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STATISTICAL MODELLING IN BIOLOGY 

WITH REFERENCE TO 

THE SH EEP ANO WOOL INDUSTRIES 

ANO MEDICINE 
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I GENERAL PREI I MINARI ES 

Introduction 

l. 

The work submitted here was completed over a period of fifteen 
years. Some of the research was done while I was employed by C.S.I.R.0., 
at first in the Division of Animal Genetics and subsequently in the 
Division of Mathematical Statistics. 

Early in my career my background as a Geneticist and genera l 
Agriculturalist made me acutely aware of the need to apply sensible 
mathematics and statistics to a wide variety of biological problems. 
In those days these ideas we re somewhat inovative, at least in 
Australia. However, with the recent esca lation and popularisation 
of statistical education, more competent statisticians are turning 
to the biologist with a view to helping him make order from chaos . 

Because of my various changes of emp l oyment, I have not devoted 
all my time to any one field. This has been advantageous as each 
new biological system has required its own special statistical 
approach. In turn, this has kept my interest alive . 

Nevertheless, the work fal l s comfortably into two general 
categories: 

(A) research associated with or arising from problems in the 
Sheep and Wool Industries; 

(B) research on medical problems arising from consultations at 
the Cancer Institute, Melbourne. 

Almost every result has been practical ly motivated since the 
pressure of working closely with biologists usually keeps the 
statistician on the rails. There is little time for models which 
cannot be readi ly harnessed for use, no matter how beautiful the 
mathematics. I have grown to realise over the years that applic­
ability really is the essence of the contract. 

Sometimes mathematica l results had to be estab li shed to back 
up the modelling work. When this occurred, there 1tias a satisfying 
interplay between motivated theoretical research and application. 

Genera 1 Format 

The papers have been gathered under headings. Under these a 
brief description of the type of work reported in each paper is 
given. These comments are to assist i n co-ordinating the mater ial 
and t he system used is se·lf explanatory . 

Full er descriptions on the results can be obtained from the 
summaries which precede each paper . 
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II CLASSIFICATION OF THE WORK 

(A) Research into Some Specific Problems of the Sheep and 
l-Joo 1 Industries. 

Research work completed under this heading falls into 
four main sub-headings: 

(a) Research associated with the genetics of sheep breeding. 

(i) Mass selection theory, papers [l] - [6]. 

(ii) Truncation procedures rel ated to mass selection, 
papers [1] - [4]. 

(iii) The sampling errors of estimators of certain 
genetic parameters and predictors of genetic 
gain, papers [l] - [6]. 

(iv) Special models for discrete character selection; 
estimation under grouping and truncation , 
papers [1] - [5]. 

(b) The modell ing of host-parasite cycles with an emphasis 
on nematode parasites in sheep, papers [1] - [7]. 

(c) Research into fertility and meat production in sheep, 
papers [l] - [4]. 

(d) Theoretical deve lopments pertinent to A(b) and A(c), 
papers (1] - [10]. 

(B) Research into Some Specific Problems in Medicine with 
Special Re ference to Breast Cancer . 

(a) 

(b) 

(c) 

(d) 

Subsections are as follows: 

General comments. 

The initial problem and preliminary work, papers 
[1] ~ [6]. 

The concept of continuous response, papers [7], [8]. 

Actuarial work, papers [9], [10]. 

(e) Time to reporting breast cancer, papers [11] - [13]. 

(f) The concept of cure and screening trials, papers 
[9], [11], [12], [13]. 

(g) Summary and conclusions. 

2. 
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III COMMENTS ON PAPERS 

(A) Research into Some Specific Problems of the Sheep and 
Wool Industries. 

General Comment 

3. 

A l arge proportion of the material in this section is concerned 
with matters of statistical genetics , with selection as the central theme. 
Later papers propose models for host parasite cycles in sheep with an 
emphasis on parasitological and i mmunological concepts. A lesser amount 
of work on ewe fertility and mutton production is also included. 

Certain theoretical back-up results are needed to compl ement the 
above work. A great deal of this material has been utilized in the 
applications which motivated it . 

(a) Research associated with the genetics of sheep breeding. 

(i) Mass selection theory. 

Paper (a)(i)[l] introduces the idea of sel ecting animals for life 
time performance by basing the selection index on early records of a 
number of characte rs. The methods used are a straightforward applic­
ation of standard theory ; it is the concept which is new. 

(2] proposes a special form of sel ection index which will allow 
breeders to sel ect for m characters in such a way that they make 
general genetic progress 1~hile moving the means of a subset of k 
characters to predetermined levels. This is an i mportant exercise 
in some animal producti on situations. 

(3] and (4] look at the effects of selection and migration on 
a set of k alleles. The treatment is different in that discrete 
probl ems are examined, whe reas the other selection work involves 
continuous character theory. 

[5] extends the current ideas of selection to the selection of 
growth curves. Stochastic processes with a continuous index set are 
introduced and analysed in a genetic context . Classical discrete 
procedures give way to continuous methods and the whole problem is 
discussed within a more realistic framework. 

(6] examines in a general setting an extension of the problem 
of [2]. It is shown that it is immaterial whether one finds the 
optimal solution by maximising the correlation between the index 
and the weighted economic genotype or minimises the usual mean 
square error expression. This holds whether or not the index is 
subject to the usual form of linear constraint . 

Note 

The optimali ty of the selection index theory is generally 
accepted. Cochran (1950) (reference given in A(ii)(d) showed that 
this form of selection maximises expected genetic gains, and that 
is essentially that. 



( (ii) Truncation procedures rel at ed to mass selection. 

Paper (a)(ii)[l) discusses practical methods of applying truncated 
selection in situations where it is uneconomical to permanent ly identify 
each member of the group. The actual point of truncation may be unknown 
until all individuals are measured . In these cases it may be important 
to have a procedure which allows selection to proceed without undue 
inefficiency. A non-parametric solution to this problem is proposed. 

[2] develops general formulae for the moment generating function 
and the first and second order moments under truncated selection on a 
multi-normal di stribution. The results are appli ed in a genetic context 
to show how this type of truncation affects certain genetic parameters. 

[3) extends the work of [2] by considering the effects of index 
type selection on the moments of a multi-normal distribution . These 
results have immediate application to statistical genetics. 

[4] investigates a different type of truncation to the usual 
rectangular system. It is found that by truncating on the "contours" 
of the multi-normal distribution simple formulae for the moments are 
obtained. This form of selection has useful application and it is 
used in combination with a radial form of selection to solve particular 
probl ems in the construction of experimental selection groups and 
control groups. 

4. 

· (iii) The samp ling errors of estimators of certain genetic parameters 
and predictors of genetic gain. 

Paper (a)(iii)[l] investigates optimum statistical designs for 
estimating intra- class correlation, p, from one-way ana lysis of 
variance tables. The asymptotic formula for the variance of p is 
manipulated to give suitable subclass numbers to minimise the variance . 

[2) looks at the effect of certain control lable errors on biases 
in hesitability estimates and the efficiency with which genetic correl­
ation coefficients are estimated. Some surprisingly large deleterious 
effects on genetic parameters estimation were observed due to delays 
in weighing newly born lambs. 

[3], [4) and [5) develop large sample approximations to the sampling 
errors inherent in estimates of genetic correlation, selecti on index 
coefficients, genetic gain and family selection procedures. Standard 
o methods were used to obtain the results , although the algebra became 
strenuous . Monte Carlo simulations have shown these approximations can 
be used with confidence. 

[6] The results in [3] [4] and [5] relied on formulae for the 
second moments of estimates of covariance components based on balanced 
designs. In this paper general formulae for the unbalanced case are 
developed. The use of these are demonstrated on two types of selection 
indexes and the results correlated with those of [3). 

Note 

The above work seems to resolve the probl em of establishing the 
order of errors associated with the estimation of functions of pheno­
typic and genetic parameters . At l east the manipulative procedures 
are established so that other cases shou ld follow easily. 
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(iv) Special models for discrete character selection; estimation 
un der grouping and truncation. 

Papers A(a){iv)[l) and [2) The genetic analys is of discrete data 
runs into problems which can be partially overcome by the use of 
suitable di screte ~odels . Thi s obviates the necessity of applying 
continuous variate type ana lys is to such data. These two papers prop­
ose models specifically constructed to assist with the estimation of 
correl at ion structure in discre te data . 

(3), (4) propose methods for estimating parameters of the log­
norma l and bivari ate norma l distri butions under grouping. In [3) 
the methods are used to estimate correlation between lambing perform­
ance of ewes over two consecutive years. 

(5) General methods are developed here to allow max i mum likeli­
hood estimates to be obtained under grouping . Provided the grouping 
i ntervals are small, these results l ead to accurate estimates and a 
great saving of labour . 

(b) The modelli ng of host-parasite cycles with an emphasis on nematode 
parasites in sheep . 

Paper A(b)[l) develops the first tentative models to describe the 
distribution on pasture of the larvae of Nematode parasites of sheep . 
Basic biological postulates were set up and the mode ls were tailored 
to these. Later the assumptions were tested explicitly in the field 
and as a result the models were modified in [5]. 

(2) extends some of the ideas of (1) to include a mi gration mode l 
for the parasites mo vements away from faecal deposits on the pasture . 
This model is of the diffusion type. 

[3) sets up gener al mode ls for studying host-parasite relation­
ships . Immunological mechanisms are considered and the results 
specialised to sheep-wonn relationships. 

(4) flows from the results of [3) and devel ops special models for 
Helmenthic parasites. The work is oriented towards humans but would 
apply equally to sheep Helmenthiasis. 

(5) revises and strengthens some of the results of (1) to conform 
with experience gained . More detail ed modelling of larvae on pasture 
resu l ts in more information as to their habits once on the ground. 

(6), [7) These two papers concern themselves with deriving ful l 
models for the whole life cycle of internal parasites of sheep. 
(6) concentrates on the deterministic theory while [7) suggests 
stochastic extensions. 

Note 

The prime aim of th e projects reported above was to produce a 
workable model for the full life cycle of a nematode type parasite in 
sheep. Paper [6] contains the necessary pieces, and the steady state 
behavi our of the system was investi gated closely here and in another 
paper A(d)[7] . It is unfortunate that, due to difficul ties of obtain­
ing enough data in the correct form and due to staff movements, the 
enti re model has not yet been tuned into its practical setting. 

5. 
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(c) Research in+o fertility and meat Production in sheep. 

Papers A(c)[l], [2] and (3) report the results of some extensive 
studies involving th e a rtificial ins emination of s~eep . Both problems 
of efficiency of the procedure and the influences of various factors on 
matters of fertility have been examined. 

[4) In an effort to determine i mportant characters to use in the 
selection of mutton production , a slaughter tri al was performed on 150 
merino sheep. The ma i n result of the study was that, due to the high 
correlation of body weight with the weight of edible meat, other 
measurements were redundant. 

(d) Theoretical devel opments pertinent to A(b) and A(c) 

6. 

Paper A(d)(l] discusses genera l methods to assist with an inter­
pretative analysis of some classes of contingency tables. These results 
were required urgently for the work in A(c)[l], (2) . There appear to be 
a number of situations where a full logit model analysis is not just 
unwarranted, but inappropriate . 

[2), (3), [4] In the work of A(b) there were many 11 mixing 11 operations 
performed. Mixing invariably raises the problem of identifiability and 
this is discussed in (3), while (4) puts the problem in a general setting 
and the results of [3) appear as special cases. In (2) the estimation of 
a particular type of mixture is accomplished by the use of fractional 
moments in an effort to reduce the sampling errors associated with the 
use of integer moments. 

(5) Some work on aspects of the chemistry of wool production 
raised the question of how to construct stochastic mode ls for r-molec­
ular reactions. This problem is dealt with in this paper where general 
deterministic solutions are developed and two stochastic approaches 
investigated. 

[6] During the study of wool growth, the distribution of wax 
gl ands in the skin became an important characteristic. Theoretical 
consideration of the problems raised by investigators in this area 
l ead to the old corpuscle problem and its extensions. These are 
discussed in this paper. 

[7) The application of the models of A(b) requires accurate 
estimates of egg counts in faecal deposits. The whole estimation 
procedure is examined here and controlled sampling ~chemes suggested. 

[8] Discussions of the stability of the models in A(b)(6] hinge 
on the stability or otherwise of a certain polynomial equation 
f(x) = a. This mathematical problem is discussed in detail in this 
paper. 

[9) A problem raised in [2] was "under what conditions is a 
moment estimator equal to a maximum likelihood estimator". The 
question was answered · in part in (2) and the complete solution is 
presented here. The simple result is that the two types of estimators 
are equal if and only if the parent density belongs to the exponential 
family and [9] is included here for completeness . 

[10] That the exponential family is closely related to the exist­
ence of sufficient statistics is well known. This relatiqnship is re­
examined here, following [9] to give a simple result relatively free 
from restrictive assumptions . 
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(B) Research into Some Speci f ic Prob l ems in Medicine wi t h Speci al 
Reference t o Breast Cancer . 

(a) General Comments 

In this section the formal method of presentation and description 
will be dropped in favour of a chronological development of the total 
problem. This is fe asible in this case since there has been logical 
progression through a number of phases and I was brought into the work 
from the outset. What started as a rather limited clinical trial , 
escal ated to a proj ect of substantial proportions. 

The various research papers are mentioned i n the report at the 
pertinent places. Li t tle menti on of applicability of the results 
ou tside the specific area of use is made . However, mos t of the ideas 
have relevance to other fields of Medicine and Biology. Almost all are 
pertinent to other forms of cancer disease. 

(b) The initial probl em and preliminary work . 

7. 

In 1967 I was approached by Dr. G. Sarfaty to assist him in the 
interpretation of some English wo rk on breast cancer. The main pape rs 
were those of Bulbrook and his co-authors (Ref . see B[l]), who were 
app lying discriminant analysis t echniques to help in the selection of 
women with advanced breast cancer for endocrine ablation. The predictor 
variables used in the discrimin ant were the levels of certain hormone 
rel ated compounds excreted in the urine of the patients. 

From an examination of this work two points emerged : 

(1) the hormone leve l s were age dependent and this effect needed 
attention in any application of a di scriminant function; 

(2) there were errors of esti mati on and prediction associated with 
the use of discriminant procedures and these required investi­
gation. 

A clinical tri al was proposed at that time which was along the 
l ines of the Bulbrook experiments. This was to be run at the Peter 
McCall um clinic and the main aim was to tie in the relevant hormone 
picture with the response to ablation, in particul ar adrena l ectomy. 
From a detailed examination of data generously made available by 
Bulbrook, it became clear that the tri al stood the best chance of 
showing up useful predictor variables for remission if the chemical 
sampling and assay work were as tight as practicable. 

Early efforts were made to eliminate errors in herent in urine 
sampling procedures. Diurnal as well as daily fluctuations in the 
levels of the excreted compounds made it desirable to set up a five 
day collection system, [1]. The aim at each stage was to reduce 
those parts of the variances of proposed predictor variables which 
were due to noise. 

Part of the problem of tidying up laboratory procedures was the 
calibration of numerous pieces of equipment . A satisfactory phil­
osophy for the purpose at hand was needed and is described in [2 ]. 
This approach to ca l ibration has been used subsequently. 
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From the start t here was di ssati sfacti on with the discri minant 
method since the allocation of candida t es for ablation t o either a 
higher than average or a lower t han aver age remissi on group did not 
seem sati sfactory. What was needed, it seemed, was a specific prob.:. 
ability for remission for each patient. 

In any case a pressing theoretical problem was to investigate 
(l) and (2) of the second paragraph . This was done in [3] where 
the delta me thod was used to es ti mate the order of the various errors. 
Some extens i ons to personal probabiliti es and a program impl ementin g 
(3], called DISCRIM, was given in (4]. These methods were eventually 
applied to early resu lts of the Peter Mccallum trial in (5]. The trial 
itself is discussed in [6] . · 

The upshot of this work was t hat problems (1) and (2) had been 
dealth with and persona l probabilities of remi t ting as a consequence 
of adrenal ectomy could be predicted on the basis of certain measure­
ments, ~, made on patients before the operations. Let P(~) be 
this probability . 

The effect of samp ling errors on predictions was to lower P(x) 
towards t he group average probability of remission, .32, uniformly-in 
0. This is compat ible with intuition since, if noise is introduced 
into a predictive system depending on x, say, the value of the 
prediction must dimi nish to the group aijerage situation where ~ is 
not known. 

There were disadvantages with the system which has been developed: 

(1) it was enormously complicated computationally and introduced a 
great strain on the data in terms of estimation; 

(2) the theory was heavily dependent on the assumption that variables 
~ were normally distributed; 

(3) the model was purely predictive and it was of no interpretative 
value at all . 

In due course, the above approach was dropped entirely. 

{c) The concept of continuous response. 

From discussions and further deliberation it became clear that the 
i dea of a dichotomy, as required for the discriminant model, was unsat­
i sfactory. It seemed reasonable to postulate response to adrenalectomy 
as a continuous phenomenon, patients reacting to the operation across a 
spectrum. With this in mind, a latent response variable, Xo, was 
postulated and clinical remission associated with the event Xo > a, 
non-remission with the event Xo < a, where a was to be estimated 
from suitable data. This idea was developed in (7), where predictor 
variables X and Xo were assumed to have a multivariate normal 
distribution, and the effect of truncating Xo at a on the expect­
ation of ~ was calculated . 

of remission given ~=~,under this model, is 

8. 

The probability 
simply Pr{Xo >a! 0=~} 
that the multinorma l 
ation of a bivariate 
used . 

and this was also investigated in (7). To ensure 
distribution assumption was justified, a generalis­
transformation proposed by Moran (Ref. see [7]) was 
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9. 

In order to implement the above mode l, it is necessary to obtain 
all the cross correlations between the individual components of X, 
and between these components and Xo. Thus the relationship between 
hormone and other physiological measurements are given in [7] together 
wi th their individual relationship wi th the response variable Xo . 
These are intrinsjcally interesting in their own right. 

In order to test the predictive power of the mode l , it was fitted 
to the first 60 of the 130 women in the trial. Then using these estim­
ates, the probability of remission for each of the next five patients 
was predicted and compared with the realised response. The estimates 
were then up-dated to be based on the first 65, and the process was 
repeated until predictions were available for the last 70 patients to 
enter the trial. This process simulates the real situation and is free 
from the criticism that back-predictions over data used to estimate the 
mode 1 produce 11 euphori c results 11

• 

The results were as fo l lows: 

~ med 

> med 

Model Pred. 
Prob . 

. 142 

. 444 

Rea l ised 
Prob. 

.1 76 

.500 

In order to construct the above table, trial patients were ordered 
according to their predicted probability of remission. Those below the 
medi an probab i lity estimate were put into one group and those above the 
median into the second group. The average probabi l ity under the two 
mode l s was calculated for each group and compared with the actual 
outcome. 

A discussion of how to optimal ly apply treatments when several are 
avai l able is given in [8]. If treatment i, Ti , has a probability 
Pi (~) of success depending on a set of observations ~ made on 
pati ents prior to treatment then the procedure of choosing Ti if 
Pi (~)~Pj(~) for all j maximises the overal l expected probability 
of response . 

This fact has obvious applications when adrenalectomy is used in 
connecti on with other types of treatment. Assuming a remiss i on rate 
a to radiotherapy, say, which essentia l ly does not depend on ~. 
the obvious, simple and mathematically correct thing to do is to use 
adrenalectomy when P(~)~ and radiotherapy otherwise. That is, 
"everthing el se being equal 11 of cou r se. 

(d) Actuaria l work 

At t he same time as the above described work was proceeding, a 
close study was made of records at The Victorian Cancer Regi stry 
concerning breast cancer. By 1970 there were about 9,000 women who 
had registered the disease and, from follow-up records, it is possible 
t o determine the survival time of individual registrants. From these 
f igures the survival pattern of breast cancer victims was to be studied 
as a function of the age of first reporting the disease . 
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10. 

What at first seemed a modest assignment turned into an enormous 
job. A main problem was the de termination of a suitable family of model s. 
Eventually a competing risk model was developed in which the force of 
mortality function cons isted of additive components ; one due to natural 
mortality, lPQ, and one due to the disease, (!)c. Certain parametric 
forms were proposed for lPQ and <Pc and special fitting techniques 
devised , (9] . · 

The parameters of <Pc,~' were made to depend on age of reporting, 
a, B(a), say. This enabled the construction of a comp lete set of life 
tabTes for women reporting the disease at age a= 35, (1), 85 . Once 
~(a) was estimated, the force of mortal ity was plotted as a function of 
age. The ensuing patterns may one day be helpful in understanding aspects 
of the biology of the disease. 

Various other influences on mortality were assessed and we now have: 

(a) a complete description of the effect of age of first 
reporting on mortality probabilities and life expectancy; 

(b) a study of the effects of 

( i ) tumour histology 

(ii) stage of the disease 'at reporting 

( i ii ) combinations of (i) and (ii) 

( i V) treatment 

(v) combinations of (i) and (iv) 

( vi) combinations of (ii) and (iv) 

on survival probabilities and life expectations at age 60. 

Estimates were supplied with standard errors to give some idea of the 
precision of the various estimation procedures. 

Theoretical work arising from the estimation and testing probl ems 
in th i s work has led to quite genera l results which encompass many 
standard statistical procedure~ as specia l cases (10] . These findings 
are extensions of work in [9] and wil l be published elsewhere . 

(e) Time to reporting breast ·cancer. 

One of the consequences of the above research was that the effect 
of the stage of the disease at reporting on subsequent survival 
parameters was quantified. Moreover, stage was related to the del ay 
t ime to reporting, and both are clearly associated with the degree of 
t umour growth. 

There are four clinica l stages recognised for this disease which 
are l abelled S1, S2, $3, and S4. 
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A model was proposed in (11] which allowed the delay to reporting, 
R, to be random with a distribution depending on tumour volume, V. 
More explicitly, the conditional rate of reporting was assumed to be 
proportional to the rate of tumour growth . Under a standard assumption 
of exponential growth, this is equivalent to assuming that the rate of 
reporting is directly proportional to tumour volume. 

Using the mode l 1.,rhich is implied by these assumptions and some 
results from (9), it is possible to estimate boundaries for V by 
stage. Thus, for S1, S2, S3 and $4 respectively, V~ 50 ccs, 
50~ V~ 133, 133 ~ V~ 217 and 217 ~ V. The average volumes in 
each of the stages is given in (12) to be 25, 85, 170 and 325 respect­
ively. In (13], an estimate of the average volume of tumour at death 
is quoted as about 1,000 ccs. 

Also a consequence of the model in (11) it is possible to estimate -
the average tumour growth rate over al l classes of tumours, and for 
particular tumour grades. The average doubling time from Registry 
data is three months, and this agrees with internationally quoted 
average figures. For anaplastic tumours the doubling time is 1.5 
months and for less virulent grades, 5 months. 

The idea of a minimal detectable volume for breast cancer is 
important, and clearly this volume is a function of the detection 
procedure. According to tumour grade then, the average delay to 
reporting given a minimal detectable volume of .5 ccs ranges from 1 
to 3 years with a comb ined average of 2 years. If delay to reporting 
is measured from the time of onset of the disease, the average delays 
vary from 5 to 15 years with an overall average of 8 years. 

(f) The concept of cure and screening trials . 

In [12) and (13) the idea of an actuarial 11 cure 11 and its relation 
to tumour volume at reporting are introduced . The first part of (13) 
considers the problem of patients arriving at random into a trial and 
the effect of this on estimates of survival . It appears that we are 
the first to propose a specific model which allows a distribution for 
survival time to be fitted and tested. Presently, obvious conditional 
li kelihood methods are used which do not allow direct tests of goodness 
of fit. 

With the new model we are.able to obtain a good estimate of the 
distribution of survival time for patients in the Peter McCallum Trial. 
In particular, the unbiased estimates of survival expectation for 
remitters and non-remitters are about 4 years and l year respectively. 

Among the other results, however, the most important concern the 
proportion of actuarial 11 cures 11

• A woman will be regarded as cured 
following treatment if her life expectancy is normal. 

Now in (13] the life expectancies of women reporting the 
disease in s. , S2, $3 and S4 are estimated and these can be 
compared with the population breast cancer figures in [9]. Since 
no woman in the trial is cured and, essentially, in every case the 
disease results in death, the expectat ions in (13) are assumed to 
represent the order of life expectancy for those patients who are 
not cured, whether or not treatment is via adrenalectomy. The 
figures in (9) are uniformly larger than those in (13) and by 
solving a suitable equation estimates of cure, ai , by stages 
are a, = .378, a2 = . 268 , a3 = . 107 and ~ = .018. 
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These va l ues are used in [1 2J where a mode l relating tumour 

volume to cure rates i s proposed . In this paper it is shown how the 
expected cure rate can be estimated for various screening designs 
for early detection. 

12. 

In fact, if Ve is the minimal detectable volume of tumour and 
the screening interva l is tI, then the cure rate is written as a 
function of Ve and tr. It seems that good results to screening 
can be anticipated even for relatively l arge Ve of 8 - 10 ccs pro­
vided tI is made small, say .l years. Of course, first class results 
should follow screenings where both Ve and tr are small. A comp­
arison of our predictions with results obtained empirically in a New 
York trial showed excellent agreement. 

(g) Summary and conclusions 

From work completed to date we have quantified a number of factors 
associated with breast cancer. For example: 

(a) we have a complete actuarial description of the disease as 
a function of the age at reporting; 

(b) the effects of stage at reporting, tumour type and treatment 
on survival probabilities and life expectancy are known; · 

(c) the approximate volumes of the tumours at the four stages 
and at death have been estimated; 

(d) the growth rate of tumours in relation to tumour type is 
known; 

( e) the delay patterns of women reporting the disease are 
available; 

(f) we know how to predict remission for patients undergoing 
adrenalectomy in the advanced stages of the disease and 
how to optimise the use of various treatment procedures; 

.(g) we have examined the relationship between response to 
adrenalectomy and clinical remission; 

(h) and finally, we can suggest how designs for early detection 
procedures can be evaluated. 

The prime statistical aim has been to find out the maximum amount 
of information from the two data sources; the Peter Mccallum Trial 
and The Victorian Cancer Registry. This was to be done by careful 
mathematical and statistical modelling. 

This approach has its dangers and drawbacks. An inadequate model, 
or an adequate model fitted incorrectly to data can mislead. For these 
rea~ons great care in the selection of models has been taken and, where 
possible, an effort made to ensure that the models fit the data well. 
At every stage, results have been cross-checked with other known work 
and, in general, the agreement has been pleasing. 
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For some of the modelling of [11] [12] and [13] it was not possible 
to engage in rigorous fitting and testing calculations. More of an 
appli ed mathematics attitude was adopted to encourage the models to yield 
at least the order of magnitude of the various processes . Again, the only 
insurance against idiot results is careful intuition and cross-checking 
with other work where possible. 

We now have a lot more information about the disease, although we 
are no nearer elucidating the inter-pl ay of hormones. But, unles s our 
modelling is totally misleading it appears that a satisfactory control 
of breast cancer may be achievable by: 

(1) relatively frequent screenings using sophisticated technology, 
applied possibly to high risk groups; 

or 

(2) very frequent screenings or self-examination using insensitive 
techniques; 

or 

(3) a combination of both (1) and (2). 

IV WORK SUBMITTED IN PREVIOUS DISSERTATIONS 

Some of the papers cited above have been used as partial fulfillment 
of the requirements for M.Sc. and Ph.D. degrees. This work has been 
included here to provide essential coherence. The relevant papers are; 

M. Sc. U.N.S.W. (1962) 
a(i)[2]; a(iii)[l],[3],[4],[5]. 

Ph.D. U. N.S.W. (1964) 
a(ii)[2],[3],[4]; a(iv)[l],[2],[3],[4],[5). 

V STATEMENT OF PERSONAL CONTRIBUTION 
I 

It is not easy to partition contribution in some collaberative L 

studies. However, I believe the following to be fair and a~curate 
statements. 

(1) All the comments made above indicate the nature of the original 
contributions . 

(2) I was senior statistician on all research reported here. There­
fore, it was my responsibility to give direction to the mathematical 
and statistical research. In collaborative work involving other 
statistici ans, I endeavoured to more than pull my weight in develop­
ing the technical results. 

(3) Where I was sole author, I did all the work apart from acknowledged 
assistance. 
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(4) In Section (A), except where explicitly mentioned below, the results 
are essentially all mine. 

Paper 

(a)(i }[l] 
(a)(i )[6] 
(a)(ii}[6J 
(b)[6] 
(c)[2], [3] 
(d}[5] 
(d)[7] 
( d) [8] 

Contribution 
to Results. 

50% 
50% 
50% 

Contribution to 
Research Direction 

33% (3 authors) 

50% 
100% 
100% 
100% 

30-40% 
85% 
50% 
50% 

20- 30% 
85% 

100% 
100% 

(5 ) In Section (B) I am entirely responsible for all the modelling, 
theoretical work and for the general direction of the statistical 
research. The exception is 8(9] where my contribution would be about 
80%. 

(6) Dr. A.A. Donald, who is a parasitologist, coll aborated on some of 
the work in Section A. He provided the detailed biological information 
necessary for the construction of meaningful models . By discussion, he 
al so indicated where mode lli ng could be of practical use. 

(7) Dr. G. Sarfaty played a simi l ar role in the case of the work in (B). 
He provided essential medical information and stimulated a lot of the 

. work through his enquiries . 

(8) A great deal of lengthy numerica l calculation has been organised and 
programmed by Mr. P. Leppard for parts of Section B. His comments have 
been helpful on some aspects of the model l ing and he has checked a 
number of the resul ts . . 
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RESEARCH INTO SOME SPECIFIC 

PROBLEMS OF THE SHEEP AND 
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RESEARCH ASSOCIATED WITH THE 

GENETICS OF SHEEP BREEDING 
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S. S. Y. Y0t;:-:c Al'\U G . :\I. T...\LLIS 1 

Dh:isio11 of ..l11ill!o/ Gc,:ctics, C.S.I.R.O., .llc,llaslcr Laboratory, 
(;/el,c, Sid11cy, X.S.ll'. 

;,7.-\RlOt·s methods oi scleclin_...: brctding 
, :inirn:iis fo r ~cn'ral characlC'r;;· ha1·c lire:n 

in\'Csti!!atr:ri h1· a numbrr of 11·orkcrs ( Fair­
field Smith !\>36 : Ha zel and Lush, 1942; 
Hazd, 1943: \'01111~ and \\'eile:·, 1960) :i:1d 
di fferent techniquf's such a;; ta ndem s::-lcct: lln, 
incicpcndcnt culling icn°.ls a11<l _indt:'x selcc~ion 
have bcC'n usrd . Rrla t11·ely lilt lc attrnt1on . 
however. hac; been ~i,·cn to the th::or~· oi sc­
Jcctio1; for liicti mt: p:ucluc tion. Lu.;h ( 19 4S) 
discussed the u::,e of the cst imatf' of rcpt':ita­
!.,ility in pred ic ting the producing ability of 
cows. but no ll'ork has IJeen reportt'd on the 
theo~y of selection ior Ji ielime performance 
on more than one- trait. 

Genetic gn ins throu~h selec tion. mc·,1surd 
p er uni( of time. a re gowrneci by the .gener.,:· 
t ion intcr\'id ;i,; \Yell as oy lht' selc:cllon d1 1-
fercntials :uid kn'!s oi h<? rilabilit~· of the 
characters under ~election . For fa rm anima ls 
such :is sheep and d:.iiry cattle. where pru:~uc­
tion can be mea:::mcd on a number of -0ccnsi,,ns 
and where tht gt:nt ra tiun intcn·als nre long. 
it is possilile lo i11.~!;ine a nu1:1ber <) i. si tu:u io:1~ 
where li fetim,~ p:·l'lorma11cc 1:; rrla t1,·cly mnr<.> 
import:rnt 1h,w its addit i,·e genetic merit. For 
example, when c-conomic ,reights of pr0'\1c­
tio11 characteristics :ire ;;table 01·cr !'h::irt but 
unstable o,·er 10 11.g pcri1)ds . or \\'hen th2 <:0 ii­
males of n ·11c:i ta bility :ire much hif!hc r tha!1 
those oi heritnbil ity. it may IJe worthwhile to 
select for suprriority in liiciime pcr iorm:ince. 

It is the aim of this JXtpt' r to ~how that the 
thcon· of the selection index (Fairfi eld Sn:ith . 
1936 ; Hazel. 19-iJ) can be used to de,·clop nn 
index for li fetime production . ll'hich has been 
called a "performance index'' . This inck -.: 
should be used in selection based on one 
record fur each tra it. 

t Th i\nks arc , lui.; 10 f!rc,ft:PIJ;t P I'\. ~k)l.l~on oi 1.h~ ~rh·Y,I 
nl \\"oo1 T l.chnoi,i\";r . l'nin~r:i t~· vi , ~~:•\· ~?u:I! \ \ 3 r.c n!w 
, u.,.t:c~tt'd lo u, tl:t· H1 li jE~~ 0 1 . du;,: 1:l\·t'.n_:1!a1 1•:1 , to . .\Ii" .. 
JJ ,-\.n :\c'-'l4..·n Turrwr vi t i:~ J( .,.1.;ion 0 1 . .; n,:-,::if G t·i,tt :,· .. f.,~ 
h('r ,or,1rnt',th on t lit· 1r.~:-. 1J•( ript 3 :111 10 .\11; •• . TurM•r. :u,d 
)fr. C. II. S. n ollin~ flf t;".l· .. .Jmt• U in ... i:rn (,,r ma .: 1111; , ·.a1!~1Jl1· 
ll•e J~u a w,,•J in tht· uu:nr :-i\J I c:xa:·1!,h·. 

Theory 

Pcrjor111a11cc Index . The theory of the per­
formance index can be adapted tfoectl y irom 
that oi the selection inclex. Ti SCl'eral traits, 
X1 , X'.! , ... . Xn, a rc under !-election the ob· 
sen·ecl l'alue oi X1, x1, rnn be ll'ritten as: 

X1=g;-J- f1 
where .!!i is due to genetic and i1 lo cm·iron­
mental ·fac tors . .-\ selection index in the form 
of: 

Z= }:1b1X1 (1) 

can then be con:;truc tcd . Th~ b1 1·alucs in the 
selection i11cJc.x are calculated such thac Z 
ca n bes t discrim inate IJct,recn the total brccd­
in~ 1·a l11t's of animals H = ~1 a1 g;, the a1 being 
the prcd0(crmin,'d ~":onomic 11·e:i3ht of X; , lf 
x1 is rewrit ten as : 

x1=sd-c1 
ll'!it~re !, ; is due to factors cau~ing perm:rnc11t 
diffe rences among ani:nal:n! 11d e1 to tcnir;:irary 
en,·ironmc·ntal effects (s1 and c1 are as;;11111ed to 
IJe: s tr1 ti:;ticaily indepcndenl) a periormance 
indc-x ana logous to lh.! seicctio11 index c:m be 
construckd . The pc·rforrnance index ca n be 
ll'ritten as: 

(2 ) 
where k; a re 1·alues calculated such tha t \\' 
can be::: t disrrimina tc among the total produc­
tion l'a luc·s, :'-f= ~1 a1 s1• Our problem is to find 
the npprnprialc 1·:ilucs of k1. 

If \\' has l'ariance <F" \I'. thrn the gain in 
lifetime prod uction 1·alue per an imal af tcr se­
lection is : 

(3) 

where B~1. 11• is the regression coefficient of 
:'II on \\' , and 1 is the selec tion difiercntial of 
\ \" in stand:ird clel'iation un its. 

To obtain the greattst gain in :'-I. ll'C re­
quire thereiore t~ maximize 6 :\l for any 
g i-.·e:n selection cliil'c·ren tiai 1. \\'hich is cq uil';t­
J.:nt to maxim izing B~1.11· 11w. By partial di f­
ferc:n tiatiun of the :atter expression ll'ilh re-

SOo 
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spect lo the k; and equating to zero, the op ti­
mum k val ues can be calcula ted as : 

· k= P - 1 S a, or k1= ~·,r P 1
•1 S~r a r, 

i = J, ·2, ... n ( 4) 

where: k=::olumn , ·ector of k1 
P- 1= inverse matrix oi P \\'ilh elements 

ptl 

Pli=µhcnolypic co,·a riance bel\\'een 
x1 anrl XJ 

S=malrix of S1; 

Su=covariancc be tween s1 :incl ::-1 
a=column ,·cclnr oi a1• 

l\TatriCl'S P and a arl' well known and S 
may be construc lc·cl by c:-timales of tht' be­
lween-aninwl componc·n!s Su calcu la teJ in the 
usual manner ( table J) . 

An interesting special case of ( 4) is ob­
tained whc!1 the traits under se>lection are in­
dependen t. ln this instance \\'e ha,·e S;;= P1i= 

l 
0 and 1'11=-

1
) so that : 

S11 
k1 =a1-

P11 

II 

·rh . Sil . 11 k I e quantity -p 1s genera y ·110\\·n as t 1e 
II 

repeatability (l) of the tnd X.,. \\"hen one 
recorcl for each trai l is arnilablc on the ani­
mals to be selected the iwlr ;,; reduces to: 

II 

W= }; a1 !1 x; 
1- 1 

(5) 

Equc1tion ( S) is abo useful as an approximate 
index when the phenotypic correla tions be­
tween traits are small. 

As a decision will frrq uen tly ha \'e tu be 
made bPt\\'CCn this pcriormance in dex and the 
standard selection index. it is of int<:rest to 
note that the correlation L<:t\\'C'en the l\\'O may 
be written as: 

(6) 

where u r, is the standard deviation of the se­
lection indc:c 

TABLE t. :\:\AL\'SIS OF \'AR!:\ :\CE . .\:\D CO­
VARl :\J\CE \U-I E:\ n .-\:\1.\ l:\I.S . .\l~F. >IE . .\S­
UREU FOR T\\'0 '1 R.-\ ITS X, ..\:\lJ X 1 1:\ q 

S·rnrcc of \':lria tion 

Be twcc-n yea rs 
H~twr<'n animals 
Years x a nimal, 

• For v;u iance i=j. 

YE,\l~S 

Drf! rcr~ 
of fr.-~d orn 

q-1 
n - 1 

(q -1 ) (n -1) 

\'ariancc • and 
co,·ariancc 

cornpo nc·nt~ 

E,i +n Y,1 
E, i-t-qS,1 
Ell 

Expected Phc11otypic awl Genetic Gains. It 
is al\\'ays clesirabk to predict both thl! phcno­
typic and genetic changr:; in indi,· iclual tra its 
which arc likek to follo\\' the use oi am· index. 
and in the ()1:Cscnt case it is also useful to 
compare the total economic ga ins . so tha t a 
clwice c:i n be made bet,rc·cn the selection and 
performance indices . The follo\\'ing formulas 
for these gains may be verified . 
(i) Expt'c ted gains by u,;ing \\": 

( I ) (a) Gain in :.\I , 
~:.\l= B)r.W (f\\' T= aw r (7) 

(b) Gain in S1, 
~ kJ S;; I 

~ S1=-J -
<T\\' 

(8) 

(2) (a) Gain in II, 
G .- -.;: ._ a1 kJ Gu I (9) t:;, \1--1 --J 

CT\Y 

where GiJ is the CO\'ariance bct\\'een 

g1 and gJ 
(b) Gain in gi, 

• k; GiJ 6.gnr= ::f.; - --- r 
CT\\' 

( ii) Expected ga ins by using Z: 

( J) (a) Gain in H, 
.lG:=:ai 1 

(b) Gain in g1• 

. b; G11 t:;.g,= ~i --- I 
<Tz 

(2) (a) Gain in :.\[, 

t:;.?llr.= ::::, ::::j a , b1~ I 
II'/, 

(b) Gain in S1, 

A _ ..,_ b; S,; I uS;r.--J --
117, 

Numerical Illustration 

( 10) 

( I I) 

(12) 

( I 3) 

( 14) 

Data from 62 11nselrcted :.\ferino e,,·es of a 
medium Peppin st rain, run at the Xational 
Field Station " Gilruth l'lains" Cunnamulla 
"·ere u:-::cd in this illustration. The ewes were 
born in I 94S in the ··Cont rol'Group" described 
by T11rner ( l 953), and records oi clea n wool 
\\·eight ( X. 1 ) and crimps per inch (X.~ ) for 
each animal were iir:;t t:1kcn al 15- 16 months 
of age on 10-- 11 months' wool growth. Ob­
ser\'alions of the.~e charactC'rs were ma(!e an­
nually for four consrcuti\'c years after the 
firs t samplin~. From thc:~e data a performance 
index can be con~truc tecl ior the selec tion of 
similar e,rcs at J 5- 16 months of age. 

I_ 
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TAIH.E 2 . . .\:>:.-\LYSES OF \'.\Rl.\:'\ C:E :\:>:]) CO\',\ R l:\:'\C E FO R RECOJWS OF CLE.-\'.\ \\'OOL 
\\'EIGHT (X , ) . .\'.\D ClU:'11 l'S P E R J\ C ll (X d T ,\ KE :--: FR0:'11 02 E\\'ES 1::--i .'i YE.·\RS 

Source D rgrccs ·lll e:i n !qua re 
of \'arhtion of irccdom (X ,) 

Between )'l"a rs 4 JS.20 1 
ll~twccn ewes 6 1 3 . J.\O 
Years x ewes 24·1 0. 332 

J{ccords of cka n wool ,n' i~dit \\'ere first 
corrected lo a con"ta n l g ro \\·th .. pcri,id of .% .'i 
days. From the records a t 1irs~ shrarin.~ ,·al ues 
of 1'11 = 0.7 7i i , P 1~=- .iS63 and r~~=3.7-13S 
were obtained . Es timate,; oi S;i were made 
from anah·~cs of ,·a ria ncr :rncl covariance 0 11 

the records for fr\'e , ·ears. The results arc S\1111· 

mari7.ed in table 2. · 
J-faving obtained thr C's timates oi l\i and 
, t he 11ext s tep is to tind sui table economic 

.dghts for X 1 and x.~. D u nlop a nd Youn,! 
( l 960) estimated lhc economic weight ior 
crimp to be approximately 25 units ii the eco­
nomic weight o f clean wool is to be taken as 
100 units . l' sing these cstimales the k 1 ,·alues 
can l,c calcula ted as : 

Compon~nts 
Co \'ari:m rr ;\lean square 

(X:X,) (X, ) X, x.x, X, 

-12. 2i .\ I0. 95i 
-3 . 513 16 . 30-1 0.561 i -.68-15 2 .SJ39 
- .090 2 . J.H (Su) (S,. ) (S:,J 

Jn the cakubtions oi the accomp:i nyin~ 
incre:ise in genetic ,·:dues. the herita bility 
estimat e ior both rlca n wnol wright a nd crimp 
was taken to be 0.4 (T a llis, J9S9 ; Young 
et al., 1960 ) and tlw ~enetic correla tion be­
twee n t hem ,,·as ta ken to be - .6 (Tallis . 
1959 ). F rom these estima tes together with 
the estima tes of Pu used pre\'iously, it is es­
timated tha t G1 1= 0.31 l I , G,~= -.4095 and 
c~~= l. -\9i 5. The re-suit ing cstim::ites of ge­
neti(: g:1i11s a rc s hown in ta ble 3 (Case l). I t 
can be seen th::i t. whr n the periorm;i nce indl'x 
( I 5) is u::;ed. the sek c ted sheep may be ex­
pec ted to show · a sub;;lantia I phenotypic in ­
crease in economic \'alue but a d ecrease in 
crimp number. The accompa nying gc11etic 

[ki ] - [ O.i7ii --0.7S63 ] - 1
[ 0.5 617 - 0.6345 ] (1 00 ] 

k1 - - O.iS63 3 .i43S - -0.6S45 2.S339 25 

and we ha,·e k 1 = 64.6 and k:.!= 14.2 . The per­
formance index is th ~1s : 

(IS) 

I n actua l app lication ( l 5) may be written as : 

\\"= -LS x1+ x~ 
since unly the rclat in' rnlucs o f ind ex ~t'ores 
for indi,·idua l a nimals arc of in tere~ t. 

The expected phenotypic gains. for 
standard d eYiation o i sclrc tio n differential. 

.-·· when ( l 5) is used were calcula tC'd and are 
(_ ,own under " C:ise l " in table 3. 

changes arc about half the value of the pheno­
typic ch~tnges. 

Using the same estirna k:: .. o f a1. P1i ancl G11 
a selec tion index was ca lculated . the cneili­
cients being b 1= 32.9 :rncl h::= 6.0 . The ex­
pected genetic gains and their accompanying 
phenotyp ic ;!ains arc also shown in lablr 3 
(Case l ). The gains from the two inclicc-s are 
similar, but this is no t surrr ising in ,·ie \\· of 
the fact th:1t the correlation bet\\'ecn them is 
0.99 7 (Equation 6). This high correla tion 
means that the majority of anima ls sc•lected 
by one indt'x will also be selected by the other. 

TABLE 3. EXPECTED PJJE:--:OTYPIC .-\'.\IJ GE'.\ETIC G:\T '.\S BY THE . .\PPLIC.-\TIOX OF 
D!FFERE:'\T J:--: DI CES 1:-; T \\'0 S ITL':\ TIO'.\S, 

Case 1 Case 2 

With With With With 
performance selection perf o rm:1 nee selection 

Type of i;a in T rait ind~x index index index 

Total, (economic un its) 50. 6 S0. 3 50.6 42.1 
Phcno typic \\"ool \\'Ci~ht (lb.) 0.525 0.557 0 . 525 0.234 

Crimp; per in. (number) - . 079 - . 214 - .079 0. 747 

T otal , (economic units) 25.7 25 .8 35 .7 42.8 
Genetic \\'ool w~i~ht (IIJ.) 0.282 0.301 0. 220 0.209 

Crimps per in. ( number) - .103 -.1 74 0.548 0.8iS 

• fig urt-s in C:..:es I am! J ';\cCC computed with l \l.O differrnt S<'lS of gf' nctic parameter~. 
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Consider now an hypothetical case where 
P1i and S1i ha\·c the same \·alues as in Case J. 
but the herita bility e;; timatc5 iur X 1 and X:: 
arc 0.2 and 0.4 rcspccti\·cly and the genetic 
correlation lJM1wen them is 0.2 . Then GJJ = 
0.15, G1z= O.JO and G::::= 1.50 . The k1 \·,dues 
arc the same as in Casl' I. bu t no\r l.J 1= 44 .S 
and b::= 22. 1. The expectC'cl )!:-! ins from both 
indices arc sho\\'n in table 3 ( Ca,:e 2) . 

The correlation het1n'cn the lwo indices is 
O.S33 for Case• 2 whit h i;; l<J\\'Cr th:in ior 
CasC' I. The c~:pccted g:i ins irnm tlw use of 
the two inclicc;; this time differ markc::ly. 

Disrnssio11 

I t is reasonable to assume tha t th:! perma­
nent differences among animals arc partly 
caused J)\· the effect;; oi C':Hh- cm·ironmcnt. 
which pc;sist throu6hout the li\·cs oi animals. 
There is no justitic:llion. ho11·en·r. in assum ­
ing that the \·;-ilucs of S;1 and Su will not Htry 
with the age of the animals. T he Sil and SiJ 
est imated from the first two \'Cars' records. for 
example, may clifier from the rn lucs e.; timated 
from records co,·ering four \ ·ea rs or more. 
Since the c1im of usin '.;- a pcrfor m:rnce index is 
to sekct animals for liictimc product ion. it 
is suggested th:1t. for higher eiriciency. SIJ 
should bt• c~t imatcd from records at as man\· 
ages as possiblc. · 

From the numrrical exampks summarized 
in tal.Jlc . 3. it is clear that in ~omc situation$ 
the use of eit hr r kind oi ind ex ll'ill lead to 
similar phenotypic and grnctic gains in eco­
nomic \'c1 l11c. Tt is intcrcstin ~ to note that al­
though gains in \'alue;; are a lmo,;t identical. 
changes in indi1·iclual traits arc not nrcessarih­
similar. For e:-::1111plr. in Case I. the use of a 
selection index 1rill lmd to a s lightly greater 
gain in \l'OOI ll'L'ight and a m:JrC apprecia hlt> 
decrease in crimp than \\'hen a periorm:1 ncP 
index is u::ecl. Tn othC'r ~itua tions . :::uch as the 
hypothetical Case 2. the applic:1ticn oi differ­
ent kinds of indices 1rill lead to q uite different 
expected g:iin:; in values as wdl as in incli­
viclual traits. and one index may be superior 

to the other. The suitabilil,· of difiercn t ki n: '.s 
oi indices \\'Ould, of course, ·c1 c.:pc11d on the rela ­
ti\'c import ance of genetic :md phcnotypic 
gains to pnrticubr breeders of dific.:rcnt li\·c­
stock. 

Il is of interest to poi nt out that the meth Jd 
of independent culling lc\·cls may also lL' 
used in the ~d ec tion oi animals iur lifrtim~' 
production. Formulae clc\·clopcd by Ha zel :lll ; 
Lush ( 19-1 2 ) and Young :111d \\'eiler ( 1%0 ) 
can readi ly !Jc adapt ed for this purpu~c 1,y 
substituting the parameters Sil and Sil for 
G11 and Gu. 

Summary 

The theor~· of constructing a performa1ice 
index which may be used in the selec tion oi 
animals for phenotypic gains is presented . 
This index is compared \\'ith the genetic :=.r 
lection index and numerical exampl es arc use. 
to illustrate how the use oi each index is 
likely lo affect genetic and phenotypic gain s. 
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Glcbc, N .S. W., ,i ustralia . 

The theory of the general. unrestricted selection index as applied 
to animal breeding is now well known. HowcYer, litt.le attention has 
been given to the problc!mS of conditio1~al selection which may occur 
in practice. Recently l{empt hom e and ?\ordskog [Hl59] presented an 
interesting method of maximising genet ic progress under the rest rictions 
that progress in certain linear genet ic functions be zero. It is the 
purpose of the present note to extend the:'<: methods to the case of 
sclectiou fur n11 optimum genotype. 

Jn the sulJsequc11t de1fra1,io11s the assumptions and 11otntion, with 



( 

( 

(_~ .. 
6 

( 
.... ~--~ - ~---

QUERIES AND NOTES 121 

trivial changes. will be those of Kcmpthorne and Kor<lskog. For 
convenience, the relc\·ant notation is summarised below: 

Pi = phenotype of 1:th cha racter, 
g, = addit iYe genol.ypc of ith character, 
e1 = non-add it ive genotypic plus ad<lit iYc environmental contri-

butions to phenotype, 
a1 = economic wcir;ht of ith charackr, 
I = L7-1 b;p, = b'p = selection index , 
lI = L 7-i a;g, = a'g = genetic vn lue of an individual, 
P = phenotypic vari:incc-cornriance matrix, 
G = genetic vari:rncc-covariance matrix, 
G, = r X m matrix obtained from G by delet ing t.he last m-r rows, 
~, = selection d ifferential of I, 
u~ = Yari:.rnce of I. 

The usual genetic model p, = µ; + g, + e, , where E(g) = E(c) = 
E(oc) = 0, will be used in the following developmrnt. 

Suppose now that. 111. characters, 1), , i = 1, · · · , 111, are to be used 
in a selection index, I = b'p, and tha t ult imately r of these arc required 
to be altered by an amount h; , j = 1, · · · , r, to bri ng them to their 
opt imum values. .r.fore explicitly , if 11 1 is the population mean of p; 
prior to selection, then an aim of the breeder may be to change ,u; to 
µ; + k; , j = 1, · · · , r, wliile allowing ~,,. 1 , • • • , µ m to incrcarn without 
limit.. A mathema tical solution to this problem is obtained by con­
structing a select ion index to maximise gain in JI = a'g suuje:c: t to 
the r restriction s 

j = 1, ' ' ' I 1' 

where a is a constant of proport.ionality. The expression Cov (g; , I)/u~ 
is the regression coefficient of(); on I, and hence the restrictions rcqui !·c 
that, for a gi\'cn ~r , the expectat ion of{]; be changed by an amount 
proportional t o k; as a result of selection. 

The solution to this problem is obtained as follows: Let Q = 
E[(p'b - g'a)'(p'b - g'a )]. then Q is to be minimised subject to the 
restrictions Cov (g ; , I) = k 1 , j = 1, · · · , r. Thus, introducing the 
r Lagrange l\Iultiplie:rs A; , the required expression to minimise is 

. 
u = Q + 2 L X; Cov (g1 , I), 

1~ 1 

= Q + 2 t A;( t Gub,) , 
= Q + 2b'G;,., 
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with respect to the b; . Vedor differentiat ion g;i \'es 

1 OIL I 2 ab = Pb - Ga+ G,?: = 0 , 

and solving for b, using the equations of cond it ion, G,b = k, we obtain 

G,b = lr = G,P- 1[Ga - G;:i.J. 

)f the nboYe equation is sol\'l'd for?. and Lhe result subst it111cd iii t.hc 
equ:1tion for b, the fina l rn:1l rix solution is 

b = [I - p- 1 G:(G,P- 1 G:f 1 G,)P- 1 Ga + p - 1 G:(G,P- 1 G:r 1k. 

Since this index has been ro11st ructcd rn t hat CoY (g; , I) = /;; , it 
follows that. a = o,/ cr~ . :.IorcoYcr, it is a lso d ea r thnn when k = 0, the 
abo\'e expression reduces to the formula of E em pthorne and ~ordskog 
nnd whcn r = ~ b = G- 1){1:l., The dege11er:1te c::isc r = 0 giYcs the 
ordinary unrestricted selection index, b = p - 1Ga. 

After approximately l / a applications of this index the cknudt>rS 
P1, • · · , 7,, arc exptctPcl to n·:irh th<·ir op timum \'al11es whilt- ch:\ r:1ctcrs ... " <.,,, r 
7J,• 1 , · · · , 7J,., will l1ave madc_µ nu ximu111 genet ic ad\':rnrc under tlic 
specified rest.rict ions. Because of the nccurnuhted errors i11 the use 
of suc:h indi('cS (,we Tallis [ H)GOl) , i his icknl "·ill probably not be achie\'ed. 
T herefore, the index should be rccalcubtccl from time to time as actual 
p rogress is as:':cssed. Th is .will inYolYe sui taulc r1d justmcnts to the 
k 1 and/or the estinin.tcd G and P matrices ns more infonn:1t ion comes 
to hnncl. · 

T here nrc seYcrnl examples in nnimnl industry where the index 
presented in this p:1per may be of u:;e . For in ;,;lan('e, in wool product ion, 
(.he m:1 in selection chi1rnc1cr i:; ficccc weight, although other fc:Hures 

.of the fleece may also be import:1i1t.. Th us, :1 selcct.io11 inclf•x m:1y l,e 
required to in c: rca~e t he a\'crage fl rcte weigh t of the flock ns much ns 
possible while stnbil izin; :=-taplc le11g:th :rnd crimps pe r inch nt. optimum 
valuc·s dct cnni11ed by the market.. :\notl1cr example is in ment pro­
duction where maximum progrc~s i11 amoun t nml economy of product ion 
is required, nccomp:1nied by mirior changes in t·crtain t :1r<·ass chamc­
t eristics. 
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l l\T lWDUCTlO~ 

The theory of selection involving one locus nncl two alleles, A nnd 
a say, is well established and has bcc11 discussed by Li [1055]. The 
case when there nre three a lleles has rccci,·cd the attention oi Owcu 
(1951) n11<l Li [1955], while the gcncr:11 mulli-:dlclic situation bas been 
invest igated by Eimurn [1%GJ, .i\fandr.l (1059), and Ei11gmnn [19GJJ. 

It is the purpose of the present paper to propose an algorithm for 
find ing nil the equilibria of a /;-nllclic sy stem and for testing for st:1-
tio11arity. 13y identifying the situation with the problem of the maxi­
mization of a quadratic form with a simplex as domain, elcmelltary 
m ethods of quadratic programming can be employed ~o generate the 
required solutiolls. 

Before embarking on the gener:i.l case, it appears ndvisablc to 
review briefly some of the basic results of the two allelic situation. 
We consider the situation illustrated in Table I. Notice that the 

Genotype 

AA 
Aa 
aa 

Total 

T ABLE I 

SELI:CTI0:-1 I~ A 2-Al,1,r. LJC SYSTE ~ 

Proportion Fitness 
I lV 

p' 1 
2pq 1 - &1 

q' 1 - 82 

1.00 

JW 

p' 
2pq(l - S1) 

q1(1 - s,) 

1V 

p opulation is assumed to be pnnmictic and that the averngc fi tness of 
all genotypes is lV = p: + 2pq( l - s1) + q: (l - s2) = 1 - 2q1q - s,q: . 
The coeflicic11ts s1 and s. can t:ike any values less than or equal to 1, 
nnd therefore nn.r selective situation cnn be obtninc<l by choosing them 
a ppropriately. ?\ow, flq, t he change iu the gene frequency of a, can 

121 
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be expressed in the form 

1::,. _ ,. d lo;?; TV 
q - ~pq dq 

which is clue to ,vright [Hl42]. 13y u~ing the form TV= p 2 + 2pq(l - s1) 
+ q2 (1 - s1 ) and tnking the parli nl cl erirn.tive with respec't to q, we 
have the alternative expression 

A 1 {a log 1fr ?} 
~q = Q'i cJq - ~ ' 

which finds a gener!'llizat:ion when we consider /:, alleles. 
In order to dctcnnine equilibria, we equn.tc tJ.q to ze>ro and solve 

for q. T hus, if we let D.q = f (q), say, then f (q) = 0 defines an equilib­
rium vnlue of q. In order to cl::issify q as to its stability, df(q)/dq is 
calculated aud 

1) if d/(q)/dq < 0, then q is n stable equilibrium, 
2) if d/(q)/dq > 0, then q is nn unstable equilibrium, 
3) if q = 0, 1, then the equilibrium is trivially stable. 

These ideas will be used in a more general form iu tbc follo\,;-ing 
development. 

TUE CASE OF k ALLELES 

We now consider the case where v;e have k !'lllclcs, A ,, of frequency 
p, (i = 1, 2, · · · h), and define "Y,, = 1 - s" as the co'eificient of fitness 
of genot.ype A ,A; , where s,,. is ihc coefficient of selection and i, j = 
1, 2, · · · , k. Under panmixia and prior to select.ion, we have the 
genotypic array II: p • .-1 .r, while after selection it ls 

L p;p;')'i;A;A, (1) 
(.; 

which can be written in matrix form as p'yp = TV. The quantity 
lV is, by definition, the avern~e fitness of the population. The new 
frequency of A,, vii), after selection is given by 

(I) ""' -p, = LJ p ,JJ;"l'u/W 
; 

r: ½p,a log TV /ap, , 
treating all the p, cs functionally iudependcnt for the purpose of differ­
entiation. H ence we have the matrix result 

p<1
> = ½D(p)cJ log p'·rp/ap 

where D(p) = diag (1>1 , P2 , · · · , p1,). 

(2) 
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Now for nn equil ibrium we must h:we p 01 
- p = tip = 0 and 

therefore 

tip = ½D(p)a log p'yp/ap - p = o (3) 

is the required cqun.lion to be solved for p. Thus 

iJ log p'1p/up = 2 

and, if we formally complete the differentin.tion we obtain 

rP/ P'rP = 1 (4) 

whence 

p = .,..-11>. (5) 

where >. is chosen so that l'Jj = 1 = (1'.,..- 1 1)>., l ' = (1, 1, · · · 1). 

T herefore>. = (l'y- 11)-1 und 

p = .,..-1 1/l 'y- 1 1. 

But., nllhough p is normalized, there is in gcner:11 no gmmntee tha t 

nll its components nre grenter tli:rn zero and the problem of fi nding 

the equilibrium points must therefore be exnminecl rnore closely. 

We note here also t hat the equil ibrium fi tness is 

fi 'rfi = >..2l'·f- 1l = >... 

We consider next the following slntion:i.ry value problem : 

Find all the stationnry vnlues of Q(p) = p'yp subject to the con­

straint, p'l = 1. Vsing the slancb rd Lngrnnge procedure we find 

aU(p)/ap = o = aQ(p)/ap - 2x1 

where 

R(p) = Q(p) - 2>.(p' 1 - l), 

and this equa tion leads to 

P = r - 11>. 

which is clearly of the form (5) with X = (l'y- 11)-1
• Thus, the problem 

of fi11<li11g equilibrium points can be formally identified with the nboYe 

stationnry vnlue problem. 
Howe\·er, in order to fi ne! permissible station:iry values, that is 

values which lie in the (k - 1) dimensional simplex with yerti ces 

(1, 0, 0, · · · O), (0, 1, o, · · · , 0), (0, 0, 1, · · · , 0), · · · , (0, 0, 0, · · · 1), 

it is necessary to impose the further constraint p ~ O, i.e. p, ~ 0 for 
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all i . We proceed by writing 

tip = D(p) {·rp - I:\ ) = 0. (6) 

and "We introduce the following notation. I.et ,(i) be the 'reduced' 
matrix obtained from y by deleting the itli row nncl column, with 
a .simihr definition for y(i, j), 1· ;,!! j. Then it is ck:H· from (G) that 
some of the components of p may be 7.cro and, therefore, nll possible 
solut ions nre found by first $Olving (G) for p ~ 0, ~hen deleting p, 
to obtnin the vector p(i) nnd usinq y(i) for all i to obtain I. more solu­
tions. The process is continued using y(i, j) for nll i ;,!! j, and so 01~ 

unti l all possible combinations have been investigated. In this fashion 

(k) + ('~) -1- ( ';) + . .. + ( k ) = 9l _ 1 0 1 2 k- 1 ~ 

solutions nre found, nnd we call the set of these solutions P. P may 
contain some \'ectors with negati\'c components nn<l these nre climiuatecl 
to gi\'e the reduced set of solutions i". 

We have now found all the points of equilibrium, P, and it is only 
necessary now to determine which ones arc stable. We observe that, 
if p is a. vector corresponding to a stable equilibrium, then li7J, > 0 
when 7J; < 7i, nnd t::,p, < 0 \\·hen p, > 71, for all i = 1, 2, · · · , k - l. 
It is then clear that p corrc~po11ds to n local maximum of Q(p), and 
Pt is 110\Y \\'ritten as 1 - I:~:: p, by use of the constraint relation. 

Altemati\'Cly, we can \\'rite ·r = U - S, where S = (s,;) nud U = 11' 
to obtnin a minimization problem. T hus 

TV = Q(p) = p'(U - S)p = 1 - p'Sp 

nnd (G) becomes 

D (p)!Sp - D. } = o. (7) 

Clearly any vector maximizing Q(p) minimizes p'Sp nnd the whole 
procedure of obtaining P cnn be applied using S instrcnd of 1 . This 
has n slight u<lvantngc when applying tests for the type of extrema. 

In order to investigntc the n:1turc of the stationary values in P 
we calculate the (/; - 1) X (k - 1) mntrix O = (0;;), where 

O;; = ½ a2
p1Sp/up, ap; = S;; - S;t - Su + Sa • 

Thus O can be obtained from S by subtracting the Just column from 
the firs t (k - 1) columns and then subtrncting the last row from the 
fi rst (/; - 1) rows. The kth row and column arc then deleted from 
the resulting matrix to give 0. 

To illustrate the method of t esting for a stable equilibrium (a 
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minimum of p'Sp) supporn the Yector f> c P where p has all components 
greater than zero . Then to determine whether or not p is stnble, 
we form nil the (/.: - 1) determinants of the principle minors of 0. 
lf these det ern1in:rnts nre rt ll po:Sit i\'e, p is stnble. This same procedure 
is followed for all the reclucccl Yectors p(i) c P by using the appropri:1 te 
reduced form of O obtained from S (i) . In this fashion :ill elements 
of t> can be tc.:; ted nnd clas:;ified as to whether or 11ot the equ ilibrium 
is a stable one. 

If either y or S is singular, then equ:-ttions (G) or (7) can be solved 
for p using generali:.c:ecl in\'erses of ·rand S. Tints, for instance, fi = S' L\ 
nnd >- = (l 'S' l )- 1 where S' is n matrix such th:1t SS0S = S. A"' before, 
the test as to whet.her or not, Ji is stable depends on 0. However, note 
that, it is necessary that 

rank (I,) = rank(~,) = k 

if a stable equilibrium is to exist with k positive gene frequencies. 
We will now illustrate t he abO\'C methoJs by est.ablishing a result 

due to Wright (Li [ H);j5J, p. 2GO) on select ion for heterozygotes. The 
assumption is tha t all heterozygotcs (A,A;) lia\'e cqu:11 fitness, unity, 
nnd the homo1.ygotcs (A i:l ,) haYe fitness (l - s;) , The problem 
is to find the st:ible equilibrium (if one exists), p wi th all components 
of p positive. 

The solu!ion. is obi:1inccl almost immedia tely. · -~'he mn.t ri.'.: S = 
di ng (s1 , S2 , · · · sk) nnd we h:we from (7) 

It is now ob\'ious thnt i> , = s;1/L~-; s; 1 and the equilibrium is stable 
provided s, > 0 fo r nil i. 

Suppose, no,v, k = :3. Then in the nbovc case there are 2~ - 1 = 7 
equilibrium values. These arc 

P• = 1, 

fJ2 = 1, 

Pa = 1, 

P1 = s; 1/(s; 1 + s;1
) and P2 = s; 1 /(s; 1 + s;1

), 

p1 = s; 1/(s; 1 + s; 1
) and JJ3 = s; 1/ (s;1 + s;1), 

P2 = s;1/(s; 1 + s; 1
) and p3 = s; 1/(s;1 + s; 1

) 
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for i = 1, 2, 3. 

These eq uilibria nrc all stable under the obvious condition ihn.L the 
s, iin·olYccl arc greater than ~cro. 

We consider finally t.hc sit uation where all homozygotes haYe unit 
fitness nnd nil hctcrozygotes h:wc fitness 'Y = 1 - s. Uuder these 
circumstances y is of the form 

1 'Y 'Y 'Y 

y= 'Y 1 'Y 'Y 

'Y 'Y 'Y 1 t Xk 

nnd it. is now nccess!lry to calculate y- 1
• We nssumc that ..,- 1 is of 

t he form 

a b b b 

-1 y = b a b b 

b b b a kXl 

and soh-c the iwo equations 

a+ (k - 1)-yb = I 

b + [(k - 2)b + ah = 0 
for a nn<l b. T hese equations have n. unique solution and, since we 
require y - 11 = l (a + (h - l )b) , we obtain p = 1(1 + (/;; - l h )- 1>,. 
after some nlgcbrn.. However,>,. = (l'y- 11)- 1 = [k(l + (/;; - lh)- 1r 1 

and hence p, = 1//; fo r ::ill i . (This neat method of inverting y was 
suggested l o me by Dr. Charles Rohde.) 

It turns out that in this cnse O h n.s the form 

-2s -s -s -s 

0 = 
-s -2s -s -s 

-s -8 -s -2s Ct-l)XCl-1 ) 

and it can bo shown that the determinant of 01 IOI, is k(-s/- 1
• This 
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shows cknrly t hnt the cl eterminants of the princip:il minors of S alternate 
in sign if s > 0, are all zero ifs = 0 and nre all positive ifs < 0. Thus, 
for s < 0 :m cl k = 3, say, the non-trivial stable equilibria nre (½, 1-, }), 
(½, ½, 0), (½, 0, ½) and (O, ½, ½) . 

The aut hor i.s gratefu l for n, number of references which were brought 
to his attention by a referee and Dr. ?-.fandel. 
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A Migration Model 
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I INTRODUCTION 

A model for migrntion, first introduced by Wright, is discussed by Li [1055], Chapter 21. Basically, the asswnption is that the total population is subdivided into k isobles .. w , i = 1, 2, · · · k, each 
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und ergoing random mating. The size of the groups is considered to be 
suffici ently large and of equal size so lh:1.t. the genotypic urrny for the 
ith group for n, single locus and two alleles is 

'll'rn = (7J~AA + 2p,q,.A.a + qfoa), 

,-..,here p, is the gene frequency of ,1 in 1r co. Under these assumptions the 
mean and Ymfonce of group gene frequencies are 

{j = I: q;/k and er; = L (q, - g.)2/k. 

It follows immediately that the genot.ypic array in the whole popula­
tion is 

11'< .> = ((f/ + cr;) AA + (2pQ - 2cr;)Aa + (§2 + cr;)aa) . 

If the groups arc of clifrerenL sizes, the above results nre suitably modi­
fied by introducing appropriate weights. If w, is the correct ·weight for 
group 1:, I:~ w, = 1, then define 

l 

q = L w,q,. an<l 
2 

(T = • 
l 

" 2 -2 L., w,q, - q 

and the aboYe reprcsentnlion of,.<·> holds. 
'£0 introduce the notion of migrntion, suppose now that each gtoup 

exchanges a proportion m of its members wiih a. random sample of the 
tota l popubtion e,:ery gcner:ition. If q, is the gene frequency of the 
parLicular sub-population under consideration thcii q: = (1-m) q,+mq. 
1foreoYer, q, - q is Uie cleYiation of gene frequency prior to nugrntion 
which after migration becomes q~ - ij = (1 - m)(q, - ij) . This 
shows that the variance a! is altered to (1 - m)'cr! as a result of mi­
grnt.ion, emphasizing the fact that, under the assumed model, migra­
tion tends to make a ll the q, equal. 

II TIJE NEW 1IODEL 

As above we consider h isolates with gene frequencies q(r.>, i = 1, 
2, · · · , k at the beginning of generation n . Let the qunnti ties m,; and 
m;, be the proportions ·of migrants from isobte j to isolate i and from 
isolate i to isolate j respectively : 

1-

I_s_o_:a_t_e_, '-- - - --

11

-

1

·

1

_' -----t,o:ate I 
1n, , 

We will also assume initially that t.he matrix M = [m,;] is doubly 
stochastic. Then, since q\"+ 1> = L~-1 m;;q)">, we have the equation 
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whence 

q <•+t> = Mq <•> 

q c .. , = M~q co, 

411 

(1) 

(2) 

where q'01 is the vector of gene frequencies for the k isolates at genera­

tion zero . 
The mC'an gene frequency nt generat ion n is k- 11'q'"1 = fj1"1 = t/0 >, 

where 1 is a Ycclor with /; uni t components nnd the vnri:mce V(q'"1
) 

enn be put in the form 

V(q'">) = k- 1q<">'[I - 7.;- 111'Jq<•>, 

where I is the (k X k) identity matrix. If q 1
"

1 lends ton. \'ector of the 

form l q., , with q .. some const:rnt, then l'(q<"1
) will tend to zero . On 

the other h:rn<l, if q1
"

1 tends to some wclor q'"'1 which is not of the 

form l q., , then l'(q1
"') i·ill not tend to zero. Finally, it may happen 

that q <•> docs not npproach a limit as n gets b rge nnd in this case no 

equilibrium is ren.ched. 

III EQUI LIDnIA 

In order to make some progress with the problem of cxammmg 

equ ilibrium Ynlues, we will assume that M:, in addition to being doubly 

stochast ic, is 11011-siugubr and similar lo a diagonal matrix. Under 

these conditions, we h::we the following result. 

'l'heorcm 

(a) If M has complex latent roots of modulus w1ity, q <n> docs not 

tend to a limit . 
(b) \\"hen M has no complex roots of modulus one, and the multi­

plicity r of the largest latent root, (A1 = 1) is one, q1
"' tends to the 

Jimit 1q'01 and T'(q'"') tends to zero. 

( c) U ndcr the conditions of (b) and with r > I, q 1"
1 tends to a 

limit q <•> which is not ncccsrnrily of the form Iq'0 ' and V(q 1
"') m ay not 

tend to zero. 
The proofs of these stntcmcnts will not be given in qetail since 

they follow directly from t he spectral theory of stochastic matrices. 

In fact, (n) is ob\·ious and (c) can be verified by examples. In the cnse 

of (b), M" t ends to the matrix 1.;-
111' and q'·' = k- 1ll'q '0 ' = 1q'0 ' . 

The above theorem emphasizes the dependence of the equilibrium 

gene frequencies on the matr i.~ M. This is in contrast to the more 

elementary model discussed earlier where, always, q<•> 7 1q'0'. 
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IV UNEQU/\L POPULATlON GROWTH 

Suppose that the k i~obtes are not all of the same size at ~cncrntion 
zero, nud let these sizes be gh·en by the vector w<0>. Moreover, if M 
is only sin~Jy stochastic with I::- 1 111,; = 1 and I:~-"': m d = O; , say, 
then ,re have the situation of diifcrcntinl growth ninong t he isolates. 

To dist uss this case briefly, we assume fo r simplici ty th!'tt M sati .,:; fi es 
the conditions of (b) of the th<'orem. The population sizes nt generation 
n are given by w <n> = I\1"w<0

' aud w <- > = 1;- 1x1l 'w<0
', where x, is the 

right eigc1weclor corresponding to >., = 1 and xp = k. 
Similarly, if we let -yj0> = wj0 >qj0 >, j = 1, 2, · · · , k, the distribution 

of 'gene mnss' fo r allc:!e a nt g<mcrations zero and n arc giYen by y<0
> 

an<l y <"> = M"y<o> respecti\·ely. Clearly, qi"' = 'Yi"> /w\0 > nnd q)"'' = 
<"'>/ ( o>) 1 - 1 / - co>// - > , - co, -co, , ~ t ' J tl t -<•> "(; W ; = ,; X 1 ; ;-y ; Xi.t:W = <j • _., o ICC n SO ltl CJ = 

I:!-, 1Ci">q'."'/I:!-i w\"' = l 'M"/0'/1'.M"w<o> = i/0
' , as it sho\ll<l. 

The author is indebted to the referee for valuable comments on 
the original draft of tLis 11ote. 

REFEHEXCE 
Li, C. C. [1955). Population Gc11Glics. The Unh·crsity of Chic:igo Press. 
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SUM1fARY 

Growth and development can be rccnr<led ns n stochnstic process iu continuous 
time. l\ l oreover, in some ;;itunlions of prim:iry production, cer!nin growth patterns 
may be more cconomicnl, or otherwi~c more des irable, tha n others. In this pnper an 
attempt is mnde lo dP.velop lerhniq11('S which could be u~ed to exert some sel"ct ion 
pressure for optimal growth curves. 

A discrete solution to this problem is suggested which should be relati\'Cly easy 
to npply in prnclice. H owcver, t he complete di8cussion of the silur.tion requires 
t he introduction of certain in tegral equntions lo replace the usual m11t rix cquat:ons of 
the classical theory. The com·entionnl phenotypic and ndditivc genet.ic cov11riance 
matrices give wny t0 continuous kernels nnd, ns expected, it i., found lhnt the contin­
uous and the di3crete thcoriC's are simibr. The u.;;ual c:isc of unrestricted 5clection i.,, 
nlso developed for t he continuous time model nnd the selC'ct ion of severa l characters 
towards respective opi im:il curves s:rnultaneoufly is also treated. 

T wo <li!Terent. 11umericnl procedurC$ for solving the intcgrnl equations nre 
p roposed . · 

INTRODUCTION 

In this pnpcr we con::idcr the growth curves of animals. These may 
be regarded ns the realization of a stochastic process P(l) wi th expecta­
tion function µ(t ), t ~ 0. Suppose no,\· (.here is an optimum cmTe a (t), 
then the problem is to construct a selection index, I, which \\·ill grndually 
move µ(l) to a:(f) at some or all points t c [0, a]. 

DISCRETE SOLUTIOX 

We first consider the problem of changing µ(I ) to a(l) at well­
defined points l , , i = l , 2, · · · , n. T hese points may be considered 
as definiug critical stages in the growth cycle of the animals. Jn order 
to make progress, we assume the usual ad<liti,·e model P (f) = µ(l) + 
g(t) + e(t), \\'here g(t) is the nclditi,·e genetic and c(l) the em·i ronmental 
contribution to phenotype at time t. The components g(t) and e(t) 
are considered to satisfy the relation E[g(s)c(t) l = 0 fo r nil s, t r [0, a]. 

' Now at Di"isio n or Ma tbcm~ticnl Stati$tics, C.S. I.H.O. Alpl,e. House, tiO Kin~ St reet. Nowt.own, 
N .S.W., Au,t rnlia 
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For convenience ,,·e write p, a:: p(l,) = P(t,) - 1-i(l.), µ(t,) = µ, , 
g, = g(t.), nnd c, = c(t,) . Jn this notation then the problem is to 
cons truct a selection inclcx I = I:;. 1 ~.p, = rP such that cov (g, , I)= 
k, , i= 1, 2, · · · , n, where I:,= (a,-µ,). Since under standard assump­
tions t::,,, , the expected ch:rnge inµ, a ftn selection on I is 6, cov (o, , I)/<1~, 
where 6 1 is the selection differential in I, :su itably defined, we would 
have t::,, , = tJ. 1h./ <1~ . Hence, after approximately <1;/ Llr selections, the 
total change in µ, should be about k, and the optimum values will 
hnve been reachecl. 

In order to find ~. notice that the above conditions can be written 
in matrix form as E{gp'[.3 1 = k and, since E{gp'J = G, the genetic 
covariance matrix 0 = G- 1k . Thfa is a special case of a restricted 
selection index reported by the author [1062]. 

For a rather wide class of procedures for es timating G, ~ = G- 1
k 

is a consistent es timator of Q. ).Ioreover, the analysis can be put in 
the multivariate analysis of conriance form 

source D.F. es timate expectation 

between fnmilic3 lb fi D = W + (r/m)G 
error !11 \V w 

where r is the number per fam ily group, and m = 2 or m = 4 according 
to the type of family rclatiomliip. Thus, G = (m/r)[B - \VJ. 

The covariance m:i.trix for ~. V(~), is obt ained· by noticing that 
G(da) + (dG)~ = O, whence G(d}) = -(dG)~. Thus, proccccling 
in the standard fashion 

GV(~)G = E{dG~~I dG I, (1) 

nnd letting ~~' = y , then the (q, r) element of GV(C,)G is 
I:. I:, 'Y11 COY (G,, 1 o •. ). But it rnn be sh0\\'11 that 

2 

cov co,, , o .. ) = E}- :cn .. n .. + n,.n,.)r;1 + cw,.w .. + w,.w,.)J::1 1, 
1' 

and substituting this into (1) we have after simplification 

2 

V(O) ~ ~ G- 1 {(B1B + B Trace B1){;
1 

T 

+ (WyW -I- W Trace Wy)/:1
} G- 1

• (2) 

I t is now possible to calculate th e approxim:i.te v ariance of the 
estimate 1 = ~'p. We write ~ = ~ + Li~, then since E{Li~p'} = o, 
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E(l) = 0 and 

l'(f) = EO'p + ~tp)2 = ~'P~ + T race (V(~)P), (3) 

where P = E(pp'), the phcnotypic covariance matrix. 

THE COXTIXUO'C'S SOLUTIO:'.'f 

Although the index r.ons lructed nbo,·e, ~ = G- 1k, mny be of some 
pr:1ctical import:rnce, it is only of minor theoretical interest . "\Yliat is 
really required is some ind ex which ·will apply selection pressure io 
all points of the cun-c :::imultnncously. In this sect.ion ·we 11ropose 
to discuss such an index. 

We iniro<luC"e now the cornriance function E{p(s)p(t) I = r ,,(s, l) = 
r.(s, t) + r, (s, t), and in the following a rgument l\(s, t) will replnce 
the matrix G of t he discret e solution . For this treatment we let k(t) = 
a(t) - µ(t), a contin uous fu nction of time. Om ind ex, ins tead of being 
of the form ~'p, is I = J~ {3(t) p (l) dt, where the integral is to be inter­
preted as a stochastic inte6ral. It is well known that a sufficient 
condition for the bLtcr to exis t is that f~ f~ rv(s, ·t) (3(s) (3(t) ds dt = u; 
exists . 

The condition tha t co,· (o. , I) = k, is now replaced by Efo(l)J} = 
k(t). But, E lo(t) f~ p(s)f3(s) ds I = f~ {3(s) r .(s, t) ds = k (t) (sec appendix) , 
nncl in order Lo find (3(s) the integral equa tion 

1° P(s) r . (s, t) ds = k(l) 
0 • 

(4) 

must be solved. Equation (4) is n. F rcdholm integral equation of the 
first kind, and exact i1n-ersion1 in general, is not. an easy task. 

If p(l) is n. normal process, then J~ JJ(l ))(i) dt = I will a lso be normal 
(LocYe [1963] p:1ge •1%). Thus the expec ted change at the point 
t c [O, aJ after selection will be t..(t) = 6.1!:(t) / 0-7 . Hence, as for the 
discrete case, after u;/ Dr selectio:1s, µ(l) shou ld be near a(t) at all 
p oints t c [O, a]. 

Some points pertaining to the solut ion of the selection integral 
equation will now be discussed. F irst, in order to make some progress, 
some parametric form can be assigned lo the co·,ari:rncc kernel r .(s, t) 
and, for purposes of illus tra tion, we ,rill Jet r . (s, t) = I:;_1 w,c' ·'', w; 
and 17, real, w; > 0. .Although the form of r. has been chosen for 
mathematical com·enicnce, this model should be satis factory whenever 
the kernel can be assumed strictly positi,·c. 

In order to find a solu lio11 lo (·1) one c:i.11 a ttempt to ,nitc {3(s) = 
}:7_0 8,(/>,(s), where t he O; are real constants and the cf>,(s) arc the cigcn­
funcLions of the kernel r.(s, t). Ho~·cver, wi th the par t icular form 
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assumed above wr c::i.n calcubtc an approx.ima lion to {3(s) in another 
way. 

We haYc f~ (L::. , CaJ,c'; '').S(s) ds = k(t) and, by differentia t ing both 
side.s with respe<.:t to l a nd scttin~ t = 0, we obta in µ 1 (L~-i w,11;) = 
k'(O), where µ1 = f~ s;3(s) ds. Simibrly , 

( 
n ) ~ . ( ., 

µ, I: w, 11: = 1;, <o), ·-· µ,- = 1· s 1f,(s) ds, 

and provided the kc;, (O) exist, t hese equations can uc soh'c<l forµ,- if 
I:;~, w,11: r! 0. 

If, now, f3(s) can be expressed approximat ely as a polynomial of 
degree m-1, /3(s) = L ::b b;s', then µ,- = L ~=~ b,a •+t+1/(j+H· I) and 
the vector of coefficients, b, can be found from the equation 

b = A- \11 

where A = (a' ' ; +
1/(i + j + 1)) and t/ = (µ1, µ2, · · · , µ,.). A higher 

degree polynomia l .B(s) can be conslrncted by bk.ing more moments 
and if, for some j, L w,11~ = 0, then the jth moment is om itted and tlw 
process is complctecl using an ndcutiona l moment of hi~hcr order t han µ,-. 

From the W eicrstrass approximation theorem it fo llo"·s that if a 
continuous solution to (11) ex.ists, then the above procedure leads to 
a uniformly close approximation to {3(s) . That is, given an E there 
exists an m=M such that for all m > M , II:~:~ b,s' - ~.(.s)I < E for 
all s c [O, a]. 

In order to out:1in estimat es of the parameters w, and 7/, , ,~. and 
1/,, i = I, 2, · · · , n , we may obt:iiu estimates of gelle tic co, ·arinncc, 
co,· (g(t.), g(t,) ) = 0 9 , , as described earlier, nncl use these in a. stnndard 
non-linear lcnst squares analysis to c::t!cuJaic w, nnd fj, . The d eiails 
of such an analysis will not be gin:n here since they are well established. 

In the above case it is not difficul t to obtain an expression fo r 
V(l) which is entirely analogous to (3) . It '1-"ill be possible, in grnernl, 
to obtain approximate sampling Ynriances· aucl co,·ariances fo r the ~-. 

• J .... .. 
and 1/; ; hence we can find V( f, ) . ?\ow, b = A- (i, {3(s) = b's whc11 
s' = [l, s, s2, · ··, s"'-1

] and V(b) = A - 'V((i)A- 1
• 

If we Jet #(s) = /3(s) + t:.{3(s), thc:n 

V(!) = v({ p(t)PCO dt) 

= E{fo" p(t)(P(l) + N:J(t)) dt · 1· p(s)(/3(s) + t:.,8(s)) ds}, 
and using the assumption that E(p(t)D.{3(s) I = 0 ,,.€: find that 
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V(l) = 1· 1a· f3(s)f3(f)I',,(s, t) ds dt -1- 1· 1· B(s, l)I'it, s) ds dl, (5) 

where B(s, t) = B { 6 .B(s) D..B(t) j . 
It is clear that in the example B(s, t) = s'A- 1V(ft)A- 1t and hence 

we have the rrquircd extension of (3) to the continuous case. Another 
method of sohing (-1) is giYen in the Discussion. 

EXTE?\SIOXS 

" ' e consider next the continuous analogue of the general genetic 
selection index. In ihe djscrete case the problem is to find a v ector ~ 
such that ~'p is in some sense the best predictor of a'g, ,Yhen a is a 
vector of economic weights. Dy using a least squares argument, we 
minimize 

El(g'a - p'(3)'(g'a - p'~)l 

= a ' Ga - 2~'Ga + f PJ 

= a ' Ga - a'GP- 1Ga + (~ - p- 1 Ga)'P(D - p- 1Ga) (6) 

wiih respect to (3. It is clea r that equation (6) is at a. m.irumum when 
~ = p- 1Ga, which i:-, the required solution. 

Introducing the economic weight function a(t), in the continuous 
case we must minimize 

l(/3) = E{i 0 

g(t)a(t) dt - [ p(t.){3(1,) dt}' 
= 1· 1· a(s)a(t)I'.(s, l) ds dt - 21· 1· a(l)f3(s)r.(s, t) ds dl 

+ 1· 1· {3(s){3(t)I'is, l) ds dt 

with respect to {3(t). This is a variatioual problem and we write 
1({3 + E~) = F(E), "·here W) is an arbitrary continuous function vanish­
ing nt O and a. Then 

dP(O) 1· [1" 1· J ol = 0 = t ~ = 2E 
O 

W) 
0 

r.(s, t)a(s) ds -
0 

r»Cs, t)f3(s) ds dl 

implies, since Ht) is nrbitrary, that 

1· r ,,(s, t){J(s) ds = 1· r.(s, t)a(s) ds. (7) 

'l'hus, (7) is nnother Frcclholrn integral equation of the first kind which 
must be soln:-d for [1(l) . 
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F inally, suppo.~c thnt:, inslend of just a single grow th ctir\·c, \,e 
arc in terested in different, cu1Tcs which describe the o\·erall phcnotypic 
growth of the :rnimnl. Thu.3, we hn\·c n \·ector Ynlucd rnn<lom proec:;s 
P (t)' = [1\(l), l \(l), · · · , Pc(l)J [lncl we let 

E {P(t) ) = v(t) , El[P(t) - 1.1(/))[P(s) - ti(s)J') 

= r,.,(s, l) = [rijcs, i )] , 

where 

The problem now is to moYe ti(l) to tt (l) + k(t). 
Consider I = I:;_1 J~ p;(s);3;(s) ds ns the prospec live index. Then 

we mus t. have 

. 1· Elg,(t)l} = k,(t) = ?; 
0 

r/(s, t)~, (s) ds, i = I, 2, · · · q, 

or in obvious m:ilrix form 

fo
0 

r.(s, t)~(s) ds = k(t). (S) 

In the finite case these resul ts specialize :1s foUows. Let I = I:r-1 p;~; , 
where p; = [p;(/1 ), p,.(I~), · · · , p,-(ln)], th en t.he condition is ibn.t 

Elg,!} = k,, k~ = [k,(l1) , k,(l,) , • • • I k,(l.)] . 

If GUj) = E{g ,g;! , then we oulnin the equation 

• L G (iJ)(}; = k, ; 
i .. I 

0 

i = I, 2, · · · , q 

or, in full matrix notntion 

G(} = k, (9) 

where G' = Wt , (}~ , · · · , (}~l, k' = [k( , k; , · · · , k ;J and 

G(ll) G(I2) G(lq) 

G = G(2l) G(22) G(~ 

G(i1) G(~2) G(~,Q} 

From (9) it b clenr th:1t n unique solution to ihe more general problem 
is guaranteed. 
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DISCUSSI0)r 

There are a number of practicnl situations to which the 1 eclrn iques 
of the previous sections coul<l be npplied. For instnnce, in fat bmb 
production one desirable chnrnctcristic is rapid nnd cnrly increase in 
body weight. On the other hand , if these wcif;ht increments are too 
great then some production and m arketing problems m:.y arise. Hence, 
some opt.imal growth cu1Ye can perha ps be specifi ed towards ·which 
t.h e avcr:igc florJ.:: p erformance is to be pushed. 

Different breeds of li, ·cstock nre characterized not only by the 
quali ty of the associated prim:n y product., but also by how rapidly , 
in what qunnt.it~,, and how efficiently it is produced. Thus, early 
maturity iu lambs m'.l.y be a dc~ir:1blc feature under some systems of 
management and marketing, whereas under entirely different conditions 
late maturing sheep may be optimal. Under any specific set of cir­
cumstances it ma kes scn!-:C to use the pnrl icubr breed which has, 
nmong other things, the correct gro"·th p:1ttcrn. T he concept of an 
optimal growth curve, therefore, :tppears to haYc genu ine and important 
practical impli cations. 

In most cases one feels th at the discrete solution suggested nbo,·c 
would provide an adequate selection tool. Practic:1lly, one would 
probably be snt isfie<l to li a,·e the population growth curve approach 
the optima.l curYe at a fini te number of points since intuition suggests 
that intermediate points will also be brough t near optindit.y auto­
matically. Pro,·idcd n is _a reason:.blc number, the vector O can be 
es timated with lit tle trouble. 

H owever, it is not just of academic in terest to im·csl igate possible 
means of applyin g selection pressure throughout :. continuum. It is 
worthwhile to sec where the theory extends and to obsen·e the similarity 
between the general and the specific results. If very many measure­
m ents were recorded on each individual it is possible that the discrete 
methods would become unwieldy, and the continuous solnlion may be 
the most appropriate approximation to use. Of course, wi th enough 
poin ts numerical quadra ture methods could be used to estimate ac­
curately l = f~ S(t)p(t) dt . 

Nevertheless, the t heoretical problems a,,sociated with the solution 
of (4) have not been adcqu:i.tcly emphasized. For any particular 
kernel r. and function h(l) there may in fact be no exact solution. 
To sec this for a very simple case, in the parametric repre,;entation 
of r, let n = l , w 1 = l, 11 1 = -1 and {3(s) = 0 fo r s > a. Then (·1) 
takes the form 
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and i t is clear that unless k(t) is the Laplace Transform of some fu nction 
for O :::.; t ~ a., (he equation has no solution. H enc0, for the moment 
method of soh·ing (11) it is implicitly as;:,umcd that k(l) is such that. 
a solution does exist. j\JoreoYer, this solu tion is presumed continuo11s. 

From the practical viewpou1t , these matters arc probably of li ti lc 
consequence. The suggested procedure should produce satisfoct0ry 
results in rno:::t cases. 

In the final annlys i:;, however, fully numerical procedures for fin :.li11g 
fJ(s) may gi\·e the bc.·st re~ults . To illustrn te one such method suppose, 
in the notation of the di screte solu(ion, we let t1 = !:J. / 2, l2 = 3.6/2, · · · , 
tn = (2n - 1).6/2, where L\ = a/n . Then, pro,·ided n is sufficiently 
large, ( 4) can be approxirnn tcd by 

.. 
I: G;;/J; = kJ !:>., i = 1, 2, · · · , n. (10) 
; - 1 

Thus the numerical calculation of the coutinuous solution reduces to 
a special case of the discrete ·solution, although the· ph ilosophy is quite 
di fferent. In (10) we are trying to approximate an integral whereas 
in t.he solution /3 = a- 1k this is not so. 

Suppose now that the {3; has been calculated according to (10), 
fJ = c-11.,/ !:>. , then if in the futme all animals nre m easured at the 
same t ime points f., , then J ran he approximated by 

" 
I = L {J,p,D.. 

,-1 

In spite of all the thcoretic::tl problems inYolvcd in soh·ing (4), 
therefore, in any particular C:1$C approximations are obtainable from 
suitable dala. i\Iorco\·er, t.he procedure outlined abo,·e may be more 
satisfactory than the one discussed earlier in the paper, sin ce no pa­
mrnelerizat.ion of the kernel r. is required. 
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L a croi,,nnce et Jc dcvcloppcment pcuvcnt ctre considcr6s comme tm procc.:;sus 
stochnst iqne :\ temps continu. De plus, dnns quclqucs situations de production 
piim:iirl.', ccrtains sch{•m:is <le croissnncc pcuvent ctre plus cconomiqucs, ou d'u11e 
nut re fn~o?:i plus <lt'.:sir:1bka que d':1\!lrcs. Dnns cc p!lpicr on ~.;;nie de <16vcloppcr de-3 
t echniques qui pourr~icnt t'.-trc util isccs pom exerccr quelquc pression de selection en 
vue d'obtccir dc3 courbe5 de croiss:rnccs optim:iles. 

Une solution discr~tc de cc problemc est s11g;6r6c, qu'on pourrnit mcttrc en 
p rat ique de fn~o n rclativcment nis~e. Ccpcnd!\nt, b discussion compl&tc de la 
situation impliquc l'i.J1tro<luclion de ccrtni11cs equations intcgrnlcs pou r rcmph1ccr Jes 
habituelle.s cqu11 tions m:it riciclles de b thcoric cln~sique. L e., matrices de covnri:rnce 
convcntionncllcs conduisenL a des noyaux continus et, comme pr{:vu, on trouvc que 
les t bcori('S continue et di~cn:tc sont scmblnblc.s. Le cns hnbitucl de s0lcction sans 
contrninte est {·gnlcmcnt dc,·cloppe pom le mod&le a temps continu et Jn s.: l<?clion do 
plusicurs c:ir:ietcrcs en v uc <l ' unc optimisat ion simuJtance de lcurs courbcs respcetivcs 
est cgalerncut t rnitl:e. 

D cux procedures numcriqucs diffl:rcntcs pour r~soudre Jes equations i11t (:grnJ03 
sonl p roposee:s. 

REFERENCES 

Loc,·c, 1\1. [1903). Probability T heory. 3rd E<ln. D . Yau Nostrand Compnny, Inc., 
Princcton, :!\cw Jcr:;cy. 

T nllis, G. i\l. (1902]. A selection index for optimum genotype. Biometrics 18, 

120-2. 

APPENDIX 

Prior to equat ion (3) it is asserted that E { g(t)fl = J; .B(s) r .(s, t) ds 
and the purpose here is to es tnbfo,h this result . Let lo , t, , 12 , · · • , t. 
be n part.ition of the i_uterrnl [O, a] and define 

. 
I. = L {3 ({,)p(l;)(t, - l,-1) 

,-1 

then 

IE{g(l)(I 

by the Schwarz inequality. T ak ing limits on both s ides of the above 
inequality we find, since Jim,._.., E l([ - I.)2) = 0, tha t 

.. 
E{g(t)IJ = lim L /3(s.)r.(s;, t)(s. - s,_,) 

ft-CD i-1 

= £0 

/3(s)r,(s , t) ds . 

The h st integral exists by assump tion. 
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'l' \vO OPTIMI SATION PROBLEMS OF CONSTRAINED 

INDEX SELECTION THEORY 

Tallis , G. M. , Chesson, P . 

I INTRODUCTI ON 

We conside r random vari a bles 

q ~ p 

whe r e E[Yi] = E[Xj ] = O, V[Yi] = 1, V[!) = V, is of full 

rank, C[y~'] = [ eo ,e1, .. • eq l . Put A= [~1, . .. ,~ql and 

ass ume rank f eo , A ) = q+l. 

Proble m 1 

. Min imise E[Yo - §1
~)

2 with r espect to § subj ect to 

A~= a~, a arbitrary . 

Problem 2 

Maximise Cor[Yo , §1
~] with respect to § subject to 

A§= a~ , a arbitrary . 

II RESUL'l'S 

Problems 1 and 2 have common solutions . This can be 

s een from the following l emma . 

Lemma 

Let B be a closed set in RP such that, for all 

~ in B , a~ is in B. If §o is a point in Bat which 

E[Y - ~, ~] 2 in a minimum then ~o maximises Cor (Yo, §'~) . 

Proof 

Suppose @o is a point in B which minimises 

E[Y-~1 § ) 2 • Let §1 be a point in B and define §2 as 

(
§o , V~)½ 8 
§1 7 V§ 1 _i 
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With this tefi ni tion ,fl o 'V§ o = fh I V§ 2 and 

Cor (Yo, §2 1 
~) = Cor (Yo, §1 '?5). However 

E[Yo-§o 1 ~J2 < E[Yo-§2 1
~]

2
; 

and noting that 

E[Y-?5' §) 2 = 1+§1 V§ -2Cor(Yo ,~'X) (§1 V§ /:i 

it is s een tha t 

Cor (Yo, fl o 1 {'.0 ~ Cor (Yo,§2 1 !'.P 

= Cor (Yo , §1 1 ~) • 

Hence §o ma ximises the correlation. 

Genera l Solution 

Note tha t any ~ satisfying A6 = aw can be written 

~ = aAgw +Ny , v arbitrary, 

where A9 i s a gene ralised inverse of A (hence aA9w is 

a particula r solution of AS = a~) and the columns of N 

are a b as is for the null spa ce of A. Now put \ 1 = (a,y') 

and M = [ A 9!'._l~N), M having ful.l rank, the n 

(1) ~ = M~, A arbitrary . 

With this observa tion 

rnin E [ Yo -f ~] 2 

Af3==aw 
= min E[Yo-\ 1 M1 X] 2 - -

- - . >. 

= rnin 
>. 

Differe nti a ting with respect to ~ and equating to Q gives 

(2) M1 VM\ = M1 ao - -
6 = (M1 VM)-

1
M1 ~o 

and §1 = M(M1 VM)-
1
M1 ao 

Note that if any of the restrictions, q < p, rank 

[~o ~A] = q + 1 a nd w * Q do not hold an optimal § is 

still given by equa tions (1) and (2) but M1 VM may not be 

invertible . 

2 . 
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An alternative method of solution , which l ead s to an 

explicit r epresent a tion for the minimising vector , is to 

perform the sequential minimisation 

Put 

the n 

min min E[Y0 - §1
~)

2
• 

a A§=a~ 

~ ( fl) = 1-2§1 ~o+§'v~+§'A' ~ 

½a~= -ao+VB+A' A= 0 as - - -

using A§= aw , and finally 

~ = [ I -V- 1 A1 (AV- 1A1 )- 1 A] V- 1 ~o+V- 1 A1 (AV- 1A1 ) -
1 at7 

-
~ (a ) , say . Now 1-2§' (a ) eo +§' (a ) V~ (a ) i s a quadratic 

3 . 

in a and has a minimum at c? = e0 ' v- 1 A1 (AV- 1 A1 )-
1 \.:f/'!!' (AV- 1 A1 )- 1 ~ 

and hence the vector minimis ing E[Yo - 8 1 X ] 2 
,., .,. subject to A§=a~ , 

a a r bitrary , i s X .@ ( a ) • . 

I I I DISCUSSION 

The applica tion of this result to genetic index selec tion 

i s i rnme<liate . The variable Yo p l ay s the role of the weighted 

eco nomic ge notype while Y1 , • •• Yq , represent additive g e no­

t y pes for q c harac t ers . The Xi , the n, are t he full set 

o f p phenotypes and the se l ection problem is t o design a n 

i ndex I , using the Xi, which maximises the e xpected gain in 

Yo . This max imisation is to be subject t o restr icted genetic 

p rogr ess in c haracters 1 to q i . e . Probl em 2. 

I ~ is we ll k nown t hat , in the unc onstrained situa t ion, the 

t wo formulations of the pr.oblem given in II l ead to the sarae 

i ndex , B = V- 1 ~o . However , when there are c onstraints involv­

i ng Cor [ I , Yi), i t i s not a priori clear tha t t h e two formul­

ations s till l ead t o a common result . 

We h ave sh6wn here that thev do . 
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AN APPLICATION OF NON-PARAMETRIC STATISTICS TO 
TRU NCATED SELECTION 

/11troduct£cm 

G. M. TALLIS 
C.S.I.R.O., Division o( Animol Genetics , McMas tcr 

laboratory, G/ebe , New South Vlo:e s 

In this article Dr Tallis describes a procedure which saves time 
and labour when a proportion of a large popubtion has to be 
selected on the basis of some m easurement. Details of the 
calculations necessary arc indicated for the g<'ncral case, and 
for the particular casC's likely to be of practical interest the 
results of these calculations arc presented in a table to facilitate 
application. 

In animal and plant breeding, selection for a single character is 
frequently effected by truncation . 1Iore specifically, if x is a particular 
metrical character of interest, then the usual procedure is to discard 
all x< b, where b is a constant chosen in such a manner that the pro­
portion of individuals retained is p, say. 

Unfortunately, the point of tru ncation, b, is not usually known until 
all mcasurcmrnts are made, and hence all individuals must be tagged 
and identified with their particular scores. If the size of the group is 
large the latter operation may be expensive and incom·enicn t. There­
fore in some cases it ma.y be desirable to estimate b from a random 
sample taken from the group prior to measurement, so that individuals 
can be selected, at the time of measu ring, on the basis of che estimate. 
It is the purpose of this paper to develop a method to accomplish this 
and to indicate the expected efficiency associated with the technique. 

A good example of a situation where some prior estimate of b is 
desirable occurs in large flocks of sheep at shearing time. Recently, 
many commerci:ll wool gro,,·ers in Australia have been selecting their 
replacements on fleece weights and usually selection is completed at the 
conclusion of shearing. If the grower requires to save the best sheep 
available for replacements and he needs a proportion p of the total 
replacements flock, then ob,·iously he is faced with the problem of 
truncated selection discussed above. In these circumstances the usual 
procedure is to tag each sheep and identify it "·ith its fleece \\;eight so 
that the best IOOJ,% animals may be cletennincd from the records and 
sorted out of the main flock after shearing. If the flock is large, the 
amount of work involved in this opera tion is considerable and the 

. methods of this paper have been devised with the aim of reducing the 
amount of labour of such selection programmes, while keeping in mind 
the limited facilities for performing computations in the field. 

T1 
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L et a sample of size n be dra\\'n at random from a g roup \d1ich is to 
undergo truncated sckction for the character x, and let the proportion 
to be retained be J,. If the sample is ranked in descend ing order of x, 
then the 11 obsc1'\'a tions may be indicated by .,·1, x2, • • • x n> w here sub­
scripts refer to p arti cul a r r a,nk ings. for instance, x , is the m.easurernent 
corresponding to th e sth me mber of the ranked sample . I\ow, if f (x), a 
con tinuous density func tion, is used to approx.j mate the d istribu tion of 
x in the group from " ·hich selection is to be m :-tcle, then i t is possibl e to 
estimate the p ercentage poin ts of f (x) from the ordered sa mple, 
x1, x2, • • • x n· In facl it is easily wrifiecl that the area of f (x) lying to 
the left of .,·

0 
w say, is distributed as a beta density \\' ith pa ramete rs s 

and J{ -s, w here N = n + 1. This result is independent of the type of 
density function, f (x) . 

The beta density function may now be used to solve the following 
problems: 

(a) ·wha t value of s, s = l say, satisfies the equation Pr(w> p) = 1 - <X, 

given a fixed 11. This amounts to soldng 

1 f 1 w'- 1(} -w)N-1- Idw = I - a 
B(s, N-s) v 

for s. 

. ... (I) 

{b) Once s = l is determined, what Yaluc of p, /Ji say, satisfies the 
equa tion Pr(1c<p1) = 1 - f3 for fixed n and /. The required 
equa tion is 

B(/, ~ r - l ) J:1 wl-)(1 - w)N- 1-1c1w = 1 - {J 

which must be soh·cd for Pi· 

... . (2) 

The details of the solution of these equations arc r ather uninteresting. 
Driefly, (1) is t ransfo rmed to rishcr's z distribution by the change of 
variable 

- J,. {_(_l_.=- q)w} 
Z - 2Ul (J ) q -w 

s 
q = N 

It is found t)\at under this tra nsformat ion z is distributed ,,·ith para­
meters 111 = 2s and 112 = 2(N - s). From the asymptotic expansion of the 
z distribution presented by Fisher a nd Cornish (1960) it is possible to 
find an s = l such that 

The latter equat ion must be soh-ed by itcrati\·e techniques. Once l is 
found, it is a simple m a tter to c::i lculatc a z 1, such that Pr(z<~1 ) = I - {3. 
The required quantity p1 S<ltis1ying (2) is then obtained immediately 
from the i1n-crsc transformation 

\ 
} 
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Equations ( I) and {2) ha, ·c been soh·cd fo r ,·a rious ,·alucs of n and 
p for the case , r hcn :1. = 1) = 0-05 a nd the results of these calcu lations arc 
recorded in T able I (p . 82) . ~ ext to the ent ri es for /11 there is a column 
for the 'cffici~·nc~·', /!,1, the dcri\'ation of wh ich wi ll now be gi,·en. 

from c-qua tions ( l ) and (2),. it is clea r th:-1.t T able I has been con~ 
struc ted so th :-it, giwn the desired proportion of ind i,·icluals to be 
retained, /1, and the sample size, 11, then i f x1 is used as the cstim:Ht.: of 
the true truncation poin t b, then Pr (p <w<p1) -::=.0 ·90, ,\·here w is the 
actual proporti on retained . i'\o,\·, since A,·(w) = I/X =q1, it is clear 
that instead of the desired proportio n p being s:1x ed, on the ;1x cragc 
q1 will be rc tainl.'d. ). IorcoHT, q1>/1 and hence in order to finally 
obtain p sclcct('d ind i,·iduals, on the a ,·cragc (q1 - p) will have to be 
disca rded a t random from th e sclcctc·d group. T his p rocedure m ust 
obYiously resulL in a ce rtain loss of dTi.cicncy. In order to ob tain some 
idea of the nugnitu de of this loss, it is wm·enienr to assume f (x) 
approximately no nn ::ll a nd to compare the selectio n .d ifferentials asso­
ciated with p and fr (The sdec tio n d iffe rentia l is ddincd as the di ffer­
ence between the mcaus of the selected a ncl unselected gro ups.) lf c. 
and t.1 rcpresrnt the selec tio n d ifferentials assocbted with /1 and q1 

respectively, then for the present purpose effic iency is defined as 

where Z(p) and Z(q1) a rc the ordina tes of the normal ctuYe associa ted 
with proportions /1 and q1. O f course, if f (x) devia tes fro m normality 
the ya)ues of 1:;1 in T nblc I rn;-,y not ncccss,L!'ily apply. H owever, these 
figures arc probably sufTicicn t to obtain a good indication of the way 
the efficiency at the a\·c:rage truncation percentage changes with 
varying p ancl 11 . I n order ro a\·oicl undue loss of e ffic iency it seems 
desirable to tag all sheep in th e sample so that these sheep may also be 
selected on the basis of the estimate of /; , 

For example, suppose 60% of a g roup ofincliYicluals is to be reta ined , 
and an efficiency o f 80% is consiclc rctl'tolerabk . Then /J = 0·6, £ 1 = 80, 
and from th e T able, 1: = 75, L= 52. Titus 75 in cli,·iclu:1ls \\·oul<l uced to 
be measured and ra n~:ccl, the trnncntion poin t being the measurement 
of the incli,·iclual of 52nd ra nk. The 90% confi dence interrnl for w is 
0·6 to O· 768, th:1t is, truncation at the 52nd rank would rc£tilt in 
reta ini ng fro m 60~0 to 77 % of the indi, ·iclu~ls. The selected g roup 
m ay be acljust('cl later to the req uired size by discardi ng individuals a t 
random. ,vhcn the odd one in t,\·cnty chance occurs and w<0·6, 
then the aclcli,i011::1 l numbers req uired arc obtained at random from 
the unselected incli, iclua ls; here again some loss of d licicncy may occur. 
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Altrmatiuc Procedure 

In order to complete the required truncation by the above metho<l, 

it is only nccessar~· to di\·idc the: popu lation into two g roups. The top 

group is retained a nd is adjusted to the required /1 ,·aluc by di~card ing 

incli,·iclua ls at ra ndom . H owe,-cr, it c:1 11 be SCl'n tha t, when II is small, 

this procedure may resul t in a consiclcr:1blc loss of efficiency. 

In order to owrcomc thi s, a slig htly more complicated method of 

selection can be adopted. If we soh-c the equ a tion, 

1 lp 
B(s, N - s) 0 

w•- 1(1 - w)N-s-1cl:u = 1 -y .... (3) 

for s, we can find an s = 11, say, such tli.a t if truncation is effected at x u 

then Pr(w<p) = l - y . If the results o f ( 1) :tnd (3) :u-c combined it can 

b e seen tha t if the true percentage point off(x) corresponding to /1 is x J)) 

then l'r(x, < x,,<x 11) = l -ix -y. Equa tion (3) has been soh·ed for 

various combin:uions of n and /1 with y = 0·05 and the values of II arc 

also given in T a.h ie I. 
.Note: In order to soh·c (3) for s with y = 0·05, no calcubtions arc 

necessarr. By the change of variable y = l - w iJ1 (3) we find that 

I fp w u-l ( J - w)N- u- ldw 
B(u, .N - u) Jo 
= l Jl y''- u-1(1 - y) u- lcly ~ I - y 

B(N - u, 11) i -v 

The second integral is in the form of (1) with N - u =l and 1 - /J 
rep lacing p. Therefore, for a particular 11 and p, 11 is founrl by u =}I - I, 

where l is the value ,diich has a lrc,idy been c:llcu latcd fo r 11 , l - p. 
The cniciency, £ ?., is calcub.tcd on the same assum pt ions as5ocia tcd 

with E1• If all incli\:idu:ds ,,·ith x values g reater than .,· 11 arc retained, 

then J\v(zc) =q2 =11/X . I'>iow p> q~, ancl hence, on the a\·crngc, it \\'ill 

be necessary to obta in the required proportion p by adding (j - q~) 

individuals from the group where .,·1< x < x u · On the assumption of 

norma lity, the expec ted selection dim:rcntial of the group selected in 

this m anner is 

and 

As previously, the pra ctical application of this procedure requires 

that p and E?. be set in adv:rncc so th~t the appropriate 11 can be found 

from the table. :\ ra ndom sample is then drawn from which x 1 and x u 

arc obtained. The remainder of the population may now be measured 

and put into three groups : 

\ 

1 _ _,. 

) 
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(A) inclivicluals with measurements less than x 1 (discards) , 
(B) indi\·iduz:.ls w.ilh measurements less than x,. and greater tha n x 1 

(reserves) , 
(C) individua ls with measurements greater than x" (reta ined) . 

If this is done, then l and u h ave been determined in such a way that 
nine times out of ten some i1~clivicluals from group B will have to be 
taken at randorn and added to group C to bring the numbers of 
selected incfo·iduals to requirc1nent. In the odd case when this is not 
so, adjustment must be made by either discarding an imals :i.t r:1.ndo m 
from C when C is too large, or by adding :i.nimals at random from 
group A when the combi ned numbers of groups B and C a1\~ loo small. 

As an illustration , take the sample of 7 5 individuals pre,·iously con­
sidered. By reraining a ll :i.bo\·e the individua l 38th in rank, and 
putting those bet\\·ecn the 38th and 52nd rank tcmporarilr in reserve 
for later adjustment, the efficiency of the procedure is increased from 
80% to 97 % . 

T he choice between the t\\·o methods of selection presented here 
must be made on pract ical grounds. If it is inconvenient to break the 
population into three groups, then the first method must be used with 

. its a ssociated lower clllcic:ncy. H owc\·er, w henever three g roups ca n 
be h andled sati5factori ly, the high efficiency of the alternative pro­
cedure makes i t the ob,·ious choice. 

I n the parlicub r example of selection for fl eece weight men tioned in 
the introduc tion, a g reat reclucti? n in clerical and physical 1:1.bour can 
be expected by the use of either me thods. The tedious procedure of 
writing 'roll ca ll' lists and the e,·en more u npleasant task of roll calling 
large flocks arc :woicled and this may represent a saving of a consider­
able number of man-days . T he choice of which estimation procedure 
to use may be cktermined br t li<:' type of facilities and labou r available. 

As a final point, it is interesting to consider the rela.tion of n to the 
efficiencies £ 1 and £ 2• These efficiency ratios simply reflect changes in 
th e average selection differential as a result of ta king larger samples; in 
the particular case of sheep selec tion, by the application of rather 
elementary gcnetical arguments, i t is possible to approximate . the 
annual loss of income due to the use of any selection method for any n 
from the efficiencies listed in Table ·I. S ince it is suggested tha t indi­
, riduals in the sample be tagged and identified with their scores, it 
would be possibl e to d raw up cost cun·es by plo tting economic gains 
against 11 . It , ,·oul<l only be necessary to cost the labour of tagging and 
sorting 25, 50, 75, ... sheep, :i.n<l to take into a ccount annu:d loss of 
income due to the stat istical inefficiency of the method in order to draw 
up such a cost chart. From the graph it would then be possible to 
determine the optimum scl~ction procedure to adopt. 
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TABLE I 

Values of !, u, p,, E,, c11d F., for i:ario11s combi11nlions of p and n 

p O· I 0·2 0·3 

11 f II /i, I £ , I £, / I II I ,,. I E1 ! £ , - / I U I /11 I E . E, 

25 _G _ __ I 0·3?5 l7~1-8i·~ ~ --2 , 0·~01 1 76·2 !-8?·2 I2j- -1 1·0·~2117,;-~ 99·1 
50 9 2 0·2 , 0 8J·G 92·31 b 6 0·-,03 . IU·7 19J·l 2 1 ! 10 1 O·:i'!6 I 8 1·:> 9:i·2 
75 12 4 0·23 1 8,-0 ·1 95.7 2 1 JO I 0,:)6+ 1BG·5 9C. ·i 30 1 17jlH :J8 8-1· 1 97 

100 JG 6 0·22 1 8,-o 9:i ·!J 1 ·n l ·l O<H2 I t:3·0 197 ·4 38 ! 23 10··156 87·1 97 
150 22 10 0·1 96 3!l· ! 97·5 39 23 0·3 1U i 1;9.5 93·1 55 1 36 0··130 j !.l9·0 9:l-3 
200 28 H 0· 18 1 so-i: 93· 1 50 3 1 o-:wo I 9 1 ·0 9:.:-6 7 I · 50 : 0··!09 , :JU·8 9;3.9 
500 G:! ·iO 0· 1·1919~ · 1 199··! 11 5 06 O·:?G I J9·i·3 9!H i G7 ! 1'.H i 0·36U i 9 1·2 9:J.6 

1000 JI G 85 0·1 33 , 95·9 99·7 :m ICO 0<!·13 96·0 99·8 32·l i 277 j 0·3·!8j 95·7 99·8 ,- _ __.. __ _.__...._ _ _ 1--~- ~----~-,---~--~-~--, . 
p 0-'~ 0·5 0·6 

n 

25 
50 

·75 
100 
150 
200 
500 

1000 

p 

n 

/ IJ P, I 1::. I E: f I IJ _I P1 F., I E, f II -' p. I E. I E, 

15 7 0·730 j 70·3 J 92·2 11 9 ) 0·798 , o-1 j 92.5 19 11 j o-c6ol , 0·1 92-2 
2G 15 0·62·1 ! 8 1 ·0 ! 96· 1 3 1 20 i 0· 717 79·2 ; 95·3 36 25 I 0·8ll.~ , 75·8 96· 1 
33 24 0·5:H il'.? ·6 ! 97·2 ·15 3 1 : 0·683 3:l-2 l 97-3 52 30 0·763 180·8 97·2 
~9 ~3 o·~~7 i 85·1 197·9 59 -l-? i o-~~~ I cJ-i 197-~ 63 i 5:? I o-~-1a , e~·3 97·9 
10 JI O·:i30 183•7 . 98·7 86 G:, 10· t,:,:> j 86·.J ll 9'.J,J 1001 8 l 10•tl ·l i· C:i·8 98·7 
92 69 0·5 l 6 . S()·7 ! 93·9 11 2 , l:9 10·6 1·1 188·9 . 99·0 132! 109 i 0·7 11 86·9 98·9 

219 l82 1 Q .. 1H l 93<3 ( 99·5 '.?69 : 232 ' 0·57319:~-, : 99.G 3 13 ; 232 10-670 • 9 1·9 99·6 
42G 3i 5 i 0··15 1 I 95·3 i 99·8 526 [ ·175 I 0·55 1 91·9 i 99·8 626 j 575 j O·G5U I 9-l-2 99·8 

0·7 0·8 0·9 

, II "' E1 r £, . / 1 II 
I 

p. 1 R. E, , 
1 

" 
1 

p, E, , E, 

1--2-5_
1
_2_2 - 1--1 -0·?+3. -5-G·-~ 1-9-? ·-1 ,-~-l-_ l- 1-7 j-0.-9~5 1--1-{·-7 _8_?_·2- -2J-_ j- 2~--i-0-.9-9-3 -4-!·-I '37-51 

50 ~ I 30 O·J07 ~~·.:, 9.:>·? -,.) ~~ I 0·9·,6 ! ~+· I 9:i· l ~9 I ·121 0·993 4:;· ! 9?·3 
75 J 9 46 10·8.JO // ·6 I 9 7·.J GG J J : 0·!'26 I 10·+ 96·7 ,2 . G·l 0·9S:.! 58·:> 9J·7 

JOO 78 G3 0·837 I , 8·S I 9 7·7 1 87 H 1 0·9 13 I 73·5 9H 95 i 85 0·9H , 6-f, J 95.0 
150 11 5 9G 10·8 16 ! 8 I·8 i!l3·3 128 112 0·893 , 79·3 9;> 1 J.!1

1
1~9 0·96Jj i0·5 97· 

200 151 130 1),£:()0 ! 85·0 I 93·9 170 I 15 I O·l:1:!6 I CO· I 93·6 I 18 7 173 0·957 '1 7-1·0 98· l 
500 367 33 1 i o-, i-; 1 : 90·6 ; 99·6 + 15 j 386 · O·fl.:i5 1 ec-o 99·6 ·t 6 1 1 439 0·939 C2·9 99·+ j 

1000 72-l l677 i 0·7-l G j 93'319!J-8 82 1 J 780 ' 0·8, 0l9H 99·8 9 16
1
885 0·929 j87·2 99·7 

p = proportion c,f indi,·i<l u:i ls to he retained. 
11 = number of ind i,· i<l u::!s which arc mc.'asurcd, their me::tsurements then being ranked in 

order of rnt ril as .t 11 x1 , ••• ·''-o ... -"t, ... • -"ri· 
l = rank whose mca,urcmt:lll (x 1} is used to ~plit the population into two g roups. 
u = r ank whose mc;1S1ln::11cnt <x,, i i, usc<l to split the populntion in.a three g roups. In this ca, c 

11 -'ntl / <lc iinc the limi t; of the rcscn-•: gr0up. 
p1 = upper 95% limit of proportion ac tually rcrnincd u.; ing 1hc two group r,ic thod. 
E1 = cfficicncr (~~) of two group mc1hn<l a t a,·cr::u;c tnmc:1 tion point. 
£ 2 = d}iciencr (%) of three g roup method at average trunca tion point. 

J'ri,:r,d in Grtttt flritnin by 

R0B£RT Clr:-;:-.1:<CIIA~I A:0.1> SO:-., LTn. 

Alva 
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The l\1Iomcnt Generating Function of the Truncated 
Multi-normal Distribution 

By G. M . TALLIS 

Dfrision (If Animal Genc>rics, C.S.I.R.O ., Glcbe, N.S. IV. 

[Received December 1960) 

SU!'.1~1ARY 

Jn this paper the moment generating function (m.g.f.) of the truncated 
11-d imensional normal distribution is obtained. From the rn .g.r., formulae for 
£(X1) and E(X1 X,) arc daived, and arc used to in,·estigntc.: ccrt;iin specia l 
cases. Some applications of these results to stat is tical genetics arc also 
discussed. 

I. JN1 RODUC'l JO~ 

T111:: problem of finding the means, variances and covariances of a standa rdized 
n-dimensionnl normal distri bution (here abbrc,·iatcd to stand ard 11-normal) truncated 
in p~n coordinates was solved by 13irnbaurn :rnd ~!eyer (1953). The solutions were 
obl:tincd by direct integra tion and the general results kft in a somewhat difficult 
form for explicit evaluation. 

It is the purpose of this paper to present a different method of solvin,!?. t he sa me 
problem. Since the moment grnerming function (m.g.f.) approach is used. the required 
moments arc obtninc<l by differentiatio n rather th an inkgration. General formulae 
for computing £(,'() :ind E(X, Xi) (i,j = I, 2 ... . , 11) are given :ts well as explicit 
formulae fo r the same moments forth~ special case 11 = 3. Two exa mples are used to 
illustrate the methods of evaluating the general formulae. 

2. NOTATIO~ 

Jt is co nvenient in the fo ll owing development to let ef> represent the frequency 
function of an arbitrary num be r of standardized normal variates. Thus, if X., 
(s = I, 2, ... , 11) are II such variates wi th corrdation matrix R (assumed positive 
definite), we have 

wbere x is the column vector of the Xs. This distribution for X,1 = b,, and X,, = b,,. 
Xr = b, may be wri tten 
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where R,, and R,
1
, a rc the matrices of first- and second-order part ial correla tion 

cocflici,'nts of Xs for .p t= q, and for s=t= q, s*r respect ively, and 

Y., = (X.,- f>Qsb,N,1( 1- r~), 

Z s = (X.,,. -/3~,1.r b,1 - /Jsr.,/',)N{( l - P~q)() - P~,.,)}. 

In the above formulae (5.,1.r and /3,,.,1 arc the partial regression co~fiicicn ts of X, on 
Xq a nd X, rcspcc1i,·cly :ind p,,.f/ is the panial corrdation coellkicnt bc l \\'CCn ,\'s and 
X, for fixed X,r 

Now, if the operator 

is abbreviated lo 
(ll)l'h 

( )t!x, , 
t, , 

and if we let 

then it follow~ from the above formulae that 

and 

q> 11(x8,Xq = bri,-"r = b,; R)dx., = cp(b,,,b,; pl/,)<!>,._lB;',;; R,1,) 

(11 - 2) fi oo 
'b, . 

where B,,., = (b8 - p,p,b,1)/,
1( 1 - p~J, 

s;~ = (bs-:f3sri.rb,, - f\,.,1b,)/ ,1{( l - pJ,,)(l - p;,.'J)}. 

3. G E1'ERAL RESULTS 

Let W
8 

(s = I, 2, .. . , 11) have the standard 11-normal distribution wi th correlation 
matrix R and let IV.,,. be truncated at a.,,. so that 

The j oint m.g.f. of the truncated population 11'1 > a 1, M'2 > a2, ••• , W11 > a,. is 

where t is the column \'cctor of the t .,,. (s = I, 2, . .. , 11). Now the identity 

- Hw' R- 1 w- 2t' w} = i t' Rt - !(w - s)' u-1cw- s) 
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is easily verified by noticing that s =- Rt and then expand ing the righ t-hand side. Jt 

can then be shown tha t the ;1bo\·e integral fo r III may be wrillcn 

where T = ~('Rt, I and w- ½ arc column vectors or 1. and 11':s- ½s, and ½d = ~ />.•rt ... 

By the change of va riables X,, = W,-s,. we obtnin immediately 

(2) 

With the results of section 2, equation (2) mny be readily diO~rentiatcd, first with 

respect to f ; :rnd then wi th respect to 'i · It c:in be verified th:it , when the deri\·:11ives 

arc calculall'd with all ':s = O. 

0 II 

ex ;
11 = nE(X;) = :S p;,1 <p(n<1)<l>,. _1(A".,; R,,) , 

u /1 <1 = 1 

(3) 

where A,1s = (a$- Ps,,a)/,1{1 - p;,,}, 

A~5 = (as- /3,,,,., a,1 - f3sr.ri a,)/,'~( I - p;.,) ( I - p;,.)} 

and s=t= q in <l>,1_ 1 nnd s=l=q* r in (J) ,. _ 2• 

T he expressions (3) and (..J) necessitate the evaluatio n of such integrals as 

<l>11(a5
; R). These integrnls h:\\e bi.:cn tabula ted for 11 = I and 11 = 2 (Pcarson, 1931), 

11 = 2 (Owen, 1956). For 11 ~ 3. sec Pl:ickctt (1 95-n and Steck (195S). 

Some special cases for E(X;) and E(X; .\'i ) arise when crrta in a.= - z,. Jn these 

instances, the appropriate modifica tion:; to (3) and (4) may be obtained by noticing 

thnl : 

(a) all terms involvin g cp, where rf, is a function of any a,,= --.r., arc zero since 

'P = O; 

(b) by definition, if a,,= -'l.:, then A.., .• = A7:; = --:r.. Hence a ll integrals involving 

A<1s or A~,, have their dimension reduced by one for each negatively inlinite 

parameter; 

(c) obviously if a.9 = -~. cJ)(A 115) = <l)(A~5) = I. 

4. SPECIAL C ASES IS Two ,\NI) THREE Dl~I ESSIOSS 

In order to illustrate the use o r expressions (3) anJ (•i), F(X1), E(Xf) a nd £(X1 X2) 

will he cvalu:Hcd for the specia l case 11 = 3. The cxprcs!.ion for E(X1) is obtained by 

setting i = I in (J), and Et.\'?) and £(X1 X2) arc obtainl',i by selling i = j = I and 

i = 1,j = 2 in (4) respectively. 
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The results arc 

. cx£(X1) = q>(a1) 1!1(A 12, A 13: P23.1) + P12 </;(n:i) <l>(A21, A2a; P13.2) 

+ /'13 efi(a:i) Cl>(A a1, Aa2; />1:i.:i), 

cxE(Xi) = u: + 01 efi(a1) <l>(A 12· A 13; P23.1) + f'i:i a2 4,(aJ <J)(A21, A23; P13.2) 

+pr3n3cp(n3)<Jl(A31,A32 : P12.3) +pd l - rU</>(n1. 02; P,2)<ll(A?3) 

+ />13(1 - /li3) </i(a1, na; P13) <.D(A1z) 

+ </1(02 , a3 : pz3) {<f>(A51) P1iP13 - P12 P23) 

+ <1>(A~1) P1JCP12- P23 P13)}, 

cx£(X1 X2) = a p12 + P1; n1 c/>(a1) <ll(A12, A1a; P2J.1) 

+ P12 n2 ip(a2) <ll(A21, A~3 ; P13.2) 

+ Pia Pz:i n3 </>(a3) <li(;(H, A32 ; P12.:iH- (I - PT2) </,(n1, az: P,2) <l>(AJ3) 

+ pIJCI - Pi3) ef,(n2, a3; p23) <l>(A~,) 

+ cp(a1, a3; P13) {(p23- P13 P12) <l>(AA2) + P1iP12 - p13 Pn) <l>(Af 2)}, 

where A"s and A'f., arc as defi ned in the previous sectio n. If now 

the first and second moments of the trunca ted standard bi-normal distribution arc 
obtained. These formulae agn:c with th ose presen ted by Weiler (19 59). 

5. APJ>LIC AT IO:--:S 

Example I. Young and Wcikr (196 1) ha\'e consitkrcd the case of the sckction 
of anirn:ils (or plants) by the method of independent culling levels. using two 
bi-normally distri buted characters H'i and Jf.-2, with freq uency function 

N(ft1,J1.2, Pn, P22, pp) . 

This technique in vol\'es the simultaneous truncatio n of 11'1 and 11'2 a t p1 and p~ in 
suc:h a manner that prob (11'1 > p1, I~~> p~) = ,:\. From their formulae fo r the fi rst 
moments of the truncated bivariate distribution. it is possible to com pute the phcno­
typic advance due to selection. However, it is also of interest to calculate the total 
genetic gains. 

Jn order to make further progress with the latter problem, we assume the usual 
genetic models Jr'1 = C1 + E1 and 11'2 = C2+ £ 2, where the Gi and E; a re the additi ve 
genetic and environmental con tri bu tions to phenotype respectively. The components 
Gi and E; (i = I. 2) of the models arc assumed to be independently and normally 
distributed . In this notation, the genetic value of an anima l, re!:it ive to the population, 
may be defined as 
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where y1 and Y:! arc the e1..·onomic weight s for 11'1 and 11;. Now let tlic variance of G 

be uz.., let X1 = (11'1 - 11-,)/, P11 • X:! = (II·~- 11:!)/, />2:.! and X3 = Gfau. Thm X, (i = I. 2, 3) 

arc assumed to h.iw a :,lana ard tri-normal cl i:. tributiu n \\'ith correlation cod 1icic11ts, 

Here p 1, is the phenotypic: correlation bct\\'ecn 11'1 and 11'2 and V and C denote variat~cc 

and cov:,rinnc:e. Silll·c th..: 1runca1il1n poin ts of.\\ , X2 and ,\'3 arc given by 

G1 = (p1- Jt1)/,ll\1, G2 = (p2 - 11)//P2: and n3 = -:r.. respectively, 

it is possible to deduce from the formula for E ( X 1) in section 4 (by symni~try) that 

From the definition o f .\'3 it is clc:ir that E(G) = ac: E(X3). It can be shown that 

this result is nlgebraica lly equh·a lent to the result~ o bta ined by Yo ung nnd Wcill..'r 

(1961) by a method anak1 go u~ to linea r interpol:uion . With the aid or the formul,1 

for E(Xl) , it can also be ,eri fi ed tha t 

o:E( XJ) = I + p~3 n2 4,(n:.!) 1l>(A:!1) + Pi3 n1 9(a1) <l>(A 12) 

+ {2p23 P13 - · P1iP~:i + pJ3)} ~(n,, G2; P12), 

Therefore, the new variance of G, Of;-, is 

ai, = ot-[£(Xl)- {£(X~)}2]. 

Now, if n s:tmple of ,V animals is taken fr0m the truncated population IV1 > b1• 

W2 > b2, then G = ~G/N. Although G cannot be measured directly, by virtue of the 

Central Limit Theorem we ha\'c for X suf11ciently luge 

prob(E(G) - tf: au·/,;N<Ci<EtG) +- lpac;,NN}~ 1-fi, 

where If! is the stnncl:ml non!1al tk\·iate correspo nding to the 100/3 per cent., two­

tailed probability level. Thus, :ilthc ugh in prnctice the required parameters for 

calculating J::(G) :111d 07;- have;: 10 be estimated. it is possible 10 obt~1in some idea of 

the inter\'al in which G is expected to lie with given probabil ity. 

Exmnp/e 2. As a fina l illustrati on of these meth ods, consider the II variables 

W.~ = Y.., +Z s (s = 1.2, .... 11}, where the Y.< and z. nrc normnlly and indepenJcntly 

distributed wi th zero expectations. 1\ow. if all II '"< a5{ V(IJ".J}l are discarded , it may 

be of intc-rest to investigate tlie changes in the me:rns, variances and covariances of 

the 2n variables 11'8 and >~ •. 
Jn order to proceed with the problem, it is convenient to let 

and let R be the 211 x 211 correlation matrix of X, (s = 1, 2, .. . , 211). Then it is possible 

to write n as the partiti oned matrix 

[ K L] 
R = M ~ . 
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where K, L, l\'l and N arc II x 11. We thus ha\'e fo r s, t = I, 2, ... ,11 

K - , - l C(II', 11;) ] 
- [k .,i) - {V(II ) f-'(ll i); l . [' l [ qr. r,) ] 

L = ·'' = {V(II') V(} i)}f . 

l'vl -· [ ] - [ C()~, 1'i) J 
- 111.,1 - {V()',,) V(ll'i)f ' 

N [ ] [ C(Y$ l'i) J 
I = 11~, = { V( }) V(),W . 

With the abo,·e nLi tntion and the rules fo r specia l cases, it is now possible to write 
down formula-: fo r T.(X;) and E(X;.\ ) , remembering a.,= - ;f) (11 <s~ 211). For 
i,j = I, 2, . . . ,211, we ha\'C that 

11 

o:E(X ;) = ~ P;,1 <p(a") <J>11 _ 1(A,13 : K,), 
Q= l 

ll 

cxE(Xi X) = P;; rx + 2.: p(,i Pqi n1 tp(n,) Cl> 11 _i(Aqs; IC") 
Q= I 

+ i: {P,,i :E ef;(n,J' n,: P,,,) <T> 11 --lA~ .• ; Kq,)(p,; - Pqr Pq;)} , 
q ~ l r -:..;: 11 

<" 
where s·+ q in (!),. _ 1, s ,!0 q =!= r in <ll ,._t and s~ n in all cases. 

As a particular ill ust ration let 11'1 and 11'2 be two phe notypic characters (as in 
Example 1), then Y1 and Y2 represent the add itive genetic contributions and 7.1 and Z2 

the environmenta l co ntribu tions to phenotype respect ively. In this instance 

Pp 

1 

h1 h1 Po. 

h2 Pv ltz 
R = ············ ····· .. ........ ... .. . . 

1,1 h2 Po Pu 

h1 P11 !t2 P,; 

where pJJ and pfJ are the phen o typic and genetic correlations between the two characters 
and lr

1 
= {V(}'i)/J/(11 '1 )}! and lr2 = : V(}'~)/V(ll'2)}1 . Jn this case we ha\'e, for 

i,j = l,2,3,4,tha t · 

o:E(X;) = Pi1 q;,(a1) <l1(A 12) + Pi2 efi(n2) <l>(A:n), 

aE(Xi Xi) = P;; a + Pii P1;n1 ef>(n1) <l>(A12) + fl2i P2i n2 cfi(n2) <l>(A21) 

+ cp(a1, n2; P12) {P1;(P2i - P1~ P1i) + P2;(P1;- P12 P2i)}. 

Therefore, it is clear from the l2st results that. by ernluatin g E(X;) and E(X, X1) 

for appropriate i.j. it is possible to st ud y the erTects of pheno typic truncation on 
heritabi lity, h7, and genetic correlatio n, P,r Moreover. the work requi red to accom ­
plish this for two cha racters is rclati vl'iy small and can be completed with the aid of 
existing tables fo r the bivariate normal d istribution . 

6. EXTEl':SIO:S:S 

T he methods of section 3 may be used to investigate certain additional problems 
related to the truncatio n of multi-n ormally distri buted variates. For insta nce. the 
evaluation when all ' " = 0 of c3 111/ ctt and l~ 111/ctj would provide the third and fourth 
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moments of the margina l distributions of the X1• Morco,·er, a furt her generalization 
is achic,·ed by consickring the X,; (s = I, 2, . .. , 11) as doubly truncated so that 
prob (a1 ~ ,\\ ~ c1, . .. , a,.~ Xn ~ c,1) = o:. 1 n this case the r~q uired. m.~.f. is 

where 

(,i)l cl, 
0:111 = eT if,(x11 ; R) dx

5
, 

b, 

11 

bs = as- ~ Psr 1r and 
t: = l 

,, 
d, = Cs - Z: Psv I i;, 

t·= l 

Fo r example, the m.g.f. for the bi-normal distribution under double trunca tion is 

which may be written with adrnntage 

o:m = cT{<l>(b1,b2 ; p1) +<1>(d1.d;:; p 1) -<J)(d1 , b2 ; p12)-<l)(b1,d::;; Pd} 

and hence it is ckar th:-it 

where the subscripts I, 2, 3 and 4 refer to the bi-normal distribution truncated at 
(a1, a2) , (c1, r2), (c1, a2 ) and (a1, c2) re~pecti ,·cly. The first and second mome nts may 
now be obtained in an obvious way from the formulae of Weiler ( 1959). 
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Plane Truncation in Normal Populations 

By G. M. TALLIS 

The Johns Jlopki11s U11i,.:crsiry 
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Sm,1~!ARY 
This pap"r considers the truncation of normal distributions by means of 
planes. The moment-generating function for the truncated distribution is 
obtained, and it is shown that, by su itable transform~tions, the problem 
reduces to the case of rectangular truncation. 

1. INTRODUCTION 

TllE problem of subjecting 11-dimensional normal populat ions to arbitrary rectaugular 
t runcation has been considered by Birnbaum and Meyer (1953), Tnllis (1961) and 
Finney (I 962). However, rectangu lar truncation is not the only type of trunc:.tion 
procedure which is of practical interest. For instance, when animals arc chosen for 
breedi ng purposes, selection is often· made by mea ns of a linear compound of vari­
ables, or index . Such a selection procedu re has been shown to be optima l from the 
point of view of max.imizing genetic gains, suitably defined. Other situat ions where 
select ion is based on some linear combination · of random variables can also be 
cnvisa·ged, and the purpose of this paper is to investigate the effects of such truncation 
on the moments of the original joint distribution of the variables, given that this 
distribution is multivariate normal. 

The system of notation adopted in Tallis (1 961) will be closely followed here. 
Briefly, <p 11(x; R) will be used to specify the frequency function of II standardized 
normal variates with correlation matrix R, and <l> 11(b; R) is defined by 

<I>,1(b; R) = {"' rco .. . {"'c/>,1(x; R)dx1dX2 ,-·dxll = rcoef,,.(x; R)dx. 
Jb1 .lb: Jb,. Jb 

I t was shown in the earlier paper that if the random variables X1, X2 , • •• , X,. are 
subjected to the rectangular truncarion X1 ~ a1• X2 ~ a2, • •• , X

11 
~ a,., then the moment­

generating function (m.g.f.) of the trunca ted distribution is given by 

o:m(t) = eT<I>n(b ; R) (1) 
where 

o: = ("' cp,,(x; R) dx, Ja 
T =: {t'Rt and b = a-Rt. Equation (1) was then used to obtain the first- an·d second­
order moments fo r the truncated distribution. 

In the present paper, the specia l case of truncation by a single plane will be 
considered first and it wi ll be sho\\ n that this situation can be simply reduced to 
rectangular truncation. An exam ple which utilizes these results will then be discussed. 
Subsequently, the more general question of truncation by means of q ~ 11 planes is 
considered and these results applied to two special cases. 
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2. M ETHODS 

In the case of rectangular tru ncation, the appropriate truncation set is specified by 

(2) 

or 
(3) 

Obviously, (2) is the special case of (3) witll all 'bi= oo. Under plane truncation, we 
consider firs t the set 

A
11
(x) = {x; c'x~p} (4) 

where c is a normalized ,;ector of coefficients which may be regarded as the direction 
cosines of the normal to the plane c'x = p. The more general case is 

(5) 

or 

A,i(x) = {x; p11 ~ c; X ~Pi2,p21 ~ c;x ~Pw ... ,/Jqi ~ c~ x ~Pq2} (6) 

with similar definitions for the c; (j = J, 2, .. . ,q). Notice th:n inequalities of the form 
c'x ~p can be converted to the type of inequality above by multiplyi ng th rough by - I . 
The problem will be to find suitable linear t ransformations which will change (--1) to 
(2) and (5) to (2) rcspccti\'cly. It is found that the same transformation wh.ich changes 
(5) to the form (2) also ch:rngcs (6) to (3), so that no generality is lost by working with 
the set (5). This leads to some simplification in notation. 

3. SINGLE PLANE TRU1'CATION 

Consider now the multi no rmal frequency function cf,nCx; R) int roduced above. 
We ca lculate first, with Aix) specified by (4), 

o:m(t) = J e1·x cf, 11(x; R) dx (7) 
A.(X) 

:,,. (2-rr)- I" J e1'xl R 1-1 cxp{- ½x'R- 1 x}dx. 
, .4.<xJ 

Make the orthogonal transformation x = Hy where H has c as its first column, the 
remaining columns being orthogonal to c and o rthonormal amongst themselves. Then 

cxm(t) = KJ exp{t'Ily-h'V-1 y}dy, 
.J.(Y) 

where v-1 = H'R-1 H, K = (2r.)- l nl RI-½ and A,.(y) is given by (2) with 

a2 = a3 , = ... = a,. = - ro 

and a1 = p. Now let O = H't and use the identity 

- }(y'V-1 y- 26'y) s ½0'\'8- HY- f3)'V- 1(y - r,), 

writing f3 = YO, to obtain 

o:m(t) = K eT f exp { - {z'v- 1 z} dz = eT c[, (p- 131), 
• .&.(Z) y 

(8) 

(9) 
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where /3
1 

= c'Rt, y = (c'Hc)! and A 11(z) = {z; ; 1 + {31 ~ p}. Upon setting t = 0, it is 
found that o: = <l>(p/)'), 

The cumulant generat ing function is 

k(t) = T + Jn <l> (P ~ ,81)-111 o:, 

whence the mean vector, µ, is 
µ = (ay)- 1 <fo(p/y)Rc 

and the di spersion matrix, l\,J, is found to be 

M = R + Rcc'R(Ci.y2) - 1 cp(p/y){p/y- cp(p/y)/rx}. 

(10) 

(ll) 

(12) 

It is important to notice that, by a sui table normalization of the coefficients, the 
above results apply to all cases of index selection . For suppose all individuals 
satisfying a'x ~ b arc to be retained, then by ddining ci = ad\'(a'a), and p = bN(a'a), 
this expression assumes the fo rm c'x ~ p, where c'c = I. 

Example. We now apply the above methods to a problem in two dimensions. 
Let X

1 
and X

2 
have a bivariate normal distri buti on with means /.t 1, µ2, variances 

oi, o~ and correlation coeflkicnt p, and form the rat io Y = X1/ X2• Selection is tO be 
practised for Y in such a way that a proportion o: is rctainr cl and it is required to 
know the effect of this selection on marginal momen ts. It is also important to deter­
mine the correct value y"' of Y to use as a point of truncation so th at the desired 
proportion of individuals is saved. . 

The first step is to write Yin terms of the standardized variables x1 and x 2 in the 
equation X1 = X2Y a · Thus 

and 
C1X1-YaC2X2 = Yaft2-µ1, 

which can be put in the form 

with 

and 
P = (J'a/.t2-/.t1)/ (0i+ 0V·!)l, 

Now <JJ(p/y) = o:, and hence we set ply= ta, say, where !Of. = <1>- 1(0:). For this problem 

Y2 = c'Rc = (a2 -2py a c + J·2 o2)/(o2.+ o2 J·:?) . 1 a 1 2 a Z l 2 a • 

and y"' can be found as a root of the equation Y! T22 - 2y"' T12 + 7;1 = 0, where 
Tii= o~-11rft';, (i = 1,2), and T12 = pa1 a2 -µ 1 µ 2/t~. 

The correct root may be determined by substitution in the equation p 0-= yt"'. 
Suppose the correct value of y is Y:.., then we have 

E(X) = 0 1 <p(p/ y ) )(cl - J'x Oz p) + 
l o:ya(oi+o~y~)! f'-1 

E(x) 
_ o2 c/,(p/y")(po1-y,.,a2)+ 

2 - ( 2 ~ 2 )t /.L2, 
o:y" o1 +op·°' 
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and 

X <fo(PIYo.H PIYo: -<fo(p/y,,.)/et}. 

4. T RU\"\CATION WITH q ~ n PLAl\ES 

The more general case of plane tru ncati on is specified by (5), i.e. 

A n(x) = {x ; C'x ~ p}, 

where C is the II x q matrix with colu mns ci (j = 1, 2, ... ,q) and p' = (p1,p2, ... ,pq). 
We now make the t ransformation y = nx, where 

[
C' ] B = . 
H 'R- 1 

The columns of the ma trix H arc chosen to be orthogonal to those of C and ortho­
normal amongst thc:msch·cs. Since there a rc 2- 1(11 - q) (l + q+ n) constraint relations 
and n(n - q) independent elements, such a matrix ·ca n always be constructed for 
q ~ n- 1. When q = n, B = C' since C' is then II x 11 . 

The m.g.f. for the trunca ted di stribution is now given by 

o:m(t) = KJ cxp {0'y- ½y'V- 1 y}dy, 
A.<r> 

where 

and 
v-1 = c13-1yu-1 n-1. 

We again use identity (8) and notice that O'V0 = t'Rt = 2T to establish 

o:m(t) = K eT j4 

exp { - Hy - f3)'V- 1(y- (3)} dy, 
A . !Yl 

with f3 = V8 = BRt. 
Suitable matrix multiplication shows that 

o. = and V = [
C'Rt] [C'RC 

..., H't . 0 
O' ] 

H 'R- 1 H ' 

and therefore 

[
(C'RC)-1 O' ] v-1 _ 

- 0 (I·I'R- 1 B)- 1 • 

It follows, therefore, that the expression for m(t) can be put in the form 

o:m(t) = (2r.)-lql C'RC j- 1 F X (2';"1')- l!n-q) I H'R-1 n1-1 G 
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where 

and 

G = J"" ... Ja) cxp{-1(y11_q- H'l)'(H'R- 1 rn-1 (y11_q- H't)}dy11_q , 
-00 -co 

Yq representing the first q com ponent s o f y :rnd y,._,, the Inst (11 -q) component s. The 

last factor 011 the right of the first equ:ition is unity anJ :i furt licr transformation 

z, = (J'i·- c~Ut)/(c;Rc)I (i = 1,2, .. . ,q) reduces tile 111.g.f. to 

o.-m(I) = e1'<1> 11
(d ; Re), (1 3) 

where Re= D C'RCD, d = D(p -C'Rt) and n-:i = diag(c~Rc1 , . . . ,c~Rcq). The 

m oments are now obta inable from the genera l formulae developed in Tallis (1961). 

5. So:-11, SPECIAL CASES 

Jt is of interest to ex:imine two special cases of plane truncation which are of 

practical importnnce in selection theory. In the first instance, we consider the vector x 

p artitioned as 

for q ~ 11. The components of xi and the truncation set arc specified by 

x' - (x · x x ) i - 1i, 2it · · ., ... 11,i 

and 

A,,(x) = {x; c~ X1 °;?, Pi, e; X2 ?- P2, · · ., c~ X q °;?, Pq}. 

This type of truncation occurs when the population is subjected to q different selec­

t io ns, each o ne involving a difTerent se t of characte rs, xi. The above system will be 

called group truncation. 
The required m.g.f. can be inferred directly from (I 3). However, it is instructive 

to derive it from first principles. l\fokc the single orthonormal transformation 

x = Hy where H is the direct sum 

H = diag (H1, H2, ••• ,H11), 

and each H,: is (11i x 11,), o rt honormal and witll first column c,:. We obtai n for the 

m.g.f. 

crm(t) = K r cxp {(H't)'y - ty'H'R- 1 Hy}dy, 
• A,.<n 

where 

a nd 
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This can be put in the form 

cxm(t)=KcT r exp{-~w'H'R-1Ifw}dw, 
, A,.(W) 

where 

An(w) = {w; 11·11 +ciR1.t~Pi, ... , 1rl.12 +c~R12.t ~p,1} 

and R is partitioned according to x 

R~[iJ 

[No. 2, 

Upon integrat ing out the (11-q) uncondition al variables, we arc left with a matrix 

where R has been partitioned as 

in confom1ity with E(xx'). Now Jct Re= DVcD with 

n-:i = diag {(ci R11 c1), .. . , (c~ Rqq cq)}, 

then we make the fioal change of variable w = Dz and 

with 

Aiz) = {z; z1 ~ (Pr -ci R1. ()j(ci R11 cJi, ... , z11 ~ (pq-c~ RtJ. t)/(c~ R12q c'l)1}. 

Thus, cxm(t) can be put in the form (13); howeYer, in tlus case r/
5 

takes the form 

(1 4) 

As a final example we consider a sequential type of truncation where x is partitior.cd 
into two subvcctors, 

X = [::] 

and 
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We now use (13) to write the appropriate m.g.f. as 

nm(t) = e1' (J>2{(Pi - c'i R1)/(c~ Rci.)1, (p- e' Rt)j(c'Rc)I; Re} 

where 

Re= [~c ~c] 
and Pc = c1 Rc/(c~ Rc1 . c'Rc)i. It is easily seen that 

o: = <l>2{p1/(c'iRc1)t,p/(c'Rc):; Re} 

307 

(1 5) 

and the correct formula e fN the first and second moments after truncation arc 

obtained from the formulae for rectangular truncation. T hus for instance, 

cxE(X1) = ef{p'i) <J>(P12) "5:. piv cll./(c'i Rc1) 1 + cp(p') \J)(P~ 1) "5:.pii• c..J(c'Hc)t, 

where 
P1 2 = (p' - PcP'i)/(1 - p~)l, 

I'21 = (p~ - Pcp')/( 1 - p~)I, 

Pi = Pt/(c'iRc1)
1 and p' = p/(c'Rc) I. 

From a practical viewpoint. r,roup and sequential truncation systems are important 

in the theory or selection. For instance, when :rnimals arc selected for breed in g, a 

flrst selection may be made on the subwctor x1 of x, the ,·ector of all economically 

important clwractcrs. ln fact, there arc q stages 10 the selection programme and each 

set of measurements is used in turn. The types of selection differ in t_hat, alt hough 

bot h consider an in itial scll:'.c ti on in x1, in the case of scquemial truncation the fina l 

selection is for the total YecLOr x .. These procedures lead to numerous questions of 

cfilcicnty. Thus, in man)' situat ions in genetic select ion, it is desirable to maximize 

some linenr compound ~pi E(Xi) subject to the constraint that 11 .:xi = ix . This is to be 

accompl ished by suitnblc choices of the cocllicient ,-cctors ci. Howev..!r, these prob­

lems will not be invcstig:ncd further here and reference is made to Cochran (1950) 

for a fuller discussion of these topics. 
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ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL 
POPULATION S 

BY G. 1I. TALL1S 

McMastcr La.boratory, C.S.l.R.O., Glebe, N.S.W. 

1. Introduction. 0 Yer the past few years, considerable attention ·bas been 
devoted to problems of t runcation in normal (and other) pa.rent populations, 
[see Birnbaum and :.\foyer (1953), Weiler (1959) and Tallis (19Gl )]. This work 
has been useful in the general t heory of selection and has provided the basis for 
a number of selection techniques. It is the pm pose of this note to int roduce the 
concept of cllipt.ical t ru ncation in normal populations and to deri ve t.he moment 
generat.ing fu nct ion, m.g.f., for t he resul t ing distribut ion. Some applications of 
the results t.o selection a re given in the Inst sect.ion, where also, combined ellipt ical 
and radial truncation is discussed by means of problems in two dimensions. 

2. The multinormal distribution under elliptical truncation. Consider the 
standardised, n -dimensional multinormal distribution 

(1) 

where R is positive definite, a nd define a set E in n -space by 

E = {x I a ~ x'R-1x ~ bi, 0 ~ a < b. 

That is , E is the set of points which lie inside or on the boundary of the ellipsoid 
x'K-1x = band outside or on the boundnry of the ellipsoid x'R-1x = a. 

The problem now is to find the m .g.f. for then va riables in tlfc subspace E. 
By definition 

(2) am(t) = (21r )-!n IRI-! L exp (-½x'R-1x + t'x) dx., 

which can be reduced by the non-singular transformation y = p -
1
x (PP' = R) to 

am(t) = (211' )- 1" J, exp ( -½y'y + (P't)'y) dy 

(3) 
= (2,.)4 "cr J, exp [- ½(y - P't)'(y - P't)] dy, 

where T = ½t'Rt and F = {y I a ~ y'y ~ bJ. F rom (3) it is clear that the 
v1u iable y 'y = W, say, has a non-central chi-squ are distribut ion with para­
meters n and '1'. H ence, if F n+:;( ·) represents the chi-square distribution funct ion 
with parameter n + 2i, 

(4) 
- .. 

. e' am(t) = L Wn+z;(b) - Fn+2,(a) ]Tj/i! 
,-o 

since the distribution function of TV, ll(w), is H(w) = I::'-o F .. +2;(w)T
1
/i ! 
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It is 110\\" obvious that a = Fn(b) - Fn(a) and that the mean V<'Clor !.' and 
moment matrix M are gin'n by !.I = 0 and M = a-1[/i',.+1(b) - F,.+la))R. 
In fact, nil odd order moments Yanish nnd eYen moments of order 2k arc obtninecl 
from those of the mullinormal distribution by multipli cnt.ion by a:-'w,.+~k(b) 
F,.+:?J.:(a.)). 

3. Applications and extensions. 
(a) General a71plicatio11s in 11-dimc11sio11s. A direct application of ell iptical 

truncation to selection \\"ould require, for instance, thnt all indi,·iduals in the 
population rnti$fying O ~ x'R- 1x ~ a be retained and the rest discarded. This 
procedure would ensure that a. proportion a be retained \\"ithout altering thP, 
means of the n Ynriates concrrned . Such a situntion may be des irable, for in­
stance, if a breeding population applying zero selection pressure to a ll characters 
is required as a control group. In practice then, the population from which the 
selections arc made is treated as mult..inormally distributed ,Yith correlation 
matrix ft If the population is accessible and finite, R c:rn be cnlcul:ltcd; otherwise 
R may be nn estimate of the true mt1trix R which is usually unknown. :'.\ow, all 
individuals with me:1surement vectors satisfying x'Rx > a arc discarded and, 
in the remaining group, the desired co·ndition L'(X;) = 0 for all i will be approxi­
mately snfisfied. 

Kot only can selection be performed without altering the means of the n 
variates, hut t.hc following argument sbo\\"s tluit a selected group can be formed 
such thnt the co,·arinnce matrix also remains unchanged. If select ion is carried 
out in such a way that. indi\'iduals with measurement nctors, x, satisfying 
a ~ x'R- 1x ~ b rue retained, then it follows from ( 4) that if M is to equal R, 

(5) 

is a necessary and suflicicnt condition. Let Gn(x) = Fn+2(x) - F,.(x), then 
since G.(O) = 0 and G,.(.t) decreases monotonically and continuously to a 
minimum at x = n and therc:ifter increases monotonically to (;,.(er.) = 0, it 
follows that for e\·ery at [O, 11] there exists a b t [n, :c J such that G.(a) = G,.(b) . 
1\foreoYcr, b is a st rictly monotone decreasing and continuous function of a and, 
as a moves continuou,;Jy from O to n, b moYcs continuously from 'l.) to n. Thus, 
Fn(b) - F,.(a) takes all \·alues of a from 1 to 0. \Ye ha.Ye shown, t.hcrcfore, that 
selection can in fact be carried out in such a way as to ha\·e the first and second 
moments of the selcctec.l group the same as the parent population. 

Values of a and b arc giYen for a = .l( .1) .0 and n = 2 in Table 1. The figures 
in the table were found as the non-trivial, simultaneous solution to the equations 
ye-11 

- :i:c-"' = 0 and e-= - e-11 = a, where .t = a/'2 and y = b/ 2. 
c ( b) Extr:n s'ions for n = 2. The follo,,·ing two problems in two dimensions a rc 

considerably more interesting than the gcnernl applications gi\·en in (a.). 
Pnonr,D1 1. Let S be the sub-space of the plane defined by xi + xi - 2pX1X2 ~ 

(1 - /)a, where X1 and X2 haYe joint frequency function 

cp(X1, X2; p) = (21r) - 1(1 - /)-! 

(6) I [ < 2) J-·1c 2 2 )I X exp - 2 1 - p X1 + Xz - 2pX1X2 • 
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TA13LE 1 

!' al11es of a ancl bf or 11 .,, 2 1111 d various er 

a a b a a b 

0 .1 1.7-10 2.2S5 O.G 0.68-1 4.41 I 

0.2 1.500 2.601 0.7 0.50G 5.lH 

0.3 1.277 2.950 0.8 0 .335 G.161 
OA l. ~ 3.361 0.9 o. Ji] 8.632 

0.5 O.Sil 3. 83G 

Consider the sub-space .S' of 8 enclosed in ihe sector O = 01 , O = 02 , 02 > 01 , 

nnd let Pr[ (X1 , x ~) r. S'I = a. Then it is required to determine the Yalues of 

01, 02 and a, (81, Oz, u) '"hich maximise L31/,;(X1) + /M:,' (X2)], \\'here /31 a11CI /32 
arc arbitrnry rcnl numbers. 

Such a maximisntion i-; dC'simblc, fo r instance, when animals arc sclcctcd fo r 

breeding. In th is case, the /3's arc tlte appropriate regression functions of the 

X's on the pnrliculnr genotype considc·rccl :i.nd the problem posed abo,·c is 

analogous to the o ne discussed by Young and Weiler ( l!)GO) . These authors 

im·esligated the p roblem of the maximisat ion of !P1E(Xi) + .B2l~'( X 2) ] under 

rectangulnr lrnncat ion in .Y1 a nd X 2 and published se,·cr:i.l char ts fo r this purpose. 

From the point of Yicw of maximisation, the sys tem of combined radial and 

elliptical truncation is much more easily ha ndled, s ince the maxima. can be 

obtained directly from :\ single table such a.s 'fable 2. \\"i th rectangular trunca­

tion, ma ximisation in general ca n only be achieved iterat ively \\'i th the aid of a 

complicated six-dimensional chal't.' 
Iu order to find ( 81 , Oi , a), make the transformation x = Py where 

. [ ri(l - p)1 rio + p)1] 

P =. -r'o - ,..)1 r'o + p)1 • 

Kow f31E( X1 ) + f32E( X :) = ,.,E( Y,) + ,.,E( Y,) , 'Y1 = (fJ1 - f32)r1(1 - p) 1, 

,.2 = (/31 + f32)r 1(1 + p) 1, and the ne\\' angle o;, (i = 1, 2 ) , arc gi\'cn by the 

formula 

tano; = [(1 - p)/ (1 + p))1[( 1 + tan0;)/ (1 - tanOi)]. 

Another trnnsformation, this time · orthogonal, subsequently simplifies the 

problem. Let z = Hy, where 

[ 

( • ")-1 ( • + 2)- 1] ')'1 •t i + ')'; 'Y2 ')' i 'Y2 

H = 2 2 -l 2 2 - I • 
--yi{ ')'1 + ')'2) ')'1( i'l + ')':) 

Upon m:1king the abo\'e two transformations in (G) and letting z1 = rcosO, 

z2 = rsinO we obtain finally 

.. 
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and by assumption 

( ') ) - 1 ls; 1"' -,!12 l do (2 )-1(0" o") - a:12 -rr re < r = 1r 2 - 1 e = a . 
8 a 

Let 

(8) 

and G = F + HI, then 

(a ) iJG/aot = (2.r)-1('Yi + ,,Dl ([" r2c_':12 d,) eos0t 

+ (2rr )- 1 A c-0212 = 0 

(g) (b) ao;ao; = (21r )-
1c,,~ + ,,;)1 ( [" /e-'2

'
2 d,) cos o; 

+ (21r )- 1>-e- af /2 = 0 

(c) aG/aa = (2rr) - 1("Yi + ,,;) 1azc-02'2(sin o; - sin 0~) 

+ (27iT1X(o; - O~)ac-0112 = 0 

Suhstract 9(b) from 9(a) to obtain cos O~ = cos o; or e; = - o7, and for 
a> 0, divide 9(c ) t.hrough by a(o; - 0~) and subtract it from 9(b) to give 

(10) 11 + (1 - ,1,(ci) J/ c1<,t,(,i)l c~s o; - sin o; /o; = 0. .. .. 

By using the relation </>(a) =a/of· (1r/ 2) 1, (10 ) can be solved iteratively for 
o;. The quant ities o;' and a a rc obL:1 incd immediately and back substitution 
. - d - If O . . f d I " " · I I " gives 01 a n o~. a = , it is oun t 1at o~ = - 01, a.s previous y, n.m 02 = air. 

If the const.raints (8) and 0; = - 0~ are introduced into ('i), Ji' becomes a 
function of a only and 

( 11) F(a) • at ., 2 -r2 ., 1~ = /( SIU ( 1iaC I-) 
0 

r C I - dr 

TAilLE 2 
Values of o;, a and B (z1) for various a 

a o; a E(z1) a o; a E(z1) 

. 1 0.877 1.433 1.722 .6 1.885 0 0.632 

.2 1. 0-14 1.008 1.375 .7 2.199 0 0.4Gl 

.3 1. 196 O. G!l l 1. J.1 -l .8 2.513 0 0.203 

.4 1.357 0.393 O.!JGO .9 2.827 0 0. 137 

.5 1.571 0.000 0.798 
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where J{ = 1r-1(-yi + y;) 1. For a<~-, (10) has a unique root, 0 <a< 
( - 2 In 2a) 1, and from an inspection of (11), F(a) is clearly a maximum. \\'hen 
a ~ ~- (10) bas 110 solution , but. F(ci) is monotone decreasing in a and hence 
attains its maximum when a = 0. Points of maximi:mtion and rnlues of E (z1) 
arc giYen for rnriou;; Yalues of a in Table 2. 

A referee has pointed out. that ( 7) can be maximised readily ,Yithout using 
the Lngrange procedure. First make the 1.ra11sformation E = T 1

(0;' + o;) 
and t,. = 2-1(0;' - o;) to show that, for all u and a., (7) is maximum when 
E = 0. J3y introducing thc constraint t. = 1rete°: '\ ( 7) can be \\'ri tt~n in the form 
(ll) and t.he extreme points inYcstigated in the usual manner. Hnt.h method::; 
lead to the same result. 

PnonLE~r 2. It was sho,,·n aboYe that, from an original popnbtion, a. cont rol 
population can be constructcd so that no ch:rnges in means or second order 
moments occur, pro,·icle<l the radii a and b are suitably chosen. H owe,·cr, the 
problem of simult:rncously cstabl i;;hing a control group of proportion a and a 
selection group of proportion o < l - a from a single base population often 
arises. In this case it may be dcsi:·able to lea,·c the first and second moments in 
ihe control group the same as the base populn.tion and, at the same time, maxi ­
mise E [/31X1 + .B1X~J in t he sclcct ion group to obtain the greatest possible selec­
t ion differential u::;ing a single sector. 

The control group is establi.~hcd by means of the elliptical truncation 
a ~ x'R- 1x ~ b, where a and b arc determined from Table l. In order to find 
the region from which the sclcct.ion group is formed, notice that 

oE[/31 X1 + /32 X2] = (2rr )-1hi + y;)1 . cos O + /c-'
112 

dr dO r.e.: (la 1"") 
• 8j O b 

and H(O;', o;) = (2r.)-1(o; - o;')(l - exp( - a2/2) + exp(-b
2
/2)) - o = 0. 

Jt is fou11d immediately that. o; = - 0;', as preYiously, a nd 

0-11 _ ~ /(l - a2 / 2 + -b2f2 ) 
2 - or. - e c 

B (z1) = (2/r.) 1 sin (o;)[li,t,(b) - a4>(a) + 1 + <I>(a) - <I>(b)]. 

Thus, all those indi,·iduals lying in the sector ( e;', o;) and outside the control 
group form the selection group. 

4. Acknowledgement. The author gratefully acknowledges the valuable 
suggestions of :\I r. George Brown a nd the referees. '-
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NOTE 

The methods of A(a) (ii)~J are useful for evaluating 

certain integrals related to the uniform distribution . Some 

of these results are developed here as illustration. 

-1 As earlier , put En= {x; ~'V ~<a} and define 

f f t'x 
Ma (t) = · · · e- -d~. 

En 

Clearly Ma(t) is proportional to the m.g.f. of a uniform 

density defined over the ellipsoid 

Now 

-1 
?S'V ~=a. 

and putting 

Note that 

then 

Ma(!) = 

= 

where Gn = 
Q()2.) = 

Since 

-1 V = P'P, X = P?S, Fn = {y; y'y < a} 

n 
lvl ~ lim (27T)2 on 

Q'-+O) 

n 
lvlJ,lim (2 1T) 2 

n 
(j 

o->-0) 

{~;!!'!! < a/o 2
}, 

(g- oRt) ' (g-oRt). 

wn = !J, g has a 

e 

T 

and l et 1 -1 ' !J = - 'i , P = R 
(j 

O'· (Rt)'u ~µµ d~ f . .. f -e -
Gn ( 2 ,r)n/2 

o 2 T - ~Q(u) dg f . .. f e -
Gn (27T)nh 

== ~t 'Vt and 

x2(n,>..) distribution with 

2>.. = o 2t ' R ' Rt = o 2t'Vt = 2o 2 T, the required integral is 

and 

Ma(t) = (2 7T) ¥-1 VI~ lim 
Q'-+O) 

00 

E Gn+2· i=b 1 

where Gk(x) 
X 

= f gk(y)dy. 
0 
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It is easily verified that 

lim crk Gk(a/cr 2
) = 

a ->-c:o 

and hence 

With i = 0 we get the volume of then-dimensional 

ellipsoid as (IT)~ IVI ½ an12 ;r(n;2) which specialises to 

(IT)n/ 2 an12;r(n;2) for then- dimensional sphere. 

In order to get the m.g.f. for the uniform density on 

-1 ~'V ~=a, M(~) is normali sed and 

n+2 
- 2-

2. 

If we wish to choose a such that the covariance matr ix 

of this uniform density is the same as V, put i = 1 and set 

a t'Vt f 

2x2 

and a= n+2 , see Cramer (1946), Mathematical Methods of 

Statistics, page 120 . 
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EFFICIE?\T ESTJ:\I.\TES OF BERIT:\BILI'fY FRO}I P:\TER~:\L 
H .:\LF-SIB CORREL\TIO~S 1• ~ 

G. l\I. T ALLIS ,\!-:!) E ,\ RLE \\' . KLOSTER:\IAN 3 

Ohio Agricultural Expcrimc11t Station 

OVER the past years. man~' estimates of heritability h:n·e been obtained 
from paternal ha li-sib correlations. Such estimates arc s ubject to large 

;'(" sampling errors and cxtensi\·e da ta must be used if accurate heritabilities 
·V arc to be calcula ted. 

C 

One formula expressing the standa rd error of an estimate of an intra­
class correlation coef1lcient is discussed by Fisher ( 1952) viz: 

Jt(k-1) bk 
where Sr = the standard error 

r = the estimated intrn-cbss correlation coefficient 
b = t he number of classes 
k = the number oi incliviclu:ils within clas~es (same 111 :Ill the b 

classes, k > l ) 
Clearly, the total number of individuals in the sample, n, is given by 

bx k. It is thus possible to deduce from formula 1 

n 2 (1 -rY· L+r (k - ,)]
2 (2) 

Formula 1 has been used to estimate the standard error of heritability 
estima tes, Sh, obtained from half-sib relationships (Hazel and T errill, 
1945). In this case 

k-.r 
I + F' 

Qnd ~!:. 
l + F' 

t I'ublished with the appro•:Jt of the .¼!Qciate Din•ctor as Journal Article :-o. 62-58. 
• This manuscr ipt was d.-·elt:•rrd by G. )I. Tallis lnd wa; taken in p>et irom a di ;.,crl>tion pre· 

srnted l,y him to the l;r:u.lu,tc Scbc,c,!, The Ohio State l.'ni\'cr;itr, in J>Jrtial lul11ll111cru of the l'h.lJ. 
dt-::ree in 1957. Presen t addrr;s is C.S.l.R.0., ;\lc;\la;tcr Animal lkalth Laboratorr, Clcbc, Sydney, 
Au,tratia. 

• ,\cknowled;;rnent: T he authon wish to ackM<dcd, e the helpful criticisms o f Dr. J. A. '.\! orris 
and Dr. ~-. E. Binet, of the Di"i.lion of Animal Health and l'roduct ion, C.S.l.R.O., Pou ltry Research 
Center, \\'erril,ee. \ 'icioria . 
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where F' is the a \·erage coeffi cient o f inbreeding of the sires, a nd h~ is the 
es tima ted hcritaiJility. 

With the a id o f for mulae 1 and 2, it is possible to im·esligate the follo\\"i ng 
quc.stions : ( I ) \ \"hat is the mi nimum number of animals which must be 
stud ied in order to estimate hc ri t::i.bility lo a gi\·en accuracy? (2) \\"hen 
the number, n , of animals studied must be restricted lo ); , wh:tl combination 
o f b a nd k gi \·cs the most cilicient c-stimatc o i hcritaliili ty? 

Problem 1. :\n inspection o f fo rmula 2 re\·eals that, when Sr is held 
constant: n is a function o f k and r. If en\'ironmental cor rebtion is d isre­
garded, r could ha \·e a theoretical range of 

O~r' .S. •5" 
in half-sib data when the inbreeding o f the sires is considered. H owever, "'"'-
t he range which is o i p rime interest is J 

o .::::. r ~ 
. ( 2 N.ow n/ ·q k + 3 ) · 

r :: . 25 = 12 S ( K - I) $ ~ 

Moreover, the valu e of r which makes n a ma ximum, r' , is given by the 
equation 

r ' k-2 
2 (k -1) 

and consequently I k 
r 2 ·2 5 , > 2 .. 

Therefore, o\·cr . the speciti ed range o f r , n is a monotone increasing f unc­
tion of r fo r all \·a!ue~ o i k greater tha n 2. This means that the number of 
a nimals re(Juired to estimate heritability to a given degree o f accuracy 
depends on the heritability lc\·cl, and this number increases a s heritability 

goes from O to l . 
This result. is more pla usible when consideration is gh·en to the ratio 

;r . Clearly, if Sr is fixed a nd r is allowed to vary from O to .2 5, the va lue 

of the· ratio increases. Thus, under the null hypothesis tha t r is zero, the 
larger va lues o f r a rc stati:;tically more significa nt. ( in terms of sta ndard 
devia tions ) than smaller Ya lues. It is therefore not surprisin~ tha t g rea ter 
numbers o f an imals a re required to obtain the higher si6 ni f1ca nce lc:: vels of 
large r values. 
A similar ana lysis may be made with respect to t he nuiablc k . \\"hen 

~{ is calculatecl and eq uated to 0 . it is found tha t n is minimized when 

k = 1 ~ r = k' . This mea ns that each Je,·el o f heri tability has its own 

\ 
J . 



· ( 

.( ') 
. ._ 

((~ . 
\ 1 
·~-.../ 
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optimum value of k ,k'. If other values o f k are used, n must ine\'i tahly be 
la rger if heri tability is to be estima ted with the same accuracy. Values of 
k ' are given in table 1. 

TABLE 1. \" . .\LlJES OF n' , k' . .\:-.:D b' FOR DJfFl::RE:S:T LE\'ELS OF 
HERIT..\ nJ LlT Y (F'=O) 

Sh= ·05 Sh= ·I O Sh= ·IS 

h' k' b' n ' b' n ' b' n' 

. 1 41 30 1230 7 287 3 123 

·2 2 1 110 23 10 2S 5S8 12 252 

·3 14 235 3290 60 8-10 27 378 

·4 11 377 4147 94 1034 42 462 

·5 9 544 4896 136 122-1 60 540 

·6 8 694 5552 165 1320 73 58,\ 

·7 7 871 '6097 207 1A49 92 644 

·8 6 1092 6552 273 1638 12 1 '726 

·9 5 1388 69-10 384 1920 l i l 855 

T he optimum number of offspring per sire decreases with increasing 
heritability . Howe\'er, it is now possible to calculate the minimum numl.Jer, 
n', of animals necessary t o estimrite heritnbility \\' ith a certain standard 
error, Sh. We summarize 1.10w the relationships used abo, ·e : 

I,. ' -" - I + r' 

f"I 

·r =(, -t:..£...'.)1,2 , 
4-

S - ""'(t -f- F •) c r - . ~1-i 
4-

ond I 2 c,-r)2 L+~ Ck'- ,)]
2 

n = 

For ex ample , l e t F '= O 
h2 ;:. . 4 

S h ::: . 05 

(k ·- ,) s~ 

t hen r ·= . 1, k' = 11, S r :: • 0 125 and 

2(1- -1)
2 

[1 + -1 ( 11 -,)] 2 

n ' 

: 4,1 47 

! 
! 

I 
. , 

! 
! 
I 
I 
! 
I 

l 
! 
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As 11 :::::: kb, the optimum number of sirrs is b' = .n.'. Jn this manner 
I<' 

table I may be constructed .. \ ttentinn is drawn to the fact that the \'aluc!­

appcarin[; in the table arc only close approximat ions to the true values 

because k' has been calcula ted to the nearest integer. 

Thr re:;ult;; of this section agree well \';ith the t'mclin~s of Koch ( 1957), 

who examined the ci1icirncy of different \'alues of k and b for c·stimating 

heritability lo a gi,·en degrer of accuracy. Such a study is made possible 

by setting Sr and r, nllow:ng k to rnry and computing rnlues of n from 

formula (2) . .-\ s b = ~ . different rnmbinations of b anti k may be cal­

culated and. together with n. compared with n'. b' and k' for the particular 

le\'l'l of heritability unck·r i1l\'e,-tigation. 

Problem 2. Jn usual practice, the hi;!hest possibh! \'alue of n is clctrrmined 

by economic factors. T ims. Sr becomes the independent variable (formula 

J ) and just like 11, Sr increases as h:: goes from O to l and is minimized for 

a given heritability when k ~ 11- (' :::. k 1. 
r · 

Hence, when n is set at a specilic \'alue. ~ , the numher of offspring per sire 

to study for a gi,·e11 degree of heritability, h T , is I< \ , and tht' optim um 

I f . . N b I 
num Jer o sires lo use is k" = j 

I 

The cli!>cussion thus far· has ncgkcled the facl that, usu:illy, the heril­

abilitie.s of se,·er:il charact('ristics are to br estimated incli,·idually imm 

data. obtained on one group oi animals .. -\s the h1?rilability of the!'-e char­

acteristics is likd,r to \'ary widely, and becnu~e k' changes with the Jc·;d 

of heritabili ty, the question arises as lo which ,·alue oi k, k'0 , to u-e under 

these circumstances.:\ solution to this pr<Jblcm may Le obtained as follows, 

H it is assumed tha t 

a.. a. 

~ 
t.. ::. I 

is insignificantly small. Let h'.!1 

i11 ' characteristic, then r-i :::: · 

(i = 1, 2, --- a ) be the heritability of the 

( 1 + F 
1

) h 2._ . One criterion for selecting 

'+ l 
Cl. 

an cfticient k ntlue would be such that 
0,. 2 

a.L~I s r t. 

.~ 
l :. I 

2. S r L is a minimum. For 

this to obtain, ____ __ must be equated to zero and soh-cd for k. 

ak 

) 
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We have a. 2. 
<1. 

~ Sri.. :: ~ 
l :. I l :. I 

2(1 -rJc [1 + r, (k-,)J 
2 

(k - •)n 
and 

:: ~ 2(1-r,/[2r.L+rt. (k-,)J _[i +<\ (k-,tJ.::o 
L c. 1 n ( k - t) ( k - I 

2 

= 1 (, -r)' [rf (k -,)'-1] ~ O 

whence 
Q. 

( I - ri) 
2 :f 

k'o::. L >' I (3 (l) + I 
~ 

(1 - r;_)\,t, I ~ 
l '- 1 

If it were found desirable to weight inclh·idual characteristics (according 
to economic ,·alue and/ or according lo the reciprocal of the variances of 
the individual r est imates used in compn ling k'0 ), some weightin~ factor , 
v, could be calculated for each characteristic. The formula for k' would 
then be, 

I 

ko = 

a. 
< ~ 
L :. I 

( I - . (' J 2 V, 
+ l 

A certain amount of circumlocution is unavoicbulc if use is lo be made 
of fonnube 3a and 3b. f or inst:rnce. an im·esligator who can study 1,000 
animals intends to est imate the heritability of se,·en characteristics. ,\ Jorc­
over, he wishes lo J:now the number of offspri11g per sire which will 
maxim ize the efticiency of his experiment. His first task is to obtain a 
rough c;; timale of the hcrit:>.bility of each t rait from previous work. Once 
this information is arnilablc, he may proceed as shown below. 

Characteristic 
A 
B 
C 
D 
E 
F 
G 

F;stimatcd hz 
(Literature) 

.2 

.2 

.4 

.4 

.8 

.8 

.8 

r, (F'= O) 
.OS 
.OS 
.10 
.10 
.20 
.20 
.20 
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T his exam ple assume!'- a co11sta r,t cco:~o:nic rnluc for· all cha racteristics 
and a constant ;;t:rndarcl error of r. 

Apparently, 9 ofbpring per sire a rc de:; irabl :! and he will 11cccJ approxi-

mately 111 si res ( j .~OO ) . furthermore, he can expect ta estimate the 

heritability of the i11' characteristic with a standard error of 

4-(1- r ;..)[1 +r~ (k'o-ul 
(i + F)Jth ( k'o - 1) 

Thus , Sh for A and B is likely to be close lo 

·O S 

Similarly, e:--:pected Sh\ for the second group (C, D) and for the third 
group (E, F, G) a rc 0.10 and 0.14, rc!'-pccti ,·cly .. .\nalogous but somewhat 
simpler reasoning is required to utilize table I. 

As a frnal illustration of these methods. !'uppose we wish to know wha t 
mi11imum \'aluc of n, n '0 , satisfies the condi tions 

e 
QC 

where i = I , 2, - - - a and c2 is an arbitrary mean variance chosen by the 
investigator. 

Q. 
C\. 2 ( 1-f\.}i [1 + r ( ( k -,)J2 ~ ow 2 c? 

~ Sri -· ~ 
(k-1) 0 

:::. a. c. . 
L :: I L: I 

H ence 2 
2 

Q.. (•- r~f [, + r. (k -,)] h :. 
o..c. 2 ( k- •) 

;&:_ 
\. :. I 

and 
2 a. ·[ . r I 

~ (• - r) 1 + r.:.(k 0 - ,) no -:::. o..c.~ (k~-1) \.::I 

) 
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Summary 

Factors intluencin~ the efficiency and accuracy of heritability es tima tes 
based on paternal half-sib correlations ha ,·c been c:rnmined . It i.s concluded 
tha t , in any one experiment, the number of offsp ring per sire, k, pl:i~·s an 
important role in determining the s i%c.s of the errors of cstim:itc . Optim um 
values of k, k', ior cliiferL'nt herita lJility lcw:b arc presented together \';ith 
a method for cakulating the brs t k value. k'0 • to use when heritability is 
estimated for se,·rral ch:iractr rist ics. :.\ [inimum numbers oi ofispring 
necessary for estimat ing hc-ri tability to a gi,·en accuracy arc also discu.ssecl. 
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EFFECT OF SO~IE COXTROLL.-\ J3LE ERRORS 0~ ES1T\L\TES OF 
GE~Errc P.-\RA?IIETERS, \\'ITH SPECL\L REFEREXCE TO 

EARLY POST-~ . .\T:\L GROWTH I?\ MERIXO SHEEP 

G. 1\1. TALLIS 1• 2 

Glcbc, N .S .IV., Australia 

IN a nimal-breeding work, it is not alwa ys possiule either to make ob-
servations on animals at a standard time or age, or even to adjust the 

recorded measuremC'nts to a standard basis before eEt imating genetic 
parameters. As an example, consid er the estimation of heritability of birth 
weight of Jambs, and its gene tic correla tion with other characters. Facilities 
and labour may not be arnilable for collecting and weighing lambs im­
mediately a fter birth, and errors result, depending on the lapse of time 
between birth and weighing. Labour may be saved by inspecting the 
Ja mbing flock at less frequent intcn·als, but in the process the expected 
error term is increased. It is the purpose of this paper to im·estigate the 
effect of such "controllable" errors on estimates of heritability and genetic 
correla tion. 

Methods 

It will be assumed, firstly, tha t the genetic parameters are lo be estimated 
from half-sib data. Later, the case of estimation from parent-offspring 
regression will a lso be considered . 

The genetic model for character x oi the jth offspring of the ith sire 
group ( x1J) may be \\:ri tten : 

X1J =.u+_½g,+c1J+f1J (I) 

where ,u is the population mean, ,½g1 is the gene con tribution from the ith 
sire, c1J is !;Ome controllable error term and f1i is the ra ndom error. It is 
assumed tha t the terms of equation ( l) are indepencltnt. 'The rcle\'ant 
analysis of varia nce and cornriance mocltl for the qth and rth traits is 
gi \'en in table 1. It is appropriate to point out here tha t situa tions arise in 

T ABLE l. ANALYSIS or, \'ARL\XCE OR CO\' . .\Rl:\~CE 

Source d.f. M.S. or Cov• E(~I.S.) or E(Cov) 

Between sires d, \ 'Qr 
k c. ,+ F,,-!---Gv 
4 

Within sires d, v,, c •• +F •• 
• 1:or me.:rn square q=r. 

1 J)ivision o( Animal Genetics. C.S.T.R.0 .. )tdfl ,:• r L3bo,atorr. 
' Somt ,bt3 L1scd in tl:c cxnmple \\ Crr cb1ain, ..! ;, .:)m rcrort.!S of e:tptrimt otal sbrcp m3 intaioed at 

the X3tional Field Station, "Gilru th Plains", Cuna~n:ulb, X.S.\\'. 

1203 
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practice where the components of ( l) cannot be considered as statistically 
independent and, in these cases, the following analyses a rc inadequate. 

It can be shown that Fqr=¾Gqr+Eqr, where Eqr is an environmental 
variance or cornriancc. and hence Gcir can be estimated without bias in the 
usual way by 

(2) 

As, by definition, the genetic correlation between Xq and Xr is estimated by 

,.., 
it may be seen that the controllable error terms in no way bias r g , 

On the other hand, the heritability oi Xq is defined to be 

(3) 

h2 - Gqq (4) 
ci Gcic1+Eqq 

and, because Vqq is usually used as an estimate of Fqq = ¾Gqq+E11,1> h~q 
is estimated by 

4(\Tqq-Vqq) 
Vqq-j- (k-l)Vqq 

(5) 

Hence, in this case, if Cqq >O, b\ is biased downwards and the averagr 
amount of bias is 

Gqq+Eqq+Cqq. 

In the case of the parent-offspring method of estimating genetic param­
eters, similar results may be derived. For any character; the following 
models may be written 

W1= 11w+gd·C1+c1 
X1J= 11x+ _½g,+d1i+f1J 

(6) 

where w and x represent parent and oiispring phenotypes respectively, µ..,. 
and P.r arc paren t and ofispring population means, g1 is the genetic deviation 
of ith parent from the mean parental genotype, c1 and d1J arc controlbble 
error terms and e, and £11 are random errors. It is assumed that all com­
ponents of the model are independent and that g1, c1 and f1J have zero 
expectations. 

From ( 6) it may be shown that 
E[wq1-E(wq.)] [x,1J-E(xri.)] =.½Gq, 

where Wq and Xr represent parent phenotype for the qth <;haractcr and 
offspring phenotype for the rth character respectively. Again, the Gq, 

can be estimated unbiasedly. The conventional formulae for ~i: in this 
case are 

(7) 

.. ) 

' ' ; 
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A A A A 
where Gq, and G,q stand for 2 Cov (wqx,) and 2 Cov (w,xq) respectively. 

A A 
Because r1; is a function of the Gq,, it is in no way biased by the controllable 
error terms. 

H eril abili ty is usu:11ly cs tinrnted from the formula 

A 
h:! q (8) 

"' since Var (w,1) is taken as an estimate o f G.1•1+ Eq,1• This, of course, is 
only true dien C11q=O, and for Cqq>O a biased estimate of h\ is obtained. 
The amount of bias is again 

Gqq+Eqq 
G,1q+Eqq+C41q 

H owever, it is worth stre~ing that Cqq is the controlla ble error ,·ariance 
component in the parent's d:ita . 

" " Formulae for computing the sampling variance of ri:, \'ar (r,:), estimated 
from half-sibdata ha,·e been presented (Tallis, 1959), and similar formulae 
for parent-offspring data are :ilso a,·ailaule (Reeve. 1955) . From a dos<! 
investigation of these formulae it is clear that, in both types of data, con-

" trollable error tcnns tend to inflate Var (re) . This is clue, primarily, to 
the negative bias incurred by heritability estimates as a result of large 
C values. Thus, if two ~ ·stems of data collection are to be compared and 
the second system (2) invoh·es greater co11trollable error terms than the: 

A A first ( 1), then, prodded sufficient data arc a,·ailable Var (ri:) 1 and \'a r (ri:h 
can be computed and compared. ?\Ioreover, if we let . . ,. 

A 

\Tar (r.,h, ·R> 1 A 

Var (r::) 1 ,... .1 
( _. and s is the number of parent groups (sire ~roups or parent-offspring p:iirs ), 

then ir (2) is lo provide as much information as ( 1), s'.!=Rs1 p:ircnt groups 
will be necessary. The loss of ef1icicncy as a result of using (2) instead of 

( 1) is therefore RR 
1
• T his loss of efficiency, together with other factors, 

could help decide which system or data collec tion to adopt. 
It is concluded from the abo\·e analyses that contrnliable error terms 

generally : 

(i) t end to bias heritabil:ty estimates downwards. 
(ii) do not bias estimates or genetic correlatio:1 . 

(iii ) increase the errors of estimate cf f{C' nelic correlations. 
Exa111f1lc. In order to illustrate the above results, the two cha racters 

birth weight (x1 ) and wean in~ wei~ht (x~) of ~Ierino sheep will be ex­
amined. However, before progress can be made, good estimates of the 
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genetic \·ariances o f X1 (Gu) :rnd x~ cc~~) and !he: genet ic CO\·aria nce 

bet ween them {G 1 ~) arc ncres~a ry. These estimates haYe bcl!n obtained from 

da ta on the experimen tal fl ock of medium l'eppin :'l[erino ::: llC'ep main t:?i ncd 

at the C.S.T.R.0 . X :t!ior.:t l Field St:ition, '·G ilru th P lains". Cunnam ulb . 

T his flock has been described by Turner ( 1953) . T he data used were drav,·n 

from observa tions made on lamb.sand weaners in three ma ting g rours a nd 

born during !he t hree yea rs 195-1 to 1956. Genetic rnriance nnd cornriance 

components were c:i lcu!a tecl in the conventiona l w;iy from analy:;cs of 

varia nce a nd ro\·ariance t ables which had been compu ted on a withi n year, 

mating g roup a nd ~ex b:isis. These estimates, ob t:1i ncd wi th S2 degrcrs of 

freedom between-sires, and 12 S2 within-sires, wc:re : 

611 = 0.1 963 c ~2=3.4526 &1 2= 0.29 19 

TADLE 2. Y:\RJ.-\XCES OF ESTl. 1:\TES OF BIRTH \\'EIGHT • OBT:\ll\ED BY 

FOUR J)J FFERC:-:T METHODS 

Group 

Lam bs weighed immediately :i itcr birth 
L:1mbs collec ted once every 2-1 hours 
L:11111.>s collcclcd c,ncc evrry 43 hours 
L:iml,s colk clcd once e\·cry i2 hours 

• l 'ounds. 

Dcgrcrs 
of freedom 

3-1 
39 
76 

108 

\':i riancc 
between lambs 

0. 5820 
0. 6657 
1. 1934 
I .3513 

So that heritability estima tes could be calculated based on di fferent 

p roced ures of data collection. phenotypic var iances for birth weight were 

estimated d urin~ the 195S Jambing at t he C.S.l .R .0. i1eld station a t 

Armiclale, ~.S.\\ ·. Fo ur systems oi da ta collection were considered: 

a . T he weighing o i lambs at birth. 
b. The weig hing of all lambs born during a 2'1 hour period. \\'cighings 

were made da ily a t S a.m. 
c. T he weighing of .111 lambs born during a 4S hour period . \Yeighings 

were made e\·cry alternate day at 8 a .m . 

d. The weighing of all lambs born during a 72 hour period. Weighings 

were made e\·ery th ree days at S a.m. 

Clea rly , t he longer the interrnl between each set of weighings, the 

lar~er is the expected phenotypic va riance becau~e of the efiec t o f thi; 

reg ression of we igh t on age. This fact is il lustrnted by the figu res in 

table 2. F rom Gil a nd the ph i;notypic varia nces o f table 2, it is possible 

t o obtain a rough idea of the effect on heri ta bility ii the estim:ites of 

birth weights of hmbs are not obta ined immed iately .a ft er birth. For 

instance , t he es tima te of heri tab ility under system b o f da ta collection is 

0·1963 0 29 - I h "b. f " . 1 1 t d 0·295 0 87- I 
0

_
6657

= . :> a nc I e ias 11ctor ,s ea cu a e as 
0

_
337 

= . :> . n 

this manner, table 3 has been constructed. 

I 
" 
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The a pproximat ions in table 3 give some idea of the actua l magnitude 
of the bias t hat can olJ\':ously be C'xpcctecl under t ht! four systems of da ta 
collection. from the:-c results it SCt'ms tha t undesirably b rge b iases may be 
incurred if lambs arc weighed at inten ·als longer t han 2-i hours. 

Since s:;strm (b) o f obtaining Lirt h weigh t,; is used a t "Gi lruth P la ins", 
it w:is possib le to o!Jtai11 d:ita on \\·caning wc:gll t.s for ::i similar anrtlysis. 
ll was found that, if weaning wci~hts arc not corrected for age d iiicrences 
a t wc::111ing (system f ), the: c;; timalr. o f 1 hc phcnotypic variance is '14 .2 21 S. 
Howc,·cr, this esti mate is reduced to 39.1 3 i 6 a fter correction for age 

T:\l3LE 3. ESTDf:\TES OF HERIT.-\ BTLIT\' OF x., x, :.nd x,.-x, U:-.:DER 
DI FFCRE>;T SYSTDIS OF D.\T:\ COLI.ECTIOX ,\~D CORRECTIO~ 

T ype of 
Cha racter collection or correction H cdtahility Bias factor 
Birth weight (x,) a (at birth) 0.337 1. 000 • 

b (every 2-1 hour$) 0 . 295 O.S75 
c (every -tS hours) 0. 164 0.4S7 
d (every 72 hours) 0.145 0. 430 

Weaning weight (x, ) corrected fo r arc (c) O. OS8 I. OOO 
uncorrected for r.:;c (f) 0. 07S 0.686 
a, C 0 .091 I .OOO 
cl , f 0 .07S O. S57 

• l.<nO==no bias. 

(system e) is made. Estimates of the heritability of wc:rning weighl under 
these two systems of data correction a rc nlso given in U,ble 3. Thus, 
although the non-corrcclion of the data ior age tends to bi:ls herita bility 
of weaning weight downwards, t he bias is not lar;e. 

Consider now the heritauility (11~1, ) of gains from birth to weaning 
(x2- xi). Estimates of this parameter may be obtained from the expression 

" " " " ., G11 +G~:i-2 G1!! h· n= ,... ,... ,... 
P11 + l'2z- 2P1z 

Si nce controllable error terms a rc not expected to be corn:la ted, P 1:i may 
be estimated 2nd used here for all systems of data collection and correction. 
An estimate o f P 1~ from t he Giln nl1 r lains data is 3 .0626, and, with this 
result, the estimates o i 11::1> under. systems a a nd e, and d and f have been 
calcula ted and recorded in the last two lines of table 3 . Again, a rela tively 
small bias is eviden t. 

Now the genctlc correla t:on between x1 a nd x~ is estimated from eq uation 
(3) lo be 0.355. Under the t wo conclitions of data collection described fo r 

A A h 2
0 , the estimate of rg is not affected by Var (rg) 1 a nd Va r (r,.)2 were 

computed to be 
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"' Var (r.):i= 0.09655 

R 0.09655 l.SSO 
0.05136 

1213 

"' (The variances of rs have been computed from the form11lne developed liy 
Tallis ( 1959)) . 

From these figures we can conclude that weighing lambs at tbree day 
inter\'als and not correcting weaning weights for age ,rnuld result in a loss 

of efficiency (as defined in Section II) of RR 
1 

=0.47. Therefore, if ihe ) 

second system of data collection and correction is to yield as much in­
formation as the first system, approximately Rs1 =1.SSOX82= 154 sires 
must be used. This result is rather surprising and re-emphasizes the im-
portance of examining experimental procC'dures. 

Discussion 
The above example emphasizes that the effect of controllable errors 

on the estimation of genetic paramete:rs can be large or small and, there­
fore, their importance depends on what the investigator's interests are. 
If, for instance, he wish~s to select for birth weight, either to make genetic 
gains in birth weight or weaning weight, it is clear from the equations 

I\ • G1 I /\ • G1 2 
wg1= 1(P11)\-; > wg:!= l (Pn )'h 

that by infl:lling P11 by means of controllable error term·s, drastically 
reduced expected genetic gains arc obtained. Here /~g! and 6g~ are the 
genetic ga ins in birth weight and wc:rning weight respectively and i is the 
selection differenti:11 in standard units. 

Moreover, genetic correlation:; oi birth weight with some other characters 
arc estimated \·ery inci:'1ciently when error$ in\'oh-ed in the measurement 
of birth weight are lar~e. On the oth~r band, if the in\'cstigator is only ) 
interested in selecting for weight gain from birth to weaning, the type of ., 
data collection ,md correction ha\'e little influence on heritauility and, 
hence, on genetic gains. 

Another point which is re-emphasized is the necessi ty, when making 
predictions of genetic progress, for using estima tes of heritability made 
in the same context. In the present example, the higher estimates of 
heritability obtained when weighing at birth would not be applicable if 
lambs wc:re weighed only e\·ery three days. 

Therefore, it is clear that tbe design of any equipment, which aims at 
selection of animals or the estimation of genetic parameters, depends 
entirely on the cha racters of interest. Ob,iously, foretbought with the aid 
of some preliminary investigations may increase the efficiency of the ex­
periment considerably. 
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S ummary 

In this paper the effect of some cont rollable errors on the estimation of 
heritabil ity and genetic correla tion is inYestigated. It is concluded that, 
although these con trollable errors generally do not bias estimates of genetic 
corrcla tio11, heritability estimates may sustain a severe negati ,·c bias. 
Controllable errors also tend to inilate the sampling variances of estimates 
of genetic correlation . These 11ndings are illustrated numerically ior the 
two characters birth weight and weaning weight in ':derino sheep . 
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Com111onwc:ihh or .\11Sl l'alin. 
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Hoprintcd irom The A11.~t1,1i icrn Jo ul'llul of Stati.Y lics. Vol. 1, No. 2, 
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SAMPLTi\G EHHOHS OF GE:\ETIC cormELATION 

COEFFICCE1'TS C.\ LC1 "L\. TED FitO:\I A:\'ALYSES OF 
VAIU.-\'.\CE :-\;'\D COVAHlAi\CE 

G. :.\L 'l'.u .1.1~ 
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J.,atorat,Jry_. Syclncy, .\".S.lr. · 



( ( . 

.... ,. 
\ 

( 

SAMPLING ERRORS OP GENETIC CORRELATION 
COEFFICIE~TS CALCULAT~m FR O::\f ANALYSES OF 

VARIA NCE AND COVARIANCE 

G. ir. 'l',\LLTS* 

Summa ry. Ju this pnpc:r :1 formu la is clc'n.'lopecl fo1· cslinuit ing 
tlle sampling variance of :1 gc:ict ic <:oncl;1l io11 e.5tim.1tcll frf,111 analyses 
of vnrfrrn ce and C'O\·nri,ince.. The formula holds proYirk:l the h<l:'it­
abilitr cstim!"ltc of neither cli:n::cfcr is zero. llu\\'cYc:·: the dcYelopment 
assumes a r onstt1n( number of offspring po,· sire, h, ancl th e effect of 
v arying Yalnes of k is discnsseu b:·iefly. The effi ciency o[ cxp1;riments 
from which genet ic. p:1ramctcrs arc to be cs tim:1ted hns a lso been 
iuvcstigatccl ;rncl optimum y ;1 J11cs of 7.: are given for various combiua­
tious of pbC'notn,ic nntl genetic parameters. 

I. Introduct ion . O,er the p:1 ,;t fift'cen year:-, {.he J) ioncc1· paper 
of Haze.I, B,: kcr and HC'inmiller (l!H3) has brc:11 used by workers 
wishing to obt:1 in c::s!imntcs of genetic conelation from full-s ilJ aud 
)ialf-sib clatn . .:\ na lyscs as ourl incd in the paper l!:we been ,lpplied 
to liYcs tock, and soinc c-stima tcs lrnsc<l on lanre munbcrs of l)il'c groups 
lia:,.·c appeared recen t! ;:- (Koelt and Clark, H>3ii). '£0 <.late th ere has 
b een uo gc nc:ra l m ethod aYnila blo fo r tcsting the reliabilit y o( genetic 
conclalion cc,cffi(·ic::nt s est illla t u l in this nmn11cr. It.; i::; the Jrnrpose 
of t his paper to ou I line n. met hod for cak:ub ting sampling Ya ri:1nccs 
of sneh correlat ion coefl1cicnts from t,he experimenta l data . 

II. Procedure . In the followin~ development it is n:~snmed 
t.hat the genet ic concbti0n, r i , has 1Jccn cst im:ttcd fol' two eharacters, 
:i,1 :rnd Xz, from 01JscrYat io11s 011 h:1lf-s ibs . T!1e additional aswmption 
that: .r 1 aud :i:2 a:·c di:nributcd in the norma l, lJiYari,1t~.1n:1!rncr is also 
m ade. Throughout the rliscussio11, the genetic model 11.~cd is : 

x = µ + g+c, E(g) = E(e) = E(ge) = O 

where :v is plic11otypc, g and e arc r<.'spectiYely .~e11 etic and c11vil'on­
meni nl co11trilrnlio:1:: to plwnotypl', :rnc.l ;1. is the popu btion mean. 
The stnn<lard annln;is oi Yal'i:t11 cc !"Ind COYarinne:e model fo l' ha U-sibs 
i s giYcn in Table 1: The model nssum<is Uiat t.lic 11umbcr of offspring 
por sire, k, is constant, for ali sire groups. 

Souice 

Between sires 

\Yithin si res .. 

TADU : l 
Analysis of T'ariance a1Hl Cornriance 

elf ;\1S or 
Co,· 

d, vq, • 
di vq, 

E {:Its) or 
E(Cov) 

C1q,;+ ke1qrs 

(1qrl 

• q und r designate two chnract<?rs , nnd for mean squares q= r. 

R-0c<'i\'ecl for publicot ion :.'1Iorc:h :?O. I !)J!). 

• Division of Animal Jlc-alth nn cl Production, C.S.I.R.O., :l[c:l[nstcr Laboratory, 
Parramnttl\ Honcl, Glcbe, X.S.\V., Au3trnlin. 
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'1']10 g<.•nctir. intcl'prct:1lions of the variance and coYari:rnco 

component:>. :ne (D.ucl nud Tcnill, 19-1;:i) : 

cr9, i = ~Gq,+Eq, 

aq,, == ~ G 9, 

whc1·e 6
9

, and J,;q, rc>p resout gc·nct ic and euYironmcnlal vari:111ccs and 

covarin11ccs rcs pt·ctiyeJy . 

Now, by tlcfinilion, the gcn<.•tic corrclnlion, r
1

, between :t·1 and x:, 

is cstima led by 

(1) . ; = o1~ 
t ,,. ;.. 

' Gu G22 

T l1crcforc. the problem is to fi11cl au expr<·ssio 11 for calcu!Dtiug t,ho 

sampling ·Y:Hbncc of ;z, Yar (1). 
Taking logarithms of (1), we obtain 

A. A A A. 

(2) log rz = log012 - ½ log Gu -4 logG22• 

·vv11cn (2) is expressed in the form of diITercutinl.s, squ:ned :1nd oxpccted 

-values taken, lhe r<.>snlL is 

{3) 

A A. A A A A 

Vas {r,r) = Var {C/ 12).J_ Ynr (G11 )+ Var (0~2) _ Cov (U1~,G11 ) 

r! G~2 ' ,wf I .JG~2 G 12G J1 

A A A A. 

_ Coy (G, : ,G~2 ) + Cov (Gm0 2~) 

G1~Gn 2G11G' ~2 . 

The G
9

, m·C' cstimat<'c} from Table 1 in the us ual way by means of 

the following c·xprcssion : 
;.. .J 

(4) Gq,= f [l'q,-vq,]. 

llcucc, the c~t imatcs arc obt:1incd from linea r combinat ions of meau 

i-quarcs and ro,~:ui:rncc;; wliith nrc as;;umcd to l>c ind cpcindcmt. of 

nach otl1cr, i. e . rq, is indt1pcnd<'nt oi l'q,· \\lieu the appruJJriatu 

expressions for the Gq, arc suhstitutc:cl in (3): it is clear thnt. in ordor 

to soh·c the proble:m, it is nc,;crs;;n ry to kuow Ito"· to e:tlcul::ltc Vnr (l'q,) 

an d Cov (Vq,, l ', ,); q, r, s, t = l, ~ an<l a simil:1r set of moments for 

From formulae devclopC'Cl l>y I'isher (19~S) i t, is possible to dcduco 

(5) 
r • _ (crqqcrrr+v;,) 

1 :n (lnq,)- (n - l) 

C 
~ (aq, cr, 1 +vq,crrs) 

o, (mq,,>n, 1) = - -{-n - l )- -

wlrni·c the 111 , are w1binsccl c:;limatcs of the population moments 

µ ,. Nolatiof1 uscrl iu (5) i;: not the us ual morncnt notation, but i~ 

cJnsiste11t witl1 '.fable J . 'l'llcse results indicate t,hat 

(V 1' + y2 ) 
V { V ) ,.._, qq rr qr 

ar (' d 
t (G) 

( l' V +V V ) 
C {l T l ' ),.._, q1 TI qi TI 

QV qrl J I d: 
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a.ncl that Himilar expression s hulcl fo r vr.,, in which case, of course, 
divi;; ion is by d; instt':Hl of d,. ' 

F rom (·1) nncl (G) i t is uow po,;sihlc to wTitc terms estimating 
v ariances and COY:ni.rnccs of genetic components : 

(7) ,7 ,.. 1, (G" ),....,JJ> [Y.;q l'rr + V;, L1'qqvrr+-i::,] 
' " qr 7,;~ - --- -, . " d, <l; - . 

C , (G G ),._, 16 [1·1, Y ,1 + 1\ 1 l\, vq,v,1 +vq,i',,] 
0 \ 1 qrl SI 1,2 +--~--/,, cl, <l; 

\,1rnn the expressions (7) arc cwa lunte<l ancl suhsti tntccl in (3), a, 

fo rmula for estimating Yar (·1) can be written . 

(8) E st;. Var (; ) = ~2;! [Ffi/d,+vii/di+F~2/d,+1:ii/d; 
C ] ·2 ...,"' ,.,., 

" ·1Gi1 '1022 

+ ( Vu V 22 -l- Fr!!)/d, + (i:11v22 +vi2)/d; _ V11 l'dd, +v11v12 /ll; 

2&i2 01/112 

_ l'22 l'12/d, +1:22i'12/d; -1. Fr2/<l, ·H·i2/<l;] 
(.;22(;12 I 2011022 

Equation (S) may be uS<'d to estimate Yar (;g) pl'ovidecl the 
compoueuts of Yariancc and co,aria ncc arc bonndccl :~way from zero . 
Ilowcvcr, the n111ount of computation is eousiuc1·:1blc null (S) rn:1y be 
used to dcrh·e a more conn·nic11L equation for Yar (1'). It ma.y be 
shown that 

(9) E(l'11 )= (l+(J..:-l )t1)P11 E(v11 )= (l-ttlI'11 

E(t'd = (l-l2)Pz2 E ( l' 22 ) = (1 + (k- l )t2 )P2 2 

E (l'12). j·"+(k-l )r1/id)PftI'i:? E( ,. ) (1· 1· t!t1)J>1 P' C} 2 = P - Z 1 ~ 11 ~~ 

where lq = :}h: rcprc,;ents t be concl:l tiou b et \\·ccn half-sibs for xq, 
r p is the phenotypic corrcl:1 t ion between :1:1 and :t·2, and I'N is tho 
JJhcnotypic Yari:111cc of xq. By s ubs ti tu t i11g (9) in (S) it will I.Jc found 
tlia t. 

" 1 
Var (r.,)= k 2d,t

1
t

2 
[A{(l + (k - l )f 1)(1 + (7,: - - l )t2) + (rp + (J..: - l)B)2} 

-2B(rp + (k - l}B,(0+2(k - l}) + D] 

(10) + ,..2c~t
1
t

2 
[.A{(l-11)(1 -t2 ) + (rp-B)2} 

where A = l + r! 

B=tl fltz 

- 2B(r P-R)(0-2) +JJJ 

C= ti"
1 + t2 1 

D= r!(t1 -t2 )2/(2t/2 ) 

Bquation (10) can be expressed in a slightly more clcgaut form by 
letting 
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The , nrinn co of ;c m ay now he writ t en as follows 

(11) Yar (; : ) = d,k\ tJ (1 + r~) (l + rf )(l + (k - l )t1)(l + (k-l )t.2) 

- 2r1r b[t
1
t2(l. +(k - l )t1)(1 + (1.: - ) )/2)]i ( 1 +U~

1

- l )/ 1 + l -H~:l)lz) 

r! (f 1 - t.~)2
] 1 [ 2 2 +-

2
-
1 

t • +-11.~
1 

t (l + r")(l + rrr)(l-f1 )(1 - tJ 
' 12 <; • 1 2 

- 2 . . [/ t (l - t )(J - ·i )]1·( l - Ii --L l - t2) +r:(11 -t~f] 
I ,:1 IU l 2 l 2 ~ f I t •)t ( ' 

. 1 '2 M I 2 

E s t-imatcs of rb and ru. nre ginm by 

'.l'he :rntltor is indebted to Dr. Roh ert:,;on fo1· s11g~cs1u1g t his t.ypc of · 
simpl ifica tion. I11 fac t, when t 1 = i 2, ! he fo rmula l'Cll nccs to I ho one 

which he l1as tlev clopetl fo r Var (;.z) (Rouort:so11, 1!);38). 

P rovi ded neithe:r /1 11or t2 is zero, Ynr (;8 ) m:1.y b e es timated from 
(11) lJy rC'pbeing the giYcn pm·ametcrs in t he equal-ion w ith sam1)IO 
cst:inw tcs. 

In t,ltc cnse of r,.. = O, Var {cl reduces to 

A 1 9 

Va r (rc) = ,..2 7--t t l(l + (/; - -) )t1)(1 + (k -- l )l2)+r;] 
" ' l, I t 

(12) 

T hus , il ;/! is nornrn lly d i,; trihntccl wit h tt mean of zel'o, (12) 
Jlrovidcs a quick check of t he null hypoth esis r8 = 0. 

For a given set of p:1rnmctcrs, it: is p ossible to calculate k' , the 
val ue of k whic-11 m inimizes Var (;

8
) , u~-]('!'t ing d,=s-1 aud <l;=s(l;-1) 

wh ore s is the nu mhcr of sires. \ \'!Icm n = sl.:> l ,000, 7,:' ma y be 
est.ima tcd ,rn t i:: fa etoril.,· from t-he fo rmula 

(13) 

where 

·k' = v1 +E, 

E = ~ = A.[(l - t1 - 12 + rp(r ,. - 2H)] + ::!H[r1,(2 - 0) +BC] +D 3 
1lI A. (t1t2 +.zn--1B2 > 

\ Vh en E < 3, 110 m eaningful , a luc of 7:,' can be found. Values of k' 
for equa t ion (12) may be computcu from 

(14) k
, _ (1-i- t1t2 +r! --t1 - t2)½ 
-- ! . 

t 1t1 
T ahlo 2 g iycs k' for cl ifi'erent , nines of r f: r ,,, t 1 and t2• This t able 
h as b C'cn extended to coYcr the case of full-sibs as well. 
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It is of interest to note that/.:' computed from (14) for specific 
t1 aud 12 agrees well "·ilh the Yalne of I:, wbich minimizes tl1e sum of t !te 
sampling Yariances of 11 a nd t2 ('.1.':1llis, J U5 ,) . T his is couYcnient 
b ecause, should an experiment be dc.;igu0d to estimate the lleritabilit ies 
of severa l c·ltnr:1cters as well as tile £!·c-1wtic: corrcl:1lions b<'hrcen lhcm 
then, usually, prcYious cs limates -of hC'ri!ability ,rill l>e t;he sole 
estimates :1Y:1ilablc for <:ompuling 7/. IloweYe1·, the statcnwn t 
above indicates that the /.,' ,:-due calclllatr;d from herit:1hilitics will 

tend to maximize the prnbability of finding siguific:1nt 1: values. 

If it, is desirable to know what minimum sample size, 11' is. ,., 
uccessary to cstima te re to a given accuracy, i.e. for fixed Var (r11), 

n ' may bB approximated by 

[(k' -l)Pi. + F ;J 

Yar (;")k'(/.:' - 1)1 112 

(15) ?t' 

wllcro Fi :uHl 1?2 represent the expressions inside the t,wo largo brackets 
of (11), taken in orde r. ~L'hc value of k to use in Fi a ncl F'z is 7.:' . 
'.rhus, n' ma:y be computed for fixed Var (1) and auy gi,cn values of 
t11 t 2, r c a ncl rp . 

When c d ifferent re parameters are lo be csLimatcd from the one 
C A 

group of animnls, a value for k' which nuuimizcs :E Yar (r" )i can uc 
computed f.rom i - 1 • 

{Hl) 

wh ere L and J£ arc as defined in (13) . 

E quations (8) to (l<l) n1·c readily apr,lic:1blc to fttll-sib analyses. 
Under tl1esc circumstances Fq, :1nd 1:q, represent dam and wiLhin 
dam mean squnrcs ancl coY,nia11ee.s, d, and di arc beL,YC':!1 f"l.nd within 

dam degrees of freedom and tq =1 is the wit hin-da.m fnll-sib correl::ition 

of x
9

• With tl1eso modiilcations, and by changing tuc constant in 

front, of the largo bracket i.11 (S) to 
8{t t,ho b st seven equntions can ue 

used will1out furtl1cr a lteration. 

F iuaUy, it must be stressed that the tli;;tr ibution of ,":e is tmkuo,nt 
and, tuercfore, normal t est s of sig11ificancc a re not 11eccssn.r ily 
appropri:"tt c. }[oreoYcr, throughout t-lti;; c1cYelopmcnt, k l1:1s been 
assumed co11stant. The work of llammcr.~lcy (10-HI) iud icn tes that 
varying ntlncs of k should resn!L in n- larger estimate of Va.r (1). 
H ence, equations (S) and (JJ) give the limiting case a11cl tlte as;;umptiou 
of a, fixed 7: rr.sul ts in a minimum estimate. 

Example. In order to illustra tc the use of some of the above 
formulae, Lhc genetic conelat ion betm )r.n clcau wool ·weight and 
number of crimps per ineli of staple has brcu computed for data from 
a, flock of mccli11m-wool P eppin )krino sl1cep. 

The Jlod;: is maiutaincd at the C.S.J.R.O. Xatioua l Field St,ttion, 
"Gilrut.11 l'lains ", Cunuamulla, antl has b('Cll described by 'l'urner 

i 
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TABL~ 3 

· Analyse., of Vnri4nce am.l C01.'<1rioncc of Clean Wool Wdglit (x1) and Number of CrimJJ8 per Inch (x, ) 

I 

Su111!! of Squnrcs u11d l1 roducts VarinncC'-'l 1rnd Covo.rionccs 

Source of Voriotion d.f. 

I I 
: 

" " I x- x\x:! xt %1 X1Xt X3 

I 

I I 
I 

I 
Bt,twcon rums (within ycnrs 

Ol!d mntin~ EtrOll f)!>) .. 51 74· 153:, 1-Jll•::.;:ir, I 692· !)779 1·4:i40 -2· 18:i4 I 11·6270 

Within rnms . . .. . . S02 407·2043 -43:!·8:i!JO 20!!8· !J.iOl 0·5077 -0·53!li I 3·73!J3 

! 

q. r=l, 2. 

I 

E (_;\~$) or 
E(COV) 

aq,,+ 16· i fJa,;rz 

I aqrl 

00 
:,. 

8 
t: 
:,: 
Cl 

~ ., 
0 
:, 
.r. 
0 
>:j 

a 
t=: 
:,: 
.:1 ,-; 
~ 
(') 

0 
0 .. 
:,j 
t,j 
r' 
;.. .., 
0 
'./, 

,;,.. .... 

~ 
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(1958). 'The data used ,vcre d rn.,m from obsen·ations ma<lc 011 

ewes J.G m onths old in three C\XJ)C\rimenta l m ating ~:roups in th e fon1.· 
year.;; 1!)5-1 io lfl57. Stuns of squa i·cs :rnd cross 1n·otlnct::;, which were 
computed on a within year mHl ,rith in m:,ting group basis, arc g iven 
in Table 3 . E s! i111:11 os oi hi, ht Ii, t2• 1·. nnd r p were obiai11cJ frc,m t.110 
phenotypic :l ncl gene tic ya.ria uccs :11ld covariances recorded in 
'.£able 4. 

TABLE 4 
Pl,c11o!ypic u11d Gc11e,ic l"ari,mccs all(l Ca1:arir.11cc" 

Chornctcr 

A2 
1'1 = 0· -15 

h~= 0·-10 
A ' ,·p= -o ·02 4-/ 
A 

rb= -0 ·53 

l'hcnoty1,ic 

x , 

O·,iG4:! -0·03i0 

·'i·:!103 

A 

i2= 0·10 

" r,= - O·Gl 
" rw= - 0·3!) 

0·:!:?00 

Genetic 

-0·3!JZ6 

I · SS38 

d,= 51 

<l;=802 

k = IG ·75 

A A 

For practical purposes t1 = f~ = O · 10, an~l with this small nltcration it 
A , •• . I 

will be found tba t E st. Var (r,) is O · OJ.98 . Hence the s tandard c1Tor 
of ·~ is or tlie on.Jct· o( O · l ,C · .... 

In orclet· to tes t the h:-;-po tli e.s i,; r g = 0, E s t. Yar (?
1

) can be computed 
irom (12) to be :1pproxim'.llc l:; O ·O:i :: . H ence, this hypothesis could 
be rejected with consicleralJIC conficfonce. 

If it Wl'l'C desir0d to de.sign an expcrimellt so that t. would ha\'C 
a standard erro r of ~!}>proximately O ·O.::i, the optimum value o( ]:, k'. 
to use (from Table 2) is nhout 10. The minimum nu1uber of :wimnls, 
n', Hcc·c>ssnr)- to obtain a11 est imate with this size error may be compnteu 
from (15). In this case 

J,; = l ·5G5, i'2 = 0 ·393, Var (~) = 0 ·0025 and n' = 6,435. 

It is, thercfu1·C', coucluclc<l th:1t approximately G-10 nuns and 
6,400 owes would be required for such an experiment. 

Acknowlcdgmeuts. 'l'llc author wisl.ics to tkink· }1iss Ifoleu 
Ncwtou Turne r of the }Idfoster Lnbor:1tor_,-, Division of Aniru!\l 
Health !'lllll Prodnctiou 1 C'.8.I.F:.O. ; Dr. H. S . Konijn, Senior Lecturer 
in Stn ti.~tics in the F,1cully of Economics at I he Gr,rrcr.sily or Sydney ; 
and lJr . . Aht11 Houcrtson, Institute of Gen l'liC':-;, E clinlrnr!!h, for their 
most , a l nablo :issist:rnc:c in the prcp.1ratio1t of this J>aJJcr . Special 
ack110,~·lc<lg-1nc-nt is :i l;;o m:icle of t ho conlrihnti0ns of .:\Irs. ~nncv 
Cnrtc·r and }Irs. Fa,· Gnin:-:ae o[ the )fr:.Iastc:r Laboratol'v. }Iri. 
Carter cLecl:ed the cicvclopmc:1t. of formula (13 ), wl.tilc :Hrs. 'Guinane 
undel'took t.110 laborious t ask of computing '.l'nl.Jles 2 an<l 3. 
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Data. used n the 1n111H·1·iral ~xample were obtained with tl: c 
collaboration of ~fr. C. TI. ::-:. . Dolling :tncl lhr. st:1u of t·hc ~atio11al 
Field Stn ti on, "Gilrn1.l.l Pl:lin., ::, Ou1urnmull:1) Qnc0nsbnd, where the 
sheep arc maint ained. Flcrc-c rn0as11 r0mc11ts ,,ere nwde by the staff 
of the Fleece .-\.11:1lysis 8ceLion of the ~hccp Hiology Laboratory) 
Prosp0ct, under the <lil'cction of t.hc Oflir.c r-in-Chnrgo, ~fr. n.. E. 
Chapman . 

Dr. B . D. H. Latter: of the Division of Pbnt Indnstry, C.S.I.H.O .. 
developed the same formulae indcpcmclcntly jns t atte.r this paper b:id 
been prepared. The author is gratc[nJ for liis hc lp[nl comments on 
the manuscript. 
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THE S A MPLI NG ERRORS OF E STDIATED GENETI C 
REGRESSION COEFFICIENTS AND TJ-18 ER!lORS OF 

PltEDICTED G ENETI C G:\JNS1 

G. )f. T ALLIS 

• Division of Animol Genetic~, C.S.T.H.O., ;\[e;\fo,;tcr Laboratory, Globe, X.S. \ \'. 

Introductio n . The 1l1eory of selee:ti(ln indicc~ has b een wc­
sentcd br F a irfield Sllli lh (J fl3U) anll Hazel (19,l~i) an d btcr discussed 
by Lush (Hl:15), Lern er (1050), }Iol'lcf (J D50) :rnd m::my otl1crs. 
Moreonr, Ilazcl and Lush (l!:J.12) ancl Young (l!J:59) h:wc shown 
that th i;; method of sc·lcction: whc·u nppli<'<l to SCYt:ral chnae:t('rS, 
is ncYe1· less 0flicienl'-, in terms of gcuctie: g-ains, thnn any other knowu _) 
selection tech nique. It is nrninly for t-his reason that many select ion 
indices have been calcula ted for li,estock O\'Cr tlte J)ast 15 years in 
order to assist in cs tablishiu~ genetic progrc:s;;. 

To d,ttc re:latin:lr little attention h as been ginn to l he sa mpling 
varian~es of es t in1ntc·d genetic reg-re:,sion c-ocfftcic·nls and cstinrnt1:s of 
genetic gain. Some aspects of the prol.,lcm LaYc been dise:usse:cl by 
J3al'tlel t (1930) aucl ~nnda (19-!9), but th C'ir r esul ts nrc of li ttle use 
to tJ1c nuimal breeder who rcrp1i.rcs a f!<' llC!':1i theory which is rcbt iYcly 
easy t'o put into Jll',tcticc. It is th e purpose of this paper i.o d en !lop 
suclt a. theory an<l to apply it to certain specia l cases. 

1'llc genetic , alnc of an anima l, relatfrc to the 1>op11latiou as a, 
whole, for n economical ly important characters may he written ns 

fl 

(1) H = >: a;g;, 
i = l 

where a; and g, arc the rcla tiYc ee:ouomic weight :rnd the genetic Yahw 
of the j th charn<:ler, mcawrecl from the mean genotype of the popula­
tion. I n tbc subsequent dcn'lopme:nt it \\'ill be nssumed that it is 
possible to express 11 as a multiple rcgrt:ssion model oi the form 

(2) 
I I 

ll = :B ~ ,,-t; +t 
i = l 

wl1 crc x i is Ilic phenotype of the i t h cL::nactcr (nll~astucd from the ') 
popufatio11 m e:1n pltenotypc) and z is a norma l random error corn -
ponc,ut . A selection index, I, will n ow be defined as the best Jincnr 
p redictor of H , i.e. 

" (3) l = L ~/1, 
i ~ l 

'l'h c [3 1 arc in effect genetic partial regression coefficien ts but, fo r 
sim plic:it-y, in this paper the ~; arc refcn cd to as genetic regression 
coefficients. 

'l'hc fu nction I can be found by determining the ~; wliich satisfy 
II 

<JE (H- 1: ~ixS/o~i = O, i = l, 2, ... , n ,-1 
By assurniug the usual add itive genet ic model 

X ; = g1 +e;, E(gi ) = E(e;) = B(g,e,) = 0 
1 R cccivccl fo r publicution February 11, 19GO; revised Juno 13, 1960. 

r 
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in which ci is t he normall~· clistrilrnted cn ·, ironmcnt:11 componen t, of 
tl,c phcnot,ypc of the i111 c:h:u:,tdc•r1 it is rcadiJy Yerilicd tl1:1t 

. PY) = Ga 
(4) or 

f3 = P- 1Ga 
where f3 and a :.re the colurnn .-cr:tors of. 1'!1e (1; aucl ai and P and G 
are t,lie Yat'iauce-co.-:niaucc m:li riecs for tltc ,c; and Yi respect.ivcly. 
As a conscq nc·nc:e of (.J ), i l foUows that; 

(4a.) ~; = ~ 1/qyq,a , 
qr 

wh ere pit; :rncl g,
1
, a re the i.r(h and q1r

111 elemrnts of P- 1 and G 
rcsprcth·elr. These results arc in agreement with those of Fair licld 
Smitl1 (1936). 

Th ere :,re two ma in }lrnc1.ical met.h ods of estimating the ~i from 
sample data : 

Estin,at·ion )Ictbocl (a) . 
'Xltc ~; mn~- he c.,t'imatr.d from 1·cli1tionships bet.,rccn parents 

and offspri11.r;. Tile form of ann lysis used iu tlii$ nwthod is 
cqui n i lcnt to :rn ordin:1ry urnltiplc rc•grcssion analysis. 
Bstimntion )fct ltocl (/.,) . 

In th is metbocl the matrices P anci G arc c>slimntecl from 
relationsh ips bctwcc>n fnll-sibs or half-sibs. The ~i a rc tlien 
calcnlatccl as __ 

(5) 
The aboYe hrn mrtLocl,; o[ constrncl ing an estima te' of I will 

now be cou~iclNc<l iu more dct :iil. · 

1. Sam pling Errors of Estimated Genetic R eg r ession 
Coeffi cient s . 

(i) J esli111atecl b~- mc>tl1o<J (a) . 
I u tltis in sl:111cc, th e <:ornr,lete nnaly;;is is rclnt iH·lr simple·: 

In order to ;;!Jo,,: this we con.~idcr the s1icc i!1c cast' where> data ba.,c 
b een collect cr1 ou <la m-o.ffspring p:1ir:;. Jn th is instance the u sual 
st.atist.ical rnouels nm 

(6) 
a:.=g-+e- ') ' ' ' 

1
, E(g) = E(e) = E (f) = E (gc) = E(gj) =E(ef) = 0 

Y.=ig +! · I -• I I ; 

where ::t\ is the phenotypic mcasnrcmcll t of t he i 1b cl1aracter in t he 
parC'nt, J/; is the pllcnoty11ic mc,1stncmr.nt of the same charnc:Lcr in 
t he offspring, anti e all([ f nrc independent, norrnnl errors. In 
equation:-; (G), a ll measurements arc taken from the respect ive popula ­
tion menus. 

n 
Now consit1cr the Yari.1hlc z= ~ Y/' ;· If ~,;c try t o estimatc z 

i = l 
from tb c X; and wr ite th e ap11l'opriatc urn ltiplc regression cquatiou as 

" (7) z= ~ y/v;-t- o, B(ol = O 
i - 1 . 

•. . v: 

wherc .. S is a normal error component, it is found Ly com puting ." ·_.;.' 
oE(z-'5:.·r,:i:;)2/o·;',=0, i=l, 2, .. ·.,n .· .. :1 
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and using (G), t h a t 
(S) Py = ½Ga 

or 2y = P - 1Ga. 

For t,his reason t·Jrn leas t. sq11a rN, estimates of thl' '(; in f,1et estimate 
l (t. .As exact tests o[ signifo:,, uco :uc :t\-ailable fol' C'Sl im:1tes of 
1t11i1t iplc rc·;Il'CSsion coefikicut s, confitlcnce limits for t he ~. C>an be 
co1tstructcd s imJJly. 

:\Iorc explic·itly, if a. s:tlllplc of X pareut-offspring JJ:iir.s arc 
a.Yailaule to c-:;timate 1, tlte pl'ocedure is to soh·e then ecp1:Jtfons 

(9) Y1~(X i - .1\)(..l' 1 - -1\)-!-... +-,.~(X, -5~J(Tn --~11 ) 

= 2":(Xi-..Yi)(Z - -Z), i = l, 2, ... , n 

for the '{;, ,\·here Xi = µi +xi, Z =µ.~ +z and the summ:\tic,11 ex.tends 
OYer a ll S pa irs. Hr noticing that 

L(X, -..Y;)(Z - Z) 

= ~(..Y, - j\)(Y 1 - i\)a 1 +. +1:(Xj - X;)(l',, - Yn)a" 
and lcttiug X ,md Y uc tl.Jc n :-< 11 mnlricc•s 0f the t erms 

L(Xi -X,)(X;-Xi) nud ~ (.Yi-.Y ;)(rj . ..:. I 1) respeclin:ly, 

tl1 C' 11 equations for the ·r; e:m b e written iu mat rix n otation as X·r = Ya, 
a.nd hence y = S.-1Ya. If we denote the ekmeul .s of x-1 as 3;ii, 
t.1.1en it is well kuo,m tha t the statist ic 

h as the t distribution with (S - n - 1) cl cgrccs of freedom. Since 
~i = 2y 0 the confide>ncc iut en·nls for the ~i are t,wicc those of the )';· 

(ii) I esti.mated by method (l.,). 
The more com1,Uc:1 ted case of e>stimating I from ftilf-sih or hali-sib 

d ata will uow l>c co11sid1m~d . T lie !:!encra l ann lY.~is of Y:n iance aud 
coYar innc·c model is g i,·cu in Table t wh ero the" uwnber of off:>p t'iug 
,dthin sub -groups. k, is nssm1i <: r.l cou.,lan t for a ll s ub-groups . Genetic 
interpretatio11s of the c:qicctc-d me:1u squa res a re : 

(10) ioq, = (m - l)g9,/m+eq, 
<1qrs =gq,/1n 

'fADLI:: I 
A 11alysi.~ of Fn rionce and Col'C1riance 

Sow·co 

Between sires 

\Yith i1r sir..-s 

df 

dfb 

dfw 

ll!S EC:\TS) or 
or Co\' E(Cov) 

bq? bq,=Wq,+koqr, 

. 
Wqr Wqr 

• q and r d esignnto two charncters, nncl for rnean squares q= r: 

wh ere llqr and e.q, represent genetic aud euYi roumcutal ,arianccs and 
co,arinnccs :.rnd in tak es the ,nluc.s 2 and ·1 fo r full-.~ ibs and ha lf-sibs 
res pcctin ly. From these relnt ionshi:ps it is clear that th e genetic 
p arameter [lq, :rnd the phcuotypic parameter JJr,, a rc estimated by 

) 
./ 

) 
,• 

.. 
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(11) g9, = [bq, - 1i:q,]m/k 

Pq, = [b9 , + (k - J )11·9 ,J ik. 
Ouc easy mf't hocl of oht ni1iing tiJ c l:nge snmplc Yari:rn cP-coY:ninucc 

m atrix of tli c ~. is t<1 diffl'rcnti:1tc the e<prn tion PP = Ga dfrcctly, 

remembering t h:it the a; nre constnnts. " ·c llaYc 

<ZP!3 + P<l!3 = <l Ga 

and <7!3 = P- 1[tlGa-<lP{3) . 

Somo rearrnngcrn ent of the Inst expression using equations (1)) nnu. 

1·eplnciug L
9

, aud (c1
, by b~, and w9

, gi\-cs 

ktl{3 = P - 1(d llu - d \Vv) 

where u nncl Y nre C'Olunrn YCCtors of the quan t itks (a ,111 -~;) and 

(a.;m -f- (k - J )~;) re:;pec·ti\"C' l~, k is n sea lar and 13 and \\' arc ·11 x n 
matriC'es will1 <.!lcmcuts bq, ,1ncl 1119,. If 1:d{3 is posl-mu ltipliccl hy it s 

tra nspose, we obl:1in 

7.;2d{3 c7(3T = P ·· 1[d Bu - d \Vv) [uTd B - vT<l\VJ P - 1 

since P- 1, <1 13 nnd d \V are ::ymmetrical. \Yhen cxpC'C'led ·mines of 

both i:, id cs of the> last cxp1·ession arc takeu nu cl E(<l~ 11l~j), E(<1bq,cl!Jst), 

E(c7w
9
,dw,1) nnclE(1lbr,,(fo,") arc nssocialcd "ith Co\' (~;-t~i) , Co, (hq,,b,1), 

Cov (fr 
9
,,10,1) and CoY ((,. 1i:11 ) = 0 respC'CtiY<.'ly for a II possible Ynlues of 

tl1 c subscripts: the result is 

(1~) 7.-~(COY (~;:~, )] = P ··1{E[1lBuuT(7DJ + E[,7\Vy vTcl\V)} P - 1 

= P - 1{L'[dD CdilJ , E [dWDclWJ}P-1 

writing C :::-,uuT and D = V\"T. 

In ordc1· to c,·aluatC> (l'.?) cxpliC' it l~, consider firstly E[clilCc1B]. 

Let 
n 

Cdil = L = [l,,) = [ ~ c,/701,] 

. 1- 1 

and tZilL = i\[ = [mq,] = [~<lbq/,,] 
• 

H is now cl ea r that 
mf, = Ldbq,'I.c, ,clb1, 

I I 

= L':f.c,1db 1,tlbw 
I I 

H ence, E (m",) = ~~est Co,· (b,,,bq,) n11d the rcqufrccl expression must 
• I 

finally he 

(J3) k~[CoY (~1j)J = p - 1p 1 + NJ p - 1 

whel'C M = [m,,,) = [~~c, 1 Co, (b 1,~bq, )] 
I I 

N = [nq,] = [~~cl., Co, (ic 1, 110~,)] 
' I 

Formulne for estinrnt iug rnc-h terms as OoY (b,,,t,> nua CoY (101,,109
,) 

have uc>en prc.,C'utcd hy ~all is (J ().j()) and nre gi,·cu below. 

(H) Cov (b1,\,),..._(/J ,,/J,, +b1,b,,
1
)/dfb 

Co, ( IV ,,,ic qsl "'( IV I ,iv"+ IV ,/v,q)/clf"' 
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A 

By . identifying appropriate clernen ls of (Cov (~;,~)] with 
A 

P - 1(M-! -N] p - 1/k\ cstin1at-es of the sampling nniances of i11di,id11a l 
~; in a.y be obtai11cd. 

2. Sampli ng Enors of P r edicted Ge netic G a ins. .-\ gcn(;tic 
gain, Di. ;:, JJ1 8 y be <ldinc:d as the nwr;1ge genetic·. ,;upcl'iorit~· of ;1 
selected sub-,;.'.TOllJ> of ;rnimnls o,·er the nYcr.1;c g-cuotypc of Ll1c 
p rtt'l.icular group from ,,·Jiich sclec·t'ion is matlc. To be more speC'ific, 
let, 11\ lie the nwnhcr in the orig in.II gro11p bdorc H·lcction and suppose 
a. sample of X , nn.imnl,; is selected from this grou p. ,Ye haYc from (J.) 
and (~) of the prcYious scr;tion 

(15) 

- " 11 

lls= L a ,Y.d = ~ 
i =l ·i = l 

The snbscl'ipts p and s refer to the original g roup and the selected 
sub-group re.)pee;ti,·ely . Xow, by definition 

. (lG) 

n - -= _1: f,;(Xs;-X 1,;) + ~, - cp 
•= l 

WhC'l'C .s:.,,i and .Y,; arc U1e obsetTe<l mean:'. of the il!J charncter iu the 
or ig i11 a l group and tlle selected g ro11p rcspcc:ti,·cl.\:., Upon sub-
st.i t,ut.ing, cl; -=-Y,;~ -\\; (not to he confnsc:<l wi th th e d" of the p1·cYious 
section) nnd z=z,-z,., (2) bccornes · 

(l'i) ~g = Z:~;ll; + e 
a.ud in this form ~ z is :rnnlogous to lhc original model for H . Tl1e 
b est liuear estimate of ~z is· 

(18) 

aud an estimate 

(19) 

where the 0; arc calculated by either of the two methods discussed in 
Section 1. 

E stimation )fcth(ld (a). 
As above, this method will uc <l iseusscd in rcbt io11 to the analysis 

of clam-olfapring pa irs. It was found earlier that ~;=2y;, so t hat 
:l ., 11 • 

E(og -L\.Y = cr~ = Yar ( .~ ~/l;)+Yar (E) ,-1 
" = 4-Var ( ~ y;d;) + [1/.Y,+l/.Np]cr! 

1- 1 

) 
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wlicre <1 is the c-ohmll1 YC('l or of thu d j· )IorcoYcr, if s2 is t:l1c unbiased 
('Slima tc of c;~, th en the stat is t ic: 

(~0) t = (~.~-~;:)/a~ =(ig-~ . )/s(.J- dTX- 1d + 1/S, + 1/ ... Yp)l 
S/G • 

is t distributed with (S - ,i - 1) degrees of freedom. Thus, confidence 
lim it s may he set i11 the usnal way. 

l!}stimation )fotbotl (li). 

Unfortunate\.\- , 1t is not possible to obtain exact res ulls i n this 
case. "\Ye. have from tlle preYious sec t ion, 

~= P-1 Ga 
where the ekmcnls of i> aud G :u-c obtained from a ualvscs of Y:.ui:rnce 
and c:oY:uia ucc tables. By proce>eiling iu a simibr wn~- to E stirn:1L-iou 
i\lcthod (a), we obta in 

E(i11 -ilc)2 = c;~ = Var (~~;d;) + (ljT, +lf-\"'"p)c;'!. 

(21) = dT[Co Y (~;, ~)Jd + (1/X, + .1/ ... Yp)c;2, 

where c,2 = v'j1(l - RJ11 ) . 

In the aboYe e']_uation R111 is the concln(iou cocl1kicnt between I 
aud H nnd v1 is the Y:1ri;1nce of II. In matrix notation, 

GJI = aTGa: vl = f31"Pf3, 
c;m = f3TGa = (3TPP- 1Ga = (3TPl3 = cri 

and hence cr2 = aTGa(1 - !3TJ.>f3 /aTGa). ~\ u est imate of cr:,6:, is obtained 
Ly rcplflc·iu:,:· [CO\" (~ ;,~; )], G and p b} their est imates COJu puted from 
the sample dala. .Approximate confidene:e intcn als fo r :..l

11 
can uow 

be set by assuming 

t = (j JI - ::. 11 )! CJ~ 
is normall.r distributed wiLh zero mean and unit ntriance. 

3. Specia l Cases. Tlte methods so far dcYelopcd arc en tirely 
gcncral. llowen' r, because of lhe ,,·ide in t"<.>re.~L and application of 
certain spcci:,l c:1ses, i t seems cksiralJ!c at this sU.1:rc to consider two 
of the:;c in some detail. The> 110(:1t ion c,f p1·c,ious sect.ions is used 
he re without ftu·thc-r explauatiou . 

Case J.-Estimation of :/; f r,Jm a.:; . The appropriat e modclii for 
this case arc obta ined by srtri11g a, =~,=0, s=t= i, and ai =l i11 (1). 
From (·1 a) it. is clear that ~; = Ci; JP;; and lhis ratio is known as the 
heritability of the j th charn<.:tcr aud is written 1ir "\Ye haYe, therefore, 

Ii = g; = lirx;+e. 
E st'imntion ) fethocl (a) . 

Sinc:r. in t uis instnnc:c, JI; a nd ~;i arc assumed to be binormally 
dist ribut<:cl, with zero mt•ans, Yariances equa l to P;; and with a 
c.orrch,tion coeflkient of h~/'2, the problem reduces to one of onlinary 
simple Ji1war re~ress ion . \Ye b,we 

"7 2 n'-'()" -1. )( v v )/>( ... - v )2 l, i = -- - •. - i _.\_ i - .. \.. , - -\..,· - .. l.i 

A, =li~(X,1- .Yp;) =lt~d1 
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t - (l. ~- 1 ~)['>~( Y . - -, •. )ZJ i/·'> z= ·!L(l. ;-)\)2-{i,1)2~ (X i -T;)2 
- ' • , , - . ,, - I - s,s ·J(S -2) 

t = (!i 11 - ~ 1 )/ s[-1<7~/~ (-1:i - .f,)Z + 1/N, + 1/X ,,] ~ 
Both t Y:nin tes arc distributed with S - 2 clcg l'('CS of fl'N•tlom. 

Bslima tion )fcthod (b). 
Ill order to consider spcci,ll C'nse:s, it is co1n-enicnl to rewrite 

(13) as 
k2P[Cov (~i·~)J P = ~l + N. 

:Xow, if only CC'rtain ~q nrc to be considered, t ross out a ll rows a 11d 
columns or P, lCo,· (~;,f~1)J , i\1 and N which do not h:\Yc q ns :1 subscript \ 
aud s nhst itnte ~i=O, i cj.·q, i11 C and D. This p rocedure will now be 
dcmoustra t r<l fo r Case 1. 

U sing t lte m odel d isc·usscd abow, we haYc 
cii = (m - Ji1f,<1 u = [m + (1.: - l)h1] \ 

and a ll olbC'r ekm c11ts o f t.lJc C a nd D m nt r·itcs an• zero beca use 
a,=~1 = 0, s =t- i. By use of the fo rm ulae for 1,1~, aad n"r it is found 
that 

1.:2P;; Ynr (i,~)Pi; = Y:n (b;;)(m - h~ )2 + Var (ioli)[m + (k - l)h~F 
It is i.11fonna tiYe to simplify the above forinula by m <'nus of the 
rela tions 

Yar (b;;) = 2b{i/df,,, Y:11· (tc;;)=2w;1/<1fw 
.B(b1;) = b;; = [J -t- (k - l)t;]P;;, E(1vu) = w;; = (l - l 1 )Pli 

whore t, = h~/ 111 is the i11t mcl:1ss corr0latioo nmo 11g full- sib:; ( 111 =2) 0 1· 
lrnlf-sibs (m =·1). .-V ter some simpl ilkat ion: the fon nul.t becom es 

k2 Y:w (Vi) = 2111~[1-;- (k - l )t 1F(l - tY{l /df 1, + l /d/ 11 } 

Se tting d/1, = i; - l (s = 1111m b er of cl:1.sses) :rnd rlf,,. = s(l,:-1), the fonmtl:1 
for Yar (i1~) assume':; t he fa milia r form 

Ya r (Vi)=:?m~(l - t;f[l + (7:-l )l;)~/ (s - J )k(k - 1 ). 
'l'hc sampling Y:u ia nce for a preclic led genetic gain is 

E(i'. 1 - ~ , )2 = v~ = <7~ Yar (Vi) + [1/X , -!-1/.Y p](l - lt~)G I i 

An cs tima l<' of v~,;;~. is obt a i11cd hy s ubst iluting the releYa nL 
parameter cslim:1tes into the nbo,·c cquatiou . Appro::dmate con­

. ficl cnco limit.~ may be SC'L from 

i=(t.,-n: )f&-= 
which is treated as a st andard norm a l Ya riatc. 

Case 2-Rstim ation of[/ ; from .£1. The correct mod el is obtained 
by setting a, = 0, s =t= i, a1= 1, 0, = 0, ~,f-=j. T his giYCs 

ll = !J; =~)c, + ~ 

E s Limntion .:'1Ic:Lhod (a ). 
Case 2 is entirelr annlo.(rous to Cnse 1 as xj and Yi arc ass umed 

to be bi11orm ally <li:3tribut ed with Z<' l'O mca r.s, Ya ria nccs P" and P;; 

) 
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rcs1)c·ctivcly :1nd corrc·lation c·ocfliC'ic·nL c -=G ./~(JJ .. P .. )!. lknct' th e o. • , J IJ 11 )) following rc:rnlts 
''· - 9 ""(). -1.)(...- v) '""( 1' "')'! t'j - -~ ;- i ., , -.,, ,_· ·j-·'j 

~I/ = ~/t,j - } ·,.) = ~/lJ 
t - (P-")[''(X-'.)2Jl i·">ss2 - ['~(1' -}. )'! ;.,~,,(Y v)2]' ~~ •"> - tjj t'j - j .<\., , - : - - ; - I - t'J- - j - · ' j I· - .. 

t =(!\2 - -l.) /sf .J,l] ~(.\.'1 - -~ f-!.. 1 !.Y, 7 J /X pl · 
B oth t ,·:1rialJh::- an• t1i ,- tril,n1rd \\·i th S -:? clcgr<'PS of fr<.:ec!oi11 . )L 
sho11lrl he st rc:' ::- t•d that in tlic :-1 boH 1 formulae•~ .. refers to n gcuct i<: 
gniu i11 the i t " <·h:na<:tc:r s in ce a, = 0: :; <,L i. A ~ 

E stimn lion :lfc:t hml (b) 
111 this init.tncc i t is rcnd ily Yc1·iflcd that 

c-[m2 
-111~, 

an d th nt 

D= 
[

11/2 

- m(k-J )~, 

7.:21\] Var (~i) = [m2(\'a r (&,) + Ynr (,i,;,)) 
+~J(\'nr (bi) 7 (7; - 1)2 Yar (10_;;)) 
-~111~,(Co, (b;, .b,) + (1: - 1) CoY (iv;"l;Jjj ))] . 

('f.he :rnthor k 1s been nnnl,lc 10 obtain au int cn•:-ting expres:;ion for 
the ahc,,·e fonnnl.1 in tern1 s of g1:11c tic p a r:1mct i:r:;.) 

Tim samp!iug Y,11fanrc of a pred ictctl genet ic g:\i11 ill g, iS 
B(A" -~ : l2 :-c;~ = cl] \" n r (~;l 7(1 - ?])r, ;,[1/S, + J j.Y p)], 

whCl'C p j = Ci uf(G iipjj) l , 

Approx imate <·onflclc:ncc ilitcn·a ls m ay ngaiu he obtaine<.l from th e 
f Ol'lllllla 

i = (~g-.1,i )/ '-:-
wltc rc &., is an cstim,1tc of c;;.,. 

4. Extensions. In pr:1cticc: i t is ofll'l1 desirah](' to e:· timnt c 
the m C':rn of the· pr(1;_:c11,\- i'n,m scltc·t l·il 1i;nc·11 t:,. '.rite al>on· formn!.i<' 
nrc cnsily mocli fil·d to 1nkC' cr1rc of thi :; <: ituatio11. Tlte;;e rnodifl<:.1tio11s 
will 0111;- he indi1:;ltC'<I in tl1r l'aSc o( formula (~O) a.~ the results nr<' 
readily applied to spcc·ial c· ,1::;cs. 

J,<;L the gl.'nct ic 1lcYiatio11 of n ,-(·lcctcd g roup of ma les from the 
unsclcclNl group he 

)' r, ~1 -;1 ::: -
/>.;:l = .... i-';(,.,1 , ;-J'lp;) + .. , 1 - £p i 

, ~ 1 

w11c:rc ~\'~; antl S!i nrc the lllNlll'> of tl1r :-::clcctcJ ;111<1 unst'kl'I C'd :;roups 
of 111a lcs fort he· i th c·hnrnc·tt' l' l'CiiJ)c·1·tin.> I~·. If :t ~imil.i r exprc·s., ion i. 
written fur a sdec:t<:<l group of fc·ntalc·s h:,· n·ph1<:i11g J ;lllfl :!, nrnl if the 
sclcclt•d n1 ::i lcs arc matt·d rnndomly "ith the :sc lcct0d f1.:111alc:.~, th1:11 the 
c::qic:c·t eel genetic gain of tl ic olfaprinr,: is 

· - \ I I - 1 - o - 1 - ,, .\ --( ·\ ' \ )'•) - ! '\- r, re'\•,' '\•'..,)-( r , ..1.. '\'- ·)J I U;: - W.r1 ·r - ' ,~ / - - :!/. - :-'r 41...11 T - L £1 _, \ I ll , AJJ1 T 
'- t = l 

- .. - - ) 
-J-£,1 + ts2-E1, 1-tp2S-
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Analy11c11 of Variance and Cowrfrmce of Clean Woi,l 1Vt,(X1) a,ul Numl,cr of Crimps per Inch (X:) 
- - -------------- -~ 

I l Sumi; of Kquur·c,: uncil Prod uc:t,i 
Source of V1U'i11t ion d.f. 

x2 X1X: x~ , l 

1-1 
BcLw<~C11 rmns (within y cnr~ un,1 

rna~ing groups} I 6 1 

I 
i4 ·I :,:{.; - lll ·:l:j2/i /i!l2·!lii!I 

\\'itlii n r,urn; I so2 •Hli· :!(J.13 - 4:3:?·S:i!JO 2!!!11' · !J:iO l 

q, r = I, 2 

I 
C ·· 111cc:; I . Vn:-iancc:1 nut! o va , •t · I E (,\IS) o r 1'.(Cov} 

v 2 
·" 1 X,X: ·2 

Xz 

J . 4,,.IO - 2· ll:-:1-i l l · (i::!iO 

o -.r;o,, - o -,;:;!J, :J·i:l!):l 

"'q, -1- I G • 7 ,ir;q,, 

11·q, 

-1 
>I-

C) 

::: .., 
~ ... 
t"" .... 
:J, 

"' 
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. - - J - ~ -· 1 - ~ 
\Vrit ing <l; = [(.Y,;+ ..1;;)-(.Ypi+X;,;)J, it follows from pre,--ious results 
that if t lie ;\ are es t im:1ted by m ethod (a ) . 

B(S,-fig)2=a; = (·JdTX- 1J + 1/S , 1 + 1/S,z-f-l/Xr, 1 + l /T 1,2)a2j.1 

If E stimation ) fothod (b) h as been used, 

B (iS.r:-6)2 = v; = {dTI. Co ,·(i;,~)) d +c2(l /.Y,1 + 1/S,2+ l /-Y p 1 -'r-1/N p2)}/'1 
where c2 = (1 -Bin) v1. ln Lhe :1bow fo rmulae ci is the colum n 
vector of tlle cl ;, Con!lde:nce inten ·:1Js m:1y n ow be set by t he t cch­
n.iqucs of t lle pre,-rious sections. 

5 . Exa m ple. Iu order to illustrate some of the ab ove results, 
a selection index will be calculated for clean wool ,, eigh t (X 1 ) and 
t he numhcr of c·ri.mp::,. p er inch of t !Jc wool s t a ple (.Y 2) . 'J'he analyses 
of v aria nce and coYariance of .Y 1 a nd T 2 :1ppcar in ·T:1 l>lc 2 and t he 
genot,ypic and pbenotypic Y:1ri:rnecs and covariances ::nc recorded in 
'l'ablo .3. T he data from whicl1 these estimat es were c:ompu te:d come 
fro m the flock described b~ T ltrn er, Dolling an d Slleaffe (1939). 
Valnes of a

1 
a nd <i 2 will be ta kcu as -1 :1.lld 1 respcclin:ly (Dunlop a nd 

Young (19GO)) . · 
T ."-DLE 3 

Pltc11 oly])ic all(l Grnctic i·ar fonrw and Coi:aria.nc.;s 

Phcnotypic Genetic 
Charocter 

I X xl X x, 
1 1 

x, 0 · 504 229 - O· G3iS53 0 · 2259i 2 - 0·392ii lG 

l x. 4 · 2102.J S l· 8S3G24 

As th e d etcrmiunnt of 1\1 P I, is 

[ 

2 ·13SGOi 
p-1-

0·323!)99 

1 · 9GS,68G, th e m a t rix i>- 1 is 

0 ·323999 l 
0 ·286G02 

a nd we h a,e 

[:l] = [ 2 · 138607 

~ 2 0 ·32399!) 

0 ·323!)99] [ 0· ~25972 

0 · 2SGG02 -0 · 3!>2516 

- 0 ·3!J251Gl ['1] 
l ·S8362J 1 

Multi1)li e;atio.n of these matrices giYes ~1 =l ·1952 :1n d ~2 = 0 ·2556. 
Hence, 

I = 1 ·20X 1 + 0 ·26X2• 

0. 
In order t o e,altrnte [Cov (~;,::,)] i t is first neces;;:1ry to evalua te 

the M and N matrices for the pa r l icuJar case n = 2. If the expression 
fo r th e in<li\'idual ele ments of .:-.f is expanded, we obta in 

m,11 = Var (bu)C11 + 2 Co\' (b 1 2,C11 )c 12+ Var (b dc22 

m 12 =m 2 1 = COY (b11,b12)c11 +Cov (bu,h 2 2)c12 

+Var (h12)c1 2 + Cov (b 12,b22)c22 

m 22 = Var (b 12)c11 + 2 COY (b 1 2.b 2 2)c12 + Var (b 22)C22 
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l'hc N matrix is ob tained hy replacing bq, and cq, by 1uqr and 
dq, i u tbc· i\I uiatrix abo,·c. '.Ye may HOW proce:l·<l: 

C= rrn - e1, ..i-e~J = [
lG - ~1 ] • • [2l9 ·JS1GOO 55· -J35i55] 

•1-~2_ ' . • - . 55·435i55 l -.1·0:?0S9S 

. [16+(7:-1)\l . . 
D = . (16 -:- (k-1)~ 1,·H- (k-1)~2) = 

4-+(k --1)~2 

= [ 1212 · i 57-1S-J :'?79 ·165-JCiO] 

279·4 65160 OJ ·399J73 

since 7; - 1 = 15 · i5, ~ 1 = 1·195 
From fol'mulae (13) it is 

Yar (bn) - O ·OS2905 

Var (b 12) = 0 ·-J:?1955 

Yar (&22 ) - 5 ·301472 

Co, (b u,b22 ) = - 0 · J 2-U95 

Cov (b u,hd = 0 · LS69J 'i 

Cov (b 12,bd=-0 · f19553S 

and ~2 = 0 ·256. 
possibl e to cakulnlc 

Yar (wn) - 0 ·0006-13 

Yar (10 12 ) = 0 · 002731 

Var (iv22 ) = 0 ·031S69 

Cov (iv 1 u 1V12 ) = -0 ·000683 

Cov(1'cu,·1v22) = 0 ·000 i26 

CoY (fc 12, 1v~2) = - 0 · 005033 
and m at l'iccs il and N become 

• [ 10 ·3:!GGG9 - "i ·324003] 
M= 

- 7·321003 57 ·096995 

N=[ 0· 573511 - 0·18679Jl 

- 0·186791 2·71399S 
Finnlly, adding i\1 auci N we ban 

A 

(16 ·75)2[Cov (~/:,)) = 

[

2 ·13SGOi 0 ·323999] 

0·323~9~ 0 ·~86GOZ I
. 10 · 900211 

- 7 ·51029-1 

X [2 ·J3S607 

0·3239!)9 

""" [0·1629S3 0·02i 507] 
and [CoY (~i,~)] = 

0·027507 0 ·016626 

- 7 ·51079-!l 

59 ·S-10993 

0· 323999] 

0·2S6602 

From l'h ese results tl1e estimated f/5 % confidence intervals 
and f3 2 lire 

f3 1 = l·20 + 0 ·7S ~2 = 0·'.W ± 0·25 

for ~1 

In order to complete this cxamplc1 let 10 rams be selected from 
a flock of 100. Suppose that for th o two groups 

Xs1 = 9 ... Yp1= s a1 = 1 
X ,2 = 9 Xp 2 = 10 <72 = - l 

where th e subscripts 1 and 2 aga in refer to wool ,vcigltt and number of 
crimps 11er in ch rc~pcctiYcly. ..:.\n cstirnate of 6.c is 

A = 1·20-0·26=0 ·94 g 
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and 

cr~ =[l, - ]) ..!-(- .l. - )a7,(l-7f;u) · 1·0·16:!9S3 0 · 0:::!750 7] [ ll 1 1 

_0·0~75Ui O· Ol GG:::!G .-1 ' JO ' lOO . 

'rhe cslin: nt.cs &;1 ni1d 1:'Ju nre most t':1,-il ,,· romp11t1"d from t he formube 

&;1 = aTGa and fti11 = ~TP~/,jf, . 
.Appropriate cnkulntiou5 g iYC 

&~ = 0 ·1:'!-iG-:-0 ·11 x :! ·35D0(l-0 · :2!'l3l) =·0 ·3080. 
H ence, the cstin1:1tctl 95% confidcnC'c interval for ~ z i:; -0 ·.15 to 
2 ·03 . 
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th e comp11t.1tions in th e numerical ex ;1rnple. 
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Stntion, "Gilrnth Pl:lins ", Cunn:1mu lhl, Qne1~n;;.l:1n,l, where the 
sheep arc maintained . FleC'C'C rn e.-i;;m cmcnls were made by the sl,1fr" 
of the } 'Jc,t•t:c ..,\ nnlysi.5 Section of t he Ian CluniC'S Hoss Animal 
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/ iis - !Z. I 

T he theory of family selection has been investigated from various 
points of view by rnany workers oYer the past fo,y years. This work was 
recently reYic,;•,ed by Young [HlGl] who further de\'eloped some aspects 
of this form of select ion. HowcYer, the coefficients of the family 
selection index ha Ye to be estimated and, to date, the errors of estimation 
have not been exa mined. It is the aim here to apply the methods of a 
p revious paper, T allis [19GO], to family select.ion. 

We consider the variates 1, D, P, Sand 0, where 

l = mean of m records of t.he individual 
J) = mean of k records of the indi\'idual's dam 
P = mean of j records of the individual's sirn 
S = mean of n half-sibs each with m records 
0 = mean of q offspring 

and construct an index, using the aboYe five Yariatcs, t.o best est.imate 
g, the additive gc·notype of an individual for a p:1r t icul:::tr char:>.ctcr. 
To aYoid un11ccc;,s:1ry constants, nll mensurements are assumed to be 
made from rcspecLive population mcnns. We then let 

g = bJ + b2D + b/;, + b.s + b/j + t 

nnd proceed to calculate the b, by least squares. 
We now need the usual models for parent and oITspring 

x =g +c 

y = ½g + f 

(1) 

"here x and y arc the phenotypic measurements of po.rent and ofTspring 
respectin,Jy, e and f arc r::rnclom normal error components, g is the 
additive genetic contribution to phenotype, n.nd 

E(g) = E(e) = E(j) = E(ge) = E(ef) = 0. 

118 

(2) 
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Both x a11d y are mcasur<'d from their respect ive population means. 
With the aid of ('.?) it is pos;,iblc to v erify that the corn:·icncc matrix for 
the six variates, g, I, D, F, S and (J is 

where 

i jj p 

i PM ·10 ½G 

D ~G PI( 0 

F ½G O PJ 

s 
¼G 
0 

½G 

(J G 

½G G 

¼G ½G 

¼G ½G 

S ¼G 0 
p 

½G - {M + (n - l)t} {G ¼G 
n 

(J ½G ¼G ¼G 

g G ½G ½G 

M = {1 + (m - l)p}/m 

]( = {l + (k -- l)p} /1.: 

¼G 

PQ ½G 

!G G 

J = {1 + (j - l)p }/j 

Q = {l + (q - l)l}/g, 

G and P rcprcsc11t the additive genetic and phcnotypic variances fo r the 
character con;,idercd, p is the correlation between repeated records 
(repeatabil ity) and t = J//1 is t he co rrelation between half-sibs. 

From t he above d ispersion matrix we define another matrix 

A= D + h2B .... 
with 

D = ding (,11, K, J, M/n, 1/g) 

n11d 

0 J.. ½ l. }. 
2 ' 2 

J. 
2 0 0 0 ¼ 

½ 0 0 ½ z 
B= n - 1 

) . 0 ). ¼ ' 2 4n 

)_ ) . J.. l .i.=_! 
'l ' ' 4q 

Now let x = col (l , ½, ½, ¼, ½) and b be the vector of the b; , i = 1, 
2, · · · 5, then the least. squares soluLion for lhc b, is g iYcn by 

(3) 
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In ordrr to oblain [C(b, , b;)] we write 

.Ab = fi'x = (A + AA)(b + Ab) = (lt2 + llh2)x, 

whence 

Now 

where 

Ab = A - i { t:,.//x - A.t\b - AAAb} . 

. (m - 1 k - I j - 1 m - 1 ) 
R = d1arr --- - -- -- ·-- 0 

0 ,n ' k, ' j ' mn ' 

nnd hence, neglecting the term .6.A~b, 
. 

Ab = A- 1 !,'.\//[x - Bb] - .1pRbj 

and 

[C(b; , &,.)] = E(Ab.:lb') 

= A- 1[l'(ii2)(x - Bb)(x - Bb)' + 1'(,o)Rbb'R]A-1
, (4) 

since it is assumed that h' and p arc independent,ly estimated. For­

mulae for l'(i.2) nnd l'(p) arc well kno\\"n or else rc!ic.lily ncccssible, 

no matter how h2 anc.l p arc estimated. Thus, if O = b'y, y = col(I, D, 
ii', S, 0), then 

E(O - 9)2 = y'[C(b. , b;)]y + ,/, 

where <J
2 = G(J - R2

) and R is the conelation between the index b'y 

and g. 
Since the amount of in.formation on family performance m:ty vary 

with the indiYidual, sep:1ratc Yectors b may ha,·c to be computed for 

each anim:11. This could represent a great deal of computation and 

may, in fact, be uneconomical .unlc::;s good computing faciliti es are 

readily acc:essible. In the next parngraph it will be ns::,umed t,hat equal 

information is aYnilable for each indi,·idual considered. F inally, t.his 

restriction will be lifted in ore.I er to obtain :1 more general f 01111ula. 

O ue of the main uses of IC(b, , &,·)].is in the invesl igatiou of errors 

of predicted grnetic gains. Follo,\·ing the notation of Tallis [19GO), a 

genetic g:.in, t:.g, is defined as the a,·erage genetic superiority (or inferi­

oril,y if !::.g is neg:1tiYe) of a selected sub-group of animals over the 

nYer:1ge genotype of the particular group from which select.ion is made. 

To be more specific, let N,. be the number in the original group before 

selection, and suppose a sample of N , animals is sclectec.l from this group. 
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Then 
!::,.g = g, g,, 

where 
N, "· g, = L g./N, nnd g,, = L g,/N,, . 
0- 1 0 - 1 

Now 
t.g = g, - g,, = b'(y, - )\) = b'(Y, i\) = b'y 

where Y, and Y,. nrc the mean vectors fo r the t,;rn groups uncorrected 
for the popubtiou mean and y = Y, - Y,, . N"ow, 

E A )2 / - A 2( 1 1 ) (t.g - t.g = y [C(b, , b;)]y + (1 N - N . 
• p 

(5) 

Jf the amount. of family inform:1tion ya;·ies wit h the individual the 
results arc Jess pkarnnt. Let (J. = b~y. be the estimate of the addit.h-e 
genotype of the qLh animnl, then 

l'(O,) = y~[C(b. , b;)]y. + G(l - R!) = (1! 
where R. is t he correlation of g with b;y. l\forcover, since it is readily 
verified that C(g. , O,) = 0, q -;,!; r, we have 

N , 

2 L (J!/N,N j, • (G) 

If N,, is la rge, then l'(lg)' ~ I::''.: 1 <1! /N; . By assuming t b:1t. Jg is 
approximately normally dist ril.)ll tcd, con fidence intervals for C:,g may be 
calcubtc<l from (5) :1n<l (G) by ~trrndard methods. 

I n the deYelopmcnt of (6) it, was a;;sumed 1.hat all measurements were 
made from rcspe~tiYc population means. Howcn:r, in practice, these 
would haYc to be e::::timate:d in order to cnlculatc the vectors y. . It is 
readily verifi ed that this procedure inf.roduces nn error of order N-

1
, 

where N is the mi1limum popubtion size from which the means a re 
est.imated. 

Obviously !3pccin1 cases using t\\'O or more dependent variables may 
be considered by deleting appropriate elements frorn. b, D, B, x and R . 
H owever, there seems to be Jilt.le point in carryin~ out t he operations 
algebraically since tbe matrix fomrnlae a rc probably tbe most s:1ti3-
factory for numerical computation. 

IlEFEREXCES 

T ull is, G. i\ !. [J 9GOJ. The ~:11npling errors of est-im!'llC:d ~cnct.ic regression codlicicn l,s 
and the errors of predict,c<l genetic gains. ..J.ust. J . Slulist. 8, GG- i7. 

Young, S. S. Y. [J9G l ]. T he me of sire's nn<l <l!'lm's records in nnimal ~election. 
Heredity 10, 9 1- 102. 
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This pnper d e:vc-lops formulae for the first two moments of estima tes of covariance for 
t,Jrn ge:neral mullh·nrinte 'one-way ' aucl ' two-way ' models. '£he results are used to obtain 
tl,c large sample dispcr;cion matrix for e:;timatcd coefficients of two types of gene:tic selection 
ind exes. These dispersion matrices pro,iclc the ncc:c-ssa ry extension of known results in 
balnnccd mo<lcls lo the unbnl:rnced case. 

1. I NTRODUCTION 

The problems of est imation as,;ociated with ,ari:mcc nncl co,ariance component analysis 
with unbalanced data li::n·c been of major concern to tho statistic·a l geneticist. This i::; 
pri mnrily bceausC' most of the selection procedures applied to liYcstock require a knowlccl~e 
of gcnct ic nlriancc1, and covariances v,h ich usually h ave to be cstimatc:d frorn ihe annly1;;cs 
of hicrnrchi cn l models. Invariably, thc:re is a marked lack of balance in t.hc data thus 
rendering ~tancbrcl formulae for the variances of the estimates inapplicable . 

Serious considcrntion to these problems has been gi,·en by H enderson (1953), Scnrle 
(195G) ancl Hartley & Bao (J 967) . Searle gtn·e pnrticula1· attention t o the one-way analysis 
of variant'<' and C'Ovnri,tncc nnd used mat rix methods to calculntc the moments of the 
various esti mntors. Other \\'Ork in this a rea concerns annlysis of \'flriancc models of ,·ar.riug 
complexity; se:c· Searle ( 195$, J()Gl), :.\Iaha,nunuln (l!>G3) and Blischkc (J!lGG). 

lt is the purpose of the present paper l o extend and complement existing results. \ \'ith 
the adveut of high :::pcccl computers, matrix operations can be handled \\'i t It great speed aml 
hence formulae for cxpcc:lalions and covarinnces of sums of squares nncl products can be 
left, in a general computable form. T hus, explicit algcbrn ic evaluation of each cnse is, in 
most casc:s, not on l,v time-consuming hu t unnecessary. 

We <'Oj1sider here the general one-way and two-way analysis of co,nriance model with 
fixed and rnndom cffC'cts. The numucr of variables included in the analysis is.assumed to be 
arbitrary and this !-ce:n1s lo lead to somewhat in,·oh-ed notation and algebra . Howe,·cr, 
gcncrnl resu lts are requi red in order to solve a number of pract.ical prol.1lcms. \Ve gi>'e two 
exnmpl<'s from sta l is ! ical genetics. 

Jn the thC'Ory of animal breeding iutercst centres aroun<l cer tain phcnotypic and genetic 
pammcters. Suppo!-e that k cbaruC:tcrs of a part ic;ular breed of animal are rcleYant from the 
p oint of view of a ~<'lee:t ion programme. Then we let P and G be the phcnotypic and adclith·c 
genetic conniantc mat ri c<'s for the /.; characters and we consider two types of selection 
index which arc based on these matrices. 
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'\Ve fl r:-; t: c:onsiclc:r the case where the brec,dcr \\'ishcs to mo,·c the m e:ans of the l: cha rach:rs 
in his group or an imals to certain predetermined opt im um 'rnlues. l t can Le ,;hown t hat an 
index of t he form I = f3' X, ~ = G-1cx, where X is the ,cetor of the values of the /; e:lrnr,1e:tc-rs 
and u is a yector of I: known consh;nts \\'i1ich are the dist ances of the current means of the 
clrnractcrs from their opt imal ya]u es, h as the required properties (TaUis, HJ GS). ·cnfortu­
nately, G is unknown nncl usua lly it. is esti mat ed from an al!a lysis of data ou family g roups. 
In such casC's it is often the ' one-\\·ay ' model which is appr opriat e and i t, tnms out in fact. 

tli:i.t, G = 1,16, where C is given by (·!) of § 3 and m is ~~ constant depend ing on the ty pe of 
fa.mily gronp studied . 

'Ilic cs tirnn to of (3 is giY cn by~ = G-1cc and the large sample covarinnce matrix for~ in 
the balanced case is gi,·en by Tallis (19GS). HoweYcr, in most cases the data are unbalanced 
and ,,·e gin! the general for mula for ,ar (~) in § 3· 1. 

A second type of index has been den'lopccl to assis t the breeder to rnnke the 111.1.xi m.um 
ecouomic ad,~ance by ~election. Let a be the Yector of economic W<'igh ts pertaining to the 
k charac:tc·rs, i.e. the weights tk. t specify the relatiYe importance of each character t o t he 
breeder . Then, jt is well knom1 that an indt x p..'X, ~ = p - 1G:1, leads to a n optimnl sc•k(;lion 
procedure. This result ,\·as firs t prorncl by F airfield Smith ( 1 !)3G) but. a simpler <leriY:1 tio:i is 
g iven by T allis (J 9GS). Both P and G ca n be e.stimated from a onc-,rny analysis of covnriane:e 
and the ba lanced case h as been t reated by Tallis (1960). Again, we giYe the general expres­
sion for var (~) in § 3· l . 

I n order to cope, wit h cases where the design m atrix nssoc-iated wit h a particular set of 
d ata is sing ular, the methods appropria te to t he solut ion of leas t squares equations subject 

· to eonst rri ints h a,e been used in § 3· l. HoweYcr, in § 3·2 standa rd results emp loying 
generalized inYerscs are im·oh-cd. Both these teclmiqu es arc discussed brief!~, in § 2· J . 

There arc a number of reasons for writing the results in terms of the two tec!rniq\1cs. 
Some users m~y be more at home with, for ins tance, the method of linear constraints and 
such readers wil l haYc little difficulty in writing all the results in those terms. :\lorco,·er, 
this t echnique may Le more manageable computationally and, in fact,, m ay be preferable 
for o thcl' reasons as well. 

On the other hand, ana l\"sis of variance theory is m ost conveniently discussed in terms . ., ... . 
of generalized i1n-cr~cs . These concepts have been dc,·clopccl by Rao (J 9G5) a nd his notnt ion 
is used subseqnently . H o\\'ever, as pointed out abo,-e, the most general frame,~·ork is not. 
always useful for particular applications. 

2·1. Notation 2. :METHODS 

I t is well kno,n1 tha t the least squares est imate of~ fort.he linear moclcl Y = Xf3 + € , 

where X is an n xp matrix of known coefficients, E(€) = 0 and E(H.') = cr~I , is gi.\·en by 

b = S-1X'y, 

when S = X'Xisnon-sing ulnr. Howc,er, when the rank ofX,p(X), is sueh t-hatp(X) = t < p, 
S does not, ha ve an im·crse in t he usual sense and other methods must be rc:;orte<l to. 

Consider the (p - t) x p m atrix H, p(H) = JJ - t. \Vhen X is a design matrix, the lea.:;t 
squar es cr1uations a re usua lly solved employing a set of const-raints Hb = c, say, wh ere H 
is as above and p(X' H' ) = JJ. In fo.e;t it can be shown that, under the aboYe condit ions, the 

system of equat.ions X'Xb = X'y, H b = c 
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is consistent. and has the unique solni ion 

b = s-1X'y+ s - 1y, 
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where S = X'X+H'II and y = H 'c. It follo \rS easily that., if H !3 = c, regarding b as a 
random vce:tor E(b) = p, var (b) = u~S- JX'XS-1 and p[var (b)} = t. Usua lly, c = O; this 
will be assumed subsequently. 

Under normality astmmptions it can also be sho,n1 t.hat, since XS-1X' is idempoten t, the 
su 111 of squares Y'Y can be decomposed into two independently d i.stri bu ted quadratic forms; 
Y'XS- 1X'Y, the sum of squares <lne lo regression and Y'(I - XS-1X') Y, the error sum of 
squares. The degrees of freedom associated with t he first sum of :-:quares is /. and, with the 
second, (n -t). 

Suppose now tha t X , H and f3 arc partitioned as X = [X1, X ~], H = [Hi, H:!] and 
f:l' = [f3~ , (3;), where f.X~, H;J is of full rank for i = 1, 2. Again, this would be the case in most 
design situatfons and we would ha Ye t he obYions additional property that H~ H

2 
= 0 . 

]!'or example, in a. randomi~ed block experiment,, X1 and X 2 could Le the incidence 
mat.rices for blocks and treaLmcnts r espectively (Graybill, HlGl, p . 225) . In this case, if there 
arc b blocks and t treatments, 

where, for instance, Y~ is a row vector consisting of b l 's and 01, is a row vector o( b O's. 
T hese Hi matrices impose t.he usual constraints, 

l, I 

}: /Ji = ~ 7i = 0 

and clcatly II~ II2 = 0. 
\ .:: ) \ z:.~l 

With the above notation it is found that., in partit ioned form, 

On puUing 
[Xi X1 + H~ H1 X~ X2 ] [b1] [Xi YJ 

x~x1 x;x2 +H;n 2 b2 = x; y · 

Xi X1 + H~ I-I1 = Sw X~ X2 = S12, x; X1 = S21, x; X2 + n ; H 2 = S 22, 

V' = x;-S21 Si/ x ~. U = S22- S21 Si/ S12, 

the analysis of rnriance of Table l is easi ly i11ferred from the full rank c:asc. In the table, 13~! /3
1 

rc:presen1s t he eiTect of {32 adjusted for /31 . It can be nrifiecl that X~ X1 Si'/ X~ = x;, and 
X 2 VU- 1'' ' = V' and thc·sc are the only results required to shO\\. that the matrices of the 
tlu·ce quadratic forms arc idempotent. and m utually orthogonal. 

Sonrco 

T able l. Analysis of variance 

(Singlo partit ioning of X) 

D .l' . 

p(x;xii 
t -p(X~X 1) 

n- t 

Sum of squares 

y'X1S;j1x; y 
y'VU- 1V 'y 

y'(I - X1 Sii1 x ; - VU-1V') y 

l\Iost of the ideas discussed above arc given, for instance, by ScheiTe (1 959, Chapter 1). · 
These result.s lwYe been kept separate from t.hc general treatment since t he whole annlysis 
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can b o carried ou t. wit !Jin th e frame,rnrk of standard matrix. algebra . 1\ll inverses emp loyed 
are computable b.v the usual procedures and, where much ine prog rammes arc ernployc-d, 
this nm,,· b0. :1chaniageons . Of conrsc, s-1 = (X'X+ll' II)-1 is a generalized in\·erse of 
X'X and i t, is a particulnrly urnnageablc one computntion[tJly . 

The genera l theory fo r ~oh·ing (1) when p(X) < p is given by Hao (HJG5, p. 26 and Chapter 
4). In fact., if bis any sol ut ion, 

b = (X 'X)-X'y + {I -- (X'X)- (X'X)}z, 

where z is arbitrary an<l (X'X)- is [t g('neralizecl i1fferse of X'X. I t turns out that 
X(X'X) - X'X = X, X(X'X)- :X' is unique and p{X(X'X)-X'} = p(X'X) and hence 
y'X(X'X)-X'y a11cl y'{I - X (X'X) - X '} y a re uniqnr ly determined ,l!Hl are indep endent. of 
which gen eralized iuwrse (X'X)- is used . 

If X is part it ioned ns X = [Xi: X2, X3] and !3' = [(3; , r,;, ~;J, t hen the analysis of variance 
takes the form g iven in Table 2 where 

D 1 = I -Xi(X~ X1)-X~, D 12 = D 1 - D 1 X 2(X;D1 X 2)- X ; D 1 

and y'X(X'X)- X'y is the sum of the .G.rst t hree q uatL:atie forms . 

Table 2. Analysis of 1:aria.nce 

(Doublo pnrti tionini of X) 

Source 

'31 
f3 2l f31 
f33lf31, '32 
Error 

D.F. 

p(X; X 1 ) 

p(X~D 1 X 2 ) 

p(X;D1, X 3) 

n - p(X'X) 

Sum of sqnnres 

y'X1(X; Xi)-:X~y 

y'D1 X2(X; D1. X~)- X~ D 1 y 
y'D12X3(~ D12X3)-x; D1zY 
~''{I - X(X'X)-:X'}y 

l\Ie thods of computing gencralizecf inverses are discussed in Chapter 4 of Rao's book, 
while th e nccc::;snry formula for th e genera lized inverse of a parlilioncd ma trix \\·hich is 
u sed to constrnct Table :.? is g i\·en by Hohclc (1965). 

2·2. li'irst mid seco11d momcnis of bilinrw· f orms of normal rnriales 

Since expectations nnd coYariances of bi linertr forms involving normal variables are 
r equired in the next sections, ,re deri,·c below the required gencraJ expressions. I11 fact, t,,\·o 
procedmcs a rc indicated for obtaining the covaria nce form ula.. 

L et Yi, Y;, Y k and Y1 be jointly norma lly c..list ribu tecl ,\·it h means and covari ances 

-[:;] µ - ) 
µ ,.. 

11·1 

then we have the follo \1·ing results: 

E(YiFYi) = µ~Fp.1 + t r(FV1J, (2·1) 

cov(Y;FY;, YkGY,) = µ;FV11 G'µ. ,..+ p.~FV;,.. Gµ.1+ p.5F'V11 G'µ ,.. 

+ µ1F'V1k Gp.1 + tr (FV;1G'Vd + tr (FV1k GVu), (2·2) 

J 
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A suitable <;xprcssion for Ynr(YiFYi) is olJt a inccl from (~·2) by setting F = G, i = /;,and 
j = l. 

'l'o establish (2· l) no assumption of normality is req uired. Thus 

E(Y;FYi ) = E{tr (FYi Yi)}= t.r{F(V;i + P.i!·<)}, 

which g i\·cs (2.-1). In order to obtain (2·2) "·e c-an make use: of t he fact, that, mH.lcr norm a l 
theory, 

Now, with t.he same parti t ioning as V Jet 

lo F O OJ 1 F' O O 0 
Bi = 2 0 0 0 O ' 

0 0 0 0 

fO O O ·OJ 1 10 0 0 0 
B2 = 2l0 O O G ; 

0 0 G' 0 

then Y'B1 Y = Y~ FYi and Y'B2 Y = Y;, GY1• 1Iatrix ruult.iplica.tion now gh·es 

FVi1G' FV;,, G ] 
F'V. G' F'V. G tl 1/; 

0 0 ' 
0 0 

4µ'B 1 VB2µ = f.l·i FVi1 G' µ1;-I- µ.1F 'V ii G'p.1 + p.1 FVi1, G'p.1 + µ5 F'V11: GtL1, 

2t.r (B1 VB2 V) = ½{tr (FVi1 G'V!:i) + tr (F V;1; GV,i) + tr (F'V ilG'Vki) + t r (F'Vil: GVJ} 

= tr (FVi1 G'V,,,.) + tr (FV;k GVu). 

An alterna tiYe way of establishing (2· 2) is to start from first prillc:iplcs. D efine 
1\'I = /1 B 1 +t:!B2, then the joint moment gcncrn1.ing funct ion of YiFY1 and Y;, GY1 is 
given by 

·1n(l 1, t.2) = E{exp (} Y'r.IY)} 

and by st.ancbrd techniqtH::s we find t.he cumulan t generat ing function can be \\Tit.ten as 

a:, 1 a:, 

logm(ti,l2 ) = 9(l1,l2 ) = { µ' ~ (l\1V)nV- 1µ. +-
2 
~ tr(f,IV)1~/n, 

n = l » ~ 1 

from which the coefficient. of 11 12 can be found with rcla.tiYc ease . 

3·1. 'J.'he '011c-i,;ay' model 3. H ,ESUL'J'S 

, ve consider initia lly the simplest sit,uat.ion of the one -way multiYariate analysis of 
variance. This t erm is used to describe the situa tion where the outcome of a pnrtkular 
experiment, is Ycctor , alucd and the experimental structu re is such t hat an:1lysis is con ­
ducted on a between group and within group basis. Classico l examples of this sit uation exis t 
in statis tic"! genetics where, for instance, from progeny s1.ndies several characters of a 
particular breed of animal arc analysed joint.ly for between parent and within parent 
effects; see § 1. 

The appropriate mixed model for this case is 

(3· l) 
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where X = [X1, X2] i::: (n x p), X, i.s (11 x p,) (r = 1, 2), Pi+ p2 = p, Y; :rn<l Ei arc (11 x 1), ~'ii .~ 

(p1 x l) :.nd Yi is (p:! x J ). The cocffie:icnts f3i arc ftxcd cftc:c:l s antl Yi is a random vector 1rith 

zero expcctat-ion and co,ariancc matrix cu IP: · The parame;Lcr cii is a component of Yariam't: 
in the standard terminology of t-he analysis of variance. 1.\"- usual, 

E(Ei) = 0, ntr (E;) = cii I ,. . 

Aualogously , we assume that coY(Yi, Y;) = C;; Ii,
2 

nnd cov (E;, <'-j) = e;j l n and dcCin~· 
Y' = [Yi., Y;,, ... , Yn wit,h similar d efinitions for (3', y ' and E'. Then (3 ·1 ) can be ,nitten 
conveniently as 

(3·2) 

From (3·2) 

where C = {c;i} and E = {cii} are (/..; x 1.- ) and E(E, y') = 0 by assumption. 
U se will now be made of t he results and notation of§ 2· l. Spccificnlly, S 11, V and U are 

defined as in t ha t section and we stre:;.'.; that, therefore, all the required matrix inverse:: 
exist in the usual sense . Thus, sett ing 

F1 = X 1 S1i1Xi., F2 = VU- 1V', F3 = I - F1 -F2 

and introducing the notation 

Qii(s) = Y iFs Y1 and Z' = [Y1, Y2, .. . , Yd, 

we obta in the analysis of covariance of Table 3. 

SoLtrco 

13 
YlP 
Error 

'fahle 3. Analysis of c01:ariance 

(Ono-\\'ay classification ) 

J\fatr ix 

ZF1 Z' = Q ( J ) 
ZF2Z' = Q (2) 
ZF3 Z' = Q (3) 

E xpcct.ation 

p(V)E·Hr(X;vu - 1V'X2) C 
[n -p(X 'X )) E 

It is found t hat tmdcr standard assu mptions of normality the general expressions for thl· 
covariances are 

cov {Qi;(2), Q1:1(2)} = tr (X; vu-1 V'X2)2 (cj1C1.; + CJ1A1) 

+ tr (X; VU- J V'X2) (ci1c1:; + ckie;1 + ci, cik + ci1:C-:1 ) 

+p(V) (ci,ek;,+ei1A 1), (3·3j 

cov (Qij(2) , Q,,,(3)) = 0, 

cov (Qii(3) , Q1.1(3 )) = {n-p(X'X)} (ei, ck i + ei keit ). 

The standard estimators are g iven by 

E = {n -p(X'X)}-1 0(3), 

C = {tr (X; VU- 1'1'X 2)}- 1 [0(2)-p(V) [n-p(X'X)}- 1 Q(3)j. 
(3·4 
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Tlrns, from (:3·4) we df:'clucc U,at 

cov (eij, ck,) = {11 -p(X'X)}- 1 (cj/Cl:i + Cjkei/), 

CO\' (cu, e,..,) = -{tr (X; vu-J V'XJ}- J {n -p(X'X)}-1 p(V) (cj,eki + cjkeil), 

(~ ,.. ) {t ()r''' U-1\l ''V )·1- "(' (X-, -..1(J- l 'IT'X )"( ) 
coy c; iJ, ck1 = r ... 2 .-i..21 - 11' 2 , , 2 - ci1c1,.,+c1kcil 

+ tr (X; vu-1 V'XJ (cj1e, .. , + c,.-ici1 + cac1,,. + c1,A1) 

+ p(V) [I + p(Y ) {,1 -p(X'X)}- 1] (i!i1c1:, + e1keil)). 

5~3 

(3·5) 

Jn order to obtnin ('xpressions in it'rms of' gcncrnlizcd inYcrs<'s, d efining D 1 nncl D 12 as 

in § 2, let F1 = X1 (XiX,)-X;, F~ = D 1 X/X:;n 1 X2)-X;D 1 and F3 = 1\2. With this notation 

cha nge p(\') to p(.·;n 1 X~). tr(X;V0- 1 V'X2 ) to tr(X;D 1 X~) amt tr (.:;vU-1Y'X2 j2 to 

tr(X;DJ X2)2, and t he aboYe f'or111 ul.1c apply. 

We refer back to the two c·xan q '. , cliscnsscct in the introduction for application of the 

above formulae. First, we conside! est imated index~ = G-1a and proceed in t he usual 

way t o find the lnrge snmple COY,1 , . matrix for~. 1'1, us, taking ma trix differentials of 

bot.h s iclcsoft hccquntion G!3 = a · , ,·c that 

and npproxim ntcly, 

Let. (3(3' = y. Then the (j, l.·)t h clcn 

" ,., 
, ve not ice that. s ince G = mC, 

CO\" ( 

nnd we use (3·5) to obtain 

var{~} = {tr(X;vu­

+111 t r (X 

+m2p(VJ 

Defore deriving gencr :.i l resuH s foi 

for the bnlnncecl ease . Tallis (l 9UO) 

the notation of that, paper, equatio 
,., 

vnr (~) = ,~-2P - 1[{l3CB .;. 

Not ice thnt Win the above formuhi 

to our C. 
In the general case we let k = tr (: 

var{~} = [tr (X; VU- 1V'X2)}-2 p - 1( 1, 

+ rn- 1 tr (X; VU-1 V'X2); 

+p(V){\VC\V + Wtr (C' 

3·2. The ' t1co-way' model 

As a dfreet, generalization of (I) w 

Yi = X1 f3, +) 

-; + G (cl (3) = O 

F{(clG) f3W(cZG)}. 
,., . 

l' ([3) G IS 

··\; VU-1 V'X2)2 {GyG + G tr (Gy)} 

· EyG + E tr (Gy) + G t.r (Ey)} 

! 1]{EyE + E tr (Ey)}J G- 1• 

,, ·ct ion inrlcx we write the results 

,mc\\'hat awkwnrd form nnd, in 

·,\' tr (DW)}/f,J p -1. 

·1 per while C is not, relntecl 

(3·5) l o fmd that 

; u (CG)} 

· r (C\V)} 

'· . + \V tr (DW)}] P- 1• 

(3·6) 

. --- , . . ~ - . 
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where 

since by assumption 

Aga in, (3·G) can be more conYCniently written as 

y - [I,®X,II,®X,II,®X,II,®I ,.] [~] 

ns in (3·2). Clearly, 

Ifwe now let 

we get the :rnalysis of coYarinnce of Table 4.. 

Sottr<'O 

p 

'£able 4. Analysis of coi·m iance 

(Two-wn,y clnss i11cntion) 

E xpectntion 

(3·i) 

y j(3 

i\lntrix 

ZF1 Z' = Q (l ) 

ZF2 Z' = Q (2) p(X~ D 1X 2}B + trp,:; D 1 X 2(X; D 1 X z)-- x; D 1 X 3}A 

+trcx;n 1x ~}C 
«!f3Y 
Error 

ZF3Z' = Q(3) 

zs;z, = Q (-1) 

p(X;D 1:X3)E + tr (~~D 12 X 3)A 

{n-p(X'X)}E 

The expectations in the aboYe t able arc ralculnlc:tl clerncntwise lJy use of (2·1) of §2·~ 

The noncc·ntrnl ity terms arc zero because of the rela tionship D 1 X 1 = 0. 

]for conYcnicncc we let 

p(X;D1 X2) = k1, tr {X~ D1 X2(X;D 1 Xz)- X;D1 X3} = k 2 , t r(X;D 1 X2 ) = l.·3 , 

p(X~D 12 X 3) = 7:.1, tr (X; D 12 X 3 ) = 7:5, n. - p(X'X) = k0 • 

Then we can calcula te the standard unbiased estimat ors as follows: 

E = k; 1 0(·J), A= k5
1{0 (3)-k.:!.·; 1ou)}, } 

C = l.·31{Q(2) -k~/:51 Q(3)+(k):6 ) - 1 (l·zkJ - k5 /; 1)Q(.f)}. 
(3·~ 

The method of estimation outlinc>d aborn is Cl'!:'cntially equivalent to H enderson·, 

Method III (Henderson, Hl53) . 

We seek genC'ral expressions for cov {QijM, Q,_.1(/)}. Again, since D 1 X 1 = 0 , from § 2 w, 

hnve (3·r 
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l".sing (=3·9 i, ::::-: d perfo1:ming tedious a lgebra, it can be shown that. 

COY {Qi: ::;, Q, .. 1(3)} = tr {(X; F2 X 3) (X~ D 1:~ X 3)} (a;1aa,; + a.aaj,.), 

co, {0;/ :: ), Qd,1)} = cov (Qij(3), Q1 .. 1(·1)} = 0, 

co, {Q,) :.' j , Q, .. 1(2)} = tr (X; D1 X 2f (c11 c11,; + ci1 .. c,.1) 

+ tr{(X; D1 X3) (X~ D1 X2)} (ail: c11 + ai1 Cu;+ a.ii C;k + a ii: ca) 

+ k3(c;1 e;k + cu. e;1 + cj1; e;: + c,.1 e5k) 

+ tr (X; F 2X 3)2 (a.;1 au .. ·+ a;1,; a 11 ) 

+ l:2(ai1 C'o, + aiJ.: e11 + a1k eil + ail ei1:) + k1(e11 I!;!;+ e11; Cu), 

co, {Q,) 3), Q,..1(3)} = tr (X~ D 1:.-: X 3)'.! (<i;1: a11 + a,.1a.ik) 

+ k5(a ii e;k + a.;1. ea+ a;1 c.,.k + a,.k e;1) + /.:_,. (eik eil + ea e;,, ), 

cov {Q,I1). Q.1;z(-t)} = l..:6(cu; e11 + e,-1 e1,J. 

52:3 

(3· 10) 

Suitable tE:rms for v arian ces ma~, be obtained from (3 ·10) by setting i = k and j = l. 
?lforeo,er, ;; i.J1ce c-st imators (3·8) arc all linear combinn tions of the Q(t), a ll required variances 

A A A 

and co,nriances between t he elements of E, A and C can be calculated . 
It is a lm o,;t oln ·ions that the above formulae quickly gc:neralize al t.l1ough i.he cornplexit.y 

of the algebra is increased. Thus one can easily develop fo rmulae for estimation of com-

ponent$ in the model Y . = X (l. + x Y· +Y ff..+x (va).+E · 
~ 1 t-'t 2 t .. 3 ·1 -I I i P 

where (yO'.)i represents an interact.ion effect. The only change will be the a.dclition of a. new 
matri x, 

t o th e corn put a tion of the su m of squares for (yO'.) I (?>, y , ct a.nd the rcsu.Jting modifications in 

the remaining formula. J\O nc,1· results arc needed for computation of expectntions, 
,aria nces or co,-aria nccs. 
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The Use of a Gcnernlizcd :Multinombl Distribution in the 

Estimatio n of Corrcl~tion in Discrete D ata 

By G. M. T ,\LLIS 

Di1•isio11 of Animal G'rncrics , C.S.J. R.O., Gl<'b!', N.S. IV. , 

(Rccci\'l:d August 196 1. Revised February 1962 ) 

SUMMARY 

This paper presents a joint d istribution for II identically dis tri bu ted multi­

nominl \'a riatcs, Xq, The distribution is const ructed so that C(Xq, X,) = p V(X) 

for all q and r, q;!:r, and applica tions of this model to the estimation of 

correlat ion in discrete data arc discussed. 

] . l NmOOtJCTION 

IN several branches of I3iology, the analysis of discrete type data presents unpleasant 

statistical problems. This is p:1rtic11larly the case when it is desired to estimate 

int ra-cbss correlation for disconiinuous variates and to devise satisfactory tests of 

hypotheses. Some npprox imate methods of at tack ing this probkm have been 

suggested ; sec, for example, Robertson and Lerner {1 9'19). H owc\'1:r, their eOiciency 

remai ns questionable. 
It is the purpose of this p2per to introduce a generalized multinomial distribution 

incorpora ting :rn additional p:i rarnc t~r. p. It will be shown that p is the cprrclatiou 

cocfncicn t for l\\'O ,·ariables which arc marginally distributed ns mulLinomial rnri~tes 

with common me:rn:-. ivk1hocls of e!>tim ating the relcv:rnt pnramt:'ters are presented 

and some applic:itions of the model to the cstimntion of intra-class correlation are 

given in section 4. 

2. T111; Gr::-:rn,,1. D1smrnuno:-: 

Let the random \'arinble X take the \'alucs 0. I, 2, ... , k, with probabilities 

Pr(X = O) = /lo, J>r(X = I) = p 1, ... , Pr(X = k) = Pk subject to the restriction 'Z.pi = 1 

and consider the II identically distributed \'ariatcs XiU= 1,2, ... ,11). A probability 

generating function, p.g.f., for the joint probabil ities 

Pr {,\\ = a, X2 = b, X3 = c, ... } = anbc... (a,b, c = 0, I, 2, ... ,k), 

may now be written, for O ~ p ~ I, as 

( ~ en )'} n 
G,.(s) = pl ·l, Pi TI s1 + (l - p) .TI P(s1), 

1~ 0 - 1 , - 1 

()) 

where P(s;) = }:/\S} and s = col {si, s~, ... , s 11 } . The parameter p appearing in {I) is the 

correlation coefficient between X'I ~nd X, (q-:/: r; q, r, = l , 2, ... , 11). 

The marginal distribution of X,1 is obtain~d immediately from {I) by setting 

s, = I {r t, q) and we ha\'C G(sq) = P(sq), which is the generating fu nction of a multi­

nomial variate with parame ters /Ji· 
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In order lo obt:iin the joint moment generating functi on, 

t = col {t1, 12, • •• , tn), let·\ = e'1 in (I), then 

M11(t) = p( £ Pi ei!:.t1) + (I - p) [I P(e'1). 
i ~ O ; - 1 

Suitable differentiation of (2) gives 

C(X,, Xq) = E(X,, X1) -£2(X) = pV(X), 

531 

m.g.;., M,.(t), 

(2) 

where E(X) = '5:.ip,., V(X) = ~;-J. p,. - E~(X), :111d this , ·critics the statemen t thnt the 

correlation cocftic ient for X1 ;inc\ X , is p. The joint probability 0:111,r ... may he obtained 

from (I), alt hough, with a little experience, the required probabili ties can be written 

down by inspection. 
Case I. Let a = b = c = ... = i, say, then o:; ; ; ... = pf(I - p)+ pp,.. 

Case 2. Let :1t lc:1st two members of the array a, b, c, ... tn.ke c\ilforent values. Then 

CXabc •.• = (J - p)f'n/'t,Pc ···· 
Consider now the new variate R = X1 + ... + X,1• The p.g.f. for R is giv<'n by 

G,.(s) = f Cl;Si = p( ± p,.sni) +(I - p){P(s)}ll (3) 
i - 0 i - 0 

and is obtained from (1) by selling s,=s (r = 1,2, ... ,11). The m.g.f. fo r R is 

Mn(t) = G11(<!) = P(.i p,.c11 i1) + (1- p){P(e1)} 11 (4) 
•=0 

and straightforward calculations show 

E(R) = nE(X), V(R) = nV(X){I +(11- l)p}, 

as may well have been anticipated . 
13ccause of the wide interest in the binomial distribution, the above results will 

be specialized fork= I. From (IJ we obtain .... 
( 

• TI ) ,i 

G,.(s) = p Po+Pt D Si + (I -p) 11 (Po+Pis). 
; - 1 i - 1 

Thus the two special cases give the following result s. 

Case I. Her~ 
0:000 ... = PiJ( l - p) + />Po, 0:111 .. . = Pr(!- p)+ PP1 · 

Case 2. Suppose in the array a, b, c, ... , 7.ero appears 110 times and 1 appea rs 111 

times (110, 111 =-/= 11). then "-uic.. = Po' Pi'•(I - p). 

J7ormula (3) rl·duccs to 

Gn(s) = PCP0+Pis")+ (1-p)( po+P1S)11
, 

which gives probabilities 

cxo = P8(1 - p)+ PPo, ex,. = Pi'() - p) + PPi, 

(1 -p) n ! . . u· 0 ) 
cxj = . ' ( ") I PJ p;;-' :f: 'n • 

J.11-J. 

Finally, the appropriate formulae for the mean and variance arc 

E(R) = IIJJi, V(R) = npl p 0{1 +(n- l) p}. 
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Now tha t the basic distribution has been pr('sentcd, it is interesting to notice 
certain features. Tt is clear that (1) specifics the jo int distribution of II variates, each 
margin being multinomial wit h paramete rs /J; (i =-= 0, I, .. . , k). When p = 0, the dis tri­
bution becomes th e product of II identica l multinomial di~trilrnti ons, a nd this shows 
that the variates a re then indcpendenily distriblllcd . On the o ther hand, when p = l , 
t he dist rib ution degenerates in suc h a way tlwt :i:a~c ... = 0 unless a = b = c = ... = i, 
say, wh.::n o:iii ... = p,-. Thus it seems that (l) is the \\"eighted mea n of a distribu tion 
with perfect correbtion an<l one wi th complete independence, the weigh ts bci:1g p 
and l - p rcspect i,·ely. 

The v.iriatc R is the su m of 11, generall y non-independent, varia tes Xi (j = I, 2, ... , 11). 
In some work, R may be the only information available and its distribution is 
important, at kast fo r estimation purposes. 

3. ESTIMA TJON 

3.1. General 
A central problem of practical inte rest is the estima tion of the parameters Pi 

(i = O, I, ... , k) and p. Suppose the II variates Xi a rc jointly observed on ,V indepen,knt 
occasions, then maximum likelihood estima tion m ay be carried out in several ways. 

3.2. Estimation from the Joint Distribution 
Full max imum li kelihood estimates of the unknown paramete rs may be obtained 

from the joint proha biiitics fo r the variates Xi . It \\'as shown in the previous sect ion 
how the probability of any outcome of the form X1 = a, X2 = b, X~ = c, ... , can be 
deriYcd and, therefore, it is p ossible to write the proba bility of the N outcomes as 

LocTI ~~~ m 
where °'~be ... is the probabil ity o f the rth outcome with array a <r>, b<,>, c<r>, ... . Now, if 
in the la tte r a rmy O appears 11i'> times, 1 appears 111'> ancl, in general, i appears 11~r> 
times, then 

k 
o:< r> = 11 P 1•11'•> ( I - p) abc.. . 1 

1- 0 

unless a<r> = b1'> = c<r> = ... = i, say, when 

o:m ... = pf(J - p) + Ph 

With the aid of the above expressions (5) can readily be simplified and m axim ized 
with respect to the k+2 unknown paramete rs by standard techniqu es ; sec Aitchison 
and Silvey (I96p). 

3.3 Estimation from the Distribution of R 
Since the expressions for ,:xi = Pr (R = j) (j = 0, l , ... , 11k) m ay be obtained from (3), 

it is necessa ry to count the number of times R = j in the N observati.ons, N; , and write 

11k 

Loc IT o.-Y, . 
i = O J 

(6) 

However, it is readily verified that, in general, estimates calculated from (6) are not 
fully efficient. O nly fo r the special case of k = I do methods (3.2) and (3.3) giYe 
identical estimates. 
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3.4. Data 11·itli Vnrying 11 

1t may frequently occm that II does not remain const:mt from trial to trial. 

Fortunately, this <loL·s not cause a grea t deal of trouble from the point of view of 

est imation since the probabi li ty of any outcome ca n be \\Tit tcn do\\'n for a ny II in 

terms of the parameters I'; (i = 0, I, ... , k) and p. Th u!> kt P,, be the probability 

associated wit h the qth 11 ial, then 
(7) 

The likelihood func tion (7) can be simplifi~d and maximi1.cd in an analogous way to 

(5). 
4. D1scuss1o:-J 

The val id application of the grneralizcd multinomial distribution presented abO\'C 

is restricted to I hose cases \\'here E(X) can be assumed to remain constant throughout 

the experiment. Unfortunately. numerous situations arise \\ here this assumption 

may not be made and in these imtanccs the nn:1lysis brc:1ks down. lt is now proposed 

to give some examples where the modd can be applied with reasonable con!idence. 

In statistical genetics ii is often of interest to estimate the heritability, '12, of birth 

records of Ji\·estock. The parameter Ji~ may be defined as the rati o of the additi\'c 

genetic variance to the tota l phenotypic rnri:wce of n paniculnr chnracter (Lw,h, 19-15). 

In sheep, for instance, bi rth records generally t:i kc the \'alucs 0, I and 2, the 

occurrence of triplets, quadrupkts. etc. being exceedingly rare in most llocks. For 

convenience, the abil ity to produce lambs will be referred to as "fertility" in the 

subsequent discussion. 
An estima te of the heritability of fertility may be obtained in the follo\\·ing way. 

lf we take the first lnmbin g records of II daughters of each of N si res (i.e. ewes within 

sire groups arc half-sibs), then we may r~gard frrtility at first record as a multinomial 

variate, X. If p is the correlation between records wi thin sire grou ps then, applying 

the usual genctical argument. /z~ = 4p. Jf in this case we nre prepared to assume tha t 

E(X) is the same for all ewes, \\'e may apply the mcthod5 of the previous Sl'Ctions to 

estimate p. 
Another example of a similar nature i!> the estimation of repeatability of fertility 

records from yea r to year. In this example, N e\\'es may be observed fo r a period of 

11 years and, here, R corrc:-poads to th..: n111;1L,er of lambs born to each ewe <luring the 

p~riod. If it can be assumed that lambing pcrfonnance is relatively unaffected by the 

age of the ewe and year to year emironmcnt, then the multinomial modd suggested 

above may be used to estimate repeatability, p. Howcwr, in contrast to the previous 

example, close attention must be gi,·cn 10 the assum ption of constant E(X) because of 

the year-to-year environmc111al effect on fertility. 

Note that, where II is constant from trial to trial, 

E{L (Xij-X;Jl = V(X)(I - p), 
ii N(n - I) f 

£{~(%~:=_~)'} = V(X){ l + (n - J)p}, 

where X11 represents the jth obserrntion of the ith trial, 

11X, =-:, x .. and 
I , .t:.J &) 

i 
11NX .. = LXij. 

i J 

• 
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These results will be recognized as analo3ous to the expectations of within ancl between 
mean squilrcs of the one-way analysis of \'ariancc, wi th p rq,rescnting the intraclass 
correlation coefficient . Thus p can be estimated, p say, by the usual procedure for a 
continuous variate sa tisfying the analysis of rnriance conditions. Obviously p is 
relatively easily obtained and can sen·e as a first guess of p, but it suffers from the 
disadvantages th at it is an inefficien t statistic and tha t appropriate tests of signific:mce 
arc Jacking. Thus, by use of the distribution for the X;;, these disadvantages are 
overcome and it was precisely these considerat ions which stimulated the work of this 
paper. 

Unfortunately, so fa r no wo rt h-,vhile generalizations have been achieved by con­
sidering the join t distribution of II multinomial variates, each distributed with a 
d ifferent set of parameters, Pi· 

A CKNOWLl:DGE:\IENTS 

The au thor is grateful for the Yaluable comments of Dr F . E. Binet during the 
early stages of thi5 work and also to the referee, who suggested many improvements iu 
the presentation of this paper. 

R EFERE~CES 

Ancrnsos, J. and S1LVEY, S . D . (1960), " Maximum-likelihood estimat ion procedures and 
associated tests of significance '!, J. R. s1ntis1. Soc. B, 22, I 5-l- 171. 

Lus11, J . L. {19-!5), A11i111nl /Jrrc•di11g Plnns. /\mes, Iowa: Jowa State Co llege Press. 
Rourn1·sos, A . and Lr.RSl)R, J. M. {I 949), "The heritabi lity of all -or-no ne traits : viability in 

poult ry", Genetics , 34, 395-411. 



( 

( 

-- A ( Q,) ( iv)[~] 

HY 

G . .... ,. r'!"' \ .,... 'T -.- ~ . 
lH . l.: LJ. ,l:::J 

R('prinicd from 

THE JOCR:,AL OF T HE f{OYAL STA'fiSTICAL SOCIETY 

SF.HIES IJ (\ISTI IODOLOGIC\L) 

\'olum!! 26, :'\o. 1, 1%-1 

(P!>· 82 - S5) 

Pl<TXTED FO R PRIVATE CJRCULAT!Oi\' 

1964 



( 

( 

82 [No. I, 

Further :Models for Estimating Corrclntion in Discrete D ata 

l3y G. M. TALLIS 

Divisio11 of Animal Ge11.?rics, C.S.l.R.0., Gli!bc, N.S. IV. 

[Rccch·cd J\lay 1963. Rc\·ised August 1963] 

SuM~IARY 

This note considers the distribution of the sum of II identically distributed 

multinomial \',11 i:ucs X,, the corrcl:Hion coeflic icnt for X, and X1 bC'ing p 

for all i , j, i ;!: j. The initial model, with II and p' = (pi, pz, ... , P1:) fixed, is 

generalized by allowing firs t 11, then p and finally both II a nd p to be random 

variables. 

I. l NTROOUCTIO>I 

IN a previous paper, Tallis (1 962), the autlior considered the random variable 

R11 = X1 + ... + X 11, where each x, was a multinomial variate with probability 

generating function, p.g.f., 
k 

p(s) = 'f, P; sf, 
J• O 

and Rn had p.g.f. 
fu(s) = pp(s")+(l - p){p(s)}". (I) 

It was shown that the p:.iramcter p is the correlat ion coefficient for x, and X 1 (i ::/=j), 

and, by suitable differentiation of (1), it is readily vcri11ed th:tt 

k 

E(R11) = 11E(X), E(X) = LJP;, 
J~ o 

I: 

V(R11)=11V(X){l+(11- J)p}, V(X) = ~j2pi-{E(X)}2. 
i ~O 

Jn this note, (!) is to be gcneral:z~d by fi rst of alJ all owing II to be a random 

variable and then, keeping II fixed, allo,,.·ing p' = (PJ,p2, ••• ,p1) co be a ra11<luff1 ,e:ctor. 

Finally, both II and J> arc allowed to be random. Little attention is devoted to the 

genera l results for arbitrary k, but specific formulae arc presented for the most 

important case, k = 1. 

2. T HE DISTRIOUTJO'SS 

2.1. 11 a Random Variable 

Suppose that II is itself a random variable N, with probabilities g,1 = P{N = 11}; 

it is then required to find the distribution of R.v· Now 
a, 

fn(s) = L, fn,si 
i - o 

i s the conditional p.g.f. of R.\· for fixed N = n, and the unconditional probability 

lz; that R,y = j is given by 
a) 

I, J = z; g nfn;• 
n- o 
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Since the p.g.f. of R.v is 
<IJ 

h(s) = ;:, It i si, 
; ~o 

we have, substituting for lzi, 
tO a) C1) 

!t(s) = ~ _:B gnfn;si = 2., g,J,.(s). 
; - on-o n- o 

(2) 

In order to obtain some explicit resu lts, N is given a Poisson distribution with 
p arameter ,\ and (2) becomes 

<IJ 

h(s) = e-,\ L {,\11/,i(s)/11!} 
,1- 0 

(3) 

The task of identifying the coefficients of s 11 for k ~ 2 is extremely un pleasan t for 
large 11. Howe\'er, fork= 1, 

h(s) = e-·\{p(p0 e·\+ Pi e.l.s) + (1- p) c.\< r>,+p,s>}, 

whence, by inspection, 

lro = PPo-1- PP1 c-"'+(J- - p) c-A 71 ,, 

'1; = PPi,\ie-,\/J!+(l-p)(p1 ,\)ic-·\P,fj! (j> O). 

From (3) the mean and va riance for Rx are found to be 

E(R,y) = ,\E(X), ,\ = E(N), 

V(R.v) = ,\~ p V(X) + >..E(X2), 

which, for k = 1, specialize to 

E(R,v) = ,\Pi, 

V(R,v) = ,\Pi(J + PAfJo). 

2.2. p a Random Vector 

(4) 

(5) 

In this case N is held fLxed and p is assigned the frequency function s~(p). By a 
simjla r argument to tha t used in Section 2.1, 

h; = {!.-i;(P) cp(p)dp, 

where 

Hence 

h(s) = {f.1(Il,S) <p(p)dp. 

A gain, in order to obtain some useful results we let k = l and 

<p(pJ = {B(q, rn- 1 p7- 1 Po- 1, 

• 

(6) 
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where 

B(q, r) = f x1 - 1 (l -x)'-1 dx. 

It is now found thnt 

n ('11) . h(s) = p(ft0 + Pi s11
) + (I - p) {B(q, r)}-1 ~ . B(q+ j, r +11- j) sJ 

j = O ) 
(7) 

and 
h0 = pp0 + (I - p){B(q, r)}-1 B(q, r+ 11), (Sa) 

lz;= (l-p)C) {B(q,r)}- 1 B(q+j, r + 11-j) (O<j <11), (8b) 

lz,. = pfti + (I - p) {B(q, r)}-1 B(q + n, r), (Sc) 

where £(Pi)= fii = q/(q+r) and Po= I -fi1 • These results reduce to those of Skcllam 
(1 94S) when p = 0. Jncidcntally, (7) establishes the relationship 

i (''.) B(q+j,r+11-j) = B(q,r) 
i=O ) 

and this can be used to show that 

E(R11) = nj\, 

V(R 11) = 11(11- I) ( l - p) V(p1) +11fii p0{1 + (n- I) p}, 

· where V(pJ = p1 J3o,/(q+ r+ 1). 
Explicit results for arbitrary k may be obtained, for instance, by klting 9(p) take 

the form of a multi\'ariatc iS-distribution (see .l\1osimann, 1962). H owever, the 
resulting expressions arc more cumbersome and they will not be developed here. 

2.3. 11 (1/;d p Ra11do1J1 Variables 
In this last case, both 11 . and p are allowed to be random variables and we h<1Ye 

(

l c,:, 

h(s) = ~ g1J 11(p, s) efi(p) dp. 
., 0 u~o 

(9) 

Results are obtained fork = 1 by defi ning g 11 as in Section 2.1 and ef,(pJ) as in Section 
2.2, and 

h(s) = e->.. [p(p0 cA+ p1 eAs) + ( l - p){B(q,r)}- 1 J: c),Cp, .;.p,sl p7-1 P&-1 dJJi]. ( JO) 

The problem of obtaining expressions for the hi is now considenibly simplified 
by introducing the factorial moment gcnero.ting function b(s) = /,(s+ 1). 

We have 

b(s) = p(p0 + Pi c"-s) + (1 - p){B(q, r)}- 1 J: eAP,! Pi-1 pi- 1 dPi (J l) 

and, identify ing the coefficients of si, 

b0 = 1, 

b; = [pfii ;v + (1- p) >J{B(q, r)}- 1 B(q +j, r)]/j ! U> 0), (12) 
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ancl the respective lt1 mny be obtained from the inversion fomrnla 

It, = ~(- J)i-f(~)bi. 
; - J ) 

(1 3) 

Finally, it is found th:it 

E(R ,i) = >..fti = b1, 

V(Rn) = AJ\(1 + p,\p0)+(1 - p) >..2 V(Pt) = 2b2 +b1 -bi- ( 14) 

3. D1scuss1o:,..r 
The results obtained in Section 2.1 should be usefu l for the nna lysis of data showing 

considernblc , :1ri:11 ion in 11. Althougl-i a solution of the Ji!~clihoocl equations can be 

obtained without ::issigning a <lis1ribu1ion to 11, the st:.indard J'ropcrt ics of mnximum­

likl'lihoocl estimation may no longcr apply (Krr.dall and S1u:irr, 1961, p. 60). In a 

recent paper (Brown er al., 1963) some estimates of p were calculated from n mixture 

of distributions. but the process w:is e'\tremcly ted ious and Jong. Howewr, for (5), 

and for the other di~1ributions reported here, 2.lti = I and Fisha's scoring·inethocls 

( Rao, 1952, p. 165) can be used 10 ob tain an iterative sol ution of the li kcLihood 

equntions and to estimate the co,·ari:incc matri'\ of the estimators. 

The model of Section 2.2 :u tempts to counteract a deficiency of the o rigin:il 

model (1) by allowing p1 tb vc1ry from trial to tri al. Jn the context of the discussion 

of Tallis (I 962), for instance, biologists may be unwilling to assume that each ewe 

of a fl oe\.:. h:is an cqu:il probability of gi,·ing birth to a single lamb in aDy ye:i r. lf 

this is so, then (7) may pro,·ide a mor-! sa tisfactory description of the data f0r fixed 

11. Jn this c::ise the maxi111in1ion of the likelihood equations can be organized 

according to the suggestions of Skdlam (19~8). 

The last model al!o\\'s both II and p1 to be random \':triables. Nevertheless, the 

increased generality is obt:1 i11ed at a price since an applicati on of C\'Cll the scoring 

method ob\'iously in\·olws ted ioHS algebra and computat ion. Although, in this 

case, lti is expressed as a11 infi11ite sum of terms in\'olving bi, in practice it app::ars tha t 

the series conwrgcs fairly rnpidly. HowC\W, th~se problems of estimation :ird 

evaluation will not be consickrcd fu rther here. 
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I. INTHODUCTIO~ 

It is somctim0s d0sirnble in pr:1ctke to estimate thu degree of cor­

relrLt ion exi~t ing in~ X 2 or 3 X 3 cont in~cncy tables. Jn some inst!lnccs 

an underlying bh·ariale normal di:,(ribulion can be as5umc<l :rnd the 

problem reduces to cstimnting p from the obse1Te<l frequencies in the 

t.n,ble. Jn tLc case of the 2 X 2 tables, th is may be nccomplishecl wi th 

the aid of tetr.1choric functions, ::i lthoufh this technique docs not seem 

to have brcn extended lo JJ X q tables in general. It is the purpose of 

t.he present paper to show how ?\foximum Lihlihood (::\ I. L.) estimntcs 

of p, p, m:i.y be obt:i.incd from such t:iblcs whc:n, in fact, the p3rent 
distribution is birnriatc norm:ll . 

A somewhat simila r problem hns been considered by :.Iostcller [1040] 

who iin·e~tigate<l the c!lici0ncy of cstim:1tiug p from punch card data .. 

l\lostcller considercJ the case when the c:1rds arc sorted with respect 

to t.hc two co-orcli11ates, x :1ucl y , in a p:uticubr mnnner, nucl clcri,·cs 

t.he 1\1.L. estimate.of p from :m order statist ics a rgument. However, 

his results arc not generally nppiic:: blc to the problern considered here 

because of the sprcial sorting model which he employs. 

This topic is parL of a \\'icier allempt lo dcnlop more satisfactory 

methods of an:1lysing discrete and cont i11uous data ::.rising in some fields 

of qunnti talirn gerH'tics. For inst:rnce, in the study of heritabilit.y and 

repeatability of binh records of domest ic a11 imnls, the required cor­

relations arc usunlly c::dcul:.ttcd by the product-moment or intrn-class 

corrclr.tion techniques and hence satisfactory tests of hypotheses arc 

Jacking. In the particul:tr case of fertility, n. reasonable assumption 

may be that. the potential lo produce offsprin~ i$ normnlly dist ributed, 

bul, that, necessa:·ily, phcnolypic expression is only pos:;i\;le n.L distinct 

thr0shol<l ,·alues of this potentinl. Thu:,', for nil potentials below a 

certai11 threshold no ofi~pring result,; for potentials above this critical 

value but bclo\'; a Eecond thrc.::l1old level one offspring is produced 

3'12 
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and for po tcn tinls g rra tcr than the srcond critic:11 le vel l wo offi:pring 
arc bom, nnd so Oil. 

U nder this hypo t hesis we consider that fertility fo r two gi,·cn yra rs 
is Linormally cfr,tri lJuted wi th d istinct t h rc,ho ld lcwl,; rxisting on 
both co-ordin:i. tcs. Jn t hc.-:c circumst:u1crs i t. i-; po,.;~iblr by m c:i ns of 
the lccbniquPs of this p ::tpN lo o l>ta in :.I.L. estimat e,; of LlH' corrcb t ion 
be tween fcr l ilily records in t \\·o cl iffcn ·n t yr:1 rs :111d , in some e:1scs , t o 
test the hypothesis of an under ly ing binormal dist ribution. 

By a, sligh t cha nge in a rgument , hcrit:1bili ty m:-ty be cs t irnatr cl from 
the records of dam-dnuglitcr pa irs . In t his instance rerorcls of clams ' 
and dau~htc:rs ' fcrt iliLy a rc assumed to be bi11o rm:11ly disl ribl!l <'d wit h 
threshold levels nn d , ::ipplying; the usua l g;cnc l ica l nrgumenl , the cor­
relation betwee n these rceon.ls e;,:t im a les 011c hnlf heri :a bili[y. Un­
doubtedly, fur ther npplicntions can be fo und but t hc:;e l wo cx:1mplcs 
are m ent ioned since t hry, i!l p:ut, stim ubtr <l t his i tw estiga(ion . 

II. C.-\ SE 1. 2 X 2 TABLES 

Let U a nd Y be t wo st:1ndnrdised Ynrin tcs with n. joint b ivaria te 
normal d ens ity fu nct ion ct>(u , 1·; p) = ct>(u, 11), ~ay. X ow defi ne bro new 
v::iria t es X a nd Yin such a way t hat 

Pr (X = x0) = Pr (U < a) = f O 

~-; du = 1· cp(u) du = <I>(a) = P0 • 
- Q) V 2ri - co 

Pr (X = x1) = Pr ( U ~ a) = I - <I>(a) = Pi. 

Pr (Y = y0) = Pr (l' < b) = <J)(b) = P.o 

Pr (Y = Y1) = Pr (1' ~ b) = I - <l>(b) = P.1 , 

and the joint distl'ibu tion of X nnd Y is specifi ed by 

Pr (X = Xo , Y = Yo) = J_
0

., J_b., tf,(tt , v) d11 du. = 1•(a, b) = P 00 

Pr (X = Xo , Y = Y1) = <J>(a) - •Na, b) = P o1 

Pr (X = X1 , Y = Yo) = <r,(b) - <l>(a, b) = Pio 

Pr .(X = X1 , Y = Y1) = 1 - q>(a) - 1•(b) + <I>(a , b) = P11 . 

The qua nt ities :r0 , x 1 , Yo and Y1 need not be numerical, but cn n refe r 
to any type of discrete d nssifi cation where the events x0 , x 1 and Yo , 
y1 arc, pairwise, mu tua lly cxtlusiYe. 

The problem no"· is to es t ima te p from a random sample of size n 
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classifi ed with respect to X nnd Y. Such cbta mny be conYcniently 
summarised in n. '.2 X :2 t:1ble ns shown belo,L 

Yo 1100 1110 

I n the table n.; is lhe obscn-cd n umber with att ributes x , a.ncl Y; , 
and L '. .,·-o n;; = n . 

The appropria te likelihood funct ion is gh ·en by 

(1 ) 

where G' is a const.nnL which docs noL depend on t he parameters to be 
cstirna l ed . lt is now po~~ible to obtain t he :\I.L. estima.tcs of a, b and p 
in th e us ua l way. ··· · 

H oweYcr, in order lo complete the ncccss:ny diffc rcnti:i.lion it is fi rst 
of a ll com·cnicnt l o crnhwle D<J,(a , b)/up. P utting R = Vl - / 
we hnYc 

1,ca, b) = f_0

_ .C .. cf>(it , v) dv dtt 

and diffc rcnli:1ting wi t !~ respect top we obt a in 

c1cJ,(a, b) JJ-2 J" . ) (z, - pu)(p/J - u) 1 = l C:,{_11 cf, --- CU op _.., R H 

l
(a - ,b) / R 

= - H -
1
ct,(b) - ~ lcf>(I) dt 

= c/>(a , b) . 

Diffcrentintion undC'r t he intcgrnl sign is obYiously justifi ed for [ p ! < 1 
and fo r p = ± l , the p roblem is degenerate. P ut.ting l equa l .to In L , 
the following cqu:1 t ions may be now YCrifi ed, 

iJl = cp(a, u){~no _ 1~ 1(! _ ~ IH + E.l.l} 
up 1 oo 1 10 I o, P11 

Q.~ = cf>(a)[ <f.,(/3){ 11 011 
-

1
: ·

0
} + [1 - <I>(B)J{ ~"' - E.l.l}J (2) 

iJa P oo 110 l 0 1 P11 

al = cp(b)[ <I,(..t ){7lo~ _ ~ } + [l _ <7:,(A)1{2~M _ ~I!}]· 
iJb P oo Po1 1 10 1 11 

\ 
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where A = (a - p/1)/R :rnd JJ = (b - pa)/R. Hcquisite elements of 
t he information m:1t.rix, I, arc g;i\"C:11 by 

-E(:;!) = I P• = n[<t>(a, b)f !Po~ + P;~ + P-;;: + P;:} 

-E(:}) = / 00 = n[<jJ(a)]'l[<I•(JJ)f[P-;;~ + P;~] 
+ (1 - <I>(JJ)nP-;;: + P;:)} 

-E(:~!) = h i = n[q,(b)fl[<I•(A)J2[P-;;~ + P0;] 
+ (1 - <l>(A))2[P;~ + P;:J} 

-E(0t;) = la , = 11<1>(a)<t>(a, b) I cl,(B)[P0~ + P~~] 

- [ l - <I>(B)][Po: + P;:]} 

-E(0t;) = Ii, = 119(b)ct,(a, b)l<J,(A)[P0~ + P 0:J 
- [1 - cf•(A)J[P~~ + P~:] I 

-E(0:';b) =. la& = 114>(a)ct>(b) I cI>(A)<I•(B)P0~ 

+ [1 - <I•(A))[ l - <I•(/J)]P~: 

- <I>'(B)[l - cJ,(A)]P~~ - <1,(A)l l - <I•(B)]P 0:}. 

(3) 

Since I is symmetric, it is completely determined by the above six 
expressions. 

III CASE 2. 3 X 3 TABLES 

The extension of the above techniques to 3 X 3 contingency bblcs 
is immediate. Jn this instai1ce X. and Y take on the additional Yrt!ucs 
X2 nud Y2 and we h:i.Ye 

Pr (X = x0) = 1I•(a1) = P0 • , 

Pr (X = x.) = <I>(a2) - q,(a1) = P,. , 

Pr (X = x2) = 1 - <I>(a2) = P 2. , 

Pr (Y = Yo) = cJ.,(b1) = P .o , 

Pr (Y. = y,) = <J.•(b2) - <I>(b1) = P.1 , 

Pr (Y = Y2) = 1 - <I>(b2) = P.2 , 



" 

Observed 
No., n,; 

7100 I 
7101 

7110 

nu 

7102 

n:o 

11,: 

71 21 

n : : 

TABLE 1 
NECESSARY F omrnLAE FOR EsTn!ATl:-.0 p FROM 3 X 3 CONTINGENCY T ABLES 

Expected Proportion. P , 1 uP,;/i)p 

Poo = •I{ai. b1) <1>(a1, b,) 

Po1 = •I,Ca1, b:) - •l>(a,, b1) <1>(a1, b:) - <:,(a1, b1) 

I'10 = rJ,(a:, b1) - •I•(a1, b1) </>(a:, b1) - <1>(a1 , b1) 

I'u = •1,(a,, b1) + •I{a:, b:) - •1'(a1, b:) - <I>(a.:, b1) ,J>(a,, b,) + <f,(a:, b:) - ,:,(ai, b:) - ,p(a:, b1) 

P o: = <l•(c1 ,) - •1'(a1, b:) - <1>(a1, b:) 

P :o = <.t>(bi) - •1'(a:, b,) - ,t,(a:, b,) 

P,: = •I>(a,) - •Ha1) - il•(a:, b:) + <1,(a1, b,) · ,:.ea,, b,) - ,t,(a:, b:) 

P :1 = <1,(b:) - •l{b1) - •I,Ca:, b:) + •l{a,, b1) <J;(a:, b1) - <,(a:, b:) 

P :o = 1 - <l>(a:) - <l>Cb:) + •Ha:, b,) ,:,(a:, b:) 
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and the joint distribution of X nnd Y is specified in an obdous wny 

by t.he P;; in Table l. 

Since t here :,re two ndditional p:wametcrs to be eslimnled (a2 nnd b:) , 

th0. work of soldng the likelihood equat ions musL be put into a. com­

p ulationnlly more managenblc form. The required formulae a re set 

out in Tnblc l. 
It now becomes coll\·enient for subsequent nota tion to lc:t p = 01 , 

a, = Oz, bi = 03 , a2 = o. and b2 = 0~ . "ffith these chnnges we obtain 

iJl/iJO, = L ;; 11, 1 P~} (iJP,;/DO,) :1nd·1 = [!,,]. where 

I = N L p-.,.(aP,;)(aPu) 
'' ,; " ao, ao. · 

H c11cc the elements iJl/DO, nnd l , , cnn be c:,Jcubled from Tnblc 1 by 

m ultiplying appropriate elements :rnd summing over i and j. 

IV. SOLUTIO:sl' OF THE LIKELllfOOD EQUATlO'KS 

In order to present the general method of soldng the likelihood 

equations for both Cnscs 1 nn<l 2, \\·e let p = 01 , a = 02 nncl b = 03 

in C:1se l in co11formity wi th the notntion:11 chnngrs introduced abo,·e. 

If 0!1
> is n. first guess of 0, , the :i\LL. estimate of 0, (s = 1, 2, 3 fo r 

Cnsc 1 nnd s = 1, 2, 3, 4, 5 for Cnse 2) , then numerical substitution of 

these va lues in Dl/ iJO, will gi,·c some qunntily w hich we symbolise by 

o!0
. D rnoting the column ,·ector of the 0!1

' by 0° 1, then a better 

cs limn.tc of 6, o'~ >, mny be obta ined from the equat ion 

012> = 011> + Vo) 5<t) ' (4) 

where 0, 012 1 nnd 0 11 > a rc column ,·cctors of t he 6, , 0!2 > and 0! 1> re­

spect ively nnd VCI> = I,~: is the im·crse of I with 011 > substituted for 0. 

This proec~s m:iy be rcpc:1lc-d until ;:, << +I) is su!lieient ly smn ll. Success ive 

approximntions to O arc O O 1
, 0 <z>, • • • which mny be obtained from the 

rela tion 

(5) 

}i'irst npproximn.tions to the 6, , s ~ 1, arc easily obtnincd . F or 

example, in Case 1, {i a n<l 6 can be esti mntccl from the m:1rgin:1l fre­

q ucncies of the 2 X 2tnblegiYinga01 = <V 1(1\.)nndb 0
> = q,-1(P.0) . 

I n these expressions P,,. = (n00 + '1'1 0 1)/n , P .0 = ( 1100 + n,o)/n nnd 

cJ>- 1 is the inverse function of <I>. These met hods are eas ily C?-tended 

to 3 X 3 tables. 
A snti!'-factory prcliminn. ry estimate of p i;; not so read ily a rrived nt. 

Luckily, ho\\'c,·cr, in numerical work it will frequently be found that 

the t erms of the information mn lrix ! 1, , (s = 2, 3 for Case 1 a nd 

/ 
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s = 2, 3, 4, 5 for Case 2) arc rclu.th ·cly sm~tll, and usually good ap­
proximations rn;1_y be achie,·cd by setting t.hrm cq11a l to zero. If this 
is done, then any guess of 61 , 0: 11

, may be taken and a better estimate 
obtnincd from the formuh 

0(2) - 0(1) _I_ rill// 
I - I I U1 11 • 

A third approximation , Of , can now be ca.lculated as 

01 _ 0 (2) -1- N//' I - I U 1 11 I 

where of = al/001 and f:i = - E(a~l/c10;) evaluated nt 01 = 0:2
> a.ncl 

0, = 0! 1>, s ~ 1. The value of p' = o: will usually be close to p and 
V(p' ) = (1: 1) -

1 will differ only sligh(ly from l'(p). L sing o: and o:I) , 
s ~ 1, as trial vnlucs, n fu ll matrix iteration may be cnlculntecl to obtnin 
a closer estimate of 6. For most purposes, one mat.rix ad justment 
should be sufficient. 

It will be noticed tk1t fo r the solution of the likelihood equa.tions, 
i t is ncccs5ary to compulc some birnriate-normal vol11mcs. This ,rnrk 
is greatly facilitated by the fables presented by Owen [1\)57] from which 
t he required volumes can be calculated wilh relatively litlle effort. 

V. ltXAJ\1PLE 

In order to illustrale the abo,·e methods the correlatio11 between 
first and second lumbing; record s of a flock of 227 :\Ierino ewes \\'ill be 
cstimnte<l. These lambings ,Yc:re recorded in 105:! and HJS3 :1n<l !-lie 
flock h:1s been described by Turner et al. (1958] . 

T he distr ibut ion of b mbiugs for both years is gi,·cn in Table 2. 
F rnm the mnrgin:d tofals ,..-e obtain a;11 = --0.2397, a~1

> = 1.5779, 
u11

> = - 0.02, G, bJ1
> = 1.1369. As a first approximation to p, 0. 1::i 

was taken as the value for p;1 >, n.nd these five estimates were then used 

TABLE 2 
-

1952 

l!J53 No L:11nbs I lamb 2 l::imbs Total 

No lnmb!! 58 52 1 111 
I lamb 26 58 3 87 
2 lnmbs 8 12 0 20 . 

Total 92 122 13 227 
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1100 = 5S 
11 01 = 2G 
!110 = 52 
!l11 = 58 
Tlo1 = 8 
1!10 = 1 
7111 = 12 
1111 = 3 
na = 0 
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TABLE 3 

P,; iJP,,lup 

Poo = 0 .221-1 0 .15G.1 
P o1 = 0. H ·IO -0.0i!)O 
l'10 = 0. 2.J.6·1 -0.1117 
Pu = 0.21'15 O.OG·Hl 
Po2 = 0.0309 -0.077-1 
P,o = 0.0212 -0.0.1_.17 
Pi~ = 0 .07G5 0.0.J.68 
P21 = 0.02-17 0 .01-11 
Pu = O.OIH 0.0306 

1.0000 

to calculate P,; and ul',;1/cJp from the form ulae of T a.blc 1; these values 
nre shown in T able 3, and are used to ca lcula te 

"'"' p - i uF';; - 36 ?GS108 
LJ11 ;; ii i)p - ·- , 227 I: P ~:(

0:;J - 133.31SG8D 

121 _ 0 ,. + 36.26S10~ _ O . 920 P - .fo 133.318089 - .L . 

A third app roximation to fi , p', usin~ !his technique a11d / 21
, a/n , 

a!1
>, b/1

> :rnd b; 11 
ga.Y c p

1 = O.-J212. This represents a negligible change 
from p<2 >. 

One matrix itera tion was then calc11latcd using the first esLim:ttes 

TABLE 4 
Nu)tElllCAL EvALVATIOX OF TAB LE 1 Us1:-.G alll, 0~

1>, bln, b~ 1> and p' 

. 

Observed Propor-
No. n ,; lion P,; iJP;jiJp uP,;/ iJa.1 uP,;/ iJ/.,1 iJl' ,;/ua: uP,;/ub, 

58 0.265.J. 0 . 1700 0.20G3 0.150S 0 0 
26 0.119S - 0.1023 0.l.J.79 - 0.1598 0 O.OH8 
52 0.21 38 -0. 1322 - 0.20G3 0 .2231 0.025G 0 
58 0.237.J.. 0 .1091 - 0.1-179 -0.2:231 0.0517 O.J.107 
8 0.0201 - 0. 0672 0.033-l 0 0 -0.0-1-18 
1 0.0098 - 0 .0378 0 0.0159 -0 .0256 0 

12 0 .0SG2 0.0231 -0 .033·1 0 0.03,16 -0.1-107 
3 0 .0260 -0.0063 0 -0 .0159 -0.05-17 0.023G 
9 0. 0215 O.OHl 0 0 -0.03,10 -0.0236 
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of the a's and b's nncl p'. T hese calculnt ions are set out in Table 4, 
from which it may uc ,·crific,d lh[l,t 

~ ""°' DP;; - 0 3ll()G? 
UJ = L,_; ?l;; i)p - - , lJ ~ , 

""' aP;; 03 = L,_; ?l;; iJb1 = -0.215312, 

n.nd that the informa lion matrix, I, is 

18I.OG1783 - 12.66-lGS-! - 13 .2731G2 13.530!).13 19.105G'15 

-12.6G-1GS'1 159AS9SlS -33.90:?3,2 - lG.386339 -11.SGG292 

I = -13.273162 -33.902372 178 .730512 - 7 ..J.3994.2 - -1G.85G292 

13 .5309-13 -1G.38G339 -7A39912 GO.G5275G -8.110261 

19.105645 -ll.SGG292 -46.856292 - 8.110261 108.2742-16 

By calculating 1- 10 = Vo, it is found that. the approprbtc correct ions 
for t he fiyc cslimntcs p' , a: 11

, v: 11
, a~I) , b~1> arc --0.0WS, -0.002-1, 

- 0.0023, 0.01 5G, -0.0010 rcspecli,·ely . The correction to p' doe:s not 
affect t he second clecim::tl plaec and hence we ha.Ye 

f, = 0.42 ± 0.076 

since 

0.005761. 0 .000279 0.000159 -0.001326 - 0.001016 

0.000279 0.00706-! 0.001909 0 .002311 0.00172-1 

V = 0.000159 0.001909 0.006909 0.001769 0.003303 

-0.001326 0.002311 0 .001769 0.017972 0.002599 

-0.00lOlG 0.00172-1 0 .003303 0.002599 0.011228 

The first trial value of p wns clearly unsatisfactory. However, the 
con,·crgcnce of the short method appc:.irs to be so rapid that the ac­
curacy of the first guess mny be rebth·cly unimportant. This leads 
to the suggestion that p <

1 
> be set equal to zero since this leads to a 

great rcduct. ion in the computat.ions necessary to obtain p <
2

> by the 
short method. One addit ional ileration by the 1::tLtcr method before 
the fina l mntrix i teration should then be sufficient. 
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YI. DISCUSSIO~ 

I t frequently h'.lppens th:it the contingency table from which p is 

to be estimated is incomplete with respect lo some row or column. 

This type of silunlion is cosily h:1ndlccl lJy pooling the rclc,·::rnt l';; 

nnd proceed ing in ex:tctly the s:\me m:rnner. For inst:rncc , in Case 2, 

if no <lel:1ils .1rc aY:1 il aulc for the r cbs::;ifica lion of X = :i·0 , we obtain 

l'o. = Pao -1- Po, + Po2 = <l•(a1) nn<l no. = ?loo + 1111 + no, . Hence, 

in order lo obtain the appropriate table, the three lines corrcspon<ling 

to P 00 , P01 :it1tl P02 in T able l nre <lelelecl :1,nd nre replaced by :i. single 

line wi th entries 110 • , P 0 • = <I1{a 1), 0, <J, (a 1) , 0, 0, 0. The r.I.L. estimate 

of p rnny now be caleublcd as usual. 

Sometimes it m:iy lie desirable to est imate p from several inclepemlcut 

sets of records. Jf iL can be :1ssumcd that each set proYiclcs est imates 

of the s:nne p:irameLers , the nn:ilysis m:iy be completed wi th no ad­

ditionnl trouble. Let the numlier of different, cla ta sets be m , and let 

L0 be the likelihood of lhe qth set, then the likelihood function for the 

111 sets is .. 
L 0: II L • . (6) 

o- 1 

It is clenr from the aboYe expression t.h:tt numbers in \"nrious clnsscs, 

i.e. (xo , Yo), (x . , Yo), · · · etc., :ire simply pooled o,·er the m sets of 

data mid the estimation of p then procc:eds as us1w.l. 

Unforl.u nat<:ly, iL frequc11lly happ<'ns that the rn sets of data cannot 

be ns,;umed to be s:1mplc:~ from the ::;:une popul:1t ion. In this case each 

set of cbla may be nnalysccl separately to obtnin m est imates of p, p, , 

ns well ns estima tes of sampl ing v:1ri:.rncC's Var (p,) , where 1· = 1, 2, · · · m. 

Once these est imnlcs arc available, it is possible lo tesL the: homogenei ty 

of the correbtion coefficients in the m popubtions by mer,ns of t.l1e 

formula 

"' 2 ~ . 2 
x .. - 1 ~ L..J w,(p, - p) (7) 

, - 1 

where w, = l /Var (p,) :i.nd p = L w,p../L, w, . If the x2 value com­

puted from (7) is not signilicantly large, then p may be used as the 

pooled estimntc of p from the 111 sets of data with esl.im:i.ted .yari:1nce 

Var (p) = 1/L w, . 

It is interesting lo notice that., for a p X q table, whellever p X q - l 

is greater th:111 the number of p:ir:imetcrs lo be estimntcd, it is possible 

to test the assumption of an underlying binorn1:1l distribution. If Lhe 
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M.L. estimate of P,; is written as P.; , then this mny be <lone by com­
put ing the qu:rntity 

which is distributed nsymptotic:dly as i \\"i th (p X q - 1 - t) ckgrees 
of freedom, where l is t he numbrl' of p:1r;1mctcrs to be cslimalcd. Should 
Q2 be sig;nHicantly brge, then the abo\·e procedure for estimating p 

may be unsatisfactory. 
The quanti t y Q2 ,ms not calcubted for the numerical example in 

the previous section. It \\":ls felt t.hat lhe small numbers in some of the 
classes would not a llow n sat isf:H.:lory i test lo be performed and would 
not warra nt lhe additional labour of computing the P., . 

Finally, it is clc:u that the methods wh ich hnse been presented in 
t.his paper arc easily extended to two dimensional cont ingency t:1blcs 
of any size. i\forco,·c r, since volumes of the trivaria.Le normal distri­
bution have been tabulated by Sleek [1 9.5S], t.hcre is in principle no 
difficulty in extcncli..ng tlic · results to three dimensional tables. How­
ever, these modifications will not be considered Lel'c. 
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MAX I MUi\1 LIKE LIHOOD ESTD1ATION OF PARAMETERS 
OF THE :NOR~1AL, LOG-:'\'OR~1AL, TRUXCAT ED NOlDIAL 
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G. :M. TALUS and s. s. Y. YOU.1'iG 

Division of Animal Gc11clic.~ , C.S .I.R .O., JlcJiastcr Laboratory 
Glcbc, S .S . IF. 

1. Introd uction 
'rhe cstimrttion oi popula ( ion moments from gro uped data bns 

rccch -ed cousiclcr:1 blc rtt tention in Lhe past. It has long been est1 b ­
lishcd that for sa mple:, classifi ed into nmnrrou.~ equrtlly spaced ;;roups. 
tbo class cenl rn m :1y be u;; r c1 to c.llcuhl t c the , ·:Hiou~ mome11ts, and 
that t.hc uias introduced by this procedure ca n be corrected by the 
use o( Sheppanl's corrections. 

In an iutcrcstin~ p :tpe r Lindley (Hl.}0) i1n-cst i~n.tcd the C'ffect 
o( grouping on the )faxim111H Likelihood (.\If.,) C'Stimation of para­
meters. Jn particubr. he showc<l the cqui,·a len c.:e of the method of 
moments ,rnd the method o[ ~fL iu t he esrim,1tion of I he v:ui:rnce of a 
normal distribution: from darn grouped ini o numerous cq nall~· spneect 
classes. It is clc,Hi howcver1 that when classes :we few and o[ nneq_ual 
\\idlh Sheppa rd' s corrections as well as Lindlcy's re:sults arc 
inapplicable. 

l'hc )IL J)J'Occdure h as been used hy many work<'fs (e.g. Gupt.l 
(195~) , Cohen (19,) 7. 195!1)) in the cstima.tion of t,hc mean and variance 
of the n ormal distrihut.ion from sampk, falling- into two or th rec 
classes. Samples of these trpes arc rrierred to · as sin;:dy or doubly 
censored samples. Thu ca;;c ot mauy censor elasses ,Y:-i s con::;idercd by 
Gjcddeback (H)-19) . who lrlt e r considered Lhc loss of information due 
t.o grouping (Gjeddebaek (1D3G)). 

This paper cli;;cusses th e :.\IfJ cst.imrttion of para.meters for (a) the 
log-nonnnl dist ribution, (b) the trnncnlecl n orm:11 dist,ribut,ion, and 
(c) the hi,nrinte normal distrilmtion from random samples whose 
members fall into :-in arbitrary uum bl'l' of censor classc-s. A short 
discussion ou asymptot ic tests of hypotheses is also presented. 

1 MonuscripL rocci\'orl N'ovembor 27, 1061 ; revised )fnrch 8, 1962. 
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2. l\fothocls 
Iu the subsequent d e \·C'lo1m1cnt it is first o( a ll connnient t,o 

consider tl1e non n:11 distribn tiun in o rde r to cslnblish uot.1tio11 ns 
well a s some b.1si..: formuhle . It will b C' noli('1:d lhal the sccoucl 
equation oi (.5) d iffer;; irom the n:!:;ulls or Gjl'tlJ.cuaek :;iuc:e di1l:cre:n t ia ­
tion hns bee:n wi th respect to c~ instc;1d of c . 

Suppose n r :1ndom s:i.mpk of size S is dril.wn from n normal 
pa rent population :md the numlJf'i'S of obscn-atiom fallin~ inln 
vario11s me:isn remc:nt d ,1,_;scs arc rec:or<lcd . 'l'ho normal po1,ulat io n 
with pararneters (J. nnd c2 i.s cliYiclcd into (k-:-1) ccnsol' classes ,\I, the 
points ai, i = l, :2 , • •• k; a'i+1 > ai. Lot us define 

(1) (}){bi) = (~;:) - ~J bi exp { - Y2}<lt = J bi ?(i)<lt, 
- «> - «> 

where bi=(fli-µ.)/cr, then the probnl>ility t bnt any single obsen·ation 
will fall iuto the ith class is g in n by 

(2) 

If the number of obser,ntions falling into lh e it h elnss is dC'noted by ni, 
I; 

where :S 11i=.Y, a nd if, m oreoY01·1 there is no further inform:1t iou 
i =O 

with rcgnnl to indi,idunl me,tsurcmcnts of m cmhcrs of the snm plc, 
then the likelihood function, L, is g iven by 

J; 

(3) L = C 11 7{1i and 
i = O I 

(4) lnL= l = K -t-~n; l11 Pi· 

· It may now be verified that 

az 1:. 
-d = cr-1 ~ nk?(bi) -'.;i (bi+1)}/1'; 

!L i - 0 

~l .=(2cr2)-1 ~ n;{b/.J(b,)-bi+i?(b;, 1)}/pi. 
ucr- ,-o · ,. 

(5) 

Th0sc two equat ions foUow from the relations 

op. -1{ ('· ) (b )' OU. = G ? U; -? i+l f 

' (G) 
::; =(2a2)-l{b ;';i(b i)-/Ji+l?(/J i+ I) } • 

\ Ve rnny obtain fl and&\ c;;lim:1l cs of !Land a'-\!,:'· cr1uatin; the righl 
or (5) lo zero and soldng ilcrat h·el~-. F or this purpose tl, c us ua l 
scoring: m ethod i;; particula rly conn11ienl since the hest estimate 
of the Yaria ncc-covarinncc matrix for :). and c~ is ohtaincd as part 
of the computationa l routine (sec Aitch ison ancl Siln: {Hl60)) . 

This ilcrnli\'(J technique nccc,;;:;it.atcs fi rsL e»I imatcs of u. and a\ 
µ and cr2, which may be obtained from the followin~ formuin e 

(7) - l t l - ., l ~~ 7!? - · µ. =.., ..,1/./ ·,i c;- =-i\,; ~<in1-1J.·, 
..:., i -0 1. i =O 

·, 
/ ... 
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(a) Log-~Yormal Population 
" ' li en a reusorerl ,;anrnlc is taken from a log-norrnalh· distributed 

p arent, popnl.11 ion, ~rr, m01l10ds can :d;;o be used in u;c estimat ion 
of p. and c;:!. By making the· t ramforma t ion r = ln .Y, where -Y 
is the Y:winte nntkl' cousickratiou, (.he problem may be solncl in two 
difforcnt, ways. 

(i) Direct Jlctho(1. ny direct in tcgrnt ion we lrnvc 

(8) •J - cx.1> < J (r,2 , '>,, )' • u' ···ex1) , . ..,(Gz , 'J. )} 
i'X- · \~ JjJ T -r-•y J) , 2(:r)- · \- '11•·1 !J 

aud solYin:; these equations we h,wc the rclalions 

(9) 

Let t.hc points of censoring of X be c;, (i = l, 21 • • • k), t hen we c:a 11 

proceed t.o estimate 11·x :rnd a; by :iIL methods as before. ~ow 

(10) 

where cl; = (/11 c; - µ
11
)/a!I. Hence we may proceed to differentiate 11; 

with respect to [Lx aud a; using (9 ) to obtain 01>;/0:1 ... and op ;/oa;. 
Using thc·.se formulae it;· i,; then possible to <.>:;timale :J.x and cri liy 
i terat ion a:; bdore . l:lowcYcr, this 1n·oc:cdme is Jaborio11s. 

(U) Indirect JiethfJ<l. From (S) and (!:l) it is seen tliat cae;h pn ir 
of µ.Y an,1 c,~ uniquely clctcnnines nnoillcr pair of p.1rn:netcrs p . .., and 
o-!. In order to m:1kc use of this rcl,\tion.~hip we require the fo llowing­
well-known lemma. 

J,cmma : Let E awl l' be two point sets and. lei £ be a 011c to one 
mopping from ]~ onto F . If h is a rrnl rnlued and bo1111rlc<l JJOi11t f1111ction 
dcji.11c<l fur all xd~ and if 11· aUains a 1rniquc ma:i;imuin al x0~E, then 
g=h(f- 1) lu!S a. ·unique 111a.1;im11111, at y 0 = f(x0 )E:F. 

If . l . f t I I . " ' " 2 l " l "" · I we H c;1t1 :;- 1c s:1mp e sp.1ccs of ;i.,, nno .,1, :Ille :J., :11H ,,; w it 1 
t.hc sc ls of E :rnd J:' r<:.,p,'d iYC>l y, then ::1nec the condition o!' a nnc 
to one nrnpping rclatin.!! dcmcnts in th e two spates i;; satisllccl, we 
lmvc, from Lile abo ,·c lemma, 

(11) 
A _ . {) (A~ _L()A )} • "'-;~ . {')(A t l A2)<[ . (A:'.°!} l ] µ. .. --eXJ? '!' Gv , -µy , O.r.=exp - ;l-y , ·2Gv > exp \VJ/ -

where µ.,, and &; arc the ) IL c.:;tirnate:; o[ Y·y and a; caknlatcd fo l' th e 
normal clislribut ion, u::;in;,r a; = ln c; ns c:ensor points. Tbc large sampk 

. f " l ,._,. . l vananccs o 1.1.x a nc c; :1 re gt ,·en 1y 

(lj) 
l ' (" ) -• !?r I 1'("2) ' l '(" ) • ,.,( ,. 2 t- ,, . l !J., - ,.1.z\~ <Jv -:- [.Lg ,v Gv:;Ly/ /• ,Ill' 

(b) Truu catccl Ji" ormal Distribution 
\Ye now consider the c;~~c where we ba-vc a censored sa mple of 

size :.,,r drn\\'n from a normal dist ribution trnncatcil at; a0 ancl the 
portion IJ·ing- to the kll of a0 is :l. 'l'he estimation of !L and a~ Ior the 
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full distribution now p roceeds in n. straight.forward fashion. Using 
the notation of the p revious sections wo llaYe 

q; =Pd~, wh ere Cl. = l-<l>(b0). Hence 

l = l nL = ]{ + ~11; ln q; = Ii. + L n; ln p ; - N ln ,,._ 

The latter relation gh·cs us irumcdiatcl,r 

~!._ =a-1f .f n;{9(b;)-?(b;+1)}/JJ ; -X ,:>(b0 )/r1.}, 
uµ 1.., - 0 

(13) 

m {t 1 
3"'o = (2c;2) - 1 ~ n;{b ;?(b;) - b i+i ?(b;+1 )}/p; - Y b0,,, (b0)/o:j. 
uc;· i =O 

I n order t:hat these equations may be soln d itcrath·cly, i t is us6fnl 
to have the c1uantitics oq;/011. and cq;.'oaz given be low 

oqj -1) Op; JJ, OCI.( __ -!)OP; I ?(bo)1 
~ = o: (. 011. - -;: oµj -Cl. (~µ ' q;cr-1 

(H) 

ap. op. 
where -:;-1 and ~ a rc as rr in !11 prc \'iously . 

uµ uc;· ~ • 

(c:) Bi variate S orm fll Di.~tribution 
As an exten,; ir1:1 of the aboYe methods, suppo,,e a. crnsorrd random 

sa,mplc is dr;1wn [mm a. bh°;uiate J1 ormal pop nl:\tion wit h pa r:11uctcrs 
11., , µ ii, a;, a;. au,1 ;: . Let the cen;;or poi nts on the .1; axis be a;, 
i.= 1, ~, .. . J:, and on tlio y axi;; ci, j = 1, ~, . . . l. Then. th e 
prob;1hilily that ,ui ohH·rYation fall in the sub-;:;pace <t;( X <n;+u 

) 

c/T<cj+i is giH!n br Jb;+i JIHi ) 
(15) P,{a;(X((l ;+11 c/Y(ci+1}= 9(n,v)drclu.=P;j, 

I>; lj 

whe re c;i(u,v) is the ~tand ardizcd binll'iate norm al dcn$iLy function1 

. b; =--= (a; - µ) /a, and fi=(ci-ii.11 )/c;il. Briefly, then, the appropriate 
likelihood I•u1<:tion is 

(lG) L =G J'l Pl}i 
i ,j 

and the :'ILL c•sl ima1 es for th e rcquirC'cl pa r:unelC'rs <:an lJc obtaincll by 
the scoring method discu!'sr.cl earlier. It i.~ now onl~· ncccss:ny to 
calculate iJI\/ori.,, ,rnd so on. This rnay !Jest be achieved by wriling-

(17) Pu =4.>(b;,f) +<I>(b;+ufj+i)-<!1(b;Ji+d - <P(b;+1,fi) 

where, for instance, 

<Jl(b;,fj) = J~ <hr~ en tp(u,·v)clv(7u, 
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Now, it m:iy b e vcriticLl 1l1at 

(13) 
o<l> b. o<I> fj 

- = --'.,,.,?(b1)tl>(F .. ), - ., = - -,,,.. (f.)<l>(R - ) 
,:, 2 '/ - ) I ,:, - () - ( ) IJ 

u<J;r. -<J:z ucr11 ~c11 

· . J1 -ob . . , b1-pf. 
and o<J>fo?= t.;,(b1}j), wl1N <· Fi 1 = (l - ~2 ) 1, l)u = ,1 _-

1
) ·)~· 

( From ll1 C~<' r<'sult s it is clear that 

From the nboYc cxprcssioas the ~IL estimates of the fh·c p nrmncters 

mny be obtniucJ iteral in·ly . 

(d) Asymptotic 'l'ests 
It is iu lcr ,:,stiug to n otice thnt th e nssumption tl1nl. one of the 

three d ii;tribntions d isc·uiis('cl above describes the data satisfa ctorih· 

can be t l'stcd p l'o,idcd k >?, in the uuin1·intc cn ses and 7:l > G iii 

·u 1c bi,nrb te cnse. ..::\. suitable test cau be cnnicd out with the aid 

or the following fonnul.t 

(20) 

wh<'re t, is th<> cstiruntc,d prob:1bility :issocintcd with the -it h class. 

F or e:rnmplt' , i11 the cn:=t· of the normal di.~trilmtiou, 

(21) 

The statistic Q~ is asymptotically distributed as z~ with (k-3) 0 1· 

(H- Ci) (kf.'l'Ces of freedom. and significantly large v alues of o~ indicate 

discrep:rn e: ies iu the hypothesis oi the ,wdcrlying disLri butioo . 
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A nother prol>IL-m wltith m:1y :1risc is the t c·st ing of the homogC'11ciLy 
of scvernl i11tl C'pcntl1•nt est imates o( 11., v~ ot· ?· lf we kl U stand t1)r ci t lwr of th1'SC par:1mctcrs :tud if th ere :trc .; csti111:1tcs o( U, then 

J /\ - ,.. - " (22 ) )\'t = .~ w1 (0j -{:Jf, wi = 1/Y:n (01), 0 =~w}Jif~ 1111 J - 1 

is npproximntcly z2 <Jjst ribut cd with (.J .-1) dc~rcr s of frccuom . Signi l1c:1n t, vulucs oi 1P in<l. icatn hctcrogene;it,y . 
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Approxiinatc l\Iaxin1un1 Likclil1ood Esti1nates 
Fron1 Grouped Data 

G. l\I. 'f ALLIS* 

C. S. I. R. 0., l\'cu;t o11:n, A11strulia 

I n this p npcr mcthod5 nre dcvdopcd for obtuining npproximule m:iximum likeli­
hood, m.l. , e.,t imn\cs oi p3r3mcters of distribution func \ions, d .f., under conditions 
wl,cre the d uta a rc grouped. Doth the cu,;e.; of a multivariate d.f. under eqnnl r,:rouping 
on ull co-ordin:itcs nnd u onc-climcnsionnl d. f. under u ncqu:i.1 grouping nrc considered . 
These nre extensions to Lindlcy's rc5ults of HJ.19 . 

The proc<>durc require., thut for nny p:1r t :cubr d.f. nnd grouping ~et-up. n correc­
tion factor, usuully de-pending on the gro11ping width, he cuknh\cd. This facto r 
when ndded l o a specific ini tia l cstimnle should provide ren.srmably clo;;e npproximn­
lious \o the m .l. e.,timntes u nder grouping. The snmpling v urfonce.:; of tLc.se 
approxima tions nre nlso obtniued and they :ire foun d to depend, in part, on tlic squares 
of the int ervnl widths. 

1. l "!\TRODuCTIQ)l 

This paper considers the problem of obtaining approximate maximum likeli­
hood, m.l. , estimates of parameters from grouped chta, where tlie grouping 
in terY:1ls are set in advance. T he interva l wid t.hs nre assumed to be under the 
control of the experimenter so thnt they mtty be kept small enough to ennble 
the methods dc\·clopC'd bclo\l' to be npplicd. 

This situation often nri:::es in the determination of the potency of some 
chemical or biological substance- Ii mnss ti tration techniques are used, it, 
will be possible to slate llwt nu inciiYicluai's tilrc lies bct\\"een two well-defined 
boundaric-s, i.e. the individual belongs t o a certain titre cbss. From a random 
sample whose members have been put in to thc.~e titre cbsscs it is often required 
to estim:1tc the parameters of some nssumed backg;rou11<l d istribut ion. 

Another more specifie exa mple, which will be considered blcr in greater 
det ail, concerns the fai lure of certain objects which arc subject to the exponential 
failure bw. The precise t ime of fa ilure of each object may be uukno\\"U and 
the only available information may be that failure occurred bct \\"cen two 
well-defi ned time points, t,,·o inspection times. If ebb nre collcctc.cl on the 
failure of a number of such objects, then these can be cbssific<l nccording to 

. the inspection period during which failure occurred . It mny then be requ ired 
t o estimate the failure rntc from the !lumbers in the various fa ilure groups . 

. HccC'h·cd August. HJG;i ; revised J :mu!\ry HlG7. 
• This work w~,s Sll[)J)(,rlc<l iu p :irt by ltesenrch Gr[tnt G:\[-13:.?2.'5 from the National 

I nstit utes of Hc::1llh wliile the author ~·:1s a Yisiting Associ:1te Profc.:;sor in t he Biomet rics 
Unit, Plunt Breeding ])('p:nlmcnt, Cornell University, in J uly-Augus~ HJGG while on leave 
from the J ohns Hopkins University. 
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The pmpose of this p:1.per is to extend the results of Lindley (1), who 
cst:-ibli!;!iecl procedures fo r obbining :-ipproxima :·e m.l. cs lirn:-ite.;; for p:-iramelers 
of a one-dimen.5ional di;:;tributiun fun<:tion , cl.f. , under cqu:-il interv~11 g roup: ng. 
The gencraliz:1tions incl{1clc the cases of l:-d imcnsion ~1 l d.f.s . U!Jder equal grouping 
and on c-dimcnsion:tl cl .Ls . u nder unequ:1.l g rouping. 

The: organiznlion of the materi:-11 is :-is follows. In the next sec Lion the essential 
notation and results a rc presented with the aid of a nu merical illus lr:-i tion. 
Further algcbr:\iC ex:.mples include the uniYa riate and bivari:,te normal clis­
t rib\1tious . T he appendix contains an outline of some deriva tions of the variow, 
formulas. 

2. REsur,-rs A~D Ex,DIPLES 

Consider the frequency function f(x, 0) depending on a single p:nnmeter 0. 
Let the rea l line, R, be partitioned into inten·als of cqu:1,l wiclt.h h and centres 
Xrn , i.e., U,[:c<il - h/'2, x<il + h/'2] = R. A random sn.mple of size N is now 
<lra,vn from a population wit h frequency function f nnd tl1e numbers falli ng 
in each interva l counted. Let N, be the number of obsen·nt.ions falling in 
[x (i) - h/2, :1:(i) + h/2], then it is required to obtnin the m.l. estimate of 0 
from the grouped sample. 

If we let 

J
Z(t) +A/2 

p,(O) = •<•i - An f(x, O) dx , 

then au applica tion of sLaudard t echniques would lead us t o maximize 

L(O) = C II [7>,(0)]""' 
i 

(2.1) 

with respect to 0. However, the work required to accomplish this is often 
cons iderable and , if m:rny estimates a rc required using the same intervals, 
it. is rensonablc to search for approxi mate methods rcqu irin6 less effort. 

One such approximation is ns follows. Let Oo be the m.l. estim:,te of 8 calculated 
on t he b:1sis of no grouping using the class centres, x<il• ns the observed values 
of t he variable. Thus, N 1x c»'s, N 2x(2)'s, etc . const itute the sample from which Oo 
is computed . Then under certain condit ions the approxima te m .l. estimate 
u nder grouping is g iyen by 

0 = Oo + o, o = ll(Oo)e(8o) (2 .2) 

where 

and 

e(Oo) = E{a[li2f"(x, Oo)/24/(x , Oo)]/80}, 

This is a slight, but com·cnicnt , modification of the result of Lindley (1). 
The variance of O cau be ca lculated from the formula 

Nl1(b) = [I - h2/24E{a 2 A/ao~ + Aa2 In f/ao2 
- r1 D;[(D2 In //D02)f]}r 1

• 

In the above formuh I = l(O) = -E{a 2 ln/(x, 0)/082
), A = f"/1 and D, = d/dx 
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a nd it is ck:1r that both O n.ud its vnrinnce mny d epend on h2, the square of 
the interv:,l widLh . 

\Ye now illust rate these results by mc:1ns of the cxponcnli:11 failure example 
discw>sccl in th e Int rod uct ion. Suppose the objects " ·hich :1re frt.ili ng hn.ve 
life times dis tribu ted as /(:c, 8) = 0 exp ! - O.t } and we nre required to estimate 0 
from the grouped d a t:1. . 

In the present c!'l ::;c, L (8) cc o:-· exp { - X O.i; } :rn<l the m.l. est imate (ungroupcd) 
of O is i - 1

• Hence, Oo is si mply II:, N,1:w/J\T '. 
Further c:1lcabtion::; show that Y(O) = 02 and f"(x, 8) = 0

3 
exp {-Ox} nnd 

therefore 

c = a[E!f" / f)Ji2/2-:l.l/ao = eh.
2
/12 

and 

0 = (L N ,x ,,i/N)-1 (1 + (L N ,x ,,i/ N f 1Ji2/12]. 
i i 

W e now require the Yarisnce of 6, "V(O). T he quantity l (O) is easily shown 
to be equal to 0-2 nnd a2(/" /f)/ao2 = 2, (J" /f)il In f /ao2 = -1. 3.\Iorcover, 
E{r' D;[cf Ju f/a 02f]} = D,[a 2 In f/a6~j]~ = c - h I~ = - 1 and finally therefore 

V( 6) = 02/N[l - (Oh)2/ 12]. 

As a numerical example n. r:1ndom sample of s ize 200 \\'US d rawn from :m 
exponential popul:ttion with O = 1. Tbis'sample wns put into clnsscs of width 1.0 
and class centres x(i> = .5 + (i - 1) for i = 1, 2, · · · , G. T he N i , in their 
respective order, were ns follows: 12G, 42, 22, G, 3, 1. For these data Oo = .905 :1nd 

/J = .005 + (.905)3/12 = .967 

while 

1'(6) = 1200[1 - 1; 12J r 1 = .oo.s-:15 . 

The above fi6ure for 1'(0) emphnsi zcs that li Ule in.formation hns been lost 
as a result of grouping since the minimum vnri:wce bou nd is .005. 

I n the Appendix the above techniques are extended lo multivn.rin.lc d is­
t ribut ions which a rc fu nctions of severnl parameters, and the case of unequal 
class widths is also considered . ·w e summarize here the multivar iate extensions 
and refer to the nppcndix fo r the fo rmulas of u uequul grouping, specifica lly 
formulas •1.S and -1.9. 

Let j (x, O) be a freq uency fu nction for the k-dimensional random vector X 
d epend ing on the s-di men.sionnl parameter Yector 0. If each a:-:is is di\·idcd 
into equnl inten ·als, h. being tbe width of the intcrrnls on the 1'th axis, the 
sample space c:i.n he par t itioned into k-dimen:;io:1:11 boxes of identical shape 
nttd volume. lf 00 is the m .1. e:;timate of O using the class centres as the observed 
values of X, then the approximate m.l. estimates of O under grouping is gi\·en by 

(2.3) 

where v-1(00) = I (Oo) = [-E {a2 In f (x, Oo)/cJO,cJO;}] and 

e (Oc,)' = fe1(0o), • · · , c,(Oo)L c,(Ou) = E{u[ t h;f;; (x , 0,,)/24/(x , Oo) ]/ ao,}, 
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fu = c/f/ux<;,., where x< i> is the va riable of the j th co-orcl inri.te. This is 
completely :rn':-i l,);ous to the :oimpler case di;;c.:u.~;;cd abo\'C. 

The approx.im:1te cov:niance matrix for 6, V( 0) , can be obtained from the 
formula NV(6) = [I (h)r 1

, where 

l.,(h) = I ., -
t 

I: (h~/24) El,/A.Jao, ao. + A, a2 In f/ao, uo. - r 1 D~[a2 In f/ao, ao,fll 
i • l (2 .4) 

1., = -E{u2 lo f/ao, ao.}, d D I (,") A, = f,Jf an , = a ax . 
In order to illustrate the use of (2.3) and (2.-1) two algebraic examples nre 

worked in the next section. 

3. FunT11r:n ALGEnn.uc ExA:\IPLES 

(a) The mifrariate normal distribution 

The above r~uHs arc easily applied to the normal frequency function 

f(x , 6) = (21ruYl exp 1- (x - µ) 2/2u2
} . 

In t.his case 

f"/f = <1-
2 ((x - µ//r/ - l} 

&nd 

E{a(f"/f)/c)µj = 0, E(a(f"/f)/a,/J = 
and from (2.3) 

-r; -• 

(3.1) 

as expected. Therefore, the approximri.tc m.l. c>stim:-itcs of ,, :.nd u2 arc :i; and 
s2 - h2/l2, where these :-ire c:!lcubted from the class centres. It is ensy to 
show using (2..1) that the variance of these est.imntors is u2 IN(l - h2/12u2

) 1-1 

and 2u4 {N(l - Ji2/Ga2)J- 1 respectively. 

(b) The bfrariate normal distribution 

As a second illus tration of these t echniques we use ibc bivariate normal 
distribu t ion 

f(x1 , X2 , 0) = I ( exp { -Q/2) 

where J( = (2:r)- 1(a~a; - a; 2)-¼ nnd Q is the qu:idrat ic form 

Q = c-1{a~(X1 - µ 1)
2 + a;(x2 - µ2l - Zu1lX1 - µi) (x, - µ2)} 

writ ing C = a;a; - v~ 2 • The parameter <1,2 is the covariance between X 1 and X :. 
Some calculations show that 
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and i t is readily ve:rificcl thnt 

EIDl/11hUZ.Jf + bh;/21/J/aµiJ = o, i = 1, 2 

nnd hcuce e1 = c, = 0. Now 

nnd \\'e hnve c3 = -(2-1C2
)-

1(<T~h; + u;2h;), e~ = -(2-1Cz)- 1(<T1h; + cri,h;). 
Similarly, it is found th:,t e$ = u12 (12C:)-1(u;/,; + u;h;). . 

In this cnsc it, is well known lh!lt. the nppropri :1. te dispersion matrix, V, is 
given by 

2 
0 0 0 CT1 0'12 

2 0 0 0 CT12 CT2 

V = 0 0 2u1 2ui2 2ui<T12 

0 0 2ui2 2u; 2u~u12 

0 0 2u;u12 2u~J'12 
2 :? •• 2 

<J1CT2 + 0'12 

imd appropriate mulliplication :wd reduction givrs 

0~ = -/,;/12, 00 = 0. (3.2) 

These concctions agree \\·ith the bivariate Sheppnrd corrections given by Wold 
(3). 

The means arc cstimntcd inclcpcndcntly of the variances, :\lid the appropriate 
elements of the information matrix for the means nrc 

N- 1I11(h) = u;C- 1[1 - (l 2GT1(h;u~ + h;ui/)J 

N- 1I 12(h) = -cr12G- 1[l - (J2C)-1(h;u; + h;uD] 

N - 1I dli) = u;C- 1[1 - (I2CT'(h;u;/ + h!u;) J 

The informn.iion mntrix for the estimates of u~ and <T 12 from. grouped dat::i. is 
uot easily obtainnl.,le from (2.-1). Fortunately, however, the work ma.y be 
done in a more direct manner. \\'e use the well known formul:i. 

where the bar indicates the distribution under grouping and substitute for 
p ... ...... nud ii. , in terms of µ 0 .,,,. 1 , µ 0 , , hi and h; . The required formulas 
are, neglecting fuu rth order terms in h, 

i120 = J<w + hi/12, jl31 = µ31 + µuhi/1 

ji40 = µ,o + µ2ohU2 

the other qu:rntitie., bein6 obt:lin!\hle by suil:lbly permuting the subscripts. 
After some reductions we find the required dispersion matrix to be 

M=M+K (3.3) 



r 

( 

60.4 

wh ere 

G. M. TALLIS 

l
4 µ2oh; 0 

K = (12N)- I O 4µ 02h~ 

2µ11h~ 2µ11h~ 

and 1\1: is t.he usual dispersion matrix for sample v:nianccs aud covnrianccs 
from n, normnl dist ribu tion (see the formuh for V) . 

Decnuse of the bi as of the esLimnlors iii,-o = Si n.ncl ii":02 = s! , the usufd estimate 
of t he populntion correlation coefficient, p, from grouped data is 

(3.4) 

where s~=s;-h;/12 and s;=s;-h;/1:2. The s:impling vnriance off c:in be ob­
taiucd from the general formub. for the Y:1ri:1nce of a sample product-moment 
correlation coefficient by substituting for the grouped moments p.0 , as above. 
T he result is, again neglecting foW'th order terms, 

l'(f ) = N-1(1 - /)2 + (I '.?Nf 1 (/i~/cr~ + h;/cr~)(l - / ) . (3 .5) 

T he above work can be extended to the multivarinntc normal distribution. 
The neccssnry algebra is long and tedious :md it transpires that uo corrections 
for the menus aud covariances arc required nnd the corrected estimates of 
variances :ire s~ = s~ - /i~/12, i = 1, 2, · · · , k. The covarinncc matrix of t.hc 
esLimaicd means is N-1 

{ ::S + 1r 1H~ } where H 2 = diag (hi , h; , · · · , hD, 
~ = Va r (X) , ,...-bile the variances and covariances of the estimated second 
central moments arc obtainable by an extension of the argument for k, = 2. 

API'E);DlX 

(a) Equal £nlerrnl groupi"ng 

Consider t he subspace o.f E uclidean k-spucc, E1 , defined by 

Bt = [a, , bi] X [a2 , b2] X · · · X [a1 , b.] . 

T he end points of the intervals, a, and b, , need not necessarily be fi11i te. A 
par t it ion of B1 is set up :1s follows. If a, and b, arc both finite, then divide 
[a, , b,J into n , subintcn·::ds of length h, = (b , - a,)/n , , t.he first subinterval 
being centred at a, + h./2 nnd the last at b, - h./2. N°mY bbcl t lie class centres 
a+ h./2, a+ 3hJ2, · · · , b - h./2 by x:·1

, x~0
, • • • , x~;> nnd let A , = {x; 0 

}. 

If, say, b, = ro , then xf 0 = a, + h./2, where h, is nrbilrnry, and A , is uow 
nn infinite set. Similar, obvious modifications arc made if a, = -: co and b, 
is fi nite or a, = - co and b, = co . 

I t ''"ill be nssumcd subsequently that there arc k vnriates X ., i = 1, 2, · · · , k, 
with distribution a llCl frequency fuuctiotL5 F(x, 0) a11d f(x, 0) respcc:tively, 
where O is a column vector of s parameters. It is further assumed 01nt A = 
A, X A, X · · · X Llt , the cnrtesinn p!·oduct oi t l1e sets A. , , is given nnd that 
a p:1rlition hns been set up according to I he n.bo,·e procedure. Then, th e prob­
ability that a r:rndom vector X fa ll in a p:u-t.icub.r k-d imeusional box is given by 
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(4 .1) r,<ol +A , /Z 1 z< 1 l+Al/2 

p(x, 0) = · · · f(y, 0) dy 
, z(ll-hi/2 :.<1>-Ji!/2 

In (4.1) the subscipt j on x; 1> has beeu dropped, but this should lead to no 
confusion i f it is understood that x c A . I t c:\n l>e shown t.hn,t, U.1) can be written 
as 

(4.2) 

Now let 00 be the m.1. e;.;t.imatc of O for tbc function f(x, O) calculn.lcd from 
a sample of size N . Under grouping, Oo is cnlcubted u.~ing cbss cen tres, since 
the actual values arc u nkno\\'n , nnd it is required to obta in an ndjustme11t1 

o, for grouping. In order to accomplish this we notice t hat, under suit:i.ble 
regularity conditions, 

a 1n v(x, o)/ao. = a 1n f/ae. + a[ t f;;hU24f } ao. + 0(1/ ). (•1.3) 

Now applying the Newton- lhpbson method of finding roots to equations, 
sec e.g. R alston (2), and summing over nil sample values 

+ ... + o, L D2 In f/DO, D01 = - Li) [ t f •• hU211f } c'l01 

: (4.4) 

01 L a' In f/001 ao, + · · · + o, L a2 
ln f /ae; = - La[ t f1,hU2-11] 1aa, 

In (-1.4) c:1cb function is evaluated nt O = Oo and all terms of order higher 
than Ji,2 h ave been dropped. In npp1ic::i.tion, (4.-1) may be som~whrtt tcdiou::1, 
eyen in simple C!1SCS !1Il<l consicler:1ble imprO\'emcnt is Uchicvctl by replacing 
ihe various terms by thei r cxpccln.tion. This c;1n be done without ::i.ltcring ihe 
order of the ncg,lectcd terms and we obt:1.in the U\'eragc bi:1s from 

6 = V(Oo)e(Oc), ('1.5) 

where V(00) is the iiwer:;e of the informat ion matrix I for a sample of size one 
evaluated at. 0 = Oo and e(Oo) is an (s X 1) column v ector with elements 

~;(Oo) = E{o[ t f ;;(x , Oo)h;/2·JJ(x , 0~) J;ao.}· 
The formub. for ibe information matrix associated witL these estimators is 
given by (2A). 

(b) Uneqiwl crouping 
Some progres::; can also be m::tde even if the class ,ricllh::; vary. For definiteness 

we consider the c~$C of one varinblc defined on the interval [a, b] and grouped 
in &uch a w:ty that x ,=a+hi/2, x2 =a+h1+ h2/2, · · ·, x .. =b -h,./2, where h1 

is not uccc,,s'.lrily cqunl to h; , i ;,!: j . 
The lik elihood function for a sample of N can be written as 
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"' 
L(O) = C II [p,(O)l'°' ' '"' N-=N ~ . ' 

, •I 

where C is n, const:rnt ,,·hich doc:; noL depend on O nn<l 

r.
zi• ht/Z 

p,(O) = f(x , 0) dx . 
• z ,-hi/2 

By similnr methods to lho~c used :1uove the following equ!'ltions for the o; may 

be const rn clcd; 

L Ni a' Jn f (x, ' Oo) 01/ ao; + · · · + I: N . a' In / (.r, , Oo) o,/ao, ao, 
= - L N, iJ[f"(x, , Ou) /1~/ 2-1/(.t , , Oo))/cJ01 

L N ; ,/ 111 f(x ;' Oo) o, / iJO, {)01 + ... + L ,V, {)
2 In f(:r, I Oo) o,/{)0; 

= - L N, a[f"(.t, , Ou)h~/2-J/(.c, , Ou)]/ cJ0, 

(4.7) 

Afle1· cliYiding through by N, repbci ng NJN by p, ~ h.f(x, , Oo), equal.ions 

(4:.7) may be solved approximately in m:1lri:,; form ns follows; 

6 = V(O,,) d (O.,) 

where the t rnnspO!=e of d (Oo), d'(Oo), is defined by 
.,. 

(1.8) 

d' = [d1 I d2 , · .·, cl., ], d. = (2-1)-I I: f(:i.· , I Co) iJlf"(x , I Oo)/f(:t: , I Oo)]h~/uo • . 
i • l 

From (4.8) (he nppropri:.i te 6 muy be c:1.lcubtecl for the parliculnr grouping 

scheme provided, of course, none of the h, :1re t oo large. The :ldvunt!'lge of 

(•1.8) is thu~ if a whole series of samples :i.re drnwn from the same popuht ion 

wit.h the groupin~ st:h<'mc fixed, o rn:1y be oht::iinccl once uncl for ::ill. 

In the aLuYe case the inform:1! iori ma trix I (h) turns out to be 

I(h) = I - L (·1.9) 

where I is the ungrouped inform!'ltion m:tlrix and L = [[.,] with 

•. 
z •• = I: 1/(:r, , o) c12 [f"(,:, , o)//(:r., , o)J/ao, uo. 

+ f"(x, , O) {) 2 In f(z, , 0)/{)0, {)0. - D;[/(.1; , O) {)2 In f(x , 0)/{) 0, ao.J,.,, lh:/2-J. 

A cK~owr,Eoci: :11 E:-;·r 

The author wishes lo thank Professor J . B. D ouglas of the University of 

New South \\"ales for his helpful comn\.e:nt s in conncclion \,·ith this work. He 

is nlso grateful tc, the referees for their deta iled comments ancl for suggestions 

leading to an improYement in the prescnlr. tion of the pnper. 

R•;n:nc:-.cr:s 

1. I,1:-uLEY, D. V., l!H(). Grouping corrections nnd maximum likelihood equations. Proc. 

Comb. l'lt ii<ii. :'1•c, .;C, 101.i- JO. 

2. n \l.STO:-. , :\., l (J(l,j , ,1 F:rM Course in Numcriccl :l11a/yi,is. :'lfcGraw-Hill, ::,;-e" York. 

3. Wow, I!., 1D3-1. Sheppard's corrcc: tiou formulae itt sc,·cr:il V[, rir.ule:s. Sl:a11d. ,lkl11ari!tidskr, 

17, 2-!S- 55. 

,, 



( 

( 

(0 
THE MODELLING OF HOST-PARASITE CYCLES 

WITH AN EMPHASIS ON NEMATODE 

PARASITES IN SHEEP 



( 

A (b)[l] 

R-:pri r:to{ J n ;1,i l h,! 

Aus·mAL!,1\:'-1 .:our-:N,.\~ OF e!Oi.OG!C/1.L SC!f.!··KcS 
VOLUt'l t 17, N0:·~3ER 2. ;,t .GES so,i.::;, Ml·.'!' 1%4 

~l(JD~LS f.Ol-: T:Vi~ I> l~TP.1 Bt'Tl()X 0 -:"\ P:~.~:n: r:E 01'' IXF ECTI V.F: 

L:iH \'.!...E OF THE G.A.:S1 R0I~ T.2ST1XAL XF.:\l-'i..'fODE .PAR.:\SHE:S 0.F :SH:C:Ll' 

By G. M. T .. \LL1S aud A. D. Dc,:--ALD 

Repri·nted fer th -?. 
Commonwro!th Scientific c:,,,d I 11dustri'.al R~carci~ Organization 

Au~trnlia 

. i 

• . ·. 

1 .. 

! 
. I 

• 4 

! 
' ., 

'! 
! . 

,. J 

• 



:c 

I 

i 
I 

I 

le 
' · 

MODELS FOR THE DISTRIBDTIO~ OX P . .\STURE OF IXFECTIVE 
LARVAE OF THE GASTROJXTESTlXAL XE.\L\TODE PARASITES OF SHEEP 

By G. l\I. TALLIS* and ,\. D. Dox,,J,Dt 

[Ma nu.scripl received September 13. 196:3) 

Summary 

Two models are proposed for tho dis tribu t ion on pasture of i11fccti,·o h\rn~ of 
tho gast.rointcstinol ne111t1tode pnrnsites of shccp. These models were developed t.o 
include as many as possible of t he kno",1 biologieol component". Procedures fo r 
estimating the pnrmnetcrs of tho models are outlliH'd nnd odn111tagcs of these mocll' l;; 
over enrlicr at tempts to describe the distribution of infective lnrV11e on posture nre 
briefly discussed. 

I. lN'I'RODUCTIOX 

In studies on the population dynamics of gastrointl.'s tinal nematode parasitism 
in sheep it is im portant to obtain some measure of the rate, at which the infecti,e 
lan ·ae of these parasites are ingc-sted by the grazing animal. It is likely that the 
rate of larval inta.ke by the host depends largely on the grazing bchaYiour of the 
sheep, and the distribution a.ml abundanc(' of infocti \·e larYac on the pasture. In 
this paper, specific models are dc\·elopcd for the distribution of infecti\·e la.n·ac• on 
pasture incorporating as ma.ny of the kno\rn biological components as possible. 

A brief description of the biological proceSS('S r('quiring mathematical treatmC'nt 
follows: 

(l ) Eggs which are lni<l by the female paras ites in tllf' a limentary tract of the 
host arc passed out in the faeces onto the pasture. Under favourable 
environrnenta.1 conclition5, the egg,; und(' rgo SP. \·eral $ta!;;eS of developm('nt, ~ 
culminating in the a.ppearance of third-stage larvae which arc infecth·e 
for the host. The in fect ive third-stage lan·aC' migrate only a. small distance 
a.way from the faecal deposit to adjacent herlJag" (Dinahurg 1 !)H; Furman 
1944), where they may sun ·ive for a limited period . The host becomes 
infected either by penetration of the infect in' larrnc> through its skin , or, 
for the grc>at ruajorit~· of these parasite species, by ingest ion of the infective 
larvae with the herbage. 

(2) The rate of dcwlopmC'nt to the third larrnl stage and the ra te of mortality, 
both during den!lopment and in the third larrn l stage, depend on micro­
climatic factors, principally tempera! nre and humidity. 

(3) Observations by Crofton (19:}+) on fields being grazrd by sheep have 
shown that the distribution of faecal deposits is not ca.ndom, i.e. is not 
described by a Poisson law. He has also sh0\\11 that sheep, _while grazing, . . 

• Division of :\lathenmticnl Statist ics, CS1RO, .\lc.\f.tster Lnhorntory, Glebc, N .S.W. 

t Divis ion of Animal H ealth, CSIRO, :\fr..\lnstcr Lnborutory, Glebe, N.S.W. 

A u.!l. J. Biol. Sci., 1964, 17, ~04-13 
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moYc in a more or k ss well-integrated group, which at an) point in t ime 
occupies an area rarely less than one-s ixth and ne,cr more than one-third 
of the total pasture area. Assuming that the periods of grazing and 
defaecation arc broadly coincident, it is likely that the di:;t ribution of 
faecC's deposit ed per unit area of the total pasture area ,nthin a unit of 
time rnll be "onrdispersed" statistically, i.e. the variance• of the distribu­
tion will be appreciably greater than the mean (Bliss and FishC'r Hl53). 

(4) It, has been shown by HuntC'r and Qucnonillc (19:'3:?) t hat replicate faecal 
worm egg count s (eggs per gram of faeces) from the sam~ sbrcp followed 
a Poisson series, but that the distribution of egg counts bch 1·cen sheep 
fitted reasonably well to the ncgati,·c binomial distribution ,,i th k-:::.0·7. 
It is likely , therefo re, that the d istribution of total egg numbers in faecal 
masses deposited by a flock of sheep in a unit of time will also be o,er­
dispersed . 

In the follmnng development these biological aspects are important, since we 
require mathematical m0dels to describe the distribution of third-stage larvae on the 
pasture. Thus the clistribution of faecal deposits 0 11 the pasture, the clistribution of 
egg output of the flock a.t a ginn point in time, and the rate of mortality of t he 
larval stages of t he parasit e must be considered duriug construction of the mo<lek 
These points \\ill be emphasized in the next section. 

n. Tl-rn DISTRIBUTI0); 

1Ve consider the situation where a. fixed number, S, of sheC'p arc introduced onto 
& pasture of total area A at t ime , = 0 and are rcmond nt t = t1• The probability 
genera ting function (p.g .f.) for the distribution of faecal deposits for the ith sheep is 
assumed ·to be of the form .... 

{p/(l - qs)}a1t, (1) 

where q = 1- p and i = 1, 2, .. . , S. The e:...l)ression ( 1) specifies a negative binomial 
distribution with parameters p and a it . :Now, if the effects of sheep on the total 
distribution of faecal deposits a.re stochastically additive and independent, then 
the p.g.f. for the S sheep may be written as 

with 

{p/(1-qs)}at, 

s 
a = 2:: a;, ,-1 

(2) 

Now let the t,in10 segment (0, t] be partitioned into n intervals of equal length 
tn-1 and label the points of subdivision t0 , t 1, t2 , ••• , tn. Then, because of t he infi nite 
divisibility property of (2), the p .g.f. of total faecal deposits for any of the subintervals 
is given by 1 • 

{p/(1 - qs)}at/n. (3) 

- - -····-----·-··--·-~------- ·-··--~ .. --
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Furthermore, consider t he p .g.f. of the n umber, ~Y, of eggs dropped onto the 
pasture during the ith t ime intcrrnl (t ;_1, tJ . ".<' denote the anragc num ber of eggs 
per faecal dcpo.sit a t some t ime t ,![f ;_1, t;] by ,\(t ,.) and assume that the distribut ion of 
the numbers of such eggs follows a Poisson law ,\·it h parame!C'r ,\(t;), which is a 
continuous fu nction of time. (Initially, we :1ss11mC', contrRry to (·1) of the IntroduC' t ion, 
t.hat ,\(t,) is t he same for all sheep. Su bsequent!\·, this restriction ,, ill be remon ~d . 

oreoYer, i the probability that a. gin n egg is in the infccti,·c lan·a l stage at time t 
after being dropped is dt.'nol C'd by the cont inuous funct ion f (t), then it is C'asily 
shown that at t ime t, the dist r ibution of lar rnc dcYeloping from eggs deposited 
during the ith suhint t.'n ·al is again Poisson wi th parameter 

Thus the p.g .f. for the number of Jan ,ae surviving at time t from the ith inter rnl is 
given approximately by 

{ }
ol/n 

p/(1- q.exp{ - µ.(t, lJ(l - s )}) . (4) 

Therefore, for the p.g.f. of the total number of larvae on the past ure at t ime t we 
have also approximately, 

Yn(l, s) = IT p/[I - q.cxp{ - µ.(t, l;)(l -s)}] n { }ol/n 

,-1 (5) 

The larger n becomes, the smaller is the interval 'l\i dth tn-1 and the closer does 
Un(t , s) approach t o the conceptual p.g.f. with continuous time increments. 

We therefore define the limit ing p.g.f. as fo llows : 

g(l , s) = lim gn(t , s) 
11-+CO 

= lim exp{atn- 1 ~ ln (p/(1-q.exp{ - µ.(t,t;)( l-s)})]} 
n-+ co •-1 

= exp{ atlnp-a. I: 1n[ 1-q.exp{ - µ.(t, x)(l -s)} ]dx} (6a.) 

by t he continuity of ev and the definition of the Riemann integral. 

I n t he abo,e derivation it was implicitly assumed that t <t1. H owever, if t>t1 

we consider the interval (0, ti] and apply ent irely analogous reasoning to that used 
above. Thus, for t> t1 

g(t1 , s) = exp{ a.t1lnp-o. J: 1n[ 1- q.cxp{ - µ.(t, x)( l - s)} }ix}. (6b) 

(} 

,. 

I;'" 
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. J' Since A(t) and f (t ) arc continuous functions of/., t he integral [,\(x)j (t - x)]aclx, 
• 0 

a >O, cxi~ts, ancl if t he exprC$$iOJlS (Ga) ancl (6b) arc suitably clitfcrcnt.iatecl wit h 
respect to s, i t is found that 

= aqp-1J: A(x) f (t-x) dx (7) 

Vs(N ) = aqp-2I: [A(x} j (t-x)]2dx+ Es(N) 

f
t, 

= aqp-2 

0 
[A(x) f (t - x)]2dx -i-E 5(N) 

where t he subscript S is used to emphasize that these values refer to the applicatior~ 
of S s heep to the a rea. 

I t is important to notice that (6a) a.nd (6h) are not only sheep addit irn, but 
space additiYe as well. Although these formulae> re fer to a pa rt icular area of size A, 
they may be considered as the conYolution of the effects of S sheep on L areas each 
of siz.e A /L . In this case, each subplot has a negatiYe binomial distribution with 
parameters p and at/L. These features emphasize the fl cxibiuty of the model. 

It is clear from (7) that if the sheep are left on pas ture indefinitely, t hen t he 
following theoretical equilihrimn is reach~d at t = oo, 

e(N) = aqp-1 lim J' ,\ (x) f (t-x)dx . 
1--.co 0 

In order to obtain bounds for e(N), notice that 

aqp-1inf(A(x))J co j (x)dx <e(N) <aqp- 1sup[A(x)Jjco f (x)dx, 
:c O :c 0 

and therefore 

e(N) = A(i ) J: f (x)dx , iE[O,oo) . 

However, when t he sheep are removed at t =· t1, we obtain 

J
,. 

e(N) = aqp - 1 lim A(x) f (t - x)dx 
,-.co 0 

f
t, 

= aqp-1 A(x)[ lim f(t -x)]dx 
0 ,-co 

= 0, 

as required, since f (oo) = 0. 

/ 

. - ... --- ------- ·- ----·-·-
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If, in the above model, sheep ad<litiYity does not seem to be a valid assumption, 
then the model can be applied to .-a rying flock sizes and diffcrc11t a rnlucs C'Stimated 
for each flock size. This, in fact, would allow the null h.n>othcsis of sheep additiYity 
to be investigated, since under this hypothesis the a's should be proportional to 
the flock sizes. 

However, as mentioned in the Introduction, it mn.y not be safe to assume a 
constant ,\(t) for each sheep as was implicitly done in the aboYe derivations. If this 
is so, and sheep additivity can be a ssumed, then each sheep must be given its own 
g(t, s) and the paramrters a1 and \(t), j = I , Z, ... , S, must be separately est.imated 
and the average number of larvae on the pasture would then be given by 

S JI Es(N) = qp-1 L a 1 ,\1(x)j(t-x)d.x. 
J- 1 0 

(8) 

Some investigation would be necessary in order to show whether or not expressions (7) 
are satisfactory approximations. 

If the invest igator is seriously concerned about both the assumptions of sheep 
additivity and constant,\ (t), then the whole model may have to be changed. One 
way of doing this is to assume that the numbers of larvae at time t wltich develop from 
eggs deposited on the pasture during the ith time interval has p.g.f. 

{u/1 -v[l - j(t-l;)(l-s)]}k<it>, (9) 

where k(t) is an arbitrary function of time and f( t - x) is as defined earlier. The p.g.f. 
(9) is the result of compounding a n egative binomial distribution (parameters 1t and 
k(l;)) with a binomial distribution [para.meter f(t - Z;)]. Analogous reasoning to 
that used earlier shl)ws that in this case, assuming the same clistribution of faecal 
deposits, · 

g(t, s) = e:-.-p( al lnp-o. J: 1n[ I -q{u/(1- v[l-f(t-x)(l -s)))t"'>]dx }, (10) 

which is an extremely complicated distribution. Howe,er, the mean turns out to be 

Es(N) = a.tqp-1 V u-1fo k(x) f(t -x)dx, (11) 

which is of the same form as (7). The increased gcnera.Jity is ach..ieved by the intro­
duction of the additional parameter u. Of course, the same type of modification for 
t>t, applies to (10) as for (6a). 

It is interesting to notice that (11) can be written down directly from other 
considerations. If j(s), g(s), and k(s) are p.g.f. 's of random ,ariablcs X, Y, Z, then 
the mean of the compound variate specified by f(g(l:(s))) is simply E(X)·E(Y) ·E(Z). 
Thus for any time subinterval i, the mean number of third-stage larrae is given by 

atn-1qp-11,•1.i-1k(l;)f(t-l,), 

and summing this expression over all intervals, the contribution from intervals 
being stochastically independent, and letting n -oo, gives the result (11). Uniqueness 
is guaranteed by the Continmty Theorem (Feller 1960, p. 262). 

\\'e now turn to problems of estimation and consider model (6a) in detail. 
Suitable procedures for the other models can be worked out in a similar way. 

0 

,: 
' t 
i . 
"-· 



··- ·- ·-··---·- ---····-····· ·· --·-- ·--·-·-·-·: ·- - - - -·- - -~ -----·-------··--··---- -·---· ·-·--·· 

·.c 

.. ' 

0 

1 ·, 0 ; . 
1 
J 
1 
·i 
~ 

j 
l 

1 . 
I 
1 
" j 
; 
t 
1 
i 

I 
·t 
I 

{~ 

DISTRIBVTI0!-1' OF LARVAE OF NE~IA'l'OD E PARASI'l'ES OF sm,:Er 509 

III. ESTDLl.TlO)< 

The quantit.y which is of major practical importance is the concentration of 
lan·ae per unit of a rea. In order to C's timate thif-l in an effi cient manner from a given 
area A and a gi,en number of sheep S, we subdivide A into L subunits of equal size a 
so that La = A. :\IoreovC'r , the time interrnl (0, t] is a lso subdivided into 'J' equa.l 
intcrrnJs of length t/T. The p.g .f. for faecal deposits corresponding to any subinterval 
and for areas of size a., is given by 

{p/(1 - qs)}otlTL, 

Now S sheep arc introduced a t t = 0 and the distribution of fo.0cal d0posits in 
the L subn.rcas recorded for each time interval. If riJ is the num ber observed in 
thejth plot for time interrn.l i, then , if we let at = {3, k' = {3/L'I', and m' = k' y, where 
y = (1 -p)/p, moment estimates of l:' and m ' are given by 

where 

and 

r., -2 ( ,,a - )-1 "'' = r, . .., ,_ - r;, . 

F rom Anscombe (1 950) the variances of 11i; and k; are given by 

V(ni;) = m'(l+y)/L 

= /Jy(l +r)/L2T, 

V(k;) = 2k'(k' + l)(l +y)2/y2L 

= 2fJ(fJ+LT)(I+y)2/y2L3T2, 

and it can be shown that C(ni;, f;) = 0. 

Since we obtain T estimates of m' and k', one set for each subinterval, and 

since V(8;) = V(Oi), all i, j, and 8 = m', k', it follows that the best linear estimates for 
the combined data are given by 

T T 
m' = ~ ,n;JT, k' = ~ fc;Jr, 

i-1 ,-1 

with variances 

V(in') = {3y(l +y)/L2T2, 

V(f') = 2/3(/J+LT)( I +y)2/y2£3T3. 

, : 

l 
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However, since we nrc interested in the dis tribution of faecnl deposits at time t 
and not. for a subinterval. . thr pnram c·ters of intr rc;;t. arc I.: = Tk' = {3/ L, and 

m = Tm' = {3y/L. Estimates of thrsr arc gi\"cn by 11i = T11i' and [ = Tk' and 
the variances are 

V(11i) = {3y(l + y)/V, 

V(k) = 2{3({3 7 LT)(1 +y}2/y2J.,3T. 

As stated earlier, it is the concentration of larrnc which is of interest and 
we consider the qua.nti t.y C = E( S )L /A (rrmembcring that E(S) is now referred to , ) 
areas of size a = A/L )which is estimated by 

~ /'.... J' /"-.. Cs= LE5(N)/A = L11iA-1 

0 
µ(t, x )d.t , (12) 

where 
.,..._ 

ft .,,,,......_ J' 
0 

µ(t,x)dx = 
0

• 

is an estimate of the required con"t"olut ion integral. "\Ye now find the variance of 6 s 
as a funct ion of Land 'l' a nd det r rminc for which values of these two parnmcters it 
is mi~imized. Straight forward calculations show that 

(13) 

.... . ,.... 

= (Py/A~){(l + y)u:·r +f3yFuJ }. 
-

I tisshown below that for one method of estimating J: µ(t,x)dx, v(J:-) = O(T-1) 

and therefore the conclusion is that, in this case, V(C 5 ) is independent of L and 
decreases ~ith increasing A and T . Howe-er, the estimate of k increases in precision 
·with an increase in both Land T, while the variance of m only depends on L. 

It is, of course, possible to estimate the parameters k and m more efficiently by 
maximum likelihood methods (see Anscombc, Joe. cit.). In this case an expansion 

for V(C s) is easily obtained in terms of estimated Yariances of V(k) and V(1n) of 
the maximum likelihood estimates. However, the additional rather heavy computa­
tional work necessitated by the maximum likelihood procedure does not really seem 
warranted. 

There remains the question of the estimation of J: µ(t, x )dx. There a.re numerous 

ways in which successive values of µ(I, x) can be estimated to proYide ordinates 
for numerical integration. For ease of illustration, we consider just one direct 

CJ 

i 
L 

t,· · 
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approach and we concern oursch·es with the case t< t
1

• The analysis for other 
situations would be analogous. 

Assume now that (0, t] has been subdiYided, as dcscribrcl ahoYe, into T sub­
interrn,Js and let i i be the upper boundary for t he ith intcrrnL Then during each 
interval i (i = 1, :?, , .. , 'l ' ) F fresh faecal deposits are marked , and at time t the 
M'eragc number of la,n·ae emanating from thc,;c deposits, in each of the 1' groups, 
is determ ined, Jf 11;; repn'scnts the numbc,r of larrne in the jth faecal deposit from 
the ith subinterval whi ch sur\'i,·e to time t, then µ (t, l ;) is estimated by 

F 

_L nii/F = j'i,(t, t;). 
; - 1 

Suppose now, that in order to estimate J: µ(t, x) dx, we use the trapezoidal rule for 

numerical integration, then 

t T J ~)dx = 
2

~, 2 {µ(t , t;)+ µ(t, t,_1 )} 

O i - 1 

and, neglecting errors of in tegration, 

(14a) 

t J' ~ 2T F o µ(t, x)dx. 

For the case of t > l1, it is the interval [O, t1] which is subdivided and measurements 
of larvae numbers are made at' time t. Thus, for this case 

(f'4 ) t J'' V 
0

• ~ '2 1' F 
O 

µ(t, x)clx. (14b) 

If, finally, it is desired to bring the discussion down to a sheep per unit area basis, 
then since a = Sa, for an average sheep the expected concentration is C = Cs/S. 

Obviously, G = Os/S and V(C) = V(Os)/S2• 

No detailed discussion of estimation procedures for model (10) will be presented 
here. Obviously, t he faecal component can be estimated as for (Ga) and the remaining 
expression, 

vu-if: k(x) f (t-x)dx, (15) 

approximated in various ways. For ins tance, f(t) can be obtained by a separate 
investigation, while vu- 1 k(t) can be calculated by establishing the egg output of 
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indh·idual sheep in lhc flock at cliITcrent points on the time scale. If T different time intcrnils nrc used, then the (7'-t-1) parameters u and k(ti) , i = 1, 2, ... , 'J', can be estimated by maxjmum likelihood and the final cxpn'ssion obtained by numrrical integration. AltcrnatiYcly, the num ber of third-stage Ja.rrnc, at time I, associatccl with faeca l deposits clroppcd <luring vrcYious t imr intrn·nls ran be obtained and the whole rxpression (15) approximated by numerical integration as fo r (Ga) . Howc,er, attention would lrnsc to l,e gi\·cn to the rnriances of these estimates since they would not be of the same form as (I-In) and (l -1b) . 

IV. Drscoss10x 
The distribut ion on pasture of the infectirn larvae of the gastrointestinal nematode parasites of sheep has been considered by Crofton (105:!, 1954). H e sampled the most cYenJy grazed poriion of three pastures and showed that the obsernid frequencies of infcet iYe larval numbers agreed fairly closely with theoretical frc. quencies calculated according to XcJ,110.n 's Contagious D istribution Type .\ (Xeyman 1930). It is intrinsic in this dist ribution that the clun1ps of organi;;ms are Poisson. distributed. Since Crofton (1954) has sho~rn that this is unlikely to be true for t,hc distribution of faecal deposits O\-er a. field being grazed by sheep, he has pointed out that this limits the usefulness of the X eyman model to small areas of pasture only. 

Donald (unpublished data) has fitted the negative binom ial to the ilistribution of infective larval mnubrrs recovered from 50 -1-in. qua<lrat samples of pastu re collected from a ¼-acre field being grazed by fh·e sheep, and has found k::::0·2. Whllc this is consistent with a con tagious distribution, sC'veral quite different hypothetical situations will gi\·e rise to a nega.ti-c binomial distribution (Anscombe, Joe. cit.) Thus, obYious difficulties of interpretation arise when attempts arc made to compare the distribution of infceti\·e larYae of diITcrcnt species and to follow mo,cments of the distributions with time. . 
The main purpose of this paper is to show how to construct models describing the distribution on pnst,ure of tl-ie infccfr;c stages of parasites of grazing animals. Of the two models developed here, (10) is s lightly more general s ince it incorporates component (4) of the Introduction . llowe\~er, this increased generality introduces an extra. parameter u, and the problems of estimation are increased. The simple properties of t he Poisson distribution are lost and the rather natural interpretation of E 5(X) is somewhat destroyed. 

However, for most purposes (7) should provide a sufficiently accurate description of the dis tribution of the larvae on pasture. Once the faecal component has been estimated, <1 and JJ, different theoretical cun·es for A(t) and / (t) can be used in (7) in order to inn •st igate the effects such changes would hM·e on infective larval populations on pasture. This would pro,·idc information, say, on the comparative behaviour of two diITercnt species of parasite or on the beha.,iour of a single species under different environmental conditions. Furthermore, the effect of each com­ponent of the model (faecal dist ribution, egg numbers per faecal deposit, and the mortality rate of the free-living lan·a l stages) can be ir,ola.tcd and its ultimate influence on infective larval populations determined. 

-------------- ----------- ---------- ·· -· . ·- ·- - - - - -··· 
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The introduction of a. time element into the models seems ad,antagcous. The 
influence of time on the total dist ribution of infccth·c lan·ae is now clearly specified , 
a.nd this enables theoretica l questions, such as equilibrium rnlues, to be settled. 
This was not possible in earlier studies when less specific models were fitted to 
estimates of in fect i,·c larYnl populations on pasture. 
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A NOTE OX THE ESTDL-\TlOX OF LARVAL COXCEXTRATIOXS 
ON PASTURE* 

By G. l\I. T.ALLIS"f 

Introduction 

In a recent paper by Tallis and Donald (l9G-1)t [which "ill be referred to sub­
sequently as (T.D.)] models were dc,·cloped to describe the distribution on pasture 
of the infect ive larvae of gast rointcst inal nematode parasites of sheep. It was pointed 
out that the di,;tribution of faecal deposits, the number of eggs per deposit, and the 
de,clopmental rate to the in fective lan·al stage were three important components 
determining the total lan·al distribution. ~Ioreovcr, formulae for the expected 
concentration of lan·ac on the pasture lead to stra ightfonrnrd method,; of estimation 
which nr~ free from large biases. 

To date, other vasture-sampling methods have been employed. In particular, 
small areas of pasture nrc oft<'n determined in some random fa ~hion, clipped, nncl the 
numbers of larrne in each cli pping cstima tcd separately or from a comlJinC'd sample. 
Howe,·er, we are not concerned ,,ith the post-clipping proc('dure here. Instead, the 
intention is to i.nnstigate the validity of the method of collecting small rcprescntatirn 
samples of the pasture on which larrnl counts are to he made. 

'£he notation will conform " ·ith that of (T.D.). l\lorco,·er, some of the deriva. 
tions and assumption,.: ,,ill follow closely those leading to equations (Ga) and (i) in 
the abo\-e paper and in all instance;; t \\ill be less than t 1, where t is the time tluit the 
flock has been on pasture and t, is the time of their removal. Finally, since it \\ill be 
quite sufficient to consider the simplest model (Ga) in order to demonstrate the main 
points of this note, the reader is referred to Section I and the first fow paragraphs of 
Section II of (T.D.) for a fuller discussion of the methods used below . 

. Methods 

To be specific, we consider a rectangular field , R 1, of area. A = a x band concern 
oursch·cs with a small sampling plot, R'!, \\ithin R1• It turns out subsequent)~· that 
it is co1wen.ient to ha,·c the plot circular \lith radius r, although the shape is not 
important until ,,·e look for specific results. Further, as in (T.D.), we consider a fixed 
time inten·al [O, t] which is subcli\·idcd into n intervals of equal length t/11, the ith 
subintcn·al being [t1 - 1, tt] . In addition we also consider a small rectangular subsection 
of the field of area ~u~v. 

As pointed out in (T.D.), the negatiYe binomial distribution used in cortnection 
with this problem can be assumed to be time and space additive. Therefore, the 

• Manuscript received Juno~:!. 1!)04. 
t Division of )fnthemnticol Srnti;:tic!I, CSinO. )fc)fustcr Laboratory, Clcbe, N.S.W. i TALLIS, G. M., and Do~ALO, A. D. ( 19G-l ).-)loclcls for tho cli!!tribu tion on pnRturo of 

infective larvoo of the gR"1trointestinol nematode parasites of sheep. A118t. J. Biol. Sci. 17: 50-1-13. 
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distribution of faccnl deposits in the small rectnngle during the i th t,ime interval is 
specified by the probability gencn, ting function, p.g .f., 

{p/(l-qs )}"'.1t:1vJu/A, (1) 

where a and p are parameters relakd to the size of the fl ock on R 1 nnd ~t = t/n . 
.J\Iorcon•r, we denote the average number of eggs per faecal deposit at some t ime 
l1£[t1-1,tt] by ,\(l1f and assume that t he distri bution oflhc nu mbers of s uch eggs fo llows 
a Poisson la ,1· ,1i t h para meter >.(i i}, which is a cont inuous function of time. If the 
probnbilit.y that a given egg is iu the infecti,·c lan ·a l st age at time t after being 
dropped is denoted by the con tinuous functionf (t), then the proba bility that a given 
egg is in the la n·a l st age and is in R'! is J (t - li)p (ii, ii, l1, t) , where the point (u, ii) is in 
the rectangle of area t.u~v. The quantity p (u, 1, , i1, t) is the probabilit,y t hat a lan·a 
which <leYcloped from an egg in the ith time intcrnil ,1ill wander away from the 
point (11, v) into Rz. It is 110 ,1· eas ily shown that the distribution of larvae developing 
from eggs deposited during the ith time intcrrnl and which migra te to R2 is again 
Poisson ,1ith parameter 

µ( 1'i, v, l,,t) = ).(lt)J (t-l,}J)(fi, v, l,, t). 
By an argument entirely analogous to that used in (T.D.) to derive (6a), it is found 
that the p.g.f. for la1Tac in R 2 at time t is giYen by 

, ~(t, s) = c~-p{at lnp - ~ J: La J: ln[l - q exp{ - µ(u, v, z, t)(l - s)})dvdu.clz}, (2) 

and the mean of this distribution is 

E(N) = aq(pA) - 1 J: La Lb ).(z)f(t-z)p(u,v,z,t)dvdudz. (3) 

For p(u,v,z,t) G 1, this expression reduces to (7) of (T.D.) and this corresponds to 
the case where R 1 = R2. 

If this method of sampli!)g the fi eld is to produce results which really estimate 
(_j the concentration of lan·ae on the pas ture, we must have 

E(N) = BA-1E 6(N), 

where Bis the area of R2 and 

E,(N) = aqp-1 J: ).(z) J(t - z) dz. 

Thus 

J: J: Lb A(z)f(t- z)p(u,v,z,t)clvdudz =BJ: ).(z)/(t-z)dz 

is the required condition. 

(4) 

In order to obtain some specific results we assume that R 2 is circular with radius 
rand centre (0, 0) and that p(u v, z, t) is specified by 

p(u,v,z,t) = [21TCr2(z,t)]-1 ff exp{-[2a2(z,t)]-1[(x-u)2+(y-v}2]}dxdy (5) 

J J J 
:i +JI ..:r 

{ ( _ .. _ - -· --· · ---- --

r-: 
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where o2(z, /) i!'l n. scaling parameter which can be expressed as n continuous function 
of z and t. Clearly the smaller o2 i$, the smaUcr is the expected migration cfo,tancc of 
larvae from a faeca l deposit at (u, i:). \\'c now ern luntc the required integrals of (-1f 

From (5) it can be seen tha t u: = (x2+ y~)fo2 may be re>garcled as the sum of 
. two Yariablcs squared, which are each normally distributed ,dth the means u/o and 
v/u respcctivt'ly a nd both with unit ,·n riance. T herefore, w has a non-central x2 

clistribution with parameters 2 aud y = (:2o2)- 1(11 2+ t·~) . Hence, 

00 ,..., ., ~ - ;, ' . p(u,v,z,t) = L.J F2a+1iV/,,")e y /i!, ,-o (6) 

where F 2cHJl (.) is t he djstribut ion function of a x2 variable " ith 2(i+ l) degrees of 1 · · ) 
freedom. '-· 

It is now com·cnicnt t o introduce another circular area. R3 c R1 of radius 0, 
also cent red at (0, 0). T he radius () is considerably greater than rand for t he present 
it is taken to be arbitra ry. \Vo now wish to integrate p(u, v, z, t) on1· R3 and hence 
we have 

I I p(u;v, z, t) du dv = q(t, z), 

,/ +/ .i;o2 

and ~ typical term of this integration (after a Ya lid interchange of J :E to :E f) is 

(2' ·1 u - 1F ( "/ 2 i u ) 2(!+1) r· u ) JJ 
, , , 

e - (1 /20 )(11 +v \u2+ v2)'dudv. 

2 2 • 2 
V +II '5;0 

Let u = pcos cf, and v = psincf,, t hen we obta in 

(2,., 2()-lF ( 2/ 2) If -/120
2 

21+ld d.L i . o 2(!+1) r u e p p 'I'• 

o,;; p,._O 
o,;;~~ " 

and another change of rnriablc (71 = p2/ <J2) reduces this integral to 

0
2
10

2 

27Tu%[2H
1r(i+ l )J - 1

F 211+1i(r2/u
2
) L C -•

1111' d17 = 2rro2
F2(1+1)(r2/u

2
)F2(!+))(0

2/o2i. 

and we obtain finally 

Cl0 

2"F 2/2 2/2 q(t, z) = 21Tu .£.., 2(!+l )(r u )F2(1+l)(O u ). 
, --0 

(7) 

The radius 8 may be made large as compared ,dth u which means that any 
faecal deposit lying outside R3 has neglig ible influence on the number of larvae found 
in R2. Under these condjtious 

00 

q(t , z) -> 2rrc2 ~ F2(1+l)(r2/o
2
) ,-o (8) 

since Fw+ll(02/o2) tends to unity for aU ,alues of F 2 (1+ll(r2/a2) which can contribute 

t 
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significantly to the sum. By int~rchnnging the or<ler of integration nnd summation 
in (8) we find 

( ) ,..,.,,.~ 2 Jr21a' 1{; - 11(.l )'/"l}d q (, Z _ - na ') LJ e 2 ( I. t 
0 - i - 0 

') 2 2/2 2 2 = - r.u X 1· c, = ur , (9) 
which is independent of l and ::. 

\re ha,e therefore sho,,·n that, with the particular models chosen, 

J: La J: >.(z)f(t- z)p(u, v,z, t)d1tdv dz ':::::!.nr2 J: >.(z)f(t - z)dz 

which is the required form of (4) "ith B = -:rr2. Hence, provided the models used here 
conform reasonably well wit h t he situation in practice, the conclusion is that the 
clipping of numerous small areas of pasture should allow Ya lid estima tes of the 
concentration of larrne on the pasture to be made. This is certainly a smprise to the 
au thor who felt that this method of estimation of lan·a l concentration would produce 
biased results, the bias being in some way related to a and r. 

I n conclusion, therefore, it seems to be appropriate to select as many sample plots 
as possible, k say, and count the numher oflarrno on each plot a fter the sheep ha,·e been 
on the pastur(; for a time period of length t, say. Let, Iii be the count of the z'.t h plot, 
t hen n suitable estimator for the concentration of the larvae on pasture is () = il/r 2rr , 

1: 

if the plots are circular with raruus r and where ii = ~ ntf k. Certainly ,-1 
E (0 ) = 0 = E (N) /1rr2 

and 
}: 

V(O) ~ ~ (11,1-F,,>2/r\./-(l~- l ), ,-1 
which can be made satisfactorily small by either increasing r or k, or hoth. By an 
appeal to the Central Limit Theorem, appropriate large-sample confidence limit 
procedures can be applied. 

The above analysi,; holds provided the sample plots are sufficiently far apart 
to eliminate conelat ion bet,wcen t he n,. Thus the shortest dis tance between two plots 
should be at least 4 x [maximum value of o(z,t)J . 

r-l o t ~ ,"s fc.,c o r c11.t. i;..r 1 u. ,...~><r- a bov~ 
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A Stochastic App.roach to the Study of Parasite Populations 

G. M. T ALLIS AND M ORLEY L EYTON 

J ohns H opkins Vnirersity, 
B altimore, Jdaryk111d, V.S.A. 

(R ecefred I O June 1966) 

The aim of this pa per is to de\'c!op a general framework for building 
s tochast ic models to describe some fea tures of parasite po pulations. Start­
ing from the few basic biological assumptions o utlined below, it is shown 
that input mechanisms, whereby the para5ite gains entrance to the host, 
\:an be defined in probabilistic terms. O nce in the host, the female p:irasi te 
is allowed to "ma tu re" and prod uce offspring accord ing to given 
probability laws. More over, the host is supposed to react to cont rol the 
rate of maturation and ·or ·the rate of p roduction of offspring. The O\'erall 
accumulation of parasites, male and female, in the host is also considered. 

Jn the sequel, a host is defined to be a ny o rganism which is subjected to 
a burden or infection o f " lesser" organisms which we will call parasites. 
The biological assumptions concerning the relationships between host and 
parasite arc outlined b.!low. 

(i) T he parasite gains ent rance to the host, either orally, intradcrmally 
or otherwise. Entry m ay be as a continuous stream or in the form of 
administered d oses. 

(ii) Once in the host the female enters a period of m:nuration at the 
completion of which she is capable oi producing ofispri ng. 

(iii) Each parasite in tl1c host has an " ant igenic information trajecto ry". 
T his term is used to describe the pheno menon tha t at any fixed time, the 
parasite is releasing information to the host to the elTcct that he, the 
parasite, is there. I t is further assumed that :i.ntigcnic information is 
addi tive, in the sense lh.:lt the information emitted by a number of parasites 
is the sum o f the ind i,· idual a nt igenic info rmatio ns. The offspring arc 
assumed to produce no rele\'ant ant igenic informa tion. 

(iv) Each host responds in his own way to the build up of antigenic 
in formation. He responds by, in some wny, controll ing or otherwise affect­
ing the rate of maturation of the pa rasites and/or the rate of reproduction 
of the fem:i.les. 
· A deliberate attempt has been made to keep the treatment as general as 
possible. Unfortunately. this may k:ad to some obscurities and, in order 

. to demonstrate the id1."JS, examples will be discussed in conjunction with 
the general de,·elopmcm . 

l o one case we consider sheep as the host, worms as the parasite and 
eggs o f the fema le wonn as the offspring. The sheep are given a massive 
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dose of lar\'ae (immature worms) at zero time and the lnsk is to describe 
the to tal egg output of the worm popubtion in the sheep as a function of 
time. 

As further examples we cxnmine some highly simplified continuous 
models. The purpose of these exercises is purely illustra t i,·e and the 
components of the models have been chosen for mathema tical con­
venience. Nc\'ertheless, it is hoped that the rcsult in.; models arc not too 
unrealistic. 

D etails leading to the biological assumptions used in this paper may 
be found in Dineen (1963a, b), Donald, Di neen, Turner & \Vagbnd 
(1 964) and Dineen, D o nald, \Vagbnd & Offner (1965), Dineen, D o nald, 
Wagland & Turner (I 965). 

1. Introduction 

The benefits accruing to the parasitologist from the type of modeling suggested 
here may be somewhat intrinsic. It is clear that before detailed statistical 
work can commence, the biological hypotheses must be crystalized and this 
in itself is of some merit. 

In addition, by the very nature of the models, parts of the general structure 
can be examined independently of the rest and the adequacy of the assump­
tions assessed and modified. Thus, the overall model can be altered as 
experience accumulates unti l confidence in the whole mathematical formula­
tion is established. 

O nce the model is accepted as being "reasonable", it may be possibk to 
infer many interesting biological results algebraically. For insta nce, in some · 
cases the influence of time on the process can be examined as well as the 
effects of changing some of the meaningful parameters related to reproduction 
and survival. In fact, in some instances, from measurements made external 
to the host, inferences with regard to parasite numbers inside the host car. 
be made. 

Obviously, the fu ll potential of model building in parasitology has not 
yet been realized. However, it is clear that a sensible mixing of mathematical 
and biological concepts may lead to Sensible and e\'en useful results. 

2. The Conditional Models 

(A) CONTINUOUS INPUT MODELS 

We consider the process of parasites gaining entrance to a host and we 
will concentrate, for the present, exclusively on the female parasites. Further, 
we observe the host at time t and we are interested in the number of progeny 
being produced by the parasites in the host at this time. 

Once having gained entrance to the host, the parasites are considered to 
undergo a maturation process, whereby the female becomes capable of 
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reproduction. To describe this process probabilistically we let Ct.(y,x) be 
the conditional frequency function of maturation time given that entrance 
occurred at time x, then the conditional probability that a female mature 
in the interval [y, y+ L\y] is approximately ::1.(y, x)L\y. We further assume that 
a parasite which matures at time y, produces offspring according to the 
probability generating function, p.g.f. , h(s, r,y) at time t ~ y, P<• 1,-...,'c c,· ;,1C:, 

Suppose now that the probability that an immature female parasite gains 
an entrance to the host during the time interval [x, x+ L\x] is approximately 
).(x)L\x, independently of the number of parasi tes already present in the host, 
t hen we arc led to the following postulate. 

Postulate l ·, 
The probability that a female parasite ente rs a particular host during the 

t ime interval [x +L\x] and matures in the interval [J', y+ L\y], x~y, is 
J.(x)'.t(y,x)L\xL\y+ o(L'lxL\y), where Jim o(L\xL\y)/L\xL\y = 0. This probability 

ti.x, t,.y-0 

is independent of the number of parasites already in the host. 
From the above assumptions we can now write down the p.g.f. 's for the 

two variables F(t) and P(r ), the number of mature females in the host at 
t ime t and the number of progeny being produced by these parasites. Thus 
the required p.g.f.'s are 

{

ty ' } 
f (s, t) = exp ff }.(x}x(y, x) dx dy (s- l) 

0 0 • 

and 

(1) 

p(s, t) = exp {II i.(x)x(y, x)[h(s, t, y)- 1] dx dy } , (2) 

'-J respectively. The p.g.f. (I) specifies a Poisson distribution with parameter 
I y 

ff ).(x}x(y, x) dxdy. It is also clear that the distribution of the total number 
00 

of female parasites, mature and immature, is also Poisson with parameter 
I 

f J.(x)dx. 
0 

From (2) we find immediately that 

I 1 O 
E{P(t)} =ff i.(x)'.t(Y, x)h'(l, t, y) dx dy, h'(l, t, y) = ~ h(s, t, y)I,= 1. 

0 0 OS 

At this stage an actual example may be informative. Supposing we have 
a constant Poisson input ). = J.(x) and that the function a(y, x) takes the 
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0 

fonn o:e-aC,,-x>, x ~ y, where o: is some posit ive constant. Then (1) becomes 

(s, t) = exp { l J ).,: e-a(,-x) dx dy (s- 1)} 

= exp {A(t)(s-1)}, 

(3) 

where A(t) = i.t+(J./a) (e-ar_ 1). Further, if t he generating function 
h(s, t, y) is Poisson with parameter y > 0, i.e. is independent of r and y 
then (2) assumes the form 

. p(s, t) = exp { 1 l !.ae-·"-''[•' ''- ''-1] dxdy} 
= exp {J\(t) [ er<s - t ) - 1]}, 

which is a Neyman Type A distribution with parameters A(t) and y. 
Notice that, since e .... > I +x for x ¥ 0 and /\(0) = 0, 

A(t) > i.t + ~(l-cxt-1) = O,t :> 0, 
(I. 

and we have a genuine distribution for t ~ 0. 

( B) DISCONTINUOUS INPUT MODELS 

(4) 

We now define the continuity and jump sets of [O, t]. If for x E [O, t], the 
process satisfies the conditions of postulate I, t hen x will be sa id to be a 
point of continuity of the process. The set of all continuity points, <'6, will 
be called the continuity set. 

On the other hand all points of [O, t] at which another p.g.f. is defined are 
referred to as jump points, the set of all such points being designated by f . 
The set f will a lways contain a finite num ber of points and ~ u f = [O, t]. 
It makes no diffe rence to the final results if all (or some) of the points of ,I 
also belong to <c. 

It is clear then that the contribution from <(J to the p.g.f.'s of F(t) and 
P(t) are results (I) and (2), which will now be written as fc(s, t) and Pc(s, r ). 
Now suppose that for 11 e / the input p.g.f. is g(s, 11) then, since the 
probability that a female parasite is mature at time t given that she gained 
entrance a t 11, is 

t f a(y,t)dy = A(t,t1), 
IJ 

the p.g.f. for the number of mature female parasites at 1 is 

g[l +A(t, t) (s-1), ti] = G(s, t1). 

.) 

L 
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T hus the contribution from cf to the overall p.g.f. for F(t) is 

f;( s, t) = CT G(s, tj). 
IJ<'.f 

Similarly, the co1ltribution off to the p.g.f. of P(t) is 
pi(s, t) = n Il(s, t j) 

11e.f where 
t 

) H(s, tj) = g[ l -A(t, tj) + J et.(y, t1)h(s, t, y)dy, t1]. 
,, 

IJ 

255 

T hus finally the total p.g.f.'s for F(t) and P(t) are fc(s, t)fj(s, t) = f(s,t) and Pc(s, t)p;(s, t) = p(s, t), respectively. 
There is a considerable simplification if the input is Poisson, for then if g(s, t1) = exp {;.(t)(s- I)} 

f(s, t) =exp~[ L i.(t 1)A(t, t 1) + j f ).(x):x(y, x) dx dy](s-1)} (5) l IJri.f O 0 
and 

p(s, t) = exp { L J.(t 1) [ -A(t, t )+ j a(y, t1)h(s, t, y) dyl + 

•# + jj l.(x)x;:, .,)[l,(s, I, y)- l J dx dy}. 
0 0 

(6) 

As an example, consider the situation discussed in the Summary where the host (a sheep) is given a massive dose of parasites (worms) a t time / = 0. In this case ((} is null and f = {O} and if the numbers of female larvae .-, gaining entrance follow a Poisson .distribution with parameter J.0 , 
,.. l 

• . ..../ f(s, t) = exp {i.0 I a(y,O)dy(s-1)} 

p(s, t) = exp { ).0 [ - l a(y, 0) <ly+ 1 a(y, 0)/r(s, t, y) dy ] } 

In order to obtain some explicit results we can assume, as before, that a(y, 0) = ae- 21 and h(s, t, y) = e1<•- 0 . It is now easily verified that under these conditions 
f(s , t) = exp {).0A{t)(s-1)} 

and 

p(s, t) = exp {).0A(t)(e7<•- 1>- 1)}, where 

--- · --- ~- ·----

/ 
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The primary objective of the abo\'e analysis has been to obtain general 
p.g.f.'s for P(t). For this reason, the emphasis has been on the numb~r of 
females ga ining entrance to the host, the probability of maturation and 
the offspring production of mature females. If a prime interest was in the 
total number of parasites in the host at t, irrespect ive of sex, l\'(t), we can 
Jct «5(x) be the rate at which parasites, male or female, gain entrance to the 
host at time x . Moreover {J(t, x) can be defined as the conditional probability 
that a parasite entering at time x is alive at ti me t. With these new defini tions. ) 
of the functions we can assume that the probability tha t a parasite enters 
during the period [x, x+t.x] and is alive at time t is approximately 
o(x)fi(t, x)t.x and in this way find the p.g.f. for the total number of live 
parasites at t to be 

nc(s, t) = exp { I o(x)fi(t, x) dx (s-1) }· (7) 

Equation (7) is the contribution of C(l to the p.g.f. of l\'(t) and, by similar 
reasoning to that used to derive f;(s, t), n;(s, r) can be defi ned and we find 
that n(s, t) = nc(s, t)n;(s, t). M oreo\'er, (7) suggests the possibility that with 
a continuous input system, an equilibrium population would be maintained 
in the host as defined by 

n(s,oo) = exp {1im j b(x)/J(t,~)dx(s-1)} . 
,_. tO 0 

If, for example, b(x) =band {3(1, x) = e-P<r-x>, then 

n(s,t) = exp U(t-e-11')(s-l)} 

In this case it is clear that n(s, oo) is Poisson with parameter b//J, the ratio 
of the input rate to ,the death rate. 

3. Antigenic Information 

Each parasite has an antigenic information trajectory (as described in the 
Summary) and we will assume here, for simplicity, that this trajectory is 
specified by the model 

u(t) = m(t)+ t(t), t ~ 0, E{t(t)1 = 0. (8) 

We assume that u(t) has a frequency function k(u, t) and, in order to 
-calculate the properties of the total amount of antigenic information present 
in the host, we need 

If 

/ 
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Postulate 2 

The probability t hat a parasite enters the host during the time interval 
[x, x+Llx] and that its information at time t lies in the interval (11, 11+Ll11] is 

o(x)fJ(t, x)k(u, t-x)Llx!l11 +o(!lx6u). 

From these assumptions it follows that the characteristic function, c.f., 
for the total amount of antigenic information in the host at time r is 

where 

Xc(O,t) = exp{l D(x)/J(t,x)[efi(O:t-x)-l]dx} · (9) 

co 

</>(O, t-x) = J ei8"k(u, t-x)du. 
- co 

Explicit inversion of equation (9) would be a difficult task in most cases, but 
the cumulants arc relatively easily obtained . In fact, if 1-j(t) are the cumulants 
specified by J.c and 11j(t) are the moments specific~ by 4>, then 

I 

Kj{t) = J D(x)fJ(t,x)11j(t-x)dx,j::?:: 1. (10) 
0 

Again we define a continuity set (ff and a jump set ,I and, clearly, the 
above results apply to re. If now g(s, t) is the input p.g.f. for female and 

. male parasites, then the contribution of ,f to the ovcraU c.f. is 

where 

xiC0, t) = IT xj(O, t), 
lft/ 

xj(O,t) = g([l+/J(t ,tj)(i;'>(O,t-t)-1)],t). 

( ' rbc c.f. then takes the form 7.(0, r) = xiCO, t)1.c(O, t). 
' We turn again to specific examples. Suppose, for instance, o(x) = o and 
P(t, x) = e-P(r-x>, p > 0, and k(u, t-x) = 17 e-~u 
then we find that 

where 

Xc(0, t) = exp {1 «5e-PC•-x>[(1-i0/r1)- 1 - l]dx} 

= exp {B(t)[(l- i0/11)- 1 -1]}. 

B(t) = (J/P)[l-e-P']. 

Since logxc(O,t) = B(r)[(I-i0/17)- 1 -1], it is clear that K1 =j!11-1B(t). 
On the .other hand, suppose the input is not continuous but instead is as 

described for the sheep earlier. In this case g(s, 0) = exp {i.o(s-1)} 

xAO, t) = exp Po /J(t, O)[ cf>(O, t)-1]} 
T.B. 17 

- - ·-...--·----·--·-.... ___________ .._. ...... . - ·, •- ---- . - --- ... ·-· - -· -···- -· ---·-
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and substituting the parametric forms of fi(t, 0) and ef;(O, t) used above 

r.AO, t) = exp {i.0 e-P1[(l- i0/11)- 1 
- 1]}. 

If Z(t) is the total amount of antigenic information being produced by 
parasites in the host at time t, then thejth cumulant of Z(t) is ).0 e - P1j!11-1. 

4. The Uncomlitional i\Iodrls 

So far we have been considering conditional (or personal) p.g.f.'s since 
they are specific for one particular host. In order to take care of the fourtl 
b1ological assumption of the Summary it is now nccessar,y to introduce a 
further generality. 

Once the arbitrary functions a(y, x), h(s, t, y) and {J(t, x) of equations (]), 
(2) and (7) arc parameterized for any specific problem, then the p.g.f. 'sf, p 
and n will be functions of some parameter sets 01 , 0P and On, say. The p.g.f.'s 
are i,ndividual in the sense that we will postulate that each host has his own 
particular values of the parameters concerned . To illustrate the ideas, we 
wiU takc/(s, t ) and write/(s, t !01) to emphasize the above point. 

In order to obtain unconditional p.g.f.'s for an arbitrary host drawn a t 
random from the popu)ation of all hosts, we assign a distribution function 
<Pj(0) to the vector 01. The unconditional p.g.f. f(s, t) is then given by 

, _ -~- J(s,t) = J f(s,tl01)d<I>/O), 
. n, 

where n, is the parameter space for O 1 . 

We now give specific examples to fix ideas. Equation (3), then, is written as 

J(s, tla:) = exp {[}.t + }.fa(e-"' - l)](s -1)} 

and suppose that a: has a distribution function 

" 
cl>1(0:) = J Pi e-p,x dx. 

r--, 
' ,) , _, 

0 

Then n1 = (0, co] and 
Cl) 

f (s; t) = J exp {[).t + },fa(e -,"- l)](s- l)}pi e -p•"da. 
0 

The above integral does not appear to allow explicit evaluation, although 
E{F(t)} and V{F(t)} can be fo und with little trouble. For example, 

Cl) 

J(t) = E{F(t)} = J [).t+J./a(e-"''- l)]p1 e-P•"da: 
0 

= J.t-J.p 1 1og ( l + t/ Pi). 

The above integral l(t) is negotiated by first differentiating the integrand 
with respect to t and then integrating with respect to o:. This procedure is 

.•.·: 

i 
L 
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justified since the integral defining I'(t) is uniformly convergent for all t. The 
requ ired expression is then obtainable immediately from I'(:) by a further 
integration. 

Similarly, in the case where an initial dose of female larvae arc given to 
sheep, as discussed earlier, we have 

.,...- ··, 
\ .' 

~ and 

co 

(s,t) = J cxp{).0 [1 - e-21](s-l)}p1 c- "1"do: 
0 

co 

E{F(t)} = J.o r (1-e-"')P1 e-P•"do: 
b 

).ot = ).0 [1-pi/(t+p1)] = - - . 
t+P1 

Suppose, now we consider the distribution of P(t) as specified by (4). Then 
if we Jct y be distributed exponentially with parameter p 2, we obtain for 
E{P(t)} 

co co 

E{P(t)} = J J [J. t +).fa(e-"1-l)]yp1 e-P•"p2e-P1Yd:1.dy 
0 0 

= [).t- J.p1 log(l + t/p1)]f P2 

and for the discrete input case 

E{P(t)} ""'J.o t/( t + P1)P2. · 

5. Discussion 

( ~1 The primary objective- of this paper is to indicate how general models 
.. describing the accumulation and reproduction of parasites in a host can be 

formulatcd. ~foreovcr, by considering discrete and continuous input systems 
a variety of situations can be dealt with simultaneo usly. Apart from the 
algebraic examples, the formulae are in a general form and it is found that, 
for instance, by suitably specifying the functions a(y, x), h(s, t , y) and 

! '· P(t, x), the concept that the control of parasite burdens is mediated around 
threshold levels of responsiveness as proposed by Dineen (foe. cit.) can be 
readily dealt with. 

I 
I 
! 
-: 

The next step will be to adopt the discrete input models to various studies 
involving the parasites of sheep. Careful choice of the parametric forms of 
the functions ~, h and {J will have to be made and the applicability of the 
models assessed from collected data. Ouce experience is gained with the simple 
discrete input models, a continuous input system for the grazing sheep can 
be examined. 

·~ 

I. 

,. 
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Clearly, a great deal of careful work lies ahead, both in the collection of 
suitable data and in the construction of satisfactory models. There will be 
considerable trouble finding uscable estimators of the unknown parameters 
of the models . Nc\·ertheless, it appears likely that initial stochastic develop­
ments may follow the lines presented in this paper. 

The authors wish to thank Dr G. S. Watson for his comments on an earlier 
draft of this paper. They arc also grateful to Dr John Dineen for discussions 
leading to the formulation of the models. ·,.) 
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ABSTRACT 

Since helminthic parasites must enter the human host fro m an external environment 
and cannot muhiply within !he definiti,·e host, the parasite popula tion al a given 
moment in the host may be characterized by an immigration-death process. The a rrival 
(input) of worms may be of either a r:rndom or a contagious nawre. A general model is 
developed and specific relevant discre te distributions are considered. The equil ibrium 
distributions arc regarded as the appropriate form to characterize worm popul:itions in 
hosts inhabiting endemic regions. An application of the model to an epidemiological 
problem is discussed. 

INTRODUCTION 

By definition, a parasite passes its life cycle within one or more hosts. 
:. That organism in which the parasite matures to the adult form is called the 
definitive host, other hosts being intermediate. This article is primarily 
concerned with helminthic parasites, that is, parasitic worms (e.g., 
schistosomes, hookworms, tape worms) that enter the definitive host from 
the external environment and produce olTspring in the form of eggs or 
larvae. These ultima tely move on to com plete the remainder of the cycle 
elsewhere. Since, subsequently, attention is restricted to tha t part of the 
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life cycle involving the definitive host, the process to be described is a 
population of\\orms that is subject to immigration and mortality pressures. 

Jt is obviously difficult to obtain detailed informatio n on parasites 
affecting human populations. The main source of reliable data concerning 
the breeding and survival potclllial of the worms \\'ithin human subjects 
is from autopsy studies. The limitations of these restricted studies require 
no emphasis. 

There is a pressing need for reliable mathematical models to assist the 
parasitologist with his work. So far, few such models have been developed . 
Hairston [21 proposed a deterministic model of the complete life cycle of · 
the digcnetic trematode ScMstosoma Japo11ic11m. Jn 1963, Tallis and ~) 
D onald [7] developed stochastic models to describe the distribution on 
pasture of the larval forms of intestinal nematodes of sheep. Subsequently, 
Tallis and Leyton [8] reported general models describing host-par:isite 
relationships and certain pertinent mathematical techniques were presented. 

In this paper, specific stochastic models for the size of a helminthic 
parasite populat ion in the definitive host arc developed. These models 
consider several types of input and survival mechanisms. In some cases, 
t he relevant disc rete distributions are too complicated to allow individual 
probability terms to be obtained explicitly. However, from the derived 
probability generating function (pgf), the mean and variance of each process 
are calculated as well as the probability that there is no infection. T he 
equilibrium distributions arc often more tractable, and these arc regarded 
as the appropriate form to characterize worm populations in hosts living 
in an endemic region. In the last section, an application of the models is 
discussed. 

It is stressed that the models de rived in the following apply to any 
homeotherm and, i'n particular, to man. The simplest meaningful set of 
biological postulates is used as a basis for individual models; and such 
factors as the death of the host, development of resistance by the host, 
competition effects on the parasite, and seasonal variations are dis­
regarded. Undoubtedly, further complicating assumptions may be 
required as experience with the various formulas accumulates under the 
specific conditions of application. 

RESULTS 

In order to isolate and emphasize the various models discussed in this 
section, it is partitioned into short subsections. The techniques that are 
Ma thtmatical Biosciences 4 (1969), 39-48 
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used in the derivations of the equations are wcIJ known and most of them 
are presented-in Feller [3]. 

Size of the H e/111i11thic Parasite Population in the Definitice Host 

Because of the form of the life cycle spent outside the defin itive host 
by various forms of par:1sites, the rencontre of host and infective forms of 
the parasite is truly a random event. Let i. be the " exposure rate" of the 
host, th:1t is, the average number of infective contacts per unit time; then 
we assume that the prob::ibility of an exposure occurring in time :it is 
). 6.t + o(Clt). This assumption implies that the number of infective con-

. :' · ·; tacts of the host by time t is Poisson with parameter i.t. 

0 

Suppose now that the number of parasites that gain entrance at each 
infective contact is a random variable N with pgf h(s); then the number of 
worms that have eutered the host by time t has pgf 

L(s, t) = exp{i.t[h(s) - l]}. (1) 

At this stage, it is appropriate to introd uce the "death fu11ction'' f(t), 
which is the frequency function for the survival time of the parasite once it 
is inside the definitive ho5t. Thus, M(t) = 1 - F(t) , F(t) = J~ f(t) dt, is 
the probabil ity that a parasite entering the host at zero time survives to 
time t. Consider the 11-partition of the interval [O, t], 10 = 0, 11 , ••• , 

!0 = t, where t; - 1;_1 = l:lt = t/11. Concentrating on the ith sub-
interval , the pgf for the number of parasites entering the host during this 
interval and surviving to time t is 

[I + ~t?.{h[l + M(t - i;)(s - I)] - l} + o(ut)]. 

From the forego ing pgf, and using the independence of the exposures, we 
can show that the pgf for the tota l number of live worms in the host at 
time t is 

' 
TI(s, t) = exp(1.f {lz[l + M(t - x)(s - 1)] - 1} dx ). (2) 

0 

It is now easily veri fied that the first two factorial moments of the process 
are 

·t 

µ(t) = J.R J M(w) dw, 

0 

' ' 
µc21(t) = }./i"(l) Ji,1 2(w) dw + .i.2R2(J M(w) dw)2 (3) 

where R =!,'(I)= E(N). 
0 0 

Mathematical Biosciences 4 (1969), 39-48 
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(0 

µ( oo) = i .,~r \!(w) dw 
0 

CIO 

= i.R J [ l - F(w)] dw = ).tV,\] (4) 
0 

where Ai is the average life-span of the worms in the host. T hus, µ( oo) is the average inpu t times the average length of life of the worms. Certa in specia l cases will now be considered. (1) Random input and age-i11depende111 death rate. This is the most elementa ry model ; it assu mes that parasi tes enter independently with intensity ). and that the life-span is exponentially distributed with pa­rameter ft. This situation corresponds to a time-homogeneous linear im migra tion-death process (Cox and M iller [2], p. 168). Thus, (2) specializes by setting li (s) = s and M (t - x ) = e:xp[-1,(t - x)] and it is fo und that 

Il(s, t) = exp{; [I - exp(-µt)) (s - 1)}, (5) 

which specifies a Poisson distribution with parameter (i.fl,) [ I - exp( - ft ! )]. Clea rly, TI (s, co) is Poisson with parameter ;.fl-1, which agrees with (4). (2) Random input 1rit/z agc-dcpe11dint death rate. H ere it is assumed tha t the life-span of the parasi tes has d istribution function 

. I' µ., F(t) = - x 1
-

1 exp(-1tx) dx, f(y) 
0 

and, again, !,(s) = s. Clea rly, the process is still Poisson with pa rame~er 
I ,o 

l f [1 -JL y1
-

1 exp(-µy) dy] dw • f (y) 0 0 
and 

Il(s, oo) = exp[: (s - l)l 
Mathematical Biosciences 4 (1969), 39-48 
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(3) Contagious input and agc-i11dcpc?11de11t death rates. Equation (2) 

will now be exa;nined by setting ,\J(,r) = exp(-.mr) and using various 

fo rms of h(s). Where necessary, t he distributions have been truncltcd to 

remove the zero class. F irst , Jet /z(s) = ps/(1 - qs), p + q = 1, the 
truncated geometric distribution. Now 

I 

rl.( ) (;,J{ p [l +(s-l) exp(-1tw)] } ) s, t = exp . ----------- - 1 dw 
l - q[l + (s - I) exp(-µw)] 

0 

= [p - q(s - 1) exp( - µt)J l / µo 

1 - qs 

after some a lgebra. From (6) the mean and var iance a re found to be 

A 
µ(t) = - [I - exp(-µt) ), 

µ p 

a2(t) = ~ (1 - exp(-µr) ][l + q exp( - µ t)]. 
µp- -

(6) 

The fo regoing formub s arc m ost easily obta ined by substitutin g s = e0 in 

In Il(s, t ) to obta in t he cu mulant generat ing fu nct ion, and the first two 
derivatives evalua ted at O = 0 give the requ ired results. The equili br ium 

distribution is 

Il(s oo) = --( 

p ))./;1q 
, · I - qs ' 

which is negative binomiai with mean J./pp and variance }.lf,p2• T he 

probability tha t there arc no parasites in the host a t time t is 

... . Il(O, 1) = [p + q exp( -,utW/J•o. 

Q In the case of the log series distributio n, h(s) = -,: In (1 - {Js),,: > 0 
and f3 = 1 - exp(- l /,:) bu t n takes the somewhat unmanageable form 

t 

Il(s,t) = exp[).J(- ~ln{ l - /J[I + exp(-1iw)(s - 1)1} - l )dw]. (7) 
0 

However, 

· [ (1) Jl - exp( - µt ) 
µ(t) = e1.i. exp ; - l Jl 

and 

«r(t) = µ(t) + o:,{ exp(; ) - I r 1 - ex:;-2µt) ' 
Mathematical Biosciences 4 (1969), 39-48 
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as may be verified by converting 11 to cumubnt genera ting fu nction form 
as above. The zero class has p robability 

' 
TI(O, t) = cxp (a}.1 - C1.}.f ln{I + fi[l + exp(-µw)]} dw). 

0 

It ca n be shown afte r some al!!cbra that 

.J..Y-J1i L -<-~ 1)<~-1)} 

TI(s, oo) = exp[ - ~· f In(! - y) d:J. Q 
0 

from which the expression for TI(O, co) is readily written down. lt can also 
be verified that as ,;t. tends to in fi nity, (7) approaches (5). 

_Suppose tha t h(s) is a truncated Po isson distribution 

h(s) = exp [17(s - 1 )] - exp( - 17) ; 

1 - exp(-17) 

then proceeding as earlier it is found tha t IT(s, t) assumes an unmanageable 
form. However, it turns out tha t 

i.17 
µ(t) = . [1 - exp(- µt)], 

µ[l - exp(-11)] . 

! J.,72 
o- (t) = 1,(1) + - ---=-- - [l - exp(-2µt)], 

2µ[1 - exp(-11)] 
I 

n( ) _ [J.J {exp[-17 exp(-/lw)] - I} dw] 0, t - exp . .,__..:._;____,_~ -'----'-''-__.:,- , 
1 - exp(-17) 

0 

and as 17 tends to zero TI (s, t) tends to (5). Instead of presenting an explicit 
forinula for TI (s, co), we will develop a general result. 

Consider the expression 
, 

!~exp[}.J(/,{I + exp[-1,(t - x)](s- 1)}- l)dx] 
0 

00 

= exp(;.f {h[l + exp(-1,w)(s - 1)) - 1} dw); 
0 

then, concentrating on the term in the exponent, make the transformation 
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HELMINTHIC PARASITES 45 

J + exp(-µw)(s - 1) = v. The term becomes 

I k 

t ft f_ 

E[N] 

Wh1CA 

1 

3 I h(v) - I dv 
µ 1- V 

' 

f!. 'r1; < --

CC{S"-<_ 

1 

oO 

II [
). I lz(v) _ 1 J (s, oo) = exp - --'-'--- dv . 
µ 1 - V 

' 

(8) 

As an illustration, we return to the case where h(s) is a truncated 
Poisson. It is found then that 

1 

II( ) {
). J exp[17(v - I)] - l d } s, oo = exp - v . 
µ (1 - exp(-7]))(1 - v) 

' 
Mathematical Biosciences 4 (1969), 39-48 
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Moreover, from (8), 

G. M. i"ALLIS AN'.) M. K. LEYTON 

,,< oo) = I Iv, 
µ 

as may be verified by differentiating rl(s, cc) with respect to sand letting 
s - >- I. Thus, for the truncated Pohon, 11(00) = i. 17/,u [l - cxp(-17)]. 

A gcner:11 result can be established for (2) in a simil:1r way. Suppose ,V and /17 arc both finite, as assumed in th..: deri\·ation of most of the fore­going formulas; then, working with exponen t of (2), 
I ). f {1,(1 + lvl(w)(s - l )] - l } dw 

0 
I 

=). I {Jp + M(w)(s - I)]"pn - I} dw 
0 

I 

< J.(I - s)f I (I - F(w))IIJJn dw ~ .?.(I - s)/i?R 
- o ~- o f."' 1),/ f. I • 

since (1 - lxl)n < 1 + 11 lx[Jl The inequality above holds for all t and, hence, the limiting pgf fl(s, .:c) exists. By an obvious application of the continuity theorem ([3], p. 262), the limiting distribution also exists. 

AN APPLICATION 

The relatio11ship of prernle11ce to disease sererity 
The parasitologist is careful to distinguish between infection, the presence of a parasitic organism in the host, and disease, which is reccg:1izcd by certain symptoms in the host. A characteristic of most helminthic parasites is that the severity of the disease is proportional to the number of parasites in the host. Few hookworms need to be present for eggs to be found in a perso n's feces, the common diagnostic test, whereas for the subject to show hookworm symptoms, it appears that the infection must consist of at least a hundred worms. 

The question arises: Under what circumstances can a population have almost 100 % infection and exhibit no hookworm disease? This point was raised by Dr. E. Schiller af1er a health survey in the Ilandipur Union, West Bengal, India. Schiller and Chowdhurry [5] found a high percent­age of infected people but a low incidence of the disease. 
Mathematical Biosciences 4 (1969), 39-48 
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The converse question is also of interest: Under what conditions can 
there be a low percenlafC of infection but severe disease among those 
infected? Parasitologists offer severa l biological interpretations of th ese 
phenomena. Here, however, we show tha t these situations can be explained 
by purely statistical a rguments with 1hc aid or models derived earlier. 

As an example, if the B:rndipur district under consideration ca n be 
considered an endemic region, then ,,·e can apply the negative binomial 
distribution, which is the limiting distribution of (6) . ll is subsequent ly 
conven ient to find the average number of worms per infected individual 

/ •• · -
1 
and the truncated distribution specified by the pgf. For this purpose, 

' · ., I 

[p/(1 _ qsW'fM _ plfµq 

I - l ·'1' 1 

will be used. The requ ired mean and variance are 

( ) 
)./µ 

µ CIJ = ---'-'---
p(I - p'·fM) 

and 

For a high proportion of infection but low severity, the probability of 
no infection/./µ? should be smal l. Remembering that I /p is .. the average 
number of worms ente.ring per exposure, we would expect this average 
to be small, say 2. That is.p = q = 1/2andl1µq = (I /2f;.fµ. If i./,ii > 5, 
then the probability of no infection is 1/ 1024 and more than 99 ~~ of the 

(. ) population would be infected. The average number of worms per infected 
· individual would be 10[1 - (1/2)10J-1 '.::::'. 10. The variance is 20 and 

standard deviation about 4.5. Thus, there would be little disease present. 
In the case of a low proportion of infection with high severity, the 

average number of worms per exposure could be high, say 256, and ?.f f.l < 
1/8. Now /·1µ 0 '.::::'. 1/2, the average number of worms per infected in­
dividual would be about 64 and the standard deviation 120. Thus, 
infected people would often have the disease severely. 

These examples are enough to emphasize the possible use of models to 
explain some of the stochastic behavior of parasitic disease. Obviously, 
the formulas are an adjunct to, not a substitute for, sound biological 
thinking. 

Mathematical Biosciences 4 (1 969), 39-48 
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Further Models for the Distribution on Pasture of Infective 
La rvae of the Strongylo id Nematode Parasites of Sheep 

G. M. TALUS 
Divisio11 of ,'vfnrhcmarical Sraristics, 
C.S.l.R.O. Newtown, N.S. W., Australia 

A. D.DONALD 
Divisio11 of A11imal Healrh, 
C.S. l.R.0. McMaster Laborarory 
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. . ·· ABSTRACT 

T his paper discusses a general approach to the problem of constructing useful 
models for the distribution on pas ture of infective larvae o f sheep nematode parasites. 
The work is rel:\led to earlier results obta ined by the authors. and modifications are 
introduced as a result of practical expcrie:1ce with the original models. An explicit 
form for the function f(t ), the probability that an egg reaches the infective larval 
stage in time t , is derived. The new version of / (r) has components with direct biological 
interpretation. 

INTRODUCTION 

I ri earlier papers [5, 6], stochastic models were developed to describe 
the distribution on pasture of the infective larvae of some nematode para­
sites of sheep. These models were based on current knowledge of the 
distribution of fecal deposits in a paddock and on the assumption that the 
distribution of eggs between fecal deposits is Poisson. Subsequent 
experience [2, 4] has led to modifications in the original postulates and 
it seems appropriate at this stage to redevelop some of the previous results 
in the light of the present ideas. 

Studies of fecal distributions on paddocks of different sizes carrying 
varying numbers of sheep have emphasised that deposits are definitely 
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nonuniformly distributed over the total area. HO\vevcr, it seems possible 
to divide tbe p addock into Sl! ba reas withi n which the distribution is, to a 
good approxima tion, unifo rm , although the re may be considerable between 
a rea differences in concentration due to the grazing and resting habits of the 
fl ock. 

With this informatio n in mind, it is the prima ry purpose of this paper 
to develop co mpletely general distri butions fo r the number:; of larvHe in 
the various suba reas o f a paddock carrying S sheep. From these expres­
sions certain reasonable simplifica tions will be introduced to make the 
formulae useful in practical investigations. Most of the argument is 
ca rried through using the general forms for the means and variances of 
the various processes. 

In the sequel we pay particular attention to the fu nctionf(t), which is the probability tha t a n egg dropped onto the pasture a t ti me zero is in the 
infective larval stage on the herbage at time t. Explicit expressions for f(t ) are derived fro m u nderlying biological hypotheses to give the for­
mulae fu rther interpretational value. 

RESULTS 

Distribution of the Total Number of !11fecti1:e Lan·ae on Pasture. 
Let the p addock under considcrntion be of area A and suppose S sheep a rc 
introduced a t zero time, T = 0. In accordance with the Introduction, the 
paddock is divided into k plots of a rea A1, I J-i A; = A. Within each plot 
the defecation pattern o f the fl ock is such that fccal deposits a re app rox.i­
mately uniformly distributed over the area. I nitia lly we focus attention on 
plot j and sheep i . 

Let the n umber of eggs per fccal deposit for the ith sheep at T = x 
be a random variable with probability generating function, p.g.f., gi(s, x) 
with mean 

l ,(x) = g;(l, x) 
and variance 

a;(x) = g;(l, x) + J,(x) - i.;(x). 

N ow define the step functio n N,;(t) as the total number of fecal deposits 
associated with the ith sheep on plotj by T = t, and letf(t) be as defined in the Introduc tion. Then the p.g.f. for the number of live larvae at T = t 
emanating from a deposit dropped a t T = x is 

hi(s, x , t) = g,{[l + f(t - x)(s - I)], x}, 

and the p.g.f. for the total number of Jive larvae on plot j due to the 
Mathematical Biosciences 1 (1970), 179- 190 
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ith sheep at T = t is 
I 

,Pi(sJ, t) = exp{J1og lz,(s;, x, t) dN;,(x)}. 
0 

181 

(1) 

Formula (1) assumes ~tochastic independence between the numbers of eggs 
in the deposits. Altho ugh this assurnp1 io11 can be made pl au~ible by some 
mathematical a rgument, the de ta ils \\·ill no t be presented since 1liey a re 
somewha t invo lved . The restriction of inde pendence is, of course, easily 
removed at the cost of increasing the complcx.i1y of the expressions and 
the estimation procedures. 

Simila rly, the p.g.f. for the number of larvae on plot j due to the S 
sheep is 

' 
cp(s1, t) = exp{JJ log[/i;(s1, x, t)] dN;i(x)}, 

0 

and the j oint p.g.f. for all k plots is 
k 

</>(s, t) = IT <fo(s1, t). 
J• l 

(2) 

(3) 

If the prime interest is the total number of larvae on pasture, then the 
appropria te p.g.f., ef,(s, t) is obtained from (3) by setting s; = s fo r allj. 

Equa tions (I), (2), and (3) give the required expressions in the most 
general form, but lbcy are of li mited practical value sin(:e, for instance , the 
step fu nctions N1,(t) must be known. Below, some reasonable simplifica­
tions arc introduced to illustrate the use of the various p .g.f.'s. However, 
before proceeding, general expressions fo r the means and variances of the 
various processes a re obtained. 

Let L1(t) be the number of live la rvae on plot j a t T = t, then 

. .~ J' 
E{Li(t)} = ;; }.,(x)f(t - x) dN;1(x), 

0 

t 

V{L1(t)} =I f Vi(x, t) dN,1(:c), 
{ u l 

0 

where V;(x , t) = a;(x)F(t - x) + }.;(x)f(t - x)[l - J(t - x)]. 
If L(t) is the to tal number of la rvae on the whole paddock, then 

k 

L(t) = lLit), 
1~ 1 
k 

E{L(t)} = L E{L;(t)}, 
;-1 

(4) 

Mathematical Biosciences 1 (1970), 179-190 
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and 
le 

V{L(t)} = 2 V{L;(t)} . 
1~ 1 

In order to simplify (4) to a manageable approximation set 

s 

and 

Sl.(x) = 2 },;(x), 
i = l 

s 
Sii(x) = 2 a;(x) , 

f e. l 

Nii(x) = 11,x, 

where n1 is the daily focal output per sheep on plot j averaged over all 
sheep; tl1en 

t 

E{L1(t)} ~ S11J 1.(x)f(t - x) dx, 

0 

t 
(5) 

V{L1(t)} ~ snJ i,'(_x, t) dx, 

0 
where 

V(x, t) = a~(x)/2(t - x) + l.(x)f(t - x)[l -f(r - x)]. 

By suitable sampling, estimates of the functions n1 , 1.(x), and «:'f(x) 
must be obtained fo r values of x in the range of interest. The integrals 
can then be approximated by numerical quadrature .. provided j(t) is 
known. 

The amount of work required to carry out the preceding estimation is 
considerable and, at best, tedious. Some further assumptions ,viii now 
be made which should facilitate the applica tion of (5). 

Let Z;(x) be the random variable associated with g;(s, x), and suppose 
that the weight of each fecal deposit, IV, is a random variable. Then for 
fixed W = w Jet g;(s, x) be Poisson with parameter 

J.;(x) 1 w = wy;(x). 
Then 

E{Z,(x) I w} = wy;(x) 
and hence 

J.;(x) = E{Z;(x)} = E(W)y;(x) 
and, similarly, 

a;(x) = V{Z;(x)} = y;(x)E(W) + y~(x)V(JV). 

Mathematical Biosciences 1 (1970), 179-190 
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Jn order to .use (5) under the ass umptions above it is necessa ry to 

estima te £( IV) and V( W), £( IV), and i?UV) say, for the flock of sheep. 

Then, since i';(x) c:m be estimated for each sheep by standard methods . 

average values of i.(x) and az(x) are easily obta ined at different time points. 

The integ rals in (5) ca n then be approximated by numerical quadrature. 

A Mode/for f(t). The function/(r) is of some biological interest in its 

own right. Conside r the elementary flow diagram in Fig. I. 

FECAL PASTURE' 

DEPOSIT HERBAGE 

EGG X1 
INFECTIVE 

LAflVA 
X2 EJ 

q 

FIG. 1. Elementary now diagram. 

(i) q is the probability that an egg docs no t get to the herbage as an 

infective larva and p = l - q is the probability that it will. 

(ii) Given that a n egg completes development to the infective stage and 

the resulting la r\'a migrates to the pasture, X1 is the time taken for develop-

ment and mig ration fi:om fcca l deposit to herbage. . ... 

(iii) X 2 is the length of li fe as an infective larva on the herbage. 

Suppose tha t X 1 and X2 have distribution func tions <I\ and <l)z and arc 

indep endently distributed, then 

' 
f(t) = p f [1 - <l>(t - x)] d<D1(x). (6) 

0 

l . The assumption of independence is not necessary , but a more general 

1 approach leads to complexities of estimation which arc not pursued here. 

! In order to establish (6) let A be the event th:1t ari egg never develops 

into a la rva that completes the migration process to th \! grass. Thus 

Pr{A} = q and Pr{A} = p, where ,,f is the complementary event to A. 

Define the set 

S = {X1, Xi; 0 ¾ X1 ¾ I, I - X1 < X2}, 

Marl,ematical Biosciences 1 (1970), 179- 190 
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then 

J(t) = Pr{cgg develops into an infective lan·a alive at time t I A}q + Pr{cgg develops into an infective !arm alive al time t j ,-I}p 

= p J J d<l\(x) d<l>ix) 
s 

I 

= p J [1 - <l>lt - x)] d<l>1(x). 
0 

If f *(s) is the Laplace transform, L.T., of f(t), then 

f *(s) = ps-1</,i(s)[l - ef,;(s)], (7) 
where c/>7(s) is the L.T. of </>;(x), the derivative of <1>,(x) wh ich is assumed 
to exist. 

From (7) it is easily verified tha t 
co 

µ, = J t'f ( t) clt 
0 

r 

= pr! L /'~lll'~!'i-n/11!(r + l-11)! (8) nq O 

and also lim sf*(s) = 0, implying lim/(t) = 0. In (8) , 
1-0 I -«> 

co 

,,::> = J xn dct>,(x), 
0 

and it is interesting to no tice tha t the area under/(t ) is p.u~' >. The moment 
equations specified by (S) a re useful for fitting/ (t) to data, as illustrated 
below. 

Fitting the f (t) M odel to Empirical Data. Empirical estimates of the 
function f( t ) have been obtained in the course of field ecological studies. 
which will be reported in detail elsewhere, on the free-living stages of 
Trichostrongylus colubriformis and Hcemonclms contortus, two important 
nematode parasites of sheep. Donald [4] has given a preli minary account 
of some of this work, including the methods used. Brieliy, a known amount 
of sheep faeces conta ini ng parasite eggs is scattered on a small plo t of 
pasture. Estimates a re made initially of the total number of eggs of each 
species placed on the plo t , a nd at weekly interva ls the nu mbers of infect ive 
larvae present on the herbage are estimated from samples. Point esti­
mates of the func tion/ (t ) a t weekly interva ls a rc obta ined by dividing the 
Mathematical Biosciences 1 (1970), 179-190 
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numbers of infective larvae recovered at ti me t by the num ber of eggs 
exposed on the plot at t = 0. Deginning in Ju ne 1967, a fresh plot has 
been set up every four weeks and hcrb:ige sampli ng of each plot has con­
tinued until at least three consecu tive zero recoveries ha\'e been obtained 
For the present purpose of ill ustra ti ng the fi tti ng of the model, data fo r 
T. colubriformis from each of four plots have been selected as representa­
tive. 

·10 

·09 

·08 

·O 

·06 

·05 

·03 

·02 

·01 

0 2 6 8 10 12 14 16 18 20 22 24 

(a) 

Flo. 2. Plots of the observed and fitted values of f (t) for the four groups. 
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·OS.--------------------------. 

·03 

·02 

·01 

0 2 4 6 8 10 12 14 16 18 20 22 24 
F10. 2c 

·04 

·03 

·02 

·01 

0 

FJG.2d 

In order to fit (6) to these data assume that 

then 

f (t) = p [!(at, 1/1) - !(at, Y1 + Y2)J, 

22 24 

where /(x, y) is the incomplete gamma function . The first three moments 
are 

Trapezoidal approximation to p1 can be calculated using the formula 

µ, = ½ I []Cti+l)t/+1 + ]Ctj)t:J(ti+l - t;) 
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DISTRlDUTrON OF INFECTIVE LARVAE 187 
for j = 0, 1, 2. The values of f(t) must be estima ted al cql1ally spaced time points as described above. 

Set a/io = J and define iU) = /'1Ji/1~+1, then 

'92 = [t + 12[i(2) - i(t)2 + i( l)Jl1
'
2
, 

and 

• '(l) (92 + 1) )'1 = I - 2 • 

J?r, I ft= - . 
92 

Other methods of selectin g a can be used, but t he one chosen above is 
very convenient and seems to produce satisfactory results in pr:icticc. 
There does not appear to be a simple way of using another equation , 

TABLE I 
REQUI RED STEPS TO FIT /(t) BY THE METHOD 01' MOM£1''TS 

2 3 4 

fi, 0.866920 0.148050 0.321000 0.242340 fl , 5.311 610 1.380660 ~.066130 2.523 180 
/J1 43.240090 13.818520 35.586030 30.365 180 
i (l) 7.067538 62.989755 29.756403 42.963339 
i(2) 66.366593 42S8.30()..I I 0 107S.881509 21 33.53SS26 ;,. 10.63$966 52.2706 13 43.922382 54.200773 f, 1.246055 36.354449 7.295217 15.362953 p 0.093994 0.019131 0.022767 0.01 8500 
E{A\} 1.08 1964 5.382276 2.341 765 3.723058 E{.f,} 9.223132 7.738664 14.099085 13.135015 

µ 3 , to obtain a better fit. Notice tha t E{X;} = yJa is an important param­eter in determining the relative influences of each stage of the pasture 
cycle on J(r). The observed and fitt ed J(r) function for the fo ur plots are sbowo in Fig. 2 and the appropriate steps in the calculations of Ji, Yi, 9, and E{X;} are given in Table I. 

DISCUSSION 

In their original models, T allis and D onald [6) proposed a negative binomial model fo r the distribution of fecal deposits on whole paddocks 
grazed by sheep. From investigations on the distribution of fecal deposits, 
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Donald and Leslie [4] concluded that, although the negative binomial 
provided a reasonable empirical description or the distributions , there was 
some evidence of dcpanure from the model a t a low rate of stocking. 
More importantly, howe\'cr, the hypothesis that the distributi on of fcccs is 
additiYe and indcpendent with re$pect to time was fo und to be unaccept· 
able. This find ing arose from the tendency shown by flocks of sheep to 
deposit heavy concentrations of fcccs in the s:1me circumscri bcd area of a 
paddock duri ng consecut i\·e resting periods. Donald and Lc$lie [4] 
concluded that , in the presence of hctcrogene:tics of pasture and topog­
raphy, the known tendency for subfiock formation in large l1ocks ::ind t he 
diffe rent bchavior patterns of different age classes of sheep, it seemed 
doubtful whether any simple two-parameter probability distribution could 
adequately describe the distribution of feca l deposi ts in all situations. 

The presen t model overcomes these difficulties by using the general 
forms for the means and Yariances of the diffe rent p rocesses a nd is there­
fore much more flexible. It has the added adva ntage that particul:l r sub­
areas of paddocks are easily considered separately. For example, there is 
some evidence tha t sheep do not graze on resting areas ( or "camps") 
while these a reas ca rry heavy concentrations of freshly deposited fcces 
but may do so later when such areas have ceased to be used for resting 
[I, 4]. Thus, when potential rates of infective b rva l intake by grazing 
sheep a re being considered, it may be necessary to derive separate estimates 
of infective larval abundance for grazing and resting a reas , respectively. 

Turning to the model fo r J(t ), this is a considerable advance over the 
original models of Tallis and Donald [6] in which this component was 
left to be estimated empirically. T he parameters p, E(X1) , and E(X2) 

have simple biological meaning, and it would not be difficu lt to design 
experiments to estimate them independently. The fit of the model to the 
four sets of d ata, shown in Fig. 2, appears reasonable, particularly if the 
error varia.nce of the estimates, which is unavoidably ra ther la rge, is taken 
into accounl. Ead1 ewpil"ical point estimate of /(t) is the me:in of four 
samples and an average standard error of .01 for each sample mean has 
been calcula ted . 

During the course of the field studies from which the data used to 
illustrate the fitting of the /(t) model were derived , some independent 
evidence was also obtained relating to £(X1) , namely, the average time 
taken for development to the in fective stage and migration to the he rbage. 
When herbage samples were collected each week, the associa ted fecal 
material was a lso collected , and estimates were made of the nu mbers of 
surviving eggs and preinfective Ia rrne which had not yet completed develop­
ment to the infective stage and of su rviving infective larvae wbich had not 
yet mjgra ted from the fcces . These da ta are presented in Table II in the 
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TAD LE 11 
ESTl~IATES OF THE A VF.RAGE Tl~IE TAKES FOR DE\'ELOPME:S"f TO 

TIIE 1:-fECTIVE STAGE A:S'D MIGRATIOS TO TIIE HCRl!AGE 

DERIVED FRO~! FIT1'1 :SG TIIE f(t) ~10DcL CO~ll'AREO WITH 

li.STl~IATES OF ~IAXl~IUM DEVELOP~IEST A:SD MIGRATION TIMES 

189 

) OBTAINED FROM EXAMISXTION OF FECES 

' I 
• I 

i 

. 'j 

·i 
r 
l 

} 

j ) 

i 
I I > 

' 

''Development "Migration 
E{i,} completed,''• completed,'·• 

Plo t (weeks) by week by week 

1 1.03 2 3 
3 2.34 2 6 
4 3.72 2 13 
2 5.38 6 JO 

• For explanation, sec text. 

form of times recorded for the completion of development and of migration 
for the majority or eggs originally present in the sample. The former 
estimate represents t11e first weekly sampling at which no viable pre­
infective stages were recovered, and the la tter is the first sampling at which 
no infective larvae were found in the feces. Because the estimate of 
E(X1) derived from tlie fitting of f(t) is an average value whereas the 
estimates of development and migration times obtained from fecal samples 
represent maximum values, they are not directly comparable. However, 
inspection of Table II reveals at least that tliere are no gross anomalies. 

The f(r) model may be particularly useful in two situatious. First, 
est imates of the parameters derived from fitting the model might constitute 
suitable dependent variables for the application of such techniques as 
multiple regression analysis against components of environment. Second, 
simulation studies with the whole model will be greatly facil itated if various 
forms of the function/(!) can be generated by choosing parameter values 
appropriate to particular sets of climatic and other environmental condi­
tions. 
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ADSTRACT 

209 

The life cycle of the sheep parasite I Iaemonchus contor111s has two phases: the devel­
opment to matmi1y of ingested larvae in the sheep, and 1he de\'elopment on the pasture 
of eggs excreted in fcccs. The development in time of a parasi te population of several 
larval stages is discussed for each of these pha~s. A system of linear differential equa­
tions with constant coefficients links the two phases in a complete life cycle. The egg· 
laying behavior of the parasites and the immunity reaction of the sheep to the presence of 
parasites is also discussed, the treatment being deterministic throughout. 

1. INTRODUCTION 

The development in sheep of the parasite Haemonclws co11tort11s 
[I-4] takes place ·in several stages. The parasite is ingested from the 
pasture in the third larval stage L3. It develops to the early and late 
fourth larval stages L4, and finally to the adult stage. Sexual differentia­
tion occurs at the late IA stage, while the female adult stage can be further 
divided into nonegg-laying, or immature, and egg-laying, or mature, 
stages. These observable stages form the basis of a deterministic compart­
mental model that has been used in a study of the parasite. 

This model is given here and is extended to describe the egg-laying 
behavior and the retardation of the development of the parasite population 
due to immunity acquired by the host. On the pasture the parasite develops 
from the egg to the L3 stage. This development is given mathematical 
treatment and a model is derived for the complete life cycle. 
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2. PARASITE IN THE SHEEP 

Suppose tha t the parasite population in a sheep at t ime t is described 
by the numbers x;(f), i = 1, . . . , 5, of parasites in the five stages L3, 
early L4, late L4, immature adult, and mature adult, respectively. For 
simplicity we ignore for the moment the splitting of the popul a tion into 
sexed stages. We suppose that the instan ta neou:; rate a t which parasites 
leave a stage to enter the next is proportional to the nu mber in the srnge, 
and tha t the ra te a t which parasites in a given stage die is a lso proportiona l 
to the number in the stage; i.e. , the number of parasites " sk ipping' ' 
from the ith stage to the (i + l)tb stage in a small time interval Of is 
).,xh) Of and the number of parasites dying is f,t;xl t) M. The behavior of 
the system is then described by the differential equations 

X1 = -K1X1 , 

X2 = i.1X1 - K 2X 2, 

X3 = .l.2X2 - K3X3, 

.X4 = .l.3X3 - K4X~, 

{l) 

Here K 1 = )., + /t 1 and K 5 = µ 5• 

T hese equations may be written in ma trix form 

x=Ax (2) 

where A is the matrix of coefficients in Eqs. (1 ). We may give the pa­
rameters another interpre ta tion. Thus, from (2) 

x = A- 1x. 
So 

a, f x(t) dt = A-1[x(co) - x(O)]. 

0 

since the K 1 are positive. A- 1 may b e evaluated (see Section 7), giving, 
for the case of a single initia l dose of N L3 larvae, 

f
a, N fa, i.1 Ja, J.1 • • • J., 
xi(t) d t = - , x2(t) dt = N - , . . . , x5(t) dt = N -=---_: . 

0 K t O K1K2 0 Kl • • • K5 
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Now the total number of worms entering the k th stage, k > I , is 

Cl) 

).~ l J X1-- 1(t) dt , 
0 

so the total numb er of worms ul timately en tering t he k th stage is 
N().1 • • • ?.1;_1)/ (K1 • • • K,_._ 1). Thus ?.,../K1; is the fraction of the to tal number 
of larvae entering the kth stage that survive to enter the (k + l)th stage, 
k = 1, . .. , 4. T he prese nt model can be made stochastic, in which case 
J.1;/K1; becomes the p robability that an individu:!I larva survives the k th 
stage. 

The pa rasite p opu lation may be s tudied experimentally by giving the 
sheep a dose of N L3 larvae a t time t = 0. The initial solution vector 
x(O) of (2) is then given by x1 (0) = N, x ,(O) = 0, i = 2, . . . , 5, and the 
complete solution of (2) is 

x(t) = eA1x(O) (3) 

= T d 1ag[cxp( -K1t) , . .. , exp(-K5t )JT- 1x(O) (3a) 

for some nonsi ngular T, provided the K; a re distinct , Bellman [5]. 
If several doses a re administered a t intervals , or if there is continuous 

ingestion of L3 larvae a t a known rate, the solution of (2) is 

I 

x(t) -: eA1 ( x(O) + J e-A• d\V(s)) . (4) 
0 

W(s) is the cumula tive vecto r inp ut function , given, in t his case , by 

W'(s) = ( W(s) , 0, 0, 0, 0) 

where W(s) is the number of L3 larvae ingested in the time interval 
(0, s]. An explicit expression for t he ma trix exponential eAI appearing in 
exp ressions (3), (4) is given in Lemma 1 of Section 7. 

W e could include another stage x0(t ), the number of parasites that 
h ave died up to the t ime t , in order to fu lly describe the pa rasi te popula­
tion. Equation (2) would become 

·x• = Kx* (5) 
where 

K = [O µ.']. 
. 0 A 

1 
_ (µ ) d • _ [Xo] µ - i, ••• ' µ5 ' an x - x . 

The solution of (5) for the case of a single initia l dose is x*(t) = eK'x*(O), 
Mathematical Biosciences 8 (1970), 209-226 
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where x*' (O) = (0, x'(O)). However, since K is singu lar, the solut ion of 
(5) is easily obtained from (3) by means of the identity 

5 

x0( t) = x0(0) + I (x,(O) - X;( t)) + IY(t). ,-1 
T he case where sexual differentiation occurs may be dealt with either 

by enlarging the system of equations ( I) or, more conveniently, by consid­ering two systems of equ:itions similar to (2) , one system for females or 
p otential frmaks, and one for males or potential males. Thus in the single init ial dose case , the N L3 l:lrvae dosed may be considert'd as N 0 potential 
females and N1 potential males. T hen the two systems may be written 

X0 = A0x0 (females), 
x1 = A1x1 (males), (6) 

each equation with the appropriate init ia l vector. In (6) A0, A1 arc matrices 
similar to A but with i.; replaced by }.01 , .i.11, respectively , and so on. Equations (6) may a lso be written 

Y. = Yy (6a) where 

y = [::J. 
in which case 

y = exp(Yf)y(O) = [exp(Aot) EB exp(A1/)]y(O). 
Since the L3 and ear ly L4 stages are not sexually differentiated, we may 
set .i.01 = J.u, µ 01 = µ n , µ 02 = µ 12 ; a nd since the male stages correspond­ing to the nonegg-laying and egg-laying adults cannot be diffe rentiated, 
we can take the number of adult males to be x14 + x 15• Thus from the solutions to the two systems of (6) we can construct a solution vector 
ll:.of length 7 of the combined male and female system : 

U1 = Xo1 + Xu, 
·u2 = Xo2 + Xu, 
Ila= X03, 

u, = Xot, 

u6 = Xos, 

u, .= X13, 

llJ = X14 + Xu , 

number of L3 larvae, 
number of early L4 JarYae, 
number of late L4 female larvae, 
number of im mature female adults, 
number of mature or egg-laying 

female adults, 
number of late L4 male larvae, 
number of male adults. 

The components of u correspond to the observable divisions of the 
parasite population. 
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A SHEEP PARASITES' MODEL 213 

3. EGG OUTPUT 

A female larva that has been nrnture for t days is assumed to lay eggs 
at a rate e(t) eggs per day. We now find an expre~sion for e(t) in terms of 
the observable fu nction E(t ), the tota l number of eggs produced by the 
population up to time ,. 

At time t consider the worms in the fifth , or egg-producing stage in the 
age interYal (, , T + dr) . T hese are the worms th,!t entered the fifth stage 
in t he t ime interval (! - -r - ,fr, 1 - -r) and that survived ti ll time t 
in the fi fth stage. The number of worms entering is i.01x01(1 - -r) d-r, 
and the number surviving is ).0 1x 0 1(t - -r) c:xp(-110~r) d •. Each worm in 
this age interval produces eggs at rate ,(-r), so the rate a t which eggs are 
produced by mature worms in age interval (-r,. + d-r) at ti me t is 
J.0JE(-r)x01(t - T) exp(-p0,-r) ,fr. I ntegrating over a ll possible ages, we 
get for the rate of egg production for the whole population a t time t 

Let 

t 

E(t) = J.04 f t(T)x04(t - ,-) exp(-p0,-r) dT. 
0 

t 1(T) = (0, 0, 0, e(-r)) and z'(t) = (x01(t), ... , x01(t)). 

Then the foregoing expression may be written 

I 

E0 1(t) ~ .i.04 f c'(-r)z(t - -r) exp(-,u0,T) d,­
o 

It may easily be seen that the first five derivatives of E(t) are 

t 

Ect; ll(1) = ).04J t'(-r)z(ld(t - ,-) exp(-µ 0:,r) d,, k = 0, 1, 2, 3, 
0 

and 
t 

Eu1(t) = ).04 f t '(T)zw(t - ,-) exp(-µ 0,-r) dr + J.()c1c'(t)z131(0) exp(-Jtosl). 
0 

But z<k>(t - ,-) = Ckz(t - ,-) , where C is the submatrix of A0 obtained by 
deleting the fifth row and the fifth column. Also , if the characteristic 
polynomial of C is Ii-oPk).k, by the Cayley-Hamilton theorem, 
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Thus, si nce }'J is l 

' L p,.E<Hll(I) = ),0-1&'(1)z<31(0) exp( -p0;1) 
l·- 0 

u sing z<31(0) = C3z{O). 
That is, 

Since the characteristic polynomial of C is n;_1 (J. + Ko;), the P1.: arc simply 

synu,1etrical polynomials in the Ko ;, i = I, ... , 4. 

4. THE CYCLE O:-- THE PASTURE 

Assume that each egg ta kes a fixed time b0 to reach the p::tsture, and 

Jct 7' = t - b0 , and let e(t) = t(t ). Introducing the funct ion f (t) , which 

is t he proportion of egg:;surviving as L3 la rvae after a time t on the pasture, 

we find that the total number of li,·e L3 larvae on the p::tstu;e is given by 

, ' 

L(T) = f c(T - x)f(x) dx . 

0 

(7) 

Note that if L(T) and e(t) a re given, then (7) can be regarded as an integral 

equation of the Falwng type determining[ In fact, 

where 

f *(s) = L*(s) 
e*(s) 

co 

O*(s) = f ,c"t 0(x) dx. 

0 

. (8) 

Equation (8) has practical implications for the situation where L and e 

can be observed with rela tive ease; however, this approach will not be 

pursued further here. 
The function f(t) is of some biological interest in its own right. A 

meaningful functional form for/ has been derived and is presented else· 

where [6]. 
It is also possible to regard the parasites on the pasture in a way similar 

to that in which the parasi tes in the sheep have been dealt with. We can 
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consider the eggs and larval stages and form a model similar to that in 
Section 2 and f (t) can then be obta ined fro m the solution of the system of 
diffe rential equations. E(t) corresponds to the Jl'(t) of Section 2. This 
approach is pursued in the next section where, after some further simpli­
fying assumptions, the whole life cycle is modeled. 

The differential equation model for the pa rasite on the pasture includ:c's 
all the larva l stages. By the u se of several survival functions, the more 
general approach can also b~ extended to several stages. Consider the 
extension of Eqs. (7) and (S) to k larval stages. Let f ;(t) be the fr actio n 
of eggs dropped onto the pasture at time zero that arc in the ith larval 
stage at time t. Then, if f'(t) = (!1 (1), ... , fit)), 

r 

L(T) = J e(T - x)f(x) dx (9) 

0 

where L'(t) = (L1(t), ... , L1,(t)) and L;(t) is the number of the ith-stage 
larvae on the pasture at time r. In obvious notation, (8) becomes 

f*(s) = [e*(s)J- 1L*(s). (10) 

5. THE LIFE CYCLE 

Suppose we restrict attention now to the female system, and in addition 
to the five stages in the sheep, we consider four stages on the pasture, with 
assumptions similar to those concerning stages in the sheep. These stages 
represent eggs on the pasture and larval stages L1, L2, and L3 on the 
pasture. 

The sheep-pasture system can then be described by the differential 

equations 
x=Bx (11 ) 

where B is a 9 x 9 matrix with Bu = -Ki, i = 1, . .. , 9, Bi+1.i = ).i, 

i = l, ... , 8, B1• 9 = ).9 , with all other Bu = 0, Bi.; denoting the clement 
of B in the ith row and jth column. 

Here it is assumed that the egg production rate is independent of adult 
age, and delay in eggs reaching the pasture is ignored, so that the rate at 
which eggs reach the pasture is proportional to the number of adult worms 
i n the sheep. The constant of proportionality is i. 5• Similarly it is assumed 
that the rate of ingestion of L3 la rvae is proportional to the number of 
L3 larvae on the pasture, the constant of proportionality being J.9• The 
constants f.li, i = I, . . . , 9, are defined as before with K; = ).; + µ;, 
j ~ 5, Kr, = fl5. 
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The solution of (I l) may be written 

x(t) = T diag[exp(p1t), ... , exp(p9t)JT- 1x(O) 

where the p,. arc the characteristic roots of n assumed d istinct, anc.l Tisa 
nonsingular matrix. From this it may be seen that if the characteristic 
roots P; all ha,·e their real parts negati,·e, then each ekment of x(r) tends 
to zero as t -~ ro. On t he other h:rnd there will be divergence as , - ~ Cl) 

if there is a char::icteristic root with positive real part. 
The determinant of B is i.1i.: · · · i.9 - K 1 • · · Ko, and so the character­

istic equation of U is 
9 0 rr co+ K;) - rr ; ... = o. 

, - 1 i - 1 
(J 2) 

We may write Eq. (12) in the form 

rp(O) - a = O (13) 
where 

9 t 
c/>(O) = IT (0 + K;) and a = IT J.,-. 

~ l ~ l 

Then it is easily seen that cp(O) is monotonic increasing in the interval 
( -K, ex:>) where K = min K;. lt can be seen that the largest rea l root of 
rp(O) - a = 0 for a > 0 is a monotone increasin g function of a and ca n be 
obtained continuously from the root -K of <f,(O) = 0 by continuously 
va rying a. If it is supposed that -K is a simple root of <f,(O) = 0, which 
will certainly be so if all the K; arc distincc, then it can be shown that this 
largest real root of cp(O) - q = 0 for a > 0 is also the root with largest 
real part [9]. Thus when a < ip(O), that is, 

t 9 

II J., < IT K;, 
i - 1 i - 1 

the system (1 I) is s'ta blc since the la rgest real root is negative. When 
t t 

II i.;= II K;, 
i -1 •- 1 

Eq. (12) has a zero root, while the remaining roots have negative real 
p arts. In this case, as t - ex:> , x(t) tends to the steady-state solution 
satisfying Bx = 0. Fina lly, if 

t . t 

II J.,. > II K;, 
, - 1 i - 1 

the equation has a positive root, and the system (11 ) is unstable; that is, 
the solution diverges to infinity. Thus the la rgest real root of (12) deter­
mines the asymptotic behavior of the system (l l). Note that the stability 
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condition 
9 9 rr i.; < rr K; 

i --1 i • l 
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is symmetrical with respect to each stage, and that we a lready know 
/.i < K;, j ;;'6 5. 

Perturbation Solution of Equations 

Suppose we set B = A + }.9D, where A is a 9 x 9 ·version of the ,\ 
in Section 2 and D is a matr ix a ll of whose elements a re zero except that 
D19 = 1. T hen the solution matrix e 81 ca n be found in te rms of the k nown 
matrix eA' as an expansion in powers of }.9 • This expansion is [7] 

I 

cxp(Bt) = exp(At) + ).9 J exp[A(t - s)]D exp(As) ds 

0 

I • 

+ ).: J cxp[A(t - s)]D{J exp[A(s - u)]D exp(Au) du} ds + · · · . 
0 0 

F or t fairly small the first-order term should be adequate , as ?.0 ,, ill 
b e small. If X;.;(t ) is the i , j element of X(r) = e,\/, then the coefficient 
of ).9 is a matrix W where 

I 

J½., = J X;i(t - s)X9;(s) ds. 
0 

T his may be explicitiy evalua ted from the expression for ?·'t using Lemma 
2 of Section 7. 

6. IMMUNE REACTION 

Jn response to antigenic information transmitted to it from the pa rasite, 
the host exhibits an immu ne react ion to the parasite' s presence. T o model 
this, we suppose t hat the sheep possesses an information dam into which 
information flows at diffe rent ra tes from the la rvae in different stages. 
Le t us say tha t info rmat ion flows into this darn at a rate fY.. ; from a j th­
stage female or (I. J+ s from a jth-stage male,j = 1, . . . , 5. Also, to account 
for the loss of immunity during nonexposu re, let the information in the 
dam leak away a t a rate pi proportional to its quantity I. We then have 

10 

I+ pl = ,IC(;Y; = r:,.' y (14) 
, ~ 1 
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where rt.' = (o:1 , ••• , o:10) and y is ns defined in Section 2. The immu ne 
reaction is assumed to tnkc efTcct at n ti me b1 nfter I exceeds a threshold 
level Q, and to Jose effect at a time b: after / falls below Q. The effect of the 
immu ne reaction is to alter the parnmcters in the matrix Y. Broauly, 
it is expected that the i. 0i , i.lJ wi ll be reduced and the l'o1> flli incrensed. 
In partieulnr, i.0 1, }.H should be very sma ll while the immune reaction is 
operating. Jn this way, the adult population is kept constant while there 
is a build up of larvae in the preceding stage. The observable effect of the 
immune reaction is a sharp Jcveling of the egg output rate. 

Jf / 0 is the quantity of informati on in the dam at t = 0, then the solu­
tion of (14) is 

But 

f 

J(t) = (10 +Je""cx'y(11)d11)e-"' 
0 

I 

- (i0 + aJ e""y(11) d11)e-"1
• 

0 

f f 

J e""y(11) du = J eP"Y- 1j,(11) du 
0 0 

f 

= y-1f e""i·(u) du, 

0 

which, on integration by parts, becomes 

f f J e""y(u) du = y-{e"'y(t) - y(O) - p J eP"y(u) du J; 
0 0 

that is, 

f 

(I+ pY- 1
) J e""y(u) du = y - 1(e"'y(t) - y(O)), 
0 

f 

J e""y(u) du = (Y + pl)- 1(e"'y(t) - y(O)). 
0 
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Therefore, from (15), 

l (t) = e- Plfo + e-P1a.'(Y + pi r 1(e"1y(t) - y(O)) 

= C1.'(Y + pi r\(t) + e-"1[10 - a.'(Y + pir1y(O)]. 
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I n order to estimate the (1. and p we must employ a sequential d osing scheme. Suppose that hosts are dosed ,,ith M first-stage la rvae at intervals of length u, and that initially each host's dam is empty. Let the informa­tion present in the dam at time t be J(r) . Then 

J(t) = ~ (1 (1) + l(t - ~) + · · · + 1(1 - t{±]) )· 
where [x] denotes the integer part of x. 

When the egg output rate is observed to level off at time 10 + b1 , let the parasites be removed and the hosts allowed to rest for various periods of time. Then J (r0) = Q and after II days rest, the host has a quantity J(t0 + b1)e-l'" of information in the da m. So, if the dosing scheme is recommenced at this time and the egg output rate levels off after further time r 1 + b1 , we have 

(1 6) 

H ere we suppose that b2 < 11 + t 1 , so that the immunity mechanism is triggered again by the second infection. Since we have twelve parameters to estimate in this way, we must have twelve different ·re-st periods. 1 low­ever, it might be oesirable to set the 1'1.1 corresponding to indistinguishable stages equal. Thus we might set cr.1 = cr.0 , ::1.2 = f/.1 , cr.9 = (1.10• Then nine independent equa tions like (16) estima te ::1., p, and b1• The foregoing scheme may be modified to estimate b2 if b2 is large, but cannot find b2 if b2 is small. This is because it takes several days for a second infection to mature. 
It is likely that the condition 

• • IT),;< IT K; 
, - 1 i - 1 

of Section 5 will hold when the immune reaction is operative and fail other­wise. T hus, we enYisagc the evolution of the host- parasite relationship as a process of the parameters gradually varying until the immune reaction and climatic effects on the pasture stages determine an approximate non­trivial steady-state situation for the complete life cycle. 
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7. APPE?-.'DIX 

Inverse of J.f arrix 

The inverse of the 5 x 5 matrix A required in Section 2 is 

1 

K1 

-~ 
K1K2 K2 

A-1 = _ i,11•2 - ).2 1 
K1K2K3 K2K3 K3 

l,11,zl,3 - l,21•3 _ _&_ 1 
K1K2K3K4 K2K3K4 K3K4 K4 

)., ).2).3/,4 l.2/,3),4 _ ).3/,4 _ _&_ 
K1Kz K3K4K5 KzK3K4K5 K3K4K5 K4K5 

1 

K 
The same expression gives the inverse (A + pl)- 1 on replacing K; by K, - p. This in turn gives (Y + pl)- 1 required in Secti on 6, since 

(Y + pI10)- 1 = (Ao + pls)- 1 (E) (A1 + pl s)-1. 
S0l11tio11 of System of Di.lferential Equations 

LEMMA 1. Let X(t) be a matrix whose elements are functions of t, satisfying 

E._ X(t) = AX(t), 
dt X(O) = I, 

where I is the II x 11 identity matrix , and A is an 11 x II matrix _ with elements 

and all other 

Then 

. A,., = -K,, 
A,+1. , = ).,, 

A,.,= 0. 

i=l , . . . ,11, 

i=l, ... ,n-1, 

x,.,(t) = (fi ;.,) . ± [ exp(-K,t) J (17) 
i - 1 i - 1 Il1,;;;v~j(K, - K1) .... provided that 110 two K; are equal. 

(Note that :Ei.,A f; = 0 and TiieA /, = l if A is empty, so that (17) is valid for / ~ j .) 
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Proof C{X(t)} = C{A~~ (t)} where L denotes the Laplace transform , 
C{f (t)} = ['

0

J(t)e- 01 dt. Also 
. o 

C{X(t)} = OC{X(t)} - I; 
therefore 

(A - OI)t{X(t)} = -I, 
so 

C{X(t)} = - (A - OI)- 1 • 

Thus 

rr J- 1 • 
C{X(t) } = . 1- 1 I.; 

I.I IT' (0 ) • i - 1 + K; 

from the foregoing expression for A- 1. Expanding the right-hand side 
in par tial fractions (assuming the K; are d istinct) , let 

[IT (0 + K;)J-
1 
= ± 0

' • 
i - 1 i - 1 (0 + K;) 

Then it is easily seen that 

a, = [fr (K, - K;)]-l· 
v- 1 
y ,I. / 

Since c-1 [(O + K,)-1) = e~p(-K1t) , we find that 

The solution may be a lso verified by direct substitution. 

Another Representation of the So/Wion 

For ao arbitrary function f(x) the nth-order divided difference [8] of 
f(x) with respect to the distinct numbers x0 , ••• , x,. is defined by 

" f(x,) 
Jlxo, ... , x,.J = Irr· . ,-o j'- o(X i - X 1) 

Je,{ 

f [xo] = f(xo). 

n = 1, 2, . . . , 

A divided diffe rence is a symmetrical function of its arguments; permuta­
tion of the arguments leaves its value unaltered. It may be shown [8, 
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page 250] that if J(x ) has a continuous 11th derivative, then 

1 11 ,,. _ , 

/[x0, • • • , x,.] = J d11J dt2 • • • J dt,. 

0 0 0 

X f">(t ,Jx,. - x,._1] + · · · + t1[x1 - x0] + x0) (18) 

provided n ;;;i, I. If we set f 1(K) = e"1, Eq. (17) may be written 

j ;;;i, 1. (19) 

T he 11th deriva1ive of f,(K) is 

f~">(,c) = t"e"1 

so using (18), an expression for X;_ 1(t) may be obtained as a multiple 
integral. This may be shown to be the same as the solution obtained by 
successive integration of the differential equations, or the solution in 
convolution form obtained by inverting the Laplace transform of X;. i 

t hat appears in the proof of Lemma 1 as a product of factors. The integral 
form of the solution is valid when the K; arc not all distinct; Eq. (1 8) 
completes the definition of a divided difference by continuity. 

Recurrence Relationship for Solution 

An nth-order divided difference satisfies the recurrence relation 

· f [ . ] _ /[Xo, · · ·, Xn_iJ -f[x1, ... , X71 ) 
Xo, .. . , X 71 -

X o - X 71 

provided n ;;;i, I and the X; are distinct. Thus an nth-order divided difTe r­
ence may be conveniently calculated in tabular form (see [8, page 249)). 
With K's as arguments, and f 1(K) = e"1 as the function, after multiplica­
t ion by the appropriate i.'s, such a table yields all the eiements of the lower 
triangular matrix eM. When the K.- arc not distinct, we may use the fact 
that t he foregoing recurrence relation is valid if JC11>(x) is continuous and 
x0 ~ X;, i = I , ... , n, even though the x.-, i = l , ... , 11, arc not ~ll 
istdinct. Note also that a kth-order divided difference with a ll of its 
k + I a rguments equal is given by 

/k'(x) 
f[x, ... , x] = -- . 

k ! 

T hus t he tabular form of calculation may be modified to give a divided 
d ifference with some arguments equal if the equal arguments arc permuted 
so that they are adjacent to one another. Permutation of the arguments in 
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ca lculating (19) , howewr, means that a ll the elements of eAt will not be 
·obtained from the o ne table, as they a re when the K; are distinct. Note 
tha t if the"; are not distinct, the diagonal matrix of (3a) in Section 2 must 
be replaced by a Jordan c::inonica l matrix. Also note the gencrn l idc!n lity 
cxp[A(t + s)J = exp(At) · exp(As), which may simpl ify calcubtions in 
some cases. 

L EMMA 2 

f ,[-01 , . .. , -On] = J f ,_,r[-Oi, .. . , -O,J/:r[-01:+i, . . . , -0,. ] dx. 

0 

Proof This result follows immediately from the identity 

[IT (0 + /(;)J-1= [11 (0 + K;)J-1· [.fI (0 + K;)J-l 
, -..1 , .. 1 , .. 4,..1 

using Laplace t ransforms (cf. proof of Lemma 1). 
Lemma 2 may be used to evalu ate the integrals 

t 

Wt ., =J Xil(t - s)X9h) ds 
0 

appearing as elements in the matrix coefficient of l 0 iu the perturbation 
expa nsion of e81 (Section 5). It also g ives the elements of the ma trix 
coefficients of the higher powers of l 0 in this expansion. Each element 
may be expressed as a product of a divided difference of eq with some 
arguments repeated and a product of i.'s . 

LEl\L\IA 3. The solution of equations 

X(t) = TIX(t), 

where B is as in Section 5 is git'e11 by 

where 
f - 1 

X(O) = I 

c1, 1 = IT i,; and cp 1•1(0) = II (K; + 0) 
i - 1 i<I 

c1,1 = 1 and 

c1,1 = IT).; and 
t ";;> I 
t<J 

i>; 

'P,.,(O) = IT (K; + 0) 
i '# f 

.. 1- 1 

</>;.,(O) = II (K; + 0) 
1- J+l 

.... 

when j > I, 

whenj = /, 

when/> j, 
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and 
9 

1<0) = rr (K; + o) ; 
1- 1 

and p1, i = 1, ... , 9, are the characteris1ic roots (assumed distinct) of 13, 
that is, the roots of / (0) - 11 ?_1 i.; = 0. 

Proof Set B = A - K where 

I).~ ).') I .. 
A = and K = 

I 

).8 0 

I 

I K9 

Then C{X(t)} = -(B - OI)-1 (cf. Lemma I). We calculate n-1 • 

.B = A - K = (AK-1 - f)K = -(I - AK- 1)K, 
so 

0 0 me 

m1 0 0 

0 m2 
M = 

0 0 ms J 
where m, = )JK;, i = 1, ... , 9, and B-1 = -K- 1(1 + M + M 2 +· · ·), 
provided the series converges. It docs if m = m1 • • • 1119 < I for in that 
situation the characteristic equation of M is m1 • • • m0 - 0° = 0, so 
that by the Caylcy-Hamilton theorem M9 = ml. Suppose m < 1; that is, 

9 9 

II;.,< 11 K;; ,-1 ,- 1 
Mathematical Biosciences 8 (1970), 209-226 
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then 

n-1 = -IC1[(1 + m + 111
2 +···)I+ (l + m + 111

2 + · · ·)M + · · · 

225 

+ (1 + 111 + 111
2 + · · ·)M8

] 

= __ l_K-1N 
1- m 

It is easily found that 

while 

where N = I + 1\1 + · · · + l\18
• 

m 

rrl - 1 
i - J 111; 

if j > I, 

if j = I, 

if l > j; 

B;:~ = -[(1 - m),ci]-1N;, 1, 

Clearly the same holds. form > 1 by algebraic identity. 
If we replace K, by Ki + 0 in this expression, we immediately obtain 

j > l, 

j = /, 

l > j. 

This yields the stated result upon expanding the right-hand side in parti~l 
fractions and taking the inverse Laplace transform. 
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Some Stochastic Extensions to a Deter ministic Trea tment of 
Sheep Paras ite Cycles 

G. M. TALLIS 
Divisio11 of 1\/athemarical Srarislics, C.S.l.R.O., Newtown, Australia 

Communicated by K. E. F. Watt 

ABSTRACT 

This article provides a stochastic version of a deterministic model for the life cycle of 
gastrointestinal nematode parasites of sheep. This cycle is con\'cnicntly di\'idcd into a 
part that involves the sheep and a part that involves t he pasture. Each of these sections 
o f t he cycle is described by a compartmental model, and the two p:irts of the model arc 
then integrated into a single stochastic mod.:-!. The :1symptotic behavior of the final 
model is found to be diITerent from that of its de terministic analogue. 

I NTRODUCTION 

This article provides elementary stochastic extensions to some of the 
results in a paper hy G ordo n er al. [I] giving a deterministic, mathematical 
t reatment of the life cycle of certain internal parasites of sheep. The 
notation of [I) is followed closely and the description of the problem is 
n ot repeated here. Numerous equatio ns in (! ) are referred to, and the 
convention [I, (j)] to represent the jth equation of that paper is used . 
It is i ntended tha t [ I J be read in conjunction with this article. 

T he life cycle of the female parasite in side the sheep is modeled below. 
Thus, a stochastic analogue of [I, (2)) is given. Enlargement of the treat­
ment to cope with two sexes of the parasite can be achieved in the same 
way as in [I, (6), (6a)J. An analogue to the complete sheep-pasture 
cycle structure, [I, (1 I)], is discussed briefly. However, no attention is 
given to models for the immune reaction, since this topic is somewhat 
tangentia l and, in any case, warrants separate consideration . 

Most of the main results of interest can be obtained as a special case 
of the general 11-compartment stochastic model. It is convenient to present 
this t heory fi rst and to subsequently pa rticula rize it to the case in point. 
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THE 11-CO~IPARH.lENT STOCHASTIC MODEL 

Consider a system \\'ith II com partmen ts n1, .. . , n,. and let X(t) be 
the rand om vector giving the number of individuals in each compartment 
at lime t. The components of X(r) arc written as x;(r), i = 1, 2, ... , 11, 
and I?-L X;(O) = N. Assume the usual lincn r transi tion rates as follo,,s. 
The probability that a memb-:r of Jl; 1110,·cs to 11 ; in the time interval 
!:lt is {JiJx;(r) ~, + o(~ r), /J,1 = 0. The probability of two changes of 
state is o(ut). If p(x, r) is the probability that J~(t) = x, then 

p(x, t + D.1) = [i. i f3iJ(x, + 1) 6.1 E;s1 

i - 1 J- l 

+ (1 - I i,{J;;x;ti.r)Jp(x, I)+ o(L\t) (l) 
, - 1 1- 1 

where E;E,1/(x) = /(x1, ..• , X; + 1, ... , x1 - 1, ... , Xn). Clearly (I) 
Jcads to the set of diITercntial equations 

n II 

p'(x, t) = L L P;;[(x; + 1)£;£11 
- x;]p(x, 1). (2) 

Now define 
, - 1 ; - 1 

" P(s, t) = L p(x, t) IT sf' 
nil z, i - 1 

by letting p(x, t) = 0 if x r/:. {x IX; ;;i. 0, I ;i .. l X; = N}. Jf both sides of 
(2) are multiplied by TI;-i s;i and summed, it can be verified that P(s, 1) 
satisfies 

aP(s, t) _ ~ ~ {3- ( _ ) aP(s, t) . ... - ,t;.., £., ,, s, s, . ·a, i • l ; ~ 1 as, (3) 

Let the matrix K have elements k" = /Ju, i ~ j, kii = - L;'..1 /J;1 and 
set Y(t) = aK1, where Y(r) has columns Y1(t), Y;(r) = (y~n(r), ... , y\f>(r)). 
Then the solution to (2) subject to the initial condition P(s, 0) = IT:'-1 sf•101 

is 
n [ n ]%J(0) 

P(s, t) = IT L .rF>(1)s; . 
i-1 , - 1 

(4) 

To see this, notice first that Y(O) = I,. and hence the initial condition is 
satisfied. Moreover, it is sufficient to verify tbat a typical factor of (4) 
satisfies (3). Dropping the superscript, we have 

n 

L y,(t)s1 = L {J,,(s1 - s,)y,(t) 
<•l i. J 
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. and eguating cocflicients of s; gives 

n n 

y;(t) = - IfJur,(1) + I/J1.-Y;(1), 
j a: l j r;; l 

Tha t is , y(r) musl S3tisfy 
y(t) = Ky(t) , 

which it docs since Y (t) = KY(t). 

133 

i = l,2, ... ,11. 

Each clement of Y(r) is nonncgativc since k;; ~ 0, i p j, and if 1 is a 
vector of 11 ones, lY(t) = 1' . T his follows beca use lY(r) = l' J(Y(t) = O' 
and hence l'Y(t ) = C' where C is a vector of consta nts. But Y(O) = I ,. 
and hence C = 1. From this it follows that y~11 (t) ;;;;, 0 and }:;'...1y~Jl(t) = l 
fort ;;;;, 0. 

It is interesting to notice that (4) represe nts the convolution of 11 

multinomia l distri butio ns. Hence µ(r) = E{X(r)} = Y(r)x(O) and 
E{(X(t) - µ.(1))(X(1) - µ(t ))'} = V(r) has eleme nts 

n 

V;;(t) = - Ix/O)y~kl(t)y1/'1(t), i ~ j, 
k a O 

n 

V;;(t) = Ix/O);Y1(t)(l - y~kl(t)). 
k • O .) 
"""{ 'I {.r:, 

(5) 

This covariance matrix J_Com ple tely specifttg' the second-order p roperties 

of the process since y(/r, -J/} 

. C(s, t) = £{(X(t) - µ(t) )(X(s) - µ(s))'} =_J_Y(min s, r). (6) 

The waiting time T, in the jlh compartment has tht; .. exponcntial distri­
bution with parameter k11 = - 2f0 1 /311, . This provides an additional nnd 
useful interpretation of the parameters. 

THE PARASITE CYCLE JN THE SHEEP 

D efine the matrix K as in [I , (5)] ; then K defines a set of t ransition 
ra tes for a s ix-compartment model fo r death, the three la rva l stages, 
immature, and mature female worms; see the introduction of [I]. The 
numbers in the var ious stages, therefore, have probabili ties specified by 
(4) with 11 = 6 and Y(t) = e"1• Note that x(O) is usually of the form 
x'(O) = (0, N, 0, 0, 0, O], and hence 

[ 

6 ]/'{ 
P(s, t) = ? y;21(t)s; . 

,- 1 

The computation of Y(t) can be: faci lita ted by special results in [1]. 
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Since 

K = [~ ~] 

where A is defined by [l , (2)) and µ is the vector of death rates, if L{Y(t)} 

is the Laplace transform of Y(r), it fol lows from the relationship Y(r) = 
KY(t) that 

OL{Y(1)} - I = KL{Y(t)} 

and 

L{Y(t)} = (IO - I()- 1 = . 
[

0- 1 0- 1µ'(IO - A)- 1
] 

0 (IO - A)- 1 

T he last result shows that in fact 

[
I z'(t)J 

Y(r) = 
0 X(t) 

where X(t) is defined in [ l). explicit expressions for the elements are given 

in the Appendix of that paper, and ::;( t ) = 1 - If. 1 X;;(t). 

The mean of the process is ei- 1x(O), which is in agreement with the 

deterministic theory. Second-order properties cnn be studied by use of (5). 

Waiting times in t he live \'iable stages of the parasite arc exponential 

w ith parameters K;, i = 1, 2, ... , 5. Of more interest, however, is the 

distri bution function F(t) of the life-span of a female larva entering the 

sheep in the third la rval stage. It turns out that 

F(t) = 1 - Y)il(t). (7) 

THE FULL LIFE CYCLE 

Equation (1, (1 1)) defines the li near system of differential equations 

appropria te for the study of the full life cycle of the parasite. The purpose 

of this section is to develop a stochastic analogue. Let 

- K,; 0 0 0 

)., -K7 0 0 
D = 

0 ;., -Kg 0 

0 0 ),g -K9 

where the elements of D are as defined for B of [1 , (11 )], and set W (r) = c01• 

Recall the form P(s, r) = [2~_1 y~:>(1)sJ" presented earlier. Then, 

for a fixed input of N third-st:ige larvae at t = 0, and if mature females 

lay eggs according to the probabil ity gener:iting function (pgf) f(s), 

M athernntica/ B iosciences 8 (1970), 131-135 
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a stochastic version of [I, (1 1) ) without feedb:ick (.\ = 0) is 

(8) 

Expressions for the means of the process are 

i = 1, 2, ... , 6, 

i = 7, . .. , 10, ll =f'(l). 
Variances an<l covariances can be calcul:ttcd by converting (8) to cumubnt 
generating function form and taking the appropriate mixed derivatives. 
The resulting expressions arc cumbersome and will not be given here. 

For the case of a continuous input model to simulate the grazing sheep, 
it is mathematically easy and biologically reasonable 10 assume that the 
in.put at ti me t is proportiona l to £{X10(t )}, i)·~21 (1)11·i 11(1), say, since 
usually numerous sheep will be grazing the area . This leads to the following 
modification to (8). 

I 

R(ft, O; t) = exp{J. J[Q(s, 8; t - x) - l]y~21(x)w~11(x) dx} . (9) 
0 

It can be verified that the li miting pgf R(s , 0 ; ro) specifies an "honest" 
process with finite moments of all orders. This is in marked contrast to 
the full detcrn1inistic model of [I], which '·explodes" with unfavorablc 
combinations of the parameters. 

REFERENCE 

1 G. Gc,rdon, M. O'Callaghan, and G. M. T al lis. A deterministic model for the life 
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S07\IE ASPECTS OF THE EFFJCIEXCY OF LAHGE-SC.-\LE ARTIFICIAL 

IN8E:\lI~.-\TI0X OPER:\'1'IOX8 I"N" SHEEP 

By G. l\I. TALLIS* and S. S. Y. Y OU);G* 

[,llnnuscript received J 1111e U, 19601 

Summary 

Tho proulems of cst i111 nting cnch day tho proportion of ewes coming into 
oestrus for tl ,c first t ime n11d the proportion of ewes not returning oft t' r tho fir~i 
servico hn\·c been i1wc-s t igntccl nnd discmscd in rela tion io lnrgo-sct\lo nrtificinl 
inseminntio11 op<'rntions. T ho 1vsults of theso ilicoreticnl st.udics wero used to 
oxnmi110 dntn from more than 700 )forino ewc::1 which hod undorgono nrtificinl 
insemination, and E-viclence of incfficioney duo to nn early failuro of vnseetonfrled 
rnms wns found. F rom s ubsequent annlyscs it \\"O..'I eono:-ludecl t hat. tho mothod:i 
dovclopcd in thi:; pnpcr for estimating coneoption ratos were fairly sensitive ,ind 
produced satisfoctory results. 

!: !NTRODUCTIOX 

\Vhen experimental ewes are mated by artificial insemination (A.I.), the 
usual practice is to int roduce Yasectomized (teaser) rams into ihe main flock in 
the eye1ting and to draft off marked ewes early the following morning. E11·cs se1Ted 
by the teasers during the night arc presumed to be in ocstnrs and arc inseminated 
and ph:i.cecl in a scpanitc paddock. From time to t ime inseminated ewes rejoi n the 
main flock so that those which have not concci\·ccl to the first mating will hiwe a. 
chance of re-insemination. Thi:, procedure has been discussed in detail by Dun 
(1956). 

The o,·erall efficiency of these mu.tings depend,; on such th ings as tho personnel 
and facilities arnilablc, the effectiveness of the teaser rams, the ,mundi1c.5s of the 
insemination techniques, and the fcrtiiity of the animals. The gcneml failu re of 
the A.I. ovcrat.ion will, of course, be ob\-iou:o a.t the conclusion of the mating period. 
H owc\·cr, it is clearly desirable to lrnxe some way of checking on the procedure 
during the mating period so that faults may be located and, if possible, rectified 
well before the conclusion of mating operations. With this encl in view, two main 
problems are considered in this paper: 

(1 ) The estimation of the proportion of ewes e.:q)cctcd to come in oestrus 
for the first t,ime on n. given clay during the mating period. 

(2) The clay to day estimation of the proportion of ewes expect.eel not to return 
after the first insemination . 

T he first of these problems is important because ·it pro,icles a basis for evaluating 
the effecti\·encss of the teasers in picking out a ll ewes in oestrus. ) Ioreovcr, the number 
of ewes to be inseminated daily ,viii also determine the necessary personnel and 
equipment required. 

• Division of Animal Genetics, C.S.I.R .O., )Ic~laster Laboratory, Glebo, N .S.W. 

. . .... ··- · ·· --- -·- -·- ---··- . -·- ·- --- - .... -- . ----- ---- ·· -- -----·- ·- ·--· 
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On the other hand, the 011.c:;wcr to the scco11cl prol.,lcm \\'ill faci li tate a daily 
check on the fortility uf animals a nd th e effectiYenct<s of the inscm i11ution technique. 
Ach·ancc knowledge of poor conception rntcs may alto\\' timely altc r,nion . .;; to he 
maclc t o t echniques, and to ,,ire compo:-ition or the duration of the mating pcrio<l 
Ol' l.,oth. 

II. '.\fETIIODS 

InYc:-tigat ion of the hrn problems mentioned nbo\·c necessita tes a n a.-;sumpt ion 
concerning the di~t1ihution of the length of the oc:;trus cycle (/) in ewes. Data 
colleC'tccl during the l!);j ' e:-..--pcrimentnl matings of .\l erino sheep carried out uy the 
Sheep Breeding :·ection of the DiYis ion of :\n.imal Ge netics. C.S. I.R.O .. at the 
Regional Pnt'torul Laboratory. Arn1id.alc, X., .\\'.. as we ll as data from the lfJ;j(i 
expcrimrnta l m,ltings at the X at iona l Field Station. ''Gilruth Pln111.-;' '. Cunn:unulla, 
Qld., haYc been examine<!. From these data./ rnlucs were plotted on 11ormal proba­
bility pnpcr nnd no significant, departure from normality \\'as founrl. A~ ltistog rnms 
of l presentecl uy Kelley (Hl37) nlrn indicate n norma l d is tribution. it. ,,ill he ns;;umccl 
here t hat, l is in fact normally di:-tribut cd with menn µ. and rnrinncc a '.! f .Y(µ.a2,/)]. 
Combined estimates from the arnilablc mating data arc l = 17 days nncl ci2 = G·25. 

In addition, it will be assumed that, for a. particular e we with cycle leng th l 
during a gi\·en period f , the onset of oestrus <luring thnt period is di-,tributcd 
rectangula rly as follows: 

Problem 1 

F (t) = (1/l) J: dx 

t/l 

l 

t<l 

In order to estimate the expected proportion of a. number (n) of ewes coming 
in oestrus on the ith day of the mating period, we are led formally to compute 
E(l /l), as 

E(l /l), = Pt = i «> N(~a
2
l) dl. 

This intcgrnl may be a.pproxima.ted hy . the use of published tables of areas of the 
normal distribution. 

The cumula.tiYe propor tion of ewes which arc expected to come in heat by the 
i th day is 

As it may be shown that 

f 

P, = L PJ· 
J • l 

LimP, = 1, ,-co 
the p1 may be thought of as probabilities. It is rensonalile therefore to assume that 

~n(h-p,) 
~[p,(1-p,)J 

' · ) 

0 

.. 
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is nsymptotically :,.r (0,1), and 7ii (the est imat e of p 1) is expected to lie in t.hc intcrYn l 

, I J(p,(l -1)1)). 
PtI :. n , 

where t~ is the normal standard dcYiatc corre$poncling to th e ,;c probabil ity JcyeJ. 

Jn field application;': , howe, cr, when teaser rams a re first int rod11ced into :i 
fl ock of ewe;;, the p roport ion of ewes sc1Tcd on the fi rst day i;; 11;;ua il!· lar~l' r than 
expected. E xpcrienC"c ha ;; shown tha t thi;': proportion i, npproxima tcly 1wice a;; 
lnrge as the proportion exp ected on t he first <lay. T his is probalJly bcca11sc the frc,.;h 
lcn$er rnms sen·e t he ewes that come in oe t rus on day I as well as some of t hoso 

'l'ADLE I 
T AJ.IJES O F p;, P1, A !o:D A ,• 

Day P, I p 1 l A, Da y p; I P; I A , 
--- ,~~-- ---1-- --~--co_¼_' _ .1l ___ co_1o_i _ _ :I _ __ _ 

1 12. o I 12 . o i o 11 2. 2 97 . 2 o. soo 2- 8 6·0 18 ·0-54·0 i O I S 1 ·4 9S·5 0·655 9 6 ·0 I 60 ·0 l 0·00 1 l !l 0·8 9!) ·3 O·iSS 
10 G· O I 66 ·0 ! 0·003 20 0 · 4 99 ·6 1 0·885 • 11 5·9 72·0 I 0 ·008 2 1 0·2 99·8 I 0·945 12 5·, i 77·7 0· 023 22 O· l 9() -8 I 0·9i7 
13 5 .. 1 ! S3· 0 I 0 ·055 23 O· O 9!) · !) I 0 ·99~ 14 4· 6 ! 87 ·8 I! O· llj 24 O·O 99·9 0·997 
15 4 ·0 1' 91 ·9 0 · 21-2 25 O·O 1 100·0 O·!l9!J 16 3 · 1 95·0 I 0 · 345 26 O·O 100 ·0 1· 1 ·000 

j ! I 

• p1 = expected proportion of e"·cs in hcnt for the firs t ti1no on day i . 
P1 = expected cumulati,·e proponion of ewes which hn, ·c come in hcnt for t ho firs t tim o by doy i . 

A 1 = area under a normal cur\'O \\; t h mean 17 days nnd at nndard dc,· intion 2· 5 d nys. 

ewes which came on heat on preYions days. To o,·ercome this we defi ne po as tho 
expected proportion associated ,,·ith the day before thr commencement, of insemi­
na tion operations, so tha t p i , t he actual proportion expected at day 1, is Po-rPl· 
It, follows t-hercfore that 

' Pi= P2, p, =p,, and Pc = L PJ· 
1- 1 

T he , alucs of pi and P1, based on N (17, 6·25, . l), ha,e been calculated and are 
shown in Table 1. 

P roblem 2 

Solut ion of the second problem depends la rgely on assumptions regarding 
the joint distribution of the 6r;;t and second cycle lengths, {1 a nd 12. Therefore, data 
from matings a t Armidale in 195S and 1!)5!) were ana lysed , and the pooled correlation 

----- --··---- -- --··------- .. ----···· -· ----
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cocftiC'ient betweC'n /1 and l2 was found lo he -0·11 ± 0 · 11. As ma ting nt Armidalc 
continued for only ·10 days,· those ewes ,,;th 71 and [2 va lue.:: of 20 days or 0\'(~r do 
not appear in the data. The effect of this i.:: to bia.;; 7.ero or n0gnt i,·e co rrelnt ions 
d ownwarcb, so that the actual ,nluc of p is proba bly clo;;c·r to zero tha n - 0· l l. 
Moreo,cr , since the means and , ·aria nC'CS of [1 and 12 were nearly cqunl in these 
d ata, it will be as,rnmed in the su b::equent <le,·elopm ent. t hat /1 and 12 a re inclcpcn­
de nt ly and normally cli"tributcd \d t h the same mean and Ynri:rnce . 

On the nbo,·c m:sumptions , the number of ewes rol11rn i11g for 1'econd sC'1Ticc 
can be considered . If wo write no+ n 1, 112, . .. . n 1_ 1 for CWC'R brought to fir:--:t S€' rv ir.c 
on day 1, 2, . . . , i - 1, t hen. with no conception al first. serYi C'c. no ~"·es nro expected 
to return for second scn-icc on D1. On D2, [no I'( I < l-< "2) -j-11 1 />(0 < I < I)) a re expected 
t o return, and so on as below: 

D2 

110 P (l < l < 2) 

n1 P (O<l < l) 

D3 

noP(2< l<3) 

11 1 P(I < l <2) 

n2 P(O<l<I) 

D, 

110 P(i - 1 < l < i) 

11 1 P(i - "2 < l < i - 1) 

n2P(i-3<l < i-2) 

n,- 1 P(O <l< l) 

whero P( l < l <2), for instance, is the probability of a, particular cwo luwing a cyclo 
length of 2 days. Putt ing P (i - k - 1 < l < i - l ·) = ai- k, we now dc·fine the 1111mher 
of ewe1' 1111 expectrd t0 rr t11rn nn D1, a,::; 

( - 1 

m, = ~ 11ka1- k, 
k - 0 

and the cumulative number, Jf,, is 

' ( - 1 

M, = ~ m, ~ ~ 11kA1-k, 
J- 2 k-0 

whero 

J
l - k 

A,-.t = -co N(µ.,,i,l) dl. 

The. values for A, - k ,dth /;, = 17 and a
2 = 6 · 25 ore g iven in Table 1. 

On the assumption that all ewes coming to ser vice on t ho first occasion would 
again come to service in the absence of conception, 

Lim !JI,= n. 
( -<CO 

H owever, if in fact a proport ion 1-s = c ha ve conC'eirnd as the result of the first 
service, the expected numbers of returns will be sm, and s.lf,. 

Unfortunately the :\la.ximum Likelihood estimate of s , using a ll the avail:l.lile 
·information, is tcdi.ous to obtain; a nd therefore for field application a more convenient 
if slightly less efficien t estimator is recommended. 

,~) 

j,, 
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This est.imator is 

with variance 

where 

A = N{/M,, 

Var (s) = s(l - sAt)/ !Jf,. 

1-1 

A1 = ~ (A 1- 1·nk)/.ilh 
1--0 

1021 

and N, is the cumulative number of ewes retu rning for second service by D1• Sinco 
c = 1- s, it is oLvious that the est imator of c is 

c = 1-s, 
and that c has the same variance as s. 

If the numbers realized at the first service are the same as expected , i.e. 
11p0, np 1, . .. , np,-1, then the proportion expected to return on D1, with no con­
ception a t. first service, is 

1-1 

q, = ~ p;,..a,, - J:, 
1: - 0 

and the cumulnt.ive proportion to a sufficient approximation is 
1- 1 

Q, ~ ~ p1:A1 - k-
1:- o 

If we denote the obscn·ed , cumulat ive proportion returning for second service by 
D1 a.s R,, then an estimator of s is 

In field operation it is often desirnble to know the approximate time when 
tho A.I. operation can Le terminated . In this case c can nlso be useful if the desired 
total conception rate, C (for first. and second ser-Yiccs), is set in a<lrnncc. This total 
conception ra te can be calculated approximately as 

(v = 1, 2, ... , 13 and i ~ 25) 

where c1 is the estimate of c on D, and c' is the estimate of the conception rate a,t 
second service. The ...-aluc of c' is usually lower than that of c, and in the present 
data c' = {c approximately, from the fi eld record.<; of conception subsequent to 

· second sen'icc. Because JI 1+v can be calculated v days ahead of D, (since A 1 to A 11 

are only negligible) it is po:;sible to predict the approximate value of G on D1+v· 

The above formula is useful in the absence of consistent daily variations in con­
ception rates. 

III. FIELD APPLICATIO~ 

In order to check the overall efficiency of the 1958 artificial insemination 
operation at Armida.le, as well as to illustrate the use of Table l, analyses of first 
and second sc1Yices were canicd out. Before computing the number of ewes which 
are expected to come on beat at any particular day, however, it is necessary to 

'· 
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estimate the "cfTcctiYc num ber" of e\\'C'S in the flock. Such an estimnt C' i:: recp1ircd 
hcc·a usc there is us11ally n srna)l pr0portion of ewrs. d . in any flock whirh fa il tn lw,·e 
any signs of ocstrns dctrctc<l . .-\ s cl probably <li/fors from fl ock l tl flock. and from 
year to year, it ca11 only be estimated from pa;; t experience for any pnrti r ulnr flor k 
ancl yC'nr. Oner the ord<'r of,/ i::: kno wn , the C'ffcrt i\"C· num lic·r of c"·e::: i;; 11 ( 1 - d), 
where 11 is the ini tia l num ber of ewes. 

At Armidn le. two group,; ofe,,·es (A and B} were imemina ted in 1%~. Group.-\ 
stark<l on d ay 1 of the mating p(' riod and g roup R o,l artt'd !) thy,; biter. ThC' 
artifirial in,-C'mination tech11iques used were similar t o tho~e d C'scrilic-d by Dun 
(1956), and n( l - d) was -130 a nd 2S5 for groups A and B respcetiYely. HowcYer, 

ANALYSIS OF l"IRST SER \"I CE RECORDS J"OH TWO {;HOt:!'::; OF F:\\"E,.: 

ArtificiRI iuscminotion dntn, .-\rmidnlP. 195$. Effect ive totnl for.-\ . 430. Effective to rn! for B. 2s5 

Group .-\ Group B l Group A / Group B ; Croup A I_Grvup U 

D ay 
01,s. E,p. 01a . >:,p. D,,- I ow. :E,p.1 o,,.. I E,,: o,,· 1 oo,. \ ,p. os,.'. E,r 

____ 
1
_K_o_._• Xo.• Xo .. ~ j Ko. i Xo. ~o. I Xo. ~I Ko. i_ :No. X~ ! Xo . . 

3 , 21 26 l I S 17 13 1 1!) ! 23 12 15 6 ! O O 

4 13 26 ' 15 17 14 i 22 I 21 I I 14 !) 1' 0 3 0 
r; 2~ 26 14 17 I;, ' 2!l 17 14 II 9 · 0 2 0 

! ~ ;~ ! ~ ! ~ ! ~ I ! ; j 1 ~ l ! ~ ~~ I ! I ~ ~ ~ 6 
'1 

8 
9 

JO 
11 
12 

~~ ~~ : : : ~ : ~ ! : ~ 1 ~ ~ : ~~ ~ l ~ l ~ ~ 
26 26 1 11 I 7 20 ! 11 j 2 j 3 1 30 l i O '. O 
13 2;; I ;j 17 2 I • 6 1 1· 3 1 3 l O I O I 
I S 2;:; I 13 16 22 1 S 1 0 1 0 32 1 ! O ! 

, · I I ·1 1 ; 

• Obs. Xo., obscrYed number. Exp. Xo., expected number. 

<lnrin!! the first !l days. 168 ewe,: from g roup A WC'rc in,,e mina!C'd \\'ith dilukd ;:en1en. 
nn<l the r rmcC'ption ra te m\;: ;;11h:aeriucntly C'alc11latC'd to he ;j;j pc-r cC'nt. for thC'::-C' 
cwcs. During thi,.: pc-riorl l!l ewe;; werC' i11:;emi11a!C'd with umlil11terl 1-e111cn. ;rnd 
undiluted semen was uscri for all in$eminations suh;;C'quent to <lay JO. 

F or thC' fin;t scYen days the Yasecton,izr d rams were caught, g rC'a:;ed. an<l 
' ·baggC'cl" prior to introduct ion into the ewe flock at, 5 p.m. The baggi ng operat ion 
was precnut ionary ancl con,-i;;tcd of 5trapping hes;;ian ha~::: to the bellies of the rams 
to preYent cop11lation. A,: a smallC'r number of ewe;; than expedC'd wC're in,-eminated 
daily during this period, this practice was discontinued from <lay S onwards . 

On day I teasers were allowed to run ,dth some of the A e\\"CS and t,he rest of 
the A e\\"eS wt:>re added to the first group on da~· 2. Similarly, some B ewes were 
introduced into the experime ntal flock on day 10 and the balance were put in on 
day ll. Vnfortuna.tely, no records were taken of the number;; of ewes introduced 

() 
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on thrsc four dny!' n11cl it will be a ~$Ulllecl in ,;:11h>'N] l1Cnl enlc:nlation, t hnt g roup;; :\ 

nnd n \\'ere nil int roduced on day 1 and dny 10 rc•;: pecti,·cl,v. 

F or this reason. expected Yaluc;: hnYe been cnkulnf ecl fro,n day 3 on\\'ards 

and the slight 11r~nti\·c 1,ias re;;ulti11g from this ,F-sum plion i;; di~rcgn rJcd. Tltc 

observed ancl the e x1 1cct cd numhC' r or C\\'C'S coming in hcnl daily f0r 1,oth g roup;; 

(A and B ) nre shown in Tnhle ::?. 

F or <lntn of group A the :t):! reemcnt bctWt'en ob:::en·ed and expected n11mhcrs 

is p oor. Two feature,; arC' npparcnt.: fir$tly. thr fit. for the fir;: t week or so is lind, and 

seeomUy. thrrc arc an unexpectedly la rge num ber of ewes ,1·ith cycle leng th.;; g re.i,tcr 

TABI.E 3 

, - ',: 
(0 ' ) 

\ E STl~l ATEII A:Sl) OIISl::H\'t!U CO :SCEl"rtO:S n .n·1::s , o A'f Fl P. ST SEll\'ICE ,on T\\'I) c:r.oi:rs OF f:Wt:s 

._/ 

3. 

., 

Group A I C:l'oup B Group A I Group D I Group ,\ ---, - , -I I . ·---·-
Dny Dny I Dny ! Est. 

E st.• Obs. • ; E st. I Obs. E~t. Ob:1. h st . j Obs. Oh 
I • I I 

- - ------ -
-· 24 -:-:-:-1-:-1--:-------

I 

10 46 :,8 O!J 58 32 ! 64 61 

17 53 60 

I 
(i3 61 ~r; 

I 
6:! ! 59 l 03 I 64 33 ) 62 t,J 

18 52 60 48 i 59 26 62 
I 

50 i 65 ' 6.j 3-1 I 63 6_ 
l 

19 55 55 57 

I 
57 27 

I 
63 60 63 ' 65 3.i 63 6'.! 

l 
' 

20 64 53 5-1 58 28 62 59 65 07 30 ' 64 63 
I 

21 55 55 ;,7 I 58 '.!O I 
63 

l 
59 66 69 37 

i 
64 61 

22 ;;S 54 01 61 30 6~ 60 60 71 38 64 64 

23 02 I 6 1 31 I 63 ' 60 l I 57 57 I 
I 

I 

• E st., cstirnnlC'd. Ohs ., ob~~·r,·c,l. 

t.hnn 21 days. Both thr ~c feature-' arr prohnhly cine to the poor performance 0f 

t enser;; during thr fir,-t few days of thC' mat ing period. On tl lC'J:C days, some ewes 

may have shown !-ig n:=: 0f oes trus hut were not mnrkcrl hy t easers, and these ewe,­

subsequently showed oest rus again later on. Hence the apparen t / \"aluc;; of mnre 

than 21 days. 

On thr othl'r ha n<l. the al!rrement. o f dntn from group n with c:,q1ectation 

is rcasorrn,hly ~ood. Th us. the cnnrlu!<ion is d rn wn thn.t, after cln.y !), whrn hagging 

was diseontinnrd, the tenscrs we're working rffirirntly. 

R C'alizrd and Pstimate<l daily conception rates h,wc been compntNl for g roups 

A and B . The realizcc.l conception rates were calculated from the fiC'ld clatn. s11hsC'quent 

to the in15emination operation. as it wns then pos"ihle to identify a ll the ewes which 

cohceind as n result of fir,-t sc n·ice at a gi\·en dny. The csti1w1tetl concept ion rntc~ 

were calculatrd from the equations of JI, and§ . ..-\s a nurueric:d exnmple. consider 

t he estima tion of conception rate nt D 20 for group .-\. ..\s some of t-hc group ..\ ewes 

were put in \lith the ten,,en; on D1 nnd the rest on D'.! nnd the numucr of ewes ser,e<l 

at t he end of D~ ,,·ns 2G. nnd since 110, 111, and 11'.! were unkno1,11 in this cnsc, the 

26 ewes were parti t ioned as 110 = S, n1 = 9, n2 = 9. Thus using Tables l and 2. 
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M20 = ( 8 x0·8S5)+( 9 x O·iSS) r-( 9 xO ·G55)+ 
(21 x0 ·500)+(13 x0· 345)+(2·l x 0·:?12) + 
(l!l x O·ll5)+(17 x0·055) ·i-(3"; x 0 ·023) + 
(30 x0 ·008)+ (26 x 0 ·003) + (13 x O ·001) 

= 44· ·14. 

From the recorcls X~o = lf1, rn thnt .§ =-- 16/ H · 4 t = 36 per cent., a nd c = 1-s = 64 per cent.. These results :ire ginn in Table 3. 
In both g roups a po;.; itiYe linear trend wo.~ appare:nt. Tn the ca:;o of g roup ,\ 

this is to be expeci<'d bccnuse of the initial Im, eonc:-cpfion rate clue to the use of 
clilute:d scJtH·n a nd because of the use of a n inexperienced operntor nt the conlllH'ncc­ment oft he operat ion. The t rcncl in group n is not so marked and could be due to the impron~ment in the operator·s t echniques. 

As only a nry small J)roportion of ewes ha ,·c eye-le lengths of 1-1 day ;; or less, 
the cstimnled number of ewe;; rclurnin~ for ::econd ser\"it'C at the ith clay can only be useu t o calculntc the concept ion rate of the group of ewes which hau been inseminated npproximalcly by Dt-J-1· For this rca:-on in T.iblc 3 the estimatc•d 
conception rate at D, was compared with the obscn ·ed Ctlncevt ion rate of ewes inseminated by D,- 1.:- This is nn arl,itary procedure as n:,,ults on Dc- t3 or D 1_ 15 may also h t· suitnblc bn.ses for comparison. It. is worth noting that, the conception rate at D,- 1.1 ca n be used l'l); an inclien tion of the rate nt De when there is no rcm,on to suspect, the existence of ;J. trend, hut not othcrn·ic:e. 

It cnn be !';Cen that the ngrcemcnt be tween the est imated and the oh::ei·\"cd conception rates is good. Large discrep:iocics, espccinlly prior to D~o. may lie 
due t o sa m pling errors, or the nrbitrarinc;;s of choosing the ratc:S on Dr- tJ-.n:. basis for comparison, or both. 111 genern l the result::: show that. th is method of e:0 ti111ating 
s is suffieiently i-cn,;ifi'"c, for prnctieal purposes, after 20 day;; of i11,,cminat ion when the proportion of ewcil returning becomes huge. 

I V. DISCIJSS10'!{ 

Apart from t enser inefficiency, experience has sho,ni that a, sudden cl-mnge 
in climatic condit ions. such as a se,·ere drop of temperature, may result in a decrease of numhers o f e"·es in heat fo r a period of $eYcral <layil. This period of redu ced numbers 
is usualJy followecl by another period of severa l days when larger than ex pected numbers of ewes in heat arc obsen·cd. The additional ewes found in the late r period 
tend t o compensate for a smaller number !ier" cd during the period of stres,:. In t hese cases , it seems t ha.t sc,·ere cha nge;; in weather lengthens t-he ocst.rus cycles 
of some ewe's , but thi,, effect is clearly distinguishable from the t)·pc of tca;,cr effect. found in group ,\ . This sensifo·ity of oestrus len.;th;; to changes in cliruat ic con­
ditions may partly explain the low r cpental.,ility of oestrus lengths us estimated in Section II. 

T he techni ques described abo,e are also useful when two or more conception 
r a.tes based on different ma.ting periods are to be compared. For insta nce, suppose 

() 
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two group;: of ewes, 1 and 2, ha.c bC'cn matul for 30 and 40 days re,.:pertin•ly and 
30 per ('C'nt. of the ewes in gmup 1 and 3;.i per <.'<'lit,. of the cwt';; in group 2 returned 
for srcon<l ,:cn ·icc . Actua l r0ncepl inn rat(•::: to first scrdce are not nC"ce;;,;a rily 70 
nnd 05 JWr l'l'llt. in thi,; ca."C'. and in orde r to romparc ihc t,1·0 group,; c must be 
ca lculatccl according 10 1-(.Y i{J / t) ,1s shu1111 e,wlicr . Jiowc\'Cr, i.f no records of 
?lJ.: nrc a.Yailablr apprnxim:-ite ,·a lucs of c may be ca lcuhtted ns follows : 

Day 30 

R = 0·30, Q = O· 'iSD. 

§ = RJQ = 0 ·3S, 

and c = 1 - a = 0 · GZ. 

Day 10 

R = 0·35, Q = O·DOS 

s=R/Q = 0·35 
and c = 1-.s = O· G5 

Ci Thus t he actual conception rates a re approximately 62 and fJ5 per cent. 

Finally it mw;t be strc,::sed t hnt Table 1 has ueen constructed on the as,mmption 
t hat 11 and /~ are imlcpcmh:nt ly and normally tli;;trilmtccl. ,1i th a mean of l 'i days 
and a st andard clcYintion of 2 ·5 days. Jn flocks where thc:,;e conditions a re not 
fu lfilled, different taulcs must be computed by similar met hods to those out lined 
in Section II. 
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TH E EFFECTS OF LE!\GTH OF OESTR US AND NU~lUER OF 
I NSEMINATIONS ON T IIE FERTILJTY AND T WINNING RATE OF 

TH E i\fERl >/0 EWE 

Oy A. A. Du:--LOP* and G. l'vl. TAtusj 

[A1cmuscript racfrrJ August 29, 1963) 

S11111111(lry 

In a flock of 512 :'-krino ewes all were inseminated on the first day of oes trus. 
On the next day h:ilf o f those still in oestrus \\ere re -inseminated. as \\ere half o f those 
no lonccr in oestrus. Based o n numbers o r lambs bo rn subsequently. es timates \\ Crc 
made of the separate and joint c lTc.:ts o f number of times insemin:it ..-d a nd number of 
days in o i:s trus. 

A second insemina tion signifteantl}' in..:reascd the propo rtio n of CI\CS bc:i ring 
twins by 4 · 7 %. Other cll'cels were _not s igni fica nt, but suggested tha t ewes with longer 
oestrous periods produced slightly more lambs, and that t:\\cS in oestrus on a second 
day bcncfi tcd most from re-insemination. 

J. I NT RODUCTIO:-; 

There have been many investi gations, mainly in eastern Europe, of the efTccts 
on lamb production of more than one insemination in a single oestrous period. 
The rationale of th is work appears to fall under three main headings. First, an 
appreciable fraction o f multiple ovulations in sheep a rc asynchronous (Lysov and 
Stojanovskaja 1937: Polovccva , Okulicev. a nd Jud ovic I 938) : so th:H the O\'a shed 
by a ewe may become available for fertili zati on at different times during a single 
oestrous period. Second. an increase in the nu mber of lambs bo rn following a 
second insemination may occur should sperm from ~n initial insemination Gt the 
com mencement of oestrus fail to survive when ovulation takes place towards the 
end of a lengthy heat period. Glcmbock ii and Vnsilijcv (19-14) have produced some 
indirect evidence favouring this view and they consider that such debyed ovulations 
frequently tend to be multiple. Finally a direct effect of increased semen dose rnte 
may be operating (Koger 195 1). Pu blished work on the eITccts of multiple insemin­
ation has recently been summarized by Salamon ( 1962). The general situation 
appears to be that multiple (usually doubk) insemination commonly gi,·es ::i n in­
crease in nu mber of lambs born. Both fewer d ry ewes and more multiple births can 
bring about this increase, the rebti\'e importa nce of these two changes varying from 
experiment to experiment, with the l:1ttcr perhaps being somewhat more important. 
Variation in results of experiments of th is type may well be due to breed difTerences, 
to differences in technique (times from commencement of oestrus to the first in­
semination and between inseminations), and to ti me of year. 

• D ivision of Animal G..:nctics, C S l R 0, Mc~faster Laboratory, Glebc, N.S.W. 
t Division of Mathematical Statis tics, CS J R 0, t-lcMastcr Laboratory, Glcbe, N.S. \V. 

Aust. J. Agric. Res. , 1964, JS, 282- 8 
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There h:ive been few reports of work on the effects of multiple in semin:it ion 
in the Austr:ilinn I\ferino. Ke:ist and \forlcy (J9-t9) found no ad,·nn1ngc (in foct, 
a slight dis:td\'nntngc) in daily inseminnlion of ewes rcmnining in oestrus for more 
than 24 hr as compared to simil ar e\\'es inseminated once only. Howc\'er, their 
nu mbers of animals were smnll. Sincl:iir (1957), on the other h:rnd, found th:tt a 
second mating, some 6 hr after the first. produced a significnnt incre:ise of some 13 % 
in the proportion of ewes conceiving. The effect on the number of lambs born was 
not reported. fn the result c; obtained by S:ibmon at,d Robinson (1962), the following 
perccntag.:-s of ewes lnmbcd: 60 · 9 % of th ose insemin:ued once. 70 · 3 % of those insem­
inated twice :it 8 hr in tcrrnls_ and 62 · 5 ~~ of those imemin:itcd twice at 24 hr inlcn ·:1ls. 
The differences were not statisticnlly significant. Once again, effects on the number of 
lambs born were not examined. Thus the rclati\'c importnnce of increases in multiple 
births and decreases in dry ewes cannot be assessed from existing Austrnl ian d:ita . 

In contrnst to the mu ltipl icity of experiments to evaluate plural inseminntion, 
there has been little investi gation of a possible relationship between the length of time 
a ewe stays in oestrus nnd the number of Jnmbs she wiU bear. Most workers who 
have considered this fac tor at :i ll have npparent ly assumed that ewes remaining 
in oestrus for lengthy periods are more likely to benefi t from multiple inseminations 
and have acted accordingly, so that length of oestrus and number of in:.eminations 
arc confounded in the ensui ng lambing datn (Kirillov 1938; Glcmbocki i nnd Vasilijev 
1944; Keast :ind Yl orley 1949; Lopyrin and Donskaja 1959). In one of these publi­
cations (Gkmbockii and Vasilijev I 944), a change of breed of ram from initial to 
supplementary inseminations permitted the identification of the lambs resulting 
from each. 

There appear to be no published investigations which permit the estimation 
of the separale and joint effects on lambing perfo rmance of number of inseminations 
and of length of oestrus. Lysov and Stojanvsbja (1937) approached this most 
closely when they recorded the heat status of ewes at the time of rc-ins<.!mination on 
a second day, but did not obtain this informa tion in the case of ewes inseminated 
once only. The present ·paper reports an experiment in which these variables are 
examined in this way in the Australian Merino. 

II. MA TERJALS AND M ETHODS 

(a) Experimental Procedure 
In the course of sheep-breeding experiments at tbe CS1 RO Pastoral Research 

Laboratory, Armidale, N.S.W., some 700 to 800 Merino ewes ranging from I½ 
to 8½ years of age are inseminated annually with semen from 40 to 60 rams. Semen 
collected by electro-ejaculation is used without dilution or storage. Ewes in oestrus 
are detected by vasectomized rams whose briskets arc smeared with pigmented grease. 
These rams run with the ewes overnight from 5 p.rn. until 6 a.m., and insemination 
takes place from 8.30 a.m. to approximately 10.30 a.m. In the insemination season 
commencing on May 8, 196 I, ewes which were inseminated for the first time on May 9 
(and likewise on succeeding days) were re-teased with rested teasers between 6 and 7 
a.m. on the following morning. Thus the mob of ewes in itially inseminated on any 

,, _ -·-···- - . . ·-- ·-·-·-···-·- - ---- ~--- --· ·--..----·- --- "- ------- ---· - .. ... 
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one day was, the following mo rni ng, divided into two groups, those which were still in oestrus on the second day (i.e . 24-48 hr after the commencement of oest rus) and those which were not. Each of these groups was randomly ha lved, one half bei ng re-insem inated in the normal course of the d ay' s insemination a nd the o ther not re-inseminated. The techniq ue of insem ination described by M orrant and D un (1 960) was used . T he entire ejacul.1tc from a ram was equally d ivided among those ewes alloltecl to him ,,·hich req ui red inscmin:n ion on any one duy. T his seme n d ose rates were rcla ti,·ely high , averaging O · 34 c.c. The effec ts of semen dose rate and other semen traits h:1\'e not been considered in the present data. The fina l second inseminations were made o n Mny 30, and the nu mbers of offspring born to these ewes were recorded in due course. 

T AJlLE 

LAMD!1'G PER FOR.\tA NCf. OF EWES IN RELATION TO OESTRUS 
LENGTH Al'.'D 1'U:-IJJER OF 11'SBO~ATIO:S:S 

No. of 
Insemin:itions c~1 

2 

Days in Ocslrus (J) : 

2 

•P11 = 12 P11. = 
Q11 = 189 Q12 = 
Ru = 66 R12 = 
Nu= 267 N12 = 

P21 = 18 Pu= 
Qu = 185 Q 2 2 = 
R21 = 63 R22 = 
'N21 = 266 N22 = 

I 
27 
10 
38 

4 
28 
9 

41 

• P ,1, number of ewes bearing t"'i ns. Q,,. number 
of ewes bearing sing.Jes. R,,. number of ewes not lambing 
to inseminations at this oestrus. 

111. STATISTICAL METHODS AND RESULTS 

T he results of the experiment described above nrc summarized in Table I. It will be noticed tha t there arc four statistically independent groups, each with three discrete classes. It will be assumed thnt the outcome in these groups is adequa tely described by a trinomial statistical model, and that the Likelihood of the particular result in the i, jth group is given by 

NtJ! L,1 = I' 1 R r piJ!'iJ q91;J r~iJ. (1) fj, Q,, , IJ• I tJ 

In(!), p,1, q11, and r,1 are the probabilities that a ewe inserninnted i times and observed to be in hea t on j days, (i, j = I, 2) will give birth to twin, single, and no lambs respectively. Because of the independence of the four sets of data, the combined like­lihood for t he experiment is given by: 

L = nL,1. (2) ij 

.:) 
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It is now possible to postulnte the following parnrnetcr models (fable 2) for 
the probabilities associated with Table I. 

In the above models of Table 2, a:, a, and -~ represent effects due to the number 
of inseminat ions on t\\"in bi rths, single birt hs, and dry ewes respectively; ~' b, and t 
are equivalent effects at tributable to the number of days tha t a ewe is observed in 
oestrus ; while y, c, and 1t may be inte:rprctcd as interact ion terms. (The an:ilogy 
between these models and the usual model fo r the two-wny a nalysis of variance with 
interaction is obvious.) 

TABLE 2 

PARAMETER MODUS 

Number of 
Inseminations 

Days in Oestrus 

2 

Pu = p•+ a+ P + y 
qu = q + a + b + c 

ru = r + 8 + t + u 

p:1 = P - a + /3 - y 
1]21 = q - a + b - C 

r~1 = r - 8 + t - u 

2 

P 12 = p + a - P - y 
q12 = q -1- a - b - C 

r1 2 = r + s - t - u 

P22 = 1' - a - /3 + y 
q22 = q - a - b + C 

r22 = r - a - t + u 

• These parameters are subject to the restric tions that: 1' + q + r = 1; 
a + a + 8 = 0; f3 + b + t = O; y + c + tL = 0. 

Now log Lis a function of the eight unkno\\"n pa rameters p, a, /3, y, q, a, b, c, 
and maxirni7.a tion in the standard man ner shows tha t: 

p = E p"/4 q = Eq0 /4 
lJ ,, 

a = (Pu +:i>12-P21 - ft2~)/4 

p = (Pu +P2i-J1:z-Pd/4 
Y =fau- p-a.-fi 

a = (q11 +q12-q21- iJ22)/4 
b = (§11 + §21 - CJ12 - §d /4 
c = q11- q- a.-b 

The variances of the four estimates involving the f;;; arc the same, and in fact equal 
(1 6)- 1 E p 11(1-v11)Ji.7";/. A similar remark applies to the estimates involving (Ju, 

H 
a nd in this case the variances equal (J6) - 1 Eq0 (1-qii)N,i . The estimates and their 

H 
standard errors are given in Table 3. 

The various combinations of the estimates of Table 3 are: 

Pu = 0·0450 fi12 = 0 ·0264 p21 = 0·0677 fizz = 0 ·0976 

ciu = 0 ·7079 412 = 0·7105 q21 = 0·6955 c}22 = 0 ·6829 

ru = 0·2471 1\2 = 0·2631 f21 = 0 ·2368 f22 = 0·2195 

It is ha rdly surprising that significantly different estimates were obtained for 
p, q, and r, which indicate the overall proportions of ewes bearing 2, I, or O lambs 
respectively (p + q + r = 1). 
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The estimates of the remaining parameters, wh ich a re in terms of deviations 
from an overall mean (~ ...1.. a + s = 0 and so on), nrc of much more interest. Of 
tbe t\\'O sets of mnin effects. the \'n lues fo r number of inseminations are greater than 
those for duration of oestrus, the former being never less than l %, Since the effec t 
of two inseminat ions is equal to that of one insemination but opµos itc in sign, as 
defined in Tnble 2, the di fference between e\\'es with one or t \ \ 'O in!;eminations is 
thus never less than 2 %, The percentage of ewes benring t\\·ins was hi~her by 4 · 7 
with two inseminations than one (a = -0·0235), while the percentage bearing 
singles was 2% less (c, = + 0·0100), :ind the percentage of dry ewes 2· 7. ~1~ less 
(.s = + 0 ·0135). The effect for twin births was significant at the 5% level, from a 
one-tailed test based on the assumption that a second insemination would increase 
the proportion of twins. The effects for single births and d ry ewes were not significant 
ind ividually, but it is worth recording that the significant increase in twin ning was 
accompan ied by a decrease in the proportion of dry ewes as well as in the proportion 
of ewes bearing singles. 

Birth type 
fract ions 

Insemination 
frequency 
effects 

T ABLE 3 

ESTI~IATCS OP PARAM.ETE RS A:-;O STA:,./DARD ERRORS 

p• = 0·0591 ± 0 ·0142, q• = 0 ·6992 ± 0 ·0277, ;. = 0·2417 ± 0·0258 

a • = - 0· 0235 ± 0·0142, a 0 ·0100 ± 0· 0277, § = 0·01 35 ± 0·0258 

Oestrus length 
effects fi = - 0 ·0028 ± 0·0142, b = 0· 002S ± 0 ·0277, = 0 ·0003 ± 0·0258 

Interactions y 0·0121 ± 0 ·0142, c = - 0 ·0038 ± 0 ·0277, u = - 0 ·0083 ± 0· 0258 

The estimated direct effects on Jambing status (0, l , or 2 Jambs) of whether 
a ewe is in oestrus on one day or on two days are not significant and are very small 
(0·5 % and less); their signs are nevertheless in tbe anticipated directions, i.e. two 
days in oestrus increases both ewes in lamb and twin births. Although the inter­
action terms y, c, and n are not significant, those affecting the proportions of dry 
ewes and of twins are large enough to be of some interest. They suggest that e\ves on 
heat one day and inseminated once and ewes on heat for two days and inseminated 
twice will have both more twins and fewer dry ewes tlJan would be expected from 
the average effects of the main classifications concerned. Unlike combinations of 
days in oestrus and times insemi nated, on the other hand, seem Hkcly to bave 
fewer twins and more dry ewes than expected. 

IV. DISCUSSION 

The present results on the effect of double as opposed to si ngle insemination, 
while weJI short of significance in some cases, are in general agreement with the 
usually positive results obtained by other workers, but they do not shed any light 
on which of the several possible mechanisms d iscussed earlier are involved. 
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It is hardly surprising that it h:is not been possible to demonstrate any direct relation between knf th or oestrus and bmbing pcrform:rnce when one considers the error component in the me:i suremcnt of the former tr:iit: e\':cs when first drnfted may ha\"c a rang.:: of almost 24 hr in the time since first coming into oestrus. In spite of the absence of ;,ny nwrkcd main effect of length of oestrus. the est imated values of the interaction terms fo,·our the implicit assumptions of those writers who have considered th:H ewes exhibiting lengthy heal periods :ire likt.'ly to benefit from mulliple inseminations. While it is not possible to comp:ir..-: our resuits ,,·ith tho,c obtained in Karakul sheep by Lysov and Stoj:rno,·skaja (1937) in these terms. a comparison can be made if our t\\·o subclasses of ewes inscminat..-:d once arc pookd. Having a lower concept ion rate in thei r control group (47 ·8 ~~), they made a major advance of some 11 ~{ in the proportion or ewes conceiving as a result or double insemination, an increase which w:is present in only very minor degree in our data. Their basic proportion or twins, on the other hand, was some,,har higher (7 ·4 % v. 4 · 3 %) and their increases in the proportion or twins were naturally somewhat greater on passing from ewes inseminated once to ewes on heat one day but in­seminated twice and from these lo ewes on heat on two days and inseminated twice (4·9 and 5· I % r. 2 ·5 and 2·9o/;). No mnnipulation of inseminntions will increase tbe proportion of twins in the abse nce of multiple ovulntions. However, the benefits estimated in our data as accruing from double insemination of ewes still on season on a second day arc so small th at the work of re-teasing and re-insemination would be poorly repaid. This is particularly so when one considers the sm:1 11 fraction of ewes - about O · 13 - which exhibited oestrus on the second day under our conditions. 

The gains from wholesale double insemination are probably real and of some­what greater size (an increase or :,pprox.imately 4 ·4 ¼ of Jambs born in the data of Table I). At the practical level. the net ga in for the additional work invol\·cd is rather small. Tn this regard it should be noted that under some circumstances there could be an offsetting reduction in conception due to lowered semen dose rate. This was not the case here, as l_ln examination of our records has sho,vn that ewes in­seminated once rccei\·ed almost exactly half the volume of semen received by ewes inseminated twice. While the mechanism of tbc gains made here through double insemination is not clear, these arc large enough to suggest tlwt more searching investigations, where time of onset of oestrus is known much more precisely, and where variations arc made in times to the first and between the first and the second inseminations, would give results of both physiological and practical interest. 
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THE RELATION OF SEMEN AND VAGINAL l'v1UCUS T RAJTS 

TO FERTIUTY IN THE AUSTRALIAN MERl NO 

By A. A. DUNLOP,* G. i\ 1. TALLIS,i° G. I-l. D ROWN,!° and B. D. GREM•lt 

[Manuscript reci:ired July 7, 1971 J 

Abstract 

D:ita relating semen traits and \'aginal mucus scores in 515 ram years and 41 90 first 
inseminat ions to subsequent lambing performance of ewes were analysed by a range of 
statistical methods. The results showed there to be an impon:rn t curvilinenr effect of 
mucus score at insemination time and linear effects of st:ores for motility and consistency 
o f semen in thc ej:iculates used . These effects operated both on fertility :ind on fecundity. 
There appeared also to be smaller linear effects of ,·olume of semen inscmin:i,ed per C\\'C 

a11d es timates of the proportion of abnormal spermatozoa in ejaculates collected before 
the insemination sc:ison on fecundity and probably on fertility. The clfrcts of age of ewe on 
fecundity to a single imemination arc in contrast with the usua l effects of age on lambs 
born under natura l ma ting. [n our ma terial two-tooth C\\CS produced 5- 6% more lambs 
from a single insemination th:in did older ewes. I t is suggested thn t. while older ewes are 
more sexually acti,c and shed increased numbers of ov:i, the reproductive trace becomes 
a less favourable environment for initia tion and completion of pregnancy with increasing 
age. 

J. I NTRODUCTION 

While much has been published on methods of measuring attributes ofrnm semen 
and on their interrelationships, less is known of the influence which semen traits may 
have on obse rved fertility. This situation no doubt rel1ects the facts that, while it is 
relatively cheap and easy to obta in seme n samples for laborato ry study, to arra nge 
pa rallel mat ings or inseniinations and to obser\'c the subsequent lambings over 
worth-while numbers of ewes is neither cheap nor easy. The subject has been summar­
ized in a review by Emrnens and Robinson ( I 962). An early exception to the general 
lack of inform:-ition relating semen trai ts to ferti lity in the sheep is the work of Wiggins, 
Terrill, and Emik ( I 953), who observed pre-mating scr.,en cha rac teristics and subse­
quent lambings over a lengthy period with large numbers of sheep of the Rambou illct 
and related breeds. The only tra its both appreciably and sign ificantly correla ted with 
fertility we re percentage of normal sperm ·c, = O· 43) and, to a le5ser exten t, the related 
t raits, percentage of abnormal heads and percentage of live normal sperm. More 
recently workers at the same location (Hu let and Erca nbrack 1962), using a fairly 
extensive range of semen traits, have observed real and appreciable correlations of a 
number of these wi th fert ility (motility score -0 · 60, pH -0 · 66, percentage abnorma l 

• D ivision o f Animal Genet ics, CSIRO, P.O . Box 90, Epping, N.S.W. 2121. 

t D ivision or Mathematical Statistics, CSI RO, King Street, Newtown, N .S.W. 2042. 

t Division o f Animal Genetics, CSIRO, Pastoral Research Laboratory, Private Dag, P.O., 
Armidale, N.S.W. 2350. 
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necks - O·GG, concentration + 0·56. percentage live normal + 0 · 70. percentage ab­
norl!lal -0 · 66) ,, hile inJexes of fertility using some of these attributes ha Ye been 
correlated \\'ith fertility (up to r = O· 74) in subsequent use. Later work (Hulet, 
Foote, and Bl:lck\\'cll I 965) sho\\ cd that a number of these semen characters also h:id 
real, though some\\ hat sm:ilkr, relationships \\'i t h fecundity. 

lvlating by artifici:il insemination in sheep-breeding experiments at the CSJ RO 
Pastoral Research L:iboratory. ,\rmidale, KS.W., commenced in 1957 anJ continued 
to 1965. Th is \\'Ork offered the opponunity of making ob~ervntions of semen trnits 
and their relation to subsequent fcnilit)'. \\'hilc the final s~lc.:ction of sire's actually 
used was inllucnccd to some cxh:nt by the sem..:n picture before matin g, panicularly 
in grossly abnormal sample,. this was usually a minor f~H.:tor in comp:.irison with mcrit 
in the traits under sdcction. It \\as felt therefore thnt there would be sufficien t 
variat ion remaining in semen traits to allow an eva luation of their importance in 
determining reproductive pcrform:rnce. This paper reports the results of such an 
investigation in inseminations from I 957 to 1965. 

I I. MAT[RIALS ,\ND M ETHODS 

In each of the years 400-800 e\\'es of mixed ages came forward for mating by 
artificial insemination, \\'hilc 50-60 rams were used each season and less than 20'~~ 
of these were older than 21 yea rs. Approximately 10 days before the commencement 
of the mating season in early l\ lay, semen was collected by electro-ejaculation from 
preselected sires and reserves, and was scored fo r consistency from a range of eight 
grades similar to those of Gunn. Sanders. and Granger ( 1942). A small drop of semen 
was placed on a co\'er slip on a warm stage and scored subjecti vely under low power 
into one of I O grades of moti lity. In both scores a grade of I was at the most dc5irablc 
end of the range. The percentage of abnormal sperm was estimated s~i.,bjectively from 
a smear stained with hacmatoxylin and eosi n. On the bnsis of these three scores each 
chosen !>ire was either confirmed or, occasionally, replaced by the reserve sire. 

The routine of insemination over 30 days was essentially that described by 
Morran t and Dun (1960). Gradings for motility and consistency as described abo\'e 
were made on a rou tine basis on every ejaculate, the volume of semen used for each 
ewe also being recorded. Because of the rela tively narrow ewe/ ram ratio, fn:. h 
undiluted semen was used and the volume of semen per ewe was on the average high 
at 0 ·44 ml. The range. however. was appreciable. varying from 0·05 to 2·20 ml. 
This arose beca use the ewes to be mated to each sire were predetermined. and the 
to tal ejaculate was used irrespective of the number of ewes in a sire group which were 
in oestrus on any particular day. 

Over a considerable period. increasingly more detailed work has indicated tlrnt 
fert ility changes accompany the progressive changes in consistency and volume of 
vaginal mucus during the oestrous period (Kardymovic, Marsakova. and Pavljucuk 
1934; Keast and Morley 1949 ; iv1 orrant and Oun 1960; Restall 1961). Subjective 
gradings of vaginal mucus were made on all ewes at the time of insemination. The 
grades used were : I, clear; 2, clear and copious; 3, cloudy and copious; 4, cloudy; 
5, crenmy; 6, cheesy. 

( - .. ... , __ ., ___ - . ·-·. . . ... - - ·- -··- - - -··- -· - ----· -···--- - ··--··· ------· 
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The traits ini,ially chosen for analysis were those which could be quid.ly 

observed on a routine basis during a field insemina tion programme wi thout appreciably 

delaying opera tions. Tl,ese \\'ere \'Olume of semc11 per e\\'C, consish:ncy and motility 

of ejaculate. and mucus ~core oft he c.'.'we. To these was added the estimated percentage 

of nbnormal sperms in the semen smear made berorc the insemination season. In­

sufficient lnbour was available to observe this character on ejaculates during the 

insemination programme. 
Throughout 1he rre,ent analyses. fer tility and fecundity. were based on the 

results offir~t insemina tions. Whr cher fertility (thl' presence or absence ofa completed 

pregnancy) or fccundicy (the nu mb,' r of offspri ng horn, zero or a larger number) wac; 

used in a particula r analysis, will be see n to depend 011 the st:it istica l method in use 

in each case. As there was natur;-illy a proportion of rciurns. some ewes were inse m­

inated twice and a sm:ill numbe r three times. Criteria were therefore needed to decide 

which insemination re!>ulted in a birt h in such cases er plural insemination. ,\ 

gestation period of ~ 140 to ~ 160 clays was deemed :iccept:iblc. Thus a sin gle 

in emination rcsulcing in a birt h within this range of gestation leng1hs was accepted. 

Where two insemination dntes were recorded and only one putati,·c gestation length 

was within this range, this was accqll1~d . In the rare cases where nei ther was within 

the range none "iis accepted. Where three insem inations had b~en recorded :inc.l 

only one fell within the above gest:ition range this ,.,,as accepted. Where more than 

one or none fdl within the acceptable range none was accepted . 

In co nsidering the results of these inseminations. fertility was used in the abso lute 

sense. T hus an inseminated ewe su r\'iving to lambing ti me must fa ll into one of two 

classes. Either the ewe was dry, or she bore at least one lamb. The resu lts from a 

small number of ewes" hich were inseminated twice in one oestrus (Dunlop and Tallis 

1964) were not considered. Preli mina ry observation of the relation of the five traits 

to fertility was carried ou t graphically and two trai ts, volume of semen per ewe nnd 

percentage of abnorm:i l sperms. \\Cre initially deleted as not having a~triking rcbtion 

to fertility. The graph rdati ng these respective traits to fertili ty arc presented in 

Figu re I. I lere the clnta on motilit y. co nsistency, mucus score. and volume from ;il l 

nine years arc pooled wi thou t regard to yea rs, and points depending on li::wer th an 100 

observations arc not shown. fn the case of the percen tage of abnorma l sperms the 

data from 1961 have been excluded. as a consistent technical error in smea r preparation 

in that year resu lted in a gross innation of the proportion of sperms of abnormal 

appearance. When data were distributed ove r all the estimated percentages of 

abnormal sperms the graph was so variable, because of the very small ram num bers 

represented by individual points, that :iny trend was difficult to observe. The data 

were therefore grouped for analysis into the five classes denoted in figu re l on the 

basis of the proportion of abnormal sperms. Each class represents more than 50 

ram years and more than 500 ewe years. 
The records finally analysed by regression methods contained 41 90 firs t insemina­

tions from 515 rams on a within-year basis. Some rams and many ewes were of course 

represented in more than one year. 
As shown in Figure I, the effects of consistency and motili ty appeared to be 

mainly linear, while. in the case of mucus score, fertility was at a maximum at a mean 

score probably closer to 2 than 3. To faci litate analysis and to ensure that there were 
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useful numbers in as many cells as possible in the three-way classification (mucus x 

consistency x motility) the final three classes in mucus scor·:. the final four cl:hscs 

in consistency, and the final (h e classes in motility were compressed into a single 

class in each case. Thus the data finally analysed co ntained ro ur grades fo r nwcus 

score, five grades for consistency. and six grades fo r motility. Weighted mean \'alul.!s 

on the respecti ve coordinates we re com puted in the re, isccJ cbssifkations. Follo\\'i11g 

this procedu re cells c:ontaining fewer than four items of data were dektcd. 
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Fig. 1.- Covariatio n of sperm and mucus traits with fertility. 

The models on the basis of which the data were analysed were : 

(I ) 

H ere P;p, is the proportion lambing of those e,,es which fall in the ith mucus class. the 

jth consistency class, and the k th motility class : q is a constant: a, b, c, and dare 

regression cocflicients: xj, )'j. and zk arl! mean gradings in the three traits. in the 

above order; and e;14 is a ra nd om error term with an expectatio n of zero and a variance 

of Pliil - P;j4)/n ijk· where 11ij" is the number of ewes in the subclass defined by the 

subscripts. 

(2) A model identical with (I) except that e,jk is normally distributed, with a 

mean of zero and a variance of a 2
• 

Since the P,jk may be interpreted as probabilities. model I should be the appro­

priate choice. However. the data were observed over a number of years and the 

question of bt.:tween-year homogeneity arises. Techn i(]ues for the testing of between­

year homogeneity for model I have not been developed, hence the need fo r in trod ucing 

model 2; i.e. the modification of the error term in model 2 should be regarded as an 

approximate method for examining between-year differences in regression. 
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The possibility of improving the analysis by using the :1rcsinc transfo1 ,nation has 

also bee n investigated. This, however. did not incrca~e the fraction of controlled 

variation and the resul ts arc. not given here. The probable explanation is that most 

of the P;i 4 a re not near to the extremes of the possible ran ge (zero or one) and little 

has been gained by the va riance-stabilizing transformation . 

The parameters q. a. b, c, and cl were estimated by the method of Tallis (196-1) 

where n k::i st squares procedure is indicated. The estimates arc identical unda ei1hcr 

model. T he relat i\·e import:rncc or the se vera l traits \\'as as~es~cd hy the squares of the 

successi\'e multiple correlation coefficients t R2
), as one or more parameters \\ ere deleted 

from the model. 

In more detail, the data were initinlly ana lysed within individua l years under 

model I, giving a series of estimates of regression coetlicients. Under the simplifying 

assump1ions of model 2 rhe se1s of regression cocmcients were tested for hetcrogenei1y 

between years, while yea r effects on fertility were also tested fo r significance. 

The regression cocflicicnts were then re-estimated under model I, the data 

being pooled on a "ithin-yenr basis. The rel:1tive importa nce of the several trait s on 

an average bnsis was estimated by the R2 tech nique. using the pooled annlysis. wh ile 

the standard partial regression cocmcicnts from the same analysis gnvc an alternati ve 

solution to the snmc problem. 

Subsequent ly a re-examination of the data contributing to Figu re I suggested 

that both semen volume and p~rcentage of abnormal sperms might have real. though 

relatively small, effec ts on fertility . The inclusion of two further \'ariablcs would have 

rendered the number of items per cel l so sma ll that the methods just described could 

not have been used. An alternative method of estimating simu ltaneously the effects 

of the five variables together with age of ewe was sought. The data were analysed 

und er the following model: · 

YIJklmno = JI + ai + b1 + ck + d, + em + /,, + gijklmno • 

Here Yiik'""'" is the number (0, I , or 2) of lambs born to the oth ewe in the subclass 

defined by the subscripts i- 11, 

Jl is the mean of the population being sampled, 

a; is the effect of the ith mucus class, i = l ... 4 and a4 = 0 , 

b 1 is the effect of the J th consistency class, j = I •.• 5 and bs = 0 , 

c1: is the effect of the kth motility class, k = 1 ... 6 and c6 = 0, 

d1 is the effect of the Ith volume class, / = I .•. 5 and d5 = 0 , 

em is the effect of the 111th class of abnormnlity percentages, 

111 = I ... 5 and e4 = 0, 

I,, is the effect of the 11th age of dam class, 11 = I ... 3 and / 3 = 0, 

giJkl mno is a deviation of the oth obscrva1ion in the subclass defined by the sub­

scripts i ... 11 from the sum of 11 and the six effects defined by these subscripts. 

The g 11k,mno have an expectation of zero. 



( 

i 
I 

I 
l 
i 
I 

! 
I 
l 
I 

( 

300 A. A. D UNLOP £T AL. 

It should be noted that the concentration of classes in mucus. consistency, and 

motility was as already descri bed for the regrc~sion ana lyses. The classes for volume, 

percentnge of abnormali_tics, and ai:;c of dam were : 

Class No. Volume Abnormalities Age 

I >0·6 c.c. 0 2 years 

2 0·45-0·6 c.c. 1% 3 yenrs 

3 0·35-0·4 c.c. 2-3% > 3 years 

4 0·25- 0 ·3 c.c. 4-7% 

5 ~0·2 c.c. >7% 

As the da ta were non-onhogona l. the parameters were estimated by solving the 

pertinent least squares equa tions. The data from each yea r were ana lysed separately 

by ana lysis of variance. which permitted approxim:He tests of significance of each of 

the sets of m:iin effects. With the aim of assessing the relative importance of the six 

classifications in controlling fecundit y, the sometimes unrealistic assumption was 

made that the classes in each clas:;ification constituted a randomly drawn set. Com­

ponents of varia nce were then estimated by Hendcrson·s method 3 ( 1953). 

HI. Rl:SULTS ,\ ND D1scuss10:,.i 

(o) Regression Analysis 

The partial regression coefficients of fertility on the four traits within individual 

years are presented in Table J together with means of the su bclass va lues in frrti lity 

TABLE I 
PARTIAL R CGRESSION COEF rl C.11::,o;Ts OF f EI\ TILITY O N MUCUS SCORE (I), 

MUCUS SCORC2 (2), Sf.~I EN COSSISTESCY (3), ASD s r r.R.\I MOTILITY (4) 

\VJTHIN YCARS 

Year Fertility Partial rcgrcs5ion cocflicicnts 

Trait I Trait 2 Trait 3 T rai t 4 

1957 0·648 +0 ·491 -O·OS9 - 0 ·035 - 0·011 

1958 0 ·637 + 0·217 -0·041 -0·079 -0·01 6 

1959 0· 364 + 0· 178 - 0 ·039 - 0 ·032 -0·050 

1960 0·661 +0·3S-l - 0·072 -0·004 -0·013 

1961 0·6'.12 +0·255 -0·053 -0·016 - 0·022 

1962 0 ·561 +0·231 -0·042 -0·045 - 0 ·006 

1963 0 ·510 + 0·274 -0·051 + 0·013 - 0 ·042 

1964 0·533 +0·524 - 0 ·097 -0·036 -0·058 

1965 0·391 -0·008 -0·012 - 0·015 -0·096 

(proportion of ewes lambing to first insemination) in each year. While there is 

appreciable va riation in the size of coefficients from yea r to year. there arc very few 

disagreements in sign, the directions in general agreeing with those implicit in Figure 

I. The nu merical value of the linear e!Tect of mucus score is also consistently larger 

than the remaining coeflicients. t-.fuch of the va riation in size and sign of coefficients 

from year to year is no doubt due to the limited numbers within individual years. 
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The homogclleity lest under model ~ fo r pooli ng wit hin years by the method 
given by Rao ( 1952) consists of test:; of t\\'O llull hypotheses. These arc (a) tha t regres­
sion equations in difTcrcnt yea rs arc equivalent, and (b) that the rcgrcssioll t'qua tions 
arc equivalen t except fo r the intercepts on the dependent axis. These tests are shown 
in Table 2. 

TA IJ LE 2 

TESTS OF Rr:G JU SSION l!YPOTI IES!:S 

Source DF MS F 

Rcsicluals d ue 10 de via tio ns from 
hypo thesis (a) 40 9 ·916 2·762·· · 

Residuals du.: to clcYia1ions from 
hypothesis (b ) 32 4·032 1 · 123 (P > 0·05) 

Residuals due 10 separate 
regressions 268 3·591 

• .. P < 0 ·00 1. 

Clearly the first hypothesis is not supported while the scco11<J is. Th us, as there 
is no evidence that the sets of regression coefficients differ between years. and as there 
are very highly signi fican t d ifTe renccs between intercepts. it is implicit that there are 
very real mean differences between years in fertili ty. In view of the large differences 
in the annual estimates of fe rtility in Table I, this is not surprising. 

TABLE 3 

, PARTIA L Rl:GR LSSION COEFFI CIENTS OF POO LLD H RTI LITY DATA 

Independent 
variable: 

Coefficient 

Standard 
error 

Standa rdized 

Mucus score 
(linear) 

0· 291**" 

0·046 

2 
Mucus score 

· (quadratic) 

- 0·057• 0 

0 ·008 

coeflkicnt 1 · 517 - 1 ·714 

•• P < 0·01. .... P < 0·001. 

3 4 
Semen Sperm• 

consistency motility 

- 0-024•• -0 ·031""· 

0 ·008 0 ·007 

- 0 · 162 -0·223 

These tests having shown that the rather large differences in fertility of Table I 
were real, but that the various sets of within-year regression coefficients could be 
considered homogeneous, it seemed reasonable to pool the data on a within-year basis 
and to re-e:;tima te the regress ions as average efTects of the several traits on fertility. 
These estimates of the partial regression coeOkients arc shown in Table 3, together 
with their standard errors as estimated under model I. 

All the coclTicients are highly significa nt, indicating real efTects of these traits on 
fertility, with mucus scores apparently being of considerably greater importa nce than 
semen traits if the standa rd partial regression coefficients arc regarded as measures of 
relative importance. The reality and rrnt ure of these efTccts arc as might have been 
expected from published work to which reference has already been made. 

···-· . -- ... - . -
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T he squares of the sililplc and multipk correlations relating the four variables to 
fe rt ility o n a n int ra-yea r basis arc shown in T able 4. 

T AULE 4 
SQUAI\CS Of S l~IPLE A:s'D ~1ULTI PLL <:0RRELA1 JOSS 

W ITH I Ef<l'ILITY 

Trait(s) Correlation: Trnil(,) Correla lion: 

I (mucus score) 0 ·028 I, 3, 4 0 · 130 
2 (mucus score') 0·049 l , 4 O· 1 l .t 
3 (semen 

consistency) 0 ·066 2, 3 0 · 118 
4 (sperm 

moti lity) 0 ·087 2, 3, 4 O· 152 
], 2 0·1 19 2. 4 0· 135 
I, 2, 3 0 ·195 3, 4 0 · 102 
I, 2, 4 0· 212 1, 2, 3, 4 0 ·231 
I, 3 0·096 

Clearly, as these values a re so low. there is considerable variation in fertili ty 
no t controlled by the auributes co nsidered he re. This is no t s urprisi ng when one 
considers that no account was taken of age differences in the ewes in analysis to this 
point, or of differences among the observers who made the s ubjccti\'C gradings over the 
course of the work. A fu nhc r co ntribution to error must be the coarse expressio n 
of fertil ity (zero o r one) in individual ewe years. 

(b) Analyses of Variance vf Fecundity 
The main effects for the six trai ts, as estimated by the least squares procedure 

and averaged O\'cr t he eigh t years, a re shown in Table 5 together with their standard 

T AULE 5 
ESTl~IATES OJ EfHCTS Of SIX TRAITS 0:--1 fCCUSDITY iO OSE 1:s;so11S,\TION ANO STASDARO ERRORS 

( IN PAR(1'T IJ CS1S) 

Parameter No. : 2 3 4 5 6 

Trait 
M ucus score 0 ·09 (O·OJ) 0 ·23 (0·03) 0·21 (0 ·03) 0 
Semen consistency 0· 15 (0·05) 0·0.t (0·0.t) O·O.t (0·04) 0 (0·0.t) 0 
Sperm motil ity 0· 28 (0· 05) 0 ·26(0·04) 0· 23 (0 ·05) 0·13(0 ·05) 0 ·06 (0·05) 0 Semen volume 0 ·05 (0 ·03) 0·07 (0·03) 0 ·02 (0 ·03) 0 (0·03) 0 
A bnormal sperm(~~) O·O.t (0 ·03) 0· 03 (0·03) - 0·03 (0·03) 0 - 0 ·05 (0·03) 
Age of ewe 0· 05 (0· 03) -0·01 (0·0~) 0 

er ro rs. The results of the tests of significance of the six traits in each of the eight years 
a rc summa rized in Table 6. These tests sho uld o f co urse be viewed conservatively in 
view of thl! distribu tio n problems involved . In producing the averages of Table 5 
individua l an nua l estimates were weighted by t he inverse of thei r standard er rors . 
It should be no ted that the e fTects he re a rc o n fecundity rather than on fertili ty as 
used in the regression analyses. A scale of 0, I , 2, ... was deemed more appropriate 
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to a rwlysis of variance th:1n a 0, I scale. There were, however, no triplets and only 
180 pairs of twins resuhing from the 4250 first insem ina tions analysed here. It is 
therefore not surprising th at these estimates present a picture in good gencr:11 agree­
ment with figure I and, where applicable. \\'ith the regression analyses. The o,·erall 
effects of volume of semen :rnd percentage of abnormalities arc smaller tlwn those of 
mucus, consistency. and motility. The generally high sl.!men dose rate. and the fact 
that abnormal ities were estimated from a single ejaculate removed in time from 
those used for insemination, are consistent with these modest effects. 

TAnLE 6 

COMPQ:-;F.:-;Ts or \'ARIA:S:CE F.XPRESS[D AS PERCF:-.TAGtS At-.'D SIG:S:IFICA:--CE OF ~JAIN ErFl CTS 

Year : 1957 1%8 1959 1960 1962 1963 1964 1965 Mean 

Sourer. 
Error 84·3 92· I 9J·6 91 ·5 90·3 96·2 92·9 83·7 90·6 

Ace of ewe 2·5 ' I. 3 0·1 l·O 0·5 0 · 1 0·9 0·8 
Abnorm:. I sperm(! ~) I · 4 O·O 0 ·4 )· 1 ••• 0·6 
Semen volume I · 4 0 ·9 O·I O· I 0 ·2 0·3 
Sperm motilit)' 2·3' 0·3 3 · 3" 2·6 · 0·5 11·2· .. 2 · 5 

Scmtn c~n5.iSt<"ncr 4 ·5' I ·5 2·3 .. 0·6 1· 1 0·5 I ·3 

Mucus score 6·0" 4·2 ... I ·6" 7 ·3' ... 4 · t • •• 0·6 6·6· · · 0·7 3·9 

' P<O·OS. "P < 0·01. ' "P<O·OOI. 

The effects of age of dam are of considerable interest in that they contrast 
sharply with ea rlier data from the same stocks under na tu ral mating (de Haas and 
Dunlop 1969) and with data on other Austra!i:1n Merinos (Turner and Dolling 1965). 
Here we ha\'I! fecu ndity per ewe having a firs t artificial in semination and present at 
lambing as opposed to fecundity per ewe present at lambing under natural scr\'ice 
conditions and irrespective of whether 0, I, or more oestrous periods resulted in 
services. Jn our data fecundity, as here dc!lncd . is higher in two-tooth than in mature 
ewes. T he estimate at this age in Table 5 is just significa nt if an additional decimal 
place is considered. 

The present data a re probably a net resul t of several influences. Thus 2% of 
these two-tooth ewes produced twin:; as a resul t of the first insemi nation while the 
equivalent figure for older ewes was 5~{ . This trend agrees with the proportions of 
multiple births produced by these ages in complete lambings (de Haas and Dunlop 
1969). It also agrees \\·ith previously un published data on the proportions of multiple 
ovulations in 68 two-tooth ewes and 306 older Merino ewes of these stocks ranging 
from 2½ to 9½ yea rs of age. On laparotomy the frac tions of multiple ovu lations were 
found to be 7 · 4 and 13 · 4% respectively. The direction of this age difference agrees 
with that in ovula tion rate reported by Giles (1969) in Bungaree Merin os. Secondly, 
in our material 40% of two-tooth ewes failed 10 lamb to a first insemination compared 
with 46% of older ewes. Finally, the fractions of ewes for which an oestrous period 
was not recorded and which were therefore not included in these analyses were 23~~ for 
two-tooths and 5% for older ewes. The make-up of this total is interesting as two 
drought years were included. The percentages of apparently non-cycling ewes were : 

drought years 
non-drought years 

two-tooth 

50 

6 

older ewes 

18 
2 

----· : ·· 
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Most, though not quite a ll, of the differences he twcen two-tooth rind older ewes come 
from the drought years when the younger sheep were probably restricted in develop­
ment. This :ige diffe rence is in the same direction :is th:it n:co rded in tvlcrin os by 
Mullaney (I 966), though his fractions of in :1ctivc ewes were much lowe r than ou rs. 

It appears that older ewes, when insemi nated once, may be slightly more 
efficient in producing multiple births by reason of higher ovulation rates. bu t that with 
increasing :1ge they became somewhat less efficient in producing a lamb :11 all. One may 
spccul:itc that agcing through we:ir and tear, through infections, and possibly through 
cumubti\'e effects of pbnt oestrogens might be expected to bring this about. On the 
other hand the greater proportion of two-tooth e\\'es not having a first insemination 
may be due to (a) fc\\'cr two-tooth e,\eS O\'ulating presumably th rough immaturity, or 
(b) lesser libido and experience of two-tooth ewes. · 

The fairly extensive data of de Haas and Dunlop (1969). which came from the 
same stocks of sheep in earlier years and at three locations, have been re-analysed to 
estimate age differences in the number of Jambs born per ewe to first service under 
natural mating. The figures were : two-tooth , 0·73; four-tooth, O· S4; older than 
four-tooth, 0 ·93. These arc to be comp:1red with the age efTects ex pressed as devi:1tions 
in Table 5, i.e. 0·05, -0·01, and O·O. Clearly the trend is reversed a nd the age effects 
we have found under artificial insemination do not apply under conditions of natural 
service. This reversal was present in cbta from each of the loca tions prior to pool ing 
to produce the first set of figures above. The only explanation which seems acceptable 
is that under unrestricted natural service the more experienced o lder ewes may be more 
successful competitors for male favours, so that these animals receive severa l serv ices 
each, spread in varying degrees over the oestrous period. Lambourne ( I 956) has 
presented data suggesting that this may be so in the New Zealand Romney. His data 
also suggest that ewes remain in oestrus longer with increasing age. Some Austra lian 
workers (Sinclair 1957: Salamon and Robin son 1962; Dunlop and Tallis 1964), as 
well as a number or Russian authors summarized by Salamon ( 1962), have shown that 
plural services or inseminations increase either the number of ewes lambing or the 
number of Jambs born or both. 

In order to judge from the regression :111:1Jyses, the relative importance of e:ich 
of the , ·:1riables, it is ini'ormativc to look at the degree of statistical control (in terms 
of R 2 where R is either the multiple correlation or the simple correl:ition depending 
on the number of independent variables under consideration) exh ibited jointly and 
separately by various combinations. For example, the control by variables I and 2 
jointly (denoted by R/1•2)), summed with Rf3•4l is 0·221 and is not very different from 
Rf1, 2,3.4l = O · 231. This is to be expected on a priori grounds, because ewe and ram 
characteristics are independent. The situation within ewe and ram traits is somewhat 
diffe rent. The fraction of control in variation due to characteristics I and 2 jointly 
(Rf,.21 = 0· 119) is considerably in excess of that controlled by I or 2 separately 
(Rfll = 0·028, Rf2> = 0·049). This is not surprising for it is evident from Figure I that 
there is a pronounced curvilinear effect of mucus score on fertility . However, the excess 
of joint control of variation over individual control is much less marked in traits 3 
and 4 (Rl3.4l = O· 102, Rf3> = 0 ·087, Rf4> = 0·066) so that there is less to be gained 
by considering them jointly. The simple correlations of traits I and 2 and of 3 :ind 
4 are both positive (O · 98 and O· 51 respectively). The correlation between I and 2 
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must be strongly posit ive as :2 is the square of I '.vhkh is always positive. The correla­tion between con~istem:y. (3) :rnd motili ty (-l) is also c-xpectcd to be positi vl: bcl·:1t1St' in Jess concentrated samples or semen the swirling wave mo tion ch:iractcristic of the num..:rically kl\\cr cores of motility is nbselll, im:spective of the degree of acti\'ity of individual sperm. In spite o f the fact 1h:11 both of these simple correlations arc positive they h:1,c a different cffe~l on thl! joint control of v:1riatio n when taken pa irwise or sep:irately. For ewe ch:i racteri'i!ics I and 2 the cun ilinear rela tionship with fertility has boosted the importam:e of their join t effect whilst ror r:1111 character­istics 3 and 4 (both appr0xim:He!~ linc:nly related to frnility) their mutual l:Orrclation has rcndcred 1hc join1 effect on ly sligh tly more im ponnnt than thei r separate dkcts. While one may loo k at the linear anJ qua<lratic contribution<; of mucus score separately, it seems more mea ningful 10 compare thc total control of fertilit) by mucus score with that by consistency or by motility. Such a comparison leads 10 the condu­sion that nwrns score has somewhat mo rc control of fatility than ci ther c0nsi~1ency or motility of thc semen, though not markedly more than their joi111 effects . 
Light may also be thrown on the same problem by con~ic.leration of the com­ponents of variance from the analysis o f variance of the data clas)ificd on six criteria. The components estimated for indi vi<lua l years and expressed as pacentnges also appear in Table 6 together with the simple means of the annual percentages. Where the estimate of a variancc cornponcm ,,as negative it was assumed to be z.:ro and thi:. is denoted by a da. h. The summary of tests of signi licance of main effects anJ the componen ts of variance as expressed in Table 6 support conclusions already drawn from the regression ana lyses, as " ·ell as the suggestions from the earlier grnphical presentation of thc raw bulk dala. Thus mucus score was by far the most consistently significant so1rrc.! of Yariation and the variance component due to this cause was considerably the largest of the six classifications considered. Thc effects of motility were significant in four years out of eight and thi: effects {Table 5) were at least as large in some cases as those of mucus score. This trait ranked second in the size of variance component. Co nsistency appeared 10 be the next most importnnt trait, being significant in only two yenrs, ·nnd having smaller effects and n variance component averaging only about half as large as that due to motility. 

Of the three remaining traits. age and percentage of abnormalities were each significant only in a single year while the effects of semi:n volume did not have a significant efTcct on fecundi ty in nny individual year. Each of these traits was respon­sible for less than I% of the variation. 
In the three traits mucus score. motility, and consistency, which were analysed bo th by regression and analysis of variance, it is of interest 10 draw together the various measures by which one might consider their relative importance. This is done in Table 7. 
By every criterion but one the descending ordi:r of importance is mucus. motility, consistency. The exception is the size of effects from the analysis of variance. An examination of Figure I and Table 5 will make it clear that this contradiction is more appnrent than rea l. It will be noted that in solving the least squares equations. the ter­minal efTcct has been set equal to zero (except in the case of percentngc abnormalities where the effects arc in any case small). This has meant that in the linear cases the lnr­gest effect is the sum of differences of like sign between successive adjacent efTccts. 
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Had a linca rizing transformation been appl ied to the mucus data the preceding stalc­
mcnl could ha\·e appl ied to this trait also. It \\'Ould then in al l probability h:wc stood 
first in size of effects. The present effect of score I can be looked on as the sum of 
diITcrrnces of unlike sign. 

TABLE 7 

MEASUR[S OF l~tPORTA:s;CE OF THREE TRAITS 

Trait : Mucus Sperm Semen 
Measure Linear J oint QuaJratic mo1ili1y consistency 

S tandard partial 
regression coefficient I ·52 - 1 ·71 - 0· 22 -0·16 

r 2 or R2 0 · 12 0·09 0·07 
Order of size of elfocis 2 I 3 
Times significant 6/8 4/8 2/8 
Mea n component pcr.::entagc 3·9 2·5 I ·3 

Jn passing it seems worth wh ile record in g that the control of va ria tion in fertility 
within indiYidual years by mucus score (li near + q uadratic) may be positi vely related 
to fertility a nd that this is more ma rked when control by mucus score is expressed as 
a fraction of the total variatio11 controlled (R/1.~/ R~1.:,J.~l). There is nat urally an 
inverse relation between fe rtility a nd contro l of va riatio n by consistency and motility. 
If these relationships were confirmed in considerable quanti ties or independent data, 
and if it were sho\\'n to apply to fecund ity as well as to fertility, there could be pnKtical 
implications fo r the sheep husbandman who is able before mating to pred ict success­
full y the oH·rall outcome of the following lambin g. 

In considering any possible applications of the present work, it is likely that, 
while the normal fea tures of good husba ndry of sires, such as avoiding nutritional 
deficiencies, heat stress, and infections. will result in some benefits through improved 
semen qual ity, the greatest gai ns will accrue from efforts to ensure that insemination 
takes place at the Oj)timum srngc of the oestrous cycle as measured by the condition 
of the vaginal mucus. One may reaso nably guess that this will apply to ind ividua lly 
controlled natural service (h:rnd service) as well as to artificial insemin:1tion. Un­
fortunately, however, to thus optimize mucus score at insemination will incur a 
considerable labour cost in determining the time of onset of oestrus and in inseminating 
at intervals through 24 hour days. The prospective user wil l have to make his own 
cost benefit calculations. A cheaper and possibly less effective a lternative or addition 
is to undertake multiple insemination. We have seen that there is evidence of its 
benefits. Certainly the cheapest alterna tive, unless there are overwhelming con­
siderations to the contrary, is to revert to natura l service, when the multiple services 
that usually take place will ensure that one of these at least is reasonably close to the 
optimum stage of the oestrous cycle and that one profits by any additional benefits of 
multiple services, however these a re mediated. 
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TH E RELATIONSHIP BETWEEN LlVE MEASURE~lE~TS AND 
EDIBLE MEAT JN ;-.. tERINO WETHERS 

By G. M. TALLIS.* Hr:u.:i-: NEWTO:-: TURM:R,i' and G. H. 13ROWNt 

[Manuscript rcceil'cd August 29, J 963] 

S ummary 
Scventy-fh·c ll fcrino " ·ethers o f a medium Peppin str.1 in were slaughtered at 7 months of age after a series o f li,e measurements had been 111:\dc, ,, d~hts then being taken of ca rc.,ss and oi cdibh: meat after boning out. F:\t content ,1as insufficient 

for trimming, and bone weight was obta ined by difference. 
Wei~ht of edible meat was highly correlated (0·95) with livewcight before 

sl:iughter, and the inclusio n of any other measurement in a mul tiple corrclatic:m analysis failed lo raise this ,·aluc. Varia tion in bo ne wci g.ht con:ribut<'d only 25 % of the variation in ca rc:iss \\eight. :ind the rntio of meat to bone \\ :IS posit ively correlated 
(O · 54) with livewcighl before slaughter. 

If tot:il amount of edible meat is accepted as the criterion for meat production, Jiveweight before sla ughter w;1s :i s:itisf:lctory predictor for these sheep. ll is suggested 
t hat simplification of criteria :ilong these lines is desirable to aid in the sekction of sheep for meal production, though more ,,ork is required on sheep of other ages and other 
breeds. 

J. l 1"TR0DUCTIO>i 

ln the past, rela tively few investigations of the relationships between live 
measurements and ca rcass characteristics have been carried out for sheep. Most 
of the work so fa r reported has been exclusively concerned wi th the study of factors 
infl uencing growth, fe rtility, wool production, and efficiency (Tan 'ja 1955; Cassard 
et al. 1956) on the one hand, and vari~ us measurements and scores associated with 
carcass grading on the other (Robinson, Binet, and Doig I 956: Kemp, 13ull , and 
Bear 1953). However, any experiment which is connected with the production of meat 
necessarily demands the joint consideration of both aspects. 

In order to devise procedures for selecting sheep for mutton production, it is essentia l first of a ll to define mutton type. Once this step is made, the next 
requirement is to establish sui table tools which can be used in a selection progra mme 
and can be applied to exert selection pressure for the defi ned type. The abo\'e­
mentioned problem of defi nition is not a n easy one, since it will depend largely on 
market and other commercial factors, the rela tive importance of each not being 
easily disentangled. 

For the purpose of the present work! however, and as a first approximation , 
we classify those sheep which at a specified age yield the maximum weight of edible 
meat as being the most desirable mutton type. Admittedly, this defi nition is defecti\'e 
in several respects as it assumes, among other things, that the distribution and 
quality of the meat on the carcass is unim portant. There is no doubt that these 
features should be examined more closely, but in order to make initial progress the 
simplified definition of desirable type is subsequently assumed here. 

•Division of Mathematical Statistics, CS1RO, McMaster Laboratory, Glcbe, N.S.W. 
tDivision of Animal Genetics, CSIRO, North R yde, N.S.W. 

Aust. J. Agric. Res., 1964, 15, 446-52 
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In brief, therefore, tbc aim of the present investig:i tion is to find some live 
body measurements of sheep wh ich arc :1l the same ti me repea table nnd useful 
predictors of total edible me:1t. This work falls natt1ra lly into two sections and is re­
ported below. 

TADLE 1 

A!',;ALYS!S OF REPEATED ~fE.-\SURE.\IF.:--,S 0:-: TH E SA~!E SHEF.P 

I 4 I I CocIT. of I rr~:;00

1°~.iof ~"~;~"i' ., I M:,o l_v_a_r~-~-lio_1_1 _.!"':,'"1"b~:ty• 
-W-i-th_c_r-to-p-in_h_o_ne-, 0·300 1 0·499 i~ 0·0841 1 ·0lO 123·70 

Character 

4·2 0·49 0·58 

Wicltb of hips 0·002 O·OS9 0·000 0·002 1 0·093 6·09 

Depth of chest 0·059 O· 124 0·004 0·032 0·219 1 I ·49 

5·0 

4 · l 

0·96 0·97 

0·57 0·66 

Elbow to coronet 0·012 0·231 0·015 0·005 0·262 15-60 I 3·3 0·88 0·90 

• Components of variance: ·c;, between repeated measurements at the same time on the 
same sheep. 

a;, bcty.·een sheep. 
Of, bch\'cen tirncs on the san,c sheep. 
; ; 1, sheep x times interaction. 

oi = a; + o; + o; + o;,. 
Repeatability: r1 = a;/a2• 

r3 ·= a;/(a2 - iai), 

II. E>..'PERl~!F.NTAL 

(a) Repeatability 

Prior to the main experiment, four body dimensions were measured on 40 live 
Merino wethers at the CSIRO field station at Armidalc, N.S.W. The dimensions 
were wither to pinbone, width at hips, depth of chest, and elbow to coronet, all 
being measured in accordance with the standards set out by Turner et al. (1953). 
The sheep were caught and all characters measured twice by a single observer. 
Each animal was subsequently re-caught and another two sets of measurements were 
taken by the same observer. Thus there was a total of four measurements for every 
character on each wether, and suitable partitioning of the tota l variance for the four 
characters was subsequently ca rried out by the standard analysis of variance routine. 

The estimated components of variance, means, coefficients of variation, and 
repeatability of measu rements by a single observer are given in Table 1. The total 
variance, a\ is defined as the sum of the error, sheep, times, and sheep x times 
components, a 2 = a; + o; + a~ + a;1, obtained from the analysis of variance 
table, and the coefficient of variation and the estimate of repeatability are given by 
V = IOOcr/µ and r1 = cr;fa2 respectively. 

'-· 
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Variable 

--
a:1 
:>:2 

%3 

X4 

:,;5 

:>:5 

:,;7 

%8 

%9 

%10 

Xu 
:t12 

:1?13 

%14 

%15 

%1 %2 

- --
1 0·99 

1 

%3 %~ %5 

0·62 0·4S 0· 90 
0·69 0·45 0·89 
1 0· 11 0·50 

1 0·51 
1 

TADLE 2 
CORRELATION COEFFICIENTS, MEANS, ANO STANDA)U) Dl!VlATIONS 

For definitions see te;"tt 

:t°8 :,;7 ::i:a %g %JO %11 %12 

--0·96 0·27 0·79 0·81 0·84 0·83 0·69 0·95 0·29 0·77 0·81 0• 82 0·81 0·67 0·54 0·29 0 ·39 0·52 0·44 0·46 0·28 0·56 -0· 13 0·43 0·43 0·52 0·56 0·5S 0·92 0·31 0· 88 0·79 0·74 0·78 0·68 1 0·21 0·83 0·81 0·84 0·83 0·73 
1 -0·14 0· 13 0 ·1 2 0· 14 0·05 

1 0·74 0·68 0·71 0·64 
J 0·74 0·72 0·68 

1 O·SO 0·74 
1 0·82 

1 

( '\ 

.J r ··-
' 

%13 %14 ::!;15 

0·92 0·53 0·87 
0·92 0·53 0· 86 
0·56 0·36 0·51 
0· 48 0· 19 0·50 
0· 88 0·40 0·88 
0·96 0·50 0·93 
0·23 0· 12 0·22 
0·79 0·36 0·80 
0·75 0·39 0·72 
0·77 0·72 0· 59 
0·72 0·34 0·72 
0·52 0·06 0·60 
I 0·61 0·92 

I 0 ·26 
1 

Mean . 
ltl 

26·72 
18·64 
69·60 
9·22 

43·76 
61 ·04 

226 ·00 
0·35 

21 ·00 
5·30 
9·S5 

13·84 

S.D. .,, 

4·54 
3·42 
l ·64 
I ·63 
8·53 
8·43 

10·29 
0· 07 
l ·02 
0·34 
0 ·53 
0·63 
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It will be noticed from Tabk I that the V's arc consistently smnll and range 
from 3 to 5 %. On the other hnnd , whcrcns the rcpcatabi li tics of width of hi ps and 
elbow to coronet measurements are high, those for depth of chest and wither to 
pinbone arc unsati sfactorily low. In the c:1se of the latter two measurements, :rn 
inspection of the components of variance reveals tha t maximum increase in precision 
is achie\'cd by rcpc:.i tcd measurements at a si ngle catching. Since this is also 1hc most 
economical in terms of time and labour, t':ich character was measured twice in later 
studies. Jt is estimated that thi.:; procedure increases repeatabil ity to r2 = c;J(c/2 - ½c;;), 
recorded in the last colu mn of Table I. · 

(b) Live 1\feasur('me111s and the Boned-out Carcass 

In May 1962, 75 Merino wethers approximately 7 months old were weighed 
and measured at the CSTRO field station at Dcnil iquin. The sheep were subsequently 
despatched to Sydney for slaughter at the Sydney Meat Preserving Co., and the 
carcasses taken to a com mercial bonin g-o ut works. Here the carcasses were weighed 
and then stripped of all edible meat, \\'hich also was weighed . The weight of the 
skeleton was obwined as the di fference between the carcass weight and the total weight 
of edible mea t. It was originally intended that the fat would be t rimmed off and 
weighed separately, but the amou nt present was negligible and could not be 
separated. 

From the above measurements and the records of the individual animals the 
. following data were available fo r each wet her : 

x1 = carcass weight (lb), 
x2 = total weight of edible meat in the carcass (lb), 
xa = percentage of edible meat = lOOx2/x1, 
X4 = birth weight (lb), 
xs = weaning weight (lb), 
XG = live slaughter weight (lb), 
x1 = age at sla ughier (days), 
is = average daily gain (lb) = (xG - x4)/x1, 
X9 = length of live animal from wither to pinbone (in.), 

x10 = width at hips (on live a nima l - in.), 
xn = depth of chest (on live animal - in.), 
x12 = elbow to coronet (on live animal - in.), 
X13 = X6/X12, 

X14 = X10/X12, 

X15 = X6/X10, 

The means and standard deviations of characters x 1 to x12 arc given in Table 2, 
together with the estimated correlation matrix of all 15 characters. 

The rati os x13, X14, and x15 were calculated to see whether or not such com­
pounds are of greater p redictive value for x2 and. x3 than the raw measurements 
individually_ Clearly, however, both x13 and x1s are so closely correlated with x6 

that they can provide little, if any, informa tion additional to that already provided 
by xo alone_ On the other hand, x14 is not so highly correlated with its components 
and may therefore provide additional information concerning conformation. Never­
theless, it does not appear to be a valuable index for predicting either x2 or x3. 
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There arc numerous interesting rela tionships which may be inferred from 
T able 2. Obviously the most important single character for pred icting X:! is Xt; , 

and their correla tion cocfl:icient is est imated as 0 ·95. HoweYer, since, by definition, 
it is the total weight of edible meat a t a fixed age which is important, p~,6 .7 was also 
estimated ::rnd was agai n found to be 0 ·95. A multiple regression analysis was then 
ca rried out with x2 as the depe ndent variable and x.1, xa, x ,, :rs, xn, x10, x 11 , x 1'.! as 
i ndcpendcnt variables. T he multiple correlation coellkicnt, R, wa s found to be O · 96, 
which indicated that no sensible improvement in prediction power had been achieved 
by considering nddition:il variables to .cc. The analysis was then re-run keeping 
age x1 ftxed , and the results again showed that R. was not appreciably greater than 
P2,G•7• 

There a rc too many o ther rela tionships to be d iscussed in detail here. H owever, 
attention is drawn to the rather high correla tion between x.1 and x2 which suggests, 
perhaps, that early selection for X:! is a possibility. It is also encouraging, although 
ha rdly surprising, to notice that x2 is highly correlated with average daily gains, x6• 

Thus those animals which arc most satisfactory from the producer's viewpoint may 
a lso be the most satisfactory for the buyer. 

Since the va riances of ca rcass weight aud weight of edible meat a re 20 · 33 
and 11 · 71 and the covariance bctw~cn the two is 15·35, the variance of tlle weight 
of skeleton is found to be 1 · 34. This emphasizes the rela tively small contribution 
of skeleton to the variance of carcass weigh ts (about 25 %) and, therefore, differences 
in such weights may be chiclly attributable to differences in meatiness. 

· As a fina l point of inte rest, t he correlation between x6 and the ratio of edible 
meat to bone was calculated and was found to be O · 54. This relationship, again, is 
not surprising from developmenta l considera tions, but it further suggests t hat selection 
carried out as suggested above would tend to increase the proportion of edible meat 
ava ilable in the carcass. 

III. Cq;-.;CLUSIO:--IS ,\!\D DISCUSSION 

The main conclusion which may be drawn from this work is quite clear. If one 
accepts the definition of carcass quality given in the introduction, then the results 
here reported strongly suggest that selection on body weight, preferably age-corrected, 
will usually pick those sheep which ha\·e the greatest weight of edible meat at a given 
age, without the aid of any other live measurement. As t he heritabil ity of body weight, 
including weaning weight, is high (Young, Turner, and Dolling 1960 ; Young et al. 
1964), there should be response to selection for it; and , although no genetic correla­
tions between body weight and amount of edible meat arc ava ilable, the very high 
phenotypic correlation makes it reasonable to assume that there would be a strong 
correla ted response. Moreover, body weight is the on ly measurement required; si nce 
the inclusion of measu rements on additional characters will probably not appreciably 
affect the selection pressure exerted on to ta l we ight of edible meat. In addition, 
if criteria other than tota l weight of edible meat a rl! considered, then ratios of body 
measurements involving body weight probably will not provide m uch additiona l 
information to body weight a lone. T herefore, in this case it may be ratios 
such as x1,1, x10/x11, xu/x12, and so on which a re important. 

L 

, . .. 
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Howev{'r, this c.xpcriment was conducted on only a moderately large sample of 
Merino wcthcrs, at a single age, and the results requ ire confirmation, particul:irly at 
other ages :rnd with other breeds. Young (personal communication) has obtained 
estimates of over O · 7 for the 1epe:Hability of body weigh t for 1'1erino rams weighed 
at 6, 12, and lS months. but the bone- muscle- fa t relationships at 12 mont hs of age 
or more still requ ire investigation . 

A next step in generalizing somewh:H the restrictive definition of carcass quality 
may be to reg.ird tho~c car.:asscs \\ hich a rc "orth most to 1he butcher as being 1he 
most desir.iblc. Thus the carcass may be th ought of as cut into retai l joints, each 
joint weighed , and the total value of the carcass calculated from these weights and 
some average price per pound. However, the coa rser the grouping of retail cuts. the 
more hope there is of finding practical selec1ion tools, and initially it may be satis­
factory only to consider, say, the relative weights of the front to the back of the 
carcass, where separati on is at the 13th rib. It is worth noticin g that the oversimpl ified 
definition given in Section I assigns equal \'alue to the meat of all cuts and is, there­
fore, a special case of the new definition. 

Jn any case, whatever steps are taken to broaden the invest igation, it seems 
essential to keep the objectives as clear and simple as possible if positi\'e results arc 
to be obtained . Bec:iusc of the general confusion with rcg:ird to the definition of 
carcass and meat qualities, it may be best to oversimplify the issue initially and to 
introduce complica tions when (and if) they arise. 

FinaJly, other interesting aspects of the problem of producing meat arc to be 
found in the interrelations of food efl1ciency, daily gain, and the growth of an optimum 
carcass. One might guess that the fastest-gain ing anim:ils are generally the most 
efficient (Knapp and Dakcr 1944) and may also produce optimum carcasses. 

No matter what the answers may be, these questions must be cleared up before 
satisfactory tools can be developed for the selection of mutton sheep. Furthermore, 
since it is clear that a suitable defin i1ion of carcass quality depends on the type of 
market for which the animals arc intended, several definitions may be necessary. 
For instance, the definition fer the gro·.•;er of prime lambs will be different from 
that of the grower selling older sheep for slaughter. However, only when matters of 
definition and selection criteria have been settled will it be possible to investigate 
the situation genetically with a view to developing selection indexes and predictors 
of genetic progress under selection. 
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THE USE OF 1IODELS I?\ THE 
ANALYSIS OF SO:\IE CLASSES OF COXTI:'\GE?\CY TABLES 

G. l\L TALLIS1 

Division of Mathematical Statistics, C.S. l .R.O., Jlc.1Ias/cr Laboratory, 
Glcbe, N.S.JIT., Australia 

INTRODUCTION 

In some types of biological e:-..--periments, it frequently happens that 

the results take the form of n k-dimensional table, the cells giving the 

outcomes of independent multinomial trials. This would be the cnse, 

for i.nst:mce, in nn experiment to determine the viability of a particular 

organism in diITcrent environments. The experimenter may be inter­

ested in testing the effects of r different media and c temperature condi­

tions on the srn·dntl rate of his test organ.ism, at a particubr age. For 

this purpose the e~:perimenter may set up re tubes in such a way that 

i, jth tube contains the ilh medium, is held at the jth temperature level 

and holds a random sample of N;; of his organisms. After the elapse 

of a predetermined period of tin1e, he counts the number of organisms 

surviving in each tube and he is then interested in analysing the cff ccts 

of t empcrn.ture nnd media on the proportion of survivors. His data may 

be arranged in an r X c table recording the proportion of sw-vivors, and 

this example is obtained as n. special case from the more general situation 

by using k = 2 and using binomial trials. 
It is the purpose of this paper to suggest a method of analysi1!;; such 

data, but the deYelopment is mainly in terms of two-dimensional tables 

with independent binomial trials. Since extensions to more inYoh·ed 

situations are easily effected, more complicated cases will receive no 

further attention here. The same methods of analysis may also be used 

in somewhat different circumstances and the necessary modifications 

for denlhig with r X c contingency tables in the same way are indicated 

as an example. 

METHODS 

It will subsequently be assumed that we have an r X c table of 

independent binomial trials with parameters Pii and N;; and outcomes 

•Now at Department of Diostat~tic.,, Johns Hopkins l"nh-ersity, B:i.Jumore, )Id .. U.S.A. 
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nil, i = 1, 2, · · · , r; j = l, 2, · · · c. Snppo:-e now we write the param­

eter model 
p;j = 7J + (¥, + /3; + 'Yii I 

(1) 

then it is required to estimate the (r + l )(c + 1) unknown p:nnmetcrs 

p, a;, (3; and 'Y ;; . The analogy bctwce:n ( I ) nn<l the st~md:nd two-way 

nn:ilysis of variance model is obYious :rnd we use the sn111e identifiabili ty 

constraints: 
h. = I: 'Y.; = o, 

; 

h,+, = I: 'Y,, = o. 
; 

h, .. , = L Cl; = O; 
; 

h,.,+1 = I: f:3; = o. 
I 

1 ~ q ~ r; 

l ~s~ o-1; 

We now wri te ihe full Likelihood equatiou, L, 

L = C IT J)7/'q;~//- n/f 
ii 

(2) 

where C is a constant which docs not depend on :iny of the unknown 

parameters. It is found by standard procedures that L is mnximised 

when 

/
:\T • • + A • 2 n,, H ;; = Pil = p a,+ {J; .+ 'Yu , t = 1, , · · · r, j = 1, 2, ···c. 

By using the co11str:1int relations L &. = L J; = L; 1;; = I:, 'Y,; = 0, 

it follows that 
r 

p = L 'fJ°.;/rc, 1i + ~; = I: vu!r 
ti 1-1 (3) 
< 

p + a, = L p,;/c, A • • ,Lj {3A 
'Y,1 = P,; - P - c.q - ; • 

The large sample variances of these estimates, which are obviously 

unbiased, can be calcubtc<l directly, but a more systematic approach 

is to compute the elements of the info rmat ion matrix, I , and to i.nve1t 

it. If we use the notation l (O) a_nd 1(0, <t>) to represent the information 

and co-information associated with the parameters 0 and <!>, then 

J(p) = L N,,(JJ, ;q.;)-1 
., 

l(a,) = L N,;(p,1q,;)-1 = I (a, , p) 
, 

I(P,) = I: N.;(p,;q,,rl = I (P; • p) 
i 

1(-y,;) = N,;(p, 1q;;)-1 = !(a,, {3;) = 1(-y,;, p) = I(a, , 'Yo) = I(P,, 'Yii) 

and all other elements of I are zero. 

(4) 

~ - -·--- ·- .. ~--·- - -------- - -·---- - ------- -----
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It is convenient at this stage to relabel the parnmetcrs as follows: a,= 8,forl 5i 5,·,{J,. = o,.,.forl 5 j5c,'Y,, = 0, .. .,., for 1 5 s 5 r 
and 1 5 t 5 c, a nd p = Oc-+i>c,+ 1> • Xow the constraint equations can 
be written h;(O) = 0 , 1 5 i 5 r + c + 1 and, since I is singulnr, anot her 
ma trix HH' where H = (h;;), h;; = ah;(O)/ iJO;, must, be added (Aitchi­
sou and Silvey [HJGO]) . The new m:itri., I + fill' is non-singulnr an<l of 
rank (r + 1) (c + 1) and, if we let 

[I+ HH' -HJ-i = [U V ]· 
- H' o V W 

then U is nu est im ate of the covarinnce matrL, of the estimated param­
eters. In this case, of course, H consists of entries of O's and I's and can 
readily be written down by inspection. 

As an example let r = c = 2. Then the relevant restrictions are 
specified by 

h, = a , -1- a2 = h2 = f11 + /32 = h3 = 'Y11 + 'Y1 2 

= h, = 'Y21 + 'Y22 = h5 = 'Y11 + 'Y21 = 0 and 

1 0 0 0 0 

1 0 0 0 0 

0 1 0 0 0 

0 1 0 0 0 

R =OO ll O , 

0 0 1 0 1 

0 0 0 I 0 

0 0 0 0 1 

0 0 0 0 0 

1 1 0 0 0 0 0 0 0 

1 I O O O O O O 0 

0 0 1 1 0 Q .. g O 0 

0 0 1 1 0 0 0 0 0 
HH' = O O O O 2 1 1 O 0 

0 0 0 0 1 2 0 I 0 
0 0 0 0 1 0 1 0 0 

0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 

H owever, in this case the problem is best handled by building the 
constraints directly into the models for the probabilities. Thus 

Pu = P + a + /3 + 'Y, P12 = p + a - f3 - 'Y , 
(5) 

P 21 = P - a + f3 - 'Y, P 22 = P - a - fJ + 'Y, 
and there arc effectively four param eters, which are estin1ated by 

2 

'fi = I: fi;J4 , d = (Ji u + P12 - P21 - P22)/4 , (6a) • •I 

( .-) . __.,., 

L.. 
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P = <Pu + P21 - 1>12 - Pn)/4 , 1 = P11 - p - & - f (Gb) 

The variances of the estimates are easily obtained directly and it is 
found that they are all equal to (lG)- 1 L,; N ~/p.,q ,; . 

Missing cells 

It may happen that no results arc a,·aibble for several cells of the 
r X c table. This situation, although incom·enicnt, can be dealt wit h, 
and the procedure will be illustrated for one missillg cell. 

If the (m, n)th cell is missing, there are still r + c + 1 equa.tions, 
but the parameter 'Ymn cannot be estimated . The analysis remains 
the same except that ;·.,.. is deleted from the p:uameter set and the 
constraint equat ions are modified by lett ing -y.,.. = 0. 

We have 

i, j ~ m , n, 
and 

I: fi,,. = (re - 1)p - am - B. = 1>'.. 
i .;,.,.,·" 

L f}.,.,- = (o - l)(p + c:2.,) - ~" = P~. 
,''rl'n 

L P,n ;;; (r - l )(p + S.) - & .. :=. p~ • . 
i,.., 

Setting 

d.,. . = p~1 ./(e - 1) - p~./(ro - 1) 

= +a.,.ro/(rc - 1) - S.c(r - 1)/(e - l)(rc - 1) 

J.,. = f/./(r - 1) - p'. ./(re - 1) 

= -<2.,.(e - l)r/(r - l)(re - 1) + P.re/(re - 1) 
it is found that 

& .. = d ... + d .• (r - 1)/(o - I)r 

P. = J .• + J.,,.(e - 1)/(r - l)c. 

The covariance matrix of the estimates is obtained as previously. 
However, the rank of I + HH' is now re + r + e. If there are several 
missing cells, it may be best to carry out a standard iterative solution 
of the equat ions 

Pii = fi + &i + ~,. + f,,. . 
First guesses of the true ~I. L. estimates may be obtained from equations 
(3) suitably modified for number deficiencies. The iterat ion proceeds 
according to Aitchison and Silvey (Zoe. cit.). 

I 
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T he e:-..iension of these methods to tables of any dimension cnn be 
effected in an obYious way. When there arc no missing cells the :'IL L. 
estimates nre easily obtained, although the number of p:-,rametcrs 
rapidly incrcnses with k. Hypotheses with rega rd to subsets of the 
parameter set ( 8; l arc tested by introducing addit:011:1. l eqmtions of 
constraint : again reference is made to .-\itchison and Silvey, ,,·here the 
procedure is thoroughly discussed in t erms of the \Yald test and the 
Lagrange-multiplier test criteri::t. 

As fmt.her illustration, model (1) can also be used in the analysis 
of r X e contingency t:iblcs where the margins arc not held fixed. In 
this instance the likelihood fw1ction takes the multinom ial form 

L = C II P71' (8) 
ii 

where L;; nif = N and L;; P;; = 1. It is seen that p = 1/re, always, 
and therefore docs not need to be estimated. We ha.Ye therefore r + e + re 
parameters and r + e + 1 restrictions which leaves a total of re - 1 
independent parameters to be estimated . The ::\L L. estimates arc of 
the same form as (3) ,,,ith J> ;; = n;;/N. The informat ion rnatrL~ can be 
constructed from the relations, 

< ' 
l(a;) = N L p~} , 

, -1 
l (fiJ = N L p~} ,-1 (9) 

l(a; , /3; ) = l(fi; , )';;) = l (a; , "! ;;) = ! ("!;;) = Np ~) , 

the remaining terms being zero. The adjustment matrLx H is again 
easily written down by inspection and t he same theory as in the previous 
section applied. 

The use of these techniques in any problem must be made with 
ca ution and the applicability of the model ascertained. It is not true, 
for instance, that if all "I;; = 0 then there is independence in the table. 
As a matter of fact, if t here is statist.ic:11 independence, each"/;; must 
satisfy the rela.tiou 'Y;; = rca;/3; . Thus, independence can be checked 
by these means but this particular hypothesis is probably best tested by 
the standard chi-square procedme. 

Returning now to the case where the cells are statistically inde­
pendent, the situation may arise that a model of the form 

PH = f3o + f31i + f32i
2 + {33j + f3.j2 + E;f , 

E(E;;) = 0, V(E;;) = p;;(I - p;;)/n;; 

J 

i 
. ! 
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may be more appropri::ttc than the interact ion model. Maximum 
likelihood est imates of t he parameters may again be obta ined, but 
unfortuno. tcly the work is long and tedious. .An unweighted least 
squa res solution, however, is easily derived as follows. Write 

1 1 1 1 1 1>11 

1 2 4 1 1 P21 
f3o 

A = 1 r r2 1 1 p = fi,1 ~= /31 

1.1 1 2 4 JJ12 

1 2 4 2 4 Pn /3, 

l T r 2 
C c2 

then it is required t o minim ise (p - A~) ' (p - AJ) with respect to ~­
Thus, if S = A' A, 

~ = s- 1A'i>, E (~) = s- 1A'E @) = s- 1 s~ = ~ 

and the varia nce-cova riance matrix for ~ is 

E{(~ - ~)(~ - ~)'} = s-1A'E {(p - p)(p - p)'}AS- 1 = s-1A'DAS- 1 

where 

D = diag IP11 (l - P11)/n11 , P21(l - P21)/ n21 , · · · , p ,.(1 - P,c)/n,. } . 

Obviously this approach c:.in be extended to cover more general situa­
t ions. 

EXAMPLE 

In order to illust rate these methods with a. numerical example, we 
consider the data of Dunlop a nd T a llis [1003] . In t his study, breeding 
ewes were classified according to whether they remained in oest rus 
one or two days. R oughly, half of each group was then singly inse­
minated and t.he other ha lf doubly inseminated, on consecutive days. 
The a im of the experiment was to estimat e the effects of the number 
of inseminations and the number of days in oestrus on the fombing 
performance of the ewes. F rom the subsequent lambing records 
T able 1 was compiled. T he approprb tc p:u ametcr models are lis ted 
in T able 2. In these models, a , a, and s represent effects due to the 
number of insemina t ions on twin births, single births, and d ry ewes 

' 
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rcspccti\'cly; /3, lJ, a nd t arc cqui\'alcnt effects attribut[1blc to the num­
ber of days that a ewe is obsc1Tc<l iu oestrus; while 'Y, c, and 1t may be 
be interpret ed as interaction t erms. 

TABLE 1 
L,u rn 1xo P i:Rromu xcE o~· E",,s 1:- TIEL\T!OX TO OEsTncs 

L EXGTH AX O ~ L·.'.ltnER or Ixsi::mxAT I OXS 

No. of 
I nseminnlions (i) 

D nys in Oestrus (j) 
1 2 

1 

2 

12 
JS9 

GG 
= 2G7 

•Pu = 
Q11 = 
Ru 
Nu 

Pu = 18 
Q,. = IS5 
R:1 = G3 
N:1 = 266 

Pi:= l 
Q11 = 27 
Ru= 10 
N n = 38 

Pn = 4 
Q:, = 28 
Ru= 9 
N,, = 41 

'P, ;, number of ewes benring twins. Q,;, number 
of ewes benring single.;. R ,;, number or ewes not lnmbing 
to inseminnlions nt ttu;; oes trus. 

Number of 
Inseminn lions 

2 

T ABLE2 

p AllA.'.IIETF:ll !\IooCLS 

Dnys in Oestrus 
1 

Pu = p• + a + fJ + 'Y 
qu = q +a+ b + c 
r11 ... r + s + t + u 

Pu = P - a + fJ - 'Y 
q,i = q - a + b - C 

ru "' r - s + t - u 

2 

Pu = P + a - fJ - 'Y 
qu = q + a - b - c 
ru = r + s - t - u 

p,: = p - a - fJ + 'Y 
q:: = q - a - b + C 

ru = r - s - I + u 

~hese pnrnmelers nre subject to the restrictions thnt: p + q + r = 1; 
a + a + s = 0; fJ + b + t -= O; 'Y + c + u = 0. 

• 
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By the m ethods of this paper the }.L L. estimates are found to be 

'fi = I:fi.J4 
i i 

& = (ftu + i>12 - 1>21 - fin)/4 

~ = U>11 + P21 - 1>12 - 1i:2)l1 

'9 = 1i11 - fJ - a - P 

§ = I: /J;J1 
ii 

a = (§11 + q12 - §21 - §n)/-1 

b = (§11 + q21 - q12 - ftn)/4 

c = §11 - q - a - b. 

The v nriaoce of ihe four estimates involving the fJil nre the same, nnd 

in fact cqml (IG)- 1 Lu p.;(l - p;;)iV~} . A similar remark appl ies 

to the est imates irwoh·ing q;; , and in this case the varia nces equal 

(]G) - 1 L,; t];;(l - t];;)K~} • The estimates and their standard errors 

a re given in Table 3. 

TAilLE 3 

EsTnrATES OF PARA~tETF.T!S A~O STA:--DAHD ERRORS 

Birth type 
fractions p = 0.0.'.>91±0.01 -12, q = 0.13902±0.0277, f- = 0.2-117±0.0258 

I nsemi n:i lion 
frequ ency 
cfTccts ci = -0.0235±0.0142, a = 0.0100±0.0277, ! = 0.0135±0.025S 

Oestrus 
length 
elTects ~ = -0.002S±0.0142, & "" 0.0025±0.0277, t = 0.0003±0.0~5S 

Interactions -y = 0.0121 ±0.0142, c = -0.00::JS±0.0:!,7, :i = -0.00S3±0.025S 

For a. detailed discussion of the biologica l implications of these 

results, as well as for a full er d escription of the experiment, the reader 

is referred to the original p:iper. 
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The Use of Fractional l\Io1nents for Esti111ating 
the Para1neters of a l\Ii."\:ed Exponential 

Distribution* 

G. l\f. TALLIS
1 

Ai'iD R. LIGHT 

The ]oli11s Hopl.i11s University 

Jn this paper the use of frn ctionnl ruomcnts for estimation purposes is discussed. 
These idt'ns nre illustrated by rue:ms of the mixt'd exponent inl distribution. 

The estimation of the three parameters of the P.bove d is t,rilrnlion by the method 
of moments and by maximum likelihood i,;; investignt.cd numerically in detai l. A..s 
anticipated, the efficiency of the former method can be grc::1tly increased by using 
approxfrnntely optimal combinations of ruonients. It is found t.hat the moment method 
requires only n small amount of calculation when compnred with the mnximum 
l ikelihood method, although ch:irts nre present~d to gre:illy ease the computationa l 
burden of the l:itter method. 

l. hTRODUCTIO:-. 

Of all the procedures of estimating parameters, the method of moments is 
perhaps the oldest. In many cases it leads to tractable operations where other 
methods become computation::dly complic:i.ted and it is mainly for this reason 
that moment estimators are used at nll today. 

The attitude taken in this paper is tb::it, although this method as usually 
applied may be inefficient fo r a particular problem [sec e.g. Fisher (H)22)], 
by resorting to fractional moments (or frnctional absolute moments) the effi­
ciency may be appreciably increased. This idea is discussed in relation to the 
problem of estimating the three parameters of a mixture of two exponential 
distributions. 

The latter problem has been investigated in detail by Rider (19Gl) using 
the first three power moments. We shO\v here by extensive numerical work that, 
for some combinations of the parameter values, these three moments provide 
extremely inefficient estimates of the parameters. However, by a suitable choice 
of fractional moments, this position can be greatly improved. 

Weiner (19G2) has studied this problem from the point of vie,,· of obtaining 
maximum likelihood (m.l.) estimates, and it is clear from his results that the 
amount of computa tional work involved is enormous. As a by-product of some 
of our calculations we have been able to construct charts to reduce this labour. 
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Nevertheless, a high speed computer is still required 1.o complete the ,rnrk 

wherens moment rstimates can be obtained on a desk cnlculator. 

In ihe following section we set out some of 1.he properties nnc.l procedures 

pertinent to estimalion by the method of moments. A lemma. is prnvcd es­

t abLishing n. sufficient condition for moment cstim:ilors and in.I. estima tors 

to be the snme. From innistigations in l:ltcr sections, i t appears th[l.t, in some 

cases, the met.hod of moments mus t, be carefully applied if large losses of in­

formation nrc to be :woi<led. 

A search of the li terature hns not revealed :iny papers which h:we ii1vesligated 

t he effic:icy of using frnclionnl moments to increase the efficiency of cslimntion. 

In fa.et, frnctional moments n,ppear to have been scarcely used for any purposes 

at all. 
An interesting preliminnry example to emphasize the points to be made 

subsequently concerns t.he estimation of the pnrameter 'Y of the frequency 

function [l'('Y)r 1x.,.- 1e-z, 'Y > 0. It is found thnt, by drn\Ying a random sample, 

x 1 , X2 , • • • , Xn , nnd computing Sa = I:;_1 x~/ n, a > 0, a moment estimate 

of 'Y, 1, is obtained from the equation 

S a = r (1 + a)/r(f). 

lvforeover, 

V( ) ~ r ~'Y + 2a) r(y) - r
2
('Y + a) 

2 
"Y nr·(-y + a)[ ,f,('Y + a) - V'('Y) l 

wherei,t,(x) is the <lignmmn function. It can be shown th::it lima- o l'(1) = [11y,'('Y)r 1 

which is the variance for the maximum likelihood es timator of 'Y nnd this stresses 

t he possibility of in creasing tl}e efficiency of the method of moments by con-

sidering frnctional powers of X . . ... 

II. l\lETHODS 

Consider the distribution function F(:r, 0) wilh unkno'lrn vector of parameters 

O' = (81 , 02 , • • • , 01 ). Let the vector S be defined by S' = (Sa,, Sa ,, · · · , Sa,) 

w here Sa, = L ;-;/x,la'/11, fx;I is a random sample of size n taken from F(x, 0) 

and t he a, are positi\·e real numbers. 

\Ve define the moment estimate of Oby the matrix equation 

m (o) = S 

.where m (O) = (ma , (O), · · · , ma,(O)) nnd 

. m ., ,(O) = 1-: lxla' dF(x , 0) . 

(I) 

It will be assumed that the a, are linearly ordered and that Ellxl20
' } exists, 

thus ensuring finite rnrianccs for the S.,, . . :,\foreover, the functions ma,(O) will 

be presumed to possess continuous pnrtial derivations of the first order. 

Now let 00 be a first guess at 0, then neglecting second order terms, the first 

correction terms, o, are obtained from 

A = S - m(00) = H (00)0 (2) 

I 

• 

• 
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where H(O) = [h,;(O)] and hii (O) = am,(0)/DO; . T hus if [H (00)! p 0, 

~ = H(00) -
1 A. 

163 

In order to calculn.te the. large sample va ria nce mahix for O, we note that 

dm(a) = H (O) do = dS 

and 

H(O)V(O)H (O)' = V(S) 

whence 

(3) 

(4) 

where V(S) = n- 1[ma,+o;(O) - ma,(O)m0 ;(0)] is the covariance matrix for S. 
The efficiency of the cstim!'ttor O can be measured by the ratio jV(O)I/ IV(O)I, 
where V(6)' is the covari:rnce m::.trix of the m!'tximum likelihood, m.l., estima tor 
of o, {i [Cramer (19 .. !f3), page ·19.f]. 

We now note some properties of the estima tor 0. Firstly, the equation m(O) = m 
has a unique solu tion in some neighbourhood of m and ·o if JH(O)I ~ 0. T his 
follows from t he classicnl invers ion theorem of analysis. Since each component 
of S tends in probabili t,y to t he correspondi n!; component of m(O), it is easily 
verified that S tends to m (O) in p robability i.e. Jim,_., P(IIS - m (O) fl < E) = 1 
for arbitrary e > 0. Thus, for s ufficient ly large n we are gua ranteed a unique 
solut ion to (1) with probabi lity arbitrarily near one, provided only that 
IH(O)I ~ 0. 

It also follo\\'S easily from the above results and from the con tinuity of the 
inverse transformntion that O is consistent. :\Iorcovcr, under rather gcnern.l 
conditions on the functions m;(O). Cr;imer (19-:1.6 page 366) points out that 
O is asymptot.ic:tlly nonn::i.lly distributed wi th mean vector O and covariance 
V(O) given by (4). 

Since the moment estimators obtained in this paper will be compared wi th 
maximum likelihood, m.l., estim::t'tors for efficiency, iL is interesting to notice 
one result connecting the two t ypes of estimation procedures. The followin; 
lemma is illustrat ive and the regularity conditions stated in the reference 
cited are assumed to hold here. 

Lemma 

If an unbiased estimator, T (x), of some strictly monotone, differentiable 
function of o, r(O), satisfying t he Cramer.-Rao lower bound exists for O in 
some interval, then there exists a moment estimator of 0, 0, such that O = 0, 
where {j is the m.l. estimator of e. 

Proof 

Since T(x) satisfies the Cramer-Rao lower bound and E(T) = r(O), we 
know that [sec Rao (1965, page 26-1)] 

T = "A(O)f'/f + r (O) 
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nod hence 

j'/f = T/>.(8) - r(O)/>.(O), X(0) ;= 0 for all 0. 

Now let D- 1(1/>.(0)) = A (e) and n- 1(r(O) / >.(O)) = -B(O), then 

f (x, 0) = exp {A(O)T(x) + B(O) + C(x)) . 

If a random sample of size n is taken frorn a population with frequency func­
tion f(x, 0) we have that 

-log L(O) = A(O) L T(x,) + nB(O) + D(x) 
i-J 

and 

d lo~:(O) = 'f />.(8) - r(0)/>.(0) = 0, -T = L T(x,)/n, 
i - 1 

whence O = r -i (f'), which is precisely the moment es timator of O using the 
function T(x) . 

As an example, since in the case of a normal distribution of known variance 
X is an unbiased estimate of the mean, µ, attaining the minimum variance 
bound, it follows from the aqove result that i is both the moment and m.l. 
estimator of µ . In fact, since a necessary and sufficient condition that the 
Cramer- Rao lower bound be attained by an estimator T(x) of some fun ction 
r(O), E(T) = r, is that f (x, O) be of exponentia l form, t here exists a moment 
estimator whjch is equal t o the m .l. estimator for the parameters of most of 
the usual one parameter distribu tions. undoubtedly stronger a nd more useful 
theorems ca n be established, but we leave the issue at this point. 

III. A..-... APPLJCATIO:-S 

In our case we consider the mixture of t,rn exponential distributions and 

dF(x, 0) = f(x, 0) dx = (0301e-,.r + o.02e- 8
'') dx, o. = l - 03 

whence it is found that 

m .. , = E {X"' J = r (a, + 1)(030~"' + 0,0; 0
'). 

N ow H(O) = fh,;(O)], h.,(O) = am .. JoO; , and letting 02 = ko1 after dif­
ferentiation, 

H (O) = A(O)H*(O)B(O) C(O) 

where A(O) = diag (O~'", O~" •, 0;0
• ) 1 B(O) = diag (03 , 04 , 1), C(O) = diag 

(O~\ 8~ 1
, 1) and 

[

- r (a, + l)a1 

H *(e) = - r (a2 + l)a2 

-r(a3 + l)a3 

- ·r(a, + l )a,k-10 •+ 0 

- r(a2 + l )a2k- (o,+I) 

- r(a3 + l )a3k-(a ,+I) 

r(a, + 1)(1 - k-" ')] 
r(a2 + 1)(1 - k-"·) · 

r (a3 + 1)(1 - k-"·) 

i 
/ 

l 
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It cnn also be verifad that 

V(S) = A(O)~*(S)A(O) = n- 1[E{x" ' ... 1 ) - E {x"' )E{x" ' lJ 

where 

nV*(S) = [r(cr, + cx1 + 1)(03 + 0. 1,;-<0 1
•

01>) 
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- r (a , + l)r(cx; + 1)(03 + 0);-" ' )(0a + o.k-" ')]. 
Thus we hnYe that 

jV( li)I = IH(o) r 2 IV(S) I = o:0to~2 IH *(O)l-z IV*(S) I (6) 

and we notice that H *(O) and V*(S) d o not depend on o, . 
N ow the mnxjmum likelihood (m.l.) function is given by 

" . 
L(O) = II f(x , , O) = II { 0301c-~ •• , + o. 02c-' 0

' '} (7) ,~1 i - J 

a nd in order lo maximize (7) with respect Lo O we cnlcubte the likelihood 
equn.tions 

a log L (o) " I: U< ·)r'I . < . ) _;.,,l = 0 = X; , 0 03 1 - 01X; C ao, ,-1 
a log L(o) " 

= I: [f(X; I o)r'[0.(1 - 02X,)C-ior/1 = 0 002 ,_ , 

a lo~ L(o) 
= I: [f(x, , o)r1lb,e_;,,, - eze-i''' J = o 

iJ Oa 1 - 1 

The infon nntion mn.t rix I (O) can be written in the form 

I(O) = nC(O)B(O)I*(O)B(O)C(O), 

where the elements of l""(O) do not depend on O, , and arc defi ned by 

I MO) = L" [g(x) r 1e-2'(l - x)7 dx 

I M O) = L" lg(x)r1e-•(1Hl(l - x)(l - kx) dx 

1:, (0) = 1~ (g(x) r 1e-21'(l - . kx)2 dx 

I M O) = 1"' [g(x)r'e- 7'(1 - ke- (lo - l)•) (l - x) dx 

I M O) = 1· [g(x)r 1e-(Hl)z( l - ke-(1-1)•) (1 - kx) dx 

I MO) = 1· (g(x) r 1e-2 '(l - ke-(1-l)z)2 dx 

where g(x) = Bae-• + 8,ke- h. 

(8) 

(9) 



( 

( 

166 G. M. TAlllS AND R. LI GHT 

We notice now that the efficiency of the method of moments, jV(O)l-1 jI(o)i-1. 
can be written as IH*(O)l2 IV*(SW 1 II*(o)i- 1 and is therefore independent 
of O, • T he efficiency is thus a function of 03 and k and we use the notation 
E(k, 03 ) to emphasize this. 

The Tables 

By use of the formulae developed above, tables 1 and 2 have been constructed. 
Firstly, fo r fixed k nud 03 , E 1(1;1 83 ) has been calcubted using a 1 = l, a 2 = 2 
and a3 = 3. The iu tegr:1ls I.~(O) were eYaluatcd numerically using the fifteen 
point Laguerre integration technique. It can be seeu from Table l that the 
efficiency fal ls off alarmingly \Yith increasing hand 83 • 

A search was subsequently made to fi nd more s:1.tisfactory combinations 
of the a , using increments of .'.?5 and keeping a1 fixed at 1. The results of this 
work arc given in T able 2 where the combin:1tions giving the greatest C>fficiency 
are tabulnted. A second efficiency figure, Eil;, 03), ,yas then calcubted and 
the results listed in T able 1. It is clear from these figures that the use of care­
fully selected moment combination can considerably increase the efficiency 

TAULE I 
The Efficiencies E,(k, o,) and E~(k, o,) f or various values of k and o, 

k 

o, 1.5 2 3 4 5 10 --
.1 E1(k, o,) . !J.12 .737 .407 . HJG . )55 .041 

E:(k, o,) . 950 .S29 .711 .5S9 .561 .501 

.2 E1(k , O,) .912 .643 .311 .174 .110 .022 
E:(k, o,) . 9.JG .842 .726 .640 .621 .4-11 

.3 E,(k, o,) .SGS .574 .257 .13S .OS3 .015 
Ez(k, o,) .9-lG .853 .727 .671 .62,1 .502 

.4 E,(k, o,) .S24 .533 .220 .112 .065 .011 
E:(k, o,) . 94.S .S62 .734 .681 .614 .509 

.5 Ei(k, 81) .784 . 475 .190 .093 .052 .008 
E:(k, 01) .950 .872 .756 .677 .625 .507 

.6 E,(k, o,) .747 .436 .1G5 .078 .042 .006 
E:(k, O,) .950 .880 .763 .676 .642 .512 

.7 E1(k, o,) .714 .402 .146 .OG6 .035 .005 
Ei(/:, O,) . 954 .880 .772 .697 .655 .528 

.8 E1(k, O,) .6S2 .371 .127 .055 .028 .00·1 
E:(k, o,) .9.:,7 .876 .771 .71S .664 .535 

.9 Ei(k, o,) .652 .343 .111 .046 .022 .002 
E:(k, o,) .956 .884 .778 .734 .6G5 .522 
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of the cslimation procedure for large k and 03 • If k < 1.5 :ind OJ < .3 there 
is little difference between E 1 and E2 . 

Because of the large amount of computation in\'olvcd a full scn rch for optimal 
a, wns not conducted. If nil t.hrcc moments were allowed to vary, perhaps 
even greater gains in efficiency could be achie\'cd. KcYcrthclcss, the tables 
can serve as a guide nud should prevent drastic loss of i11form:1lion as a result. 
of choosing inefficient moment combinntions. The required sample moments 
arc readily calculated with the nid of n. table of squnre roots. 

The Solution of the Equations 
I 

, The first task is to obt:iin :i.n initial guess of ii, 00 s:.i.y, from the data. Once 
00 is to hand, an npproxinrn.tely optimal set of moments, a , , can be obtained 
from T able 2 and then the Sa , = L;-1 xf 'In ca lcuhted. It is then possible 
to form the vector A 0 = S - m(00 ) and to find &0 = H(00) -

1A0 • If the corn-

TADLE 2 
Suitable combinations of a: and ai (a1 = J) for various values of k and O, 

k 

o, 1.5 2 3 4 5 10• 

' .1 a, 2.25 2.00 1.50 1.50 .75 .75 
a, 2 .75 2.25 1.75 1. 75 1.50 1.25 

.2 a, 2.00 1.75 1.25 .75 .75 .75 
a, 2.50 2.00 1.50 1.50 1.25 1.25 

· '" 
.3 Cl'% 2.00 1.50 1.25 .75 .75 .50 

a, 2.25 1. 75 1.50 1.25 1.25 .75 

.4 Cl'% 1.75 1.25 .75 .75 .50 .50 

"' 2.00 1. 75 1.50 1.25 1.25 .75 

.5 a, 1.75 1.25 .75 .75 .50 .50 
a, 2.00 1. 50 1.25 1.25 .75 .75 

.6 a1 1.50 1.25 .75 .50 .50 .25 
Cl'J 2.00 1.50 1.25 1.25 .75 .50 

.7 a, 1.50 1.25 .75 .50 .50 .25 
a, 1.75 1.50 1.25 .75 .75 .50 

.8 a , 1.50 1.25 .50 .50 .50 .25 
(XJ 1. 75 1. 50 1.25 .75 .75 .50 

.9 a: 1.50 .75 . 50 .50 .25 .25 
era 1.75 1.50 1.25 .75 .75 .50 

• For k > 10 and all O,, a, = . 25 and a, = . 50 are satisfactory . 
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poncnts of 00 a rc written 00; , i = 1, 2, 3, and ko = Ooz/001 , 

H(Oo) = A(00)H*(Oo)B(Oo) C(Oo) 

Thus the inversion of H(00) reduces essentially to the inYersion of the simple 
3 X 3 matrix H *(00). 

The new estimate 01 = 00 + 00 can now be used for another itemtion and 
it ma.y be found that, pro,idcd /~0 is not greatly different to k 1 , H *(00) can 
be used in place of H *(01) to s::tYe one matrix inversion. Jlo\\"ever, the last 
iteration should use an updateJ estimate of H * to ensure t h:i.t o is sufficiently 
close to zero. Once O is calcubtcd, V*(S) can be obtained and 

V(o) = C(o)- 1B(0)- 1H *(0)-1V*(S)H*(o)'-1B(o)- 1C(o)-1. 

If O changes appreciably from 00 , it may be desirable to select another set 
of moments in order to maximize the efficiency. However, if the first guesses 
are of the correct order or magnitude, th.is will probably not be necessary. 

The solution of the m.1. equations (8) can be carried out according to standard 
methods outlinccl in Weiner (19G2). The work is long and tedious and the 
calculations require a high speed computer for their completion. 

Alternatively, use can be made of charts 1 to G which are by-products of 
Tables 1 and 2. \Ye notice that V(O) = I (0)- 1 can be written as 

V(O) = n-1C(o)-1B(o)- 1V*(O)B(o)- 1C(o) - 1 

where V*(O) = I*(o)- 1
1 the elements of I *(O) being defined by (0). The elements 

of V*(O) are graphed in the si.'< charts for vnrious values of 03 and k. 
In order to make use of this informn.tion to solve (8), nn ini t ial value, 60 , 

is substituted into the left har1d side of (8) to calculate A.0 • Using 00 and the 
charts, V(Oo) is calculated and then a new estimate of 6, 01 obtnined from the 
formuh 01 = 00 + 00 , where o0 = V(00) A 0 • .:\. few iterations should lead to 
good estimates of O and V(6). 

Although the use of charts greatly reduces the la.bour of calculn.ting 6, the 
moment procedure is less work. Certainly, the la tter method could ::.!so be 
greatly shortened by the construct ion of charts similar to those for the m.l. 
solution. This program has not been carried out. 

Censoring 
Suppose that the data are censored in such a way that we have full information 

on all X ~ T and we know only that X > T fo r other values of X . We define 
a new variable 

Y = X , X ~T 

T , X> T 

and 

E {Y"} = 038~"I(a. + 1, 01T) + o,o;"I(a + l, 82T) + T "[Ose-'•" + 8,e-''"] 

where 

1
TI, 

I (a + l, 81T) = 
0 

t"e-• dt . 
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C,un-r I 
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2 
1.5 

1.0 
0.8 
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0 .4 
0 .3 

0.2 

l'•(J, 1) for l'arious values of I: and O, 

83 
.9 
.7 
.5 

.3 ~ 
.2 

. I 

· 1.5 2 3 4 5 

K 

I(is found that in this case 

H(O)' = [Hf(O) , H~(O), H~(O)] 

where 

10 20 

H :(o) = [- I(a, + l, 01T)03a,0~ 101
•

11
, -l(a, + 1, 02T)O~a.o;<• ,• 11

, 

169 

83 
.9 
.7 
.5 

.3 

.2 

• I 

0~ 0 'I (a, + 1, Oi'I.') - 0; 0 'I(a, + 1, 02T) + T 0 '(e-,,r - e-,,r)] 

The task of computing O and V(O) can now be carried out as indicated above 
using 

S,,, = n- 1{± x;' + (n - t)T0

'} , ,-1 
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CHART II 
l'*(J, £) f or various rnlucs of k and o, 

1.5 2 3 4 5 10 
K 

03 
.9 
.7 
.5 

.3 

.2 

• I 

20 

where l is the number of x's in the sample less than T. The m.l. procedure must 
also be suitably modified and the charts are no longer of any use. 

IV. NmIERICAL Ex.AMPLE 

In order to compare the two methods of estimation a numerical example 
was tried. A sample of 196 observations was drawn from a population having 
a mixed exponential distribution '1.-ith parameters 81 = .1, 02 = 1 and 83 = .5. 
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This sample was constructed wi th the aicl of a table of random, exponentially 
disLributed numbers. 

Using the p:uo.metcr values for 00 , for the m.l. solution A~ turned out t o 
be [137.67, -3.54, - 2.59]. The matrix V*(00 ) was then obtained from the 
charts and V(00 ) = n- 1C(00 ) -

1B (00)-
1V*(00)-

1B(00)-
1C(00) -

1 calculated. It was 
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CnAR1' III 
V*(J, S) f or various t•alucs of k a11d O, 
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CHAnT I V 
V•(.z, £) f or various t'alues of k and O, 

1000 
800 83 
600 0. 1 

0.3 
400 0.5 

83 0.7 
300 0.9 0 .9 
250 0 .7 

vt2:2) 
200 0 .5 
175 0.3 
150 
125 

0. 1 100 
80 
70 
60 
50 
40 

30 

20 
.. _ 

10 

1.5 2 3 4 5 10 20 

K 
found tha.t o; = [-0.26, - .26J, - .082], and after sL"( iterations 01 = .077, 
~2 = .S06 and 03 = .418 with covariance matrix 

[

.00011 

V(a) = .00052 

.00026 

.00052 

.01600 

.00381 

.00026] 

.00381 · 

.00297 

I n the case of the moment estimation procedure, using a, = .5, a2 = .75 
and a3 = 1.00, Sa, = 1.9056, Sa, = 3.264:8 and Sa , = 6.1908 for the sample. 
Again, using the parameter values as the initial guess, A ~ = (-.06125, - .22116, 
-.69076) and 5& = A&H (00)-

1
' = (.03039, .212Sl, .103•16). 

After four iterations A 5 = 0 to five decimal places and 81 = .078, 82 = .905 
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and 03 = .435. The final covariance matri.x was 

[

.OOOH 

V(ii) = .00112 

.000,19 

.00112 

.03503 

.0084.6 

.00049] 

.00846 · 

.00471 

For the particular example chosen the moment estimates arc all closer to 
the true v alues th:m arc the m.l. estimates, although the o,·er:111 eCTiciency of 
the former met.hod is only about 50%. The rate of corn-crgencc of the moment 
itern.tiou procedure seems to be consit!cr:.1bly high er than that fo r the m.1. 
m ethod. 
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CnAnT VI 
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l'HE IDENTIFL\IlILITY OF MIXTURES OF DISTRIIH..iTlO;'\S 

G. M. TALLIS, C.S.l.R.0., New South Wales 2042 

1. Introduction 

This pa per considers aspects of the following proble m. Let F(x,O) be a dist ribu­
tion function, d.f., in x for a ll O and a Bore l measurable function of O. D efine 
t he mixture (Robbins (1948)), , 

(1) F(x) = J_ro
0

/Cx, O)dcJJ(O) 

where <ll is a d.f., then it is o f inte rest to dete rmine cond itions unde r which F(x) 
and F(x,0) unique ly deh!rminc <I>. If there is only o ne <I> sat isfying (1), Fis sa id 
to be an ide ntifiable mixture . Usua lly a cons istency assumption is used where­
by it is presumed tha t there exists a t least one solution to ( l ). 

T he above definition of ide ntifiability will be extended somewhat in Sections 2 
and 3 below. 

2. Countably infinite mb:tures 

The folio" ing form of (1) will now be discussed. Let 

CX) CX) 

(2) F(x) = L PiF;(:c), a.e., L IP, I < co , 
I = l 1 

,vhe re for a ll i F;(x) is a d.f. , tllen F will be called a co untably infinite mixture. 
At thi s stage no restriction o f the form /Ji ~ 0 is invoked. The mixture (2) is iden­
tifiable if a unique set of /31 satisfies the equation . By assumption, there exists 
at least one such set. 

lt can be assumed a t the outset tha t F,( -1) = 0 and F;( l) = I for all i since 
this conditio n can always be ach ieved, if necessary, by a suitable transformation 
without alterin g the problem. 

A necessa ry and suOicient conditio n for identifiability in the case when the set 
{F1}~ is finite has been established by Te icher ( I 963). It turns out that t his conditio n 
is equivalent to {F;}~ being a linearly indei;endent set. 

The infinite set {F;} ~ will be said to be 

Received in revised form 12 November 1968. 
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Defi11itio11 1: linearly independent if every frnite subset is linearly independent; 

Dcfi11i1io11 2: strongly indcpe11denl if L ~a,F1(x) = 0 implies ai = 0 for 

I ~I a.j < co ; 

Defi11itio11 3: mean square independent if, for I~ la;j < oo, 

lim J 1 

{ i a;fix)}\ix = 0 
n- co - 1 l 

implies ai = 0. 
Note that strong independence is equivalent lo identifiability. 

Theorem 1. A necessary condition that (2) is identifiable is that {Fi}'~ 

is linearly independent. 

Proof. Dy a suitable renumbering if necessary, suppose that Fs.(x) = I~: t a1F;(x) 

then 

k- 1 co 

F(x) = I (fl1 + aA)F,(x) + I PiFix). 
i=l J =l+l 

Set p; = p1 + ca 1, i = 1,2,···, k- 1, p; = {Jk - c and p; = /J, for i > k and notice 

that L~- 1a1 = l. For arbitrary c, I~P1 = I.~Pi and it is clear that the set of 

solutions has cardina l number c. 

The cond ition of l inear independence is not sufficient for identifiability. For 

example, take any strongly independent set { F;} ~ and form the new set { G1} ~ 

where G1+ 1 = F, and G1 = I ~/J;F1, /J; > 0, I ~Pi = I. The set {G;};" is 

linearly independent but not strongly independent. 

Some notation will now be introduced. By Theorem 1 it can be assumed that 

{F1} ~ is li nearly independent and hence by the Gram-Schmidt orthogonalisation 

process there exists an associated set of orthonormal functions { <f;,,}=;:>. Let 

.J: 1 </>,(x)Fj(.,)dx = kiJ and define the infinite matrix K = [kij] , then K is an 

upper semimatrix. Subsequently the arbitrary, complete set of orthonormal func­

tions {tl;}~ will be used in conjunction with the infinite matrix A = [alj], 

a11 = J: 1 t/1,(x)Ff,)dx and the relationship between A and K established. 

Below, 11 and 12 refer to the sets of al l infinite sequences of real numbers which 

are respectively, absolutely and square. summable. The notation L2 is an abbrevia­

tion of L2 ( - 1, 1), the set of all Lebesgue square integrable functions defined on 

the imen ·a l [ -1, 1]. 
_ Tbe domain of K will be restricted to /1 and for any set {FJ~ the set y c L2 

of interest is defined by 

"I={!; feL2, Jim J1 

[!(:c) - f a;F1(x)]\x = 0, a e /1}. 
n-co - 1 1=1 
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It can be verified that{</>;}~ also spans y and, in fact, for suitable be/2 , 

!~1: J_
1

1 [f(x) - ll b;cf,;(x)r dx = o for all fey. 

Some of the equations which appear late r may fa il to hold on a Lebesgue set 

of measure zero. Ho\\·c,·er, since this possibility docs not affect the argument, 
repetitious use of the a.c. notation will not be made. 

Theorc>m 2. Every solution to (2) is a so lution to KP = CJ. where 
a.' = [o:1 ,a2 , .. , ] , (f. ; = J: 1 c/i;(x)F(x)dx, and co nversely. Moreover (2) is iden­
tifiable if and only if K- 1 exists. 

Proof. Firstly, every solution of (2) satisfies KP = CJ. since 

f I t/,;(x)F(x)dx = CL; = 
-1 

for a ll i, by the dominated convergence theorem. On the other hand, for every 
solution to KP = CJ. 

J:/f>;(x)[F(x) - ~PiF/x)]dx = 0 

for all i. Since the term in square brackets is a linear combination of the FiEY, it 
is a linear combination of the ef>i with all Fourie r coefficients zero. This implies 

tha t F(x) = L ~ PiF/x) and the se t {/J;} i"' is a so lu tion to (2). The last part of 
the theorem is now obv ious. 

Now for any {11•;}';' , I.'t'wiFf, ) = L f'Y/Pl'<) for suitable choice of {yJt>. 
In fact if bo th sides of the above equation are multiplied by ef>; and integrated, 

the equat ion Kw = y results. Repeat the above process using F; and_ defi ne the 
matrix 

D = [du], diJ = f 1 F;(x)Fj(x)dx, 
-1 

then 

Dw = K'y = K'(Kw) = (K'h.')w. 

Since the above equation ho lds for all II' , D = K' K. Note that the associativity 
relation K'(Kw) = (K' K)w can be justified since K is an upper se mi-matrix. 

Furthermore, KIi' = 0 implies K '(Kll') = (K' K) w = 0. On the other hand, 
0 = (K' K )w = K'(Kw) implies that w' K'(Kw) = 0 and Kw = 0. Thus K- 1 

exists if and only if D- 1 exists . 

Corollary 1. A necessary and sufficient condition that (2) is identifiable is 
that v- 1 exists. 

... ..... 
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If {if!,}~ is a complete set of orthonormal functions with respect to Lebesgue 

measure on [ -1, 1] then, for su itable {.:J~ , 

co 

L w1F1(x) = 
l 

co co 

L Y;</> 1(x) = L z1ift;(.x). 

From the above equation the following rebti onsh ips can be deduced 

Kw = y = Bz 

Aw = B'y = z 

where B = [b1J, bii = t -i</>;(x)iftix)dx. Thus for all {w;}~ Kw = B(AII'), 
Aw = B'(Kw) and therefore K = BA and A = B' K. Similarly for all {y;}~ 
y = B'(By) whi ch implies that B'B = I , i.e., Bis orthogonal. Finally Kw = y = 0 
implies B'y =A w = 0 and Aw= z = 0 implies Rz = Kw = 0 and the refore 
K - 1 exists if and only if A- 1 exists. 

Corollary 2. If {i/t;};'° is ~ complete se t of orthonorma l functions on [-1, 1] 

then, in the notat ion used above, A = B' K, K = BA, B'll = l and a necessa ry 
and sufficient condition for (2) to be ident ifiable is that ,1 - 1 exists. 

In summary, (2) is identifiable if and only if K- 1 exists, if and only if 0 - 1 

exists, if and only if A- 1 exists. 

Theorem 3. The set {F1};" is strongly independent if aud only if it is mean 
square independent. 

Proof. Let {FJ~ be mean square independent and suppose that i:.'{'a1F;(x) = 0 

then 

and a1 = 0. The interchange of the order of summation and integrat ion can 

be justified by the dominated convergence theorem. 
If, on the other hand, {f;}~ is strongly independent, the same calculation shows 

that :E~ a,F/,) = 0 a .e. implies a1 = 0. 
Although the above results have been presented for d.f.s the same arguments 

may hold if F;(x) is replaced by its derivative, if it exists, or by an associated 

transform such as the characteristic function . Tngenuity is required to select the 
optimum form and the best method of a ttacking spt!cilic mixtures. 

The conditions of (2) can be changed somewhat without altering the results. 

If it is assumed that there is one set {/J,}f which sa tisfies (2) and which has the 
properties {J1 > 0 for all i and i:."7 /11 = 1, and if F(x) is called identifiable when 
this is the only set with these properties, then the above theorems still apply. 

In fact if {P.1}~ is another solution to (2) th:!n {t/3; + (1 - t)/11
1
}~, is also a solu -

I 
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tion for O ~ t ~ 1. Thus any neighbourhood off} co nta ins other sol utions with 
the same propert ies as {fii}':'. · 

Some s11fficie11t co11ditio11s for K - 1 to exist 

Rewrite Kx = y in the form x = (I - K)x + y where I = [<\]; then, setting 
C = 1- K, if Ii.i! ciil < OJ, the determinant or C, I}., exists. If I}.~ 0 then 
there is a unique solution to Kx = y (Kantorovich and Krylov (l95S)). 

If L'f=, 1 I C;ij < 1, the system is called regular. The result wh ich is most ap­
propriate to the present problem concerning regu lar systems is the following 
theorem. 

Theorem 4. A regular system can have no more than one solution tending 
to zero, i.e., such that lim;_ 00 /J; = 0 . 

A simple proof of this theorem, which will be used later, can be found in Kan­
torovich and Krylov. 

A third condition on C will now be established. Define the norm of C as 

1iC!j
2 = L;,ic/ and suppose liC 1J2 < co, then jlCx jl ~ JICJ! il x ll for xe/2 . 

To see this let )';(11) = I1= 1 clixf then, by the Cauchy-Schwartz inequality 

" 
jy;(11)j ;£ L jciix1 j ~ 

J = I 
( 

n 2 )1/2 ( n ·•2)1/2 
Lcii Ix1 , 

J=I j = I 

and hence 

"' "' I: l(11) ~ I 
I = 1 i = 1 

( f ci) ( Ix;) . 
j=I } = I 

Upon letting n and then m tend to infi~ity the required result is obtained. 

Theorem 5. A suf1kient condition for Kx = y to have a unique solution 
iS that 111 - K II < 1. 

Proof. LetC = 1 - Kthen,since I! Cx 1 - Cx2 !J = l!CCx 1 -x2 ) j! < ll x 1-x2 II 
for x 1 , x 2 E /2, C is a contraction operator in /2 and has a unique fixed point 
x 0 , say. Thus C.x0 = x 0 , Kx0 = 0 and x0 = 0 is the only solution to the homo­
geneous equation Kx = 0. Suppose Kx 1 = Kx2 = y, then K(x 1 - x 2) = 0 
and x 1 = x 2 • The same argum~nts apply equally -to tlie matrices D and A. 

Three examples will now be discussed. In these cases it is convenient to work 
with the frequency functions. 

Example 1. Consider the class of frequency functions {/b")}f' defined 
by 

-- {02' f,(x) 
otherwise. 

\ 

k- '> ,< 
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Let d;i = f':00/;(x)f/x)dx, with a slight abuse of notation, then the matrix D 
is obviously d iagona l. Thus Dx = 0 has the unique solut ion x = 0 and hence 
v- 1 exists. The mixture /(x) = Lf /Jifi(x) is ident ifiab le. 

Example 2. In thi s case define 

-- { 01 fi(x) 
i-1 i + l 
- 2-~x~ 2 

otherwise. 

It is clear that D is now a band matrix with elements -}, 1, ½ in each row. 
The equation Dx = 0 leads to the d i(Tcrence equation 

½x;- i + X; + 1x;+1 = 0, i = 1, 2, ... 

defin ing x0 = 0. If g(s) = :Efx/ and I ~ jx;j < oo , then g(O) = 0 and 

g(s) ( 1 + i + ~s) = tx1 , 

If x1 ~ 0, the above equation contradicts the absol ute convergence of the series 
{x;};n and hence g(s) = 0 for O ~ s ~ 1 implying X; = 0 . Aga in D- 1 exists and 
any mixture involving the/; is iden tifiable . 

· · Before discussing the th ird example the following useful fact is noted. Let A 
be an infinite d iagonal matrix with elements ).i ~ 0, then if (,\DA)- 1 exists so 
docs D- 1

• For suppose D - 1 does no t ex ist then for some x ~ 0, Dx = 0 
= (ADA)A- 1 x and (ADA) has no inverse since A - 1 x ¥: 0. Thus to test the strong 
independence of {F;}~ it may be more convenient to test {J.;F;}'~ for suitable ).; . 

Example 3. Set 
0; 

f,(x) = { 
0 otherwise. 

0112 = y > 3 

It turns out that, in this example, D is not an easy form to test the required in­
verse property. Consider, therefore, the related sequence {g;}~, g; = 0- 112 f 1• 

For {g;}f 

1 y-1 y-2 

D 
y-1 1 y-1 

= 
y-2 y-1 1 

and, since Lf~1 jdiij<2 Lj=1 ·F <1 an application of Theorem 4 shows 
} <F i 

that D- 1 exists implying that {g1}'{' a nd also {/;} ~ are strongly independent. 

I 
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3. The general case 

Attention wi ll now be g i\'en to the general mixture (1). As was done in Sect ion 
(2) a somewhat broader a tt itude \\'ill be taken and Cl> will not necessar ily be a d.f. 

It will be assumed that, by suitable transformation, (1) can be written as 

(3) F(x) = f 1 F(x,O)d<P(O), 
-1 

with F(-1) = 0 and F(J)=l. In order to make furthe r progress it seems nec­
essa ry to impose conditions on F(x, 0) . For convenience it will be assumed 

that T(x, 0) = cF(x, 0)/W is continuous in O, and square integrable over 

[ -1, l] X [- J, J]. 
Integrat ing (3) by parts gives 

F(x) = F(x,1) - J:
1 

T(x,O)<!l(0)d0, 

,vhich can be put in the form 

(4) L(x) = J_1

1 
T(x, O)Cl>(O)r/0, 

where L(x) = F(x, 1) - F(x). It is ensiest to discuss iden tifiability in teri11s of (4). 
Thus, (3) will be sa id to be identifiable if the re is a unique square integrable solu­

tion to (4). 
Define the symmetric kernel 

K(x,y) = f 1 T(x, z)T(y,z)dz 
-1 

with eigenvalues and eigenfunctions ).i and <pi respectively, i.e., f ~ 1 </Jlx) K(x, y)dx 
=).;e/>lx). An applicat ion of the Hilbert-Schmidt theorem for unsymmetric kernels, 
Tricomi ((1957), page 150) g ives the following theorem. 

Theorem 6. A necessary and sufficient condition that (3) is an identifiable 
mixture is that {ef>i}~ is a complete set, i.e., zero is not in the spectrum of K . 

In fact, more can be said about (3) than is indica ted by the last theorem. If 
one removes the requirement of consistency mentioned in the introduction, then 

(4) docs not necessarily possess a solution . Let ni = f ~ 1 cPi(x)L(x)dx, i = 1, 2, ···, 
then, according to the standard theory of Fredholm integral equations of the 
first kind, 

;. 
l 

l 
l 
f. 

I 
I 
r 
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396 G. M. TALLIS 

(a) if I:7,,,i 2;- 2rcf docs not conve rge, there does no t exist a solution to (4) 
in L2

; 

(b) if I.~ 1).~
2

11[ < wand{</,;}~ is not complete in L2, the set of solutions to 
(4) h as ca rd inal number c; 

(c) if I ;"'= 1 ).i-
2rrf < w and {</>J:° is complete in L2 then (4) (and (3)) has a 

uni que solut ion . 

Clearly (c) is the interesting case and <l> can be estimated by 

n 

<!Jn(O) = L 11/; 1 </>;(0) . 
I= 1 

T he rapidity o f the convergence of I r=i n/~1 determines the accuracy of t he 
mean-square apprnximation. 

The above expression can be used to estimate the mcments Jli = f:.
1
01t!tll(O) 

which unique ly de te rmine <l> . Define 

1,j(11) = J1 

[½ - j01- 1 ]<l\(O)dO , 
-1 

then, by the Cauchy-Schwartz inequa lity 

where 11 is chosen so that 

co 
~ ;,-2. 2 2 
.I., • j 1t; < 8 • 

l = n+l 

A paralle l theory can be developed for the countably infinite case. If D is assumed 

to sa tisfy the requirement that L;.idi~ < oo then , defining <P; and ).i as the e igen­
vectors and eigenva lues of D , i.e., Del>;= ),;tl>;, and se tting Li = f ~

1
F;(x)F(x)dx 

and n1 = cj>/L, similar statements to (a), (b) and (c) abo\'e hold. 
Explicitly 

(a') if :E~= 1 ),;-
2rr/ does not converge, there does not exist a solution to 

L= DP in /2; 
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(b') if I i: 1 ).;-
2 r.f < oo at;d {<j,1}~ is not complete in /2, the set of solutions 

to L = DP bas cardinal num ber c; 

(c') i f I ~ 1 i.1-
2 ;r; < (f.) and {~l;}~ is comple te , t here is a unique /2 soluti on 

to the equatio n. 

I n the case of(c'), P = I i 1 :r;i.;-
14>1 • If Pn = L7=, r.;i.1-

1<!>;is taken as an approx­

i mation to P, then ;i Pn - P ii = I ~ 1 rr/).1-
2 which can be made arbitrarily small 

by taking II large. 

The proof of these results flows from the fact tha t D is a compktely continuo us 
operator. 

In general, the applica tion of Theorem 6 is diffic ult. H owever, it docs allow 

for t he sat isfactory and immediate discussion of some cases. Consider the prob­
abi lity ge nerating function [l + p(s - 1)] 11 for the binomial distribu tion with 
parameters p and 11. Let 

P(s) = i 1 

[1 + p(s - l)]"d<l>(p) , 

t hen PC-) does not specify an identifiable mixture. To see this apply Theorem 6 
and note tha t 

is not a closed kernel since non-trivia l, L2(0, 1) functions orthogonal to it are 
readily found. 

It is well known that any function belon ging to L2( - 1, 1) cao be approximated 
in the mean-sq uare by a polyncmial. Explicitly, if/EL2(-l,1), then 

Jim J 1 [1 (x) -
a -+oo - l 

for suitable choice of ai and 

f ~
1 

K(x,y)f(y)dy = 
CX) 

I a1g;(x), 
/ = O 

where g;(x) = J!. 1 y'K(x,y)dy . 

Now if the system {g;}cf is strongly indepe ndent then, if I ~o aig;(x) = 0, 
a1 = 0 , f(x) = 0 and zero cannot be an eigenvalue of the kerne l K. T hus the 
techniques of the previous sections may be useful in the application of Theorem 6. 

.._,.. 
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A (d) [4] 

NOTE ON IDENTJFIAB I LITY OF MIXTURES OF DISTRIBUTI ONS 

G.M. TALLIS 

( U Yl pu. b L ~s heel) 

I Introduction 

The problem of identifiability of mixtures concer ns 

the transformation 

F(x) = f F(x,0)dG(.0} 
n 

where F(x,0) is a distribution funct i on , d .f ., for all 0EQ 

(1) 

and G is a d. f . defined on Q, Standard measura bi lity conditions 

imposed on F(x , 0 ) ensure tha t the inte gral makes s e nse . It is 

easy t o see that F is a d.f. and it is called a mixture. The 

family F(x,0), 0EQ , is referred to as the kernel of the mixture 

and G is t he mixing d.f. The mixture F is said to be i denti­

fiable iff there is a unique G l eading t o F . 

The main task is to f ind conditions to impose on the kerne l 

which will guarantee identifiability. This note proposes a 

necessary and sufficient condition which is developed from two 

basic prope rties of a metric. The method, which requires a 

minimum of mathematical structure is applied to retrieve some 

known results as special cases. 

II Results 

Let M be a set with a function p defined on MxM such 

that 

(1) p : MxM -+ E1 

(2) p(x,x) = 0 VxEM 

(3) p(x,y) > 0 Vx:f:yEM . 

Now consider a non-constant function f V-+M with range 

f(V) = RcM. 



( 

Defini t ion 

The norm o f ;: , II f ll , is de£ ined by 

11£11 = in£ {p (f(x), f (y)) ~ ap (x,y) 'v'x , yEV} 
C( 

Note that since f is non-constant. , llf ll > 0 . Moreover , if 

f-l exists 

llf- 1 11 = inf {p(f- 1 (u),f-1 (v)) ~ ap(u ,v) Vu,vE~} . 
a 

The orem 

f-l exists and llf- 1 11 < oo iff p(f(x) ,f(y)) > ap (x, y ) 

'v'x,yEV for some a> O. 

Proof 

Sufficiency 

If f(x) = f(y) then 

0 = p(f(x), f (y)) > o,p (x,y) 

2. 

which implies tha t p(x,y) = 0, that x =y and that f-l exists . 

Moreover, 

p(f(x),f(y)) > ap(f- 1 (f(x),f- 1 (f(y))) 

or 

p ( f - l ( u) , f- l ( v) )' ~ a - l p ( u, v) Vu, vE~ 

Necessity 

If f-l exists and II f- 1 11 < 00 , then 

p(x,y) = p(f- 1 (f(x)),f- 1 (f(y))) ~ llf - 1 11 p(f(x) , f(y)) 

and 

p(f(x) , f(y)) > ap(x , y) 

for a -=l II £- 111 and Vx , yEV. 

To retrieve a standard result needed later , let M be a 

linear space with inner product p(x,y). Then, if p is the 

metric induced by the norm [p(x,x) ] ~ = llxll i.e. p(x,y) = llx-yll, 

and if T is a line ar transformation of M onto ~=M , the above 

theorem shows that -1 
T exists and iff 
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3. 

IITxll ;;,,, allxll 'v'xEM , a>O , (see e.g. Taylor (1 958 ), page 86) . 

III Application 

The above theorem is now applie d to the mixture problem. 

Let M be the set of al l d . f. ' s, and without loss of generality 

assume that for FEM, F(O) = O, F (l) = 1 and Q = (0,1). Pu t 
1 

p ( F , G) = J [ F ( x) - G ( x) ] 2 dx, 
0 

then p s ati sfies the conditions of the theorem s i nce p (F,G) = O 

implies F = G. 

The function f that maps V = M to M is now defined by 
1 

F(x) = f F(x , 0 )dG( 0 ) 
0 

With the above definition of p , then, 

Corol l ary 

F is an identifiabl e mixture iff 

( 2) 

l 1 1 

J [f F(x , 0 ) (dG1 (0) -dG2 ( 0)) ] 2 dx > aJ [G1 ( 0 ) - G2 (0) ]2 d0 (3) 
0 0 0 

for some a> 0. 

This resul t will now be used t o look at two special cases. 

Case 1 (Tallis (1969), Theorem 6) 

Suppose it is possible to integrate (2) by parts to get 
1 

L(x) = f T(x , 0 )G{ 0 )d0 
0 

for suitable T and L . Applying (3) the condition becomes 
l l 

f [f [T(x,0) (G1 ( 0 )-G2 (0)) ]d0 J2dx 
0 0 

l 

> af [G, (0)-G2 ( 0)] 2 d0 
0 

and putting G1 ( 0) -G2 ( 0) = x ( e) and 
l 

we get 

K(0 , <P ) = J T(x , 0)T(x , <P )dx 
0 

l l 1 
J J x(0)K(0 , <P)x(<P)d0d<P > aJ x 2 (0)d0 

0 0 0 
(4) 

Regarding K as a symmetric, linear operator defined on £ 2 (0,1] 
1 

and using the norm J f 2 {x)dx , (4) can be written as 
0 

II Kxll 2 
;;,,, all xii 2 

• 
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( 

4. 

From the discussion following Theorem 1 this holds for all 

xE£ 2 [0,l] iff the inverse o f K exists i.e . zero i s not in 

the spectrum o f K and the associated set of eigenfunctions is 

complete . (See also Tricomi (1957), page 124) . 

Case 2 (Tallis (196g), Corollary 1) 

Let {0j} be a countable sequence , ej < ek, j < k, and 

put V e qual to the subset of M whose members are absolutely 

continuous with respect t o µ , where µ is the counting measure 

defined on { e j } . Now, 
(X) 

F(x) = r BiFi (x), 
i=l 

(X) 

r Bi= 1 
i=l 

( 5) 

where Fi(x) = F(x,0i). The criterion for identifiability becomes 

or 

l (X) 

f [ r Y · F · (x) J 2 dx > 
O i = 1 1 1 

l 

l 
af [G1 ( 0)-G2 (0 ) ] 2 d0 

0 

y ' Ky_ > af [G1 (0 )-G2 (0 ) ] 2 d0 , k· · 
- - 0 1.J 

l 

= J
0
Fi(x)Fj(x)dx. 

Thus a necessary condition for (5) to be identifiable is that 
(X) 

y'Ky > 0, y * 0, r y~ < oo 
:i,= 1 1. 

.and this is true iff K has an inverse 

i . e. zero is not in the spectrum of K and the associated eigen­

vectors span t 2 • 

The latter cond ition is also sufficient for identifiability , 

for then there exists a constant a * such that 

> a *11 r" 2 * 
l 

y ' Ky > a I [G1(8)-G2(0)] 2 d0 . 
0 . 

In conclusion notice that metrics other than 
l 

J [ F (x) -G (x) J2 dx 
0 

can be used . The fundame ntal set M can also be adjusted to suit 

particular problems . For instance p(F , G) = supjF(x)-G(x) I is a 
X 

possibility for M as used above, although for other metrics and 

different assumptions it may be convenie nt to take M as consisting 

of equiva~ence classes with respect to a measure . These situations 

will not be pursued. 



( 

REFERENCES 

Tallis, G.M . (1969) . The identifiability of mixtures of 

distribution . J . Appl . Prob. 6 : 389-398. 

Taylor , A. E. (1958). An Introduction to Functional Analysis . 

J ohn Wiley & Sons , New York. 

Tricomi, F . G. (1957) . Integral Equations. Interscience 

Publishers Inc ., New York . 

s . 



( 

. .( 

r ' '"~""'-"'-, .. --~--·-'-""'''" . ,~A"(J) [ s1 ·---~ C - --·~---··-~ ,. • ... C ,.---·"-·' •• -

., -

•'. 

.. 

., 

J. Appl. !'rob. 6, 74-S7 (1969) 
Print,:d in Israel 

GENERAL MODELS FOR r-:-\IOLECllLAR R.EACTio:-,;s 

G. M. TALLIS AND 

R. T. LESLIE, C.S.!.R.O., Newto1m, N.S.JV.• 

1. ln!Toduction 

In the present paper we consider the r-molccula r reversible reaction rA ~ ll 
from several viewpoints. The dctcrminist ic theory for integral reaction orders is 

considered first and is subsequently exte nded to co\'cr the case of fr<!ctioual order 
reactions. Stochastic models are then proposed, the analyses being carried through 
by spectral methods and, in the case of firs t order re:ictions, the fi rst passage time 
p roblem is a lso examined . Fi nally, we use a diffusion theory approach to the prob­
lem to obtai n results \vbich a re valid for a large number of molecules. 

The formulati on of stochastic models for ch.::mical reaction kinetics has received 
· considerable attention recently and several cases have been treated in some detail 
(see McQua rrie (1 967)). However, in two importan t respects, thcse models tend 

to fall short of adequacy. Firstly, some of the results are applic?.ble only to solu­
tions conta ining small numbers of mokcules. Secondly, the reaction rates arc 
calculated on the assumpt ion tha t, in a small per iod o f time, tlic"prnbability of 
reaction between a pai r of mokculcs is the same for all molccuk pairs. 

Models proposed, fo r example, by Ishida (1964) and D:irvey, Ninham and 
Staff (1 966) take the probability of colli sions for the case rA ~ B as being pro­
p ortional to the number of combinations rat a time of the molecules in the whole 
space occupied by the reactants. 

I n de riving the differential equat ions for the stochast ic processes, the limiting 
process as .6.t -> 0 reduces to microscopic dimensions the region in which a single 
molecule can contact other mo!c::culcs. This is of course due to the finiteness of 
the velocity of the particles, a feature .which is emphasised more in liquids than 

in gases. A convincing argument is therefore required to justify the use of the 
standard combinatorial collision rates. 

It seems high ly probable that such an argument will not be forthcoming since 

it is well known th at the order of a chemical reaction is not necessarily the same 
as its molecularity, (see Laidler (1950) Chapter 1). For these reasons in the sub-
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sequent development combi natorial collision rates are not explicitly used. I nstead , 

the rates of the forward and backward reactions, ). and 11 , are allowed to be 

arb itrary fu nctions of the state of the system. 
In order to develop some fee l for the problem it is instrnctivc to pursue the 

following elementa ry argument. Let the total volume V (taken as unity) of solvent 
contain a molecules of A a t t ime t and consider the reaction 2A ~ B. Suppose 

that Vi s decomposed into K smaller non-overlapping cells of size 6 V = 1/K . 
Then, on the assumption of independent occupancy of the cells and multinomial 
distribution of molecules between celJs, the parameters would be a and 

1/K = .6.V = P; (i = l , , .. , K) . 
It is essential to fix the elementary time interva l M . Given M, Jet .6. V be so 

chosen that it is the largest volume fo r wh ich in time 6 1 all pairs of molecules 
within 6 V have equal chance of collision . The magnitude of 6 Vis then taken 

to be dependent only on the mean molecular velocity (determined in turn by the 

temperature), and not on the concentration of A . 
Let X i be the number of A-molecules in the ith cell. Then conditionally on 

X 1 = x the collision rate (probability of a collision in t ime D.t in cell i) could 

fairly be taken as ).(6 V) ( ; ) 6 1. The intensity ,t has been written as a fu nc­

tion of .6. V s ince, for fi xed D.t, ).(A V) will probably be a monotone decreasing 

function of A V. 
We seek an expression fo r the elementary probability that in time 6t the state 

of the system wi ll change from a to a - l. This may be found from the uncon­

ditional expected values of the rates fo r a s ingle cell appropriately combined 
over all cells. The marginal distribution of {Xi} is binomial with Pr{Xi = x} = 

( : ) (6 V)"(l - .6. V)a -x and, applying this to the conditional rate for cell i, the 

uncondit ional rate becomes ½ a(a - l )J.(6 V) (6 V) 2 D.t , denoting the probability (to 
order 0 (6t) 2) that there is a collision in 6 V in t ime D.t. If Y; is the number of coll i­
sions in cell i we then have Pr { Yj = 1} = ta(a -l) ).(.6.V) (l'\V) 26t + 0 (.6.t)2, and 

since the probability of collisions in two cells simu ltaneously is 0(6t) 2
, we can 

write 

(1) 

and 

Pr{ J
1 

Yj = 1} = ½ a(a - 1)2(.6. V).6. V At+ O(At)2 

Pr { :E Yi = 0} = 1 - Pr { f Y1 = 1}. 
1° 1 1= 1 

Hence finally the probability of the system changing from the sta te represen ted 
by a to that represented by (a - 1) is (1). It is intuiti ve however tha t this probability 

should depend only on a, representable by o:(a)6t, whence 

a(a) = ½ a(a -1)6V).(.6.V) 
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or 

J.(ti.V) = f(a) /6V for suitable choice of f. 

Wenowh:wea slightly di lTcrcnt way of look ing at the problem. It is c!ear that 
C<(a) is proportional to a(a -1) if and on ly if i.(~V) = CftiV, i.e., f(a) = C . 
This implies that t he probability i.(ti V)tl V L\t that two molecules collide and 
react shoulJ be independent of the concentrn tion of A. When the o rd:.: r of the 
reaction is the same as the molecu la rity then :.<(a ) = O(a2

) nnd f (a) may wdl b.! 
closely approximated by a constant. For reactions of higher molecu la rity tha n 2 

the factor ( ~) appears w ith ).(tl V), and as there are no known reactions with 

order greater than 2, we cannot accept combi na torial collis ion rates. 
There sti ll rema ins the problem of taking the limit l1r-+ 0 as ).(tiV) and t.V Q 

arc dependent on 6.t. A poss ible approach is to accept the associated differenti a l 
equation as an approximati on to the diffe rence equat ion fo r finit e 6.r and assume 
that the solution of tbe differential equation is close to the solution of the dif-
ference equation . 

2. Dctermini!.tic theory 

We e,onsider the r molecular reaction rA .= B of order II and let x(t) be the 
· proportion of the to ta l concentration C of A molecules in sta te A at time t. 
Then we can write the following , in gene ral, non-linear difTerential equat ion : 

(1) d;~t) = 11[1 - x(t)] - ).x(t)" , 

where Jl is the rate of bre~kdown of B to A and ). is cn- 1 times the rate 
of the forward reaction (see Laidler (1950)). 

The explicit solution of (1) for a rbitrary II poses difnclll ties. However, when 
Jl = 0, i.e., the reaction is irreversible, the general so!L1tio11 is, llsing x(O) = 1, 

(2) x(t) = [).1(11-l)+ 1r 11<n-l ) 

while for 11 = 1, (1) integrates to 

(3) x(t) = Jt/(). + Jt) + [).J(). + µ)]e-,cu+.l~ 

The equ ilibrium concentration x"' is obtained from (1) by letting t tend to 
infini ty. Thus 

I. dx(t) [l J ). n O 1m - - = µ - Xco - :.Xoo = 
, ... a:, dt 

and x<X) is given by the solution of the equa tion 

(4) x~ -- = µ/J.. 1 - x <X) 

{) 

; 
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General mod.:ls for r-molecu!ar reactions 

We now solve (1) for the case n = 2 i.e., the Riccati equation 

x' = -}..x
2 - /IX+µ • 

77 

Firstly note tha t x
00 

is a particular solution and hence the general solution 1s 

x(t) = Xco + [ v(r)r 1 wllcre V i s the general solution Of the equa t ion 

v' - (2J.xcr, + µ)v-). = 0. 

Thus finally, 

(5) () = (2k1:a:, + JI) [(2).xco + µ _ i) (2h.,,+µ)r_ 1] - l 
x t x<t) + ). ).(1 _ Xa:,) ; e 

For n ~ 3 and integral valued we can attempt the following series solution . 
Let x(t) = 'f.% 0aiti and define the sequence {a/>} as then-fold convolution of 

t he series {a1} with itself, then from (1) 

a:> CIO GO 

L (j + 1)a1+ 1t 1 +'11 L aii + ). L atl t1 = µ 
J=O - J = O j = O 

and, equating coefficients of t 1 on both sides, a0 = 1, a 1 = -J. and 

(6) . 1 [ , (n) J . l OJ = - :- µaj-1 -1- AOJ-l , ) > , 
) 

The coefficien ts can therefore be computed recursively from (6). 
An inspection of(3) and (5) suggests that the transformation y= (x-x ,,,r 1 = 'f.a / 

will produce a rapidly converging series. Under this, (1) becomes 

(7) -2 I ( • -1) ).( - l)n - Y y -1- µ Xco -1- Y -1- • X» -1- y = Jl. 

If both sides of (7) are multiplied by y" and the results y"[11x00 - µ+Ax':,,] = 0, 

-y"-2y' = -(n-1)- 1 
:/"-

1 used, we obtain 

;/n-1 = (n - l)[<t: (;) x~l + µy"-
1

] 

from which we obtain the recursion 

(8) aJ~~ 1> = ~ ~ ~) [2
1
¥

0 
(~) x~at> + µay- 1>]. 

Since y(O) = (1 - x'°)- 1 = a0 and 

where the summation is taken over all values of it such that L ki1: = j but 
iel= j all k, it is clear that a i can also be obta ined recursively from (8) . 
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78 G. M. TALLIS AND R. T. LESLIE 

Notice now that a~n- i) = 'J:.f,.0alaJ~,.2> > ar - 2> since all terms in the 
series are positive and a0 = (1 - xCl()) - 1

• Thus we have 

a5n- 1> < <11 ~ 1)uc1 + xCI())" + µJa;:/ < {C11 - 1)[).(1 + xCl()r + ,,JFa~- 1/j! J 

and hence the series ::Ea/ converges more ra pidly than 

(1- XCIO)-(n-l )exp{(n -1)[).(1 + XCIOt + JL]t}, 
We next consider the case when II is not necessarily :m integer. Let x(t)" have 

the series expansion I.c1t ~ tllen the problem is to define the coefficients c1 in 
terms of the a1 . Define log x(r) = i:(1) = ::Eb/ 1, then Jogx(tf = 11 i:(1) = ::E11b1t1 
and by ident ifying coe01cients of t 1 

b0 = 0 b2 = a2 - ai b4 = a4 - 4a3a1 - 3ai + 12a 2ai - 6a t 
b3 = a3 - 3a2a1 + 2a f bs = as - 5a4 a1 - 10a 3a 2 + 20a3a i 

and + 30a;a1 -60a2af + 24af 

Co = 1 C1 = nb1 C2 = 11b2 + 11
2bf C3 = 11 b3 + 311

2b2b1 + 11
3bf 

C4 = 1lb4 + 4 11
2b3b1 + 3n 2bi+ 611 3b2b~ + n4b{ 

Cs = nbs + 5n 2b4 b1 + 10n 2b3b2 + 1011 3b3 bf + 1511 3bib 1 + l0n4b2 bf + 11sb/. 
Thus the c1 can be expressed iry terms of the a1 by substituting for b1 in the 

above expressions. If more than five terms arc required, they may be obta ined 
from the list given in Kendall and Stuart ((1958), pages 69-71), by applying the 
same procedure as above. Clearly the recursion 

a1 = - ~[µa1_ 1 +J.c1_ 1], j > 1 
J 

can now be carried out using a0 = 1 and a 1 = -J.. 
In some cases the constants J., Jl and n are unknown and must be determined 

by experiment. Suppose x(t) is estimated at the time points t1,t2,··,tN and that 
max (t1+ 1 - Ii) is not too large. Then, writing x(t1) = x ,, we can fit a polynomial of degree (N - 1), ::E1: ~ a1t 1, to pass through the points (11, x 1), i = 1, 2, ···, N. 
Thus 

a = T- 1x 

where a' = (a0 , a: 1,··, «N- 1) , x' = (x1, x2, ···, xN) and T is the (N x N) Vander­
monde matrix [1/- 1 J. The parameters )., µ, and II may now be calculated by 
the principle of least squares by setting 

F().,µ,n) = i [1;f,\_1.1jt/- 1 -µ(1-x1)+).x,"]
2 

i .. 1 = O 

and carrying out the required minimisation by standard methods. 

····--·1 . . - ----------·-.----------------------·-··· 
.... -- ·-·-~ ..... ...-
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General models for r-molecular reactions 

3. Discrete stochastic theory 

(a) Distribution 

79 

We arc still concerned with the reaction rA ~ B and ioitiaJly it is assumed 
Jl 

that the reaction is of the first order. Suppose there is a total of rN molecules 
of A then if). is the rate at which r molecules of A combine to fonn one molecule 
of B and X is the number of Il molecules, 

p,;(t + Llt) = p.x(t) (1 - µxllt - ).N - xllt) + Px-i (t)J.N - x + l Llt 

+ Px+iCt)µx+ lLlt . 

Putting P- 1(t) = PN+ 1(t) = 0, we obtain a birth and death type differential 
equation 

(1) p;(t) = - px(t)(µx + ),N - x ) + Px-i(t) ?.N - X + l + Px+1(t)µx+ 1 

which holds for O ~ x ~ N . Multiplying both sides of (1) by s"' and summing 
from x = - 1 to x = N + li t .is found tbat the probability generating fu nction 
for p.x(t), P(s, t), satisfies the following Lagrange p::irtial different ial equat ion : 

(2) .ap~;,t) = N).(s - l)P(s,t) + [µ- s(µ -l) - ).s2] oP~:, t) 

From (2) we obtain the equivalent system of equations 

dt ds dP 
-1 = (1 - s) (µ + J.s) = -Nl(s - l)P' 

wl1ich give the independent s~lutions 

(1 - s)(Jt + ).s)- 1e-r(µ+.tJ = C
1 

P(µ + J.s)-N = Cz, 

and the general solution is 

where f is an arbitrary function. 

If there are m B units at t = 0, 0 ~ m ~ N , the boundary condition 1s 
P(s,0) = s'" and hence 

and 

i 
t 

I 
I 
f 

I 
f 
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After some algebra we obtain finally 

(3) P(s, 1) = (11 + ;.rN [11(1 - e-rc,,+.>.>) + s(J. + Jte- rc,,+ ;.))J'" 

X [ Jl + J.e-1(11+ l) + J.s(l - e- 1(11+l))r -m . 

The steady state distribution is obv iously bi nom ial with parameters p = J./(11 + ).) 
aud N while for m = 0 the general solution is also binomial with pa rameters 
p = J.(l - c- 1

<1•+ ).>)/(i. + 11) and N . Form? 0, N , (3) is the convolution of two 
binomial di st ri butions and hence the mean and variance of X is easi ly obtained. 

Since X = X 1 + X 2 , E(X) = E(X 1) + E(X 2) and V(X) = V(X 1) + V(X 2 ) , 

we have 

E(X) = (µ + ),)- 1 m(J. + Jte-r(µ+;,.>) + (N - m) (11 + J.r 1 J.(1 - e-:Cµ+J.)) 

(4) V(X ) = m(p + ).f2(J. + 11e-1c,,+).))11(l - e-rc,,H>) 

+ (N-111) (J1 +J.)- 2 (11-1-J.e- 1<11 +;.> )).(1-e-rcµ+i.J ). 

Putting m = 0 in the formula for £(){) we obtain the desired agreement with (3) 
of 2, since in the deterministic case it is the concentrat ion of A which is followed . 

The case 11 = 2 has been solved by Ishida (1964) for irreversible reactions only . 
The di fficu lties of obtaining explici t sol utions for the general si tuations are empha­
·sised by this work and we therefore turn to other methods. 

Again we assume tha t there are N r A units and kt ).(N - x) be the rate at which 
B units arc formed giYcn tbere arc x units of 13 and 11(x) be the rate of breakdown 
of B to A. Then setting p_ 1(t) :a:: P.v+ 1(1) = 0 we have the diffcrentio-difTcrcncc 
equati on 

(5) p:(r) = - p,.(t){).(N - x) + 11(x)} + Px- 1(t)i.(N-x + 1) + Px+ 1(t)11(x + 1) 

wh ich holds for O ~ x ~ N . Such equations ha\'e been studied, for example, by 
M oran (1963), where further references will be found . Now Jct 

- J.(N) 11(1) 0 0 0 0 
J.(N) -).(N-1) + µ(l ) 11(2) 0 0 0 

A= 

0 0 0 0 ... J.(l) -µ(N) 

then we can wri te the system (5) in the vector form 

(6) p'(t) = A p(t) 

with the initial condition p(O). The solution to (6) is therefore 

(7) p(t) = e' ' p(O) · 
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General models/or r-1110/ccular reactions 81 

where e"1 = '22t, 0 A 111/ j!. However, (7) is not in a useful form for la rge values 
of I and it seems preferable to adopt a spectral approach. 

Suppose A has N+l distinct characteristic roots 00 ,01 , ···,0s, O;;?; 01 for i ~ j, 
then, as can eas ily be verified di rectly, A is singular sinccp '8 (1) = - 'I,'j:J p'j(t) and 
hence O,v = 0. Let Q = diag(00 , 01, ··· ,0,v) and ff be defined by f2= IJ- 1A.H , 
the transfonn:ition y(t) = 11- 1p(t) then reduces (6) toJ 

(8) y'(t) = IJ-'AHy(t) = .Qy(t). 

We solve (8) component-wise and write y/1) = e011c1 • Now letting E(t) = diag 

(e°0 1
,e

0
•
1
, ···, l) we have y(t) = E(t)c and p(t) = l:lE(t)c. But p(O) = He and 

hence finally 

(9) p(t) = flE(t)Ir I p(O) 

N 

= L e011
li/11- p(O) , 

J=O 

where lt1 is the j th column of fJ and h1- is thejth row of fr 1 • The limiting form 
of (9) i; 

(10) 

However, the stationary distribution can be obtained explicitly from (5). In 
fact, setting p:(t) = 0 and writing P.x(ro) = Px, we obtain the equation 

Px[µ(x) + ). (N - x)] = P:x -1 J.(N - x + 1) + Px+i µ(x + 1) 

which leads to the recursion relation 

J.(N - X)Px = J!(X + 1)Px+ 1 

whence 

(11) Yi ),(N-j) 
Px = J =O µ(j + l)Po 

and Po is chosen so that E~ = 0 Px = 1. 
For example, when r = 11 = 2 the appropriate terms for ,t and µ are 

J.(N - j) = J.2N - j 2N - 2j - 1/2 and µ(j + 1) = Jtj + 1 where ). and J-L are 
constants. Applying (11) it is found that 

Px = Po()./2Jt)"[2NJixfx ! 

In order to verify that p( oo) exists we notice tha t since A is a band matrix there 
exists a non-singula r diagonal matrix D such that B = D- 1AD is a symmetric 
band matrix (Bodewig (1959), page 259). Moreover, 

11 - 81 I = I B - 81 I 
and hence all the 01 arc real. 

I: ... ··-- ··--
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82 G. M. TAI.LIS AND R. T. LESLIE 

H owever, c,11 has positiYe elements if and only if a;i ~ 0, for i # j, (Bellman 
(1960), page 172), and .hence pit) ~ 0 for all x . lt is not dillicult to \'crify now 

tbat, in view of the constraint L p;c(t) = 1, O, ~ 0 fo r all i which implies the 

existence of the lim iting distributions. 

(b) First passage times 
It may be of interest in the case of the discrete stochastic models discussed 

above to know the distribution of the first pass:igc time through, say, N - a . 
That is, starting wi th J\' molecules in state A, x = N , what can be said with regurd 

to the time required until there are a molecules in state B for the fi rst time from 

the start of the experiment? 
It appears to be simplest to work with the backward equations making N - .1 

an absorbing barrier. Thus, 

(12) p;.(1) = - [J.y + JL(N - y)]p,.(t) + ).ypy- t (t) + 11(N - y)p1 + 1 (t), N - a < y ~ N 

PN-aCt) = 1, 

where py(t) stands for Py.N-aCt). Now let 

p; = f\- s'py(t)dt, 

then (12) can be transfonned into the second order, homogeneous difference 

equation 

(13) 11(N_- y)p1\ 1 + J.(y)p,*_ 1 -[).(y) + µ(N - y) + s] p1*= 0, N - a+ 1 ~ y ~ N 

P~-o = 1/s , 

Equation (13) can be solved in principle by the method of Laplace (Jordan 
(1960)), for polynomial ).(i), p(i), but here we consider explicitly only the linear 

case ).(i) = ).i, JL(i) = 11i, with ). and µ constant. I t should be noted that at t he 
upper limit, N, of the range of values of y for which the recurrence relation 

holds, the coefficient JL(N - y) of one of the extreme terms, P;+ 1 , vanishes. T bis 
implies that the system is effectively of first order, for wh ich a single boundary 
condition suffices to make the problem determinate; this is supplied as sp,t_0 = 1 . 
We proceed as t hough the equation is second order, and expect to find tha t one 

of the solutions is singula r or will not ~atisfy the boundary condition. 

The general solution is tllen of the form 

· p; = c1 L'' ,,- 1vdt + c2 l'2 

t'-
1
vdt, 

where t1 and t2 are the roots of 

- µt 2 + (µ - J.)t + ). = 0 
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General models for r-1110/eculnr reactions 83 

and 
l _ D_ 1 {t2J!(N + 1) - t(s + µN) + ).} 
og V - t(l - t) (pt + ).) • 

Hence t1 = 1, t2 = - J./u and the initial condition is p*N-a = 1/s . However, 
the root -i.f Jl leads to a divergent integra l and hence we set c2 = 0 . 

Since pit) is the probabili ty that the first passage time T docs uot exceed t, 

we requ ire the Laplace transform Q(s) of p;,.(1) to define the density .function 
of T . By using the initial condition it can be shown ti.iat 

(14) 

i\N(l - t)"(Hµ)-l(jit + J.)-(N+1 +s)dt 

(1 . Jo tN-o(l -- t}"(J.+µ)-1(jit + }.)-(N+l+•>dt 
Q(s) = 

It may be noted that while the integrals in (14) arc defined on ly for s > 0, 
their ratio tends to 1 ass-. O; this follows on integration by parts and cancellation 
of the factor (J. + /1) /s . . 

The mean first passage ti me is then found to be 

(15) E(T ) = Q'(O) = Jim s- 1(1- Q(s)) 

4. Diffusion theory 

(a) Distribution 

..... o 

The discrete stochastic results discussed above seem to be of limited value. 
Jn practice the number of molecules will be extremely large and it appea rs that 
it is the asymptotic distribution for large N that is relevant. This distribution 
cannot be readily studied unless tractable, explicit solutions are obtained. For 
arbitrary A, the exact behaviour of the latent roots as N gets large seems to be 
more or Jess unpredictable (see Lederman and Reuter (1952)), and therefore 
another approach to the problem is required. 

We assume here that the concentration of A, at time t, X(t) undergoes a diffu­
sion process. Specifically let 

(1) 
O(x) = µexp{-K1.12x}(.1t)*(l - x) + (1.(x)/2 

<b(x) = A.exp{-K2.12x}(.1t/x" + a.(x)/2 

be the probabilities that X(t) moves from x to x + Ax and x to x - Ax respectively 
during time (At/. The probability of no change is 1 - 0 - <p. In (1) µ, )., K 1 

and K2 are constants while (1.(x) is a small disturbance. 

r 
t 

i 
l 

! · 
I 
i: 
! 

I 

l 
I . 

I 
f 
r 
t 
I 

I 
I 

f -. 



( 

·:· 

,· 
·' 

~-, 
~! 

. . . '-. . . . .. . 

. -( .,. 
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It is now found that the instantaneous mean is 

(2) Jim {O(x)- </J(x)}l!.x/6.t = µ(1- x) - ).x", 6 2x = 6.t 
hx,&r-o 

and the instantaneous variance 1s 

(3) lim {O(x) + </J(x) - [ O(x) - cp(x)] 2}!!.2x/6.t = a(x) . 
h.~.M-o 

Now by definition the instantaneous mean is 

P(x) = li m E[X(t + 6t) - X (t) I X( t) = x] /6. t 
ht -+O 

and it is clear that this expression reduces to the differential equa ti on for the 
detenninistic process when X(t) is not a random function. 

From (2) and (3) we can write down the appropri ate time-homogeneous d if­
ferentia l equ at ion for p(x , t), the frequency function for X(t), as 

(4) ! {:xa(x) p(x~t)/2-f)(x)p(x,t)} = a ot p(x, 1) 

with boundary cond ition 

(5) [ a ]"=1 

QX a_(x) p(X, 1)/2 - f](x) p(X, /) X "-' O = 0, 

The unconstrained stationary distri but ion is obtainable from (4) immediately. 
Let F(x) = 2 f{P(w)/~(w)}dw be such that 

Jim [cx(x)r 1 exp{F(x)- F(xO'))} = 0, x ¥ XO') , 
a(x) .. O 

then the limiting distribution I-+ oo is 

(6) Il(x) = C[a(x)r 1 exp{F(x)-F(x"")}, c- 1 = L\a(x)r 1exp{F(x)- F(xO'))}dx 

and it has the property that 

lim Il(x) = o(X - XO')) 
cr(x)-0 

in agreement with the deterministic theory. 
For example, if cx(x) = <T2 then (6) becomes 

IT(x) = Ca- 2 exp { ~ xa- 2
[ - p(2 - x) + 2),x"/(n + 1)] 

. -a- 2 [2nµ - (11 - 1)µx0')] xO')/(n + 1)} 

and for n = 1 we obtain the more familiar form 
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where C = (ITa2)-\11 + i./ { <I>(k1) - <t>(k2)} -
1

, <D(x) is the distribution func tion 
of a standa rd normal va ria te, 

k1 = ).2t/(j1 + )./o- and k 2 = - µ2t/(µ + )J!o-. 

In gene ral, (4) can be solved approxima tely subject t o (5) by the methods of 
Keilson (1964). 

For the c:.ise 11 = 1 we attem pt a general so lution. This is facilitated by the 
change of variable y = 1 - x a od the appropriate differential equatio n becomes 

(7) 
o-2 a2p a ap 
T ay2 - ay {(J.(l - y) - Jty)p} = a, 

with initial condition p(y, 0) = b(y) and boundary condition H p(y, t)dy = 1. 
Now let 

</>(O, t) = J_: e-01p(y, t) dy , 

then (7) transforms to the simple Lagrange form 

(8) 

with initial condition </>(O, 0) = 1. The equ ivalent system of equa tions fo r (8) is 

dt dO 
T = 0(J. + µ) 

- d</) = --,-,-- - ....,......-
</>0(). - o-20/2) 

which leads to the solutions 

Thus 

</>(0,t) = exp{(-J.0 + o- 202/4)/(). + µ)} /(Oe-(HµJ) 

where / is an arbitrary function. Using the initial condition it is found that 

(9) <p(O,t) = exp{-).0(1 - e-r(HµJ)/(). + µ) + 0 2a 2(1- e-z,c..+,,))4(). + J.t)}. 

It is clear from (9) that the unrestricted process has a normal distribution with 
mean 11(t) = ).(1 - e-r(HµJ)/(). + 11) and variance a 2(t) =o-2(1- e- 2r(HµJ)/2(). + /L). 
In order to impose the boundary condition we notice that, for small o-2 , 

UPCY, t)dy is essentially equal to f ;p(y, t)dy. Therefore it should be sufficient 
to impose the boundary condition 

(10) . ~

2 0 
p~O, t) - P(O) p(O, t) = 0. 
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Consider the expression 

(11) p*(y, t) = f (y, t) + g(t) J:~ a(u)f(y- 11, l)du , e > 0, 

where f(y , t) is the normal frequency function witll mean and variance giveu 

above and g(t) and a(u) arc suil:iblc functions. Equation (11) satisfies the initial 

condition p*(y, 0) = c5(y) and will approximately satisfy (7) if g'(t) = 0 . ·Now 

p*(O,t) = f(0,1) + g(t) J_-~a(u)f(-11,t)du 

and 

(12) a •co t) J-· a 
P

O 
' = u(t)f(O, t)/u2(t) - g(t) a(uh-f( - u, t)d11 

J -co OU 

= u(t)f(O, 1) / u2(t) - g(t) a( -e)f( - e, t) + g(t) J _-..,~'(u)f( - u, t)d11. 

Notice that(12) holds for arbitrary e>O and, from (9), 11(t)/a 2(t)=2J./a 2(1 + e -,cHu>) . 

Theo, from (10) and (11) it follows that we cau obta in suitable g and a from the 

formulae J.(1 + e-,cl+w))- 1 - g(t)a(O)u2/2 - ). = 0 and 

f_-)a'(u)-2)./a2 a(u)]J(-u,t)du = 0. 

Thus 

g(t) = (1 + e '(l+u)) - 1 and a(u) = -2J./u2e2Au/1r l 

and 

(13) p*(y, t) = f(y, t) - (1 + e r(Hu)r 12J.<J- 2 J_ ~O e 2lJJJ11
l f(y - U, t)du. 

Since g'(t) tends to zero exponentially, p• should be a good approximation to p 

for moderate values of t. For small u2
, as would be expected in this case, we 

have the approximation p(y, t) = (1 + e-rCHu>)-1/(y, 1), 0 ~ y ~ 1. 

If more accurate approximations to p are required for small values of t, set 

g(t) = 1 and use (11) to obtain solutions to (7) for various small intervals of t. 

If this is done, each solution satisfies (7) exactly and the boundary co1Jdition is 

. approximately satisfied. 

(b) Mean first passage t imes 

Supposing the reaction starts at y = a, (y = 1 - x), and it is required to 

know E{T(b)} , where T(b) is the first passage time through b, a < b ~ 1. Theo, 

if m(a) = E{T(b)}, we have the following differential equation to solve: 
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(J.4) 

subject to the boundary condit ions dm(O)/da = 0 and m(b) = 0 (Cox and Miller 
(1 965)), 

The solution to (14) is found to be 

2 lb {a2
[ i(l - t)"+

1 
pt

2
]} (' { CT

2 
[ ).(1-x)r.+

1 
ux

2
]} 

m(a) = cr2 
0 

exp 2 · n + 1 +2 Jo exp - 2 11 
+ 1 +2 dxdt. 
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ESTil\IATIKG THE DlSTRIBUTJO~ OF SPHETIICj .. L AXD 
ELLIPTICAL BODIES IN COXGL0:.1ERATES 
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Di1n'si<m of M athematical Statistics, C. S . I. R. 0., 60 Kin9 St. , 
N eu;tow11, N.S. lV., eo42, A ustralia 

SU1\IMARY 

Problems associ!lted with the cstim:ition of the dis tribution of a cerl:iin material, B, 
in a conglomerate, C, nre discussed. Tl1e well-known nnd gencr:i l result thnt, the proporlioo 
of Bin C can be cstim::i.tC'd 'l\'i tbout, bi:is fro m a rnndom pbne cut of C is prC'scnted briefly. 
Assumptions 'l\'ith rcg:ud to the shape of the deposits of R arc then mt,dc, thus allowing 
more information to be obt::i ined from two-dimensional :rn:ilysis. 

Init,inlly the bodie5 of B arc token to be spheric:il :ind some extensions nnd mo.tlificnt ions 
to Wick.sell's classical rc~ulls in this field :ire suggested. In p:irt icul:'1r, the Holmes bins 
of thin section aonlysi.5 is considered nnd this problem is dc:,lt with in gcnernl for spherical 
bodic.s. 

Subse<1uently, the sha pe.:; of the deposits arc cons idered to be ellipsoidal with a special 
orientation p:1t tern. f;ome explicit results are obtained with little effort by methods 
annJogous to those introduced in the spherical c:1se. 

Some of the forruul:10 nre illustrnted by means of t\,O short, numerical examples. 

I. INTRODUCTIO);' 

Aspects of U1e followi.ng problem arc considered in this paper. A certain 
material, which mll be called A, contains bodies consisting of a second type 
of material, B. The conglomerate of A and B will be referred to as C. It is 
required to estim!lte the proportion of C which is occupied by B from obser­
vations made on plane sections or thi n slices. 

If certain assumptions are made with regard to the shapes of the bodies, 
more in.formation can be obtained. In some cases it is feasible to estimate 
from sections the actual dist ribution function of the volumes of the deposits 
of B. This is true, for instance, in the classical cnses where the bodies are 
spherical or elliptical with special orientation patterns. 

This type of situation arises in various branches of scieuce. In petrog­
raphy, modal analysis can be undertaken by studying thin sections. T he 
ratio of the total area of the section to the area occupied by the particub r 
rock type B provides an estimate of the concentration of B in the rock mass. 
Apparently, these ideas are far from new although they have only recently 
been put onto a satisfactory statist ical footing (Chayes [1956]). 

Again, in pathology for instance, it is sometimes important to obtain an 
estimate of the proportion of a particular mass of tissue occupied by certain 

o/ 
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glands or cell types, Thin sections of tbe tissue en.n be prepared and photo­
graphed and precisely the s:1me procedures of pctrogr:1phy applied. T he 
p roportion of the tobl :nea of the photo,.;raph occuµi ed by the glands can 
be ascertained to obt~lia the required estim:lte. 

This µ~per arose from stuJics in wool ;:,rowth which co11cerned the dis­
trib ution of wax glands in the skio . Tb e~e gbnds are roughly ell ipsoiclal 
and haYe one axis more or le::-, normal to t lte ,,kin i-urface. Trcphine s:1mp!es 
of the skin arc t :1kcn from which Yert ical and trans\·cr.:e sectiou.s arc cut and 
photographed . 1Vt er enlargement oi the photo:;rnphs, sections of the wax 
glands can be idcntifierl and measured. .-\n estim:1te of the distribution of 
the glands in vn1ious breeds of sheep could provide some insight as to their 
function in wool growth. 

Basic mathemn.ticnl papers in this area \,·ere written by 1Yicksell [192.5; 
1926]. He reln.te<l t he distribution of the diameter of sphere:-; embedded in 
a mass of mntcrial to the distributiou of the dia meter of circles formed by 
randomly cutting the m:1ss \\ith :1 phne. These circles on the face of the cut 
were mcnsured to obt:1iu the nece:::.sary information from \,·hich the distribu­
t ion of the <linmetcr (or v olume) of the spheres was ult im:1tely inferred. 
WickscU · also oLtainecl similar results for ellipsoidal bodies although the; 
geuera.l case where the ellipsoids h:1Ye r::tndom orient:lt.ion pro\·e<l iutrucbble . 

. There is n. summary of these findings in I{endall and ::\Ioran [H)63]. 
Some of the procedures which Wicksell suggests require complicated cal­

culations. It is our purpose to simplify thc~c methods ,Yhcrc possible by 
allowing several plane sections to be taken and by int roducing parametric 
models. The relationshio between the moments of circle r :1dii obtained iu 
pla.oe sections to the mo~ents of the radii of spheres in the mass is obt:1inecl 
by a direct ar~meot. This allows \Yick.-=cll's results to be obtained quickly 
and also provides an :1pproach for more complicated situations. The treat­
m ent is more general than that of the origin:11 p:ipers. 

I t m ay happen that, for various re!l.Sons, bodies greater or smaller than n. 
certain size cannot be measured satisfacto1; iy on the plane sections. This was 
t he case in the studies described by Wicksell where bodies less than n. certain 
size could not be properly identified. Although Wicksell neglected this 
source of bias, truncation t.n>e procedures are required. T hese are developed 
below. 

T here is an interesting source of bias related to thin section ann.lysis knov.-n 
as t he Holmes effect. If the material B is opn.que :1ncl is set in traosp::i.reut 
material A, the amount of 13 will be systematic::i.lly 0Yerestim:1ted if thin 
sections are used to obt::i.in nreo. measurem ents in t ransmitted light. T his 
is because the app:uent area of n particub r body '1\-;JI be that of the maximum 
cross-sectional area of this body in the section. '\Yhn.t is actually required, 
of course, is the area ::i.t the surface of the section. 

If 2k is the 'l\idtb of the sect.ion, it is almost obviou:.; without calculation 
that for n sphere of radius r this bi:1s results in an overestimate of -rr/k/(r + k) 
for the average of cross-sectional ::i.ren (see Figure 3) . For a fuller discussion 
of this topic sec Cho.yes [195G]. The Holmes efiect is examined in this paper 
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from the point of Yie,,· of \YickscU's fumbmcntal integral equation rcb.t ing 
distribution of r:1dii of spheres in the s:1mplcd mass to the distribution of 
cil'Cle radii in plaue sections. 

2. GE)iETIAL llESULT RELATING . .\P.EA TO VOLU:.IE 

It was pointed out iu t he Introduction that, io order to obtnin :in unbiased 
estimate of the proportion of the totnl volume of the con6Iomerat.e C occupied 
by the material B, it is sw1'ic:icnt to measure this proportion on the face of :1 

plane cut of C. This result is sufficiently importnnt and easy to establish 
that the proof will be outlined here for completeness. 

Consider a unit rnlume of conglomerate C consisting of two types of 
material, A and B. For O ,::; x ,::; 1 let a(:i:) be the are:1 occupied by B in the 
vertical plane located at x (see Figure 1). Clearly the total volume of B in 
t he unit volume of C is 

VB = .{ a(x) dx = Ela(x)) 

if the frequency function of the cutting plane is uniform on the unit intervr.J. 
Now define 

u! = .{ a2(x) dx - l'~ 

and let n random planes inter:Sect C at x, with associated areas a, = a(x,) , 
i = 1, 2, · · · , n. If a·= L7 a.Jn and s2 = l:7 (a, - a)z/(n - 1) then 
Elal = Ve and E/szl = ui . Although the distribution of a is not kno\1·n 
in general, u = (a - 1' n)/ swill be asymptotically distributed as a standardised 
normal variate for u; > 0. 

The parameter u,; has intuitive appeal in describing the hetero~eneity of 
the distribution of B throughout C. For example, if 13 lies in horizontal strata, 
u; "ill be small and great precision is expected from two-dimensional analyses . 

Ref erring back to the problem of wax glands in the skin of sheep, the 
procedure is very simple when only an estimate of the proportion of the total 
t issue occupied by the gl!:tnds is required. From several, n say, photographs 
of skin sections the proportion of area associated with the glands to the total 
a1·ea of the photographs, a, ·, can be obtained . The statistic i is then cal­
culated and v used to find a suitable confidence interval for VB . 

3. SPHERICAL BODIES 

(a) General 

It is useful to build notation and technique by considering first the case 
where the bodies of material B are spherical. Our approach sho1t-euts some of 
Wicksell's development and allows for extensions. The work is carried out 
in terms of the radius of the spheres, r, and some of the Wick.sell notation bus 
been changed as a concession to modern convention. Let 
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X = the average nu mber of sphere centres per uuit volume of conglomcra.te 

c, 
G(r) = t he di;;tribution function of sphere r:tdii, r, of m:i.terinl B, ,Yith 

power moments µ; nnd clcrh·ntiYe g(r) (when it exists), 

F(r) = the distributi on fu nction of l"phere rnclii which intersect :1 r:rn<lom 

pbne throu~h C. ,,..ith po":er moment" m; and cleriY:1tiYe / (r) (wheu it exists) , 

cJ>(y) = the distribut ion iunction of the radius of circles, y, formed on n 

random pbne through C by intersection ,,ith the spheres, ·with power mo­

ments 7J; and derirntiYe cj,(y) (when it exists). 

It will be nssumed that all the moments oi G exis t and, in fact, t.bnt 

ma(l) = J~ e'' cW(r) exists for some t > 0. This is a sufficient condition for 

the moment sequence µ ; to uniquely determine G. It c:i.n be shown thn.t 

existence of mc(l ) implies the existence of 111,,(1) which in turn implies the 

e:-.;stence of m 1.(l) . 
The first task is to esbblish the relationship between G and F . Consider 

n, small interval I; then the :wernge number of spheres with radius r c I "·hich 

intersect n random pboe is approximately 2i\r J 1 dG(r ) per unit arcn of the 

plane. Hence the relationship 

dF(T) = r dG(T)/r0 , To = 1 .. T dG(r) =. µ 1 , (3.la) 

and if G is absolutely continuous 

f (r) = 1· ()(T)/To 1 To = 1 .. r o(r) dr = µ 1 • 
0 • • , 

(3.Ib) 

If y is the radius of n. circle on the intersecting plane w·ith associat ed 

sphere of radius T, and if w is the distance from the centre of the sphere to the 

slice, then y; = (/ - tl)1; (sec Figure 2). It will be assumed that the posi­

tion of the cut h:1s density dw/2r so that 

E{y1 IT} = l'. (r' - w2)H dw/2r = ,.1c;i, 

where 

rr-f I = llr ( 0. )l+ I d0 = (2m - 1) !! 71" 

VI O CO$ (2m)l! 2 1 j = 2m - I 

(2m)!! 
=-'-------

(2m + 1)!!' 
j = 2m 

andnll = ri(n- 2)(n- 4) ···,II! = O!! = (-1)!! = 1. Thus the uncon­

ditional expectation of C,y' is C,11, = m, = µ 1+i/µ1 , j ~ 1. Since 

1., r - 1 dF(T) = T; 1 1· dG(r) = T;1
, 

the relationship 277_1/rr = m_1 = T; 1 = µ~ 1 holds. 

(3.2) 
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TnF. RANDO'.\! l NTF.nSECTION OF A PLANB WITH A SPnr.nE 

If n circles are measured on random plane sections of the material, then 
an unbiased esLimate of m.;, j ~ -=- I, is given by 1n; = C; L~-1 y;fn. An 
estimate ofµ; is fi ; = 1n;-1/fiL1 . .Although it is possible to obtain simple 
e:-..-pressions for the ,·arinnce of 111 ;, j > 0, the variance of iFL 1 docs not exist. 
Ho\\'ever, fi; is certainly a consistent estimator ofµ, . 

The foll o\\'ing equation defines <I> in terms of F: 

l
!r 

<f>(y) = 
0 

cos O F(y/cos O) dO. (3.3a) 

To verify this, note that the right hand side of (3.3:.i.) is a distribution function 
and · 

1"' . ("" . 1\r , ,,, = j y'- 1[1 - cl>(y)] dy = j J y•- 1 [I - F(y/cos O)] cos 8 do dy 
0 0 · 0 

= fo1
'" cos (Ji + I d(J la"' j x1

-
1 [1 - F(x)] dx = C7 1m; , 

The interchange of the order of integration is justified by Tonelli's theorem. 
Let y = x cos O; then (3.3n.) can be written as 

<f>(y) - f"' F(x) d 
2 - 2( 2 ~)! X . y II X X - y 

Set y2 = u and x2 = v and write <I>( v'u)/tt = a(u) and F( Vv)/(2v312
) = tJ(v); 

then the equation becomes 
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J., fJ(v) 
a(u) = u (v - u)~ dv . 

Now 

f .. " (u a~i)w)' dit = i "' {J"' (v ~v~)l dv} (n ~ltu,)i · 

and it can be Yerified that the integral on the left hand side exists for w > 0. 
Again, by T onelli's theorem the order of integration can be reversed on the 
right hand side t.o give 

i°' /3M{{ (v - tt)-1(1t - w)-, du} dv. 

The inner integral reduces to n C 1(1 - t) - 1 dt = .r with the substitutiou 
u = w + (v - w)l. Thus 

f"' ( ) -i 1°' a(u) {3 V du = 1r ( _ )t dlt .. .. u 1./J 

and 

! ... F(y) - 1 1" <I>(y) - r- dy = 21r ( • 2)·1 dy, .. y .,.yy- w 
w > 0 . 

Hence for x > 0 

F( ) 2 -1 2D J" cfi(y) d .. x = - " x • ( a ' )' y, '!t .e., • y y - x· 
(3.4) 

where D.k(:i;) is the derivative of k. Since F(O) = 0, (3.·1) uniquely deter­
mines P, and G is reco,·ered from the relationship 

G(r) = r 0 { x-• dJ?(x), 

When the frequency functions <f,, f, and g exist (3.3a) becomes 

<f,(y) = { .. f(y/cos 0) dO 

-• J"' g(r) dr = YTo v (rz-_ y2)' 

(3.3b) 

which is Wicksell's fundamental integral equation. By the same manipula­
tion as above the solution to (3.3b) can be written as 

G(r) = 1 - J." <f,(y)(y2 - rY1 dy / lo"' y- 1<f,(y) dy. (3.5) 

From now on we assume that the required frequency functions exist and 
that the necess:uy calculations can be justified by, if necessary, imposing 
mild restrictions on the problem such as the assumption that the radii are 
bounded. Although, mo1:c mathematical satisfaction is achieved by "·orkini; 
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with the distribution functions, the frequency function form is the one which 
will be most acceptable in practice. 

I t is often convenient, to p:wametrise the problem from the st:irt although 
the estimated moments could be used to fit some general curve, one of the 
Pearson class, for cx!lmple. For illustration suppose th:it, for :1 p:uticubr 
problem, it is reasonable to :1Ssume that g(r) is of the form · 

'Y > O; 

then g is estimated once an estimate of 'Y is available. In this case 

f(r) = [r('Y + 1)r1e-'r", 

m1 = 'Y + 1, 1 = in1 - 1 and var 1 = C!(112 - 11;)/n. 
Equation (3.3b) can be used to check the adequacy of the parametrisation. 

Once f(r) is estimated, an estimate of 9(y) can be calculated from (3.3b) and 
compared "-ith the obseITed frequency function. If the agreement is poor a 
more genernl parametric model can be tried. For example, if the one-p:1ram­
etcr gamma distribution used above produces unsatisfactory results, the 
two-para.meter gamma distribution can perhaps be fitted \\·ith a. happier out­
come. 

There remains the problem of estimating "· The average number of 
spheres which are cut by a random plane per unit are:t of the plane is 2>,ro . 
Ii A is the total are:i of t.he intersection and n is the number of spheres cut 
by the pbnc, then the equation A = n/ .:12.:'0 gives an cst,imate of A, where 
f 0 is an cst.imate of ro . If fo is calcu!ntcd from the harmonic mean of the ob­
served radii of circles in the piane, i.e. r; 1 = 11L , = 211-Jr.1 the belmviour of 
A ma.y not be stable since r; 1 has infinite variance. More satisfaction can be 
achieved from parametrised versions. For instance, in the case considered 
above where g(r) has a one-parameter gamma distribution, 11L1 = 'Y _, = r;!, 
and hence fL suitable estimator is r; 1 = (in 1 - 1)-1

• 

Some icle3, of the rnriancc of A can be obtained by assuming that n is 
distributed approximately as a. Poisson variate ,,ith parameter 2A\ro , and 
that n and ffz 1 are uncorrelated. Under these assumptions, since 

var (,n1) = var (-9) = C;(1J2 - 11~)/n, 

the large sample variance of A ca.n be calculated by the delta method. In 
cases where ;\ and r 0 are small the approximation should be satisfactory and 
if A is large A should be stable. The routine algebra ,•.-ill not be carried out 
here. 

Of course, a direct estimate of ;\ can be obt.ained by serial section. The 
actual number, n, of sphere centres in the volume of material sampled, v, can 
be counted and n should be approximately Poisson-distributed with param­
eter >.v. 

(b) Truncation 

It can happen that circles "ith radii greater than R, say, are ill defined or 
difficult to measure. In these cases it is desirable to have a truncation pro-



( 

( 

DISTRIBUTIOXS FR01I PLA:KE SECTIOXS 95 

cedurc to fall b n.ck on. Jt is found that if the problem is parametrised, g(r) 

can be estimated from observations made on pl:1110 sections using only circles 

with y ~ R. 
Consider the trunc:\led frequency function T(y) = <t>(y)/<I•(R), iJ.•(R) = 

J~ cp(x) <lx. T hen, writ ing 

TJ,(R) = 1n y1T(y) dy, 

tho follo,dng relationship can be veri fied 

1ft 1P. 1"' <J>(R)r,;(R) = y'c;,(y) dy = y 1•
1 / (r)r-1(r2 

- y?)-1 dr dy 
0 0 V 

= k;(O)m; - f
11
"' r 1f (r)k 1(R/r) dr, 

where 

k1(0} = C"i' . 

(3.6) 

AB an cxnmplc of the use of (3.6} substitute the gamma form of f (r) used 

above and set j = 0. T hus, writ.ing <J., as a function of 'Y and R, we bnve 

4'(R, -y) = 1 - l "' [f(-y + l)r 1e-·r.,(l - R 2/r2
) dr 

= r(R, -y} + R 2 r(-y - l )[r(-y + l)r1[1 - r(R , 'Y - 2}], 

where 

r(x, O) = f [r(o)r 1e- •yH dy. 

If from a sample of p lane sections it is found that, of tho total number of 

circles, 11 0 ha,·e radii less thnn R, then 

<I>(R, 1) = no/ n (3.7) 

defi nes an estimator for 'Y· As cf>(R, ,y), a decreasing function of 'Y, is readily 

plotted as a function of 'Y from existing tables of the incomplete gamma func­

tion, a solution to (3.7) can be found with relative case. The large sample 

variance of 1 can be calcu iatcd by standard methods although its form would 

not be pleasing siuce it involves urJ1/a-y. 

(c) T he Holmes effect 

So far the analyses hox e beeu entirely in terms of measurements made 

on the face of a plane intersecting the conilomerutc C. If thin sect ions are 

used and the spherical bodies B are opaque, the Holmes bias mentioned in the 

Introduction can be expected. 
Consider a sphere of radius r and a random thin slice of thickness 2k 

(Figure 3). D efine the sets A, as A 1 = [-r - k, -k), A, = [-k, k), A 3 = 
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a r ea seen 
i s on t his 
face 

2k slice 
th i ckness 

FIGURE 3 
ILLUST!l.-1.T IO:', OF THE IloL~!ES F.FFECT 

[k, r + k], and if a is the position of the centre of the slice then, under the 
assumption that the sphere is sliced at random, 

Pr {a e Ail = Pr {a c Aa} = r/2(r + k ), . Pr {at A 2 } = k/(r + k). 

Further 

E{y' I r, a e Ail = E ly' I r, a e Aa} = C-;1r', 

and hence 

-I 
- cj }(j ti 

,ft.+} 11 

E {y' I r, a e A 2 } = r', 

(3.8) 

(3. q) 
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<f,(y) =[ y 1·· <g(y/cos O)[cos 0r 1 dO + kJ(y)] It +J) 
0 I 1 

(3 .10) 

= y J"' fJ(x)(x1 
- y')-½ dx + k{3(y~ /2-;:. g/(f:.;J ,}, 

V 

Equation (3.10) t.ransforms to 

g(v) = f "' h(u) Vv(u. - v) - I du+ kh(v), (3 .11) 

where g(v) = <J,(-\/2)/2'\lv and h(u) = fJ(Vu)/2-Vu, by setting X
2 

= u. 
and y 2 = v. 

T he solution to (3.11 ) will now be briefly outlined. Let K(v, u.) = 
Vv(u - v) - ! and wri te (3.11) as 

g = Kh + kh , where l(h = f "' K(v , u)h(u) du . 

Now, the equation Kho = g can be solved. Explicitly 

ho(u ) = - D.1r -I f"' g(v)[v(v - tt)r 1 du 

= - ,r-
1 

{ g'(u/ l)C2(1 - t)-! dt 

(3 .12) 

after Lhe substitution u = tu. For notat ion, the inversion will be ,n itten as 
ho = K- 1lf. 

A second approximation to h is h 1 = K- 1g - kK-1 (IC 1g') and h 1 satisfies 
(3.12) t o O(k2) which ,rnuld be sat isfactory for mo.st practical purposes. 
I t has been assumed, of course, that gis such that the required m:1thematical 
operations can be justified. 

A more rigorous discussion of (3 .12) is possible. By composition (3.12) 
can be transformed into the equivalent equation 

(3.13) 

It can be verified that because of the boundedness of r, K2 is a bounded and 
continuous kernel. As such the method of iteration appropria te to Volt.erra 
integral equations of t he second kind is applicable and a unique solution is 
guaranteed; see, e.g. T ricomi [1 957]. 

4. ELLIPSOIDS OF REVOLUTION 

The nexi. simplest case to consider is the one where t he bodies are el­
lipsoids of revolution ,dth the z-axis in the North-South position. The 
relevant equation is 

(4.1) 
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Before proceeding we display the nobtion. Let 

A = the aYeragc number of ellipsoid centres per unit volume of conglom­

erate C, 
g(a, -y) = the frequency function of spheroid diameters, ex, and major 

1.t."l;is , 'Y, of mat erial B with fJO\\'Cr momentsµ;; , 

f(a, ,') = the ircqucnc:y function of diameters :rnd major i.,es of spheroids 

which intersect a random pbne i.brou6h C, '>\ith power moments mu , 

<f,(y, z) = the frc(Juenc:y function of minor, y, and maj or, z, axes of ellipses 

formed on n rnodom plo.ne through C by intersection \\ith the spheroids, with 

power moments T/ u . 

T he average number of ellipsoids with diameter and major axis in the 

set [ex, ex + dex] X ['Y, 'Y + dy] which arc inter,:ectcd by a r:mdom plane parnllel 

to the z-axis is 2:\ag(a, 'Y) dex cl-y per unjt area of the plane. H ence 

f (ex , -y) = exg(a, -y)/exo , exo = µ 1,0 = i '" i .. exg(a, -y) dex d')', (-1 .2) 

Ii y nud z arc the minor and major axes of the ellipse formed by the plane 

cutting the ellipsoid nt w, then 

y = a(l - w2/ex:)1, z = -y(l - w2/a1)¼, 

and if t he cut bns d ensity dw/2ex , 

E{y'z' I a, 'Y I = a '-y1 L: (1 - w
2/ex2)i<;+n dw/~<: .. 

Clearly, C, +;TJ, 1 = E(C.+;y'z'I = m u = i1,+1,Jexo , and the estimation of 

mu andµ,; pl'oceeds iu the same way as for the spheric~! case. 

The best nppronch in this more complicated ~ituat.ion is to establish an 

integral equation, similar to (3.3b) , relating g and C:,. From the above rebtiou­

ship between 11,1 and m,1 

cp(y, z) = lair /(y/ cos 0, z/eos O) (cos or' dO, 

which can be written as 

<J,(s, st) = 1'" /(s/cos 0, st/cos O)(cos or' dO 

by set t ing y = s, z = ls. Now lets = v cos 0, t hen 

<J>(s, st) = f · ·f(v, vt)(v2 
- s')-1 du 

• 

= a;;-1 1.;,,.g(v, vt)(v2 
- s')-1 du. 

By the methods of section 3 

(4 .3) 

(4.4) 
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a;1 J;g(w, wt.) dw = 2r- 1 j "' tt:q,(w, wl)(w' - y')-i dw 
• • 

and 

-D.21!'-~-,f"' 1ccf,(w , wt)(w2 
- y2)- ! dw I 

( ) J V · ,-,111 (} Y, z = ----~- ---- ----~~ · i "' i., y-1</>(y, z) dy dz 
(4.5) 

The problem could be tackled from n. parametric viewp oint by assigning 
a suitable fami ly of distributious to o(a, ,) and estimating the parameters by 
the method of moments as for the spherical case. Since no new principle is 
involved, th is appro:i.cb ,,,;11 not be developed furt her. 

The volume, V, of an ellipsoid of re,·olution is 1' = 4,.c/,/3 and hence 
El111

} = v; = 4-irµ2;,;/3 = ·11ra 0m2;-1. ;/3. From a sample of size n of elli pses 
measured on the face of random planes intersecting the material it is possible 
to estimate v; by 

(4.6) 

Unfortunately, ii 1 is only asymptotically unbiased and, for reasons di5cussed 
in section 3, it bas infinite variance. Howc,·er, useful information can be ob­
t ained with little cfiort since if ii 1 is known and an est imate of Va , a say, 
(section 2), is also a,·ailable, then>.. can be estimated by A = av; 1

; see Example 
2 below. 

5. GENERAL ELLIPSOIDS 

In this sect.ion the basic :1ssumption that the bodies arc ellipsoids oriented 
in the North-South position is maintained. However, the ellipsoids are of the 
general form 

(5.1) 

and the x and y a.,,es are subject to a random rotation, 8, about the z-a.xis 
according to the density d0/ 21r. 

If g(a, {3, -y) is the joi nt frequency function for a, fJ, and 'Y, the principal 
axes of the bodies in the conglomerate C, then in order to proceed to a reason­
ably tractable solution it is assumed that g factorises as g(a, /3, -y) = 
g1(a, f3)g,(-y). This assumption leads to great simplification when it is used 
in conjunction ,,·ith transverse aud vertical sectioning of C. The solution will 
only be outlined since it can be reduced to the situations discussed in sections 
3 and 4 above. 

(a) Tran.sverse sectioning 

It is assumed that both transverse and vertical section.ing of C is possible. 
T he notation and assumptions used in this and the following section are con-
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sist ent \\·ith t hose of p revious sections and need no further elaborat ion. 
In analogy \\; th (3.1) and (4.2) 

f(a, {3 , -y) = ')'gz(-y)g. (a , fl)ho , (5 .2) 

Suppose t he phne intersects a part icu lar e]Jjposoid ,,,;th axes a, {3, and 
'Y at z = w, then tlie dcnsit.y of w is dw/2,. If x and y arc the major and minor 
axes of the associated ellipse in the plane, 

E lx;y; I a, {3, -yj = J_-r-r a\'3\1 - tv2h2
)
11•+ il dw/2-y 

T he methods of section 4 ca n now be used in obtaining g.(a , {3) . 

(b) Vertical sectioning 

U nder a random rotation 8 of the x, y axes about the central, vertical axi8 
z t he equation of the ellipsoid becomes 

(x cos 8 + y sin 8)
2/ c./ + (x sin O - y cos 8)2/{32 + z2h 2 = 1. (5.3) 

From (5.3) it is found that 

l 2 ( ) 2 • 2 • • , i a, {3, 'Y = (X cos·o + {3 sm ·8, 

on setting x = w, the posit ion of the vert ical cut . But it can be shown that 
t he diameter of the ellipsoid, i.e. the dist:rnce between the two ta~&ent ph nes 
parallel to x = w is 2h and hence, given a, {3, 'Y, and 0 

E{z' I a, {3, 'Y, OI = ·y'C~ 1 

since the cut has density dw/2h. I t is easily verified that 

f(a, {3, -y) = 91(a, {J)gi-y)ii(a, f3)/ho , 
where 

h(a , {3) = J_rr h(a, /3, 0) d8/ 2.r: 

ho = l "' f" h(a, {J)g1(a , /3) da d{J . 

The function g2('Y) can be calculated according to the methods of section 3 by 
noticing t hat 

6. "NUMERICAL EXAMPLES 

To illustrate t he use of some of the formulae, two numerical examples a re 
given. 
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Exam71le 1 

A large block of S,,-i.ss cheese wns thi:lly sliced and one hundred slices were 
drawn at random wit.!1 replacement. The maximum and minimum dinmctcrs 
of each hole [IJ)pc:1ring in the slice:s were obtained and y, the geometric mean, 
was calculated. The resulting empiric:i.l frequency function of y is gin:-n in 
T able 1. F rom the latter fig urc.3 iL was required to estimnte the di.stribution 
fu nction , G(r), of the rndii of the spherical airspaces in the chec.';c. 

Formula, (3.5) v::,.s used to obt;1in a numeric:1.l cstimnte of G(r) and this 
is also g iven in Table l. Let y , , i = 1, 2, · · · , 18 represent the cl:1s::; bound­
aries for T able 1; then G(r) was calculated from the empiricn.l fr0queucy poly­
gon by the formulae 

1"' </J(y)y-1 dy ~ f (tf>111,. , - <f>,+1?J;) log (?/1+1) 
o 1-1 (Y;+1 - y.) Y, 

f ., q,(y) r-.., 

-( 2-=-- ~ ) dy -
•I y Y; 

~ {(<t>,~1 - <!J.) [( 2 2)1 ( 2 2\1] 
L; ( _ ) Y,+1 - Y; - Y1 - Yo 
1- 1 Y,+1 Y1 

+ (<t>1Y,+1 - <P1+1Y,) log [ ?/1+1 + (y!,i - z\D1J} 
Yi+ I - Y 1 Yi -f- (y i - Y;) 

Some trouble is experienced in the neighbourhood of r = 0. The estim[l.te 
of G(r) becomes sl ightly negative aud this is due to the fact that not every 

TABLE 1 
EMPlRJCAL rnEQUES C\' Ft' :-.CTION .-\XO ESTnt.-\TE OF G(r) 

FOR AIRSPACF. 1:-1 SWISS c n EESE 

y, + ½(ems) 9i Est G(r) 

.125 .005 .005 

.225 .031 .014 

.325 .051 .025 

.425 .054 .035 

.525 .074 .042 

.625 .147 .055 

.725 .133 .079 

.825 .216 .209 

.925 .147 .562 
1.025 .OOO .799 
1.125 .041 .884 
1.225 .021 .946 
1.325 .006 .976 
1.425 .006 .982 
1.525 . 003 .989 
1.625 .003 .992 
1.725 .003 .996 

y; + ½ = class centres, tf>, = estimate of frequency in class i. 
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TABLE 2 
GLAXD VOLU~!E .\XALYSIS IX SK IX TISSIJ I~ OF S ilF. CP 

Shrcp no. p V X 101 N 

1 .055 13 .1 42 
2 .OG9 IG.6 42 
3 .Oi4 15.2 40 
4 .06!) 30.8 22 
5 .066 23.0 26 
6 .065 22 .8 29 
7 .059 33.9 15 
8 .036 Hl.1 19 
I) .043 33 .5 13 

10 .040 22 .9 18 
11 .061 42 .6 14 
12 .051 21.8 23 
13 . 0.14. 22.6 20 
14. .029 22 .3 13 
15 .043 lG.6 26 
16 . 054 28.4 19 

p .,. p roportion of glnnd/ (mm)3 of skin tissue, 
V "" nvcrnge glnnd Yoiuruc (formula -1.C), 
N = npproximnto number of ghnds/(mm)3 skin t i2sue. 

frequency function "'·beu used in (3.5) leads t o a dfa tribut ion function. The 
true C:, does, but in t his cnse the est imate docs not. T o overcome this, the 
last positfre value of G cstim~tecl by the formub ~·ns used to obt:ihi a linear 
in t erpolation p:m ing through G(O) = 0. Of course, if the problem is para m­
etrised ns discu~s=cd abo,·e, t hese problems arc avoided. 

Actually, µ 1 calculated from G(r ) is 0.8-!. \Yhen est imated from lhc form­
ula (2/1r)'7_1 = µ~ 1 a figure of 1.01 is obtained, giving reasonable agreement. 

Example 2 

D uring t he s tudy of wool growth described in the Introduction mid-side 
skin samples of 16 sheep were taken. From photogr:i.phs of the skin sections, 
t racings of t.he glands were made and cut out. T hese cut-ou ts were roughly 
elliptical and t he major and minor axes were measured as the maximum and 
minimum diameters of the particular tracing. T he tot al weight of the trn.ciogs 
was also obtained. 

From the aboYe information the proportion of gla nd occupying a (mm)2 
of the vertical skin slice was calculated and is report ed in T able 2. From 
formula (4.6) the a,·erage volume of the glands was est imated, leading ult i­
mat ely t o a n esti mate of the number of glands per (mm)3 of skin tissue. 

I nformation of the type p resented in T able 2 is being used to assist in the 
interprcfation of pat t erns of wool growth. Fuller details will be reported 
elsewhere. 
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L 'ESTBIATIO:f DE LA DISTI'.Tl3UT[OX DE COTIPS SPIIERIQGE::; OU 
ELLIPTlQUES A L'Jl'\TERIEUR DE CO~GLO::\IEHAT3, A P.-UlTIR 

DE SECTIOX S I'L.\.XES 

RESUME 

Les probl~mcs de l'e:olimntion de la d istribution d 'une cerlni.nc rn:,..liere B a l'inlerieur 
d'un conglomerat sont d iscutcs cla ns cc travnil. Le rcsttlbt g{·n<':r:tl et bicn connu suiva nt 
lequel b p roportion de H dnns C peut ctrc estim(:c sans b i:1i., n part ir d'unc section pbne 
al~atoire de C est pr.'.:scntc bri('.•vement. Ccrt:iincs hypodic~cs conccm:tnt la forrnc des 
d6pots de n pennettcnt d 'obtenir plus d'info rm :i.tions de l'annly:;c :\ deux dinicn:;ions. 

Ini tialcroe11t Jes fra:;ments de B soot choisis de forme sphcriquc et on suggcrc cert:.inCi! 
modifications et extensions tjcs resultsts cln~siques de \Vickscll d:i.ns cc domainc. En 
par t iculier le biais de Ho lmes dn1is l'nunlysc des sections planes mi.nc()S est considcre trcs 
geueralemen t pour Jes corps sphcriques. 

On considcre pa r la sui te des dcp6t.s de fom1c cllip3oidnle convcnablement orient6s. 
Des rcsultals explicilcs sont obtenus focilemcnt par nunlogie avcc le cns sphcrique. 

Quclqucs formules sout illustrecs par dcux excmples numcriques courts. 
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SA'.\lPLlXG '.\lETlfODS FOH £ , 'TD L\TJXG .-\ \.EH AGE F .-\F.C.-\L 
EGG-C'Ol.XT IX AXDL\L P OPCL . .\TJOXS 

By G. )I. TALLIS* a nd D. Ci.;LP1:s * 

Summary 

Thi:< JH1pcr prCa<l' l\t ~ n :;ompl ing procedurc fo1· c~t i111nt ing, lo n 11011, innlcd 
precis ion, I h,• nVl'nl£1' fnl'ca l worm ,·µ~-count of n group of 1111 imnl, . Fun nul,,e for 
cnlculnt ini; the corrCt' I ni11nbN of n nimnls t o .i1mple fro rn a fixed p opulnt i,Jn arc 
developed. T h.: t r<>ntt11c•111 is genernl nnd nll•l \\ ,; l,oth within nnd bet wcl'n nnimnl 
Mrnpling ,·nrinuil ity lo be- rnkE'll i11tu nccount. Spt·cific r.::f<·n•11 co is mndc to s l1 cop. 

I. I :-Tl<OPUCTJO:-

During the slucly of p:na..:itic cli;:<.'aSl·S o f shc-q> the n ·t c-rina rian i,- often fa ced 
wit h the- ta,;k of pc- riodica ll:· r :.:t imnting the le ,·cl o f infection in Yarious rxpcrimcnta l 
fl ocks . If thr primr intcrl's t i,; in some internal r gg-lay ing ,1·orm, thl' s tanda rd 
practic<' for estima ting thr lc ,·rl of infc·ction in a sheep i:; to collect II fn rcal sa mplr 
from thC' s hc<·p nml. fro m thk t o suhsrqur nt ly ma ke an {·Sti mat c o f tl lC' egg-cou nt. 
If the l·gg-co unt, i,; a:;;,;umecl t o 1.J r a s..;ociatl'<l with the lc n :·1 of infl'ction within thr 
shl'C'p, tlwn this lcn·I may I.Jc measure<l l>.,· such ('gg-count,:. The- aYeragc <'gg-count, 
for ti ll' fl oek ca n then he use-cl as a mcn~11re o f the gc·nera l lcn·I o f inf,,ction. 

For sma ll fl ock,; it is q uite ft'a,- ilJlc t o obta in II faeca l sample from r a ch sheep. 
nut. for l11rger fl ocks it. i,: 111ore cco110111ical to c-s timate th l' n,·eragc e!!g-count by 
the n ,·rrngt> cgg-eo1111t of a r:rnclo m :-:ample clrnwn from tltc Oork. This proc·cdurl' 
nat11rally enta ils a concomit a nt, incrca,-c in t hl' c-1-ro rs o f e,,ti m:i tion. hut b_,· cho ice, 
of sample sizl' it i.., u;:ua lly pus~ihle to e nsure tha t the mean fl ock egg-count i,- c.~tima tcd 
" ·ith n des ired precision. ]l, is the main purpose of this papr r to ,lc vclop me thods 
for choos ing the sample size . 

This probll'm was orig inally suggested t o us by Dr H . Go rdon oft he '.\lc'.\Ia ·trr 
L nbo rntory, Di\·is ion of Animal H ea lth, CSlHO. 11nd it therefore has particula r 
relevance to the egg-countin g technique d evelo ped 1,y him (Gordon and Whitlock 
)!)3fl). t However, the theo ry is of a general nature and s hould l.,c npplicahle to 
other ,;ituotions and to animal,; othN than sheep. 

Those who wish to ga in an idea of the me thods without an undcrsta11ding of 
the assumptions underlying the m 11111y pas:; directly to Sect ion VI, whC'rC n summary 
o f the mcthorls and a m11nr ri e:1 l r:rnmple arc prcH·ntcd . 

Sections I l- V should he compre he nsible to anyone h:wing so111c famili a rity 
";t11 clcmcntar.v s tatis t ics s ince the more ill\·oh·ccl a rguments a re relcg11ted to the 
Ap pendices. 

• Divi.sion of :\lnthemnt icnl Stati,tic:<, CSJRO, GO King StrC'c l, Xcwtown. X.S.\\'. 2042. 
t C onlon, H. )lcL. , nnd \rhitlock, H.,·. ( 1939).-A new tcch11iq ul' forcou11ti11g nematode 

cgg,1 in $hcop f11<·cc>1. J. Cou11. scic11t. int/. Res. Aust. 12, 50- 2. 

-~--·---------------------- --------- ·--·----···--------- - --
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IJ. TEn:-11:soLOCY, Oe:s1c:n .\1, , \ sso1Pn o :ss, ,\:Sn HELATio:ss 
The fl ock ;: izc will \)C d t•notrd by X :111d th1· s ht'C' Jl \\'ill be nurnherC'cl l . 2 ... .. _y_ IL will be a;;sumetl that a r.in<lom samp k of II sheep has lwcn selectrcl fo r foC'c·a l collection. Tlk sheep in the ,:ample will be numhl'l'C'cl I , ~ .... , 11 . thi;; n uml,t·ring being cli ;: tinct from the nurnhrring o f the flor-k. ( \\'hC' n a .r-hrcp is refcrrc- rl t o l.>y numhcr, the c-ontcxt should inclil',,tc which m1mhcring j ,- rek· ,·nnt.) 
The nn·rng<' numl,cr o f <'~g" per gram of dry fa<:c-(',; fro m :c:he<'p numliC'r ,s "·ill be dcnotrd by,\, (s = 1, ~ .... , .\'). The mean a nd ,·ariance of the set,\.,\, ... ,,\ " will he clt-notc-cl l,y ,\ anti oil r<:,;prcti,·1:ly, and these arc cld1ncd by 

,\' 

>. = Z: >.,/X 
, ~ 1 

and 

N o& = Z: ()., - >.)2/(X- l). ,- 1 
It is our purpo:--e t o e:::l imnlc >.. The quantity oi;.., could also be c.lllc<l the bcl wcen sheep varianc-r of egg-count. 

For the moment i t, will b<' n,-snmccl that there is a mc-thocl for obtaining for any sh eC'p s an unuia.,c<l est imate'\ of>.,, and t hat lhc c~timates from d ifferent shrep arc indcpcnclt'nt. Let a;= \ 'nr(,\,). Then it will be fur t her assum ed that. there is an u111Jia::;ecl c·sl imatc ~ of a;. La t er on (,;cc Seel ion l \ ') a way of obtaining these estimates will be considered. Fina lly, let 
}\' 

a2 = L a~/N. ,- 1 
Now from the sa mple o f n sheep ,,·c hn"c n c;;t imntcs 1),2, •• • , >.,,. ~f egg-counts and 11 esti1nntes aJ, 6~ •.. . , a; of rnria nccs. ,\ nnturnl estimat or to choo~c for the fl ock anragc egg-count.\ is the sample a,·cragc 

(1) 

In fa ct , it can be shown that, A is an unbiased estimate of>.. Also 

- (12 {l 1\ ~ Vnr(A) = - + ---\' )ow, n n 1 (2) 

T o p rove rcsu Its of t his type, the fa irly s tanda rd methods of the statis t ics of fini te sampling can Lt· used .• .\s an illu::;tration of the methods, E(A) and Var(A) arc crnlu­a.ted in Appci1clix 1. ~ otc that two lc,·cls ·of s t a t istica l cli!:'tribution arc im·oh·ccl ; ( J) the sampling distribution of the random sa mple of sheep from the flock , and (2) the clistrihulion of the estimate of egg-count, A,, for a particular sheep s. 
For later reference we shall state here two fw·thcr result,;. Let 

(3) 
and 

(4) 
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T hen 62 and a&i arc unl,ia;:cd est ima t es of a2 and a&, re;:.pccti,·ely. 
arc not. p ro,·ccl in this paper.) 

HI. CHOICE OF S ,Dll'LJ:: SIZE 

5 

(These rcsu It:; 

,vc now turn lo the question of choo;;in!! a n appro priate . nmple $izc. It i-; 
required that, ,\ he est iinnlc-d 1,y A with a cert a in prc·ei;;ion . Jn orcler to state this 
rcquin.)m c•11t mon• ,; pecifica lly we· s hal l st ipulntc that m· \\'i•d\ A to snti,;fy the· co11clition 

Prob{ I A- ,\ I < p,\} = 1-{J. (5) 

T his condit ion could be expre!':SC'U alternntin·l:,· a,; fol lo,\·s : \\' ith p rohnbi lity 1-/3 
t he true rnluc of,\ l ies in the range A ( l +Pl to ,\ /(1 -p). F or example, if we choose 
fJ equal t o 0· 05 and p equal to O· I , t he range i,; 0 ·91A to l · llA, am!,\ liC's in thi:; 
inlN·,·id with a. probability o f 0·95. The sma lle r p is, the small t· r is t he range ; t.hc 
s ma ller f3 is, t he larger is the proba bi lit)· that, ,\ lies in the range. 

Using the Central Limit ThcprC'm it can be assumed that A is approximatel)· 
normally clis trilJutctl with mc·nn ,\ a1HI rnriancc \'ar(A). \\·c shall cleno!t' the I UO( l -,C3) 
two.t ailed pcrccntago point, o f the no rma l clistributio11 by 11tl . \\'e can now write 

f IX- " I } 
P rob lv{ \ ·ar(X)} < 11 ~ ~ 1-/3. 

Con~paring this with (J), it, is seen that 

p ,\ '.:::'. 110 ,v{Yar(A)}. 

F row cquntions (2) and (6), ,H• fi nd thnt 

·{ l +a2/o'/\, } 
n '.:::'. ]I I + ~Yp2/(11ic2) ' 

where c = aw/,\ allCI is :<u b;;cqucntly rcforrt.'d t o ns the cocfiicicnt of Yariat ion. 

(6) 

(7) 

, Ye hnvc thus found an expres-:: ion for the samplt> size 11. Of c011rilC'. ,\, a2, 
and a&i ore unknown, and ht> nce s uitable estimates mu,-t first be obtaiuccl in unler 
to use equa tion (7). This problem will be discu:;sed in Section Y . 

IV. Es-rrn ATI~c T H E E cc -cou~T OF A S n EEI' 

W e p resent. n method by w hich unbiased estim.ators A. and o~ of ,\, and a; 
rcspeclh·cly may be found . 

, v e must make some fu rt her a ssumpt ions. Suppo;;e t hat t he n umber of eggs 
in a r andomly collC'cle<l gram o f dry faeces from i-ht>C'J> .5 has a Poisson distribution 
with paramet er (nml t hC'rcfore mean)\. 1 f, frorn s heep s, g. gra ms o f faeces is ;:n mplccl 
and x. is the nu mber of eggs contained in t his sample, th c- 11 , g in ' n g. , X, hm; a Poi;;son 
dist ribution with parameter ,\,g,. In prn ctice, the s ituat ion will be that approxima t ely 
the sa me amount of faeces will he sam pled fro m enc:h sh<'c:p. T his a,·cragc or ·'aimed 
at" amount, which we s hal l denote hy 'J, will be k nown, but t he part icular a mo unts 
sampled from incli,·idua l sheep will not. \Ye tints a srnml· that f!s has surnc distri ­
but ion which docs not depend on s, and which has mea n a and variance a~1• Xow 

;.· 
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t.hc dist ri bution of X s will be n mixture of two cli,; triLntio11s: the (l i,;tri bntion of X , 
givC'n f/s, which i:; -Pois;;ou, :llld the tlislril.n1 t ion of (15 • 

Let 

nncl 
\ = x./g (S) 

(9) 

Us ing t.hc a:;sumptions just made, it is shown in .:\ppcndix 11 tha t E (A,) = \ ancl 

E(S;) = a~. 

\Ve haYc lhC'rcfnrc produced estimators Xs nml a; whose exis lC'nce ,,·a:; required 

in Section II. 

V . U SE OF THJ:: FOR)l ULA ]'OH S.-D1PLE SIZE 

Jn Section III we obta ined a formula, (7) , for the sample si7.e 11 rerp1irecl for 
a certa in prcei$iOn of estimation of the fl ot•k an·ragc egg-count ,\ hy the sMn ple 
average egg-count X. The usr of (7) depend;; 0 11 our ha ,·ing knowledge of,\, a2

, and oA) · 

If \l'C ha ,·c prior estimat es 1; a~, and o&i of,\, a2, and af>J, we may write, in 

analogy wit h (7), the formula 

- _ ,f l + a2/oc\) } 
n - J.. l1 +J..'p 2/(11}2) , 

(10) 

whci·c c = 'uw/i \ \'c shall henceforth use ii as an C'St imatc of then gi\·cn by (7). 

In order lo obtain the prior estimates just referred to, we shnll suppose thnt 
we have a prelim inary sample of m s heep <lra\\·n from the fl ock, and t hat \ and 
&~ arc esymatc<l as in Sect ion I'\'. Then, if we lc·t. c11 = a !11 J/(J, fro m equation (3) 

and X and ail arc dcfincu (analogously ,\i th ( l) and ( 4)) by 

and 

fn A 

Eliminating ~ ,\; between the eq,.1ations for a2 and ai;u, we obtain 
i = I 

_ _ r-.r{ c2 + 1/(A1) +c~(l +c2
)} 

n - .L (c2+ ... vp~/11J)( l +c~/m) . 
(11) 

If it happens that al\l, and t hus c2, are negative, it is suggested that in (1 1) c2 be 
set to zero. This will gi,·e 

(l la) 

{ r 

~ - .. .: ---.... ---·-··--------------·-----· ..... -·- ·----------- - ·- _ .. -. -·-· 
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As special t·xpr rirncntnlion \\'Ould be· nccl',-~r, ry to dc,tennine or91 , for conYc11it•nce 
it, can be assumt·cl to be 7.Cro , antl " c nccordi11gly \I r ite 

or, if c hns to be set to zero, 

_ _ ,f c~ + 1/(\y)) 
11 - }. l-·· + \" •) , ··J' c- . }r/ 11 ~ 

(12) 

'l'he estima te ii giH·n 1,y (12) (or ( 12(()) \\'ill m o,.;t )y 11nd<'rl'.',..t imate 11. If it. clocs, 
the lnrgcr a~, is, the grC'ntcr \\'ill thi;; undt·rl·st imnt ion be. If sonic c-s tima t r of a~1 hns been obtainC'd, then the ii g in:n by ( I I ) (or ( I la)) should ]Jl· u~cd. Jn prncticc 

. this mran,; that rnriation in I he \\'C' ights of the ;;nm pies of foct·l'ii should he kept 
as sma ll ns po,-sihlc, nncl if it. c:rnnot be kept small some es timat ion of its magn itude 
should be obtainrd ancl mnclc use of. 

H a \'in;; chosen a. prelimina ry snmr.!: of m sheep from the Oock from which 
to calculate 'ii, whcn m :;:, ii thC' value of,\ c·ak11lat ecl from this pre lim ina ry sample 
can be uscll as the fina l estimate of,\. Otlwr\\' i:;e, if in< ii, it woulcl be necp,;,;ary 
to sample a further ii - in sheep from t.hc Oock and to c,,Jeu lntc A from the· com-
bined sample. · 

It is rca lizccl that it may not bc con,·<·nicnt t o resn mplc n fl ock of shC'cp ::it. a 
latt'r dnte . To iwoid this inco1n-cnit'ncc, an a lternnti,·c nnd lcs,; nccurntc approach 
is t o uc;c equation (12) {or ( l :!r1)) (or (1 1) {or (l l a))) for calculating», employi11g any 
pertincnt. estimates 'X nnd c. LH is beca use,\ is more ea$ily est imated than a;:,,. nnd c 
is genera lly less Yarial>lc with time and loca lit.'· t han of\)' th,,t ii was defined in 
formu lae (11) and (12) in t t' rms of A and c r:i the r than in tr rms of 'X and of\l. 
Simila rly (J nnd c9 were used instead of g :incl o;q1.] Since eonclit ions in the fl ock 
may Y:lry wide ly from time lo timc, e,·cn past info rmation on the ;:amr flock may 
be unreliable as nn i111licnt ion of prc,;cnt conditions. H owcYt' r. an cducat ('d guess 
can be bctkr thnn nothing, e:;pccially if const'n·atin• figurc·s nrc u~cd. that is , figu res 
which g iv e ri;:p t o a con!;t'r rntivc es timate ii of 11. From this ,·iC'wpoint. nn e;;ti,·111,tc 
of,\ is const'n·nU,·e if it i:; small; so the s mallest ,·a lue of A consistent with existing 
knowledge of the flock :-:houhl be used . Jn fo rmula (l~), if X > 11~/ (.Yp~g) lhC'n a 
conservati,c vnlut' of c would he the la rgt':-; l likely rnlue. "'hilc if 'X < 11~/(Xp~g) a 
conscn·a ti,·e c would be the ~ma llest value that might occur. 

VI . SU)DIARY A.'\"D i\U )ll:RIC • .\L EXA)ll'LE 

In t his section a stmrni.:u·y is g i,·en of the method of estima ting sam1Jle size 
which has evoked from pre\' ious sect ions. lt shou Id not he nccessa ry to read 
Sections II- V in ordel' to obtain a working unclt' rstanding of the method. 

Suppose therC' is a Ooek of N = 500 shel' J> and we want to e5timate the nYt' rage 
egg-count. To do this we propose to sample II sheep from the flock and use the 
avcrnge egg-count of the sample, wh ich we denote by A, as an estimate of tht' a \'erage 
egg-count of the Oock. A faecal sam ple of size g grams is t aken from each sheep 
in the sample and t he egg-count pe r g ram c.~t imatcu from it. We shall take in our 
example (I = 1/uO, which is the a mount of dry faeces from which the counts are made. 

------. -·-~~-···----- ---~-------
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The problC' m i.~ t o fi nd 11. The ,·a luc of n nat urn II.,· clt-pC'nd;; 0 11 our h,·n-illg 

cC'rlain prio r infornwtion nhcJ11t tlw flock; this ca n be o l•tn im·tl from n prcliminrtr)· 

sample taken frou1 thC' Hock or from ol hr r pl'rlinrnl clatn. 

Fir~tly, wr shall clt·al with the C,\se when a prC'liminary ,-,\mple of, say, m = :i(I 

sheC'p has been taken from llic flock. From this :-a111pk- thr n,·rrn!::e egg -count (A) 

and the he! ,n'rn s heep rnrianrc for egg-count (a/11) arc· en lculatl'd. The for11111l a 

for a&, is 
J/1 .,. - -

ofA, = :E (A. - ,\f1(m - l) ·- ,\fg. 
i r I 

whe re \. X~, .... xm arc Lhc <'gg.co11n ts from the pr£>limi11nry sample·. Th(' two 

estimate,,~ nnd ;f11 may. for e xample. hn,·c ,·alnes 1500 and l:?00~ r,·;:pcctin·ly . . 

The cudTicicnt of ,·aria tio n i:o r = 1~00i1500 = O·S .. -\n e:-timntr of the sample ( 

s ize ·11 is given by 

"t-..{i2 + 1/ (Ay) i _ _ 
00

( o-s2 +ll{ t:ioo ,< -c1;) l _ 
1 
__ 

1 cz,s p~J,!~I ··· ;) (0 ·8!+ ;:;oo ;, u · P! I · Uti2J - ,a. 

It is t.hcrcforc neces;:n ry l o sa mple an additional J,;3 -50 = l :?;j shcC'p from the 

fl ock. From this combinC'd sample o f li.:i thl' aYcrn6e cgg-rount A is calculated. 

The ,·aluc of l ·flU chosen for 11 6 in the nbon• formula i;. the !l.; 0 ~ point 1Jf 

the n ormal cli:-lrilrntio n. Th<.' choice o f thC' r on;:tant pas O· l cnahll·s us to ;;ay that 

with 05 % prol,aliility the iwrragc (·gg-(•otmt for the fl ock lies l>cl wcen the two rn lue,-

A - S -
-- =0·01,\and-

1 
- = l ·I Lt 

l + p -p 

Scconcl ly, if from pas t 1bta w1• ca n obt ain t·:- timatrs of the aYrrng(• egg-count 

and the corni(' iC'nl o f ,·aria tin n.· tlH'SC' can hc> u;:ed to C':-timatc ,.:anij~e ,; izc in tlu> 

same way a,- was done with the ,·alur,- ohtninC'd from a preliminary ,.:ample. ll o ,,. 

ever, in gent'n, I these t:s timatt'S will not be as rel ialile. for the condi tion o f a floc-k 

llHl)' vary eon , iclernhl.v with t ime. T o cou nter thi.-; . a consc1·,·nti,·r c::- timntc of 11 

will be obtainC'd if n :;ma ll rather tha n n large ,·::due of I is u,.:ccl. \\"hell X > 11],1(.Yp~y), 

c should he cho..;cn l.lrgC' and when X < nf( .Yp~(J). i: sho uld be small. 

In the aho,·e e:rnmple, suppose that 150() nnd O·S Wt'rC Yalues of 'X and c 
respectively o lJtaincd from pn;:;t data o n the f1 01;k. If it were t hought t hat then: 

had been some increase in in fection ~in cc these values were found, it mig ht still be 

better to t ake A equal to 15(11) ins tead of some lnrgPr nd11(•. ..\s n~i (X pZg) = .w. 
which is less thnnX, a con~crYntin estimate ofcwould perhnps he l. Past obscrvalio n 

oft he beha\'iour o f A and c would lie \'alunblc in decisions o f lhis type. 

If il is founcl that Oi:IJ, ancl thus c2, arc ncgatiYc . then c2 :c:hould be made zero 

and the cstimatt• of sample s ize gi,·en nboYe should I.Jc rc plnccd by the e:;timnte 

n;/(Ayp~) . 

Finally, it · hou ld be noted that the formuln g i,·cn fo r the sa mple s iic a~surnes 

thal the amo unt o f dry faeces from which egg-counts arc olitninrcl is con:::tant and 

known. If thc:;c condition,- arc not :;nti,,ficd the Yariability should be c:- timntt'Cl (as 

Gg) , and the more genera l approach developed in this pa p er must be used . 

-·---- - - -·- ....... . -._ --- - ·-. -· ... ·---- - -.. - ·----·---
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The author,: wi,-h t o thnnk Dr H. C:ordnn for !iuggl':-ting thl' probkm and for helpful discu:;:;ion on m:uter,.; o f npplicnt.ion. 

A Pl'f:.'.\ J>IX I 

E\"ALt:ATJO:-; OF /~(,\) ,\:-:D ,·a r(,\) 
ln d istine:tion from the procedure adoptc·d in the text. we s hall nuntl icr th<' 

e lements of n rnmlom ;:ample j 1• j~ . . .. , jn. \\'c &h.1 11 cl l·nok expt·c:t.\\ion,; and 
va ria.nccs with respcd to the snmpling di.,:t rihution by J::1 a nd \ 'a r, rc,.;pcct i,·dy, 
and expectat ion ,; with respect t o the dist ri lmtion of egg.count,.; within a :;hccp 1,y /'.·;.· 

Using well-known re,;u lts of the t.hcory of finit e sa mpJjng, 

II 

E,{ }: >.1,Jn} = >. 
i - 1 

and 

" Va1"!{ L ).,Jn} = (l/11 - l /JY)oa,. 
i = I 

Then 

and 

(s ince the 1,\\'0 cross-product t i:•n ns n tnish, one of them \·anishing bccau:;c t..he es t.i. 
mates \ arc indcpencknt) 

n n = E1{ L cJ./11 2}+ \ ·ar,{ }: A,Jn} 
i ~ l i - 1 

o
2 

{ l 1 } ~ = -+ -- . crw. n n i.\ 

APPE'.S'DIX II 

l ' ROOF THAT E(X,) = >., and E(G;) = o; 
Let the probability generating function (p.g.f.) of the conditional random 

varinblc X, I g, l,c denoted by P,(t I g, ). Then, X, I fl, being Poisson with pnra­
meter Asf!,, 

P,(t I g,) = exp{)..,9,(t - l )}. 

~-- ---- ----- - ·- - - ----- -- . 
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L et the di::;tri lmt io n fon et ion o f y, be 1> a nd t he moment ~Prl\:rnting fnncti r.' 11 

be m. Th en, if P,(l) i,; the p.g .f. of the 11ncondit io 11a l rnnclo rn ,·nria lilc X ,, it folio\\',; 

t hnt 

It is immr.diatdy clenr that p Cf>( l ) = ,\{m<h(O), \\'here JU> = dij jch-1 ; and hence 

1-',rn = ,\{µ;(Cl), \\'hC' re fLsuJ i,, the jt h factoria l moment of .\'. nnd p ,{g) is t he j th po11·c-r 
m o mc:nt of <J) . Jn pnrticnb1· E( X , ) = Al / and \"ar( X ,) = ,\iof91 +),.,g . 

If x. = x .Jg, then E(\,) =),., a 11rl 0~ = \"ar().,) = ),.~O{g)ig~+\ fg. If a~ 1;; 

defined n,; in the main t ext, it foll0\\'5 eas ily that E(&;) = u~. 

( . ····--·-- "· --·- ··--·- ·-·--·-··-- ·-·---· -
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A(d)[8] 

A NOTE 0 ~ TH E llOOTS O F TH E POLY:\OMIAL EQ UATrOi\ 
/ (x) == a \\'JTH REfE lU~:\CE TO STAnI LIT \'* 

G. M. T ALLISt ASD G. GORDON: 

l. Jnt roduction. \Ve arc concerned here wi th the behavio r of the roots of 
the cquntion I(x) = a, ,,·here .f is a polynomial and a i-, a parameter. 

A polynomial eq uation /(x) = 0 will be called stn blc if tht.: real part of each 
root is nega tive. The fi rst result provides a sun1c:ient condi tion for /(x) = a to be 
stable when /(x} = 0 is stnblc. The second theo rem considers the case where 
f( x) = 0 hns a simple real root greater than the real pnrt of all the other roots. 
For a cert ain class of polynomial s. it gives a sullicicn t co ndit ion for / (x) = a to 
ha ve the same property. 

These results arc appl ied to a cyclic compartmental modd pecified by a 
system of first order, linc:ar differential equations with constant coef1kicnts. 

2. Results. 
THEOREM I. let f(x) == ni= 1 (x - i:tJ; thC'll: 
(a) if Joi< ]]7,.,i JRc:t;I, the C'q 11a1io11 f (x) - a = 0 has 110 roots 011 the 

imaginary axis ; 
. {b) if 1<11 < n; .. , IRe :x;J, a11d thC' Pq11atio11f(x) = 0 is stable, then the C'q11atio11 

f(x) - a = 0 is also S/(/ble. 
Proof (a) Suppose /(x) - a = 0 has a root on the imagina ry ax is. Then 

/(ik) = a for some real k and 

( l) 

But 

1/(ik)I = lal. 

n 

· 1.f(ik)I = CT lik - ::,:ii 
i = 1 

n 

~ 0 IReaJ 
j ; j 

So, if n;'. 1jRe (X;I > lal . equation ( I ) cannot be satisfied. 
(b) Let the real parts o f the roots of /(x) - a = 0 be deno ted by /J;(a). 

i = 1, ... , n. Each {Ji(a) is a continuous function of a (sec [2]) and /J;(O) < 0, 
i = I,,·., 11. Supposc/(x) - a1 = 0 has a root with posi tive real part for some a1 
such that 

" " 
latl < 0 IRea:;I = 0 1/JlO)I. 

i = I i = l 

Then "by continuity" there will be a n a2 , with O < la 21 < lad, for which the 
equation /(x) - a2 = O has a root with real part ze ro. But la21 < n1= tl Rc :x;I , 

• Received by the edi tors September 18. 1969. a nd in revised form September 9. 1970. 
t Depar1mcnt o f S1ati s1ics. Universi ty o f Adelaide. Adcl::tid.:. 500 1. South Austra lia . 
t Division of Ma thcmatical Sta tistics. OS IRO. Newton. 1'ew South Wales. 2042. Australia . 
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ROOTS OF THE f'OL v:-:u~tl.-\L EQLJATIO:-l fix) = (I 187 

contradicting (a) . Hence the roots of f(x) - a = 0 have negative real part s if 
lal < n ';'., 1IRc :£ii · 

Note th:11 if .f(x) has real coefficient s. the complex roots of .f(x) = 0 occur i11 
conjugate pairs. In thii; case the real parts of lhl' complex root~ may be obrninc<l 
from the cocllicicnt:- of x in 1he qu adra1ic 1erms of 1hr fac1o ri za1ion of f(x) . If a ll 
the ai arc real and less 1han ze ro, c1nd f(x) = L;=o cr,i wi1h c,, = I, then fix) 
- a = 0 b stabk if l<1I < Co = (- I)" n:\ 1 '.Xi. 

T he polynomial s considcrl·d s11bseq11cntly \\'ill ha,·e real coefficic11t s. Thus. 
let f(x) = I,1= 0 c/'J ci re:1 1. c" = I. Suppose f(x) has III pairs of conjuga 1c compkx 
roots and 11 - 2111 real roots, so t ha1 

n 

f(x) = n (x - :£J, 
i = I 

where ':t; = x i + iyi and ::x2 i = :i.2 i - 1 , I ~ j ;£ 111; i.e.. .\'2j = - y 21 - 1, I ~ j 
~ 111 , and )'; = 0, i > 2111. The roo ts of f(x) - a = 0, a real, will be denoted by 
cx;(a), '.X,(0) = =ti. i = I, ···. 11. 

TII EORE~I 2. S11rprN! ,hat: 
(i) the eq11mio11 J (x) = 0 lw s a simple rm l roar. :1." say, s11ch thm 1:t" > Re 'Y.j , 

i < 11, a11<l hence :.<,. > i', \\'here i' is the lurges1 real root of J'(x) = 0; 
(ii) A - x1 ~ lr).J = I,···, 2111, for some A, :£11 ~ A > y ; and 
(iii) (1 ~f( rl ). 

Then 1he ec111miv11f(x) = a also has a simple real rom '.X,,(a) such 1hm ct,.(a) > Re :t,(a), 
i < II. 

Proof We verify first that :en > :· as stated in (i). By the Gau ss- Lucas lemma. 
the zeros of f'(x) = 0 lie in the smallest convex polygon in the complex plane 
conta ining the roots of /(x) = 0 (sec [2]). If :.<n < ;·. this result contradicts the 
assumption in (i) that :en > Re :c;, \\·hilc if :c,, = ;·, there is a contf,(ldiction with 
the assumption that 'l." is simple. Thus ::c" > i' as required. 

Since c,, = I. f'(x) > 0 for x > ;·, and so /(x) is mono tonic increasing for 
x > ;•. Thus if a > .[(;·). the equation f(x) - a = 0 will ha\'e a real. simple root 
cc,,(n), which is a mono tonic increasing function of a. Also, since ':I." ;;; / I > :·. by 
the monotonicity of f(x) . it follows thal /(A) ~ 0. Now. for I ~ j ;£ 11. let ':l.ia) 
= xj(a) + iJ}a). x,(0) = x i . J)O) = .l'j· Both .\)a) and .1)a) are continuous func­
tions of a. Suppose fo r some i < 11 and some a e [I(A). :,:, ), x 1(a) ~ :x.(n). Then. 
since xlO) < :c"(O) and OE [!( A). :c ), by cont inu ity, there exists an a 1 e [f(A), x), 
0 < a 1 ;£ a if a> 0, 0 > a 1 ~" if a< 0, such that x 1(a i) = 1:t"(C1i) =~say; i.e., 
cx1(a 1) = :x + ik, where k = rla 1). 

Thus a 1 = f(a) = f(:x + ik), so that 

1/(a)I = l/(1:t + ik)I. 

Now 

" I/Ml = CT (:x - a) 
j = I 

" = n [(cc - x)2 + y]] l/2. 
J c J 

i. .. 
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If(~ + ik)I = I n (ry: + ik - cx) II I;= I 
n 

= n lcx - xj + i(k - Y)I 
j = I 

n 

= n [(,: _ x)2 + (k _ Y)2]1 12. 
j = I 

n n 

(2) n [(ex - xy + yJJ 112 = n ((,: - x/ + (k - y/] 112. 

Let 

j = I J= I 

2rn [(,: - x/ + (k - yy]112 
R I = n c , , 1 ·2 , 

i = I (:x - x)- + y7] ' 

j = 2m+ l 

[(a - x/ + f.:2]• 12 
[(cx _ x/]112 

and R = R 1R 2 • Clearly R2 ~ ! , with equality if and on ly if k = 0. On the other 
~and, R 1 can be rewritten as 

R 
_ 1"1' [('l. - x2Y + (k - Y2YJ 112[(:x - x2,)2 + (k + Y2YJ 112 

I - • 2 ,2 
r a. t (o: - Xz,) + .12, 

Set d = c,: - x; then the squ a re of a- typical fac tor is of the form 

[d2 + y2 + k-2 - 2k)'] [d 2 + y2 + k2 + 2ky] 

= 

[d2 + y2 ]2 

[d2 + y2 + k2]2 _ 4k2y2 

[d2 + y2]2 

[d2 + y2]2 + 2k2[d2 + y2] + k4 - 4k2y2 

[d2 + y2 ]2 

k2[k2 + 2(d2 - y2)] 
= 1 + [d2 + y2]2 

Since a 1 ~ f(A), by the monotonicity of J(x), :rnCa 1) ~ A. Thus 

d= cxn(a1)- X ~ A - X ~ lyl, 

so that 

d2 ~ y2. 

It follows that k2 + 2(d 2 
- y 2

) > 0 for all k :/; 0, and so R > I for all k ¥: 0. 
By (2) , R = I, so we conclude that k = 0. But this implies that :xla 1) = o:~(a.), 
i.e., that there is a double real root of f(x) - a 1 = 0. This implies that ccn(ai) 

I... 
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is a real root of j'(x) = 0, cont radicting the choice of·,- as the largest real root of f'( x ) = 0, since ,;"(a 1 ) ~ A > ~·. 
CoROLl.ARY. Suppose rhm: 
(i) f(x ) = 0 has real roc1ts, am/ the largcst root :.c,. is si111pl<1 ; 

(ii) a > .f(j·). where ~- is the largest rcnl root o.f .f'l:,) = 0. 
Th£'11 f(x) = a alsn has a simple real root, :.c,.(a), such that :.c,.(11) > Re =t,(a), i < n. 
Proof Since m = 0, R = R2 > I unless k = 0, and contrad iction follows as before. 
When ,:11 < 0. th at is when .f(x) = 0 has real roots and is stable, the above corollary may be used instead of Theorem I (b) .The conditions on a gin:n by the two results are difTerent, howe,·er, and neither includes the other. 

3. Application. During a ma thema tica l investiga tion of the life cycle of an intestinal parasite of sheep [ I] the linear system of d ifTerential equations clx/dt = Bx, where 

B = 

).8 - K 9 

was used to determine the num ber of parasites in each of 9 stages of the life cycle at time t after an initial dose. The parameter ;_i de1em1ines the rate at which parasites transfe r from the ith st;,ige 10 the (i + I )th. except for the 5th stage where J.s is the egg production rate of a female parasite. The parameter 1-i determines the decay of par:1sites in the ith stage, due to death and transfer to the next stage. Thus 1.; > 0, 1,; > 0, 1.i ~ 1-h i :f. 5. 
It is important to in vestigate the sta bility of the above system. The characteris­tic equation associated with B is 

9 9 n (x + 1-i) - n 1·i = o. 
I= I i = I 

which is of the form /(x) - a = 0, with all roots of /(x) = 0 real and negati ve, and with 

9 

a= n ).i > 0. 
I "' I 

Moreover, f(x) = n? .. 1 (x + 1';) is a mon otonic increasing function of X for xe(-K, oo) , where 1- = min "i· 
Thus (i) if n ?= I l.i > n?= l "i• there is a real root greater than zero and the system is unstable; 
(ii) if n?= I /.i < n?= I '-i· by Theorem l(b) the system is stable. The corollary to Theorem 2 shows that when a > 0 the root of f(x) - a = 0 wi th the greatest real part is the largest real roo t, K(a). Since 1-(a) is a monotonic 

' 
--- - - -·--·-- ---
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increasing fun ction of a. and h:(a) = 0 if a = n~= 1 h:; , Theo rem 2 establishes the 
stability condi tions (i) a 11d (ii) in<lependen tly of the rcsu ll of Theorem I. Since the 
roo t with the greatest real pan is indic:ited when either (i) o r (i i) holds. it abo 
provides in formation usdul fo r find ing the asymptot ic fo rm of the sol ut ion to the 
system. 

When (iii) fl; = l i.; = n ?= I K ; , the characterist ic equa tion associ:i tcd wi th B 
has a zero root. but no root with posit i,·c real pan. By considering the diagonal 
form of the ma trix Band the corre:; ponding expression fo r en'. it can be seen that the 
solution of the system of difforen tial equations is bou nded. Tha t is. each ekmcnt 
of x(1) fo r a ny I is less than a constant depending only o n the parameters and the 
initial cond itions. These bou nds should not be confused wit h the number o f 
parasites tolera ted by the sheep. b·en if (ii) or (iii) holds it would be possible for the 
numbers of pa r:isitcs indicated by the solut ion x(1) to exceed the biological limits. 

Note that the stability conciusions reached abo,·e may be generalized im­
med ia tely to a cycl ic compartmenta l modd wi th an a rbit rary number of compa rt­
ments a nd leakage of now (i.; < h°;). conse rva tion of flo\\' (i.; = h";}. o r generat ion 
ofOow (i. ; > h';} at any stage. T his is beca use the fonn of the characte ristic equation 
depends o n the pattern of the matrix /3, :1 11d the stabili ty arguments above a re 
independent of the degree of the characte ristic po lynomial: 
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A RELATIONSHIP BET1•lEEl'J MOMENT ESTIMATORS 

AND MAXIMUM LIKELI HOOD ESTIMATORS 

G.M. Tallis and M. Hudson 

· ( U np v1,b l ~shed,) 

The one parame ter exponential family 

f(x,0) = exp{a(8) T(x) + 8(0) + B(x)} , e E. n, (1) 

where f is a density function with respect to a measure 

µ, features wide ly in the statistical literature . There 

are well known results which connect sufficient s t atist i cs , 

complete sufficient statistics a nd minimum variance 

bound estimators with (1) . 

. ·· rn this note it is shown, unde r two types of 

regularity conditions, that a necessary and sufficient 

condition for there to exist a maximum like lihood estimator 

(m.l.e.) , 

(m . e. ) , 

Results 

A 

0 for .0 which is e qua l to a moment estimator 
n ' 

e I iS that the parent density be Of the form (1). 
n 

(A) Under Standard Regularity Conditions 

Four definitions , Dl(a) - D4(a) are followed by 

Theorem l(a) . 

Dl(a) The Class ~(0 ) 

Let f(x , 0) be a density function with respect to 

a a-finite measure µ, defined on a subset R of the real 

·1 ine and depending on a parameter e En. Then f .E ~(0) 

if 

(i) f satisfies the condi tions necessary for 
, 

establishing the Cramer-Rao inequality; 
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( 

2. 

(i i ) f s~tisf i es the c ond i t i ons n e cess ary f or 

derivi ng the asymptoti c properti e s o f m. l . e . ' s 

· ( s e e Rao (196 5), pages 26 3 and 29 9). 

D2( a t The Cla ss &(0 } 

A d ens i ty f unction f E R ( 0 ) a l s o b e l ongs to the 

class &( 0 ) i f for 0 E Q 

( i) f ( x , 0 ) = e xp { a ( 0 ) T ( x ) + f3 ( 0 } + B ( x ) } ; 

(ii) Ef T ( X } ] = T ( 0 ) = - f3 ,.. ( 0 ) / a ,.. ( 0 ) ; 

(iii) T " ( 0 ) ex i sts for 0 e n a n d T "' ( 0 ) =I= O; 

( i V) 0 < V[ T ( X ) I 0 ] < 00 ' T ( R } = T ( Q) • 

D3( a } A M. E. o f 0 . 

A m. e . of 0 wi l l b e said t o e xist if for f E R (0 ) 

(i) there exi st f u nc tions T (X) a n d T( B} s uch 

that E[T( X)] = T (0), 0 E Q; 

(ii) T " ( 0 ) e xists f or e e n and T,.. ( 0 ) =t= O; 

< i i i ) o < vr T ( x ) I e J < 00 , T < R > = T ( n ) . 

The n, f or a random sample o f s i ze n, a m.e. for 0 

is def ine d to b e a cons i s t ent r oot 

T(8) = T = E T(X : )/n 
. n n . i 

0 
n 

of 

and the set of cons iste n t roots will b e wr i t ten 

D4( a ) A m. l. e . of e. 
{0} . 

n 

A m.l. e . of e, e , for f E R(B}, is defined a s 
n 

a consiste nt root of the equa tion 

"' 
The set of consiste nt roots will be written {0 } . 

n 
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( 

3. 

Theorem l (a ) 

For f E et ( 8 ) , f E 8i ( 8 ) i ff there exists 0 E {0 } 
n n 

and 

Proof 

"' "' e E { e } 
n n 

"' 
such that 0 = 0 • 

n n 

If f E &(0), then the l ikelihood function is 

L(x, 8 ) 

and 

d ln ae 

i.e. T 

and 

n n 
= exp {a (8 ) l T(x.) + nf3(8) + l B(x . )} 

l l. l l. 

"' "' n "' 
L(x,8) = a .. ( e ) l T (x . ) + nf3" ( 8 ) = 0 

n l l. n 

"' "' "' 
= - f3"(8 )/a,"(8) = T ( 0 ) = T (0 ) 

n n n n n 

"' 
· {e} = {e }. 

n n 

Now suppose a = e n n 
for 8 E {0 } 

n n 
and 

"' "' e E · { e }. 
n n 

Then there exist functions T(x) and -r(0) such that 

E[ T(X)] = T ( 0 ), T .... (8) exists for 0 E n and -r" (0) :/= 0 . 

Thus 

"' 
T(8) = T(0) = T 

n n n 

By the Central Limit Theorem 

/n ( •i\ - T ( 8 ) ) ~ N ( 0 , V[ T] ) 

and since f E ~( 0 ) 
" and 0 is a consistent root of 

n 

the likelihood e quation 

/n ( 0 n - 8) ~ N ( 0 , I -
1 

( 0 ) ) , I ( 0) = E[ ( 
3
3
0 ln f ( X, 8) ) 

2

] 



( 

4. 

by sta ndard theory . It fol lows from Rao (loc. ci t .), 

page 320, that 

A T. 2 -1 In ( T ( 0 ) - T ( 0 ) ) = In ( T - T ( 8 ) ) ~ N ( 0 , [ T .. ( 8 ) ] I ( 8 ) ) 
n n 

2 -1 
whence V[T] = [T .. (0)] I ( 0) . Thus V[T] achieves the 

minimum variance bound. Aguin from Rao , page 264, thi s 

implies that 

f ( x , 8 ) = exp { a ( 8 ) T ( x) + S ( 8 ) + B ( x) } 

where E[T(X)] = T(8) = - S .. (0)/a. .. (8) . 

This result emphas ises that a moment estima tor is not 

even a candidate for asymptotic efficiency outside &(0 ) . 

Under Special Regularity Conditions 

In this section we repla ce Dl(a)-D4(a) by Dl(b)-D1(b) 

and Theorem l( a ) by Theorem l(b). 

Dl (b) The Class ·6ix ( 8) 

Let f(x,8) be a density function with respect to 

a a-finite measure µ, defined on R and depending 

on a parameter 0 En. Then f E ~x(8) if af(x , 8)/ae 

exists for 8 En and f ·is continuous in x. 

D2(b) The Class 8 x( 8 ) 

The density function f E &x(8) c ~x(8) if 

(i) = D2 (a) (i) 

( ii) = D2 (a) (ii) 

(.iii) T(R) = T{n) and there exists a partition of 

R and n by intervals , 

such that for all j 

I and I 6 . , j = 1, 2 , . .. k, 
x j J 

(1 ) T(x) is one to one on Ix.; 
J 
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5. 

(2) T ( 0) is one to one on I 0 . ; 
) 

(3) T(I ) = T(I 0 . ) . 
X • 

) ) 

D3 (b) A M. E . Set for e . 

A m.e. set is said to exist fo r e for f E 61x( 8 ) 

if 

(i) = D3(a) (i) 

(ii) = D2 ( b ) (iii). 

The n for a r andom sample of size n , a m. e . set for 0 

is defined by 

n 
{en}*= · {0;T(0) = Tn}, Tn = i ~ l T(Xi)/n . 

D4(b) A M.L.E. Set f or e . 

A m.l.e . set for e , is said to exist for f E ~x(0) 
n 

if L(x,8) = i Ul f(xi, 0), n=l , 2, . .. has stationary values 

which are found as ~oots of the equation 

n 
= .E

1 
g(x. ,0) = O; 

l. = l. 

we put 

" n 
· {en}* = · {e; i~l g (xi , 0) = O}. 

Theorem l(b) 

For f E d'Zx(0), f E 8x(0) iff there exist e n 
E {8 } * 

n 
" " " 

and e E · {e }* such that 8 = e . 
n n n n 

Proof 

I f f E &x ( 0) then the l ikelihood function is 
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n n 
L(x,8) = e·~p{a ( 8 ) E T (x.) + n~( 0 ) + L B ( x .) } 

1 l. 1 l. 

and equating a ln L (x , 0)/ae to zero gives 

and clearly 

T ( 0 ) 

A 

-= T n 

{0 }* = {0 }*. 
n n 

For X E I 
Xj 

a nd 0 E r 0 . let t = T. ( x ) and 
J J 

6 • 

w=T.( 0 ), th e n 
J 

f(x,0) = f(T~ 1 ( t ), T~
1 ( w )) = <j> ( t , w), 

J J 

say, where T. 
J 

and T. 
J 

are the restrictions of T and 

T to I x· J 
and I

0
. respective ly. Moreove r , since 
J A A 

for 8 E { 8 } * and 0 E { 0 } *, 0 = 0 = T ~ 1 
( T ) n n n n n n J n 

n 
T = . E

1 
T(x.)/n, x . 

n i = i i 
E I 

X· 
J 

for all i. It follows 

that , by the 

Thus 

1:1 property of T., W = T. (0 ) = T • 
J n J n n 

n 
= i~l k(ti , tn), say , (2) 

holds for ti in It= T(Ix), dropping the subscript j. 

The functional equation (2) is of the f orm 

m+l m+l 
J;1 h{yi,z) = 0; i~l Yi= {m+l)z; yi, z E It 

which reduces to 

m+l m+l 
i~l p{ui,z) = 0 i~l ui = O, ui = Yi - z, 

where the u. b e long to some interval I containing 
l. u 

m 

zero. Note that um+l = -i~l ui and p(O,z) = 0 since 
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7. 

for u . = 0 (~+l)p(O,z) = 0. Set u 2 = ... = u = 0 
i m 

so that u m+ l = -u
1 

and p (u,z ) = -p(-u , z ). Thus 

m 
= -p (-1:u. , z ) = 

1 1 

m 
p(Eu . , z ) 

1 i 

and , p u tting m = 2 , we have the Cauchy functional 

e quation 

( 3 ) 

which has t he unique c ontinuous solution , Acz~l (1966 ) 

p a ge 31, 

p( u , z ) = c( z ) u 

for some c on stant , c( z ), a n d for u i n a s ubin terval 

of Iu. The relation extends to a ll of Iu by (3) . 

Th us 

h(y, z } = c( z } (y-z} , y E It, z E It 

and 

a1n p <t , w) I = k(t , t > aw w=t n 
n 

(t-t} n 

hold s for a ll tn E It. Clearl y , the r efore, 

a aw ln <f> (t , w} = c( w} (t-w}, w E -It 

and <f>{t,w) is of the form (1) for (t,w} E It x It. 
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l 

8. 

Back transformation to x a n d 0 leave s the form 

unchanged and f (x , 8) i s o f exponential f c ~m for X E I 

and 0 E T- 1 (I t) . 

By appl ying this a n a l ysis to a ll Ix· ' r 0 . p a irs , 
) J 

t he r esul t follows by contin u i t y and the assumption 

t h a t T (R) = T (Q) . 
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I. I ntroduct.ion. The ~·cla tionship between sufficient statistics and the exponent ial 
family ,,·as fust inYestigatccl by Pitman (S) and Koopman (7). The treatments assumed 
a density functionf(x; 0) which ,,·as at least differentiable vr ith respect to both argu­
ments. 

l\Iorc recently the problem hns been t nkcn up ngain in an attempt to rcmo,c un­
necessary restrictions. Dynki11 (6) de,·eloped a theorem, restated by Brown (3), ,rhich 
required that f(:t ; 0) be continuously di fTercntiable with respect to x on an intcnal. 
Subsequently Brow11(3) proved a num1Ser of more general results under very mild 
measure theoretic res tri ct.ions on the family of densities and the statistic . Unfortu­
nately, the proofa arc long and invofrcd. Other work in t his area has Leen reported by 
D enny(4), (5). 

It is the purpose of this note to pro,.e, by elementary argument, a, result that holds 
under very weak conditions. It turns out t.hut Theorem 1 oft.his paper is nearly equiva­
lent to Theorem S· l' of J3row11. The main difference concerns t he restriction placed on 
f(x; 0). Brown assumes that for a ll fJ of interest and , for A any Lebesgue measurable 
set, f satisfies 

I .f(x; 0) d;i = :o <::>J d11. = o, 
.'1 .d. 

where /t is Lebesgue measure. I assume the continuity off at a certain point x0 for all 
0 and this leads to a consider :.1blc shor tening and simplifica.t.ion of the proof. 

The same ideas are used to suggest an extension to the case where O and x are n ctor 
valued. The purpose of this ,.ork is t o provide a resu lt of some generality which giws 
insight into underlying relationships without requiring a long and difficult proof. 

2. 'l.1he main result. The most important theorem will be esta.blished first. Theorem 
2 is of a similar nature a.ncl its proof is only outlined. 

D EFINITIO!'< 1. A density functionf(x ; 0) with respect to a measlu-e ;i will be sa id to 
be of the one-pa.rameter, continuous exponentia.J t,n)e if 

f (x;0) = exp{:c(O)A(x) +P(O)+B(x)}, (1) 

where A(x) and B(x) are continuous functions of x in the intcn-al R, A(x) is strictly 
monotone in a.n interval contained in R, a(0) and f,(O) are bounded for 0 E Q. 

D EFTh"1TIO~ 2. A statistic t11 (x1, ••• , xn ), which will be written as t
11

(x), will be said to 
be additivel:,- sufficient for 0 E Q if 

- ··----... .. _____ . __ .,. ___ _ 
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tl 

(a) L(x; 0) = IT j(:i.·1 ; 0) = g11(tn; 0) h,Jx), 
i = l 

n 
(b) t,.(x) = ~ k(~i:;), 

i = 1 

(c) k(:r) is c:ont innous for x ER, k(x0) = 0 for some :i:0 ER and /~(x) is s t.rict ly monotone 
in a neig h bomhood of :i.·0 • 

I t isassnmrcl that.j(:c; 0) * Ofor xe R an<lOE D. 
n 

L m,DrA 1. It can be assumed icithout loss of generality that h11 (x) is of tl:c fonn n hi(.ri) 

and g1(!1;0) is continuous at 11 = 0. 

Proof. Suppose L(x; 0) = gjt11 ; 0) h 11(x), then for any other 0' E Q 

L(x;O') = g,1(t11 ;0') hn(x) 

and hence 

i = 1 

say, whi ch proves t he first part oft he lemma. The second obser nttion follows from t.he 
equation yt(/1 ; 0) = f(x; 0)/j(x; O' ), the continuity of f and Definition 2(c) . 

T HEORJD[ 1. If f(x ;O) is continuous for XER and f(x;O) =i= 0 f or xE11 ancl OED, 
then an additi,:ely Sll.{Jicicnt statistic for O c.risls if and only ,f f( x; 0) is of the one-para­
meter, continuo!ls exponential form. 

Proof. L rt f( x ;O) he of the form (1). By assumption an x0 eR exists such that 
.A(x) is strictly monotone in a n eighbourhood of x0 • Set k(x ) = A(x)-A(x0), then 

L(x; 0) = exp {:t (O) -~ k(x;) +ny(0)} exp {.i B(xi)}, 
, = l t = l 

where y(0) = {i(O) + a(O) A (:r0), and ~.n additiYely sufficient s ta tistic for O ex ists. 
On the other hand note that 

f(x; 0) = g1 (1.-(x) ; 0) h 1 (x ) 

and f( x 1 ; O)j(:c2 ; 0) = g2(k(x 1) + k(:t·2 ); 0) h1(:r1) h 1(x2 ) 

= Y1(k(:c1j; 0) f/1U.:(x2); 0) h1(:t:i) h 1 (x2) 

by D efmitiou 2 a.nd Lemma 1. Thus 

g2(k(x1) + k(x2) ; 0) = g1(k(x1); 0) g1(k(:>:2) ; 0) 

a.nd setting x2 = x0 and g1 (0; 0) = [C(0)]-1 

g2(k(x1 ); 0) = [C(8 )l-1 g1(l;(:c1); 0) 

whence (2) 

Vpon taking logarithms of both sides of (2) t he functional equation takes the form 

I1(1t+v;O) = IT(u;O)+ Il(v ;O)-y(0), (3) 

where u and v belong to some interval I conta ining zero. Subtract y (0) from both sides 
of (3) a.nu let 9(1i; 0) = n (u; 0)-y(O), then (3) becomes t he standard Cauchy equation 

9(it+v;0) = 9(n ;0)+9(v;0). (4) 

- --~-·-· --·--- -···- ~ ·--... ~··.t. 
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The func tion 9(u;O) if' continuous at u = {)by Lemma I aud (·i) shows that, ~$ is co11-
tinuous ev0rywhcrc in I by le tting v tend t o zero . The u11ic1uc continuous solu tion to 
(4) is Aczcl ((0 , p . 31) 

<p(n; 0) = a(O) u . 

Finally f( :i; ;O) = cxp{.x(O)l:(:i:) + , •(O)+B(:r)} 

which is of the one-p:.uamet<:r continuous exponential form . 
A Jocal resu It sim il,w lo that of Drow11, Theor0m 8· 1 ' , is olJta inc<l by c1ssuming that/is 

only cont in uous at. ~,;0 andf(:r0 ; 0) * 0. 

3. An e~:lension. In this section the D cilnitions 1 and 2 ,rnd Th<'orcm 1 will be rceast 
to take care of the case where O nnd x arc q and r dimensiona l ,ec: tors r0spcct.in·ly. 

D EFTNITIOX 3. A density f1mct ion f( x; fJ ) , \·ith respect to a measure /l will be said to 
be of the continuous exponentia l form if 

/(x;8) = exp {e1'(8)A(x )+ ~(8) + B(x)}, (5) 

where A'(x) = [A 1 (x) , A 2(x), ... , A 5(x)], for all i, Ai(x) and B(x) are continuous func­
tions of x in a. closed re~ion R of Eucliclcnn r-space, a'(O) = [.x1(8), . .. ,as(8)] and 
<Z;(8) and /J(fJ) arc- bounded for 8 E Q. 

D EFLl\JTIO)l' 4. A statistic t 11 Lased on a random sample of size n fromf(x ; 0) w ill be 
said to be additi,·ely sufficient for 8 En if 

n 
(a) L(xi, . . . , x,.; 0) = IT f(xi ; 8) = !ln(t "; 0) h 11(x1, ... , x 11); 

i - 1 

(b) t n = </>:1 [ }. k (xJJ, where rp 11 is a. continuous vector 
1= 1 

k'(x) = [k1(x) , ... , ks(:,c)]; 

valuccl function a.nd 

(c) the l:.(x) arc continuous for x ER, a. closed region, and k(x0 ) = 0 for soiilc x 0 ER; 

(d) for n. = 1, f(x; 8) = f/i(t1 ; 8) h 1(x) and !h(t1 ; 8) is continuous at t 1 = t(x 0) for 
8Ef2. 

I t will be a ssumed tho. t f (x ;8) =l= 0 for x <2 R and 8 E 0. :\loreovcr, for nota tional 
convenien ce, any ftmet ion of x 1 , ••• , x n, p(x.

1
, ••• , x

11
) say, will be \\Titten as p(y) . 

L mnu. 2. lt can be a,Ssumed u.:ithout loss of generality that h11(y) 1·s of thefonn 

n 
fl h1(Xi). 
i ~ l 

The proof of this is the same as for L emma 1, and the general result can now be stated. 

'l'HEORD[ 2. lf f (x; 8) is a density function idlh respect lo / t and f(x; 8) =l= 0 for x ER, 
8 En, then an ad<litii"cly su,Oicient statistic f or e En exists 1j ancl only 1j f(x; 8) is of 
contimwus e:rponential f orm. 

Proof. T he proof will only be outlined since it parallels the proof of Theorem 1. 
Let /(x, 8) be of form (5) and set 

k1(x) = A 1(x)-A1(X0), 

- -------·--··---. - ·--------- -·-·- ··- - --·-·-· . - ----··--··· - . 
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then L(y; 0) = exp {cx'(8) .i k(x;) + ny(O)f) exp {.~ Bi(x i)} 
t ~ l t= l 

where y(8) = /J(O) + a'(8) A(x0} . Heucc, an aclditi,·cly sufllc ient statistic for O is 
'1 

t11(y) = ~ k (xi). ,-1 
Again 

say , and 

f( x ; 0) = !li(<f,1[1:(x)] ; 8 ) h1(x) 

= G1(1:(x ); O)h1(x ) 

f(x1; O)j(X-.2 ; 8) = g2( 9~[k_(X1) + k(X2)); 0) hl (x 1) lt 1(X2) 

= G2(k(x 1) + k (x 2 ); 8) 7i 1 (x1) 7i 1(x2) 

= G1(k(X1); 6) C1(k(X2) ; 0) h1(X1) h1(X2). 

'rhc sa.mc steps as for Theorem I lead to the funct ional cqua lion 

fI(u + v; 0) = fI(u; 6) + IT(v; 0) - 1 (0) (6) 

where u and v belong to some closed neighbourhood X of 0. This leads to the multi-
Ylllfate Cauchv equation (?) .1 9 (u+v;O) = 9(u;0) + 9(\';0) 

which is conti nuous at u = 0 and hence cYerywherc in N . The unique continuous 
solution to (7) is 

s{>(u; 0) = cx'(O) u 
(Aczcl (1), p . 21 .3) and fina lly 

f(x ; 0) = exp {cx'(0) k(x) + y(O) + B(x)}. 

4-. R emornl of contim1ity restrictionsonf (x ; 0). The continuit>· restrictions "·h ich ha.Ye 
been pluccd on f(.t ; 0) can , if necessary, be li fted in rnrious \rays. F or instance, in 
the case of the locn.l result men( ioncd at the end of section 2, it, is suffic-ient to r<'quirc 
tha.t f (x ; 0) be mcasura hie and greater t han zero in a neighbourhood of.1:0 for all OE n. 

'!'he proof will bt: out lu1cd. F irst, k and its inYcrsc arc both mcasnra ble fu n<:t ions on 
a neighbourhood of :r0 and , because of t he condition placed onf(:c; 0) . this implies t he 
measmnbility of (Ji. I dentit:al argumen t to that used in Theorem 1 leads to equation 
(.J.), where 9 is mensurable on an interva l I. A result of Banach (2) e:au t,heu be used to 
infer that f (x, 0) has the eon t inuous cxponc·ntial form near x0• 

Altcrnnt.ively, for f (x ; 0) > 0 a .e. let r(x ; 0) = j(x ; 0 )/j(:c ; O' ) and suppose r(.i:0 ; 0) * 0 
and that r(x ; 0) is a.e. boun<lcd in n neighbourh ood of :t·0 for all OE Q. Then it is readily 
verified that g1 is integrable on an interYal 1 con ta ining zero. T he argumeut leading to 
(2) then holds a.e. and the tcclU1iquc described in Aczel ((1 ) p. 190) can be used to give 
the result . 

Other modifica tions are possible. In particular the assurup(.ion of continuity of 
g1{t1 ; 0) in Dcfmition .J. (d) can be removed when q = r = s by imposing suitable 
conditions on k(x ). IIowe, er , most of the other generalizations seem artificial nnd they 
will uot be pursued here. 

I wish to thank )Ir David Culpin and a referee for their suggestions and assistance 
with this work. 
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Aspects of the Relia bili ty of a Urinary 
17-Hydroxycorticosteroid Assay 

GORDON SATIFATY AND MICHAEL TALLIS 
Endocrin <' R C'scarc/1 Unit, Co11 cC'r I nstilutc, Mdbour11c, Victoria; and Division of Mathe'matical Stal isti~·s, 
C .S.J.H.O., Nc1dow11 , N .S. \V., Austrulia 

ABSTRACT. The presence of unsus pectcd rnn­
d om , n onphysio logical fluctuations may in cer­
ta in circumstance.~ reduce the ability of an as:<ny 
p rncedure to defbe <li iforcnces between ind i­
viduols o r ~roups of subjects, panicu!:i.rly if the 
p rocedure has been ini l i:11ly designed for a difier­
cnt purpo5c. In 1he example of uri n:i ry 17-hy­
droxycnrt icostemids , the assa~· can be regnrdcd 
as implicitly clcsi;; nrd 10 d is tin f{uish norm::i ls 
fro m rxtrcmc·s of h ypt>r- anrl hypr,t::ndocrine func­
t ion. \\' lwn the assay is u,:;Nl 10 define pos,- ible 
d ifference.< in a cliffcre111 p<, pulation, for example, 
women wi th breas t cancer, previou~ly accept:,blc 
criterin may not be adequa te for S\tch a purpose. 
T o d efim· source,; ,,f \'aria tion which could aITcct 
the assa y',; utility for this p\1rpo~e. measurement 
was m ade of the \l l'inary 17-hydr<>xycon icostc­
roid excretion for 3 consccu t i\'e d ays in 4-l hen! thy 

QUANTITATIVE t.echnique:s fo r the 
measurements of steroids arc. oflen 
designc:d wii h Lhc assumption that. they 

a rc ca pabk: of dist inguish ing incli , ·iduals 
with hyper- and hypoendocrine func t ion 
from those of a t hire! populat ion, regarded, 
a t least in respec t of endocrine clisorcler, as 
normal. The index of a measurement's 
utilily for this purpose is generally based 
on whether or not the assay conforms to 
standards of chemically determined criteria 
in respect of accuracy (i .e., without bias) , 
specificity and repea tability (usually 
equated with precision). In respect oi a 
single 24-hr excretion estimate, lhese cri­
teria identify in vitro \·ar iation of the ste­
roid est imatecl, but ignore the possibility of 
n onphysiological fJ uctua t ions or statistical 
randomness of the character ist ic being 
m easured. \Vithou t an awareness of Lhe 
presence and limits of this potential som ce 
of error there could be a significant reduc­
tion in ihe efficiency of detecting real 

R eceived December 24, 1969. 
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wom en. B esides nssessing the usual chemical 
criteria of the method reliability ,111d the knc,·.,·n 
sources of \' <ll'i,u i<in clue to age, hcighL and 
weight , the nrngnitud e of vari :1 tio 11 d ue to differ­
ences a!';,oc i:it cd with sint~le :24 -hr es timate be­
tween and within women was mca.surnd . This 
re \'C'alcd t hat ::ipproxima tely 3-l :·c of the \'8l'i3llCC 
was due to diffcrC'nces within women as cc,mpai·t': ci 
wi th 63',~- due to diffcrcncl!s between women. Ji 
was concluded thn t n s in~le 2-!-hr es t imate pre, . 
\' idcs n pr,or c:a timntc of n n imli,·id ual's t rue 
17-hydrnxycortico~ lero id excrctiv n. :\n accept ­
ably reliable c:; tima tc of n n ind i,·idual's t rue 
mean value, i.e., reduct ion of withi11 subject 
va ria nce to approx imately 10 ~·<, ca n only be 
obtained by urine collect ion for 5 consecuti\'e 
clays . (J C/i11 Emlocr 31: 52, 1970) 

differences between individual<; as well as 
groups. 

T he breast cancer population can be 
used as a n e:-:ample of the need to consider 
undefined statist ical randomness in assay 
reliab ility. In a group of women with this 
disease (1) urinary 17-0 HCS differed little 
from the range expected in normal sub­
j ects (2-4) . An apparent conc:lusion is that 
women with breast. cancer have no overt 
abnormality of adrenal funct ion in respect 
of these metabolites. However, when using 
the assay to classify breast cancer re­
sponders and nonresponders to adrenal­
ectomy, rnrnll differences were found be· 
tween the subgroups (1) . 

The implication that these two brea:;;t 
cancer populations have differences in a<lre· 
nal function that can be used to classify in· 
dividual response, and that the di ffcrei:ices 
are small. compa red with those of non11,d, 
needs to be considered in ·respect of the 
ab ili ty of the 17-0HCS .assay to measure 
any individual's true ·.;alue. 

The breast cancer group is a specific 
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c~nmple of the general problem; it there­
fore was com:idcrcd important lo reappraise 

8ssay reliability ·in a group of lw allhy 
women. This has been done by d C'signing 
urinary 17-0HCS assays to d C'fin e in vitro 
8specls of reliability for compa rison with 
other studies, as well as to d efine a possible 
random source of s ubject variabili ty. 

Urinary 17-0H CS assays were arranged 
to obtain the following informat ion: 
J. the rela tive performa nce of sodillm borohydridc 
and sodium perioclate used to obtain the fin a l 
chrom ogen for the Zimmerma nn rc·nc t ion; 
2. the usefuln ess of correcting derh· C'd ll r inary \'a l­
UC'i> for losses in the method by use of an external 
standa rd; 
3. whether concomit a nt. m ensuremt'nt of crentinine 
is of a id in de termin ing the comple teness of the 
2-1-hr urine collC"c t ion ; 
.J . the magnitude of sources of va riability in the 
assay <llle to diffl'rc·nces bet wecn subjects, within 
subjects, and the eri-or d ue to a~say technique; 
5. the influ ence of the su bj ect's age, he ight and 
weight on the 2.J-hr c ~:c re tion value. 

Results indic.:n lcd tha L the component of 
variance due Lo differences b etween women 
was approxima tely twice as large as tha t due 
to clay-to-day di fferences within women. 
The la tter was suffi ciently large to empha­
size the importance of ana lyzing m ore than 
R single clay's mine sample if a satisfactory 
estimate is to be made of an individual's 
true value. 

1'1aterials and 17-0HCS Assay Methods 

Subjects. The sul>jC:c:ts s tudied WC're ap parently 
healthy women who agreed to par t icipa te in lhe 
study. They were obtained through volunta ry 
workers' organizat ions attached to hospita ls 
a1)d represent a middle range socioeconom ic 
class. To be reasonably certa in of their ap­
parent h ealth, each person completed a brief 
questionnaire. Forty-four were considered lo 
be reasona bly hcallhy and were t aking neither 
oral contraceptives nor other meclicaLion at ll1e 
t ime of the s tudy. E ach person carried ouL her 
usual da ily activities during the sLuciy period. 
The ntm1bers of women in each decade were: 
10- 20 yr, 1; 20-30 yr, 8 : 30-·IO yr, 9; 40- 50 yr, 
8; 50- GO yr, 13; and G0-70 yr, 5 subjects, re­
spectively. 

Urine collcctions. Three consecutive 24-hr urine 
collections were obta ined from each woman. 
Urine, collected into polyethylene conta.incrs 

without presPrvalivc, was kept in a porl :-tble 
cooler , 11winl :1 inecl :it. a 1,proxi111:11ely 10 C. On 
receipL in the laboratory, the volume wns rnc•:1-
surcd and aliquots taken for im mecLia le; cre:\ti­
nine determination. The remainck r of the speci­
men was frozen and mainlaincd at - 10 C unLil 
assayed for 1 7-0 H CS. 

Urinary 17-hydroxycorticosleroids . The m el hod 
of assay was e;;.,;cntia lly that clescrihed by \\.il ­
son and Li psett. (3 ), the only a l! C'ration being 
in the Zimmermann reaction. T his reaction was 
modified because of di fficult ies in ma intaini:1g 
the s!abilily of ct hanolic KOH in a non-a.ir­
conclitioncd laborat.ory dmi ng hoL weat her. 

Telramet.liylammoni um hycl roxicle, 25S, w,·v 
(BDH, la boratory reagent grade) was found to 
be a sal.isfactory subslilu te fo r etlia nolic J<OH. 
lt had the adva nt age in being storable at room 
lcmpcra ttu·e wit hout. clelcriornl ion. Us ing t his 
alkali, I he chromogcnic rat io of dchy clrocpi­
,rndrostcrone1 <DHA) to 11.J- hyclroxyetiocho­
Janolone averngecl l .2G (n = 8) , comparing favor­
ably the report ed v alue of 1.35 (3) for eLhanolic 
KOH. 

The following 17-0HCS assays were made in 
cluplicale: each clay of lhe 3 consecutive clays' 
urine collect ions; t he second of t.he 3-clay co l­
lection to which the model ~!crnicls DH,\ and 
te trnhyclrocort isol (THF) were aclclecl lo mea­
sure recovery ; dis tilled wa ter samples in tlw 
snmc urine l1atch to which llie s:imc mode:! 
stcrnids were nclclecl, in the sn me amount s, to 
oblnin a comp:1rison of re('overics bet ,,·een uri ne 
and wa ter. Amounts of model steroids used 
ranged from 10 t o 100 µg , a pproxirnni. ing urine 
levels of bet ,,·cen 3 and 30 mi; . 2-l hr. T he :.ctun l 
amount added in any given bat.eh was selected 
from a table of random numl.iers . 

In 5 su bjects, ! he recovery of tetrahydrocor­
tisol (THF) was me:.sured in each of the 3-
days' collecLions. Tlijs la lle r series of assays 
was also m ade in duplicate. 

Urinary creati11i11e. Creatininc was mea5urecl 
wilh a T eclmicon Auto.-\nalyzcr in each 2-1-hr 
urine sample to de termine its usefu lness as a 
means of checking the adequacy of the 24-h.r 
volume. · 

R esults and Statistical Analyses 

Urinary 17-hydroxycorticostcroids. F ig. 1 
shows a his togram of 17-0HCS values 

1 T r ivial names arc used for the followin g ste­
roids: 3a ,l l ,3-dihydroxy-5,6-o ndrostan-17-onc = 11 ,;­
hyd roxye tiochobnolone; 3 cr, l l ,J,l 7,3,21-te t rahy­
droxy-51i-pregnan-20-one = tetrahydrocortisol or 
THF. 
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Frc. 1. Urina ry values in 
44 healthy woma n. 

cons truc!.cd from the aYerage of t hree da ily 
va lues found in t he 44 women. The m ean 
va lue for all the women was 9.86 mg_· 24 hr 
and t he range G.0-0 13.9. 

Rccoz:eries of letrahydrocortisol and dehydro­
epfrllldrostcrone. T able 1 s hows ( he values 
at each recovery level and m ean resul ls ob­
ta ined when 'l'HF and D HA were added to 

TA nr,E 1. Per cent recoverv of steroid s added to 
urines o f di ffe re.n t s ubjcccs 

Amoun t Tetra- Dehydro-
a dded hyclrocorlisol epia nd rosterone 

(µg) Urine \\'atcr Uri ne \ ~'atcr 

10 73 110 10 0 
20 69 97 10 0 
20 65 98 5 . o 
30 73 97 0 0 
40 41 113 10 0 
50 92 97 6 0 
60 80 89 0 0 
60 77 99 5 0 
60 80 86 3 0 
70 80 l OG 0 1 
70 81 92 7 0 
70 72 86 4 0 
80 88 101 6 O· 
90 95 102 4 0 

100 85 90 3 0 

Mean 55.3 76 .8 97.5 4.9 0 
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Fie . 2. E s timated regression of recovery of THF 
from u rine (Y 1) and wa ter (Y 2) . 

a liquots of wa ter and to equal volumes of 
each of t he t hree successive clays' mine col­
lections obta ined from 15 of t he subj ects. 

An inspec lion of T able 1 reveals a num ­
b er of per tinen t d eta ils. First, there was es­
sent ia lly zero r ecovery of D I-l A from water, 
while the recovery of this s teroid from 
urine showed an appa rent negative regr e3. 
sion of r ecovery wi t h amoun t added . T his 
regression was calcu lated and t he slope did 
n ot s ign i11canlly diffe r from zero. Thus, the 
average recovery difference of 4.9, together 
with the calculated confalence interval 
(2.96, G.77) , seerns to p rovide a satisfactory 
d escr iption of t. he s ignificantly greater re­
covery of DIIA from urine th..'ln from water 
over a wide range of conccntraLions. 

The recovery of THF, however, presents 
a d iffe ren t p icture. T he expected recovery 
from urine increases significan tly with con­
cen tration and i he d ifferences between lhe 
estimated r egression equations (for urine 
Y i, and wa ter, Y2 ) was 42.1- 0.39 x where x 
is t he amoun t ad ded in mg. T h is line and 
t he 95 ~c confidence bands are illus trat ed in 
Fig. 2, t he ba nds be ing ca lcula ted by m e th­
ods descr ibed by ?vliller (5) . 

Sources and magnitude of variability in ur­
inary 17-0HCS assay ualues. In T able 2 a re 
presented com ple te da ta for urine volume, 
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TAIH,E 2. D11ta ll!'~ : to determine !'ource nnd 
m ognitudc of variabil ity in 17-0l !CS nnd 

uscfulnc~s of crea tininc 

. D ~ily Cre:H ininc 
SubJect urmc (g .24 hr) 

A 

B 

C 

E 

F 

G 

H 

J 

M 

N 

0 

p 

Q 

R 

s 

(vol ml) 1 

940 
1750 

· 1500 

1000 
] 300 
670 

820 
880 
700 

1570 
1'115 
1290 

2025 
1775 
2500 

900 
550 
455 

l lGO 
810 
900 

600 
1000 
l GSO 

1190 
1800 
1630 

800 
1560 
1030 

1050 
870 
780 

740 
720 
815 

1260 
1510 
1290 

2400 
2290 
1610 

1675 
1150 
1590 

1.54 
1.28 
1. 20 

1.0-1 
0 .91 
0 .89 

1.12 
1. 39 
1.10 

1.10 
1.20 
0.90 

1.50 
l.30 
] .'10 

0.90 
1.24 
1.03 

0.93 
0.69 
o.ss 
0 .78 
1.08 
1.25 

1.62 
1.71 
1.52 

1.17 
l .37 
1.04 

2 .48 
2.04 
1.85 

1.09 
1.15 
1.18 

1 .41 
1.52 
1.73 

0.69 
0.92 
0.97 

17-Jlydroxycor­
ticostcroids 

(mg/24 h r) 

R 

7.3 
8.5 
8.8 

7.1 
7.6 
9.3 

9.0 
11.4 
8.6 

10.2 
13.3 
8.4 

9 .8 
10.9 
10.6 

13 .4 
8.7 
8.0 

9 .4 
6.3 
7.0 

5.1 
7. 1 
9.1 

8 .9 
8.7 
9.5 

JOA 
9.1 
9 .4 

6.8 
6.9 
7 . 1 

5.8 
7 .4 
6.6 

13 .1 
13.7 
16.7 

R2 

7.3 
9.0 
7 .<J 

7.1 
8.4 
8.7 

9 .0 
11 .7 
8 .8 

9.7 
12.8 
8 .G 

9.2 
10.3 
11.4 

13.4 
9.6 
7.7 

7.5 
6.3 
6.7 

5.2 
7.1 
9.8 

3·_5 
8.3 
9 .5 

9.9 
10.1 

9 .4 

7.8 
7.3 
7.1 

6.2 
7 .4 
6.8 

13.1 
13 .1 
15.5 

6.2 7.0 
6 .7 6 .7 
7 .7 7 .7 

10 .8 10.8 
11.9 11.2 

9 .9 9 .9 

(continued) 

-
TAnLF. 2 (continued) 

D aily Crcatinine 
Subject urine 

(vol ml) (g/Z-1 hr) 

17-Hydrnxycor­
ticostcroids 
(mg/24 hr) 

T 

u 

w 

y 

1510 
1560 
1500 

1380 
1300 
1100 

780 
1270 
1010 

1180 
1680 
11'10 

0.79 
0.64 
0 .90 

0 .88 
0 .86 
1.00 

l. O<J 
1.18 
1.10 

R R2 

5 .9 
5 .1 
7.8 

9 .0 
10.2 
11 .0 

7.1 
9.8 
8.5 

10.3 
9.8 
9.6 

6 .4 
5.6 
7 .3 

9.0 
9.2 

10 .6 

7.6 
10.6 
9.2 

10.3 
9.8 
9.9 

crcatinine and 17-0HCS obtained from 19 
of the subjects. These da ta were used to 
construct analysis of variance tables fo~· 17-
0HCS and for crcatininc. 

Referring to the analysis of variance in 
Table 3 and on c~uating the est imated 
mean squares with t!,eir exp~ctaiions and 
solving the result.ins equalions, it is found 
that 

fr, 2 = 0.15Sl, O-J 2 = (:3 . .JS5.J - 0.1.-,81)/2 

= J .GG3G, n11d 

fr.2 = (22.01 0.-, - 3.-lS::i-!)/G = 3.0S75. 

Thus, the total variance of a single ob­
servation is the sum of the three compo­
nents, m easurement error, between day 
variations and subject variability. Clearly, 
the technique error is negligible, but the 
day-to-day variance contributes appreci­
ably to the total variance. This contribu­
tion can be reduced according to the for­
mula 

ci-<,.>' = 3.0S75 + 1.8217 /n 

where n is the number of days on which 
measurements are made. This reduction in 
variance is illustrated in Fig. 3. 

An estimate of the repeatability (in tra­
class correlation) of the daily 17-0HCS 
measurements is defined by 
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'l'AHI.I': 3. A1rnlysis of vnrhmcc of 17-0HCS 

Source Dc~rct•s of 
freedom 

B etween suujects (s) 18 

Between days within subjects (d) 38 

Error (c) 67 

fi11 -011cs = fr,'/Cfr.' + crJ' + u,'> 
= 3.0S,5/l.!JOD:2 = O.G2SD. 

Usefuln ess of urinary creat111111e measure­
ment as compared with 17-0HCS ro!ues. The 
analys is of variance of the crcalinine result 
is given in Table 4. Proceeding as for t he 
17-0HCS analysis of variance, the esti­
mates of crealinine variance components 
are 

frd' = 0.0:232 nnd u, 2 = 0. 1063. 

Sirnilnrly, t he estimate of t he intraclass 
correlation is: 

P,,c,t inino =- cr,!/(u,' +o-J1) = O.IOG:~/0.1 2~1.j = O.S2. 

This estimate of clay-to-day repea tability 
for creat inine i:; higher than that for 17-
0HCS, and lwnce crnatininc appears lo be 
more reliable in detecting errors in urine 
collection. However, the d ifference between 
the two valu0s may not be sufficiC'ntly great 
t.o warrant special emphasis be ing placed 

w 
u 

1·1. 

1-5 

1-3 

~ 1- 1 a: 
~ 0 -9 .. 
c.> 

2 0- 7 
:, 

"' 

0· 1 

2 3 4 5 6 7 8 9 10 
NUM BER OF COHSEC_~TIVE 2~ hr URINE COllECTIOHS 

Fie. 3. n ect uclion of within-subject vnriance by 
increasing number of clays laken for urine collcc­
tiou. 

Sums of E s lim;itcd Exp1:clcd mc;in 
squares sq u:1res squ:1rcs 

396 .1882 22.0105 "•, +2"J' +6<1,' 
132 .4467 3 .485·1 "•t +2<1J2 

9.0100 0.1581 D'c 1 

on this estimalion when measuring con­
secutive urine samples for total 17-0HCS. 

Correction for method losses. Using the data 
presented in Table 5, the in traclass corre­
lat ions for !he loss uncorrected and the loss 
corrected 17-0HCS values were estimated. 
Although the sample is small, the uncor­
rec ted a nd corrected in traclass correlations 
were 0.7'1 and 0.13, respectively, indicating 
a m ~nkecl loss of repeatability associated 
with the correction procedure. 

Urinary 17-01-ICS, age, height, weight and 
surface area. In order to establis h t he rel­
ati ve im portance of rclalionships between 
17-0HCS and body weight, height, surface 
area and age, a m ul tiple regn•ssion wilh 
17-0HCS · as the dependant variable and 
the rest as the iJ.1dependant variables was 
carried out. 

From an inspection of the estimated re­
gression coefficients, together w ith their 
slandard errors , it. appeared that age and 
surface area were important contributors 
to the to tal variance of 17-0HCS va lues 
and that h eight and weight were ins ig­
nificant. The analysis summari zed in Table 
6 bears this out. lL is clear from the resul Ls 
in T able 6 that age is the most important 
variable, followed by surface area. If these 
two variables are known, there appears to 
b e no advantage, from a prediction view­
·point, in using e ither height or weight. 

The regression equation using age and 
surface area was: 

17-0 l!CS =- 5.Si l i - O.OSS:JA + 4.S:">37 SA 

and the respective standard errors of the 
estimated coefficients were 3.0281, 0.0188 
and l.8S04. Inspection of the regression 
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'f , lll,B 4. Analysis o f Yariance of creatinine 

Source D egrees of S freedom ums of squares 
E s timnt ecl mea n 

squnres 
Expec ted mean 

squares 

JJetwecn subjects 

Error 

16 5 .4743 0.34 21 

0.0232 34 0 .7873 

rquation also reveals that increasing age is 

8ssociatecl wit.h a fall of 17-0HCS val ues 
ancl t hat increasing surface area is accorn ­
p::rn ied by increasing values of 17-0HCS. 

Discussion 

When comparing results ob tained from 
an assay designed to provide an ad equate 
drscript,ion of individuals in a group, it is 
important to cons ider how va1·iablcs ol her 
than those contributed to by the chemical 
analysis may affocL the appraisa l. 

For example, while emphasis is often 
placed on detccl ing, estimating a nd cor­
recting results for chemical errors due to 
lack of quantil aLion, specificity or sensi­
tivi ty, less considc·rnlion is given to incor­
porating corrections which may arise from 
well-known variables such as age, sex, body 
weight. and heigh t. It. is only when gross 
evidence of individual variability is ob­
tained , exampled by diurnal vai·iation of 
plasma 17-0HCS or menst rual Ductuai ion 
in estrogcns , that att ention becomes fo ­
cused on biologic facto rs as a poten t ial 
source of error in assay reliability. T hus, 
an csti.male of plasma 17-0HCS when as­
sessing normal ad rena l funct ion can be in 
en-or by 100% if diurnal variation is ig­
nored (6). Likewise, an est imat ion of es­
trogcm content in a single 24-hour urine 
collection can be in gross error if attempting 
to define normal cycl ic ovarian ac tivity (7). 

In the case of urinary 17-0HCS, the · 
assay appears to be chemically reliable 
when distinguLshing the extremes of adre­
nal funct.ion, that, is . hy per and hypo from 
nonnal ind ividuals (2, 3). 

However, in the con text of attempting to 
define di/Terenc.:cs between women with 
breast cancer whose urinary 17-0HCS 

values approximate those of apparently 
healthy women, usual chemical rcliabilily 
cril eria m ay be insuffieicn t and this 
prompt ed the present reappraisal. 

The fact that t,he mean value reported 
here derived from the a verage of a tlu-ee­
consecut ive-clay analysis corresponded 
closely with that reported by Wilson and 
Lipset t (3) (mean 9.86 m g/ 24 hr i·s. 9.4 
mg , 2'1 hr reporred) suggested that no gross 
d iscrepancy exists in i he performance of 
the same method in the two clifTel'ent Jab­
oralories and also implies that our addi­
t iona l findings arc generally valid. T h is is 
fort.h er supported by the narrower range of 
our values, G.O - 13.9 rng/ 2·1 hr i·s. 5.0 -18.0 
m g/ 24 hr report.eel by W ilson and Lipsett, 
since a t hl'ee-day average should pl'ovide a 
better estimate than a s ingle day's ex­
cretion. 

'I'tdlLF. 5. Urinnry 17-0HCS conccted 
for met hud los:;es 

Subject D ay 
17-0HCS mg/24 hr 

Uncorrec ted Corrected 

':c H e-
covcry 
'fHF 

1 1 10 .3 ]3 .2 79 
2 9.8 13.0 75 
3 9 .8 12.6 78 

2 1 13.2 15 .0 68 
2 
3 14.8 19.8 '/5 

3 1 7.4 12.8 58 
2 10 .2 . 16 .6 61 
3 8.9 15 .8 56 

4 1 7 .0 10.8 65 
2 9.3 ]4.1 66 
3 9 .4 13 .4 70 

5 1 9 .0 11.2 79 
2 9.7 13 .6 71 
3 10.8 18.6 58 

Intraclass correlation (r) 
0 .74 0.13 
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'l'ADLF: G. J\naly:;is of vadancc uf rcgrcss10n of 17-0IJCS 1•s. age, hcighl, bc,dy wcighl and surface area 

Source D,•g n:-cs uf 
freedom S um of squares l\·lcan squares F ratio 

A 1 
SA/A 1 
H, W/A, SA "2 

Total regression 4 

Error 36 

48 .1867 
17.8039 
9 .3724 

75 .3630 

92 .1772 

48 .1S67 
17.8039 
4.6862 

18.8407 

2 .5605 

19 .2 (p < .001) 
6 .95 (p < .05) 
1.83 

7 .36 {p < .01) 

A =age, SA =surface area; H =height; W = weight. 

As jt was no t possible to check tlw re­
duction.1oxicla t ion characteris tics by con­
ventional tracer isotopic techn iques, this 
aspect of rel iability was examined by com­
paring recoveries from urine and wnler at 
dilferent levels of add C'cl model steroids 
sufficient lo approx imate those levels likely 
to be found in urine. Reagent reliabili ty 
was revealed by the consistent lOOS~ re­
duction of DHA and virtunlly 10o r;;; re­
duction and oxida tion of THF when these 
compounds were aclclccl to water. Re­
coveries from urine being significantly 
lower l hnn those from waler is not sur­
prising and presumably reficcls both a n in­
hibition of reduction and oxidation by sub­
stances in urine. As all urines tes t.eel 
n egatively for glucose prior lo analys is, this 
compound could noL be r<:spons ible for dis­
t urbing the perioclate oxidation. An un­
usual finding, however, was the increasing 
recovery of THF with increas ing amounts 
added (Table 1; Fig. 2), suggesting what­
ever inhibi t ion is prcsenl is less effective aL 
high THF levels. Al t hough the same lrend 
was present for DIIA, the regression was 
not significnnl, presumably due to the small 
di fferences in the recovery values. The dif­
ferences in recoveries with increasing 
amounts added cannot be cl ue to pipe[ t ing 
errors in adding lhe model compounds as 
the same pipetle was used for add itions to 
both water and urine. 

An attempt to improve the assay by cor­
recting for losses measured by recoveries of 
the external standard was not successful, as 
this led lo a marked loss of repeatabiliLy, 

presumably clue to the in troduction of a 
further error involved in the assay of the 
recovery urine sample. 

Because the basic validity of assay quan­
titation depends on the 24-hour urine vol­
wne, an independent means of assessing 
the correctness of volume by concom itant 
measurement of another solu te, e.g., crc­
atinine, could yield more reliable data. 
Cramer et al. (8) found that fluctuations in 
urine volume were oft he same order as the 
fluctuat ions in creatinine and cons idered 
no advantage is gained from expressing 
solutes as a function of crea tinine as com­
pared with 24-hour urine volume. 

It was al.so of intercsL in regard lo 2-1-
hour urine voltrn1 es to enquire whether 
perfectly reproducible daily urine volumt>S 
could improve lhc assny . The corrcla t ion 
between urine volume and 17-0HCS w;is 
calculated on a within-subj ect bas is nncl 
found 1.o be p = 0.27. This indicates that, at 
best, if urine volw11e could be perfectly 
controlled, lhe within-subject variance of 
1. 7 would be reduced by (0.27f X J. 7 = 0.12, 
to 1.58. The difference is insignificant. 

Cons ideration of biologic variations as a 
source of enor revealed age and surface 
area to be two imporlant parameters con­
tributing to variation in the assay results. 
T he negative regression of 17-0HCS with 
increasing age was reported by other ob· 
servers (9 ) using a comparable (10) assay 
method. Al t hough Bulbrook et al. (11) and 
Tanner et al. (12) , us ing similar procedures. 
found a pos itive regression of 17-0HCS 
with body weigh t, the present study reveals 
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surface area to be a more imporlanL vari-

8b)c tlrnn we igh t: alone. 
Jn the suggc,st ion Lha t mina ry 17-0HCS 

steroid m eta boli !~s can flucrnal c O\'C·1· long 
periods of time (9) , t he contribu t ion of 

shifts in met hod rel iabil ity has noL been 

clear. 'f'he nnaly~is of va r ia nce of the 17-

0HCS reportc,cl here dc:1nonstratccl t he 

11, cthodology error to be rn in inrnl, Approx­

im:-i lely 3<;;, , and this includ e.:; mi11e col­

lect ion errors. The within-subj ect varia nce, 

however, was of an u nsuspec t ecl m agn itud e, 

contributing to approximntc·ly 34 ~- of the 

,·a ria bili ly in single 24-hour 17-0IICS 

value. F rom this ev idence it, can b e seen 

that a 24-hour va lue prov icl r s a p oor es­

t imate of an indi\'icl ua l's lrne 17-0HCS 

cxcret ion when required for the purposes o f 

att emp ting to dis tinguis h healthy women 

from t hose w it h breast cancer or, for that 

ma tt er, any disease in which urina ry 17-

0 HCS va lues approxima te those found in 
hc·allh._ 

Jn general , t he 2·1-hour excr et ion of 17-

0HCS by women u1rnssoc iated wi t h t he 

acl<l it ional eITccts of disease changes as a 
result of a nwnber of influences. First, 

. there is a lo ng- t er m t rend re fl ecting physio­

logical cha nges wit h a ge. Second, t here is a 

random d:iy-to-da y compo1wn l w hich may 

be due !o factors s uch as s hort- t erm fluc­

tuations in body weight , in r es t-act iv­

ity cycles, a nd in clay- to-day pyscho­

logical in teract ions wit h the environment. 

By taking a n a verage of several d a ys' 

urine t his compone n t is s n1oothecl out to 
reveal a cl earm· pict ure of t he t r u <', non­
rnndom pa rt. In t he da ta reported here, 

t his nmclom source o f var iability was rel­

at ively lnrgc. 
O ther ind ivid ua l , nonrandom cyclic co m ­

ponen ts m a y C' Xis t bu t t hc:-;c: have not been 

dem ons trat ed in t h is shor l- tcrm study . Jf 

the:y arc present , iL is ~]ea rly d esirable t hat 

measu i·(•m en (s be m ade al Lhe sam e part 

of a cycle for each individua l. Otherw ise, 

t he wi t hin-subj ect va ria nce is increased 

st ill fur l her , d ecreasing rel ia bilit y and mak­

ing t he classifica tion of individua ls in to 

grou ps m ore di fficul t 
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Note on a calibration problen1 

BY G. M. TALLIS 

O.S.I.R.0., 1Veu:town, New South Wales 

SmrMARY 

505 

The problem of obtaining a sntisfoetory cst,imate of a, varialJlc X from another variable r, 
where X and Y have joint frequency fun ction 9(x , y; 0), is considered ui"1 ckr the restriction 
that only Y and YIX = x can be obsernd. This raises t.hc question as to whether or not, 9. 
can be determined from t he frequency fun etions of Y and Y jX = x. It is found that the 
latter problem is rcla.tecl to the theory of the identifiabi lity of mixtures of distributions . 'J~he 
information associated with Y and the bivariate Yie,-vpoint. are used for a fresh approach to 
a problem. of calibration . The standard t.echniquc is examined in the light of the new 
approach. 

1. 'l'lrn rRODLEi\I 

In this note an aspect of the following problem is considered. Individuals from a fixed 
populat.ion are taken with a Yiew to obtaining informat ion with regard to a variable X 
which is associated with each mernber of the population. Unfortunately, X cannot be 
obse1Tc<l direct.Jy and, instead, an associated variable Y is measured . It is assumed that 
a.pproximatcly: (a) by repeated sampling, the marginal distribution of Y can be determ ined; 
and (b) the conclitional distribution of l'J x can be found by suitable experimentation. 

A typical example of this situation conccms the measurement. of ccrlain chemical com­
pounds, X, in the blood or urine of patients . The amotmt of compound cannot be directly 
observed buL, instead, after suitable preparat.ion, a reading is made on a machine, Y, which 
has been standardized against kno,,·n amounts of t he substance being measured. From the 
machiue reading and the standard curYe i t is required to estimate X . For the purposes of this 
note this type of situation ,,·ill be referred to as the ca librat,ion problem. 

The thcoreLical quest.ion of deciding when a satisfactory precliction of X can be made 
given the marginal distribution of Y and the conditional distribution of Y jx is discussed 
below. In applications, however, the technique requires that the population which is being 
sampled remains fixed . I n practice this assumption may lie hard to justify and a frequent 
check on the dist.ributions of Y and YJx may be necessary. Nevertheless, this is hardly an 
indictment of the method since the standard approach to this problem provides an estimator 
for Y which itself must be checked repeatedly in many cases. When t he correlation between 
X and Y is low, the old method can be very inefficient. 

P arametric forms of the relevant frequency functions will subsequently be assumed. In 
fact, the joint frequency function for the random vector (X, Y) ,.,.ill be written as 

<p(x,y; 0) = h(y; 6)/(xly; 1t) = k(x ; p) g(ylx; y). 

In the context of the previous paragraphs, itis assumed that h(y; 6) and g(y!x; y) are known, 
i.e. 6 and y are known. If in the conditional frequency function f(x!y; 1t), 7t is some funct ion 
of 6 and y, 7t = q,(6, y), the cali bration prolilem will be said to be determinate. This simply 
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mC'ans that 7t and hence / is determined once 6 and y arc known. Since 

f(xly; 1t) = k(x; p) g(ylx; y)/h(y; 6), 

i t is seen that the calibration problem is determinate if p is some function of y and 6. 
Est,imation proceeds in two .. stages. First, from a random sample from the population 

understudy, 6 is estimntecl, by 6 say, from nobscrvations made on Y. Scconclly, a.calibration 
experiment is run using fixed and known values of X = x, and a further 1n Y readings are 
obtained. From the pairs (xi,Yi) (i = 1, ... ,m), y is estimatC'd, by y s,ty, leading to an ,. ,. " 
estimator for rt, n: = ~ (6, y). 

Thus the cli[forcnce bct\\-een this and the classical approach to the problem is that 
adclitional information is introduced in connexion with the distribution of Y. However, 
even if hand g arc known, this does not necessarily guarantee tlw t the conditional clisLribu­
tion of Xiv can bcobtainccl. Only if the problem is 'determinate' will a solution be possible 
in this way. 

The frequency function j(x!.lf; rt) pro·.rides the maximum information with regard to X for 
an observedy. Moreover, i[ r(y) = E{Xly}, then r(y) estimates X with minimum mean square 
error and hence provides a suitable estima.tor. 

2. EXA..\fi'LE 

Consider the case where X and Y arc joint.Jy distributed in the bivariate normal distribu­
tion N(j.1.,x, /lv, u;,, u~, u xv); then the calibration problem is determinate. In this instance 
6' = (Jl·v, ui) and y' = (a1 , /l1 , ui), since Y is clistributecl as N(Jtv, u~) and YJX = x is distri­
but,cdas 1Y((/,1 + /J1x, ui). It is found after some elementary algebra that1t' = (a

2
,jJ

2
, un;wherc 

a2 = /J-11(J,.vcrifcri-a1), 

/J2 = (cri-cri)(/J1 cr~)-1, 

~ = cri(cri-ui)(/Jiui)- 1
• 

'I'lius the frequency function for XI Y = y can be found from a knowledge of hand g. Esti­
mates of a 2, /l2 and er~ are obtained by replacing a 1, /Jv CTi, ftv and u~ by their usual estimates. 
'£he properties of n: will not be cliscusi;ed here since they digress from the main t.heme of this 
note. 

3. DETER:lfl},.ANCY AS A SPECIAL CASE OF THE IDE.XTIFIA.DJLrrY OF i\ITXTURES 

It is interesting to look at t he problem in a. slightly different way. Since 

l1(y) = J:"' g(yjx) l:(x) dx (1) 

and hand g a.re assumed k.no,n1, the determinacy of the calibration problem is equivalent 
to finding a unique solution to the above Frcdholm integral equation oft lie first kind. This is 
a special case of the problem of ihe identifiabili ty of mixtures of distributions. . 

An immediate and useful resttlt can be obtained from the a.bo,e observation. If g(yjx) is 
N(a+ /Jx, u 2

) then the calibration problem is determinate, since by takiJ1g the Fourier 
transform of Loth sides of (1) and reananging, 

k*(0) = h*(0//J) exp ( - iO:x//J + 02u 2//J2). (2) 

In (2), k* and h* are the Fomier transforms of,~ and h respectively. Since k is uniquely 
determined by k*, the result follows. The example of§ 2 is a special case of this proposition. 
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N nte on a calibration 1>roble·m., 

Examples of nondctcrminacy arc easily constructed. Let 

then 

J½ 
lt(y) = l~ 

(y = 0), 
(y * 0, 1 ), 
(y = 1), 

rx 
g(y!x) = i 0 

ll-x 

{

2xk(x) 

/(xiv)= o 
2(1-x}k(x) 

(y = 0), 
(y ,tO, l), 
(y = 1). 

Clearly k(x) is determined only up tot he first moment, i.e. 

J: xl~(x) dx = ½-

4 . Drscussrox 

(y=O), 
(y *O, l), 
(y = 1), 
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'l'hc results of§ 3 can be used to discuss certain practical sit uations. For instance, in the 
context of the example of§ 1, it may be necessary to estimate the particular chemical com­
pound in male and female patients. In this case two distinct populations may be im.,.oh-cd. 
Now, if i(, is reasonable to assume that the characteristics of the measuring apparatus are 
described by g(y! x; y) = N(cx+ /Jx, u 2) and that the performance docs not change during 
the course of t,he experiment, then, in t,he r epresentation 9(x,y; 0) = k(x; p) (y!x; y), p is 
some function of y and 6. This follo,Ys from the determinacy of the calibration problem. 
Thus, the only way in which a change in t.he joint frequency function of X and Y can be 
ach.icYcd is through a change in h(y; 6), the frequency funct.ion for Y . 

Und<'r the aboYe conditions, therefore, in order to obtain a satisfactory estimate of 
j(xly; re) for both the male and female popuJations, only a single estimate of" and (J from 
the machine is rcqnirecl. Ho,1·cver, h(y; 6) must be estimated separately for the two popula­
t ions so that appropriate estimates of f(;c!y ; 1t) can be obtained. 

It is interesting to examine a special ca~c of the calibration problem discussed by Graybill 
(19Gl , p . 125) ,rhere part of the ~ampling is carried out in a population with X = x0 fixed 
but unknown. Let J;(x) = o(:r0), where o(.) is the Dirac function. Then 

Clearly, x0 can be considered as one of the parameters to be estimated in the conditional 
frequency function g. In fact, here 6' = [y', .i,;0] and 6 can be· estimated from formulae given 
by Graybill. Therefore, this particular situation can be handled without any preliminary 
calibration experiment. 

One cmrent method of approach ing the calibration problem in the case thatE( J"jx) = r(x) 
is linear amounts to equating r(x) = a 1 + /11 x to an obsen ·ed Y = y and solving the resulting 
equat.ion for x (Bennett & Franklin, 1954, p. 231) . This leads to the est.iinator 

where a 1 , /11, /tz and /t11 are replaced by suitable estimates. However, the estimator for X 
proposed here is 

and fi11 = /11 u!/cr~ if and only if jpj = 1. Therefore, the old procedure amounts to using, 
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or using an cstima.tc of, the wrong regression line and could lead for !PI ~ 1 to a serious loss 
of efficiency in t erms of mean square error. The results of a simulation .,tudy emphasizing 
this point "ill be reported elsewhere. 

I am indebted to Professor E . J. \\' illiams for his comments and especially for pointing 
out the equiva.lence of determinacy and identifiability. I am also grat eful Lo ::\Ir H. Weiler 
for a number of interest.mg discussions. 
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Some Extensions of Discrintinant 
Function Analysis 

By G. M. TALLIS, Newtown 1) 

I. Introduction 

The concept of discriminant function analysis was first introduced by R. A. 

F1s111;R as a tool 10 assist in the taxonomic classification of several species of 

Iris. Th is technique has undergone considerable extension and genera l discussions 

on the topic are given in RAO, ANDI:RSO:s: and elsewhere. 

It is the purpose of this paper to extend the ideas of discriminant analysis to 

a stochastic process X (L). The large sample dispersion matrix of the estimated 

discriminant function is developed and is used to obtain revised classification 

regions and errors of misclassification. The modi fied analysis which includes the 

errors of estimation is ill uslrnled by means or fisher's classical example cited 

abo\'e. It is found that the consideration of sampling errors may be important 

in any discriminan t analysis. 

The extensions discussed here were initiated by investigations into human 

mammary carcinoma. Numerous workers have found a relationship between 

the levels of certain hormones excreted in the urine of women in advanced stages 

of breast cancer and their responsiveness to endocrine ablation. In fac t, by using 

two of these hormone levels in a discriminant analysis it has been possible to 

identify a group of women with lowered responsiveness to this sort of treatmen t. 

lt was felt that some accuracy of the analysis was lost by not taking account of 

the marked regression of these variables on age. Moreover, from a statist ical 

viewpoin t, this important problem d_ocs not seem to have received clue attention 

and this paper attempts to correct this deficiency. 

II. Results 

We consider the 11-dimensional vector X (t) with multivariate normal distri­

bution function N(1dt) . V). lt is assumed that.\' (1) belongs to one of two popu­

lat ions, n I or n 2 , where the members of 11; fo llow the normal distribution 

1) G . M. TA LL15, Di\•ision of Ma thematical Statistics, C.S. I. R.O., 60 King St~ Newtown. N.S. W., 

2042. 
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function 1\' (/1 1 
(r), V) i = l, 2. The problem is. given a particular vector x (c), how 

do we best nssign x (1) to either n I or l7 2 ? 

This is the w\.!11 known problem of discrim in:1111 analysis with the modification 

of considering X as a stochastic process i.e. a function of time c. The relevant 

theory is discussed in J\:>:DERS0:-1 and we list some of the results here for comple­

teness and to establish notation. 
Let C(i[iJ be the cost of assigning x (c) to l7 1 when it actually comes from n1, 

i =I= j. Moreover, if R I and R2 arc regions of 11-space En, 

R 1 u R 2 = E", 
R 1 nR 2 = <l>, 

such that if x (t) E R1, we assign x (t) to n I and if n I has prior probability p1, 

p 1 + p2 = 1, then the expected cost of misclassifica tion is 

E(C) = C(2Jl)p 1 J dN(Jl.(c),V) + C(Ii2)p2 J dN(µ 2 (c), I'). (I) 
Rl R1 

Using the above notation we have the following theorem the proof of which 

may be found in A~Ul:RS0:-1. 

Theorem 

The regions of classification, R I and R2 , which minimise E(C) for fixed r arc 

s_pecified by 

R 1 : [X(1) -·H 1i 1 (r ) + 112 (1))]'V - 1 [1i 1 (c) - 112 (t)];;,: logk 

R2 : [X(1) -}(11 1 (1) + 112 (!))]' v-• [1c 1 (1)-11 2(r)] < logk 

where k = p2 C(I J2)(p 1 C(21 I )] - 1
• · 

Of course, the constant k is usuall y unknown and is therefore put equa l to 

one. Thus, if the expression on the left hand side is nega ti ve. x (c) is assigned 10 

n2 and if it is posi1ivc . .r(1) is classified as belonging to /7 1 • JfC(Ii2) = C(2ll) 

then the above schem( minimises the expected proportion of misclassifica tion. 

lt turns out subsequently that it is con,·enient 10 work with 

(2) 

which will be called the discriminant function. Notice that D(I) is normally 

distributed with mean (Ji(t) =--f'(cJ1dt) and vnriance Gi(I) = G~(r) = l(t) Vf(t). 

Using the minimax principk, we now find a l>(c) such tha t 

co b(r) 

C(2Jl)p1 J dN(f3 i(l) ,a2(t)) = C(I J2) p2 J clN((J2(t),G 2(t )) 
b(r) - co 

and 
R 1 : x ' (r) f (t) ;;,: b(t) 

R2: :i:'(1)/(1) < b(t). 

In case C(2ll)p 1 = C(ll2)p2 , b(r) = ½({J1 (1) + /32 (t )) and we have the situation 

of the discussion following the theorem. 
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Unfortunately, in practice nei ther V nor µ;(1) arc known and they must be 
estimated from suitable data. In order lo make further progress we must assume 
some paraJ!lCtric foi·m for ,, ;(I)= [11l1 1(1), ... , J1\n>(1)]. Let r·, = [l ,1, ... , tk - 1] , · 

then we will assume tha t 11 ;(1) = B; r, where B; is an (11 x k) matrix of unknown 
constants. If S, 81 and B" arc estimat es of JI. B1 and B2 respect ively, then the 
estima ted index va lue is 

(3) 

where ii(r) = (8 1 - B2 ) r. 
Now suppose a random sampk of 11; vectors are taken from n; a nd is denoted 

by l'; = L·l 1 >, ••• ..rln " ] where .1?1 is an (11 x I) vector and hence l'; is (11 x 11J 

Then an unbiased estimate of 13; is give n by 
- - I B; = C;A; 

where 

A;= T;T;', C; = Y;T;', T; = [I'!ll, ... ,r?1>]. 
The obtain a pooled and unbiased est ima te of V set 

2 

S = IO'; Y;'-fl ;.·f;IJ;)i(111 + "2 _;2k). 
i = I 

It is well known that the matrices iJ 1 , /12 and Sare independentl y distributed . 
. In fact, (11 1 + 11 2 - 2/.:)S has a \VJSflART distr ibution with parameters (n 1 + 112 -k) 

and JI and if/}; is ro lled ou t into a vector of dimension (11k x l),p; = [/J\11', .. . /J f"l'], 
lhcn P; is distribu ted as N({( , V@ A;- 1

). 

I3cforc proceeding we no tice tl) at (3) can be written in somewhat different 
form. Let Z (t) = In ® I", then (3) becomes 

D(c) = X'(1) s- 1 Z(1)(fi 1 - Pi). 

This representation of D(r) facilita tes the following derivation. 
Write S = JI + L1 V and ,l(c) = d (1) + J i/(1) where E(Ll V) = 0 a nd E(Ll c/(1)) = 0, 

then 

.t(t) = ( V + L1 V) - 1 (cl (t) + L1 c/(1)) 
O", 

= I:(V - 1 L1vinv - 1 (t1 (1 ) + Lld(r)). 
n=O 

Neglecting terms ofO(N- 312), N = 11 1 + 11 2 , we have 

E(i(c)) = v- 1 d(c) + E(v- 1.1 vv - 1,1 vv- 1d(1)) . 

In order to evaluate the expectation on the right of the above equation 
LI V v- 1 L1 V = A, say, must be written out as fo llows : 

A = [aii] = [~~LI i:;,t',~ 
1 L1 v,j] 

and 
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where v;. .' is the r,s'h element of v- 1
• If we substitute 

cov(i\,,vJ = (N-2kr'(i;;,V,j + t'ijv,,) 

in the above expression and carry out some simpiification we obtain 

E(A) = (N -2k) - 1 (1 + 11)V 

and finally 
E{i(t)} = [ 1 + (N - 2k)- 1 (1 + 11)]t(1). 

89 

(5) 

From (5) it is clear that the bias in i(f) would be small for N reasonably large 
and probably no t worth correcting for. Moreover, to the order of accuracy 
required by the subsequent expansions, E f.e(1)} can be replaced by 9,(1) wilhout 
altering the final results. 

Now 
.St(t) = J (t) = ( V + L1 V)(.£.lt) + L11(1)) = (ii(!) + ,1 <1(1)) 

whence 
Llt(t) = v- 1 (.dd(t)-LIVR.(t)) 

neglecting the term ,1 V L1JJ(t) which is O(N - 1
). 

Therefore 
L(r) = [cov (i ;(1),ij(1))] = E [Ll i(t) Ll t' (1)] 

= v- 1 [E(Lld(t) d d' (t)) + E(L1 I' .R.(1)t' (1).1 !")Jy- 1 

the remaining terms dropping out because L1 Y and L1tf(1) are independently. 
distributed. Since '1 (1) is distributed as N(d (t),f'(A 1 t + A i 1

) fV), the first term 
of L is r (A 1 1 + A 2 1) r v - 1

• 

In order to evaluate th e second term write 

then 

C(t) = i(t)i'(r)_ and 
M(t) = .Ll VC(1)1.! V, 

M(t) = [mq,(c)] =[IICsi(t)jv,,.dv~J 
and s ' 

E [ M(!)] = [~ ~ c,,(I) cov (v,,, 1\,)] = (N - 2k) - I LVC (t) V + V. trace I' C(t)] 

after substituting for cov (f-1,, f·qs) and simplifying. Thus 

L (t ) =I''(A1' +Ai1) f l' - 1 +(N - 2k) - 1 v - 1 [d(1)d'(i)v- 1 +ld'(1)v- 1d(t)]. 

We now calculate var (D(t)) after noticing that 

E {(D(t))} = E[.e'(t)X(t)] = .t'(t)/t;(t), 

to O(N - 1), if X(i)ell;. By definition 

Var (D(t) = E[i' (1) X(t) - t'(t)µ;(t)] 2 

al)d, writing 

i ' (t) X(t) = (i(t) + LH(t))'(J1;(t) + JX (t)) 
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we obtain finally 

Var (D(t)) = JI ;(t) L(t)Ji;(t) + .I!.' (t) V s..(t) + E [LI t ' (t) LI X(c) LI X'(r) M.(t)]. 

The expectation in the above equation is clearly equal to trace L(r) Yand the 

final expression is 

Var(D(1)) = d'(t)V - 1 cl(1)[I + (11 + l)/(N-2k)] 
+ 11I"(A~1 + A 21

) r+ p;(t)U1)1,;(t) . 

The expression for var (D(t)) can be compared with 

a 2 (t) = .9.'(t) V.9.(t) = d'(c) v- 1 d(t). 

(6) 

It is clear that the additional terms of O (N- 1
) may be appreciable and that 

var (D(t)) may be considerably greater than a2
• Moreover, var (D(t)) depends 

on ni, a?- say, and hence the value of b(t) should be computed from the eguation 
co b(r) 

C(2i1)P 1 J dN(/J 1 (t),af(t)) = C(Ji2)p2 J dN(/J2(r),d(t)). 
~) -co 

In particular when C(21 J)p 1 = C(ll2)P2 

b(t) = (a2 (l)/J 1 (t) + a 1 (r)fi2 (t))/ (a 1 (t) + a 2 (l)) . 

In order to decide initially whether or not n 1 , and n 2 arc distinct populations, 
it is important to test the null hypothesis /J 1 - {3 2 = 0. Let 

(7) 

then, under the null hypothesis, T 2 has a central T 2 distribution with parameters, 

nk and (N-2k-nk + 1). 
The above resu lts simplify in the classical case when k = "i, i. e. when the n, 

distribution is (N (11;, V). It is found in these circumstances that 

;_s- 1 dd - (f-;:) ,., - , - .. 1 "'2, 

S = (N -2)- 1 [t<xu- .ii)(x1j-i1)' + I(.,·2j-i2)(.,·2j-x2r] 
j ; J j ; l 

where the notation is obvious. The expectation Ei) can be found from (5) by 
setting k = 1 and suppressing the index t, while {, takes the form 

L = (N-2)- 1 v- 1 [dd' v- 1 + 1c1· v·- 1c1J + _!I__ v- 1
• 

. . 111 112 

The above formula simplifies still furiher if 11 1 = 112 = 111 to 

l ~ v- 1 (2m) - 1 (4 l +dd'V- 1 + I d'V- 1d] . 

The variance of D turns out to be 

Var(D) = rv-1d[l + (11 + 1)/(N- 2)] + 11N/ 11 1 112 + p;L JJi 

and the test of the null hypothesis Jli - p 2 = 0 can be made with the statistic 
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T2 _ n1ll2(-· --)·s-1(-: -.) 
- ~ .\. - .\2 .i:, -.\2 

which has the central T 2 distribution with parameters II and (N -11 - I). 

Example 

In order to illustra te the above results the Iris da ta of Fisher as recorded in 

RAO [page 248] will be used. Thus, 11 = 4 and k = l and it is found tha t £· = 
[ -3.0528, - 18.0230, 2 1.7662, 30.8442] and the estimated mean of the discrimi nant 
function in n I and n 2 a rc 65.5785 a nd - 37.6550 respectivel y. 

Under the standard analysis of F1s11ER the com mon standa rd devia tion of 

b is 10.1 604 . The bounda ry va lue b assuming C (2 jl)p1 = C(l l2)p2 is 13.9618 
and the probability of misclassifica tion is 

Pr {D > 13.961 81 .D ,._, N ( - 37.655, 103.2335)} = 10- 7 x 1.88. 

By the methods suggested in this pa per, £, of course, remain s un altered but 
the variance of D in n I and n 2 a re 372.2685 and 312.3221 respecti vely. The 
revised bo undary value is 11.6974 and the revised proba bility of misclassification is 

Pr(D > 11.69741 D ,._, N(-37.655, 31 3.233 1)} = 10- 3 x 2.61. 

Although in this example the probability of misclassification is still small under 
tl)e revised analysis, it is considcnl bly la rger than that given by the standard 
analysis. It appea rs, therefore , tha t to obtain even rough approximations to 
probabilities o f misclassifi ca tion , at least all terms of O(N - 1) should be inc luded 

in t he analysis. 

A Fortran programme has been written to cover the general analysis reported 
above. Aspects of this programme, further extensions and numerical examples 
based on extensive medica l da ta will be reported elsewhere. 
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By G. M. Tallis·\ D. E. Shaw*, J. Williams* and G. Sarfat/#= 

1 INTRODUCTION 
In a recent paper, Tall is (I 969) [ 4 J , Fisher's 

discriminant function was re-examined from two points of 
view. Firstly, ex tensions we re made tO allow the random 
n-vector X characterizing individuals to be a stochastic 
process, X(t). Specifically, X(t) was assum~d to be 
distributed multinorma lly with mean vector ~i(t) and 
co-variance matrix V (i.e. X(t) 'v N(~i(t), V)J , if X(t) 
belongs to population Iii, i = I ,2. A polynomial form for 
µ-(t) was achieved by setting µj(t) = Bir, where Ili is a 
~ atrix of coefficients and r'-= [l ,t, ... , tk-·1 ]. This 
approach allows, for instance, discriminant ana lysis to be 
applied where the members of the two populations are of 
differen t ages, the mean thus being a function of the 
individual's age. In this case, of course, each age has its own 
special discriminan t function. The standard analysis is 
retrieved by se tting k = 1. 

The second extension was to consider the effect of 
sampling errors on the estimated discriminan t function and 
on associated errors of misclassific;ition. The large sample 
covariance matrix;. L(t), for the estimated coefficients of 
the discriminant, l(t), was obtained and it was shown Urn!, 
in the case of Fisher's famous Iris example, it apP.Cared to 
be important to consider the sampling v;iriance of !(t),whcn_ 
calculating the probabi li ties ofmiscbssifica tion. 

The full analysis of k > I is compu rationally strenuous. 
Therefore, a FO RTRAN programme, DISCRI\I , has been 
written to provide an output of all useful steps i.n tJ1e 
modified discriminant analysis. This paper discusses 
DISCRIM and indicates further extensions to the -work in 
[4]. 

11 INDIVIDUAL PROBABILITIES 
A brief ske tch of results :id<litional to those discussed 

in (4] will now be presented. Full details arc omitted. 
Let X(t) 'v N(i;!.i(t),V) if X(t) belongs to fli, i = 1,2, and 

suppose the proportion of ni in the whole population is Pi 
(P1 + P2 = 1). Then if f.(x,t) is the frequency function 
corresponding to N(~j(t),V), the freque ncy func tion for the 
total population is givl!n by the mixture 

f(x ,t) = p
1 
f 1(x,t) + P/i(x,t). 

The conditional probability that an individual belongs to 
n1 given X(t) = x is p1 f1 (x,t)/f(xt). If the aJgebra is carried 
out this becomes 

[1 + exp { I n(p2/pi) + D(t) - A(t) } 1- 1 = P1 (D,t) say. 

where 

D(t) = X' (t) ! (:) , 

l(t) = v- 1 [µ2(t) - µl (t)1 

and 

Now 

Var { D(t) } = o2(t) = !'(t)y- 1 !(t) 

and we introduce 

D'(t) = [D(t) - -A(t)1 /o(t) 

which will be called the standardised discriminant. The 
graphs of 

P1(D',t) =[I+ exp { Ji1(p2/p1) + o(t)D'(t) } 1- 1 

aoainst D' (f) for various values of t give a comparison of 
tl~e performance of the discriminant function for di fferent 
values of the time parameter. 

The above analysis is fo r the case where the parameters 
of f.(x t) i = I 2 arc assumed to be known. When estimates J ' , , , . 

arc used the procedu re of (4) is appropriate. In this ca__s<? it 
can reasonably be assumed that the estimate of D(t'l , D(t l. 
obtained from [4] equal ion (3) is approximately norm:illy 
distributed in I\ with mean and variance estimable from 
fomrnlae in [4) . As fo r D(t), 

D'Ct) = Lb(t) - A(t)l/;(t) 

is a more or less standardised version of D(t). The 
expressions A(t) and o(t) indicate estimates of A(t) and o(t) 
based on a sample. " ~ 

In rJ ., the frequency functLon for D'(t), hj(D' ,t) say, 
can be obtained from that of D(t). Then, the conditional 

· probability analogous to P 1 (D' ,t) is 

" , n'\, ( "', ( "', ) ) Q 1(D ,t) = p1 h1 
~u ,t) / [p

1 
h

1 
D ,t) + p

2
h

2 
D ,t . 

I'\ I A_, 
The graph of Q 1 (D ,t) against u can be compared for 
various values oft. t-.Ioreover', it can also be compared with 
graphs of the estima tcs of P 1 (D' ,t) , 1\ (6' ,t), obl:iined by 
replacing the population P.ara.n;eters by "their sample 
estimates. The graphs of P 1 (D ,t) can be regarded :is 
indicative of the limiting efficiency which can be achieved 
by increasing tl1c ~ample size . To a sufficient clcgrc~ of 
apprpximation , P1(D',t), is uniformly greater than Q 1(D'.t) 
for D' > 0 and uniformly less than D' < 0. Th.is rcnec ts the 

* Division of l\fatlu:r,wtical Statistics, C.S. l .R.O., 60 King St., Newtown, N.S. W., 2042. # Endocrine Research Unit, Cancer Institute, 278 
William St., Mc/boume, Vic., 3000 . . 
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increase in uncertainly, in terms of the probJbility of 
misclassification given iY, as a result of sJmpl ing variability 
in the parameter estimates. 

These points arc all illust rated in the example. 

Ill PROGRA~1S 
A. Discrim 

A program, DlSCRl ~I . has been written in FORTRAN 
IV for the CDC 3200. lo JJer form the operations outlined 
in [4 ) and above. In writing this program, an attemp t wJs 
made to sar isfy several requirements dicta ted by its possible 
use. 
(i) 

(ii) 

(iii) 

(iv) 

DISCRll\1 has been written in such a way that the 
major part of it should be transferable, withou t 
significan t progr::unming effort, to another small or 
medium-sized computer. Any sec tion which depends 
on an optional computer facili ty such as an on-line 
graph plotter m::iy be deleted wi thout affecting the 
rema inder of the program. 
DI SCRll\1 will handle, wi thin the core-storage 
limitations of a small or medium-sized computer, 
problems involving large amounts of data. The 
number of at tribu tcs recorded for each individual, 
and the order of the poly nomial to be fit tcd, are 
limited by the availnble storage . Values of 20 for each 
of these numbers would not overt:i x the storage on 
the CDC 3200. The number of individuals that can be 
processed in one run is unlimited. 
Ily using a free -format input routine*, which counts 
the number of at tributes for each individual and the 
number of individuals in each group , the data 
prepara tion requ iremen ts for DISCRll\l have been 
made very simple. Each individual is represented by 
one data card, and the cards to be processed must be 
arranged in two groups corresponding to 11 1 and 11 2 . 
In addi ti on, two parame ter cards are necessary, 
specifying the order of polynomial to be fi tted . the 
output options chosen and the ages at which the 
p rocess is to be studied. 
Results may be updated by adding the cards for 
incoming in dividuals to the existing data pack and 
re-running l))SCRll\l. . 
The output from DISCRIM is in two par ts as 
discussed below. 
(a/Tlze line-printer ourpur. 

Firstly, the data for all the individuals may be 
listed ; this Option is COil trolled by the first 
parameter card. Then DISCR!l\l prints the number 
of attributes, the number in each group, and the 
order of the polynomial fitted. This is followed by 

B1 I B2 as defined in (4). 

s 
R1 ! the residual sums of squares and products matrix 

for each group. 
R2 

• Th<! fr.:c-for111:i t inpu t rout ine was developed by D. Culpin 
for the Computer Library of the Division of Ma thematical 
Statistics.. 
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Then for each age, t , specified by the second parameter 
card, DISCRll\1 prints 

~I (t) ! - the estimated means, in each group, of ~(t), 
µ2(t) 

,.. 
!(t ), the vector of estimated coefficients for the dis­

criminant, 

6(1) the large sample variance-covariance matrix of l et) 

E1 [D(i)J, Var1 [D(t)] ( 

E2 [D(t)), Var2 [D(t) ) ~ 
where Ei and Vari refer to the 
expectation and vJri:incc in 
group i, 

~ 

A(t) as defined in Section II above, 

1*(t ) = i( 1) /a( 1), 

" A(t)/~(t). A*(t) = 

(b/Thc graphical 011rp11r. 
The outpu t to the on-line graph plo tter m:1y be 
suppressed by adjusting the first p;ir:ime ter cnJ. 11 
called for it may take one of _!WO for1ns. Thr fir~t 
form shows the graphs orQ , (D', t) fo r :ill sµ,'cifi:J 
t. For the second form, e::ic.;_ ! t uccupi,:s :i ~~p:1 1:1 1<.' 

graph, and curves for Q1(D ,t) and 1'1(0 ,t) ,! re 
shown. 

B Disp rob 
A second . program. D)SPR0f3, has been writt en to 

calculate Q1 (D ,t)' and P1 (D' ,t) for individu:.1ls. The JJt:1 for 
DISPROB consists of certain of the results from DISCl~!\l. 
and data for the individu:.1ls for which the prob:ib: li1 1,·s :ir..: 
required . Aga in, free-forma t input makes the pr,' p:.1r:Hio11 or 
data for D1SPR0i3 very simple. 

IV EXAMPLE 
In order to illustrate the output of DISCRI\I. medic:d 

data kindly made available by Dr. R.D. Bulbrook 01 li:c 
Imperial Cancer Research Fund , London was us,~J . Tiles.: 
data relate tumour growt h response and non-response to 
adrenalcc tomy of patients with advanced bre:ist c:inccr Ill 

their urinary excretion of two steroid hormone met:iboli,·~s. 
17-hydroxycorticosteroids (X 1) and aetiocholano!one (\:: i. 
The use of discriminant analysis in this context WJS 

described by Bui brook, Greenwood and Hayward ( J 960) 
[2] . 

The stat istical problem was to construct a two-v:ir i3blc 
discriminant function, based on X1 and X2 , to scp:ir:i te 
responders and non-responders. Previous workers h:i "> c 
noted marked linear regression of the variables with ::ige wd 
hence the analysis in (4), with k = 2, seemed to be 
appropriate. In Bulbrook's random sample of women 
undergoing the operation 47 responded and 11 7 foiled to 
respond. 

The analysis was run fork= I and fork = 2. In the latter 
case values t = 25(5)65 were used. Table l shows the results 
for k = I, and Table 2 the results fo r k = 2, t = 25 . T::ibks I 
and 2 arc identical with the Jay-out of results from 

The A11strali1111 Cvmp11tu Ju11ma/, Vol. 2, Nu. 1, Fcbrnary. /Y70 
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NO. OF ATTRlr3UTES = 2 

NO. IN I ST GROUP = 47 

NO. IN 2ND GROUP = 117 

DEGREE OF POLYNOMIAL = 0 

EST. OF BI 
9.29149 
971.0 . 

EST. OF B2 

9.52393 
650.359 

POOLED EST. OF V 
1.50304 X IOI 

6.63 I 02 x I 02 

6.63102 X 102 

2.23882 x I 05 

RESIDUAL SSP MATR IX FOR GROUP 

5.71177 X 102 4.72768 X 104 
4.72768 x I 04 1.33044 x I o7 

RESIDUAL SSP MATRIX FOR GROUP 2 

J.86375 X 103 
6.01457 X }04 

6.01457 X J04 

2.29646 X 107 

NO. OF ATIRIBUTES 

NO. IN ! ST GROUP 

NO. IN 2ND GROUP 

= 2 

= 47 

= 117 

DEGRF.E C>F POLYNOMIAL = l 

EST. OF BI 

8.75616 
1667.58 

EST. OF B2 
15.8199 

801.948 

POOLED EST. OF V 
1.42622 x I OI 

6.52720 X 102 

0.0109968 

- ·14.3092 

- 0.126070 

-3.03542 

6.52720 X I 02 
2.20569 X l 05 

RESIDUAL SSP MATRIX FOR GROUP 1 

5.7065 l X 102 . 4.79604 X 104 

4.79604 X 104 l.24149 X 107 

TARLE 1 

MUl 

9.29149 

MU2 

9.52393 

971.0 

650.359 

COEFFICIENTS 
-9.04705 X 10:_2 

MATRIX L(T) 
2.60045 x I o- 3 

-8.50192 X lQ-6 

1.70014 X 10- 3 

- 8.50192 X 10- 6 

1.89033 X 10- 7 

GROUP 1 MEAN= 0.8 10234 VARIANCE= O.SS56 I 7 

GROUP 2 MEAN = 0.244069 VARIANCE= 0.846S05 

A(T) = 0.527151 

COEFFICIENTS FOR STANDARDISED DISCRl\!L\i A.'ff 

-0.120236 0.002260 

A FOR STANDARDISED DISCRI\HNANT = 0.700590 

TABLE 2 

RESIDUAL SSP MATRIX FOR GROUP 2 

1.71129 X 103 5.64749 X 104 

5.64749 X 104 2.28762 X 107 

AGE 25 

MUI 
9.03108 

MU2 
12.6681 

COEFFICIENTS 
-0.435067 

MATRIX L(T) 
2.12955 X 10- 2 

-7.02157 X 10-S 

1309.85 

726.063 

0.00393422 

-7.02157 X 10-S 
1.39722 X 10- 6 

GROUP 1 MEAN= 1.224122 VARIANCE = 6.S72~49 
GROUP 2 MEAN= - 2.654999 VARIANCE= 7.26 l 795 

A(f) = -0.7 15438 

COEFFICIENTS FOR STANDARDISED DISCRP.!L\:\ST 

-0.220987 0.001998 

A FOR STANDARDISED DISCR1~1INANT = -0.363 250 

Tiu· A11struli1111 C11111p111cr Ju11n111/, Vu/. 2, No. J, Fehruary, / Y70 5 
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DJSCRJ~1; for k > 2, the section of output headed "AGE 

25" would be repeated for each age , t, specified. 
Since 

,.. I A "\ <\ 

D (t) = [D(t) - A(t)J / o(t) , 

where 
A t" 
D(t) = X l( t), 

.... -
revised values of ii(t) , i i( l ), and of A(t), A*(t), allow D'(t) 
to be calculated directly from any opierv:it ion:i l vector i. 

In the output from DISCRI\I, the Ii ( t ) are given under 

"COEffICIENTS FOR STANDARD'ISED DI SC RI\IIN­
ANT", and 

A*(t) under"A FOR STANDARDISED DISCRIWNANT". 

E.g., when k = 2, t = 25, 

" 0(25) = .J E1 [D(25)J - E2 1D(25)] 

= .J J.224122 + 2.654999 

= ) .969548. 

1l1erefore, 

· r: ( 25) = - 0.4
35067 = -0.220897 

1.969548 

• • 0.0039342 2 
12 (25) = I.96954~ = 0.00 1998 

A~(2s) = 

and hence 

- 0.715438 

1.969548 
= -0.363250 

D' (25) =-0.220897 X1 + 0.001998 X2 - 0.363250. 

The residu:il sums of squares and products matrices :ire 
included in the outpu t in order that tests may be n1Jd .:: of 

the significance of including the highest order term in t !n 
the fitted polynomial. If we denote by ~ i k the r.::siduJI 
sums of squ<1res and products matrix for group i wh.::n :i 

(k- 1 )1h order polynomial is fi tted , then the likelihood 

~atir_criterion for testing the null hypothesis th :i t the tl'rin 
m t has no effec t in group i is 

X = 
IRi k 1nd2 . 

where ni is the number in the i1h ~roup, Anderson [ I J. f-' or 
testing, one usually uses U = X2fn i, where 

U "' Un , l ,n ,-k. For n = 2 
I 

(U2,1,n.-k)-1 l2( l - [U2 I n.-kJll2)(ni- k- I) 
1 '' I 

= F2,2(11j- k - I>· 

T ABL E 3 

t = 25 t = 45 t = 6-~--~-.=J 
f1 (t) 9.03 108 1309.85 9.25101 1023.67 9.47095 737.487 I 
~2(t) 12.668 1 726.063 10.1467 665.354 7.62535 604.646 

i 
___ j 

. 
" !,(t) - 0.435067 0.00393422 - 0.158636 0.00209395 - 0.117796 0.000253675 

l 

!,,(t) 2.12955 X I0-2 3.48754 x I o- 3 9.52) 75 X J0- 3 ' ' 
I 

-7.02 157 X )0- 5 1.39722 x I o- 6 - 1.19312 X JO-S 2.4274 X 10- 7 - 2.77339 X 10- S 6.10478 X 10_;• 

lD(t)J ' 
E1 1.224122 0.675970 1.30272 1 I 
V1 [D(t)J 6.872249 1.306953 1.284046 

I 

I 
E2 [D(t)] -2.654999 -0.2164 18 1.051618 1 
V2 [D(t)) 

I 

7.261795 1.285518 1.006449 I 
I 

I 

A(t) - 0.7 15438 0.229776 I.I 771 69 I 
i ~. 

! (t) - 0 .220897 0 .001998 - 0.167928 0.002217 0.235074 0.000506 

A *<t) -0.363250 0.243236 2.349164 

6 The Australian Computer Joumal. Vnl. 2, No. I, February. 1970 
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For n > 2, an approximation must be made, Hill and Davis 
[3], to ob tain significance points for U0 l, n-- .J<· · If one or 
both of the groups indicate that 'ttie I l erm under 
considera tion is significant , then it would seem reasonable 
to retain it in both groups. For the data in our example 

IR1,il = 5.36407 X 109 IR1.2I = 4.78438 X 109 

IR2,1 I = 3.91828 X 1010 IR2,2 I = 3.59584 X 1010 

Tlr<" .,fm1rnfiu11 Comp111u Journuf. Vol. 2, No. I. Fehruory, /970 
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Therefore 

for group 1, U = 0.892, Pr { u2 ,1 ,45 > U} = 0.0S I 

. for group 2, U = 0.918, Pr { u2,I ,l15 > U } = 0.007. 

A similar test for k = 3 was no t significant and hence only 
the linear component appears to be importan t. 

In Table 3 are presented , for purposes of co~1p:!~is0;'1 
between ages, the results for k = 2 when t = 25, 4) anu o.:: · 

7 
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Note that the confidence intervals, shown below, for the 
li(t) arc much shorter at t = 45 than at t = 25 or t = 65. 

t = 25 

95% confidence limits for 11 (25) arc - 0.72 1, -0.149 
for 12(25) arc 0.00 162, 0.00625 

t = 45 

95% confidence limits fo r I 1 ( 45) arc - 0 .274, -0.0429 

for li(45) arc 0.00 113, 0.00306 

t = 65 

95% confidence limits fo r I 1 (65) are - 0.309, 0.0735 
for li(65) arc - 0.00128,0.00179 

(We have used confidence limits of the form ~ ± 
. l .96Jvar Ii as a large-sample approximation). The difference 
in precision noted above in cstim:ition of the li(t) is to be 
expected in tha t the mean age t.f the patients provid ing the 
data is 49.58 and relat ively few of the patients have ages 
close to 25 or 65 . 

Figures I - 4 illustrate the graphical oµtpu t from 
· DISCRJM. Figu re I shows the,curves of Q1(D' ,t) against 

the standardised discriminant D'(t), for t = 25(5)55, 65. 
The curve for t = 60 is omitted because it is practically the 

8 

same as the curve for t = 65 . These curves ill ustrate th::, 
discrimination becomes less reliable as age increases. 
,.. rjPures 2, 3 and ~ show _the curves of Q 1 (lY,1 i 2:1d 
P1 (D ,t) for t = 25 , 4) and ~? respectively. As, m<:_ntio;-,e _: 
e~rlier, the probabil!ty Q1 (D ,t) is less th,:n P1,(D'.t) !·C\ ~ 

D (t) > 0 (approx11natcly) ;ind greater tor D (t) < i'j 

(approximately) , indica ting an increase in uncertainty as:, 
result of sampling variability. Also, it might be no,ed t:::: i 
the probability curve for t = 45 lies closer to its li:n i,::. ? 
curve than is the case for t = 25 or t = 65. This :?~:::; 
reflec ts a scarcity of data in the region oft= 25 and ot t = 
65. 
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PROBABILITY OF A WOMAN 
\VITH ADVANCED BREAST CANCER 

RESPONDING TO ADRENALECTOMY OR 
HYPOPHYSECTOMY 

GORDO!'{ SARFATY 

Endocrine Research Unic, Cancer lllstitttce, lvfclbournc, 
Victoria, Azmralia 

MICHA.EL TALLIS 

Division of Mathematical Statistics, C.S.I.R .O., New1ow11, 
New South Wales, Australia 

Data on urinary steroids in women 
S11n1niary 

with breast cancer have been used to 
produce probability curves allowing the chance of 
success with aclrcnalectomy or hypophysectomy to be 
computed for incli\'idu:il p:irients. Graphs have been 
drawn for probability of success against size of 
discriminant (I l -deoxy- 17-ketosteroids + 17-hydroxy­
corticosteroids) in 164 cases of breast cancer. In older 
patients this approach could be made more useful by 
substituting time to ablation for 17-hydroxycortico­
steroids. This probability method may provide the 
clinician with a useful tool in assessing an individual 
patient's likely response to endocrine surgery. 

Introduction 
THE search for variables 1 to predict the response 

of women with ad\'anccd breast cancer to adrenalcctomy 
or hypophysectomy has been triggered off by the low 
remission-rate ac.:hievctl by ablative surgery. Quantita­
tive indices, such as the latent period and urinary 
androgenic steroid metabolites, provide valuable 
descriptions of group beha\·iour but are not much 
help in individual cases because of overlap between 
responding and non-responding groups. Discriminant 
function analysis 2 of response-related urinary steroid 
metaboli tes 3 achieves greater precision of classification 
between responding and non-responding groups 
especially when combined with the latent period.~ 

Besides the problem of group overlap, classification 
of a patient simply as a responder (positive discriminant) 
or non-responder (negative discriminant) only gives the 
probability of response of the group (i.e., about 30% 
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2 
probabil ity of success for non-responders and 70% for 
responders), and results in an unnecessary loss of 
information in respect of an individual's potential to 
r espond to ablath·e surgery. 

The difficulty can be avoided if the size as well as 
the sign of the discriminant is used. We have done 
this with preoperative measurements of urinary 
total l l-deoxy-17-ketostcroids (l l-dcoxy-1 7-K.s.), 
urinary 17-hydroxycorticosteroids (17-0Hc.s.), and 
the time to ablation (latent period, or free interva l), to 
calculate discriminant values. 

Material nod Mell1ods 
Dr. R. D. Bulbrook and ,\tr. J. L. H:iyward of the 

Imperial Cancer Research Fund, London, kindly made 
av:iilablc data on 16-1 of their patients with ad\'anccd brc:ist 
a1nccr who w1derwent either total bilatcrnl adren:ilccromy 
or hypophysectomy. Patients having a regression after 
ablation were classified :is responders, the remainder as 
non-responders.$ 

Urinary steroid metabolircs were measured by the 
methods of Bu lbrook et al. 3 Urinary tornl 11-dcoxy-l 7-K.S. 
(i.e., retiocholanolone, nndrosterone, nnd dehydroepi:m­
drosteronc) were found to be equivalent to using a:tio­
cholanolone alone. Of the clinical d:ita the interval from 
when the patient was first seen, or when they had had a 
mastectomy, to the time of ablat ion was us.:d in preference 
to the conventional " free " intcrv:11 since it w.1s not 
available for all patients. We subsequently found that both 
intervals gave the same probabilities of remission. 

We used an extension of the Fisher • discriminant 
analysis which treats responding and non-responding 
groups :i.s samples of the true population and provides an 
improved account of discriminant analysis by considering 
errors made by tl1is sampling.' The consideration of errors 
also allowed a compariso:, to be made between estimates 
of the population prob11bilitics (referred to in the text as 
the estimate) and those obtained if the sample was reg;irded 
as the true population (referred to as the limit). 

Fis. l - Probnblllty o ( ren,ls,ion n(tcr bllnt­
crt1I nd"rcnnlccton>)' or h>1>ophne<tomy lo 
advunced brcnst ce1ncc r u:.inc n diJcrimin­
ant cnlculntcd from uri.t.1Ary atcrold 
mclcbolitc vn luc1. 
(•) Effect of popul3tion samplin&, showi ng ati­

mate curve (E) o! umplc and limit curve (L ) {or 
true populaiion. 

(b) Ptob•bility o! remi,sion at diffcr<nt ago o( 
ablation. 

Fls. 2.-Llmltcd p o tential !o r lmprovlns 
probabllltlcs !or older patlcnu. 

Fis. 3--Effcct o ( ti m e to l<bl11tlon (or free 
Interval) oo the J>robnbillly o( rcniluloo. 
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I ndividual p robabilities of response were generated by a 
progranune written in Fortr:m for the CDC 3200 computer. 1 

The output was plotted lo yield the probability of remission 
as a function of the discriminant. Figs. 1-4 were redrawn 
from the computer plots. 
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Results nnd Discu ssion 

Population Sampling and Age at A blation 
The effect of population s::unpling is seen in fig. la. 

\v'hen errors associated with the discriminant function 
statistics are n eglected the limit cun·e is obtained. The 
difference b etween the limit (L ) and estimated (E) 
curve is not ereat, revealing the absence of a major 
sampling effect on estimated probabilities. For 
example, a discriminant value of 2 read on the estimate 
curve results in a prob::ibility of remission of approxi­
mately 55% , whereas the limit that can be obtained 
from the true population is approximately 65% . Con­
versely, a discriminant of - 2 gives an estimate 
probability of 15?~ and a limit probability of 8% . 

The patient's age at ablation is an im portant 
variable when determining response (fig. lb). Urinary 
steroids seem to be of greatest rnlue in determining 
response when measured in women below the age 
of fifty. 

What potential is there for improvement in the 
older age-group with the use of these steroid meta­
bolites ? This can be determined by comparing the 
estim::ite and the limit prob3bility curves at :iges 30 
and 60 (fig. 2). With a discriminant of 1, at age 
thirty gives a limit probability :ibout 16% higher than 
the estimate, whereas the same discriminant at age 
sixty can be expected to be improved by only 8~~- It 
seems that in older women this urinary steroid dis­
criminant is neither useful nor potentially useful in 
detecting probabilities of remission. 
Time to Ablation (or Free Interval) 

When the latent period of the disease is substituted 
for urinary 17-0Hc.s. as a discriminant variable, we 
get a substantial improvement in the likelihood of 
remission in older patients (fig. 3), and a slightly 
diminished prob:ibiliry of response in the age-groups 
around thirty years. We do not know why slower 
tumour growth, as indicated by the latent period, has 
a more important bearing on the outcome of surgery 
than does the urinary steroid pattern in older women. 
Menopausal Sraws 

Although the cyclic-functioning ovary is a control 
mechanism of tumour growth in some patients, it docs 
not necessarily imply that the menopausal st:itus of a 
woman is a d c::termin::int of remission to major ablation. 
Some workers rcg:ird the menopausal state as impor­
tant, others disagree.1 Fig. 4 shows the estimate and 
limit curves for three menstrual groupings ; pre­
menopause, up to three years after the menopause, 
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and more than four years postmenopausal. 

The curves for premenopausal and postmenopausal 
patients are very similar to the age-probability curves 
in fig. 2, and the age forty ·10 forty-five curve in 
fig. lb. These findings suggest that the menstrual 
status may be an important d.:terminant of probability 
of response only in so far as it reflects the patient's age. 

Clinical application of discriminant analysis has not 
resulted in the hoped-for improvement in the selection 
of women for major endocrine surgery.~ The reason 
for this is the inability of the discriminam to identify 
clearly individual responders or non-responders. 

The probability approach to the use of discriminants 
for determining the likelihood of patient response can 
provide the clinician with more useful information 
when assessing the role of surgery in the individual 

- woman. \Vhcther the objccti\'e measurement of 
probability will be of greater value than clinical 
judgement of the likelihood of response can only be 
decided by a prospective study. 

Requests for reprints should be addressed to G. S. 
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BASIC RESULTS OF A STUDY OF BILATERAL ADRENALECT01\IY FOR 
ADVAJ,CED BREAST CANCER 

URINARY STEROIDS AI\l) RELATED DATA IN 148 PATIBNTS 

GORDON SAHFATY,° PAULA P1TT• A:-;o i\'hcnAEL TALList 

Cancer Institute, Melbourne, and University of Adelaide 

Mcd. J. Aust., 1973, 2: 877-8Sl. 

Over a five-year interv::il 148 w omen who had 
advanced breast cancer were treated by bilatera l 
adrenalectomy, A detailed preoperative study was 
made of their urinary 17-ketosteroid mct;ibolites of 
plasma androgens. In addition, a variety of clinical 
v ariables and t umour characteristics which might 
discriminate between responses to the t reatmen t 
were examined. Signific.int differences were found 
between rem it t ing and non-remitting groups for 
steroida l and c linical meas urements. Related s tudies 
suggest that tradi ti onal discriminant analysis may 
not be the best means of utilizing the results, 

Ix 19G7 a study of adrenaloctorny in a<lvanood breast cancer 
was commenced at tho Cn 11cor Institute, Victorin. Its aim 
wns to research tho potontinl for a clinically useful prediction of 
rosponso lo this form of therapy. A proliminnry nccoW1t of tho 
experimental design and initial clinical rosult.;i was presented 
in this J ournai in J 969 (Sarfo ty). We now prc3cnt n do tnilod 
summary of the basic dnta for l.J.S adronnlcctomics during the 
fivo-yoar poriocl HJG7 to 19i'.!. T heso rosult,s includo observntions 
of olinical foatures of Ute patient's iilne..s, tumour characteristics 

· and the excretion of urinnry steroid met.nbolitcs. 

Studies of foctoril that might bo useful in tho prediction of 
responso to ondocrino ablation are neither rocont nor novel. 
I n 1 OOO, Boyd reported on the clinical nspcct3 of remission in 
64 women wit.h odvnnoed brcns t cancer trcato<l by oophoroctomy. 
Tho subsequent introduction of treatment by mnjor endocrine 
ablation, ndronnlectomy nnd hypophysoctomy, nnd do\·olopmont 
of U1e qua ntitativo onolysos of urinary steroids, oncourngod 
further work on the prooperntive clns.~ification of response 
{Bulbrook et alii, 1960). 

Although clinical variables, steroid motauolitcs nnd tumour 
r ocoptor proteins (ro\·iewcd in Fairgrieve, 1065 ; Forrest nnd 
Kunkler, l!l68 ; Hayward, l 9i0 ; Breast Cnncor Task Force, 
1972) can ail be used proopcrntively to classify women os 
romittcrs, no successful clinical application to patient sclootion 
hns boon reported. Bocouso of this it socmcd t.hat a reappraisal 
of tbo general and spooiflc aspects of the response-prediction 

• Endocrine Research Unit. 
t Department oC Statistics, Unl\'crsity oC Adclnide. 

problem could be worthwhile. Our work hns boon espcciaUy 
concornod· with tho nnalysi.s of urinnry neutral 17,kctostcro id., , 
with the ooncopt of remiss ion, and \\·ith tho bio1oetrieol problems 
of applying tho results . 

\Vo hnve raised the question of the importance of tho;:o mat torJ 
pre\' iou.~Jy (Snrfoty, 19G9; Sarfaty and Tallis, l !liO(I and b). 
Tho discussion hero will be extended l\lld a propos,il mode fo r 
considering the response to ndJ"cnnlectomy M o. continuous 
process or varial>le. Dy this doflnitioo soroo point of rospon.so 
occurs at which it becomes pessil>Jo to class ify a pat ient as o. 
remittor o r non-remiUer to t ho alilntion. This nppronch should 
avoid tho difficulties of nnnlysos which o..'>Sumo disc1·ote categories 
of remission nnd non-remission. 

THE PATIENTS 

The J.18 women studied wore eithor pos t-monopntL5o.l or had 
hnd o. previous oophorectomy. If o. patient had had o. previous 
hysterectomy, gonndotrophin and ovarian hormone a s5nys wore 
used to <looido if thoro was cyclic ovnrian activity. At ndrcnnl­
ectomy oll womon had clissominot.od concer ; 51 % had been 
trentcd by syst-0roio drug therapy and 30% by a previous 
oophorcctomy. Oophorcctomy wos n ot always independent, of 
d1·ug thernpy. 

Po.tionts wore solcotcd for adronaloctomy when this was 
considered to be the best means of palliating continuing tumour 
growth. Tcchniquos of patient Msoss mont and other aspects of 
the protoce>ls hM·e boon <lescribod previously (Sarfaty, I OG9). 

A gonernl Moount of tho outcomo, in respect of op.::rative 
mortnlity, responso ond survival is summorized in tho following 
list. 

October, 1967, 

Total operations 

to Novembe r, 1972 

Dentbs o.t operation .. 
Mortality rate .. 
Unclassifiable responses 
Totul confirmed deaths1 

Claa81'jiable Patients {13.J) 
Remissions 

Remittcrs still in remission 
Romittcrs still living 

No remission 
~on-remitters still living 

14S 
4 
2·9% 

10 
103 

42 (31 ·3%) 
15 (11 ·2 % ) 
28 (20 ·8%) 
92 (GS· 7%) 
15(11·2%) 

A basio purpose of the work was to find vo.rinblos which would 
signiflcantly clnsis ify the di1Toroncos between romiUing and 

Address for reprints : Dr Gor<lon Sarf:1.ty, Head, Endocrine 
Hcscarch Unit, Cancer Institute, 2i8 William Street, )1clbourne, 1 13y inspection oC the death certffic~tc Issued by the nei;ls tra r 
Vic. 3000. ot Dirths, Deaths and ;\farriascs, Victoria. 
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TAIIL& 1 

Compariao11 of Cli11ica l /)ala f or Rrm itting nnd S on·Rtmiltino Patimls 

n e ntitters ~ on-Jtemlttc rs 

Clinkal Data ~ umbe r 
of 

Patients 

:'iumbcr of prc-~n:incics . . -1 2 
,\ce :it fi rst prc~M ncy (years) 37 
.Ace nt cl inlcnl <li:1i: 11o;i~ (yea rs) 42 
.A i;c nt n<ln·n,llecto n>y (years) . . 42 
Dd 3Y 111 rcportiu~ sym p toms (mouths) 42 
L:itcnt (" free ") In terva l (1110111 hsl 31 
Dinguos is to 3drr11:\lcct() 111r (rnouth5) -&:? 
.Adrcna kctomy to ,Jent h (111011 ths) H 
Dia~nos is to dcnt h (mo nths ) 14 
Surface ore:, (111 1) 41 

SD - stnn<la rd de via tion. 
a = Si~nific,nce dill",: rc ncc (I' < 0·05) } 
n.s. = l)iiTc rcncc not sli, uili cnnt Sec text, 
- - :X ot ~nalysc<l 

) kan 

2· 4 
20·8 
4!1·0 
5.& ·3 
H·S 
43·5 
63·4 
H, ·7 
i9·6 

1 ·07 

non-romilting groups. \Vo therefore collected data that might 
reasonably assis t tha t o.im. A:. somo res trictions h a ve to be 
placed on this type of datn ga t hering, we recognize the possibilit,y 
of important omissions. Thero wns , for cxamplo, no opp ortunity 
of oxnmining steroid recep tor proteins in t ho tumours from 
our pntiont.s . 

\ Vhcn all da ta wcro gnthcrocl and the pnt ie nt-s divided into 
two groups according to their clinical response , results bct woon 
the two groups woro tabula ted. S ta tis t ical s ignifica nce wns then 
mcnsurocl from t ho a nalysis of raw and lognri thmicnlly trnns ­
fo"rmccl d(,ta. \\'hero necessary, duo allownnco was made for 
discrepo.ncies in ,·ariancc between tho two groups. 

Data gnthcrccl from the clinical assessment of tho patients 
aro rccord<'d in Tabios I and 2. Of tho 3-1 observations, 01lly 
t wo showed significant di fferences be!.wccn romit!crs and 
non-remittors. Ono of theso was surface nren of the women. 
Tho other was tho timo interval bctwocn diagnosis nncl 
ad.ronalcctomy. 

This period includes tho lo.tent or "freo " interval which, 
although longor in rcmitlNs, did not reach s tntis ticnl s ignifican ro. 
It should l,c noted thnt a zoro ,·nlue for lo.tent period was g iven 
to pntients who did not have a mastectomy boforo :heir 
adrcnnlcctomy. 

The fact of Sttrfnco arcn being significantly different sh ould 
not bo surprising, as s teroidal hormone production o.nd excretion 
are ofte n n function of body size. 

Survh·al intervals, thnt is aclrennlcctomy to doo.th, and 
· diagnosis lo death, hnvo not yet been ana lysed. They cannot 

bo examined by s ta ndard methods as somo women iu the group 
aro still living. This bias, coupled with tho foot that new 
patients aro coming in nt random times, introduces a complicated 
t runcation cffoct which must be corrcc! <'d for in the estimat ion 
of men!'I sun·i,·a l. Special methods ha\'C been de,·elopccl to 
deal with this problem and a full analysis of survi,·o.l will be 
presented separately. 

The menopausal condition of patients is frequently discussed 
as a potential means of differentiating the responses to ndrcnnl­
ootomy. \\'c could not show a significant difTcrc nco in adrcnal­
ectomy remission rates between women who were prcmcnopa u.~al 
and those who were post mcnopa usnl nt tho onset of their cancer. 
Nor WM th<'rc any significant clifferenco in re- missions between 
t hose group~ and patients who went through tho monopause 
during tho intervnl bet wccn tho orig ino I diagnosis of their disco.so 
and t heir ndronnlcctomy. 

Clinical stngo at presentation, prcviou..:i drug therapy and 
site of moto.stat ic k sions do not si£!llifica!ltly different into tho 

SD 
~umber 

of 
Patients 

)lean S.D. 

1 ·5 92 
6· 1 7:l 
9·0 02 
8 ·2 92 

45·8 92 
30 ·3 67 
;,(; •9 02 

9·1 77 
73·1 77 
O·U 89 

2·4 Hl n.s. 
25 ·() 5·7 n.s .. 
GO ·O 9·3 n.s . 
53·() 8·7 n.s. 
3·7 9·0 n.s. 

32 ·6 37·9 n.s. 
42 ·7 45·9 s 
7·7 6 · 7 

50·4 48·2 
1 ·G l 0· 15 s 

res ponders. Po.tionts with visceral les ions are said to remit, 
loss often tha n those with lesions a t other sites (Fo.irgricve, 19G5). 

In the sample of pat.icnts reported here (Ttlblo l) no sig nificant 
difforonce.~ were found on compnring the remission rntes for 
visccrnl lesions with lesions iu non-viscornl s ites . 

TABLE 2 

Comparison, of C/i11ical Data for Rr111 itti11g (/~) 1111d .Yo11·ll<milli110 (!I~) Pat fr 11t, 

Cllulcal Groupins;s 

)!~ tcc tomr : 
~ o m:1.s1cctomr .. 
liuila tC'ral mas t('cto ,ny 
ll ila t ~ra l m,is tcctomy 

)lenopau «1I s ta te 
l're meuo ,>a U3a l 
Postme111JJ>:l.lti~\ I . . . . 
Prc mcnorau:,al a t dlai:nosls an<.! 

J)ost mi·nop:ius.11 at odrcu3J. 
ccto my . . . . . . 

Prc rncnop,u~a l at dl a~ nos is a nd 
J>0s100;,ho rccto mr :\t 3dre nal· 
cctorn y . . 

Oo pho r~c to rnr : 
Pro ph;-b ct ic oo;,horeetomr 
Th~rn,,cutic oo l'ho rcctomy 

Drugs: 
A ny drus; withi n 30 d:i)'s ofadrenal· 

ec tomy .. 
Corlico., teroids within 12 months 

o( nd rc n:ilcctomy 
Site of les io ns : 

Skr lctou 
Skin .. 
Lym1,h no<lcs 
!Jrcns t 
Pulrnonnrr 
J.h·c r 
Ce rehrnl 
Al>domin:il .. 
11:o•mopolclic and bone marrow 

Clinical srn~e of <llse.'\Se at rre· 
sc11tation: 

St,Ge 1 
S131(e 2 
St,.zc 3 
Singo 4 

?\Ou · l'ercentacc 
llemlttcrs n cmittcr,i o( Total 

l'nticnts 

8 
31 
3 

23 
H 

6 

16 

4 
l :! 

7 

0 

27 
27 
26 
11 
13 

0 
1 
0 
:? 

4 
15 
3 
4 

22 
65 

{I 

36 

13 
:?G 

15 

4 

GO 
54 
64 
27 
!?!I 

6 
1 
4 
3 

14 
41 
11 
11 

22 
;2 

6 

49 
43 

8 

39 

13 
2G 

16 

3 

65 
60 
67 
!!(l 
31 

5 
2 
3 
4 

13 
42 
10 
11 

It should be noted t-hat some of the abo\'o comparisons are 
bo.scd on small differences within subsets of tho d a ta. Examples 
are the number of patients having prophylo.ctic oophorcctomy, 
lesion sites such o.s liver, brain and abclomc- n, and bilatera l 
mastectomy. Conclusions whcro the numbers arc smnll should 
be rcgnrclccl o.s tentative. 

T H E TU M OUR 

I n 78 cases i~ v;•ns po1;Siblo to t race tho tumour specin;en or.cl 
to rcoxnmino tho his t.ology. Tho rccxnminntion was carried 
out by Dr R . :\Iottero.m, who cln.ssified and grnclccl the cnncer3 
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nccording to the Intorn,itionnl lli~tolog· :a l Cl:is.sification o f 
T umo ur.;, Xo. 2 (:3cnrff and T o rloni, l!JGSJ. F roquency of typos 
wos ns follows : 

Typo 
Duct-0.I 
Lobular 
Mcdullnrv 
Apocrino· 

Frequency 
66 (85%) 

8 (1 0%) 
3 (4%) 
1 (1 % ) 

R omissio n ratos wc ro co mpnrcc.l by tumour type, ductal grado, 
fibros is , and tho prc.;ouce of lymphocytes. DeCll.uSd of small 

numbe r:; avoilablo in subsots, m a:s: imum uso h o.~ been made o f 
data by pooling groups, i.o. cluctnl versus non-ducto.1, lo w-g ro.clo 
duclal vcrsu~ hig hor grndc.s, and so on. The results aro sho,vn 
in Tnblo 3. 

T .\ DLE 3 

Rt mi1&ion Ratt, and Tumour l'taturt & 

T umour Fc.,tures 

T ype : 
Durtal .. 
Xon -uuclal 

Doctnl i:rs<lc : 
J.ow (:nh lc (I) .. 
1 li~h,•r i.:ra ues ( II a nu 111) 

}'it..ros i$ ~ra(lrs : 
Xon~ to 111i1,l r11al ( - null +) . . 
~rode rate to 111axi111u1n ( + + 

nnd +++ ) 
Lymphucytc~ : 

Lymphocyt ~s nbscnt ( -) 
Lym phocyte~ prcs~nt ( + to 

+++) 

Xo 
Remissions Rcrnisslon 

16 
3 

10 
6 

0 

10 

17 

2 

30 
7 

17 
13 

22 

JS 

13 

u.s. - not slg111fica11tly uiffcrent (/'> 0· 10). 

ltcmlssion 
lt:>te 

0·35} 0 ·30 n.s. 

0 ·37} 
0 · 40 11·8• 

0·29} n.s. 
0·40 

O·n} P<O·JO 
0·13 

In agree ment with n number o f other st,udies (roviowed by 
H ayward, 1 !liO), no s ignificant diffe rences hnvo bee n · revealed 
for any of the groups. 

H owever, n po int o f inte rest ori.so.~ in connexion with tho 
prese nce of lymphocytes in the tumour. \\nilo tho difl'icultios 
of osscssing tumour ly,nphc,cytes aro recog nized, the remission 
rato is lower in tho women whoso tumours wcro a,;socintcd with 
lymphocytes . Thi,; cliffe rc nco was s ignificant nt tho 10% love!. 
If tho rolntio nship is ndid, there co uld bo an inverse ro lo of 
involvement by the immuno sys te m in tu111our rcsponso to 
ablation. A ln rgcr samplo of patients is ncodod to conlirm these 
results . 

THE URINARY STEROIDS 

Tho principal circulating androgenic stcroi<ls in plu_.,ma nnd 
their precursors aro knmn1 to be dchydrocpinn<lros te rono, 
d ehy<lrocpinndru·.terono sulphnto, andros tonediono and 
tostos tcro,;o (\'nndo \\'ic lo et a/ii, l!)G3). Tcstostcrono and 

nndrostcncdiono aro int('r con, ·ertibls, , while tho produc t;, of 
andros tono<liono me tabolism aro andros to rono (A) and ot iocho­
lanolonc (E). The Intte r two s tcrnids arc oxcrotcd in the urino 
a.s glucuronidc and sulphat<. conjug,itos . rlnsma <lohydro­
cpiandroste rone (D) and its sulphate uro also intcrconvcrt ible. 
Dchydrocpianc.lros terono is excrete d in tho urine M tho 
gluouronido, whilo tho sulphnto co njugato is oxcrot-0d direct ly. 
The glucuronide and sulphate conjugn t<'s of A, E nntl D comprise 
tho 11-<lcoxy fracti on of the total urinnry neutral 17-ket ostorlJids . 

Pre ,·ious ly re ported studios of and rogen m otnholi ted ha,·o 
conli11od their observatio ns to compound,; monsurcd ns combined 
gluc u ronido and sulplmto conjui:;atcs. Thus, whe n d iffo rs•nccs 
botwoon remiss io n and non.remission ha vo bcon found it co ul,I 
not bo decided whe the r they wero duo to rclnti,·o changes withi11 
tho conjugatc5 o r to changes in tho actual m otabolito icself. 

\\'o measm od separate ly in tho g lucuro nido and sulphoto 
conjugnte fractions of urino, lho to tal neut.rol 17-ketostcroid,; 
(17-KS), tho to tal ll -dcoxy-17-ket ostoroids , n.s well os t ho 
individual compounds de hyclroepiandros torono, anclros tcrnno 
nod otiooholanolo ne. 

)Iothods u .sod woro m odifications o f s tandard procednred 
invoh·ing spoctrophotom otry of tho Zimme r;,1a11n rcnct ing 
materia l in groupd of the s teroids, and gns-liquid cliromatogrnphy 
of trimothyl.sily!e thors for tho indivitlunl consti tuent s o f tho 
11 -dooxy groups (Zimmermann, 1!)35; Kirschner and Lipsott, 
l!)G3) . 

R osults nro shown in Tablo 4. St,ntisticnl tes ts rc \'cal 
significant clifferonoos for· s ix o f tho ton typos of compounds 
m easurod, again both on rnw and transformed dc,tn. \\'e 
cannot satis fl\Ctorily explain why the snmo compo und(~) 
conjugated as glucuro nido or sulphnte vary in s ig nificnncc botwce11 
romitte rs anc.l non.romitters. 

GENERAL DI SCUSSION 

Bilatornl nclronnlectomy ns pnlliativo treatment for advnneecl 
breas t cance r has n numbe r of aclvnntogo;s ove r othe r forms of 
sys t.e m ic therapy. Hemission rates and time in rcmi.;sion aro 
hig he r for adrcnolcc tomy tha n for eithe r ho rmo nal or cyto t oxic 
lhc rnpy (At k ins et al i i , J9GG; Byron, 1067; Dno and Xemoto, 
l !)G5; Sarfaty, Pitt and Tallis, unpubli~hcci' o bsci·vn t io 11s ). 
On recovery from ablative surgory, t hn pnt.iont. is not chro nico lly 
clisturbocl by tho hau,rcls nssocinted with cytotoxic drugs and 
pharmncological closes o f. h ormones. 

'rho disodvantagcs of a<lrcnolcctomy aro the ro lativc ly low 
remiss io n rate, the opera.ti\'e m orto.lity, and the need for n m a jor 
surgioul proccdmo in patients whoso remaining l ifo expectancy 
is limited. At t ho time ndrcnalcc tomy is co n templated, tho 

TATI!.E 4 

Co111parito11 of Urinarv Stnoid1 (µ'}/ U hr,) f or R t111 itti11'} a11d So11-Rtmitti11u J>atim/1 

Urinary Steroids 

Olucuronl<le frnc tiou: 
Total 17·kc10.tcroi<I, 
Tota l 1 l ·u·~oxr-17-kctostcrokl• 
Awlros terou c 
F.t ivcliot:uaolono . . . . 
Drl,ydrO<'riandros tcroue .. 

Sul1°ha!c fractinri : 
T otal I 7-kc cost croitl., 
'l"otnl J f . ,h-,,xr-17-kc tostcroitls 
Andrc,strronc 
}:t iorhol:u10lont: . . 
DrJ,y1lruepia1ttlrostcronc .. 

SO .- ~ tn11clan1 <.h·viatio11. 
a ~ ~h.:11i1ic·ant <liffcrcucc (P < 0 ·05) 
iu.-Dilfcrencc not alg1tltlc.a 11t 

Xumbcr 
or 

Pa tients 

} See text. 

It emitters 

Mea11 

3,510 
2,059 

671 
987 

23 

90-.! 
403 
172 
167 
148 

SP 

1,220 
1,103 

510 
506 

45 

530 
34:! 
l i2 
H 9 
1113 

JSum~r 
of 

Pnticnts 

86 
85 
86 
87 
78 

76 
85 
87 
67 
79 

JSon-Remltters 

llcan SD 

2,700 1,340 a 
1,329 llH s 

548 710 n.s. 
716 5H g 

110 575 n.a. 

1,626 750 n .J1. 
2;6 295 8 
so 121 a 

107 l:!O ~ 

103 H 8 n.s. 
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oxpoctnt io n from broCL.~t cnncer life tables is nbou t th ree yonrs 
(Tl\llis et a/ii, 1973) nnd in ottr p rcsou t, group wl\s nbout 12 ruonths 
(Tobie J ). Sove n ty -oight pe r con t, o f t,ho wo me n tuw o nlroacly 
had pre vious m njor sttrgory, oithnr a unilnw rnl o r bilat.ora l 
ruostcctomy. 

It is nlso commo n for pntionts nt th is s tago of t he disease to 
h rwo b con t ron tod wit h rtid iothornpy, ho rmones o r cytotoxic 
drugs, e ilhor serially o r in combinl\tio n. A furt her dis::u.h-a n ta3e 
of mnjo r ablat io n is t ho posto pom t ive nrod of continua lly 
supon·ised corticostero id roplaoom ont U1c-rnpy. 

In this p ositio n i t, would be idoal t o Jrnvo a cloor-cut pro nounco­
m on t on tho oxpoc tnncy of remission , nnd thercforo avoid 
tmnocossnry trea t m ent for pnt ionts who will n ot benefit. 
Howovcr, e ven wit h intons ivo studios no major c linical applicat ion 
has rosullod. T ho ton -yonr resea rch of storo id -bnsod discrirn iuanls 
closc ribed by Atkins nnd his collonguos ( 19GS) co nclur!c-d w ith : 
"hopes of a s ingle , nll-ombr:icing test tha t would d.ifJcront into 
clearly between responsive and UJ1J·ospousivo patients have not 
boon rcalizo<l." 

\ Vha t nro tho rcnson.s for t his foiluro ? Ono possibility is 
that t ho pnrnm ot-ors cnnnot d isting u ish botwoon two poptllntions . 
\Vo havo minimized th.is in regnrd to steroid O:"Ccrotion by 
ostimnt i.ng those compounds in fivo-dny u rine collectio ns (Sarfoty 
ond Tnll i~, J !) i Oa). 

Another ron.son may bo tha t romission ond no n -remission 
catogorios nre tu1ronlistic whon cance r gy-ow!h is considered 113 a 
b iological pheno me non. If this is t rno d iscrote categories may 
be a rtefact s of tho methods used for nssos.smon t o f pat ients. 
As a coro llary, c p ply ing discriminants t-0 dnta nnah·s is m a y not bo 
tl;e optimum npproach to sogrogn t ing t ho t wno~r ro~ponsos to 
ablatio n. 

\ Vhon it occurs , regressio n of the concor takes pince over n 
variable t iruo. Soruotiruos tho p rocess is ro.pid and dramat ic, 

somoLimes i t is s lo w nn<l cnn only bo dccidod in ret rospec t . 
I n our o wn coses i t has t a ken up to e igh t m onths , with rcpcntecl 
les io n m onsurom on t and skele tnl SttrVeys , lo be reasonably 
oortai.n of response classificat io n. On other occasions i t a pp<'arod 
tha t gro,,·th become stntic a nd ne ither p rogrossod nor r('grcs~od. 
I n o the r pnt ion ts growth appears to con tinue, but at a slower 

. rnto than p rovio u.~ly . R nroly, the response scorns bizarre w ith 
t um our progressing a t 0 110 s ite e.nd rogrnssing a t a nother. 
Loss objcc ti ,·cly, pnt icmt.9 somot.imos ins ist tha t t,he ir cond it io n 
h as improved , but no o bjective basis 08n bo mado out for th is. 

Those nppe rent reali t ies of the tttrnour-host relat ionship a.re 
difficult, to reconci le wi th n dichotomy of clin.ical resp onso. This 
m ay bo partly clue to tho impreciso techniques 1wnilable for 
olinicnlly m cn.,;uring twnour g rowth and t o the need for their 
freq uont,, cri t icnl applicatio n. Anothe r factor may be t he stro ng 
n atural closiru to c.lomons trnto a " cttro " with pro.soot ca ncer 
thorapios. This cnn load to a misunders tanding o f what is 
ach ieved by endoc rine ablative thornpy. 

\Vith clinical tools, nodo, sk u1 , bone and viscernl lesions 
m ny bo unclot<:ctable a n c.l indis tinguishable from zero growth rate . 
But wo kno w t hat rccttrronce is inev ita b le . ·n 10 re.,ult ing 
diffic ulties of classify ing the out<:ome of ablatio n p ro m pte d 
Bulbrook et a/ii ( I !)GO) to u se a third, u1tormediato category of 
rosponso in h is disc rimina nt s tudies. A thrco-cat<.>gory cl0-"S i­
tication confounds tho analys is which requires a blation respo nso 
to be a. dichotomy. 

D iscrimina n t fw1c tions havo boon calculated in this conte x t 
bocauso the p ro blom was co nvonion t ly tho ught of in t e rms of 
a mix ed popula tion. While c.liscriminont a na lys is (F ish e r, l !l36) 
is B cla.ss icol and useful techniq ue for assigning on uncln.;:; ifiod 
m ombor o f a mixed populatio n to ono or othor oompo ne n t , i ts 
a pplica tio n to tho s it uation in b roast concor m a y bo inappropriate. 

\Vo considor thnt ablat ion response should not bo regarded 
OS a mixture, but t\~ l\ homogonoous continuous p ltonomenon. 
111 this conwxt discriminant analysis o r m od ificotions o f it 
(Tallis, l!liO ; Tallis et alii , Hl i O) is not t ho desirable statistical 
t oclmiquo to apply to t ho t~rnour g ro wt h nisponso following 
a b latio n o r any form of anticancer therapy. 

A moro rensonable rnodcl migh t bo t o con~idcr twnour g rowth 
as o con t inuo\ls vru-inblo nod iho classificnt ion o f rcmis$ion a , a 
thrusho ld phenomenon. 11rns whe n o cor tn in point o f dimin i~h,:-d 
tumour g rowth is reached following nd.ronnlc<.:tomy c lin ical 
romiss ion is cons idered p resent. 

This clinicnUy-de finotl po int o f turuo m· g ro wth rato wi ll 
result iu nn artiucial clonvago o f the populnt.ion to provid,:i a 
g roup o f pation ts \ThO a ro said to bo romiitors by p resently 
usod c ri terio . 

If rcsuks of tho obscr-Yatio n wo h a vo p roscnterl a ro considcr.:od 
in this way , Sllilab!o s t at istical t reatment cnn recognize romii tin; 
a nd non -remitt ing g roups nnd quantify tho pro bability oi 
remissio n. 

The not result may scorn no different fro m provious aims o f 
finding re mission probabilit ies (Snrfot,y nnd T nllis , H> i Ob) . 
Tho fo<:t is , however, that the now ana lys is will not be l,a_.;od 
on a poss ibly orro noottS assumption thnt lltmour growth rato 
in br.;inst Ol\ncor is a m ixocl poptllnt io n phenomenon. T r,:,ntiog 
tumour growth as a con tinuous variable should lcad to greater 
accuracy and cnn prov ide furthor oppor tun it ies fo r do\·elopmcnt 
in th is field. 

In sum,nnry, it is clear fro m the p rosont work that it is po:;s ib lo 
to detect s ta t ist ically s ignifican t d ifferences between re miss ion 
and no n-remission p-oups as curren t ly defined. T hcso di ffcr,:, ncc.; 
a ro p resent, in respect of host pnram e tc rs , t hat is , t ho timo 
intorvnl of k.t1o'l'.-n disease, surface nron nncl u rinnry stc-roid 
m etaho lit,es. Thero aro no significaut differences uetwcc'n the 
g roups in rospcot of tho tumour chnrac lo ristics dealt, wi th hero. 

Definition of s ignificnnt di fforonces botweon the t wo g ro ups 
is no gunrnn tco o f u.~cful cl inica l applica t ion. R cspouso t o 
aclrona lectorny may best be rogarc..lotl ns a con t inua lly graded 
change in tumour gro wth, preserving t he torm3 remiss io n nnd 
no n-rc rn.issio n as convoniont oxprossio ns for present cl inicc1l 
practice. 

:'lformwhilo, applica t io n of the p resen t results to defining n 
pat ien t 's probnbili ty of remissio n is p rocw ding. If car~iully 
a pplied, tho toch.niquo is like ly to improve pa tie n t selection in 
what to dato has b-Oe n a mnttor of a n in tu it ive juclgcmont,, oft s?n 
difficult for both pationt and surgeon. 
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INTRODUCTION 

We conside r the general situation of a mixture of two populations II 1 and II 2 • If 
X is a random vector of measurements assoc ia ted with each individual of the popula­
tion, a model for the density of X is specified by 

(I) 

where.ft(x) is the density of X in TI1, i = l, 2, and p is the proportion of individua ls 
in II1 • 

A classical sta tistical problem is to assign individuals to either T/1 or ll2 on the 
basis of tbe observed vector X = x. Another way of looking at this is to calcula te the 
conditiona l probability tha t the individua l belongs to 1I1 , say, g iven X = x. This 
probability is given by 

(2) 

Under the usual assumptions tha t X is <listribukd as a multi normal distribution with 
mean vector 11 and cova riance J:, N (J1, E), P(x) reduces to 

P(x) = ( 1 +] exp {2d' X - µ~ :r-1 
Jl2 + µ{ .r-1 µ1} r 1 ' (3) 

where d = 1:- 1 (µ 2 - 111) is the vector of discriminant coefficients. For an analogous 
but alternative approach, see Cornfield and Truett (/). 

The purpose of this note is to propose a diffe rent model which should have wide 
applications. The results will be developed and discussed using the specific example 
of clinical response to adrcoalcctomy in women with breast cance r. 
Copyri&J1t C) 1975 b y Ac,<Jcmic Pr<ss, Toe. 1 
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THE MODEL 

We are concerned with predic ting the clinical assessment of r<'mission and non­
remission in women sufferi ng breast ca ncer fo llowing adrenalectomy. In this context 
Il1 is the popula tion of a ll wo men with the disease who remit and 17; is the no oremit­
ting popula tion. T he vector X consists of certa in measu rements made on each woma n 
and may include age, su rface a rea, certa in time intervals related to the disease, and 
some chemical assessment o f the internal hormon:11 environment. The sta tistical 
exercise is to esti mate the chances of remission prior to the operation. 

It seems reasonable to postulate that response to adrcna lcctomy is con tinuous 
ra ther than discrete as required by the mixture /(x) described above (see Sarfaty 
et al. (4)). In fact, le( X0 be this response, X0 being closely associ:-i tecl with the rate of 
tumour growth. We assume that X0 and X have a density func tion g(x0 , x). 

Now the clin ica l condition of remission is rega rded as occurring if and only if 
X0 > a, for some fixed constant a o n the response scale. Thus, nonrcsponse corre­
sponds to X0 ~ a. If this is so, the classification remission and nonrcmission intro­
duces a truncation on X0 , the tru ncation being effect ive in (11 + 1) dimensions. Thus 
the remitting popula tion has density func tion 

h(x0 , x) = g(x0 , x)/a(a), (4) 
where 

co co co 

a(n) = J · · · f J g(:x0, x)d:x0 dx. 
-Q) - co a 

What is required is the conditional density of X0 IX = x, 

q,(xo lx) = g(x o, x)//.: (x), 

where k(x) is the joint density function ofX. If P (x) = Pr{Remission!x}, then 
co 

P(x) = f </>(x0 lx)dx0 • 

a 

(5) 

(6) 

In order to apply the above model, we assume, with no loss in generality, that X0 is 
sca led so tha t E[X: ] = 0 and var [X0 ] = 1. Moreover, suppose g(.,·0, x) = N(v, I), 
where 

V = [:], }: = [! ~], 
µ = E[XJ, var [X) = V, and cov [X0 , X) = a. 

Then by standard distribution theory, 

</>(xolx) = N(a' v- 1(x - 11), 1 - R2), (7) 
where R~ = a' v-1 a. 

If 
a 

J e-1212 dt 
<P(a)= ~ ' 

2n 
-CD 
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then finally, 

P(x) = l - c1,(a - u' v - i(x - JI)). 
Vl-R2 

Put W = q' v- 1 (X- p); then var [ W] = 1e, E[IV] = 0, and 

P(x) = Q(u,R) = 1- <I>(~- Ru) 
, l - R 2 

3 

(8) 

for U = W/ R. The function Q(u, R) can be plotted as a function of u for -3 :::;; 11:::;; 3. 
Clearly, 

1, II> a 

Jim Q(u, R) = -}, 11 = a 
R .. 1 

0, II< a 

which specifics the optimum probability curve. Thus, in genera l, the larger R, the 
more desirable the probability plot, since by suitably scaling X0 it can be assumed 
that R ~ 0. 

By const ructing Q(u, R) for various subvectors of X, the plots of Q can be com­
pared and the effect of omitting certain variables from the analysis assessed. This 
technique is illustrated in the next section. 

From first principles, or by specializing (3) of Tallis (5), the expected value of X
1 

when X0 > a is 

ER[X,] = Jt, + <J1 Po, <p(a)/o:(a) i = 1, ... , 11, 

and when X0 :::;; a, 

E.-:R [X,] = JI, - (J,Po, q'J(a)/ [l - a(a)] i =I, ... , 11. 

(9) 

(10) 

Thus the effect of the truncation is to produce two different vectors of means ER [X] 
and E"''R [X] as in the mixture model. 

We note tha t part of the above development is essentially that of Hannan and Tate 
(2) who investigated some extensions of the classical biserial correlation model. 
Equations (9) and ( 10) arc given in vector notation in the latter paper, but applica­
tions of the general model to personalised probabilities a rc not discussed there. These 
general procedures may extend usefully to situa tions where there a rc more than two 
classes, but this matter will not be pursued further here. 

EXAMPLE 

The following measurements were made by the Endocrine Research Unit, Peter 
McCallum Clinic, on 120 women with breast cancer who had an adrenalectomy 
(Sarfaty et al. ( 4)): 

Y1 = Age at clinical diagnosis 
Y2 = Surface area 
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Y3 =:= 17-Kctoste roid glucuronide 
Y4 = l l-Dcoxy-1 7-kctosteroid glucuronide 
Y5 = I J-Deoxy-17-kc tostc roid sulpha te 
Y6 = Androstcronc glucuronide 
Y7 = Etiocholanolone glucuronidc 
Y8 = Androste rone sulpha te 
Y9 = Etiocholanolo ne sulphate 

Y10 = Time delay before reporting 
Y11 = Repor ting to adrenakctomy 

The means and sta ndard devia tions of the Y, for women in the remi tt ing a nd non­
remitting groups a re given in Table 1. 

T ABLE 1 

MEA1'S Al\1) STA:-DA RD D EVIATIOSS FOR THE Y, 

Rcmitlers (111 = 39) Nonrcmit ters (112 = 81) 
Mea n SD Mea n SD 

Y1 49.45 8.97 50.85 8.74 

Y2 l.67 0 .14 1.61 0.15 

Y3 3.56 1.20 2.68 1.28 
y~ 2083.72 11 96.71 1320.44 944.58 
y~ 495.05 346.84 283.94 298.86 
y6 684.31 510.56 538.14 722.24 

Y1 993.56 510.79 694.64 517.37 

Ya 174.49 174.69 85.21 121.92 

Y9 162.80 148.03 108.65 119.06 

Y10 1.31 4.03 0.26 0.55 

Y11 5.41 4.91 3.68 4.02 

The proportion of women in the remitting group, 0.325, provides an estimate of 
a, a, as the solution of 

Thus a= 0.454. 

0) 

r cp(t )dt = 0.325. 
a 

Jn order to apply normal distribution theory, it was assumed that X, = <P- 1 [F1( Y)], 
i = 1, .. . , 11, have a multivariate normal distribution with mean O and covariance 
mat rix equal to the correlation matrix R. The func tions F1( · ) arc the respective mar­
ginal d istribution functions oft he Y1, and <1>- 1 is the inverse function of the sta nda rd 
normal probabil ity integral <f>. T his model is an extension and a new application of a 
model reported by Mora n (J). U nde r this type of t ransformation, scale and location 
a rc standardized while the rela tionship between the variables Y1 is preserved. This is 
what is required for the present problem. 
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In order to apply this theory, it was conven ient to trivially mod ify the original Y, 
to avoid the possibil ity of ties . Th.is was done by first scaling the Y, to eliminate 
decimal quantities and then addi ng a fi\'e-digit random number 0 11 (0, I) as a new 
decimal. Thus if the scaled Y, was 11 32, then the modified va lue might be 1132.14527. 
This effectively removes the possibility of ties and simplifies the application of the 
theory. 

For each modi fied Y, , a sample distribution function is constructed, F,"(y), where 
11 is the sample size. Thus, we a rc concerned on each margin with the ordered sa mple 
Y,cll, Yici i, .. . , Y l(nJ, which defi nes F/(y) uniquely. T he required transformation 
model is then approximated by mapping Y ICi> to u1, where ui is the (j/11 x lOO)th 
percentile of <!>. Such a form of approximation is necessary since the individual 
F1(y)'s are unknown. 

This proced ure was followed for each c!c ment of the 120 vectors of observations 
Y, and produced 120 new vectors which approximated X1• Each component had an 
identica l mean and variance of 0.0333 and 1.0658, respectively. The deviations from 
the theoretical values ofO and l arc clue to the approximation used in transforming 
Y,c12o>, but they diminish with an increase in sample size. The correlations between 
X1,J = l, .. . , 11, were calcula ted by standard techniques and are given in Table 2. 

TABLE 2 

CORRELATI0 !'-1 TABLE f'OR TIIE X, 

Xo X1 X2 X3 x, x5 XG x, Xs X9 X10 X11 

p' - .09 .24 .39 .44 .36 .30 .39 .39 .30 .17 .27 
1 -.15 -.24 - .25 -.12 - .JO -.21 -.15 - .14 - .08 -.47 

1 .20 .J 7 .16 .09 .23 .13 .14 .05 - .JO 
1 :n .46 .56 .82 .49 .56 .13 .13 

I .53 .64 .79 .49 .42 -.11 .06 
C I .40 .51 .69 .62 - .05 - .02 

1 .67 .50 .36 - .10 - .03 
I .53 .59 - .05 .10 

I .71 - .12 .04 
I - .07 .10 

1 -.21 
1 

Jn order to estimate Po;, i = 1, ... , 11, use was made of formulas (9) and (10) which 
when solved for p0 1 and substituting observed values of 111 = 0.033, ER [Xd = 5:lR, 

ENR [X1] = .'i",sR (see Table 3), fJ = 1.0658, and d = 0.454 yields 

,. 0.325.\"IR - 0.675.\\rn + 0.35 X 0.033 
Pot = 2 X 1.0658 X cp(a) 

These values are recorded on the top line of Table 2 also. 
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TABLE 3 

SAMPLE MFJ\SS Of THE X, FOR RE~IITTERS AND NO:sillE~IITTERS 

Rcmittcrs Nonremiucrs 

X1 -0.075 0.086 
X2 0.305 -0.097 
XJ 0.475 -0.179 
x, 0.533 -0.207 
Xs 0.440 -0.162 
x6 C.374 -0.131 
x, 0.475 -0.179 
Xs 0.479 -0.181 
X9 0.375 -0.131 
X10 0.229 -0.061 
X11 0.346 -0.117 

The estim ate of the multiple correlation coefficient R was!?. = 0.702, and using this 
parameter estimate, Q1 (11,R) was tabulated agai nst 11 (Table 4). 

TABLE 4 

PRODABLLITY VALUES FOR Two GROUPINGS OF TIIE Y, 

I( Q1 Q2 

-3.0 0.00016 0.00023 
- 2.5 0.00096 0.00126 
-2.0 ·0.00453 0.00551 
-1.5 0.01714 0.01 953 
-1.0 0.05223 0.05648 
-0.5 0.12915 0.13425 

0.0 0.26196 0.26498 
0.5 0.4<1267 0.44055 
1.0 0.63643 0.62889 
J.5 0.80012 0.79028 
2.0 0.90909 0.90076 
2.5 0.96625 0.9611 6 
3.0 0.98987 0.98755 

The variables Y5, Y1, Y 9 were deleted from the analysis and Q(u,R) was recalcu­
lated, Q2 say, with R..=0.691. These variables a re difficult and strenuous to obtain 
and it would be desirable not to have to measure them on the pre-adrenalectomy 
patients provided the probability of response is not drastically a ltered. The function 
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Q2 (11, R.) is nlso tnbulated (Table 4), and it cn n be seen that the overall effect of 

omitting Y5, Y1, Y9 is negligible. 

D1scuss10N 

Ah hough the model for P(x.) as specified by Eq. (S) has been developed in terms of 

a specific biological situntion, it is clear that the results have a wide potential use. 

Whenever a population is dichotomized by mc:rns of a truncation as hypothesized 

for X0 , (S) mny provide a suitable means of calculating conditional probnbilities for 

the occurrt!ncc or nonoccurrcnce of a particulnr event. Jn genera l, then, if the e\'ent 

A is associated with a < X0 and the complimcntnry event A with X0 ~ a, (S) gives the 

conditional probnbility of A given X = x.. 

Specific applications to response and non response to t reatment in nny trials where 

response is assessed on a go, no-go basis follows by direct analogy. Whenever a 

continuous response coupled with a threshold principle specifies a reasonable model 

for the process, these results provide a more attrnctive analysis thnn the classical 

mixed populnt ion approach of discriminant :111nlysis. The fact is tha t in many cases, 

two populations do not exist and one is invariably involved with truncat ion in a single 

population . 
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ABS'l'RACT 

The optima l allocation of medical treatment when the probability of 
response is a known fw1ction of measurementz made prior to the treatment 
is discussed . The treatment of women with advanced breast cancer is used 
as an exampl e . 

1 . INTRODUCTION 

In ~1is note we consider the problem of the optimal allocation of 

· t reatment for a specific disease when the probability of response is some 

known funct i on of measurements mace on the patient prior to treatment . 

Let there be k eligible treatments , T1 , T2 ••• ~k , and suppose a vector 

·! of measurements is made on each patient leading to probabilities of 

s uccessful treatment using T · l. of Pi (~), i=l ,2 , . . • , k. We require an 

opti mal procedure for deciding when to use T · l. for any given patient . 

It is i ntuitive that Ti should be used when Pi(~} ~ Pj(~), 

j =l, 2 , · . .. k . 

whether T· l. 

I f 

or 

P · (x ) = P · (x) l. .. J .. for some i :/:j ' i t is evidently immateri al 

T· ) is used and the decision of which to apply should be 

made on ot:1er grounds. 
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We show that the above procedure is optima l in the sens e tha t it 

maximises ~he expected probability o f treatment response. Some extens ions 

of these ideas are su9:1ested and the specific application of the result s 

to the treatment of women with advanced breast cancer discussed. 

I t wi l l be a s s umed that X has a distri bution func(ion t (!). In 

practice , $ does not have to b e known for the procedures to be applied . 

2. METHODS 

We need the following standard result s t ated by Rao (1965 , p377). 

Lemma 

Let fi( f ), i=l , 2, . . . ,k, fi{~) =-I= fj(:f) i =-l=j be µ measurable 

f unctions mapping En to E1 · and such that f E)fi(:.!?) Idµ < w for 

all i. If. Ai ,A2, . .. , Ak is . a partit·ion of En, Ai \J measurable for 

all, i , then the integral ril JA .f i(;)dp i s a maximwn .for Ai=Ri 
'l, 

where x ER· 
- 'l, 

imp Zies that 

i s .a part ition of En . 

'f>roof 

for aZZ j 

We now apply the above ·result to the problem of defining optimal 

p atient selection criteria . I f X i s n-dimensional , we need regions in 

n-space , Ai, such that when ~ E Ai,Ti is used as the treatment for the 

p articular patient. It is required to choose 

is a maximum , where 

A· l. so that 

Using t he l emma , l et f i(~ ) = Pi (~) and dµ = d~; Ai = Ri where 

~ E Ri impl i es that Pi(~)~ Pj (~) for a ll j and R1 , • • • ,Rk is a 

p artit i on of En. The proportion of patients to get T· l. i s Oi, where 
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A special case of interest is when k=2 and P2 (·) is independent 

of x. Now R1 = {~ : P· (~) ~ P2} and 

8 (Rt , R2 ) = (l-cx1 ) P2 + f Rt P1 (~) d~ (~) • 

3. EXTENSIONS 

There arc obvious extensions of the above ideas. For instance, if 

the disease is potentially l ethal , let L be the survival time following 

treatment. It can be anticipated that the density function for L will 

depend on x say. In practice, after T· l. is given, 

further treatments may be applied . Thus gi . sununarises the overall 

effect of giving Ti first, followed by additional treatment, on the 

survival pattern. 

Put ITi(x) = J~i .gi(i ; ~)di, i=l,2 , ... , k . Then E [L] is a maximum, 

where E [ L] = l~=l f Ri ITi (~) dct> (~), when Ri = {~ : ni (~) > Tij (~) Vj}. 

4 . APPLICATION 

As ·a particular example we cite the treatment of women with advanced 

breast c ancer by adrenalectomy, T1 and radiotherapy, T2. Previous work 

of Tallis, Sarfaty and Leppard (1974) has investigated the relationship 

between the results of adrenalectomy and measurements , ~' made prior to 

the operation. These measureme nts , for example , include the age of the 

woman when reporting with breast cancer and the level of various steroid 

concentrations. The probability of clinical remission as a result of 

adrenalectomy was estimated as a function of these variables . As a 

consequence of this modelling, a score U = u is assigned to each woman 

based on her particular vector of measurements, where U ....., N (0 , 1), in 

the population of all women with breast cancer . The probability of 

remitting as . a result of T1 given U = u is then 

Pi (u) = l-~{(a-pu)/(1-p 2
/'}, 411 (y) = ~(y ) = exp{-y2 /2}//irr, 

where a and p are parameters intrinsic to ~ and remission to Ti. 
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Estimates of a and p are . 466 and .7121 respectively, (cited reference). 

Remissi on to T2 is not known as a function of X but is about .25 

on a group basis. Nm,· the equation 

P1 (u) = 1 _ ~(· 466- . 712lu) = _25 
/1- . 71 21 2 

is satisfied for u ::::: O, . and hence all patients with u > O have T1 

and those with U ~ 0 have T2. The overall performance of the procedure 

is measured by t he ave rage remission r ate 

&(RJ ,·R:?) = . 25 x .5 + .5 Jo P1 (u) 4> (u)du = .40 , 

since a1 = J~ q,(u)du = . 5 and Jooo P1 (u) q,,(u)du = .54 by numerical 

integration . This compares with the overall r emission to adrenalectomy , 

T1 , of . 32 . 
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FOREWORD 

These tables were produced to assist with the study 

of breast cancer by the Endocrine Researc~ Unit, 

. Cancer Institute , Melbourne. The technology required 

for their calculation was developed by the Department 

of Statistics , University of Adelaide, and the necessary 

data were supplied by the Central Cancer Registry of the 

Anti-Cancer Counci I of Victoria. 

,I 
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I Introduct i on 

Breast cancer is the commonest mali gnancy of women in 

middle-life and accounts for about¾ of all cancers of women 

(Ross, 1969), The mortality rate in Australia, a s e lse whe r e 

in the world, is approximately 240 per 1,000,000 (Commo nwealth 

Bureau of Census & Statistics) and has remained uncha1!ged f o r 

the last 20 years. 

Since th e incidence of this diseas e h a s not alt e r e d 

appreciably over the years, this appears to show th~i t he 

various treatments adopt e d have been ineffective, despite 

pdvances in surgical and other techniques. Research indicate s 

that growth of breast cancers is closely related to the 

quantitative secretions of the steroid synthesising endocrine 

glands. 

As the development, growth and senescence of the 

endocrine glands is age related it is important to know wha t 

age structure exists in the mortality due to breast cancer. 

It is also desirable to know if tumour types, disease stage 

or treatment affect age specific morbidity. 

To develop this type of information requires initial 

access to a large body of data on breast cancer in women . 

This was obtained from the Central Cancer Registry, Melbourne, 

[Rankin, 1971], through the co-operation of Drs . N. Gray and 
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R. Rankin of the Anti-Cancer Council of Victoria .· 

A project was therefore set up with aims to: 

1. Construct a full set of life tables from registry records 

2 • 

1946 to 1970 ; 

Disassociate the contribution of the disease to mortality 

from that of other causes so that the relationship of 

morbidity to age could be studied . 

3, · Apply the technique to an assetsment of tumour histology , 

stage and treatment. 

The subsequent discussion will be primarily concerned 

with the technical problems of achieving these three objectives . 
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II THE DATA 

( a ) The Layout 

3 . 

The form of recording relevant information on each 

registran t has been standardized by the Registry and is 

reported e l sewhere Rankin (1971). The pertinent available 

dat a from t he point of vi e w of con~tructing the life tables 

were ; 

1. the year of regist ration; 

2. the age at registration (see Table I) 

3, the numbe r of years survivin g r egistr ation ; women living 

longer than 15 years after registration are simply recorded 

as having survived this period ; 

~. the es timat ed time delay , subsequently referred to as lag , 

between fi rst observing the disease and registration (not 

available for all regis trants ). 

TABLE I 

Age Distribution at Registrat i on 

Age <30 30- 39 40-~9 50-59 60-69 70- 79 >8 0 

Frequency 62 599 1774 1988 2280 1746 647 

Further information allowed the data to be subd i vided 

according to various factors into subsets but a certain basic 

layout of al l subsets of the data was followed consistently 

throughout the analyses . All women who h ad been ob~ erve d for 
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a period of fifteen years or more were qlassified according to 

the number of years surviving registration. This proc ess was 

repeated for all women who had been observ ed for fourteen years, 

and so on. The following table summarises the procedure. 

Years 
observed 

1 

2 

. 14 

15 

Total 

TABLE II 

General Data Layout 

No, dying in 
x=l 2 

n2 , 1 n2, 2 

n1s,1n1s,2 

xth year after registration 
14 

It should also be noted that 

1 
En1 j+S1 =N1 

j;: 1 
i = 1, • •• 15 

15 

where s1 = number surviving period i . A numerical example of 

T:-.,.ble II is given in Section III (Table V) o 

Women who were lost to the Regis try due to incomplete 

f'0llm1 up were entered in the rem corresponding to the number 

of years they surviyed bef'ore their record was terminated. 
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5. 
The data we re then corrected for lag as outlined in the next 

section and tables analogous to Table I I constr ucted . Hence 

t i1e period of observati on effectively dates from when t he 

d :.sease Vias first discovered by the patient . 

No te that the procedure of the previous paragraph 

requires t he ass~nption th a t the data are stationary from the 

point of v iew of mortality o Th is assumption was tested and 

found to be reasonable, see Section IV (a ) . 

Let 

snd set 

Tt1en , put ting 

E[f] = f 
w:1ere E[ J is the ·expe c tation ope r ator o Obvi ously , Pj is 

t:1e pro'tabi li ty that any woman , sati sfying the requirements of 

tne subset, will die in the jth y ear aft er fir s t obs e rving 

t:1e di se~se , 1 - is the probabil ity of ·surviving 15 

j'':! ars 9.fter the year of fir s t ob servation and N = 

t::e tot::i.l number of women in the subse to 

.. , . ... ,> 

~ N1 
1=1 

Write Ef = (p11 , p 1 2 , •• o,p11 ) where , of course , 

is 
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and the c ovariance matrix of E1, V[~ 1] = V1 is given by 

P1 (1-P1) -P1P2 

-P2P1 P2 ( 1-P2) 

N1V1 ::: • • 

-P1P1 - P1P2 

-
Now let ~ = (-, 

Eu 
-, -, ) ;e2, • • • ,E1 s and 

W1 , 1 W1,2 0 W1,3 0 0 

0 0 W2, 2 0 W2, 3 0 

w -- • • • • • • • 

• • • • • • • 

• • • • • • 

then p = VI~, E[P] = p and 
,v ,v ,,., 

V[P] = w V[~]W' 
,v 

where V[~] = V1 EB V2 EB 

• • • -P1P1 

• • • - P2P1 

• • • P1(1-P1) 

• • • 

• 

• 

• 

• 

• •• EB V1 s • 

If W is replaced by another row stochast ic matrix 

an unbi a sed estima tor of P will result . But W has been 

chosen to minimise trace V[P) within the class of linear 
"' 

.. 

unbi ased e stimators . This follows from the observation that 

the i th element on the diagonal of V[P) 
"' 

is 
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The minimum of wiH 1vr 1 subject 
rv ,..., 

to 1 ' w = 1 is obtained by the usual Lagrange methods. 
·"' "'I 

and equating this result to 0 
,v 

and solving shows that 

w1 = Nr1 1 1 where )\ is chosen so that 1 ' w1 = 1. 
,v "' ,v "" 

Clearly, 

(b) Time Delay to Registration 

Actuarial c alculations are pertinent if dated from 

the age of first observing the disease rather than from 

Thus 

' tne age of registration, and a methcxl was devised to correct 

for this lag . Unfortunately accurate estimates of this 

time delay are not in general available, but Registry rec ords 

provided the following frequency distribution. 

TABLE III 

Distribution of Delay to Registration 

Lag ( in years) 0- . 5 05- 1 1-2 2-5 >5 no informati on 

F requency 4392 1155 ·594 922 455 1578 

The density function ,... 
I . 
: ex e-ax 
l k 1-e-a 

= i . ( 1 - k ) /3 e- ~ < x - 1 I 

f ( x:) 
0 ~ X ~ · 1 

X > 1 

where O < k < 1 and ex,~ > o. 
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was fitted to the data and the maximum l~kelihood e s tima tes 

of the parameters were 

'R = .738, a= 2.664, ~ = 0365. 

The model describes the data extremely well as can be s een b y 

. comparing the observed probabilities with those estj_ma ted from 

the fitted model. The estimated mean lag is 1, 36 years. 

TABLE IV 

Observed and Estimated Lag Probabilities 

Lag (years) · 0-.5 , 5- 1 1- 2 2-5 >5 

observed , 584 . 154 . 079 • 122 . 061 -proportion 

model ,584 . 154 . 080 • 121 . 061 
. probability 

This estimated density, together with Registry 

. v9lues for individual lags , ages, and length of survival 

after r egistration were used to cal culate modified layout 

tables (see Section II (a) )dated from t i me of observation . · 

Full details are omitted, 
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III The Model 

With the objectives detailed in the ~ntroduction in 
mind, a suitable model describing the distribution of length 
of life for women with breast cane er had to be found . A 
c ompeting risk type model was set up and can be rationalised 
i n the following way . 

It was assumed that t her~ are tv/0 competing c auses 
of death for women with breast cancer ; the disease itself , 
and other causes . The model assumes that thes e two risks 
act independently in the following way ; 

F(x+6x )= F(x)[14c(x)6x][14 0 (.:i+x)6x] + 0(6x) (1) 

w}·iere X is the length of survival of a woman first observing 
breast cancer at age a , and ~c, ~ 0 are the forces of 
mor tality due to the disease and other causes r espectively . 
E\1uation ( 1) leads to the differential equation 

· F 1 ( x) =- F ( x) [ ~ c ( x) + ~ 0 ( a+ x) ] 

with solution 

F(x) = 1 - exp[- r[~ 0 (t) + ~ 0 (a+t) )dt] 
0 

( 2) 

The function F(x) = Pr fX ~ xJ specifies a distributi on 
function for X in terms of the two components of the overall 
for ce of mortality function ~ ( x) = ~ c ( x) + ~0 ( a+x), where 
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the origin is taken as the time of first observing the disease . 

Tht=; i'unc ti on 125 0 was obtained from the 

Australian Life Tables (1960-1962) for women, after a trivial 
correction for the prevalence of breast cancer had been 

applied. A function of the form !25 0 (t) = ye5t was fitted 
to the corrected tabular values and the parameters y and 
6 had numerical values 3 . 607 x 10- 5 and 9.261 x 10· 2 

respectively. The actual fit was excellent as can ~e 

verified by comparing the life expectancies calculat~d by 
numerical quadrature from 

F0 (x) = 1 - exp[- r~0 (t)dt] 

0 

with those of the life table. In most cases the two 
figures agree to within . 20 of a year. 

The parametric form of !tc , !25c(x,£) say , was 
chosen to sui t the emperical force of mortality functiono 

The latter was calculated from the formula 

where 

group . 

j - . 
~ P1 

1 = 1. 
and a is the average age of the 

i3 an estimate of f(j - ½) = F ' (j-½) , by the Mean Value 
Theorem . 

required . 

Thus !25c(j- ½) estimates f(j - ½)/(1 - F(j-½)) as 
-The estimates Pj were calculated on the combined 

data 9f 9096 women where a= 58 . 86 . 
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TABLE 'v 

Layout for the Combined Group 

Years Total No . dying in the xth year after Registration 
Observed x=l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 246 41 
2 372 50 59 
3 429 59 53 40 
4 447 41 67 50 36 

5 461 51 63 50 27 19 
6 538 58 67 li5 .53 36 17 

7 495 57 56 45 39 31 28 16 
8 523 49 60 66 37 31 29 24 13 

9 544 47 67 55 44 45 18 22 17 · 5 
10 491 56 47 50 43 29 23 23 20 12 12 

11 456 47 60 40 42 · 30 24 28 21 13 11 10 

12 483 58 58 54 41 28 36 30 17 15 15 8 12 

13 438 46 63 41 32 40 29 25 20 16 9 9 8 8 
14 409 63 57 37 33 27 19 24 14 25 13 8 4 8 6 
15 2764 333 364 279 233 206 178 142 123 94 76 90 87 60 54 46 

p .116 .129 .101 .082 .069 .056 .051 .040 .032 .027 .028 .027 . 021 .019 .011 

4'c .114 .147 .131 .115 .103 .104 .088 .074 .065 .072 .079 .061 .057 .049 
_._ 
_._ 
• 
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The gener al form of szSc (x, 8) fitted to all groups of dat a was 

~c(x,e) ::: { "' 

IV Fi tting the Model 

(a) Estimation of £• 

,v 

80 

e -e1 -e2x 

0 ~ X ~ 1 

X > 1 

Use can be ma de of the szS c (x) of the pr·evi ous 

section to estimate 8 0 
,v 

Thus, for ins t ance, ln szS c( ½) 

estimate s A eOO vo, say, and - ln szSc(i- ½) e s t i mat es 

for "i ~ 2 . 
\ .... 

The pa r ameters e1 and 82 c an 

pe fitted by l east squares u s ing -ln szSc(i-½), i = 2,3,, •• 15 

to give estim ates eo 
1 and ego 

Once 00 is to hand, F(x,e 0 ) 
,v ,v 

. and also Pj(fO), j = 1 , 2 , . •• 15, where 

p j (£0) = F ( j, e0 ) - F(j-1 , e0 ) . 
,v ,v 

The statistic 

is a measure of agreement between 

it is shcmn in Section VI that 

p( eo) 
,v ,v 

i::u'. A(£, y-1 [~]) = A(£~, y-1 [f]) 
0 
,v 

can b e calculated 

and Po 
,v 

In fact 

is asymptotically distributed as a chi- square variate with 

12 degrees of freedomo 
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The vector e0 provides a starti ng value from 

whi ch e~ 
"' 

can be found by means of a mi nimi sa t ion program , 

Nelder and Mead ( 1965) . The matrix V[P], although 
"' 

unknown , is estimated by using the consistent estimates 

o:f p( e ) without affecting the distribution theory. 
"1 ,v 

p 

It is f ound that eo provides a satisfactory 

starting vector for all minimisati ons in various sub-groups 

of the data , whe ther or not the se are fo rmed by age_. tumour 

histology , stage of disease at reporting or the type of 

treatment given. F or this particular Ylork , the rate of 

convergence of the minimisation procedure is rapido 

The stationari ty of the d a ta wa s examined by 

compa ring the pre-1 960 regi st r an ts wi th those v,ho registered 

after 1960. Models of the above form were fitted to each 

group and it was found that there Y1ere no important differ­

ences in the r espective parameters , suggestine t ha t there 

has been no significant change in t he mortality pa ttern of 

the di sease with time . 

elsewhere • 

This conforms with observations 

(~) The Re lationship of Age to e. 
"' 

If the complete set of data is sorted into 

subgroups according to age, a , it is found that e• varies 

quite appreciably with ao Hence we put 
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e(a) = B a 
"' "' 

where 

B = 

f'or suitable choice of B and r •. 

· The f'ollowing procedure has been a dopted to 

estimate B from the data for a given ro · The reg:_strants 

are linearly ordered according to age at reporting and t hen 

roughly the 2,000 youngest women form the first age group . 

Second and subseg_uent groups are formed by dropping out 

approx:i ma tely the 500 youngest me mbe rs of the ·. previous group 

and adding approximately the next 500 older women·, and so ono 

The data are worked throu gh in this way until the oldest 

possible group of' 2,000 is formedo The resulting groups , 

say le in number, with average ages at reporting 

a 1 , i = 1,2 , ••• k are then separately subjected to the 

estimation procedure as described in the previous section • 

At each age ·the estimate 

covariance matrix V[e!J = ~ 11 are obtained. 
"' 

r~sults of Section VI 

where <ls t and V[P 1 ] 
,v 

is the 

and its 

From the 
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·covariance mat rix of f 1 , !: 1 being c a lcu 1ate d from the 

appropriate lay- out of the ith a ge- g rou po 

Now 8(s) = Ba c an be writte n in the form 
"' ,v 

where A°= (I© a ') and /3 '= (f3oo,•~•f3or,f310 , • ••f3u-,f3 20 , • •• i : 
"' ,v 

Let 

then it ~s requir e d to e s tima te ~ 

v ~rious ages a 1 • 

(/3) k ( l'.I R) I '<:' - 1 ( ,:W 
. If Q "' = 

1
~

1 
!!, 1 - A1~. L, 11 !!, 1 

v-~en Q can be mlnimi sed with respect to {3 

estimate 

fer t he 

A fJ) 1,v 

Because of data ove rlap, the are not all independen t &-~d 

{!_ 0 is not an efficient e s timator, although it is unbiassed , 

The following table gives the age boundari e s and the numbe r s 

in the various age groups for calculating the 
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TABLE VI 

C 

Age Boundari e s Numbers 

1-46 2078 

38- 48 1909 

~ 42- 51 1997 

46-54 1807 
C 49-58 1981 

53-61 1851 

56- 64 1975 

60-67 1834 

63- 71 1988 

66- 711 1843 

69-79 1806 

71-100 1931 

Let ajl 

Ai. () j_ 

A2 * 
fJ2 

X = • ~ = 0 
,J ,..., 

0 

• Ak Ok 

and put 

( 
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Lo = (~-Xf3o ) (?J-XT3o) 1 = u11 • •• L1k l 
,....,, - ,..., ,....,, 

Lk1 • 0 • Lkk 

!le Ill The above table shows that (ji is independent of !j for 
,v 

I j-i I > 2 . Thus Lo can be simplified since all but the 

diagonal and first and second off-diagonal blocks art Oo 

Put D1 = diag(cr10 , 0-11, 0-12), where er 1 j is 

(' t:1e jth element of the diagonal of L 1 1 , and define 
1 1 

Rt j = D~2 Lt jDJ 2 for j = i+1 , i+2 al'ld let 

and If 

1 1 

d ~ D-12 R D2 an L, 1 1 + 2 = 2 1 + 2 , then construct 

L, say, using L tj = 0 for I i- j I > 2, L 1 1 = L 1 1 and - -Lt 1 + 1 , ~ 1 1 + 2 as above o A new estimate '/3 1 is obtained by 

minimising 

with respect to {3 . ...., The whole process is iterated until no 

significant change in ~ 1 is evident . The procedure con-

verges rapidly in two or three i tera ti ons to ~ say. 

T.:-ie assumption on which the above technique reqts 
. $ "' is that the correlation structure between ~1 , § 1 • 1 and 

• ~ 1 • 2 is the same for all i . This is a standard assumption 

in .time series analysis . 

( 
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If f is the estimate of Li corresponding to p 
'e(a) = A/3 
IV IV 

and 

V(~(a) ] = A[ri- 1x1 J- 1 A'. 
IV 

Th:.is finally, the appropriate estimate of F (x, () ) for a 
"' 

woman reporting breast c ance r at age a is F(x,~(9.j). 
IV 

The appropriate degree of the polynomials, r , 

to use can be determined by comparing the sum of the 

residuals 

by using 

A(Of, V- 1 (P1]) 
"' ,v 

to the sum of the r esidualR obtained 

o ( 9.) in place of the 
,v 

It was found ~n the 

current data tha t with r=4 these two sums were 166. 99 and 

179.91 res pective ly, showing satisfactory agreement . 

Sr'.lal],.er values of r produced unsati sfactori ly wide discrep­

ancies between the sums . 

E~trapolation a t both ends of the age range is 

necessa ry in order to obtain results for women ranging from 

35 to 85 ye a rs. Because of the polynomial approximation 

~ ( a) , and. because the sizes of the two terminal es timo ti on 
IV 

g1~oup s are of the order of 2, OOO , with average ages greater 

than 40 and less than 80 , respectively , it · was necessary to 

e xamine t he younger and older age structures more careful l y •. 

Two separate analyses were carried out by the above pro c e dures 

using group sizes of 500 inst~ad of 2000 and shifting the 

p osition of estimation by approximately 250 instead of 500 as 
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described earlier. In this way, essentially ·the first two 

groups and the last two groups of Table I were reanalysedo 

Thus, polynomial approximations 'e1 (a) valid for 
"' 

35 ~ a ~ 43, ~2Ca) valid for 43 < a < 75 and 'e3 ( 3.) valid 
,v 

. for 75 ~a~ 85 were arrived at where tl 1 ( a ) , i=1,3 arose 
"' 

from the analysis af the end groups and 82 ( a) was obtaine d 
"' . 

from the large group analysis. 

35 ~ a ~ 43 

'eo ( a) = 1 .17 - 5e24 X 1 o- 2 a + 6024 X 1 o- 'a 2 

43 <a< 75 

'eo(a) = 7.29 - 5.32 X 10-:l.a + 1.4)-+ X 10- 2 a 2 - 1o70 X 10- 'a3 + . 

7 • 34 X 1 o- 7 a 4. 

.'o 1 (a) = -22.11 + 1.·95a - 5 .72 x 10- 2 a2 + 7.22 x 10~4.a3 
-

3 • 3 2 X 1 o• 6 a 4. 

'e 2 (a) = 4.04 x 10- 3 - 3.49 x 10- 2 a + 2.04 x 10- 3 a 2 
-

3 • 6 3 X 1 o- 5 a 3 + 

2 • 06 X 1 o- 7 a 4. 

75 ~a~ 85 

. ~ 0 (a) = -3.39 + 8 . 54 x 10- 2 a - 5.16 x 10-'a2 

'e 1 ( 9.) = -1 5. 00 + 4. 45 x 1 o- 1 a - 2. 9 3 x · 1 o- 3 a 2 

'e 2 ( a) = 4. 96 - 1 • 2 2 x 1 o- 1 a + 7 • 5 3 x 1 o- ' a 2 
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(c) Testing the Model 

In order to test the adequacy of the fitting procedure 

the combined group of women was broken into 6 non-intersecting 

subsets with average ages 38,9, 49,0, 57,1, 64 . 6, 71 . 8 and 

81.3, Each group was used to estimate a value of 0* and the 

..associated residuals were summed giving a value of 82 . '.25 , This 

value , being the sum of 6 independent chi- square variates, is 

itself distributed as a chi-squa~e on 72 degrees of freedom, 

and is not significant (x~2 (5%) = 92 , 8) . The corresponding 
"' 

total residual using 0(a) in place of 0* for each group is 

91 , 14 . 

As a further comparison, the combined data we~e 

analysed using both Cutler's method (1958) for constructing 

life tables and the procedure outlined previously. The 

results of the two methods, denoted A and B respectively, 

are shown in Table VII. 

The agreement between the two methods for estimating the 

proportions of surviv~rs is re~arka~le. However, the para-

metric approach has the advantage in that the functional form 

of F(x) is determined allowing expectations to be calculated . 

These are unobtainable from Method A. Moreover, the partit -

ioning of the force of mortality into the required components 

~c and ~o, where ~c is a function of the age of first 

observing the disease, can be negotiated using Method B. 

Method A allows no such flexibility and, in fact, this procedure 

cannot be used to construct life tables of the type reported here 
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·-c TABLE VII 

Comparison of Methods A and B for Estimating Pr{live;::x} 

X A B 

1 . 886 .884 
-· . 
\ ~. ; ... 

2 . ,759 , 756 

3 . 660 , 654 

4 . 58.0 ,571 

5 .513 ,503 

6 . 458 , LI 4 7 

7 • LI 09 ,399 

8 .369 , 359 

9 . 336 .324 

10 . 308 ,294 

11 . 279 . 268 

12 .249 .245 

13 .225 . 224 

1 4 . 203 .205 

15 • J,84 .189 

. ( 
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V The Table s 

A (a) Main Life Tables 

For each age , a, of fir s t observing the disease 

a set of life t ables is cons tructed using F(x,e(a)). 
~ 

The 

second column gives P1(~( s) ) = F(i,O( a ))-F(i - 1,8(a)) , 
~ ~ - an 

estimate of the probability of dying in the period c~+i- 1 , a+i) 

where 1=1,2, .... ,91-a . 

The fourth column r ecords the conditional prob­

ability , Q, of dy ing in the ith year a f ter reporting , 

i.e. at age a+i , given the woman has survived 1 years. 

Thus , 

= o. 

Column six gives the normal life expectancy for a 

woman who ha s su rvived to age A, whil e column seven ~ves 

the comparable figures for women ob serving breast cancer a t 

age a . In fact, 

E[~i) = f[1-F( x+i,~(a)) ]dx/[1-F(i ,~(a)) ) 

0 

provides t he required estimateo 

Columns three , five and eight give the standard 

errors of the corre sponding estimate appearing in the 

previou s column. These figure s give some idea of the 

rrecision of the tables and they are calculated according to 

the methcxls described in Section A (b)o 
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A (b) Preci si on of Estimation i n A(a ) 

It was shown in Section IV that 'e(a) has ,..., 

covariance matrix 

V['e(a)J . ,..., 
,. 

= A V[t2 ]A' , A = I® a ' ,..., 

and since all the quant ities in the Main Life Tab le a depend 

on F(x,~(~)), it is therefore pos sible to calculat 0 ,..., 

standard errors for themo The proc.edure s are outlined belovro 

·Put F(x,e(a)) = F(x,e,a) , then . ,..., ,..., 

F(x,£,a) = { 

1 

1 

exp{B(x,e,a) 1 ,..., 

- exp{A(x,e , a )J 

0 ~ X < 1 

X ~ 1 

where 

,..., 

a+x 
B(x,£,a) = - e0 x - j ~0 (t)dt 

a 
a+x 

= - 60 - 62i(e- 61 - 62_e-61- 62XJ -/ ~o(t)dto A(x,e,a) ,..., 

a 

T~e fact that e is a function of a is suppressed. 
'" 

· Then 

oF ( x , e, a ) 
o~o ,..., = [ 

x ·exp{B(x,e,a) 1 
"' 

exp{A(x,e,a)J ,..., 

0 ~ X < 1 

X ~ 1 



( 

( 

240 

,Q!'.(x ,2,a) C 0 ~ X < 1 

001 

. = -exp[A(x, o , a) l C(x,o) 
"' "' 

X ;;:, 1 

_OF(x , O,a) J
0 

. · . . 

002 "' . l 
-expfA(x,£,a)J021 [~(x,t)-D(x,£)] 

where 

No-,v let G = (g1 j) , g 1 j = aF(i,£,a)/oO-j 

and 

1 0 • • • 0 0 

-1 1 0 • • 0 0 
M= • • • 

0 0 •• • -1 1 

I~ o. = (q1j) , 4 1 3 = aP1(£)/ao 3, then Q = MG . 

0 ~ X < 1 

X ~ 1 

Thus for each of the groups u sed in constructing the age 

relations hip for O (a) ,.., 

where V[~J is the covariance matrix of the P 3 for the 

particular age group concerned. Moreover 



( 

and for the estimator ~(a), 
"' 

,. 
V[P(?i(a))] 

rv IV 
= Q AV [~]A'Q'. 

.T~e covariance matrix of the Q1 (~(a)) is built up from 
IV 

V[P(~( a) )J by means of the following expression; 
rv IV 

1-1 Cov(Pj ,Pk) 
+k~1 Pj( 1-rr1) + 

where rr1 = 
j- 1 

and rrj = ~ Pt• 
t:O 

j-1 Cov(P1 ,Pt) 

+t~1 P1(1-1rj) 

Now let E(Xlm,£,a] be the conditional 

life expectancy of a woman first observing breas t cancer at 

age a and surviving to a+m. 

For m = O we hsve 

E(XIO,£, a] = (r1 - F(x,2,a)]dx 

0 

and 

a~o E[X!O,£,a] = - f1 
x expfB(x)Jdx - ro· expfA(x)Jdx 

O 1 
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a~, E(XIO,£,a) = f0

expfA(x}lC(x)a.x_ 
1 

0 ~
2 

E[XID,£,a] = e21 {expfA(x)J[C(x)-D(x)]dx 

1 

For m > 0 

E[Xlm,£, a] = {expfA(m+x,£ , a )-A( m,£_,a) Jdx 

.. 0 

0 ~
0 

E[X!m,£,a] = 0 

a~, E[X\m,£ , a] = {expfA(m+x,£ , a} - A(m,£, a}l x 

0 

[c(,m+x , e) - C(m , e) ]dx 
,.,, "' 

26 .• 

0~
2 

E[X!m ,£ ,a) = 02' {expfA(m+x,£,a) - A(m,£,a)l x 

. 0 

[C(m+x,£) - D(m+x ,£) - C{m ,£) + D(m ,£)]dxo 

Finally 
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B (a) Tab1es by Stage , Hi s tology and Sta ge x His tology 

Traditionally Breast Cancer is divided into 

four distinct stages of the disease, (S1 , S2 , S3 , S4 ) 

and three degree types of tumour malignancy: well 

~ifferenti a ted , moderate and anaplastic (H1 , H2 , H3 ) o 

·It is well known that stage and histology significantly 

affect survival. 

In order to quantify this ob s ervation, the 

Registry da t a were sorted by histology into three groups 

correspo~ding to H1 , i = 1,2 , 3 and by stage into four 

groups corresponding to Sj, j = 1, 2;3 ,4. 

V'.:!ctors ~ 1 , i = 1,2,3, · for hi s tology and 

Parameter 

for stage were calcula t ed ace ording to the methods previ ous ly 

described. The average ages - 1 -a , j a in the seven groups 

·varied (see Table VIII) and it wa s decided to correct each 

set of parameters to the age of· 60 . This was accompli shed 

according to the formulae 

0 1 (60) = 0 1 + 'e(60) 'o (al) ,.., ,.., ,.., ,.., i = 1, 2, 3 

jo(6o) = J e + ~(60) ~ c fa) 
rv "' 

,.., j = 1,2, 3, 4 

Once the 0 1 (60) and J 0(60) were known , suitable estimates 
"' ,.., 

of V(£1 (60)] were calculated from the formula 

v[£ 1 (6o)J = V(Q 1 ) + v[](5o) - ~(a1 )J 
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I~ follows from Section IV (b) that 

where 

Ai= I ® (1,60 , 602 ,603
) 

I¼.· = r ® c 1 , a: 1 , ea: 1 ) 2 , c a 1 ) 3 ) • 

Similarly vpo(5o)J 
"' 

can be calculatedo 

TABLE VIII 

Parameters Used in the Calcµlation of the Histology 

and Stage Life Tables . 

H1 H2 H3 S1 S2 S3 Si 

N 441 932 2764 2001 1821 837 713 -a 59.2 58o5 58.0 61.9 60.6 63 . 4 62 . 3 

{)o (a) .056 . 086 . 105 . 038 .087 .142 . 361 

e1Ci) 2.320 1. 970 1 .870 2.700 1. 780 10360 • 963 
e2 (a) . 076 .084 . 054 .028 . 101 . 061 .012 

()0 ( 60) . 056 .086 .105 . 040 . 087 .144 .362 

{)1(60) 2.340 2. 000 1. 910 2. 670 1. 780 1. 310 . 940 
02 ( 60) . 071 .076 .045 . 034 • 101 . 070 .017 

Life Tables for a=60 have been calculated based on the 

estimates !'(50) and j e(6o) . ,..., These give a direct 

comparison of the effect of histology and stage on life 

expectancy and this effect can be measured against the 

comparable table in the Main Life Tables . 
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By using estimate s o~(a) = 
'ek ( a) 

29. 

• 0~(60) 
~k(60) 

ik ( a ) 
and jok(a) = .jok(6o) k = 0, 1, 2 it is possible 

~k(60 ) 

to calculate the survival expectations for reporting ages 

ranging from 35 to 85 as detailed in the Histology and 

Stage Life Tables . 

The implicit assumption underlying these 

estims tes is that the ratio of ·the parameters at age a 

t0 th~ parameters values at 60 for the various stag8s and 

histologies is the same as ~k(a)/8k(6o) k = 0,1,2 9 This 

is probably reasonable and , if accepted , by-passe s a full 

·and expensive age analysis on the seven sub-groups in turn . 

The effect on expe ctation of the two classifica­

tions is so marked that it is imperative to examine the 

j oint situation. That is , life tables for age 60 and life 

expectations from 35 to 85 are required for women in Sj 

and with histology type H1 j = 1,2,3, 4 and i = 1, 2,3. 

Let je t be the parameter vector which is appropriate for ,..., 

SJ an:l H1 registrants. Then , if 

J 01 (oO) 
,v 

J ol (6o ) = et(6o) 
'ek(60 ) 

can be constructed from known vectors e 1 (6o) , je(6o) 
,..., "" 

and ~(60) , ...., S tage x Histology Life Tables were constructed 

on this basis . 
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By using identical methods to tnose ·already 

dtscussed , survival expectations for the same range of 

reporting ages were calculated for the various 

s tage x histology classifications. 

In order to test the above multiplicative 

assumption , the data were classified according to stage and 

histology type , yielding a two way table , see Table IX • 

TABLE IX 

F requencies and Residuals for Stage x Histology Life Tables 

S1 S2 S3 S.t. 

H1 177 59 36 18 
21.4 13.9 19 . 6 10.8 

H2 272 252 97 49 
17 , 9 8 . 5 20o9 13 .1 

H3 560 637 · 196 176 
18.5 14 . 4 9. 2 50 . 5 

Unfortunately , due to missing information, many 

cells had small numberso Nevertheless it was possible to 

calculate A(j£ 1 (60),v- 1 [f]) for all i and j. In 

general, t he residuals were satisfactorily lowo The one 

l a r ge value for cell. (3 , 4) results from the estimated 

In view of the fact that different 

data sets were used to calculate the j8 1 (60) and to test 
"' 

t he validity of thei r construction, the evidence strongly 
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suggests t ha t the synthesi s ed vectors for SJ and H1 

are entirely ~ati s f actory . This conclusion i s r e inforced 

i f one abandon s classifications involving 8 4 women . 

The fact is that , once in 84 , histology play s a more or 

less ins i gnificant rol~ . For this classification the or der 

of the differences are s mall and cannot be accur ately 

e stablished by the present methods. Moreover , from a 

pragmatic viewpoint, it is quite unnecessary to attempt 

such a r e solu t ion . For• the s e reasons , only . H 1 , S J 

classifications for i,j = 1,2,3 were used in the 

S tage x Histology Life Tables. For any h istology , the 

appropriate t able for s, women is the s, table. 

B · (b ) Preci s i on of Est i ma ti on of Expe c tat i ons in B( a ) 

_- The method for obtaining VfE[Xjm , £ , a] J for 

s tage , histo l ogy ahd stage x histology that was derived in 

Section V A(b ) i. eo 

I . 

VfE_(X lm,~,a] I = ( a~ E[ Xlm ,£ , a]) V(£(a )) (a~ E[ Xlm , f , a]) 

can b e used here with s light modifi cation. 

For ~ ( s ) _ j ~l( a) , approxi,ujately 
,.., "' 
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Cov[Je1< 1 (a), jet 1 (a)J 

· [ Cov[ e k 1 (6o), et 1(6o )J Cov[J e k( 6o),J et (6o ) J 
= Jek 1 (a) Jet 1 (a) --------- + ---------

ek1(6o) et 1 (6o) · Je1<(6o )j et(60 ) 

+ + -------

2 Cov[ek(6o),et( a )J 

01<(6o)at (a) 

... 
whe re e( a ) = A fi, 

rv "' 

e(60)= ~o~ 
rv rv 

2 Cov[ok ( 3. ), et(6o )J J 
ek (a) et (60 ) 

A = I ® a' 
"' 

Cov[2( a),£(60) ] ~ A V(~)Ako• 

For 'e ( a). = e 1 ( a) , 
"' "' 

Cov[ek 1( a ), Ot 1(a)J 

Cov[ e k 1 (60 ), Ot 1 ( 60)] Cov[ ek ( a ), Ot ( a ) J 
= ek 1 (a)et 1(a)[--------- + 

ek 1(6o) et 1 (60 ) ek(a)et ( a ) 

Cov[e k(60 ), et(6o)J Cov[ek( a ), et(6o)J Cov[ ek (6o), et( a )J 1 

+ ek(6o) ot(6o) ek(a) et(6o) ek(6o)et( 3. ) J 
For l(a) = j£(a), 

by Je(a). 
"' 

e 1 ( a) 
rv 

is replaced in the above expressi on 
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c. Tables by Trea t menb_ Histology x Treatme n t , and 

Stage x Tre a t me nt 

Three main type s of trea t me n t of Breas t Ca ncer 

are commonl y reco gnised; r adlother apy, surge r y and a 

combina tion of both (T1 ,T2 ,T3 ). Usi ng ·identi cal me t hods 

to thos e of B(a) lif e t abl es we r e cons truc t e d a t age 6 0 

for Ti , T2 and T 3 and the various trea tment x histology 

and treatment x stage groupings. In general th e fitting 

procedure works extre ire ly well, as can be s ee n from ~able X. 

TABLE X 

Frequencies and Residuals for treatme nt x stage and 

treatment x histology _life tables 

. Si S2 S3 H1 H2 H3 

Ti 980 639 162 172 356 742 
24 ,7 20 .5 32,3 8.3 . 18 .2 18 .8 

T2 100 188 309 ·45 81 176 
23.2 12 .0 61.7 19.1 13.8 5,0 

T3 734 801 270 151 361 1074 
18.5 26 .9 6.5 11 .03 9,3 18.3 

For the s a me reasons as di s cussed earlier, 

Ti X s~ i = 1 , 2 , 3 was not investiga t e do Analogoll:sly, 

.for any treatment the appropri a te table for s~ women is 

the s~ table . 
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D, Q Table s for Stage , Hi s tology and Stc: ,1e x Hi s tology 

Using estimates of 

obtained , extensive tables of 

a1 (a) , le(a) , le 1 (a) ilready 
"' "' -

X .. l 
Qx ( e (a) ) == P x ( e ( a) ) / ( 1- ~ · P s ( e (a )) 

"' - s=O -
wer e calculated for a=35 , (l) , 85 and for the various stage, 

histology and stage x histology classifications . 

of t he co~ditional probability of dying 

These tabl e s 

. ' 111 

(x , x+1) , given that the disease was first observed ai age a 

and the woman has survived a period of x years, are of actu-

arial interest. The table s are currently available but are 

not included in this volume . 

E., Graphs of ~ c 

Grapho o f t he force of mortality function due to 

b r east cancer , ~ 0 , were plotted for the stage and histology 

classifi cations for observation age 60.Plots were also ob­

t a ined of ~c(£(a) ) for a=35 , 60 and 85, 

This set of graphs provides a visual impres s ion 

of t he effects of age , stage and h istology on the morbidity 

of breast cancer . 



< 

35 . 
VI The Asymptoti c Properties of ()ill and 

,v 
A ( !!, * , v- 1 [ ~]) • 

The large sample properties of the stati stics 

and A(f!/, v~ 1 [:E ] ) introduced in Secti on IV will be 

discussed as a special case of some gene r al results which 

are of int e rest in the i r OY/n right . 

be a second order r arrl. om ve c tor , where X1 , the i th 

component, is calcula ted from a .random sample of size n 1 • 

Fur ther , suppose E[X] = µ(e ), ,.., ,.., ,.., where e 
"' 

is a qx 1 vector 

of unknmm parameters belonging to rr , and that X tends 

in l aw to a normal distribution with mean µ (e) and non-V/~ "' "' 
s~ngular covari ance matrix ¥-fn-), ~ ••• , :Ri<_:_}-, tlf-~~°>-;-> u "' ,.., . /~. 

We consider the estimator (}~ of (} defi ned by "' ,.., 

A(!!,* ,S) = inf (x - µ(e)) 'S (X - µ(e )) een ,...., "' "' ,v rv rv 
t 

,.., 

where s is symmetric a nd non- singular. Thus , (} 

minimi ses the quadratic form A(O,S) and A(e* , s) is ,.., 
"' 

some measur e of the agreement between x and µ ( O*) • 
IV ,.., ,.., 

The following theorem shows that A( O*,S) ..., is 

asymptotically distributed as a chi- square variable with 

(k-q) degr ee s of freedom for suitable choice of S. As a 

by-product, the large sample distribution of is also 

obtained . 
to S4.t/Jf:) 
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Theor em 

Let µ(e) have continuous first and second 
"' ,v 

partial derivatives _t:,pr e e .n and define ··, ,....,, 

··, : .=. 

(1 ) 

( 2) 

(3) 

A = Q(Q'SQ)- 1 Q1 S 

E = (I-A)V( n ) (I- A'). 
,v 

Then , if Eg is a generalised inverse of E i . e. 

is asymptotically distributed as 

Proof 

Q q 
8 

x2 . 
( k• q) 

The proof of the above result vtill be :iutlined 

by. means of the notation~ , where for a sequence of random 

v ariables 
p 

Un , Un"' V me ans that converges in prob-
ability to v i . e. for all e>O , lim Pr n Un-VI>€ 1 ·= o. 

n-+oo 
Final justification of the calculations are omitted since they 

are available elsewhere, see e.g. Rao 1965 Chapter 6 . 

Now set 

StS1 (!,~§) = ½ 0~
1 

A(£ , S) 

where c) 
t: 1 <!?) = ae1 !!:,(§) · Put e = e.,,. ,..., ,..., , then 

: S15 1 (X e" ) = 0 ..., , ,v i = 1, 2 , ••• , q • 

W~ite this in vector notation 
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~ (X e•ii ) . = 0 
,..., ,..., , r,,J "' 

and observe that ~(µ(e) , e) = o. 
"' "' ,v "' ,v 

By the Mean Value Theorem it can be shown that 

p k O -
= o "'~i(µ(e) , B) +Jft~ ~ 1(µ(e),e)(xj -µj(e)) 

"'...., "' j= 1 axj "'"' "' "' 

C 

But 
O ~ 1(µ(e),O) - - jth element of 
ax "'"' "' 

j 

and 

so that 

and Jii ( O l'.l - e ) ~ri::: ( Q' s Q ) - 1 Q' s ( x-µ ( e ) ) • 
. ~ ~ 

~ ~ ~ 

Now consider 

then X - µ(e•) 
,..., r-., ,..., 

is asymptotically distributed as N(O ,~) , ...., 

( 
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~ = (I-A)V(n)(I-A' ). ,..., We note the following facts ; 
( a) r ank ~ = p (~ ) = trace ( I-A) = k-q s i nce p (V.~) = k ; 
(°b ) A(£111 ,~&) is asympt otically distributed a s x;k-q) sinc e , 

f'rom known results on quadra tic forms (Searle 1971, page 
69), Z1 BZ 

rv "' 
is distributed as i f 

VBVBV = VBV, trace BV=d, 
where Z is distributed as N(O , V)o Choosing B = Vg , "' "' <· 

VV&VVgV = vvgv and trace vgv = p(V) = p(Vg) , the result 
f'ollow s from (a) . 

Lemma 1 

(~+Q(Q1 s- 1 Q) - 1 Q1 J- 1 is a generalise d inve r se 
of' ~ . 

t 
Proof 

Notice that ~SQ = 0 since (I-A' )SQ = 0 and 
also P ( Q' s7 = q and hence 

[ iJs-l~ 
P Q' s~ = k. 

1 1 Also , putting E2 = (Q's- 1Q)-2 

o J [~½sf.J ~o -J. [~½ j. 1 .J s~ P 1 := k E2 _ Q' si.. s- 1 _ E2 Q' . 
(. 

slnce the rank of a matrix i s not altered by mult i plying it 
by a non-singular matrix. Hence 

( 
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and by Ra o (loc . cit . page 30)[~+Q(Q1 S- 1Q) - 1Q 1 J- 1 is a 

generali s ed inverse of ~. 

Corol larv 1 

• 

Proof 

. -- Put S = V- 1 (n) in t he theor em , t hen 
"' 

~ = (I-A)V~ (I-A') = V(r};)-AV{;rj}-V{f!)A' +AV{.;1JA1 

= v~-Q( Q1 il-t@ Q)-1Q, 

and hence 

and 

• 

Corollary 2 

In the notation of previous sections , 

P(o~)) Ex2 
"'"' (k-q) 

• 

Proof 

This is a direct application of the Theorem, 

Lemma 1 and Corollary 1o 
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Corol l a ry 3 

C for s = V- 1~) , e~ ~ N(1t,, (Q' V- 1-0P Q)-1) 

Proof 

In the proof of the ·Theorem it wa s s hovm t hat 

, . .. . .'. 

and the r e sul t f ol l ows by putting S = v - 1 ~ . 

C'· 

,. 

( 
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APPENDIX A 

MAIN 1..!.ll TABLES 

The first value of A in each of the 

followin g tables is the age of first 

observation of breast c&ncer . 



A t-' ~E < F- l \,) SE ( U) E<N> E <8Cl SE<E<13C)l~~ 
)? • C,9 7 J l .00692 .0 973 1 .00 8 92 4 1. 48 14.62 .811 ) 6 • l 0 '-J':,~ . OOoJd .1213?. . 00697 40.~6 15 .1 4 . 889 ·, 
37 . Jt"trjl:> .~OJ75 .1111 3 .00 :>4b 39.62 1 6 .17 1.025 \ 
J c • :J 7 l l 0 .OU23t .1 0178 . 00441 Jd.69 17.1 4 1.1 55 
) ~ • u5'iU4 . llU 17 ~ .0 9322 .00 386 37.75 18 .. 03 1.2 70 '+v . 049v'+ .00167 . 08S.:+O . 00373 Jb.81 18.83 1.367 ,. 
41 . 04110 .00172 .07826 .00389 3S . 88 19.54 1 .442 42 . 0)4lj . OO l Ff . 0717':, .OOt+l B 34 . 95 20 .1 6 l. 4 9S 
4 ) . 029:>C) .OU17 7 . 06582 . 00450 34.03 20.68 1. 526 4.:. . GcS3 7 . Oul'l4 . 0604~ . 00'+79 33 .11 2 1.11 1.536 
4 ':, .U21 Y2 . 00 1 69 . 055~8 .OO S03 32.19 2 1. 4'+ 1. 528 4t, . 01906 . 00 1 02 . 051 17 . oos22 3 1 •. 2 8 2 1. 67 1.502 47 . ')166d . 00 1 33 . 0472 1 .0 0534 JU.38 21.81 1.463 
4e • 0 l 4 7 C, .00144 . 04J65 . 00540 29.49 21 . 87 1 • 4 i 2 r 

4-.J . C1JU3 • Ou I:35 . 04046 . OOS42 ~8 . 60 21 . 84 l .JSl c. • (Jl l cJ . 00 1 2b . 0376J . 00'.:>40 c.7 . 72 2 1. 74 1.283 ~v 
5 1 . 0 1 04::, . 00 117 . vJ5 l J . 0053'-+ 26 .• e'+ 21 . 57 1.210 
Sc .00-1<+3 . 00109 .UJ~9'+ . 00s2'* 25 . 98 2 l. :S4 1. 1 JJ 
53 . OOdt:> l . ou 1 uo . 03103 .00512 2s.12 2 1. 0S 1. 0:55 :,<+ • ,, tJ '~ l . oovY2 . 0294 1 . 00498 24.28 t!O. 7 l .977 ~s .00132 .. uOU!3'i . u2804 .00483 23.44 20.32 . 900 
5f:l • uiJocU .U 0li7b .U c!o93 .U04b6 22.61 19.89 . 825 ·. 5 7 . 'Juo ... J . 00Unl./ . 02b06 . 00448 2 1. 80 1 9 .'+3 .7S2 
~ts .OOol l . 00061 . 02543 .00429 20.99 1 8 .94 .683 5~ .OO ~d6 • 0 lJ0::>4 . 02so2 . 0041 1 20.20 18.4c .617 5 :• • 0 0 ':,b 7 . OOO!t8 . 02484 . 00392 19 . 42 17.88 .556 

,: 
· 6 1 .0CI SS4 . OOU42 .02489 .0 0372 18.65 17.32 .4 98 

t>t! . OOS46 . OOu36 . U2Slb . 00354 17. B9 l6.7S .445 
bJ • (.10':, -d . oouJ l .u?.S66 . 00335 17.15 16.1 7 .39 b 
6-. • ·J0~'+ 4 . 00028 . 02o39 . CJ03 l 7 16 . 42 1S . S8 .351 
6 S .oosso .OOOclJ . 02736 . 00299 15 . 7 1 14.99 • 311 · 
I;, t, • 0 v ':,':,li . 000~7 . Oc85t; . OU2b2 1s. 0 1 14.40 . 273 
67 .OO S70 . vOOJO .o Ju06 . 00265 l4.J3 1 3 . 8 1 • 2'+0 
611 . u05d6 . 0003~ .0 3 l ol . 00249 1 3 . 66 1J.2c .21 0 
6'7 • C,QblJ J . 0004U .u3384 . 00234 13 . 0 1 12 .64 .1 83 
7J . Ovo~3 . OOv'+ 7 . u3o l 8 .u o219 lc.. 38 12 . 06 · .1 S9 71 • Otltl<+4 . 000:53 .u3e84 .00 20s 11. 7 7 11. 50 .1 38 

' 1 2 • OCJt>'=> 7 . 00060 . u4 l t34 . 00 1 91 11.17 l U. 94 .11 9 73 . 0C:6'il .U OOb7 • 0'+521 . OU 17 8 10.59 1 0 .4 0 .10 2 74 . 0071 S . 000 74 • 0<+897 .00166 1 0 . 02 9 . 87 .088 7 ':, . OCIJb . 000~1 .uSJ lo . OO l SS 9 . 48 9.35 .07 5 
7 6 . 00 100 . 00087 .0':,781 . 00144 8.96 8 . 85 .064 77 .oc,7'79 . ooo;;J .0 6295 . 00134 8 .45 8 .36 • OS4 
7d . 007-io . 00098 . 06U62 . 00124 7.96 7. 88 .046 
7 4 . uo8v9 . OO l UJ . 07487 . 001 15 7 . 49 7.43 .039 
3 v . ::J08 1 7 . 00 1 07 . 08 174 . 00 106 7. 04 6.99 • 03.J 
~1 . J(;:H "1 . 00 1 J'°i . 0~928 . 0009/j 6.61 o .S7 .027 
tl2 . 0031:> . ,1u ll l . 097SJ . 00090 6.20 o. lo .023 oJ • 0 0 dtJ4 • OU 11 l .l Ob5b .00083 5 . tiO ':, .77 .019 
'3<+ . vulrlS . uu110 .11 6~3 . ouu76 S . 43 S .4 0 . 016 
t\:i . 0v7JI . 00 10 7 .1 c1 1~ .uO OlO '::J.07 s.os .01 3 Bt . ~o,~~ . OO l v4 .l 36'7V . u~vb'+ 4 • . , 3 '+.71 .011 
87 . 0u~19 . ooc:;a .l S 162 . vOvS9 '+. 41 4.39 .009 
~k . ut>oco . UOOY2 .i b:> 4'+ • uOOS.:+ 4 . l 0 4.09 .0 07 

( 
~'f . ou:>?i . uovo4 . l HU40 . 00049 3. b l .3.eo . Ov6 
··JC: . Ov:5 11 . oou l b .1 9658 .0 00 44 3.54 3.53 .oos 



A p ~E ( P > (J SE (u l E <Nl E me> SE(E(t3Cl l 4 5 
3n . 09006 . 0078~ . O~OOb .007 82 40.S6 14. 43 .7 25 

( 37 . 111 79 . 00582 . 12285 .00631 3 9 .62 14 . 8 1 .789 
38 . Of.(~76 . 00339 .11 24:> .00493 38.69 15082 .91 2 
34 . 0729 1 . 002 10 .1 0293 . OOJ99 37 . 75 16 .7 7 1. 028 
4 0 .CJ 59ci 7 ·. Ui.llbl . 09421 . OOJS l 36 . 8 1 17 .64 1.1 30 
4 1 • '.)4 9 b S .0 0 1'::> S . 08625 . CJOJ<+3 35.88 18 . 43 1. 216 
42 • v4 ls~ . 00 160 . 07900 . 0036 1 34 . 95 19. 12 1.282 
43 .U 3SV 7 . 00164 . 07239 .U0 3o9 34 .0 J 19 .72 1.J21 
't-4 . u29tj3 . UO l 64 . 06639 . 00'+1 9 33. 11 20 . 22 1 .3:,J 
45 . u2S'::> 7 . OUlt,l . 06096 . 00"+'+6 32 .1 9 20.62 1.360 
46 . U22Ut:5 .0015S .uS604 . UCJ4b8 3 1. 28 20.93 l. 3S l 
47 . 0 1919 .Oul-.'3 . OSlbO . u04U'+ 30 . :18 2 1.l '+ 1.326 
48 . 0 1679 . UOl'+U . 04761 .00495 2'} . 49 2 1. 27 l. 2b9 
49 .01 479 . 00132 . 04404 .00500 28.60 2 1 .3 1 1. 2,.1 
50 . 01312 .00123 . 04086 .0050 1 27.72 2 1. 27 1.185 
S l . 01172 . OU ll S .038U4 . 00498 26 . 8<+ 21.15 1.1 23 
52 . 0 1 053 .O Olv6 .0 355f, .00492 25 . 98 20 . 97 1. 057 
53 . v0954 . 00098 . 03J40 . 00482 25 . 12 20 .72 . 988 
54 . OOb7 1 . 00090 .0 3 154 . 00471 24.28 20 .42 . 9 18 
SS . OOtj(J l .000~2 . 0 2996 . OOt+57 23 . <+4 20.01 . 848 
56 . 007'+3 . 00075 . 0286~ . UU442 2~ . 6 1 19.68 .779 
57 .ooo.:,6 . OOU 6 7 . 02761 . o04c6 2 1. 80 19 . 24 .71 2 
58 . 00657 .OC060 .0?.682 . 00409 20 . 99 18 .77 .648 
59 . 00627 . 1)0054 . 02627 .00392 20.~o 18 . 28 . 587 
bO . Ou6uJ . 00047 • IJ 25'17 . 0037i+ 11..J. 42 11.76 . 529 
61 . OOSt36 • 0004 l . u2S90 . UOJ57 U:>. b:> 17. 22 . 47 5 
6c • OC:i-/4 . 00.JJS . 02607 .00339 17 . 89 16.66 . 4~5 
€d . 0056B . 0003 1 . 02b't7 , UOJ 2 1 l 7. ls. 16 . 0~ .37 8 
64 . 0()5~ 7 . 00027 .0271 2 . 00304 16.42 15 . 52 .3J6 
65 .OOS69 . 0002$ . 02tsU2 . 00287 lS.71 14 . 94 . 297 
66 . OOS76 . ooocs • vcLJ l 1 . 00271 1~.01 14 . 35 .262 
67 . 005Ei7 . 00027 .0 3059 . 00255 l'+ . 33 13 .77 . 230 
6.., . 006li0 . OOIJ3 1 . 03228 .002]9 lJ . 66 13.1 9 . 201 
6 ~ .0 06 1$ . 00036 . 034 26 . 00 224 13 . 01 12. 6 1 . 1 75 
7:J . OObJ:i . UlJ04 2 .u3656 . 002 10 12 . 38 12 . 04 . 152 
71 . uOo'=>6 . 00048 .03 9 17 . 00197 11 • . , 7 11.48 .1 32 
7?.. . OOb .lt> . 00 1)$4 .04214 . OOl o4 1 l. 17 10. 93 • 11 4 
7 ·3 . 00 70 1 . OOOb l • 0 '+~4 l . 0011 1 10.59 10 . 38 . 098 
7 ... • 0 1) 7 C.4 . 00067 .0492 1 .uOl bO 10.uc 9 . 86 . 084 
7S . 001~1;:, .0 0073 . 0533 7 . 00 14'1 9 . 48 9 . 34 . 072 
7t:. . v076o . iJOvF-1 .05d00 . 00 13H 8.9b 8 . 84 . 06 1 
7 7 . C'J7~ 7 • 01.106:> . 0 63 12 . 0012d 8 . 4 5 e . JS .0:> 2 
7ci .1.1 061.13 . 00090 .u6'd77 . OOllLJ 7. 96 1 . ub .044 
7~ . OOdl6 . 00094 . lH 500 . c,0 11 0 7. 49 7.42 .037 
80 . uC!jt::4 . 00096 . 0 8 l t>b . 00 102 7.04 6 . 99 .0 3 1 
8 1 . Oub26 . ou 100 . 08938 .00 094 6 . 6 1 6 . 56 .0 26 
a2 . Ovoc.l .00102 .u9763 .00 086 6 . 20 6.16 . 022 
~J . OO d lO . OOlu2 .1 0665 . 000 80 S.80 5 .77 • 0 H~ 
a .. . 001~0 • liO l O 1 . 1 1650 . 00073 5.4J 5 . 40 .01 5 
8:, . vo7o2 . 0009'-1 . 12725 . 00067 :, • U 7 5 . 05 . 013 
.qt, . 0(;}c.7 .0 0 \J-j:, • 1 389':> . 0006 1 4.73 4 . 71 .0 10 
~7 . 006'13 . 00090 .1 5 160 . 00056 4 . 41 4 . 3~ .oo~ 
R ._, • vl.i6J~ . 00084 . l bS.:.t> . 0005 1 4. l 0 4 . 09 . 00 1 
F3 =r . 0v:>7'5 . 00tJ77 . l ljU 44 . 00047 3.bl J . 80 .00 6 

( '1 J . ClJ:51:+ . ooon .1 9661 . 0(;042 J . 54 3.53 . oo~ 



( A p SE <P > a SE <O> E ( N) 'E <BC > SE <E ( t:3C ) ) ~6 37 . 08391 . 00735 . 0839 1 . 00735 39.62 . 14 . 26 . 704 38 . ll 3b9 . ou573 . 12410 . 00617 38 . 69 14.52 .761 39 . 09 109 . 00332 . 11 352 . 00481 37.75 15 . 5 1 . 881 40 . 07386 . 00205 .l OJ8t"t .00390 36.b l l 6.4J . 993 
4 1 .06055 .00 160 . 09499 . 00346 JS . 88 17.28 l. 093 . 
'• 2 . 05015 . 00156 .08693 . 003'+2 34 . 95 18.05 1.174 4 3 . 04192 . 00 162 . 079S8 .00363 34 . 03 18.72 l. 237 4 4 . 03534 . 00165 . 07290 . 00393 33.1 1 19 . 30 l .279 45 . 03004 . 00165 . 06684 . 00423 32 . 19 19.77 l .. 302 46 . 02574 .00161 . 06136 . 004SO 31028 20.16 1 .. 30 7 4 7 . 02221 .00 155 . 05641 . 00472 J0 . 38 20 . 44 1 .295 
48 . 0 1~30 . Ou l 48 . 051 95 . 00487 29 . 49 20.63 1 .269 49 . 0 16 89 .0 0 139 . 04796 . 00497 28.60 20•7 1t 1. 231 so . 01489 . 00 13 1 . 04439 . 00502 21 . 12 20.76 1.183 5 1 . 0 1 321 . 00122 .04 122 . oosoz 2.b.ti4 20.10 1.128 52 . 01 18 1 . Ov ll 3 .03843 . 00<+99 2S.9f3 20.57 1 .066 
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49 .0904 0 .0 0368 .u9040 .0 0368 28.60 11 . 7 7 .235 
50 .1 187 7 . OvJ08 .1 3057 .00 335 2 7. 7 2 11 .89 .254 
51 . 0~378 . 00173 .ll d59 . 00257 26 . 84 12.60 .289 

0 52 . 07Sl5 . 00106 .107 80 .00 208 2S.98 1J.2J .323 
53 .0 6103 .u00 85 .0 9813 .ooun 2S . 12 13.78 . 351 
5.:+ . 05019 . ooo~s . 08949 .00188 c.4.28 14.22 .371 
55 • 04 l 7 c'> . OOOd7 . 08180 . 00200 23 . 44 14.57 . 384 
56 . u35 17 .000 87 . 07SOO .00215 22.61 14.83 . 389 
5 7 . 02993 . 00oas .0690 1 . 00229 2 1 .80 l 4. 9':1 . 387 
58 .02:575 . 0008 1 . 06377 . 00240 c.0.99 15.06 .378 
59 .02239 . 00077 .0592) . 00245 20.20 15 , 0t> .365 . 60 . 019t-,9 .00071 .v 5S35 .002s2 19. 1+2 l '+. 9·1 0348 
61 . Ol 7SO . 0006S .0 5208 .00 2S4 18.65 14.82 .327 
62 . OlS/3 . OOOS9 .04938 . 00252 17. 89 l l+.6 1 c30~ 
63 . 0 l tt30 . 00053 . 04722 . 00248 17 .15 14.34 . 282 

r 64 . OlJl':> . 00047 . 04S58 .00243 16 .. 4?. 14.03 .258 
6S . Ol2c-3 .00042 .0 4443 . 00235 l 5 .. 71 13 .6d .234 
66 • O 11 5 1 .00 036 .04375 .00 22 7 1s.01 .l JO 29 • 211 
67 . 010~5 .0 003 1 .043SJ .00218 14.33 12.8d .189 
6>3 . ulOS3 . 00027 .Ot.i,377 .00208 13.66 12.44 .169 
69 .01 0c3 . 00023 .0 4446 .00198 l J.0 1 11. 99 .1 49 
7 CJ . CJ1002 . 00021 • o,. :;59 .00187 12 . 38 11. 52 .lJl 
7 1 . 00990 . 00020 . U<+718 . 00177 11.77 llc0 5 . 115 
1c . 00964 . oou20 . 04923 .00166 1 l. 17 10 . 57 .100 
73 . 00984 . 00022 .05175 .001 56 10. 59 10.09 .0 86 
74 . 009>j7 . 0002S .os,.76 . 00146 1 0.02 9.61 . 071::J 
75 . CJ09~3 . 00028 .O'=>d28 .00136 9 . 48 9 .1 4 .Oo4 
76 . Ol vUO . 00031 .06233 . 00 12 7 8.96 8.6ts .oss 
77 . 0 100 7 . 0003:> .0 6694 . 00118 8.45 6 . 22 .04b 
78 . 01013 . 00038 .072 14 . 00109 7 . 96 7.77 . 039 
79 . OJ.016 . 00041 . Q7 797 . 0010 1 7. 49 7. 34 .033 
80 . 01014 . OOU44 .0 8447 . 00093 7. 04 · 6.92 . 028 
81 . 01ooa . 00046 .09168 . 00085 6.ol 6.51 . 023 
8? . CJ09YS . 00047 . 09 964 . 00078 6. 20 6.1 1 . 019 
83 • 1) 097S . 00048 . 1084 1 . 00072 5.80 5.74 . 016 
84 • ~0':hb . 00048 .11 805 . 00066 S.43 5.37 .0 13 
85 . OOYld .00048 .1 2e60 . 00060 5.07 5.03 .011 
Fi,, . 00()63 . 00046 .1 40 13 . 00055 4.7 3 4 . 69 .0 09 

c. 87 . OO~v~ . 00(144 .1 5270 . 00050 4.41 4 . 38 .0 07 
88 . Ou 7'-+7 . OOO'+~ .lqbJ8 . 00045 4 .1 0 4 . 08 . 006 
89 • 0 0 6 ., e .00039 .1 8122 . 0004 1 3 . 8 1 3 . 79 .oos 
90 . 00604 . 0003S .1 9728 • o·o 03 1 J. 5 4 3 . 53 .004 

C 



.( A j-> ~E <P> Q ~E(Q) E {N ) E<8C) SE ( E (BC )> 59 
50 .0 9410 .00357 .09t+l0 .00357 27 .7 2 11 .37 .217 

51 .1 2030 .00297 .13279 . 00324 26.84 11. 5 1 ~23S 

52 .0 9'+78 .00 166 .12065 .OU24'i 2~ . 98 12.1 9 . 26 8 

r. 53 . 07':>80 .00 10 2 .l CJ972 .00202 2s.12 12. s o . 299 

s ... .0 6146 .00083 . 09994 .00183 24.28 13. 32 .325 

55 .05049 .o oo a 2 .091 21 .001 8S 23.41+ 13.74 . 344 

56 ,.041Y8 .00084 .08345 .00 197 22.6 1 14.0 7 .3S6 

57 .03532 .0 0084 .07660 .00 2 12 21.80 14. 3 1 .360 

58 .03005 .0 00 8 2 .0705') .00226 20.99 14. 46 • 3::> 8 

59 . .0258 6 .00078 .Oo53S .00237 20 . 20 14 .52 .3~0 

60 . 02250 .00073 . Ob083 . 002l+4 19. 4·2 14.50 .337 

·61 ·.CJ1979 . 00067 .OS699 .002£.td l 8o65 l4o4l .320 
• 62 .00062 .05377 .0 02'+'1 l ., • 89 14. 2::> .301 .Ol°/bl 

63 .u l585 . 00056 .05115 .002'+7 1 'fol 5 14 .03 0280 

64 .01444 .ooo so . 0490'.l .00244 lb .42 13.76 .2S8 

~· 6 5 .01330 .00044 .0 47S6 .00238 15.71 13 .44 .236 

6 6 • 0 12 .:+ 0 .00039 .04 655 .002 3 1 1s.0 1 13. 09 .21 4 

67 • 0 1169 .00 033 .04603 .00222 14 .33 12 .71 .1 93 

68 .0111 4 .00 029 .04600 . 00213 13 .66 12 .30 .17 2 

69 .01 073 .00025 .0464$ .00203 13. O l 11. 8 7 . 153 

70 • 0 l 0'-+4 .00 022 . Ot.+736 .0 0 193 12038 11 .42 .135 

7 l .01024 .0 0020 • 041:376 . 00 183 1l .77 10. 96 .1 18 

72 .01011 .00020 . 05063 .0 0 17 2 l l • 1 7 10. so .103 

73 .01005 .OOC21 . 05300 . 00 162 10.59 l O .. 03 .090 

7'+ .Ol0 V3 . 00023 • OS::>8 7 .001 52 10.0 2 9.56 .077 

7$ .0 10 u5 .00026 .OS926 . 0 014 2 9 • l~H 9.10 .0 67 

76 .01o oa .00029 . 0632 U .0 0 1]2 8.96 8.64 . OS7 

77 .01 0 12 .00 033 .0 6772 .001 2.3 8.45 8. 19 .049 

7 8 .01014 .00 036 .i.J728J .0 0 114 7.96 7. 7'::> .0 41 

79 .01015 . ouo39 .07 tS58 .00105 7. 49 7.32 .035 

t3 (J .01011 .00 04 1 .Od50l . 0009 7 7.0 4 6.90 .029 

81 .0100 3 .0 0043 .092 16 . 00090 o . 6 1 6uS0 .024 

82 .0 09d9 .00 045 . 100 07 . 00082 6.20 b.1 0 .0 20 

83 .00961:3 .000 46 .1087 9 .00076 5.80 5.73 .017 

84 .009Jts .00 046 .11 838 . 00 06 9 S.43 5.37 .014 

c- 85 , OO'iUl .00046 .1 2889 .00063 s.01 s.oc . 012 

86 . ooass .00 044 .140 39 .000 58 . 4. 7 3 4,69 .01 0 

87 , 00800 .00043 .1 5293 .00052 '+. 41 4 .3b .0 08 

8t3 .00738 •. o O 04 0 .16658 .00047 4. l 0 4.08 .0 06 

' .b 9 .:J0670 . 000 3 7 .18139 . 00043 3.81 3.79 · .oos 
90 .0059 7 .00034 .19744 .00039 J.54 J . 5c .004 

( 



( A p '.::>E( fJ) u SE(U> t:.C N ) E <8C l SECECtK>) c:: 
51 . OY/dO .00350 .09 / 80 .uo 350 2b.U4 10.98 0202 
52 .1 2 16 7 . 00289 . l3'+b6 . ouJ16 2j.9o 11 .1c • 2co 
53 .0 95 72 .001 60 .1 2264 . 00242 25.12 11. 78 . 252 
54 .07646 .fJ0099 .lllb~ .00197 2 '<· . 28 12.36 . 282 f' 

55 . CJ61Y4 . 00081 .1 0ld2 . 00 180 23.44 12 . t35 .306 
56 . 05084 .000 8 1 . 09305 . 00183 22 . 6 1 13.25 .324 
57 .04226 . 000&3 . 08S2B . 001 9 7 21.80 13 .. 56 . 335 
58 .03555 . 00083 . 07842 . 00212 20.99 13 .78 .339 
59 . 03025 .u00 80 .o7 c'+ l . 00226 20.20 1 3.91 . 337 
60 . 02604 . 00076 . 067 19 .0 023 7 19.42 13 .96 0329 
61 .02 20 7 . 00071 . C,6272 . 00243 l tl . 65 13.93 . 317 
62 . Ol 9Yb . OOObS . 05893 . 00249 1 7. 89 13.83 . 301 • 63 • 01 77 'i .0 0059 . 05 57 9 .0 0241.) 17.15 13.66 0283 
64 . 01603 . 00053 . 05326 .0024d 16.42 13 .44 . 263 
65 • 0 1 £+62 . 0004 7 . 05130 . 00244 15 .71 13 .. 1_7 .,242 
66 . 0 13<+9 .0004-1 .0 499 1 . 00238 15 . 0 1 12.85 .221 
67 . ul2o0 . 00036 .0<-+905 .00231 14.~3 12.50 . 200 
6& . 0 11 1.)0 .00031 .04 t3 70 .0 0222 13.66 12 ., l 2 .179 
69 • 0 l 1 36 .0002 7 . 0488 7 . 00213 13 .. 0l ll o'l2 .1 60 
70 . Ol09S . 00023 . 049$3 . 00203 12 .. 38 11 .29 • l 42 
71 . Ol06S .00 020 .05070 .001 93 11 . 77 l O O 86 • l 25 

' 72 . 01044 . 0·0019 • 01;>23 7 . 00183 11 .1 7 10 . 4 1 .109 
73 .0103 1 . 00020 . 05455 . 00172 10.59 9.96 .095 
7'i . 0 1023 . 00022 .05726 .0 0162 10 .02 9. 50 . 082 
7 $ . 01019 . 00024 . 06050 .001 5 1 9.48 9.CJS . 071 
76 . 01018 . 00028 . 064 3 1 . 00141 8 . 96 8.60 .06 1 
77 . Olul7 . 0003 1 . 06870 . 00132 b . 45 8 . 16 .os2 
7 b . 0 1017 . 00034 . 0737 1 .00122 7. 96 7.7 2 .044 
79 . 01014 . OOC)7 .0 7937 .0 0 11 4 7. 49 7. 30 . 037 
P, 0 . uJO•Jd . 00040 . 08571 .001 05 7.04 6. 88 . 032 
8 1 • 01.)'}'-}o . 00042 . 04278 . 0009 7 o.61 6. 48 ~026 
82 . OO~b2 . 00043 .1 0062 .0 0089 6 . 21) 6.09 . Oc2 
B3 . 00<:1S9 .0 0044 . 10928 .OOO &c 5 . 80 5.72 .018 
8 'i . oo~t8 . 00045 .11 88 1 . 0007$ ~.43 S.36 . 015 
85 • (/Qt:j',O .00 044 .1 2928 . 00069 ~.07 s.01 .01 3 

< 86 .0 08~4 . 00043 .1 407 3 .00 063 4 . 73 4 . 68 . 010 
87 . uo7e9 . 00042 .1 532 3 . 00057 4.4 1 4.37 .ooa 
8t3 . uo7~8 .0 0039 • l 6684 . 00052 4. l 0 4.07 . 001 
89 . 00660 . 00036 • 18162 . 00047 3 . 8 1 3.79 . 006 
90 . OO'::>d8 . 00033 .1 9764 . 00042 3. 54 3.52 .0 05 

•. 



r( A p SE (f., > lJ ~ECQ) E(N) ECBC > SE<ErnC>l 6l 

52 . 10136 .00350 .10136 .00350 25.98 10.bO 0192 
53 .1228 7 .002dS .13673 .. 00312 25. 12 · 10. 74 .210 
54 .09 o60 . OOlS6 .12452 .00239 24.28 l lo36 .241 

~ 55 . 07 71 2 . 00097 .11 355 ,00195 23.44 11. 9 1 .270 
56 .06245 . 00081 .10374 ,0 0180 22 .6 1 12037 .,294 

57 .05126 .00081 .0 9499 .0018S 2locl0 12.75 . 311 
5H • 0 1+2b0 . 00083 .08724 .00199 20.99 13 .. 04 .32 1 
59 .0358 4 .00083 .08042 .. 00216 20 .. 20 13024 .325 
60 . 030S2 .000 8 0 .07445 .00231 19.42 13035 0323 

6 1 .02029 .0007S .06929 .00242 18 o·65 13 .39 .315 
62 . 02291 .00070 . 06487 .00250 17. 89 13 .35 .303 
63 .02019 . 00064 .06116 .002S4 17.15 13 .. 24 . .288 
64 . Ol!~Ol . 00058 .058 11 . 00255 16.42 1 3 0 0 7 . 2 71 

6~ .01626 . oou52 . OS5o9 .0 0253 l S.7 1 12. 8'-t .251 

66 . 01485 .000 46 o053B7 .002'+9 1s . 0 1 12.57 .231 
67 • 0 i 3"/ 3 .00040 . OS262 .00244 14 .33 12 026 .211 
6 8 . Ol2cU .00 034 . 05 192 .. 00236 13.66 ll o9£'. .190 

6'-J .01213 • 0 002':I .0 5 176 . 00228 13.0 1 · ll .54 .1 71 

70 . Ol l S8 . 00025 .0 52 14 .00218 12.38 11. 14 .1 52 

7 1 . 01117 .00022 .05305 .0020d 11 .7 7 10 .. 73 0135 
1?. .C lOdb .00020 .05448 .0019B 11 . 11 10.30 .119 

73 . 0 10 64 .00020 005645 .00187 10.59 9o87 .104 
74 • 01"049 . 00021 .05896 .00177 10.02 9.43 .090 

7S ., 0).039 .00023 .06203 .00166 9.48 . 8. 99 .078 

76 .01031 .00026 .06568 .00156 8.96 8.55 .067 

77 .01026 .OOOJO .06993 .00145 8.45 8. 11 0057 

78 . 0102 1 .00033 .0748 1 000135 7.96 7 .69 .049 

79 .01014 .OOOJ6 .0 8035 .00126 7.49 7.27 .042 

8 0 .• 01005 .00039 .. 08 659 .00117 7.04 6.86 .0 35 

8 1 .00 992 .000 4 1 .09356 .0 0108 6.6 1 6.46 .030 
82 .00974 .0004.3 .10132 .00099 6.20 6.08 .025 
BJ .00949 .00 044 .10990 . 00092 S . 80 So 70 .021 
84 .00~1a .0004£+ .1 1937 .00084 S.43 5.35 . 017 

8S .0 0879 . 00044 .1 29 77 .00077 5 . 07 5.0 1 .014 

8b .00 832 .000<+3 . 14117 . 00070 4 .73 4068 .012 

87 . 00777 .00041 .15362 .00064 '+. 41 4 . 37 . 010 

88 . 007 16 .OU 039 . 167 19 .OOOS8 4 • l 0 4 .07 .ooa 

b9 .00649 .00036 .18193 .00053 3.8 1 3.79 . 006 

.90 . 00578 . 00033 . 19791 . u0048 3.54 3.52 . oos 
( . 

I , 



A p SE <P> Q SE <Q> E ( N) E<BC > SE ( E(BC>> 62 
53 . 1047 1 .00 356 .104 7 1 . 00356 25.12 10. 2 3 . 185 
54 . 1238 7 000285 .1 3836 .00314 24. 28 10.37 .203 
55 0 097L:~ 0 . 00 156 .1 2626 . 00240 2 3.,44 10 .95 . 233 
56 • orn1 .00 09 7 . 11539 .001 96 22 ., 6 1 1 1 .. ,~1 . 262 
5 7 .0630 0 . 0 008 2 .1 0566 . 0 0 182 21 .80 ll .90 . 285 
58 .. 05 172 . 0008 3 .0 97 0 0 .0 0 189 20 . 99 12 .25 • 3 02· 

r 59 .043 0 1 .000 85 .0893 2 .,0 0205 20.20 12. 5 1 . 31 3 
6 0 .0 362 1 . 000 84 .08 258 . 00 2 23 19 . 42 12 .. 69 .317 
61 .0 3085 .0 008 1 .07669 . 00239 U3. 65 12 .79 . 315 
62 . 02660 . 00076 . 071 6 1 . 0025 1 17 .89 12 .81 . 30 7 
6 3 .0232 1 .00070 .0672 9 .0 0259 17.15 12 .. 76 . 296 
6'• . 02 048 • 0006'+ . 06 368 .00264 16. 4 2 12 .65 . 28 1 
6 5 .01 829 .0 005 7 . 060 75 . 00265 15.71 12.48 . 264 
66 . 0 1653 .. 0005 1 . 05846 . 00264 15. 0 l 12.25 . 245 . 67 . 015 12 . 0 0045 .05678 .0 026 0 14 . 33 l lo 98 .22 5 
6 8 . 01 399 .00039 . 05569 .0 0254 13. 66 ll o6 7 . 205 
69 . 01 309 .0 0033 .055 18 .00 24 7 13 .. 0 l 11 .. 33 . 185 
7 0 .01 238 .00 028 . 0552 3 . 00238 12 . 38 10. 9 6 . 166 
71 . 0).). 0 2 . 00024 .05584 . 00 2 28 11 .77 10 . 58 . 148 
12 . Oll'•O .00 022 .05700 .00 2 18 11.11 l 0 o l 7 . 131 
7 3 .,01107 .0 00 20 .058 73 .0 0208 10.,59 9 o76 . 11 5 
7'• . 0108 3 .00 02 1 . 06 102 . 00 19 7 10 002 9. 33 .1 01 
75 . 010 65 . 00023 . 06389 . 001 86 9.48 8 . 9 1 . 08 7 
76 .01 05 1 . 000 26 . 06735 . 00175 8096 8 ol} 8 .075 
77 .01039 .00 029 .071 4 4 . 0 0 164 8.45 8.06 .065 
78 .0 10 29 . 00 032 .07 6 17 . 00 15 3 7.96 7. 6 4 . oss 
79 . 01010 . 00035 . 0 8 15 7 . 001 4 3 7 .49 7 .23 .04 7 
8 0 001 0 05 .0 0038 .0 8 768 .00 133 7. 04 6 . 0 3 0 Ol~O 
8 1 .,00 98 9 0 000 6, 0 .0 94 54 &00123 6.6 1 6.44 . 034 
82 .00968 .00042 010220 . 00 114 6.20 6.06 .028 
83 .0 094 1 .00044 . 1 106 9 .00 10s 5 . 80 5 . 69 .024 
84 .0 09 08 . 00 044 . 12007 . 000 9 7 So43 . 5 .33 . oco 
85 .0006 7 . 0 00 44 • l 30 ta. O .0 008 9 5.0 7 4 . 99 . 016 
86 . 00 02 0 . 000 43 014 173 .00 00 1 4. 73 4.67 .01 4 
87 .007 65 .00042 .154, l 2 . 000 74 4 ,. 4 1 4:.36 • 011 
88 .00704 .00039 .1 67 6 3 .00068 4. l 0 4 . 06 .0 09 
89 .. 00 6 37 . 0003 7 .1 8232 . 00 062 3. 8 1 3 .78 . 001 
9 0 .005 6 7 . 00033 .1 9 826 . 00056 3 .54 3. 52 . 006 



,( A p ::,E < P > (,j SE CQ > E(N ) E C l:SC > SECE(t3C) l 63 
Stt .10777 . 003b5 .1 0777 .00365 ~, ... 28 9 0 88 .1 bO 
5 5 .l2 't66 .002;)0 .13972 . 00320 23.44 10.0 1 .197 
56 .0 981 1 .00158 .12 782 .00 244 22. 6 1 10.56 .227 
57 .07 1:Fd .OOU9B .11713 .00200 21.80 11. 03 .255 
sa .063':>7 . 00084 .10756 . 00187 20.99 11 .43 .279 
59 .05224 .0008S • 0990£~ .00195 20.20 ll.7S .296 
60 .04348 .0008 7 .091 50 .00213 19. 42 11 .99 .307 
61 .0366S .00086 .08488 .00232 18.65 12.1 5 .3 11 
62 .03126 .00082 .079 11 .00249 17 .89 12.23 .309 
63 .0 26<;& .00077 .07416 .0 0262 17. 15 12.24 .302 
64 .023S7 . 00071 .06996 .00271 16. 42 12. 18 .290 
65 .020&3 .00 064 .06648 .00277 l':> .7 1 12.06 .276 
66 .01 863 . 00058 .0 6369 .0 0279 1s.0 1 11. 8':I . 259 
67 .01 685 .ooos1 .06 1S5 .0 02 78 14.33 11.66 .241 
6 8 .01543 . 00044 .06003 .00274 13. 66 11.40 .221 

C 69 .01 428 .00038 .059 13 .00268 13.01 11 .09 .202 
70 .01337 .00 033 .0 5883 .00261 12 .38 l0 . 76 .182 
71 .01264 .00028 .05911 .00252 11.77 10. 1+0 .163 
72 .Ol 2U7 • OOU24 .OS99 7 .00242 l l • l 7 1 o. o;:: . . 146 
73 .01162 .00022 .061 42 .00232 10 .59 9.,63 .1 29 
74 . 01127 .00021 . .06346 .0022 1 10. 02 9.23 .. 11 3 
75 .01099 .00023 .0 66 10 . 00209 9.48 8.82 .099 
76 .01077 . 00025 .0 6936 .001 98 8.96 8 .40 .0 ~6 
77 .OlOS9 .00028 .07325 .00186 8.,45 7 ,,99 .074 
78 :01042 . 00031 .07780 .00 17S 7.96 7 .59 .0 64 

. 7'1 . 0102& .00035 .0 8305 ,0 0164 7 . 49 7.18 .OS4 
80 .0 10 0~ .0 003!:3 .0 8902 .00153 7. o,. 6.79 .046 
81 .00 9d8 .00 04 0 .095 75 .00142 6 . 61 6.4\) .039 
82 .00 964 .00043 .10328 .00132 6.20 6. 03 · .033 
83 .00 934 . 0004 4 .11167 .001 22 5.80 ~.67 .028 
84 .00 8~9 .00045 . 12095 .00113 S.43 5.32 ~023 
SS . 008$7 .000 45 .13119 . 0010 4 5.07 4.98 .01 9 
86 .00 8 09 .0 0044 .1 424 3 . 00096 4.73 4.66 .016 
87 .007 '::>3 .00043 .lS475 . 000 88 4.41 4.3S .013 
8,8 .00 692 .000 40 .l 6b l9 .000 80 '+. l 0 4.06 .011 

0 89 .00026 . 00037 . 18282 .00073 3 .8 1 3.18 . 0 09 
90 .005S6 .00034 . 19b7l .00066 3.54 J.Sl .007 ·' 

• 



,. . ( A p SE (P ) Q Sc. <U > ECN) E<BC> SE (E ( ~C >) ::;.., 
55 • 11 01+ 8 .00377 .11 048 .00377 23.44 9.54 .1 74 
56 .1 2 52 4 . 00296 .1 4079 . 00328 22.6 1 9 . 67 .1 92 
57 . u<;o7'+ . 00161 .129 19 . 0025 1 2 1. 80 10.18 .2tl 
5 8 .0 790 4 . 00100 .11 876 . 00205 20 . 99 10. 6 1 . 249 
59 . 064 17 .000~5 .1 0942 .C,0192 20 . 20 10. 98 . 27 2 
60 .0 528 1 .00087 .1 01 10 .00 20 1 19.42 11.27 .289 
61 • 04lt02 . 000 89 .09 375 . 00220 18.65 11. 48 .300 
62 . 037 1S . 00088 .0 8730 .00241 17.89 11.62 .304 
63 .0317J .000 84 .08 170 .00259 17.1 5 11. 68 .303 
64 . 02743 .0007~ .07690 . 00274 16. 42 11. 68 .296 
65 .02399 .00072 .07286 .00284 15.71 11. 61 .285 
66 .0 2123 .OOOb5 . 06955 .0 0291 15. 01 11 .48 . 271 .. 
67 .01 90 1 . 000 38 . 06692 .00 293 14. 33 11. 31 .255 
68 . Ol7cl .0 005 1 . 06496 .00293 13.66 11. oa . 237 
69 .ul S77 .ooot~4 .06364 .00290 13. 01 10.82 .21 8 
7 0 . Ol4bl .0 0038 . 06295 .0 0284 12. 38 10.52 .1 99 
71 .0 136 7 .00 032 .06288 . 00277 11.77 10.19 .1 80 
72 .Ol 2Y2 .00028 .0 6342 .00 268 11.17 .9.84 • 161 
73 . 01~3~ .oooc4 . 06456 .00258 10. 59 9.48 .1 44 
74 .011 ~4 .000 23 .06633 .00 247 10.02 9.10 .1 27 
75 • 0 11 '•5 . 000 23 .0687 1 . 00236 9 . 4 8 ts.71 .11 2 
76 .0111:, . 00025 .07173 . 00224 8 . 96 B.3 1 .09 8 
77 . 01086 .00 028 .0 7541 .0 02 12 8.45 7.92 .0 85 
78 . 0 1063 .000 31 .07977 .002 00 7.96 7.52 .073 
79 . OlCJ'•O . OOC,34 .0 8483 • oo urn 7.49 7.13 .0 63 
80 .01 0 17 . 00037 .09063 . 00177 7.0'+ '6. 74 .0 54 
81 . 00'192 . 000'+0 .09721 .00165 6.61 6.37 .046 
82 .0 09t>3 . OU043 • l 0460' . 00154 6 . 20 6.00 .039 
83 .00 93 1 . 00044 .11286 • 0 0 l '• 3 5. 80 5.64 .033 
&4 . 0 0893 .O U0'+5 .1 2203 . 00 133 5.43 5.30 .0 27 
85 .ooa ... 9 . 00045 .1 32 16 . 00 123 5.07 4 . 96 .0 23 
8b · .0 0799 .00045 .14331 .00113 4 . 73 4.64 .01 9 
87 . 00743 . 000'+3 .1 5553 . 00104 4 .41 4.34 . 016 
8ts . 0068 1 ·. 0004 1 .1 6889 .000 95 4.10 4.05 .01 3 
89 .00 6 15 .00 038 .18345 .00007 3.81 3.77 • 0 l l 
90 .0 0~45 .00035 .1 9927 .00080 3.54 3.50 .0 09 

( 



A p SE ( P > Q SEW> E·<N) E(8C> SE<EWC)> 6 5 
56 . 112/9 .0038 7 .11279 .00387 22.61 9.24 .169 
57 .12561 .00303 .141S8 .0033b 21.80 9o35 .186 
58 .09928 .00164 .13035 .00257 20.99 9.81 .214 

. ~ 59 .07965 .00102 .12025 .00211 20020 10.21 · .241 
60 .064d0 .oooa1 .11121 .00197 19. 42 10.54 .264 

· 61 .05343 .,00089 .10316 .00 201 18.65 10. 80 .281 
62 .04461 ~00091 .0 9605 .00 227 17 .89 10.98 .291 
63 .03771 .00090 .08982 .00249 17.15 11.10 .296 
64 .03226 .00086 .08443 .00269 16.42 11.14 .29S 
6~ .02793 . 00080 .07983 .00285 15 07 1 11 . 13 .289 
66 .02446 .00073 .07599 .00296 15.01 11.os .279 
67 .0 2168 .00066 .07287 .00304 14.33 10. 92 .26S 
68 .01943 .00058 .070'+5 .00307 13.66 l0 e74 .249 
"69 .01761 .00051 .06870 .00307 lJoOl 10.51 .232 
70 .01614 .00 044 .0 6 76 1 .00305 12. 38 10.25 .214 

C 

71 .01495 .00038 .06716 .00300 11.77 9 .. 96 . 195 
12 .01399 .00032 .06735 .00 293 11.17 9e64 .177 
73 .01320 .00028 .06817 .00284 10 .59 9.30 .lS8 
74 .Ol2S7 .00025 .06963 .00274 10.02 B.95 .141 
7S .01205 .00 024 .07174 .00264 90 1+8 8.58 .125 
76 .01161 .00025 .07450 .00252 8.96 8.20 • 110 
7 7 .01124 .00027 .07794 .00240 8.45 7.82 .096 
7'd .01092 .00030 .08208 .00228 7. 96 7.44 .083 
79 .01061 .00034 .08694 .00 2 15 7. £~9 7.06 .07 2 
80 .01032 .00037 .0 9255 .00 203 7.04 6.69 .062 
8 1 .01001 .00040 .09895 .00191 6.61 6.32 .053 
t32 .00968 .000 42 .10619 .00179 6.20 5.96 .0 45 
8j .00931 . 0004it .1143"0 .00167 S.80 S.61 .038 
8it .00890 .00045 .12333 .00155 S.43 s.21 .0 32 
8S .00843 .00046 .13334 . 00144 5.07 4.94 • 027 
86 .00792 .000 45 • 144 3 7 .00134 4.73 4.63 .022 
87 .00734 .0004'+ .15650 .OOJ.23 4.41 4.32 .019 
88 .00072 .00042 .1697b .• oo 114 4.10 4.03 .015 
8~ .00605 .00039 .18423 .00104 3.81 Jo76 .013 
9(J .00536 .00036 .19997 .00095 3.54 3.50 .010 

~ 



A p SECP) Q SE( Q) E CN) ECBC> SECE(8C)l 66 
{ 57 .}1 468 .00 394 .11 468 .00394 21 .. 80 8.95 . 162 

5 1:S .12578 .0 0307 .1'+208 . 00341 20.99 9.04 .179 
59 .0997 4 .001 67 .1 3 131 .0 0262 20.20 9.46 . 205 
t>O .0~024 .0 01(;3 . 12 162 .00215 19 . 42 9. 82 . 23 1 
61 .o6s~s .OU (d½ .11293 . uo201 18 . 65 l O • l l .253 
62 .05409 .00090 .10 52 1 .00211 17. 89 10 .. 34 .2o9 
63 .04526 .00092 .0 983 9 . 00232 17 . 15 10. 50 .280 
6 4 .03834 .000 9 1 .09 2<+4 .002ss l b .. 42 10.59 .. 285 
65 .0 3286 .00 087 • 0 8"130 .00276 l S. 71 10. 62 .284 
66 .02 8SO .00081 .08294 .00293 15.01 10.59 .27 8 
67 .0 2500 . OOU7'+ . 07934 .00306 14 .33 10 .so . 269 
68 .0221 8 .OOO bb .07646 .00314 13. 66 10. 3 7 .256 

< 69 .01 990 .000 58 .07 42 7 .003 19 13.0 l 10 . 18 .242 
70 .01 805 .00051 .07277 .00320 12.38 9.96 .225 
71 .Ol 6S4 .00044 .07193 .00318 11.77 9.70 .208 
72 .01 531 .00037 .07176 .00314 l l O l 7 9.42 .1 90 
73 .01431 .00032 .07224 .00 308 10. 59 9 .11 .172 
74 . 0134 9 .00 028 .07339 .00299 10.0 2 8.78 .154 
75 .0128 1 . 00026 . 07520 . 00290 9.48 8 . 43 . 138 
76 .0 12 23 .00025 .07768 .00279 8.96 8.08 .122 
77 .0117 5 .00027 .08086 .0 0268 8.45 7.72 . 107 
78 .Llll3 2 .0 0030 .08476 .00 256 7.96 7.35 • 09'+ 
79 .010 92 .00033 .08940 .00243 7 .49 6. 99 .0 82 
80 .01055 .00 036 .0 9480 .00230 7.0 4 6.63 .070 
81 . 01017 · .000 39 .101 01 .0021 8 6.61 6.27 .0 61 
82 .00979 .00 042 .10 807 .00205 6.20 5.92 .os2 
S3 3 .0093 7 .0 0044 .11602 .00192 5.80 5.57 . 044 
84 .00892 • 000£•5 .1249 0 .001 8 0 5.43 5.24 .037 
8S .00 842 .00046 .13~7 6 . 001 68 5.07 4.92 .031 
Bb .007d7 .000lt5 .1456 7 .OOlS6 4.73 4.61 .026 
87 . 001 28 .0 0044 . 15 767 .001 45 4.41 4.31 .022 
88 .00 664 .000 42 .17082 .00134 4.10 4.02 .01 8 
89 .OOS97 .000 40 .1 85 19 .00124 3.81 3.75 .015 
90 . 00 528 .000 36 .20083 .00114 3.54 3.49 .013 

e · 

' · 

l 



'( A p SE <..,> (J SE <O> E(N) E <BC ) . SE<E(.-1Cl )o7 5tl .11614 . 00398 .11 614 .00 398 20.99 8 .68 .154 59 .12S7d . 00309 .1 ,~23 1 .00344 20.20 8 .7 6 • 1 70 60 .10012 . 00 168 .1320 7 .002 65 19 . 42 9. 14 .1 95 6 1 .O BOB2 . 00103 .12284 .00 21 7 18 . 6:> 9. 1+5 .21 9 62 .066 1 3 .000 8b .11 £+58 .00203 17 .89 9. 71 . 240 63 .1)54 d 0 . 00090 .1 0723 .00212 17 . 15 9.90 .255 6 4 .04597 . 00092 .10076 .00234 16.42 1 0.03 . 266 6S .03903 . 00091 .09513 .00258 l S.7 1 l OolO .270 66 .03 352 .00087 .09029 .0028 0 15.01 10.12 .270 
67 .02912 .00 08 1 .08622 .00298 14 .. 33 10 .07 . 265 68 . 025~B .00073 .08289 .00312 13. 6 6 9.97 .257 6'-J .02272 .00066 .0 8028 . 00322 l 3 .. 0 1 9 ~83 .2 £+5 
70 .02040 . 00058 .07838 .00 328 12.38 9~65 .231 
71 .u1 as1 .oooso .07716 .00 330 11 .77 9.43 .21 6 72 .01 6~6 .000'+3 .07662 .00 329 11.11 9.17 . 199 73 .O l 5o9 .00037 .07676 .00326 10.59 8.89 .1 82 74 .01464 . 0003 1 . 07758 .00320 10.0 2 8 . 59 .1 o5 7S .01377 . 00028 . 07908 .00312 9.48 8.27 .149 
76 . 01303 .00026 . 013127 . 00303 d.96 · 7.94 .133 77 . 01240 . 00027 .084 18 . 00293 8.45 7.60 . 11 8 78 • 0 11 85 . 00029 .08782 . 002 8 2 7.96 7.25 .1 04 7 9 .011 35 .00032 . 09222 . 00210 7. 1+9 6.90 .091 
B'J .O l0 !:S8 .00035 . 09740 .00251 7 .04 6.55 .0 79 
81 . 0 1042 .00038 .1 034 1 . 0024S 6.61 0.2 1 .0 68 82 . 00997 . 0004 1 . 11027 .00232 6,.20 5.86 .05 9 8) .0 0949 . 00043 .1 18 03 .00 219 5 . 80 5 . 53 .050 
84 . OC,899 . 00045 .1 26 74 .00 206 S.43 5 . 20 • 0"+3 85 . Ovd-+5 . 000 4 5 .13644 .001 9 3 5.07 4 . 89 .036 
86 .007B7 . 00045 .1 4720 . 00180 4.73 4.58 .0 3 1 
8 7 .007 26 . 00044 .1 5907 .001 68 4.41 4.29 .026 
88 .00660 . 00042 .17209 .001 56 4. 10 4.00 . 02 1 
89 . 0059 2 . 00040 .1 8634 .00145 3 . 8 1 3. 7 3 . 01 8 
90 .Ou 522 .0 0036 .20 18 7 .001 34 3 . 54 3.48 .0 15 

" 



( A p SE <P > Q SE CU> E(N) E<l:3C) SECE<8C>l 68 
59 .11 718 .00396 .11 718 .O OJ96 20.20 8.44 • l '+5 
60 . 12564 . 00307 .1 £+232 . 00342 l9.4 C: a.so .1 60 
61 .1 0044 .00168 .13265 . 00264 18.65 8.B3 . 183 
62 • Ot31 t+O . 00 10 3 .12 394 . 00217 17. 89 9. 11 . 205 
63 . 06683 . 00087 .11 615 . 00202 17.15 9.32 .225 
6<+ • 055'::>5 .00089 .1 0924 .00212 lo. 42 9.49 .240 
65 . Olt 6 73 . 00091 .10316 .00234 15.7 1 9.59 .249 
66 .0 3977 .00090 .09789 . 00258 15 .0 1 9 . 64 .254 
67 . 03423 .00086 . 09340 . 00281 14.33 9.63 . 254 
6B .02979 .00080 . 08966 .00300 13.66 9.57 .250 
69 . 02621 .00072 .08665 . 00316 13.0l 9.47 ., 242 

C 70 .0 2330 .0 0065 .08435 .,00327 12. 38 9 . 32 .2J2 
7 1 . 02093 . 00057 ~08276 . 00334 11. 77 9 .1 3 .219 
7 2 . 01&99 .00049 . 08un . 00337 11. l 7 8.91 .204 
73 .01740 . 0004-2 . 08167 . 00337 10.'::>9 B.66 .1 89 

(' . 
1'+ .01 607 .OOOJt> .082 16 .00 335 10. 02 8.39 .173 
75 . 01497 . 00031 .0 8335 . 00330 9 .. 48 8.09 .1$7 
76 .014 03 . 00028 .08525 .00323 8.96 7.79 .142 
77 . 01323 . 00027 .08788 .00315 8.45 7.46 .1 27 
78 . 0 1253 . 00028 .09 126 .OOJ05 7 .. 96 7 .14 . 11 2 
79 .01191 . 00031 .09541 .00294 7.49 6.80 . 099 
8ll .01133 .00034 .10035 .00283 7.04 6.47 . 087 
8 1 .01078 . 00037 .1 0613 . 00270 6 . 61 6 .1 3 .07 6 
82 . 0 1024 .00039 .11 279 . 00258 6.20 5 . 80 .0 65 
83 .00 969 .00042 .12035 . 00245 5.80 5.48 .056 
84 .00 9 13 . OIJ044 .1 2888 .00232 ~.43 5.16 • O't 8 
8S . 00854 . 00044 .1 3841 .002 1a 5.07 4.8$ .041 
86 .0 0792 .00044 .1 4900 . 00205 4.73 4.5$ .035 
fj 7 . 007~7 . 00044 .1 607 1 . 00192 4.41 4.26 .029 
88 .0 06S9 .00042 .17 360 .00180 4.10 3 . 98 . 025 
ts9 . OU'::>t:59 .00039 .1 8772 .00167 3 . 81 3.72 . 021 
9u .00 518 .00036 .20 3 12 .001 55 3.S4 . 3.46 • 0 l ., 

.. 

c. 

( 



( A p SE(P ) c., SI:. CO ) £(N) E < t:3C > SE< E me>> 6S 
60 .11782 .OOJ91 .117 d2 . 0039 1 19 .42 8 . 22 .1 36 
6 1 • 12538 .00302 . 142 13 .ou336 l 8 .6S 8.25 • l :>O 
62 .l U072 . 0016S .1 3308 .0026 1 17.89 8054 .17 0 
63 .0 8 197 .0 0 101 .1 2494 .0021 5 17.15 8.78 . 19 1 
64 .067S5 .0 0086 .11 766 .00201 16 .. 42 8.96 .209 
6S • 0563 1+ .000 88 .111 22 .00210 l S .71 9.09 . 223 
66 . C, 4 753 . 00090 .10558 .00232 1s .01 9 .17 .2 33 
67 . 04056 .00089 .1 0072 . 00257 14 .33 9.19 .237 
68 .0 3499 .000 8 5 .0966 1 . 00281 13.66 9.17 .237 
69 . o:rnso .0007 9 .09324 .00301 13.0 1 9.10 . 234 
70 .0 26t37 .00071 . 09059 .003 17 12.38 8.98 . 227 
71 .02392 .0 0063 .o~lj66 . 003JO 11 .7 7 8083 .217 
72 .021 49 . 00055 .08743 . 00338 11. 11 B.6'+ . 205 
7 3 . Ol9SO . 00047 . 08690 . 00342 10.59 8 .. 42 .1 92 
74 . 0 178'+ .OOOLt-0 . 08708 .00344 10.02 a. 11 . 178 
75 .Ul64S . 00035 . 08797 . 00343 9.48 7. 90 . 163 
76 .01 528 . 00030 . 08958 . 00 339 ti.96 7. 62 .148 
77 .01 428 . 00028 . 09 193 .00333 8. 1t5 7. 32 o l )Lt 

78 .01 340 . 00028 . 09S04 .00325 7.96 7 . 01 .1 20 
7 9 . 0 1263 . 00030 . 09893 . 003 16 7.49 6 .69 • l 06 
80 . 0 11 92 . 00032 . 10364 . 00306 7.04 6.38 .094 
ti l .01125 . 000 3 5 ~10 9 19 .00294 6.61 6.06 .082 
82 .010 62 .00038 .11 562 .002 6 3 6.20 S. 74 .072 
83 .00999 . 000'+0 .1 2298 . 00210 S.80 5.42 . 062 
84 . 009JS . 000'+2 .13131 .00257 S.43 5oll .054 
85 0 00 d70 .00043 . 14065 ,00244 5.0 7 4.81 .046 
86 . 00803 .00044 .1 5 107 .0023 1 4.73 4. 52 . 039 
8 7 .0 0 734 . 00043 .16262 . 00217 4.41 4.23 .0 33 
8B .0(1 663 .00041 .17 5 3$ .U0204 4.10 3. 96 .0 28 
89 .0 05'-iO . 00039 .1 8932 .00191 J.8 1 3.70 • 0 2(t 
YO . 005 1 7 . 00036 .20459 , 0017 8 3.54 3.45 .020 

... 



( A p SECP) Q SE<v> E(N) E <BC> SE<E< tlC >> 70 
-61 .lli.1 09 .OOJ8c .11 809 .O OJ82 ll:S .65 8.01 .127 
62 .12506 . 00291-t .1'+180 .00 328 170 89 8.02 .1 40 
63 .10097 .00162 .13341 .0 025S 17 .15 8.27 .1 59 

' 64 .08255 .00099 .1 2586 .00211 16. 42 8.47 .1 78 
65 .06d30 .OOO c34 .11913 .001 98 15.71 8.62 .1 95 
66 .05717 .00086 .11319 .0020 8 15.0l · 8.72 .20 8 
67 .04 838 .000 89 .10803 .00231 14.33 8.77 .217 
68 .04139 .000 88 .10361 .00 256 13.66 8.77 .221 
69 ~03576 .000 8 3 .09993 .00281 13. 0 1 8.73 .222 
70 .031 25 .00077 .09697 .00302 12 .38 8.64 .21 8 
71 .a2-1s1 .00069 .0 9473 .00320 11.77 8.52 .21 2 

' 72 .02 455 .00061 .0931 9 .00333 11 . 17 8.36 .. 2 (J3 
73 .Oc207 .000 53 .09236 .OO:.S 42 10.59 8.17 .1 92 
74 .02000 .00046 .0922S .00348 10.02 7.9S .1 80 
75 .ul B28 .00039 .0 92c3S .00351 9.48 7 . 70 • l 6 7 
76 .01682 .0 0034 .09418 .00350 i:s. 96 7 .4'+ .lSJ 
77 . Ol5S7 .OOOJO .09627 .00348 b.45 7.lb • l 40 
78 .01449 .00029 .09911 .00343 7.96 6.88 • 126 
79 .01353 .000 29 010276 .00336 7.49 6.58 .113 
80 .0126 7 .00031 .1Q722 .00327 7.04 6.27 .101 
81 .Oll d7 .000 34 .11254 .00318 6.61 5.97 .O e9 
82 .01112 .00037 .11875 .00307 6.20 5.66 .07 8 
83 .010 39 .00039 .12589 .00295 s.eo 5.36 .0 60 
84 • 0 0':lb 7 .00041 .13402 .002 83 5.43 5.06 .0 59 
8':> .00894 .000 42 .14317 .00270 5c07 4.77 .os1 
86 .00821 .00043 .15341 .00257 4!073 4.48 .044 
87 .00747 .00042 .16478 .00243 4.41 4.20 .037 
-~a .00 671 .00041 .17734 .00230 4. l 0 3.93 .032 
89 .OOS95 .00039 .19116 .00216 3.Bl 3.68 .027 
90 .0051 9 .00036 .20628 .00203 3.54 3.43 .023 

,. 

(' . 



e ( 

A p St(P) (j SE ((.! > E < N) E <8C > SE <E <dC>>7 1 

62 .11 805 .0 0372 .11 805 .0 0372 17 .89 7.83 .1~0 

63 .1 2471 .00286 .1 4140 .00319 1 7 ., l 5 7o 8 1 .132 

64 .10122 .00158 . 13367 .00249 16. 42 8.0 1 .150 

65 .0 8314 .00098 .l 2b 7 4 .00201 l S.7 1 8.18 .1 68 

66 .06908 .0 0084 . 12058 . 00196 15 .0 1 8.29 .1 83 

67 .O S80 3 .00 086 .11518 .00208 14.33 8 .. 36 • 195 

68 .0492b .00 088 . 1 1051 .OOc3 1 13. 66 8.39 . 204 

69 .04 226 .00 087 .10658 .00258 13.01 8.37 .2 08 

70 .u366 l .OOOt33 .103 36 .0 0284 12.38 8.31 .208 

71 .03203 .00076 .100 85 . 00306 llo7 7 8.21 .206 

72 .02829 . 000b8 .09904 . 00325 11.17 8.,08 .200 

73 .02520 .OU0 60 .09795 .OUJ39 10 .59 7 .. 9 1 . 192 

74 .0226S .ooos2 .09 75 7 .OOJ50 10 002 7.72 .,182 

75 .0205 1 . 00044 .09791 ,.00357 9.48 7., 50 .170 

76 .01 870 .00037 .09898 .00361 8 .96 7 .26 0 l 58 

,, ·11 .01716 .,00033 . 100 81 .00 362 8.45 1.00 .1 45 

·78 .Ol5cl3 .0 0030 . 10 34 1 .0 0360 7. 96 6.73 . 132 

79 .01466 .00029 .10 68 1 . 00356 7.49 6045 .1 20 

80 .01 36 1 .00030 .,111 04 .00350 7.04 -6" l 7 .,1 07 

81 .01266 .00 033 .11 6 13 .0 0342 6.61 5.87 .096 

82 .0117 6 .00 036 . 12212 .0 0332 6.20 5.58 .0 85 

83 . 0109 1 .0 0038 .12905 .00322 5. 80 S.,29 .074 

84 .010 09 .00040 .13698 .003 11 5 .43 5.00 .065 

85 .00928 .0 0042 . 14593 .00298 5.07 4.,72 .057 

86 .0084 7 .000 42 . 15598 .002(36 4.73 4.44 • 0 (~9 

87 . • 00766 .00042 .1 6 717 .0 027 2 4.41 4. l 7 .042 

88 ~00 6B5 .00 04 1 . 17956 .00 259 4.10 3.90 .,036 

!39 .00605 .00039 .19321 .00245 3.81 3.6~ .030 

90 .00526 .00036 .20817 .OOc3l 3.54 3.41 c026 

( 



( A p SE <P> Q SE<O > . E ( N) E < t3C > SE(E(t3C>> 7; 63 .117 76 .00364 .11776 .0 0364 17.15 7.65 • 115 
64 .1 2439 .. 00280 .14100 .0 0312 16.42 7.61 .1~6 
65 .1 Ul50 .00155 .13393 . 00244 15 . 71 7.78 .143 
66 .0 837 7 .00097 .1 2762 . 00204 1s.01 7 .90 .. l 60 

" 67 . 06988 .00084 . 12205 .. 00195 14.33 7 .99 .175 
68 . 05892 .00087 .. 11 720 .00210 13.66 8.03 .187 
69 .050 17 .00090 . 11 306 .00236 13.01 8.03 .1 95 
7 0 • 01+315 .00088 .10963 .00265 12 . 38 7.99 .199 
71 .0 3746 . 00083 . 10689 .00292 11.77 7 .. 92 . 199 
7 2 . 03282 .00076 .10l•8b .00316 11. l 7 7 .8 1 .1 96 
7 3 . 02901 .00068 .10354 .00336 lU.59 1.66 . 191 
74 .02585 .,00059 .10293 . 00352 10.02 7 .49 .1 83 • 75 .02321 .00050 .10 303 .00364 9.48 7.30 . 174 
76 .02099 .00043 .10387 .00373 8.96 7. 08 • l 63 
77 . 0 19 10 .. 00036 .10547 .00377 8.45 6.84 . 151 

.. 78 . 0 1747 .00032 .1 0784 . 00379 7.96 6.59 • 139 
79 .01605 .00030 .11102 . 00378 7.49 6.33 .127 
80 .01478 .00030 .11502 .OU375 7.04 6.05 .11 5 
81 .01363 .00032 .11990 . 00369 6.6 1 5.78 .103 

. 82 .01258 .00035 ~12568 .00362 6 .20 5.50 .092 
83 . 01159 .00038 .13240 .00353 5 ., 80 5o22 .081 
8'• . 01064 .00040 .14012 . 00343 5.43 4.94 .012 
SS . 00972 . 00042 . 14889 .00332 5.07 4 .66 .063 
86 .0088 2 . 00043 .15875 .00319 4.73 4 . 39 .055 
87 .0 0793 .00043 .1 6976 .0 0306 4.4 1 4 .13 .047 
88 . ()0706 .00042 .1 8 197 .00292 '+. l 0 3 . 87 . 041 
89 .OC 620 .00040 .19545 .00278 3 . 81 3o62 .035 
90 .00537 . 00037 .21025 . 00264 3.54 3.39 .0 29 

., . 

(. 

l 



A p SE <P > u SE (Q) E ( N > E< BC > SE (E <BC >l 73 
\ 64 .11732 . 00360 .11732 .00360 l 6o42 7 o48 .11 2 

65 .1 2416 . 00278 .l40bb .00310 l~.71 7. 4 1 .1 23 
66 .101 8 '+ .00154 .13426 .00241 15 . 0 1 7. 55 .1 40 
67 • 084-+3 . 00098 . 12856 .0020 4 14.33 7. 64 . 157 ' 68 .07 072 . 0008 7 .1 2358 . 00 198 13.66 7. 70 • 1 71 
69 .05983 . 000 9 U .1 1928 .0 0216 lJ .0 1 7.7 2 .1 82 
70 .0511 0 .00 092 .11 S68 .00246 12. 38 1.1 0 .1 90 
71 . 04405 .00 090 .11 277 . 00277 11.77 7. 64 .194 
72 . 03832 .oooes .11056 .00307 llol7 7. 55 • 194 
73 . 03361 . 0007 7 .10 904 .00333 10.59 7.43 .1 91 
74 . 02972 . 00068 .1 0 13 22 .00355 10 . 02 1 .21 .1 86 
75 .02648 . 00058 . 10813 . 00373 9.48 1.10 .1 79 

" 76 . 0237 6 . 00050 .1 0 876 .0038 7 8 . 96 6.90 .1 69 
77 . 02144 . 000 42 • ll OlS .00396 do45 6. 68 .1 59 
78 • (d 946 . 00036 .11 231 . 00402 7. 96 6. 45 . 148 
79 . 0177 3 . 00032 .11 S28 . 00405 7. 49 6. 20 .l J6 
80 . 016 20 .00 03 1 . 11 908 .00405 7.04 5.94 • 12"• 
8 1 . 01483 . 00033 .1 2376 .006,0 3 6.6 1 5.68 . 112 
82 .01358 .OOOJS .1 2933 .00398 6.20 . 5 .. 4 1 • l u l 
83 .0124 2 .00038 .1 3587 . 003 9 1 5.80 5. 14 .090 
84 . 01133 .0 004 1 .1 4339 .00382 5 . 43 4. 8 7 .0 80 
85 . 01 029 . 00043 .151 9 7 .00371 5 . 07 4.61 . 070 
86 .0092d . 00044 .161 65 . 00360 4.73 4.34 .0 6 1 
87 .OOt3JO . 00044 .1 7248 .0034 7 4.41 '+ . 09 . 053 
BA . 00735 .0 0044 .1 8452 . 00333 4. 10 3. 84 . 046 
89 . 0064 2 .0 0042 .1 9783 . 00319 3.81 3.60 .040 
90 . 00553 . 00039 .21247 ,003 04 3.54 3. 36 .034 

( 



( A p SE(Pl \.,I SE(U) E (N) E <8C) SECECuC)) 7 l 
65 .1168 3 .00363 .11683 .00363 15.71 7.32 • 110 
66 . 12407 .00281 .l40'-t8 .00313 15.,()l 7.23 .122 
67 .102~6 .00155 .13471 .00243 14. 33 7.33 .1 39 
6b .08514 .00100 .12962 .00201 13 .. 66 7 .40 .1 55 
69 .071S8 .000 91 .12521 .002 05 13.01 7.43 .170 
7 (J . .06075 .00095 .121 48 .00221 12.3 8 7.42 .181 
7 1 .05203 .00097 . 1 1842 .00260 11.77 7.38 .188 
72 . 04495 .00095 .11605 .00295 11.17 7.,30 .1 92 
7 3 .03916 .000 88 .11436 .00328 10.59 7.20 .. 192 
74 • 0.34 38 .. 00079 .11337 .00357 10. 02 1.01 . l e9 
75 .03041 .000 $9 .11310 .00382 9. ·413 6 .. 91 .. 184 

.. 76 .027 08 .000 59 .113$5 0 Q0L}02 8.96 6.73 . 177 
77 .0242b . 00049 .ll47b .00417 &.45 6.52 ~167 
78 .02184 .00041 . ll b73 .00429 7.96 b.31 ., l 5 7 
7 9 .0 1975 .00036 .ll9Sl .00436 7 .49 6.07 .146 
80 .01792 .00033 .. 1231 3 .00440 7.04 5 ~83 .1 34 
81 .01 628 . 00033 . 12761 .00441 6.61 5.58 .1 22 
82 . 0 1481 . 00036 .13301 .00439 6.20 5.33 • l 1 l 
83 .013£.,5 .00039 .13935 .00434 S.80 5.07 .100 
84 .01219 .OOO!i-2 .14670 .00427 5.43 4.81 .089 
85 .010 99 .00045 .15510 .00419 5.07 4c55 .079 
86 .00986 .00046 .16460 .00408 4.73 4.30 .. 069 
87 . 00877 .00047 .17526 .00396 4. '• l 4.05 .061 
88 . 00772 .00046 .1 8714 .00382 4. l 0 3.80 .053 
89 .00672 .0004'+ .20028 .00368 3.81 3.57 .0 46 
90 .00576 .ooor .. 2 . 21476 .00352 3.54 3 . 34 .039 

... 

( 



( A p 5 E< Pl u SE<Ol E ( N l E rnc i SE(E <BCl l 75 
66 .11 640 .00374 .11640 .00374 1s.01 7.17 .11 0 
67 .12419 .00289 .14054 .00 322 l4.J3 7.05 .1 21 
68 .10280 .001S9 .13537 . 00250 13.66 7.12 • 139 
69 .08592 .00104 .13085 .00214 13.01 7.16 .155 ... 
70 .07248 .. 00096 .12700 .00215 12.38 7.17 .170 
71 .06169 .00102 .12382 .00242 11.77 7.14 .1 81 
72 .05295 .00103 .12131 .00279 11 .. 1 7 7.08 .1 88 
73 .04583 .00100 .11947 .00318 10.59 6.99 .192 
74 .03997 .00092 .11833 .00354 10.02 6., 87 .1 92 

· .75 .03511 .,00082 .11789 .00386 9.48 6073 .189 
76 .0310 4 .00 07 1 .11 818 .00414 8.96 6.56 .1 84 
77 .02761 .00060 .11922 .00436 8.45 6038 .1 76 
78 .02469 .00050 .12102 .00454 7.96 6.17 .167 
79 .02217 .00042 .12363 .00467 7.49 5.,96 .. 156 
80 .01997 .00037 .12707 .00 476 7.04 5.73 .145 
81 .0 1802 .00035 .13138 .00481 6.61 5.49 .1 33 
82 .01628 .00037 .13661 .00483 6.20 5.24 .122 
83 .01469 .000 40 .1'•278 .0048 1 5.80 s.oo .110 
84 .01323 .00044 .14996 .00 ,.17 5.43 4.75 .099 
85 .01186 .00047 .15819 .00470 5.07 4.50 .0 88 
86 .OlOS7 .00049 .1 6753 .00461 4.73 4.25 .078 
tH .00 935 .ooosu .17802 .00450 4.41 4.01 .0 69 
88 .00819 .00049 . 189 74 .00437 4., l 0 J.77 0060 
89 .00709 .00048 .20273 • 00 1+22 3.81 3.54 0052 
90 ·.00606 .00045 .21706 ,.00407 3.54 3 .. 31 • 04,5 . 

... 

' 

( 



( A p SE<P> (,/ SE(Q) E(N) E<BC> SE(f.:{8C>> 76 
67 .11617 .00392 . 11 617 .00392 14033 7 .01 ., 110 
68 • 12'• S 7 .00302 . 14094 .00335 13066 6.87 .1 21 
69 .l OJSO .001 66 .13631 .002 60 13.01 6.92 .139 
70 .0867tj ~00109 . 13234 .0 0224 12.38 6.94 .156 

' 71 · .07341 .00103 . 12902 . 00227 11.77 6.92 .170 
72 .0 6262 .0010 8 . 12636 . 00258 1 1 • l 7 6.87 0 l (S l 
73 .053 1:35 .00110 .. 12438 .0 0299 10.59 6.80 • urn 
74 .04666 .00106 . 1230 8 .003'+2 10.02 6.69 . 191 
7S .04072 .00097 .12249 .00382 9.48 6.56 . 191 
76 .03577 .00086 .12262 .0041 1:3 8 .96 6.41 • urn 
77 .03161 . 0007 3 .12349 ., 00448 8045 6.24 01!32 
78 .02807 . 00061 .12513 .00473 7.96 6.05 .17 5 

" 79 . 02504 ~00051 .1 2758 . 00493 7. 49 5.,84 .165 
80 .02241 .000 43 .130 85 . 00508 7.04 5 o6 3 .155 
81 .02009 .00039 .13500 .0051 8 6.61 5.40 • l t.;-4 

0 82 .01803 .0 0039 .1 4006 .00 525 6.20 5.17 • l 32 
83 .01 61 7 .00041 .14607 . 00527 5 ., 80 4.93 .1 20 
84 .0144 7 .00045 .15309 . 00526 S . 4:5 4.69 010 9 
8S .01290 . 00049 .16116 .00522 5 . 07 4 .45 .098 
86 .01 }.'+4 . 00051 . 170 34 .00515 4.73 4.21 .087 
87 .0 1007 .00053 . 18068 .oosos 4.41 3.9 7 .077 
88 . OOd78 .00053 .19225 .00493 4 -. l 0 3.74 . 068 
89 .0 07:>6 .00051 .2050 9 . 0047.9 3.81 3.51 .,059 
90 .0 0643 .. 00049 .2 1927 . 00 46 ) 3.54 3.29 .052 

.. 



( A p SECP> (J ~ECO> ECN) E <BC > SECEC t3 C>> 77 

68 .11 630 .0041'+ .11630 .0 0414 13.66 6. 86 • 110 

6 9 • 12529 . 003 17 .1 4178 . 00352 13 . 0 1 6.70 . 121 

7 0 .10 438 .001 74 .1 3 764 . 00273 12 .38 6.72 .1 3 7 

( • 71 .08774 . 00 11 4 .1 34 15 . 00235 ll .77 6072 .1 54 

72 . 0743 7 . 00 10 9 . 13 132 . 00240 11 . 17 6.68 .1 68 

73 .0 6354 .00115 .1 29 16 . 00274 10.59 6.62 .1 79 

74 . 05470 .00 11 6 . 12770 .00 32 0 l O., 02 b. 53 .1 86 

7S . 04 743 . 00111 cl2693 . 00366 9 . 48 b. 4 1 • l t:;9 

7 6 .04 140 . Ou lUl 01 2688 .004 10 8 . 96 6.27 .189 

77 .0 3634 . 00089 .12758 .00448 8.45 6.11 .1 85 

.78 .03207 . 00075 .1 2905 . 0048 1 7.96 5.94 .1 79 

C, 7-J .02842 .0 0062 .1 3132 .00508 7. 49 5.74 .172 

80 . 02526 .00052 elJ443 .0 0530 7 .04 5 .54 • u ,2 

81 .02253 • 000'+4 .1 3841 . 00547 6.6 1 s. 32 .1 52 

82 . 02009 .00041 .14331 .0055 8 6 . 20 s.10 .1 40 
0 83 . 01792 .00 043 .1 4916 .00 565 5.80 4. 8 7 .1 29 

84 . 01595 . 00046 .1 5602 . 00568 5.43 4.63 .11 8 

as .01 414 .00050 • 1639£~ .0 0567 5.07 4.40 .1 06 

86 . 0 1247 . 00053 el7296 . 00562 4.73 4.17 . 095 

87 . 01092 .0005:, .1 83 16 .00555 4.41 3. 93 .085 

,. 88 .0 0948 . 00056 .1 9458 . 00544 4. l 0 3.71 .075 

89 . OOol3 . 00055 .20729 .0 0531 3 . 8 1 3.48 .0 66 

90 .00 688 .0 0052 . 22 133 . 00516 3.54 3.27 .057 

C 

( 



" ( A p SE(P) Q 5t. ( Q ) E ( N) E Ct:3C > SE<EC t:3C >l 7 0 
6') • l 1696 .00437 .11 696 .00437 13.01 6.69 . 108 

70 .1 2640 . 00332 .1 4315 . 00369 12 . 38 6.52 .11 B 

71 .10549 .O OUH .13942 . 00286 11.77 6.5~ • 134 

72 . 08d79 .001 19 .1 3636 .00246 11. 17 6 .50 • l ':>l 

73 . 07$34 .00 11 4 .13398 .0025J 10.59 6. '•$ . 1 t:>4 

74 .0&443 .00120 .13229 .00289 10.02 6.37 .175 

75 . 05549 .00121 .1 3 13 1 .00337 9 . 48 6.27 • 181 

76 .04811 . 00 11 5 .13105 . 00387 8 . 96 6 .14 .1 84 

77 · . 041 96 .00 104 .131 54 . 00433 d.45 6.00 .1 83 

78 .03679 .00091 . 1 3282 . 00474 7.96 5.83 .1 80 

79 .03241 .00076 .13490 .00509 7.49 5.65 .1 74 

oO .02 i364 .00063 .13782 .00538 7.0 4 5o45 .16<, 

8 1 . Oc:>Jo .00052 .14162 .00561 6.6 1 5.25 .1 S6 

82 .022$1 . 00046 .14634 . 00578 6 . 20 S.03 .1 46 

· 83 • 0 l 1..196 • 0 00 r'.+ 5 .. 15202 .00590 s . ao 4.81 .135 

. 8 4 .0!767 . 00047 • 158 ., 2 .0059d 5 .43 4 .. 58 . -124 

85 • 0 ! 5::,9 . oooso .; 16648 .00601 5.0 7 4.36 .11 2 

80 .01369 e00054 .l7S35 .00599 4. 73 4.13 . 1 01 

87 . 0 11 94 . 0005 7 .1 8540 .00594 4.41 ·3 0 90 . 090 

8H . 0 10 32 . 00058 .19668 .00586 4. l 0 3.68 .080 

8 9 . 008cl2 c00057 .. 20 925 .00574 3 . 8 1 3.46 . 071 

90 .0074 3 . 00055 .2231 6 . 00560 3.54 3.25 .062 

c. 



l A p SE<P> u SECQ) E(N) E me> se:·<f_ C8Cl > 7S 
7 'J .11 833 .0 0458 . 11 833 .,00458 12038 6052 .105 
71 .12798 .00 345 .1<+516 .00384 11.77 6.33 cll4 

72 .10 685 .001 87 .14177 .00297 l l. 17 6.32 .130 

,- 73 .089Y5 .001 23 .13907 .00256 10 .. 59 6.29 .1 45 
.74 .07633 .0011 8 .13707 .00263 10.02 6.22 .158 
75 .06526 .001 24 .13580 .00301 9.48 6.13 .lb8 
76 .0561 8 .00125 .13527 .00352 8096 6.02 .174 
71 .04866 .OOl l b .13551 .00403 8 0 '•5 5.89 .176 
78 .04239 .00 10 6 .13653 .00 45 1 7. 96 So73 .175 
79 .03709 .00091 .13837 .00494 7. 4;9 5o56 • l 71 
80 .032SiS .00076 .1 4 107 .00530 7.04 5.38 .165 
81 .02870 .00063 • 14'~66 .00559 6.61 5.18 .1 57 
82 .02531 .00053 .14917 .00583 6.20 4.97 .148 
83 .02233 .000 48 .15466 .00600 5.,80 4.76 • 13 7 
84 .01967 .00048 .16118 ,00 6 12 5.43 4.54 .lc7 

< 85 .01728 .00051 .16877 .00€119 5.07 4 .32 .116 

86 .u1s10 .00054 .177£t8 .OOfu21 4.73 4.10 .105 
87 .01312 .00057 .1 8737 .00619 4.41 3.88 .094 

·8~ .011 29 .00 059 .1 9850 .00 6 13 4. l 0 3066 .084 
89 .00962 .00059 .21093 .00603 3. 8 1 3.44 .074 
90 .ooaoa .00057 .22471 .00590 3o54 3.23 .065 

.; 

( 



( A p SE(P) Q SE(Q) E ( N > E <BC> SECE( d C) ) 6J 

71 .12062 .00472 . 12062 .00472 llo77 6.34 .100 
72 .130 09 .00355 .14793 .00395 l l O l 7 6 .14 .109 

73 .10 8413 .00190 .14478 .00305 10 .59 6.12 .1 23 

r 
74 .09122 .001 25 .14236 .00263 10.02 6.07 .138 
75 .07732 .00120 .. 14068 . 00271 9.48 6.00 .. 150 

76 .06601 .00127 .13978 .00311 8.96 5.90 .159 
77 .05674 .00126 0 13966 .00363 8.45 5.78 o l 6L~ 

78 .04906 .00 118 .1 4035 .004 16 7.96 5.64 .166 

79 .04263 .00105 .14189 .00464 7.49 5.48 .164 

80 . 03720 .00089 .14430 . 00507 7.04 5.31 .160 

.81 .03251 .00074 .14762 .00543 6.61 5 .. 12 01:,4 

82 .02856 .00061 .15189 .00572 6. 20 · 4.,92 .146 
0 

83 .025Ub .00053 .15715 .00595 5.80 4o72 .137 

84 .02197 .00049 .16344 .,00612 5 . 43 4.50 .127 
· 85 .01921 .00050 .17083 .00 023 5.07 4 .. 29 .117 

C 86 .01672 .00054 .17936 .00628 4.73 4.,07 .106 
87 .01£147 .0005 7 .18908 .. 00629 4. 4 1 3.85 . 096 

88 .01241 .00059 .20005 .00&25 4. l 0 3 .64 • 086 

89 . 01054 .00059 .21 233 .OOel7 3.81 3.43 .0 76 

90 .OOd84 . 00058 .22597 .00605 3.54 3.22 .067 

.1 

0 



( A p ~E<P: Q SE(Q) E(N) EC8C) SE(E rnC >>5 · 

72 .1 2'+05 .00479 .1 2405 .00479 11.11 6. 14 .095 . 

73 .1327 9 . 00360 .151 60 .00402 10.5° 5.94 .103 

74 .11 041 . 00190 .14857 .00309 10.0: 5.91 .116 

75 . 09259 .00125 .14633 .00267 9,.48 5 . 8b .1 30 

76 .07 827 .00122 .1 4490 .00277 8 . 96 5.78 .141 

77 .06665 .00 128 .1 4429 .00320 8045 S.67 . 149 

78 .05713 .00126 .14454 .0 0373 7.96 5.55 . 153 
79 .04925 .00117 .14566 .00426 7. 49 5.40 .1 55 

80 .04266 .00102 • 14 "/69 . 00475 7.04 5.24 .1 53 

81 .03709 .00086 .1 5066 .00517 6061 5.06 .148 

82 ·.0 3233 .00071 .15Li-60 .00552 6.20 4.87 .1 42 

83 .0 2821 .00059 .1595 7 .00580 5.80 4.68 • 1. 34 

84 • 0 2 '• 6 0 .00052 . 16560 .00601 5.43 4.47 .125 

85 . 02141 .00051 .17274 .006 16 5.07 4.26 .115 

86 .01 8':>7 .00053 .18104 .00 &25 4.73 4.05 .105 
0 87 .0 1600 .00056 . 19055 .00628 4.41 3.84 . 095 

88 .01369 . 00058 . 20134 .00626 4.10 3.62 .086 

89 .011 59 .uoo s9 . 2 1)45 .00620 3.tH 3.42 .07b 

90 .00969 .00058 .22694 .OOblO 3 . 54 3.21 .067 

( , . 

( 



( A p SE(Pl Q SECQ J E ( N l E (8C l SE(EC8C)l c::, 
v_ 

73 .1 2d63 .00480 .1 28b3 . 00480 1 CJ. 59 S .. 92 0090 

74 .13616 . 00363 .1 5630 .0040 7 10 .02 5.7 2 .0 98 

75 .11 264 • 0 0 P38 .1S326 .00311 9.48 5.69 . 110 

76 .09403 .0 0 ,1 26 .1 5 109 . 00271 8.96 5.64 . 123 

77 .07915 . 00125 .1 498 1 . 00286 b .45 5o55 • l 34 

78 .0671 2 .OOlJU . 14943 .00332 7.96 5 . 45 .1 41 

79 . 05730 . 00126 .1 4999 .00388 7.49 5o32 • l £+5 

80 .04 920 .OOllS .1 5 150 . 00442 7 0 (J4 5.17 .1 45 

8 1 . 04243 .00099 .15400 . 00491 6.61 5.00 • l '+ 3 

Be .0 3672 .000 82 .1 S7S2 . 00532 6.20 4o8 3 • 138 

8 3 .031 84 .00067 .. 16209 .00 566 5.80 4.64 .131 

84 .02"/6 1 .00057 .1 6777 .. 0059 1 5 . 43 . 4 o 4LI .1 23 

85 .0 239 1 .ooos2 .1746 0 . 006 10 5.07 4o24 • 11 4 

86 . 0206'+ . 00052 .1 826 1 .00 622 4 .73 4o03 .1 05 

8 7 . 01773 .00055 .1 9188 . 0062 7 4.41 3. 82 . 095 

< 80 .01 5 12 .0 0058 . 20244 . 00627 4.10 3 . 61 .086 

89 .01 2 77 . 00059 .. 2 1435 . 00622 3.81 3o4l . 076 

90 . Ol06S .000 59 .22 767 . 00612 3 0 5,~ J.20 . 068 



( A p SE<P> Q SE<O> E(N) E<BC> SE<E<t3C>> 83 

74 . 13521 .,0048) .1352 1 . OUi.+83 10.02 5o69 .086 

7S • 14 Oc 7 .00369 . 16220 .004 16 9.48 5.50 .,095 

76 .11 5 19 .00 187 .1 5899 .003 15 8.96 5 . l. 7 .107 

77 . 095~2 . 00 129 • l S6 7 6 . 0027~ 8.45 S. 41 . 120 

78 . 0 799 1 . 00 131 .15552 .00303 7 ,.96 S.,33 • 131 

79 . 06 7 18 .00 13~ . 1S529 .00357 7~49 s.22 . 137 

80 . os1c 1 .,00 129 .l ':>609 • O Ot.+ l 7 7. 04 5 .. 09 • J.t+l 

8 1 . CJ48d5 .00114 .15794 .,00474 6.6 1 4 . 94 .140 

82 .04 190 .00096 .16088 .00523 6.20 lt . 7 ti . 137 

83 . OJouS .00078 .16494 .00564 5.80 4.60 .131 

84 .03 106 .00064 .1 70 16 .00595 5.4;3 4.,41 .124 

85 .02674 .0005S . 1 7657 . 006 18 s.01 4~21 . 116 

86 . 02298 .00053 .18423 . 00633 4 .7 3 4.01 .107 

87 .01965 . 00055 .1 93 17 .0064 1 4 . 4 1 3.81 .097 

.88 . Olt,70 .00058 .20345 . 00643 4. 10 3.6 1 .088 

< 8 1./ .01406 .00060 . 2 15 1 1 . 00638 3.8 1 J.,40 .078 

9 0 . 0 11 7 1 . 0006 1 .22822 . ou&29 3 . 54 ) . 20 .069 

e 

' 

( 



A p SE(Pl Q SE(Ql E ( N) E <8Cl SE (E (8C) >8~ 
( 7':> • 14 7 6-:, .00920 . 14769 . 00920 9.48 5 .. 26 • l b i+ 

76 . 14709 .00726 .17257 . 00831 8 .. 96 5.08 • 184 
77 .12010 .00358 .170 2 '-1 .00624 8.45 5.04 .217 
18 .09t38S .Ou274 .1 6894 . 00$86 7 ., 96 4.98 .249 

,. 
79 .u6 19b .00291 .16854 .00687 7 .,49 4.89 0274 
80 .0683 7 .00294 . 1691 1 . 00 843 7 .04 4.79 . 290 
81 .OS734 .00210 . 1 7069 .01005 6.6 1 4.66 .299 

82 .• 04829 . 0023 0 .17J3c .0 1 151.t 6.20 4.52 .300 
- 83 .04077 .00185 . 1 7703 .01283 S.80 4.37 .295 
84 .03t+47 .00145 . 18186 .01391 5.43 4.21 .2 86 
~5 .02913 . • 00117 .18787 .01478 S .. 07 4.03 .272 
86 • 0245 7 .00107 .19509 .OlS4 4 4.73 3.85 . 255 
8 7 .020b4 .00 111 .. 20359 . 01592 4.4 1 3o67 .237 
88 .0 1 72:J .. 00 120 e2 l 341 . 01621 4.10 3.48 . 217 
89 .01426 .0012 7 .22460 .01634 3.8 1 3 .. 29 .197 

0 
9 0 . 0 11 68 .00 130 .23723 .0 1633 3.54 3 .11 . 1 77 

r . 

,. 



-( A p SECP> (J SECO> E CN) E C8C> SE CEC BC> >35 
7 6 .1 5845 .00996 . 1S8 45 . 00996 8 .. 9 6 t+. 9 7 .163 

77 .1 500 1 .00773 .1 7825 . 00893 8 .45 4. 82 .1 84 

78 .l 22S6 . 00379 .17722 . 0067'+ 7 . 9 6 4.76 . 217 

79 .10 0 75 .002 96 .17707 .00 6t1,4 7.49 4. 68 .251 

80 . 0832 7 . 00316 .1 77 8 3 .00768 7 .04 4. 5d . 278 

8 1 .069 11 . 00315 .17953 . 00953 6.61 4.47 . 296 

82 . 05755 . 00285 . 18222 . 0 11 46 6 0 20 4.34 .306 

83 . 04803 .00 239 .1 859 3 .01324 5., 8 0 4.20 .30 8 

84 . 04010 . 00189 .1 9072 . 01482 S .43 4.05 .305 

85 .03 346 .00147 .1 9664 .01 6 17 S.07 3.89 .297 

86 .02785 .00122 .20 374 .017 29 4.73 3 . 72 . 284 

87 .02308 . 0011 7 .21 206 . 01 8 18 4.4 1 3.55 . 268 

88 .01901 . 00124 .22168 .01885 4. l 0 3.38 ., 24 9 

89 .01553 .00133 .23264 . 01931 3. 8 1 3.20 .230 

90 . 01255 .001 313 .2450 1 . 0 1958 3.54 3.03 . 210 

t 



c( A p SE (P> Q Sf:(Q) E ( N) E 03C) SE ( E (8C} > 86 
7 7 .16866 .01053 • l 6b6b .01053 8.45 4o71 • l :> 7 
78 . 15360 .00813 .18477 .00950 7.,96 4.,57 .178 
79 .12S29 .00394 . 18487 .0071 9 7.49 4 .. 50 .211 
80 .10265 ~00311 . 18582 .00694 7.04 4.41 .243 
81 . 08'+41 .00332 .1 8766 .00836 6.61 4.30 .272 
82 .06958 .00328 .1904'~ .010 45 6.20 4ol8 .,290 
83 .05744 .00292 . 19420 .01263 5 .. 80 4.05 .301 
84 .047<+3 . 00240 .19899 .01468 5.43 3., 9 1 .305 
85 .03911 .,00 188 . 20486 .01651 S.07 J., 76 .303 
86 .03217 .00147 .21188 .01811 4.73 3o6l .296 
87 .02033 .00127 .22010 .01945 4 .,41 3.45 .284 
88 .021 ~2 .00127 .22957 .02054 4., l 0 3.28 .269 
89 .Ol72e .00135 .24036 .02139 J ., 8 l 3 .. l 2 .2Sc 
90 .013 79 .00 142 c25253 • 022,02 3.54 2 .. 95 .233 

C 

,_ 



.. . . . 

,.( p SECP) Q SE (Q ) E(N) E<l:3C> SECEC b C)) -
A 

,. -: 
Yf 

78 .17837 .01 080 .17837 . 0 1080 7o96 4.47 .1 46 

7 9 015789 . 00837 .19216 .0 0986 7.49 4o33 .167 

80 .12828 . 00399 01932 6 .00749 7.04 4o25 • 197 

81 . 10453 .00317 .19521 .00726 6.6 1 40 15 .230 

82 .08535 . 00338 · .1 9806 .00882 6.20 4.04 .256 

83 .0697 6 . 00330 . 20185 .01108 5.80 3.,92 .275 

84 . 05700 .00289 .20664 .01344 5o43 3.79 .2B6 

85 . 04650 .00234 .21248 .01568 5.07 3.65 .291 

86 .0 3782 .OOUH .21 944 .01770 4.73 3.50 .290 

87 .,03061 .001(1,4 .22756 .01947 4 C (~ l J.35 .283 

88 .0 2462 .. 00130 .23691 .02097 4.10 3.20 .273 

89 .01963 000133 ., 24755 .,02222 3 0 tl 1 3.0£.• .259 

90 . Ol 5'i9 .001 40 .25955 .02322 J.54 2.89 ~ 2l~3 

( 



( A p SE (P) Q SE CQ) ECN ) EC8Cl SE <EC 8C » E 
\ 

79 .1 87 65 .01079 . 18765 . 0107 9 7 .,49 4.24 .1 33 
80 . 162 86 .. 00 8'} 2 . 200 48 .01001 7.04 '+ . 11 .1 52 
8 1 .13149 .0 03 94 .20246 .007 6 1 6 . 61 4., 02 • U30 
82 .10 6 34 .0031.6 .20530 .007 43 b.20 3.92 .21 1 

< 
83 .08 6 06 .00336 .2090 6 .00908 S . 8 0 3.80 .236 
84 • 06 96 1 .00323 .2138 0 .011 45 S .43 . .J.68 .2S3 
85 .05621 · . 00 2 78 .2 195 7 .013 93 5.07 3.55 .264 
86 .04S23 .00221 . 226 4 3 .01628 4.73 3.41 .269 
87 .03623 .00170 .2344 3 .018(;.l 4.4 1 3.2 7 ·.268 
88 .028d 3 .001 4 0 .2436 5 .020 29 4 .10 3.12 .263 
89 . 022 ·14 .00131 . 2541 4 .021 9 0 3.81 2.98 . 253 
90 .0177 5 .00135 .26596 .02323 3.54 2.83 . 24 1 

L 

C, 

\. 



( A p SE<P> Q SE(O> . E ( N) E <BC> SE(E( ciC )) 89 
80 . l96S6 .01065 .19656 .01065 7o04 4o03 .120 
81 .16855 000 8 37 .20978 00100 5 6061 3.89 ol38 
82 .13491 .003i33 .21250 000763 6.20 3 .,80 .163 
a 3 010806 .00313 .21612 .00753 5.,80 3o70 .192 

C· • 

.086SO .00332 · . 22071 .00929 5.43 3.58 ~215 i:34 
8S .06912 .00313 .22632 .0 1177 5 .. 07 3 o46 .231 
86 .05506 .00263 023301 .01434 4.73 3o33 .242 
87 .04365 . 002 06 .24083 .0 1677 4.,41 3.20 .247 
88 .03438 .00159 .24986 .01897 4ol0 3.06 .246 
89 • 026d':> .00135 026015 .02090 3.81 2o92 .241 
9U .02075 .00130 .27177 .02255 3.54 2.,77 .233 

(' 

• 

r 



( A p ::iE < P > Q SE <O> E( N) E<BC> SE<E <8C )) 9~ 
~ . 81 .20 5 16 00 10 65 .205 16 .01065 6 06 1 3 .. 82 .110 

82 .17495 .00843 0220 11 .0 1019 6.2(, 3.69 .127 
83 .13 85 1 .00377 .22344 .00772 5.80 3.59 . 15 1 
84 . 10963 .00318 .22773 .00776 $ .43 3 .49 . l bO 

r. 85 . 08664 .00334 . 23305 .00<)73 5.07 3.38 .202 
86 .06827 .. 00307 .239'+5 . 01239 4.73 3.20 .217 
8 7 .053S6 .00251 .24699 .01510 4.41 3.13 • 227 
88 .04 17 6 .0 0 193 .25573 .01764 4.10 3o00 .232 
89 .03230 .001 50 .26574 .01 993 3. 8 1 2 .. 86 .231 
90 .024 72 .00 132 .27708 .02192 3.54 2.73 .226 

• C 

( 



( A p SE<P> (J SE( Q ) E( N) E <BC> SE( E{8C ) l 9. 
~ 

82 .213S3 .01112 . 21 353 001112 6 . 20 3.63 . 106 
83 . 1820 8 000 889 .23152 .010 8 1 So80 3.49 .123 
84 . 142 23 . 00389 .23533 .OO B16 5 . 43 3. 4 0 .150 
as . 11 100 .00 34 .l .24 0 18 .00 842 5 . 07 3.29 .177 

C 86 . 08643 . 00353 .246 12 . 0107 7 4.73 3. l t3 . 198 
8 7 .06704 . 003 14 .. 25322 . 013 76 4 . 4 1 3.07 . 2 14 
8 8 .05 17 1 .00250 .26155 .0 16 75 4 . l 0 2.94 • 2 2 1+ 

89 .039S9 .00 188 .. 27 116 .0 1952 3.8 1 2 .. 82 .228 
90 .0 3002 .00 150 . 282 11 . 0~197 3 ., 54 2.,69 . 227 

< . 

'-

l 



( A p SE<P> Q SE(Q) E(N) E<AC> SE<E<BC >> 
r-
~ 

83 .22174 .01243 .22174 .01243 5.80 3 . 45 .1 09 
84 .18996 .0 1007 .24408 . 01233 5.41 3.30 .127 
85 .14603 .00429 024822 .00926 5.07 3.21 • 1 :>6 
86 • 1 1 2 1 1 .00390 .. 25349 .0097 8 4.73 3.11 .1 83 

C 87 .08Sd3 .003 96 .25996 .Ol2 M3 4.,41 3.00 .207 
88 .06540 &00341 .26769 .01 622 4 • l U 2o'89 .22s 
89 .U495 l .00263 .27673 .01969 3.81 2.,77 .,2 35 
90 .03716 .001 9 7 .28715 .02284 3.54 2 .. 65 .238 

( 



( 
- - - -- . 

A p SECP) Q SE CQ > ECN) ECBC > SECE<BC)) :::: 
./ 

84 .22986 .0 14 75 .22986 001475 5.43 3.2 7 .119 
85 .19858 .01219 .25 785 .01504 5.07 3.11 .140 
86 . 14984 .00504 .2621 7 .01125 4.73 3.03 .169 
87 .1129 l .00468 .26 774 ·.01199 4.4 1 2.93 • 198 
88 .084cll .00464 .27463 .0155~ Lt O l 0 2.83 .226 
89 .06337 .003d9 .28289 .01989 3.81 2.12 .245 
90 .04700 .00294 .29258 .02402 3.54 2.61 .255 



A , p SE<? > Q SE <Q > E ( N) t: ( HC ) SE<E.< t:3 Cl> 

( 
85 • 23 7'-J7 .Ol d 04 .23797 eOl dO .:.· S.07 J " 1 0 .134 
86 .20795 . 01531 . 272 8 b .0 1903 '+. 7 3 2 . 93 . 155 
8 7 . 15360 .,00 609 .27 722 .0141 7 4. ,. l 2.85 .1 3 3 
88 .l l3J2 . OOS7 1 .28295 .,O l S US 4. 1 0 2.76 .219 
89 . 08332 . Ou555 • 2901S .01946 J . 81 2. 6 7 . .249 

('. 90 .06092 .004:::i4 .29886 . u2466 3.54 2.56 .269 

~ .. . · ... 

, . 

.. . 

C 

C 

( 
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C 

C 
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APPENDIX~ 

TABLES BY STAGE,H ISTOLOGY ·AND STAGE X HISTOLOGY 

Unless otherwise stat ed,the first value of A in 

each of the following tables is the age of first 

observation of breast cancer . 



( STAGE l 96. 

" 
A p SE (P) Q SE (Q > E(N) E(BC > SE(EC8C)) 
60 .050 85 .0 049 1 .0 5085 .00491 19.42 11.37 .30 1 
61 .07 248 .003 84 .07637 .00403 18 .65 l0 .95 .313 
62 .0662 7 .0 0264 .07559 .00331 17.89 l O O 8 1 .340 

. 63 .O bU78 . 00 185 .. 07:,00 .00279 17.lS · 1 0.66 .366 
64 . 0~594 .001 45 .07462 .O ,v2S3 16 .42 10. 48 . 389 
65 .05l b5 .0 0 139 .07446 .0 0253 l~.71 10 .29 • 40tS 
6b .047 85 . 00149 .0 74:5~ .00277 1s . 01 10.07 .422 
67 .04446 . 00160 .07483 .00 3 14 14.33 9 .84 .430 
61:3 .041 45 .0 0 169 .u754U .OOJ5/ 1 J .• bo 9.60 .43S 
6'1 .0387 6 . 001 72 .07 626 .004 C, j l .J .01 "} . 34 . 434 
7C .03634 . 00170 .07741 . 00448 12.38 "}. 0 7 .430 
7 1 - . 034 17 . 001~4 .07 888 • OOt.+ 9 2 11.77 8.79 .. 42 1 
7 2 .03220 .00155 .0 8070 .0 0533 l 1. 17 8~50 .410 
73 . 03040 .00142 .08289 .005 72 10. 59 8.2 1 (~3 96 
74 .02 8 75 .00127 .0!:3548 .OO b08 10.02 7.90 1• 379 
75 .027 23 .00112 .. 08850 .00640 9.48 7.60 . 36 1 
76 .025d0 .000 96 .09199 .00 e69 8.96 7 . 29 .342 
77 .024'-+4 . 00081 . 09598 .00695 8.45 6.97 .321 
7d .0 23 14 .00 069 .10052 .00718 7.96 6066 .300 
79 .Ocl i:s 7 .000 63 .IOS64 .0 0738 7.49 6 .35 .279 
80 .020b 3 . 00064 . 111 39 .007 55 7.04 6.04 .258 
81 .01 939 . 00070 .11782 .OU7b9 6.61 5. 7'-+ .237 
82 .01814 .00079 .12498 . 00779 b.20 ::>.44 .217 
8j .0168~ .01.)0 90 .13293 .0078 7 S.bO 5. l '+ .1 9 7 
8.:+ .OlS6l .0 0099 .14172 . uu7 93 S . 43 4.86 .178 

. . 85 . 01431 .001 07 .1Sl4l .0 0795 5 .07 4. 51:3 .161 
8b . • 01300 . 00112 .1 6207 • 0 0 7 94 '+ • 7 J 4.31 .144 
87 .vll 6d . 001 15 .1737b . 00791 4.41 4.04 .129 
8H .O lOJ 6 .0011s .l 86S5 . 00786 '+. l 0 J.79 .115 

(, 9'1 . 009 0 b . 00112 . 20049 . 00777 3 . 8 1 3.55 • 1 O 1 
90 .00779 .00106 .21566 .U0 7b6 3 ·.54 3.31 ·• 089 

€ 

.,_, 



( STAGE 2 97 , 

r 

A p SE <P) Q !:>E < Q > E (N) ECl:sC > SE<E <8C) ) 
60 .. 09467 .006cl6 . 0946 7 . 00 68 6 19 . 42 8 . 52 .262 61 .1 3243 .OOS dS .1 4630 .00637 18 .65 8.36 .283 
6 2 .1 0473 .00 310 .1 35Sl .0048 S 17.89 tj • 7 l .324 
63 • oa·'-+ 1 o .00190 .12588 . 003 9 cl 1 7 .. 15, 9 . 00 .3o5 
64 . 068S3 . 00166 .117 33 .00376 16 .. 42 9 . 23 .398 
65 . 0 5 6 6 2 . 00 1 72 .l (J':ftsJ . 0039 9 l~.7 1 9.39 .423 
66 . 0Lt74l .00175 .1 033 1 . OCJ4.'.+ l 1s.0 1 9.49 .438 
6 7 . 04021 . 00171 . 09773 . 004 8 6 l '+.33 9.53 . 443 
6~ . CJJ455 .00162 ,. 09304 .00526 l J.66 9~5 1 .439 ,. 69 . u:JOv4 .00148 . Or392 2 .0055 d 13 . 01 9.43 .427 
70 .02645 . 00133 . 0862J .OOS& l 12 . 38 9 ., 3 l .410 
71 .02355 • 00117 .0 8 4 0 5 .00596 11.77 9. 14 . 3 8 7 
72 . 02122 .00 10 1 . 0 8 c6S .00603 11. 1 7 8.94 .362 
73 .01 93 1 . 00086 . 0 8 202 . 00603 10.59 8.70 .33 4 
7 ... . 0 177 6 .00073 . 082 17 . 00 5 98 10.02 8.43 .305 
7S .u! 648 .0 0062 .08307 .00 58 7 9 .48 8 .14 . 277 
76 . 01542 .ooo s s .084 74 .00573 8 . 96 7 .83 .248 
77 .. Ul4S2 . 00052 . 08718 .00556 cl .4S 7 .5 1 .22 1 
78 . 0 13 74 . 00053 . 0 9 04 1 . 00~36 7 . 96 7 .18 .1 9 5 
79 . 0 13 06 .00057 . 09444 . 00Sl'-+ 7 . 49 6 .clS • l 7 l 
BO . v12-.J . 000~2 . 09931 . UU49 1 "1.04 6.51 .1 49 
8 1 • 0 l l d4 . OOvGF3 .l u503 . 00467 6 . 61 0.11 · .1 29 
82 • 01 127 . 000 1 ... . 11165 .0 0 '+ 42 6.20 5 . 8'+ • l l 1 
83 . 010 6 9 . 00079 . 11920 . 00417 ~ . 8() 5.5 1 . 095 
84 . OlOU9 . 0 0 082 .1 c.7 7c . 003 9 2 5 .43 5. 19 . 081 
85 . 0094 5 . 000 3 4 .1 3727 . 003 6 7 S . 07 4.87 .068 
8b • 008 7'} . 00084 .1 4789 . 00343 4 .7 3 4.57 .0~8 
87 . uosud . 000 8 3 .1 5964 . 00319 4.4 1 4. 28 . 04 8 
88 . 00734, . J0080 . 17256 . 0 0 295 4. 10 4.o·o .040 
B9 . 006S7 . 00075 .1 8672 . 00273 3 . 81 3 .73 . 033 
90 . oo~79 . 00069 . 20218 . 0025 1 3 . 54 3.47 . 028 . 



( STAGE 3 98 .. 

C 

A p SE CP) Q SECQ) E CN l E C~C l SE <E <HC ) > 
60 . 14 5 01 .01217 .14501 .01217 19.42 5.03 .2 S4 
61 .1928 7 .0 1039 .22558 . 0 117 2 18.65 4 . 81 .289 
62 .l<-+161 .004S8 .21 387 .00921 17. 89 5.07 .362 
63 .10 565 .002 85 .2029 7 . 00 8 09 17. 15 5.32 . 443 
64 .O B001 .00 28 3 .1928 7 .00838 16 .42 5.55 . 5 25 
65 .06147 .002 85 .1 8 356 .00960 15.71 5o76 . 60 1 

" 66 .04785 . 002 66 .17504 .01117 15 .01 5 . 95 .668 
67 .037 73 .00236 .1 6729 .0127 8 14.33 6.11 .725 
68 .03 01 1 .00202 .l b03l .01£+30 13.66 6024 .770 

C 69 .02'+30 .00 16'i .1 5410 .01 565 13 .0 1 6. 34 . 8 02 
70 .01983 .00 1'+0 .1 4864 . Ol 6S l 12 .38 6.41 . 8 21 
71 .Ol b35 .00115 . 1439'+ .01779 11 .77 6.45 . 827 
72 .01361 . 000 96 .14000 .0 1857 11.17 6.45 . 8 22 
73 . 01144 .0 00 8 1 .13683 .01919 10 .59 6.42 ., 8 07 
74 .00 970 . 000 72 .l344J .01963 10.0 2 6.36 .7 82 
75 .00830 .00 067 .1328 1 .01993 9.48 6 .27 .7 50 

·76 .0071 5 .00066 .131 99 .02009 8.96 6.16 . 71 1 
77 .00621 .000 66 .13199 .020 12 8.,45 6.02 .668 
78 · .00 542 .000 68 .13282 .02004 7. 96 5.86 .622 
79 .0 0476 .00 0 70 . 13452 . 0 1986 7.49 5.68 .574 
BO .00420 .00 071 .13711 .0 1959 7.04 5.49 .,525 
81 .00372 .0 0073 .14063 . 01924 6.61 5.29 . 477 
82 . 003 30 .0007] .1 45 11 • o urne 6.20 5.07 . 430 
83 .002~2 . 00 013 .150 60 • 0 l lil34 5.80 '+ .. 85 .380 
84 . 00 259 . 000 72 .15713 .017 8 0 5.43 4.62 .34 3 

·85 .00229 .00070 .1 64 7b .01722 s. 07· 4.39 .30 3 
86 .002 02 .000 6 7 . 17353 .01660 4.73 4.16 .266 
87 .00176 . 00064 .18 35 1 .01595 4.41 3.93 . 232 
8J3 . 001 53 . 00059 .1 94 74 .0152 7 4. 10 3.71 .201 

" 
89 .00131 .000 54 .20728 .0 14 5 7 3.81 3.49 .1 74 
90 .00111 .00049 .22119 .01386 3.54 3.27 .149 

• 



STAGE. 4 
99, 

<· 

A p SECP) Q SECQ) ECN) EC8Cl SECECt3Cl> 
60 .311 95 .01735 . 31195 .01735 1 9 .. lt2 2o62 .11 8 
6 1 .22423 .01331 . 32589 .01752 18.65 2 .. 60 .155 
62 • l 4 95 7 .00517 .32247 .01384 17.89 2o63 .212 
63 .10030 .00460 .31919 .01478 l 7" 15 2066 .280 
64 .06762 .00 429 .31607 • 0 l 9£d 16.42 2.69 .357 
6S .04582 .003'+6 .31312 .02566 15.71 2 0 71 ~437 
66 .03119 .00257 .31035 .03243 15.0l 2 .. 74 .517 
67 . • 02133 .00187 .30779 .OJ-)33 14.33 2 .. 76 .596 
68 .01 466 .• 00144 .JOS4J .04621 13.06 2.78 .673 

.. , 6~ .01011 .00122 .30331 .OS296 l.J.Ol 2.80 .748 
70 .00700 .00111 .30144 .05957 1t.J1, 2.8 1 . 819 
7 1 .00486 .00102 .29983 • LI 6S9cl 11 • 7 7 2 .. 82 .BbS 
72 .00J)9 .00093 .298~1 .072i:0 11 • l 7 2.82 .9'+7 
73 .00237 .OOC B3 .2 9751 .o7 dcO 10. 59 2.az le0 03 
74 . 00166 .00072 • 29b84· .Ot:1397 10 .02 2.&2 1 .os2 
7S .00117 .00062 .29654 . OU9SO 9.,48 2.81 1 0095 
76 .000 82 .00052 .. 29b64 .09478 8.96 2.80 1.1 30 
77 .00058 . 00044 .29 7lb .09980 tl.45 2.78 1.1 58 
78 • O O 0'+ 1 .00036 .298 15 .10455 7.96 2.76 101 7 16 
7 9 .00029 .00 029 .29965 .10 903 7.49 2.73 l. l 90 
80 .00020 . 00023 .JCJl69 • ll .320 7.04 2.69 1 .194 
8 1 . 00014 . 00019 .30431 .11708 6.61 2.65 1.1 89 
82 .00010 .OOOlS . 30757 .12064 6 . 20 2.61 1 .. l 77 
83 . ooov7 . 00011 . 31 l Sl .12386 S.80 2.56 1 .158 
84 .00005 . 00009 .31618 .12675 S.43 2.so 1.1 31 
8S . 00003 .uooo, . 32165 .12927 s . u7 2.44 1 .098 
86 . ()0002 .oooos .32796 .j3142 4. 73 2 . 38 1 . 064 
87 . 00002 .00004 . 33Sl7 .13318 L+ . '+l c.3 1 1.021 
8d .000.jl . OOOOJ . 3433S .lJ4SJ 4 • l 0 2.23 .974 

C• b9 . 00001 .00002 .JS255 • l J::>45 3.8 1 2. 16 .923 
90 .00000 .ooooc .36284 .1JS94 3.54 2.0d .869 

C 

( 



HISTOLOGY 1 100. 

,· 

A p SECP> G SE (Q > E(N) E<BCl SE(E(BC)) 

60 .06593 .011 82 .06S93 .0 11 82 19. 42 10 .78 .581 
61 .08905 .0 0934 . 09533 .00992 18.65 1 0.53 .60 8 
62 .07 706 • 0 05139 . 09119 .007 8S 17. 89 10.59 .663 
63 .0 6 721 .0 0387 .087S2 .OOt,44 l 7. 15 1 0.60 .71 6 
64 .05908 . 0030 6 .0 843 1 .00580 16.42 1 0.57 .761 
65 .052JS .00300 .08158 .00584 15.71 10. 50 .794 
66 .046 73 .00317 .07930 .00633 15.Ul 10 . 39 .81 4 
67 .042U '+ .00330 .07748 .00102 14.33 10. 24 . 820 
6 t3 .0381 l .00334 • 0 76 L5 .00776 1 3.o 66 10 .06 .81 ~ 

... 6 9 .03480 .0 0327 . 07524 . 00 845 13.01 9.8S 0 799 
70 .0 3200 . 00312 .07483 .00'106 12.38 9.6 1 .7 73 
71 .02964 .00291 .07491 . 009S8 1 1 . 7 7 9.35 .741 
72 .0 2763 .0 0265 .G7 5'+8 .01001 l l • l 7 9.07 .102 
73 .02591 .0 0237 . 0 7057 .Olu33 10. 59 8. 76 .66U 

·' 
74 . 02443 .0 0207 .07819 .OlOS7 10. 02 8 .45 .615 
7S .0 23 15 .00179 .0 8036 .0 107 2 ·9 048 8.13 .568 
76 .022 02 .001 33 .08 312 .01080 8.96 7.79 .521 
7 7 .0 2 101 . 00 133 . 08648 .010 81 8.45 7.45 .475 
78 .0.2008 . 00 12 2 • 0 904':) .0107':> 7.96 7.11 .429 
79 • 0 l '1 c l .00121 • 09S l ·1 .0106'+ 7.49 6.77 .3&6 
80 . 0 1836 . 0 012 9 .10 057 .01 049 7.04 b.4] .34S 
81 .O l 7S 3 . 00142 . 106 73 .0 1029 6.6 1 . 6. 09 .30 6 
82 .01668 .001 38 .llJb9 .01005 6.20 5.76 .270 
83 .015&0 .00173 . 121 5 1 .00 97d ~.80 s O 4£+ ' .238 
84 .014 8!; .001 86 .13024 . 00948 S .43 5.12 .208 
85 . 01390 .00196 • 13 9<:t J .0091 6 5.0 7 4.8 1 .1 81 
86 . 0 121;7 .00202 • 15(164 . 00882 '+ . 73 4.52 . 157 
87 . 01 179 .OOc OJ .loc43 . 00846 4.4 1 4.23 . 135 
88 • 0 l O -:>6 .OU19 9 .1 7S37 .00~09 4. l 0 3.9b . l lb 
89 . 009$0 . 0Ul9l . 18Y50 . 00771 3.8 1 3.69 .099 

(• 

. Otl4 90 . 00832 . 00179 . 2 049 1 . 00733 3 . 54 3.44 

C 



( 
,. HISTOLOGY 2 101 . 

A p SE(P) Q SECQ) E(N) E <BC > SE ( E(8C>> 

60 .09319 .00 9 52 .09319 .009:,2 19.42 8.95 .369 
61 .11 3S2 . 00736 .12519 .00 8 01 18.65 8.82 .396 
62 .09409 .00430 .11 8 6 1 .00 632 17.89 9.01 0442 
63 .07879 .00 26 9 .11269 .00524 17.15 9.16 . 488 

' 64 .06 66 3 .00 2 18 .10739 .00 48 2 16.42 9. ?..6 .Sc9 
65 . 05688 .. 0021 8 .10271 • 0 0'+9 6 l 5. 71 9.32 .561 

·;, 

66 .04902 . 00227 .Oltti64 .00542 15.01 9 .. 33 . S tU 
67 .04262 . 00230 .u9Sl7 .00 6 01 14.33 9.30 .595 
6B . 03740 .00224 . 09228 . 00 ~61 l J .• 66 9.23 .59 7 
69 .03310 .00212 .013998 .u0715 13 .01 9.11 .590 
70 .029SS . 00196 .08827 .00762 12.38 8 .. 97 .575 
71 . 02bb0 .Oul78 . 08714 .00 8 01 11.77 13 .. 7 9 • 5 :it+ 

72 .02<il3 .Oul58 .08661 .OOd31 11 .17 8.58 .. 528 
73 .02206 • 0 0 138 .0 8 669 .00852 10.59 8.3S .498 
74 . 02031 .00119 .08737 .00867 10.02 8.09 .465 

·7 5 .01881 .00102 .08869 .00874 9 . 48 7.82 .430 
· 76 .017'.>3 .000 8 9 .09066 . 00875 8.96 7.53 .395 

77 . 016<+0 .000 ~ 1 .093.31 .0 0870 ~.45 7 .,23 .,360 
7 8 .01 540 .00 07 8 .0Yb66 • OCJa61 7.96 6.93 .326 
79 . 01450 .000~0 .1007<+ c00 t3 47 7.49 6.62 .293 
80 . OlJ6 7 .0001:n .105$9 . OU6JO ,.04 6.30 .261 
81 . vl2iH3 .00094 • 11124 .00809 6.6 1 5.99 .232 
82 .01212 .00103 .11774 .00786 6.20 '.:,. 6 7 .2U4 
83 . 01136 .001 10 .12Sl4 .00761 5.80 5.37 . 179 
84 . OlObO . Oull6 .13349 .007 33 5.4) 5.0b .156 
85 . 00983 .0 0120 .1 4283 .00705 5.07 4.77 .136 
86 .00904 .00121 .15322 .00675 4.73 4. 48 .117 
67 .OOB23 .0 0120 .1 6473 .00644 4. 41 4 .20 .10 0 
88 . 001-.0 .0011 6 .1 7740 . 00612 4 • l 0 3.93 .0~6 
89 . 006S7 . 00110 .1 9 13 1 . 005MO 3.8 1 J.67 .073 
90 .OOS73 . 00102 . 20650 .00548 3.54 · 3.42 .062 

C 

S •, 



( HI STOLOGY 3 102 . 

A p SE(P) Q St (Q > E ( N ) Ewe, SE(E<l:lCl > 

60 .110 S4 .00596 .11 054 . 00596 19.4?. 7o 32 .. 230 
61 • 1256 1 .00464 . 14122 .00513 18 065 7 . 17 .. 256 
62 .1 0476 000260 .1 37 15 . 00406 l 7., 89 1 .21 .301 
63 .0 8792 .00 17 0 .13340 .003Sl l 7 .. 15 7. 34 .,345 

. 6'~ .07 425 .001S9 .1 2999 . 00356 16 .,42 7 .,40 .,366 
, 65 .0 6307 . 001 70 .12693 .oo~.01 15 .. 71 7 .. 43 .. 42 1 
66 .0 5389 .0017 7 .12422 .0 0481 15.01 7 .44 . 45 1 
67 .04631 . 00175 .12187 .00562 14 .33 7 .. 43 .,475 
68 .04000 . 00165 .11990 .. 00643 13 ... 66 7 .. 39 .,492 
69 .03474 .0 0 15 1 .11 832 . 00721 lJ oO l 7 . 33 .503 
70 .0 3033 .001 34 .117 15 . 00792 12.38 7o 25 .508 
71 .026b0 .0 01 16 .11640 . OOti58 11. 7 7 7 . 15 .507 
72 .02345 .00098 .11 609 .0 0917 1 J.. 1 7 7.0J .. 50 l 

. 73 .0 2075 .O OUB2 . 1162S .00969 10 059 6~8 9 0 4'-1 l 
74 .01 844 . 0006 7 . 1 1690 . 010 15 10.02 o.7J .476 
7$ .01645 .00056 .1 180 7 .Ol0 5S ,9 .4d 6.55 .458 
76 .01 4 72 . 00050 .11 9 79 . 0 1089 8.96 6.36 . 437 
77 . 01321 . 000.:+9 .1 2210 . 01117 8 .45 6 . 16 . 414 
78 .011 B7 .0 0052 .l ?.502 .01 139 7. 96 5.95 . 389 
79 . 0 1068 .OO OS 7 .1 2860 . 01156 7. 49 5.73 .363 
80 .00 962 . (J00b3 .1 3289 .011 68 7.04 5.50 .337 
8 1 . 00866 . OOOb'1 .1 3792 .01175 6.61 5.27 .3 10 
82 . 0077 8 . 00074 .14 375 . 01 177 6.20 5.04 .284 
83 .0069 7 .0 0077 . 15043 . 01175 So80 4o80 .. 259 

,84 . 00622 .00079 .1 580 1 . 01 169 S.43 4.57 .235 
8:> .OUSS2 .OOO d u . l665S . 01 159 5.07 4.33 . 211 
86 .00 4B7 .0 00 79 . 1 76 11 . 01 145 4.7] 4.10 .1 l::S9 
87 .00 425 . 00077 .l H67 b .011 2 1 4. 41 3.87 .1 69 
&cl .00368 .00073 .l 98S5 . 0 110 6 4. l 0 3 .64 · .1 so 

r 89 .0 0314 . 00068 .21156 .01082 J.81 3.42 .lJ2 
90 .002b4 .0 0062 .22583 . 0 1 055 J.S4 J.21 .116 

C 

~· 



~JSTOLOGY l X STAGE l 

.r 
103 . 

A p SE<P > Q SE<O> E ( N ) E(RC> SE<E<RC» 
60 . 031 46 0005 13 003146 000513 19 .42 14.5 7 .680 
61 .04306 .00739 .04446 .00763 18.65 14.0 3 • fi92 
62 .041 58 .00620 .04493 . 0070S 17. R9 13.66 .623 
63 .040 27 .00515 .04556 .00652 17.15 13 .28 .561 

. 64 .039 10 .00423 .04635 .00603 16.42 12 .B9 .508 
65 .,03 80 7 .00343 .04 732 .00559 l 5 . ·11 12.49 .4 6 2 
66 .03716 . 00275 .04848 . 005 19 15 .0 1 12.09 .421 
67 .03636 .00217 .04985 .00484 14 .33 11. 68 .,386 
68 .03565 .00111 005145 .00453 13.66 11.27 .356 
6q .03503 .00137 .05329 .00427 13 .0 1 10. 85 .329 
70 . 03447 .00118 .05540 .00406 12.3q 10. 43 .305 
71 .03398 .,00114 .0578 0 .0 0390 11.77 10.02 .283 
72 . o:ns2 .00120 .06052 .00378 11 • 1 7 9.60 .264 
7 3 .03308 .0013 1 . 06358 .00370 10.59 9. l 9 .246 
74 .03265 .00 145 . 067 01 .0036S l O • 0 2 8.78 .229 
75 .0322 1 .00 159 .070 85 .00364 9.48 P. . 3 7 .213 
76 .0 3173 .00 171 .07 5 13 .00365 8.96 7. 97 .198 
77 .0 3 12 1 .001 ~2 .079R9 .00 36B 8.45 7.58 .1 84 
7 A .030A l .00 190 . 085 17 .00373 7.96 7. 19 .170 
79 .0 2992 .00197 .09 101 .00378 7.49 6.A2 • 15 7 
80 .02913 .00202 .09745 .00384 7.04 6.45 .1 45 
Rl .02f321 .00204 .10456 .00 390 6.6 1 6.09 .1 32 
B2 .02715 .00 205 .11238 .00396 6.20 5. 74 .121 
BJ . 02594 .00203 .1 2096 .0040?. 5.80 5.41 • 11 0 
84 .0 2457 .00200 .13037 .00 1+07 5.43 5.09 .1 00 
85 . 023 06 .001 95 .1 4067 .00411 5.07 4.77 .0 90 
86 .0 2140 .001 8 7 . 1S l91 .004 14 4.73 4.47 . 081 
87 . ~ 19fi l .0 0 178 . 164 16 .00416 4.41 4.19 . 073 
8B .0111 2 . 00 166 .17750 . 00417 4 .10 3.9 1 . 065 
89 . 01577 . 00154 .1 q 19a .00417 3.s:q 3.65 . 058 
90 .0 1378 .00139 .20 767 . 00416 3 . 54 3. 40 . os1 

( 



HISTOLOGY l X STAGE 2 104. 

A p SE (P> 0 SE < Q > E<N> E me> S1:: ( f: C8C ll 
60 .0 53~7 .01007 .05387 .,01007 19.42 10.9 1 .719 
6 1 .oq419 .01119 .oq955 .0 11 78 18 . 6S 1005 1 .752 
62 .0 8039 . 00690 .0 9l•36 . 00923 17.89 l0.62 . B24 
63 .06926 .00458 .0 8977 . 00765 1 7. 15 10.67 .890 64 . 060?.2 .. 00380 . 08575 .00709 16 .. 42 l O., 68 .()44 
65 . 05284 .00 38 2 .0 8230 . 007 36 15 .71 10.63 .979 
6'1 . 04679 .0040 1 . 0794 1 .001307 15.01 10.54 .997 
67 .041 80 . 004 11 .07 705 .00893 }4. 33 l O. 4 l . 99R 
68 .03767 . 00408 .07524 . 009 77 13.66 10. 23 .983 
69 .034 24 .00 394 . 07396 .01052 13.0 1 10.03 .955 
70 .03139 .00370 . 07322 .011 14 12.38 9 . 79 . 916 
71 .0290 1 . 00339 . 07302 .01163 11. 77 Q.52 . A70 7 2 .0210 2 .003 04 .07 337 .01199 11 • l 7 9.24 .817 73 . 02535 .00 26 7 . 07428 .01222 10.59 8.93 .760 
74 .0 2394 . 0023 1 .07 576 . 0 1235 10 .0 2 8.60 . 70 1 
7S . 0227 3 .00196 . 0778 3 . 0 1238 9.48 8 . 2 7 .641 
7 6 . 02168 .00167 .OR05 1 . 0 1233 8 .96 7.92 . 582 
77 .0 2076 .00 147 .0 13 383 .. 0 12 19 8.45 7. 5 7 . 525 
7 8 . 0 199 2 . 00139 . 0878 1 • 0 1 199 7. 96 1. 22 . 470 7 9 . 0 19 14 . 00144 . 0925 0 .01174 7.49 6.87 • '• 18 80 . 01839 .00 159 .0 979 1 . 0 1144 7. 04 6.,52 .370 
~1 .017 '13 . 0017R .1 04 10 . 0 1109 6 . 61 6. 17 . 325 
82 • 0 l", 86 . 00 199 .11112 . 010 72 6 . 20 5.83 .284 ~3 . 0 1605 .O O?. l A • 11 1', 99 . 0 1032 5 . 80 5.50 . 24 7 
84 . 0 15 19 .0 0233 .1 27 79 . 00989 5.43 5 .1 8 . 2 14 
8 5 . 0 1426 . 00244 .1 )756 . 0094 6 5 .07 4. 8 6 • 184 
~6 . 0 1326 . 00250 .14835 .0090 1 4 . 73 . 4.56 • l 58 
$3 7 . 01220 . 00250 . 16023 .0 085S 4.41 4.27 • 135 
8.A . OllOA . 00244 .1 7326 . 00809 4 . 10 3 . 99 . 114 
'39 . 00991 .00 23 3 . 1B750 . 00763 3.81 3.72 .097 
90 . 00~72 .00 2 17 .20 30 1 . 00 717 3.54 3.46 . 08 1 

( 



HISTOLOGY 1 X STAGE 3 105 . . ( 

A p SE ( P) Q Sf. < 0 > ECN) E<RC> SE <E(f:<:C) l 
60 .0802R .01 643 .0 8028 .01 643 19 .42 6. 6lt . 5 15 61 .1 560 1 . 0 171 6 . 16963 .OlA41 18.65 6.?.6 .543 62 .1 2442 .00905 .1 6292 .01500 17.09 6. 4c'.i, . 612 63 .1 00 18 .00494 .1 S67 1 . 0 12 64 17.15 6.60 .697 
64 .0 13 140 . 003~2 .1 5099 .01151 16.42 6.73 .7 84 65 .06672 .00398 .14576 .01157 15 .71 6.85 . Ro7 
66 .OS514 . 004 19 .1 4 103 . 01250 15.01 6.93 

\ 
. 941 . 67 . 04595 .004 17 .1 368 1 .01392 14.33 6.99 1.0 02 

6f3 .03858 .00)()6 .13308 . 0 155 1 13 . 66 7.02 1. 048 
69 .0 3264 .00364 .12987 .01711 l 3.01 1.02 1. 080 
10 . 02781 . 00326 .1 27 19 . 01862 12. 38 1.00 1. 098 
71 . 0?.387 .00 2B8 . 12504 .02000 11. 77 6.95 1 • l O l 
1 ?. .0 201:> 1 . 00250 .1 2344 . 02 122 1 l • 1 7 6.87 1. 091 
73 . 0}792 .00 2 17 • l ?.24 1 .02228 10.59 6.77 1.069 
74 .01 567 . 00 188 .1 219 7 .023 17 l O. 02 6 . 65 1. 037 
75 . Ol37e .00166 .122 13 .02390 9 • '•A 6.50 .997 
71:- . 0 1217 .00 149 .l ?.294 .02448 8 . 96 6.34 . 949 
77 . 01080 . 00 140 . 12440 .02491 8 . 45 6 .1 6 . A96 
1P. . 00962 . 00 136 . 12656 . 0252 1 7.96 5 .96 . 839 
7 9 . COBAO . 00136 .1 ?946 .0253 7 7.49 5.76 .780 
80 .00770 .00139 .}3312 .0254 1 7.04 5 . 54 .1 20 
81 .0 06 90 . 00 143 .1 3760 • 0 25 34 6.61 5 . 3 1 .659 
82 .0 06 18 .00146 .1 4293 .0 25 17 6.?. 0 5.08 .60 0 R3 . 005S3 . 00 149 .14 9 17 . 02490 5 . 80 4 . 85 . 542 
84 .00493 . 00 149 .1 5636 . 02453 5 . 4) 4.61 . 489 f15 .0 0438 . 00148 • 16457 . 02409 5.07 4.3A . 43 6 
80 .O O)A6 .001 45 .17 385 . 02357 4.73 4 .14 .388 
87 , 003'18 . 00139 . 18425 . 02299 4.41 3 . en .342 
8H .0 0293 . 00 13 1 .1 9585 . 02234 4.10 3.68 . 301 '\9 . 002s1 .001 2 1 .20B69 . 02 16 4 3 . Pl 3.46 . 263 
90 .00 2 12 . 001 10 . 22285 . 02 088 3.54 3 . 25 . 229 

" 

.. 



HISTOLOGY 2 X STAGF. l 106. 
( 

A p SE(P ) Q SF. < 0 > E(N) E<RC> SE<ECR.C>> 
60 . 041SS .00547 .041 55 .0 0547 19. 42 12 . 49 .577 
61 . 0"073 . 00766 .. 06336 .0079A 18. n5 12.0 1 .592 
6?. . 05676 .00607 .06322 .007 29 17.89 11.79 . 548 
63 .05320 .00476 .. 06326 .00667 17 .15 11. 55 .512 
64 . osooo .00]70 .06347 . 00613 16.42 11. 29 .482 
65 . 04713 . 00286 .06388 . 00567 15.7 1 l 1. 03 .458 
66 . 04454 .00222 . 06449 .00531 15.01 10.74 .437 

C • 67 . 042?1 . 00179 . 06533 .00 502 14.33 10.45 . 419 
68 . 04010 . 00154 . 06640 . 00482 13.66 }0.15 .4 03 
6 Q .03R l 9 .,00145 .0 67 74 . 00471 13.01 9 . 83 .387 
70 .03645 .00145 .06936 .0 0466 12.38 9.5 1 .372 
71 • 0 34 8h .0 0 151 . 07128 .00467 11.77 9.18 . 35 7 
7?. . 03340 .00157 .07 352 .0 04 74 11. 17 8.85 0 34 l 
7 3 .0 3204 .001 63 .07 6 13 .0 04A4 10. 59 8.51 .326 
74 . 01076 .00 168 .07911 . 00497 10.0?. 8.17 . 309 
75 .0 2955 .0017 1 . 08251 .0051 l 9.48 7.83 .293 
76 .021137 .00 1 73 .OR637 .00 52~ 8.96 7.49 . 276 
7 7 . 02723 . 00173 .0907 1 . 00542 8.45 7. 15 .259 
1 t'- . 0?609 .00173 .09558 . 00557 7 . 96 6. 82 .241 
79 . 02493 .00172 .1 010 1 .00 57 1 7. £19 6.48 . 224 
80 .02376 . 0017 1 .1 0707 .0 0584 7~04 6 . 16 . 207 
81 .02255 .00 110 .11 379 . 0059 7 v o61 5. 84 .1 91 
82 . 02129 . 00168 .1 2 123 .00 60 7 6 . 20 5 . 52 .1 75 
R3 . 01998 . OO l h6 .1 2945 . 00616 5 . 80 5.21 .1 60 
~4 . 0 186 1 .00164 .1 3B49 . 00624 5.43 4. 92 .145 
8S . Cl 718 . 00160 .1 4843 . 00629 5.07 4. 63 .1 31 
86 .01570 . 00155 • 15933 .0 0632 4.73 4.35 .11 8 
87 . 0 14 19 . 00 149 . 171 24 . 00634 4.41 4.08 .106 
'3 A . 0 1265 . 0014 1 . 18423 . 00634 4 . l 0 3 . 82 .095 
BQ • 0 l l l l . 00132 .1 9838 . 0063 1 3 . •:q 3. 57 .O A4 
90 .ooqr,o .001 2 1 .21 374 .00 626 3.54 3.33 .075 

• 

( 



~ISTOLOGY 2 X STAGE 2 107 . 

,, 
A p SE ( P ) Q SE <O> E(N) E(BC> SE <E<BC>> 
60 .07526 .00959 .07526 .00959 19.42 9. 11 .503 

· 6 1 .11990 .00989 . 12966 .0 10 61 18 . 6S 8.86 ~535 
62 .09793 .00559 .12168 .0 0825 17 .89 9. 11 .603 
63 .OR096 .00 350 . 11 452 . 00685 17.15 9.31 .669 
64 .06770 .00296 010816 .00643 16.42 9.45 .725 
6S .05725 . 00304 . 10256 .00676 15., 7 1 9.53 .766 

t 
66 .04894 .00315 .09769 .00746 15.0l 9.57 .791 
67 .04229 . 001 14 . 09355 .008?.6 14 . 33 9.55 . 80 1 
68 .03692 . 00303 .09010 .00901 13 .66 9.49 .797 
69 .03256 .00283 .0 8733 .00966 1:3.0 1 9.38 .78 1 

,, 70 .02900 .00259 .08523 . Ol OlR l2. 3B 9.23 .754 
71 .02608 .0023 1 .0 8 380 .01057 11.77 9.04 . 719 
72 . 02368 .00203 . 08303 .0 1083 11 • 1 7 8 . P,2 .678 
73 . 02 11:- 9 .00 175 .OR292 . 0 1098 10 . 59 8.58 .632 
74 . 02002 . 00 149 . 08348 .011 03 10.02 8.3 1 . 584 
7c, .01 ~62 .00127 .08472 .0 1099 9.48 8 .0 2 . 535 
7h . 01743 .0 0 11 0 .08665 .0 1087 8.96 7 . 72 .486 
77 . 0164 1 .00102 .08929 .01069 8.45 7.40 .4 37 
7A .01 551 .001 0 1 .09267 . 0 10 45 7.96 7.08 .391 
79 • 0 l 4 7 0 . 00 107 .09680 . 0 1017 7.49 6.75 . 347 
80 .01 395 .OO ll R .10172 .00984 7.04 6.42 .306 
Al .01324 .00 130 . 10747 .00949 6.6 1 6.10 .269 
82 .Ol 2S4 . 00 142 .1 1408 .00911 6.20 5 .77 .234 
83 .Oll B4 .00 152 .12160 .00872 S. 80 5.45 . 203 
R4 .011 13 .00160 .1 3008 . 0083 1 5.43 5.14 .175 
~s .0 1019 . 00 165 .1 3956 .00789 5.07 4. 8 3 .1 50 
~6 . 00961 . 00166 .1 5 010 .00747 4.73 4. 53 • 128 
87 .0 08AO . 00165 .1 6 17S . 00 704 4.41 4.25 .109 
AR .00797 .0 0 159 .1 7458 .00662 4 .10 3.97 .092 
S39 .• 00710 .00151 .18864 .0062 1 3 . 81 3.71 . 077 
90 .00 62 3 .00 139 .20398 .00580 3.54 3.45 .0 65 

" 

; 



HIS TOLOGY 2 X ST AGE 3 108 . 
( 

A p SE<P> Q SE(Q} E(N} E< AC > SE <f (HC }) 
60 .11445 . 01572 .11 445 . 0 1572 19. 42 5.50 . 337 
6 1 . 18 28 1 . 0145 6 . 20643 .01 603 18065 5. 15 . 364 
62 .1 3866 .0 0682 .1 9732 . 01288 1 7 . 89 5 . 36 . 428 
63 .1 0651 . 00364 .1 888 1 .. 010 ~7 1 7. 15 5 . 57 ., S0 7 
6 4 . 082 79 . 00327 .1R092 .01 019 16.42 5.75 .590 
65 .06508 . 00347 .17364 .01070 15 .71 5.91 . (,70 
6£, . 051 71 .00346 .1 669 7 .01195 15.0 1 6.,05 .742 

<' 67 .04 151 .00325 .1 609 0 .01 35 3 14.33 6 . l 7 . 805 
6 8 . 03365 . 00292 .1 5545 . 01518 13.66 6.26 . 856 
6 9 . 02754 .00 256 .. 1506 1 . 01 67 7 l:;3. 0 1 6.33 . 894 
70 .0 2273 .0 02 19 .14639 . 0182?. 12 . 38 6 . 36 . 920 
71 . 01893 .0 0 186 .1 4280 . 0 195 1 11.77 6.,37 . 932 
72 .01589 .001 58 .. 13984 00 206 3 1 1 0 1 7 6.35 .932 
73 .0)344 . 00 1 34 .1 3754 . 02 157 10.59 6.30 .921 
74 . 0 11 46 . 00117 .1 359 1 . 02234 10.02 6 . 23 . 899 
75 .0 0983 .0010 4 • 13£~96 .02295 9.,48 6. 14 . 869 
76 .0 08 49 .00 096 . 13472 .0234 0 8.96 6.02 .832 
77 . 00 7 37 . 00092 .1 352 1 .0237 1 8.45 5 .138 . 789 
78 .0 0643 .00 09 1 01 3646 . 02388 7.96 5.72 .74 1 
7 9 . 00564 . 0009 1 .1 385 1 .0 2393 7.,49 5 .55 . 690 
AO . 00496 . 00092 .1 4138 .0238 7 7.04 5 . 36 . 638 
8 1 • 0 0 ,13 7 .00093 .145 12 .0 2370 6.6 1 s . 16 . 585 
82 . 00386 . 0009 3 .1 49 77 . 02343 6.20 4.95 . 533 
83 . 00340 .000 93 .-1 5537 . 02308 5 . 8 0 4.74 . 4 84 
R.4 .00300 . 0009 2 .1 6 19 8 . 02264 5 .43 4. 52 .435 
85 . 00263 . 00089 .1 6964 .0 22 14 5 . 07 4.30 . 388 
86 . 00230 . 000 86 .17 842 .02157 4.73 4 . 08 .344 
87 .00199 . 000 8 1 . 1R836 .02094 4. '• 1 3:86 .304 
88 . 00111 . 00075 .1 9952 . 020 26 4 . l 0 3.64 . 266 
89 .0 0 146 .000 69 . 2 1197 . 0 1954 3.81 3 . 43 . 232 
90 .00 122 . 00062 . 225 76 . 0 18 77 3.54 3 . 22 . 202 

( 



HI STOLOGY 3 X STAGE 1 109 . 
( 

,. 
A p SE<P> Q SE (Q) E<N> E< BC > SE CE<HC >> 
60 . 04806 . 00549 .0480 6 .00549 19.42 11 .31 .443 
61 .06820 . 00664 .07 164 .0 0696 18.65 10.136 • '+56 
62 .06357 .00524 . 07 194 .0 0646 17 .S9 10.65 . 416 
63 .05936 .0040 7 .07237 . 00599 17. 15 10.44 .382 
64 .0555 1 .003 10 .0 7297 .00 556 16 .. 42 10 . 22 .353 
65 .0520 0 . 00230 . 07373 .00517 15.71 9.98 . 328 

· 6"6 . 04878 . 0016 7 .0 7468 . 00482 15.0 1 9.74 .307 
67 .04 5$33 . 00 1 22 .0 7582 ~0 045 1 14. 33 9 . 49 .289 
6 13 . 04 31 2 . 00096 . 077 18 . 00426 l 3 c66 9 .22 . 273 
69 . 04062 . 00090 .0 7878 .00406 1 3 .• 0 l 8 . 95 . 260 
70 .0 383 0 .0 009 7 .0 8064 .0 039 1 12. 3A 8 .68 • 21.+9 
71 . 036 14 . 00 11 0 . 08278 . 00382 11. 77 8.39 . 239 
72 . 034 13 .0 0122 . 08522 · . 0037 7 11 . 17 8.1 1 .229 
73 .0 3224 .001 33 .0 880 0 .0 037R 10.59 7. 8 1 .220 
74 .0 3045 .00 14 1 .0 9 11 4 . 00382 10.02 7 .52 • 2 10 
75 .028 75 . 00146 . 09468 .00390 9.,48 7 .23 c201 
76 .0 27 12 . 001 4 9 . 09864 .0 0400 8 . 96 "6 0 93 . 192 
77 . 02554 . 00 15 0 .1 030 7 . 004 12 8.45 6 .63 .1 83 
78 .0240 1 . 00 149 .1 080 1 . 00426 7 .96 6 . 34 .. 173 
79 .0 225 0 .0 0 14 7 .11 35 0 .0 044 1 7. 49 6. 05 .1 63 
80 . 02 102 . 00144 .11 958 .00456 7 . Ot+ 5. 76 . 153 
81 .01 954 .0 0139 . 1263 1 . 004 71 6 . 6 1 5.47 .1 44 

. 82 .01 808 . 0013 4 .1 33 73 .00486 6. 20 5.1 9 .1 34 
R3 . 0 1662 . 00 128 .1 4190 .0 0500 5 . ~o 4. 92 . 124 
84 .01 5 16 .00 121 .1 5 088 .00 5 13 5. 43 4 .65 .11 5 
85 .01 37 2 .0 0114 .1 60 74 . 00 526 5.0 7 4 .39 .1 06 
86 . 0 1228 .00 101 .1 7 152 . 00537 4.73 4.1 3 . 097 
87 .01088 .00 09 9 .1 8330 .00 546 4.41 3. t39 .080 
BR . 0095 0 . 00090 .1 96 13 .0 0554 4 .1 0 3 .65 .oso 
89 . OOA 18 .00 08 2 .21 0 10 .0 0560 3. 8 1 3. 42 . 073 
90 .0 0693 .00073 .225 25 .00 564 3.54 3.20 .0 65 " 

( 



HISTOLO GY 3 X STAGE 2 110. 
( 

A p SE<P > Q SF. < Q > E<N > E< AC > SE <E <BC }> 
60 .08 892 . OO RS l .0889 2 . 0085 1 19 .42 7.35 . 373 
61 .1337 3 . 009 16 .1 4678 . 00997 18.65 7. 08 . 401 
62 .11 017 .00 540 .1 4 173 . 0084-3 17.89 7. 2 1 .438 
63 .091 46 .00 330 . 13708 . 00742 17.1 5 7.32 • 4131 
64 . 07 648 .00 246 .1 3283 . 006 97 16 . 42 7 0 l+ l .523 
65 .06440 .0 0232 .12 900 .007 03 15.7 1 7 . 4 7 . 56) 
66 . 05460 .00 235 .1 2557 .00747 15.0 1 7. 50 . 596 
67 .04661 . 00235 .1 2257 .0081 3 14.33 7. 5 1 .622 
6A . 04004 . 00221 . 12000 . 00889 13.66 7. 49 . 641 
69 . 034 61 .00214 .11787 .00966 13 .• O 1 7 . 45 . 652 
70 .03009 . 00 196 .11 62 0 . 0104 2 12. 38 7.38 . 655 
71 .02 632 . 00177 • 11 500 .01111 11 .77 7 . 28 . 651 
72 ~02315 .001 58 .11 428 . 01174 11 . 17 7. 17 .641 
73 .02047 .00140 .11408 .01 230 10.59 7.03 . 624 
74 .01 8 18 . 00 124 .11 440 .0127 8 10. 02 6 . 87 ., 602 
75 .0 1623 .0 0 112 .1 1529 .0 1319 9.48 6.69 . 576 
76 .01454 .00103 .11 676 .01352 8 . 96 6. 50 • Slt 7 
77 .0 1307 .0 0098 .11 88 4 .0 1378 8.45 6.30 .51 5 
78 . 0 117 8 . 00096 .1 2158 . 0 1397 7 . 96 6 . 0A . 482 
79 .01 064 .00097 .1 250 0 .01409 7. 49 5. 85 .447 
80 .00962 . 0010 0 .129 15 . 0141 5 7.04 5.62 . 4 13 
81 .00 870 .00103 .1 3408 . 0 14 15 6.61 S.38 . 378 
82 . 00786 .00106 .1398 3 . 0 1409 6.20 5.1 4 .344 
83 . 0070 8 .0010 8 • l 4645 . 0 1399 5 . 80 4 . 89 · • 311 
R4 . 006 35 .001 09 .1 5400 . 0 13 83 5 . 43 4.65 . 281 
85 . 00 56 7 . 00109 .1 625 3 . 01363 5.07 4.40 .25 1 
86 .00503 . 00101 .17 210 . 0 1339 4 .73 4 . 16 .224 
87 . 004lt2 . 00103 .1 827 7 . 01311 4 . 4 1 3 . 93 .1 9B 
88 .00 385 .0 0097 .1 946 1 . 0 1279 4. 10 3 .7 0 .17 4 
89 .00 331 . 00090 .2076 7 . 0 1243 3 . 8 1 3.47 . 153 
90 .00 2~0 . 00082 .22202 .0120 5 3.54 3.25 .1 33 ·n 

f • 

.. 



HISTOLOGY 3 X STAGE J 111 . 
( 

t 
A p SE ( P ) Q SE ( Q) F. ( N > ECRC> SE ( E <AC>> 
60 .13599 .0 1418 .1 3599 .0 1418 19.4?. 4.61 . 237 
61 .1 94 86 .01 4 19 .2?553 . 01601 18.65 4.26 .26 1 
62 .1 4722 • 0 0 6 7 ,~ .22002 .01387 17. 89 4.36 . 265 
63 • 1 1 2 1 1 . 00310 .21481 . 0 1222 17.1 5 4.45 .280 
64 . OA602 .00233 .20 990 .01113 16.42 4.54 o30H 
65 .06648 .0 0261 .20532 . 01066 15.71 4.62 .341 
6 6 .051 7l1 .00276 .20107 .01 078 1s.01 4.68 .377 

~ 67 . 040 5 3 .00269 .1971 6 .01138 14. 33 4.74 . 413 
68 .031 95 . 00248 . 1936 1 .01 229 13.66 4. 79 • 4'• 7 
69 . 02534 .0022 1 . 19043 .01 340 13. 0 l 4.82 .479 
70 . 02022 .00193 .1 8764 .01 461 12.38 4.85 . 506 
71 .01622 .001 67 .18527 . 01584 11 .77 4.85 . 529 
72 .01 307 .00143 .18333 .01705 11 .17 4. 85 .547 
73 .O l OS9 . 00123 .1 8185 . 0182 1 10 . SQ 4.R3 . 560 
74 .0 0862 .00107 .1 8084 . 01931 10.0 2 4.80 .567 
7S .00704 .00 ()93 • P3036 . 02033 9.48 4 . 75 . 568 r 

8 . 96 4.69 7 6 . 00577 .00082 .l A04 1 . 02127 .565 
77 .0047 5 .00073 .1 Rl04 .0 22 12 8 . 45 4 . 61 .557 
78 .00391 .00 066 . 18229 . 02288 7. 96 4.52 .546 
7 9 .00321 .0 0060 . 1R418 .02354 7.49 4.42 . 529 
80 .00 2h8 . oooss .1 8678 . 02412 7.04 4.31 . 509 
~1 .002? 1 .00050 .1 90 12 . 02460 6 . 61 4. ) 9 .486 
132 .001 R3 .00046 .19425 . 02498 6.20 4 . 06 . 461 
B3 . 00 1s 1 .00 042 . 19923 . 02527 5 . 80 3 . 92 .4 34 
~4 .001 25 .000 39 . 205 11 .02548 5 . 43 3.78 . 406 
85 . 00103 .00 035 . 2 11 94 .0 2559 5 . 07 3 . 63 . 377 
86 • 0 0 OBt, . 0003 1 . 21979 .0256 1 4.73 3 . 48 . 348 
87 .00068 .OOC 28 .22R 73 . 02554 4.41 3.32 . 319 
8&:I . 00055 . 00024 . 23880 . 02538 4 .1 0 3. 16 . 290 
',9 .0 0044 .000 2 1 .25008 .0 25 14 3.B l 3.01 . 263 
90 .000 34 .0 00 18 .26264 .0 248 1 3.54 2 . 85 . 237 ... 

( 



-( AGE AT F I RS T Hl H2 H3 
OPSEPVA TJ ON EC~C> EC BC ) EC RC > 112. 

35 20.04 15.82 l O .. 9 7 
36 19.65 15.58 ·1 O .. ~H 
37 19.32 15 .. 34 10.70 
38 18 .. 98 15.13 l O .. 60 
39 18.67 14. 92 10 .. 57 
40 18.37 14.74 10.50 
41 18.10 14.61 10 .. 44 
42 17 . 85 14.45 10.39 
43 17 .61 14.25 10 .35 
44 17 .75 14 .. 38 10 .58 

~ 45 17.33 11• C l 0 10.37 
46 16.83 13.76 10.13 
47 16.33 13. 38 9.87 
48 15.8 1 12.98 9.60 
49 15.28 12.57 9.33 
50 14.76 12 .. 19 9. 10 
5 1 14 .26 11 .. 77 8.84 
52 13.77 11. 38 8.60 
53 13.30 10.99 8.37 
54 12.86 10.63 8.1 7 
55 12.45 10. 30 7. 9ff> 
56 12 . 07 9 . 98 7. 8 1 
57 11 . 71 9.69 7 .67 
58 11.38 9.43 7 .53 
59 11.07 9.18 7.42 
60 10.7 8 8.95 7. 32 
61 10.50 8 .74 7.23 
62 10. 25 8.55 7.14 
63 10.00 8.36 7. 06 

"64 9.75 8 .1 8 6.98 
65 9.51 a.01 6.89 
66 9.27 7. 84 6. 8 0 
67 9.05 7.66 6.70 
68 8.79 7.48 6. 59 I: 

69 8.53 7 . 29 6. 46 
1 0 8.25 7 . 09 6. 32 
71 7.96 6.87 6.1 5 
72 7.65 6.64 5 . 96 
73 7 . 31 6 . 39 5.75 
74 6.97 6.12 5 . 5 1 
75 6.48 5.68 5.15 
76 6.17 5 . 39 4.92 
77 5.84 s. 11 4 . 69 
7 8 5 . 54 4.85 4.47 
79 5.24 4.60 4 . 26 
80 4.95 4 . 36 4.05 
81 4.68 '+ .14 3 . 85 
82 4 . 42 3 . 92 3. 6 b 
83 4. 16 3 . 71 3 . 47 
84 3.92 3.51 3.29 

( 85 3.69 3.32 3.12 



f ~(.F'" fll FIRST Sl 52 53 S4 
0 A 5 r- µ V t'l T J m~ f(AC) F <BC > E <RC> FCRC> 113. 

35 19.70 15.54 6.99 2.91 
36 190 29 15 .32 6 .. 97 2.95 
37 18.,93 15.05 6.96 3.00 
38 18.59 14 ... 84 6.,94 3.04 
39 18 .. 29 14 .65 6093 3.07 
40 18.03 14. 46 o.92 3.09 
41 17.79 14. 28 6.91 3.11 
42 17.58 14.1 2 6.90 Jell 
43 17.39 13.95 6.89 3 .11 
44 17.79 13.97 6 .. 97 3 . 13 

., 
45 17 .29 13.75 6.92 3.,09 
46 16 .78 13 .51 6 .84 3.05 
47 16.25 13.17 6. 72 ;3.00 
48 15.72 12.19 · 6.5M 2.95 
49 15.21 12. 39 6.43 2.90 
50 l4o7 2 11 .98 60,28 2 .. 84 

51 14 .26 ll .57 6.12 co 80 
52 13.82 11.. 16 5.96 :~. 76 
53 13. 42 10.76 5.81 2.72 
54 13.0 4 10.38 5.67 t?.69 
55 12.70 10.0 2 5.53 ?. 0 6 7 
56 12.39 9.67 5.41 .~. 65 
57 12.10 9.35 5.30 ·2 .63 
58 11.84 9.06 5.20 2 .. 62 
59 11.60 8 .78 5. 11 2.62 
6 C, 11.37 a.s2 5.04 2.62 
61 11.15 8.29 4.97 2.63 
62 . 10.93 8.07 4.91 2.64 
63 10.71 7.86 4.85 2.65 
64 10.49 7.67 4.80 2.67 
65 10. 26 7.49 4. 76 2.69 
66 10.02 7.31 4.7 1 2.10 
67 9.76 7.14 4.67 2.71 
68 9.49 6.97 4.62 2.12 
69 9 . 20 6.79 4.5b 2.72 
70 8.HY 6.61 · 4.49 2.71 
71 8.56 6.42 4.42 2 . b9 
72 8.21 6.22 4.33 2·. 6s 
73 7.84 6.0 1 4.22 2.60 
74. 7.46 5 .78 4 .10 2.53 

< 75 6.98 5.34 3.83 2.40 
76 6.64 5.05 3.66 2.31 
11 6,.31 4.79 3.5 1 2 . 23 
78 S.99 4.54 3.36 2.16 
79 5 . 67 4.31 3.23 2.09 
80 5.36 4.09 3. 10 2.02 

. 81 5.05 3.89 2.9Q l. 96 
82 4.75 3.70 2 . db 1.90 
83 4.47 J.51 2.. 74 l. 84 
84 4.17 3.34 2.64 l • 79 

C 85 3 . 93 3.17 2.53 1.74 



( h1.;f AT FI RST HlXS1 Hl XS2 Hl XS3 
( 08 SFQVA TJ ON F (~Cl F <RC ) E<RC > . 114. 

35 2.7.81 20.58 9.84 
b 36 27 .1 5 20. 17 9 • 7 3 

37 26.53 19. 79 9.63 
38 25.96 19.43 9.55 
39 25.43 19.09 9 . 48 
40 24 . 95 18.78 9.42 
41 24.49 18 . 49 9.37 
42 24.05 18.22 9 . 34 
43 23.65 17 . 96 9 .31 . 44 23.88 18 .06 9.52 
45 2.3.14 17 . 65 9.39 
46 22.40 17 . 19 9.2 1 
47 21.66 i 6 . 69 9 . 0 1 
48 20 . 94 16.17 8.80 
49 20.23 15.64 B.57 
50 19.55 15. 11 8. 3=· 
51 18.9 1 14.59 8.04 
52 10. 3 1 14.0 9 7. 83 
53 17.74 13.61 7. 63 
54 17.20 13 . 15 7. 44 
55 16.70 12. 71 7. 2 7 
56 16 . 23 12.30 7.12 
57 15.78 11 .92 6.9U 
58 15.36 11. 56 6.85 
59 14.95 11 .23 6.74 
60 14 . 56 10. 91 6 . 64 
61 14 .18 10 .62 6.55 
62 13.81 10.34 6 . 4 b · 
63 13.43 1 o. o ·, o.JB 
64 13.04 9 . 8 1. 6.30 
65 12 . 65 9 . SS 6.30 
66 12 . 25 9.30 6.22 
67 11 .83 9 .04 6 .13 
68 11. 4 1 8.78 6.04 
69 10. 98 8.5 1 5.93 
7 0 10.53 8 . 23 5. 8 1 
71 10.07 7.94 5.6ij 
72 . 9.61 7. 64 5 . 52 
73 9 .·14 7.33 5 .2Q 
74 8.65 7. Ou · S .16 
75 8.12 6.51 4. 83 
76 7. 71 6.17 4.63 
77 7.30 5.81 4.43 
78 6.90 5.51 4.24 
79 6 . 5 1 s .21 4.05 
80 6.13 4.93 3.87 
81 5.76 4.66 3 .70 
82 5.41 4.43 3 . 52 
83 5.07 4.18 3.36 
84 4 .74 3.94 3 . 20 
85 4.42 3.70 J.04 



·( A~F. AT FIPST H2XS1 H2XS2 H2XS3 
ORSF:"RVATTON f(AC> E<8C> E(ACl 115. 

35 22.28 16 .53 7.59 
36 21.79 16.24 7 .55 
37 21.34 16.04 7.52 
38 20.93 15.79 ·7.4(j 
39 20.56 15.57 7.46 
40 20.23 15.36 7. '+4 
41 19.93 15.17 7.42 
42 19.66 14.98 7.41 
43 19.41 14.81 7.40 
44 19.80 14.90 7.53 
45 19.22 14.57 7.46 
46 18 .. 62 14.24 7.35 
47 18.02 1.3. 86 1 . 22 
48 17.43 13 .45 1.01 
4-9 16.86 13.02 6.91 
50 16.31 12.59 6.74 
51 15.79 12.16 6.57 
52 15.30 11.74 6.41 

r. 53 14.84 11.34 6.26 
54 14.42 10.96 6.12 
55 14.04 10.59 S.99 
56 13.68 10.25 5.87 
57 13.35 9.9J 5.76 
58 13.05 9.64 5.6b 
59 12.76 9.36 5.50 
60 12.49 9.11 5.50 
61 12.22 8.87 5.43 
62 ll.96 8 . 65 5.37 
63 · 11 . 70 8.44 5.32 
64 11 .42 b.25 5.27 
65 11 . 14 H.05 5.22 
66 10.85 7.87 5.17 
67 ·10. 54 7 . 68 5.11 

<· 68 10.22 7.53 5.05 
69 9.87 7.33 4.99 
70 9.52 7 . 12 4.91 
71 9.14 6.91 4.81 
72 8.75 6.63 4.71 
73 8.34 6 . 39 4.Sii 
74 7.92 6 . 17 4.44 
75 7. 42 5.73 4 . 16 
7 6 7 . 06 S . 43 3.99 
17 6.70 5 . 15 J.82 
78 6.35 4.88 3 . 66 

'- 79 6 . 00 4.63 3.51 
80 5.66 4.40 3.37 
8 1 5.33 4 .1 7 3.23 
82 s . 0 1 3 . 96 3.10 
83 4.70 3.75 2.96 
84 4 . 4 1 3 . 55 2.84 

( 85 4. 12 3.36 2 . 71 



AGE AT FTRS T H3X S1 H3XS 2 HJX S3 · 
·( OAS FRVAT J ON f (R. C> E (BC> f CBC> 116 . 

35 18.57 1 1 .. 2 1.i s.s9 
36 180 19 11 . 1 O 5.59 
37 17 .86 10 . 98 S.59 
38 17 .. 56 1008 7 5.58 
39 17.3 0 10. 78 s.s~ 
40 17.0 7 10 .. 70 So59 
4 1 16.88 1 0 . 6 3 5 .59 
42 16. 71 10.57 5.60 
43 16 .5 7 1 0 .. 53 5 . 6 1 
44 17.10 10 . 78 5. 74 
45 16 .59 10 . 59 5 . 6~ 
46 16 .. 08 10 . 36 5.59 
47 15056 1.0 . 11 5 .. 5 0 
48 15 . 06 9. 8 4 5 . 4 0 
49 14 ., 58 9.56 S.30 
5 0 11+. 13 9 . 23 5.2 0 
5 1 13. 7 1 8.97 5 .. 10 
52 13.33 8 . 72 5. 01 
53 12.98 8.,49 4.93 

( 54 12 . 6 7 8.27 4.86 
55 12 . 38 8 .. 08 4. 7 9 
56 12. 13 7 .90 4. 74 
57 11 .90 7 . 74 4 .69 
58 1 1 .69 7. 6 0 4 . 6 6 
59 1 1.50 7 . 4 7 4 . 63 
60 11 . 3 1 7 .35 4 . 6 1 
61 11 . 13 7. 25 4 . 59 
62 l O .. 95 7.1 5 4 . S ij 
63 10.77 7.0 b 4 .S7 
6 4 10. 5 7 6 . 9 7 4 . 5 6 
65 10 . 36 6.88· 4.SS 
66 10 .13 6 .7 8 4. 5 3 
67 9. 8 9 6.7 2 4. 5 1 
68 9 . 62 6. 6 0 4. 4 B 
69 9 . 32 6 .47 4.44 
70 9.01 6.32 4.38 
7 1 8. 6 7 6. 16 4.3 1 
72 8 . 31 5.93 4.23 
7 3 7 • . 94 5.72 4 . 12 
74 7 . 54 5.54 3.99 
75 7 . 08 5.18 3.77 
76 6.75 4 . 9S 3.64 
71 6.42 4.72 3.51 
78 6.09 4.5 1 3 . Ja 
79 5 . 7 7 4.30 3.25 
80 5 . 45 4 . 09 3.13 
81 5 .1 4 3.90 3.0 1 
82 4 . ~4 3.70 2.89 
83 4.54 3.52 2 . 1 1 
84 4.26 3.34 2 . 66 
85 3. 96 3. 16 2.54 



( 
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APPEND IX£ 

TAB LES BY TREATMENT , HISTOLOGY X TREATMENT AND 

STAGE X TREATMENT 

The first value of A in each of the followin& 

tables is the age of f i rst observation of 
I 

Lreast cancer. 

117 



( . 
TREAT MENT 1 118. 

,. 

A p SE(P) Q SECQ) E CN) f <AC) SE<f< BC)) 

60 .OA935 .OOS86 .0 8935 .00586 19 . 4-2 9. 4 0 .245 
61 .10483 .,00446 .11 5 11 .00484 18.65 q .27 . 263 

62 .. OA837 .00267 . 10 96~ .0038 2 1_7. 89 9 0 4 1 .292 

63 .075 16 .001 7 1 .10476 .00317 17 .1 5 9 ., 5 1 . 321 

64 • 06 4lt 9 .00139 .1004 1 .00292 16.,t~.2 9.,56 · .34 7 . 
65 .05S80 .001 4 0 .09658 .00301 15 0 7 1 9.58 . 366 

66 . 04869 .001 46 .0932R .00331 15.0 1 9.55 .380 

67 .,04284 . 00150 .090 5 1 .0036~ - 14.33 9.,43 . 3 86 

68 .03799 .001 1..,s .088?.5 .00-40 S 13.66 9.37 . 387 

6~ .0339A .00141 . 08652 .00445 13.01 9.23 . 383 

70 . 03059 .00132 .0 8532 .00476 12.38 9.06 .373 

71 .02776 .00120 .08465 .0050 3 11 .77 tJ.86 . 360 

72 • 02537 .00107 .0845 3 .00524 1 1 • l 7 ~ • 61; . .343 

73 .02335 .00094 .08497 .0051+1 10 . s~ 8 39 · ., 324 . . 
74 .o ?.16? .00081 .08598 .00552 10 .02 a. 12 . 3 04 
75 . 0?.013 .00010 .0875<:l .00560 9.48 7. 8 1+ . . 282 
76 · .0 1 ~8 3 .. 000 60 .0 8982 . 00563 ~.96 7 .54 · . 260 

77 .01769 .00053 .09268 .00563 a. t~s 7,.24 .237 
78 .01666' .00 05 1 .09623 . 00560 7 .96 6 .93 .21 5 

79 .01573 . 00052 . 10048 .00554 7. 49 . 6.61 .1 94 

80 .01485 .00 056 .1054 7 .00545 7 .0 4 6 .29 .174 

8 1 .01 40 1 .000 62 • 111 25 . 005 34 6. 61 · 5. 98 • 155 

8?. .0131q .000 68 .117 '36 .0052 1 6 .20 5o67 . 137 
i:\3 .O l 23R .00 074 . 12535 .00 507 s.ao 5.36 .121 
R4 .Oll5S .0 0078 .13377 .0049 1 5. 43 . 5., 05 .1 06 

~5 .01071 .0008 1 .14 3 17 . 00474 5.07 4.76 c, 09 ? 

86 . 0098S .000 83 . 15362 .00456 4.73 4.47 . 08 0 

P.7' . oo~9f- . 000 82 .16516 . 00 43Q 4 .4 1 4 . 19 . o6g 

,. f\8 . 00806 .00080 . 177 B6 .004 1~ 4. 10 3 . 92 . 059 

89 .007 14 .000 76 . 19 17 8 .00399 3.8 1 3.67 .oso 

90 .00623 .0001 1 . 20 69~ . 0037B 3.54 3.42 .043 

( 



( TREA TMENT 2 119. 

A p S[(P) Q SE(O) E<N> F. <RC > S E (f ( BC) 
r,o .1 9224 .01 27 8 . 19224 •. o 1270 19. 42 4.41 . 2 11 
6 1 .1Q58 9 .00994 .2425 0 .01169 18.65 4.35 . 251 
62 . 14103 .00424 .23049 .00915 17.89 4.59 .323 
63 .1 0324 .002 78 .219?(, . 008 15 17 .1 5 4.82 . 403 
64 .07676 .00279 .2088 0 .00869 16.42 5.05 . 484 
65 .OS791 .00 272 .19911 .01017 15. 71 5.25 .56 3 
66 .04430 . 0024 7 .1 9017 .01199 15.01 5 .44 . 634 
67 .034 33 .002 12 .1 82 00 .0138 3 14.33 5.60 . 696 
68 .02694 .00111 .17 458 .01 55 4 13 .66 ~.74 .748 
69 .02139 .001 44 .16790 .01708 13 .01 5.86 . 7 88 
70 .01717 .00117 . 161 98 .01842 12 . 38 5 . 9~ . 8 15 
7 1 .01393 .000 9 6 • 15682 . 01956 11 .77 6.00 .sno 
72 .01141 .0008 0 . 1524 1 • 020'+9 11.17 6.0t! .A33 
73 .00 944 . 000 6 9 .14876 .02124 10. 5 ~ 6.02 . 826 
74 .0078~ .0006 3 .1 4589 .021 8 1 10.02 5.99 , . BOB 
7S .00 664 .000 6 0 .1 4379 .0 22 2 2 9.48 5. 93' .7 8?. 
76 .00 563 .0005 9 .14251 . 02 24 7 8.96 5.84 .74A 
77 · .004 8 1 . 00059 .1 4204 . 02? 5B 8 . 45 5. 7 3 . 7 09 
7f'. .00414 .00060 • 1'+242 . 02257 7. 96 5.60 .66S 
79 ,0 03SA .00 060 • 1436 7 . 02244 7. 49 5 .45 . 61 9 
80 . 00111 . 000 6 1 . 1458 2 .0 2221 7. 04 5.28 . 5 7 0 
8 1 .00272 .0 0061 .14890 . 021 8Q 6.61 s .10 .522 
82 .00237 .00060 .1 5296 .0 2 14; 6.20 4.91 .474 
83 .00208 .0005 9 .15803 . 02 100 s. so 4.70 . 42 8 
·134 .001 8 2 .00057 .1641 6 .02046 5.43 4.50 . 383 
S35 .001 59 .00055 .171 39 .01 986 5~07 4.28 . 341 
$36 .001 3A .0 00 52 .1797 A . 01921 4.73 4.07 . 301 
B7 .0011 9 .00049 .1~939 . 01851 4.41 3 . 85 . 2 6 4 
A8 .001 02 .000 45 . 20026 .01779 4.10 3.64 .231 
89 .0()()87 .000 41 .21245 . 01703 3.81 3. l>3 . 200 
QQ • OOO 7 3. .000 36 .22,;01 . 01625 3.54 3.22 .173 

< 

( 



( TREAT ME NT 3 
120 . 

" 

A p SF:(P) 0 SE <O> E(N) F. ( BC> SECEC 8 C) 60 . 12 112 .0 05 25 . 12 112 .,0 0525 19. l+ 2 7. 83 .163 6 1 .1 3 1 03 .0039 1 . 14 90 9 . 00436 l B. 65 7 .,84 .17~ 62 . 10462 .0 02 1 1 . 13 989 ,.0 0339 17 .89 80 13 .20s 6 3 . OR46, .00121 .1 3158 . 00279 17 .1 5 8 . 37 . 23?. 64 .0693 3 .0010 7 .1 241 1 .0 0259 16042 8.57 . ?.5 6 65 oo r;74 7 .0 0 11 0 ., 11 746 .0 02 7 0 15 .71 13 .71 .. 27 6 66 .,0 4(\ l Q . 001 13 .1 1 160 . 00299 15.0 1 ij. 8 1 .28 9 h7 • 0 1• 0 ~ I-, .0 01 1 1 .1 065 1 . 00332· 14c33 s:3 .ss .297 6 8 ., 03502 . 001 05 . 102 17 . 00 364 13 .66 8.,8 5 .300 69 . 03033 .0 0097 . 09856 . 00392 13.01 A.so . 297 70 . 02654 .0 0088 .0 9S68 .0 04 15 12. 313 8 . 7 1 .,290 7 1 .02346 . 00011 .09350 .00 '+33 11 .77 8.53 . 2 80 72 . 02093 . 0006 7 . 09204 . 00446 11 . 1 7 Bci4 1 . 26 6 73 . 0 1885 .oooso . 09 12A . 0 0454 10. s~ s.21 . 250 74 . 0 1712 .oooso .09 122 .00 45 7 10.02 7., 99 • 233 ' 7S . 0 1S6 7 .0 0 043 .09 189 . 00457 9. 48 7 . 74 .215 76 .0 144 4 .00 038 .09328 • 0 0'+54 e. 96 7.48 .1 97 7 7 .0 1340 . 00035 . 09 54 2 .00440 A. '+5 7 . 19 .1 7~ 78 .0 1249 .00 035 .0983 2 . 00439 7 . 96 6.90 . 160 79 .,O l l 6R .00036 . 10202 ., 00 4?.0 7. 49 6.,60 . 143 RO . 0 1 095 . 00 039 . 10 653 . 0041 6 7 .04 6 . 29 • 127 ~l .O l 02P . 00 04 2 . 111 A9 . 00402 6. 6 1 5 ., 9 8 • l 12 R2 .0 096 4 .000lt6 .11 8 15 .0038 7 6.20 5.68 . 09 8 ~3 . 00 90? . 00 048 .1 251 4 . 00 37 1 5 . 80 5 . 37 .085 ~4 . 00 840 .ooos o .1 3 35 0 . 00355 5 . 4 3 5.07 . 074 AS . 0077P. . 0005 1 .1 42 1':> q . 0033 8 5 .07 4.,7 7 . 064 86 . 0071 5 . 0005 1 . 15297 .00 320 4.73 4., 49 . 055 p, 1 . 006 5 1 . 0005 1 .1 64)7 .003 0 3 4.4 1 4 ., 2 1 . 046 A8 .o oS A6 . 00049 .1 769 7 . 002 85 4 . 10 3.,94 ., 03 9 R.9 .0052 0 . 0004 6 ·. 19 0~ 1 .00260 3. 8 1 3 . 68 . 033 90 . 0045 4 .0 0 04 2 . 2 0596 .,0 025 1 3 . 54 3 .4 3 ., 02 R 

< 



( H1STOL 06Y 1 X TREATMEN T 121. 

. 
A p . SF<P> Q SE(Q) E<N> I E<RC> SE< E <BC ) 
60 .03474 . 0 1404 .03474 .01 404 19.42 11. 70 1 .013 
61 .07168 . 01320 .07426 .01364 18.65 11.1 0 1 .0 37 
62 .OA578 .0 0923 .0736 1 .01134 17 .89 10.95 1 • I 1 3 
~3 . o,;05c; .00651 .07315 .00 962 17 .15 10 .78 1 .1 89 
64 .0559?. .00503 .0128q .00865 16. 42 10 . 59 1. 258 

~ 65 .OS lAl .00463 .072B4 .00 850 15 .71 10 .38 1.31 5 
66 .04815 .00484 . 07301 .00 906 15.01 10 0 16 1 .357 
67 0 0 4 <+ 89 .00521 • 0734 2 • 010 l Q . 14.33 9.92 1. 384 
6 8 .04 197 .00549 .0 7409 • 01139 13 .66 9.67 1 .39 7 ,, 69 .0 3936 .00564 .07504 .01? 79 13. 0 1 9.40 l • 395 
70 .0 370 1 . 00562 .07628 .01421 12 .38 9.11 1. 380 
71 .034 88 .00546 .07784 .01560 11.77 8. 8t+ 1 . 354 
72 .03295 .00518 .07974 .01692 11 • 1 7 8.54 1. 11 8 
73 .03119 .00480 .08200 .01 8 16 10. 59 A.24 1. 27 3 
74 .0?.9S6 .00434 .08467 . 01 932 10.02 7.93 1 .220 
75 ., C?.804 .00385 .0 8776 .0203n 9.48 7. 62 1.1 6 2 
76 .0 266? .()0334 .091 32 .021 3 4 B.96 7. 31 1 . 100 
77 .02526 .00287 .0 9537 . 02220 f'.45 6.99 1 .0 35 
7P. ·• 02195 .00248 .099q6 .02297 7 .96 6.68 .968 
79 .02?.68 .00226 .105 14 .02364 7.49 6.36 . 90 0 
~o . 02141 .00223 .11094 .0242 1 7.04 6.0 S • 83 ?. 
A} .020 1s .00239 .11742 .02468 6.61 s . 1 s .7 65 
~2 .01 ~87 .00267 .12463 .02507 6.20 5.44 . 100 
P.3 .Ol75A . 002 98 .13262 .02536 5.80 s.1s . 63 R 
84 .01 62 7 .00329 .141 45 .02556 5.43 4.86 c57 B 
~'::, .01 493 .00 355 .1511 9 .02567 5.07 4.58 . 522 
Rb .0135 7 .00373 .1618R s0 256 9 4.73 4.31 . 469 
87 .01219 .00182 .17360 .02562 4.41 4.04 .419 
R~ .0108?. .00381 .18642 .02547 4.10 3.79 .373 

,. qq .0094A .00371 .20039 .02523 3.81 3.55 .330 
g 0 .00~14 .0035 2 . 21559 .02491 3.54 3.31 .29 1 

. 
(. 

( 



( HIS TOLO~Y 1 X TREA TMfNT 2 122 . 

A p Sf(P) 0 SE CO> EC N> E CRC> SECE( 8C 60 .1 SS33 . 05406 .1 s5:n .05406 19. 4 2 5.67 . 965 6 ) .13 329 .035 10 .157 ~0 .04031 18.65 5 .. 6?. 1. 083 6?. . 11?.44 .020 04 .1 5806 .03364 17. 8~ 5 .. 58 l . 2 3C-63 0 0 Olt9 0 .0119~ .15844 .02911 17.1 5 5o54 1. 4 12 64 . OA012 .0098 6 .1 5 8 C)5 . 02764 16.42 5.4'? 1 • 6 0 7 
6S . Of,7n6 .01040 .15961 .0 2955 15 .7 1 5.43 l • .A'JO 
66 .OS71S . 0 1 095 .1 6042 .0341 5 15. 0 1 5.37 1 . 986 (, 1 .0 41-12f< . 0 10137 • 16 141 . Ol~042 . 14. 33 5 0 3·1 2. 158 6R .0407q .0 1023 .1 6259 .Ol~763 13.66 5.24 2 . 31 4 
r,9 . 03 444 .00923 .1639 7 .0553 1 13.0 1 Sol6 2. 45 1 
70 .0290?. .00805 .165S9 .06322 12. 38 5.07 2. 56~ 7 1 . 0 ?4c:; 4 . 00 68A .16745 . 0712 2 11 .77 4. 9R ; 2. 666 72 .02oi;q . 00577 .l695A .07921 11. 17 4.09 2. 7 '+2 73 .0 1741 .00 48B .17200 .OG712 10. 5(} 4.79 2.7 97 74 .0 1466 . 00424 .17475 • 09L..-93 l O .. 02 4.68 ?.. 83? 75 .01 23 ) .0038 7 .177 P,6 .10259 9.4Q 4. 57 2. 847 76 . 01032 .00373 .18134 . 11007 8.96 4.45 2. 843 77 . 60 863 .00371 .18525 . 11 735 8 .. 45 4.33 2. 820 7 8 .0 0720 .00 375 .1 8961 . 12441 7 .96 4 .. 2 1 2.7 9 1 79 . OO S98 .00379 .19447 . 131 22 7.49 4.08 2.736 RO .O <l49S . noJ7~ .1 99136 . 13777 7 . 04 3.95 2.668 Al . OOl,()~ . 0037 1 . 205A4 • 144 0 2 6 .61 3.81 2 . 5 86 ~? . 0033S .00359 . 2 1244 .1 4995 6.20 3 . 67 2.4 94 83 . on?72 .01)3ld . ?. 19 73 .15553 5.80 3 . 53 2.39? 

~4 . OO?.?C .00 3 1~ .22 77 5 . 16075 5.43 3 . 39 2 . 282 AS . 00177 .0029 2 . 23655 . 165S6 5 . 07 3 . 25 2 .1 66 86 . 0('14 0 . 00263 . 24621 . 16994 4.73 3 .11 2.045 87 . (H) }l (l . 00232 . 25677 .1 7386 4.4 1 2.97 1. 922 
f\8 . 0008~ .00201 . 268?.q .1 77?. A 4 .1 0 2 . 82 1 . 79 7 R9 .0 006A . 00 17 1 . 28084 .1 130 1 7 3 . 8 1 2 . 68 1 .672 90 . 00050 .00 142 . 29447 .1 8249 3 . 54 2. ss l . 54~ 

. 

<. 



( HI STOLOAY 1 X TREATMENT 3 123. 

11 p SF. C P > Q SE(O ) ECN) E <BC> SE(EC BC)) 
6 0 .0784 1 .02110 .07841 .02 110 19.42 9.,73 . ~32 
I, 1 .Oq)6A . • 0 1515 . 10 165 .01627 18.65 9.54 .876 
f:.2 .OR171 .()0969 .09869 .01323 17 .89 9 . 57 .953 
63 0 071AA .006213 .09606 • O 1 l O 1 17.15 9,.56 l • 0 3 7 
64 .06321 .00469 0093 74 .00977 16.42 9.52 1 • l 1 5 
6S . OS609 .00 441 .09177 .00955 15.71 9.46 1. 18 1 
66 0 0S004 .00 465 .,09013 .01015 15.01 9.36 l . 2 32 
67 0 0448A .0049 1 .OB8B4 .01124. 14.33 9.24 1. 2 66 
f)P. . 040lt7 .00502 .08792 • 01·256 13.66 9.10 1 .283 
f-,q .03 66B .. 00498 .08737 .0 1392 13 .0 1 B,. 9 3 1 .28S 
70 .0334 1 .00480 .,0872 1 .,01524 12.38 8. 73 1 .271 
7] .010S9 .0045 1 .08746 .,0164 7 11. 77 ·a. 52 l .24S 
72 .02R l 3 .00415 .0 88 14 .01758 11 . l 7 8. 2'? l l.2 0f. 
73 .0?.598 ~()0374 .,08928 .01856 10. 5q 8 .04 1 • 1 6 l 
74 .024oq .00331 .090138 .01940 10.02 7.79 1.1 06 
7S .0?.241 . oozsq .,09300 .02012 9 0 48 7.51 l. 046 
76 . • 0?.090 . 0025 1 .09564 .0207 1 8.96 7.23 • q82 
77 . Ol9S4 .00220 .090B6 .02 11 8 R.45 6.95 .915 
78 .01'324 .00200 .10267 .02154 7.96 6.65 . 848 
79 .01112 .00192 . 10714 .0217A 7.,4, 6.36 . 780 
130 .01602 .00197 .,l.122B .02192 7.0 4 6.06 .713 
A} .01 497 .00 2 11 .1 18 17 . 02196 fi. 61 s .11 .64A 
R?. .0 1 394 .00229 .l24B3 .02192 6.20 5.47 .585 
R) .01294 .0024B .13213 .02178 S.80 5.18 .526 
A4 .011 94 . 00265 .14071 .02157 s_.43 4.90 .47 0 
~5 .01094 .00277 .15005 .02 128 s.01 4 0 62 ,419 
R6 .0 0994 ,00284 .16939 .02092 4.73 4 , 3S .371 
rq ,00~94 .002B4 ,171Al .02050 4,4 1 4,08 , 326 
CUJ , 00794 ,00279 ,1R415 .02002 4.10 3.83 , 28 6 

. AQ • Qt'\ F-,q f., ,00267 .19810 · • 01 948 3,81 3.SA ,250 
QI) ,0()1,()() .00250 ,21310 ,0 1890 3,54 3,35 , ?. l 7 

,. 

( 



( HIST OLOGY 2 X TREA TMENT l 124 . 

A p <;f(P) 0 SE <O> E<Nl E(RC) Sf( E( BC) 
~o . 059.12 .0124~ .0593?. .0 1248 19 042 9.,46 .578 
~} .OG37 1 .01017 .09962 . 01073 18.65 9o03 .60 2 
62 .OA343 .00676 .0985 0 . 00902 17 .8~ 8.97 .652 
f:,J . 07450 .0 0452 .09758 .00776 1701 5 8090 .7 07 
64 .0 66 73 .00338 .09685 .00705 16 . 42 8.8 1 v7 61 
65 .OS995 .00311 .09633 .00 696 1507 1 8.70 . 1309 
(:,f, .OS40 1 .00 325 .09604 . 00742 15 .0 1 8o5B . 850 
1-,7 . 04 8A() . OOJ4S .0959C) .00 825 14.33 8.44 . 883 
(:, S., .0442 ) . 00355 .09620 .00930 13. 66 8.2A .9 05 
69 .040 1~ .00 355 .09668 .0 1044 13.01 8. 11 • 9 1 q 

70 . 0,657 .00344 .09746 • 01162 12 .38 7 .93 .924 
71 . 03337 .00324 .09856 .01278 11 .77 7.73 . 920 
72 .0305?. .00299 . 10000 . 01390 11 . 17 7 .52 .909 
73 .02797 .0 0270 .1 0180 . 01 497 10. s~ 7 .30 ,. A90 
74 .02566 .00239 . 10401 .01 597 10 .02 7.07 .865 
7 C.:, .O?JSB .0 0?09 .10664 .0 169 1 9.48 6. 84, .835 
7 (; ~02 167 .00182 .10 974 .017 78 8.96 6.59 . 801 
77 · .01 993 . 00161 .11 333 .01857 A.45 6.3S .7 63 
7 P, . OP~Jl .001 48 .11746 . 01929 7.96 6 . 09 .722 
79 .0) f,R } . 00 144 .1 22 17 . 01993 7 .49 5.84 . 680 
AC, .01 540 . 00 148 .1275 1 . 02049 7.04 5.58 . 6 36 
A } .0)407 .0 0 15A .1 33S? .0 209A 6.61 5.33 .S91 
q? . Ol2A J .00170 .1 4026 .02140 6.20 5.0 7 .547 

. RJ .01 ).60 .0 0183 .1 4 77 8 .02174 s . so 4.82 .503 
q4 .Ol0 4S . 00 19 3 . 15614 .0220 0 5 . 43 4.57 .462 
';l c; .00934 .00199 .1 6540 .0 2? 19 5.07 4.32 .421 
qf) .00~27 .0 020 2 .17 56 1 .0223 0 4.73 4.08 .38 1 
A. 7 .00726 .002 00 .1 8685 .022:14 4.4 1 3.85 .34 4 
R~ .O') /.i29 .001 95 .1 9 9 18 .02?.]0 4 . 10 3 . 62 . 309 
A9 .00 53~ .001 84 . 2 1267 .02219 3 .8 1 3.40 . 276 
90 . 004S3 .00171 .22737 .02200 3.54 3.19 .246 

. 



( HI STOLO~Y 2 X TREATMENT 2 125. 

h D SF: ( P ) Q SE <O ) f. ( N > f CR C> SE(l:< BC) 
60 . 1q7q7 . !'144 16 . 19797 .04416 19 . '+2 4.44 .790 
~ l .240QO .03933 .30037 . 04616 18.,65 4 . 42 . 947 
f.,?. .} 4954 . 01346 . 26650 . 034 03 17.89 5 0 13 1. 295 
~3 . 09720 .00984 .23637 .03000 17. 15 5o82 l. 669 
'='4 . Of.594 . 00958 . 20980 .0 3208 16 . 42 6.43 2 .o oc; 
65 . 04634 . 00859 . 18658 .03630 l 5., 7 1 1 ,, 07 2,2 8 1 
66 . 0331'>3 .00728 . 16(,46 • 0 1+028 15.0 1 7.,58 2. '+65 
~7 . 0?512 .OOSQ9 .14·920 • 04320 · 14.33 8(, 00 2. 55~ 
fi~ . 0 }928 .004 8 7 .1 3455 .04490 13 .. 66 8.32 2.56 5 
1-. Q .0 15 1 6 .00393 . 122?.9 • 045 4,9 13 . 0 1 8. 5·'.+ 2. lt 9 ~ 
70 . 0122 1 .00317 • 1 l 220 .045 13 12.3A 8.67 2.373 
71 .OJOOh . <H1258 .1 040 7 . 04403 11.77 8 . 70 2.2 0 (-, 
7 2 . 0('1846 . 00212 . 09774 . 04 2 35 1 l. 17 8 .. 66 2 . 0 13 
7 3 • ()(1727 . 001 8 0 . 0930 5 . 04026 10 . 59 8.54 1 .. 807 
7 4 .on6 J7 . 001 6 1 .OB9A6 .03790 10.02 8.37 } 0599 
75 . ri()S(,A .00152 . 013806 . 03517 9.4A 8 0 15 ' 1 .396 
7 f-.i . OOS 1S .00 153 . 087S6 . 03277 8 . 96 7 . 88 1 1 .. 205 
77 · . 0()474 . 00159 .0 88 28 .03016 8. l+5 7.59 l . 03(J 
7 R .,0()44 1 . 00169 . 090 1 7 . 0 2 760 7 . 96 7.2H . 872 
7 9 . 004 15 . 00180 . 093 17 .0 25 12 7.49 6.95 .732 
RO .00392 . 00190 . 097~6 . 0?. 2 76 7. 04 6,,62 . 609 
cq . 00373 . 00 199 .10242 . 02053 6.6 1 6 . 28 . 504 
A2 . 003SS . 00206 . 10865 . 0 1844 6.20 5.94 .. 4 l 4 
A) . OO))A . 002 11 .11 595 .0 1650 5.80 5. 60 . 339 
~4 . 00121) . no2 1? • 124 34 . 01 4 7 1 5.43 5 . 27 . 275 
~s . onl()? . 002 10 . 13384 . 01307 5 . 07 4 . 95 . 222 
~(... • 0!) c'A2 . 0 020s .1 4 44 ~ • 0 11 5f3 4.7 3 4.63 .1 7?. 
P, 7 . r)n~f l . n0 1q6 • 15 6 J l . 01022 4. 4 1 4.33 • l 42 
A~ . on21c; . OO l AS . 16935 . 00 89 9 4 . l 0 4.0 4 • l l 3 
~q . Of'\? } S . 0011 0 . 18 367 .0 07AA 3.8 1 3.77 . 089 
Q() . orq cq . 0 01 5 4 .1 992q . 006B9 3 .54 3 . 51 . 070 

'-

( 



( . 
HI STOLOGY?. X TRfATMENT 3 126. 

r 

A p SF. < P > Q SE<O > E < N > FC~C > SE ( F <RC 
6 () .09321 .()1497 .093 2 1 . 01497 19.42 9.22 .542 
~l .lfl732 .01091 .11 835 .0 1 un lR.,65 9 .1 2 . 5 78 
'">2 .0Fl99A .00653 • l 1256 .00944 17 .,89 9.28 .635 
6) .07AlS .0 0409 . 1073 4 . 00777 17.15 9.39 .696 
~4 . Of,501 . 0031S . 10269 . 00697 l A.42 9.4E ., 75 l 

,. AS • os~ :)3 . 00308 . 098S9 . 0069S l S.7 1 9 .. 4~ .,7 94 
66 . 04~6Q .00 322 .09505 .00745 15 . 0 1 9e47 . 8 25 
~7 . 042A7 . 00310 . 09206 .O OP.2 1 14.33 9.4? . P4 1 
6P. .0377 1 . 00327 .08960 . 00902 13 ,66 9 0 :32 . 845 
r..q .0]3(;,0 .00314 • 08 76'-) . 00980 13.0 1 9.,19 .836 
7 () . 010 18 .00 294 .08633 . 01049 12.38 9.03 . Al o 
71 .0?.731 .00 270 . 0855 1 . 01107 11 0 7 7 8.,82 .7B7 
7 2 .0?490 .00243 . 085?.6 .OllS4 1 1 • l 7 8.6 1 .752 
73 . 0??.87 . 00215 .085S8 . 0 11 90 10. 59 8 .37 .71 0 
74 . 02 11 1 .001 88 . 08649 . 01215 10.02 8. !l .663 
75 . Ol~n4 . 00163 . 08800 . 01231 9 . 48 7. s:, .6 17 
71-, .01 ~3c; .00142 . 09014 . 01238 A.96 7. 54 • 56R. 
77 - . 017?.J . 00127 . 09294 . 0 1?]7 8.45 7. 23 . 519 
7P. . 0 162() . 00 120 . 09642 . 01229 7.96 6 . 93 .,471 
79 .0 1S27 .0 0 1? 1 , 100 6 1 . 0 12 15 7.49 6 .. 61 .£125 
A () . 0 144 1 .0 0127 .1 05c;5 . 0 11 95 7. 04 6.30 . 380 
A} • 0 l ]C39 .0013R .11 129 . 01 170 6.61 5.9fi • 33P. 
R2 . 01279 .001 49 .11 787 .0114 1 6.20 5 . 67 , 299 
~3 .01 200 .00159 .1 2532 . OllOR 5.~o 5.36 .263 
R4 . 0 11 20 . 00 168 .13 372 .01073 5 .43 5 . 06 . 23 0 
P.5 , 1) ) ()3~ . 00174 .1 4310 .0 1015 5.0 7 4.76 . 200 
P(- . 0()954 . 00176 . 15352 . 00995 4.73 4.47 . 174 
a.7 . ooqf>~ . ()0 1 75 .16505 . 009S3 4 . 41 4 . 19 • l 50 
p. F! .on7Bl . 00170 . 17774 . 00909 4 .1 0 3.92 • l 2P 
P,q .l) ()J:..9? . 0(11 62 .19ln5 . 00865 3.81 3.67 .1 09 
qo • 00~0 ,~ . 00150 . 206q5 .00 82 0 3 . 5 4 3.42 . 093 

( 



( HI STOLOGY 3 X TRE ATMENT 1 127 . 

A p SE<P) Q SE(Q) E(N) F.(RCl SECEC 9C ) ) 

60 .1 0756 .01144 .10756 . 01 144 19.42 A.24 . 4 8 ?, 

61 .1 0767 . 00842 .1 2064 .00930 l A.65 8. 18 . 539 

62 .0922 1 .00504 . 1 1750 . 00743 17 .8~ 0.23 . 6 1~ 

63 .0794 1 .00332 . 11 46 6 . 00 6 35 17 . 15 8027 . 694 

64 . 068 75 .00292 .11212 .0062 1 16 . 42 8.27 .7 62 

65 . OS98J .00)09 .109f39 .00 68 6 15.71 8.26 . 8 21 

(:,6 . IJS233 . 0032A .1 0799 .0 0796 15.01 R.22 . 1369 

':J7 . Ot.600 . 003 34 .1 0641 .00 9 24- 14.33 801 ~ . 904 

f:,R .040 A3 .00327 .1 0518 .010 55 13 .66 13.06 . 92R 

69 . l)l~()S .00309 .10432 .011 82 13. 0 1 7.9S . 94() 

70 .0321~ .00284 .103'33 . 0130 1 12. 38 7.8? . 94 1 

71 . O?.R7B .00254 .1 03 73 .01 41 1 11. 77 7.67 . 9 32 

7 ?. . Oi..>5R7 .00222 .1 0406 .01 5 10 1 l • 1 7 7.50 . 915 

7 3 .0?.335 • 001139 .1 0483 • 01599 10.59 1.~2 . .13 90 

7, .. • 02 11 5 .001 59 .1 0606 .01 678 10.02 7.12 . BSA 

7S . 0 1922 . 00 13?. .10 779 .01746 9.4~ 6.90 . 820 

76 .• 01750 . 00112 .11 005 .01 8 04 8.96 6. 68 .779 

17 . 01:;91=1 . 00 101 .11 287 .01 853 8.45 6.44 . 7 34 

713 .01 460 .001 01 .11629 .01893 7. 96 6.20 . 688 

7g . 01316 . 00 109 .1 2014 .01 923 7.49 5.95 . 639 

A() . 0122 1 .00 12 1 . 12S09 . 01946 7.04 5.70 . 591 

Rl .0111~ ·"01 35 . 130S5 . 0 196 0 6.61 5.44 . 5 4 3 

R2 .Ol OlF . 0014P . 136130 . 0 1966 6.20 5. 19 .496 

S{) . O"Q?~ . 00 160 .l 43~A . Ol 9A5 5. 80 4 .93 . 450 

A4 .()() 83] .001 6!1 .1 5 18S . 0 1q57 5.43 4.67 . 4 OA 

A5 . 0()14P .001 72 .1 6077 .01 943 5 . 07 4.42 .366 

R6 • 0 0 '>6 -, . 00 174 .1 7069 .01 922 4.73 4. l 8 . 327 

,:q .O OSA9 . 0011 1 .1 8 1613 . 0 1895 4.41 3.94 . 291 

l,'.\fi .oos 1t, .001 65 .1 93BO . 01 86 2 4 . 10 3.70 . 258 

A9 .0 0443 .001 55 . 201 12 . 01 823 3.81 3.47 . 221 

90 .00376 • O O 1 '~ 3 . 22 17 0 .01780 3.54 3.25 • 199 



( HISTOLO ~Y 3 X TRE ATMEN T 2 128. 

c. 

. ·A p Sf. C P > Q SECQ) ECN> E CRCl SE(f( BC) 
60 .20006 .03005 .20006 .03005 19 .42 3o92 .459 
61 .20173 .02419 .25219 .02872 18.65 3.,79 .554 
62 .14657 .01012 .2450 1 .02221 17. 89 3 o9 0 .74 B 
63 .l075A .00801 .238?.0 .02161 ·l 7. 15 4 .. 01 .,954 
64 .07974 .00835 .23176 .02635 16 .. 42 4. 12 1 .,167 
65 .OS966 .00784 .22570 .03358 15.71 4.,22 1 .37 6 
66 .0450] .00672 .22003 .0 4 152 15 . 01 4.31 1., 57 8 
67 .03428 .00542 .21477 .04944- 14.33 4.40 1.766 
6A .02631 .OOt-+22 .20992 .0570 5 13. 66 4.47 1. 9 3q 
6q .0203S . 00325 .205c:;o .O G423 13.01 4.53 2.09 2 
70 .01586 .00256 .20152 .070 90 12. 38 4.57 2.2 2 2 
71 .0 1244 .00 2 15 .19802 .0770 6 11.77 · 4.61 2.329 
72 .00983 .00196 .19500 0 0026A 11. 17 4.63 2. 4 11 
73 .00781 .00190 .19249 .0 8 778 10 .59 4.61 2~467 
74 . 006 24 .00190 . 19052 .09236 10 .02 4.c2; 2. 497 
75 .0050 1 .00 190 . 18910 .09643 9.48 4.59 2 .51{} 
76 .00405 .001 89 .1882~ .10000 s . 96 4.SS 2. 4 96 
77 .0032B .001 85 .1880A .1030 B s.45 4.50 2 .455 
78 .00267 .00 179 .18855 .10569 7.96 4.43 2 .394 
7q .002IA .00112 . 18971 .10785 7.49 4 0 34 2 . 316 
80 . 00 17Q .00163 . 19161 . 10955 7.04 4.25 2.221 
8 1 .00146 .00153 .19430 .11082 6.61 4 .. 14 2 .. 11 5 
82 .00 120 .00142 .19782 .11167 6.20 4 0 02 l .,99A 
R3 . 00098 ,.00131 .20221 .11212 s.oo 3.89 1 .874 
84 .OOORl .00120 .20757 . 11 216 5,.43 3.76 1. 745 
85 . 00066 .00108 o213Q2 .1 11 83 s·. 01 3.62 1 .614 
86 .00054 .00096 .22131 .11112 4.73 3.47 1. 483 
87 .00043 .000 8 5 .22983 .11005 4.41 3.32 1.354 
RA .00035 .00074 .23952 .10862 4. 10 3.16 1 .228 
~9 .OOO?/:\ .00064 .25045 .1 0687 3.Bl 3.01 1. l O 8 
90 . 00022 .00054 .2626 9 .l047 A 3.54 2.ss .993 

(. 

t. 

( 



( HI STOLOG Y 3 X TREA TMENT J 129 . 

h p SE CP > Q SE<O> ECN) E <BC > SE(E(9C ; 
60 .10 490 .,00924 .10490 . 00924 19 04 2 7 .22 • 3 1 3 
6 1 .l 2AS 1 .0 0723 .1 4357 .00794 18.,65 1.01 .343 
62 .l 070S . 00 4013 .1 3965 .00637 17 .89 7.1 0 . 399 
'13 .0 ~9 7? . 0 0255 .1 3604 . 00545 . 17 .. 15 7 .. 17 .456 
64 . 07565 .0 022 1 .13276 . 005?.R 16. 1+2 7 .22 • 5 l i 

,; '15 .O fi4 14 . 0 0234 .12980 000 579 15.7 1 7.26 .,S6 0 
A6 .0 5469 . 00245 .1 2 11 g .00668 15.0 1 7.27 . 602 
67 .0468Q • 002 '•4 .1 2492 . 00775 14.33 7 .. 26 ., 636 
68 .04040 .00232 .12302 . 00886 13. 66 7. 22 .662 ,. 69 .0 35 0() .00214 .121 49 . 00994 13.01 1.:1 .6AO 
70 .0 3046 .0 0 192 .1 2036 . 0 1096 12.38 7. 0'? .689 
71 .. 0 266 3 . 001 6 7 .11 965 .01191 11 .77 6.99 . 691 
7 2 . 0?33 9 .001 43 .1 1937 .0 127 7 11 0 l 7 6\) 88 .685 
7 3 .0 2061 . no12 1 .11 954 . 013 5 5 1 0. 59 6.74 . 67] 
74 . 0 1 '32A . 00102 .1 2020 . 01424 10 .. 02 6.59 .65S 
75 . 01 62?. . 000 8 7 .12 1 36 .01 485 9.48 6.42 .. 633 
76 • Oll+4A . 0007 7 .12307 . 0153 7 A.96 6. 21 • . 606 
77 . 0 1 291 . 00074 .12536 . 0 158 1 8.45 6.05 . 576 
7 '3 .Oll5S . 00076 .128?.A .01 6 17 7. 96 5.85 . 544 
79 .()} '))Cj .0 00 8 1 .131 Rl .01 646 7.49 5.64 .510 qo . 0092R . OOOB7 .1 3605 • 0161°:>8 7.0 4 5 . 42 . 4 74 
I) l .o o:n 1 . 00094 .1 41 04 . 01683 6.6 1 5.19 .439 
P.2 . 00743 .00099 .1 46 8 1 .0169 1 6. 2 0 4 . 97 • L* 03 
q3 . 0066? . 00103 .1 5343 . 0 1693 5.80 4.74 . 36A 
~4 .O l)58R . 0010 6 .16095 . 0168$3 5.43 4. 51 . 336 
qs . 00520 . 00106 .1 6942 . Ol67B 5.07 4.28 . 303 
'36 .0 0456 .0010 4 . 17 892 .01 662 4 .73 4.05 . 272 
'3 7 . O())QA . 0010 1 .1 894C) . 0 164 1 4 . 4 1 3 . 83 . 243 
A8 . 00341 . 00096 .201 20 . 0 16 15 4 .10 3.61 . 217 
q9 .0 0?.90 .OO OA9 . 2141 2 .01 583 3.81 3.39 • 192 
q () .00241 . OOOA l .22830 .01 547 3. 54 3.1 8 • 169 

( 



( 
STAGE l X TR EA TM EN T l 130 . 

A. D SF. < P > Q SECO> E<N> E<BC) SE<E< BC) ) 
60 .03756 • ()1664 .03756 .,01664 19 .42 11 .99 1.2 74 

6l .066S7 .00799 .,06917 ,.00822 18.65 11. 43 1.313 

62 .06171 .00550 ,.0689 1 .00659 17. BCJ 11 .,24 1 .435 
i;3 .,OS74() .00455 .068~1 .0061!+ l 7. 15 11.0 4 1 .537 
64 .05351 .00479 .06890 .,00689 16.42 10 .82 1. 6 17 

AS .OS003 .00544 .06918 .0083f\ 15.,7 1 10.58 1., 676 

66 .04690 .00605 .,06966 .01018 15.01 10.33 1 . 71 5 
67 .0441)13 ,.00646 .0703P • 0120 7· 14.33 1 0.01 1 .. 734 
~A .04 153 .00666 .07133 .,01394 13.66 9.79 1 .736 

f , 

69 .03923 e00664 .,072S5 ,.01575 13.01 9.51 1 .722 

70 .01713 .00643 .07405 .01747 12.38 9.21 1 ~693 

7 1 .03522 .00606 .,075'55 .,01909 11 • 7 7 8.91 1. 652 
72 .03346 .00556 .07798 .,02061 11., 1 7 8.60 1. 600 
73 .03 1'34 .()0495 0 080L•7 .02202 10.59 B.2S 1 .539 

74 .0301?. .00426 .,08334 .02333 10 .02 7.97 1. 47 1 

75 .O? l3RQ .00352 .OR6n3 .024S2 9.48 7.64 1. 398 

76 .0?.753 .()0277 .09037 .02561 8 . 96 7.32 1. 320 
77 .02621 .no209 .09460 .02659 A.45 7.,00 1 .240 

7P. .0249? .00162 .09916 .02747 7.96 6.68 1.1 58 

79 . 0236S .00 15 7 .10469 .02824 7 .4 9 6.36 1.07 6 

l3 0 .,0223A .00195 .11063 .02891 7.04 6.05 .995 
Al •. o? 10 9 .00253 . 11 725 .02949 6.61 5.74 .91 5 

A2 .Ol97R .0031S .l245R .02994 6.20 5.44 .838 

~3 .01B4S .00372 .13268 .0303 1 5.80 5. 14 .763 

&\4 .0170~ .00422 .14162 .03057 5.43 4.85 .692 
AS .O l 5nA . 00461 • 15145 .03074 5 . 07 4.57 .626 
P.6 .0 14?.S .0048 7 0162?4 .0308 1 4 . 73 4 . 30 .563 

A7 .Ol2Ri .oosoo .17404 .03077 4 . 4 1 4.04 .504 

P.e- • 0 1 l JA .00500 . 18693 .03065 4 . 10 3. 78 .44 9 
q9 .00991 .00486 .20096 • 0"3042 3 . 8 1 3.54 _3 9q 

9() .oo~s4 .00460 . 2 16~ 1 .03009 ) . 5 4 3.31 .352 

C 

( 



( STAGE l X TREATM EN T 2 131. 

<. 

(\ D c:;r:- ( p) Q SE(Q) E<N) F (AC) SEC E ( BC ) 
f, 0 .07 l~S . 02553 .07185 .02553 19. 42 6053 . 922 
Fi 1 • l4f+2? .02667 .1 55,R .02841 18. 65 6.00 . 9 83 
62 .1205q .01452 .15383 .02299 17 .89 6.01 1 .160 
63 .1011? . 00877 .1 52f+4 .01986 17.1 5 6.02 l. 35 i 
A4 ,.ORS0.1 .00803 .1512{• .01973 16 .42 6.01 lo 54 1 

0 
6S .. 071 6 0 .0 0882 .15023 .0 223l~ 15.71 6.00 1. 7 20 
A6 .O AOSO .00926 . 14942 .02665 15.01 5.97 1 . 886 
~7 .C S 1 3.1 .009 10 .1 4883 .03179, 14 .33 5 0 9J 2 .0 3?. 
hB .04359 .00 849 .14849 .03726 13. 66 5.89 2.1 59 
f:,Q .03710 .00760 .14840 .04279 13.01 5~83 2~ 265 
70 .0'31 61 .00658 .14 8S8 .04825 12.38 5.76 2. 34.13 
7 l .02702 .00554 .1 490 7 .OS357 11 .77 5,.6R 2. 4 10 
72 . 0?.'31? .00459 .14987 .05871 1 1 • 1 7 5.59 2. 450 

· 71 .01 980 .003RO .15103 .0636 2 10.59 5. '+9 20 4 68 
7L1 .O}f,9A .00322 .152S6 .06831 10.02 5.37 2e 466 
7S .01457 . 00291 .15449 .07275 9.48 5.2S 2. 446 
76 .01251 .00283 .15687 .07693 8.96 5.12 2 • '· 0 7 
77 ·' ;.01074 .00291 .15973 .oaogs P.. 45 4.99 2. 35 3 
7i,. .0()9?.? .00307 .16309 .O A4 5 0 7.96 4,.84 2. 284 
79 .0()790 .00 .}2 3 .16702 .08787 7.49 4969 2e 2 03 
~o .00 67f- .00337 • 1.71 54 .09097 7.04 4.53 2 . l 11 
A} . .00577 • 00 .'3l•5 .1767 2 .09377 6.61 4.37 2. 0 18 
P2 .00491 .00347 .182S9 .09628 6.20 4.21 1 .912 
~3 .004}r. . 00343 • 1. 89?.2 .09£\4 9 s.so 4.04 1. 8 0 1 
q4 .003SQ .00333 . 19665 .10039 5.43 3.87 l. 6 B7 
05 .00?.9 3 .OOJl A .20495 • 10197 s.01 3.69 1. 57 1 
A f. .0('~44 .()0298 .21418 .103?.4 4 . 73 3.52 1. 455 
':17 .00201 .00275 .2241•0 .10417 4.41 3.35 1. 341 
R.~ .OOln3 .00249 . 23568 .10477 4 . 10 3.18 1.23 0 
~9 . 00131 .00220 .24A0 8 .10502 3.81 3.01 1.1 22 
qo .00 1 04 . 00191 . 26}(,5 .10492 3.54 2.84 1.01 8 



STAGE 1 X TREATMENT 3 132 . 

A p SF'(P) Q SE CO> EC N) F <AC> SECEC 8 C) 
60 .OS778 .00857 .05778 .00857 19 .42 11.17 0485 
f) l .Ofi634 .00581 .07040 .00 6 1-3 18.65 10 083 . 506 
6? .0~215 . 00416 .07096 .00516 1 7. 89 10.61 . 548 
'1 3 .05830 .0029R .07 165 . 00442 17.15 10.39 .590 
64 • 054 7f:> .00233 . 07249 • 00 1+00 16.42 10.15 .628 
hS .05 14 9 . 00217 .07349 . 00397 15. 71 9~90 .66 1 
f)f-, .0484 7 . 0023 1 .07467 .00431 15.01 9 .. 65 . 688 
67 .04568 .00253 .07604 • 0 049 1· 14.33 9.39 .. 70A 
~F., .0431)~ .0027 1 .07 762 .00567 13 .66 9.12 .7 2 2 
r-,9 .04()f}f.. • 00283 .07942 . .00652 13 . 01 8.85 .73 0 
70 .01840 .<'0286 .08 148 .00741 12.38 8 . 57 : . 73 1 
71 0 036?.A .00280 .083132 .00832 11 • 77 8023 . 72 7 
72 .03420 .00268 .0 8 645 .00922 11 . 17 · s.oo .717 
73 .03239 .00250 .08 941 .01011 10.5~ 7. 71 . .7 03 
74 .03059 .00227 .0 9272 . 0 109 7 10 .02 7.41 .685 
7S .0?88f} .00201 .09 642 .01181 9.48 7 0 1?. . 66 3 
7f) . 02 719 .00173 .1 0054 .01 262 8 . 96 6.83 . 638 
77 .0?.557 .00147 .10512 .0 1340 8 .45 6.54 .6 11 
7P .. 02399 . 00124 .11020 .01415 7.96 6.25 .58 1 
79 .0? 244 .0 0110 .11 5~2 .01485 7.49 5.96 . 550 
~o .0?090 .C0107 .12203 .01552 7.04 5.67 0 51 8 
Q} .Ol93H . 00 11 S .12887 .01 6 14 6.61 5.39 .486 
P.2 .017 8 7 .00131 .13640 . 0 16 72 6.20 5.12 .453 
~3 .Ol t1 37 . 00149 .1 446 7 .01726 5 . 80 4. 85 .421 
~4 .Ole+BA . 00 166 .15)74 .01 774 5.43 4.58 .,389 
l{S .01 34() .00180 .1 6368 .01 818 $.07 4.33 .35B 
~ A .0 119c; .00189 .174S 3 .01 856 4.73 4.08 .328 
'3 7 .010 54 .00194 .1 8636 • 0 U:388 4.4 1 3. 84 ·• 30 O 
~p .0 09 16 .()0194 .19925 .01914 4.10 3.61 .272 
f.{Q .007BS .0018$3 .21325 .0 19)4 3.81 3.38 .246 
QO .00662 .00178 .22843 . 01948 3 . 54 3. 17 .222 

C . 

'· 

( 



( STAGE?. X TREA TMENT 2 134. 

A p Sf (P) 0 SE<O> E<N> E<8C> SE<E <9C 
60 .1711 4 .027 33 . 1711 4 .02733 19 .42 5~01 . 6 15 
,; 1 .2o s20 .0 2469 .25119 .0286 1 18.65 4.94 .725 
,;2 .14 2 4 ~~ .00958 .22957 .02127 11 .aq 5.44 . 95 4 
A) .100 1,. 0 .()0659 .20997 .0 1861 17 . 15 5.9] l . 195 
64 . 07266 .,00674 . 19233 .0 1997 16.42 6.3e 1. 42 0 
,; 5 .OS3 8 7 .0 0649 .. 17 654 .02) 14 15 .71 6.,78 l • 6 l 1 

66 .040 8 3 . 0058 2 .16252 .02652 15.0 1 7.13 1 . 75 2 
~7 .03160 .oosoo . 150 17 .02947 14 .33 7. 42 1 . 857 
f.R .0? 49? .004 19 .13939 .03 177 13. 66 7. 6S 1 • 9 0 7 
69 .0?.0 02 .00346 .13010 .03340 13 . 01 7.8 1 1. 9 12 
70 .01 63 6 .0028?. . 1222 1 .0344 1 12.38 7., Ci 1, 1. 8 7 6 
71 .0135 9 .()0230 .11 56 6 .0348 7 11 .77 7 ~ ?I~; 1 • 8 0 ~ 
72 .0114 7 0 00lf3A .1 10 38 . 03485 l l • l 7 7.9?. 1. 71 3 
7 3 .0()9W3 .00 157 .10630 .03444 10. 59 7. 8L.: L 593 
74 .00'154 .00136 .103 1R .03370 10 .02 7.7f 1. 4 7 2 
7S .007S? .00 126 .10157 .03270 9.48 7. 3:, 1. 339 
7 r-. . 0067 1 .00 124 .100 85 .03150 8.96 7 0 3,; 1 . 2 05 
77 .0060S .00 129 .1011 ~ .0 30 15 8.45 7. 11 1. 073 
7 R .0!)5S?. .00137 .102S5 .02869 7 .96 6.86 . 946 
79 .00507 . 00 146 . 10495 .02 71 6 7.49 6.58 • 82[~ 

PO .0 0 4f. A .00156 .10838 . 0 2S59 7.04 6.30 .71 8 
A} .00 43S . 0 01 64 .-11285 . 02 400 6.61 6.00 . 61 8 
~? .0040S .00171 .11837 .02242 6.20 5. 71 . 528 
~3 .0()'377 .00 176 .12496 .020 8 7 5.80 5.40 0 4 4 R 
q4 .() ('350 .0017R · . 13265 .01935 5.43 5.11 .379 
AS .On)? l• . 00177 .14147 . 01787 5.07 4.81 .31 8 
~~ .00297 . 00 173 • 151'+6 .01 64 6 4.73 4.52 .266 
A7 . 00 271 . 00 167 .16266 .01510 4 . 4 1 4.24 · • 22 0 
AA .onz44 . ()0158 .17511 .0138 1 4. 10 3 . 97 • 18 2 
P.9 • 0~?. 1 7 .00147 .188~ 7 .01259 3.81 3.71 .1 4 9 
qo . orqqo .00133 .20397 .01 143 3 . 54 3 . 46 • 122 

( 



( 
STAGE 2 X TREATM ENT l 133 , 

A p SF.:< p > Q SE<O> E < t\J > E<BC) SE (E CAC) 
AO . 0795 1 .0 1072 .0 7951 .0 107?. 19.42 804 1 .43 13 
,, 1 . 11 968 . 0091() .1 3002 .009A4 l A.65 8. l l+ .466 
62 . OQ 990 .00535 .1 2475 .0078 9 170 8 9 8.28 . 5 25 
h 3 .OR408 .00333 .11 996 .006f>3 17 . 15 A.39 .586 
6~ $071)? .0026 8 . 11 563 .0061 6 1() . 42 8.47 . 642 
f.,5 • Of:> 09 7 .00212 .11176 . 0064 0 15.71 8.51 .690 
~f.. .0S2S l .00286 . 10837 . 00101 15.01 8.52 .727 
f) 7 . 045Sn • 00290 .1 0545 . 007 95 . 14.33 A • . 50 ~752 
f,fi . 019 Al .00283 . 10300 .0088 7 13066 8 .4·4 .767 
1-, Q . 03503 . 00267 • 101 0 f+ .00975 13 . 0 1 8 . 36 .770 
70 .0310J .00246 .0995 7 .01055 12 . 38 8 . 24 .764 
71 • 0<1()7 .00222 .• 098 6 0 .0 1 1?.6 1 l .. 77 s. l\) • 7 '•9 
72 .0?.4P.3 . 00196 .09816 • 011 A6 l } e l 7 7. 9'2 .726 
73 . 0?2'•1 .()0 17 1 .09825 . Ol?.37 10 . 59 7.74 • 6 913 
74 . 02034 . 00147 . 09889 . Ol27A 10 . 02 7 5~ .664 0 I 7r., .O } ASC" . 00 126 .1 00 12 .01309 9.48 7.30 . 6 26 
7A .0 1100 .00110 . 10195 .01332 8 . 96 7. 06 . 5 86 
77 .0 }5f:4 .00100 . 10441 . 01347 B. 45 6.8J .544 
7A . 0 1443 . 00097 .1 0 75'• . 0 1354 7 . 96 6.54 .501 
79 . 0 1 331 . 00100 . 1 11 37 . 0 1354 7 . 49 6.26 .4sq 
.q 0 .0 1?34 .00 107 .11 594 . 0 13 1+8 7. 04 5 . 99 .417 
Al . 0 11 4 1 . 00 116 .1 2 130 .0 1336 6.61 5 . 71 . 377 
?.2 .OlO S4 .00 126 .12748 . 013 19 6.20 5 . 43 . 338 
~) . 00970 • 001 34 .13454 .0 1297 s.80 5 . 15 . 30 2 
~4 • 0('1"190 . 00 140 .1 4254 . 0 1271 5 . 43 4.87 . 2 68 
qc; . 00 8 11 .00144 . 1515?. . 0 1 241 5 . 07 4 . 60 . 237 
Rf, .00734 . 00 145 .161 S5 . 0 1207 4 .7 3 4 . 3'• . 20 9 
A7 . 001,57 . 00 143 .17268 . 0 11 7 1 4 . 4 1 4 . 08 .• 18 2 
~.A . 005Rl . 00 138 . 18497 . 0 11 3 1 4 .10 3 . 83 • l S A 
'\C, . 00 5 10 . 0 01 30 .19849 .01 090 3 . 8 1 3 . SA .1 37 ~· 
QO . OO'+JQ . 00 120 . 2 1330 . 0 1046 3 . 5 4 3 . 35 • l 18 

( 

.. 

( 



( STAGE 2 X TREATM ENT 3 135 . 

A D SF.(P) Q SE <O > f ( N) F CRC) SE( E CRC 
r-.o .07 6 20 . 00920 .076?.0 .00920 19.42 9. l 5 . 39 0 
Al . 12727 .00840 . 13777 .0089Q l S.65 8. 8 7 .4 13 
62 .10144 . 00453 .12736 .0068 1 17 .89 9.21 .4 68 
63 • () R2()q . 00277 .11 810 .00 55 3 17.1 5 9.48 .522 
f.4 .Of.7 40 .0023A . 10 995 .00 5 15 16.42 9.69 .56$ 
6S • 0 S6 l l .00246 . 10284 .00541 15.71 9.82 . 596 
6f> .04734 .002 53 .09670 .00595 15.01 9. U9 . 6 12 
67 .0404A .00250 .091SO . 00 654- 14. 33 9.90 . 6 15 
6F? .035 03 . 00?. 3R . 0 8 719 .00705 13 .66 9.85 . 605 
,:..,q . 03 0 7() . 00220 .0133 7 4 • 0 0 7 (+5 13 .0 1 9.74 . 586 
70 .0?.7?5 .00 199 .08110 .0 077 4 12.38 9. 59 . 55e 
71 .0?447 . nol76 .07925 .0079 1 11.77 9.39 .525 
72 .0?2 2 2 .00153 . 0781 8 .0079€{ l 1. 17 9.15 .4 8 7 
7< .0?040 . 00131 .07786 .00796 10 .59 8.8~ .44 7 
7 4 .01 89?. • OCl 11 . 07830 .00786 10 .02 8 • 6!) .4 07 
7S .01770 .00095 .0794B . 00770 9.48 8.29 .366 
7 f. .0 1669 .00083 .08141 .00749 8.96 7. 9~ . 327 
77 . 015P4 .00078 .08410 .00 724 F3. ,,5 7.62 ., 290 
7A .01 s 10 . 0007 8 .0 87S7 . 00696 7. 96 7.28 . 255 
7q . Ol44S .00084 .091 A3 .0 0666 7 .4.9 6.93 . 2 22 
qc .0) 385 .() 009? .09690 .00634 7 . 04 6.58 .1 93 
~ l . 01327 .0 010 1 .l02r32 .0 0600 6.61 6.23 • 166 
A2 . 0 ) 2f> 9 . 00 1 10 . 109 62 .0056 7 6.20 5.89 • 142 
A3 .0 12 10 . OOl l R .117 34 .00533 5.80 5.55 .121 
84 .01 ) 47 . OC 123 .12()03 . 00499 5.43 5.22 .1 03 
PS • 0 l OH) .(1 0126 ~13572 . 00466 5 .07 4.90 . 087 
Al-. .01007 .001?7 .14648 .004 33 4.73 4.59 .073 
A ·1 .0')9?9 .001 25 . 158.1S . 00402 4.4 1 4.30 . 061 
AP. . 00S4f; .001 20 .17140 .0037 1 4 . 10 4 . 01 .0 5 1 

" 
Aq • 0" 7f- O .no 1 13 .1 856 7 .00342 3 . 8 1 3 .74 . 042 
QO .• OC67 1 . 00104 . 20 123 . 00314 3 . 54 3 . 48 . 034 

( 



( STAGE 3 X TPEATMENT l 136. 

fl. p Sf(P) Q SECO) E<N> ECBC> SE< E(qC 
60 .11091 . 02467 .11091 .0 246 7 19.42 7. 73 .7 80 6 1 .1 3Bf35 .02008 . 15617 . 02216 18 .65 7.63 • 849 6 2 . 10945 .01060 .14588 .01722 17. 8~ 7.96 .9 70 63 .0~753 .00 62 1 .1 36S9 . 014 14 17 015 R .. 23 1. 097 ~4 .07 09(;, .005 17 .1 2825 .01 300 16.42 8.4(1 1. 213 

C f:. S .l)S82P . 00530 .120 83 . 01343 15.71 8.,63 }. 306 
1-, 6 • 0484f-, . 00542 .11429 . 0 1£1 70 15.0 1 8 . 7'6 1. 372 ~7 . 04079 .1)0532 .l08f. l .01622 14.33 8.,82 1 .4 09 
~'1 • 01t+73 .00503 .1037 5 .017 69 13.66 8.,8t.. 1 .. 420 6q . 0?991 . 00462 . 09969 .01 89 6 13 .01 8. 8 1J 1.4 06 70 .0?604 .004 15 .0 9641 .01 99 7 12 .38 8.72 l. 37 0 71 .0229? . 00367 . 09390 .020 73 11 • 77 8. f,O 1. 317 72 .0?03R .00319 . 092 15 .0 2124 11 .1 7 8. 4'• 1~ 25,) 73 .0 1830 . '10275 . 09 11 5 .0 2152 10.59 8 .2~: 1.1 72 74 .01 659 .00236 .0 9089 . 02160 10 .02 8.03 1 ~ oe~ , S .01Sl6 . 00204 . 09 119 . 02 149 9.48 7.7 8 L OOO 1h .01 397 . 00 182 .09265 .0 2 124 8.96 7. 52: • 91 1 77 . Ol 29S . 00170 . 09468 .0 2085 A.45 7.21 .8 23 7µ .01 ~0 7 .1)01 69 . 097 SO .0 2035 . 7. 96 6.9'+ .7 38 
7q .0113 () . 00 17f:. .1 0 11 3 . 01976 7.49 6.64 . 656 'iO .01 O~ l .OOl A~ . 10 560 .01 9 10 7.04 6.33 . 57~ ,.q . 00Q97 . 00202 .11093 .01 81 7 6.6 1 6.02 .s o~ O? .00 93A .0 0216 .11717 .017 f>O 6.20 5.70 . 443 
P) • 0 "'3 77 . ()022 7 .1 2436 .01 680 5.80 5.39 • J S4 
~4 .0 0Al8 . 00235 .1 3253 .Ol 5 9R 5.43 5.09 . 331 ~s . 007S9 . 00240 . 14 174 . 0 1514 5 . 07 4. 79 .284 
2f .0(' 699 .00240 el 5 203 00 1430 4.73 4.50 .242 
f-.7 . 0<'637 . 00235 .16346 . 01346 4.4 1 4.22 .? 05 
P. R .00 5 7 4 .00226 .1 7609 .01 262 4.10 3.95 .17 3 ... h9 . 0<'510 .0021?. . 1899 7 . OllAO 3.81 3.69 • 14 6 
g 0 .00447 . 00195 .20SI 6 .01099 3.54 3.44 .1 22 

( 



( STAGE 3 X TREA TMEN T 2 .137 , 

, 

A p SF. < P) Q SE(Ql E(Nl E (RC) SE CEC RC)) 
60 .14A5q . 02026 • 14859 .0 2026 19. 42 4.05 .269 
6 1 .20546 .()1783 . 24132 .0 2 014 l ?.o65 3.67 . 300 A2 .1 549 3 . 00 767 .2398 4 . 0 16 19 17 .89 3 .69 . 373 
~3 • l l 7 l l . 00522 . 23 8SO . 01496 17 .15 3. 7 0' .463 
64 . OA871 . 00556 . 23730 .01 685 16.42 3.71 . 55R 
65 . Oh7 '3t~ . 00550 .. 23 626 .02088 15.7 1 3.72 . 655 
n6 . 05 127 . 00490 .23538 . 02595 15 .0 1 3.7 2 . 749 f..,7 .0 390 9 . 00408 .23469 . 03 147• 14.33 3. 72 • fV+3 
6R .02985 . 00325 .2342 0 .03714 13. 66 3.71 . 930 69 .0 22~1 .00257 . 23392 . 04284 13. 0 1 3. 1 1) l • 0 l l 
70 . 01749 .00 209 .23388 .04849 12 .38 3 . 6 f:> 1 . 085 
71 .0} 34 1 . 001 80 .23409 . 05404 11 • 7 7 3.66 1 .1 52 
72 .01029 .001 66 .234S8 • 059l•6 1 l O 1 7 3. 6 1+ l • 2 l 0 
73 . 007 90 . 00158 .2 3537 . 06475 10.59 3.60 1 .259 
74 .0 0607 . 00153 .2364A . 06987 10.02 3.57 : 1 . 300 75 . 00 46 7 . 00147 .2 3795 . 07482 9. 48 3. 52 · 1 . 331 76 .0 03SR .00139 .2398 1 .07959 B. 96 3.4 7 1. 353 
71 .00 21 c; .00129 .2420 9 . 08416 8.45 3 . 42 1. 365 
1 ':I. . 0021 1 . 00 119 . 244 ~3 . 0885?. 7 .96 3.36 1. 368 
79 .OOl A) • O O l O 7 .24005 . 09267 7.49 3.29 1. 362 qo .0 0 123 . 0009S . 251 13 ?. . 09659 7. 04 3.22 l .]47 Rl .0 0094 . 00083 . 256 17 .100?.7 6.61 3. 14 1. 325 ~2 . 00 07 1 .0007 2 .2611 4 .1 0369 6. co 3.06 1. c94 
P3 .OOOS4 . 00062 .26679 .1 0684 s . ao 2.98 l . ?.57 
R4 .0 0040 . ooosc . 27317 .10972 5 . 43 2.89 1. 214 
R5 .00 030 . 00043 . 28033 .11 2?.9 5.07 2 .79 1 .1 65 p,.. . 000 2? . 00036 . 2881 3 .11455 4.7) 2.10 1 • l 1 2 
~7 • OOO If, . 00029 . 297 24 .11 648 4 . 4 1 2 .6 0 1 . 056 
~p .00012 . 00023 .30710 .11 807 4 • l 0 2 . 50 . 996 
R9 . 0000~ . 000 1~ . J 17qg .11 928 3 . 8 1 2.39 _q39 
QO . 0 000f> . 00014 . 32994 .1 20 1 2 3 . 54 2.29 . 87 7 

... 

( 



·-c STAGE 3 X TREATMENT 3 138. 

( 

A p SE(P) Q 5ECO> E < I\J > f(BC> SE<E<RC)] 

60 .1 2933 .02044 .12933 .02044 19. 42 5.52 .502 

Al .lq79A .01 8 7 6 .22739 .02087 18.65 5e27 . S61 

62 .1 4 17 2 .00 79q . 210613 .01 6 07 17.89 5c68 .704 

63 . 1 0176 .00493 . 19542 .01386 17 . 15 6.07 .R56 

64 .077 57 .00488 . 18157 .01 412 16.42 6043 L 001 

r 65 .05911 . 0048 7 .16906 .01 582 15.7 1 6.75 10127 

66 . 0458 6 .00455 .15784 .01 798 15 .01 1 .02 1.2 29 

A7 .0 16 1P. .00405 . 1478 7 .0 2007 14.33 7.25 1. 302 

6 8 .02900 .00350 . 1390 9 . 02un 13.66 7 e 42 1.346 

6 CJ .oz35q . 00296 .13145 .02330 13.01 "1.55 l. 36?. 

70 .01947 .00248 .12491 .02437 12.38 7.61 1 .352 

71 .01 6?9 .00206 .11944 .0 2soq 11.77 1., 63 1.319 

72 . 0 1382 . 0 01 72 .11 500 • 02549 11. 17 . 7.60 l O 2 68 

73 • 01 1 RA .00145 .ll l S 7 .02561 10. 59 7.52 1. 202 

74 .01031 .00 126 .10911 .02549 10.0 2 ? .41 1. 125 

75 .00906 .00114 . 10763 .0?.516 9.48 ., 0 26 1.041 

76 .O OB04 .00110 .10709 . 02465 8.96 7 .07 . 9 53 

77 .0072 1 . 00 111 .1075 1 .0240 1 8. 45 6.86 .R63 

7 8 .0 0652 .00115 .10 888 .0 2324 7.96 6.63 .77 5 

79 .0059) .0 0 12 1 .11121 .0 2239 7 .49 6.3A . 690 

P.O .00 543 .001 28 .ll4Sl .02146 7 .04 6., 11 .609 

~1 .00 49q .00134 .118130 .02048 6.61 5.84 .534 

l'.\ 2 .0 04S9 .00 13q .12411 .01 94 7 6.20 5 .56 .465 

AJ . OC421 . 00 142 .13046 .01844 5 . 80 5.28 .402 

R4 .0038A . 00143 .137 '38 .017 39 5.43 s. oo .346 

P.5 . 001SA. .00142 • 14643 .01 635 5 .07 4.72 .296 

~h .on324 .0 0140 .1 56 13 .01512 4.73 4.44 .251 

P-. 7 . 0()29? .00134 .16704 .014~0 4.41 4.18 . 2 12 

'3~ • 0 021) l . 00127 .179 20 . 01331 4.10 3.91 • l 7 8 
,_ 

89 . 00 210 . 00 11 A . 19267 .012 34 3.81 3.66 • l 49 

QO .cr,200 . ')0107 . 20749 .011 40 3.54 3 .42 • 124 

~-

( 
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AP PEND IX D 

GRAPHS Q.E .I.!il. FORCE .Q.E. MORTAL ITY DUE TO 

BREAS T CANCER 
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Force of mortality function for three age groups 
~c(~(a)) a=35,65,85o -.1 ,_ __ 

a=35 
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Force of mortality function for histology classifications 
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Force of morta l ity fun ction fo r s t age classifi ca t ions 

J 6 (60 ) ,.., 
. 3 

• 2 Stage 1 

. 1 

0 

. 3 

• 2 Stage 2 

.1 .. 

0 

• 3 

• 2 Stage 3 

.1 

.2 Stage 4 

.1 

o.._ ___ _____ ___..___ ___ _____ ---'---- - --------' 
5 10 15 

Age in years aft e r first observing B. C. 
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SUMJ-17;,RY 

This .paper considers a class of asymptotically 

normal estimators defined implicit l y in terms of asymptotica ll~' 

normal statistics . The estimators are used as a basis for a 

general goodness of fit test where asymptotic null and n~n-n~ll 

di stributions a re obtained . Certain standard tests are 

obtained as special cases of these results . 



( 

( 

l. • 

I Introduction 

Let ~n be a s eq ue nce of ra ndom vectors with 

t X ~n) · 1 2 k componen s l. ' i= ' ' •• . , r. It is assume d tha t 

L In (Xn-µ(0)) -+ N(O,V(8 )) where 8 E Q is a q dime nsiona l - - - - -
vector of unknown parameters and q < rank V ~ p(V) = 1 < k. 

Define the general class of e s timators of ~' ~n, 

implicitly by 

!<~n,~n) = 0, 4> 1 = (4>1 , ••• ,<Pq) 

where <I> satisfies the Imp licit Function Theorem at 

C µ ( e) , ~) i.e. ~ ( ~ ( ~) , ~) = 9 and I a <r> i ( ~ ( ~) , ~)/a e j I * o. 

Then ~n is consistent for ~ and /n(~n-~> is asymptot­

ically normally distributed . 

In this p a per the use of 0 _n in c e rta in goodne s s 

of fit tests is examined. The aim of the work is to estab lish 

general proce dures which include some standard te s ts as spe cial 

cases. The structure ~s also used to discuss minimum quadr atic 

form estimation first introduce d, in a limited context, by 

Gurland and Dahiya (1972) . 

II Main Result 

If p(V) = i < k then there is a (k-1) x k matrix 

H such that VH' = O and p(:) = k . This fact will be used 

below . 

Theorem 1 

Let µ(0) have continuous first order - -
partial derivatives with respect to 

have continuous first order partial derivatives 

with respect to ~n and ~ E Q . Suppose that 

(1) M = ~ mij ] , mij = o<?>i/c)Xj, N = [ nir1 , 



( 

. ( 

2. 

nir = -a<lii/cl0r"; Q = [ C:Ijrl , qjr := aµj (~)/aer 

i , r = 1,2, . .. , q , j = 1, . .. ,k; E = (I-A1 ) V(I-A) , 

A' = QN- 1M; range of Q(~)c range of V(~). 
' 

{ 2) N - 1 exists for e En; 
I I I - l Then Wn = (~n- !:; (~n)) (Z.:+M M + H H) (~ 11 -!: ( ~n )) 

is asymptotical ly distributed as x2 (t-q). 

Note : 

at § , 

(i) M and N are evaluated at ~(~) , 0 and Q 

and for the purpose of differentiation a ll 

treated as independent variables . 

X · 
J are 

(ii) I mplicit differentiation of 4>(B(Q) , § ) with 

respect to § shows that MQ=N and p(Q)=q. 

(ii i ) Since [~] [ Q, H' ] = [~ MH
1 

J 
IIH1 

' 
p ( M' , H1 ) = q+k-1 . 

The assumption that N-1 exists is a restatement of the 

assume d Implicit Function Theorem prope rty of p. 

Proof We make use of the asymptotic methods described 

by Rao 1965, Chpt. 6. 

For i = 1,2, . .. , q , 

ln 4> i(~n,~n) - [ /n<Z>i(~(~ ), ~} + In jtl a!j <!>i(!:(~),~)(X~n)_µj{~)) 

r.::- q a { n ) ] P + rn r~l cJ 0 r ~i (!: (~) , ~) (0r -0r) + 0 

or in matrix notation 

In [MC ~n-~C~)) - NC~n-~)] 

Since N- 1 exists for a E n, 

Now 

p 
+ 0. 

In C~n-~(~ 0 )) - [/n(~n-~C~)) - In Q(~n-~)] 

wh ich becomes upon substituting for /n(~ 0 - ~) 

p 
In (X0 -µ( 0

0
)) - /n (I-QN- 1M) (Xn-µ( 0) ) + 0. - _...., - -- -

p 
+ 0 

Hence 
L 

In (~n-~ ( ~ 0 )) + N (2, L) • • • • • (*) 

where L = (I-A' )V(I-A), A' = QN- 1 M and 
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3 . 

n(Xn-µ(0n)) 1 Eg (X0- µ ( 0 n) ) !;'. X 2 (d) - - - - - -
with EEgE = E and d = p{E). Thi s fo llows s ince , i f Z 

is di s tribute d as N(O , E), Z1 BZ is distr~bute d as x2 (d ) 

if EBEBE = · EBE and tr.BE = d, Searle (1971, p age 69). 

Choosing B = Eg , then E EgE EgE = E EgE and p(E) = tr. EgE . 

Now V = P1 1< 1 >1< 1 >p where P is non- singular and 

I(t) = diag(l,,. • ,1 , 0,,. ,0) t there be ing t l' s , and 

E = ( I - A' ) P1 I ( 1 ) I ( 1 ) P ( I-A) = E1 E , say . 

Clearly p ( E) = p (E ) a nd E.M1 = 0 I EH1 = 0 and 

hence the null space of E has dimension grea ter tha n or 

equal to p(M1 iH') = q +k-1 . Thus p( E) < k-q-k+1 = 1- q. 

But for k xk matrices E1 and E2, p (E1) = r and 

p(Ed = s , p(E1E2 ) > r+s- k . Put E1 ·= I(t)P, E2 = (I-A), 

then p(I(t)P) = 1 and p(I-A) = tr(I-A) = k-q and 

p(E) > t + k-q-k = 1-q. Finally, P ( E) = 1-q and 

[ E ] p M :::: k 
H 

and a generalised inverse of E,Eg , is (E+M1 M+H 1 H) - i, 

Rao (1965, page 30) • 

Note that E a nd M are usually continuous functions of 2, 
but in (I+M'M+H' H)- 1 ~ can be replaced by any consistent 

estimator , for example ~n , without altering the asymptotic 

result. 

III The Non-Null Case 

Result s in this section are applied in IV in 

connection with the asymptotic power of goodness of fit tests . 

We define the non-null case as 
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L /n ( Xn-· µ ( 8 ) ) + N(y , G). - - - -p 
Note t hat t h e property ~n + ~ ( ~ ) is unal t ered and so t he 

e stimat or ~n c a n b e define d as in I. 

If 1 
Y_ n = X n - - - y ' - In -

i t f ol l ows that 

L 
/n (~n-~{ ~)) + N (2, G). 

We n eed t he following l emma . 

Le mma 

If f i s a f unction wi th cont inuous firs t o r der 

partia l deriva t ive s · the n 

where J is the ma trix (~i) eva lua t ed at 
dX j 

µ . 

P r o of 

Let g b e a c omponent o f f . From the Mea n Value 

Theor em 

In (g (~n ) g(~n)) - r'vg (~n) where z _ n 

is on the line s egment joining ~n and !n; and yg i s 

the gra d ient ve c tor . 

This c an b e r earran ged to give 

In (g(~n ) - g {~n)) - "f.' V g (~) = r' (Vg(~n) - Vg { ~ )). 

Now and 
p 
+ µ implying 

p 
~n + µ. The continuity o f -

Vg implies 

Hence In 

p 
y_' (Vg {~n) - Vg {~)) + 0. 

p 
{g{~n> - g(~n» - r'vg(~) + o. 

This hold s for eve ry component of f giving the result. 

Theore m 2. 

If the conditions on µ and t stated in Th e orem 1 -
hold a n d 
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(1) G = V( 8 ) 

( 2) y is in the r ange of V( 0} 

the n Wn i s a s ymp totical ly distr ibuted a :: x2 (i-q ,>.) where 
A = ½ y 1 (I-A ) O:+.M' M+H' H} - i (I-A1

) y 

is the non - cent~ality pa rame ter. 

Proof 

Define ~n by 

4> (~n 1 Pn> = Q. 

..... 

The orem 1 a pplies to !n and Pn and so we obtain f r om 
stateme nt (*) 

.,.. 

Moreover we note that 

ln·<:n-}J(pn> > = In <~n-~< ~n )}- r + In (~<~n>-1:<~n» · 
Now e ( ~ 11 ) = ~ ( ~ ( ~ n } } ; e ( ~ n ) = ~ ( ~ ( ~ n } ) 

where h is the function determin ed i mplicitly by t at -
..... 

the point (~ (~) , ~}. The lemma applies giving 

= A'y . 

Hence 

If z is distributed N(o , E) then Z1 BZ is .. 
distributed x2 (trBE , ½~'B~) if and only if 

(i) EBEBE = EBE 

(ii) o' BE = o' BEBE 

(iii} o1 Bo = o1 BEBo , Searle (loc. cit . ). - ..... 

so (ii) holds . Finally (I-A1 }y belongs to the range of 

E = (I-A')V(I-A) s ince Y is in the range of V. Hence 



( . . 

and so 

y' ( I-A) }:g (I-1\ 1 )y = y 1 ( I-A ) EgEEg ( I - A1 )y. - - - -
Thus ( iii) holds with 8 = (I-A1 )y. 

It fo~lows from these observations that the 

asymptotic distribution of Wn is x2 (1-q,~). 

· If G*V(8) or y is not in the range of V( 0 ) -
the asymptotic distribution of Wn is not, in general, a 

non-centra l x2
• It c an be written as the d i stribution of 

6. 

~, Eg~ where Z has the distribution N ( (I-A1 ) y, (I-A') G ( I-A)). 

Such distributions are discussed by Johnson a nd Kotz ·(1970, 

Chapter 29). 

Note 

The conditions (i), (ii), and (iii) above could have 

b een written into Theorems 1 and 2 directly to obtain n ecessary 

and sufficient conditions for asymptotic x2
• However this 

more general approach has less practical advantage. 

IV Speciali s2.tions 

(a ) Standard Goodness of Fit Tests 

Let Y be a random v ari able with distribution func tio~ 

F (y, ~), O E n a q-vector of unknown parameters. For 

Yo = - 00 < Yi < Y2 < ••• < Yk = 00 put 

A random sample of size n is taken from F(y,8) .., and N· l. 

is the number in this sample for which Yi-i < Y < Yi· The 

theo~y of II will be use d to establish certain classical 

results with r egard 

test statistic Wn 

to the asymptotic distrib~tion of 

k > 2 
= i~l(di-npi(~n)) /npi(~n), where 

the 

~n 
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l 

I • 

represe nts certain estimato~s f or e. 
" It 1.s knovm for ins t a nce t h a t whe n ~n = ~n, the 

maximum likelih o o d estimato r ,the n 
L 

Wn + X2(k-q -l). This 

result h6 lds whenev e r 

efficient estima tor 

is r epl aced by an asymptot i cal l y 

8* _n 
f':: * A p since the n vn (~n -~ n) + 0. 

X.(n) __ Ni In the notation of II put ~(~) = p(~), 1 n 

-1 / -1 -1 • ~ ~ -1 
V = A (I-t~ )A ,A = d1ag(p1 (~), ... , P k(~)) ! = A 1, 

H = 1 1 = (1 , ... ,1). The orem 1 then s t a t es tha t -
L 

n <~n-p C~n))' ( l: +.M' M+~~,) - 1 
C~n-p C~ n)) + X 2 (k-q-1). 

For the non-null case cons ider a s e que nce of 

alternat ives obta ine d by r eplacing F (y,~) wi t h 

Fn()'.') = F(y,~) + 1 G (y). Under t he alternat i v e n~n 

is a multinomial with me an np( 8 ) + In y 1n which y' 1 

It ' can b e shown that In 
L 

C~n-pC~)') + N(y,V). Note tha t 

= 

y 

o. 

belongs to the r a nge of V since p(V) = k-1 and Vl = 0. -
Hence The orem 2 a p p lies giving the a sympt otic distribut ion 

of n (Xn-P (8n)) 1 (l:+M' M+l' 1) - 1 (Xn-P ( 8n)) as X 2 (k-q-1, A). - - - - - - - -
(i) Maximum Like lihood, 8n = Sn. 

When 

takes the form 

e 
- -

is estimate d by maximum likelihood 

= .~ xJ~n> ~ea ln PJ· cen> = o. 
J=l O i -

The condition ~(p(0) ,0) = 0 of Theorem l is satisfied and - - - -
a(l) M = R1 A for R = AQ and 

N = R1 R = J, the information matrix ; 

a(2) J- 1 is assumed to exist for a E Q; 

a(3) p(M' ~l) = p(A- 1M1 ~t> and 

A- 1 M' = R = AQ; thus R1 9 = Q1 11.~ = Q'l = 0 

. and p (M' ~ 1) = q+ 1. 
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then 

Consider Wn = n(~n - e<~n) 1 A 2 (~n - p <~n )), 
L 

Wn + X2 (k-q- l) if IA 2 EA2 [ = [A 2 [ and 

tr A 2 E -- k-q-1. Using the specia l forms ot M, Q and 

[ = A- 1 ( I -RJ- 1 R1 ][ I - <!>1 1 ][ I-RJ- 1 R1 ] A- 1 

and the matrix condi tion is obviously satisfied while 

Thi s establi~hes the classical result 
L wn + x2(k-g- 1) . 

L 
In the non-nul l case Wn + x2 (k-q-l,A) where 

A= ½y1 A(I-RJ- 1 R1 )Ay. - -
(ii) A Moment Estimator , ~n = ~n· 

N 

Let -i 
T ~ [ tijl, tij = Yj , j =l , 2, ... , ·k , i =l,2, ... , q , 

y j E (y j- 1- , y j] the n a mome nt estimator of 0 is defined 

by 

z<~n,~n> = T .<~n - e< ~n )) = o, -
where Tp( 0 } = µ c e > . In this c ase, again, ,.., N -
! <r<~> , ~> = o, M = T, N = TQ and N-1 is assumed to exist . 

It foll ows that p ( T' ~ ! ) = g+l and the general r e sults 

of Theorems 1 and 2 c an the n be applied using these s pecia l 

forms of M and N. 

(iii) Minimum chi-square 

This case is dealt with in the next section . 

(b) Minimum Quadratic Form Estimators 

Let 

A(8,S(8)) = n(Xn- µ(8)} 1 S(8) (Xn-µ( 8 )) - - - - - - -
where S(8) - is symmetric and of full rank , e E n. Then the -
minimum quadratic form estimator for ~ ' ~~ ' is defined by 

( * ( * A ~ n,S ~n> = min A( ~ 1 S( 8) ) 
0Ef2 .. ·. -
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Thus is a rnea~ure of the agreement between 

a n d µ(8) . The asymptotic distribution of a c ertain quadratic 

form in ~n - ~(~~) will be d e rived with the h e lp of Theorems 

1 and 2. 

Set 

= (2n)- 1 a:. A(~,s(~)) 
l. 

= - ex -µ c a> >' s ( e, i.t i c er + ½ 
_n - - -

a a = aei ~<~), sic~> = aei se a). * Put 0 = ~n' then 

4>i(Xn,8~) = 0, i = l,2, . . . ,q - -
or 

!<~n, ~~ ) = O. 

Here M = -Q'S, N = Q1 SQ and 

The orems 1 and 2 can now be applied . · 

If V is of full rank, choose S=V- 1 , the n 

rv- 1 rv- 1 r = rv- 1 r, tr(V- 1 E) = k-q and, in the null case, 

n(Xn-µ( 0;)} 1 (V( 8~))- 1 (Xn-µ( 8~ )) i x2 (k-q) - - - - - - -
In the non-null case y will b e long to the range of v, 

since V is of ful l rank, and so a non-central x2 will 

result. Here the non-ce ntra~i ty parameter is ½y' (V-Q (Q' v- 1 Q) - 1 Q1 -. 
Note 

-If ~n is d e fined by 

-1 - -1) rnin A(8,V ) = A(~n,V 
ani 

where V is the true asymptotic variance matrix, then 

has the same asymptotic distribution as 

This result is needed in the examp l e . 
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On the other hand, if ~{ ~) = p{~) and V t a kes the 

form A- 1 {I-~f' )A- 1 , put S = A2 • In this case E reduces 

to the special form of a(i). This shows lhat if !n is 

replaced by the minimum chi-square estimator, 

define d by 

min J\( O , A 2 (0 )) = A(8~ 1 A2 ( Og)) 
0ES"2 - - - -

the results of a (i) are unaltered i .e. 
L 

Wn + x2 {k-q-1) I 

L 
in the null case, and Wn + x2 (k-q-1 , A) in the non-null 

c ase with the same non-null p a rameter. 

For earlier results on generalised quadratic 

form estimation s ee Gurland and Dahiya (1972). 

Example 

Consider a continuous and strictly monotone 

distribution function which is speci f ied up to a q dimensional 

vector of unknown parameters , F (y , ~) , e E: St. A random sample 

Y1,Y2 , • •• , Yn is drawn and let Xpj, j = 1 , 2 , . . . ,k , be the 

P j th quantile statistic define d in the usual way , 

P i < P j , i < j . 

It i s we l l known that , under mild conditions the 

vector 
, (n) (n) 

~n = (XP1 ' .• • , Xpk . ) is asymptotically normally 

distributed with mean vector y ' = (Yp i , .. • , Ypk ) a nd 

c ovariance matrix n - 1V, where for i < j 

vij = Pi qj/f (Ypi ) f (Ypj ), F (Ypi ) = Pi , Pi+qi = 1 and 

F1 (y) = f (y) , Cramer (1946 , page 367) . Since F depends 

on .e, it fo l lows t hat Ypi = F- 1 (pi ) and V a l so _depe nd 

o n ~ , Ypi(~) and V( B) say . Then , it has been shown that 

Wn = min n C~n- ¥ (~) ) 'V- 1 
( ~ ) C~n- i<~ )) 

0E St 
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is asymptotically distributed as x2 (k-q) . 

For the non-null case consider a sequence of 

alternatives of the form 

~n(Y) = F(y,~) + ¾ G(y) 

With suitable conditions on G it can be shown that 

where 

Yi= -G(Ypi)/f(Ypi) 

Since V is of ful l rank ! belongs to the range of V. 

Theorem 2 applies and so Wn is asymptotically distributed 

X 2 (k-q,>..) where A = ½y' (V-Q(Q1 V- 1 Q)- 1 Q1 )y. 

In the case where F is normal , 01 =(µ , o), 

-t2 

and where 2 
dt = 

is a constant matrix. 

-
Define ~n as the value which minimises the 

quadratic form 

11. 

pi 

Since V is proportional to V1 this procedure is equivalent 

to minimising the quadratic form with the true V replacing 

V1. By the note in IV(b) . 

(Xn -Y (0n)) 1 (o 2 V1) - i (Xn-Y (8n)) 
- - - - rJ -

has the same asymptotic distribution as Wn. 

-Explicit expressions for µ and a are given by 

l.1 = 

.. 
CJ = 

!'v~1~n~'v~1~_~,v~1~n;'v~1~ 

1'v~ 11a'v~ 1 a-(11 V~ 1a) 2 

-!'v~1~;'v~1~n+~'v~1!~'v~1~n 

11V~ 1l a'v~ 1a-(11V~ 1a) 2 
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where 1 1 = (1, 1 , .. . ,1). These r e sults hold when e ve r 81 and .., 

82 are l o cation a n d sca l e parameters . 

The idea of using orde r statis t ics to me asure 

goodness of fit has been presente d from a different point 

of view by Bofinger (1973) . 
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ADSTRACT 

371 

This pape r explores a model for the deby in reporting some c:rnc<.'rs. The basic 

assumption of the model is that the infinitesimal. condition:i l prob:ibility of reporting the 

disease is proportional to the rate of tumor growth. Under the hypothesis of exponential 

tumor growth, the di~tribution function of the time to reporting is ticJ to the clinical 

staging of the disease. F1 om suit:ible c.lata on breast cancer in women collected at the 

Central Cancer Registry of Victoria, cs ti:11n tcs of tumor growth rate for se,·eral tumor 

types are obtained with the model. Estimates of the average delay from the onse t o r the 

disease to when it is first reported range from 5 to 14 years depending on tumor type. 

I. INTRODUCTION 

For people contracting various fo rms of cancer there is an inevitable 

delay between the time of onset of the disease and the time it is first 

presented for treatment. This period of delay which will be referred to as 

the time to reporting, T, varies according to the rate of tumor growth. the 

patient's awareness of the significance of symptoms and their reactions to 

them. 
This note proposes a mathematical model for the distribution function, 

d'.r., of the random variable T. The model is based on the assumption that 

the instantaneous rate of reporting the uiseasc is proportional to its rate of 

progress. The analysis parallels actuarial methods with force of reporting 

playing the roll of the usual force of mortality. 

C American Elsevier Publishins Company, Inc., 1974 
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JI. THE MODEL 

Let the d.f. of Tbe F(t)=Pr{T < t} with derivative F'(t)=f(t), then the 
force of reporting function is defined by 

f(1)[l - F(1)] - 1=cp(1)=( 0, 0 < 1< 10, 
. aV'(1), 10 < t, 

(I) 

where J/(1) is the tumor volume I time units after onset, a is a constant of 
proportionality and 10 is defined by the equation J/(10) = v0. The volume v0 
is some predetermined, specified tumor volume around which the analysis is 
pivoted. For instance, in some case v0 may be the minimum clinically 
detectable tu mor size for the particular type of cancer. In other cases it may 
be req uired to take v0 as the initial cell volume of the particular tissue 
concern 10 = 0 and the necessary specializations and in­
terpretations are given below. 

From (I) it follows tha t 

F (t) = ( 0, 0 < t < l0, ( 2) 
1-exp{ - a:V(i)}, 10 <..t. 

However, at this stage it is convenient to introduce the conditional d.f. 

F(1) - F( 10 ) 

G(t)= 1-F(io), 

which is the d.f. of TIT > 10. Now make the change of variable R = T- 101 T 
> 10, then O < R < oo and · the new d.f. is 

H(r) = G( r + 10 ) 

= ( I - F( 10)] -
1 f F( r + 10 ) - F( t0 ) ] , 

= I-exp {-aV(10+r) +av0 ), O<r. (3) 

Four stages can be recognized ·in the clinical development of cancers. 
These arc referred to as S 1, S2, S3 and S4• It is assumed that the various 
stages are associated with certain volumes of tumor growth. In fac t, suppose 
all cases where v0 < V < V i arc classified as Si, V i < V < v2 as S2, v2 < V < v3 
as S 3 and v3 < Vas S4 where the v;, i= 1,2,3 are volume boundaries fo r the 
stages. From the definition of Si [4}, v1 is known to be approxima tely 50 cc. 

Let the nu mbers r; be such that J/(10+ r1)= v1, i =O, 1,2,3 (r
0
=0); then 

taking V as a monotone increasing fu nction, if P1 is the probability of 
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ON REPORTING BREAST CANCERS 

reporting the disease in S;, 

by (3). 

P1 = Pr { R <r.} = 1 - x { - av1 + ,w0 }, 

P2=Pr {r1 <R< r2 } = [exp { -av.}-exp {-av2 } )e000
, 

P3 = Pr { '2 < R < r3 } = [ exp { - cw 2 } - exp { - qv3 }) enoo, 

P 4 = Pr {r3 < R} =exp { - av3 +a:v0 }, 

We use a standard model fo r tumor growth 

V( 10 + r) = v0e11r, 

373 

(4) 

(5) 

where /3 is the rate of growth. With this parameterization the final working 
form of His 

H ( r) = I - exp { - a:c0e Pr + <Wo } , 

and the expceta tion of R, E [ R ], is 

O< r, 

E [ R] = e000100 

exp { - av0ePr} dr, 
0 

(6) 

(7) 

where E 1(x)= J°" y-•e-ydy is well tabu lated [I]. However, a:v0 is ex-
x 

tremely small and for small x 

£ 1(x) = -lnx-0.5772, 

which provides !he necessary :ipproximation formula. 
If the expected tumor volume a t reporting is required, this is provided 

by the formula 

(8) 

Two points emerge from the above argument. Firstly, if tumor growth is 
near exponential, then the assumption of (1) is equivalent to requiring the 
force of reporting, <f,, to be proportional to tumor volume for t > t0 • Se­
condly, R is the time from when the disease can be first detected clinically. 
In fact, R is measured from 10, i.e., from when V(t) = v0 and this is explicitly 
stated by the formula R = T- t0I T ;;;, 10• As is shown by the example below, 



( 

( 

374 G. M. TALLIS AND G. SARFATY 

t0 need not be specified. 
If it is required to find the distribution of T, v0 mu5t obviously be put 

equal to the cell volume of the tissue concerned, when t0 =0. For t0 > 0 the 

model assigns Pr(O < T<t0} = 0 and Pr(t; < T < t; +i} = P, for i=0,1,2,3, 

and I;= t0 + r1, r0 = O. r4 = co. This conforms with the postulated threshold 

quality of detection around v0. 

III. APl'LICATION 

From the records of women with breast cancer in the Central Cancer 

Registry, Melbourne, Australia (3), estimates of the P1 were as follows; 

P, = 2001 /5372 = 0.3725, 

"l\= 837 /5372=0.1558, 

P2 = 1821/5372 = 0.3390, 

/'4 = 713/5372 =0.1327. 

Using equations (4) estimators of a, v2, and v3 for given v1 are 

ii= - In ( I - F,) / ( 0 1 - vo), 

As stated eariler v 1 = 50 cc and, with this value the estimates were, neglect­

ing Po, 

ii= 0.00932, il2 = 133.4 cc, 

By (8), £ [ V( R)) =: I /0.00932 = 107.3 cc. 

A recent paper by Lee and Sprott [2] gives ranges for the doubling time, 

D.T., for various untrea ted metastatic lesions of breast cancer. Using the 

95% limits from their Table 3 and the formula {J- 1 = D.T./ln 2. it is found 

that, for these data, 5 ,;;; p- 1 c;; I 00 approximately. If v0 is taken as 0.5 cc 

then £ 1(av0)=5.37-0.58=4.79 and, in days, 25 < E[R] < 480. 

Since the average delay from first obser.ving the disease to registration is 

known in a large number of women in the Central Cancer Registry, the 

average delay for women in S 1 and S2, L12, and for women in S3 and S4, L34, 

can be calculated.Define 
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and 

H12( r) = ( P12 iH(r), 0 < r < '2, 

1, '2 ' '' 
and 

1134
( ,) = ( 0, 0 < r < r2, 

P34 1[/l(r)-H(r2)]. r2 < r, · 

375 

the conditiona l d.f.'s for R for the pooled groups S 1 + S2 and S3 + S4. Let 

=0r12 

where O = p- i and y12=P12
1e'"'0[£ 1(av0)- £ 1(a~2)- e - '"'2 ln(v2/ v0)], and 

E 34 [ R)= fo(fJ[l-1-I34 (r) ] dr, 

=Oy34 

where y34 =1n( vi/v0) + e"0 z£1(av2). A moment estimator of O is now pro­
vided by the equation £:i.1[R] - E 12[R]= [, 34 -T, 12, i.e., V =(L 34- [ 12)/ 
(y34 - y 12). Using t:0 =0.5, v1 = 50 and the previous estimates of a and v2, 

since L12 =0.90 and L34 = 1.58 based on 3353 and 1213 registrants respec­
tively, 

°0 = 0.68/1.81 =0.376. 

Moreover, E[R]=OE1(at)0)e"00 and an estimate of E[R] is 

£ [ R J = 0.376 X 4.79 x 1.005 = 1.81 years. 

The above analysis can be applied to the data when classified according 
to the degree of malignancy. Because of the lack of numbers for tumors 
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graded as well d irrerentia ted :111d modera te a nd because the two seemed to 

have similar dcby patterns. they were pooled and then compared with the 

a naplastic tumor group. The pooled group haJ delays [ 12 = 0.89 and [ 3~ = 2. 

02 based on 655 a nd 152 rcgis trants and fo r a naplastic [ 12 =0.81 and 

[;34 = I.I S based on 1100 and 3 I 3. Thus. for the 1wo slower growing tumors 

ff = 1.1 3/ 1.81 ~ o.624 and E IRJ 213.00 years, and for atrnplastic tu rners, 

ff ::;;;0.205 and E [ R J ;;:0.98. 

ft is interes1ing to notice 1ha t only the anaplastic grade has a growth rate 

(0 = /3 - 1=75 days) fa lling wi thin the limits reported by Lee a nd Spro tt 12]. 

It would nppe:i.r tha t these authors were de:i.ling with particularly rapidly 

growing tumors. 
If one takes the tumor cell diameter as about 20 µ, cell volume would be 

of the order or I 04 µ.3• Hence. using this value for i;0 , oi;0 :;,; 10- 10 cc, and 

E 1(m·0) .:'122.45. T hus, using the above estimates o r O for slow and fast 

growing tumors E[T J is 14 .. 0 years and 4.6 years rcspecti\'ely. T he average, 

over all tumor graJes is 8.4 ycnrs . 

T hus, ir one measures the delay to reporting from the time of onset o r 

the disease (i.e., T), it appears th:i.t the expected reporting time mny be of 

the order o f 5- 15 years. If true, this may have an importan t bea ring on the 

a llitude towards early detection of the disease. Of course, the estimates arc 

based on the assumptions or exponential growth or the tumor a nd a 

nonva rying ra1c. 
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ABSTRACT 

This paper indicates how the proportion of women 

suffering from breast cancer, and who have a normal 

life expectancy, can be estimated from the volume of 

tumor present at first reporting. These results are 

then used to predict the effect of screening procedures 

for early detection. Model predictions are compared 

with recent ly published results of a New York screening 

trial. 

1. 
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I. INTRODUCTION 

In a r e c ent pap er , (Tallis and Sa r fa ty, 19 7 4 (TS }}, the 

time d e lay to first reporting b r e a st c a nce r was i nvestigated. 

In (TS}, estima tes of the tumor volume s associ a t e d with 

particular s tagings were obta ine d. 

Breast c a ncer is cla ssified int o fou r clinica l stag e s, 

which will b e l abelled S1 , S2 , $3 and S4 ; S1 b e i ng the 

least seve r e . It was suggested tha t for s,; the t urnor 

volume V could rang e ' from .Sees to SOccs; for S2 , 

s~ v;; 133; for S3, 13 ~v;; 217 and for $4 , 217<V. By 

using the d e n s ity d e rived f or V in tha t paper in c on j un ction 

with the above boundaries , the ave rage tumor volumes for the 

four sta g e s a r e est ima t e d as v1 , = 25ccs, v 2 = 85ccs , v 3 = 170cc 

and V4 = 325ccs respec tiv e ly. 

In a subsequent paper , (Tallis , Sarfaty and Leppard, 1975 

(TSL}), it was s hown how e stimates of the proportions o f wome n 

with normal survival could be obtained for the various stages . 

Using relevant d a ta from the Victorian Ca ncer Regis t ry (1973) 

and a clinical trial unde rtaken by the Endocrine Re s earch Unit, 

Cancer Institute, estimates of the proportions of women with 

normal survival, Pi, were p, ·= .378, p2 = .268, p3= .107 

and p4 = .018 for the four stages respectively. 

It is the purpose of this paper to show how the above 

information can be used to design patient examination frequenci e: 

for the early detection of small turner volumes. 

II. A MODEL FOR NORMAL SURVIVAL RATES 

( The first requirement for designing screening fre quencies 

is a model which assigns a normal survival rate to given volumes. 

V, of turner. Since we only have four (pi,v) pairs, which are 



( 

3 . 

approxima tions, the best that can be obt ained is a set of 

inspection freque ncy guide line s s uita ble for clinical 

applica tion. 

Let q(v) be the probability of norma l survival g iven 

that V=v. We assume the following model : 

exp{-(v/25) 0
} 

0 ~ V ~ 25 

q(v) = 

exp{-(yo+Y1 (v/lOO)+y2 (v/100) 2 )} 25>v. 

The unknown parameters Yo,Y1 ,Y2, and o have to be 

established. To the order of the accuracy required here , 

-ln q(V1) = 1.0, -ln q(V2) = 1.3, -ln q_(V3) = · 2.2 and 
A 

-ln q(v4) = 4.0. We choose Yo so that -ln q(v1) = 1.0 

thus 

Yo = 1 - Yt (25/100) - Y2 (25/100) 2
• 

A plot of -ln q(vi) against v is given in Figure 1 with 

the least squares fit 

-ln q(v ) = Yo + Yi (v /100) + Y2 (v /100) 2
, 

A A 

(1 ) 

where Yt = .51, Y2 = .14 and 
A 

Yo = 1 - .51(25/100) - .14(25/100 

= . 86. 

The parameter o cannot be estimated but must be assigne d. 

We reason as follows. From the slope of -ln q(v), it is 

" unlikely that o>>l, otherwise -ln q(v) would show unreason-

able discontinuity at v=25 (see Fig. 1). Possi_bly o<l, 
A 

although the intuitively most reasonable shape for -ln q(v) 

over the range Oto 25 is sigmoid , thus providing more of a 

threshold effect of turner volume on survival. Thus o=l may 

be a reasonable compromise, and we assume this value from now 

on. 
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III. SCREENING DESIGNS 
4. 

The aim of large population scre eni ng of wome n fo r breas t 

cance r is to detect turners at a n earlier stage wi t h the 

cons equent po s sibility o f a hig he r rate of norma l survival. 

At the first screening , women are examined by mul t iple p r oc­

edure s, and we foresee that a volume Ve can b e a s s i gned 

such that all wome n with tumors of size gre ater than ve 

will be dete cted. 

After the first screening· then it is anticipated that 

all women with breast tumors g r eater than ve will ha v e been 

identified and treated. Now define te by the equati on 

V(te)=ve; if V is strictly monotone then te is uniquely 

define d. More over, if the time interva l b e twee n successive 

screenings is t 1 , the volume of tumor s detected after the 

initial scree ning should lie b e tween V(te)=vc and 

V(tc+t1 ) =v 1 , say. The situation is illustrated in Figure 2. 

In orde r to calculate the average volume of tumors 

detected by the scree ning we ma ke two assumptions : 

(a) V(t)=v0exp(Bt), where Vo is the initial cell 

volume at t=O; 

(b) the average turner volume of those women detecte d 

by the scree ning proce dure is essentially V(tc+t1/2). 

Let R be the time delay in reporting the disease, (see 

(TS)). Then the value of R for those women detected by the 

screening proce dure must obviously be greater than tc+t1 , 

and hence we use the notation 
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Note that this is the expe c ted v a lue of V for those women 

detecte d a t t~e time of screening. 

In order to e s tima t e t he tumor volume a s sociate d wi t h a 

particular set . of screening parameters Ve and tr, t wo 

situations must be conside r ed: 

(1) a proportion of cases report before s cree ning ; 

(2) the remaining cases are detec ted a t s cre ening . 

Thus, in usua l notation, 

5. 

Eer[V] = E[Vl ~ te+tr]Pr{ ~ te+tr} + E[vl ~ te+t1 ] Pr {R~ tc+t 1 } 

= [l-e xp(-av1 )]/a - vr e x p (-avr) + exp(-avr) V (t c +t
1

/ ?. 

= Ver , say, 

using the d e n s ities of V and R proposed in (TS}, where 

estimates of about .01 for a and 2.66 for S were obtai ned . 

The prop o r tion of wome n with normal survival for a p a rtic­

ula r screening d esign is esti ma t e d by q(vc 1 ). The va lues of 

this function are giveri for various Ve and t 1 in Table 1. 

Here, the critical de p e nde nce of the average chance of survival 

on the freq ue ncy of inspection and the tumor volume is e mphasi s e < 

Although these findings may be intuitively obvious, the 

modelling given here allows the influence of Ve and t 1 on 

q(vcr> to be examined quantative ly. 

IV. EXAMPLE 

We compare the above modelling with experimental results . 

Shapiro et a l (1973} reported the five year results of a screen­

ing study in Ne w York. They compared the 1-5 year survival 

proportions, P (t), of a sample of screened women against 

those of a non-screened control group. Their results are 

summarised in the last two columns of Table 2. 
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I n orde r to approximately mode l t he i r situa tion we wr i te ; 
P(tlvc r> = Pr{death within t years of r eporting} 

= q(vc 1 >Pc(t) + [ 1-q(vcr >JPNc (t ) (2) 
where Pc( t ) and PNc( t ) are the p r obabili t i es of death wit hin 
t years o f r e portin g given that a woman i s "cured" a nd "not 
cure d" r e spe c t ive ly. 

The avera g e age of the wome n in the Ne w Yo r k study was 55 
and Pc (t ) was calculate d d irec t l y f rom The Australian Life 
Tables (1962 ) for wome n a g e d SS. Using (2), g (vc r> = . 2 5 
as estima t e d in (TSL) for the average cure r a t e over a ll 
stag e s at r e por t i ng , a nd P(t) - P(t -1) give n in Ta l l is, 
Sarfaty a nd Le ppa rd (197 3 , p age 64, column 2) , it was poss­
ible to solve for an estimate of PNc(t ), t =l,2, .. ,5. These 
figures a r e als o r e cor ded in Table 2 . 

In the Shapiro study tr=l.5 but the v a lue of vc is not 
stated . Table 2 lists the values of P(tivci } c a lcul ated 
with va lue s of vc=.5 , 2, . 25. A comparison o f these estimates 
and the Ne w Yor k findings is reward ing. Although the two 
populat ions appear to dif f e r in tha t the sta nda rd morta lity 
figure s for Victoria are slightly higher , a nd in spite o f the 
approx imate methods used in the modelling and estima tion, the 
quite reasonable value of vc= i .o gives estimates of · P(t) 
which are in good agreement with the New York figures . 
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TABLE l 

Estima t e d prop o r tion of nor mal survivors 

for various screening desi gn s 

Ve tr (years) 

(cc s ) 
. 50 1. 00 1.50 2.00 

.so .96 .93 .80 .36 

• 75 . 94 .89 . 68 . 32 

1.00 . 93 • 85 .57 .29 

1. 25 .91 .81 .47 .27 

1. 50 . 89 . 78 .39 . 25 

1. 75 .87 .73 .36 .23 

2.00 • 86 . 70 . 35 . 23 

8. 
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TABLE 2 

Comparison of P(t) for Victorian data and New York s tudy 

RESULTS OBTAINED FROM VICTORIAN DATA SHAPIRO ET . AL. 

p (t) Pc (t) %c(t) P(tlvcr) for tr=l . 5 and Ve tabulated P(t) p (t) 

Control Screened Contr o l Screened 

t .so . 75 1.00 1. 25 1.50 1. 75 2 . 00 

1 . 11 .01 . 14 .04 .05 .07 .08 . 09 . 09 .09 . 08 . 08 

2 . 24 . 01 . 32 . 07 . 11 .14 . 17 .20 . 21 . 21 . 22 .14 

3 .33 .02 .43 . 10 .14 . 20 .24 . 26 . 28 . 29 .2 8 . 19 

4 .41 . 03 .54 . 13 . 19 . 25 . 30 . 34 . 36 • 36 . .37 . 23 

5 .48 . 04 . 63 . 16 .23 . 29 . 35 . 40 • 42 • 42 . 42 .28 

'-' ,_,/ 
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( ABSTRACT 

A fe a ture of some medical studies is that patients enter 

the trial at different times . At the close of the trial they 

have been observed for varying periods a nd a ny a na lysis of sur­

vival must consider this feature of random entry . 

We propose a simple model to cope with the a bove situat i on. 

One advantage of this approach is that it allows for the mode l 

assumptions to be tested statistically. The model is illus­

trated with the survival data from a breast c a ncer invest i ga­

tion conducted in Victoria, Aust r a lia. 

Survival is studied further and is re lated to the r esponse 

to the treatment of adrenalectomy for women with advanced dis­

ease. This work bears on pre vious results reported here (TSL) . 

The idea that a certain proportion of the women who repor t 

breast cancer have a normal life expecta ncy is developed . This 

proportion is examined in the four clinical stages of the dis­

ease and is found to depend dramatically on this .staging . 

Further results which are developed are an estimate of the 

tumour volume at death and personalised, conditional probabil­

ities and expectations of survival following adrenalectomy. 

The l atter functions have been programmed for use in a clinical 

context. 

2. 
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I . I NTRODUCTION 

A medical t ria l involving 131 wome n in advanc ed sta g es o f breast 

( cancer was init iated at the Endocrine Research Unit, Ca ncer Inst itute , 

Melbourne, in September 1967. Women entered the trial fol lowing 

adrenalectomy a nd the y were subsequently classified as to wh ether or 

not they showed clinical remission to the disease. Response to the 

operation has been assessed in relation to c ertain hormones and o ther 

physiologica l factors. Details of the variables are given i n Sarfaty , 

Pitt, Tallis (197 3) and the mode l of response as a threshold phenomena 

~SL) is discussed in Tallis, Sarfaty and Lepp a rd (1975). 

A fea ture of this type o f continuing study is that patients ente1 

the tria l at different times and at the close o f the trial have b een 

observed for varying periods. The l ength of surviva l, Y, i s an 

important assessment in the study and a way therefore must be develope~ 

to deal . with the fact that the value o f Y for some or al l patients 

may b e unknown at any fixed time , t , say at the close of the study. 

Some patients who enter e d th·e trial at an early stage may b e dead; 

others may still b e a live . The chance that they are still alive at 

t increases as their time of entry approaches t. 

Sections II, III and IV of this paper are devoted to establishins 

a simple model for this type of truncation and to showing how estimatef 

of the required parameters can be found. The techniques are appli ed tc 

the survival data of the adrenalectomy trial and illustrate the effect 

of truncation caused by the random method of introducing patients. 

In Section V the estimated survival time is used to investigate 

the disease further. Response to treatment has been postulated as a 

continuous variable Xo, with clinica l remission a threshold phenomenor 

{TSL}. The relationship of W=ln Y, which is assumed to be normally 

distributed, to Xo is pursued in part (a) . If the vector ~6=( X1 , .. , ) 

represents the physiological variables of interest, then from the work 

in this section, and from previous results, the joint distribution of 
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W,Xo and X can b e found . Relevant corre lations are r eported in Tab 

II. The expectations of survival for the clinical groups ''remiss ion" 

( and "non-remission" are also obtained. 

( 

Part (b) of this section develops the idea that a certain prop­

ortion of women who report breast cancer have a normal survival or 

life expe ctancy . The proportion of women having normal survival is 

examined in the four clinical stages of the disease, and is found to 

depend dra matically on the staging. 

From the above results it is also possible to estimate the 

volume of tumor at death, and this is dealt with in part (c) . 

In part (d) the general results relating survival following 

adrenalectomy as a function of X=x have been u sed to obtain "person­

alised11 conditional expectations. These in conjunction with individu, 

probabilities of clinical remission to the disease can aid the decisic 

of whether or not to perform an adrenalectomy . 

The results given in this paper illustrate the various 

statistical models which have been designed specifically to extract 

the required information . 

II. MODEL AND NOTATION 

Consider a trial in which subjects enter randomly over a period 

0 . The results are assessed in terms of survival at a time h after 

the trial concludes. i.e. at 0+h, where h~O. Let L be the time 

from entry to assessment and Y the length of survival from entry, 

with distribution functions B(t) and F(y) respectively. Note that 

B(t)=O for t<h. Moreover, let X be a random m-vector which is to -
be used in the predictor E [ YJ~=~ ]. Denote the marginal distribution 

function of X by K(x) - and the joint distribution function of X -
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and Y by ~(x;y). The variab l e Lis assu~e rl to be in~enende nt of both 

X a nd Y. ' -. _, .. ··· l - / ) ' 

B~cause 0 and hare finite time lengths it is not always possible 

to observe Y directly . What c a n be observed,howeve r,i s V=min[Y,L], 

and we require the joint distribution of X and V. Thus,if ~x represent 

G ( x , v) =Pr { x~ x , ~ v} -
=Pr{x..;; x,Y~ v,~v} + Pr{x,;;;;x , Y,;;;; v,L>v} + Pr{X~ x,Y>v,L~v} 

= 1 - Pr { x~ x , Y >v , L >v} 

= 1 - Pr { x~ x , Y >v} . Pr { L>v} 

= l - [K(x)-R( x ,v) )(1-B(v)] 

The marginal dis tribution function of Vis the n 

P(v) = G(x=oo , v) = 1 - [l - F(v) )(1 - B(v) ] 

-III. APPLICATION OF THE MODEL 

(1 ) 

( 2) 

The records from September 1967 to November 1972 of the tria l 

group of 131 were analysed in April 1973. Thus,0=5 .16 years and h=.42 

years . 

In fact, entry int o the trial was approximately uni f o rm 

it is assumed 

henc e 

0 

B{1) = 1 - 0+h- t 
e. 

1 

h<~ e+h 

1>0+h 

and Y,the length of survival following adrenalectomy,is lognormal 

with density 

(3) 

f(y;y,T) = F'{y;y,T) = exp{-(ln y -y) 2/2T 2 }/{½nTy) , y ~ O. (4) 

This latter density was chosen b e cause of the positive and skewed 

nature of Y. As in {TSL) the vector X consists of 11 transformed 
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measurements where the transformation has been chosen so that X-MVN ( p ,E 

Following the assumption (4) ,it is more convenient to cons ider 

the variate W=ln Y rather than Y. The joint distribution of Wand X 

is again assumed to be multinormal; that is 

R(~,w) = MVN( [~), [~,;
2 
]) 

and the joint distribution of any x. and W (needed at a l ater stage ) 
]_ 

is then bivar iate norma l and is d enoted by 

r. (x, w; µ . ·, y, a . . , T 2 , c . ) . 
]_ ]_ ]_]_ ]_ 

IV. ESTIMATION 

(5 

(6 

The parameters of the model in the preceding section were estim­

ated in a variety of ways,with all numerica l c alculations c a rried out 

on the University of Ade laide CDC6400 in FORTRAN . The parametersµ and 

L were estimated in the usual manner from the 131 sample values of X. 

In order to estimate y,T and c the density of V and the joint den s i ty 

of V and X.,i=l, .. . ,11, are needed. 
]_ 

By differentiating (2) 

p (v) = P' (v) = f (v) [1-B (v)] + [1-F (v) ]b (v), ~~ 8+h , 

where Band fare defined in (3) and (4) respectively,and b(£)=B'( £). 

(7 

Since p(v) is a function of y and T only , p(v;y,T) say,these parameters 

were estimated by maximising the likelihood 
1 3 1 

L(Y,T;v) = .IT p(v . ;y,T) 
- 1=1 1 

for y and Tusing the Nelder and Mead (1965) simplex method. The 

"' A 

estimates obtained are y=-.1108 and T=l.1937. These values were then 

used to calculate the mean and variance of V by numerically integra ting 

f
8

0

+h A · ,._ f8+h A A 

v . p(v;y,T)dv and 
O 

v~p(v ;y,T)dv. 
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The resul ts , with corresponding sample estimates , are shown in Table I . 

As an alternative fitting proce dure , y and T were also estimate d 

by u sing a minimum x2 procedure developed by Tallis (1973) . This 

method measures ,in terms of a x2 v alue , the d i ffe rence between sample 

p ercentiles and percentiles obtained from the hypothes i sed distrib­

ution function . Using the specialised form of the distribution func­

tion (2), a minimum x2 value of 13 . 1 on 7 d . f . was obtained and this 

is not significant at the 5 % level. The estimates of y and T, y* and 

T* say,were y*=- . 07 and T*=l . 38 . Although we continue to use the max­

imum likelihood estimates in s ubsequent work , the non-significa nt 

value and the reasonably close agreement betwee n the two sets of est­

imates gives confidence in both the estimates and the mode l . 

The density (4) was a l so used directly to obtain values for y 

and T by maximising the likelihood 

TI f(v . ; y , T). II [1-F {v , ; y , T) ] 
i 1 j J 

f or y and T. The products over i and j respe ctive ly consist of those 

women who died during the tria l and those who were still a live at the 

end . This method has been u sed by others(Armitage 1966). The numerica l 

e stima t es were again in good agreement with those state d above ,but 

there is a ma jor advantage in working directly with p(v ) since the 

agreement of the model with the d ata can b e teste d. 

The esti mation of the vector c (as a vector) was found to be c omp-

utationally i mpossible . However , by app lying the princ iple l eading to 

(1 ) , the joint density of each x. and V is , in the notation of (6) . 1 

t. (x, v) = r. (x,v) [1-B(v)] + b( v )n(x;y, T2 ) [1-N(ln v;a , s 2
) ] ( 8 1 1 

where a= y+c.T(x-µ .)/~, s =Tll - c~ , and Band r.are given by (3) 1 1 11 1 1 
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( and (6) r espectively . The density and distribution functions of a 

variable Z distributed normally with mean a and variance B will be 

written as n(z; a , B) and N(z; a , 8 ). For the . special case a =O and S=l , . .. 

( 

the standard notation ~ (z) and ~ (z ) are u sed. 

Each c. was then estimated by maximising a conditional like lihood 
l 

function of the form 
A A A A 

L(c.lµ ,, y,a .. ,T 2 ) = 
l l. ll 

with respect to ci , i=l, . . ,11. 

1 31 A A A A 

IT t • (x, , , V , i µ , , Y, -e, . r T 2 ) 
. l. l.J J l. 1.1 
1.=1 

These estimates are give n 

V. SOME APPLICATIONS OF THE ESTIMATES 

(a) Remission and Survival 

in Table II . 

In (TSL) we assumed that r emiss ion after adrenalectomy is a con­

t inuous variable and it was labelled X0 • If X0 is greater than some 

fixed quantity a,a clinica l remission of the disease is recorded and 

if X0~a the n no significant reduction in the rate of progress of the 

" tumor is noticed. The estimate o f a was a=.466 . We ha ve obtained above 

cor(W,X . ) , i=l, . . 1 1 , and it is also possible to estimate p=cor(W , X0 ) 
l. 

u nder the assumption that these variables have a binormal distribution . 

For each woman we have the information V=v and whether o~ not she 

has had a remission; that is X~a or X0 >a . Therefore the appropriate 

d e nsity for this situation is obta ined from ( 8) a s 

J a t 0 (x , v)dx non- remitters 

* 
t'o (v ; P) = 

-oo 
(9) 

r emi tters 

where O ~v <8+h, . and p is the only unestimated parameter . A likelihood 

function using the observe d sample values of V,the known clinical class· 



9 . 

ifications and the density of (9) was maximised for p,with p shown 

( i n Table II . 

( 

To obta in the expectation of Y, the survival time following ad­

renalectorny,we use the formula 

µy = E [ Y] = E[exp{W}] = exp{y+T 2/2} 

" A 

where y and Tare defined in (4). Using the values y=- . 1108 and T=l . 1 9 3~ 

" 
the estimate of µY is µy=l.83. This can be compare d with ;=l . lS(Table I) 

and emphasises the necessity of correcting the data for truncation 

effects. 

I t is also possible to estimate the expectation of Y given tha t a 

remission occurs . Specialising the methods for truncated multinorma l 

distributions of Tallis(1961) , formula (2 ) with b 1=-00 , b 2 =a-pT , we get 

µYIR = E [Y!Remission] 

= E[Y!Xo>a] 

= exp{y+T 2 /2} [1-4>(a- pT) ]/[l-4> (a) ]. 

This follows since we seek the expectation of exp{W} over the approp ­

r iate region. 

The expected value of Y given a non-remission , µYINR=E[Y !x 0<a] is 

then obtained from the relationship 

E [ Y] = 4> (a) E [ Y I X o< a ] + [ 1- 4> (a) ] E [ Y I X O > a ] . 

Us i ng the re l evant parameter estimates obtained earlier,nurnerical 

" " 

(b) The Probability of Normal Survival 

(1( 

(11 

Fo r women of age T , t he population expectat i on of s urvival from 

the t i me of f~rst clinical diagnosis of breast cancer,DT , is given in 

t he l ife tables by Tallis , Sarfaty and Leppard (197 3) (hereafter called 



10 . 

the tables) . We assume that this popula tion i s a mixture of those 

( women who have a nurmal li fe expectancy , NLE , and those who do not. 

( 

The following model then holds 

E[DT IBC] = pE[ DT INLE] + (1-p)E[DT !not NLE], CKp~ l. (12 

In (12) , BC;breast c ancer, E[DTIBC] is the population expectation o f 

survival for wome n with breast cancer, E[DTINLE] is the normal li fe 

expectancy for wome n of a g e T, and E[DTlnot NLE] is the expectatio 

of all women who become e ligible for adrenalectomy. Both E[DTIBC] 

and E[DT!NLE] can be found from the tables . To obtain an estimate 

of E[DT!not NLE] we use the data on women having an adrenalectomy 

as desc r i bed in Section III. Note that we have assumed that thi s grou 

is representative o f the population of wome n with breast c ancer who 

do not h ave a normal life expectancy . 

Spe cifically , for these women DT is the sum of two intervals ; 

diagnosi s to a drenale ctomy, IT , and adrenalectomy to death, YT . 

The joint distr ibutions of IT a nd T , and YT and T we r e ass umed 

to be biva riate lognormal , thus allowing the calculat ion of the 

conditional expectation at age T, 

E [DT!not NLE] = E[IT ] + E [ YT ] 

The practical details r e lating to the fitting and testing of the 

above joint distributions will be omitted , since standard methods 

only were used. 

(1 3 

The estimated cor relation between YT and · T is essentially O 

as it must be by intuition , since the disease and not age is the prime 

c a u se of death for women in this trial. 

Equation (12) has been solved for T=SO, the nearest tabular value 

to the average age of the group , and the estimate of p is .249. (set 

Table III ). Moreove r , since the women in the trial had first reported 

with t heir disease in one of four cl inical stages , stage four being th, 
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most advanced,formula (12) could be applied to these g roups . The 

( values of E[DTIBC] by stage are only available for T=60,requir ing 

the calculat ion of E[D6 ol not NLE) by stage , see Table III. 

( 

Notice that the estimate of p on the combined group at T=60 

compares favourably with that a t T=50,giving conf idence in the model 

and age correcting procedure. 

(c} Final Tumor Volume at Death 

In pre vious work(Tallis and Sarfaty (1974) (TS )) ,tumor volumes 

were estimated for each of the four clinical stages of the disease . 

As a fur ther application of the above results we can estimate the 

tumor volume at death . 

It has been assumed above that Wand X0 have a bivariate normal 

" " 
distribution BVN(w,x;y,0,T 2 ,l,p) , and estimates y=- .1108, T=l.1937 and 

" 
p=.85 obtained. Thus the expected survival for a given r esponse x 0 is 

( 1 4 ) 

Now t(x 0 ) will be in some way relate d to the rate of tumor 

growth,B(x 0 ) , given an approximately constant turner volume,va,at death 

for all patients . Then if v 4 is the tumor volume on entry to stage 

four,and assuming exponentia l growth , 
Xo 

V11 .exp{B(x 0 ) .t_(xo}} - vd. 

Using the previously estimated values for the parameters in 

(14}, we find t(x 0 )=1.09lexp{px 0 } , and the only way in which (15} can 

be satisfied is if B(x 0 )=Bexp{-px 0 } for some fixed constant B>O. 

(15) 

We choose B so that ENR[B(X 0 ) ]=2.7,th~ average rate of turnor 

growth estimated in (TS ) and which agrees with values quoted elsewhere. 

Since 

ENR[B(Xo)] = ef:exp{ - pxo}$(x 0 )dx 0 /~(a) = Bexp{p 2 /2}~(a+p)/~ (a) (16) 
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A 

then substituting the va r ious estimates in (16) gives B=l . 41. Thus , 

( finally we get V4exp{l . 091 x 1.41} = va, and s ince V4=217 from (TS), 

the n va=l006ccs. 

( 

(d) I nd ivid ual Probabilities of Survival and Life Expectations . 

Methods we re developed in (TSL) to estimate conditional 

probabilities o f showing a clinical remission to adrenalectomy given 

X=x . It is of further interest to know the conditional expecta tion o f 

surviva l after the operation given X=x. i. e . E[Yl~J where Y is 

defined in Section II . 

Since we have estimated all the parameters for X and W under 

the assumption of multinormality, E[Yl~J is easily calculated by 

standard regression theor y (Rao 1965) and also the conditional 

distribution of wl~, where Y=exp{ W} . 

In the same way , for fixed X=x , we can calculate P(ilj), the 

probability of dying within i years after adrenalectomy given the 

patient has already survived j years . 

The formula for E[Yl~] , P(i l j) and P(x) from (TSL) have been 

programmed so that individual prognoses to adrenalectomy c an be 

obtaine d . A sample patient output is given in Table IV. This 

p rocedure is currently under test at the Endocrine Research Unit , 

Cancer Institute , Melbourne . 
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TABLE I 

Mean and vari a nce of V 

Sample 

Model 

Mean 

1.15 

1.17 

Variance 

1.11 

1.22 

1 4 . 
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Xo X1 X2 

1 - .09 . 24 

1 - . 15 

1 

( 

TABLE II 

Correlation table for the X. and W 
l. 

X3 X4 Xs X5 X7 Xa X9 

. 39 . 44 • 36 • 30 .39 • 39 . 30 

-. 24 -.25 -.12 -.10 -.21 -.15 - . 14 

.20 .17 .16 .09 .23 .13 . 14 

1 .77 .46 .56 .82 .49 .56 

1 .53 .64 .79 .49 . 42 

1 . 40 .51 .69 . 62 

1 .67 · .50 • 36 

1 .53 .59 

1 .71 

l · 

l.S . 

X1 o X11 w 

.17 .27 .85 

-.08 -.47 - . 06 

.OS - .10 - .14 

.13 . 13 -.16 

-.11 .06 .01 

-.OS -.02 .14 

- . 10 -.03 .00 

-.05 .10 .12 

-.12 .04 .20 

- . 07 .10 . 12 

1 -.21 .07 

1 . 29 

1 
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TABLE III 

Estima ted v a lues of p 

GROUP T E[IT] E[YT] E[BC] E [ BC I NLE] p 

Combined 50 4.12 1. 82 11. 37 27.72 .2 49 

Combined 60 2 . 65 1. 75 8 . 22 19.42 .254 

Stage 1 60 4.77 1. 71 11.37 19.42 .378 

Stage 2 60 2.76 1. 76 8.52 19.42 . 268 

Stage 3 60 1.58 1. 74 5 . 03 19 . 42 . 107 

Stage 4 60 .56 1. 73 2.62 1 9.42 . 018 

( 
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TABLE IV 

An indi•ridual prognosis to adrenalectomy 

SUBJECT NO.= 7777 

VARIAT ES PRESEN T 
X 1 = .99 
X 2 = - .05 
X 3 = -. 98 
X Lt = -. 71 
X 5 = 2. 16 
X 6 = - .. 53 
X 7 = -. 5 1 
X 8 = 2.33 
X 9 = 2.10 
XlO = . 64 
Xll = .95 

MULTIPL E CORRELATION ( XO,Xl , •• • ,Xll) = .7 121 
MULTIPL E CO~RELATION (Xl,oo.tXll, ~ ) = .6546 

PROBABILITY Of REM I SSION= .885 

POST ADREN/\LE.C TOMY LI FE TARLE 

17 . 

E <O,J)=EX PE ClED TI~E TO DEATH,GIVEN J YEARS SURVIVAL AFTER ADRENA LECT6MY 

P ( I , J)= PR08 ~8 ILJT Y OF DEA TH wITHIN I YE ARS,GIVEN J YEA RS SURVIV AL AFTE R 
ADRENA LE CTOMY 

J E (D,J) P<l,J) P C2,J) P C3,J ) P C4,J ) P <S,J) P ( lO,J) 

C 11 • 158 . 0131 .0 73 0 .,1576 .2465 .3306 . 6292 
l 1 0 . 29 7 . 0607 . 1464 .2364 . 3216 .3987 . 6639 
2 9 .926 .0912 .1 8 7 1 .277 8 .3599 •. 4325 .6791 
3 9. 87 1 .1055 . 2053 .2956 .3755 .4455 . 6825 
4 9e977 . 1 1 16 .2125 • 30 1 >3 .380 1 . 4484 .6800 
5 10 .1 68 . 11 36 .214 1 .3022 . 379 1 . 446 1 .6744 
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Introduction 

B [13] 
A ddendu.m 

ACCESSING RECORD SYSTEMS ACCORDING 

TO DATE OF DEATH. 

G.M. Tallis 

In on-going clinical trials, or in any continuously up-dated record 
bank, patients enter the system sequentially. If length of survival is 
an important variable for study, some problems in obtaining unbiased 
estimates of, say, the expected survival time may be experienced. 

Suppose records have been kept over a period [o,b], then some 
patients will have entered the system and may have died during the 
interval of observation, and others may have survived. Clearly, access­
ing the records via the time of entry into the system will lead to 
complications in any analysis of survival since the incomplete data 
on surviving patients must be dealt with somehow or another. 

An obvious question, therefore, is; what sort of trouble does 
one experience if patients are accessed via their time of death? 
Intuitively, it seems that any snags in the analysis may be a direct 
consequence of the patient input scheme. 

This problem is examined briefly in this note. 
an unbiased estimate of the density of survival time 
and only if patients enter the system according to a 
ution, and the system is sufficiently old. 

Results 

It is found that 
is obtainable if 
uniform distrib-

According to the introduction, patients enter the system during a 
period [o,b]. Moreover, all the records are inspected over an interval 
[a, b], 0 <a< b. We note that b may be large, as would be the case, 
for instance, in some registry systems. All patients who died in [a,b] 
are identified and their survival time, Y, calculated. If Y has a 
(population) density g(y), we seek conditions under which the above 
sampling is in fact from g(y). 

Let the time that patients enter the system, X, have density f(x) 
and assume X and Y independent. The latter assumption seems reason­
able in any situation which is essentially stationary. 

Now the method of accessing implies that for each patient examined, 
a~ X + Y ~ b; the original sample space is [o,b] x [o,00 ) and we look 
at the restricted space R = {x,y; a~ x+y ~ b}, the joint density of 
X and Y in R being 

~(x,yjR) = f(x)g(y)/K(a,b) 

where K(a,b) = II f(x)g(y)dxdy = J~ [F(b-y)-F(a-y)]g(y)dy. 
R 
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The conditional density of Y (in R) is 

b-y 
g(ylR) = f ~(x,ylR)dx = g(y)[F{b-y) - F(a-y)]/K(a,b) 

a-y 

What is required is for g(ylR) = g(y), i.e. 

F(b-y) - F(a-y) = K(a,b) (*) 

for all a< b and y. 

Suppose (*) holds, then put y=o to get K(a,b) = F(b)-F(a). 
Now put y=a and use F(o)=o to show that F(b-a) = F(b)-F(a). This 
is a Cauchy functional equation with a unique solution F(x) = ex. 
Clearly c = b- 1 and 

b - 1 Cb·a ) = K ( a , b ) = J~ b - 1 [ ( b-y )- ( a -y ) J g ( y ) dy = b - 1 ( b- a ) G ( b ) 

and hence G(b) = 1. 

Thus a necessary condition for g(ylR) = g(y) is that 

(1) f(x) = 1/b 

(2) G(b) = l 

and this condition is also obviously sufficient. 

From a practical viewpoint the upshot is clear. Provided the 
record system has been in existence considerably longer than reasonable 
survival experience (G(b)=l) and provided that entrance into the system 
is approximately uniform, (f(x) = 1/b), the method of accessing records 
suggested above should give accurate and direct information concerning 
g(y). 

2. 
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