority of each task.

63

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

4.4 Scheduling Approach

Our scheduling algorithm takes into consideration task mapping, task ordering and fre-

quency scaling in an integrated manner. It consists of two major phases: task scheduling

phase and voltage and frequency selection phase. Next, we describe each phase in detail.

4.4.1 Task Scheduling Phase

In the task scheduling phase, our approach computes a priority for each task. The priority

of each task is its approximate successor-tree-consistent deadline, where a smaller deadline

implies a higher priority. After computing the priority of each task, our approach assigns

each task to a processor based on its priority, and constructs a schedule based on the

priorities and precedence constraints. Next, we show how to compute the approximate

successor-tree consistent deadline of each task.

When computing the approximate successor-tree-consistent deadlines of all the tasks, we

assume that the target MPSoC uses the maximum processor operating frequency. The ap-

proximate successor-tree-consistent deadlines of all the tasks are computed in reverse topo-

logical order. For each task ti, if it is a sink task, its successor-tree-consistent deadline is

equal to its pre-assigned deadline di. Otherwise, the approximate successor-tree-consistent

deadline of ti is computed as follows.

1. Construct the successor-tree of ti.

2. If ti has only one immediate successor, its approximate successor-tree-consistent

deadline is equal to d′j −WCET (tj), where d′j and WCET (tj) are the approximate

successor-tree-consistent deadline and the worst-case execution time of its immediate

successor tj , respectively. Otherwise, do the following.

(a) Partition all the successors of ti into two disjoint sets U and V . Set U consists

64

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

of all the tasks each of which does not receive any data from ti, and the set V

contains all the successors of ti that are not in U .

(b) Sort all the tasks in U in non-increasing order of their approximate successor-

tree-consistent deadlines. For the tasks with the same approximate successor-

tree-consistent deadlines, further sort them in non-decreasing order of their

worst-case execution times.

(c) Schedule each task in U on a processor as late as possible.

(d) Sort all the tasks in V in non-increasing order of their approximate successor-

tree-consistent deadlines. For the tasks with the same approximate successor-

tree-consistent deadlines, further sort them in non-increasing order of their

edge weights. For the tasks with the same edge weight, further sort them in

non-decreasing order of their worst-case execution times.

(e) Schedule each task in V on a processor as late as possible.

(f) Find the latest completion time of ti in the schedule for the tasks in U ∪ V

respecting the precedence constraints specified by the successor-tree of ti.

(g) Set the approximate successor-tree-consistent deadline of ti to the smaller one

of its preassigned deadline and its latest completion time.

After computing the approximate successor-tree-consistent deadlines, our approach repeat-

edly selects a ready task with the smallest approximate successor-tree-consistent deadline

among all the ready tasks, and assigns it to a processor such that its start time is mini-

mized.

After assigning each task to a processor, our approach constructs a local schedule for

each processor by using the earliest approximate successor-tree-consistent deadline first

strategy. Next, our approach constructs an extended task graph by adding additional

edges to the task graph G as follows.

• For each processor pi do the following.

65

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

1. Let Si be the set of tasks assigned to processor pi and σi be the local schedule

for all the tasks on pi.

2. Construct a list L of all the tasks in Si in non-decreasing order of their start

times in σi.

3. For each pair of tasks Lj and Lj+1(j = 0, 1, · · · , |L| − 2), if there is no path

from Lj to Lj+1 in G, add a directed edge from Lj to Lj+1 to G.

The new DAG G is used to formulate the optimal frequency assignment problem into an

NLP problem. The time complexity of our task assignment algorithm is dominated by

computing the approximate successor-tree-consistent deadlines. It takes O(ne) time to

compute the approximate successor-tree-consistent deadlines, where n is the number of

tasks and e is the number of edges in the task graph. As a result, the time complexity of

the task scheduling phase is O(ne).

4.4.2 Voltage and Frequency Selection Phase

In this phase, we formulate the voltage and frequency selection problem into an NLP

problem to find an optimal frequency for each task based on the extended task graph

constructed before.

Let Vddi , fi, cci, si and ei be the supply voltage, operating frequency, number of clock

cycles, start time and execution time of ti, respectively. The total energy Etot and the

total dynamic energy Edyn for the whole schedule are computed as follows.

Etot = {
|T |∑
i=1

(cciCeffV
2
ddi

+ Lg(VddiK3e
K4VddieK5Vbs + |Vbs|Ij)ei)} (4.4)

Edyn =

|T |∑
i=1

cciCeffV
2
ddi

(4.5)

Therefore, we have the following two objective functions for the total power model and

the dynamic power model.

66

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

min Etot (4.6)

min Edyn (4.7)

The execution time ei of task ti is equal to cci/fi. By using (4.3), we have the following

constraint.

ei = cciK6Ld/((1 +K1)Vddi +K2Vbs − Vth1)α (4.8)

For each edge (ti, tj) in the new DAG G, assume that ti and tj are assigned to processor pu

and processor pv in the previous phase, respectively. The precedence constraint between

ti and tj is modelled as follows.

si + ei + λu,vcij ≤ sj , ∀(ti, tj) ∈ E (4.9)

where λu,vcij is the communication time between ti and tj as discussed in Section 4.2.1.

For each task ti, the deadline constraint is specified as follows.

si + ei ≤ di (4.10)

For each power model, there is a minimum supply voltage and a maximum supply voltage.

However, the minimum supply voltage for the dynamic power model may be different from

that for total power model. Let Vddmin
and Vddmax denote the minimum supply voltage and

the maximum supply voltage, respectively for each power model. We have the following

constraint.

Vddmin
≤ Vddi ≤ Vddmax (4.11)

The decision variables that need to be determined from the NLP are the start time si, the

execution time ei and the supply voltage Vddi. After the supply voltage Vddi for each task

ti is known, the processor operating frequency for task ti can be computed by using (4.3).

67

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

The objective function for the total processor energy as well as the execution time con-

straint in (4.8) are convex non-linear functions. Therefore, the problem can be solved in

polynomial time [33].

4.4.3 An Illustrative Example

Figure 4.2 shows a sample task graph where the number on each edge is the communication

data size. The WCET at the maximum processor operating frequency of each task ti in

the sample task graph is shown in Table 4.2.

2 1
1

3
214

2 4

t1

t2 t3 t4

t5 t6

t7

Figure 4.2: Example of a task graph.

Table 4.2: WCETs of the tasks for the task graph in Figure 4.2.

Tasks t1 t2 t3 t4 t5 t6 t7

WCET 5 4 3 7 2 6 3

We use the sample task graph shown in Figure 4.2 to illustrate how our approach works.

Assume that the target MPSoC has two identical processors with continuous frequencies.

Also assume that all the tasks has a common deadline of 30 and our algorithm has com-

puted d′i for each task ti (i = 7, 6, 5, 4, 3, 2), where d′7 = 30, d′6 = d′5 = 27, d′4 = d′3 = 21,

and d′2 = 25. Next, we show how our heuristic computes the approximate successor-tree-

consistent deadline of t1.

The approximate successor-tree-consistent deadline d′1 is the approximate upper bound on

the latest completion time of t1 in any feasible schedule for the relaxed problem instance

68

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

2
1 0

0
1 0

t1

t2 t3 t4 t5 t6 t7

Figure 4.3: The successor-tree of t1 of the DAG.

P (t1). The successor-tree of t1 is shown in Figure 4.3. Based on the successor-tree,

our heuristic constructs a backward schedule for all its successors where each successor is

scheduled as late as possible. The backward schedule is shown in Figure 4.4. The heuristic

finds the latest completion time of t1 in the backward schedule respecting the successor-

tree of t1, which is 14. Therefore, the approximate successor-tree-consistent deadline of t1

is 14.

Figure 4.5 shows the resulting initial schedule. After constructing the initial schedule,

our approach expands the task graph by adding additional edges. Each additional edge

denotes a new ordering between the two tasks enforced by the initial schedule. From

Figure 4.5, our approach adds an edge from t3 to t2 in G.

Lastly, our approach constructs an NLP formulation to compute the optimal voltage and

frequency of each task. The initial schedule is stretched according to the objective func-

tions and constraints defined in 4.4.2. Figure 4.6 shows the final schedule after assigning

an optimal voltage and frequency to each task.

0 15 20 30255 10

P1

P2 t1 t2

t3

t4 t5

t6 t7

Frequency

Time

Figure 4.4: The backward schedule of the successor-tree of t1 in Figure 4.3.

69

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

0 15 20 30255 10

P1

P2

t1 t2t3

t4

t5

t6 t7

Frequency deadline

Time

Figure 4.5: The initial schedule based on the successor-tree-consistent deadlines.

0 15 20 30255 10

P1

P2

t1 t2t3

t4

t5

t6 t7

Frequency deadline

Time

Figure 4.6: The schedule after the voltage and frequency selection.

4.5 Experimental Results

In order to evaluate our approach, we choose two state-of-the-art approaches, namely the

LESG approach proposed in [1] and the EES proposed in [2], to make comparisons. We

have implemented our approach, the LESG approach and the EES approach in Matlab

version R2015a. We use Matlab fmincon to solve the NLP problem. The hardware plat-

form for the simulation is an Intel(R) Core(TM) i5-4570 CPU with a clock frequency of

3.20 GHz, 8.00 GB memory and 3 MB caches.

Table 4.3: Constants of 0.07 µm processor technology.

Variable Value Variable Value Variable Value

K1 0.063 K6 5.26x10−12 vbs −0.70

K2 0.153 Ceff 4.30x10−10 vth1 0.244

K3 5.38x10−7 Ij 4.80x10−10 α 2.00

K4 1.83 Ld 37.00

K5 4.19 Lg 4.00x106

Each processor in our experiments is the 0.07µm Transmeta Crusoe processor equipped

70

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

with DVFS. The parameters used to compute the dynamic power and the total power

are listed in Table 4.3, as given in [25, 80]. The accuracy of these technology parameters

has been verified through SPICE simulations [25]. Also, they were widely used in the

previous energy-aware task scheduling research [33,80–83]. The continuous voltage range

is set to 0.65V ≤ Vddi ≤ 0.85V . We choose three sets of processors (three processors, five

processors and ten processors) for the target MPSoC.

Table 4.4: The characteristics of benchmarks.

Benchmarks |T |/|E| WCET cij D

TG1 50/82 10.02 1.80 218

TG2 50/206 10.83 1.70 370

TG3 50/143 10.13 1.69 256

TG4 50/249 4.78 0.62 210

TG5 50/211 10.48 1.85 376

TG6 50/232 11.06 1.60 308

TG7 50/255 11.10 1.69 320

TG8 50/321 10.92 1.61 370

TG9 50/309 10.5 2.37 304

TG10 50/174 8.34 1.36 306

robot 88/131 27.61 3.99 1214

sparse matrix 96/67 20.17 3.48 800

ATR 17/16 657.59 133.77 8000

4.5.1 Experimental Setup

We use a set of ten synthetic benchmarks, two real benchmarks taken from [84], and

one real benchmark which is Automated Target Recognition (ATR) application extracted

from [85]. The two real applications taken from [84] are robot control and sparse matrix

solver. The robot control application consists of 88 tasks while the sparse matrix solver

71

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

has 96 tasks. The real benchmark ATR contains 17 tasks. These real benchmarks are

modelled from actual application programs. ATR is widely used for mobile military sys-

tems and usually requires real time processing [86]. It is used to recognize objects based

on data obtained from sensors. Each synthetic task graph has 50 tasks with different

task dependencies and distributions. These sets of benchmarks are widely used by the

embedded systems community for task scheduling research.

Each synthetic task graph has 50 tasks with different task dependencies and distributions.

For TG1, TG2, TG3, TG5, TG6, TG7, TG8, and TG9, each WCET is set to a random

number from 1 to 20. For TG4 and TG10, each WCET is set to a random number from 1

to 10. This benchmark set does not provide the communication data sizes and deadlines.

Table 4.5: Average running times of our approach and LESG for dynamic energy simula-

tions

No of processors Ours (s) LESG (s)

5 7.61 3.69

8 10.30 3.57

10 11.13 3.58

Table 4.6: Average running times of our approach and EES for total energy simulations

No of processors Ours (s) EES (s)

5 8.37 0.08

8 10.93 0.09

10 12.05 0.09

We assign a communication data size cij to each edge (ti, tj) as follows.

cij = β ∗WCET (ti) ∀(ti, tj) ∈ E (4.12)

where β is a constant between 0.01 to 0.30, and WCET (ti) is the worst-case execution

time of task ti.

72

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

This benchmark set also does not provide deadlines for tasks. For each benchmark, we

assign a common deadline as follows.

1. Compute the total worst-case execution time γ of all the tasks at the maximum

operating frequency.

2. Set the deadlines of all the tasks of the benchmark to γ.

3. Construct an initial schedule on five processors using our approach.

4. Set the common deadline for the benchmark to twice the makespan of the initial

schedule.

The characteristics of each benchmark in terms of the number of tasks |T |, the number

of edges |E|, the mean WCET WCET , the mean communication data size cij and the

deadline D are shown in Table 4.4.

4.5.2 Results and Discussions

In this section, we show the running times and the energy consumption (the total dynamic

energy consumption and the total energy consumption) of the schedules produced by our

approach, the LESG approach and the EES approach. Table 4.5 shows the average running

times of our approach and the LESG approach.

Table 4.6 shows the average running times of our approach and the EES approach. For all

the benchmarks, the average running time ratio of the EES approach over our approach

is 0.8% while the average running time ratio of the LESG approach over our approach is

37.9%. As we can see, our approach is much slower than the EES approach. However,

our approach computes much better energy-efficient schedules than the EES approach

does. Notice that our approach targets embedded systems. Therefore, the running time

for constructing an offline schedule at the design stage should not be an issue.

73

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

Figures 4.7, 4.8, 4.9 and 4.10 show the comparison between our approach and the LESG

approach in terms of the total dynamic energy consumption. Each vertical axis denotes the

total dynamic energy consumption and each horizontal axis represents benchmarks. The

experimental results indicate that the maximum improvement, the average improvement

and the minimum improvement of our approach compared to the LESG approach are

42.44%, 30.46% and 9.46%, respectively. The maximum improvement occurs at TG5 on

5-processors platform. The least improvement is observed at the real benchmark, sparse

matrix on a 5-processors platform.

0

50

100

150

200

250

300

350

400

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

LESG

Figure 4.7: Total dynamic energy consumption of our approach and LESG [1] for synthetic

benchmarks on 5-processors platform.

0

50

100

150

200

250

300

350

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

LESG

Figure 4.8: Total dynamic energy consumption of our approach and LESG [1] for synthetic

benchmarks on 8-processors platform.

There are two key reasons that our approach significantly outperforms the LESG approach.

Firstly, our approach uses approximate successor-tree-consistent deadlines to assign tasks

to individual processors such that the workloads of all the processors are balanced. Sec-

ondly, our approach assigns an optimal frequency to each task. Whereas, the LESG

approach assigns the same frequency to all the tasks at the same level.

74

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

0

50

100

150

200

250

300

350

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

LESG

Figure 4.9: Total dynamic energy consumption of our approach and LESG [1] for synthetic

benchmarks on 10-processors platform.

Figures 4.11, 4.12, 4.13 and 4.14 show the comparison between our approach and the EES

approach in terms of the total energy consumption, where each vertical axis represents the

total energy consumption and each horizontal axis represents benchmarks. The experi-

mental results indicate that the maximum improvement, the average improvement and the

minimum improvement of our approach over the EES approach are 75.98%, 39.74% and

7.08%, respectively. The greatest improvement of 75.98% occurs at synthetic benchmark

TG4 on 8-processors platform and 10-processors platform, and the least improvement

occurs at the real benchmark, sparse matrix on 5-processors platform.

Overall, the previous two reasons for the good performance of our approach still hold. It

is observed that in some scenarios the schedules produced by the EES approach have some

idle slots unused after frequency scaling. This is primarily caused by the task dependencies

between different processors. Due to task dependencies, a newly scaled task may push a

successor of a previously scaled task scheduled on the same processor to start at a later

time, creating a local slack between the previously scaled task and the successor. This

is in contrast to our approach where the convex NLP performs a global optimization to

determine an optimal frequency for each task.

We have compared the benchmark structures of TG4 and sparse matrix for which our ap-

proach achieves the maximum improvement and the minimum improvement, respectively,

over EES. It is observed that TG4 has a higher degree of parallelism than sparse matrix.

When the degree of parallelism is high, more local slack may be available. As a result, the

75

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

0

1000

2000

3000

4000

5000

6000

robot sparse ATR

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Real benchmarks

Ours

LESG

(a)

0

1000

2000

3000

4000

5000

6000

robot sparse ATR

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Real benchmarks

Ours

LESG

(b)

0

1000

2000

3000

4000

5000

6000

robot sparse ATR

To
ta

l d
yn

am
ic

 e
n

e
rg

y
(m

J)

Real benchmarks

Ours

LESG

(c)

Figure 4.10: Total dynamic energy consumption of our approach and LESG [1] for real

benchmarks on (a) 5-processors platform, (b) 8-processors platform and (c) 10-processors

platform.

global optimization of our NLP approach constructs a better schedule.

Both the total dynamic energy consumption and the total energy consumption decrease as

the number of processors increases. This can be explained as more processors may reduce

the makespan and create more static slack given a common deadline, resulting in lower

frequencies for the tasks. Therefore, both the total dynamic energy consumption and the

total energy consumption reduce.

Furthermore, we have calculated the static processor energy consumption of each schedule

under the total power model. The experimental results suggest that on average the static

processor energy consumption accounts for 18.72% of the total energy consumption for all

the thirty nine scenarios.

76

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

0

50

100

150

200

250

300

350

400

450

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

EES

Figure 4.11: Total energy consumption of our approach and EES [2] for synthetic bench-

marks on 5-processors platform.

0

50

100

150

200

250

300

350

400

450

500

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

EES

Figure 4.12: Total energy consumption of our approach and EES [2] for synthetic bench-

marks on 8-processors platform.

0

50

100

150

200

250

300

350

400

450

500

TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l e
n

e
rg

y
(m

J)

Synthetic Benchmarks

Ours

EES

Figure 4.13: Total energy consumption of our approach and EES [2] for synthetic bench-

marks on 10-processors platform.

4.6 Summary

In this chapter, we present a unified approach to the problem of scheduling a set of non-

preemptible tasks with precedence constraints and individual deadlines on an MPSoC with

continuous frequencies such that the total dynamic processor energy consumption or the

77

4. Energy-aware Task Scheduling on Homogeneous MPSoCs

0

1000

2000

3000

4000

5000

6000

7000

robot sparse ATR

To
ta

l e
n

e
rg

y
(m

J)

Real benchmarks

Ours

EES

(a)

0

1000

2000

3000

4000

5000

6000

7000

robot sparse ATR

To
ta

l e
n

e
rg

y
(m

J)

Real benchmarks

Ours

EES

(b)

0

1000

2000

3000

4000

5000

6000

7000

robot sparse ATR

To
ta

l e
n

e
rg

y
(m

J)

Real benchmarks

Ours

EES

(c)

Figure 4.14: Total energy consumption of our approach and EES [2] for real benchmarks

on (a) 5-processors platform, (b) 8-processors platform and (c) 10-processors platform.

total processor energy consumption of all the tasks is minimized. Our scheduling approach

has two major features. Firstly, it uses the approximate successor-tree-consistent deadline

of each task for task assignment and scheduling. Secondly, it formulates the problem of

selecting an optimal frequency and its corresponding supply voltage for each task into an

NLP problem. Experimental results show that our approach significantly outperforms the

two state-of-the-art approaches, the EES approach [2] and the LESG approach [1].

78

Chapter 5

Energy-aware Task Scheduling on

Heterogeneous MPSoCs

In this chapter, we investigate the energy-aware task scheduling problem for heteroge-

neous DVFS-enabled MPSoCs considering discrete frequency model, with communication

contention consciousness. This chapter is structured as follows. Section 5.1 describes

our major contributions. Section 5.2 defines the system models and some definitions.

Section 5.3 provides some motivational examples. Section 5.4 presents our iterative NLP-

based algorithm for scheduling tasks as well as computing the optimal frequencies for all

tasks and messages. Section 5.5 explains our two approaches to compute discrete frequen-

cies of all the tasks and communication messages: an ILP-based algorithm to select an

optimal discrete frequency for each task and each message and a polynomial-time heuris-

tic to assign a discrete frequency to each task and each message. Section 5.6 shows the

experimental results and analyses. Section 5.7 summarizes this chapter.

79

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

5.1 Introduction

In this chapter, we investigate the following energy-aware task scheduling problem. Given

a set of tasks with precedence and individual deadlines constraints, construct a feasi-

ble schedule on a heterogeneous, NoC-based, Dynamic Voltage and Frequency Scaling

(DVFS)-enabled MPSoC with discrete frequencies such that the total computation and

communication energy consumption of all the tasks is minimized. We make the following

major contributions:

• We propose a novel offline energy-aware scheduling heuristic that assigns each task

to a processor, constructs a feasible schedule for all the tasks and messages, and

assigns an optimal frequency to each task and each message using convex NLP

under continuous frequency model.

• We present an ILP-based algorithm to assign an optimal discrete frequency to each

task and each communication link, and a novel polynomial-time heuristic to assign

a discrete frequency to each task and each message.

• We have implemented our approaches and compared them with two state-of-the-art

approaches, ETFGBF proposed by Li and Wu [3] and CA-TMES-Search proposed

by Han et al. [4] by using a set of synthetic benchmarks. Experimental results

show that the maximum improvement, the average improvement and the minimum

improvement of our approach using ILP over the ETFGBF are 69.40%, 46.30% and

18.45%, respectively. The maximum improvement, the average improvement and

the minimum improvement of our approach using ILP over the CA-TMES-Search

are 48.35%, 34.98% and 13.52%, respectively. Moreover, the performance of our

approach using the heuristic is very close to that of our approach using ILP.

80

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

5.2 Problem, Definitions and Models

Table 5.1 shows a list of notations used throughout this chapter.

The target MPSoC consists of m heterogeneous processors P = {p1, p2, · · · , pm} inter-

connected via a 2D mesh homogeneous NoC. Each processor has its own local memory

and may employ a distinct instruction set architecture (ISA). Each processor and each

communication link is DVFS-enabled. Each processor and each communication link could

function on a set of voltage and frequency levels.

The target application is represented by a weighted directed acyclic graph (DAG) G = (T ,

E, W , C), where each node in T denotes a non-preemptible task, each edge in E denotes

the precedence between two tasks, and each node weight in W is a m-tuple, denoting the

WCETs in cycles of the corresponding task on the m different processors, and each edge

weight in C denotes the size of the message in unit data to be transferred between two

tasks. If a task ti on ps sends ci,j units of data to another task tj on pd, (ps 6= pd), the

time for transferring the data is ei,j = ci,j/(λfi,j), where ci,j , λ and fi,j are the message

size, link data width and link frequency, respectively. If task ti and task tj are on the

same processor, ei,j = 0. When a message Mi,j is sent from task ti to task tj on different

processors, XY routing is used and all the communication links on the routing path for

Mi,j have the same frequency. Each task has a predefined deadline.

We consider the total energy consumption that is composed of the computation energy

and communication energy. Given a supply voltage vsi and an operating frequency fi, the

total computation power ρtot(vsi , fi) of a task ti is computed as follows [25]:

ρtot(vsi , fi) = Cev
2
sifi︸ ︷︷ ︸

dynamic power

+Lg(vsiK3e
K4vsieK5vb + |vb|Ij)︸ ︷︷ ︸
static power

(5.1)

where Ce is the average switched capacitance, Lg is the number of logic gates in the circuit,

K3, K4 and K5 are parameters for a specific processor technology, vb and Ij are the body-

81

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

Table 5.1: Notations used.

Notation Description Notation Description

T A set of application tasks P A set of processors

ti The ith application task pk The kth processor

Mi,j The message from ti to tj ci,j Data size of Mi,j

di Predefined deadline of ti d′i(d
′
i,j) The successor-tree-consistent

deadline of ti(Mi,j)

vsi(vsi,j) The supply voltage of ti(Mi,j) fi(fi,j) The operating frequency of

ti(Mi,j)

εi(vsi , fi) Total computation energy of

ti

εi,j(vsi,j) Total communication energy

of Mi,j

λ Communication link data

width

hs,d The Manhattan distance be-

tween ps and pd

wi Worst-case number of cycles

of ti

si Start time of a task or mes-

sage

ei Execution time of ti ei,j Communication time of Mi,j

pred(ti) All predecessors of ti succ(ti) All successors of ti

xi Binary decision variable of a

task or message

fopti (fopti,j) The optimal frequency of

ti(Mi,j)

f li (f
l
i,j) The lower frequency of

ti(Mi,j)

f l+1
i (f l+1

i,j) The higher frequency of

ti(Mi,j)

vlsi(v
l
si,j) The lower voltage of ti(Mi,j) vl+1

si (vl+1
si,j) The higher voltage of ti(Mi,j)

εli(ε
l+1
i) Execution time of ti when us-

ing f li (f
l+1
i)

εli,j(ε
l+1
i,j) Communication time of Mi,j

when using f li,j(f
l+1
i,j)

Ωi Finish time of ti ω The time gain metric

γ The normalize gain metric 4εi(4εi,j) The energy difference metric

of ti(Mi,j)

82

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

Notation Description Notation Description

Nrep The number of repeaters of a

routing path

Crep Capacity load of a repeater

sa The average switching activ-

ity of a link

Ij The body junction leakage

current

Ce The average switched capaci-

tance of a processor

Lg Number of logic gates in a cir-

cuit

εR The energy of one unit data

on a router

vb The body-bias voltage

vmink
The minimum supply voltage

of pk

vmaxk The maximum supply voltage

of pk

fmink
The minimum frequency of pk fmaxk The maximum frequency of pk

vlmin The minimum supply voltage

of a link

vlmax The maximum supply voltage

of a link

f lmin The minimum frequency of a

link

f lmax The maximum frequency of a

link

Kl(l = 3, · · · , 5) Processor technology constants

bias voltage and body junction leakage current, respectively. The total computation energy

of a task ti is calculated as follows:

εi(vsi , fi) = ρtot(vsi , fi)ei (5.2)

where ei is the execution time of task ti.

The total communication energy εi,j of a message Mi,j over the links with a voltage vsi,j

is computed as follows [3, 4, 87,88]:

εi,j(vsi,j) = ci,j(hs,d + 1)εR + hs,d(

Nrep∑ ci,j
λ
saCrepv

2
si,j

+Lg(vsi,jK3e
K4vsi,j eK5vb + |vb|Ij)ei,j)

(5.3)

where ci,j , hs,d, Nrep, ε
R, and λ are the data size of Mi,j , the Manhattan distance, the

number of repeaters of the routing path, the energy consumption of one unit data on a

83

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

P2

P3

t2

t3

Frequency

L

t4

m34

0
Time

5 10

P1 t1

m14

d4

(a)

P2

P3

t2

t3

Frequency

L

t4

m34

0
Time

5 10

P1 t1

m14

d4

(b)

Figure 5.1: (a) A non-contention-aware schedule, and (b) a contention-aware schedule.

router, and the link data width, respectively, and sa and Crep are the average switching

activity and capacity load of a repeater, respectively.

5.3 Motivational Examples

In this section, we illustrate two examples. Firstly, on why it is important to consider

communication contention in task scheduling. Secondly, we depict the difference between

major approaches for selecting a discrete frequency of each task.

5.3.1 Communication Contention Awareness

It is important to explicitly consider message scheduling when computing an offline sched-

ule. This is because it affects not only the timing accuracy of the schedule, but also its

total energy consumption when scaling is performed. Consider the examples in Figure 5.1.

When the schedule is constructed without the consideration of communication contention,

the available static slack of the schedule is larger as in Figure 5.1a, than the available slack

in a real scenario with the consideration of contention as in Figure 5.1b. Thus, the amount

of energy savings would be optimistically computed when communication conflicts are not

taken into account.

84

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

5.3.2 Discrete Voltage and Frequency Selection

There are two major approaches to assign an optimal discrete frequency for each task

given its optimal continuous frequency; intra-task and inter-task. We illustrate the results

with a simple example.

Intra-task discrete assignment approach breaks each task execution cycle into two parts.

One part uses the minimum frequency higher than its optimal continuous frequency and

another uses the maximum frequency not greater than its optimal continuous frequency.

Figure 5.2a shows that although the intra-task discrete assignment approach produces an

optimal result but it may introduce larger transition overhead in terms of time and energy.

This is because the frequency changes not only between the boundary of tasks but also

within the boundary of each task.

On the other hand, a naive inter-task approach is to assign each task with the minimum

frequency greater than its optimal continuous frequency. Figure 5.2b shows that although

this approach guarantees the deadline of each task, it unnecessarily increases the energy

consumption of the schedule. Our approach attempts to find an optimal result based

on inter-task discrete assignment. Firstly, it tries to assign to each task the maximum

frequency not greater than its optimal continuous frequency. If the schedule is feasible,

we use the schedule. However, if the schedule is not feasible, our approach finds a mini-

mum set of tasks that uses the minimum frequency greater than their optimal continuous

frequencies. Then, we adjust the schedule accordingly. It is clear from Figure 5.2c that

our approach managed to minimize the number of transition overhead compared to the

approach in Figure 5.2a and significantly reduces the energy consumption as compared to

the naive approach in Figure 5.2b.

85

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

P1

P2

t1

t3

Frequency

L

t2

m

0
Time

5 10

t1 t2

t3

(a)

P1

P2

t1

t3

Frequency

L

t2

m

0
Time

5 10

(b)

P1

P2

t1

t3

Frequency

L

t2

m

0
Time

5 10 15

(c)

Figure 5.2: Different approaches to discrete voltage and frequency assignment: (a) intra-

task assignment, (b) a naive inter-task assignment using higher frequencies, (c) inter-task

assignment using our approach.

5.4 Task Scheduling

Conceptually, the scheduling phase has three major steps: computing the priorities of

each task and each message, assigning each task to a processor based on its priority and

constructing a schedule based on Earliest Deadline First (EDF) strategy assuming the

maximum frequencies for the tasks and communication links considering communication

link contentions, and computing the optimal frequency for each task and each message

using NLP. However, the second step and the third step are combined.

5.4.1 Computing Priorities

Our approach computes the approximate successor-tree-consistent deadline d′i defined in

Section 5.2 as a priority for each task ti ∈ T and d′i,j for each edge (ti, tj) ∈ E. A smaller

deadline implies a higher priority. We used the term approximate successor-tree-consistent

deadline interchangeably with modified deadline throughout this chapter. We sought to

compute the successor-tree-consistent deadlines for each edge as to resolve the message

sequence, in the case of communication contention. The basic idea is to let the message

destined for a high priority task to have higher priority than other competing messages.

The approximate successor-tree-consistent deadlines of all the tasks are computed in re-

86

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

verse topological order while the approximate successor-tree-consistent deadline of all the

edges are computed following their source tasks. We compute these priorities under the

maximum frequencies of the processor and communication links. For each task ti, if it

is a sink task, its successor-tree-consistent deadline is equal to its preassigned deadline

di. Otherwise, the approximate successor-tree-consistent deadline d′i of ti is computed as

follows.

1. Construct the successor-tree of ti.

2. If ti has only one successor, d′i = d′j − min
∀pk∈P

(ej), where tj is the successor of ti

and tj has the minimum execution time under maximum frequency among all the

processors in P . The approximate successor-tree-consistent deadline d′i,j of the edge

(ti, tj) is set to d′i,j = d′i.

3. Otherwise, do the following.

(a) Partition all the successors of ti into two disjoint sets U and V . Set U consists

of all the tasks each of which does not receive any data from ti, and the set V

contains all the successors of ti that are not in U .

(b) Sort all the tasks in U in non-increasing order of their approximate successor-

tree-consistent deadlines.

(c) Schedule each task in U on a processor such that its start time is maximized.

(d) Sort all the tasks in V in non-increasing order of their approximate successor-

tree-consistent deadlines. For the tasks with the same approximate successor-

tree-consistent deadlines, sort them in non-increasing order of their edge weights.

(e) Schedule each task in V on a processor such that its start time is maximized.

(f) For each edge (ti, tj), incident from ti and incident to tj ∈ V in the schedule,

d′i,j = d′j − ej , where the execution time ej is computed assuming maximum

frequency of tj processor.

87

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

(g) Find the latest completion time of ti in the schedule for the tasks in U ∪ V ,

respecting the constraints specified by the successor-tree of ti.

(h) Set the approximate successor-tree-consistent deadline d′i of ti to the smaller

one of its preassigned deadline and its latest completion time.

5.4.2 Task Assignment and Scheduling

Our approach assigns each task ti to a processor pk and constructs a schedule for all the

tasks and messages assuming the maximum frequencies as follows.

• Repeat the following steps until each task ti ∈ T is scheduled.

1. Select a ready task ti with the smallest approximate successor-tree-consistent

deadline among all the unscheduled tasks.

2. For each processor pk ∈ P do the following.

(a) Tentatively assign ti to the processor pk.

(b) Compute the schedule of ti and assign optimal frequencies for ti and all

tasks and messages currently scheduled under continuous frequency model

such that the total energy consumption of all the tasks and messages is

minimized by solving an NLP formulation described in Section 5.4.3.

3. Select a partial schedule σk with minimum total energy among all the schedules

each of which results from assigning ti to each processor pk. If there exists mul-

tiple options, select the processor with the maximum number of ti predecessors.

4. Set ti as scheduled.

5.4.3 Optimal Frequency Assignment

We have a set of scheduled tasks and messages. Our objective is to assign an optimal

frequency to each task and each message under continuous frequency model such that the

88

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

total energy consumption of all the tasks and messages is minimized. Next, we formulate

this problem as an NLP problem.

Firstly, for all the scheduled tasks and messages, we construct a new node-weighted graph

G′ = {T ′ ∪M ′, E′}, where T ′, M ′ represent a set of scheduled tasks, a set of schedule

messages, respectively, and E′ is a set of edges. M ′ and E′ are constructed as follows:

1. For each edge (ti, tj) ∈ E(ti, tj ∈ T ′), if ti and tj are on two different processors, add

a message node Mi,j to M ′, and two edges (ti,Mi,j) and (Mi,j , tj) to E′. Otherwise,

add an edge (ti, tj) to E′.

2. For each pair of messages Mi,j and Ms,t that have overlapping routing paths based

on the XY routing strategy, do the following. If the modified deadline of Mi,j is not

greater than that of Ms,t and there is no path from Mi,j to Ms,t in G′, insert an edge

(Mi,j ,Ms,t) to E′ to resolve communication contention. If the modified deadline of

Ms,t is not greater than that of Mi,j and there is no path from Ms,t to Mi,j in G′,

insert an edge (Ms,t,Mi,j) to E′.

Note that G′ can be constructed more efficiently in an incremental way. We formulate the

optimal frequency assignment problem into an NLP problem as follows:

The objective function of the NLP formulation is shown as below.

min{
∑
ti∈T ′

εi(vsi , fi)︸ ︷︷ ︸
computation energy

+
∑

Mi,j∈M ′

εi,j(vsi,j)}︸ ︷︷ ︸
communication energy

(5.4)

Next, we derive all the constraints based on G′ as follows:

1. The execution time constraint for each task ti ∈ T ′:

ei = wi/fi (5.5)

89

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

where ei, wi, and fi are the execution time, worst-case number of cycles, and pro-

cessor frequency of ti, respectively.

2. The communication time constraint for each message Mi,j ∈M ′:

ei,j = ci,j/(λfi,j) (5.6)

where ei,j , ci,j , λ, and fi,j are the communication time, data size, link data width

and link frequency of Mi,j , respectively.

3. The precedence constraints:

si + ei (ei,j) ≤ sj ∀(ui, uj) ∈ E′ (5.7)

where si is the start time of a task or a message, and ei (ei,j) is the execution

(communication) time of ti ∈ T ′ (Mi,j ∈M ′).

4. The supply voltage range constraints and the frequency range constraints for each

task ti ∈ T ′:

vmink
≤ vsi ≤ vmaxk (5.8)

fmink
≤ fi ≤ fmaxk (5.9)

where vmink
, vmaxk , fmink

and fmaxk are the minimum voltage, maximum voltage,

minimum frequency and maximum frequency of the processor pk running ti, respec-

tively.

5. The supply voltage range constraints and the frequency range constraints for each

message Mi,j ∈M ′:

vlmin ≤ vsi,j ≤ vlmax (5.10)

f lmin ≤ fi,j ≤ f lmax (5.11)

where vlmin, vlmax, f lmin and f lmax are the minimum voltage, maximum voltage, min-

imum frequency and maximum frequency of each link, respectively.

90

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

6. Deadline constraint for each task ti ∈ T ′:

si + ei ≤ d′i (5.12)

where d′i is the approximate successor-tree-consistent deadline of ti.

Furthermore, for each supply voltage and frequency pair for all the tasks and messages,

constraint (4.3) in Section 5.2 is used.

The objective function of the NLP formulation is convex, and therefore could be solved in

polynomial time [87].

5.5 Discrete Voltage and Frequency Selection

In this section, we propose an ILP-based approach and a heuristic approach to assign a

discrete frequency to each task and each message, aiming at minimizing the total energy

consumption of all the tasks and messages. Both our ILP-based algorithm and our heuristic

are based on the final graph G′ = {T ′∪M ′, E′} constructed by our NLP-based algorithm.

5.5.1 ILP-based Approach

For each task ti and each message Mi,j , let fopti and fopti,j be the optimal frequencies of ti and

Mi,j , respectively, computed by our approach after the scheduling phase. We distinguish

between the following two cases.

1. The optimal frequency for ti (Mi,j) is equal to a discrete frequency of the processor

(link). In this case, we assign the optimal frequency to ti (Mi,j).

2. The optimal frequency for ti (Mi,j) is not a discrete frequency of the processor (link).

Let f li be the largest frequency of the processor where ti is assigned such that f li

91

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

is less than fopti , and f l+1
i be the frequency at a higher level of that processor.

Similarly, let f li,j be the largest frequency of a link that is less than fopti,j , and f l+1
i,j

be the frequency at a higher level of that link. Clearly, in an optimal schedule, the

frequency for ti must be either f li or f l+1
i , and the frequency for Mi,j must be either

f li,j or f l+1
i,j .

Therefore, we introduce a binary decision variable xi to choose either f li or f l+1
i for each

task ti ∈ T ′ (either f li,j or f l+1
i,j for each message Mi,j ∈M ′) as follows:

xi =

0, if (vlsi , f

l
i) ((vlsi,j , f

l
i,j)) is used

1, if (vl+1
si , f l+1

i) ((vl+1
si,j , f l+1

i,j)) is used

(5.13)

where vlsi and vl+1
si are the corresponding supply voltages of f li and f l+1

i , respectively, and

vlsi,j and vl+1
si,j are the corresponding supply voltages of f li,j and f l+1

i,j , respectively.

The total computation energy consumption εcomp of all tasks is formulated as follows:

εcomp =
∑
ti∈T ′

(1− xi)εi(vlsi , f
l
i) + xiεi(v

l+1
si , f l+1

i) (5.14)

where εi(v
l
si , f

l
i) and εi(v

l+1
si , f l+1

i) are the total computation energy consumption of ti at

the frequency f li and at the frequency f l+1
i , respectively. Notice that both εi(v

l
si , f

l
i) and

εi(v
l+1
si , f l+1

i) are constants.

Similarly, the total communication energy is calculated as follows:

εcomm =
∑

Mi,j∈M ′

(1− xi)εi,j(vlsi,j) + xiεi,j(v
l+1
si,j) (5.15)

where vlsi,j and vl+1
si,j are the corresponding supply voltages of f li,j and f l+1

i,j , respectively.

The objective function of the ILP formulation is shown as below.

min{εcomp + εcomm} (5.16)

92

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

The execution time constraint for each task ti ∈ T ′ are as follows.

ei = (1− xi)εli + xiε
l+1
i (5.17)

where εli and εl+1
i are the execution times of ti when using f li and f l+1

i , respectively. Notice

that εli and εl+1
i are constants.

Similarly, the communication time constraint for each message Mi,j ∈M ′ are as follows.

ei,j = (1− xi)εli,j + xiε
l+1
i,j (5.18)

where εli,j and εl+1
i,j are the communication times of Mi,j when using f li,j and f l+1

i,j , respec-

tively.

The precedence constraint (6.11) for each edge and the deadline constraint (6.16) for each

task in the NLP formulation still hold.

5.5.2 Heuristic

The ILP-based algorithm is not scalable as the ILP problem is a well known NP-complete

problem. Therefore, we propose a heuristic to effectively solve the discrete voltage and

frequency assignment problem.

Our heuristic is based on the initial feasible schedule constructed by our iterative NLP

formulation described in Section 5.4. It works as follows:

1. For each ti (Mi,j), if its optimal frequency computed by our NLP formulation is equal

to a discrete frequency of the processor (link) where ti (Mi,j) is mapped, assign the

optimal frequency to ti (Mi,j). Otherwise, assign f li (f li,j) to ti (Mi,j).

2. Construct a schedule using the frequency assigned to each task (message) such that

the relative order between any two nodes on each processor (link) remains the same

as in the initial schedule constructed by our NLP-based algorithm.

93

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

3. If there is no late task in the schedule, our heuristic terminates. Otherwise, repeat

the following until no late task exists.

(a) Let tk be the first late task. Repeat the following steps until tk is not late.

i. Construct a subgraph G1 = ({tk} ∪ pred(tk), E1) where pred(tk) is a set

of predecessors of tk and E1 contains all the edges with their end nodes in

{tk} ∪ pred(tk).

ii. Compute the node cuts of G1.

iii. Find a set B ⊆ {tk} ∪ pred(tk) such that the discrete frequency of each ti

(Mi,j) ∈ B has not been adjusted before and is not equal to the optimal

frequency computed by NLP, and a set K of late tasks.

iv. For each node xi ∈ B, compute its rank. The rank of xi is a 2-tuple

(1/γ(Cp), 1/γ(xi)), where Cp is a cut containing xi, γ(Cp) and γ(xi) are

the normalized gains of Cp and xi.

v. If there exists a set of tasks (messages) in B such that their time gains

are greater than or equal to the maximum tardiness of all the late tasks

in K, select a task (message) with minimum normalized gain. Change

its frequency to f l+1
i (f l+1

i,j) and update the schedule. Otherwise, do the

following.

A. Select a task (message) with the highest rank by comparing ranks lex-

icographically. Change its frequency to f l+1
i (f l+1

i,j).

B. Update the schedule.

We compute the node cuts Cp(p = 1, 2, · · ·) of graph G1 as follows:

1. Create a copy G2 of G1 and repeat the following steps until G2 is empty.

(a) Create a new empty node cut Cp.

(b) Add all the source nodes with zero indegrees in G2 to Cp.

94

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

(c) Remove all the source nodes and their incident edges from G2.

We introduce the time gain ω(ti,K) (ω(Mi,j ,K)) for each task (message). This metric

reflects the amount of time (benefits in terms of time) that could be utilized if ti (Mi,j)

uses f l+1
i (f l+1

i,j) in shifting a set of late tasks K in the schedule to finish at earlier times.

ω(ti,K) =

|K|∑
k=1

Ωk − Ω′k ∀ti, tk ∈ T ′ (5.19)

ω(Mi,j ,K) =

|K|∑
k=1

Ωk − Ω′k ∀Mi,j ∈M ′, tk ∈ T ′ (5.20)

where Ωk and Ω′k are the finish times of a late task tk ∈ K in the current schedule and

the schedule when the frequency of ti (Mi,j) is changed to f l+1
i (f l+1

i,j), respectively.

Furthermore, we define the energy difference 4εi (4εi,j) for each task (message). This

metric measures the impact on the total energy of the schedule should ti (Mi,j) uses f l+1
i

(f l+1
i,j).

4εi = εl+1
i − εli (5.21)

4εi,j = εl+1
i,j − ε

l
i,j (5.22)

where εli (εli,j) and εl+1
i (εl+1

i,j) are the computation (communication) energy of ti (Mi,j)

using the frequency f li (f li,j) and when the frequency of ti (Mi,j) is changed to f l+1
i (f l+1

i,j),

respectively.

Next, we compute a normalize gain metric of ti based on its time gain metric and its

energy difference metric as follows.

95

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

γ(ti) = 4εi/ω(ti,K) ∀ti ∈ T ′ (5.23)

Similarly, a normalize gain metric for each message Mi,j is computed as follows.

γ(Mi,j) = 4εi,j/ω(Mi,j ,K) ∀Mi,j ∈M ′ (5.24)

In some cases, we observe that, we need to take into account a subset of tasks (messages)

collectively. Thus, we define the normalized gain of a cut Cp consisting a set of tasks

(messages) as follows.

γ(Cp) =
∑

ti (Mi,j)∈Cp

4εi/ω(Cp,K) (5.25)

where we consider the total energy difference of all the tasks (messages) in cut Cp, when

the frequencies of ti (Mi,j) ∈ Cp are changed to f l+1
i (f l+1

i,j) and the time gain, when the

frequencies of ti (Mi,j) ∈ Cp are changed to f l+1
i (f l+1

i,j).

The time complexity of our heuristic is O(ne), where n is the number of nodes, and e is

the number of edges in the task graph.

5.6 Experimental Results

In order to evaluate our approaches, we compare them with two state-of-the-art ap-

proaches, ETFGBF [3] and CA-TMES-Search [4] by using a set of synthetic benchmarks.

We choose ETFGBF [3] and CA-TMES-Search [4] because they are the latest approaches

considering the similar problem structure as ours. Since CA-TMES-Search [4] is applicable

for homogeneous VFI-based platform, we consider each processor as a voltage-frequency

island (has individual voltage and frequency) in the simulations in this study.

96

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

5.6.1 Experimental Setup

We use a set of 18 synthetic benchmarks provided in [89]. We randomly pick these bench-

marks to represent three groups of task graph sizes i.e. small (TG16, TG5, TG4, TG3),

medium (TG2, TG17, TG18, TG1, TG6, TG7, TG8, TG9) and large (TG12, TG13,

TG15, TG11, TG10, TG14). In addition, they represent various structures of task graphs

in terms of the number of tasks, number of edges, the degree of parallelism and depen-

dencies. These sets of benchmarks are widely used by the embedded systems community

for task scheduling research.

We configure 23 scenarios to evaluate the performance of our algorithms. The character-

istics of each benchmark in terms of the number of tasks |T |, the number of edges |E|, the

CCR (communication to computation ratio) which is defined as the total communication

divided by the average computation, and a common deadline D for each benchmark are

shown in Table 5.2. The common deadline, the required number of computation clock

cycles of each task on one processor and communication data size of each edge are pro-

vided from the source. We use a factor β to represent the computation heterogeneity of

each task among different processors. The worst-case execution cycles wi,k of a task ti on

processor pk is a random value in the following range.

wi(1− β/3) ≤ wi,k ≤ wi(1 + β/3) (5.26)

where wi is the provided worst-case execution cycles of a task ti. For this experiment, we

set β = 1.

We choose three sets of NoC-based architecture which are 2-by-2 mesh NoC, 3-by-3 mesh

NoC and 4-by-4 mesh NoC as the target MPSoC. Each tile in the NoC is attached with

different processors. We define two types of processors based on 0.07 µm technology

in Table 5.3 and 0.18 µm technology in Table 5.4 [25] that follow the power model in

Section 5.2. The accuracy of these technology parameters has been verified through SPICE

97

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

Table 5.2: The characteristics of benchmarks.

Benchmark |T |/|E| CCR D Benchmark |T |/|E| CCR D

TG1 14/20 3.54 107 TG10 20/27 4.60 77

TG2 11/14 2.19 70 TG11 28/28 7.10 370

TG3 9/11 2.47 62 TG12 30/33 10.14 365

TG4 8/9 1.94 71 TG13 29/27 6.60 431

TG5 7/9 1.72 41 TG14 26/28 8.06 250

TG6 18/24 4.60 90 TG15 28/27 8.00 291

TG7 18/26 3.64 129 TG16 6/7 1.03 61

TG8 19/27 4.52 112 TG17 13/18 2.75 112

TG9 17/24 4.50 132 TG18 15/19 3.00 139

simulations [25]. Also, they were widely used in the previous energy-aware task scheduling

research [33,80–83].

We set both types of processors to have five voltage and frequency levels as in Table 5.5.

The minimum supply voltage vmink
and maximum supply voltage vmaxk follows the min-

imum supply voltage and maximum supply voltage of their corresponding discrete set.

We arrange the processors with different types in alternate manner. Communication links

have five voltage and frequency levels. To compute the communication energy, we use the

parameters in Table 5.6 [3, 87].

Table 5.3: Constants of 0.07 µm processor technology.

Variable Value Variable Value Variable Value

K1 0.063 K6 5.26x10−12 vbs −0.70

K2 0.153 Ceff 4.30x10−10 vth1 0.244

K3 5.38x10−7 Ij 4.80x10−10 α 1.50

K4 1.83 Ld 37.00

K5 4.19 Lg 4.00x106

98

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

Table 5.4: Constants of 0.18 µm processor technology.

Variable Value Variable Value Variable Value

K1 0.053 K6 51.00x10−12 vbs −0.70

K2 0.140 Ceff 1.11x10−9 vth1 0.359

K3 3.00x10−9 Ij 2.40x10−10 α 1.50

K4 1.63 Ld 37.00

K5 3.65 Lg 4.00x106

Table 5.5: Voltage and frequency levels of 0.07 µm processor and 0.18 µm processor.

0.07 µm technology 0.18 µm technology

Level Volt. (V) Freq. (MHz) Power (mW) Volt. (V) Freq. (MHz) Power (mW)

1 0.85 2100 727.3 1.88 1000 4015.5

2 0.80 1810 557.2 1.68 800 2549.3

3 0.75 1530 415.5 1.47 600 1443.3

4 0.70 1260 299.3 1.22 400 666.9

5 0.65 1010 208.9 0.84 150 119.8

Table 5.6: Constants of repeater-based communication link.

Variable Value Variable Value Variable Value

λ 32 εR 0.01x10−9 Crep 0.11x10−8

Nrep 27 sa 0.5

We generate 23 scenarios based on the 18 benchmarks and 3 different NoC architectures.

The configurations for each scenario are shown in Table 5.7.

We define Ours-ILP approach as the combination of our task mapping and scheduling

approach with the ILP-based algorithm and Ours-Heu approach as the combination of

our task mapping and scheduling approach with the heuristic described in Section 5.5.2.

We implement our approaches, ETFGBF [3] and CA-TMES-Search [4] on Matlab version

99

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

Table 5.7: Scenario configurations.

Scenario Benchmark Platform Scenario Benchmark Platform

S1 TG1 2-by-2 Mesh S13 TG13 4-by-4 Mesh

S2 TG2 2-by-2 Mesh S14 TG14 4-by-4 Mesh

S3 TG3 2-by-2 Mesh S15 TG15 4-by-4 Mesh

S4 TG4 2-by-2 Mesh S16 TG1 4-by-4 Mesh

S5 TG5 2-by-2 Mesh S17 TG2 4-by-4 Mesh

S6 TG6 3-by-3 Mesh S18 TG3 4-by-4 Mesh

S7 TG7 3-by-3 Mesh S19 TG4 4-by-4 Mesh

S8 TG8 3-by-3 Mesh S20 TG5 4-by-4 Mesh

S9 TG9 3-by-3 Mesh S21 TG16 4-by-4 Mesh

S10 TG10 3-by-3 Mesh S22 TG17 4-by-4 Mesh

S11 TG11 4-by-4 Mesh S23 TG18 4-by-4 Mesh

S12 TG12 4-by-4 Mesh

R2016a. We utilize the Matlab fmincon solver for the NLP problem and Matlab intlinprog

solver for the ILP problem. In addition, we use the Matlab quadprog solver for the task

mapping algorithm of ETFGBF approach. We perform the experiments on a hardware

platform with Intel(R) Core(TM) i5-4570 CPU and a clock frequency of 3.20 GHz, 8.00

GB memory and 3 MB caches.

5.6.2 Results and Discussions

In this section, we discuss the simulation results based on three metrics: total energy

consumption, total communication energy and algorithm running time. In order to com-

pare with CA-TMES-Search [4], we run 15 scenarios (S1, S2, · · · , S15). Figure 5.3a shows

the total energy consumption (computation plus communication energy) of the scenarios

by using Ours-ILP, Ours-Heu and CA-TMES-Search [4]. Each vertical axis denotes the

100

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

total energy consumption of each scenario using a specific approach, and each horizontal

axis denotes the scenarios. The simulation results show that the maximum improvement,

the average improvement and the minimum improvement of Ours-ILP compared to the

CA-TMES-Search [4] are 48.35%, 34.98% and 13.52%, respectively. The greatest improve-

ment of 48.35% occurs for scenario S12 (benchmark TG12 on a 4-by-4 mesh architecture)

while the least improvement occurs for scenario S4 (benchmark TG4 on a 2-by-2 mesh

architecture).

There are three key reasons on their poor performance on heterogeneous platforms. Firstly,

their approach does not take into account the energy profile of each processor during task

mapping while our approach guides the task mapping with the aim to minimize the total

energy consumption (computation energy plus communication energy). Secondly, the

execution time of each task varies among processors in a heterogeneous platform. Thus,

their approach suffers when they do mapping based only on the earliest start time. Thirdly,

the poor task mapping affects the potential of scaling the tasks and messages.

Figure 5.4a shows the total communication energy consumption of the different scenarios

using Ours-ILP and CA-TMES-Search [4]. Each vertical axis denotes the total communica-

tion energy of each scenario using a specific approach, and each horizontal axis denotes the

scenarios. It indicates that Ours-ILP has advantages compared to CA-TMES-Search [4]

in all the scenarios except for scenarios S1 (TG1 on a 2-by-2 mesh architecture) and S2

(TG2 on a 2-by-2 mesh architecture). However, in this case where computation energy

significantly dominates the total energy consumption, our approach still has the upper

hand than CA-TMES-Search [4] in terms of total energy consumption. We observe that

in certain cases, our approach assigns all the tasks only on one processor. This is due to

allocating dependent tasks among different processors introduce message transfers through

communication links, thus limiting the available slack and generating communication en-

ergy.

As for the comparison with ETFGBF [3], we are more interested to know the amount of

101

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

0

20

40

60

80

100

120

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

To
ta

l E
n

e
rg

y
(m

J)

Scenarios

Ours-ILP Ours-Heu CA-TMES-Search

(a)

0

20

40

60

80

100

S16 S17 S18 S19 S20 S21 S22 S23

To
ta

l E
n

e
rg

y
(m

J)

Scenarios

Ours-ILP Ours-Heu ETFGBF

(b)

Figure 5.3: Total energy consumption of (a) Ours-ILP, Ours-Heu and CA-TMES-Search [4]

and (b) Ours-ILP, Ours-Heu and ETFGBF [3].

communications produce by Ours-ILP and ETFGBF [3]. This is due to their approach

which is set with constraints such that each processor could be assigned with at most one

task. This avoids all tasks being placed on one processor and enables significant commu-

nications among tasks. In order to have a fair evaluation with ETFGBF [3], we configure

Ours-ILP and Ours-Heu to have an additional constraint during mapping, where each pro-

cessor could be assigned with only one task. We choose all the benchmarks having less than

16 tasks to run on a 4-by-4 mesh architecture which form the scenarios S16, S17, · · · , S23.

Figure 5.3b shows the total energy consumption (computation plus communication energy)

of the scenarios using Ours-ILP, Ours-Heu and ETFGBF [3]. Each vertical axis denotes

the total energy consumption of each scenario using a specific approach, and each horizon-

102

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

0.000

0.200

0.400

0.600

0.800

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

To
ta

l C
o

m
m

. E
n

e
rg

y
 (

m
J)

Scenarios

Ours-ILP CA-TMES-Search

(a)

0

0.5

1

1.5

S16 S17 S18 S19 S20 S21 S22 S23

To
ta

l C
o

m
m

. E
n

e
rg

y

(m
J)

Scenarios

Ours-ILP ETFGBF

(b)

Figure 5.4: Total communication energy consumption of (a) Ours-ILP and CA-TMES-

Search [4] and (b) Ours-ILP and ETFGBF [3].

tal axis denotes the scenarios. The results show that Ours-ILP outperforms ETFGBF [3]

in terms of total energy for all the scenarios. Ours-ILP achieves an average of 46.30% for

all scenarios with maximum improvement of 69.40% in scenario S22 (benchmark TG17

on a 4-by-4 mesh architecture) and the least improvement of 18.45% for scenario S18

(benchmark TG3 on a 4-by-4 mesh architecture). Figure 5.4b shows the total communica-

tion energy consumption of the scenarios using Ours-ILP and ETFGBF [3]. Each vertical

axis denotes the total communication energy of each scenario using a specific approach,

and each horizontal axis denotes the scenarios. The results show that Ours-ILP achieves

improvements in all the scenarios, with the exception of scenarios S20, S21 and S22.

103

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

In general, the previous three reasons for the good performance of our approach still

hold. Our task assignment strives to map each task to a processor with a minimum

total energy. On the other hand, the mapping in ETFGBF [3] aims at minimizing the

communication. It attempts to reduce the total weighted distances which is the sum of

communication data size multiplied by the distance of each edge. In other words, the

approach places tasks with large communication data size on nearby processors. This

results in negative impacts when computing the discrete frequencies as the mapping only

optimizes the communications rather than energy consumption. Moreover, the GA-based

scaling approach cannot find the exact optimal solutions due to it being based on natural

selection.

We compare the performance of our heuristic with our ILP-based algorithm for assigning

a discrete frequency to each task. The simulation results in Figure 5.3 shows that the

maximum total energy difference, the average total energy difference and the minimum

total energy difference of Ours-Heu approach compared to the Ours-ILP approach are

8.45%, 5.07% and 2.75%, respectively. It shows that our heuristic is very efficient in

computing near-optimal solutions for all scenarios.

We observe that it is important to explicitly consider communication contention when

computing an offline schedule. This is because it affects not only the timing accuracy of

the schedule but also its total energy consumption when scaling is performed. This is

because, the amount of slack differs for schedule considering communication contention

and the one without considering communication contention.

In addition, we show the running times to construct the schedules produced by these

approaches: Ours-ILP, Ours-Heu, CA-TMES-Search [4] and ETFGBF [3]. Table 5.8 sum-

marizes the average running times of Ours-ILP, Ours-Heu, CA-TMES-Search [4] and ET-

FGBF [3] approaches on each NoC architecture. For all the benchmarks, the average

running time ratio of the CA-TMES-Search [4] approach compared to the Ours-ILP is

1.03% while the average running time ratio of ETFGBF [3] compared to the Ours-ILP

104

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

is 7.41%. As we can see, our approaches are much slower than the CA-TMES-Search [4]

and ETFGBF [3] approaches. We found that the running time of our iterative NLP-based

mapping algorithm dominates approximately 98% of our approaches. Table 5.9 shows the

average running time ratio of the heuristic compared to the ILP is 70.39%. Although the

execution time is slower, our approaches compute much better energy-efficient schedules

compared to the CA-TMES-Search [4] and ETFGBF [3] approaches do. Notice that our

approaches target embedded systems. Therefore, the running time for constructing an

offline schedule at design stage is not an issue.

Table 5.8: Average running times of our approaches, CA-TMES-Search [4] and ETFGBF

[3] on each architecture.

Architecture Ours-ILP (s) Ours-Heu (s) CA-TMES-Search (s) ETFGBF (s)

2-by-2 114.530 114.196 10.650 -

3-by-3 1279.948 1264.127 13.852 -

4-by-4 2602.872 2593.947 16.631 192.951

Table 5.9: Average running times of our discrete frequency assignment approaches, ILP

and Heuristic on each architecture.

Architecture ILP (s) Heuristic (s)

2-by-2 0.082 0.039

3-by-3 0.062 0.052

4-by-4 0.062 0.054

5.7 Summary

In this chapter, we present two novel approaches addressing the problem of scheduling

a set of non-preemptible tasks with precedence constraints and individual deadlines on a

heterogeneous NoC-based MPSoC with discrete frequencies such that the total energy con-

105

5. Energy-aware Task Scheduling on Heterogeneous MPSoCs

sumption of all the tasks is minimized. We explicitly consider communication contention.

Our two approaches consist of an iterative NLP-based algorithm for task assignment and

continuous frequency selection of all tasks and messages. One approach uses an ILP-based

algorithm for selecting optimal discrete frequencies to all tasks and messages, while the

other uses a polynomial-time heuristic for selecting discrete frequencies to all tasks and

messages. We have evaluated our approach and compared it with two state-of-the-art

approaches, ETFGBF [3] and CA-TMES-Search [4]. Experimental results show that our

approaches perform significantly better than the previously reported approaches, in terms

of total energy consumption.

106

Chapter 6

Energy-aware Task Scheduling for

Streaming Applications

This chapter describes our energy-aware task scheduling approach for streaming applica-

tions on NoC-based MPSoCs under memory capacity constraints. We propose an inte-

grated approach consisting of task-level software pipelining and DVFS. This chapter is

organized as follows. Section 6.1 describes our major contributions. Section 6.2 specifies

the system models and some definitions. Section 6.3 illustrates motivational examples.

Section 6.4 proposes the framework of our unified approach which includes construct-

ing a workload balanced initial schedule, a retiming algorithm for increasing processing

parallelism and an iterative algorithm for fixing the schedule in case of memory capac-

ity violations. Section 6.5 discusses the experimental results and analyses. Section 6.6

summarizes this chapter.

107

6. Energy-aware Task Scheduling for Streaming Applications

6.1 Introduction

In this chapter, we study the following energy-aware task scheduling problem. Given a

set of non-preemptible periodic tasks with precedence and deadline constraints, construct

a feasible schedule on a homogeneous NoC-based MPSoC with discrete frequencies such

that the total energy consumption made up of computation and communication energy is

minimized. We make the following major contributions.

• We propose a novel unified energy-aware scheduling approach which integrates task-

level software pipelining with DVFS under memory capacity constraints. To the

best of our knowledge, our study is the first one that investigates the problem of

scheduling a set of periodic dependent tasks on NoC-based MPSoCs such that the

total energy consumption is minimized considering the memory capacity constraints

of the system.

• We present a novel task mapping and scheduling approach to construct an initial

schedule under maximum frequencies in which, when combined with retiming and

DVFS further reduces the total energy consumption. We employ a list scheduling

where the priority of each task and each message is its approximate successor-tree-

consistent deadline.

• We introduce a heuristic to compute the memory usage of the schedule. We corre-

late the problem to compute the memory usage of a schedule into the problem of

Maximum Weight Clique which is NP-hard [18].

• We have implemented our approach and compared them with two state-of-the-art

approaches, RDAG+GeneS [5] and JCCTS [6] by using a set of real and synthetic

benchmarks. Experimental results show that the maximum improvement, the av-

erage improvement and the minimum improvement of our approach compared to

the RDAG+GeneS [5] are 40.82%, 17.31% and 7.53%, respectively. The maximum

108

6. Energy-aware Task Scheduling for Streaming Applications

improvement, the average improvement and the minimum improvement of our ap-

proach compared to the JCCTS [6] are 46.46%, 21.67% and 10.75%, respectively.

6.2 Problem, Definitions and Models

The problem we investigate is described as follows. Given a set of n non-preemptible

periodic tasks T = {t1, · · · , tn} subject to precedence and deadline constraints, find a

feasible schedule with a discrete voltage and frequency assignment to each task and each

message on a NoC-based MPSoC such that the total energy consumption of all the tasks

and messages is minimized under memory capacity constraints. A feasible schedule is a

schedule that satisfies all the constraints.

Table 6.1 shows a list of notations used throughout this chapter.

6.2.1 System Model

The target MPSoC consists of m DVFS-enabled identical processors P = {p1, p2, · · · , pm}

interconnected via a 2-dimensional mesh NoC such as in Figure 6.1b. Each tile has a

coordinate and is composed of a processor (P), local memory (M) and a network interface

(NI). All the processors are connected through routers (R). We represent the platform

with an undirected graph A = (P,L,R). Each node in P denotes a processor, each edge in

L denotes the communication link between two processors and each edge weight in R de-

notes the corresponding communication link transmission rate. Each communication link

is DVFS-enabled. All the routers are identical, and all the communication links are identi-

cal. Each processor has its own local memory and can run on a set {(v1, f1), · · · , (vnk
, fnk

) :

v1 < · · · < vnk
, f1 < · · · < fnk

} of nk discrete voltage and frequency levels. Each commu-

nication link could operate on {(v1, f1), · · · , (vp, fp) : v1 < · · · < vp and f1 < · · · < fp of p

discrete voltage and frequency levels.

109

6. Energy-aware Task Scheduling for Streaming Applications

Table 6.1: Notations used.

Notation Description Notation Description

T A set of application tasks P A set of processors

ti The ith application task pk The kth processor

Mi,j The message from ti to tj ci,j Data size of Mi,j

di Predefined deadline of ti d′i(d
′
i,j) The successor-tree-consistent

deadline of ti(Mi,j)

ρ The application period µk The utilization of pk

rηi (rηi,j) The release time of ti(Mi,j) in

the ηth period

wi Worst-case execution time of

ti

Ri The retiming value of a task

or message

lii The ith lifetime segment

bk The kth data buffer Rmax The maximum retiming value

of all tasks and messages

vsi(vsi,j) The supply voltage of ti(Mi,j) fi(fi,j) The operating frequency of

ti(Mi,j)

εi(vsi , fi) Total computation energy of

ti

εi,j(vsi,j) Total communication energy

of Mi,j

λ Communication link data

width

hs,d The Manhattan distance be-

tween ps and pd

ei(ei,j) Execution(Communication)

time of ti(Mi,j)

si Start time of a task or mes-

sage

pred(ti) All predecessors of ti succ(ti) All successors of ti

xi Binary decision variable of a

task or message

fopti (fopti,j) The optimal frequency of

ti(Mi,j)

f li (f
l
i,j) The lower frequency of

ti(Mi,j)

f l+1
i (f l+1

i,j) The higher frequency of

ti(Mi,j)

vlsi(v
l
si,j) The lower voltage of ti(Mi,j) vl+1

si (vl+1
si,j) The higher voltage of ti(Mi,j)

110

6. Energy-aware Task Scheduling for Streaming Applications

Notation Description Notation Description

εli(ε
l+1
i) Execution time of ti when us-

ing f li (f
l+1
i)

εli,j(ε
l+1
i,j) Communication time of Mi,j

when using f li,j(f
l+1
i,j)

∆Ei The total energy difference

metric of a task or message

∆MEMi The memory size difference

metric of a task or message

Ceff The average switched capaci-

tance of a processor

Lg Number of logic gates in a cir-

cuit

Ij The body junction leakage

current

vbs The body-bias voltage

vth1 The threshold voltage Ld The logic depth

vmin The minimum supply voltage

of pk

vmax The maximum supply voltage

of pk

fmin The minimum frequency of pk fmax The maximum frequency of pk

vlmin The minimum supply voltage

of a link

vlmax The maximum supply voltage

of a link

f lmin The minimum frequency of a

link

f lmax The maximum frequency of a

link

Kl(l = 1, · · · , 6),α Processor technology constants

We assume XY routing which is based on Cartesian coordinates to route a message from

the source router to the destination router. The length hs,d of the routing path between

processor ps and processor pd, namely the Manhattan distance, is computed as below.

hs,d = |xd − xs|+ |yd − ys| (6.1)

where (xs, ys) is the coordinate of ps and (xd, yd) is the coordinate of pd.

The target streaming application is represented by a weighted Directed Acyclic Graph

(DAG), G = (T,E,W,C, ρ), where each node in T denotes a task, each edge in E ⊆ T ×T

denotes the precedence between two tasks, and each node weight in W denotes the worst-

111

6. Energy-aware Task Scheduling for Streaming Applications

t1

t2

t8

t3

t7

t6t5t4

(a)

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

P
M

NI
P

M

NI

R

R

R

R

R

R

R

R

R

(b)

Figure 6.1: Examples of (a) a task graph, and (b) a 3-by-3 mesh NoC architecture

case execution time (WCET) of the corresponding task, and each edge weight in C denotes

the size of the message in unit data to be transferred between two tasks. ρ represents the

period between two invocations of the DAG and we assume that the relative deadline is

equal to the period. Each task ti ∈ T has a preassigned deadline di. We assume that all

the tasks are non-preemptible.

A task ti sends its data to a task tj via a message Mi,j . However, if ti and tj are on the

same processor, no message is required. We assume that all the communication links on

the routing path for sending the data of ti to tj have the same frequency which is called

the frequency of Mi,j . The communication time for transferring one unit of data depends

on the transmission rate bs,d = 1/(λfs,d) of the communication link between ps and pd

where λ and fs,d are the link data width and link frequency respectively. Thus, if a task

ti on ps sends ci,j units of data to another task tj on pd, (ps 6= pd), the time it takes to

transfer the data is computed as follows.

ei,j = ci,jbs,d (6.2)

where ci,j and bs,d are the message size and link transmission rate respectively. Otherwise,

if task ti and task tj are assigned on the same processor, it is considered as intra-processor

communication and thus, the communication time between task ti and task tj via the

network is 0.

112

6. Energy-aware Task Scheduling for Streaming Applications

A data buffer is needed for each edge (ti, tj) ∈ E. It keeps the data from the time point

when the data is produced by ti until the time point when tj is finished.

6.2.2 Power Model

The total power consumption of a processor consists of dynamic power due to switching

activity, and static power as a result of leakage. The dynamic power Pdyn is formulated

as follows [25].

Pdyn = Ceffv
2
sf (6.3)

where Ceff is the average switched capacitance, vs is the supply voltage and f is the

operating frequency. We assume Ceff is a constant for all the tasks. The static power

Psta is given as follows [25].

Psta = Lg(vsK3e
K4vseK5vbs + |vbs|Ij) (6.4)

where Lg is the number of logic gates in the circuit, K3, K4 and K5 are parameters for a

specific processor technology, and vbs and Ij are the body-bias voltage and body junction

leakage current, respectively. Thus, we can compute the total computation power as

follows:

Ptot = Pdyn + Psta (6.5)

The relation between supply voltage v and frequency f is given as follows.

f = ((1 +K1)vs +K2vbs − vth1)α/(LdK6) (6.6)

where K1, K2, K6 and α are the processor constants, vth1 is the threshold voltage, and

Ld is the logic depth.

Notice that both the dynamic power function and the total power function are convex.

Under the total power model, there is an optimal minimum processor frequency f crit such

that the processor total energy increases as the processor frequency lower than f crit further

decreases [25].

113

6. Energy-aware Task Scheduling for Streaming Applications

We use equation (5.3) to compute the total communication energy of a message Mi,j over

communication links.

Let pred(ti) be a set of all the predecessors of a task ti and succ(ti) be a set of all the

successors of a task ti.

Definition 6.2.1 Given a task graph G = (T , E, W , C) and a task ti ∈ T , the successor-

tree of ti is a weighted tree ST(G, ti)= (T ′, E′, W ′, C ′), where T ′ = {ti}
⋃

succ(ti), E′

= {(ti,tj) : tj ∈ succ(ti)}, W ′ = {wj : wj ∈ W and tj ∈ T ′} and C ′ = {c′i,j : if tj is an

immediate successor of ti, c
′
i,j = ci,j; otherwise, c′i,j = 0}

Definition 6.2.2 Given a problem instance P , the successor-tree-consistent deadline of a

task ti, denoted by d′i, is recursively defined as follows. If ti is a sink where ti does not have

any successors, d′i is equal to its preassigned deadline di; otherwise, d′i is the upper bound

on the latest completion time of ti in any feasible schedule for the relaxed problem instance

P (ti): a set T ′ = {ti}
⋃

succ(ti) of tasks with precedence constraints in the form of the

successor-tree of ti. Formally, d′i = min{di,max{σj(ti)+wi} : σj is a feasible schedule for

P (ti)}.

We compute the approximate successor-tree-consistent deadline of each task as the prob-

lem of constructing a schedule on multiple processors with minimum makespan is NP-

complete [17]. We use the approximate successor-tree-consistent deadline of each task as

its priority when assigning each task to a processor.

6.3 Motivational Examples

In this section, we present two motivational examples. Firstly, a combination between a

workload-balanced schedule and retiming could produce better energy-efficient schedule.

114

6. Energy-aware Task Scheduling for Streaming Applications

Secondly, a retiming technique based on task mapping may eliminate unnecessary memory

usage when compared to an approach which transforms all intra-period dependencies into

inter-period dependencies.

We use the task graph in Figure 6.1a executed on a two-processor platform. The worst-

case execution time (WCET) of each task ti(i = 1, . . . , 8) is w1 = w2 = w3 = w4 = w5 =

w6 = w7 = w8 = 1, and the period, ρ of the task graph is 6. For simplicity, we ignore the

inter-processor communication to focus on the computation tasks for both examples.

Figures 6.2a, 6.2c and 6.2e show an initial schedule with balanced workloads across the

two processors, its corresponding retimed schedule and its schedule after frequency scaling,

respectively. Figures 6.2b, 6.2d and 6.2f show an initial schedule with unbalance work-

load across the two processors, its corresponding retimed schedule and its schedule after

frequency scaling, respectively.

Assume that the maximum frequency of both processors is 1 and simply use Etot =
|T |∑
i=1

f3i ei

to compute the total energy, with Etot, fi, ei being the total energy, operating frequency of

task ti and execution time of task ti, respectively. Slack reclamation in Figure 6.2e shows

that all the tasks can be assigned with an optimal frequency of 0.67 and approximately

generating 3.612 mJ. On the other hand, Figure 6.2f shows that only tasks t6 and t4

can be scaled to the optimal frequency of 0.33 while the other tasks use the maximum

frequency and thus approximately generates 6.216 mJ. From this example, we can see that

a workload-balanced initial schedule when combined with retiming can produce usable

slack for all the processors, which can then be utilized for frequency scaling to reduce the

total energy consumption. In other words, it generates a more energy-efficient schedule

when compared to an unbalance initial schedule.

Next, we demonstrate that a retiming technique may produce a schedule with unnecessary

memory usage requirement. A retiming technique that relies only on the height of each task

in the task graph to transform all intra-period dependencies into inter-period dependencies

115

6. Energy-aware Task Scheduling for Streaming Applications

P2

Frequency

P1 t1
1

ρ=6

t2
1 t6

1

t3
1

0 1 2

1 2

3

Time

t7
1

t5
1 t4

1 t8
1

4

3 4 5

(a)

P2

Frequency

P1 t1
1

ρ=6

t3
1 t2

1

t4
1

0 1 2

2

3

Time

t5
1

t6
1

t7
1 t8

1

4

3 4

5 6

(b)

P2

Frequency

P1 t1
4

ρ=6

t2
2 t6

2

t3
3

0 1 2

1 2

3

Time

t7
2

t5
3 t4

1 t8
1

4

3 40

slack

slack

(c)

P2

Frequency

P1 t1
5

ρ=6

t3
4 t2

3

t4
2

0 1 2

2

3

Time

t5
3

t6
3

t7
2 t8

1

4 5 6

0 1

slack

(d)

P2

Frequency

P1 t1
4

ρ=6

t2
2 t6

2

t3
3

0 1.5 4.53

Time

t7
2

t5
3 t4

1 t8
1

6

30 1.5 4.5 6

(e)

P2

Frequency

P1 t1
5

ρ=6

t3
4 t2

3

t4
2

0 1 2

3

3

Time

t5
3

t6
3

t7
2 t8

1

4 5 6

0 6

(f)

Figure 6.2: (a) An initial schedule with balanced workloads across all processors, (b) an

initial schedule with unbalanced workloads across all processors. (c) A retimed schedule

of Figure 6.2a, (d) a retimed schedule of Figure 6.2b. (e) Slack reclamation of schedule in

Figure 6.2c, (f) Slack reclamation of schedule in Figure 6.2d

would create unnecessary extra memory usage. Assume that we attempt to achieve the

retimed schedule i.e. the first steady period as in Figure 6.2c. Consider a first case

where we only rely on the structure of the task graph i.e. the height of each task when

computing the retiming values, the retiming value of each task is Ri(i = 1, . . . , 8) is

R1 = 4, R2 = 2, R3 = 3, R4 = 1, R5 = 2, R6 = 2, R7 = 1, R8 = 0. Then, consider a second

case which is our approach. We compute the retiming values of all the tasks by taking

into account the task mapping, resulting in R1 = 3, R2 = 1, R3 = 2, R4 = 0, R5 = 2, R6 =

1, R7 = 1, R8 = 0. The maximum retiming value or the number of prologue required by

116

6. Energy-aware Task Scheduling for Streaming Applications

the first case is 4 and the second case is only 3. The maximum retiming value indicates

that the first case requires more memory space to store data compared to the second case,

albeit that both cases achieved the same objective schedule as in Figure 6.2c.

6.4 Scheduling Approach

Given a streaming application and a NoC-based MPSoC to execute the application, our

primary objective is to minimize the total energy consumption of the system under mem-

ory capacity constraints. Our approach constructs an initial schedule under maximum

frequencies such that the workload across all the processors is balanced, and then we

employ a retiming heuristic on the initial schedule to transform certain intra-period de-

pendencies into inter-period dependencies. Next, we assign an optimal discrete frequency

to each task and each message using an NLP-based algorithm and an ILP-based algo-

rithm. Then, we compute the total energy and memory usage of the resultant schedule. If

there is no memory capacity violation, our approach terminates. Otherwise, our approach

iteratively fix the retiming values based on the initial schedule, rerun the NLP-based al-

gorithm and the ILP-based algorithm to assign optimal discrete frequencies to all tasks

and messages until the memory capacity constraint is satisfied. We specify our approach

as follows:

1. Compute the priority of each task and each message based on its approximate

successor-tree-consistent deadline.

2. Based on the priorities of tasks, assign and schedule each task on a processor under

maximum frequency such that the total utilization of all the processors is minimized.

Hence, the workload across all the processors is balanced.

3. Retime the initial schedule by computing a retiming value for each task and each

message according to its schedule.

117

6. Energy-aware Task Scheduling for Streaming Applications

4. Assign an optimal discrete frequency for each task and each message using an NLP-

based algorithm and an ILP-based algorithm and then, compute the total energy

consumption and memory usage of the resultant schedule. If there is no memory

spills i.e. memory violations, our heuristic terminates. Otherwise, repeat the follow-

ing until memory capacity constraint is satisfied.

(a) Fix the retiming values of the initial schedule considering the clique with max-

imum total weight problem. The clique is formed by a set of lifetime segments

which overlap between each other and the total data size of the set is maximum.

(b) Assign an optimal discrete frequency for each task and each message using an

NLP-based algorithm and an ILP-based algorithm and then, compute the total

energy consumption and memory usage of the resultant schedule.

In the subsequent subsections, we describe on how to compute the approximate successor-

tree-consistent deadlines, task assignment and scheduling, retiming, optimal discrete fre-

quency selection, and the repair step to fix the retiming values in case of memory capacity

violations.

6.4.1 Computing Priorities

The priority of each task ti ∈ T and each edge (ti, tj) ∈ E is its approximate successor-

tree-consistent deadline d′i and d′i,j , respectively. A smaller deadline implies a higher

priority. The approximate successor-tree-consistent deadlines (or modified deadlines) of all

the tasks are computed in reverse topological order while the approximate successor-tree-

consistent deadline of all the edges are computed following their source tasks. We compute

these priorities under the maximum frequencies of the processor and communication links.

For each task ti, if it is a sink task, its successor-tree-consistent deadline is equal to its

preassigned deadline di. Otherwise, the approximate successor-tree-consistent deadline d′i

of ti is computed as follows.

118

6. Energy-aware Task Scheduling for Streaming Applications

1. Construct the successor-tree of ti.

2. If ti has only one successor, d′i = d′j − wj , where tj is the successor of ti. The

approximate successor-tree-consistent deadline d′i,j of the edge incident from ti is set

equal to the start time of tj , d
′
i,j = d′j − wj .

3. Otherwise, do the following.

(a) Partition all the successors of ti into two disjoint sets U and V . Set U consists

of all the tasks each of which does not receive any data from ti, and the set V

contains all the successors of ti that are not in U .

(b) Sort all the tasks in U in non-increasing order of their approximate successor-

tree-consistent deadlines. For the tasks with the same approximate successor-

tree-consistent deadlines, further sort them in non-decreasing order of their

worst-case execution times.

(c) Schedule each task in U on a processor such that its start time is maximized.

(d) Sort all the tasks in V in non-increasing order of their approximate successor-

tree-consistent deadlines. For the tasks with the same approximate successor-

tree-consistent deadlines, sort them in non-increasing order of their edge weights.

For the tasks with the same edge weight, further sort them in non-decreasing

order of their worst-case execution times.

(e) Schedule each task in V on a processor such that its start time is maximized.

(f) For each edge incident from ti and incident to tj ∈ V , set its d′i,j equal to the

start time of tj .

(g) Find the latest completion time of ti in the schedule for the tasks in U ∪ V ,

respecting the precedence constraints specified by the successor-tree of ti.

(h) Set the approximate successor-tree-consistent deadline d′i of ti to the smaller

one of its preassigned deadline and its latest completion time.

119

6. Energy-aware Task Scheduling for Streaming Applications

6.4.2 Task Assignment and Scheduling

Our scheduling step aims to construct a workload balanced schedule under maximum

frequencies within the first period. Our approach assigns each task ti ∈ T to a processor

pk and constructs an initial schedule G′ for all the tasks and messages assuming the

maximum frequencies as follows.

• Repeat the following steps until each task ti ∈ T is scheduled.

1. Select a ready task ti with the smallest approximate successor-tree-consistent

deadline among all the unscheduled tasks.

2. For each processor pk ∈ P , do the following.

(a) Tentatively assign ti to pk.

(b) For each immediate predecessor tj of ti assigned on a different processor

than ti, schedule the message Mj,i using Earliest Deadline First (EDF)

considering communication contention.

3. Assign ti to a processor pk with minimum utilization among all the processors.

If there are multiple options, choose the one that offers the earliest start time

of ti.

4. Set ti as scheduled.

The utilization µk of a processor pk is computed as follows.

µk =

|Tk|∑
ti∈Tk

wi/ρ (6.7)

where Tk is a set of all the tasks assigned on processor pk, wi is the worst-case execution

time of task ti ∈ Tk and ρ is the period of the task graph.

Since each task is executed periodically, let r1i be the release time of task ti in the first

period and let ρ be the period. Then the release time of ti in the η period (η ≥ 1) is

120

6. Energy-aware Task Scheduling for Streaming Applications

rηi = r1i + (η − 1)ρ. Similarly, for a message Mi,j between tasks ti and tj , let r1i,j be the

release time of Mi,j in the first period, then its release time in the η period (η ≥ 1) is

rηi,j = r1i,j + (η − 1)ρ.

Note that two messages have a communication contention if their routing paths overlap

and they want to use a shared link simultaneously. For messages having a communication

contention, we use EDF to serialize their simultaneous accesses to the shared communica-

tion links.

Eventually, for all the scheduled tasks and messages, we construct a new node-weighted

graph G′ = {T ∪M ′, E′}, where T , M ′ represent a set of scheduled tasks, a set of scheduled

messages, respectively, and E′ is a set of edges. M ′ and E′ are constructed as follows:

1. For each edge (ti, tj) ∈ E(ti, tj ∈ T), if ti and tj are on two different processors, add

a message node Mi,j to M ′, and two edges (ti,Mi,j) and (Mi,j , tj) to E′. Otherwise,

add an edge (ti, tj) to E′.

2. For each pair of messages Mi,j and Ms,t that have overlapping routing paths based

on the XY routing strategy, do the following. If the modified deadline of Mi,j is not

greater than that of Ms,t and there is no path from Mi,j to Ms,t in G′, insert an edge

(Mi,j ,Ms,t) to E′ to resolve communication contention. If the modified deadline of

Ms,t is not greater than that of Mi,j and there is no path from Ms,t to Mi,j in G′,

insert an edge (Ms,t,Mi,j) to E′.

6.4.3 Retiming

Given a set of scheduled tasks and messages under maximum frequencies, we attempt to

reschedule certain instances of tasks and messages so that the amount of usable slack could

be increased and utilized during frequency scaling. This could be done by transforming

certain intra-period dependencies into inter-period dependencies. In other words, we re-

121

6. Energy-aware Task Scheduling for Streaming Applications

group instances of tasks and messages from different periods into the same period, but

with an introduction of latency periods called prologue.

In this step, we present a retiming technique to allocate each task and each message with

a retiming value. The retiming value of a task or a message represents the number of its

instances executed in the prologue. The retiming value of each task (message) has the

following constraints.

• The retiming value of a task (message) must be non-negative integer.

• The retiming value of a parent node (task (message)) must be greater than or equal

to its children nodes (task (message)).

A retiming value must be valid to preserve the semantic correctness. If the retiming value

of a parent node ti is lesser than the retiming value of its child node tj , this indicates that

the data generated by the parent in the current period is needed to execute a child node

in the previous period, which is incorrect.

We compute the retiming value of each task (message) in G′ using breadth-first search

starting from a sink node as follows.

1. Initialize the retiming value Ri of each node ui representing ti or Mi,j in G′ as 0.

2. Construct a set S = {uk : uk is a sink node in G’}. Keep the last element of S in a

variable X.

3. Repeat the following until S is empty.

(a) Select the last element uj in set S and then remove it from S.

(b) For each immediate predecessor ui of uj ∈ S, do the following.

i. If ui is assigned to a different processor (link) than uj , update Ri =

max(Ri, Rj + 1).

122

6. Energy-aware Task Scheduling for Streaming Applications

ii. If ui is assigned to the same processor (link) as uj , update Ri = Rj .

iii. If X is not equal to ui, add ui to S. Update X as ui.

In other words, we assign a retiming value for each task and each message according to

the following conditions.

Ri =

max{Ri, Rj + 1}, if uj is a child node of ui and both are on different resources.

Rj , if uj is a child node of ui and both are on the same resource.

0, if ui is a sink node.

(6.8)

Based on the retiming value of each task and each message, we form a retimed graph

G′r = (T ∪M ′, E′′) to represent the new intra-period dependencies of G′ after retiming.

Firstly, we make a copy G′r of G′. Then, we remove certain edges in G′r. An edge (ui, uj)

ui, uj ∈ T ∪ M ′ is removed between nodes ui and uj if the following constraints hold

simultaneously.

• ui and uj have different retiming values.

• ui and uj are on different resources i.e. processor or link.

Notice that we keep the mapping and ordering of tasks (messages) on each processor (link)

by preserving the additional control edges of G′ with these constraints.

Furthermore, we compute the retimed schedule of each task (message) in the first steady

period following the retimed graph G′r. We compute the earliest start time of each task

and each message according to the retimed graph G′r.

123

6. Energy-aware Task Scheduling for Streaming Applications

6.4.4 Discrete Frequency Selection

We have a set of scheduled tasks and messages, each of which has been assigned a retiming

value and the corresponding retimed graph G′r. Our objective is to assign an optimal

discrete frequency to each task and each message under discrete frequency model such

that the total energy consumption of all the tasks and messages is minimized. Firstly,

we employ an NLP-based algorithm to compute the optimal frequencies for all tasks and

messages under continuous frequency model. Secondly, based on the optimal continuous

frequency of each task and each message computed by the NLP-based algorithm, we assign

its optimal discrete frequency using an ILP-based algorithm.

Computing Optimal Continuous Frequencies

We have G′r = (T ∪M ′, E′′) where T , M ′ and E′′ be a set of all the tasks, a set of all the

messages, and a set of all the edges. Next, we derive all the constraints based on G′r as

follows:

1. The execution time constraint for each task ti:

ei = ci/fi ∀ti ∈ T (6.9)

where ei, ci, and fi are the execution time, worst-case execution cycles, and processor

frequency of ti, respectively.

2. The communication time constraint for each message Mi,j :

ei,j = ci,j/(λfi,j) ∀Mi,j ∈M ′ (6.10)

where ei,j , ci,j , λ, and fi,j are the communication time, data size, link data width

and link frequency, respectively.

124

6. Energy-aware Task Scheduling for Streaming Applications

3. The precedence constraints:

si + ei(ei,j) ≤ sj ∀(ui, uj) ∈ E′′ (6.11)

where si is the start time of a task or a message, and ei(ei,j) is the execution time

of the task (the communication time of the message).

4. The supply voltage range constraints and the frequency range constraints for all the

tasks:

vmin ≤ vsi ≤ vmax ∀ti ∈ T (6.12)

fmin ≤ fi ≤ fmax ∀ti ∈ T (6.13)

where vmin, vmax, fmin and fmax are the minimum voltage, maximum voltage, mini-

mum frequency and maximum frequency of the processor pk running ti, respectively.

5. The supply voltage range constraint and the frequency range constraints for each

link:

vlmin ≤ vsi,j ≤ vlmax ∀Mi,j ∈M ′ (6.14)

f lmin ≤ fi,j ≤ f lmax ∀Mi,j ∈M ′ (6.15)

where vlmin, vlmax, f lmin and f lmax are the minimum supply voltage, the maximum

supply voltage, the minimum frequency and the maximum frequency of each link,

respectively.

6. Deadline constraint for each task ti:

si + ei ≤ d′i ∀ti ∈ T (6.16)

where d′i is the modified deadline of ti.

Furthermore, for each supply voltage and frequency pair for all the tasks and messages,

constraint (6.6) in Section 6.2.2 is used.

125

6. Energy-aware Task Scheduling for Streaming Applications

The objective function is shown as follows:

min{
∑
ti∈T

εi(vsi , fi)︸ ︷︷ ︸
computation energy

+
∑

Mi,j∈M ′

εi,j(vsi,j)}︸ ︷︷ ︸
communication energy

(6.17)

Since the objective function is convex, this convex NLP problem can be solved in polyno-

mial time [87].

Computing Optimal Discrete Frequencies

We continue with an ILP-based algorithm to assign an optimal discrete frequency to each

task and each message, aiming at minimizing the total energy consumption of all the tasks

and messages.

For each task ti ∈ T and each message Mi,j , let fopti and fopti,j be the optimal frequencies of

ti and Mi,j , respectively, computed by the NLP-based algorithm. We distinguish between

the following two cases.

1. The optimal frequency for ti (Mi,j) is equal to a discrete frequency of the processor

(link). In this case, we assign the optimal frequency to ti (Mi,j).

2. The optimal frequency for ti (Mi,j) is not a discrete frequency of the processor (link).

Let f li be the largest frequency of the processor where ti ∈ T is assigned such that

f li is less than fopti , and f l+1
i be the frequency at a higher level of that processor.

Similarly, let f li,j be the largest frequency of a link that is less than fopti , and f l+1
i,j

be the frequency at a higher level of a link. Clearly, in an optimal schedule, the

frequency for ti must be either f li or f l+1
i , and the frequency for Mi,j must be either

f li,j or f l+1
i,j .

Therefore, we introduce a binary decision variable xi to choose between f li or f l+1
i for each

126

6. Energy-aware Task Scheduling for Streaming Applications

task ti ∈ T and f li,j or f l+1
i,j for each message Mi,j ∈M ′ as follows.

xi =

0, if (vlsi , f

l
i) ((vlsi,j , f

l
i,j)) is used

1, if (vl+1
si , f l+1

i) ((vl+1
si,j , f l+1

i,j)) is used

(6.18)

where vlsi and vl+1
si are the corresponding supply voltages of f li and f l+1

i , respectively while

vlsi,j and vl+1
si,j are the corresponding supply voltages of f li,j and f l+1

i,j , respectively.

The total computation energy consumption εcomp of all tasks is formulated as follows:

εcomp =
∑
ti∈T

(1− xi)εi(vlsi , f
l
i) + xiεi(v

l+1
si , f l+1

i) (6.19)

where εi(v
l
si , f

l
i) and εi(v

l+1
si , f l+1

i) are the total computation energy consumptions of ti at

the frequency f li and at the frequency f l+1
i , respectively. Notice that both εi(v

l
si , f

l
i) and

εi(v
l+1
si , f l+1

i) are constants.

Similarly, the total communication energy εcomm is calculated as follows:

εcomm =
∑

Mi,j∈M ′

(1− xi)εi,j(vlsi,j) + xiεi,j(v
l+1
si,j) (6.20)

where vlsi,j and vl+1
si,j are the corresponding supply voltages of f li,j and f l+1

i,j , respectively.

The objective function is shown as follows.

min{εcomp + εcomm} (6.21)

The constraints include the execution time constraints for each task and each message:

ei = (1− xi)εli + xiε
l+1
i ∀ti ∈ T (6.22)

ei,j = (1− xi,j)εli,j + xi,jε
l+1
i,j ∀Mi,j ∈M ′ (6.23)

127

6. Energy-aware Task Scheduling for Streaming Applications

where εli and εl+1
i are the execution times of ti when using f li and f l+1

i , respectively.

Similarly, εli,j and εl+1
i,j are the communication times of Mi,j when using f li,j and f l+1

i,j ,

respectively. Notice that εli, ε
l+1
i , εli,j and εl+1

i,j are constants.

The precedence constraint (6.11) for each edge and the deadline constraint (6.16) for each

task in the NLP formulation still hold. From this formulation, we get the amount of total

energy consumption of the schedule. Next we compute the memory usage of the schedule

as follows.

Computing Memory Usage

Given a set of scheduled tasks and messages, each of which is assigned with an optimal

discrete frequency, we compute the memory usage of the schedule in two steps. Firstly,

we find all the lifetime segments within the prologue and the first steady period according

to the schedule task graph G′ since it preserves all the original intra-period dependencies.

Secondly, we solve the problem to compute the maximum memory usage into the Maximum

Weight Clique problem [18]. Next, we describe each step. The first step works as follows:

• For each edge (ui, uj) ∈ E′ (ui, uj ∈ T ∪M ′) excluding all control edges, do the

following.

1. Let E′i = (us, ut) be the first edge.

2. Compute the periodic delay of edge E′i, which is the difference between the

retiming value of node us and ut, δi = Rs −Rt.

3. For each period θl(l = 0, · · · , Rs), i.e. within the prologue and the first steady

period, do the following.

(a) Add a lifetime segments between node ui and node uj , lik = (`,a, s,Ω, size, loc),

where lik. `, lik. a, lik.s, lik.Ω, lik.size and lik.loc are the sender task, re-

ceiver task, start time, end time, data size and location of the segment.

128

6. Energy-aware Task Scheduling for Streaming Applications

We compute the real start time and real end time of lik.s and lik.Ω by

appending the prologue with Rmaxρ time unit as in Equation (6.24) and

Equation (6.25), respectively.

lik.s =

(Rmax − l)ρ+ si, if ui is a message node

(Rmax − l)ρ+ si + ei, if ui is a task node

(6.24)

lik.Ω = (Rmax − l + δi)ρ+ sj + ej ∀uj (6.25)

(b) If lik.Ω is greater than (Rmax + 1)ρ, set lii.Ω equal to (Rmax + 1)ρ, where

Rmax and ρ are the maximum retiming value of all the nodes and the

period, respectively.

Notice that it is sufficient to consider all lifetime segments within the prologue and the

first steady period because the schedule is repetitive.

In the second step, we compute the maximum memory usage in each data buffer bk ∈ B.

We consider this problem as the Maximum Weight Clique problem [18]. It works as follows.

• Let a memory usage variable MEMmax be initialized as 0.

• For each data buffer bk ∈ B, do the following.

1. Let Lk = {lii : lii.loc == bk} be the set of all lifetime segments in data buffer

bk.

2. Find a set of distinct time points, Γ of the start time and end time of all the

lifetime segments in Lk. Sort Γ in non-decreasing order.

3. For each pair of time points Γj and Γj+1(j = 0, 1, · · · , |Γ|−2), do the following.

(a) Find a set of lifetime segments Lj+1
k , intersecting within interval [Γj ,Γj+1]

(Lj+1
k ⊆ Lk).

129

6. Energy-aware Task Scheduling for Streaming Applications

(b) Add an interval ltj+1 = (Γj ,Γj+1, L
j+1
k , totalsize). Γj , Γj+1, L

j+1
k and

totalsize represent the start time, end time, a set of intersecting lifetime

segments within interval [Γj ,Γj+1] and the total data size of the lifetime

segments in Lj+1
k , respectively.

4. Find an interval lts such that its total data size is maximum. If there are

multiple options, choose the one with minimum number of intersecting lifetime

segments.

5. Construct an undirected graph Gs = (Vs, Es) representing the lifetime segments

in lts, where each node in Vs represents a lifetime segment in lts.L
j+1
k and Es

is a set of all edges such that every pair of distinct nodes in Vs is connected.

6. If MEMmax < lts.totalsize, update MEMmax as lts.totalsize and set GCmax

as Gs. GCmax is the Maximum Weight Clique graph.

Notice that a set of lifetime segments which intersect within interval [Γj ,Γj+1] can be

considered as a clique. A clique can be represented as an undirected graph where each

lifetime segment is a node and all the nodes are connected between each other to form a

complete graph.

6.4.5 Repair Approach

We employ an algorithm to fix the schedule in case of memory capacity violations. Our

aim is to recompute the retiming values of all tasks and messages such that the schedule

can meet the system memory capacity constraints.

We introduce two metrics for each parent or data producer task ti: the total energy

difference and memory requirement difference. These metrics are used to evaluate the

impact when reducing the retiming value of ti on the memory space reduction and the

total energy. We attempt to identify a significant ti that reduces the memory usage the

most, but with a minimum increase in total energy consumption.

130

6. Energy-aware Task Scheduling for Streaming Applications

We compute the total energy difference metric as follows.

∆Ei = εσ′ − εσ (6.26)

where εσ and εσ′ are the total energy of the current schedule and the total energy when

we reduce the retiming value of ti by 1, respectively.

We compute the memory requirement difference metric as below.

∆MEMi = MEMmax
σ′ −MEMmax

σ (6.27)

where MEMmax
σ and MEMmax

σ′ are the maximum memory usage of the current schedule

and the maximum memory usage when we reduce the retiming value of ti by 1, respectively.

Given a Maximum Weight Clique graph GCmax with the corresponding lifetime segment

attributes, we rank all sender tasks based on metrics in Equation (6.26) and Equation

(6.27) to evaluate their effectiveness in reducing the clique total weight. We repeat the

following until the memory capacity constraint is satisfied.

• Find a set of distinct sender tasks from GCmax .

• For each sender task, do the following.

1. Let lik = (`,a, s,Ω, size, loc) be the first lifetime segment. Let the sender task

lik. ` as tk.

2. Make a copy Rnew of Rcur, where Rcur is the current retiming values of all tasks

and messages.

3. Tentatively reduce the retiming value Rnewk
of tk by 1 and update its successors’

retiming values accordingly in Rnew.

4. Construct a retimed graph G′r based on Rnew as in Section 6.4.3.

5. Assign optimal discrete frequencies to all tasks and messages based on G′r as in

Section 6.4.4.

131

6. Energy-aware Task Scheduling for Streaming Applications

6. Compute the total energy and maximum memory usage of the new schedule.

Then, compute the total energy difference ∆Ek, memory requirement differ-

ence ∆MEMk and latency lk of the new schedule as compared to the current

schedule.

7. Save the new tentative schedule, Rnew, its total energy and its maximum mem-

ory usage in TABLE.

• Rank all the sender tasks based on non-decreasing order of ∆MEMk, non-decreasing

order of ∆Ek and non-decreasing order of lk.

• Select the one with the highest rank and retrieve the new schedule from TABLE.

• Update the schedule.

Updating retiming values

As aforementioned, the retiming value of each task or each message has the following

constraints.

• The retiming value is non-negative.

• The retiming value of a parent node must be greater than or equal to its children

nodes.

In order to ensure the validity of the retiming value of each ti(Mi,j) each time we update

a task (message) retiming value, we design a function to recursively update the retiming

values of all its successors tj(Mi,j) of ti accordingly.

1. Let ti(Mi,j) ∈ G′ be the task (message) such that its current retiming value Rcuri

needs to be reduced by 1.

2. Make a copy of the current retiming values of all tasks and messages, Rnew of Rcur.

132

6. Energy-aware Task Scheduling for Streaming Applications

3. If Rcuri is equal to 0, terminates. Otherwise, update Rnewi as Rcuri − 1.

4. Find a set S, of ti(Mi,j) immediate successors such that their retiming values are

equal to Rcuri .

5. For each tj(Ms,t) ∈ S, do the following.

(a) Repeat steps (1) until (5).

6.5 Experimental Results

In order to evaluate our approaches, we compare them with two state-of-the-art ap-

proaches, RDAG+GeneS [5] and JCCTS [6] by using a set of real and synthetic bench-

marks. We choose RDAG+GeneS [5] and JCCTS [6] because they are the latest approaches

considering similar problem structures as ours. Firstly, these approaches consider similar

system models as ours. They consider a periodic, dependent task model and homogeneous

MPSoC with distributed memory. Secondly, they employ task-level software pipelining

and DVFS to reduce the energy consumption of the system.

6.5.1 Experimental Setup

We use a set of 10 synthetic benchmarks obtained in [89] and two real-world benchmarks:

automotive from the E3S benchmarks suite [90] and ATR [91]. ATR is widely used for

mobile military systems and usually requires real time processing [86]. It is used to recog-

nize objects based on data obtained from sensors. The ATR consists of 17 tasks to process

one frame. The E3S benchmarks suite which provides the automotive benchmark was de-

signed for use in automated system-level assignment, and scheduling research. These two

benchmarks are modelled from real applications. Also, these applications are periodic in

nature. These sets of benchmarks are widely used by the embedded systems community

for task scheduling research.

133

6. Energy-aware Task Scheduling for Streaming Applications

Table 6.2 shows the characteristics of each benchmark in terms of the number of tasks

|T |, the number of edges |E|, the communication to computation ratio (CCR), which is

defined as the total communication divided by the average computation and its period

ρ. The period, the required number of computation clock cycles of each task and the

communication data size of each edge are given in the source.

We configure three sets of NoC-based architecture which are 2-by-2 mesh NoC, 3-by-3

mesh NoC and 4-by-4 mesh NoC as the target MPSoCs. We define each processor is

based on the 0.07 µm technology in Table 5.3 with its parameters provided in [25], that

follow the power model in Section 6.2.2. The accuracy of these technology parameters has

been verified through SPICE simulations [25]. Also, they were widely used in the previous

energy-aware task scheduling research [33,80–83].

Each processor has five voltage and frequency levels. The minimum supply voltage vmin

and maximum supply voltage vmax follows the minimum supply voltage and maximum

supply voltage of their corresponding discrete set. Communication links have five voltage

and frequency levels. To compute the communication energy, we use the parameters in

Table 5.6 [3] [87].

Table 6.2: The characteristics of benchmarks.

Benchmarks |T |/|E| CCR ρ Benchmarks |T |/|E| CCR ρ

ATR 17/16 16.99 30 TG5 26/28 8.06 250

Automotive 9/9 0.49 0.0009 TG6 15/19 3.00 139

TG1 30/33 10.14 365 TG7 20/27 4.60 77

TG2 28/27 8.00 291 TG8 18/26 3.64 129

TG3 18/24 4.60 90 TG9 13/18 2.75 112

TG4 14/20 3.54 90 TG10 11/14 2.19 70

We define our proposed approach as Ours. We implement Ours, RDAG+GeneS [5] and

JCCTS [6] on Matlab version R2016a. We utilize the Matlab fmincon solver for the NLP

134

6. Energy-aware Task Scheduling for Streaming Applications

problem and Matlab intlinprog solver for the ILP problem. We perform the experiments

on a hardware platform with Intel(R) Core(TM) i5-4570 CPU and a clock frequency of

3.20 GHz, 8.00 GB memory and 3 MB caches.

6.5.2 Results and Discussions

In this section, we discuss the simulation results in terms of three metrics: total energy

consumption, memory usage and algorithm running time.

Firstly, we discuss on the impact of processing parallelism of each benchmark on the

total energy consumption. Figure 6.3 shows the total energy consumption (computation

plus communication energy) of all the benchmarks using Ours on three different platforms.

Each vertical axis denotes the total energy consumption of each benchmark using Ours, and

each horizontal axis denotes the benchmarks. The simulation results indicate that in most

scenarios, the total energy consumption decrease as the number of processors increases.

This is due to our approach constructs initial schedules such that the total utilization of

all the processors is minimized. Thus, a larger number of processors results in processing

parallelism to increase and creates more static slack, resulting in lower frequencies for the

tasks and messages.

0

200

400

600

800

1000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

2-by-2 Mesh 3-by-3 Mesh 4-by-4 Mesh

Figure 6.3: Total energy consumption of Ours for all benchmarks on three different NoC

architectures.

135

6. Energy-aware Task Scheduling for Streaming Applications

Secondly, we compare the total energy consumption of each benchmark using the Ours,

RDAG+GeneS [5] and JCCTS [6]. Since Ours consider memory capacity constraints, we

set the memory constraint of each scenario to be equal to the maximum memory usage

of each scenario computed using RDAG+Genes. Figure 6.4 shows the total energy con-

sumption (computation plus communication energy) of all the benchmarks using Ours,

RDAG+GeneS [5] and JCCTS [6]. Each vertical axis denotes the total energy consump-

tion of each benchmark using a specific approach, and each horizontal axis denotes the

benchmarks.

Overall, the results indicate that Ours has the advantage of reducing the total energy

consumption of all the benchmarks, when compared to the other approaches. Specifically,

the largest improvement of 40.82% occurred at synthetic benchmark B48 on a 2-by-2 mesh

NoC, the least improvement of 7.53% at synthetic benchmark B61 on a 4-by-4 mesh NoC,

while the average improvement of all scenarios compared to RDAG+GeneS [5] is 17.31%.

The primary reason of Ours has advantages compared to RDAG+GeneS, is that RDAG+Genes

uses the Genetic Algorithm (GA) to schedule and assign discrete frequencies to all tasks.

GA is based on natural selections and does not necessarily find the optimal solutions.

On the contrary, Ours uses NLP-based algorithm and ILP-based algorithm to assign an

optimal discrete frequency for each task and each message.

Furthermore, the maximum improvement, the average improvement and the minimum

improvement of our approach compared to JCCTS [6] are 46.46%, 21.67% and 10.75%,

respectively. The maximum improvement happens on synthetic benchmark B48 on a 2-

by-2 mesh NoC and the minimum improvement occurred at synthetic benchmark B7 on

a 4-by-4 mesh NoC.

The primary reason for this is that, JCCTS attempts to minimize the prologue length

while totally removing the inter-processor communication overhead. We observe that their

approach might works to remove the communication overhead, but not in terms of total

136

6. Energy-aware Task Scheduling for Streaming Applications

0

200

400

600

800

1000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours RDAG+GeneS JCCTS

(a)

0

200

400

600

800

1000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours RDAG+GeneS JCCTS

(b)

0

200

400

600

800

1000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours RDAG+GeneS JCCTS

(c)

Figure 6.4: Total energy consumption of Ours, RDAG+GeneS [5] and JCCTS [6] for all

benchmarks on (a) 2-by-2 mesh NoC, (b) 3-by-3 mesh NoC, and (c) 4-by-4 mesh NoC.

energy. This is because in order to minimize the maximum retiming value or the prologue

length, significant intra-period dependencies still exist. Consequently, these dependencies

blocked the utilization of slack for frequency scaling and thus limit the opportunity for

137

6. Energy-aware Task Scheduling for Streaming Applications

energy reductions. On the contrary, in Ours, our retiming technique considers the task

mapping and tries to increase and fully exploit the usable slack during frequency scaling.

Thirdly, we evaluate the benefits of retiming. We compare Ours with a modified version

of Ours, Our-WR (Without Retiming) which does not employ retiming. We construct the

schedules using Ours-WR as follows.

1. Construct an initial schedule as in Section 6.4.2.

2. Assign an optimal discrete frequency for each task and message as in Section 6.4.4.

Figures 6.5,6.6 and 6.7 show the total energy consumption and the corresponding maxi-

mum memory usages of all benchmarks using Ours and Ours-WR. For the Figures 6.5a,6.6a

and 6.7a displaying total energy consumption, each vertical axis denotes the total energy

consumption of each benchmark using a specific approach, and each horizontal axis de-

notes the benchmarks. For the Figures 6.5b,6.6b and 6.7b showing maximum memory

usages, each vertical axis denotes the memory size requirements of each benchmark using

a specific approach, and each horizontal axis denotes the benchmarks.

Overall, the simulation results indicate that retiming could effectively reduce the total

energy consumption. Ours is advantageous in reducing the total energy consumption

in all scenarios. However, Ours-WR constructs schedules that require the least memory

usage. This is due to Ours-WR not implementing pipelining, requiring no extra memory

overhead. We observe that the total energy consumption could be improved by up to 77%

when using our retiming technique.

Algorithm Running Time

We show the running times to construct the schedules produced by Ours, RDAG+GeneS

[5] and JCCTS [6]. Table 6.3 summarizes the average running times of Ours, RDAG+GeneS

138

6. Energy-aware Task Scheduling for Streaming Applications

0

500

1000

1500

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours Ours-WR

(a)

0

200000

400000

600000

800000

1000000

1200000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l U
n

it
 D

at
a

Benchmarks

Ours Ours-WR

(b)

Figure 6.5: (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of

Ours and Ours-WR, for all benchmarks on 2-by-2 mesh NoC.

[5] and JCCTS [6] approaches on each NoC architecture. For all benchmarks, the average

running time ratio of the RDAG+GeneS [5] approach compared to Ours is 97.97% while

the average running time ratio of JCCTS [6] compared to Ours is 91.74%. As we can see,

our approaches are much slower compared to the RDAG+GeneS [5] and JCCTS [6] ap-

proaches. We found repetitive NLP-based algorithm and ILP-based algorithm dominates

the total running time of Ours. Although the run time is slower, our approach com-

putes much better energy-efficient schedules than the RDAG+GeneS [5] and JCCTS [6]

approaches do. Notice that our approaches target embedded systems. Therefore, the

running time for constructing an offline schedule at the design stage should not be an

issue.

139

6. Energy-aware Task Scheduling for Streaming Applications

0

500

1000

1500

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours Ours-WR

(a)

0

200000

400000

600000

800000

1000000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l U
n

it
 D

at
a

Benchmarks

Ours Ours-WR

(b)

Figure 6.6: (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of

Ours and Ours-WR, for all benchmarks on 3-by-3 mesh NoC.

Table 6.3: Average running times of Ours, RDAG+GeneS [5] and JCCTS [6] on each

architecture.

Architecture Ours (s) RDAG+GeneS (s) JCCTS (s)

2-by-2 264.71 266.59 248.70

3-by-3 280.21 276.45 253.07

4-by-4 297.33 282.14 255.28

6.6 Summary

We present a novel approach to the problem of scheduling a set of non-preemptible periodic

dependent tasks with precedence and deadline constraints on a homogeneous NoC-based

140

6. Energy-aware Task Scheduling for Streaming Applications

0

500

1000

1500

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l E
n

e
rg

y
(u

J)

Benchmarks

Ours Ours-WR

(a)

0

200000

400000

600000

800000

ATR Auto TG1 TG2 TG3 TG4 TG5 TG6 TG7 TG8 TG9 TG10

To
ta

l U
n

it
 D

at
a

Benchmarks

Ours Ours-WR

(b)

Figure 6.7: (a) Total energy consumption of Ours and Ours-WR, (b) memory usage of

Ours and Ours-WR, for all benchmarks on 4-by-4 mesh NoC.

MPSoC with discrete frequencies such that the total energy consumption of all the tasks

is minimized under memory capacity constraints. Our approach consists of a set of novel

techniques which include: constructing an initial schedule based on a list scheduling,

where the priority of each task is its approximate successor-tree-consistent deadline, and

the workload across all the processors is balanced, a retiming heuristic considering the

task mapping to transform intra-period dependencies into inter-period dependencies for

enhancing parallelism, assigning an optimal discrete frequency for each task and each mes-

sage using NLP-based algorithm and ILP-based algorithm, and an incremental approach

to fix the schedule in the case of memory capacity violations. We have evaluated our

approach and compared it with two state-of-the-art approaches, RDAG+GeneS [5] and

141

6. Energy-aware Task Scheduling for Streaming Applications

JCCTS [6]. Experimental results show that our approaches perform significantly better

than the two approaches in terms of the total energy consumption while satisfying the

memory capacity constraints.

142

Chapter 7

Conclusion and Future Work

This final chapter summarizes the contributions made in this thesis and discusses several

open problems for future work.

7.1 Conclusion

Energy consumption is one of the critical design considerations for embedded systems.

An energy-aware system increases the lifetime of the system, particularly for systems

that rely on batteries. Moreover, it reduces the operating costs, reduces heat dissipation,

thereby increasing system reliability. Dynamic Voltage and Frequency Scaling (DVFS) is

a powerful technique used for reducing energy consumption.

Modern embedded processors, as well as the communication subsystems, are equipped

with DVFS. It is a mechanism which aims to reduce the energy consumption by enabling

the adjustment of the operating frequency and supply voltage according to the demands.

Using the power model, the supply voltage is the main factor of power consumption and to

work safely, its value is determined by the frequency at which the circuit is clocked. The

supply voltage can be lowered if the frequency is lowered, and vice versa. Consequently,

143

7. Conclusion and Future Work

DVFS affects the execution time of tasks. A task with a lower frequency and supply

voltage extends its execution time. This is explained by the execution time of a task being

inversely proportional to its operating frequency.

Real-time embedded applications may impose certain constraints, such as deadline and

precedence constraints. There are consequences when deadlines are not met, the severity of

which depends on the embedded application. Precedence constraints enforce the ordering

of the application tasks. Unlike independent application tasks, a feasible task schedule

needs to meet the deadlines of all tasks, and also needs to adhere to the precedence

constraints. These constraints complicate both task scheduling and DVFS, because they

significantly impact the producibility and usability of the slack for frequency scaling.

Therefore, the problem becomes more challenging. Hence, DVFS should be properly

conformed using a scheduler of the embedded operating system for efficient deployment.

In this thesis, we investigate three different problems. We study the energy-aware task

scheduling for application tasks with precedence and deadline constraints on a homo-

geneous Multiprocessor System-on-Chip (MPSoC) assuming continuous frequencies, the

energy-aware task scheduling for application tasks with precedence and deadline con-

straints on a heterogeneous NoC-based MPSoC considering discrete frequencies and the

energy-aware task scheduling for periodic dependent application tasks on a homogeneous

NoC-based MPSoC considering discrete frequencies.

In Chapter 4, we discuss the problem of scheduling a set of non-preemptible application

tasks with precedence and individual deadline constraints on a homogeneous MPSoC as-

suming continuous frequencies such that the total processor energy consumption of all

the tasks is minimized under two power models, specifically the total dynamic power and

the total power. We present a unified two-phase scheduling approach to the problem.

Firstly, it uses a list-based scheduling consisting of a novel priority scheme to construct an

initial schedule under maximum frequencies. The priority of each task is its approximate

successor-tree-consistent deadline. Secondly, it formulates the problem of selecting an op-

144

7. Conclusion and Future Work

timal frequency and supply voltage for each task into a convex Non-Linear Programming

(NLP) problem. Furthermore, Chapter 4 presents experimental results showing the effec-

tiveness of our proposed approach in minimizing not only the total dynamic energy but

also the total energy consumption.

In Chapter 5, we describe the problem of scheduling a set of non-preemptible tasks with

precedence constraints and individual deadline constraints on a heterogeneous NoC-based

MPSoC with discrete frequencies such that the total energy consumption of all the tasks

is minimized. In addition, we explicitly consider communication contention as well as

communication energy. We present two novel approaches to the problem. Both approaches

consist of an iterative NLP-based algorithm for task mapping and scheduling. Then,

one approach uses an ILP-based algorithm for assigning optimal discrete frequencies to

each task and each message, while the other approach uses a polynomial-time heuristic

for assigning discrete frequencies to each task and each message. Moreover, Chapter

5 presents experimental results showing our proposed approaches perform significantly

better compared to state-of-the-art approaches, in terms of total energy consumption.

Besides, the performance of our proposed approach using the polynomial-time heuristic

is very close to that of our proposed approach using ILP-based algorithm in computing

discrete frequencies for all the tasks and messages, with better running time.

In Chapter 6, we present the problem of scheduling a set of non-preemptible periodic

dependent tasks with precedence and deadline constraints on a homogeneous NoC-based

MPSoC with discrete frequencies such that the total energy consumption of all the tasks

is minimized under memory capacity constraints. We propose a novel approach that

integrates task-level software pipelining with DVFS to address the problem. Initially,

our approach constructs an initial schedule using maximum frequencies, such that the

workload across all processors is balanced. Next, we employ a novel retiming technique to

transform intra-period dependencies into inter-period dependencies considering the task

mapping to enhance parallelism. Then, our approach uses an NLP-based algorithm and an

145

7. Conclusion and Future Work

ILP-based algorithm to assign optimal discrete frequencies to all the tasks and messages.

An iterative algorithm is employed to resolve memory capacity violations. Also, Chapter 6

shows extensive experimental results showing the effectiveness of our proposed approach,

in terms of minimizing the total energy consumption while satisfying all the constraints.

7.2 Future Work

Although a lot of advances have been made in the area of energy-aware task scheduling,

several open problems need to be solved in our future research.

The first open problem is minimizing the total energy consumption for multi-rate periodic

dependent tasks on a heterogeneous NoC-based MPSoC. Our attempt would be on ex-

tending our approach using the task-level software pipelining with DVFS to address this

problem. There are three significant challenges. Firstly, the processors across a heteroge-

neous platform vary in performance and energy profile. The heterogeneity complicates the

task assignment and the use of pipelining to increase parallelism. To date, energy-aware

approaches employing task-level software pipelining and DVFS work on homogeneous

platforms. Furthermore, an embedded system may contain multiple applications, each of

which having different periods. This kind of system is called multi-rate. The starting

point in solving this problem shall be on constructing an initial schedule using maximum

frequencies to ensure the schedulability of each task. It is sufficient to consider all tasks

within one hyper-period, that is the least common multiple of all the application peri-

ods. A task with a shorter period should be executed more frequently than a task with

longer period within the hyper-period. Consequently, each task has a different slowdown

potential. Therefore, it would be interesting to find a way to efficiently assign and order

all tasks to maximize the opportunities to be exploited for lowering operating frequen-

cies during slack reclamation. Furthermore, inter-processor communication overhead, as

well as network congestion, may complicate the problem further. To employ task-level

146

7. Conclusion and Future Work

software pipelining in a heterogeneous platform, an efficient task-to-processor mapping is

required. The mapping affects not only the execution performance of each task but also

the inter-processor communication overhead as well as the memory capacity overhead,

and therefore the total energy consumption. In this case, a clustering-based approach

with the combination of task-level software pipelining may be helpful and should be ex-

plored. Furthermore, these challenges need to be solved in a unified way. We will work out

an efficient approach combining task-level software pipelining with DVFS for multi-rate

periodic dependent tasks on a heterogeneous NoC-based MPSoC.

The second open problem is online task scheduling on NoC-based MPSoCs. We will

extend our study on the problem of minimizing the total energy consumption of a set

of dependent tasks with deadline constraints for homogeneous as well as heterogeneous

NoC-based MPSoCs to include energy-aware online scheduling. Without prior knowledge

on the actual execution time (AET) during run-time, this problem becomes more difficult.

A task may run shorter than its worst-case execution time (WCET), and dynamic slack

exists that could be utilized for frequency scaling. The dynamic slack is computed as

the difference between the WCET of a task and its AET. This slack can be claimed by

subsequent tasks for further minimizing the total energy consumption. Another challenge

is to design an algorithm that should have a low degree of complexity, as the scheduling

decision needs to be made on-the-fly, based on current requirements.

The third open problem is energy-aware task scheduling on a NoC-based MPSoC with

heterogeneous Voltage Frequency Islands (VFI). A number of commercial state-of-the-art

multi-core processors, such as IBM Power 7 series and Intel Itanium i7 use VFI. This

feature is an intermediate between global DVFS, providing one frequency for all the cores,

and per-core DVFS, which provides individual frequency for each core. It is based on the

Globally Asynchronous Locally Synchronous (GALS) design in which a chip is organized

into a number of clusters or islands, each of which operates at its own supply voltage

and clock frequency. All processor cores in an island share a common frequency. In

147

. Conclusion and Future Work

general, the cores in an island can be homogeneous or heterogeneous, and islands can

have different types and number of cores i.e. heterogeneous. This feature provides more

flexibility in managing the power and performance in multi-core processors. It is possible

to achieve significant energy savings within a certain timing constraint. The key challenge

to this problem is on assigning each task to the appropriate island and core, as well as

selecting its frequency such that the total energy consumption consisting of computation

and communication is minimized.

The last open problem is integrating DVFS with other techniques such as Dynamic Power

Management (DPM). DPM is a technique used to minimize the static power by turning off

the processor when it is inactive. However, it is only beneficial if the idle interval is longer

than the break-even time since there are energy and time overheads when a processor

switches between off-mode and on-mode. In general, DVFS and DPM counteract each

other with respect to energy reduction and a trade-off between them plays a critical role in

energy consumption reduction [92]. With DVFS, reducing the frequency of a task prolongs

its execution time which shortens the idle intervals, thus limiting the potential to reduce

static power. Alternatively, running a task at a higher frequency may produce longer

idle intervals, providing a better chance to reduce the static power, but will increase the

dynamic power and switching overhead. Therefore, the key question is on how to optimally

integrate DVFS and DPM such that the total energy consumption is minimized.

148

Bibliography

[1] K. Li, “Power and performance management for parallel computations in clouds and

data centers,” Journal of Computer and System Sciences, vol. 82, no. 2, pp. 174–190,

2016.

[2] S. Su, Q. Huang, J. Li, X. Cheng, P. Xu, and K. Shuang, “Enhanced energy-efficient

scheduling for parallel tasks using partial optimal slacking,” The Computer Journal,

vol. 58, no. 2, pp. 246–257, 2014.

[3] D. Li and J. Wu, “Energy-efficient contention-aware application mapping and schedul-

ing on noc-based mpsocs,” Journal of Parallel and Distributed Computing, vol. 96,

pp. 1–11, 2016.

[4] J.-J. Han, M. Lin, D. Zhu, and L. T. Yang, “Contention-aware energy management

scheme for noc-based multicore real-time systems,” IEEE Transactions on Parallel

and Distributed Systems, vol. 26, no. 3, pp. 691–701, 2015.

[5] Y. Wang, H. Liu, D. Liu, Z. Qin, Z. Shao, and E. H.-M. Sha, “Overhead-aware energy

optimization for real-time streaming applications on multiprocessor system-on-chip,”

ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 16,

no. 2, p. 14, 2011.

[6] Y. Wang, D. Liu, Z. Qin, and Z. Shao, “Optimally removing intercore communication

overhead for streaming applications on mpsocs,” IEEE Transactions on Computers,

vol. 62, no. 2, pp. 336–350, 2013.

149

Conclusion and Future Work

[7] M. Dirjish https://www.sensorsmag.com/embedded/.

[8] V. Danielito https://dcvizcayno.wordpress.com/2015/08/28/.

[9] W. Shen http://mil-embedded.com/articles/.

[10] Wikipedia https://en.wikipedia.org/wiki/Mars_Exploration_Rover.

[11] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra, “Power-performance mod-

elling of mobile gaming workloads on heterogeneous mpsocs,” in Design Automation

Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2015.

[12] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimization based

on rtl clock-gating,” in Proceedings of the 40th annual Design Automation Conference,

pp. 622–627, ACM, 2003.

[13] B. Hoefflinger, “Itrs: The international technology roadmap for semiconductors,” in

Chips 2020, pp. 161–174, Springer, 2011.

[14] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of scientific appli-

cations on distributed systems,” in Parallel and Distributed Processing Symposium,

pp. 34–34, 2005.

[15] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation and schedul-

ing for mpsoc platforms,” in Design, Automation & Test in Europe Conference &

Exhibition, 2009. DATE’09., pp. 51–56, IEEE, 2009.

[16] G. Manimaran and C. S. R. Murthy, “A fault-tolerant dynamic scheduling algorithm

for multiprocessor real-time systems and its analysis,” IEEE Transactions on Parallel

and Distributed Systems, vol. 9, no. 11, pp. 1137–1152, 1998.

[17] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer and System

Sciences, vol. 10, no. 3, pp. 384–393, 1975.

[18] H. Jiang, C.-M. Li, and F. Manya, “An exact algorithm for the maximum weight

clique problem in large graphs.,” in AAAI, pp. 830–838, 2017.

150

Conclusion and Future Work

[19] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, and L. Benini, “A layout-aware analysis

of networks-on-chip and traditional interconnects for mpsocs,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 3, pp. 421–

434, 2007.

[20] U. Y. Ogras and R. Marculescu, Modeling, analysis and optimization of network-

on-chip communication architectures, vol. 184. Springer Science & Business Media,

2013.

[21] O. Sinnen and L. A. Sousa, “Communication contention in task scheduling,” IEEE

Transactions on Parallel and Distributed Systems, vol. 16, no. 6, pp. 503–515, 2005.

[22] É. Cota, A. de Morais Amory, and M. S. Lubaszewski, Reliability, Availability and

Serviceability of Networks-on-chip. Springer Science & Business Media, 2011.

[23] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in

Annual Symposium on Foundations of Computer Science, pp. 374–382, 1995.

[24] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide energy mini-

mization in real-time embedded systems,” in Proceedings of the 2004 international

symposium on Low power electronics and design, pp. 78–81, ACM, 2004.

[25] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic volt-

age scaling and adaptive body biasing for lower power microprocessors under dy-

namic workloads,” in IEEE/ACM International Conference on Computer-aided De-

sign, pp. 721–725, 2002.

[26] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity

task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[27] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable

voltage processors,” in Low Power Electronics and Design, 1998. Proceedings. 1998

International Symposium on, pp. 197–202, IEEE, 1998.

151

Conclusion and Future Work

[28] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-energy hard real-

time applications,” IEEE Design & Test of Computers, vol. 18, no. 2, pp. 20–30,

2001.

[29] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algorithmica, vol. 6,

no. 1, pp. 5–35, 1991.

[30] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage selection for energy

minimization,” in Proceedings of the 39th annual Design Automation Conference,

pp. 183–188, ACM, 2002.

[31] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy aware scheduling

for distributed real-time systems,” in Parallel and Distributed Processing Symposium,

2003.

[32] L.-F. Leung, C.-Y. Tsui, and W.-H. Ki, “Minimizing energy consumption of multiple-

processors-core systems with simultaneous task allocation, scheduling and voltage

assignment,” in Design Automation Conference, pp. 647–652, 2004.

[33] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, “Overhead-conscious

voltage selection for dynamic and leakage energy reduction of time-constrained sys-

tems,” IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 1, pp. 28–38,

2005.

[34] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, “Emprical study on

reducing energy of parallel programs using slack reclamation by dvfs in a power-

scalable high performance cluster,” in IEEE International Conference on Cluster

Computing, pp. 1–10, IEEE, 2006.

[35] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy aware

scheduling for precedence constrained parallel tasks in a cluster with dvfs,” in 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CC-

Grid), pp. 368–377, IEEE, 2010.

152

Conclusion and Future Work

[36] J. Luo and N. K. Jha, “Power-conscious joint scheduling of periodic task graphs and

aperiodic tasks in distributed real-time embedded systems,” in Proceedings of the

IEEE/ACM International Conference on Computer-aided Design, pp. 357–364, 2000.

[37] R. Xu, R. Melhem, and D. Mosse, “Energy-aware scheduling for streaming applica-

tions on chip multiprocessors,” in RTSS, pp. 25–38, 2007.

[38] R. Watanabe, M. Kondo, M. Imai, H. Nakamura, and T. Nanya, “Task scheduling

under performance constraints for reducing the energy consumption of the gals multi-

processor soc,” in DATE, pp. pp. 1–6, 2007.

[39] H. Liu, Z. Shao, M. Wang, and P. Chen, “Overhead-aware system-level joint energy

and performance optimization for streaming applications on multiprocessor systems-

on-chip,” in Real-Time Systems, 2008. ECRTS’08. Euromicro Conference on, pp. 92–

101, IEEE, 2008.

[40] J. Luo and N. K. Jha, “Power-efficient scheduling for heterogeneous distributed real-

time embedded systems,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 26, no. 6, pp. 1161–1170, 2007.

[41] M. Qiu, Z. Ming, J. Li, S. Liu, B. Wang, and Z. Lu, “Three-phase time-aware energy

minimization with dvfs and unrolling for chip multiprocessors,” Journal of Systems

Architecture, vol. 58, no. 10, pp. 439–445, 2012.

[42] J. Li, M. Qiu, J.-W. Niu, and T. Chen, “Battery-aware task scheduling in distributed

mobile systems with lifetime constraint,” in 16th Asia and South Pacific Design Au-

tomation Conference (ASP-DAC 2011), pp. 743–748, IEEE, 2011.

[43] J. Hu and R. Marculescu, “Energy-aware communication and task scheduling for

network-on-chip architectures under real-time constraints,” in Design, Automation

and Test in Europe Conference and Exhibition, vol. 1, pp. 234–239, IEEE, 2004.

[44] L. Yan, J. Luo, and N. K. Jha, “Joint dynamic voltage scaling and adaptive body

biasing for heterogeneous distributed real-time embedded systems,” IEEE Transac-

153

Conclusion and Future Work

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 7,

pp. 1030–1041, 2005.

[45] V. Kianzad, S. S. Bhattacharyya, and G. Qu, “Casper: an integrated energy-driven

approach for task graph scheduling on distributed embedded systems,” in 16th IEEE

International Conference on Application-Specific Systems, Architecture Processors,

pp. 191–197, 2005.

[46] S. Hua and G. Qu, “Power minimization techniques on distributed real-time systems

by global and local slack management,” in Proceedings of the 2005 Asia and South

Pacific Design Automation Conference, pp. 830–835, ACM, 2005.

[47] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Iterative schedule optimization for

voltage scalable distributed embedded systems,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 3, no. 1, pp. 182–217, 2004.

[48] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Energy-efficient mapping and schedul-

ing for dvs enabled distributed embedded systems,” in Design, Automation and Test

in Europe Conference and Exhibition, 2002. Proceedings, pp. 514–521, IEEE, 2002.

[49] B. Gorjiara, N. Bagherzadeh, and P. H. Chou, “Ultra-fast and efficient algorithm for

energy optimization by gradient-based stochastic voltage and task scheduling,” ACM

Transactions on Design Automation of Electronic Systems (TODAES), vol. 12, no. 4,

p. 39, 2007.

[50] Y. Liu, B. Veeravalli, and S. Viswanathan, “Novel critical-path based low-energy

scheduling algorithms for heterogeneous multiprocessor real-time embedded systems,”

in International Conference on Parallel and Distributed Systems, pp. 1–8, 2007.

[51] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling algorithms

for real-time heterogeneous distributed embedded systems,” in Proceedings of the

2002 Asia and South Pacific Design Automation Conference, p. 719, IEEE Computer

Society, 2002.

154

Conclusion and Future Work

[52] P.-C. Chang, I.-W. Wu, J.-J. Shann, and C.-P. Chung, “Etahm: An energy-aware

task allocation algorithm for heterogeneous multiprocessor,” in DAC, pp. pp. 776–

779, 2008.

[53] L. K. Goh, B. Veeravalli, and S. Viswanathan, “Design of fast and efficient energy-

aware gradient-based scheduling algorithms heterogeneous embedded multiprocessor

systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 1,

pp. pp. 1–12, 2009.

[54] B. Gorjiara, N. Bagherzadeh, and P. Chou, “An efficient voltage scaling algorithm

for complex socs with few number of voltage modes,” in Proceedings of the 2004

International Symposium on Low Power Electronics and Design, pp. 381–386, ACM,

2004.

[55] P. Ghosh, A. Sen, and A. Hall, “Energy efficient application mapping to noc pro-

cessing elements operating at multiple voltage levels,” in Proceedings of the 2009 3rd

ACM/IEEE International Symposium on Networks-on-Chip, pp. 80–85, IEEE Com-

puter Society, 2009.

[56] J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-aware task allocation for

network-on-chip based heterogeneous multiprocessor systems,” in 19th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing,

pp. 447–454, IEEE, 2011.

[57] O. He, S. Dong, W. Jang, J. Bian, and D. Z. Pan, “Unism: Unified scheduling

and mapping for general networks on chip,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 20, no. 8, pp. 1496–1509, 2012.

[58] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores onto noc

architectures,” in Proceedings of the conference on Design, automation and test in

Europe-Volume 2, p. 20896, IEEE Computer Society, 2004.

[59] W. Jang and D. Z. Pan, “A3map: Architecture-aware analytic mapping for networks-

on-chip,” ACM Transactions on Design Automation of Electronic Systems (TO-

DAES), vol. 17, no. 3, p. 26, 2012.

155

Conclusion and Future Work

[60] I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling using frequency scal-

ing,” in 43rd International Conference on Parallel Processing Workshops (ICCPW),

pp. 104–113, IEEE, 2014.

[61] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang, “Enhanced energy-efficient

scheduling for parallel applications in cloud,” in Cluster, Cloud and Grid Computing

(CCGrid), 2012 12th IEEE/ACM International Symposium on, pp. 781–786, IEEE,

2012.

[62] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic voltage

and frequency scaling for energy minimization in the mobile cloud computing en-

vironment,” IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 175–186,

2015.

[63] W. Zheng and S. Huang, “An adaptive deadline constrained energy-efficient schedul-

ing heuristic for workflows in clouds,” Concurrency and Computation: Practice and

Experience, vol. 27, no. 18, pp. 5590–5605, 2015.

[64] J. Singh, S. Betha, B. Mangipudi, and N. Auluck, “Contention aware energy efficient

scheduling on heterogeneous multiprocessors,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 5, pp. 1251–1264, 2015.

[65] Z. Zong, X. Qin, X. Ruan, K. Bellam, M. Nijim, and M. Alghamdi, “Energy-efficient

scheduling for parallel applications running on heterogeneous clusters,” in Parallel

Processing, 2007. ICPP 2007. International Conference on, pp. 19–19, IEEE, 2007.

[66] J. Mei and K. Li, “Energy-aware scheduling algorithm with duplication on heteroge-

neous computing systems,” in Proceedings of the 2012 ACM/IEEE 13th International

Conference on Grid Computing, pp. 122–129, IEEE Computer Society, 2012.

[67] Q. Zhao, C. Xiong, C. Yu, C. Zhang, and X. Zhao, “A new energy-aware task schedul-

ing method for data-intensive applications in the cloud,” Journal of Network and

Computer Applications, vol. 59, pp. 14–27, 2016.

156

Conclusion and Future Work

[68] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An energy-efficient task

scheduling algorithm in dvfs-enabled cloud environment,” Journal of Grid Computing,

vol. 14, no. 1, pp. 55–74, 2016.

[69] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, “Energy-efficient scheduling algorithms

for real-time parallel applications on heterogeneous distributed embedded systems,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3426–

3442, 2017.

[70] M. T. Schmitz and B. M. Al-Hashimi, “Considering power variations of dvs processing

elements for energy minimisation in distributed systems,” in Proceedings of the 14th

international symposium on Systems synthesis, pp. 250–255, ACM, 2001.

[71] J. Luo and N. K. Jha, “Power-profile driven variable voltage scaling for heterogeneous

distributed real-time embedded systems,” in VLSI Design, 2003. Proceedings. 16th

International Conference on, pp. 369–375, IEEE, 2003.

[72] D. Shin and J. Kim, “Communication power optimization for network-on-chip archi-

tectures,” Journal of Low Power Electronics, vol. 2, no. 2, pp. 165–176, 2006.

[73] J. Hu and R. Marculescu, “Exploiting the routing flexibility for energy/performance

aware mapping of regular noc architectures,” in Design, Automation and Test in

Europe Conference and Exhibition, 2003, pp. 688–693, IEEE, 2003.

[74] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective technique

for allocating task graphs to multiprocessors,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 7, no. 5, pp. 506–521, 1996.

[75] G. S. A. Kumar and G. Manimaran, “Energy-aware scheduling of real-time tasks

in wireless networked embedded systems,” in Real-Time Systems Symposium, 2007.

RTSS 2007. 28th IEEE International, pp. 15–24, IEEE, 2007.

[76] P. Huang, O. Moreira, K. Goossens, and A. Molnos, “Throughput-constrained voltage

and frequency scaling for real-time heterogeneous multiprocessors,” in Proceedings of

the 28th Annual ACM Symposium on Applied Computing, pp. 1517–1524, ACM, 2013.

157

Conclusion and Future Work

[77] A. K. Singh, A. Kumar, and T. Srikanthan, “Accelerating throughput-aware runtime

mapping for heterogeneous mpsocs,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 18, no. 1, p. 9, 2013.

[78] D. Liu, J. Spasic, G. Chen, and T. Stefanov, “Energy-efficient mapping of real-time

streaming applications on cluster heterogeneous mpsocs,” in Embedded Systems For

Real-time Multimedia (ESTIMedia), 2015 13th IEEE Symposium on, pp. 1–10, IEEE,

2015.

[79] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for precedence-

constrained applications using dynamic voltage scaling,” in 9th IEEE/ACM Inter-

national Symposium on Cluster Computing and the Grid, CCGRID’09, pp. 92–99,

IEEE, 2009.

[80] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scaling for

real-time embedded systems,” in Proceedings of the 41st Annual Design Automation

Conference, pp. 275–280, ACM, 2004.

[81] E. Seo, J. Jeong, S. Park, and J. Lee, “Energy efficient scheduling of real-time tasks on

multicore processors,” IEEE transactions on parallel and distributed systems, vol. 19,

no. 11, pp. 1540–1552, 2008.

[82] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design and manage-

ment of voltage-frequency island partitioned networks-on-chip,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 3, pp. 330–341, 2009.

[83] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time multiproces-

sor system-on-chip with optimal dvfs and dpm combination,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 13, no. 3s, p. 111, 2014.

[84] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation of multi-

processor scheduling algorithms,” Journal of Scheduling, vol. 5, no. 5, pp. 379–394,

2002.

158

Conclusion and Future Work

[85] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic voltage/speed ad-

justment using slack reclamation in multiprocessor real-time systems,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 14, no. 7, pp. 686–700, 2003.

[86] J. A. Ratches, C. Walters, R. G. Buser, and B. Guenther, “Aided and automatic

target recognition based upon sensory inputs from image forming systems,” IEEE

transactions on pattern analysis and machine intelligence, vol. 19, no. 9, pp. 1004–

1019, 1997.

[87] A. Andrei, P. Eles, Z. Peng, M. T. Schmitz, and B. M. Al Hashimi, “Energy opti-

mization of multiprocessor systems on chip by voltage selection,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 3, pp. 262–275, 2007.

[88] C. Marcon, T. Webber, and A. A. Susin, “Models of computation for noc mapping:

Timing and energy saving awareness,” Microelectronics Journal, vol. 60, pp. 129–143,

2017.

[89] M. Lombardi, M. Milano, M. Ruggiero, and L. Benini, “Stochastic allocation and

scheduling for conditional task graphs in multi-processor systems-on-chip,” Journal

of scheduling, vol. 13, no. 4, pp. 315–345, 2010.

[90] R. Dick, “Embedded system synthesis benchmarks suite,” ziyang. eecs. umich.

edu/dickrp/e3s, 2002.

[91] J. Kang and S. Ranka, “Dynamic slack allocation algorithms for energy minimization

on parallel machines,” Journal of Parallel and Distributed Computing, vol. 70, no. 5,

pp. 417–430, 2010.

[92] M. E. Gerards and J. Kuper, “Optimal dpm and dvfs for frame-based real-time sys-

tems,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 9,

no. 4, p. 41, 2013.

159

	Title page: Energy-Aware Task Scheduling for MPSoC-based Embedded Systems
	Acknowledgments
	Publications
	Abstract
	Contents
	Abbreviations
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Background
	Chapter 3 - Literature Review
	Chapter 4 - Energy-aware Task Scheduling on Homogeneous MPSoCs
	Chapter 5 - Energy-aware Task Scheduling on Heterogeneous MPSoCs
	Chapter 6 - Energy-aware Task Scheduling for Streaming Applications
	Chapter 7 - Conclusion and Future Work
	Bibliography

