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Abstract

This thesis addresses the hypothesis that a single, waist-mounted triaxial accelerom-

eter (TA) can be used to monitor human movement patterns in unsupervised, free-

living subjects over extended periods, and that it can be used to quantitatively

measure parameters that can provide clinical insight into the health status of the

subject.

A rigorous theoretical and experimental understanding of the signals obtained from

a TA is developed. The e ect of the placement of the TA device on the waist is

explored and a model relating device position to TA signal is developed for a range

of postures and activities.

A classification framework for movement identification using the signals from a

waist-mounted TA is presented. This framework is based on a hierarchical binary

processing tree and is designed for real time use. An implementation of this frame-

work for monitoring housebound patients is presented. Algorithms for detecting

falls, distinguishing between activity and rest, classifiying transitions between dif-

ferent postural orientations, and for identifying periods of standing, sitting, lying

and walking are developed. In evaluation studies performed in controlled laboratory

conditions, every algorithm performed with better than 90% accuracy. Once move-

ments are identified, movement-specific parameters sensitive to changes in func-

tional status are extracted from the signal.

A two stage methodology for employing the accelerometry system in monitoring

free-living subjects is introduced. The first stage involved monitoring specific move-

ments through a directed routine. The second stage involved monitoring of free

movement. Signals obtained from the directed routine are used to extract clinically

relevant, movement-specific parameters. Signals obtained from the period of free

movement are monitored for falls and other abnormal events. General parameters

of movement, including energy expenditure, are also measured.

The system was evaluated in a series of field studies in laboratory and home environ-

ments, in supervised and unsupervised settings, using cohorts of healthy subjects.

A pilot trial was conducted in which six healthy elderly subjects wore the TA device

for a period of up to three months. The technical performance and useability of

the system were evaluated. Clinically significant parameters were measured and the

e ects of age and health status on the measured parameters were evaluated.



Contents

Certificate of Originality xvi

Acknowledgements xvii

1 Introduction 1

. Vision Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

.3 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

.4 Considerations in Unsupervised Assessment of Human Movement . 3

.5 Application of Accelerometry to Unsupervised Ambulatory Assess-
ment of Human Movement . . . . . . . . . . . . . . . . . . . . . . . 5

.6 Objectives of the Current Work . . . . . . . . . . . . . . . . . . . . 6

.7 Outline of the Current Work . . . . . . . . . . . . . . . . . . . . . . 7

2 Motivation 8

2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Health Care Problem . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Defining Health . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Traditional Health Care Delivery Model . . . . . . . . . . . 0
2.2.4 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Health Care Expenditure . . . . . . . . . . . . . . . . . . . . 2
2.2.6 Techniques to Reduce Acute Hospital Admissions . . . . . . 5
2.2.7 Home Telecare . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.8 Applications of Home Telecare . . . . . . . . . . . . . . . . . 8
2.2.9 Home Telecare for Continuous Health Monitoring . . . . . . 9

2.3 Health and Disease: The Case for Monitoring Human Movement . . 22
2.3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Chronic Disease in the Elderly . . . . . . . . . . . . . . . . . 22
2.3.3 Neurodegenerative Disorders . . . . . . . . . . . . . . . . . . 24
2.3.4 Falls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 Disability and Independence . . . . . . . . . . . . . . . . . . 32
2.3.6 Measuring Health . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.7 Measurements of Physical Well-Being . . . . . . . . . . . . . 34

2.4 Techniques for Assessing Human Movement . . . . . . . . . . . . . 36

ii



CONTENTS iii

2.4. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Assessing Balance . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Assessing Gait and Other Movement . . . . . . . . . . . . . 39

2.4.4 An Overview of Assessment Techniques . . . . . . . . . . . . 39

2.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Background Information 44

3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Accelerometry in the Assessment of Human Movement . . . . . . . 45

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Commercially Available Accelerometers . . . . . . . . . . . . 45

3.2.3 Accelerometer Specifications for Human Movement Monitoring 46

3.3 Centre of Mass and the Pelvis . . . . . . . . . . . . . . . . . . . . . 47

3.4 Standing and Postural Stability . . . . . . . . . . . . . . . . . . . . 49

3.5 The Sit–Stand–Sit Movement . . . . . . . . . . . . . . . . . . . . 5

3.6 Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 The Gait Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Parameters of Gait . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.4 Modelling the Gait Cycle . . . . . . . . . . . . . . . . . . . . 60

3.6.5 Variability as a Predictor of Gait Impairment . . . . . . . . 64

3.6.6 Accelerometry in Gait Analysis . . . . . . . . . . . . . . . . 65

3.7 Measurement of Physical Activity . . . . . . . . . . . . . . . . . . . 70

3.8 Classification of Activities . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 Falls Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3. 0 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 The Home Monitoring System 87

4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 The Ambulatory Monitor . . . . . . . . . . . . . . . . . . . 89

4.3.3 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . 9

4.3.4 The Receiver Unit . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.5 The Personal Computer . . . . . . . . . . . . . . . . . . . . 92

4.4 Reliability - Transmission Range and Power Consumption . . . . . 93

4.5 Calibration of the Ambulatory Monitor . . . . . . . . . . . . . . . . 94

4.5. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.3 Calibration Drift . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



iv CONTENTS

5 Understanding the TA Signal 96

5. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Composition of the TA Signal . . . . . . . . . . . . . . . . . . . . . 97

5.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 A Study of the Noise Intrinsic to the System . . . . . . . . . 98
5.2.3 Median Filtering to Remove Noise . . . . . . . . . . . . . . . 0
5.2.4 Understanding the Gravitational Component . . . . . . . . . 02
5.2.5 Understanding the Body Movement Component . . . . . . . 08
5.2.6 Understanding the Combined Signal . . . . . . . . . . . . . 0
5.2.7 Separating the Signal Components . . . . . . . . . . . . . . 0
5.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Representation of the TA Signal . . . . . . . . . . . . . . . . . . . . 9
5.3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3.2 Cartesian or Spherical Signal Representation? . . . . . . . . 9
5.3.3 Integration of the Signal to Obtain Displacement and Velocity 20
5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Understanding the E ect of Device Placement on the Signal . . . . 23
5.4. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 An “Ideal” Subject . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.3 A Study of the E ect of Device Placement on Signals Ob-

tained During Rest . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.4 Restrictions on Device Placement . . . . . . . . . . . . . . . 43
5.4.5 A Study of the E ect of Device Placement on Signals Ob-

tained During Sit-to-Stand and Stand-to-Sit Transfers . . . . 45
5.4.6 A Study of the E ect of Device Placement on the TA Signal

Obtained During Walking . . . . . . . . . . . . . . . . . . . 52
5.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Measuring Physical Activity . . . . . . . . . . . . . . . . . . . . . . 73
5.5. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2 A Study of the E ect of Median Filtering on the Signal Mag-

nitude Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.3 A Study of the E ects of Device Placement on Signal Magni-

tude Area During Walking . . . . . . . . . . . . . . . . . . . 8
5.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Interpreting the TA Signal 187

6. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 A Framework for Movement Classification . . . . . . . . . . . . . . 88
6.3 An Overview of the Signal Processing . . . . . . . . . . . . . . . . . 9
6.4 Is the Device Actually Being Worn? . . . . . . . . . . . . . . . . . . 92
6.5 Classifying Activity and Rest . . . . . . . . . . . . . . . . . . . . . 95
6.6 Classifying Rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

6.6. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



CONTENTS v

6.6.2 Classifying Upright and Lying . . . . . . . . . . . . . . . . . 2 3
6.6.3 Classifying Lying Subpostures . . . . . . . . . . . . . . . . . 2 5
6.6.4 Lying–Parameter Extraction . . . . . . . . . . . . . . . . . 220
6.6.5 Classifying Sitting and Standing–A Preliminary Study . . . 22
6.6.6 Sitting–Parameter Extraction . . . . . . . . . . . . . . . . . 233
6.6.7 Standing–Parameter Extraction . . . . . . . . . . . . . . . 233
6.6.8 Measurement of Postural Sway–A Preliminary Study . . . . 234
6.6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.7 Classifying Falls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.7. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.7.2 Falls Detection–A Preliminary Study . . . . . . . . . . . . 240

6.8 Classifying Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.8. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.8.2 Determination of Step Rate using Fourier Transforms . . . . 247
6.8.3 Step-by-Step Determination of Gait Cadence . . . . . . . . . 254
6.8.4 Identifying Gait . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.8.5 Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . 263

6.9 Classifying Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.9. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.9.2 Transitions Between Upright and Lying . . . . . . . . . . . . 266
6.9.3 Transitions between Lying Subpostures . . . . . . . . . . . . 266
6.9.4 Transitions Between Sitting and Standing . . . . . . . . . . 266
6.9.5 Transitions–Parameter Extraction . . . . . . . . . . . . . . 277

6. 0 Classifying Other Activities . . . . . . . . . . . . . . . . . . . . . . 278
6. The Complete Classifier . . . . . . . . . . . . . . . . . . . . . . . . 279
6. 2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
6. 3 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Experimental Design 284

7. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
7.2 Development of a Methodology for Unsupervised Home Monitoring

with a Triaxial Accelerometer . . . . . . . . . . . . . . . . . . . . . 285
7.3 Stages of Experimental Processing . . . . . . . . . . . . . . . . . . . 287
7.4 Experimental Procedure for the Supervised Laboratory Studies of

Directed Movement (study D) . . . . . . . . . . . . . . . . . . . . 290
7.5 Experimental Procedure for the Unsupervised Laboratory Study of

Directed Movement (study 2D) . . . . . . . . . . . . . . . . . . . . 29
7.6 Experimental Procedure for the Supervised Home Study of Directed

Movement (study 3D) . . . . . . . . . . . . . . . . . . . . . . . . . 303
7.7 Experimental Procedure for the Supervised Home Study of Free Move-

ment (study 3F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.8 Experimental Procedure for the Unsupervised Home Study of Di-

rected and Free Movements (studies 4D and 4F) . . . . . . . . . . . 308
7.9 Comparisons Between Directed Routine Data Sets . . . . . . . . . . 3 6
7. 0 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6



vi CONTENTS

8 Experimental Results and Discussion 317

8. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

8.2 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8

8.3 Studies of Directed Movement . . . . . . . . . . . . . . . . . . . . . 32

8.3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.3.2 Unsupervised Laboratory Study of Directed Movement (study
2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

8.3.3 Supervised Home Study of Directed Movement (study 3D) . 325

8.3.4 Unsupervised Home Study of Directed Movement (study 4D) 327

8.3.5 Statistical Analysis of Directed Movements . . . . . . . . . . 333

8.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

8.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8.4 Supervised Home Study of Free Movement (study 3F) . . . . . . . . 35

8.4. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.4.2 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

8.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.5 Unsupervised Home Study of Free Movement (study 4F) . . . . . . 362

8.5. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

8.5.2 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

8.5.3 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

8.5.4 Technical Performance . . . . . . . . . . . . . . . . . . . . . 363

8.5.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 366

8.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

8.5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

8.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

9 Future Directions 380

9. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

9.2 Technical Enhancements . . . . . . . . . . . . . . . . . . . . . . . . 38

9.3 Physiological Understanding of the Signal . . . . . . . . . . . . . . 385

9.4 Enhancement of the Classifier Framework . . . . . . . . . . . . . . . 386

9.5 Algorithmic Development . . . . . . . . . . . . . . . . . . . . . . . 387

9.6 Clinical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

9.7 Longitudinal Monitoring with an Adaptive Template . . . . . . . . 400

9.8 Knowledge Management and Decision Making . . . . . . . . . . . . 40

9.9 Integration into the Health Care System . . . . . . . . . . . . . . . 404

10 Conclusion 405

Bibliography 412

A A Model of the Pelvis During Gait 435



CONTENTS vii

B Subject Information and Consent Forms 438

C Health Questionnaires and Assessment Forms 446

D Parametric Data from Study 2D 459

E Parametric Data from Study 3D 471

F Parametric Data from Study 4D 480

G List of Publications 492



List of Figures

2. Projected annual rates of increase of Australian population by age. 2
2.2 Health expenditure as a proportion of GDP. . . . . . . . . . . . . . 3
2.3 Distribution of health expenditure by category of expenditure. . . . 4
2.4 Total health care expenditure per person by age group. . . . . . . . 5
2.5 Illustration of a home telecare system. . . . . . . . . . . . . . . . . 7
2.6 Australian health care expenditure by age showing the three levels

of home telecare support. . . . . . . . . . . . . . . . . . . . . . . . . 2
2.7 Overlap between the three levels of home telecare. . . . . . . . . . . 22
2.8 Three year incidence of systemic disease and neurosensory disorders

in the elderly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Age-specific rates of falls deaths for persons aged 65 years or more. 26
2. 0 Locations in which falls occur. . . . . . . . . . . . . . . . . . . . . . 28
2. Sway can be measured using a swaymeter, which measures displace-

ments of the body at waist level. . . . . . . . . . . . . . . . . . . . 38

3. Bones and joints of the lower limbs. . . . . . . . . . . . . . . . . . . 48
3.2 Centre of gravity when standing and bending. . . . . . . . . . . . . 48
3.3 Fourier transform of Centre of Pressure and Centre of Mass in the

anteroposterior direction. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Analogue representation of the sit-stand-sit movement. . . . . . . . 52
3.5 Graphical representation of acceleration during the sit-stand-sit move-

ment cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Typical normal walk cycle illustrating the events of gait. . . . . . . 57
3.7 Interrupted light studies of gait. . . . . . . . . . . . . . . . . . . . . 59
3.8 Displacements of centre of mass in three planes of space during a

single stride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Idealised model of pelvic displacement during gait. . . . . . . . . . 62
3. 0 Lissajous plots for modelled and experimental walking data. . . . . 63
3. Series of tracings from a normal subject during walking. . . . . . . 66
3. 2 Three orthogonal acceleration signals from a normal healthy subject

walking at a normal speed. . . . . . . . . . . . . . . . . . . . . . . . 67
3. 3 Block diagram of the human energy system. . . . . . . . . . . . . . 7
3. 4 Illustration of the accelerometer mounting used by Veltink et al. . . 76
3. 5 Detector of the static or dynamic nature of activities used by Veltink

et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3. 6 Algorithm for physical activity detection used by Aminian et al. . . 78

viii



LIST OF FIGURES ix

3. 7 Relative values of chest and thigh acceleration during various move-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3. 8 Placement of sensors and electrodes in the study by Fahrenberg et al. 80
3. 9 Classification of physical activity patterns using four accelerometer

recordings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.20 Classification tree for main relevant motor activities. . . . . . . . . 8
3.2 Method for detecting falls devised by Petelenz et al. . . . . . . . . . 84
3.22 Fall monitoring device flow chart to establish nature of impact. . . . 86

4. Block diagram of the home ambulatory monitoring system. . . . . . 89
4.2 Photograph of the ambulatory monitor. . . . . . . . . . . . . . . . . 90
4.3 Homes in which the TA sytem was tested. . . . . . . . . . . . . . . 93

5. Signals obtained from the TA while it was resting on a table. . . . . 99
5.2 E ect of median filtering on a signal with noise spikes. . . . . . . . 02
5.3 E ect of median filtering on the vertical component of a walking signal. 03
5.4 E ect of median filtering on the vertical component of a stand-sit-

stand movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03
5.5 The gravitational component measured by an accelerometer is the

projection of the gravitational vector onto the sensitive axis. . . . . 04
5.6 The accelerometer output changes nonlinearly along the cos( ) curve. 06
5.7 Signals obtained from a body-fixed TA while standing and lying. . . 07
5.8 A cube with accelerometers attached to each face moves along a level

surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08
5.9 The motion of the cube and the accelerations measured by each of

the six accelermeters. . . . . . . . . . . . . . . . . . . . . . . . . . . 09
5. 0 Block diagram of the separation filter. . . . . . . . . . . . . . . . . 3
5. Frequency response of the discrete time FIR filter. . . . . . . . . . . 4
5. 2 Responses of the FIR filter. . . . . . . . . . . . . . . . . . . . . . . 4
5. 3 The e ect of applying the FIR filter . . . . . . . . . . . . . . . . . . 5
5. 4 Ideal case of a rectangular prism with a TA attached to the front face. 24
5. 5 The rectangular prism with the TA moved to the right face and

rotated through 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5. 6 Coordinate transformations for the example of figure 5. 5. . . . . . 26
5. 7 Ideal case of a cylinder with a TA attached. . . . . . . . . . . . . . 28
5. 8 Horizontal cross-sectional models of the waist. . . . . . . . . . . . . 3
5. 9 Attachment of the TA unit to a non-uniform surface can be repre-

sented by attachment to a uniform surface. . . . . . . . . . . . . . . 33
5.20 Types of three dimensional models that were tested. . . . . . . . . . 34
5.2 Figure showing the nominal values for the angle of placement, tnom,

for various positions on the waist. . . . . . . . . . . . . . . . . . . . 35
5.22 Mean experimental values for angle of placement parameter using the

elliptical cylinder model with subjects lying supine. . . . . . . . . . 38
5.23 A comparison of errors using the elliptical cylinder model with sub-

jects lying supine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



x LIST OF FIGURES

5.24 A comparison of the error term from each of the three prismatic
models for subjects standing and lying supine. . . . . . . . . . . . . 39

5.25 Mean experimental angles from vertical when subjects were standing
and lying supine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.26 Histograms of measured gz values . . . . . . . . . . . . . . . . . . . 4

5.27 Mean Fourier transform taken across all 400 sit-to-stand and stand-
to-sit transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.28 Typical sit-to-stand and stand-to-sit transition signals. . . . . . . . 48

5.29 Mean cross correlation coe cients between the sit/stand transition
signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.30 Mean errors between the back TA signal and the rotated front TA
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Mean cross correlation coe cients between the signals from the two
TA units at each walking speed. . . . . . . . . . . . . . . . . . . . . 56

5.32 Prediction of acceleration signals from the sinusoidal model of pelvic
movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.33 Acceleration signals from two normal healthy subjects walking at a
normal speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.34 Signals obtained from a sacrum mounted TA during treadmill walk-
ing at di erent speeds by a normal, healthy subject. . . . . . . . . . 6

5.35 Fourier Transforms from a normal subject walking at 5 km. h 1. . . 62

5.36 Mean cross correlation coe cients between the Fourier transforms of
the front-right TA signals and the back TA signals as a function of
walking speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.37 The signals from the two triaxial accelerometers for a normal, healthy
subject walking at 5 km.h 1. . . . . . . . . . . . . . . . . . . . . . . 64

5.38 E ect of a small amount of noise on the second derivative of a signal. 68

5.39 Comparison of cam displacements and accelerations. . . . . . . . . . 69

5.40 E ect of median filter length on signal magnitude area during basic
daily activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 E ect of median filtering on signal magnitude area for data taken
from two elderly subjects. . . . . . . . . . . . . . . . . . . . . . . . 77

5.42 E ect of median filter length on signal magnitude area during tread-
mill walking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.43 Mean e ect of median filter length on signal magnitude area during
daily activity in 6 free-living subjects. . . . . . . . . . . . . . . . . . 79

5.44 E ect of median filter length on signal magnitude area for each of
the 6 free-living subjects. . . . . . . . . . . . . . . . . . . . . . . . . 79

5.45 E ect of median filter length on signal magnitude area for each of the
6 free-living subjects, shown as a percentage of the filtered (n = 3)
SMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.46 A comparison of signal magnitude area between front and back TAs. 82

5.47 SMA (front) versus SMA (back) . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xi

6. Classification hierachy showing the increasing levels of detail within
the classifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Overview of the triaxial accelerometer signal data processing and
classification framework. . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Flowchart of the activity detection classifier . . . . . . . . . . . . . 97
6.4 A typical sample of data collected showing the vertical axis acceler-

ation from a subject performing part of the test sequence. . . . . . 99
6.5 A comparison between the data for two stand-to-sit transitions, show-

ing the vertical axis acceleration versus time. . . . . . . . . . . . . . 200
6.6 Filter length (n) × window width (w) versus threshold (th). . . . . 203
6.7 Window width (w) versus filter length (n) across all 26 subjects. . . 205
6.8 The e ect of filter length, n, on the signal magnitude area, A, when

window width, w = 0.8 s. . . . . . . . . . . . . . . . . . . . . . . . 206
6.9 Receiver Operating Characteristic (R.O.C.) curve for the combina-

tions of parameters investigated. . . . . . . . . . . . . . . . . . . . 207
6. 0 Flowchart of the resting state classifier . . . . . . . . . . . . . . . . 2 2
6. Mean TA vertical axis output signals for 8 di erent postural orien-

tations when the device was placed above the right hip. . . . . . . . 2 5
6. 2 The predicted values for the four lying postures are evenly distributed

on a circle in the x—y plane. . . . . . . . . . . . . . . . . . . . . . . 2 7
6. 3 Classification of lying postures. . . . . . . . . . . . . . . . . . . . . 2 8
6. 4 A rule-based classifer for distinguishing between sitting and standing. 224
6. 5 Boxplot showing the mean SMA values for subjects when sitting and

when standing (N = 26). . . . . . . . . . . . . . . . . . . . . . . . . 225
6. 6 Flow diagram of the rule based sit/stand classification algorithm . . 226
6. 7 Modified rule set that does not rely on knowledge of the future for

processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6. 8 Relationship between tilt angle, duration, sitting and standing. . . . 232
6. 9 Antero-posterior, medio-lateral and vertical accelerations from one

subject standing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.20 Mean acceleration ranges on each axis for ten trials of the first four

postural sway tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.2 Boxplot of the SMA values recorded from ten trials of the first four

tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.22 Flowchart showing the fall processing algorithm. . . . . . . . . . . . 243
6.23 Signals obtained from a routine containing four falls. . . . . . . . . 244
6.24 Typical acceleration signals from a subject walking along the corridor.250
6.25 Percentage of walking speeds that were correctly identified. . . . . . 253
6.26 True and false positive rates as a function of walking speed. . . . . 257
6.27 Flowchart showing the walking detection algorithm. . . . . . . . . . 26
6.28 Flowchart for the classification of transitions. . . . . . . . . . . . . . 265
6.29 All of the possible lie-to-lie transitions. . . . . . . . . . . . . . . . . 266
6.30 Sit-to-stand and stand-to-sit transition signals. . . . . . . . . . . . . 268
6.3 Example showing the same activity accomplished in di erent amounts

of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276



xii LIST OF FIGURES

6.32 The complete classifier . . . . . . . . . . . . . . . . . . . . . . . . . 280

7. The flow of activities in testing and evaluation. . . . . . . . . . . . 288

7.2 Studies undertaken in the current work. . . . . . . . . . . . . . . . . 289

7.3 Two sample screens from the graphical user interface. . . . . . . . . 294

7.4 Flowchart showing the processing that was used within the cyclic
activity testing block of the walking detection algorithm. . . . . . . 302

7.5 Heuristic rules applied in study 3F to classify postures and activities
of free movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.6 “How to use the ambulatory monitor”–the tasks required by sub-
jects in order to use the TA system. . . . . . . . . . . . . . . . . . . 3

7.7 Flowchart of the sample-by-sample processing of the TA data. . . . 3 5

8. Experimental studies undertaken in the current work. . . . . . . . . 3 8

8.2 Histogram of self-reported daily health status. . . . . . . . . . . . . 329

8.3 Self-reported weekly health status–scores from the coop/wonca health
questionnaire for each subject. . . . . . . . . . . . . . . . . . . . . . 329

8.4 Boxplot showing the SMA values for periods of activity and periods
of rest for studies 2D, 3D and 4D. . . . . . . . . . . . . . . . . . . . 335

8.5 Boxplot showing the acceleration magnitude range values for periods
of activity and periods of rest for studies 2D, 3D and 4D. . . . . . . 335

8.6 An example of learning on the daily routine signal in study 4D. . . 343

8.7 Illustration of general movement. . . . . . . . . . . . . . . . . . . . 356

8.8 Example of an instance in which the subject performs a sit-to-stand
transition and then walks away, all as part of the one movement. . . 356

8.9 A comparison between the diary entries and the automated activity
classifications for study 3F. . . . . . . . . . . . . . . . . . . . . . . . 358

8. 0 Another comparison between the diary entries and the automated
activity classifications for study 3F. . . . . . . . . . . . . . . . . . . 359

8. Example of the notes made by subject regarding her daily activities
during the study period. . . . . . . . . . . . . . . . . . . . . . . . . 367

8. 2 TA signal from subject between 2 and o’clock on 9th September. 368

8. 3 Monitoring results for subject on 9th Sept. . . . . . . . . . . . . . 369

8. 4 Hourly mean recorded siganl magnitude area for subject on 9th Sept.370

8. 5 Monitoring results for subject on 9th Sept. . . . . . . . . . . . . . 37

8. 6 Scatterplot showing mean hourly SMA plotted against mean hourly
percentage of time spent in activity across all subjects in study 4D. 374

8. 7 Scatterplot showing mean weekly SMA plotted against coop/wonca
score across all subjects in study 4D. . . . . . . . . . . . . . . . . . 374

9. Illustration of the TA unit showing the current and proposed push
buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

9.2 Acceleration signals generated by a “simulated” stumble during walk-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389



LIST OF FIGURES xiii

9.3 Acceleration signals generated by a “simulated” stumble in which the
subject fell back into the chair after attempting to rise. . . . . . . . 389

9.4 Raw acceleration signals obtained from a stand-to-sit transition. . . 392
9.5 Magnitude acceleration for the stand-to-sit transition. . . . . . . . . 393
9.6 Endpoint detection, step : the body acceleration component esti-

mator is computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
9.7 Endpoint detection, step 2: the absolute value of the body accelera-

tion magnitude vector is computed. . . . . . . . . . . . . . . . . . . 394
9.8 Endpoint detection, step 3: determining the endpoint. . . . . . . . . 394
9.9 The e ect of white noise on the endpoint detection algorithm. . . . 395
9. 0 Example presentation of monitoring data. . . . . . . . . . . . . . . 402



List of Tables

2. Falls risk factors: ability to be modified and intervention strategies. 30
2.2 Balance and gait evaluations. . . . . . . . . . . . . . . . . . . . . . 32

3. Components of the sit-stand-sit movements. . . . . . . . . . . . . . 53
3.2 Temporal position of the major peaks of vertical and sagittal accel-

eration during the sit-stand-sit movement cycle. . . . . . . . . . . . 54

5. Descriptive statistics for static noise levels in the TA . . . . . . . . 00
5.2 Descriptive statistics for static noise levels in the TA device after

median filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
5.3 TA output for 6 basic postural orientations when the TA is placed

at various positions on a prism and a cylinder. . . . . . . . . . . . . 29
5.4 Mean cross correlation coe cients between the acceleration compo-

nent signals across all subjects. . . . . . . . . . . . . . . . . . . . . 57
5.5 Measured SMA values for each of the 6 elderly free-living subjects. . 78

6. The r.m.s. and SMA values from the filtered signals obtained from
26 subjects standing, sitting and lying. . . . . . . . . . . . . . . . . 94

6.2 Proportion of sets of parameters that gave a false positive rate less
than 0. in the control group as a function of true positive rate. . . 203

6.3 Optimal parameters for activity identification in the control set. . . 204
6.4 A comparison of the prismatic models in classifying lying subpos-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8
6.5 Sitting and standing classification algorithm results. . . . . . . . . . 230
6.6 Physical characteristics of subjects (N = 26) participating in the step

rate determination study. . . . . . . . . . . . . . . . . . . . . . . . . 248
6.7 Results of the Fourier transform based step detection algorithm. . . 252
6.8 Possible transitions based on postural orientation before and after

the activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.9 Results of the three sit/stand transition classification methods. . . . 274

7. Descriptive statistics that were measured for each of the periods of
activity and rest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

8. Characteristics of subjects participating in study 2D. . . . . . . . . 322
8.2 Extraneous movements occurring during 65 iterations of the directed

routine in study 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . 324

xiv



LIST OF TABLES xv

8.3 Characteristics of data and classification results from study 2D. . . 324
8.4 Extraneous movements occurring during 65 iterations of the directed

routine in study 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . 326
8.5 Characteristics of data and classification results from study 3D. . . 326
8.6 Characteristics of subjects participating in the unsupervised home

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
8.7 Details of daily routine performance in study 4D . . . . . . . . . . . 328
8.8 Extraneous movements occurring during 4 7 iterations of the directed

routine in study 4D. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.9 Compound movements occurring during 4 7 iterations of the directed

routine in study 4D. . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8. 0 Characteristics of data and classification results from study 4D. . . 333
8. Mean values for some parameters from the directed studies. . . . . . 334
8. 2 A comparison of mean x-axis accelerations for di erent postural ori-

entations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8. 3 A comparison of mean y-axis accelerations for di erent postural ori-

entations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
8. 4 A comparison of mean tilt angles for di erent postural orientations. 339
8. 5 Performance of the three walking detection algorithms. . . . . . . . 339
8. 6 Average step period for subjects in each study. . . . . . . . . . . . . 34
8. 7 Summary of data captured in study 3F. . . . . . . . . . . . . . . . . 352
8. 8 Classification results from study 3F. . . . . . . . . . . . . . . . . . . 353
8. 9 Classification rates for the two data sets in study 3F. . . . . . . . . 357
8.20 Classification rates after periods of identified activity that were not

described in the diary were disregarded. . . . . . . . . . . . . . . . . 357
8.2 Characteristics of subjects participating in the unsupervised home

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.22 Details of TA use during free living in study 4F. . . . . . . . . . . . 363
8.23 Data capture rates for study 4F. . . . . . . . . . . . . . . . . . . . . 372
8.24 Summary of large acceleration magnitudes generated in study 4F. . 373

9. Results of preliminary testing with the endpoint detection algorithm. 396



Certificate of Originality

I hereby declare that the work in this thesis is my own and to the best of my knowl-
edge it contains no materials previously published or written by another person, nor
material which to a substantial extent has been accepted for the award of any other
degree or diploma at UNSW or any other educational institution, except where due
acknowledgement is made in the thesis. Any contribution made to the research by
others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged
in the thesis.

I also declare that the intellectual content of this thesis is the product of my
own work, except to the extent that assistance from others in the project’s design
and conception or in style, presentation and linguistic expression is acknowledged.

Signature of Candidate

xvi



Acknowledgements

A Ph.D. thesis is not something that one can create in isolation, and I gratefully
acknowledge the support of everybody who has helped me along the way.

My thanks go first and foremost to my supervisors, Professor Branko Celler and
Associate Professor Nigel Lovell for their expertise, guidance and encouragement
throughout this project. In particular, Branko’s indefatigable enthusiasm, energy
and vision for the project, and Nigel’s attention to detail and demand for scientific
rigour were invaluable in creating this work.

Especial thanks go to my friend and colleague, Dr Adelle Coster for all the
time that she spent with me, talking through ideas, planning studies, and revising
written work, as well as for her unstinting support and encouragement. It is greatly
appreciated.

I am indebted to Dr Stephen Lord and Ms Anne Tiedemann of the Prince of
Wales Medical Research Institute for recruiting the subjects for the pilot study, and
for allowing me to use their falls risk assessment tools.

Thank you to the BSL team for providing technical support and to the people of
the BSL and CHI who always agreed to help out when I needed subjects for testing.
Thank you, too, to Dr Jim Basilakis for teaching me so much about the clinical
side of things, and to Dr Farah Magrabi for sharing her insights into evaluation and
research with me. I thoroughly enjoyed working with you both on everything that
we did together.

Finally, thank you to my husband, Glenn Horrocks, for his assistance in proof-
reading of the manuscript, and for all his love and support.

xvii



Chapter 1

Introduction

1.1 Vision Statement

The vision of this research is to provide a system for delivering health monitoring

support to housebound people, particularly those who live alone, including the frail

elderly and those with chronic disease. There are two primary aims:

. to automatically detect adverse events such as falls and to generate an alarm,

and

2. to monitor clinically sensitive parameters of movement in order to identify

early changes in falls risk and health status.

It is believed that this system could be used to promote independent living by

• providing increased peace of mind to housebound patients and their families;

• calling for aid if an adverse event such as a fall occurs; and

• providing objective, patient-specific information in a timely manner that al-

lows targeted interventions to be introduced to prevent further deterioration

in health.

The work contained in this thesis provides a fundamental framework for achiev-

ing these aims. The triaxial accelerometer has been demonstrated to be a practical

instrument for long-term, unsupervised monitoring of human movement. Excep-

tional events, such as falls, can be identified in the data from the triaxial accelerom-

eter. Important movements and postures, such as standing, lying and walking can
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be identified in the data and clinically significant parameters can be tracked lon-

gitudinally. The work of this thesis provides both the methodology required for

and implementations of real time human movement monitoring in an unsupervised

setting, using a triaxial accelerometer.

1.2 Research Motivation

A growing problem in current healthcare is that healthcare costs are increasing at

an unsustainable rate, and acute hospitals are becoming overburdened and unable

to meet the demands that are being placed on them.

This has led to an interest in alternative approaches to health care delivery, which

may be able to reduce costs and demand on hospitals, while not compromising the

quality of care being delivered. One such approach is home telecare, the remote

delivery of health care to the patient at home.

Monitoring human movement can provide valuable information on a patient. Pa-

rameters of movement can provide information on health status, functional ability,

rate of rehabilitation, risk of falling, and other potentially useful clinical data.

It has been proposed that accelerometry, a technique that is increasingly being

used for monitoring human movement in laboratories and research studies, is suit-

able for long term monitoring of human movement [3 , 72, 76, 73, 20 , 22 , 225,

242].

The question that then arises is whether or not accelerometry can be used in a

home telecare system to monitor movement in an unsupervised home setting.

1.3 Research Hypothesis

The hypothesis of the current work is that accelerometry is a suitable technique for

monitoring human movement patterns in unsupervised free-living subjects over ex-

tended periods, and that it can be used to quantitatively measure parameters that

can provide clinical insight into the health status of the subject. This hypothesis is

addressed through the development of a accelerometer-based system that is suitable

for human movement monitoring. Automated techniques for interpreting the data

captured by the system in terms of human movement are devised and evaluated.

Once the activity is classified, relevant parameters are extracted and tracked longi-

tudinally. The functionality of the system is evaluated over a domain of basic daily

activities and postural orientations performed by healthy subjects.
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1.4 Considerations in Unsupervised Assessment

of Human Movement

Any technology for unsupervised health monitoring must satisfy a number of general

requirements:

• the implementation must be driven by clinical need, not driven merely by the

existence of a new technology;

• it must function reliably;

• it must provide medical benefit;

• it must ensure the security of personal data;

• it must minimise inconvenience to the patient;

• it must be cost e ective; and

• it must be acceptable to both patients and health care workers.

Above all, the technology must meet the specific purpose for which it was in-

tended. In order to do this, the technology must be appropriate for the purpose. In

a six step, iterative framework for the assessment and evaluation of home telecare

systems, Magrabi [ 53] noted that before proceeding with any system development,

the problem must be clearly defined and examined to determine whether the in-

troduction of a home telecare system is an appropriate means of addressing the

problem.

Given the problem of an ageing population leading to an increasingly expensive

and unsustainable health care system, the need for an alternative health care ap-

proach is evident. A home telecare health monitoring system is an alternative that

has several desirable features:

• The patient can be monitored in the natural home environment. This provides

real information on how the patient performs at home, which can di er from

performance in a clinical setting.

• Home monitoring can provide patients with the security that they need to

continue living independently at home. Most people prefer to remain living

at home, especially if this is an alternative to nursing home care [204].
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• Data can be collected more regularly using an automated home monitoring

system, and with less inconvenience, than if clinical visits are required for data

collection. The more regular monitoring can also assist in maintaining health

by detecting early changes in health status.

An important aspect of health is functional ability–the ability to carry out

routine daily activities. The current work is concerned with objective monitoring

of functional ability by means of a home telecare system that monitors human

movement and then extracts relevant clinical information from the signal.

Since accelerometry has been successfully used in laboratory settings, and has

been hypothesized to be appropriate for use with free-living subjects it is appropriate

to consider its use in a home telecare setting.

In order to assess the utility of an accelerometry-based home telecare system

for unsupervised monitoring of housebound patients, it is first necessary to design

a system that meets all of the requirements listed above. In particular, it must

be noted that accelerometric monitoring requires a device to be attached to the

patient and this requires patient compliance. There are many factors that can

reduce the level of patient compliance, including the cost involved in purchasing and

maintaining the system, di culty in using the system, inconvenience, discomfort,

confusion in understanding how the system should be used, and forgetfulness [23].

A device that is to be worn over extended periods must be designed to be as

simple to put on and as comfortable to wear as possible in order to encourage

compliance. A system with multiple sensors placed across the body can provide

superior data to a system that has only a single sensor location. However, such

a system will be more time-consuming and thus more inconvenient to put on and

wear, which will lead to reduced compliance rates. There is also an increased risk

of confusion resulting in the patient incorrectly placing the sensors. The accuracy

with which wearable devices need to be attached will also a ect compliance. Devices

that require precision in placement will be more likely to be subject to incorrect

placement or reduced compliance in use due to the di culty of attaching the device.

A device that can tolerate some flexibility in placement is preferred on these grounds.
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1.5 Application of Accelerometry to Unsupervised

Ambulatory Assessment of HumanMovement

The application of accelerometry to monitoring of human movement has only be-

come practical in the last decade with the development of new accelerometer tech-

nologies. The application of accelerometry to unsupervised monitoring of human

movement is still relatively novel and there is limited knowledge available on its

suitability or on data interpretation methodologies.

In the current work a single instrument contained in a pager-sized case was

used to monitor human movements. This system was designed to be inexpensive,

simple to use, and as unobtrusive as possible. Three-dimensional accelerometry

was employed to monitor movements of the subject. The focus of the work was on

understanding the signals produced by this device and interpreting them in terms of

human movement, and in identifying clinically relevant parameters from the data.

The analysis and algorithmic development that was undertaken in the current

work was based on data taken from healthy young and elderly adults. The results

obtained provide normative baseline data and algorithmic parameter sets tuned

for normal subjects. This provides the basis for future work in which data can be

collected from specific housebound subject groups (such as the frail elderly, or people

with congestive heart failure) and compared to the results for normal subjects.

There are obvious limitations to using only accelerometry and measuring at only

one point on the body. It is not possible for a single instrument system to accurately

identify exactly what a person is doing all of the time. For example, if the device is

attached to the torso then the system is not responsive to activities that involve limb

movements but not torso movement (e.g. cycling or washing the dishes). However,

the purpose of the system is not to replace a detailed clinical assessment. Rather,

the purpose of the system is to monitor the patient over extended periods in order

to identify abnormal movements (such as falls) and changes in parameters that are

sensitive to changes in health status. Thus it is designed to be an automated alert

and early warning system.

In this context it is not necessary to have a complete classification of the patient’s

movements, provided that the system is able to detect abnormal movements, and

can extract and track clinically sensitive parameters. These parameters, which in-

clude sit-to-stand transfer time and walking cadence, are addressed in later chapters

(chapters 6—8).

There are several activities that are fundamental to independent daily living,

and which provide valuable information on functional ability. Two activities of par-
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ticular importance are walking and transferring (changing posture from sitting to

standing, or from lying to sitting, and so on). It is also valuable to know the pos-

tural orientation of the subject, which can be broadly classified as standing, sitting

or lying. Metabolic energy expenditure and the overall amount of time spent in ac-

tivity (as opposed to rest) during the day also provide useful information on health

status. The current work focuses on automated identification of important activities

and postural orientations from the signals obtained from a wearable accelerometer

device, and on the extraction of clinically relevant parameters.

1.6 Objectives of the Current Work

The aim of the current work is to assess the feasibility of using a simple, low-cost,

wearable, accelerometer-based device to measure human movement in an unsuper-

vised home environment.

The specific objectives of the work are

. to establish the requirements for an accelerometric home monitoring system,

and to provide a functional specification for such a system;

2. to develop an understanding of the data produced by a waist-worn, triaxial

(three-dimensional) accelerometer during human movement;

3. to develop a framework for the interpretation of the data provided by an

accelerometric home monitoring system;

4. to develop a classifier to identify falls, basic activities and postural orienta-

tions;

5. to develop algorithms to extract relevant information from the data in a real-

time setting;

6. to undertake a field trial of the system in an unsupervised home setting;

7. to evaluate the useability of the system for unsupervised home monitoring;

and

8. to evaluate the e ectiveness of the algorithms and the data interpretation

framework.
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1.7 Outline of the Current Work

The current work contains three broad parts.

Part I provides a general background to the area of research. Chapter 2 re-

views the statistics and the literature that provide the motivation for this research.

Traditional and new methods of health care delivery are described. The impor-

tance of objective monitoring of human movement is discussed. Techniques for the

assessment of human movement are reviewed and the choice of accelerometry for

unsupervised home monitoring is established. In chapter 3 the use of accelerometry

for monitoring human movement is introduced. Biomechanics and physiology of

human movements at the centre of mass are introduced. Literature pertaining to

the assessment of balance, sit-stand-sit transfers, and walking is reviewed, with a

particular focus on the use of accelerometry. The use of accelerometers to estimate

metabolic energy expenditure is reviewed. Studies in which accelerometers have

been used to classify movements, and to detect falls are also discussed.

Part II encompasses the design of an accelerometric system for unsupervised

monitoring of human movement. Chapter 4 discusses the functional and technical

requirements for such a system, and introduces the data collection system that was

used in the experimental studies of the current work. Chapter 5 develops an under-

standing of the data provided by the accelerometry system, both in a theoretical

and in an experimental context. In chapter 6 this understanding of the signals is

used to create a number of algorithms for interpretation of the accelerometric data.

A framework to analyse and interpret the data is introduced.

Part III discusses the experimental evaluation of the accelerometric data col-

lection and interpretation system. Chapter 7 provides details of the experimental

design used in the field studies. The results and discussion of the experimental work

are given in chapter 8.

The concluding chapters of the work provide recommendations for further re-

search (chapter 9) and draw the main conclusions from the work (chapter 0).



Chapter 2

Motivation

2.1 Overview

This chapter describes the motivation for the current work. It provides background

information on the current state of health care and alternative techniques that may

lead to improved outcomes. The chapter is divided into three sections. The first

section introduces the problem of providing health care to an ageing population,

which is placing a heavy burden on the existing health care delivery system. Home

telecare, an alternative health delivery paradigm, is presented. The importance of

regular health monitoring in maintaining health and quality of life for housebound

patients is discussed. Concepts of health and instruments for measuring health are

described.

The second section examines the common conditions that a ict the housebound

population, with a particular focus on the elderly, and discusses the potential benefit

of monitoring human movement during routine daily activities. The techniques

that are currently available for monitoring and assessment of human movement are

reviewed in the third section.

2.2 The Health Care Problem

2.2.1 Introduction

Over the last decade there has been a growing interest in alternatives to the tra-

ditional model of health care. This has been brought about through economic

pressures, the increasing demands being placed on hospitals due to an ageing pop-

ulation, and through a recognition of the importance of quality of life to health

8
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and a desire to improve quality of life for housebound patients. One alternative to

traditional health care delivery is home telecare, in which health care is provided

to the patient at home without a clinician or health care worker being present.

2.2.2 Defining Health

What is health? The concept of health has grown with the advancement of medical

science. Originally health was considered only in terms of survival. Interventions

were considered successful if they prevented mortality, and other factors were not

taken into account [ 64]. From this beginning health has evolved to be defined

as freedom from disease, then to an emphasis on the individual’s ability to per-

form daily activities, and finally to an emphasis on happiness, social and emotional

wellbeing and quality of life [ 64].

The Preamble to the World Health Organisation (WHO) Constitution states

that “health is a state of complete physical, mental and social well-being and not

merely the absence of disease or infirmity” [ ].

Patients’ views of health are in agreement with the WHO definition, in that

social and emotional health are perceived to be as important as physical health.

Sherbourne [ 97] states that

“patient preferences, which should be driving treatment decisions,

are related to mental and social health nearly as much as they are to

physical health. Thus, medical practice should strive to balance concerns

for all three health domains in making treatment decisions, and health

care resources should target medical treatments that improve mental

and social health outcomes.”

One of the fundamental aspects of health, according to the currently recognised

definitions, is quality of life. The factors that are considered essential for good

quality of life vary from person to person although good health (physical, mental,

social and emotional), functional independence and the ability to carry out routine

daily activities are generally regarded as important.

Maintaining personal dignity is also very important to quality of life, and a large

part of that is having the ability to make decisions about personal activities. This

is a freedom that is often lost, at least to some extent, in hospital and institutional

care settings. Moving into a managed care setting can also uproot a person from

their established social networks and community activities. It is for these reasons

that the majority of chronically ill, housebound patients and frail elderly patients
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prefer to live in their own homes rather than move into institutional care, despite

the increased risks and di culties associated with living alone [ 20].

2.2.3 Traditional Health Care Delivery Model

Medical care was traditionally provided by the physician to the patient in the pa-

tient’s home. In the twentieth century, advances in medical technology changed the

way in which health care was delivered. Patients now travel into the physician’s of-

fice for treatment of routine illnesses and health conditions. For more serious acute

illnesses and surgical procedures, patients are admitted to hospitals where they are

treated by specialist medical sta .

Dedicated health care centres such as clinics and hospitals allow costs and re-

sources to be shared amongst patients. This means that patients can have access

to the best available medical technologies and can receive the best possible care

(round-the-clock if in hospital) in a reasonably cost-e ective manner.

There are some drawbacks to hospitalisation. Hospitalisation takes the patients

away from their home environments and prevents them from carrying out any of

their usual activities. It may negatively a ect their social interactions, particularly

if the hospital is not near the home. There are risks of infection, injury due to

falling, loss of muscle tone leading to increased risk of injury on discharge, and

other problems that occur as a direct result of hospitalisation [94]. An acute crisis

and subsequent hospitalisation may be su cient to send the frail elderly, those

with a chronic disease, and those particularly susceptible to illness into a spiral of

increasing illness, frailty and dependence. Even if this is not the case, considerable

time and e ort must be given to rehabilitation.

An even more significant problem with the traditional model of health care is

that it is a reactive system. This model was designed for, and is appropriate for,

the treatment of acute problems, but not for the management of chronic conditions,

which are becoming increasingly prevalent in the community.

In this health care delivery model most community dwellers receive no medical

care until the onset of an acute illness or the occurrence of an injury. If the condition

is minor it is normally assessed by a general practitioner (GP) who will prescribe

treatment. Once health is restored there is often no further contact between the

patient and GP until the onset of another illness. In the event of more serious illness

or acute health crisis the patient may be admitted to hospital.

During hospitalisation the patient is monitored regularly and her or his condi-

tion optimised through appropriate use of medication and other treatments. After
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treatment, the patient is discharged, often without a follow-up programme.

This health care model, which was designed for treatment of an acute illness or

injury, can, in patients with chronic disease, result in recurrent hospital admissions

and poor overall management of the condition.

Di erent, pro-active models in which measures are introduced that seek to pre-

vent health problems from occurring or becoming worse are increasingly being used

in conjunction with this model. Community-based health promotion and main-

tenance programmes have been receiving increased interest and support in recent

years. Most of these programmes empower patients to take a more active role

in their own health care through the provision of education and tools to enable

health monitoring. Regular health monitoring forms an important part of such pro-

grammes. Regular monitoring enables changes in health to be detected, and hence

treated, early. This allows the patient’s condition to be maintained at close to op-

timal levels. Many patients with chronic illnesses manage their conditions at home,

but insu cient health monitoring can mean that drug dosages and treatments may

not be adjusted and optimised as the patient’s condition changes, and this may lead

to a deterioration in health that could have been avoided with better monitoring.

These shifts in methods of health care delivery are being brought about by an

ageing population that is leading to escalating health care costs and increasing pres-

sures on the existing hospital system, and also by a desire to use new technologies

to enhance quality of life by providing health monitoring and assessment at home

while not compromising the quality of health care. These two issues, health care

expenditure and quality of life, are discussed in the following sections.

2.2.4 Demographics

Australia’s population is ageing. Figure 2. shows the projected population increase

by age group between 996, 2020 and 205 . It can be seen that there is expected

to be little increase in those below 50 years of age, but that the numbers of people

over 50 years of age will increase substantially [5 ]. In 998 there were 2.3 million

Australians ( 2% of the total population) aged 65 years and over. This figure has

increased from 9% of the population in 976 [28], and is projected to rise to 6

million, or 24% by 205 . Similarly, those aged 85 years and over currently make up

% of the population, but are expected to make up 5% of the population by 205

[ 2]. There are currently over five people of working age for every person aged 65

years and over in Australia, but by the middle of this century there are expected to

be only 2.5 people of working age for every person aged over 65 [27].
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Figure 2. : Comparison of projected annual rates of increase of Australian popu-
lation by age over two periods: 1996 2020 and 1996 2051. Reproduced from
Commonwealth Department of Health and Aged Care data [5 ].

Population ageing is a worldwide phenomenon brought about by a decline in

fertility and an increase in life expectancy due to improved standards of living,

hygiene and medical knowledge. Globally the number of older persons (60 years or

over) will more than triple, increasing from 606 million today to nearly 2 billion by

2050. The increase in the number of the oldest old (80 years or over) is expected to

be even more marked, passing from 69 million in 2000 to 379 million in 2050, more

than a five-fold increase [ 5].

Australia has one of the highest life expectancies in the world at 75 years for

males and 80 for females [28], and this is projected to reach 82.0 years for males

and 86.1 years for females by 205 [6].

In Australia, the number of births has remained almost constant but the popu-

lation has increased due to immigration and increased longevity, causing an upward

shift in the age demographic. There were also a large number of people born after

the second world war (known as “baby boomers”). These people are now approach-

ing retirement and will soon be counted as part of the elderly population.

2.2.5 Health Care Expenditure

Health is one of our most valuable assets, and this is reflected in the amount of

money spent on health care services. The spending on health care services in de-
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Figure 2.2: Health expenditure as a proportion of GDP for selected countries, 975
to 996. Reproduced from Australian Institute of Health and Welfare data [7].

veloped nations has been gradually increasing. Figure 2.2 shows health services

expenditure as a percentage of gross domestic product (GDP) for a number of de-

veloped nations, including Australia, from 975 to 996. Australia spends around

8.5% of its GDP on health care services. The UK, New Zealand and Japan spend

around 7% of their GDP, France and Canada spend around 10% of their GDP and

the USA currently spends around 14% of its GDP on health care services.

In Australia, health care services expenditure has been growing at a relatively

steady rate and is much less dependent on the business cycle than other sectors of

the economy. Money is spent primarily on hospitals (36%), doctors’ services (20%),

pharmaceuticals (12%) and nursing homes (8%). Figure 2.3 shows a breakdown of

Australian health care expenditure for the 995-96 financial year.

In dollar terms, health care services cost Australia $44 279 million in the 996-

997 financial year. This represented an average rate of expenditure of $2 536 per

person. Between 975-76 and 996-97, real health services expenditure in Australia

more than doubled, with an average real increase of 3.5% per annum [7].
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Figure 2.3: Distribution of health expenditure by category of expenditure, Australia
995-96. Adapted from Australian Institute of Health and Welfare data [8].

Part of the increase in real health expenditure per person reflects greater use

of health services by people of all ages. As new health care technologies become

available, people expect a higher standard of care and this leads to increased costs.

The other main component in the increase in health expenditure is the ageing of

the population. Health expenditure remains relatively constant at about $ 200 per

annum per person until around 50 years of age. Above 50 years of age, average

annual expenditure rises from rapidly, as shown in figure 2.4. Hospitalisation and

polypharmacy are major contributing factors to the costs of health care for the

elderly.

On average, a person aged over 65 years spends four times as much on health

as does a person aged below 40 years. In 993-94 35.5% of health expenditure was

on people aged 65 or above (12.1% of the population). The Australian Institute

of Health and Welfare calculated that if the demographic predictions to 205 are

correct, then an additional $10.39 billion in today’s dollars will be required to

maintain the same level and quality of acute hospital care as is available today,

with about $4 billion of this attributable to the ageing of the population. This is

not a sustainable trend, nor can existing facilities support the demands that will be
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Figure 2.4: Total health care expenditure per person by age group ( 989- 990).
Adapted from Grant and Lapsley [86].

placed on them [7].

2.2.6 Techniques to Reduce Acute Hospital Admissions

The escalating costs of health care and the increasing burden being placed on the

health care system by the ageing population have led to an interest in alternatives

to acute hospital care. It has been shown that it is possible to reduce the length

of hospital stays and to reduce the number of acute hospital admissions using new

methods of health care delivery. There are a range of techniques that are able to

contribute to this.

After a systematic review of the literature, the New Zealand Health Technology

Assessment Clearing House (NZHTA) [5] concluded that

“Good evidence exists (from randomised controlled trials) that the

following interventions are e ective at reducing [acute hospital] admis-

sions: hospital at home schemes, comprehensive geriatric care, and the

placement of GPs [General Practitioners] in the ED [Emergency De-

partment]. It also appears that the introduction of various guidelines,

certain new technologies and the provision of prospective funding have

been proven to reduce admissions.



16 2. Motivation

“Some evidence exists that several other interventions are probably

e ective at reducing admissions. These initiatives include various pub-

lic health interventions, home alarms, increased options for long-term

care for the elderly, drug education for patients and practitioners, and

hospital outreach services. The provision of senior sta in the ED and

the development of ED-based observation units and chest pain units are

also probably e ective at reducing admissions.

“Some interventions appear to be unsuccessful at reducing admis-

sions although it should be noted that these interventions may still be

able to improve other health outcomes. These ine ective interventions

include: outpatient based education for individuals or groups, increased

outpatient services, and utilisation review and case management.”

Home telecare is a method of health care delivery that is associated with some of

these interventions such as hospital in the home, home alarms and increasing options

for long term care of the elderly. Home telecare is an alternative approach to health

care delivery that has the potential to help reduce acute hospital admissions and to

provide patient and economic benefit [208].

2.2.7 Home Telecare

Home telecare (which is also referred to as “tele-homecare”, “personal telemedi-

cine”, and “telehealth homecare” [ 0]) is a special application of a method of health

care delivery called telemedicine. The word telemedicine is composed from the Greek

prefix tele-, meaning distance, or distant, and from the Latin, medicus, meaning a

physician. Thus the term telemedicine can be defined to mean “medical care pro-

vided at a distance”. Coiera [49] defines telemedicine as the “remote communication

of information to facilitate clinical care”. Bashshur et al. [22] state that a telemedi-

cine system is one in which telecommunications and related technologies are used

to “enable, facilitate, and possibly enhance clinical care and the gathering, stor-

age, and dissemination of health-related information” when there is a “geographic

separation between two or more actors engaged in health care”.

In home telecare, telemedicine is used to provide health care to patients in their

own homes, without a health care worker being physically present. The primary

role of a home telecare system is to provide support to the patient [62]. Data are

collected from the patient in the home, and provided to the health care worker via a

telecommunications system. The data may be processed and analysed by the system

before being provided to the health care worker, or they may be transmitted without
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Figure 2.5: Illustration of a home telecare system. Home telecare encompasses the
whole process of providing care in a community setting. A home telecare system is
the technology employed to support the exchange of information. In this figure, the
home telecare system comprises a home client, central host and a clinician interface.
Reproduced from Magrabi [ 53].

having been processed. Figure 2.5 shows a generic home telecare system structure

including the interactions between health care professionals and the patient by

means of the home telecare system.

It has been hypothesized that home telecare techniques may be able to reduce

the cost and/or improve the quality of health care by

• helping to avoid hospitalization;

• reducing the length of hospital stays–patients can be sent home earlier be-

cause of adequate levels of home monitoring;

• supporting and providing patient rehabilitation;

• facilitating independent living;

• sustaining health by preventing medical incidents through early intervention;

• reducing the number of visits that patients need to make to the clinic;
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• allowing the provision of health care to patients living in remote communities;

and by

• providing security against crises, such as falls, in the home [43, 62, 95, 25,

208, 23 ].

A number of studies have demonstrated improved outcomes with the use of home

monitoring programmes [90, 95, 27]. However, preliminary studies on the economic

advantage and overall benefit of home telecare have led to mixed results [54, 24].

This is due to the small number of studies, and the large variety of di erent types

of home telecare projects, and the di erent health care funding models under which

these systems have been introduced.

2.2.8 Applications of Home Telecare

Most home telecare systems fit into one of several basic categories.

Tele-consultation systems allow remote consultations between the health

care worker and the patient, or between the health care worker and a specialist.

These systems often use video or web-cam links to provide images during the con-

sultation [24, 09, 8].

Patient Tele-Monitoring systems allow measurement of physiological pa-

rameters, such as heart rate and blood pressure. These parameters are transmitted

to a clinician station, where a nurse or clinician can view the results [ 4, 6, 49].

This system for measurement of physiological parameters is often combined with a

remote consultation facility.

Personal Emergency Response Systems provide a personal alarm that

can be used in the event of an emergency. The patient wears a small unit with a

push-button. In an emergency, the patient can press the button, which connects to

the telephone via a wireless link and dials up an emergency contact to whom the

patient can then speak without needing to reach the telephone [62, 92, 239].

Medication dispensing systems for scheduled dispensing of medications.

Such a system consists of a medication storage compartment which holds a supply

of tablets or capsules. When it is time for the patient to take some medications, the

system emits an audible reminder to the patient about which medications to take,

and in what quantities [206].
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Unobtrusive monitoring systems provide longitudinal patient monitoring

and automated alarm generation. These systems use sensors placed around the

home to monitor the daily activities of the patient, such as cooking, toileting,

watching television, etc. and generate an alarm when an abnormal deviation in

the daily pattern is detected [43, 85, 98].

2.2.9 Home Telecare for Continuous Health Monitoring

Personal alarm systems are one of the few telecare systems that are currently com-

mercially available for continuous health monitoring at home. Doughty et al. [62]

describe these systems as first generation home telecare systems. They are entirely

patient driven, they do not interpret data, nor can they automatically generate

alarms. Second generation systems automatically generate alarms in the event of

an emergency by means of continuous unobtrusive monitoring. Third generation

systems encompass a more wholistic idea of health. In addition to health monitor-

ing, they address social isolation, which is one of the biggest quality of life factors

a ecting housebound patients. Doughty et al. suggest that third generation sys-

tems will allow housebound patients to communicate with their peers through a

virtual community, made possible by telecommunications technology.

Tang and Venables [208] further define a fourth generation of Internet-based

systems to support home telecare. In these systems the Internet is used to facilitate

monitoring, alarming, data transfer, data access and the “virtual” community.

Celler et al. [44] describe home telecare systems in terms of the level of support

that the system provides to the patient. In this model the level of support provided

is matched to the needs of the patient. Three basic levels of support are provided,

and patients are encouraged to monitor and to manage their own health where

possible.

The first level of support is preventive health care and education for self-manage-

ment. This is directed at healthy people who want to learn ways to maintain their

health. The primary purpose of first level systems is to use up-to-date medical

knowledge to teach the patient techniques for health monitoring and maintenance.

The second level of support is for health maintenance. This is directed at people

with pre-existing chronic conditions. In a home telecare system designed to provide

this level of support, clinical instruments are provided to the patient for physiological

monitoring at home. The results are made available to the patients’ clinician.

This level of home telecare is suitable for patients with a chronic disease condition

that requires careful management (for example, congestive heart failure (CHF) or
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chronic obstructive pulmonary disease (COPD)) and for the elderly, in whom new

morbidities associated with the chronic and degenerative diseases of old age are

likely to emerge. Level two systems rely on regular patient participation in order to

measure the physiological parameters. This level of compliance may be too onerous

for particularly frail or ill patients, and is not suitable for patients with dementia.

The third level of home telecare systems provide support for patients who are

not easily able to take an active role in managing their health, or are at risk of falling

or becoming ill and being unable to raise the alarm for themselves. These corre-

spond to second generation systems on the scale developed by Doughty. Level three

systems provide continuous, unobtrusive monitoring by means of sensors placed

either around the home [43, 85] or on the person [ 6, 237, 239]. The monitoring

is combined with intelligent, real-time data processing to generate an alert if an

adverse event occurs, or seems likely to occur. Level three systems are completely

unobtrusive and provide continuous assessment of parameters.

Generally, the older a person becomes, the higher the level of support that is

required. Figure 2.6 shows the three levels of support superimposed onto a graph

of Australian health care expenditure by age group. As the cost of health care

increases, indicating a greater level of health requirement, the level of support pro-

vided also increases. Preventative health care strategies are introduced when sub-

jects are still healthy in preparation for old age. As health deteriorates, strategies

for health maintenance and health support are introduced.

It may be beneficial for a subject to receive more than one level of support at

the one time. For example, a patient with low-level CHF would benefit from regular

physiological monitoring (level two) and also from educational materials on CHF

and on maintaining a healthy lifestyle (level one).

There is some overlap between the three levels. For example, level two systems

may provide feedback on health status to the patient, which acts as educational

information for health maintenance. Another type of system, the wearable am-

bulatory monitor for unobtrusive monitoring, bridges the boundary between level

two and level III systems (figure 2.7). A wearable ambulatory monitor is a level

three system in that it provides continuous monitoring and patient input is not

required to make these measurements. However, it is not a pure level three system

in that patient compliance is required. The patient must decide to put on and wear

the ambulatory monitor each day. Such devices also provide monitoring for health

maintenance (both level two and level three function).
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Figure 2.6: Australian health care expenditure by age (financial year 989-90) show-
ing the three levels of home telecare support. Reproduced from Celler et al. [44].
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Figure 2.7: Overlap between the three levels of home telecare. Ambulatory moni-
toring using a wearable monitor overlaps between Level II and Level III support.

2.3 Health and Disease: The Case for Monitoring

Human Movement

2.3.1 Introduction

As people age, chronic conditions, neurological disorders and frailty become increas-

ingly prevalent. These factors, as well as a ecting health, have a significant e ect

on functional independence and quality of life. These conditions are not limited to

the elderly but they are more prevalent in older people, and so will become more

significant problems as the population ages. Neither the chronic disease conditions

nor the neurological orders are curable at the present time, but regular monitor-

ing and careful management of the condition can promote health maintenance and

quality of life by maintaining independence and avoiding morbidity.

2.3.2 Chronic Disease in the Elderly

Cardiovascular diseases are one of the leading causes of mortality in the elderly

population [4]. They are also one of the main causes of acute hospital admission

and readmission. 29.20% of all admissions and 38. 2% of all readmissions to Prince

of Wales Hospital (Sydney, Australia) in people over 55 years old in a 2-month
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period in 998- 999 were for cardiovascular conditions, in particular, for congestive

heart failure (CHF), chronic obstructive pulmonary disease (COPD) and ischaemic

heart disease (IHD) [ 79].

IHD is a condition that a ects the supply of blood to the heart due to the nar-

rowing or blockage of coronary blood vessels. This can lead to myocardial infarction

and is one of the most common causes of death. It is a condition that may have

no noticeable symptoms. As many as three to four million Americans may have

ischaemic episodes without knowing it [3]. On the other hand, CHF and COPD are

debilitating diseases that gradually cause a deterioration in health, leading to death.

As the disease progresses it has an increasingly profound impact on the patient’s

quality of life and functional independence.

In CHF the heart and the circulatory system are unable to meet peripheral

demands, resulting in dyspnoea, fatigue, weakness, increased venous pressure, pe-

ripheral and pulmonary oedema. CHF is the leading cause of hospital readmissions

in the elderly in the USA [ 29], where around 5% of 55-65 year-olds and 0% of

those over 75 years su er from CHF [ 3]. After the onset of CHF the median

survival time for women is 3.2 years while for men it is .7 years [ 02].

COPD is the name given to a group of diseases, including chronic bronchitis and

emphysema. They are chronic and slowly progressive respiratory disorders charac-

terized by reduced maximal expiratory flow during forced exhalation. The most

common symptoms of COPD are cough, increased sputum production, dyspnea,

and wheezing. It is the fourth leading cause of death in North America, where as

many as 0% of people over 55 years su er from the disease [2 2]. After hospitali-

sation for COPD the average survival time is 5 years. Over the past 5 years, the

incidence of COPD has risen more rapidly than that of any of the other leading

causes of death, and it is the only one of the ten leading causes of death with rising

mortality rates [2 2].

Both CHF and COPD lead to functional impairment and loss of independence.

Moreover, patients with one of these conditions are particularly susceptible to other

conditions that warrant hospitalisation and that limit independent living. The pri-

mary goals of health care in both cases are to prevent the further evolution of

the disease, to maximize functional independence and avoid repeated hospitalisa-

tions. This is done by maintaining a careful balance between the benefit obtained

from medications and the level of adverse side e ects, and by proper exercise, nu-

trition and avoidance of infections. This requires close monitoring in order that

treatment be successfully targeted. Inadequate supervision can lead to patient non-

compliance, sub-optimal treatment and complications which lead in turn to hospital
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readmission and mortality.

Home care is becoming an increasingly viable and important way of providing

monitoring and follow-up care to CHF and COPD patients. Intensive monitoring in

the home has been found to decrease the incidence of hospitalisation and increase

the functional capacity of elderly CHF patients [ 27]. Even low intensity home

monitoring has been found to have a marked impact on the number of hospital

admissions and the associated medical costs [95]. Patients feel that even simple,

regular monitoring greatly improves their health status and their quality of life

[ 49].

2.3.3 Neurodegenerative Disorders

Although cardiovascular disease remains the major cause of death in the elderly,

the types of diseases prevalent in the elderly is changing. The age-adjusted death

rate from cardiovascular disease (mainly heart disease and stroke) has decreased

by 62% from 968 to 996 [4]. This reduction in the cardiovascular diseases is

leading to the increased numbers of very old, and also to an increase in the presence

of neurodegenerative disorders. Figure 2.8 summarises the trends in prevalence

of traditional systemic disorders and neurodegenerative disorders amongst elderly

community dwellers. When the longitudinal trends of prevalence are studied, rather

than the actual prevalence at the current time, it can be seen that in the future,

the neurodegenerative disorders will become a more significant problem in elderly

health care than the cardiovascular diseases.

The neurodegenerative disorders associated with ageing are multifactorial, non-

fatal, disabling disorders. They can be grouped into four broad categories:

. motor instability and disorders of balance (leading to falls and social isolation),

2. cognitive impairment (e.g. the dementias, leading to loss of independence),

3. motor slowing (e.g. parkinsonism, leading to immobility), and

4. sensory impairment (disorders of vision and hearing, leading to disability and

social isolation).

The syndrome known as “frail old age” is a complex mixture of these disor-

ders. Broe et al. [2] predict that these disorders “will dominate as causes of severe

disability and poor quality of life in the near future”.

Treatment for these conditions consists of regular monitoring and intervention

to sustain health and to prolong the ability to function independently.
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(a)

(b)

Figure 2.8: Three year incidence of (a) systemic disease and (b) neurosensory disor-
ders in the elderly. N = 353, Age trends: * p < 0.05; ** p < 0.01. Figures provided
by Prof. Tony Broe, Prince of Wales Hospital, Sydney. (Refer to [2] for similar
data.)
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Figure 2.9: Age-specific rates of falls deaths for persons aged 65 years or more,
Australia 997. Source: Australian Institute of Health & Welfare, National Injury
Surveillance Unit based on ABS Causes of Death. Adapted from Bishop [28].

2.3.4 Falls

One of the biggest risks to the health and wellbeing of the elderly is the risk of

morbidity from injury, leading to functional dependence. Falls are a very serious

risk for the elderly, particularly for those living in the community. In those aged

over 65 years, two thirds of accidents are falls [94], and in the general Australian

community, accidents are the fifth leading cause of death, and one quarter of them

are falls [4]. Figure 2.9 shows the number of deaths due to falls in the Australian

population as a function of age.

Around 30% of community dwellers aged over 65, and 50% of those aged over

80 years fall each year, and half of these people experience multiple falls [2, 2 6,

2 7]. The risk of falls increases with increasing age [29, 65, 46, 48, 2 6], due

to multifactorial causes that may include neurological age-related changes, gait and

postural changes, medical and psychological ill health, and the e ects of medication.

Falls are the leading cause of injury-related hospitalization in persons aged 65

years and over, accounting for 54% of all injury hospital admissions in this age
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group [52]. Beyond 40 years of age, the incidence of fall-related admissions increases

exponentially [ 40].

Up to 20% of those elderly who fall su er moderate to severe injuries including

fractures, joint dislocations or head injuries [ 33, 2 6, 2 7]. This equates to between

22% and 60% (depending on the population under study) of older people su ering

injuries from falls [ 47].

One serious injury caused by falls is hip fracture. Elderly people recover slowly

from hip fractures. In many cases hip fractures result in death and of those who sur-

vive, most never recover their earlier mobility [ 47, 58]. Other serious consequences

of falls include death, loss of independence, hospital admission, and institutionali-

sation [64, 47, 2 7].

Falls are associated with functional decline in the elderly [65, 2 8], leading to

disability, dependence, and nursing home admission [2 4, 2 7]. Downton [64] com-

mented that “falls seem to be a marker of increasing frailty and risk of dying”.

Even non-injurious falls create a loss of confidence in mobility in the older person

[ 55, 2 5]. In a study of 1, 103 elders by Tinetti et al. [2 5], 43% of community

dwellers aged 70 years or older reported some degree of fear of falling, and 9%

reported avoiding activities because of fear of falling. Many elderly people, having

fallen once, become afraid of falling again, and so restrict their daily activities and

exercise, which in turn leads to a further reduction in health and wellbeing [2 8].

Up to half of all older people who fall without su ering injuries are unable to

get up without assistance. In a study of elderly fallers, Tinetti et al. [2 4] found

that of 3 3 non-injured fallers, 48 (47%) reported inability to get up without help

after a fall. An inability to get up after a fall results in a long lie if there is no

one to provide assistance. Wild et al. [236] found that of 25 elderly people who

fell in their own homes, twenty lay on the floor for more than one hour. Long lies

of an hour or more are associated with fear of falling, muscle damage, pneumonia,

pressure sores, dehydration, hypothermia and mortality [ 47, 2 4]. Moreover, fallers

who are unable to get up are more likely to su er a decline in activities of daily

living, to be hospitalized, and to die [2 4].

In independent older community-dwelling people, half of falls occur within their

homes and immediate surroundings [52, 6 , 48]. Most falls occur in commonly

used rooms such as the bedroom, kitchen and living room, and on level surfaces.

Relatively few falls occur in the bathroom, on stairs or from ladders or stools (figure

2. 0). Most falls occur during the day time and are in connection with routine daily

activities [ ].

As well as having an enormous detrimental e ect on health and quality of life
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Figure 2. 0: Locations in which falls occur. 56% of falls occur outside the home
(in the garden, street, footpath or shops). The remaining 44% occur at various
locations in the home. Adapted from Lord et al. [ 48].

for the faller, falls place a huge economic burden on the society. In Australia, the

management of injurious falls is estimated to cost $AUD 2,369 million annually [ 3].

Similar costs have been reported in other developed countries.

Direct costs of falls include doctor visits, acute hospital care, nursing home care,

outpatient clinics, rehabilitation, diagnostic tests, medications, home care, home

modifications, equipment and institutional care. Indirect costs include carer and

patient morbidity and mortality costs.

Rice and MacKenzie [ 90] evaluated the cost of injury in terms of the medical

resources used for

. the care, treatment, and rehabilitation of injured persons,

2. life years lost due to short- and long-term disability and premature death, and

3. pain and su ering of the injured persons, their families, and their friends.

They reported that injury due to falls yielded the second highest cost after

motor-vehicle accidents, estimated at $US37.3 billion in 985. Englander et al. [67]

estimated the cost of falls in the elderly in the U.S.A. in 994 to be $US20.2 billion,

with a cost per injured person of $7, 399. They predicted that the cost of falls would

increase by 32.5% by 2020.
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A study by Health Canada [9] found that fall injuries in Canada incur direct costs

of $2.4 billion and indirect costs of $1.1 billion per annum. The study estimated

that “targeting risk factors through prevention programs . . . could lead to 7, 500

fewer hospital stays and 1, 800 fewer Canadians permanently disabled. The overall

savings could amount to over $ 38 million annually.”

Although falls are referred to as accidents, the incidence of falls di ers signifi-

cantly from a Poisson distribution [7 ]. This implies that falls are not merely random

events but are initiated by causal processes [ 47]. Much work has been done on the

prevention of falls and there is good evidence that the risk of falls can be reduced

and that some falls can be prevented.

The most successful approaches identify the risk factors for falls and then inter-

vene to reduce those that are able to be modified.

Many risk factors for falls have been identified. Falls can be attributed to ei-

ther extrinsic factors such as slippery floors or obstacles, or intrinsic factors such

as neurodegenerative disorders, cardiovascular disease, parkinsonism, arthritis and

the e ects of medication [64, 33]. Over 85% of falls in the elderly are due to

intrinsic factors that limit the ability to correct any imbalance when walking or

transferring [ 33, 2 6]. Falling often appears to result from the accumulated e ect

of multiple specific disabilities [2 9]. This makes identifying the underlying causes

of propensity to fall di cult, and di erent studies have found di erent factors to

be important. Use of certain medications, cognitive impairment, disability of the

lower extremities, impaired balance and gait, foot problems, a previous history of

falling, poor mobility, advanced age, inactivity, frequent need for toileting, visual

impairment, functional dependence, muscle weakness, poor reaction times, an un-

stable blood pressure response to upright tilt, illness, anxiety and depression are

just some of the factors that have been found to contribute to the risk of falling

[65, 97, 46, 48, 52, 80, 2 6].

Some fall risk factors can be reduced through appropriate interventions. Ta-

ble 2. shows a list of fall risk factors compiled by Lord et al. [ 47] together with

intervention strategies for those that are able to be modified. Strategies include edu-

cation, exercise, environmental modification, clinical assessment and review, injury

minimisation through appropriate clothing and technologies (for example, flat-soled

footwear with good grip, hip protectors, walking aids, and personal alarm devices),

and monitoring leading to early intervention to prevent falls [ 3, 47, 2 8].

Some evidence exists that interventions that target a single risk factor can reduce

the number of falls [ 3], but strategies that target multiple risk factors appear to be

more successful. In a randomised controlled trial (intervention group n = 79, control
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Risk Factor Able to be

modified?

Intervention strategies

Advanced age No Discussion of increased risk
Female No Discussion of increased risk
Living alone Possibly Discussion of increased risk

and possible change of liv-
ing arrangements

Inactivity Yes Exercise, education
Limitations in the
activities of daily
living (ADL)

Yes Exercise, motor training,
use of aids, provision of as-
sistance with ADL

History of falls No Discussion of increased risk
Medical factors Possibly Appropriate medical or sur-

gical intevention
Medications Possibly Medication withdrawal, in-

vestigation of alternative
strategies

Poor vision Possibly Use of appropriate spec-
tacles, appropriate med-
ical/surgical intervention,
discussion of increased risk

Reduced peripheral
sensation

No Discussion of increased risk
and compensatory strate-
gies

Muscle weakness Yes Strength training
Poor reaction time Yes Exercise/training of fast,

coordinated responses, e.g.
exercise to music

Impaired balance Yes Exercise/training involving
control of movements of
centre of mass

Impaired gait Yes Exercise/training targeting
causes, consider use of aids
and appliances

Footwear Yes Advice re appropriate
footwear

Environmental
hazards

Yes Installation of safety fea-
tures, correction/removal of
hazards

Table 2. : Falls risk factors: ability to be modified and intervention strategies.
Reproduced from Lord et al. [ 47]
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group n = 81) Rubenstein et al. [ 9 ] found that a multifactorial intervention

led to 26% fewer hospitalizations and a 52% reduction in hospital days over 2

years. Tinetti et al. [2 3] ran a randomised controlled trial (RCT) of multifactorial

interventions (intervention group n = 153, control group n = 148) that led to

25% less falls and a reduction in fall risk factors in the intervention group. The

multidisciplinary approach of Hornbrook et al. [ 03], tested in an RCT (intervention

group n = 1271 households, control group n = 1571 households) led to a 0.85

reduction in the odds of falling and an actual falls reduction of 7%. Wagner et al.

[228] randomly assigned 559 seniors to an intervention group that implemented

one-o interventions targeting fall risk factors (n = 635), an intervention group

that received a general health promotion nurse visit (n = 317), and a control group

that received usual care (n = 607). After year the first group had a significantly

lower incidence of falls than the control group. After two years, the di erences

between the groups narrowed, suggesting that continuing support is required to

maintain a successful falls prevention programme. Close et al. [48] obtained a

significant reduction in fall rate (intervention group, n = 141, 83 falls reported,

control group, n = 163, 5 0 falls reported) over year through a multifactorial

intervention. The main drawback to studies of multifactorial interventions is that

it is di cult to evaluate the di erent components used in these approaches and

identify which components are actually necessary for a successful falls prevention

strategy.

Day et al. [58] addressed this in a randomised controlled trial for falls prevention

in the elderly (n = 1090). They tested 3 interventions, group based exercise, home

hazard management, and vision improvement, by dividing the cohort into 8 groups

defined by the presence or absence of each intervention. They found that group

based exercise, which led to improved balance, was the best single intervention but

the e ects were further improved by the addition of home hazard management or

reduced vision management, or both.

One of the most important parts of a fall prevention programme is identifying

people who are at risk in order to intervene before a fall occurs. In a report to

the Commonwealth Department of Health and Aged Care in 2000, the Australian

National Ageing Research Institute recommended that this be one of the primary

directions for future research [ 3].

There are a range of characteristics that have been identified as predictors of falls

and a number of falls risk tests have been developed. Lord et al. [ 43, 46] devel-

oped a comprehensive assessment tool to identify risk of falling based on individual

performance and compared to age-adjusted norms. This test includes eyesight, re-
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Balance Manoeuvres Gait Observations

Sitting balance Initiation of gait
Rising from a chair Step length
Immediate standing balance (first five seconds) Step height
Prolonged standing balance Step continuity
Withstanding nudge on chest Step symmetry
Standing balance with eyes closed Walking stance
Turning balance (360 ) Amount of trunk sway
Sitting down Path deviation

Table 2.2: Balance and gait evaluations. Reproduced from Tinetti et al.[2 9]

action time, leg strength, proprioception, and balance. Tinetti et al. [2 9] identified

mobility testing as the best single predictor of recurrent falling. The test that they

developed consisted of asking the subject to carry out a number of tasks focussing

on balance and gait, and a trained observer scoring each task. The tests are listed

in table 2.2.

Change in physical performance is a strong predictor of falls and the onset

of functional dependence in the activities of daily living. Gill et al. [84] assessed

physical performance in 775 functionally independent subjects in two tests separated

by a 2 month interval. They found strong correlation between change in physical

performance and functional dependence. They suggest that change in physical

performance could be useful in predicting future disability if measured over shorter

intervals.

Changes in gait are also a useful predictor of falls. The nature of these changes

is discussed in section 3.6. Measurement of postural sway when standing is another

useful predictor of falls. Elderly fallers have significantly greater levels of postural

sway than do elderly non-fallers [83, 43, 56].

2.3.5 Disability and Independence

Any loss of functional independence has a substantial impact on quality of life. A

person who loses functional independence can no longer carry out their normal daily

activities without assistance. This leads to reduced quality of life, social isolation,

loss of confidence, loss of condition through reduced exercise and activity, and can

necessitate a move to a nursing home.

Functional dependence can be precipitated by chronic disease, neurological dis-

order or an accident such as a fall. Many of the risk factors for future functional

dependence are the same as the risk factors for falling. Reduced lower extremity
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function is highly predictive of future functional dependence in elderly people. In

particular, the time taken to carry out activities is important [88, 22, 209]. Gu-

ralnik et al. [88] tested a cohort of 22 functionally independent subjects. Each

subject was required to complete a short battery of physical performance tests, in-

cluding a timed 2.4m walk at a normal pace, assessment of standing balance, and

a timed test of five repetitions of rising from a chair and sitting down. Subjects

with the worst performances were 4.2 to 4.9 times as likely to develop functional

disability within the next four years than those with the best performances, and

those with intermediate performance scores were 1.6 to 1.8 times as likely to develop

disability than those with the best scores.

2.3.6 Measuring Health

Measures of health are used to assess the e ect of interventions, and to identify

changes that may be predictors of functional dependence or a fall injury. During

the last decade, much work has been done developing techniques and methods for

measuring health status according to the broader definition put forward by the

World Health Organisation (refer to section 2.2.2). These instruments are generally

questionnaires completed by either the patient or a carer. They measure a number

of indicators of di erent aspects of health status. A standard scale is applied to

the measurement of each variable, and they are then combined to give an overall

total score which can be compared across individuals and for the same individual

over time. The di erent health measurement instruments can be divided into four

classes:

• those that measure physical well-being (e.g. Barthel Index [ 54], Katz scale

[ 6, 7], Functional Independence Measure [9 , 9];

• those that measure mental well-being (e.g. Mini Mental State Examination

[77], Geriatric Depression Scale [244]);

• those that measure social well-being (e.g. Weissman’s Social Adjustment Scale

- Self report [232], Katz Adjustment Scales [ 5]); and

• those that measure overall health status and quality of life (e.g. Quality of

Life Index [200], coop/wonca charts [ 77], Short Form 36 (SF-36) [229, 230],

DUKE [ 83], Sickness Impact Profile [25], Nottingham Health Profile [ 04]).

Self-evaluation of health status is becoming an increasingly important tool for

the measurement of health. Several studies have indicated that self-evaluation of
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present health status is a significant predictor of future mortality [ 07, 06, 4,

7 ]. Idler and Kasl [ 06] note that “subjective self-evaluation also conveys di erent

information than more objective health ratings”.

However, self-evaluation is intrinsically subjective and is heavily dependent on

the subject’s ability to recall events. This may lead to considerable discrepancy

between the patient and clinician evaluation [ 38]. Moreover, self-evaluation ap-

pears only to be able to predict gross changes in health. Objective measures of

health status, in particular, of functional status are needed to assess the a ect of

interventions on the patient’s health and to accurately monitor changes in health

status.

2.3.7 Measurements of Physical Well-Being

One of the primary measures of physical well being is the subject’s ability to carry

out routine daily activities. The assessment of physical activity in free-living sub-

jects is central to a complete understanding of the relationship between daily phys-

ical activity and health. This is typically assessed in terms of functional ability,

or functional status, which provides a measure of the patient’s ability to carry

out her or his routine daily activities. The World Organization of Family Doctors

(WONCA) Classification and Research Committee defined functional status as “the

level of actual performance or capacity to perform, both in the sense of self-care or

being able to fulfil a task or role at a given moment or during a given period” [ 7 ].

Functional status provides an indicator of the ability of a person to live indepen-

dently. Within the domain of routine daily activities, there are a number of specific

abilities that are needed for functional independence. The most basic are called the

activities of daily living (ADL) and the more complex activities are referred to as

the instrumental activities of daily living (IADL). The ability or inability to perform

ADLs and IADLs can be used as a very practical measure of ability/disability in

many disorders.

The activities of daily living (ADLs) are those activities necessary for basic

independent function. Katz [ 6, 7] defines these as bathing, dressing, toileting,

transferring from bed to chair, continence, and feeding. Katz noticed that the loss

of functional skills occurs in a particular order, the most complex functions being

lost first. Empirically, the six activities included in the index were found to lie in a

hierarchical order of this type - the ability to bathe independently is lost first, and

the ability to feed independently is lost last. Other items, such as mobility, walking,

or stair climbing, did not fit this pattern and were excluded from the list of ADLs
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[ 6]. There have been some slight alterations made to this list by some authors

and improvements to the way in which they are measured, but the basic list is still

widely accepted as a reasonable definition of ADL.

The ADL scales are concerned with severe levels of disability and, while they

are necessary to survival, more skills are required for independent living. The

IADL scales extend the ADL to include activities that are normally undertaken

by those living independently in the community. These include mobility, walking,

stair climbing, shopping, cooking, and managing money. The ability to carry out

IADLs is strongly correlated with functional independence in community-dwelling

patients.

Measures of functional status and ability in ADLs and IADLs are normally

assessed by asking the patient or a carer to complete a questionnaire, or to keep a

diary, or by clinical assessment through a battery of specific tests that are assessed

by a trained observer, or by the recording of quantitative parameters during a

battery of tests [ 64]. All of these methods of measuring functional status can

be time consuming for the patient, carer and specialist. Additionally, the first

methods are subjective and rely on the patient or carer to remember events and

performances. Observation by a trained person is also inherently subjective. The

main limitations of assessment using a battery of tests is that the patient is usually

assessed in an artificial setting, not actually performing the activities as part of the

usual daily routine at home. Although these tests can provide a good indication of

functional status, they cannot take into account every factor involved in carrying

out the routine daily activities. Many factors such as lighting, floor surface, and

choice of clothing can a ect a subject’s performance in daily activities. Moreover,

the clinical tests can only provide a snapshot in time of functional status. Many of

the factors that impinge on functional status are subject to variation. These include

medication, the onset of illness, emotional health, and levels of fatigue. Such factors

may vary over the course of days, and may even fluctuate during the day. A clinical

assessment cannot measure these variations in and so may fail to detect important

changes in functional status.

These limitations can be overcome by the provision of continuous, objective

monitoring in the home environment. Veltink et al. [225] stated that “to improve

the rehabilitation treatment of patients, their activities of daily living should be

evaluated in their domestic environments. This evaluation can give a good indica-

tion of the activity restrictions the patients experience because of their disabilities.

The rehabilitation treatment can then be directed toward relieving these activity

restrictions.” Continuous monitoring allows temporal fluctuations to be identified
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and measured. In order to be practical and not place unreasonable demands on the

patient or an observer, such monitoring also needs to be automated and unobtrusive.

Monitoring of human movement is intrinsic to the measurement of functional

status. Since functional status is a measure of a person’s ability to carry out routine

daily activities, it is necessary to measure the way in which the person carries out (or

fails to carry out) these activities. It is also important to know how much activity

the person is undertaking during the day, and at what level of intensity this activity

is undertaken. Techniques for the quantitative assessment of human movement may

provide a means of continuously and objectively monitoring a subject to identify

changes in functional status and health.

2.4 Techniques for Assessing Human Movement

2.4.1 Introduction

Techniques for the quantitative assessment of human movement may provide a

means of continuously and objectively monitoring a subject to identify changes in

functional status and health. Many di erent techniques have been used to assess

human movement in the clinic, the laboratory and in the home. The main ap-

proaches to the assessment of balance and human movement are described in the

following sections.

2.4.2 Assessing Balance

The assessment of balance has traditionally been centred around global measures of

balance abilities such as the measurement of total body sway or the measurement

of postural reflex function [243].

Marsden and Thompson [ 59] list seven key elements that should be examined

during any assessment of balance and gait. These are

. The ability to rise from a chair,

2. The ability to stand unsupported,

3. The ability to withstand a push,

4. The ability to initiate walking,

5. The ability to locomote,
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6. The ability to negotiate turns, and

7. The ability to walk a straight line heel to toe.

A number of procedures have been described to assess balance. The Fukuda

stepping test was one of the earliest established tests of balance, assessing vestibular

function. It required the subject to march in place with eyes closed for 45 s after

which the position of the body is assessed relative to the starting population [ 2].

One of the simplest and most widely utilized procedures is the Romberg test

[ 2]. In this the subject stands with feet together and eyes closed while being

observed for increased postural sway. The Romberg test is very easy to administer

but is inherently subjective. Variations on the Romberg test include the sharpened

Romberg, in which the patient assumes a stance with feet heel-to-toe while being

observed for increased sway or timed for total duration in position, the tandem

stance in which the patient assumes a stance with feet overlapping, and narrow

base of support while being observed for increased postural sway or timed for total

duration in position, and the one-leg stance in which the subject stands unsupported

on one leg while being timed for total duration in position or for 30 s, whichever

comes first [ 2]. The one-leg stance provides a general measure of balance, but its

reliability has not been established in large part due to the position of the non-weight

bearing leg, and arms, and it is often not tolerated by elders or by individuals with

neurologic impairment. The posture grid test provides a less subjective variation

of the Romberg test. In this, the subject stands in front of a posture grid while

the clinician observes the excursion of body sway (in degrees and distance) under

di erent balance conditions, such as eyes open and eyes closed.

Other clinical tests that assess the integration of sensory information and bal-

ance are used with neurologic and geriatric patients. In a typical test, the subject

attempts stands quietly for 30 s with (i) eyes open; (ii) eyes closed; and (iii) in

the presence of visual conflict. The three tests are then repeated while the subject

stands on a foam block. The aim of the test is to identify whether the subject is

over- or under-dependent in use of the senses governing balance.

In another variation, the sway path generated by the subject is traced onto

paper. The Hinsdale stylus technique, which is not widely used, uses a cap, which

is worn by the subject, with a pencil attached. A sheet of graph paper is placed

directly under the pencil and the path of the subject’s sway is traced onto graph

paper. The area and the complexity of the sway path are measured [ 96]. The

Wright ataxiameter is a shoulder-mounted device with a pencil attached. It also

traces out the sway path. A swaymeter that uses a pencil attached to the back of
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Figure 2. : Sway can be measured using a swaymeter, which measures displace-
ments of the body at waist level. The device consists of a 40 cm long rod with a
vertically mounted pen at its end. The rod is attached to subjects by a firm belt
and extends posteriorly. As subjects attempt to stand as still as possible, the pen
records the sway of subjects on a sheet of millimetre graph paper fastened to the
top of an adjustable height table. Reproduced from Lord [ 39].

a waist belt has also been used [ 44]. A setup for this apparatus is shown in figure

2. .

Force plates have also been used to measure balance [243]. Subjects stand quietly

on the force plate, and the excursion of the centre of pressure is calculated. This

is used to infer the degree of stability. However, there are some methodological

issues with using this type of centre-of-pressure approach to gauge stability. One

problem is that changing the relationship of the body segments can alter the centre

of pressure without a ecting the stability of the subject. A second problem is that

these measures do not necessarily correlate well with postural instability in daily

life. For example, many patients with severe neurological deficits such as Parkinson’s

disease show normal sway in quiet stance [243].

Other approaches to assessing balance have looked at components of motor

control [243]. The motor components have been studied by means of reactive and

proactive balance control measurements. Reactive methods measure how well the

subject responds to a disturbance. The subject is either asked to stand on a motion

platform which is then moved, or is asked to stand on a compliant surface. In
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proactive methods subjects are asked to perform a lifting or pushing task while

their balance is assessed. Proactive balance is also assessed by monitoring the

subject’s balance while walking.

2.4.3 Assessing Gait and Other Movement

Movement is most commonly assessed in the clinic or the gait laboratory, often using

multiple techniques, including direct observation, video recording, photogrammetry,

electromyography, force platform analysis and kinematic and kinetic techniques.

The gait cycle of a subject is normally su ciently regular that only several gait

cycles need to be studied. The same is true for many other basic movements such

as standing up out of a chair, where several repeated trials are su cient to obtain

a measure of the subject’s functional ability in this task.

2.4.4 An Overview of Assessment Techniques

Observation Techniques

Observation techniques are still widely used for assessment of aspects of balance

and human movement. A trained observer can rapidly and accurately classify a

subject’s movements as normal or otherwise simply by observing the movement.

Functional Tests

Functional tests are routinely used for assessing balance during movement. Vali-

dated functional tests provide formal assessment tools that use observation tech-

niques to rapidly assess salient parameters. The performance of the subject is graded

on an ordinal scale. Two examples of functional tests are the Timed Get-Up-and-Go

Test [ 60, 86], and The Tinetti Balance and Mobility Scale [2 9]. In the Timed

Get-Up-and-Go test subjects are required to stand up from a chair, walk 3 metres,

turn around and walk back. This test has been found to be a good indicator of

functional ability and correlates well with the Barthel Index for assessment of ADL.

Normal subjects can finish the test in less than 10 s, subjects who are independent

in ADL but may need some assistance in IADL can finish the test in less than 20 s,

while subjects who are functionally dependent need at least 30 s to complete the

test, if it is possible at all [243]. The Tinetti test was developed to screen for bal-

ance and mobility skills and to determine the risk of falls. This test was described

in section 2.3.4. The tools for assessing physical activity that were mentioned in

section 2.3.6 are other examples of functional tests.
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Simple Timed Measures

Analysis of gait characteristics such as average walking speed, stride length and

cadence can be computed by measuring the time taken by a subject to traverse a

path of known length and counting the number of steps taken.

Video Recording

Video recording is used in two di erent ways. It is used to record the subject’s

movement so that analysis by observation can be checked and post-hoc analyses

carried out. It is also used to provide a data stream to a motion analysis computer

program for detailed quantitative motion analysis (photogrammetry).

Motion Analysis Laboratories

Motion analysis laboratories use a wide range of technologies including pressure

sensors, accelerometers, force transducers and cameras to collect data on human

movement. The data are normally processed on a personal computer. In most

studies of human movement, the body is modeled as a series of linked rigid segments,

in which the motion of one segment a ects the motion of many others through

biomechanical interactions and neurological integration [243]. Photogrammetry is

routinely used in kinematic analysis in motion laboratories. Reflective markers

are attached to the subject around the areas of interest. As the subject performs

the movement under investigation, a video camera films the movement and the

data are streamed to the personal computer where the movement of the reflective

markers is tracked. The computer is equipped with a model of the human body and

uses this model to translate the positional movement of the reflective markers into

quantitative measurements of linear and angular displacement, velocity, acceleration

and force.

Electromyography

Electromyography (EMG) is the measurement of the electrical activity of muscles

during contraction. It is regularly used in motion analysis. Surface skin electrodes

and intramuscular wire electrodes measure the electrical activity of muscles. The

signals are then normally full wave rectified and low pass filtered. It has been found

that the relationship between rectified-filtered EMG and muscle force is nonlinear,

varies with muscle length (i.e. joint angle) and di ers among muscles. The patterns

of EMG activation during the gait cycle vary with velocity and from subject to
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subject, but the patterns of EMG activation vary very little for a given subject

walking at a constant speed [243].

Force Plates and Pressure Sensors

Mechanical force platforms were introduced by Jules Amar in 9 6 and further

developed by Herbert Elftman in 938 [ 0]. Mechanical force platforms are used

to record the three components of the ground reaction force and their point of

application. These data are used to compute dynamics of movement.

Fixed floor mounted pressure sensors and pressure insoles are used to study the

distribution of pressure beneath the foot during gait.

Kinematics

Kinematics pertains to the motion of a body in space without regard to the forces

that cause this motion. Any body segment moves in three-dimensional space with

six degrees of freedom–three directions of translational motion and three of rota-

tional motion. Goniometers are used to measure joint angles between body seg-

ments [82, 83]. Accelerometers are used to record the motion of body segments

[ 8, 30, 227]. Gyroscopes have been used to measure the orientation of body

segments [ 50].

Kinetics (Dynamics)

Kinetics is the study of forces. Normally, the investigator begins with a complete

knowledge of rigid body motion (measured using the motion laboratory systems)

and seeks to compute the underlying forces. Body segment parameters (moment

of inertia, mass, centre of mass), kinematic analysis and measured ground reac-

tion forces are used to compute the forces and torques at the joints between body

segments.

Other sensors

Electromechanical switches can be used to determine precise event timing. For

example, a switch or pressure sensor attached to the heel can be used to identify

the exact timing of heelstrike in gait. These switches can be used in combination

with other techniques to understand more about the movement [70].
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Unobtrusive Sensor Monitoring

Unobtrusive monitoring refers to a technique in which the movement of the subject

is monitored without the need for subject compliance [43, 85, 98]. The subject is

monitored indirectly by means of sensors placed around the home, such as thresh-

old detectors across doors, current sensors on electrical appliances and switches on

drawers and cupboards. By monitoring the activity in these sensors a pattern of

movement can be developed for the subject around the home. This approach by-

passes the di culties inherent in processing the signal from a motion camera, and

avoids the privacy issues involved with collecting images of the subject at home,

but can only provide limited information on gross parameters.

2.4.5 Summary

There are many di erent techniques available for assessment of balance and move-

ment in the laboratory setting. However, most of these are inappropriate for use

in unsupervised home monitoring. The photogrammetric techniques require a dedi-

cated laboratory set up. The observational techniques and the functional assessment

tools are generally too onerous and time consuming to be conducted on a regular

basis. Moreover, they are only sensitive to gross changes in functional ability. Force

platforms are very expensive and require a precision set up and specialised tests to be

conducted under careful supervision in order to obtain useful data. Subjects cannot

be engaged in their routine daily activities while force platform analysis is under-

taken. Using a camera to photograph or film the subject generates large amounts

of data that are di cult and time-consuming to process and taking photographs of

the subject while they are at home raises concerns about subject privacy.

Sensors such as pressure sensors, electromechanical switches, accelerometers,

goniometers and gyroscopes can be used in an unsupervised home setting. Systems

can be designed to use these sensors in an ambulatory setting and they can be

used to assess subject movement during routine daily activities. This “has the

additional advantage that assessment of gait during normal daily life is probably

more valid than gait analysis in a movement laboratory” [38]. Of these individual

types of sensors, the accelerometer can provide the most information over the widest

range of activities. Piezoresistive accelerometers provide measurement of vertical

orientation (tilt angle), and body acceleration. As opposed to a switch that can

only be in one of two states, they provide a range of measurement. They have

been used to objectively monitor physical activity, posture and balance, parameters

of gait, and to classify activities. Steele et al. [20 ] observed that “accelerometers
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have the advantage over other physical activity monitoring techniques in that they

are capable of providing information on specific patterning of activity. They are

able to measure an important dimension of functional status not previously well-

described.” Advances in the state of art technology have led to the development of

miniaturised, lightweight, inexpensive accelerometer systems that can be worn for

days or even weeks [3 ].

2.5 Chapter Conclusion

Demographic changes are leading to a situation in which the quality of care de-

manded by an ageing population can no longer be delivered due to increasing costs

and increasing burden on hospitals and other care facilities.

The predominant causes of hospitalisation and institutionalisation are cardio-

vascular disease, neurological disorders, and injury due to falls. The cardiovascu-

lar diseases and the neurological disorders are (at present) degenerative, incurable

conditions, and treatments consists of careful monitoring and management of the

condition to prevent deterioration and to promote quality of life. Falls risk can be

reduced through appropriate interventions once a fall risk factor has been identi-

fied. Identification of fall risk factors can be achieved through clinical testing and

enhanced by regular home monitoring to detect changes to risk factors. Predictors

of functional dependence can also be identified by observing longitudinal changes

in characteristic movements.

Continuous home monitoring can provide an ongoing, objective measure of func-

tional status. It can also be used to detect the occurrence of a fall. Accelerometry

is a practical tool that shows promise in the area of continuous home monitoring.

Applications of accelerometry to the assessment of human movement are discussed

in the next chapter.



Chapter 3

Background Information

3.1 Overview

There is growing interest in the use of accelerometry for monitoring human move-

ment in free-living subjects. The first section of this chapter reviews the types of

commercially available accelerometers and the performance specifications that are

required for the assessment of human movement.

Accelerometers are often attached at the waist. The advantage of this placement

is that the centre of mass of the body is normally contained within the pelvis and so

attachment at the waist allows monitoring of accelerations near the centre of mass.

This is discussed in the second section.

The subsequent sections review current knowledge pertaining to balance, pos-

tural sway, the stand-sit-stand movement and walking. The use of accelerometry in

assessment of these activities is reviewed.

The final sections of the chapter review the state of the art in the use of ac-

celerometers for classification of human activities, estimation of metabolic energy

expenditure and automatic detection of falls.

44
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3.2 Accelerometry in the Assessment of Human

Movement

3.2.1 Introduction

Human movement is generally assessed in the laboratory or clinic. Although lab-

oratory techniques can provide highly accurate and valuable clinical information

about motor activities, the results obtained can be significantly di erent to those

obtained by monitoring in the natural home environment [ 23].

In the last few decades, technological advances have allowed the development of

miniature, low cost accelerometers. This has led to interest in using accelerometry

as a tool for assessment of human movement in the natural environment. Studies

in which accelerometers have been applied to the assessment of human movement

have almost universally indicated that they show promise as a tool for monitoring

free-living subjects [3 , 56, 70, 65, 9, 22 , 73, 32, 95, 225, 62, 20 , 72, 76, 99,

8, 46, 38, 40]. Accelerometers can provide objective, quantitative information on

human movement. They are “capable of providing information on specific pattern-

ing of activity” and can “measure an important dimension of functional status not

previously well-described” [20 ]. Their small size and relatively low cost also make

them a convenient tool for monitoring free-living subjects.

3.2.2 Commercially Available Accelerometers

There are two basic types of commercially available accelerometers. These are

the piezoelectric accelerometer and the piezoresistive accelerometer. Piezoelectric

accelerometers are like damped mass spring systems in which a piezoelectric element

acts as a spring and damper. An acceleration of the mass causes a stress in the

piezo crystal. The crystal generates an electrical charge from which the acceleration

can be measured.

Piezoresistive accelerometers use silicon resistors whose electrical resistance cha-

nges in response to an applied acceleration. The sensor is made from a surface

micromachined polysilicon structure built on top of a silicon wafer. Polysilicon

springs suspend the structure over the surface of the wafer and deflect with ac-

celeration forces. There are several ways in which the acceleration can then be

measured. For example, the resistors can be connected in a Wheatstone bridge con-

figuration to produce a voltage proportional to the amplitude of the acceleration

of the small mass in the sensor. Alternatively, a di erential capacitor with central
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plates attached to the moving mass and fixed external plates can be used. An ap-

plied acceleration will unbalance the capacitor, resulting in an output wave with an

amplitude proportional to the applied acceleration.

Piezoresistive accelerometers are smaller than piezoelectric accelerometers. Minia-

ture piezoresistive accelerometers are now readily available and are relatively inex-

pensive. Piezoresistive accelerometers require an external power source whereas

piezoelectric accelerometers do not. Piezoresistive accelerometers are sensitive to

constant accelerations, such as the acceleration due to gravity, whereas piezoelectric

accelerometers do not have a d.c. response. Piezoresistive accelerometers are tra-

ditionally used as tilt sensors while piezoelectric accelerometers have traditionally

been used for applications such as vibration monitoring on machinery and turbo-

machine condition monitoring.

Recent human movement research has favoured piezoresistive accelerometers,

even when a d.c. response is not required. This is because the d.c. response allows

the calibration of the accelerometer by rotation within the gravitational field.

More recently, accelerometers based on thermal sensor technology have become

commercially available [ 87], although they have not yet, to the knowledge of the

author, been used for monitoring human movement. In these instruments, thermo-

couples are placed around a heating element to act like a Wheatstone bridge, where

any di erence in temperature between sensing elements results in a di erential sig-

nal that is suitably amplified and conditioned. A change in acceleration results in

a change in temperature gradient, and hence a change in output signal. Function-

ally, thermal accelerometers are very similar to piezoresistive accelerometers. They

require an external power supply and can measure constant accelerations as well as

changing accelerations. However, this technology can measure accelerations with

greater resolution for lower cost than other technologies.

3.2.3 Accelerometer Specifications for Human Movement

Monitoring

Most of the frequencies and amplitudes of human movement are quite low. Ac-

celerometers for monitoring human movement need to be designed to measure small

magnitude changes at low frequencies.

Bhattacarya et al. [26] studied the vertical accelerations generated during run-

ning and trampoline jumping. They found that those generated during running

were greater than those generated during trampoline jumping. The accelerations

recorded at the ankle ranged from 3.0 to 12.0 g, from 0.9 to 5.0 g at the low back,
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and from 0.8 to 4.0 g at the head. Cappozzo [4 ] reported that, during walking,

vertical accelerations ranged from 0.3 to 0.8 g and that horizontal accelerations

ranged from 0.3 to 0.4 g at the low back and from 0.2 to 0.2 g at the head. Here

g refers to the acceleration due to gravity, approximately 9.81m.s 2.

During running, most acceleration is below 18Hz at the ankle, and occurs at

lower frequencies at the low back and head. During trampoline jumping, the fre-

quency content was found to be similar at all three sites and ranged from 0.7 to

4Hz [26]. During walking, most of the acceleration power in the upper body occurs

at frequencies below 5Hz [4 ]. Antonsson and Mann [2 ] reported that 98% of

the power in barefoot walking is contained below 10Hz and 99% is contained below

15Hz. Aminian et al. [20] found that there was no significant acceleration frequency

component above 16Hz at either the low back or the heel during treadmill walking.

Sun and Hill found that the major energy band for daily activities was 0.3 3.5Hz

[202].

In the light of these findings, Bouten et al. [3 ] concluded that in order to assess

daily physical activity, accelerometers must be able to measure accelerations up to

±12 g in general, and up to ±6 g if they are attached at waist level. They must

also be able to measure frequencies between 0 and 20Hz.

3.3 Centre of Mass and the Pelvis

The centre of mass is a point equivalent of the total body mass for a rigid body.

Newton’s second law of motion for a mass system states that the resultant of the

external forces on any system of mass equals the total mass of the system times

the acceleration of the centre of mass. Thus, in order to determine “whole body”

movement of a rigid body, it is su cient to know the movement of the centre of

mass.

The vertical projection of the centre of mass onto the ground is called the centre

of gravity.

The position of the centre of mass of a human subject depends on the posture

of the subject, but most of the time the centre of mass is located within the pelvis.

The pelvis is formed from three groups of bones: the sacrum, the coccyx and the

two innominate bones (figure 3. ). The sacrum consists of the five sacral vertebrae,

fused together. The coccyx is the vestigial tail made of three to five rudimentary

vertebrae. The innominate bone on each side is formed by the fusion of three bones:

the ilium, ischium and pubis. The only real movement between the bones of the

pelvis occurs at the sacroiliac joint, and this movement is generally very small. It
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Figure 3. : Bones and joints of the lower limbs. Reproduced from Whittle [235].

Figure 3.2: Centre of gravity when standing and bending. Reproduced fromWhittle
[235].

is thus reasonable to regard the pelvis as a single rigid structure [235].

When a subject is standing upright, the centre of gravity is just in front of the

lumbosacral junction, in the middle of the pelvis [235]. Any movement of the body

will cause the centre of mass to shift. It is entirely possible for the centre of mass

to move outside the body. For example, the centre of mass of a person bending

down to touch their toes is typically in front of the top of the thigh (figure 3.2).

However, for most basic movements and postural orientations, the centre of mass

remains within the region of the pelvis.
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Figure 3.3: Fourier transform of Centre of Pressure (COPx) and Centre of Mass
(COMx) in the anteroposterior direction. Reproduced from Winter [240].

3.4 Standing and Postural Stability

Postural stability is the ability of an individual to maintain the position of the body,

or more specifically, the centre of mass, within specific boundaries of space without

needing to move the base of support. This requires the complex integration of

sensory information regarding the position of the body relative to the surroundings,

and the ability to generate forces to control body movement [ 47]. During quiet

standing, balance is constantly being corrected to keep the body upright, and this

is characterised by small amounts of postural sway [ 47]. Impaired balance and

impaired postural control both lead to a high risk of falling [2 6, 2 4, 2 3, 2 9].

The body sways about the ankle joints in the antero-posterior direction with

an undamped natural frequency of around 0.3Hz for a normal adult, although

muscle and joint damping reduce this frequency [240]. Figure 3.3 shows the Fourier

transform (FFT) of the antero-posterior postural sway of the centre of mass for a

typical adult subject.

Above thirty years of age postural sway tends to increase with increasing age.

This is caused by a range of factors, including reduced lower extremity muscle

strength, reduced peripheral sensation, poor near visual acuity and slowed reaction

time [66, 44]. Increased sway is particularly evident in studies in which subjects

stand with their eyes closed [ 47]. In older people postural sway, particularly when
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standing with eyes closed, is a predictor of future falls [ 43, 56, 75].

Both amplitude and frequency are important in assessment of postural sway,

with large sway amplitudes and higher frequencies being indicative of postural in-

stability [ 2, 75]. It has been postulated that the harmonic content of the postural

sway signal contains information regarding the degeneration of the balance control

system due to ageing and balance related pathologies [240]. The spectral pattern of

sway obtained using a force platform has been found to be useful in distinguishing

between various pathological conditions, and it has been suggested that “quanti-

tative sway assessment may be most important in the identification of subtle and

idiopathic falling disorders” [ 2].

Di erent approaches to measuring balance and postural sway were described in

section 2.4.2. These included the Romberg test, the Wright ataxiometer and force

platform analysis.

All of these tests need to be set up and conducted by an observer, not by

the patient him or herself. None of these tests are suitable for assessment of bal-

ance during routine daily activities, nor for continuous monitoring. Moreover, the

Romberg-style tests are subjective and can only provide a qualitative assessment,

and force platform analysis and ataxiometric tests can only provide a measure of

static postural sway, which may not reflect the likelihood of falls and instability in

daily living.

Accelerometry has been found to be a reliable method for measurement of bal-

ance during standing and walking, with a high absolute test-retest reliability [ 69].

Kamen et al. [ 2] used an accelerometer to quantitatively assess sway frequency

and amplitude. Twenty subjects, ten young ( 8—32 years) and ten old (69—86 years),

were asked to stand (i) normally on a firm surface; (ii) on a block of foam; and (iii)

on a block of foam with eyes closed while sway along the anterior-posterior axis

was measured using a uniaxial accelerometer. They analysed data obtained from

accelerometers attached at the shoulder, knee, back, and forehead. The most con-

sistent results were obtained when the accelerometer was positioned on the subject’s

back, midway between the posterior superior iliac spines at about S2 (the second

sacral vertebra). They also suggested that a wearable accelerometer could be used to

provide a clinician with some indication of the number of “destabilizing challenges”

faced by a person during a normal day.

In a preliminary study with eight subjects, Mayagoita et al. [ 63] found that

measurements from a sacrum mounted triaxial accelerometer (TA) were able to

distinguish between four di erent test conditions–(i) feet apart, eyes open; (ii) feet

apart, eyes closed; (iii) feet together, eyes open; and (iv) feet together, eyes closed–
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as well as or better than simultaneous force platform measurements. Waarsing et

al. [227] defined a performance parameter based on the balancing forces during

walking as reflected in the power spectrum of the signal from a TA. Preliminary

work found that the performance parameter could be used to order di erent gait

patterns in terms of relative stability.

3.5 The Sit–Stand–Sit Movement

The ability to rise from a chair is of fundamental importance for functional inde-

pendence. Rising from a chair is regarded as the most mechanically demanding

functional task undertaken during daily activities [ 22], and is a prerequisite for

gait [ 28]. An inability to rise from a chair can prevent an otherwise functionally

independent subject from independent living [ 72]. The ability to sit down in a

controlled manner is of equal importance.

Standing and sitting are movements that depend heavily on balance and leg

strength to support and control the movement. Both movements have been shown

to follow a structured sequence of events [ 22, 2 ]. Figure 3.4 shows the linear

displacement of the trunk and the angular displacement of the knee during sit-to-

stand and stand-to-sit transitions for a normal subject.

There are four basic components to each of the sit-to-stand and the stand-to-

sit transitions. These components are listed in table 3. . The forward lean of the

rising phase serves as a means of developing forward momentum in the horizontal

direction. The knee movement changes the direction of motion from horizontal to

vertical and assists in maintaining balance.

The timing between the forward lean, the knee extension and the vertical dis-

placement component is critical to ensuring a change in direction and the preserva-

tion of equilibrium [42]. The timing of the knee extension is highly correlated with

the initiation of vertical displacement. Kerr et al. [ 22] found that female subjects

demonstrated a later initiation of knee extension than male subjects. The reason

for this was not known, but it was suggested that di erences in anthropomorphic

variables and the relative position of the centre of gravity may be contributing fac-

tors. They also found that the knee extension phase occurred progressively earlier

with age.

The total rise time for normal subjects is 1—3 s [ 22, 2 ] but can take up to

10 s for subjects with disability [ 72]. (Kralj et al. [ 28] reported mean rise times

of 2.58—5.12 s for normal subjects, but these times are considerably greater than

those quoted in other studies.) There is some evidence that rise times increase with
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Figure 3.4: Analogue representation of the sit-stand-sit movement. The top three
graphs represent linear trunk displacement in three dimensions and the fourth graph
represents angular displacement of the knee in the sagittal plane. Rising Phase: .
Initiation of forward lean, 2. Initaion of knee extension, 3. Initiation of vertical
displacement, 4. Final forward lean, 5. Final vertical displacement, 6. Final knee
extension, 7. Final backward lean (recovery). Descending phase: 8. Initiation of
forward lean, 9. Initiation of knee flextion, 0. Initiation of vertical displacement,
. Final forward lean, 2. Final knee flexion, 3. Final vertical displacement, 4.

Final backward lean (recovery). Reproduced from Kerr et al. [ 22].
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Component Description Boundaries

Rising Phase

Forward lean Forward movement of Initiation of forward lean/
the trunk final forward lean

Knee angular Extension of the knee Initiation of knee extension/
displacement final knee extension
Vertical Upward movement of Initiation of vertical displacement/
displacement the trunk final vertical displacement
Recovery Backward movement of Final forward lean/

the trunk (stabilization) final backward lean
Descending Phase

Forward lean Forward movement of Initiation of forward lean/
the trunk final forward lean

Knee angular Flexion of the knee Initiation of knee flexion/
displacement final knee flexion
Vertical Downward movement of Initiation of vertical displacement/
displacement the trunk final vertical displacement
Recovery Backward movement of Final forward lean/

the trunk (stabilization) final backward lean

Table 3. : Components of the sit-stand-sit movements. Reproduced from Kerr et
al. [ 22].

increasing age [ 22].

During the descending phase, the forward lean component has a significantly

lower velocity than during the rising phase. The purpose of the forward lean during

a descent is to position the centre of gravity over the base of support. Similarly

to the rising phase, the timing between the forward lean, the knee flexion and the

vertical displacement is critical. In particular, the end of the knee flexion and the

end of the vertical displacement are closely related.

The total time to descend was around 2 s for normal subjects and was less age

dependent than the rise times [ 22, 2 ]. (Again, Kralj et al. reported significantly

greater descent times of 4.01 to 5.38 s for normal subjects.)

The sit-to-stand and stand-to-sit movements have been generally assumed to

have bilateral symmetry in normal subjects, although Lundin et al. [ 5 ] tested the

validity of this assumption for lower extremity joint moment and found that left

hip movement was significantly di erent from right hip movement in both groups.

However, although the asymmetry was statistically significant, the magnitude of

the asymmetry was small and may have only slight biomechanical significance.

Performance of the sit-to-stand movement changes with age. In elderly subjects

the forward lean component moves gradually from a momentum generating function
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Acceleration peak Mean (ms) SE Range

Vertical acceleration, rising (va ) 795.6 6.5 759—819.5
Sagittal acceleration, rising (sa ) 798.8 6.3 763.3—819.5
Vertical acceleration, descending (va2) 1537.6 6.4 1500.0—1560.5
Sagittal acceleration, descending (sa2) 1551.0 6.3 1513.0—1572.5

Table 3.2: Temporal position of the major peaks of vertical and sagittal acceleration
during the sit-stand-sit movement cycle. Reproduced from Kerr et al. [ 2 ].

to one in which the centre of mass is always positioned over the changing base of

support [ 22]. The duration of the forward lean is increased and overlap with the

vertical displacement component is decreased. This leads to a loss of integration

between the components and places a greater demand on the lower limbs to provide

the force for rising. However, the elderly have significantly reduced leg power. Bosco

and Komi [30] found that those over 72 years of age retained only 20 25% of the

lower limb power found in young adults. This is believed to be the reason why some

otherwise healthy elders have di culty rising from a chair [ 22].

Although most published work on the sit-to-stand and stand-to-sit transitions

has reported results in terms of displacement, Kerr et al. included acceleration-

based results in their studies. They presented the temporal position of the major

peaks of vertical and sagittal acceleration during the sit-stand-sit movement cy-

cle, using data taken from 10 normal female subjects [ 2 ]. The accelerations are

illustrated in figure 3.5 and the timing results are reproduced in table 3.2. They

found strong correlations of r = 0.907 (P < 0.0005) between the time of the vertical

acceleration peak and the initiation of knee extension in rising, and correlations of

r = 0.887 and r = 0.994 (P < 0.0005) between the timing of the sagittal and ver-

tical acceleration peaks in rising and descending, respectively. These results were

supported by data from a later study of the sit-stand-sit movement in 50 normal

subjects [ 22]. In addition, they reported a high correlation between the sagittal

acceleration peak and the time of maximal forward lean during both rising and de-

scent. In the case of descent, the time of the peak vertical acceleration occurred at

the end of the vertical displacement at the time of regaining contact with the seat

for young females and the elderly. For young men and the middle-aged, the peak

occurred at the initiation of descent. They suggest that this variation is probably a

reflection of the controlled nature of the eccentric muscle activity during this phase.

There may also be a relationship between timing of the peak accelerations and

the risk of falling. Troy et al. [220] tested this hypothesis, using accelerometers, in

a study of 37 elderly subjects–20 healthy and 7 with Parkinson’s disease. An ac-
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Figure 3.5: Graphical representation of acceleration during the sit-stand-sit move-
ment cycle. Refer to table 3.2 for descriptors. Reproduced from Kerr et al. [ 2 ].

celerometer was attached to the waist of the subject who performed four sit-to-stand

transitions. The timing between the acceleration maximum and minimum was com-

pared a fall risk index that was derived from self-reported falls history. There was

a moderate correlation (r = 0.537) between the sit-to-stand accelerometry charac-

teristics and falls risk in the subject cohort, which suggests that the characteristics

of the acceleration signal during sit-to-stand may be a useful predictor of falls in

the elderly.



56 3. Background Information

3.6 Walking

3.6.1 Introduction

Walking is a complex action that requires the integration of movement from many

body segments. It is important for independent living and changes to a person’s

gait pattern can be early indicators of decline in functional ability or of future falls.

3.6.2 The Gait Cycle

Every person has their own individual style of walking that is designed to optimise

the e ciency of the movement for that person [ 08]. Walking style is a ected by

many factors, such as physique, purpose of the walk, type of footwear, physical

health and emotional state. Nevertheless there is a basic sequence of events that

must occur for walking to be achieved: each foot in turn must leave the ground and

then strike the ground again. This occurs in a regular sequence known as the gait

cycle. One gait cycle is understood to go from initial foot strike to the next foot

strike of the same foot. It is generally assumed that all successions of the gait cycle

are identical. Although this is not strictly true, it is a reasonable approximation for

walking at a constant speed [ 08].

The gait cycle consists of a stance phase and a swing phase, within which seven

main events occur:

. initial contact (heel strike),

2. opposite toe o ,

3. heel rise,

4. opposite initial contact (heel strike),

5. toe o ,

6. feet adjacent,

7. tibia vertical,

8. (initial contact).

These are illustrated in figure 3.6. Each component of the gait cycle is denoted

as occurring at a certain percentage of completion of the gait cycle. This provides an

indication of event sequencing but is not a indicator of the absolute timing. There is
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Figure 3.6: Typical normal walk cycle illustrating the events of gait. Reproduced
from Sutherland et al. [203].

wide variation in the timing within the gait cycle between subjects, but the sequence

of events is consistent across subjects [203]. The components of the gait cycle have

been studied in detail and are well understood [35, 00, 75, 76, 203, 235].

In normal walking, the upper body moves forwards throughout the gait cycle,

but with non-uniform progression. Its speed is fastest during the double support

phases and slowest in the middle of the stance and swing phases. The whole trunk

rises and falls twice during the cycle, through a total range of 40—50mm [ 74, 84]

in a normal adult, being lowest during double support and highest in the middle of

the stance and swing phases. The trunk also moves from side to side, once in each

cycle, with the trunk being over each leg during the stance phase. The total range

of lateral trunk movement is 40—50mm [ 84, 203] in normal adults.

The pelvis rotates 4—5 to either side in the transverse plane [ 08, 74, 209]. It

also tilts 2 in either direction in the sagittal plane [ 74, 209], and in the frontal plane

it lists downward about 5 on the side opposite the weight-bearing limb [ 08, 209].

In order to allow clearance for the limb to swing forward the knee joint of

the non-weight-bearing limb flexes during the swing phase. The knee joint of the

supporting leg is nearly at full extension as the other leg strikes the ground. As

the body passes over the new supporting limb, the knee joint of the non-supporting

limb flexes (approximately 15 [ 08]) and then extends again until the foot is place

flat on the ground when the knee joint reaches full extension.
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At moderate walking speeds transverse rotations of the thigh and shank occur

in phase with the pelvic rotation. The angular displacements increase from the

pelvis to the shank so that the shank transversally rotates approximately three

times as much as the pelvis, although the exact nature of these rotations is highly

individualistic.

The rotations of the upper body change with increasing walking speed [ 94, 222].

Below a speed of about 0.75ms 1, the transverse thoracic rotations are in phase

with the pelvic rotations. Above this speed, transverse rotations of the thorax and

shoulders occur at 180 out of phase with the pelvic rotation, and the frequency

ratio between upper and lower limbs changes from 2 : 1 to 1 : 1. Murray found

average total excursions of 7 for the thorax and 9 for the pelvis in adult males

walking at free speed [ 75], and similar values were found for adult females walking

at free speed in low heel shoes [ 76]. Upper body rotation produces the arm swing

characteristic of walking. The opposing lower body rotations provide a balancing

e ect that smooths the forward progression of the body as a whole. The ankle and

foot also rotate during walking. Figure 3.7 shows the movement of body components

of a subject during free walking in the sagittal plane, where the largest movements

occur during walking [235]. The most significant accelerations also occur in this

plane during walking, with the greatest accelerations being generated along the

vertical axis [3 ].

It was stated earlier that each walking style is chosen so as to minimise the

metabolic energy demand. For e cient walking, it is essential that the centre of

mass moves smoothly. The pelvic rotation, pelvic list and knee flexion during early

stance phase all act to smooth the path along which the centre of mass travels.

These, together with additional movements of the knees, ankles and feet, result in

the centre of mass following a sinusoidal displacement path, as shown in figure3.8.

The basic walking pattern is the same for males and females. However, Mur-

ray [ 76] reported that the amplitudes of many of the movement patterns in free

walking are less for women than for men. Women were found to have smaller hip

excursions, less transverse pelvic rotation, leading to shorter step and stride lengths

and resulting in slower walking speeds. They also showed less motion of the head

and upper limbs and smaller knee rotations than men.
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Figure 3.7: Interrupted light studies. The photograph was obtained by having a
subject walk in front of the open lens of a camera while carrying small light bulbs
located at the hip, knee, ankle, and foot. A slotted disc was rotated in front of the
camera producing a series of white dots at equal time intervals. Note that the curve
of displacement at the hip is a smooth curve but is not sinusoidal. This is due to
the di erences in phase of the two legs. Reproduced from Inman et al. [ 08].

Figure 3.8: Displacements of centre of mass in three planes of space during a sin-
gle stride (cycle). The actual displacements have been greatly exaggerated. (a)
Lateral displacement in a horizontal plane; (b) vertical displacement. Combined
displacements of (a) and (b) as projected onto a plane perpendicular to the plane
of progression are shown in (c). Reproduced from Inman et al. [ 08].
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3.6.3 Parameters of Gait

Five main linear parameters measure the average timing, linear displacement and

velocity of progression. The cadence is defined to be the number of steps divided

by the time taken (steps/min.). Thus, the cadence is a measure of half gait cycles.

The cycle time, or stride time is the time taken to complete one gait cycle.

cycle time ( s) =
120

cadence ( steps.min 1)
(3. )

.

Step length is the distance between the two heels during double limb support.

Stride length is the distance travelled between two successive foot strikes of the

same foot.

Step width, also known as stride width or walking base, is the side-to-side distance

between the line of the two feet, usually measured at the mid-point of the heel.

Walking speed is the average speed attained after approximately three steps.

walking speed (m. s 1) =
stride length (m) × cadence ( steps.min 1)

120

=
stride length (m)

cycle time ( s)
(3.2)

The walking cadence for normal subjects is approximately 115—150 steps.min 1

[56, 70, 75, 76]. Guimaraes [87] found that the frail elderly had an average walking

cadence of around 95 steps.min 1.

3.6.4 Modelling the Gait Cycle

Sophisticated mathematical models of walking are available. These models have

been developed using high-quality three-dimensional data on the kinetics and kine-

matics of walking and are routinely used in gait laboratories. In a typical use of

these models, a subject will walk with reflective dots attached to the points of in-

terest on the body. The movement will be filmed. The movement of the reflective

dots will be processed by the computer, which will use the generic gait model to

form a complete model of the movement of that subject. These models are based

on experimental data and use displacement as the basic parameter of movement.

Inman et al. [ 08] developed a simple model of gait that explained the displace-

ment pattern of each part of the body in terms of the contribution of the pelvis,

hip, knee and foot.
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Simple models approximating movement during the gait cycle are still routinely

used in analysis. In such a model, each of the six degrees of freedom are decoupled

and analysed separately [8 ]. The axial movements of the trunk in normal walking

are cyclical, roughly sinusoidal. There is a lateral oscillation with a fundamental

frequency equal to that of the walking cycle, a vertical oscillation at twice the walk-

ing cycle frequency, and an oscillation along the line of motion, also at a frequency

of twice the walking cycle and superimposed upon the mean forward velocity. More-

over, the three symmetric oscillations have a consistent phase relationship [53].

All of the parameters of pelvic translational and rotational displacement given

earlier were for moderate walking speeds in adults. These parameters change with

changing walking speeds. Typically, rotational displacements reduce with decreas-

ing walking speed [209].

Gard et al. [8 ] developed a simple model to study displacement in the frontal

plane (vertical and lateral directions) during gait. The simulation modelled the fun-

damental translational and rotational pelvic movements observed in normal walking

using a simple rigid-body representation. They showed that their model provided a

good representation of pelvic displacement when projected onto the frontal plane.

Pelvic list and tilt were neglected in the model because their e ect on the lateral

displacement is small compared to the e ect of pelvic rotation. The simple rigid

body, shown in figure 3.9, had horizontal (x) and vertical (y) displacements given

by

x = xmax cos( t+ ), (3.3)

y = ymax cos(2 t), (3.4)

= max sin( t), (3.5)

where

xmax = ymax = 2.0 cm,

= 2 [stride frequency (Hz)],

max = 5 .

The movements of points on the anterior (point A on Figure 3.9) and posterior of

the pelvis (point C), and the centre of mass (point B) were simulated and compared

to experimentally derived movements. The results obtained were similar in form to

the experimental results, and are shown in figure 3. 0.
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Figure 3.9: Idealised model of pelvic displacement during gait. A simple planar
element has sinusoidal vertical and horizontal displacements and a sinusoindal rota-
tion about a vertical axis passing through the centre of the element. Adapted from
Gard et al. [8 ].

Crowe et al. [53] developed a model of gait with constant speed as

mz̈ = Fz(t) BW =
az0

2
+
X
n=1

Azn sin

μ
2n t

T
+

zn

¶
BW (3.6)

mÿ = Fy(t) (3.7)

mẍ = Fx(t) kV =
ax0

2
+
X
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Axn sin

μ
2n t

T
+G

xn

¶
kV (3.8)

wherem is the body mass, z̈ is the vertical acceleration, ÿ is the lateral acceleration,

ẍ is the forward acceleration, Fz(t), Fy(t), Fz(t) are the vertical, lateral and forward

ground reaction forces, k is a constant, V is the velocity of the forward motion, and

BW is the body weight. The cyclical ground reaction force terms can be expanded

as Fourier series with fundamental frequency 1

T
, where T is the gait period. This

leads to the following terms describing the cyclical motion:
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Figure 3. 0: Lissajous plots for the modelled and experimental walking data. Rota-
tion about point B causes phase shifts of the horizontal sinusoids for points A and
C in the model, producing characteristic patterns observed in normal gait: (a)—(c)
are plots for points A, B and C, respectively. The black squares indicate t = 0.
Plots of the experimental data, (d) an anterior pelvic marker, (f) a posterior pelvic
marker, and (e) calculated displacement of the approximated centre of mass within
the pelvis, are similar to plots from the model. The black square occurs at mid-
stance on the left leg; the arrows indicate the direction of forward time progression.
Reproduced from Gard et al. [8 ].
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where Axn, Ayn and Azn are the n
th Fourier coe cients.

They found that good approximations to the body centre of mass oscillations

were obtained from these equations using only the first and second order Fourier

coe cients.

3.6.5 Variability as a Predictor of Gait Impairment

As people age, their gait pattern changes. Older people tend to have a shorter

step length and spend longer in the double support phase of the walking cycle

[89, 75, 76, 24 ]. As a result, older people walk more slowly than younger adults

[55, 75, 76]. Very old people also typically exhibit a range of age-related changes

to gait, including reduced hip motion [ 76], reduced ankle push-o power [24 ],

reduced range of ankle motion [89, 76] and a larger degree of out-toeing [ 76].

These age-related changes in gait patterns are generally attributed to elderly people

adopting a safer, less destabilizing gait in order to compensate for the destabilising

e ect caused by deteriorating sensory functions and muscle strength [24 ].

These changes are associated with normal ageing. However, there are certain

changes in gait patterns that may be predictive of future falls. These are not limited

to the elderly, but are more prevalent in this age group. For example, fallers walk

significantly slower than non-fallers [ 52, 47, 45, 87].

There is some suggestion that step width may also have a predictive value,

but the evidence is unclear. Murray et al. [ 75] found that step width increases

significantly with normal ageing, but Gabell and Nayak [80] found no significant dif-

ferences in mean step width between young and older adults. Guimaraes and Isaacs

[87] reported that older people with a history of falling walked with a significantly

narrower step width than age-matched controls, but their widely cited results are

contradicted by similar investigations which reported no di erence in step width

[96] or an increased step width [82] in fallers compared with nonfallers.

Changes to gait may also be made in compensation due to a fear of falling. Maki

[ 55] found that elderly subjects’ fear of falling was associated with reduced stride

length, reduced speed and increased double support time. The variability within

parameters of gait appears to be a more sensitive predictor of falls and functional

dependence than the absolute measure of the parameters. While mean di erences

in stride length, speed and double support times were not predictors of falls risk,

stride-to-stride variability in these parameters were found to be independent risk

factors for falling.

Hausdor et al. [93] found that fallers walked with significantly greater variabil-
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ity in stride time, stance time and swing time but had walking speeds similar to the

nonfallers. Lord et al. [ 45] found that those who fell more than once in one year

had a more variable cadence than those who did not fall, or who fell only once.

Levels of variability are not consistent across parameters. Gabell and Nayak [80]

reported that step width and double support time values were more variable than

step length and step time in both young and old adults. They suggest that step

length and step time are relatively stable parameters which determine the basic gait

pattern while step width and double support time are the parameters most involved

with dynamic balance control.

3.6.6 Accelerometry in Gait Analysis

Some of the earliest work on gait analysis using accelerometers (accelerograms) was

carried out in 964 by Liberson [ 37] who studied the major mechanisms of gait

represented by movement of the hip, knee and foot in the sagittal plane. Accelerom-

eters were attached to the left leg and the back, electrodes were attached to the left

gastrocnemius muscle on the left leg, and a strain gauge tensiometer was attached

to the left gastrocnemius muscle. He found correlations between the vertical and

horizontal acceleration curves at the centre of gravity and parameters in the gait

cycle. Some of these results are summarized in figure 3. , which shows the rela-

tionships between the vertical and horizontal accelerations at the centre of gravity

and other locations on the body, and muscle action during the gait cycle.

Twenty-seven years later, Evans et al. [70] demonstrated that components of

the gait cycle could be identified from the three signals obtained from a single

sacrum-mounted triaxial accelerometer. They used switches attached to the heel

and forefoot of each foot to relate the signal from the triaxial accelerometer with

the heelstrike and toe-o for each foot during a walk along a 20m path.

Figure 3. 2 shows accelerations recorded from a young person with normal gait.

Inflections in the vertical channel signal can be used to identify the beginning of

the step (heel-strike) and the end of the previous step (push-o ). This means that

temporal gait parameters, such as gait cycle time, right and left step times, double-

support and single-support times can be measured from the accelerometer signal

[56, 70]. Any asymmetry in the step times is also apparent and may be quantified.

If the distance walked is known, then spatial parameters of mean walking speed and

mean stride length can be calculated. The gait cadence can also be computed, and

if the length of the walk is known, the walking speed can be calculated.

Di erential GPS has been used to augment the data from a triaxial accelerometer
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Figure 3. : Series of tracings from a normal subject during walking, listed from
top down: vertical and horizontal accelerograms; goniograms from right hip, knee
and ankle; angular accelerograms from right and left legs; left hip goniogram; and
electromyograms from left gastrocnemius, right gluteus maximus, right hamstrings,
and right gastrocnemius muscles. Reproduced from Liberson [ 37].
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Figure 3. 2: Three orthogonal acceleration signals from a normal healthy subject
walking at a normal speed. Channel (top) shows the lateral acceleration, channel
2 the up-down and channel 3 the anteroposterior signal. The fourth channel (lowest)
is a signal from microswitches to show when the subject’s heels and forefeet are in
contact with the ground. Reproduced from Evans et al. [70].
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so that the walking route and distance can be measured. Terrier et al. [2 ] attached

the two instruments at the low back in eight subjects while they walked 50 paces

along an athletics track at various speeds. The maximal and minimal speed and

highest and lowest positions of the GPS during each gait cycle were identified.

Heelstrike was determined as the lowest acceleration value for each step. There was

an almost perfect correlation (r = 0.9998) between the step duration measured by

the TA and that measured by the GPS.

Murakami et al. [ 73] conducted a similar experiment, except that they used

two accelerometers to measure antero-posterior and vertical movement at the ab-

domen of a subject. The subject was free to walk around out of doors for a twenty

minute period. They identified when the subject was moving and resting from

the accelerometer signals, and compared these results to those obtained from the

di erential GPS. They found good agreement between the two sets of results.

Assessment of incline, speed and distance during unconstrained walking may also

be possible using only accelerometers. Parameters such as the root mean square

(r.m.s.) of vertical body accelerations, step length, and stride time are correlated to

walking speed, although they are also dependent on the subject characteristics and

the incline of the ground. Aminian et al. [20] conducted a study of incline, speed

and distance assessment during unconstrained walking with 6 subjects. A triaxial

accelerometer was attached to the back, and a uniaxial accelerometer was attached

to the top of the right heel to measure heel forward acceleration. Subjects walked

on a treadmill at various speeds and various inclines for a period of 15 minutes.

The heel acceleration was used to identify the gait cycle. The mean, median and

covariance of the four accelerations, the peak acceleration of the heelstrike, and the

gait cycle duration were determined for each cycle. These 20 parameters were used

as training inputs for two neural networks, one that estimated speed, and one that

estimated incline of walking. Each subject then walked at a comfortable pace along

an outdoor test circuit involving roads of various inclines. These walking patterns

were presented to the neural networks, and speed (in km. h 1) and incline (in %)

along the path were estimated. The standard deviation of the estimated incline

was less than 2.6% and the maximum of the coe cient of variation between speed

estimation was 6%.

Automated extraction of temporal gait patterns has been obtained using an ad-

ditional accelerometer attached to the thigh. In another study, Aminian et al. [ 8]

used two uniaxial accelerometers attached to each thigh to successfully determine

the times of left and right heelstrikes and toe-o s during gait by means of an auto-

mated detection algorithm. Foerster and Fahrenberg [76] attached three orthogonal
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accelerometers to the sternum and a uniaxial accelerometer to each thigh. They

then used a short-time Fourier transform on the vertical axis of the sternum ac-

celerometer to determine the step rate. Bussmann et al. [38] studied the signals

produced by a tangential uniaxial accelerometer attached to the thigh during walk-

ing. Six subjects walked with three di erent speeds. Simultaneous measurements

were made with footswitches and an optoelectronic system. A clear relationship

was found between the measured acceleration signals, and accelerations calculated

from the optoelectronic system data. As a piezoresistive accelerometer was used,

the gravitational acceleration influenced the amplitudes of the measured accelera-

tion signal, but the shape and peaks of the signal were mainly determined by the

body movement acceleration. They concluded that, despite the distortion of the

body movement component acceleration by the gravitational acceleration compo-

nent, this approach to gait analysis remained feasible.

The vertical acceleration component of the trunk- or back-mounted TA is the

most important in the assessment of gait [3 , 72, 76]. This is the component that

is most sensitive to the presence of gait disorders [ 37], and from which elements of

the gait cycle can most easily be identified [70]. The peak accelerations occur in this

direction and reflect the magnitude of force applied at the approximate location of

the centre of mass [ 99].

Smidt [ 99] defined a measure of smoothness of walking, called the harmonic

ratio as the sum of the coe cients for the even numbered harmonics of the Fourier

series, divided by the sum of the coe cients for the odd-numbered harmonics. The

greater the harmonic ratio, the smoother the walking. They found it to be an

e ective method for discriminating between normal gait patterns gait patterns of

subjects with gait defects. Farris [73] similarly found that symmetry in gait can be

seen in the prominence of even harmonics in the accelerographic signal.

Preliminary research suggests that the power spectrum of the accelerometer

signal can also be used to assess the stability of gait. In an initial study, a perfor-

mance parameter based on the balancing forces as reflected in the power spectrum

was successfully used to order di erent gait patterns in terms of relative stability

[227].
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3.7 Measurement of Physical Activity

The standard reference for the measurement of physical activity is the metabolic

energy expended due to that physical activity [3 , 95]. Metabolic energy expen-

diture can be measured relatively easily in a laboratory, but is di cult to measure

directly in free-living humans. In a laboratory setting, direct calorimetry can be

used. Direct calorimetry measures human heat production to determine energy

expenditure. A subject is placed in a thermally insulated room that has a heat

exchanger with circulating cold water. Energy expenditure is calculated from the

rise in circulating water temperature. This method is very accurate but is clearly

inappropriate for use on free-living subjects.

A wide range of techniques for the indirect measurement of physical activity

have been developed, including direct observation, questionnaires and diaries, mea-

surement of heart rate, oxygen uptake, determination of carbon dioxide production

by the use of doubly labelled water, motion sensors and accelerometers [3 ]. Each

technique has advantages and disadvantages. Direct observation, questionnaires and

diaries are technologically simple, but are time-consuming and subjective methods.

Radioisotope methods (using doubly labelled water) are costly and technologically

complex. Heart rate monitoring is imprecise in many situations as heart rate re-

sponds to strains other than physical activity, including stress, posture, emotional

status, circadian cycle, medications, and the e ects of chronic disease such as chronic

obstructive pulmonary disease (COPD) [20 , 2 0].

Accelerometry provides an indirect method for assessment of physical activity

that is portable, cost-e ective and simple to use, and is not time-consuming for the

subject [3 , 20 , 2 0, 74].

Indirect measurement of energy expenditure using accelerometry measures ac-

tivity produced by muscular contractions. However, muscular contractions are only

one of a range of energy uses in the body. Figure 3. 3 shows a block diagram of the

human energy system. The inputs of food and oxygen are converted to a range of

outputs, including body waste, basal metabolism, fat, heat and muscular contrac-

tions. Thus, accelerometry provides a measure of energy that is utilised in activity,

rather than a measure of energy input to the body.

Single-axis accelerometers (such as the Caltrac made by Hemokinetics in Madi-

son, WI, USA) have been widely used to study physical activity and energy expen-

diture in healthy young and elderly populations [ 68, 8 ]. Multiple-axis accelerom-

eters have been used to study energy expenditure in normal, active people [33], and

in sedentary populations such as nursing home patients [ 26], patients with multiple
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Figure 3. 3: Block diagram of the human energy system. Adapted from Servais
and Webster [ 95].

sclerosis [ 78], patients with COPD [20 ], and obese children [50, 68].

Many researchers who have investigated the validity of accelerometers as a tool

for energy expenditure estimation in the activities of daily living report favourably

on the device. Ng and Kent-Braun [ 78] studied a group of patients with multiple

sclerosis, and groups of sedentary and active control subjects. They found that the

triaxial accelerometer provided a more sensitive measurement of daily activity than

self-report as measured by the 7-day Activity Recall Questionnaire. Bussmann et al.

[39] compared energy expenditure estimates from heart rate to estimates from an

accelerometer and found that accelerometry allowed more accurate measurement

than heart rate, without the need for individual calibration. Steele et al. [20 ]

presented preliminary data suggesting that a TA is a reliable, valid and stable

instrument for measuring daily physical activity in COPD patients.

The metabolic energy expenditure (EE) estimate from an accelerometer is very

accurate during walking on a level surface [34, 3 , 2 0]. Interestingly, although

the vertical acceleration component contains the most clinically useful information

about gait [ 37], it is the antero-posterior acceleration that provides the best es-

timate of EE [34]. In a study in which healthy male subjects walked on a

treadmill at five di erent speeds, Bouten et al. [34] obtained a mean overall cor-
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relation between estimated and measured EE of 0.96. EE was estimated from the

antero-posterior gait signal.

On the other hand, Fehling et al. [74] compared accelerometers with oxygen

consumption, measured by indirect calorimetry, in older adults during exercise.

The subjects wore the devices while walking on a treadmill and bench stepping

at various rates. They found that the magnitude of the di erences between the

measured and estimated EE was dependent on exercise mode and intensity, which

suggests that accelerometers are not suitable for monitoring of all physical activity.

This is supported by other studies [98]. The body-fixed accelerometer attached

at the waist mainly measures movement of the centre of mass. Activity that is

concentrated in the upper body, such as weight lifting, or washing the dishes is

significantly underestimated by a waist-mounted accelerometer [34, 98]. Nor are

accelerometers able to measure the energy cost of walking up or down a slope,

compared to walking on level ground [2 0].

In a controlled environment, a waist-mounted accelerometer provides an excel-

lent estimate of energy expenditure in daily physical activity. Bouten et al. [3 ]

compared the EE estimate from a TA to EE measured by indirect calorimetry.

Thirteen young male subjects were tested. Each subject was placed in a respiration

chamber of 14m3 for a 36 hour period. The chamber contained a bed, table, chair,

toilet, washing-bowl, radio and television. During the day time, subjects performed

standardized daily activities that resembled normal daily activities. They achieved

individual correlations between EE estimations and measurements between 0.87 and

0.97, with a pooled correlation coe cient of 0.89 across all subjects and activities.

Studies in which the EE was estimated by accelerometry for free-living subjects

have achieved substantially lower correlation coe cients when the estimated EE was

compared to the measured EE. Hendelman et al. [98] conducted a study in which

25 subjects completed four bouts of overground walking at a range of self-selected

speeds, played two holes of golf, and performed indoor (window washing, dusting,

vacuuming) and outdoor (lawn mowing, planting shrubs) household tasks. For all

activities combined, the correlation between the estimated and measured EE was

found to be only 0.59 0.62 and was dependent on the type of activity performed.

They attributed this to the inability of accelerometers to detect increased energy

cost from upper body movement, load carriage, or changes in surface or terrain.

The placement and orientation of the TA device on the body have a negligible

e ect on the correlation between the accelerometer estimated EE and the measured

EE. Bouten et al. [32] measured accelerometer output in the antero-posterior and

vertical directions at the low back, and from this simulated accelerations at the
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shin, upper leg, trunk, lower arm and upper arm. The accelerations were compared

to the metabolic energy expenditure. They concluded that they were able to use

the accelerometer output at all examined locations to predict the EE with a high

degree of accuracy.

A single TA seems to be the best instrument for prediction of EE. Although most

movement is in the vertical direction, the addition of the remaining two dimensions

significantly improves the accuracy of the estimate [3 , 46]. Adding additional

instruments at di erent locations on the body, for example, at the wrist, provides

only a very slight improvement in accuracy, and does not justify the extra cost,

complexity or inconvenience caused by the addition of a second instrument [32, 205].

Systems that use accelerometers to estimate EE use a model in which the inte-

gral of the modulus of the measured acceleration is linearly related to the energy

expenditure due to physical activity. This relationship has been demonstrated for

uniaxial accelerometers [ 70], and for triaxial accelerometers [3 , 32, 20 ].

Bouten et al. [34] made a back-to-back comparison of di erent estimators of EE.

Eleven healthy male subjects were assessed sitting, sitting with arm work, sitting

and standing alternately (10 s each) and walking. EE was measured using indirect

calorimetry, and a TA was worn at the sacrum. The following estimators were

tested:

• IAAx =
R
(|x(t)|) dt, where x is the acceleration signal along the antero-

posterior axis;

• IAAy =
R
(|y(t)|)dt, where y is the acceleration signal along the medio-lateral

axis;

• IAAz =
R
(|z(t)|)dt, where z is the acceleration signal along the vertical axis;

• IAAtot = IAAx + IAAy + IAAz;

• (IAAx)
2;

• (IAAy)
2;

• (IAAz)
2;

• (IAAtot)
2;

• IAV =
R ³ p

x(t)2 + y(t)2 + z(t)2
´
dt;

• (IAV )2;
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• KEx =
1

2
mb

R
x(t)dt = kinetic energy along the antero-posterior axis, where

mb is the subject’s body mass;

• KEy =
1

2
mb

R
y(t)dt = kinetic energy along the medio-lateral axis;

• KEz =
1

2
mb

R
z(t)dt = kinetic energy along the vertical axis;

• KEtot = KEx +KEy +KEz = total kinetic energy; and

• P = d(KEtot)

dt
= instantaneous power due to the rate of change of total kinetic

energy at the point of attachment of the TA.

The best estimators were IAAx and IAAtot, both of which were linearly cor-

related to EE. The best estimator for walking was IAAx (average individual cor-

relation, r = 0.99), and the best overall estimator was IAAtot (average individual

correlation, r = 0.91).

The optimal regression equations were given by

Ê = 0.176 + 0.085× IAAx (best estimator for walking) (3. 2)

Ê = 0.104 + 0.023× IAAtot (best overall estimator) (3. 3)

Chen and Sun [46] tested 125 subjects in two 24 hour sessions. In the first

session, the subject was asked to carry out a normal daily routine as closely as

possible. In the second session, the subject engaged in a defined physical activity-

exercise protocol. EE was measured using calorimetry and a TA was worn on the

right hip. Two estimators were tested, one linear, and one nonlinear.

The linear model was

Ê(k) = aN ×H(k) + bN × V (k) (3. 4)

where V (k) is the vertical acceleration (z-axis acceleration) at the kth minute,

H(k) is the horizontal acceleration (equal to the square root of the sum of squared

signals of the x- and y-axes) at the kth minute, aN and bN are the regression para-

meters and Ê(k) represents the energy expenditure at the kth minute.

The nonlinear model was

Ê(k) = aN ×H(k)
p1 + bN × V (k)

p2 (3. 5)

where p1 and p2 are regression parameters.
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They found both model estimates were strongly correlated with EE. The di er-

ences between the measured and the estimated total EE were significantly decreased

in the nonlinear model over the linear model (p = 0.01). Multiple regression analy-

sis found that body mass was a significant factor (p < 0.05) in the determination

of all regression parameters in both models.

In conclusion, accelerometry appears to provide a valid means of estimating

EE in free-living subjects. The regression parameters and the accuracy of the

approximation depend on the activity that is being undertaken. Bouten et al.

found that the sum of the area encompassed by the magnitude of each of the three

accelerations provided a good overall predictor of EE during daily activities. This is

the estimator that was selected for use in the current work, where it was normalised

with respect to time and is referred to as the (Normalised) Signal Magnitude Area.

3.8 Classification of Activities

Accelerometry systems have been used to identify and classify sets of postures and

activities. Most of these systems have used multiple sensors; some systems have

used only accelerometers, while other systems have used accelerometers together

with another type of sensor. The most common placement locations are the chest

or waist and the thigh [ 9, 37, 72, 76, 93, 207, 22 , 225].

Algorithms for the detection of posture and motion patterns remain a crucial

aspect of accelerometry, and the ability to achieve an adequate data reduction while

still being able to di erentiate between a variety of dynamic activities is still under

investigation [76].

Pattern recognition strategies that use statistical algorithms, conventional or

fuzzy logic, or artificial neural networks have been proposed [ 23], but only two

approaches have been used to any extent. The first approach uses fixed-threshold

classification while the second uses reference-pattern-based classification. In fixed-

threshold classification, activities and postural orientations are discriminated by

applying a threshold to the accelerometer signal. Thresholds are derived empirically.

In reference-pattern-based classification, activity patterns are compared to template

reference patterns. The studies outlined below use a combination of these two

approaches.

A system developed by Veltink et al. [225] was used to distinguish between a set

of static and dynamic activities, being sitting on a chair, lying on a bench (supine,

prone, on right and left side), standing, walking (at slow, comfortable and fast

speeds), ascending stairs, descending stairs, and cycling (at slow, comfortable and
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Figure 3. 4: Illustration of the accelerometer mounting used by Veltink et al. Uni-
axial accelerometers were mounted tangentially and radially on the sternum and
tangentially on the thigh. The sensitive axes were all directed in the sagittal plane.
Adapted from Veltink et al. [225].

fast speeds). One set of five normal male subjects (aged 23—42 years) was used to

evaluate discrimination between static activities. A second set of five male subjects

was used to evaluate distinction between static and dynamic activities and discrim-

ination between dynamic activities. Subjects wore two uniaxial accelerometers at

the sternum and one on the thigh (figure 3. 4).

The signal from the tangential thigh accelerometer was used to distinguish be-

tween the static and dynamic activities, because leg movements were pronounced

in all of the investigated dynamic activities. The algorithm used is shown in figure

3. 5. This algorithm was based on the premise that the static or dynamic nature of

activities can be determined by testing whether or not the signal varies with time.

The signal was high pass filtered at 0.5Hz to remove the d.c. o set. It was then

rectified and low pass filtered at a cut-o frequency of 0.1Hz to yield a measure for

the averaged signal deviation from the mean. This was weighted with an exponen-

tial time window to provide a measure of “recent movement”. The time constant

of the exponential window was not described. The value of the resulting signal

was compared to a threshold to decide whether the activity was static or dynamic.

Dynamic activities were those in which the signal exceeded the threshold.

When an activity was identified as static, the mean values of the accelerom-

eter signals over the period of activity were determined. The authors state that

for distinguishing between sitting, standing and each lying position, the three ac-

celerometers that were used were both su cient and necessary.

Dynamic activities were distinguished by comparing the means and standard

deviations of the mean signal values. Statistical di erences were found between

the results for each of the di erent activities tested, thus allowing discrimination
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HPF Rectifier LPF Threshold

Static

Dynamic

au

Figure 3. 5: Detector of the static or dynamic nature of activities used by Veltink
et al. The signal au of an uniaxial accelerometer mounted on the body is high-
pass filtered, rectified and low-pass filtered. A static activity is detected if the
filtered signal is lower than a set threshold, otherwise an activity is deemed dynamic.
Adapted from Veltink et al. [225].

between the dynamic activities.

The choice of dynamic activities, and hence the algorithmic approach, was based

on the assumption that “dynamic activities are normally achieved by cyclical move-

ments”. This is a very limiting assumption as it excludes dynamic activities of a

short duration that are non-repetitive, such a sit-to-stand transitions which are an

integral part of daily activity and which have known clinical significance.

A similar approach was used by Bussman et al. [37] who used a four accelerom-

eters, one attached to each thigh, and two attached to the sternum. They low

pass filtered each signal (0.5Hz), and the results were used to distinguish between

standing, sitting and lying. The remnant high pass filtered signals were used to

distinguish between periods of movement and stationary activity based on the vari-

ability in the signal and the magnitude of the signal. Classifications were made every

second. In a study of eight subjects, overall agreement between actual activity and

the accelerometer classification was 90%.

Aminian et al. [ 9] further developed this approach. Five subjects each spent

hour in a studio-like room while wearing uniaxial accelerometers strapped to the

chest and thigh. Activities were classified as lying, standing, sitting, walking or

other movement. Here, too, a fixed threshold was used to distinguish between

dynamic activities and resting states.

The algorithm is illustrated in 3. 6. Each acceleration signal was low pass filtered

at a cut o frequency of 0.5Hz. The mean absolute deviation and the median were

computed for every 1 s of signal. The resulting parameters were averaged over a

10 s period and compared to a pre-set threshold. Compared with video observation,

the algorithm gave a 10.7% misclassification. This was mostly due to incorrect

classification of standing when it was accompanied by a transition from another

state, leading to the standing being classified as a dynamic rather than a static

event. The misclassification between postural orientations was negligible.
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Figure 3. 6: Algorithm for physical activity detection used by Aminian et al. Chest
and thigh acceleration signals (ac and at, respectively) were low pass filtered at a cut
o frequency of 0.5Hz. The mean absolute deviation (MAD) and the median (MED)
were computed for every 1 s of signal. The resulting parameters were averaged over
a 10 s period and compared to a pre-set threshold, th. Reproduced from Aminian
et al. [ 9].
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Figure 3. 7: Relative values of chest ac and thigh at accelerations during various
movements. acc(c) and acc(t) represent chest and thigh acceleration variation dur-
ing body movement. Reproduced from Aminian et al. [ 9].

Resting states were distinguished using the median signal values. The procedure

that was used to discriminate between resting states is shown in figure 3. 7.

Uiterwaal et al. [22 ] tested a similar system on a free-living subject for 6.7

hours. Two orthogonally mounted uniaxial accelerometers and a data logger were

attached to the front of the waist. A third accelerometer was attached to the left

thigh. Activities were classified as siting, standing, and locomotion. The overall

(minimal) agreement obtained between video observation and the accelerometer

system was 86.16%.

Fahrenberg et al. [72] employed multichannel accelerometry to discriminate be-

tween eight states in 26 healthy subjects: sitting, standing, lying supine, sitting

while typing on a keyboard, walking, climbing stairs, walking downstairs and cy-

cling. The placement of sensors is shown in figure 3. 8.

The d.c. and a.c. components of the accelerometer signals were separated using

a filter with cut-o frequency at 0.5 Hz. The d.c. components were averaged across

each state. Similarly, the absolute values of the a.c. components were averaged

across each state. The means and standard deviations of the d.c. and a.c. compo-

nents of each accelerometer signal were calculated. A hierarchical classifier (figure

3. 9) was developed based on five of these components. When the classifier was

applied to a test data set, 97% of the activities were correctly classified.

In a second study, Foerster and Fahrenberg [76] extended this system to also

distinguish between postural orientations during lying. The new system used a



80 3. Background Information

Figure 3. 8: Placement of sensors and electrodes in the study by Fahrenberg et al.
Reproduced from [72].

Conditions without
Locomotion

Locomotion

Sitting Lying Standing

Sitting Lying

Sitting
Sitting

PC Keyboard

Walking

Upstairs

Downstairs

Cycling

Trunk
AC

(further
discrimination
not attained)

Trunk AC
Wrist AC

Trunk DC
Lower leg DC

Thigh DC
Trunk DC
Thigh DC

Figure 3. 9: Classification of physical activity patterns using four accelerometer
recordings. Adapted from Fahrenberg et al. [72].
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Cyclic Non-cyclic
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standing to sitting

Transition from
lying to sitting

.......

Sitting

Standing

Lying
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On the left side

Face downwards
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In stooped
position

In upright position

Lateral bending to
the left

Lateral bending to
the right

.......

Walking

At slow speed

At normal speed

At fast speed

.......

Cycling

Going upstairs

Figure 3.20: Classification tree for main relevant motor activities. Adapted from
Kiani et al. [ 23].

sternum mounted triaxial accelerometer, and uniaxial accelerometers on each thigh.

Again, a hierarchical classification strategy was used. The classification rate for this

system was 96.8%.

A very di erent approach was taken by Tamura and Sekine et al. [ 93, 207] who

used only a waist mounted triaxial accelerometer to perform activity classification.

They distinguished between level walking, walking up a flight of stairs, and walking

down a flight of stairs in 20 healthy male subjects. They used a Daubechies-3

wavelet analysis to derive an average acceleration vector for each activity. These

averages were di erent for each activity and were used to discriminate between the

three types of walking.

Each of these studies developed a specific algorithm to classify a specific set of

activities. Kiani et al. [ 23] introduced a more general classification schema, which

is shown in figure 3.20. A computerized analysis programme identified the onsets

and endpoints of each di erent activity. The activities were then classified.

The physical system was similar to that of Bussman in that it consisted of an

accelerometer attached to each thigh and a biaxial accelerometer attached to the

chest. The accelerometers were wired to a waist worn data logger that could store

data for 0 hours. Processing was carried out retrospectively.
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They considered two approaches to classification: neural networks and signal

processing techniques. In a preliminary study a neural network classified more than

95% of activity patterns recorded continuously over a ten hour period. However, the

neural network was rejected because of the need to provide training sets tailored to

every individual patient. Instead, signal processing techniques that could be used

across all subjects were developed. Descriptive measures of the signals, including

norm, mean, standard deviation, sine, cosine, Fourier transform, cumulative sum,

inner and outer products, and maximum and minimum values were used to achieve

the classification. This system achieved a 98% classification rate on 100 hours of

data recorded from eleven male subjects.

Once classified, a set of relevant clinical parameters could be extracted from the

data, including:

• total duration in lying posture;

• total duration in sitting posture;

• total duration in standing posture;

• total walking time;

• frequency of each activity;

• speed of walking; and

• transition times.

They remark that “this list of clinical parameters has been suggested by many

clinicians”.
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3.9 Falls Detection

There is little published material available on automated fall detection using an

accelerometer and no studies involving the use of accelerometers in falls monitoring

and detection are known to the current author. There have been a small number of

papers published that describe algorithms for automatically detecting falls by means

of an accelerometer or ambulatory monitoring within a home telecare system.

A U.S. patent by Petelenz et al. [ 85] describes a system in which a one-

dimensional accelerometer is used to detect fall events. The accelerometer is worn

by the subject such that the sensitive axis is aligned to the vertical axis of the

subject. The devices samples data and measures the angle, , between the gravity

vector and the sensitive axis of the accelerometer. This is a measure of whether or

not the subject is upright. If exceeds a threshold of 50 for at least 80% of sam-

ples over a certain number, N, of data points (i.e. the subject is no longer upright)

then the system continues reading and storing angle data for at least another two

seconds. After this, the system traces backward in the bu er to obtain the starting

point of the movement. The fall discriminator then tests for falls by comparing

the peak magnitude, the mean magnitude and the duration of the event to preset

thresholds. If a fall is detected then the system sends a signal to a telephone dialer

in order to generate a call for help. If no fall has occurred then the system waits

until the subject is upright again and then returns to its original fall monitoring

mode. The authors claim a rate of almost 95% fall detection using this system with

data obtained from a waist mounted accelerometer although details of any studies

that have been conducted are not disclosed.

A similar system was described in a U.S. patent by Lehrman et al. [ 34]. Their

method measures the acceleration signal from a biaxial accelerometer worn such that

both sensitive axes are horizontally aligned. The acceleration signals are filtered and

monitored to detect (i) impacts and (ii) whether the subject is lying down. If these

conditions indicate a fall then an alarm is generated. However, the authors make

no comment on the performance of their system.

These systems were preceded by a design specification for a smart fall and ac-

tivity monitor by Williams et al. [237]. Their design used a shock sensor to identify

suitably large shocks. Shocks were identified by comparison to a preset threshold.

If a su ciently large impact was detected the device would monitor the orientation

of the subject. If the subject was upright then the device would log the event but

take no further action. If the subject had fallen then the device would wait 20 s

before transmitting the alarm signal. If the subject managed to get up within this
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Figure 3.2 : Method for detecting falls devised by Petelenz et al. Here, is the
angle between the subject and the gravitational vector, -critical is a 50 threshold.
T is a 2 s threshold, is the elapsed time. Adapted from U.S. Patent 6,433,690
[ 85].
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time, the fall was logged and normal monitoring resumed, but if the subject failed

to get up then the alarm was raised. Figure 3.22 illustrates the flow of processing

logic for this system.

Doughty et al. [63] developed a system of the type described by Williams. They

used a two stage detection process that used an impact sensor to detect an im-

pact that exceeded a threshold value, followed by a second sensor that identified

the postural orientation of the person. The sensors were contained within a single

instrument. If a fall was detected the device was designed to use wireless com-

munications to link to a community alarm system. The device was attached to a

jointed mannequin at four di erent sites, being the chest, the waist, the wrist and

the knee. The mannequin was subjected to fifteen falls and the algorithm was eval-

uated. They concluded that the device could, in practice, be placed at the chest or

the waist and falls reliably identified.

3.10 Chapter Conclusion

Postural sway while standing, the sit-to-stand and the stand-to-sit transitions,

and walking are complex movements that are a ected by many factors including

physique, age, and pathology. Even in the case of healthy people, these movements

can be highly individualistic. Nonetheless, there are a set of basic parameters that

are common to all instances of these movements and that have been shown to have

clinical value in predicting changes in health leading to the onset of functional de-

pendence or a fall event.

Accelerometers have been employed in studies to assess balance, gait, to classify

activities, to identify falls and to estimate metabolic energy expenditure. In all

cases, the results indicate that accelerometry is an approach that should be suitable

for unsupervised monitoring of free-living subjects.

The next chapter describes the physical construction of an accelerometry system

that was designed specifically for unsupervised, long term, home monitoring. This

system uses only a single instrument, a triaxial accelerometer, that is designed to

be attached to the waist of the subject.
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Figure 3.22: Fall monitoring device flow chart to establish nature of impact.
Adapted from Williams et al. [237].



Chapter 4

The Home Monitoring System

4.1 Overview

This chapter describes the physical construction of an accelerometry unit that was

designed for monitoring of human movement in an unsupervised environment over

extended periods. The system consisted of a single triaxial accelerometer that was

designed to be attached at the waist, a wireless transmitter unit, a receiver unit

and a personal computer for data processing.

The first sections of the chapter are concerned with the design of the device. The

latter sections of the chapter are concerned with the results of prototype calibration

and testing for functionality and reliability.

4.2 Design Criteria

In choosing technology for unsupervised home monitoring both functionality and

usability criteria need to be addressed. Functionality criteria specify what the

technology must achieve. Usability criteria specify what is needed to ensure that

the technology is able to be properly used.

In chapter it was observed that any technology for unsupervised health moni-

toring must function reliably, ensure the security of personal data, be cost e ective,

minimise inconvenience to the patient, and must be acceptable to patients and

health care workers. As patient compliance is essential to the functioning of the

system, it must be designed to encourage use by being comfortable to wear and

simple to use. It was decided to use an instrument that required a single point of

attachment on the body.

As the instrument was to be worn, accessibility, size and weight were also issues

87
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of concern. The size and weight were equally important in that they a ected the

comfort of the subject. The device needed to be as light as possible, and small

enough to be unobtrusive, but not so small that it was di cult to handle.

The instrument needed to be placed in a location on the body that was easily

accessible to the subject, that did not cause comfort or inconvenience during routine

daily activities, and from where useful body movement measurements could be

obtained. In order to monitor whole body movements the device needed to be

located as close as possible to the centre of mass (located within the pelvis). Here

the measurements tend to be of “whole-body” activity, rather than of movements

of the peripherals, such as thigh or hand movements. The majority of researchers

using accelerometers for physical activity assessment have attached a device at waist

level [3 , 95]. Locating the device on a waist belt means that it is close to the

centre of mass of the subject when standing. It was decided to design the TA device

to attach at the waist, either on a belt, or to the waist of a skirt or a pair of trousers

in a similar manner to that of a small pager unit. This approach was preferred to

that of using a specialised belt or item of clothing as it allowed more flexibility in

the use of the same device (the same unit was suitable for people of all shapes and

sizes and did not limit choice of clothing.).

The sensor of choice was the accelerometer. (Obviously, other types of sensors

could also be embedded into the instrument but the additional instrumentation

increases both the cost and complexity of the system. As it is was not known

what could actually be done with accelerometers in this environment, the current

work focussed exclusively on determining how much information could be obtained

from a three-dimensional accelerometer alone.) Accelerometers, in addition to being

instruments that are becoming highly regarded in motion analysis, are also small,

lightweight, and relatively inexpensive.

When used in a system for assessment of human movement, accelerometers

must provide accurate measurement of the frequencies and acceleration amplitudes

generated by the movement. An amplitude range of ±6 g and a frequency range

of 0—20Hz are required for assessment of human movement by an accelerometer

located at the waist [3 ].
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Figure 4. : Block diagram of the home ambulatory monitoring system. The in-
strument containing the triaxial accelerometer is worn at the waist by the subject.
Data are captured and transmitted via wireless link to a receiver unit from where
they are transferred to a personal computer for processing.

4.3 System Design

4.3.1 Introduction

The accelerometry system that was used in the current work was designed by the

Biomedical Systems Laboratory at the University of New South Wales, specifically

for long term, unsupervised home monitoring of human movement. The current

author was involved in the specification of the technology (required amplitude and

frequency ranges, package size, etc.) and in the functionality testing, calibration

and validation of the system, but was not involved in the physical design process,

nor in the construction process of this system.

Figure 4. shows a block diagram of the ambulatory monitoring system. It

consisted of an ambulatory monitor, a receiver unit and a personal computer.

4.3.2 The Ambulatory Monitor

The ambulatory monitor consisted of a single wearable unit. This was a small pager

case (size: 71 × 50 × 18mm) that was designed to be clipped on to a waist belt.

This size was deemed to be small enough to be unobtrusive when worn, but large

enough to be easily handled. The instrument is shown in figure 4.2

There was no commercially available triaxial accelerometer that could meet the

monitoring requirements of this project known to the design team. Consequently,

a triaxial accelerometer was constructed from two biaxial accelerometers. The ac-

celerometers that were chosen were ADXL2 0s, supplied by Analog Electronics.

These devices had a range of ±10 g, a frequency range of 0 500Hz, an r.m.s.
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Figure 4.2: Photograph of the ambulatory monitor. The accelerometers were con-
tained in a pager casing measuring 71× 50× 18mm.

noise estimate of 4.33× 10 3 g and a peak-to-peak noise estimate of 17.2× 10 3 g

(95% confidence interval). These devices respond to both acceleration due to move-

ment, and gravitational acceleration, g (approximately 9.81m. s 2). As there were

four uniaxial accelerometers measuring three dimensions, one of the dimensions

was measured twice. The redundant signal was transmitted but not recorded or

processed.

In addition to the triaxial accelerometer, the monitor contained a wireless trans-

mitter, a push-button and a green light. The unit was designed to use very low rates

of power, and was powered by one 1.5V AA dry cell alkaline battery. The monitor,

including the battery, weighed approximately 50 g.

Each of the accelerations was sampled at 125Hz and output from the ADXL2 0

as the duty cycle component of a pulse wave. The duty cycle duration (X) and pulse

wave period (T) were counted using 2-bit counters counting o a 1.288MHz clock.

The acceleration could be computed by dividing the duty period count by the pulse

wave period count. This gave the value of the acceleration as a fraction of the total

acceleration range of ±10 g. For example, an acceleration of 0 g was represented

by a value of 0, while an acceleration of +5 g was represented by a ratio of 0.75. In

order to provide anti-aliasing, the outgoing signals were filtered by a low-pass RC



4. The Home Monitoring System 91

filter with a cut-o frequency of 50Hz. The first biaxial accelerometer was polled

and its data stored in a bu er. The second biaxial accelerometer was then polled

and its data stored in the same bu er. Two other bits of data were added to the

bu er’s contents. These bits indicated the status of the push-button (on/o ) and

the level of the battery (low/not low). The bu ered data were then transmitted as

a packet to the receiver unit before the next set of data was polled, bu ered and

transmitted. This approach was adopted due to memory limitations in the very low

powered integrated circuits (ICs) that were available at the time of development.

More sophisticated ICs that had more available memory required levels of power

that were unacceptably high for the design.

The push-button firmware included a 1 s delay before responding with the button

pressed signal. This was designed to prevent inadvertent knocking of the button

being registered as a push-button press.

4.3.3 Data Transmission

Radio frequency (RF) communications were chosen for this application rather than

higher frequency line-of-sight transmission. Although RF communications are more

susceptible to interference and security breaches, they have the advantage of being

able to pass through walls and “bend” around corners. In a home environment

this means that a single RF receiver can be used rather than needing repeaters or

receivers to be placed in each room.

The bu ered data were transmitted at 19.2 kbps via a 433.92MHz wireless link

using bi-phase mark encoding. The data packets received by the RF receiver were

checked for errors. If an error was detected, the packet was discarded but not re-

sent. If the data packet was not in error, it was transmitted via a RS-232 connection

to a personal computer. The data packets were time-stamped as they were received

by the personal computer. All of the data processing and storage was carried out

at the personal computer. The resultant data sampling rate was 45 Hz and the

data resolution was better than 25 × 10 3g. The down-sampling was caused by

data being lost from one biaxial accelerometer while data from the other biaxial

accelerometer was polled and bu ered, and by data loss during transmission. This

led to the possibility of some aliasing in the signals.

Both of these losses could be overcome by redesigning the TA unit using a

very-low-power processor with more memory such as are now becoming available.

This would allow the data to be bu ered without loss, and would also allow for

error correcting transmission and lost packets could be re-sent. Suggestions for
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modification of the hardware, based on the findings of the current work, are made

in chapter 9.

However, it was found that the reduced data rate had a negligible aliasing e ect.

As essentially all of the measured body movements were contained below 20Hz

(indeed, even in gait, 99% of the energy is contained below 15Hz [2 ]), only white

noise was present in the signal between 20 and 50Hz, and so this uniform, random

noise was the only signal component to be reflected from the higher to the lower

frequencies during the signal down-sampling.

4.3.4 The Receiver Unit

The receiver unit provided an interface between the transmitter unit and the per-

sonal computer. The receiver unit recoded the wireless transmission into RS-232

format and sent it to the personal computer for storage and processing.

4.3.5 The Personal Computer

There were strong arguments both for and against the use of a personal computer

for the data processing and storage. If a subject does not own a computer, then the

inclusion of such greatly increases both the expense and the bulk of the system over

a system in which a customised data storage and processing module is built into the

receiver unit. On the other hand, the personal computer provides a more flexible

solution. The development times and costs are reduced as the hardware is already

readily available. Maintenance is also much easier on a personal computer than

on a dedicated system. Additionally, over half of households in Australia already

own at least one personal computer [ ], and this figure is expected to continue to

increase. In these homes, using the existing infrastructure may be more convenient

and cost e ective than providing customised system hardware.

The system employed in the current work used a personal computer in order

to take advantage of the flexibility that it provided. This allowed all of the data

from the wearable instrument to be captured continuously and stored for process-

ing. Additionally, during field trials with the system (discussed in chapter 7), the

computer interface was used to provide instructions to the subjects.
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(a) (b) (c)

Figure 4.3: Sketches of the homes in which the TA system was tested. Not to scale.
(a) 4-bedroom fibro home; (b) 2-bedroom brick home; and (c) 2-bedroom brick
veneer home.

4.4 Reliability - Transmission Range and Power

Consumption

The transmitter design focused on energy e ciency. Power consumption was a

concern as it dictated the frequency at which the battery in the ambulatory monitor

needed to be changed. The wearable unit consumed 15mA from a 1.5V source when

transmitting 0 dBm into a 50 surface mount planar antenna. At this level of power

consumption, the device was able to transmit data continuously for 80 hours before

the battery (an alkaline AA non-rechargeable battery) needed to be replaced.

The telemetry system functioned reliably over a range of 50m line-of-sight. In

the laboratory, where there was a lot of electronic noise and thick concrete walls

separating rooms, the device functioned reliably within the room in which the re-

ceiver unit was placed, and within the neighbouring rooms, but not when there were

two or more walls between the transmitter and the receiver.

The system was tested in three homes (figure 4.3). The receiver unit was placed

in one room of the house, and an investigator moved around all of the rooms in the

house with the TA unit and the continuity of the received signal was monitored. The

first home was a 4-bedroom weatherboard house. The second and third houses were

2-bedroom brick homes. In each cases, the system functioned reliably throughout

the house.
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4.5 Calibration of the Ambulatory Monitor

4.5.1 Theory

When a piezoresistive accelerometer is placed with the sensitive axis parallel to the

gravitational vector, the accelerometer should give a reading of +1 g. When it is

placed with the sensitive axis antiparallel to the gravitational vector, it should give

a reading of 1 g. When the sensitive axis is perpendicular to the gravitational

vector, the accelerometer should give a reading of 0 g. This information was used

to calibrate the d.c. response of the triaxial accelerometer. The device was aligned

in 6 di erent orientations, each having one of the orthogonally-mounted uniaxial

accelerometers either parallel or antiparallel to the gravitational vector. At each

position, the responses of each of the three accelerometers were recorded.

The responses were adjusted using the linear equation y = mx + b where x is

the measured value, y is the actual value, and m (the gradient) and b (the y-axis

o set) are calibration parameters. The parameters were set using the measured

values corresponding to y = +1 and y = 1. The measured values corresponding

to y = 0 were used to check the results.

4.5.2 Results

The o sets inherent in the ADXL2 0 devices were all within the manufacturer’s

tolerances of +/- 0.0 between the two axes. The main component of the d.c.

o set of the accelerometer was due to the physical mounting inside the casing.

The orientation of the accelerometers relative to the casing varied slightly between

instruments.

The d.c. calibration parameters for one triaxial accelerometer were

m b

a1 1.07 0.10

a2 1.08 0.34

a3 1.06 0.11
These values were typical of the d.c. calibration values found across all seven

instruments that were developed.

4.5.3 Calibration Drift

One unit was tested over a 2 year period for drift in calibration. Once the unit was

constructed, there was some drift in the d.c. o set (a change of up to 0.2 g) over

the first few weeks of use. This is attributed to some mechanical shifting of the
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components during this time. After this period, the calibration was tested every 6

months and was found to remain constant with negligible drift. Similar results were

found in the six units that were used in a field study with elderly subjects (refer

to chapter 8). The calibrations drifted slightly (< 10%) in the first two to three

weeks, but then remained steady for the rest of the study.

4.6 Chapter Conclusion

A wireless, wearable triaxial accelerometer unit was developed by the Biomedical

Systems Laboratory at the University of New South Wales. This unit was designed

to attach easily and comfortably at the waist. It was enclosed in a small pager

casing, and weighed only 50 g including the 1.5V AA battery used to power the

instrument. The instrument was designed to function on very low power. Data from

the instrument were continuously sampled and transmitted at an e ective rate of

45Hz over a 433.92MHz wireless link to a receiver unit attached to a personal

computer where they were processed and stored. The accelerometer characteristics

of ±10 g, and 0—22.5Hz met the required ranges of ±6 g and 0—20Hz specified by

the literature for assessment of human movement at the waist.

The system functioned reliably in the three homes in which it was tested. It

had a line-of-sight transmission range of 50m and a life of 80 hours of continu-

ous transmission from a single 1.5V alkaline battery. When the units were first

constructed, there was some d.c. calibration drift due to physical readjustment of

the components inside the casing, but once the unit was “worn in”, the calibration

remained steady. Possible improvements to the design of the triaxial accelerometer

unit are discussed in chapter 9.



Chapter 5

Understanding the TA Signal

5.1 Overview

Before the accelerometer system can be used in any monitoring context, and before

algorithms can be developed to interpret the data recorded by the system, it is nec-

essary to have an understanding of the nature of the signals produced by the triaxial

accelerometer (TA) unit. The purpose of this chapter was to study the behaviour

of a single waist mounted TA and to establish the capabilities and limitations of

such a system in monitoring human movement.

In this chapter the signals obtained from a body-fixed piezoresistive TA are

analysed. The signals are described in a theoretical and an experimental context.

An understanding of the nature of the signals is developed, and the means by

which they can be represented are discussed, together with the advantages and

disadvantages of each representation. The measurement of movement using a TA

is discussed. This chapter also addresses the questions of “How does the device

placement a ect the TA signal output?” and “How reliably can the TA signals

be interpreted, given some noise in the signal, and some variation in the device

placement?”.

The chapter begins by developing a theoretical understanding of the signals from

a TA, based on the physical properties of the instrument. The signal is made up

of several components, and each of these is examined. Di culties in distinguishing

between the di erent signal components are discussed.

Section 5.3 investigates di erent ways of representing the signal from the TA

device in order to make the best use of the information contained in the signal.

Section 5.4 investigates the e ect of placement location on the TA signals. This

work provides an insight into the nature of the signals from an experimental view-

96
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point. It also allows the questions pertaining to robustness and flexibility in posi-

tioning of the device to be addressed. The e ect of device placement is investigated

for various postural orientations during rest, for the sit-to-stand and the stand-to-sit

transitions, and for walking.

TA devices have been used to provide an estimate of metabolic energy expendi-

ture. The final part of the chapter investigates the e ect of filtering to remove noise

and the e ect of device placement on the estimates of metabolic energy expenditure.

5.2 Composition of the TA Signal

5.2.1 Introduction

Triaxial accelerometers suitable for application to human movement are not readily

available and are not widely used outside of their use as estimators of metabolic

energy expenditure. In order to work with these devices in new applications of

unsupervised monitoring it is necessary to first gain a thorough understanding of

the nature of the signals obtained. This understanding is developed by studying

the composition of the TA signals from first principles.

The signal measured by each fixed-body piezoresistive accelerometer is a linear

sum of five components, measured along the sensitive axis. These components are

. acceleration due to body movement;

2. acceleration due to gravity;

3. accelerations caused by external vibrations not produced by the body (for

example, jolting felt while driving in a car);

4. artefact due to bouncing of the sensor on the body due to loose attachment

or soft tissue movement, or knocking of the sensor against other objects (for

example, knocking against a wall); and

5. noise intrinsic to the measurement system.

The first two components provide information about the wearer of the device.

The last three components are noise. The third component can reasonably be

neglected in a home environment (except, perhaps, in the event of an earthquake!).

The fourth component can be minimised by proper design and placement of the

sensor. The fifth component, noise intrinsic to the system, can be reduced by
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careful design and choice of components. Filtering techniques can also be used to

improve the signal-to-noise ratio.

The noise intrinsic to the TA system was measured in the following study.

5.2.2 A Study of the Noise Intrinsic to the System

Introduction

The TA device design results in a theoretical specified r.m.s. noise estimate of

4.3 × 10 3 g, and a 95% probability peak-to-peak noise estimate of 17.2 × 10 3 g

(refer to section 4.3.2). In this study, the noise levels intrinsic to the TA device

were measured experimentally.

Experimental Procedure

A TA unit was placed on a table located close to the receiver unit and left untouched

for 24 hours. The accelerations measured along each of the three axes were recorded.

The range of signal fluctuation was measured.

In order to observe the performance of the system when subject to electrical

interference, the TA was then placed on a bench in an electrically noisy laboratory

for 28 minutes. The laboratory contained 0 computers and monitors, and other

electrical equipment including signal generators and oscilloscopes. The accelerations

measured along each of the three axes were recorded.

Data Analysis

The data were analysed retrospectively in Matlab version 6. Descriptive statisti-

cal measures–mean, 90% trimmed mean, range, interquartile range, and standard

deviation (equivalent to the noise r.m.s.) were calculated.

Results

Figure 5. shows a part of the signals that were obtained while the TA device was

resting on the table. Most of the signal was contained within a small acceleration

band, but there was one spurious, large peak of noise present on two of the axes.

(This is visible in the figure near the 00-minute mark, on the x- and y-axes.)

The results obtained when the device was placed in the noisy laboratory environ-

ment for 28 minutes were very similar, but there were more spurious, larger peaks

of noise occurring randomly across channels and across time. In this instance, there

were approximately 7 large noise spikes occurring on each of the three axes. Given
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Figure 5. : Signals obtained from the TA while it was resting on a table. The three
acceleration components, (a) x-axis, (b) y-axis and (c) z-axis are shown.

that approximately 75600 samples were recorded from each axis, this represents a

corruption of 0.0094% of the received data.

Descriptive statistics for the two tests are given in table 5. .

When a median filter of length 3 samples was applied to the signal in order to

filter out the large noise spikes the experimental results corresponded closely to the

nominal r.m.s. noise estimate of 4.3×10 3 g and a peak noise estimate of 17.2×10 3

g. The descriptive statistics for the two tests, after median filtering are given in

table 5.2. The technique of median filtering is discussed in section 5.2.3.

Discussion and Conclusion

The large, spurious noise spikes were due to interference and were added to the

signal during transmission. They were not part of the signal measured by the TA.

These spikes occur more frequently when the received signal is very weak, either

because the TA unit is almost out of range of the receiver, or the TA battery is

low. They also occur more frequently when the TA is placed in an environment

with large amounts of electrical noise. This was confirmed by hardwiring the TA to

the receiver unit and placing the system in the same electrically noisy environment.

This time, in a 28 minute period, no large spikes appeared in the recorded signal.
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24 hour test 28 min, noisy conditions

x-axis y-axis z-axis x-axis y-axis z-axis

( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g)

mean - 276 -37 29 -3 -44 993

median - 276 -37 29 -3 -44 993

90% trimmed mean - 275 -37 28 -3 -45 993

r.m.s. (mean removed) 5.9 5.8 5.9 6.6 6. 6.5

peak-to-peak noise 383 628 3 488 403 438

99% peak-to-peak noise 30 29 30 30 28 29

95% peak-to-peak noise 24 22 2 24 22 24

interquartile range 8 8 9 6.6 6. 6.5

Table 5. : Descriptive statistics for static noise levels in the TA. The di erent mean
values between the two tests are due to the device being oriented di erently in the
two tests.

24 hour test 28 min, noisy conditions

x-axis y-axis z-axis x-axis y-axis z-axis

( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g) ( 0-3g)

mean - 276 -37 29 -3 -44 993

median - 276 -37 29 -3 -44 993

90% trimmed mean - 275 -37 29 -3 -44 993

r.m.s. (mean removed) 4.0 4.2 4.0 4. 3.9 4.0

peak-to-peak noise 45 00 55 36 3 32

99% peak-to-peak noise 20 22 2 8 9 20

95% peak-to-peak noise 6 6 5 8 6 6

interquartile range 5 6 6 6 4 6

Table 5.2: Descriptive statistics for static noise levels in the TA device after median
filtering (n = 3)
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In this study, even with the additional noise interference in the second test,

the 99% probability peak-to-peak noise was no more than 30 × 10 3 g, and the

r.m.s. noise was only 6.6 × 10 3 g. After the signals were low-pass filtered using

a median filter all of the large noise spikes were removed and the results were in

close agreement with the nominal noise values. This indicates that low pass median

filtering is an appropriate method for removing these noise spikes from the signal.

It can be concluded that the device operates within its design specifications, and

with a r.m.s. noise level of at most 6.6×10 3 g, and a 95% peak-to-peak noise level

of less than 30× 10 3 g.

5.2.3 Median Filtering to Remove Noise

It is desirable to remove as much of the noise from the signal as possible prior to

processing. The TA unit produced noise levels less than 30 × 10 3 g, or 0.15%

of the accelerometer amplitude range. However, there was some susceptibility to

noise during the wireless transmission. Observation of the received signals showed

that occasional noise spikes were being added to the signal during the wireless

transmission. Some of these spikes were occurring within the 5—20Hz band; that

is, within the frequency band containing the signal of interest. It was obviously

desirable to remove these noise spikes, some of which had amplitudes greater than

10 g, i.e., greater than the range of the instrument! However, the noise spikes within

the frequency band of interest could not be removed by a linear low pass filter

without removing part of the signal as well, so a nonlinear low pass median filter

was applied to the signal to remove noise spikes that occurred at frequencies below

20 Hz. This was carried out before any analysis of the signal took place.

Median filtering is a non-linear technique that applies a sliding window to a

sequence. The centre value in the window is replaced by the median value of all the

points within the window. For example, the ordered sequence, {4, 3, 5, 2, 8, 9, 1},

upon application of a median filter of length 3, becomes {4, 4, 3, 5, 8, 8, 1}. This

allows a noise spike to be removed from a signal. For example, the ordered se-

quence {3, 3, 3, 7, 3, 3}, when filtered with a median filter of length 3, becomes

{3, 3, 3, 3, 3, 3}. An example of the e ect of median filtering on noisy data is shown

in figure 5.2.

When applied to a signal containing body movement, the median filter has a

dampening e ect on the raw signal. Figure 5.3 shows the e ect of applying median

filters of lengths 3, 7 and 13 to the vertical component signal obtained when a

subject is walking. Figure 5.4 shows the e ect of applying the same filters to the
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Figure 5.2: E ect of median filtering on a signal with noise spikes. (a) Raw signal,
and (b) Signal after median filtering with a filter of length 3 samples.

vertical component signal obtained from a stand-sit-stand movement.

The quantitative e ects of the median filtering on the signal are examined in

later sections (section 5.5.2 and section 6.5).

5.2.4 Understanding the Gravitational Component

Piezoresistive accelerometers respond to gravitational acceleration. This is also

referred to as the d.c. response, or the static component. These two names are

slightly misleading, as the gravitational acceleration response does not have to be

static. If the accelerometer is rotated, the gravitational response measured by the

sensitive axis will change. Thus, in the current work, this component is referred to

as the gravitational acceleration, orGA component. The GA component reflects the

orientation of the device. If an accelerometer is placed, unmoving, in a gravitational

field, it will result in an output reading of

acceleration = g̃ cos( ), (5. )

where g̃ is the gravitational acceleration vector and is angle between g̃ and the

direction of the sensitive axis. This is illustrated in figure 5.5.
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Figure 5.3: E ect of median filtering on the vertical component of a walking signal.
(a) raw signal, (b) median filter length n = 3, (c) n = 7, (d) n = 13.
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Figure 5.4: E ect of median filtering on the vertical component of a stand-sit-stand
movement. (a) raw signal, (b) median filtering length n = 3, (c) n = 7, (d) n = 13.
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Figure 5.5: A TA is placed unmoving in a gravitational field. The TA has orthogonal
axes x, y and z. The gravitational component along the x-axis of the accelerometer
is given by g̃ cos( ), where g̃ is the gravitational acceleration and is the angle
between the g̃ and the sensitive axis. This is the projection of the gravitational
vector onto the sensitive axis.
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If a TA is used then the readings from the three axes are su cient to determine

the orientation of the device in space relative to the gravitational field, provided

that the device is not moving. The vertical orientation (tilt) of a TA device can

be resolved using the gravitational acceleration, but the horizontal rotation cannot

be resolved. This can be seen most clearly, with reference to figure 5.5, if the TA

is rotated so that its z-axis is aligned antiparallel to the gravitational vector. The

output of the TA will then be (x, y, z) (0, 0, 1), which gives full information on

the tilt angle, , but provides no information on the angle of rotation, . This can

be seen mathematically, since for this case,

= arccos

Ã
zp

x2 + y2 + z2

!
= arccos(

1

1
) = 0, (5.2)

but

= arctan(
y

x
) = arctan(

0

0
),which is not defined. (5.3)

The gravitational component can vary from + g when the accelerometer’s sen-

sitive axis is parallel to the gravitational vector, to 1 g when the accelerometer’s

sensitive axis is antiparallel to the gravitational vector.

Nonlinearity in the Signal

As the accelerometer is rotated in the gravitational field its output changes from

+1 g to 1 g in a nonlinear manner according to equation 5. .

The cosine curve is steepest near
2
as the output passes through 0, and is

flattest around 0 and , when the output is near ±1. This means that when the

accelerometer axis is close to being in line with the gravitational vector, small

changes in orientation have little e ect on the signal output. For example, an

alignment angle of 0 between the gravitational vector and the accelerometer axis

gives an output of 1.0, while an angle of 5 gives an output of 0.996, a change of

only 0.4%. In contrast, when the accelerometer axis is close to perpendicular to the

gravitational vector, small changes in orientation have a large e ect on the signal

output. For example, an alignment angle of 90 gives an output of 0.0, while a 5

change here to 85 gives an output of 0.087, a change of 8.7%. This e ect is shown

in figure 5.6.

This means that when the accelerometer is vertically aligned it is less sensitive

to both noise and small changes in orientation than when it is horizontally aligned.
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Figure 5.6: As the tilt angle of the accelerometer changes in a linear fashion, the
accelerometer output changes nonlinearly along the cos( ) curve. The slope of the
curve shows the rate of change of the accelerometer output.

Gravitational Component of Body-Fixed Accelerometers

It is possible to use the gravitational components from suitably placed accelerome-

ters to determine the postural orientation (sitting, standing, lying, leaning, etc.) of

a subject wearing the device. If the device is firmly attached to the body, and the

orientation of the device relative to the subject is known then this can be used to

identify the subject’s postural orientation. Figure 5.7 shows the signal outputs from

a TA attached at the waist for several di erent postural orientations. Identification

of postural orientation from a waist-mounted TA is discussed in depth in section

6.6.
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Figure 5.7: Signals obtained from a body-fixed TA while the subject was ( ) stand-
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The three graphs show: (a) antero-posterior acceleration, (b) medio-lateral accel-
eration, and (c) vertical acceleration. The TA was attached at the waist above the
right anterior superior iliac spine. The dotted lines indicate the timing of changes
in postural orientation.
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Figure 5.8: A cube with accelerometers a to a6 attached to each face moves along
a level surface.

5.2.5 Understanding the Body Movement Component

The acceleration due to body movement is also referred to as the a.c. component

or the dynamic component. These names accurately reflect the behaviour of this

component: if there is no body movement, then the body acceleration component

goes to zero, i.e., there is no d.c. response due to body movement. This component

is referred to as the body acceleration, or BA, component in the current work. The

BA component is dependent on three factors:

. the nature of the activity being undertaken;

2. the location on the body at which the accelerations are measured; and

3. the orientation of the accelerometer relative to the body.

To illustrate, suppose that a cube moves along a surface in a straight line as

follows. It begins from rest, and accelerates with uniform acceleration of 1m. s 2

for 10 s. It then continues at constant speed (acceleration = 0) for 10 s and then

decelerates at the rate of 1m. s 2 for the next 10 s after which it remains at rest.

Each face of the cube has an accelerometer attached, the sensitive axis of which is

mounted perpendicular to the face, and pointing out of the cube (figure 5.8).

The cube’s displacement increases parabolically for the first and last 10 s, and

linearly for the middle 10 s (figure 5.9a). At the same time, the acceleration increases
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Figure 5.9: The motion of the cube and the accelerations measured by each of the
six accelerometers: (a) displacement, and (b) velocity of the cube in the direction
of travel. (c)-(e) show the outputs of each of the six accelerometers.

linearly for 10 s, remains steady for 10 s, and the decreases linearly to 0m. s 1 (figure

5.9b). The six accelerometers record di erent readings. Accelerometer a is aligned

with the direction of motion, and so records an output that is equivalent to the

derivative of the velocity in the direction of travel (figure 5.9c). Accelerometer a2 is

aligned opposite to the direction of motion and so records the negative of a (figure

5.9d). Accelerometers a3, a4, a5 and a6 are aligned perpendicular to the direction

of motion and so record no acceleration due to the motion of the cube (figure 5.9e).

If an accelerometer were placed on the cube such that its sensitive axis was not

perpendicular to the face to which it was attached, then this accelerometer would

register a component (equal to the projection of the acceleration onto the sensitive

axis) of the acceleration due to the motion of the cube.
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5.2.6 Understanding the Combined Signal

The resultant acceleration measured by a piezoresistive accelerometer is the vector

sum of all of the accelerations acting on the device along the sensitive axis. This

is equal to the gravitational acceleration component plus the body acceleration

component, neglecting the e ects of noise.

Thus, if x, y, and z are the outputs of the TA along the x-, y- and z-axes

respectively, and if the GA component along the x-axis is represented by xGA, and

the BA component along the x-axis is represented by xBA, and similarly for the y-

and z- axes, then

x = xGA + xBA (5.4)

y = yGA + yBA (5.5)

z = zGA + zBA (5.6)

=
p
x2 + y2 + z2 (5.7)

=

q
(xGA + xBA)

2 + (yGA + yBA)
2 + (zGA + zBA)

2

=
q
(x2
GA
+ y2

GA
+ z2

GA
) + (x2

BA
+ y2

BA
+ z2

BA
) + 2 (xGAxBA + yGAyBA + zGAzBA)

=
p

GA
+

BA
+ 2(xGAxBA + yGAyBA + zGAzBA) (5.8)

where is the acceleration magnitude vector.

5.2.7 Separating the Signal Components

The GA and BA components provide di erent information. The GA component

provides information about the orientation of the device in space, and the BA

response component provides information about the movement of the device.

When the device is not moving the GA component will register a response, but

the BA component will not. If the device then undergoes a translation without

rotation, the BA component will register a response but the GA component will

not change its response. If the device is rotated relative to the gravitational vector

both the BA and GA components will simultaneously register changing responses.

All human movement contains some postural reorientation and so when the TA is

worn by a person, changes in the acceleration signals are made up of simultaneous

changes in the GA and BA components. This makes it di cult to identify parts of

the signal as due either to BA or to GA.

Moreover, the two components have overlapping frequency spectra. The BA

component ranges from above 0Hz possibly up to 20Hz, but is mostly contained



5. Understanding the TA Signal 111

in the range above 0 and below 3Hz. This range overlaps that covered by the GA

component, which is from 0 to several hertz.

Signal overlap between the two components is also evident in the acceleration

magnitude signal, (equation 5.8). 2 is equal to the sum of
GA
(the acceleration

magnitude of the GA component signal),
BA

(the acceleration magnitude of the

BA component signal), and a cross-term between the GA and BA components.

It is possible, at least theoretically, for body movement and postural orientation

variation to take place in such a way that they cancel out in the magnitude signal

and no change in acceleration is registered. As an example, consider the simple case

of a uniaxial accelerometer. The signal magnitude is given by

2 = z2 = z2
BA
+ z2

GA
+ 2.zBA.zGA.

Suppose that there is a change of a in the BA component, and a change of d in

the GA component. Then

2 = (zBA + a)
2 + (zGA + d)

2 + 2.(zBA + a).(zGA + d)

= z2
BA
+ z2

GA
+ 2.zBA.zGA + (a+ d). ((a+ d) + 2. (zBA + zGA))

Thus, if

(a+ d).((a+ d) + 2.(zBA + zGA)) = 0

that is, if

a = d

or

(a+ d) = 2.(zBA + zGA)

then no change in acceleration will be registered by the accelerometer, even though

the subject is in fact moving. This e ect is caused by the interaction between the

GA and BA signal components. The same e ect can also theoretically occur in the

three-dimensional case. This can be shown using a similar mathematical argument

although the algebra becomes correspondingly more complicated.

The above reasoning shows the worst possible case in which the BA and GA

components exactly cancel out. It is not possible that this could be sustained during

human movement, but simultaneous change in BA and GA can be expected to lead
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to some degree of distortion of the resulting acceleration magnitude signal during

most movements.

As there are temporal and frequency overlaps between the two components, it

is not possible to perfectly separate them, and approximations must be made. This

is a fundamental limitation of the technology. The first thing to note is that it

may not always be necessary to explicitly separate the two components in order to

obtain information. Any change in acceleration means that the subject must be

moving, as postural orientation (GA component) cannot change without a nonzero

BA component. Similarly, if there is no change in acceleration, it can reasonably be

assumed that the subject is not moving. It also seems reasonable to assume that

the changing acceleration due to body movement is much greater than the changing

acceleration due to changes in postural orientation, and that the BA component

generally occurs at higher frequencies than the GA component. This assumption

has been implicitly made by most investigators who have needed to separate the

two components ([3 , 72, 76]). These investigators have achieved a separation of

components using either a high-pass filter to obtain the BA component [3 ], or a

low-pass filter to obtain the GA component [72, 76]. However, none of these papers

discuss the choice of filter and no literature has been found that actually addresses

this issue or discusses the quality of the filtering.

In this work, two di erent approaches to the problem of separating the signals

were considered. Firstly, various filters were tested. Secondly, BA and GA were

estimated from the magnitude acceleration, .

Using Filters

The aim of filtering the signal was to approximately separate the BA and the GA

components. A wide range of di erent types filters were tested with di erent charac-

teristics and di erent windowing in order to determine their ability to di erentiate

the components of the acceleration signal. Both high pass and low pass filters were

tested. When a high pass filter was used, this gave an output of BA0 (an estimator

of BA). GA was then estimated by GA0 = signal BA0. When a low pass filter

was used, the output, GA0, an estimator of GA, was used to derive an estimate of

BA as BA0 = signal GA0 (figure5. 0).

The filter characteristic, and impulse and step responses were produced for each

filter. In order to directly compare the performance of filters, a signal consisting

of a single subject sitting, standing and walking was used as a benchmark. The

filters were rated on (i) the amount of BA component ripple present in GA0; and

(ii) the amount of ringing in the filtered signal. The choice of filter characteristics,
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Figure 5. 0: Block diagram of the separation filter.

particularly phase and impulse response can have a significant impact on signal

fidelity. As a very low filter cut-o point is required (around 0.5% of the sampling

rate), this can lead to substantial ringing and extended ripples in the filtered signal,

or even instability in the filter.

Elliptical, bessel, butterworth, remez, chebyshev, kaiser and FIR filters were

tested. The best performing filter was a custom-designed FIR filter. This was a low

pass FIR filter with a 3 dB point set at 0.25Hz and an attenuation of 50 dB/octave

and exceeding 50 dB in the stop band. In contrast to filters normally used for

these applications, this filter, whilst not linear phase, has a close to optimal impulse

response (minimal ringing). A cut-o frequency of 0.25Hz was chosen as it is

consistent with the frequencies used by other researchers (for example, Bouten et al.

[3 ] used 0.1Hz, while Forster and Fahrenberg [76] and Fahrenberg et al. [72] chose

to use 0.5Hz). A cut-o frequency of 0.25Hz represented a compromise between a

filter that was realisable and a cut-o frequency that was as low as possible. The

high-pass component of the signal was then obtained by subtracting the low pass

filtered signal from the original signal.

Filter characteristics are shown in figure 5. . The filter ressponses to impulse

and step inputs are shown in figure 5. 2, and the result of filtering on the test signal

is shown in figure 5. 3. This filter was stable and was able to provide a reasonable

separation between the GA and BA components as can be seen from figure 5. 3.

The main drawback was that it still introduced some ringing into the system and

this distorts the endpoints of movements. This can be a problem if the endpoints

of an activity need to be accurately determined.

An alternative approach to approximating BA and GA that did not introduce

any ringing was tested. This method approximatedGA andBA from the magnitude

acceleration, .
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Figure 5. 3: The e ect of applying the FIR filter to a benchmark signal. The signal
shown is the vertical acceleration component obtained from a TA attached at the
waist above the anterior superior iliac spine. The subject stood, sat down, stood
up, walked, stood, sat down, stood up and walked. (a) the original (composite)
signal, (b) the GA estimate signal, (c) the BA estimate signal.
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Using the Magnitude Acceleration,

is the standard magnitude vector used in the spherical coordinate representation.

It can be seen from equation 5.8 that is composed of
GA
,

BA
and a cross-term.

GA
, the magnitude of the gravitational component, is equal to 1 g.

BA
was calculated using the approximation

2

BA

2 2

GA
, (5.9)

or

0

BA
=
p

2 1, (5. 0)

where 0

BA
is an estimator of

BA
. Here, all of the cross-term contained in is

attributed to the BA component. Essentially, what this method does is to remove

the d.c. component from the BA component directly, without filtering.

Normally, this type of approach would not be considered because it is completely

insensitive to baseline drift. It was considered here because the baseline should, at

least theoretically, remain constant. Within a small region such as a house, there

is no discernible change in g so there should be no change in
GA
, meaning that it

can be regarded as a constant value.

The inability to allow for any variation in the d.c. o set is the main limitation

of this method. It requires perfect calibration and no calibration drift. If this is

not the case, then the body acceleration component estimation will contain a d.c.

o set. This can lead to significant errors in calculations and algorithms that use

the BA component, such as in the estimation of metabolic energy expenditure.

In order to address this, an experimentally derived estimator of the gravitational

component magnitude vector, 0

GA
, was computed from the signal. The TA was

placed, unmoving, on a table for several minutes. 0

GA
was calculated as

0

GA
=

vuut 1

N

NX
1

(x2 + y2 + z2) (5. )

where N was the number of samples that were recorded. 0

BA
was then calculated

using equation 5. 0.

The test signal shown in figure 5. 3(a) was used to evaluate the performance of

the separation. The use of 0

GA
led to improved results in the sense of a reduction in

d.c. o set in the body acceleration component estimate, compared to using
GA
= 1,

but the approximation is still highly dependent on the accuracy of calibration, and

lacks robustness.
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When using estimator 0

BA
, the error in

BA
increases with a squared relationship

to the error in 0

GA
. A second estimator of

BA
was considered in which the error

in 0

BA
increases linearly with the error in 0

GA
. This estimator was

00

BA
= 0

GA
. (5. 2)

Although this estimator is not obviously derived from the definition of as is the

first one, it serves an identical function in that it aims to remove the d.c. o set from

BA
without filtering. When applied to the test signal, 00

BA
proved to be a better

estimator than 0

BA
, and when the system was well-calibrated it gave better results

than the filtering methods because it left no ringing and successfully removed all

of the d.c. component from
BA
. Nonetheless, this method still lacks robustness

against errors in 0

GA
. If the TA was not perfectly calibrated (and an error of less

than 1% was su cient), then changing the orientation of the device introduced error

into 0

GA
, and in less well controlled conditions this led to a significantly large d.c.

o set in
BA
.

A third estimator was considered that used splines to estimate
GA

from the

signal. This method allowed the estimate of
GA
to vary over time, making it more

robust to inexact calibration and calibration drift. During periods of rest, 00

GA
was

estimated by averaging over the period of rest. During periods of activity, 00

GA
was

allowed to change linearly with time. Its starting value was the value attributed to

it in the preceding rest period, and its finishing value was the value attributed to it

in the succeeding rest period. This approach gave a much smaller d.c. o set in
BA

than the other approaches when there was a small calibration error, but it still had

the same robustness limitations to larger calibration errors as the other acceleration

magnitude methods.

Despite the robustness limitations, all of these magnitude acceleration methods

have the advantage that they introduce no distortion into the signal, and in partic-

ular, activity endpoints in the signal remain una ected by the separation process.

Conclusion

Two di erent approaches were applied to separate the signal components. The first

method involved filtering the signal using a low cuto frequency. The best filter

was found to be a high pass FIR filter that had an optimised impulse response to

minimise ringing. The main drawback was that it did still introduce some ringing

into the system.

This limitation could be overcome by using approximation methods based on

the acceleration magnitude, . The best of these methods estimated the body
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acceleration component magnitude as
BA GA

. This worked best when

a spline method was used to estimate
GA
, although introducing splines added an

order of computational complexity to the system over using a simple constant value.

These methods have the limitation that they cannot guarantee the removal of the

d.c. component from the body acceleration estimate and this can be a significant

problem for calculations and algorithms that require a signal without a d.c. o set

when there is no body movement.

Neither of these two methods is clearly superior to the other. The preferred

approach depends on the context in which it is to be applied. In some instances,

such as the estimation of metabolic energy expenditure, it is necessary to extract

only the body acceleration component, and it is necessary for the acceleration to

have no d.c. o set when the TA is not moving. In this circumstance, filtering is

the preferred option. On the other hand, in endpoint detection, distortion of the

activity endpoints through the introduction of ringing is a more significant problem

than the introduction of a slight d.c. o set so in this case, approximating the

body acceleration component from the acceleration magnitude signal is preferable.

However, the di culties in separating the two components make it preferable not

to attempt the separation if it is not required, but rather to develop algorithms that

can use the combined signal.

5.2.8 Summary

This section described the composition of the TA signal. Each of the signal compo-

nents was studied from basic principles. The signal consists of a body acceleration

(BA) component, a gravitational acceleration (GA) component, and noise. The

amount of noise intrinsic to the system is small (approximately 4.3× 10 3 g r.m.s.)

and although the RF transmission is susceptible to noise, this can be reduced by

median filtering techniques. The gravitational component provides information on

the tilt angle of the TA device which can be used to make inferences about the

postural orientation of a subject when the device is worn. The body acceleration

component provides information on the movement of the subject. These two com-

ponents are linearly combined in the TA signal and as they overlap both in time

and in frequency, they cannot be easily separated, although approximations to the

two components can be made.
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5.3 Representation of the TA Signal

5.3.1 Introduction

The TA signal contains a range of information. Di erent signal representations

accentuate di erent aspects of this information. The data can be represented in

its raw, Cartesian form by three orthogonal accelerations, or it can be represented

in spherical coordinates by a magnitude and two angles. Although isomorphic, the

two representations present the information di erently and so are each useful on

di erent occasions.

As acceleration is the derivative of velocity and the second derivative of displace-

ment, the acceleration signal can also be integrated to obtain measures of velocity

and displacement. However, the heterogenous composition of the acceleration signal

precludes these from providing meaningful measures of the movements of a subject

wearing the device.

5.3.2 Cartesian or Spherical Signal Representation?

The data are provided from the TA in a Cartesian form where the overall acceler-

ation vector is represented by its three orthogonal components (x, y, z). The data

could also be represented in spherical coordinates ( , , ), where is the magnitude

vector, is the tilt angle from the vertical z-axis to the horizontal x-y plane and

is the angle of rotation from the x-axis to the y-axis (figure 5.5). The following

equations are used to transform between Cartesian and spherical representations:

x = cos( ) sin( ) (5. 3)

y = sin( ) cos( ) (5. 4)

z = cos( ) (5. 5)

2 = x2 + y2 + z2 (5. 6)

tan( ) =
y

x
(5. 7)

cos( ) =
z

(5. 8)

The choice of whether to use a Cartesian or a spherical representation depends on

the application. If a subject wears the TA at the waist and is upright, with the z-axis

vertically aligned then the angle of rotation, , is numerically unreliable as it involves

division by a very small amount. , on the other hand, can provide information on
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the angle of inclination of the subject. provides movement information in a one-

dimensional form, but as was noted in section 5.2.7, movement can be distorted in

because of interaction between the body acceleration and gravitational acceleration

components. Both Cartesian and spherical representations are employed in the

current work

5.3.3 Integration of the Signal to Obtain Displacement and

Velocity

Theoretically, the acceleration signal should be able to be integrated to give veloc-

ity, and the velocity signal integrated to yield displacement. However, there are

di culties in achieving this in practice. Evans et al. [70] wrote that “a well recog-

nised di culty with the use of accelerometers in gait analysis has been the noise

problem when acceleration is measured and then integrated to determine velocity

and position”. The main problem in integrating to obtain velocity and displacement

is the gravitational component of the signal, which results in a d.c. o set in the

acceleration signal. An o set of 0.1 g is equivalent to an acceleration of just below

1m s 2. Over a period of 1 s, this leads to an error in displacement of 1m. Over a

period of 10 s, this leads to an error in displacement of 100m! The problem, then,

with double-integration is that the system is very sensitive to any d.c. o set that

is present in the acceleration signal, and these d.c. o sets are present due to the

gravitational signal component.

For double integration to give a true displacement signal, only the body ac-

celeration component should be included. However, as discussed, this cannot be

perfectly extracted from the TA signal and so there will always be error in the body

acceleration component estimate that will confound attempts to derive a measure

of change in displacement.

This e ect was observed in a study in which velocity and displacement measure-

ments were derived from the acceleration signal produced by the TA.

Experimental Procedure

Three tests were undertaken using the TA unit. In all of the tests, only the vertical

acceleration component was considered. In the first test, the TA unit was held

by the investigator, and placed against a vertical corner join of two walls so that

it could only be moved in one dimension. The TA unit was moved along the

corner join with varying accelerations. It was moved vertically upwards 10 times,

and vertically downward 10 times. In each case, the displacement was 60 cm. In
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this test, the orientation of the TA unit was fixed, and as a result the GA signal

component was constant.

In the second test, the TA unit was held by the investigator in free space. The

unit was moved upwards and then downwards with a displacement of 1m. This test

was repeated ten times. In the third test, the TA unit was worn above the anterior

superior iliac spine of a subject who performed 10 sit-to-stand and 10 stand-to-sit

transitions.

Data Analysis

Each of the vertical component signals was median filtered to remove noise spikes.

Velocity and displacement estimators were obtained as follows. The signal was

filtered using the FIR filter described in section 5.2.7 to obtain an estimate of the

BA signal component. The signal was then integrated to obtain a measure of

velocity, and integrated again to obtain a measure of displacement.

Results

In the first test, the direction of displacement was correctly identified in every

case by the sign of the displacement. However, the magnitude of the displacement

was not accurately measured (mean estimated displacement 0.23± 0.1m standard

deviation).

In the second test, the direction of displacement was correctly identified in 18 of

the 20 trials. The magnitude of the displacement was not accurately identified and

there was a greater standard deviation in the estimates of displacement (0.5±0.3m).

In the third test, the direction of displacement was only correctly identified half

of the time.

Discussion and Conclusion

When the TA unit was moved in such a way that there was no alteration in orienta-

tion during the movement, double integrating was able to identify the direction of

the movement. However, even a small amount of change in orientation added su -

cient error to the system to make the results of the double integration an unreliable

indicator of displacement direction. In the case of the sit-to-stand and stand-to-

sit transitions, when movement was nonlinear and had six degrees of freedom, the

estimate of displacement was so inaccurate that it could not even provide any in-

formation on the direction of the movement!
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There were two factors contributing to the error in the estimate of displacement

in the first test. The first was the intrinsic noise in the system. An r.m.s. noise level

of 6.6× 10 3 g leads to a potential error of 6.6× 9.81× 10 3m.s 2
× 1 s = 65mm

each second, and the peak noise level of 25 × 10 3 g leads to a potential error of

25× 9.81× 10 3m.s 2
× 1 s = 245mm each second. The second contributing factor

was the error introduced by the low pass filter used to separate the body movement

acceleration from the gravitational acceleration. In the second and third tests, the

presence of acceleration due to the gravitational component in the body acceleration

component signal estimate was the main cause of inaccuracy.

It is evident that the acceleration signal cannot be integrated to obtain meaning-

ful information on velocity or displacement due to the presence of the gravitational

signal component and noise in the signal.

5.3.4 Summary

The signal from the TA is received in Cartesian form, which provides the information

in terms of the net acceleration acting along each of the three orthogonal axes. It

can be transformed to an isomorphic spherical coordinate form, from which the net

acceleration magnitude and the vertical tilt angle can be more easily identified.

The acceleration signal cannot be integrated to determine the velocity and dis-

placement of motion due to the presence of the gravitational acceleration component

and noise in the signal.
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5.4 Understanding the E ect of Device Placement

on the Signal

5.4.1 Introduction

The signal obtained from a TA worn by a person is dependent upon its placement.

Even if the TA unit is designed to be worn in one particular position, the exact

attachment location will vary across subjects due to di erences in body shape. The

placement location and orientation may also vary for the same subject from day-

to-day, depending on the subject’s choice of clothing. The purpose of this section is

to gain an understanding of the e ect of TA placement on the output acceleration

signals.

5.4.2 An “Ideal” Subject

Consider the case of a TA attached to a rectangular prism within a global coordinate

system (figure 5. 4). The global coordinate system has axes Xg, Yg and Zg and is

left handed. Its origin, O, is located at the centre of the prism. The rectangular

prism is placed so that the Xg-axis runs from the origin through the centre of the

front face of the prism, the Yg-axis runs from the origin through the left face (as

seen by the prism), and the Zg-axis runs from the origin through the bottom face.

The gravitational vector, g, is parallel to the Zg axis. Associated with the prism is

a coordinate system, which is also centred at O, and which has axes Xp, Yp and Zp

that are aligned with Xg, Yg and Zg respectively when the prism is resting on its

bottom face. The TA has coordinate axes x, y and z. It is placed on the front face

of the prism in such a way that its x, y and z axes are aligned with the Xp, Yp and

Zp axes respectively. In this situation, the TA output will be given by the vector

(x, y, z) (0, 0, 1).

The output of the TA is dependent on the postural orientation of the prism

and on the placement and orientation of the TA relative to the prism. The TA

output vector is the component of g acting along each of the axes of the TA. Since

the gravitational component is known in the global coordinate system, the TA

output vector can be determined by first computing the coordinate transformation

matrix between the TA coordinate system and the global coordinate system and

then multiplying the base vector of (0, 0, 1)T by this matrix.

As an example, consider the situation illustrated in figure 5. 5 in which the

prism is resting on its left face and the TA is attached to the right face of the prism,
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Figure 5. 4: Ideal case of a rectangular prism with a TA attached to the front face.
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with the x-axis aligned with the Yp-axis, the y-axis aligned with the Zp-axis, and

the z-axis aligned with the Xp-axis.

Figure 5. 6 shows the coordinate transformations that occur due to the reorien-

tation of the prism, the new placement of the TA, and the reorientation of the TA.

It can be seen that for this example, the coordinate transformations are x Zg,

y Yg, and z Xg, leading to a transformation matrix of

RM =

0 0 1

0 1 0

1 0 0

.

RM can also be computed by multiplying together the rotation matrices from each

of the three steps:

RM = R1 ×R2 ×R3, where

R1 =

1 0 0

0 cos(270 ) sin(270 )

0 sin(270 ) cos(270 )

R2 =

cos(90 ) sin(90 ) 0

sin(90 ) cos(90 ) 0

0 0 1

R3 =

1 0 0

0 cos(270 ) sin(270 )

0 sin(270 ) cos(270 )

The resulting TA output for this situation is ( 1, 0, 0).

The rectangular prism provides a simple geometry from which to determine

the behaviour of the TA under static conditions. However, the waist of a human

subject is not well-modelled by a rectangle as few humans have waists with four

sharp corners! Consider next a cylinder. In this geometry, the waist of the subject

is modelled by a smooth curve (figure 5. 7). The placement of the TA is identified

by the angle of placement, t. This angle measures the angular distance from the

centre of the back. In the rectangular prism model, there were only four possible

placements on the sides of the prism. These were on the back, left, front and right

faces. On the cylinder, however, there is a continuum of placements on the curved

face. Placements at the back, left, front and right correspond to t = 0 , 90 , 180 ,

and 270 respectively.
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Figure 5. 5: The rectangular prism with the TA moved to the right face and rotated
through 270 . The prism is resting on its left face. The TA output vector is
( 1, 0, 0)T .
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Figure 5. 6: Sequence of coordinate transformations for the example of figure 5. 5.
(i) Prism upright, with TA attached to front face, as shown in figure 5. 4, (ii) prism
rotated to rest on left face, (iii) TA moved to right face, and (iv) TA rotated to new
orientation.
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The model can be further enhanced by using an elliptical cylinder with an ex-

tended medio-lateral axis and a squashed antero-posterior axis. Table 5.3 lists the

TA outputs when the TA is attached to the face of a rectangular prism and to the

face of a cylinder with t = 225 . The fourth row of the table gives the signal outputs

for a TA attached at t = 225 between the front and the right side of an elliptical

cylinder with a major axis to minor axis ratio of 30 : 23, a typical ratio for the waist

of a human subject.

When the TA is attached to the rectangular prism such that its axes are aligned

parallel to the axes of the prism the outputs can only take values of 1, 0 and +1

since each of the axes must either be aligned parallel, antiparallel, or perpendicular

to Zg. When the TA is attached to the cylinder, the axes can be aligned at any

angle relative to Zg and so the three axis outputs can range between 1 and +1.

The TA output is also a ected by the shape of the ellipse. In the regular cylinder,

the points at which the x- and y-axis values have the same magnitude (0.71) when

the cylinder is lying face-down are equally spaced at t = 45 , 135 , 225 , and 315 .

As the ratio length:breadth increases, the angles of placement at which the x- and

y-axis values have the same magnitude when the cylinder is lying face-down shift

towards the left and right sides of the prism, that is, they move towards t = 90

and 270 . For the cylinder with a length:breadth ratio of 30 : 23 they occur at

t = 52.52 , 127.48 , 232.52 and 307.47 .

The rectangular prism, the regular cylinder and the elliptical cylinder are simple

models of an “ideal” subject. When the geometry of the subject is known and the

subject is stationary, then the output of the TA can be deterministically calculated

given:

. the subject’s postural orientation;

2. the location at which the device is placed on the subject; and

3. the orientation of the TA relative to the subject.

The following study investigates the goodness of fit of these models to data

obtained from real subjects.
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Figure 5. 7: Ideal case of a cylinder with a TA attached. The axes of the TA are
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standing standing lying lying lying lying

upright on head face supine left side right

down side

attached to front

face of rectangu-

lar prism, z-axis

parallel to ver-

tical edge, +ve

down

0

0

0

0

-

0

0

-

0

0

0

0

0

-

0

attached to right

face of rectangu-

lar prism, z-axis

parallel to ver-

tical edge, +ve

down

0

0

0

0

-

0

0

0

-

0

-

0

0

0

0

attached to

cylinder at

t = 135 ,
z-axis parallel

to vertical edge,

+ve down

0

0

0

0

-

.7

.7

0

-.7

-.7

0

-.7

.7

0

.7

-.7

0

attached to

elliptical cylin-

der (a= 5cm,

b= .5cm) at

t = 135 ,
z-axis parallel

to vertical edge,

+ve down

0

0

0

0

-

.79

.6

0

-.79

-.6

0

-.6

.79

0

.6

-.79

0

Table 5.3: TA output for 6 basic postural orientations when the TA is placed at
various positions on a prism and a cylinder.
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5.4.3 A Study of the E ect of Device Placement on Signals

Obtained During Rest

Introduction

As shown in section 5.4.2, the relationship between the signals produced by the

TA and the postural orientation of the subject is dependent on the placement of

the TA. Real subjects have a far more complicated geometry than the simple cases

expounded in the previous section, and this geometry di ers for every person. More-

over, human subjects are not rigid bodies and there are torsional and displacement

forces that act on the body to cause deflection and distortion. In addition, the exact

orientation of the TA unit will depend on the placement location, the body shape of

the wearer, and on the clothing to which the device is attached and will vary from

person-to-person, and for the same person on di erent occasions. As the interpre-

tation of TA signals becomes less clear-cut it becomes important to understand the

e ect of positioning and orientation on the resultant signals from the body-fixed

triaxial accelerometer.

The primary aim of this study was to develop a general method for identify-

ing postural orientation from the signals received from a waist-mounted triaxial

accelerometer (TA). Investigations were made in order to determine a relationship

between (i) the placement of a waist-mounted TA; (ii) the postural orientation of

a stationary subject; and (iii) the signals produced by the accelerometer. A deter-

ministic approach was adopted in which the geometry of the subject was modelled

using simple geometric figures and these were used to predict the TA output signals.

Data were collected from a cohort of subjects and the experimental TA outputs were

compared to the predicted TA outputs to obtain a measure of the quality of the

models.

Experimental Procedure

Twenty three normal, healthy subjects participated in the study (7 female, 16 male;

age 30.5 ± 6.3 years (mean ± standard deviation); height 174.3 ± 9.7 cm; weight

72.3 ± 11.3 kg; body mass index 23.7 ± 2.4 kg.m 2). Each subject was tested in a

30 minute session.

The circumference of the subject’s waist was measured using a tape measure.

The length of the medio-lateral axis at the waist (lx) and the length of the antero-

posterior axis at the waist (ly) were measured using a pair of callipers.

Data were collected while the subjects were standing or lying supine with the TA



5. Understanding the TA Signal 131

Figure 5. 8: Horizontal cross-sectional models of the waist. (a) rectangle, (b) ellipse,
and (c) circle.

attached at six di erent positions around the waist. The attachment positions were

(i) on the right side; (ii) at the front-right, above the right anterior superior iliac

spine; (iii) at the front in the middle; (iv) at the front-left, above the left anterior

superior iliac spine; (v) on the left side; and (vi) at the back in the middle.

The subject was shown how to attach the TA device and then asked to attach

it at the first attachment position. No special belt or clothing was used, so the

attachment point varied slightly across subjects. Subjects wearing a belt clipped

the device onto the belt, while subjects wearing trousers or a skirt without a belt

attached the device directly to the clothing. The subject was asked to stand still

and data were collected for 20 s. The subject was then asked to move the TA to the

second attachment placement and data was collected for 20 s while the subject was

standing. This procedure was repeated for the four remaining placements.

Following this, the subject was asked to lie supine, and 20 s of data were collected

with the TA attached at each of the same six placements.

Data Analysis

Model Development The subjects were modelled by a number of simple geome-

tries that would allow prediction of the TA output for a given position and postural

orientation. The horizontal cross-section of the subjects at the waist was modelled

as (i) a rectangle, (ii) an ellipse and (iii) a circle. These are shown diagrammatically

in figure 5. 8.

These horizontal cross sections were built into three-dimensional surfaces to

model the surface of the subject near the waist. Uniform and uniformly tapered
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models were considered. The uniform models assumed that the horizontal cross

sections above and below the waist were the same as those at the waist. The models

tested under this assumption were the rectangular prism, the elliptical cylinder and

the regular cylinder.

The prismatic models focused on the horizontal cross-sectional geometry of the

waist but ignored any o set from the vertical in the z-axis by making the assumption

that the vertical axis of the TA is directly aligned with the vertical axis of the

subject. This meant that when the subject was standing, the predicted TA output

vector was (x, y, z) = (0, 0,+1) g regardless of where on the waist the device was

positioned. When the subject was lying, the predicted z-axis vector component was

zero and the horizontal cross-sectional model defined the values of the x- and y-

axis components.

Rectangular Prism Model : The rectangular prism was the simplest model inves-

tigated. The TA was positioned on the face of the prism such that its axes were

aligned with the faces of the prism. As the prism lay on each of its six faces, one

of the accelerometer axes measured ±1 g, and the other two axes recorded zero

acceleration (refer to section 5.4.2). This model allowed the postural orientation of

the subject to be classified as one of six discrete states.

Elliptical Cylinder Model : The second model used was an elliptical cylinder.

The major axis of the ellipse represented the medio-lateral axis of the subject, and

the minor axis represented the antero-posterior axis. These were described by two

subject-dependent parameters, a and b, which represented half the lengths of the

minor and major axes respectively, i.e. lx = 2b and ly = 2a.

With reference to figure 5. 8b, the device position on the waist can be described

in parametric form as (x, y) = (a cos(t), b sin(t)) where t is the angle from the

centre of the back, proceeding around the body toward the left side. The centre

of the ellipse represented the approximate centre of gravity of the body, and the

circumference of the ellipse represented the circumference of the horizontal cross

section of the body at the waist. When the subject was lying supine, the value

of the output vector was given by (gx, gy, gz) = g( sin , cos , 0), where =

arctan
¡
b cos t

a sin t

¢
. Again, the z-axis of the TA was assumed to be parallel with the

vertical axis of the subject.

Circular Model : The third model that was considered was a regular cylinder.

This model was a special case of the elliptical cylinder model. It was identical

to the elliptical cylinder model when a = b, and hence = t. This meant that

the regular cylinder had no subject-dependent parameters and hence constituted a

simpler model than the elliptical cylinder.
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non-uniform surface uniform surface

TA TA

Figure 5. 9: Attachment of the TA unit to a non-uniform surface can be represented
by attachment to a uniform surface where the tangent to the non-uniform surface
at the point of attachment is used as the uniform surface.

Two assumptions were made in all of these uniform models. Firstly, all upright

orientations had the TA z-axis parallel to g, i.e. (x, y, z) = (0, 0, 1) g and the angle

between the gravitational vector and the TA z-axis, , was 0 . Secondly, all lying

orientations had the z-axis was perpendicular to g, i.e. (x, y, z) = (x, y, 0) g and

angle = 90 .

In order to test the validity of these assumptions, models with uniform tapering

were also considered. In these models, the surface of the shape at the waist was not

parallel to g when upright, nor perpendicular to g when lying. Uniform tapering

was used because attachment of the TA to a non-uniform surface can be represented

by attachment of the TA to a uniform surface where the tangent to the non-uniform

surface at the point of attachment is used as the uniform surface. This is illustrated

in figure 5. 9.

Three basic types of vertical axis modelling were considered for each horizontal

cross-section. These were the prismatic model (without tapering), and tapered

models in which the apex was in the direction of the head and in the direction

of the feet. These are shown in figure 5.20 for the elliptical cross section. The

angle, , of the cone or prism was defined as the arctangent of the ratio of the

height (h) to the width (w). Changing this angle changed the slope of the shape,

and hence the amount of deviation from (x, y, z) = (0, 0, 1) g when standing and

(x, y, z) = (x, y, 0) g when lying.

In applying the tapered models, it was assumed that the vertical axis of the

model, Zp was parallel to g while upright, and perpendicular to g when lying.
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Figure 5.20: Types of three dimensional models that were tested: (a) no tapering,
(b) uniform tapering, with apex towards the feet, and (c) uniform tapering, with
apex towards the head.

Model Testing The measurements of the subjects’ waists, and the data taken

while the subjects were standing and lying supine with the TA in each of the six

di erent placements were used to evaluate the models in three di erent ways. In

the first part of the evaluation, the accuracies of the three horizontal cross-sections

were compared. In the second part of the evaluation, the accuracies of the three

dimensional models were assessed. In the third part of the evaluation the distrib-

ution of the data was studied to determine whether it would be better represented

by a prismatic or a tapered model.

The accuracy of the horizontal cross-sections were evaluated by predicting the

waist circumference of each subject by means of each of the cross-sectional models.

The measured width and breadth of the subject’s waist, lx and ly, were used to

calculate the circumference of

(i) a rectangle, as 2(lx + ly);

(ii) an ellipse, (using the Ramanujan approximation) as

.

Ã
3.

μ
1

2
lx +

1

2
ly

¶ sμ
1

2
lx +

3

2
ly

¶μ
3

2
lx +

1

2
ly

¶!
; and

(iii) a circle, as .1
2
.(lx + ly).

The calculated circumferences were compared with the measured circumference

for each subject to give a preliminary validation of the waist cross-sectional models.

Each of the 20 s data recordings collected from the subjects was averaged to

produce a single three-dimensional vector. This vector represented the TA output
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Figure 5.2 : Figure showing the nominal values for the angle of placement, tnom,
for various positions on the waist.

for the subject for the given device placement and postural orientation. These

vectors were used in the following analysis as the measured TA outputs.

Each of the models was evaluated by comparing the measured output of the TA

with the output predicted by the model for each of the six placement locations.

These six placement locations were nominally designated by t = 0 at the back,

t = 90 at the left side, t = 135 at the front-left, t = 180 at the front, t = 225 at

the front-right and t = 270 at the right side of the waist (refer to figure 5.2 ). These

values are referred to as the nominal t values, or tnom. The device was attached

to the waist only in an approximate position as the angle t could not be measured

directly. The problem thus became one of identifying the best model to represent

the subject, and to identify the value of t that best represented each placement for

each model.

A value for t was computed for every device placement for every subject. This

was done by finding the value of t that minimised the di erence between the mea-

sured output acceleration vector and the acceleration vector predicted by the model.

In order to do this, a three-dimensional least squares error term was defined as

e(t) =

q¡
gx(theor)(t) gx(meas)

¢2
+
¡
gy(theor)(t) gy(meas)

¢2
+
¡
gz(theor) gz(meas)

¢2
(5. 9)

where t is the angle of placement parameter, gx(theor)(t) is the (model-dependent)

theoretical value for gx, and similarly for gy(theor) and gz(theor). gx(meas) is the ex-
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perimental value of gx. The error term, e(t), is measured in units of acceleration,

m. s 2.

In the above equation gz is independent of t and depends only on the vertical tilt

angle, . gx and gy are described as functions of t. This was true for the elliptical and

circular models, which produced a continuum of di erent output vectors depending

on the value of t. It could also be applied to the rectangular models if t was

restricted to one of the four values, 0 , 90 , 180 and 270 . In the rectangular model,

placement at the front-left and front-right of the waist were reduced to a t-value of

180 , indistinguishable from the front placement. Consequently, optimisation of t

was not undertaken when using the rectangular model.

When the models based on the ellipse and the circle were considered, the angle t

that minimised e(t) was calculated for each of the recorded measurements for each

subject. These individual experimentally derived values for the angle of placement

(tindiv) were firstly compared to the nominal values (tnom) as another check on the

validity of the models. Then they were averaged over all of the subjects to produce a

single mean experimental value for t for each device placement (tmean). The di erent

models were compared by considering the values of the error term, e(t), that they

produced. The models tested in this evaluation included the rectangular prism,

regular and elliptical cylinders, the rectangular pyramid, and regular and elliptical

cones.

The third part of the evaluation looked at the distribution of the data to de-

termine whether a prismatic model was more appropriate than a tapered or a non-

uniform model. If it is assumed that Zp is vertically aligned when standing and

horizontally aligned when lying then it may be noted that a prismatic model (and

only a prismatic model) would result in the following behaviour for the tilt angle,

:

. When the subject is lying, the deviation about the nominal mean of 0 g can

be either positive, if the head end of the device is elevated relative to the tail

end, or negative if the tail end is elevated relative to the head end. Thus a

distribution about zero is expected, with an experimental mean close to zero.

(The tapered model would have a normal distribution about g cos(90 ).)

2. When the subject is standing, the deviation about the nominal mean of g

must result in a value less than one, and thus, if the data were normally

distributed about one half a bell curve would be expected, with its peak at

around one. (The tapered model would have a closer to normal distribution

with peak at g cos .)
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Subsequently the set of tilt angles for all subjects for all standing placements

was compared to a normal distribution about zero, and the set of tilt angles for all

lying placements was compared to half a bell curve.

The e ects of subject height and waist circumference on the cone or pyramid

and the e ect of varying the amount of tapering were also considered.

Results

Waist measurements The mean measured waist circumference was 89.5±8.0 cm

(standard deviation). The rectangular model considerably overestimated the cir-

cumference of the subject at the waist (error = 23.8% ± 4.0%). The ellipse and

the circle both gave much more accurate results (error = 2.4% ± 3.1% and

2.8% ± 3.1% respectively), but were more likely to underestimate the circum-

ference. This is indicated by the negative sign in the error values.

Computation of the Angle of Placement, t Three di erent approximations

to the angle of placement, t, were used. These were the nominal values, tnom,

the individually optimised experimental values, tindiv and the group means of the

individually optimised experimental values, tmean. In the cylindrical models, tindiv

for each placement were similar across all of the subjects and were close to the tnom.

Figure 5.22 shows tmean from the elliptical cylinder model plotted together with the

tnom. Each tindiv was within one standard deviation of tnom for the same postural

orientation.

For each given nominal placement, the derived optimal angular position, tindiv,

had a standard deviation less than 13 (3.6% of the range), despite di erences in

body shapes and clothing worn.

The tnom, tindiv and tmean values for each device placement were compared. Fig-

ure 5.23 shows the error term, e(t), for the elliptical cylinder model when tnom, tindiv,

and tmean were used. Best results were obtained when the elliptical cylinder model

was applied using tindiv. This gave an overall mean placement error of 0.16± 0.07 g

(standard deviation).

tindiv provides the minimum possible value for e(t). In the elliptical model,

using tnom rather than tindiv doubled e(t) at the asymmetric front-right placement,

an increase from e(t) = 0.11 g to e(t) = 0.22 g. For front-left placement an increase

from e(t) = 0.059 g to 0.22 g was found. tmean resulted in error terms of 0.19 g,

greater than the optimum but less than the nominal value. The di erence between

e(tnom) and e(tindiv) was less at the other symmetric placements that were tested,

as is shown in figure 5.24.
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Figure 5.22: Mean experimental values (tmean) for angle of placement parameter,
t, using the elliptical cylinder model with subjects lying supine. The dotted lines
indicate the nominal values for t (tnom). Error bars represent standard deviation.
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The results from the regular cylinder model were similar, although the disparity

in error terms created using the di erent values for t were greater. Here, e(t) was

more than doubled at the front left and front right placements when tnom was used

rather than tindiv.

Figure 5.24 shows the e ect of using tnom, tindiv and tmean to compute e(t) for

each of the three prismatic models. The experimentally derived angles of placement

(tindiv and tmean) proved better parameters than the nominal angles of placement

(tnom). There was virtually no di erence in accuracy between the results provided

by the elliptical and circular models when tmean were used, although the elliptical

cylinder model performed better than the regular cylinder model when tnom were

used.

Vertical Axis Modelling In no case did a tapered model perform as well as the

prismatic model with the same horizontal cross section. For some subjects, tapered

models in which the apex was towards the head performed better than models

tapered towards the feet, while in other subjects it was the other way around. No

relationship was identified between the subject parameters (height, weight, lx, ly)

and the optimal tapering angle. Changing the slope on the model had an e ect on

the accuracy of the system but as no relationship was found between the optimal

slope and the subject parameters, this could not be generalised across subjects.

Figure 5.25 shows the mean z-axis value for subjects standing and lying supine

in each of the six device placements. When lying supine, the mean measured value

was within one standard deviation of the theoretical value. However, when standing,

the mean z-value was less than the theoretical value for all subjects. Figure 5.26

shows histograms of the measured z-axis values for all subjects across all six device

placements. When the subjects were lying supine, the distribution was almost

Gaussian, following a bell curve with mean close to 0. When the subjects were

standing upright, the data followed the lower half of a bell curve centred just below

1. The average value of gz when subjects were standing was less than 1 because

of the distribution of values around this point: 1 is the maximum value that can

be achieved from the instrument, and deviation in any direction causes a reduction

in this value. These distributions follow the patterns that would be expected if a

uniform cross-sectional model was valid. This indicates that a prismatic model is

an appropriate model choice.
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Discussion

The elliptical cylinder provided the most accurate model, closely followed by the

regular cylinder. The rectangular prism model performed well when the TA was

located at the sacrum, but it did not generalise well to other, asymmetric placements

around the waist (figure 5.24). When the TA was located above the right or left hip,

the rectangular prism model performed poorly when compared to the cylindrical

models.

The ellipse and circle would be expected to be better models of the cross-

sectional waist than the rectangle and the ellipse would be expected to be superior

to the circle. The circle captures the smooth, curved edges, whereas the rectangle

has only flat, straight edges. The ellipse adds to the circle by incorporating the

di erences in length between the antero-posterior axis and the medio-lateral axis,

while still providing reflective symmetry across the axes, thus maintaining the sim-

plicity of the model. The two parameters, a and b, provide the ability to customise

the ellipse to the particular subject. This hierarchy amongst the models is apparent

in the accuracy with which the models predicted the waist circumference, although

the ellipse o ered only a small improvement over the circle.

This model hierarchy was retained when the prismatic models were evaluated.

The circular model was appreciably more accurate than the rectangular model, but

the elliptical model was only slightly better than the circular model. Given that

the two cylindrical models had such similar accuracies, the regular cylinder has two

advantages over the elliptical cylinder. The first that it is a simpler model since it

has two less parameters. Secondly, the two ellipse parameters may be subject to

variation over time (for example, if the subject changes weight, or wears di erent

clothing), and so regular re-measurement may be necessary for the elliptical cylinder

model. The circular model has the disadvantage that, since body shape is not

taken into account, the experimentally derived parameters may be less able to be

generalised to subjects with di erent body shapes to those of the tested subjects.

The small variation in the measured optimal angle of placement, tindiv, across

subjects (3.6% of the range), despite di erences in body shape and clothing, suggests

that results can be generalised across subjects, and that it is not necessary to know

the exact placement of the device, but that knowing the nominal placement is

su cient.

Although the use of tindiv gave the most accurate results, tmean has a number of

advantages over tindiv that render them more practically useful. The tmean are less

sensitive to intra-subject variations than tindiv. Also, the tmean do not need to be
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experimentally calculated for each individual subject.

The ability to accurately predict the TA output for a given device placement and

position suggests that a deterministic approach based on a model can be applied to

classify the postural orientation of a subject when the device placement is known.

It could also be used to identify the device placement when the postural orientation

was known. Consequently, the cylindrical model was applied to the problem of

classification of postural orientation, and this is discussed in the next chapter.

Conclusion

The present study was conducted to investigate the relationship between the sig-

nals produced by the triaxial accelerometer (TA), the postural orientation of the

subject and the placement of the device on the subject at the waist. The geome-

try of the subject at the waist was modelled and the models were used to predict

characteristics of the subject and the TA signal.

A cylindrical model accurately represented the shape of the subject. An ellip-

tical cylinder model predicted the circumference of the subjects’ waists with 97.6%

accuracy. The mean angle of placement predicted by the model was within one

standard deviation (3.6% of the range) from the nominal angle of placement of the

device for each of the six placements. When the individual angles of placement

predicted by the model (tindiv) were applied, the overall error between the predicted

and the experimental TA outputs was 0.16± 0.07 g (standard deviation).

Using a mean experimentally derived angle of placement, tmean, and a regular

cylinder slightly increased the error, but made the system more generalisable by

removing patient-specific parameters.

The results obtained in this study indicate that a simple model provides a robust

method for relating TA placement and postural orientation to the signals obtained

from a TA.

5.4.4 Restrictions on Device Placement

As discussed earlier, the TA device needed to be attached at the waist in order to

be near the centre of mass of the subject. Many researchers using accelerometers

placed a device at the sacrum [20, 3 , 56, 70, 99, 99]. There are three main reasons

for this choice. The first is that at the sacrum there is bilateral symmetry. The

second is that the low back has little soft tissue, and the accelerometer can be firmly

attached against the bony matter where there will be less artefact due to soft tissue

movement. The third reason is that attachment to the low back was found to cause
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minimal discomfort to the subjects and did not influence the performance of daily

activities [3 ].

However, reaching to place a device on the back is di cult for many potential

users of the system, especially those with a disability such as arthritis. Moreover,

wearing this particular TA device at the back leads to some discomfort when sitting

and lying. Most importantly, it makes the push-button on the device di cult to

reach. For these reasons, positioning the device at other locations on the waist was

investigated.

Accelerometers have been attached to the front of the waist [ 57] and to the

sternum [72, 76] as part of instrumentation systems for activity classification. One

investigator placed accelerometers on the left and right hips to assess physical ac-

tivity levels [74].

The TA device used in this study was presented to thirty normal healthy sub-

jects. Subject were asked to attach the device at their waists, either to their belt or

to the top of their trousers or skirt. Subjects were asked to walk around, sit down

and lie down and then to decide which location they found most comfortable. Most

subjects chose to position the device above the anterior superior iliac spine as this

was the most comfortable and easiest point of attachment, although two subjects

preferred to attach the device at the right hand side of the body.

Positioning the device above the anterior superior iliac spine has two drawbacks

in terms of the signal obtained when compared to attachment at the sacrum. Firstly,

there is more soft tissue at the front of the body than at the low back and so the

signals are more likely to be a ected by artefact, although this e ect would be

expected to be less than if the device was attached in the middle of the front of the

waist. Secondly, the device is not aligned with bilateral symmetry and this leads

to some distortion of the output signal, particularly during walking, thus making it

more di cult to analyse.

However, it was hypothesized, and is demonstrated in the current work, that

important characteristics of the body acceleration signal can still be determined

using a placement above the anterior superior iliac spine. It was determined that

the advantages of patient comfort and usability outweighed the disadvantages of

using an asymmetric placement. The following work focussed on understanding the

signals obtained from a TA that was placed above the right anterior superior iliac

spine. Two studies were conducted to investigate the e ect of device placement on

accelerometer signal output during activity. The first study investigated the e ect

of placement on the sit-stand-sit movement. The second study investigated the

e ect on the signal during normal walking.
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5.4.5 A Study of the E ect of Device Placement on Signals

Obtained During Sit-to-Stand and Stand-to-Sit Transfers

Introduction

The sit-to-stand transfer has been described as consisting of three main components:

a lean forward, a vertical rise, and a straightening up (refer to section 3.5). The

stand-to-sit transition has been described similarly, with the components occurring

in the opposite order. Bilateral symmetry is normally assumed in these transitions

[ 5 ].

This study investigated the e ect of device placement on the signals derived from

a TA during sit-to-stand and stand-to-sit transitions. The aim of the study was to

attempt to quantify the relationship between the placement location and the output

signals during sit-to-stand and stand-to-sit transitions, using the cylindrical model

that was successfully applied to model the relationship between postural orientation

and placement location (section 5.4.3).

Experimental Procedure

Two TA units were required for the study in order to allow the accelerations at

two locations on the waist to be measured simultaneously. As the TA units all

transmitted at the same frequency (433.92 MHz) they could not be used in a wireless

mode, and so two TA units were hardwired to two receiver boards.

The TA units and their receiver boards were attached to an elastic belt that was

worn around the waist. The two TAs were positioned so that one was above the

sacrum at angle of placement tnom = 0 (the back TA), and the other was placed at

di erent locations around the waist during the study (the front TA). The back TA

was attached so that the x-axis of the TA corresponded to the antero-posterior axis

of the subject, the y-axis to the medio-lateral axis, and the z-axis to the vertical axis.

The front TA was attached so that its z-axis also corresponded to the vertical axis

of the subject, but the alignment of the other two axes depended on the placement

of the unit. The receiver boards were connected to the power supply and to the

personal computer by long, light cables that did not interfere with the subject’s

movement. Data from the TA units were recorded by a personal computer. Each

data sample from each TA was time-stamped as it was received by the computer.

Eight normal, healthy subjects aged between 25 and 40 years were tested. Each

subject was asked to stand up from a chair and sit down into the same chair, twenty-

five times in total. Five repetitions of each transition were performed using the same
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chair with the front TA attached in each of five positions:

. at the right side of the waist, tnom = 270 ,

2. above the right superior anterior iliac spine, tnom = 213 ,

3. at the front of the waist, tnom = 180 ,

4. above the left superior anterior iliac spine, tnom = 147 , and

5. at the left side of the waist, tnom = 90 .

This resulted in a total data set of 200 sit-to-stand transitions, and 200 stand-

to-sit transitions.

The angles of placement were determined in the study of the e ect of device

placement on signals obtained during rest (section 5.4.3) when the surface of the

pelvis at the point of TA attachment was modelled as a regular cylinder. The

same model was used in this study due to its good performance in modelling the

relationship between TA signal and postural orientation.

There was a delay of 10 s between the completion of one transition and the

commencement of the next to ensure that there was no overlap between adjacent

activities. The procedure took around thirty minutes to complete.

Data Analysis

The data from each of the TA units was median filtered (n = 3) and resampled

at 40Hz such that the samples from each TA occurred at the same time. (Since

data from the two TA units were sampled asynchronously, the data from each unit

had the same sampling rate, but the samples did not occur at the same time.)

The resampling was done using the Matlab function “resample ”. This function

applies a linear phase, finite impulse response (FIR) filter with a Kaiser window for

anti-aliasing, and then uses a polyphase filter for resampling [ 6 ].

The Fourier transforms of the signals from both of the TA units were inspected

to confirm that almost all of the signal energy was contained below 3Hz. As this

was the case, the signals from both of the TA units were low pass filtered at 4Hz

to remove high frequency components from the signals and leave only the main

frequency components of the signals.

The vector signals from the front TA were rotated about the z-axis with an angle

of rotation equal to the negative of the angle of placement associated with the TA

Signal Processing Toolbox
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Figure 5.27: Mean Fourier transform taken across all 400 sit-to-stand and stand-to-
sit transitions.

placement location. For example, when the front TA was placed at the right side of

the waist, the front TA signals were rotated about the z-axis through 270 . This

transformation was equivalent to aligning the front TA so that its axes were parallel

to those of the back TA, and this allowed the signals from the two TAs to be directly

compared. The signals from the two TAs were then compared by visual inspection

of the signals in the time and frequency domains, calculation of the error between

the two signals (measured as the average distance between each corresponding pair

of points in the two signals) and calculation of the cross correlation between the

two signals.

Results

Figure 5.27 shows the mean Fourier transform of the signals, before filtering, for

all subjects. It can be seen that there is no significant frequency component above

4Hz, which was the frequency at which the signal was low pass filtered.

There was no significant di erence between the results obtained for the sit-to-

stand transition, and the stand-to-sit transition in any of the analysis. The results

have been presented here for both transitions combined.

Typical signals from the front (rotated) and the back TAs are shown in figure

5.28 when the front TA was attached at the front-right.

Figure 5.29 shows the mean cross correlation between the back TA and the

front TA for each of the positions at which the front TA was placed. The x-axes

were highly correlated (mean r = 0.870 ± 0.225 standard deviation). There was a

moderate correlation on the z-axis (0.460±0.333) but only a low correlation on the
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Figure 5.28: Typical sit-to-stand and stand-to-sit transition signals measured by 2
TAs from one subject. (a) signals from back TA. (b) signals from front-right TA,
rotated 213 about the z-axis. In both figures, the top signal is the z-axis signal,
the bold signal is the x-axis signal and the lower signal is the y-axis signal.
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Figure 5.29: Mean cross correlation coe cients between the sit/stand transition
signals across 400 transitions from 8 subjects. The front TA was placed at the
locations shown. The signals from the front TA were rotated about the z-axis and
correlations between the rotated signals and the signals from the back TA were
measured. Error bars represent standard deviation.

y-axis (0.341± 0.368).

Figure 5.30 shows the errors between the back TA signal and the rotated front

TA signal as a function of the signal range for that subject and that placement. In

each case, the greater of the ranges from the back and the front TAs was used as the

signal range. The mean error was 8.1±5.4% (x-axis: 8.2±6.3%, y-axis: 7.1±4.8%,

z-axis: 9.1± 5.2%).

Discussion

The cylindrical model proved very e ective at relating the signals from the TAs

during sit-to-stand and stand-to-sit transitions. The signals from the three axes

followed the same general shape in the two TA outputs during the transitions.

However, the starting and ending values and the peak acceleration magnitudes

di ered between the front and back placements. This was particularly true on the

z-axis.

These di erences in the z-axis can be attributed to di erent starting tilt angles

in the accelerometers. The nonlinear relationship between tilt angle and z-axis
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Figure 5.30: Mean errors between the back TA signal and the rotated front TA
signal as a function of TA placement and as a percentage of the signal range for
signals from 400 transitions across 8 subjects. Error bars represent standard
deviation.

output means that a small di erence in angle can be magnified to result in larger

di erences between z-axis values. Subjects were encouraged to sit comfortably, as

they would normally sit. Most of the subjects sat back in the chair, and in several

cases, the back TA was touching the back of the chair, which may have had a slight

e ect on the orientation of the back TA. This could have been overcome by using a

stool rather than a lounge chair, but housebound subjects are more likely to sit on

a lounge chair than on a stool. Hence the lounge chair was used in order to capture

data that would better reflect transitional movements of a subject in the home.

There was also some artefact introduced into the signals by soft tissue movement

at the front placements and movement of clothing during the transitions. The

acceleration magnitudes on the y-axis were small due to the bilateral symmetry

of the transitions which meant that there was little movement in the medio-lateral

direction. This led to the relative proportion of artefact in the signal becoming larger

than on the other axis signals, and resulted in lower cross correlation coe cients on

this axis.

Every transition could be seen to contain the three basic components of the

movement but, within this, there were many individual variations. The general
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shape of the signals was similar between the two TAs on all three axes. This can be

seen visually in the signals (figure 5.28). It can also be seen when the errors between

the front and back TA signals are considered (figure 5.30). The amount of error is

comparable on all three axes, and is around 8% of the range of the signal. In absolute

terms, these errors are small. The mean errors of 8.2%, 7. % and 9. % correspond to

0.104 g, 0.068 g and 0.078 g on the x-, y- and z-axes, respectively. After di erences

of starting tilt angle and artefact are taken into account, this represents a good

agreement between the signals from the back TA and the transformed signals from

the front TA.

The ability to relate sit-stand-sit movement signals from TAs at di erent parts

of the waist is important for use in an unsupervised monitoring system in which

the device placement may vary. This allows parameters to be extracted and di-

rectly compared without needing the TA device to be identically positioned each

time. It also demonstrates that parameters measured on di erent subjects can be

directly compared even though the device placement will not be identical between

the subjects.

Conclusion

This study investigated the relationship between the signals from a TA attached

at the back of the waist and a TA attached at the front of the waist during sit-

to-stand and stand-to-sit transitions. A data set of 400 transitions taken from 8

normal, healthy subjects was used. The signals were compared by means of a simple

model in which the subject was represented by a regular cylinder.

The results of the study demonstrated that this model can be used to relate the

signal obtained from the back TA to the signals obtained at other TA placements

on the waist with a high degree of accuracy. Using this model, the back TA signal

was able to be predicted by the other TA signal with a mean error of 8.1± 5.4% of

the signal range, corresponding to an absolute mean error of 83± 54mg.
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5.4.6 A Study of the E ect of Device Placement on the TA

Signal Obtained During Walking

Introduction

Walking is a complex, nonlinear movement with constantly changing accelerations.

The details of the movement are individualistic and are also dependent on walking

speed.

The signals derived from a sacrum-mounted accelerometer during walking have

been studied by several researchers. The components of the signal have been related

to the components of the gait cycle [70], parameters of gait have been extracted from

the signal [20, 56, 70], and information regarding the normality of the gait pattern

has been obtained [73, 99]. This work was discussed in section 3.6.6.

These results were derived from systems in which the TA was placed at the

sacrum. The purpose of this study was to understand the relationship between the

signals from a TA placed at the back of the waist and a TA placed at the front-

right of the waist during walking. The intent was not to characterise gait–gait is

already well characterised and understood–but rather, to understand the e ect of

placement location on the TA signals and hence to identify features of gait that can

be extracted from a single TA attached at the front right of the waist.

There were three parts to the study, each with its own aim:

. to investigate the extent to which the cylindrical model of the pelvis can relate

the signals at the back and front-right of the waist during walking;

2. to adapt a simple six degrees-of-freedom model of pelvic displacement during

walking (refer to section 3.6.4) to predict accelerations and then to evaluate the

performance of this model in representing the accelerations at the back (tnom =

0 ) and front-right (tnom = 213 ) of the waist during walking; and

3. to investigate the extent to which the information on gait that can be derived

from a sacrum mounted accelerometer (as addressed in the literature) can be

obtained from a TA attached at the front-right of the waist (tnom = 213 ).

Experimental Procedure

Two TA units were required for the study in order to allow the accelerations at

two locations on the waist to be measured simultaneously. As the TA units all

transmitted at the same frequency (433.92MHz) they could not be used in a wireless

mode, and so two TA units were hardwired to two receiver boards.
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The TA units and their receiver boards were attached to an elastic belt that was

worn around the waist. The belt was fitted snugly to the waist of the subject. The

two TAs were positioned so that one was at tnom = 213 above the right anterior

superior iliac spine (front TA) and the other was at tnom = 0 (back TA). The back

TA was attached so that the x-axis of the TA was aligned with the antero-posterior

axis of the subject, the y-axis with the medio-lateral axis, and the z-axis with the

vertical axis. The front TA was attached so that its z-axis was also aligned with

the vertical axis. The receiver boards were connected to the power supply and to

the personal computer by long, light cables that did not interfere with the subject’s

movement. Data from the TA units were recorded by two computers. The clocks

of the two computers were synchronised before each trial and the data samples

recorded from each TA were time-stamped to the nearest millisecond.

A treadmill with controllable speed and incline was used for the study. The

incline was set to zero for all trials.

Twelve normal, healthy subjects, five female and seven male, with no gait im-

pediments, aged between 25 and 60 years, agreed to participate in the study. The

experimental procedure, outlined below, was explained to the subject. The belt

with the TA units was attached to the subject who then practised walking on the

treadmill at various speeds. It took two to three minutes for a subject to feel

comfortable walking on the treadmill.

The subject was told to jump, then to bow, then to jump again, and to bow

again. These signals were used as a reference by which to check the synchronisation

of the signal traces from the two instruments. The treadmill was started and the

subject walked at each of 2, 3, 4, 5, 6 and 7 km.h 1, for 5 minutes at each speed. If

the subject was unable to complete 5 minutes at a particular speed then this was

excluded from the study. The order of the speeds was varied for di erent subjects.

At the completion of the test, the treadmill was stopped. The subject was asked to

jump and to bow twice more to provide a synchronisation reference at the end of

the test.

The complete test took about 45 minutes to complete for each subject.

Data Analysis

The signals from each of the TAs were aligned and resampled at 20Hz so that

the samples from the two TAs coincided in time. The signals were down-sampled

because 95% of the signal power during walking is contained below 10Hz [2 ] and

the aim in this study was to compare the main signal components of the gait, not

the high frequency perturbations.
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The first 90 s and last 30 s of the signal at each new walking speed were discarded

so as to avoid any irregularities that may have occurred in the gait while the subject

was adapting to the new speed or growing tired at the end of the five minute segment.

This resulted in a three minute sample being extracted for analysis at each speed.

Part 1. Application of the Cylindrical Model The cross-correlation between

the front-right and back signals was computed for each of the three axes. The

cylindrical model developed in section 5.4.3 was applied to the data. The signals

from the front-right TA were rotated about the vertical axis to represent placement

at the back. The cross-correlations between these rotated signals and the signals

from the back TA were then computed.

Part 2. Adaptation and Application of the Displacement Model The

second aim of the study involved application of the gait displacement models that

were described in section 3.6. Prior research has found that pelvic displacement

during walking can be accurately represented by a model with six decoupled degrees

of freedom, all of which are represented by sinusoids [53, 8 , 08]. The aim was to

investigate the performance of this model in modelling pelvic acceleration. This was

done by deriving predictors of the acceleration signals using the displacement model

and then comparing the predicted signals to the measured acceleration signals.

A model that related placement location to TA signal output during walking

was developed, and its performance was evaluated. The model was developed with

six fully decoupled degrees of freedom. Each dimension was modelled by a sinusoid.

The model starting equations were based on the equations of Gard et al. [8 ] and

are listed below.

x = xm sin( t) (lateral translation)

y = ymt (forward translation)

z = zm sin(2 t
2
) = zm cos(2 t) (vertical translation)

= m sin(2 t
2
) = m cos(2 t) (x-axis rotation)

=
m
sin( t) (y-axis rotation)

=
m
sin( t

2
) =

m
cos( t) (z-axis rotation)

where t is the time in seconds, is the angular frequency in rad.s 1, and xm =

2.5 cm, ym = 140 cm, zm = 2.5 cm, m = 2.5 ,
m
= 2.5 ,

m
= 5 were used as

starting values. The values for these parameters were obtained from the literature

(refer to section 3.6). The frequencies of the sinusoids (i.e. the ) were determined
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by the step rate. The derivation of the acceleration model from these equations is

given in Appendix A.

During analysis, the model parameters were varied from zero up to twice their

starting values. Parameters were chosen to minimise the di erences between (i) the

predicted and measured signal frequencies, (ii) the predicted and measured phase

relationships between the signals from the three axes, and (iii) the measured and

predicted acceleration magnitudes, for each of the two measured TA placements.

The predicted accelerations were compared to the measured accelerations.

Part 3. Extraction of Gait Information from the Front-Right TA Signal

The aim of the third part of the study was to identify the components of the gait

cycle in the signals from the TA placed above the anterior superior iliac spine,

based on the results for the sacrum-mounted TA. The data obtained at the sacrum

were visually inspected. The signals were compared to published results in order to

interpret the signal in terms of the components of the gait cycle. The signal from

the front-right TA was compared to the signal from the back TA in terms of signal

characteristics including phase, timing of peaks and troughs in the signal and the

presence of local turning points and inflexions. Fast Fourier transforms were taken

of all of the signals to test whether the signals from the three di erent TA axes had

the same periodicity (as would be expected).

Results

One subject was unable to complete the walk at 6 km. h 1 and did not attempt the

walk at 7 km.h 1. All other subjects successfully completed the procedure at every

speed.

Part 1. Application of the Cylindrical Model Before applying the model,

the cross correlation between the TA signals from the two locations were computed.

The mean cross correlation coe cient between the two vertical signals was moderate

(between 0.6 and 0.8), and increased with increasing walking speed. The mean

cross correlation coe cient between the two forward acceleration components was

negative, as would be expected since these axes were pointing in di erent directions.

There was no correlation between the y-axis acceleration components.

When the signals from the front-right TA were rotated about the vertical axis to

represent a reorientation of the front-right TA a new set of cross correlation coe -

cients was obtained. The mean cross correlations across all subjects, as a function of
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Figure 5.3 : Mean cross correlation coe cients between the signals from the two
TA units at each walking speed. Data were composed of three 60 s samples from
each of 12 subjects. Error bars represent standard deviation.
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Walking speed 2km/h 3km/h 4km/h 5km/h 6km/h 7km/h

x-axis raw x-corr -0.669 -0.644 -0.678 -0.589 -0.529 -0.445

rotated x-corr 0.754 0.747 0.7 0 0.673 0.6 9 0.5 6

y-axis raw x-corr -0.029 0. 52 0.202 0.209 0. 95 0. 63

rotated x-corr 0.25 -0.025 -0. 23 -0. 76 -0. 68 -0. 739

z-axis raw x-corr 0.535 0.599 0.679 0.722 0.787 0.729

rotated x-corr 0.535 0.599 0.679 0.722 0.787 0.729

Table 5.4: Mean cross correlation coe cients between the acceleration component
signals (x-axis, y-axis and z-axis) across all subjects from the TA at the back and
the TA at the front-right of the waist. One subject did not complete the 6 km. h 1

nor the 7 km.h 1 walk so these cross correlations were computed for the remaining
subjects. All other cross correlations were calculated for all 2 subjects. The

raw cross correlation coe cients were obtained by directly measuring the cross cor-
relation between the two signals. The rotated cross correlation coe cients were
obtained by rotating the signals from the front-right TA about the z-axis and mea-
suring the correlation between these signals and the acceleration signals from the
TA attached at the back.

walking speed, are shown in figure 5.3 . The cross correlation coe cients from be-

fore and after the rotation are compared in table 5.4. This transformation improved

the cross correlation on the x-axis, but had little e ect on the correlation between

the y-axis signals. The transformation had no e ect on the z-axis correlation since

the rotation left the z-axis data unchanged.

Part 2. Application of the Displacement Model Typical acceleration signals

produced by the model are shown in figure 5.32 for TA placement at the back and

at the front-right of the waist. The acceleration signals from the model did not

accurately reflect the measured acceleration signals. This can be seen by comparing

the illustrated model output with the illustrated gait accelerations shown in figure

5.37. The signals produced by the model were smooth, curved signals, while the

actual acceleration signals were much spikier, and contained many small peaks and

troughs between the global minima and maxima.

However, although the model could not capture the detail of the signals, it could

correctly represent the phase between the component accelerations. Also, when

the displacement parameters from the literature were applied to the model, the

peak accelerations given by the model on each of the axes were close to the mean

peak accelerations measured during walking at 4 5 km. h 1. The displacement

parameters vary with changes in walking rate, and when these were applied to

the model, the model peak accelerations changed accordingly and continued to
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(a) (d)

(b) (e)

(c) (f)

Figure 5.32: Prediction of acceleration signals from the sinusoidal model of pelvic
movement: acceleration (g) versus time (arbitrary units). Left side: TA attached
at the back. (a) y-, (b) z-, and (c) x-axis accelerations. Right side: TA attached
front right. (d) y-, (e) z-, and (f) x-axis accelerations.



5. Understanding the TA Signal 159

reflect the mean peak accelerations in the measured signals at the relevant speeds.

However, to achieve this, the model parameters needed to be adjusted for each

subject at each walking speed.

As the actual walking signals were not well represented by the model, this ap-

proach was not used to relate the TA signals from the two placements.

Part 3. Extraction of Gait Information from the Front-Right TA Signal

The TA device attached at the back produced accelerometer signals (figure 5.33b)

that were visually comparable to those obtained by Evans et al [70] (figure 5.33a).

The timing within the gait cycle is indicated in figure 5.33a by the microswitch

signal. This shows when the heels and forefeet of the subject in Evans’ study were

in contact with the ground, relative to the acceleration signals.

As noted by Evans, the inflections in the vertical signal can be used to identify

the beginning of the step (heelstrike) and the end of the previous step (push-o ),

thus giving an identifiable means of measuring the double support and single support

times. The heelstrike corresponds to local minima or maxima before the global peak

on the lateral acceleration signal, and to the maxima on the forward acceleration

signal. The forefoot strike corresponded approximately to the global minima in the

vertical acceleration signal. The forefoot was lifted at the same time as the peak

accelerations occurred in the lateral and the forward acceleration signals. There is

one global maxima or minima in each signal for each step taken and so the step

period could also be identified from the signal.

The gait pattern was dependent on the walking speed. The di erences in gait

pattern as a function of walking speed are illustrated in figure 5.34. The timing

of the gait components and the step cadence could be identified from the sacrum

mounted TA signal for each subject at each speed.

When Fourier transforms were taken of the signals from the two TAs it was

found that the front-right TA and back TA signals contained the same frequency

components, although the magnitudes of the frequency peaks di ered. The Fourier

transforms that were obtained are illustrated in figure 5.35, which shows the Fourier

transforms for the normalised walking signals obtained from one subject walking

at 5 km. h 1. All of the signals contained the same fundamental frequency, which

represented the step rate. The signals from the front-right TA had more harmonic

component present than the signals from the back TA.

The z-axis accelerations had the most similar frequency spectra, while those of

the y-axis accelerations were the least similar. This is reflected in the mean cross-

correlation coe cients between the Fourier transforms of each of the signals at each
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Figure 5.33: Acceleration signals from two normal healthy subjects walking at a
normal speed. Figure (a) shows data obtained by Evans et al. Top acceleration
signal: lateral acceleration; middle: vertical acceleration; and bottom: forward
acceleration. The fourth signal was obtained from a microswitch and shows when
the subject’s heels and forefeet were in contact with the ground. Reproduced from
Evans et al. [70]. Figure (b) shows walking data obtained in the current study when
the TA was attached at the back of the waist. (i) y-axis; (ii) z-axis; and (iii) x-axis
signals. The signals have been vertically shifted relative to each other so that they
are presented in the same order as those of part (a).
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Figure 5.34: Signals obtained from a sacrum mounted TA during treadmill walking
at di erent speeds by a normal, healthy subject. All graphs show accelerations
from the three axes plotted against time. (i) y-axis; (ii) z-axis; and (iii) x-axis. All
graphs are plotted on the same scale.
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Figure 5.35: Fourier Transforms from a normal subject walking at 5 km. h 1. Back
TA: (a) x-axis; (b) y-axis; and (c) z-axis signals. Front-right TA: (d) x-axis; (e)
y-axis; and (f) z-axis signal.

walking speed, which are shown in figure 5.36.

The relationship between the sets of signals from the back TA and the front-

right TA is illustrated in figure 5.37 for one subject walking at 5 km. h 1. When

the signals from the front-right TA were compared to the signals from the back

TA it was found that the signals from the front-right TA were generally larger in

magnitude and were noisier than the signals from the back TA. This was reflected

in the signal magnitude areas (SMAs), defined to be the sum of the integrals of the

moduli of the three acceleration signals, normalised with respect to time (refer to

section 3.7). The SMA of the front-right TA was, when averaged across all subjects

and all walking speeds, 19% greater than the SMA of the back TA.

In terms of signal components, the main similarities between the two sets of

signals were in the vertical signal components, which had similar shapes and were

in phase. This relationship between the vertical signals enabled the components of

the gait cycle - step rate, single and double support times - to be extracted from
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Figure 5.36: Mean cross correlation coe cients between the Fourier transforms of
the front-right TA signals and the back TA signals as a function of walking speed.
Error bars represent standard deviation.
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Figure 5.37: The acceleration signals from the two triaxial accelerometers for a
normal, healthy subject walking at 5 km.h 1, plotted against time. The top three
signals are from the sacrum-mounted TA: (i) y-axis, (ii) z-axis, (iii) x-axis acceler-
ations. The bottom three signals are from the TA mounted above the right anterior
superior iliac spine: (iv) y-axis, (v) z-axis, (vi) x-axis accelerations. The signals
have been vertically shifted relative to each other.
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the front-right TA signal by using the knowledge of where they occurred in the back

TA signal.

Discussion

It is important to have an understanding of the relationship between the front-

right TA signal and the gait cycle so that the signal can be interpreted in terms of

physical gait cycle events. The periodicity of the gait cycle is clearly evident in the

signals obtained from the back TA and from the front-right TA. As the signals from

both TAs have the same period this can be used to relate the signal components

from the two TAs. This is most evident in the timing of the peaks in the vertical

acceleration component, which occurred at the same time in both signals. The

timing of primary components of the gait cycle - heel strike, heel o , and forefoot

strike - can be deduced from the acceleration signals. This allows aspects of the

physical gait to be studied using the signals from either a back or a front-right TA.

The gait components may be represented by di erent events in the acceleration

signals from the two TA devices. The di erent physical placement of the devices

mean that the relative magnitude and timing of events in the gait cycle may be

seen slightly di erently by two TAs. For example, the back TA sees a symmetric

gait, but the front-right TA sees a lopsided gait with di erent magnitude peaks

occurring between the right and left foot steps. The overall period remains the

same but the internal gait cycle timing is shifted. This means that the front-right

TA signal cannot be used directly to make inferences about the symmetry of the

gait. It could be used directly to measure changes in the symmetry for a given

subject over time, but further work is needed to model the pelvic accelerations so

as to calculate the o set in the timing due to the asymmetric placement of the TA

before it can be used for absolute left-right gait symmetry analysis.

It may well be that a measured change in gait symmetry is su cient to warrant a

clinical assessment of gait and that the absolute magnitude of the asymmetry is less

important than the fact that the gait is changing. However, if longitudinal unsu-

pervised monitoring of gait symmetry is required, then this can be accomplished by

first, in a clinical setting, assessing left-right gait symmetry using a sacrum-mounted

TA and simultaneously measuring with a TA attached at the subject’s preferred lo-

cation. This gives a baseline signal. The gait signal from the TA worn during the

unsupervised monitoring period can be compared to the baseline signal and any

changes in gait symmetry computed, thus giving a measure of the magnitude of the

asymmetry.

Research with sacrum-mounted TAs has also identified characteristics of certain
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pathological gaits in the TA signal. Further work is required before this can be done

with the front-right TA and before it can be determined to which gait characteristics

the signal is sensitive, but the results of this study suggest that it is also feasible.

It is important to have an understanding of the relationship between the walk-

ing signals obtained at di erent placements around the waist in order to account

for the variability of placement that occurs in an unsupervised home monitoring

environment. However, the complexity of the gait limited the applicability of the

simple models that were investigated in this study.

The cylindrical model resulted in cross correlation coe cients between 0.6 and

0.8 on the x- and z-axes at comfortable walking speeds. These values indicate that,

although the details of the two signals di er, the underlying shape of the front-right

and back signals is the same, and that the two signals are in phase. However, it failed

to obtain any significant correlation between the y-axis signals, and the correlation

in the x- and z-axis signals deteriorated at very fast and very slow walking speeds,

respectively. This indicates the presence of significant levels of rotational motion,

as well as translational motion, in the signal. The relative amounts of rotational

motion are dependent on the walking speed.

The higher z-axis correlations suggest that the bulk of the vertical acceleration

component is derived from translational motion, rather than rotational motion. The

lower cross correlation values on the x- and y- axes suggest that there is a significant

component of rotation present here, i.e. rotation about the z-axis, particularly at

high and low walking speeds. This is consistent with studies that have found that

the rotational displacement about the vertical axis is around twice that of the

rotational displacement about the other two axes [ 74, 209].

The cross correlation coe cients were also a ected by the presence of di erent

amounts of movement at the two locations. There were two reasons for this. Firstly,

there was more artefact at the front right location than at the back as there is more

soft tissue at the front of the body than at the back. Secondly, the front-right of the

pelvis actually undergoes more movement than the centre of the back of the pelvis.

The centre-back lies on the x-axis and so is not a ected by rotations about this

axis, but the front-right location is a ected by all rotational movements. The extra

movement at the front-right location is reflected in the larger SMA at this location.

The adapted displacement model incorporated rotational movement as well as

translational movement across the pelvis. This type of model has provided excellent

results in terms of representing the displacement of the pelvis during walking. How-

ever, it performed poorly in this study when adapted to predict accelerations. It was

able to predict phase relationships between the signals at a given placement, but
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it failed to capture the sharp acceleration peaks and troughs, or the local turning

points and inflexions in the signal.

The discrepancy between the excellent performance on displacement and the

poor performance on acceleration can be attributed to the act of di erentiation, in

which noise in the signal is amplified. This has the result that two very similar

displacements can give rise to substantially di erent accelerations.

Under ideal conditions the position signal can be twice di erentiated to give an

estimate of the acceleration that is within 1—3% of the measured acceleration. This

was demonstrated by Ladin et al. [ 3 ] who used a mechanical rig to produce a

sinusoidal displacement. They measured its displacement and acceleration. The

position signal was smoothed and di erentiated twice. The acceleration signal was

known to be a sine wave and so the measured signal was replaced by the function

Y = C + A sin(2 ft + ) where the parameters were chosen for best fit. The

results were then compared and a high accuracy was achieved. The limitation to

this approach is that it requires a priori knowledge of the theoretical acceleration

signal and it does not take into account real measured deviations in this signal.

Even the smallest amount of noise in the displacement measure can lead to very

di erent accelerations. To demonstrate this point a simulation was undertaken in

Matlab. One period of a sine wave with unity magnitude was generated with 1000

samples and double-di erentiated. Next random noise was added to the sine wave.

The random noise was uniformly distributed in the interval ( 10 4,+10 4). Both

signals were double di erentiated. The results are shown in figure 5.38. Visually,

the two displacement curves cannot be distinguished, yet there is little similarity

between the two acceleration curves. The addition of higher frequency components

adds sharp turning points to the displacement signal which result in large acceler-

ations.

Even without the addition of noise, small di erences in displacement can have

a large e ect on acceleration. This is a well known problem in the mechanical

engineering discipline of cam design, where both the displacement path and the

acceleration path of the cam need to be considered in the design process. Figure 5.39

shows a comparison between three very similar displacements and their resultant

acceleration characteristics.

It is clear from this study that the models that are adequate for description

of pelvic displacement during gait cannot be applied to describe the acceleration

characteristics during gait due to the problems described. Neither is the simple

cylindrical model su cient for modelling gait. If the characterisation of gait by

means of accelerometric models is required then further work with detailed analysis
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Figure 5.38: E ect of a small amount of noise on the second derivative of a signal.
(a) Displacement of a clean sine wave and of a sine wave with a small amount of
noise added. The di erence between the two waves cannot be detected visually. (b)
The accelerations of the two sine waves, calculated by second order di erentiation.
The smooth line in the middle is the acceleration of the noiseless signal, the other
is the noisy sine wave acceleration.
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(a)

(b)

Figure 5.39: Comparison of cam displacements and accelerations. (a) Comparison
of displacements. 2 in. rise in 60 degrees, 3 in pitch diameter cam. (b) Comparison
of accelerations. 2 in. rise in 60 degrees, 42 rpm, 3 in. pitch diameter cam.
Reproduced from Erdman and Sandor [69].
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in a gait laboratory is required for the development of deterministic or statistical

models.

It is also evident from this study that the internal magnitude and timing of

the gait cycle components is dependent on device placement, and so if a precise

knowledge of these components is required for a subject, it is important that the

placement of the TA does not change over time.

However, in terms of the objectives of this study, it was found that there is a

clear relationship between the signals at the two locations during walking. This

relationship can be seen in the period, the signal frequency components and in the

z-axis signals. Characteristics of gait can be seen and measured in the signals from

a front-right TA. Although the asymmetric placement of the device limits its ability

to provide absolute measures of the symmetry of the gait, relative changes could be

measured directly from the signal.

Conclusion

The relationship between signals obtained from a TA placed at the back of the waist

and a TA placed at the front-right of the waist during gait was investigated. Simple

models relating the two were evaluated, and the signals obtained were compared to

published results.

Gait contains a substantial rotational movement and this meant that walking

could not be adequately modelled by a simple translational model. The cylindri-

cal model resulted in a moderate correlation on the x-axis at comfortable walking

speeds, but resulted in little correlation between the y-axis signals due to the pres-

ence of rotational movement.

Displacement models use six fully decoupled degrees of freedom, each moving

with sinusoidal motion. These models provide accurate models of pelvic displace-

ment during walking but cannot be adapted to estimate accelerations due to the

amplification of artefact and error during the di erentiation process.

Parameters of gait can be identified in the signals obtained from a TA attached

at the waist above the right anterior superior iliac spine, by comparing them to

the signal obtained from a TA attached at the back of the waist, where the charac-

teristics that identify events within the gait cycle are known. This makes feasible

the use of the waist-mounted TA device for the study of gait during routine daily

activities in an unsupervised setting over extended periods.

The signals from the back TA and the front-right TA shared the same frequency

components, although Fourier transform analysis showed that the harmonic frequen-

cies occurred in di erent proportions between the two TAs. The z-axis (vertical)
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components were the most similar, being in phase and having correlation coe cients

between 0.6 and 0.8. As a result, the step rate and the step rate variability can be

identified directly from the signal of a front-right TA by finding a fiducial reference

point in the signal and measuring the time between repetitions.

The details within the signals di ered between the two TA placements. It ap-

pears that the signal features that represent events within the gait cycle di er at

di erent placements. Further work is required before parameters that measure

components within the gait cycle, including single and double stance times, can be

confidently identified using only the signal from a TA attached above the anterior

superior iliac spine.

5.4.7 Summary

The TA output of a body worn TA is dependent on

• the movement being performed;

• the postural orientation of the body;

• the placement of the device on the body; and

• the orientation of the device relative to the body.

The preferred placement for the TA unit was found to be above the anterior

superior iliac spine. Subjects found this placement comfortable, the unit and its

push button could be easily reached but were unlikely to be knocked, and the unit

was against the bony matter of the pelvis which reduced artefact due to soft tissue

movement. However, in an unsupervised setting, the exact positioning will depend

on personal preference, body shape and choice of clothing.

A waist-mounted TA device attached to a stationary subject was found to be

well-modelled by a TA attached with the same orientation to the curved face of a

regular cylinder. This model could predict the TA output of a subject in a known

postural orientation with a mean error of less than 0.26g for any placement about

the waist.

The same cylindrical model was applied to model the TA output during the

sit-stand-sit movement. Two TA units were simultaneously attached to a subject;

one above the sacrum, the other at various locations on the front and sides of

the waist. The model was used to transform the front TA signal to predict the

back TA signal. The mean error between the predicted and measured signals was
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8.1± 5.4%, indicating that this very simple model provided a good representation

of the relationship between the signals obtained around the waist in the movement.

This is due to the bilateral symmetry of the stand-to-sit and sit-to-stand movements,

which means that most of the movement is translational rather than rotational.

In contrast, walking has a substantial rotational movement and cannot be ade-

quately modelled by a simple translational movement model in which the waist is

modelled by a cylinder. Biomechanical displacement models use six fully decoupled

degrees of freedom, each moving with sinusoidal motion. These models provide

accurate results in terms of displacement during walking but cannot be applied to

estimate accelerations due to the amplification of errors during the di erentiation

process.

When signals from a TA attached at the back of the waist and one attached

above the right anterior superior iliac spine were compared during treadmill walking

they were found to contain the same frequency components and there was a high

correlation between the two z-axis signals. This allowed temporal features between

the two signals to be compared. Previous studies have shown that parameters of the

gait cycle can be identified from the signals of a sacrum-mounted TA. This study

found that those same parameters can also be identified from the signals of a TA

placed at the waist above the anterior superior iliac spine.

Parameters of step rate and variability can be determined from the signal of

the TA placed at the front of the waist signal alone, but further work is needed

before parameters within the gait cycle such as single and double stance times can

be confidently identified using only a TA placed at the front right of the waist. This

is due to the di erences in signal characteristics that occur at di erent locations on

the waist, and also to the amount of variation in walking style between individual

subjects and di erent walking speeds.

5.4.8 Conclusion

If the TA device placement is known then postural orientation can be computed and

sit-stand-sit movements can be directly compared to those carried out by di erent

subjects, and by the same subject on di erent occasions by means of a simple

transformation. Thus, for resting states and sit-stand-sit movements, important

characteristics can be identified from the signal of a TA placed anywhere on the

waist.

In walking, the step rate can be identified from the signal of a TA placed any-

where on the waist. However, walking is a complex motion that contains a significant
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level of rotational movement, and its accelerations at the pelvis were not able to

be modelled using a simple deterministic model. Characteristics within the accel-

eration signal are dependent on placement of the device. In order to be able to

systematically identify parameters from within the gait cycle, a better understand-

ing of the signals from a given placement is required.

In the same way that postural orientation can be inferred from the signal if the

placement is known, the device placement can be deduced from the signals produced

in known orientations. A simple procedure in which the subject stands and then

lies supine is su cient to determine the angle of placement, t, of the underlying

model, and thus, to establish the placement of the device on the waist. Once this

is known the process can be reversed, postural orientations can be determined and

activities can be identified and monitored using the TA signals.

5.5 Measuring Physical Activity

5.5.1 Introduction

Accelerometry appears to provide a valid means of estimating metabolic energy

expenditure (EE) in free-living subjects and accelerometers have been used success-

fully in studies to measure physical activity levels during daily activities. Bouten

et al. [3 ] found that the sum of the area encompassed by the magnitude of each of

the three accelerations from a TA provided a good overall predictor of EE during

daily activities. This predictor was normalised and employed in the current work,

where it is referred to as the (Normalised) Signal Magnitude Area:

A =
1

t
×

μZ
t

0

|x(t)| dt+

Z
t

0

|y(t)| dt+

Z
t

0

|z(t)| dt

¶
, (5.20)

where x, y and z are the acceleration signals from each of the accelerometers

with respect to time, t. A has units of m. s 2. The magnitude of the SMA ob-

viously depends on the size and nature of the signal. The signal preconditioning

(in particular, the median filtering) must therefore have an e ect on the SMA. The

magnitude of the SMA also depends upon the placement location. However, al-

though the optimal regression parameters must change, Bouten et al. [32] found

that there was a high correlation between SMA and EE, whether the TA was placed

on the low back, shin, upper leg, trunk, lower arm or upper arm.

In this section, studies were conducted in order to understand the changes im-

posed on the SMA by the chosen signal conditioning processes and by the chosen
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device position. The first study investigated the e ect of median filtering on the

SMA. The second study investigated the e ect of device placement on the SMA.

5.5.2 A Study of the E ect of Median Filtering on the

Signal Magnitude Area

Introduction

A median filter was used to precondition the signal in order to remove noise spikes

(refer to section 5.2.3). The purpose of this study was to investigate the e ect of

median filtering on the SMA.

Experimental Procedure

Four data sets were used in this study.

. 26 normal subjects carried out a routine in the laboratory in which they stood,

sat in a variety of chairs, walked along a corridor, and walked up and a flight

of stairs. The TA was placed at the waist, above the right superior anterior

iliac spine. The experimental procedure is described in detail in section 6.5.

2. Two elderly subjects carried out an unsupervised, directed routine in their

homes. The routine consisted of standing, sitting, walking and lying. The TA

was worn at the front of the waist, but the exact location was left to each

subject’s preference. The routine was repeated 2 times by each subject, with

each repetition being carried out on a di erent day. The data were taken from

the set of data collected in the experimental procedure described in section

7.8.

3. Data were collected from 2 healthy subjects walking on a treadmill at various

speeds. The TA was placed at the waist, above the right superior anterior iliac

spine. The experimental procedure is described in detail in section 5.4.6.

4. Data were collected from 6 unsupervised, elderly subjects while they were car-

rying out their usual daily activities in their homes. The TA was worn at the

front of the waist, but the exact location was left to each subject’s preference.

Each of the data samples encompassed a 2.5 hour period. Four of the six data

sets were noisy, due to the subjects moving in and out of range of the TA re-

ceiver unit, and this led to some interference in the transmitted signal. These

data were taken from the set of data collected in the experimental procedure

described in section 7.8.
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Data Processing

The body movement acceleration components from each subject were extracted,

using the FIR separation filter described in section 5.2.7. The SMA was calculated

for each subject over the duration of the test.

The raw acceleration signals were then median filtered using filters of lengths 3,

5, 7, 9, ..., 45 samples and the above process was repeated.

Results

Increasing the length of the median filter caused the SMA to decrease monotonically.

The curve produced in each test was well-fitted by a quadratic or cubic function.

This is illustrated in figure 5.40a which shows the mean SMA for the 26 subjects

who carried out the basic daily activities routine. A quadratic curve is fitted to the

data, and the residuals between the model and the experimental data are shown in

figure 5.40b. It can be seen that the SMA reduces to around 75% of the raw value

by the time that the median filter reaches a length of 7 samples.

Figures 5.4 to 5.44 show the mean SMA, plotted as a percentage of the unfil-

tered SMA, as a function of median filter length for the other three data sets. The

results for the elderly subjects performing the directed routine were very similar to

those for the younger subjects. The values of the SMA, averaged over all routine

repetitions across both elderly subjects are shown in figure 5.4 . Again, the SMA

reduced to around 75% when the filter length reached 7 samples.

The treadmill walking data set yielded a curve with the same shape, but with a

slightly steeper profile. When the applied median filter had a length of 7, the mean

SMA was 68%. This is shown in figure 5.42.

In the data set from the free-living subjects, the mean SMA dropped sharply

between the raw SMA and the filtered SMAs, but then the profile was flatter across

the filtered SMAs than in the other data sets (figure 5.43). There was a large

variability in the SMA values across the subjects. Individual filtering e ects are

plotted in figure 5.44. When a median filter of length 7 was applied, the SMA

ratios ranged from 44% to 72% between subjects, a range of 28%.

The SMA data from the six subjects are also presented as a percentage of the

filter length 3 SMA data in figure 5.45. The rate of decay in these SMA ratios was

very similar across all subjects. The range of these SMA ratios increased from 5%

when the filter length was 5 samples to reach a maximum of 0% when the filter

length was 23 samples.

All six of the free-living subjects spent over half of the data collection period



176 5. Understanding the TA Signal

0 5 10 15 20 25 30 35 40 45
20

40

60

80

100

120

median filter length in samples

fi
lte

re
d

S
M

A
a

s
a

p
e

rc
e

n
ta

g
e

o
f

ra
w

S
M

A

y = 0.051*x
2
 - 4*x + 1e+002

5 10 15 20 25 30 35 40 45

-2

-1

0

1

2

re
s
id

u
a

ls

(a)

(b)

median filter length in samples

Figure 5.40: E ect of median filter length on signal magnitude area during basic
daily activity for the 26 healthy subjects carrying out the directed routine. (a)
Mean SMA plotted as a percentage of the unfiltered SMA. The data is well fitted
by the decreasing portion of a quadratic curve, y = 0.051x2 4x+100. (b) Residuals
between the quadratic curve and the data.



5. Understanding the TA Signal 177

0 5 10 15 20 25 30 35 40 45
30

40

50

60

70

80

90

100

median filter length in samples

fi
lt
e
re

d
S

M
A

a
s

a
p
e

rc
e

n
ta

g
e

o
f
ra

w
S

M
A

Figure 5.4 : E ect of median filtering on the signal magnitude area for data taken
from two elderly subjects, each performing a sequence of basic daily activities 2
times. Error bars represent standard deviation.

resting. However, subjects 2 and 4 were substantially more active than the other

subjects. This led to a large di erence in the measured SMAs for the six subjects.

The measured SMA values are listed in table 5.5. No correlation was detected be-

tween the e ect of median filtering and the amount of energy expended, as measured

by the raw SMA value.

Discussion

A sharp drop was observed in the SMA ratio curves between the raw and filtered

(length 3) signals for the free-living subjects. This e ect occurred because the me-

dian filter filtered out the noise spikes in the signal. During the data collection

period, subjects moved in and out of range of the TA signal receiver and conse-

quently, large noise spikes occurred in the signal. These caused an artificial increase

in the measured SMA. This e ect was largely removed when the median filter was

applied to the signal. In this case, the filtered signal gave a better estimate of the

SMA than did the raw signal.

When the subsequent SMA values were compared to the filtered (length 3) signal

the curves were very similar across all subjects, and the curves reduced more slowly
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Figure 5.42: Mean e ect of median filter length on signal magnitude area during
treadmill walking at various speeds by 2 subjects. Error bars represent standard
deviation.

Subject Raw SMA SMA, filter

length 3

SMA, filter

length 7

(×10 3g) (×10 3g) (×10 3g)
58 32 26

2 8 32 2
3 78 4 34
4 73 4 23
5 84 5 44
6 3 27 22

Table 5.5: Measured SMA values for each of the 6 elderly free-living subjects.
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Figure 5.43: Mean e ect of median filter length on signal magnitude area during
daily activity in 6 free-living subjects. Error bars represent standard deviation.
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Figure 5.44: E ect of median filter length on signal magnitude area for each of the
6 free-living subjects.
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Figure 5.45: E ect of median filter length on signal magnitude area for each of the
6 free-living subjects, shown as a percentage of the filtered (n = 3) SMA.

than for the other data sets. This was because all of the subjects spent more than

half of the data collection period resting. When a subject is resting there is little

change in the TA signals, and so the median filter has little e ect. The median

filter has the greatest e ect when the subject is engaged in vigorous activity. In

this study, the data set of treadmill walking contained the most vigorous activity

and as a result, it has the steepest ratio curve.

The treadmill walking data set consisted of walking at speeds between 2 and 7

km. h 1. The upper walking speeds were more vigorous than would be expected

from housebound subjects. Therefore, the e ect of median filtering on the measured

SMA of unsupervised routine daily activity should be bounded by its e ect on the

treadmill walking data. In fact, in the first three data sets, the drop between the

raw and first filtered SMA ratios was around 0%, as was the drop between the

first and second filtered SMA ratios (filter lengths 3 and 5 respectively). The drop

between the second and third filtered SMA ratios was slightly less, and the di erence

continued to decrease as the filter length increased. In the fourth data set, the drop

between the raw and first filtered SMA ratios was much greater due to the presence

of noise in the signal, but after this the magnitudes of drops between adjacent SMA

ratios were similar to those in the other data sets.
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The e ect of the median filter decreases as the level of filtering increases because

as the signal becomes smoother (due to heavier filtering), further increasing the

median filtering has less of an e ect.

The consistency in the e ect of the median filter on the SMA across data sets

from di erent age groups, postures and activities indicates that a standard adjust-

ment factor can be introduced to account for the e ect of filtering on the measured

SMA when estimating the metabolic energy expenditure. This adjustment factor is

dependent on the filter length. From the results of this study, it may be concluded

that the adjustment factor should be around 0% when a filter of length 3 is used,

20% when a filter of length 5 is used, and 25-30% when a filter of length 7 is used.

Future research should, if possible, involve a direct comparison of calorimetric and

TA monitoring of free-living subjects in order to objectively quantify the accuracy

of this model, in which the TA is placed at the front of the waist and the collected

data is filtered to remove noise spikes.

Conclusion

It is evident that the e ect of median filtering on the SMA cannot be ignored. Even

small levels of filtering (filter length = 5 samples) lead to a magnitude reduction of

around 20%.

However, the size of this reduction was consistent across data sets from di erent

age groups, postures and activities, suggesting that the e ect of the median filter

can be compensated for in the coe cients of the regression equation relating SMA

to the metabolic energy expenditure.

5.5.3 A Study of the E ects of Device Placement on Signal

Magnitude Area During Walking

Introduction

The purpose of this study was to investigate the validity of using the signal from

a TA attached at the waist above the superior anterior iliac spine to estimate the

metabolic energy expenditure.

Experimental Procedure

Twelve healthy subjects walked on a treadmill for five minutes at each of 2, 3, 4, 5,

and 6 km. h 1. Each subject wore two TAs. One was attached at the waist above

the right anterior superior iliac spine, and one was attached to the back of the waist
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Figure 5.46: A comparison of signal magnitude area between front and back TAs
as a function of walking speed across all 2 subjects.

at the spine. Data were logged and time stamped from both TAs during the routine.

The experimental procedure is described in detail in section 5.4.6.

Data Analysis

One three-minute period at each speed was chosen for analysis from each subject.

Data from the start and end of each five minute walking period were not included

in the analysis. Data from the back-mounted TA were used to compute the signal

magnitude area (SMA) for each walking speed for each subject over the three minute

period. Data from the front-mounted TA were used to computed the SMAs for the

same three-minute periods. The results from the two TAs were compared.

Results

Figures 5.46 and 5.47 show the mean SMAs obtained from the two TAs across all

2 subjects.

The ratio of the two sets of data (front TA SMA / back TA SMA) is approxi-

mately constant across the range of walking speeds (figure 5.47). The SMA from the

front-mounted TA was, on average, 9% (±5.6% standard deviation) greater than
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the SMA from the back-mounted TA. The r2 correlation statistic for the regression

was 0.9993, indicating that the two SMAs were almost perfectly linearly correlated.

Discussion

The SMA measured by a TA placed at the back of the waist has been found to be a

reliable estimator of energy expenditure [3 , 34]. Moreover, simulations have shown

that this should also be the case for other positions on the body [32], although the

regression parameters depend on the TA device placement location. The findings of

this study were in agreement with this result, as indicated by the very strong linear

correlation between the two.

Comparing the SMA from the front-placed TA to the SMA from a TA placed at

the back, which is known to be a reliable estimator of energy expenditure, allowed

the quality of the estimates provided by the front-placed TA to be assessed without

using specialised calorimetric techniques.

Conclusion

From this study it can be concluded that the metabolic energy expenditure can be

reliably estimated using a TA attached at the front of the waist, above the right

superior anterior iliac spine.

5.5.4 Summary

Median filtering has a significant, but consistent e ect on the SMA value obtained

from a TA signal. The e ect of the filtering cannot be ignored, but can be compen-

sated for by including an adjustment factor in the regression equations.

Bouten et al. [32] determined that good estimates of energy expenditure could

be obtained from a body-mounted TA at the low back, the lower leg, the upper leg,

the trunk, the lower arm, or the upper arm, but the best results were obtained at

the sacrum, which was nearest to the centre of mass of the subject. In the current

work it was found that there was a linear relationship between the SMA measured

at the sacrum and the SMA measured above the anterior superior iliac spine during

walking. Walking is the most vigorous activity likely to be undertaken by a house-

bound subject and hence consumes the greatest amount of energy. When a range

of routine daily activities were considered, the SMA estimate was most highly cor-

related during walking [34]. Thus it can be concluded that energy expenditure can

be estimated from a TA placed at the waist above the anterior superior iliac spine
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with approximately the same accuracy as can be obtained using a sacrum-mounted

TA, although the optimal regression parameters will di er.

5.6 Chapter Conclusion

This chapter has developed a rigorous understanding of the signals obtained from a

waist-mounted triaxial accelerometer (TA) device. The signal has two main compo-

nents, gravitational acceleration and body acceleration. The gravitational acceler-

ation indicates the postural orientation of the subject, while the body acceleration

describes the movement of the subject. The output signal is the vector sum of

these two components. As there is frequency and temporal overlap between the

two components, they cannot be perfectly separated. Several di erent methods

for approximately separating the components were considered. The most robust

method used a FIR low pass filter to compute the gravitational acceleration. This

was subtracted from the original signal to obtain an estimate of the body acceler-

ation. The limitation of this method was that it introduced ringing into the signal.

A second approach used the magnitude acceleration, . Instead of using a low pass

filter the gravitational acceleration was estimated from the acceleration magnitude

signal during periods of rest, using splines. This method did not introduce any

ringing into the system but it did not perfectly remove the d.c. o set from the

body acceleration component signal. The two methods are appropriate in di erent

circumstances. The filter method is appropriate when removal of the d.c. compo-

nent is important, such as in the estimation of metabolic energy expenditure. The

spline method is more appropriate when distortion of signal characteristics is not

acceptable, such as when accurate identification of activity endpoints is required.

The acceleration data can be represented in either Cartesian or spherical coor-

dinate form. The two representations are isomorphic but highlight di erent aspects

of the data. As the body acceleration cannot be completely separated from the

gravitational acceleration, integrating the body acceleration component does not

provide accurate estimates of velocity or displacement.

The TA device that was described in chapter 4 has a high signal to noise ratio,

and this ratio is further improved by filtering the signal (using a median filter) to

remove noise spikes that were added to the signal during RF transmission. This

device was used to study the e ect of device placement on the TA signals obtained.

The preferred placement for the TA unit was found to be on the waist above

the anterior superior iliac spine. However, the exact positioning of the unit in

an unsupervised setting will depend on subject preference, body shape and choice
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of clothing. A simple model can be used to relate TA signal output, postural

orientation and TA placement. If any two are known then the third can be deduced.

Thus, in the unsupervised setting, a known routine of postures can be used to

determine the placement of the TA unit. This knowledge can then be used during

free movement to identify postural orientations.

The same model can be used to relate TA outputs from di erent placements

at the waist during sit-stand-sit movements. This allows movements to be di-

rectly compared, even if they were not undertaken with the TA at the same place-

ment. This is important for longitudinal monitoring of parameters of the movement

through unsupervised monitoring.

This model did not extend to walking due to the presence of rotational move-

ment. Neither could a simple model that reliably models displacement be adapted to

model accelerations because of the amplification of errors during the di erentiation

process.

Events within the gait cycle were characterised by di erent signal features from

TAs at di erent placements on the waist. Therefore, in order to determine parame-

ters within the gait cycle, such as single and double stance times, it is necessary to

know the placement of the device and to understand the relationship between events

in the gait cycle and the features of the signal at that point. However the same fre-

quency components are measured at di erent placements on the waist and there is

a high correlation between the vertical (z) axis signals at moderate walking speeds

and so parameters such as cadence and step rate variability can be determined from

di erent waist placements.

Consequently, a system for monitoring postural orientation, sit-to-stand move-

ments and parameters of step rate during walking can use a waist mounted TA

placed above the anterior superior iliac spine and can tolerate variations in the

placement position, both across subjects and for the same subject over time.

Metabolic energy expenditure can also be estimated by a TA placed above the

right anterior superior iliac spine with the same degree of accuracy as can be ob-

tained using a TA placed at the sacrum.

In the next chapter this understanding of the signals is used to develop a frame-

work for identifying and classifying postures and activities from the signals obtained

from a waist mounted TA. Algorithms are developed to test for important postures

and activities, and to extract relevant parameters.



Chapter 6

Interpreting the TA Signal

6.1 Overview

In the last chapter the nature of the signals produced by a waist-mounted triax-

ial accelerometer (TA) were discussed. The signal is made up of two components,

a gravitational acceleration component that provides information on the postural

orientation of the subject, and a body acceleration component that provides infor-

mation on the movement of the subject.

The purpose of using a TA in an unsupervised setting is to monitor parameters

with clinical relevance. In order to achieve this, the TA signals need to be interpreted

in the context of the movements that are being undertaken by the subject.

In this chapter techniques are developed for identifying important signal compo-

nents and extracting relevant information. The signal interpretation and information

extraction takes place within an organised, hierachical framework for data process-

ing and interpretation. The framework is structured as a binary tree classifier in

which decisions ripple down the tree from node to node until a final decision is

reached. The classifier distinguishes between activity and rest, between the var-

ious states of rest, and identifies falls, walking and transitions between postural

orientations. Once a state is identified, relevant parameters are extracted from the

data.

The first part of this chapter discusses the framework as a whole. The subsequent

sections describe the details of each component of the classification system. In these

sections algorithms for identification, classification and parameter extraction are

developed and evaluated. Each algorithm that was developed for implementation

within the classification framework was evaluated using experimental data obtained

from a cohort of normal subjects in a laboratory setting.

87
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6.2 A Framework for Movement Classification

Ambulatory monitoring of a free-living, housebound subject serves a twofold pur-

pose. Its first purpose is to detect adverse events (such as falls) so that the alarm

can be raised. Its second purpose is to provide longitudinal tracking of clinically

relevant parameters. Both of these requirements place constraints on the way in

which the data are processed.

The data must be processed in close to real-time conditions in order to achieve

timely event detection. Real-time processing also has advantages for longitudinal

tracking of parameters in that it can reduce the data storage requirements. A

data capture rate of 45 samples. s 1 leads to a data capture rate of more than 40

megabytes a day. If all of these data were stored for post-processing when particular

information was required it would result in large storage space requirements, slow

data retrieval times and a large processing capacity requirement. A better approach

is to process the data as they are received and then to store only the relevant,

processed parameters. This calls for close to real-time processing and for e cient

processing algorithms.

Before parameters pertaining to the movement can be extracted from the signal,

the movement must be identified. Most of the systems for classification of movement

that have been described in the literature have used multiple sensors (section 3.8),

and have used methods that are specific to the set of activities being investigated.

Kiani et al. [ 23] presented a more general classification schema based on a

decision tree, in which each node had multiple branches. However, the decision

at each node was obtained by measuring parameters such as average, norm, and

standard deviation and then classifying on the basis of these parameters. This

method requires a comparison between the measured parameters and the parameters

of all of the possible classifications at that node. Although the tree structure allows

a logical flow of decisions, it remains di cult to add or to change activities as this

requires modification of an algorithm that makes multiple decisions.

The purpose of the framework developed in the current work is to identify ac-

tivities and postural orientations from the signals obtained from a single TA unit

worn by a free-living subject. Once an activity or postural orientation is identified

then relevant parameters can be extracted. This framework also uses a classification

tree, but with several significant di erences to the one designed by Kiani.

The classifier was designed with a hierachical structure, which is illustrated in

figure 6. . Broad classifications are made in the top levels of the tree, and more

detailed subclassifications are made in the lower levels of the tree. Each classification
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Figure 6. : Classification hierachy showing the increasing levels of detail within the
classifications.

can be further sub-classified until either the required level of detail is reached or

the limits of accuracy of the system are reached. For example, an upright-to-

upright transition can be sub-classified as either a sit-to-stand transition or as a

stand-to-sit transition. A lying-to-lying transition can be sub-classified as one of

sixteen sub-transitions based on the starting and finishing postures. For example,

the lying-to-lying transition may be a transition from lying supine to lying on the

left side.

Although there are multiple activities and postures at the same hierarchical

level, the classification framework consists only of binary (yes/no) decisions. If

there are more than two possibilities for the classification, then the first possibility

is tested. If an a rmative response is returned then this classification is accepted

and processing flows down to the next level in the hierarchical tree. If a negative

response is returned then this classification is rejected and the next possibility is

tested. This process continues until a classification is made. An overview of the

logical flow of the process is shown in figure 6.2.

In this approach it is necessary to ensure that there is a fallback case that is

accepted if all of the other classification possibilities are rejected. This can be a

specific state if all of the possibilities at a given level are explicitly included. For

example, a subject is either engaged in activity or is resting. There are no other
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Figure 6.2: Overview of the triaxial accelerometer signal data processing and clas-
sification framework.

possibilities. Both of these possibilities are explicitly included in the hierarchical

tree. The incoming signal is tested to see whether the subject is engaged in activity.

If this is not the case then the subject is classified as resting, which is the fallback

case.

The fallback case can also be a generic case that encompasses a range of pos-

sibilities where more specific classification is not required. For example, in figure

6.2, if a subject is classified as engaged in activity, then the activity is tested to see

whether it is a fall, walking or a transition between postural orientations. There are

many other activities that could be undertaken by the subject but individual iden-

tification of them was not required for this study. Therefore, activity signals were

tested for the three specific types of activity, but if the subject was not engaged in

any of these then the activity classification defaulted to the fallback case of “other

movement”.

A binary decision tree has a number of useful features. Using binary decisions

ensures that only one (simple) decision is made at each node. This speeds the

processing and allows easy measurement of the reliability of each decision. All deci-
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sion nodes have exactly two branches which makes the tree easy to read and helps

to ensure that no valid logic paths have been inadvertently omitted. The modular

“ripple down” approach also makes it easier to maintain the classification tree, to

modify or enhance the algorithms to achieve particular processing or decisions, and

to extend the tree into further levels of subclassification by adding more branches

at the bottom of the tree.

Each set of decision nodes below a particular node perform more specific sub-

classifications within the more general parent classification achieved by the higher

node. The decisions made higher up the tree are more certain than the decisions

made further down the tree since any classification uncertainty from the higher

branches is transferred to the lower branches.

The most important features of this framework are its flexibility and ease of

adaptation. New activities and postures, and new levels of detail can be added to

the system without a ecting the existing structures, by adding another decision, or

layer of decisions, at the appropriate place in the tree. In the following sections,

the framework is developed for a particular set of postures and activities, but it can

easily be adapted to address other movements and postures as well.

6.3 An Overview of the Signal Processing

Prior research has shown that many clinically relevant parameters can be mea-

sured by accelerometry. The current work is concerned with postural orientations

of standing, sitting and lying and with activities of walking and transitions be-

tween di erent postural orientations. Each of these movements can provide useful

information pertaining to the health status of the subject, particularly in terms of

functional ability.

There were a number of steps that needed to be undertaken in order to extract

useful information from the TA signal. Before anything could be deduced from the

signal, it was first necessary to know that the TA was actually being worn by the

subject.

If the TA was being worn then the next task was to decide whether or not the

subject was engaged in activity. If the subject was active then the activity was

analysed to identify important characteristics. If the subject was resting then the

postural orientation of the subject was classified and logged.

Falls, periods of walking and transitions in postural orientation were identified

as activities of particular interest. These activities were processed further, and

relevant parameters were extracted and stored. Parameters were also extracted and
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stored for periods of rest.

Di erent techniques were used at di erent points in the processing. The de-

cisions were made using a combination of signal processing and heuristics. The

decisions higher up the tree, where the decisions were more certain, tended to be

decided using only signal processing techniques. Sub-classifications, which could not

be determined exclusively from the signal were made using both heuristic knowledge

and signal processing techniques. Both fixed-threshold classification and reference-

pattern-based classification were applied to identify postural orientations and ac-

tivities from the signal.

6.4 Is the Device Actually Being Worn?

Introduction

It is important to be able to tell whether or not the device is being worn. In the

home environment, it is assumed that the device is either being worn by the subject

or has been put down somewhere and is unmoving. If the device is not being worn

then the output will resemble that obtained in the static noise tests described in

section 5.2.2.

The key to distinguishing between the worn and the unworn TA signals is that

human subjects are never completely stationary. There is always some muscle move-

ment occurring and this is reflected in the amplitudes measured on the stationary

subject, which are greater than the amplitudes of the completely stationary device.

It was hypothesized that the acceleration signal amplitudes can be used to iden-

tify when a TA is being worn. This hypothesis was tested in the following study.

Experimental Procedure

Twenty-six normal, healthy subjects were tested (7 female, 19 male; mean age 30.5

years ± 6.3 years standard deviation). A TA device was attached to the waist of

the subject, above the right anterior superior iliac spine. The subject was asked to

stand, as still as possible, for 30 s, then to sit down, as still as possible, for 30 s, and

then to lie down, as still as possible, for 30 s.

Data Analysis

Each signal was filtered to obtain the body acceleration signal component, using

the FIR filter described in section 5.2.7. From each 30 s signal, the 20 s segment
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with the lowest root mean square (r.m.s.), calculated on the magnitude vector, ,

was chosen for analysis. Using these 20 s segments, the r.m.s. was calculated for

each of the x-, y-, and z- axes, and for the magnitude vector, . The normalised

signal magnitude area (SMA) was also computed for each segment.

The static data signal that was described in section 5.2.2 was used as the basis

for comparison between the data from an unworn TA and a worn TA. Twenty-six

random samples, each 20 s long, were taken from this static data signal. These were

processed in the same way as the data from the worn TA.

The student t-test was used to compare the data from the worn TA to the data

from the unworn TA. The x-axis r.m.s. data from when the subjects were lying

was compared to the x-axis r.m.s. data from the static data set, the y-axis r.m.s.

of the lying data set was compared to the y-axis r.m.s. of the static data set, and

the z-axis r.m.s. of the lying data set was compared to the z-axis r.m.s. of the

static data set. The standing and sitting data sets were treated similarly, as were

the SMA data sets.

Results

The results are shown in table 6. . There was a significant di erence between the

mean r.m.s. of each signal and the mean r.m.s. of the static signal (p < 0.02). For

all postures on the y- and z- axes the di erences were statistically significant at the

= 0.001 level. The r.m.s. values were greatest when subjects were standing. The

variability was also greatest when subjects were standing.

The r.m.s. was a more sensitive measure than the SMA for determining whether

or not the device was being worn. The mean SMA value was significantly di erent

to the mean static SMA value when the subjects were standing (p < 0.01), and

sitting (p < 0.001) but the di erence was not significant when the subjects were

lying.

Discussion

The r.m.s. data from when the TA device was being worn was significantly di erent

from the data when the TA device was not being worn. The r.m.s. was more

sensitive than the SMA in distinguishing between when the device was worn and

when the device was not worn. This may be because the r.m.s. treats all three axes

separately whereas the SMA combines the three axes and relevant information may

be lost in the averaging process.

In this study the distinctions between periods of wearing the device and periods
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static stand sit lie

x-axis mean 3.93 8.37 5.78 4.47

std.dev. 0. 5 6.59 .3 .24

min 3.66 4.54 3.93 3.79

y-axis mean 3.73 8.73 5.02 4.27

std.dev. 0. 9 6.80 . 4 0.69

min 3.30 4.00 3.77 3.58

z-axis mean 4. 8.68 7.03 6. 9

std.dev. 0. 7 5.38 2.58 .4

min 3.85 3.92 3.89 3.74

mean 6.80 5. 9 0.58 8.83

std.dev. 0.2 0.44 2.4 .6

min 6.40 7.67 6.83 6.57

SMA mean 2.7 2 .6 5.5 3.2

std.dev. 0.0 69 3.4 3.2 2.

min 2.7 .5 0.3 0.2

Table 6. : The r.m.s. and SMA values from the filtered signals obtained from 26
subjects standing, sitting and lying, and the values from the static signals obtained
when the device was not being worn. Results are given in units of g × 10 3.
* indicates that the value is significantly di erent to the static value (p < 0.02)
** indicates that value is significantly di erent to the static value (p < 0.01)
*** indicates that value is significantly di erent to the static value (p < 0.001)

of not wearing the device were made using data from short periods (20 s) in which

the subject remained as motionless as possible. In every day situations the subject

would not be expected to remain as motionless as possible, but to move around

somewhat more, thereby increasing the r.m.s. values and making the distinction

between the two situations simpler. When monitoring free-living subjects heuristic

methods can also be introduced to determine whether or not the TA device is being

worn. One such method is to measure the time for which the r.m.s. remains at the

very low levels expected from an unworn device. The probability that the device is

not being worn increases with the amount of time over which there is no movement.

The exception to this is the case in which an adverse event has occurred and

the subject remains motionless for an extended period. If, for example, the subject

falls and lapses into unconsciousness, she or he would be expected to remain very

still. It can be seen from table 6. that when the subjects were lying, the minimum

r.m.s. value from the worn TA was inside the range of expected r.m.s. values for

the unworn TA. In this case it may be di cult to determine whether or not the

TA device is being worn if the only consideration is the r.m.s. value of the signal

at that time. Other heuristic methods that take into account the movement of the
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device leading up to the period without motion could be used to deduce whether

or not the device is attached to the subject. Alternatively, a user protocol could

be established in which the user informs the system whenever the device has been

deliberately removed, for example, through placement in a special recharging cradle.

Conclusion

A significant di erence was found between the r.m.s. signal value of a worn TA

and an unworn TA over a 20 s testing period. The di erence in values would be

expected to increase over longer periods as people do not normally remain motionless

for extended periods. Thus, under normal circumstances, the signal r.m.s. can be

used to decide whether or not the TA is being worn at that time.

However, the minimum r.m.s. signal values obtained when the subject was

lying were inside the range of signal values expected from an unworn TA. This has

implications for occasions in which an adverse event occurs, such as the subject

falling unconscious. The signal at this time may be indistinguishable from the

signal from an unworn TA if the subject remains motionless for an extended period.

Heuristic or procedural methods need to be considered to be certain of whether or

not the device is being worn when there is low variability in the signal.

6.5 Classifying Activity and Rest

Activity?

Yes

No

Determine Postural Orientation

Extract Parameters

TA Signal

Fall?

Yes

No

Walking?

Extract Parameters

No

Yes

Extract Parameters

Transition? No

Yes

Extract Parameters

Other movement::
Extract Parameters

Device worn?

Yes

No

Classification of activity and rest.
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Introduction

If the device is being worn by the subject, data processing and classification can take

place. The first component of the classifier system distinguishes between periods

of activity and periods of rest. A flowchart of the activity detection algorithm is

shown in figure 6.3.

Systems in which accelerometers are placed at a number of locations on the body,

typically including the waist and thigh as well as at other locations, have been used

to resolve resting states such as sitting, standing and lying, and activities including

walking, climbing up and down stairs and cycling [72, 76, 22 , 225]. Accelerometry

in combination with GPS (global positioning system) [ 73] has also been used for

this purpose. Additionally, single waist mounted units have been used to study gait

patterns [70, 93].

Veltink et al. [225] and Aminian et al. [ 9] used thresholding techniques to

discriminate between activity and rest as part of larger classifiers (refer to section

3.8). These investigators used an approach based on determining whether or not

the signal varies with time by comparing a low-pass averaged value of the signal

to a preset threshold to test for deviation from the mean. Veltink et al. used a

low pass filter with a cut-o at 0.1Hz (after first applying a high pass filter, cuto

0.5Hz, and then rectifying the signal), while Aminian et al. applied a 10 s averaging

window. This approach proved very e ective for extended or repetitive activities

such as walking or cycling. However, it is limited in that it is insensitive to activities

of a short duration, including “transient” movements such as rising from a chair.

In this study an investigation was conducted into an automatic detection sys-

tem for distinguishing activity from non-activity using only a single waist-mounted

triaxial accelerometer (TA). The detection system was designed to be suitable for

detection of all significant movements, including repetitive movements such as walk-

ing, and “transient” movements such as sit-to-stand transitions.

The detection system compared the time-averaged, integrated signal magnitude

to a preset threshold to distinguish between rest and activity. An accurate detection

of activity is needed so that the subjects’ activities can be further analysed and

classified. This requires a high sensitivity. This was determined to be the primary

requirement for this detection system.

This method was applied to data collected from 26 normal subjects to distinguish

between activity and rest and the system detection performance was evaluated. The

system was defined by three parameters; filter length (n), window width (w) and

energy threshold (th). The e ects of these were explored for a wide range of values
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A > th ?
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A to preset threshold
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Figure 6.3: Flowchart of the activity detection classifier
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and optimal ranges were determined for the subject cohort.

Experimental Procedure

An experiment was conducted in which 26 healthy volunteers with no mobility limi-

tations (7 female, 19 male; age 30.5 years ± 6.3 years standard deviation) performed

a sequence of normal daily movements in a controlled laboratory setting while wear-

ing the TA. The testing procedure was the same for all subjects. The subject was

told to attach the TA at the waist, above the right anterior superior iliac spine,

as this was identified as the preferred site by the subjects. Each subject carried

out 11 distinct activities, being sit-to-stand transitions, stand-to-sit transitions and

walking. These were interspersed by 12 distinct rest periods of either standing or

sitting. The sequence was: (i) stand (30 s); (ii) sit down into a lounge chair; (iii)

remain sitting (30 s); (iv) stand up; (v) remain standing (10 s); (vi) walk along a

flat, straight corridor; (vii) remain standing (10 s); (viii) sit down into an o ce

chair; (ix) remain sitting (30 s); (x) stand up; (xi) remain standing (10 s); (xii) walk

up and down a flight of stairs; (xiii) remain standing (10 s); (xiv) sit down into

an o ce chair; (xv) remain sitting (30 s); (xvi) stand up; (xvii) remain standing

(10 s); (xiii) walk along a flat, straight corridor; (xix) remain standing (10 s); (xx)

sit down into a lounge chair; (xxi) remain sitting (30 s); (xxii) stand up; (xxiii)

remain standing (10 s). The protocol took eight minutes to complete. The subject

was directed through the procedure by an investigator who identified the time of

onset and o set of each segment using a stopwatch. The investigator indicated to

the subject what movement to make and when to carry it out. Every data sample

was time stamped by the data acquisition system so that each activity could be

identified on the resultant signal trace, using the independent timing data obtained

by the investigator. Figure 6.4 shows a typical sample of data.

Thirteen of the subjects were randomly selected as a control group, and the

other thirteen were allocated to a test group (Control group: 4 female, 9 male;

age 30.9 years ± 9.0 years standard deviation; Test group: 3 female, 10 male; age

30.5 years ± 6.4 years standard deviation). The TA signals from the control group

were used to identify optimal sets of parameters for the detection system, which

was then applied to the test group and its performance was evaluated.

Data Analysis

Activity acceleration amplitude and duration are highly variable; between di erent

activities, between subjects and even for the same subject and activity. For example,
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Figure 6.4: A typical sample of data collected showing the vertical axis acceleration
(g = 9.81m. s 2) from a subject performing part of the test sequence. The activity
segments were timed by an investigator and correlated with the time stamp of the
signal. The di erent activities are indicated.

a sit-to-stand transition may take from 1 s to more than 3 s in healthy subjects [ 22],

and even longer in frail elderly or disabled subjects [ 72]. If, for example, a subject

sits rapidly into a chair, a large signal magnitude over a short duration is seen, in

contrast to a slow movement, in which a smaller signal magnitude over a longer

period is observed, as shown in Figure 6.5. Thus, in order to identify activity, both

the magnitude and duration of the signal need to be taken into account.

One way of including both e ects is to calculate the signal’s magnitude-area

(magnitude × time) and compare it to a preset threshold. Bouten et al. [3 ]

found that, after removing the gravitational components of the signals by high-pass

filtering the signals, the sum of the integral of the signal magnitudes from a TA is

proportional to metabolic energy expenditure in the activities of daily living with

correlation coe cient, r = 0.89 (refer section 3.7). The normalised signal magnitude

area (A), defined in equation 5.20, was used as the basis for identifying periods of

activity in this study.

The signals obtained from the TA were processed in the following way. Each of

the three orthogonal signals from the TAwas passed through a high pass filter (finite

impulse response filter with cut-o frequency at 0.25Hz) to remove the gravitational

acceleration component from the signal.
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Figure 6.5: A comparison between the data for two stand-to-sit transitions, showing
the vertical axis acceleration (g = 9.81m. s 2) versus time. (a) shows a typical rapid
transition, of the order of 1 s in duration. (b) shows a typical slower transition of
the order of 2.5 s in duration. Note that the magnitude of the acceleration in the
rapid transition is approximately 5 times larger than that in the slow transition.
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Each signal was then passed through a median (nonlinear low pass) filter of

length n samples to remove high frequency noise spikes. A non-overlapping averag-

ing moving window, of width w seconds, was applied to the signal, and A calculated

for each window. A was then compared to a fixed preset threshold, th, to deter-

mine the presence or absence of activity in the signal at a given time. th was a

measure of the SMA, having units of ms 2 and, like A, was independent of the

window width. The threshold comparison, A > th, was used to identify activity in

the signal. Contiguous windows containing activity were joined together to form

periods of activity interspersed by periods of rest. These periods of activity were

compared to the periods of actual activity in the following way. If a group of con-

tiguous, joined windows that contained the time at which an activity occurred was

classified as containing activity, then this was recorded as a true positive. If a group

of contiguous, joined windows that did not contain the time at which an activity

occurred had been classified as containing activity, then this was recorded as a false

positive. Negatives were defined similarly. In this process, a definitive recording of

the start and endpoints of the activity was not sought, but rather that an activity

had been detected within a block of time.

The e ects of three parameters a ecting the system’s function were investigated.

These were (i) the length of the median filter, n, (ii) the width of the window, w,

and (iii) the threshold value, th. Each parameter was varied from its minimum value

to a value above which discrimination between rest and activity did not occur.

First of all, the e ect that the parameters n, w, and th had on the detection

system was investigated, using the TA signals from all 26 subjects. Then, as a

second task, 13 of the subjects were randomly selected as a control group as outlined

above. The rates of true and false positives were measured using each combination

of these three parameters. The sets of parameters were ranked in descending order

of true positive rate (sensitivity) and within this ordering, in increasing order of

false positive rate ( - specificity). This allowed the optimal set of parameters to

be determined.

As discussed earlier, given the criterion that a high sensitivity was more impor-

tant than a high specificity, acceptable parameter sets were defined as those that

gave specificities above 0.9, and sensitivities as high as possible, but not below 0.9.

The system, using the optimal parameters as determined for the control group,

was tested on the remaining 13 test group subjects, and the e ectiveness of the

system was evaluated for the test group in terms of sensitivity and specificity.
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Results

Filter lengths n = 3, 5, 7, . . . , 89 samples, window widths w = 0.2, 0.4, 0.6, . . . , 4.0 s,

and thresholds th = 0, 0.0225 g, 0.0450 g, . . . , 0.9000 g were tested. The e ects of

the parameters n, w, and th on the detection system were investigated, using data

from all 26 subjects. Each of the three parameters was found to a ect the specificity

and the sensitivity of the system.

The sensitivity of the system was found to be controlled by a relationship be-

tween the product of n and w, and threshold, th and by a subsequent relationship

between n and w. Figure 6.6 shows the relationship between n.w and th and the

e ect on the discrimination ability of the system for all 26 subjects. Sets of pa-

rameters that achieved both sensitivity and specificity greater than 0.9 are shown.

Curves of best fit (3rd degree polynomials) through the upper and lower limits are

also shown. The relationship between n, w and the discrimination ability of the

system is illustrated in figure 6.7 for the instance where th = 0.1575 g.

The e ect of the filter length, n, on the windowed signal magnitude area, A, was

found to have two components. The first component acted on the measurement for

the individual subject, and is illustrated in figure 6.8a. As n was increased, the

di erence between A for activity and rest for any one subject was reduced, making

discrimination more di cult. The second component acted across subjects, and is

shown in figure 6.8b. As nwas increased, the di erences between subjects decreased,

making detection easier until the first e ect became too significant.

In the second task, optimal parameters were found for the control group and

then applied to the test group to determine their e ectiveness. Figure 6.9a shows

a receiver operating characteristic (R.O.C.) curve (true positive rate versus false

positive rate) for all of the parameters tested on the subject control group. Figure

6.9b shows the R.O.C. curve with the parameters that, on the control group achieved

a sensitivity and specificity greater than 0.9. The sensitivity and specificity achieved

when these same sets of parameters were applied to the test group are superimposed

on the diagram.

Table 6.2 lists the proportion of parameters tested on the control group that

achieved various true positive rates and a false positive rate less than 0.1. Eleven

parameter combinations yielded the same optimal result. These are listed in Table

6.3, together with their sensitivities and specificities when applied to each of the

control and the test groups. When each of the 11 sets of optimal parameters from

the control group were applied to the test group, the true positive rate of the system

ranged from 0.98 to 0.99 and the false positive rate ranged from 0.12 to 0.06.
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Figure 6.6: Filter length (n) × window width (w) versus threshold (th), plotted for
all sets of parameters giving both sensitivity and specificity greater than 0.9, across
all 26 subjects. Note that, for these parameter sets, n.w is bounded by smoothly
decreasing functions of th.

True positive rate

greater than, or

equal to

Percentage of sets

of parameters

0.90 5.58
0.95 4.04
0.99 .56
.00 0.80

Table 6.2: Proportion of sets of parameters that gave a false positive rate less than
0. in the control group (N = 13) as a function of true positive rate.
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RESULTS ON

CONTROL SET

RESULTS ON

TEST SET

n w th true false true false
(samples) (s) (g) positive

rate
positive
rate

positive
rate

positive
rate

13 0.8 0.1575 1 0.04 0.99 0.06
15 0.8 0.1575 1 0.04 0.99 0.06
17 0.8 0.1575 1 0.04 0.98 0.08
17 1.4 0.135 1 0.04 0.99 0.12
19 0.8 0.135 1 0.04 0.99 0.08
19 1.4 0.135 1 0.04 0.99 0.08
21 0.8 0.135 1 0.04 0.98 0.12
23 0.8 0.135 1 0.04 0.99 0.08
25 0.8 0.135 1 0.04 0.99 0.10
27 0.8 0.135 1 0.04 0.99 0.12
29 0.8 0.135 1 0.04 0.99 0.08

Table 6.3: Optimal parameters for activity identification in the control set (N = 13).
The true and false positive rates achieved for this set of parameters on the control
set was optimal, being 1.00 and 0.04 respectively. The false positive rate of 0.04 in
the control set results corresponds, in each instance, to the same two rest periods
being incorrectly categorised as activity. In the first instance, a subject was fidgeting
while standing, in the second instance a subject, while sitting, shifted in the seat.
The results achieved when these sets of parameters were applied to the test set
(N = 13) are also given.
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Figure 6.7: Window width (w) versus filter length (n) across all 26 subjects. All
sets of tested n and w where threshold th = 157.5 × 10 3 g are plotted. Bands of
sensitivity, with specificity greater than 0.9, are shown. The linear bounds on the
band, specificity greater than 0.9, are indicated by dotted lines.

Discussion

It is important to be able to detect movements such as walking and postural tran-

sitions because they provide valuable information on the functional status of the

patient. On the other hand, it is not necessary to identify small movements such

as a slight readjustment of posture while sitting. There is always some movement

when at rest (sitting, standing or lying) and the aim of this investigation was to

find a robust method for consistently distinguishing between significant activity and

resting states.

The normalised signal magnitude area, A, is a parameter that can be quickly

and easily calculated from the incoming signal. This allows the algorithm to be

used in a “real-time” context. This parameter also has the useful property that

it is an estimator of the metabolic energy expenditure, and can also be used for

longitudinal tracking of physical activity levels.

Sets of parameters that resulted in accurate discrimination showed a relation-

ship between th and the product of w and n, and a relationship between n and w.

When the data from all 26 subjects were analysed, all of the parameters with high

sensitivity and specificity were contained within a band on a plot of n.w against
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(a)

(b)

Figure 6.8: The e ect of filter length, n, on the signal magnitude area, A, when
window width, w = 0.8 s. (a) An example of data for one subject. As n increases,
activity segments more closely resemble non-activity. The points indicate the mean
A as a function of n for each of the identified activities for one subject. The error
bars represent the standard deviation of these activities for this subject. (b) For all
26 subjects. As n increases, the di erences between subjects decreases, making the
overall classification better. Concurrently, however, the di erences between activity
and non-activity are also decreasing. The points indicate the mean A as a function
of n for each of the identified activities for all subjects. The error bars represent
the standard deviation over all subjects.
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(a)

(b)

Figure 6.9: (a) Receiver Operating Characteristic (R.O.C.) curve for the combina-
tions of parameters investigated, applied to the subject control group (N = 13).
Each point represents a di erent combination of filter length (n), window width (w)
and threshold (th). Note that there were multiple combinations of the parameters
achieving the same sensitivity and specificity. The optimal parameters are those
located at the top left hand corner of the curve. (b) Detail of the R.O.C. for the
combinations of parameters that gave sensitivity and specificity better than 0.9 in
the control group (·) together with the results of these same parameter sets when
applied to the test group (x).
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th (figure 6.6). The band was described above and below by smoothly decreasing

curves. However, not all sets of parameters inside this band yield good discrimi-

nation results. A second condition described a relationship between n and w. For

each th and sensitivity, the range of w was linearly bounded above and below as

shown in figure 6.7.

The data for this study alternates periods of rest with periods of activity. When

the system is working optimally, it should detect a period of rest followed by a period

of activity, followed by another period of rest, and so on. If the system is insu -

ciently sensitive, periods of activity are not detected, resulting in a rest-activity-rest

sequence in the signal being classified as rest. If the system is completely insensi-

tive, as occurs when the energy threshold, th, is set too high, the entire signal is

classified as a single rest period. If the system is too sensitive then parts of rest

periods are classified as activity. In the extreme case, the entire signal is classified

as a single period of activity. The result of either error (oversensitive or insensitive)

is to reduce the ability of the system to discriminate between rest and activity.

Thus, the energy threshold parameter, th, needs to be carefully chosen to provide

a balance between sensitivity and specificity.

The median filter, which was applied to the signal in order to filter out noise,

a ects the energy contained in the signal. The longer the filter length, n, was

made, the smoother the signal became and the more energy was lost from the

signal. Increasing the filter length made the signal in the activity periods become

more like the signal in the rest periods for each subject and this made the distinction

between activity and rest more di cult (figure 6.8a). However, as n was increased

further, the accuracy of the system improved. This was due to a second e ect:

the heavier smoothing made the activity periods more uniform across the di erent

subjects, thus making it easier to distinguish between periods of activity and rest

across multiple subjects (figure 6.8b). This e ect peaked at around n = 19 samples.

As n was increased still further, the accuracy of the system decreased as the ability

to distinguish between activity and rest was lost.

Ideally, the window width, w, would be exactly matched to the width of the

activity being assessed. The timescale of human movements range from basic re-

action times of 160—190ms to simple movements (such as sit-to-stand transitions)

that take around 1—3 s [233]. Extended movements, such as walking, can occur over

indefinite periods.

The variability in activity duration meant that it was not possible to find a win-

dow width, w, that was matched to the width of all activities. If w was substantially

longer than the length of an activity, the window area contained more signal from
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the adjacent resting periods than from the activity. When the energy was averaged

over the whole window, the result was not distinguishable from a window containing

only a resting period. Using shorter windows, or overlapping windows, increased

the proportion of window that was filled with activity, and hence increased the de-

tection rates for the same threshold value. However, if the window width was too

short, the system became more susceptible to false positives as brief transients in

the resting signal became interpreted as movement. Using a window width that was

shorter than the shortest expected activity meant that at least half of the window

contained dynamic activity when the window was placed over an activity and so

increased the likelihood of it being detected as activity.

The best values for the window width, w, were found to be around 1 s (0.8—1.4 s)

for this data set. The optimum value for w found in this investigation is consistent

with both the timescale of human movement, and the duration of the fastest activity

measured in our sequence.

The TA signals are a linear combination of the gravitational acceleration com-

ponent signal and the body movement component signal. The main limitation of

this method occurs in the need to separate the two. This is usually done using a

high pass (or a low pass) filter, with the low pass component being regarded as

the gravitational component and the high pass component being regarded as the

body movement component [3 , 72, 226]. However, the two component signals have

a frequency overlap. The gravitational component measured by each axis of the

TA changes with the postural orientation of the subject, and the body movement

ranges from 0Hz, when there is no movement whatsoever, up to several hertz. This

frequency overlap means that perfect separation between the two components can-

not be achieved by filtering. However, in this study, it was found that using a high

pass filter with cut-o of 0.25Hz to separate the gravitational and body-movement

accelerations allowed periods of rest and activity to be distinguished.

The optimal values of n, w, and th identified by the algorithm are influenced to

some extent by the 0.25Hz cut-o separation filter, but good discrimination results

were still achieved. It would be anticipated that similar, but not identical, results

would be achieved using a di erent separation filter.

It seems likely that this method would still be e ective in detecting periods

of activity, that the same relationships between parameters would hold, and that

similar parameter values would be appropriate, although the optimal parameters

would be expected to change as a function of subject cohort, and possibly also as

a function of the separation filter. For example, frail, ill or housebound patients

are likely to move more slowly and generate lower accelerations, and so a lower
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valued n and a longer w may perform more e ectively on such a cohort. This was

investigated in a later study with elderly subjects (refer to section 7.8).

Conclusion

This study has shown that it is possible to distinguish between activity and rest-

ing states using a single waist-mounted triaxial accelerometer by means of a mean

acceleration thresholding approach. A median (low pass) filter was applied to the

signal to remove noise spikes; then analysed the signal on a window-by-window

basis, comparing the mean acceleration contained in the windowed signal to a pre-

determined threshold. It was found that the relationship between the product of

the filter length and the window width, and the threshold value was most important

in determining sets of parameters that would perform to the required specifications.

The sets of parameters that yielded a sensitivity of 1 and a specificity greater than

0.96 when applied to data from a control group of 13 subjects were applied to data

from a test group of subjects, and resulted in a sensitivity greater than 0.98 and a

specificity between 0.88 and 0.94. This shows the robustness of the technique for

separation of activities from rest, in the case of controlled movements.
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6.6.1 Introduction

The second component of the classifier is the set of algorithms to determine the

postural orientation of the subject during periods of rest.

Systems in which accelerometers are placed at a number of locations on the

body, in particular on the trunk and the thigh, have been used to classify resting

state data into sitting, standing and lying [ 9, 72, 76, 22 , 225]. In this study

an algorithm is developed to classify postural orientation during rest into sitting,

standing and four subpostures of lying using only a single waist-mounted TA.

The postural orientation can be classed as upright or lying. If the subject is

upright then the orientation can be classified as either standing or sitting. If the

subject is lying, then the lying orientation can be sub-classified depending on which

way the subject is lying. Once a period of rest has been classified then relevant

parameters can be extracted. Figure 6. 0 shows an overview of the resting state

classifier algorithms.

Much of the resting state classification can be achieved deterministically using

the model and methodology developed in section 5.4.3.
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Figure 6. 0: Flowchart of the resting state classifier
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6.6.2 Classifying Upright and Lying
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Classification of upright and lying postures.

Introduction

Upright and lying pertain to the tilt angle of the subject. The tilt angle, , was

defined to be the angle between the vertical axis of the TA and the gravitational

vector (illustrated in figure 5.5). As the TA was placed so that its vertical axis was

aligned with the vertical axis of the subject, was also a measure of the tilt angle

of the subject.

When the subject was standing, sitting upright, or lying down the distinction

between upright and lying was clear cut. This is evident from figure 5.25, which

shows that there was no overlap in the TA z-axis values, from which is derived,

between standing and lying states. Thus, perfect discrimination was possible in

these cases.

The distinction becomes less obvious when the subject is reclining, on a couch,

or sitting up in bed. In these cases the subject is halfway between sitting upright

and lying and it is unclear what classification should be made. Here, a measure of

the tilt angle can be more useful than a dichotomous classification. The decision

was made to limit the lying classification to postural orientations that were close

to horizontal lying, and to classify other reclining states as upright. These could

then be subclassified as sitting (reclining) and the tilt angle recorded as a state

parameter.

Experimental Procedure

Two data sets were used to investigate the e ect of applying this algorithm to the

signals from a TA placed above the right anterior superior iliac spine. Data from 23



214 6. Interpreting the TA Signal

normal subjects lying supine, on the left and right sides and face-down were collected

using the procedure described in section 5.4.3. Data from 26 normal subjects when

standing, sitting in an o ce chair, sitting in a lounge chair and sitting in an o ce

chair, leaning forwards over a keyboard were collected using the procedure described

in section 6.5.

Data Analysis

The TA signals from each postural orientation were averaged over the period that

the subject was in that position. This process yielded a 3-vector representing the

TA output for each subject in each position.

An algorithm to achieve discrimination between upright and lying states was

developed. This algorithm compared the tilt angle to a fixed threshold of 60

and classified the postural orientation based on the result. A tilt angle of 60

corresponded to a z-axis reading of 0.5. If z > 0.5 then the subject is classified as

upright. If 0.5 < z < 0.5 then the subject was classified as lying. If z < 0.5

then the subject was upside down!

Results

Figure 6. shows mean vertical axis data taken from 23 normal subjects. These

data were collected during the study described in section 5.4.3. The dashed line

indicates z = 0.5. All of the upright states were completely contained above the

line while all of the lying states were completely contained below the line. Thus,

classifications were made with 00% accuracy.

Discussion and Conclusion

This simple algorithm distinguished between upright and lying states with 100%

accuracy. This result was not unexpected since the underlying premise was that

the subject moves from a vertical position to a horizontal position when moving from

upright to lying, which for cases of standing, sitting upright, and lying down, is true.

This algorithm was later tested on data from unsupervised subjects performing a

sequence of known activities (chapter 7).
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Figure 6. : Mean TA vertical axis output signals for 8 di erent postural orien-
tations when the device was placed above the right hip (N = 23). Error bars
represent standard deviation. The dotted line is the threshold value of 0.5. There
was complete discrimination between the upright and the lying states.

6.6.3 Classifying Lying Subpostures
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Lying Position

Back
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Classification of lying postures

Introduction

The lying subclassification algorithm was developed as an extension of the postural

orientation modelling that was described in section 5.4.3. The purpose of the algo-

rithm was to discriminate between the four lying subpostures of lying supine, lying

face down, lying on the left side, and lying on the right side. Such information can

be used to provide more information on the subject’s bed rest habits [76]. It may

also provide useful information in the event of a fall.
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Experimental Procedure

Twenty-three normal subjects participated in the study. The subject cohort was the

same one that was used in the study described in section 5.4.3 (7 female, 16 male;

age 30.5 ± 6.3 years standard deviation). The TA was attached at the front-right

of the waist above the anterior superior iliac spine. Data were collected from the

subject in eight postural orientations: (i) standing; (ii) lying on the back; (iii) lying

on the left side; (iv) lying on the front; (v) lying on the right side; (vi) sitting on

a lounge chair; (vii) sitting on an o ce chair; and (viii) sitting on an o ce chair,

leaning forward over a keyboard. Subjects remained in each position for twenty

seconds.

Data Analysis

The raw signals from the TA were low pass filtered (3 dB point 0.25Hz) to retain

only the gravitational component of the signal. The low-pass filtered signals were

analysed on a second-by-second basis. Each second of data was averaged to produce

a position vector. This vector was processed using each of the models (discussed

below) and the postural orientation of the subject was classified. Thus, 20 classifi-

cations were made for each 20 second data sample.

The regular and elliptical cylinder models from section 5.4.3 were used to classify

the postural orientation of the subject. The rectangular model was also applied

for purposes of comparison. Each postural orientation was classified as one of (i)

upright; (ii) lying supine; (iii) lying right side down; (iv) lying face down; or (v)

lying left side down.

The results of the study in section 5.4.3 were used to compute predicted signal

vectors for standing upright and lying supine from each of the three models. The

predicted signal vectors for lying right side down, lying face down and lying left side

down were calculated by rotating the predicted vector for lying supine about the z-

axis by 90 , 80 and 270 respectively. Each model was tested using (i) the nominal

angles of placement, tnom (rectangular model: tnom = 180 , cylinders: tnom = 225 ),

and (ii) the mean optimal angles of placement, tmean, as determined from the earlier

model evaluation (rectangular model: tmean = 180 , elliptical cylinder: tmean =

219 , regular cylinder: tmean = 213 ).

Classification was achieved by comparing the measured vector to each of the

vectors predicted by the model and selecting the nearest (in an l2 sense) vector to

the measured vector. The predicted values for the four lying postures are evenly

distributed on a circle in the x—y plane (figure 6. 2). The plane can be divided into
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Figure 6. 2: The predicted values for the four lying postures are evenly distributed
on a circle in the x—y plane. The plane is divided into four quadrants and actual
lying postures are classified according to the quadrant that the mean acceleration
vector lies within, when projected onto the x—y plane.

four quadrants, each one representing one of the four postural subclassifications.

Each postural subclassification was then tested simply by establishing whether or

not the projection of the measured acceleration vector onto the x—y plane lay in the

quadrant pertaining to that classification (figure 6. 3).

In order to evaluate the classification a scoring system was applied. Classification

of each 20 s postural orientation sample was either (i) fully correct; (ii) partially

correct; or (iii) not correct. If the whole 20 s of one postural orientation sample was

correctly classified, then it was given a score of 1. If none of the sample was correctly

classified then it was given a score of 0. If part of the sample was correctly classified

and part misclassified then it was give a score of 0.5, irrespective of how many parts

of the sample were incorrectly classified. The classification accuracy of a model

was given by the sum of the scores divided by the total number of samples. When

comparing classification accuracy between the models, a Kruskal-Wallis statistical

test was used.

Results

Table 6.4 summarises the classification results from the models. In the sub-classifi-

cation of lying states, the cylindrical models were 98 99% accurate but the rec-

tangular prism model performed poorly with only 65% accuracy.

There was no significant di erence between the classification accuracy of the

elliptical cylinder and the regular cylinder, nor was there any significant di erence
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Figure 6. 3: Classification of lying postures.

N correct part correct % correct
Rectangular
prism

92 50 20 65.2

Elliptical
cylinder
with tmean

92 89 3 98.4

Elliptical
cylinder
with tnom

92 9 0 98.9

Regular
cylinder
with tmean

92 9 0 98.9

Regular
cylinder
with tnom

92 9 99.5

Table 6.4: A comparison of the prismatic models in classifying lying subpostures. N
represents the number of 20 second samples. "Part correct" indicates that di erent
sample sections were given di erent classifications by the model, and some of the
classifications were correct. These samples were designated as "part correct" and
given a weight of 0.5 (rather than 0 for incorrect or .0 for fully correct) in order to
determine the overall accuracy of the system.
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in classification accuracy in either model when tnom were used rather than tmean

(p = 0.574). When tmean were used, the regular cylinder model classified one subject

as lying on the front when the actual orientation was lying on the right side, but

all other postural orientations were correctly identified. The elliptical cylindrical

model produced almost identical results, but here a di erent subject was classified

as lying on the right side for several seconds while actually lying supine, and two

other subjects were classified as lying front for part of the time that they were lying

on their right sides. When tnom were used, the regular cylinder model classified one

subject as lying on the right side for part of the time when the actual orientation

was lying on the front, but all other postural orientations were correctly identified.

The elliptical cylindrical model classified all but one sample correctly; here a subject

was classified as lying on the front when the actual orientation was lying on the right

side.

Discussion

The algorithm developed in this study categorised the lying state into four sub-

postures with a high degree of accuracy when a cylindrical model of the subject

was used. The finding that the cylindrical models allowed postural orientations to

be successfully classified is in agreement with work of other researchers. Aminian

et al. [ 9] used a symmetrically placed trunk-mounted accelerometer and assumed

that when the subject was standing the whole of the gravitational acceleration was

along the vertical axis, and when the subject was lying it was distributed across

the other two axes, with no component on the vertical axis. This led to successful

classification of postural orientation. Veltink et al. [225] used a similar approach

to data from a tangential thigh accelerometer, a radial trunk accelerometer and a

trunk accelerometer perpendicular to the sagittal plane to successfully distinguish

between standing, sitting, and the four di erent lying subpositions.

The modelling study of section 5.4.3 found that the elliptical cylinder more

accurately reflected the figure of the subject than did the regular cylinder. This

was not reflected in the classification accuracies of the two models, which were

indistinguishable. Similarly, although use of tmean provided more accurate modelling

than use of tnom there was no di erence in the classification accuracies of the two.

This may have been due to the high classification rates which meant that a small

change in the model accuracy makes little di erence to the final outcome. These

results also indicate that the classification algorithm is tolerant to some inaccuracy

in the reference model.

Given that the two cylindrical models performed equally well, the regular cylin-
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der model was chosen for use in future work. The reason for this was that the

regular cylinder is a simpler model than the elliptical cylinder as it has no subject

dependent parameters. (In fact, the two models are topologically equivalent. The

di erence is that in the elliptical cylinder the dimensions of the ellipse are varied

in order to reflect the shape of the individual subject. In the regular cylinder, the

dimensions remain constant and the angle of placement, t, is moved to optimise the

output for each subject. Moreover, as the results of this study indicate that the

classification is robust to some variation in t from the optimal value, there is no

need to customise the system for use with each individual subject.)

In several instances, samples of one postural orientation were classified as two dif-

ferent postural orientations. Partial classification could only occur if the measured

vector was approximately equidistant to two nominal vectors (since the subject was

not changing orientation during this time). Then the slight fluctuations in the sig-

nal would be su cient to cause the output to change between two classifications.

In every case of partial or complete misclassification the subject was classified as

being in an adjacent postural orientation.

Conclusion

The algorithm developed and evaluated in this study sub-classified a lying posture

into one of four subpostures - lying supine, lying left side, lying face down, and

lying right side. A deterministic approach was taken in which the subject was

modelled as a cylinder and the TA signal output from each postural orientation

was predicted. The measured signal was compared to the predicted signals and

the predicted signal that was closest to the measured signal indicated the postural

orientation of the subject. The classification accuracy of 92 lying postures taken

from 23 subjects was 99%.

6.6.4 Lying–Parameter Extraction

Once a subject has been classified as lying and a subclassification has been made,

parameters of interest that can be recorded from the TA are:

• the tilt angle, of the subject;

• the angle between the x-axis and the vertical (the x-axis tilt angle);

• the angle between the y-axis and the vertical (the y-axis tilt angle);

• the time for which the subject remains in this lying state; and
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• the amount of movement as measured by the SMA.

The first three parameters provide further information on the postural orien-

tation of the subject. The duration and SMA of the lying period can be used to

develop a picture of the subject’s movements and activities over the day.

6.6.5 Classifying Sitting and Standing–APreliminary Study

Sitting?

Yes

No

Sitting Standing

Classification of sitting and standing postures.

Introduction

In section 6.6.2 tilt angles were studied for a cohort of 23 normal subjects in lying

and upright postures. The upright postures consisted of standing, sitting in a lounge

chair, sitting in an o ce chair, and sitting in an o ce chair while leaning forward

over a keyboard. Figure 6. showed the mean z-axis values for each of these states.

The z-axis values are the arccosines of the tilt angles. It can be seen that the mean

z-axis value was di erent for each case. The mean value was greatest and the

standard deviation smallest when subjects were standing. The mean z-axis value

when sitting in an o ce chair was slightly less than that when standing, but the

entire range of standing z-axis values was contained within one standard deviation

of the sitting values. The mean z-axis value was smallest when subjects were sitting

in the lounge chair. The expected z-axis value when sitting in a lounge chair was

significantly less than the expected value when standing (p < 0.05). It can be seen

from the figure that there was no overlap in the error bars (marking one standard

deviation) of the two states.

The di erence in z-axis values when sitting in the o ce and lounge chairs was

due to di erences in postural orientation. In the o ce chair subjects tended to sit

upright whereas in the lounge chair subjects reclined.
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It can be seen from these results that there are some circumstances in which

a subject can be identified as sitting from the z-axis value alone, but that there

are other upright postural orientations in which the subject’s posture cannot be

determined from the z-axis value alone.

Subjects can be successfully classified as either sitting or standing on the basis

of accelerometer signals when instruments are attached to both the waist and the

thigh [ 9, 37, 72]. As demonstrated, this is not always possible using only a waist

mounted accelerometer. However, it was hypothesized that discrimination between

the two states could be achieved with only a waist mounted TA by examining the

movements of the subject leading up to, during, and immediately following the

upright resting state, together with paramters of the resting state such as duration.

For example, if the activity immediately before the upright resting state was known

to be a transition from standing to sitting then the resting state could be classified

as sitting.

The purpose of this study was to develop and evaluate a rule-based algorithm

for discriminating between sitting and standing.

Algorithmic Development

As discussed, there are a range of z-axis values that indicate that the subject is

sitting and not standing. The first task of the study was to determine the maxi-

mum tilt angle that could be achieved by a standing subject. Once this value was

determined, then any upright postures with a greater tilt angle could immediately

be classified as sitting.

Testing was conducted on two normal subjects, one male and one female, both

aged 29 years. The TA was attached to the waist above the right anterior superior

iliac spine. The subject was asked to stand upright and then to lean forwards,

sideways and backwards as far as possible without overbalancing. The subject was

required to maintain each pose for 30 s. This procedure was then repeated but this

time the subject was permitted to lean against a wall for support while leaning. The

di erence between the upright tilt angle and the leaning tilt angles were calculated.

Angular displacement was used rather than absolute tilt angle because the value

of the measured tilt angle when standing was dependent on subject and device

placement. In figure 6. it can be seen that one standard deviation in z-axis values

during standing is from 0.929 to 0.978, which corresponds to a tilt angle range of

12.0 to 21.7 . If the tilt angle of the subject standing upright is known, then a

measure of the actual tilt of the subject is obtained by taking the di erence between

the upright tilt angle and the measured tilt angle.
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The mean angular displacement from the upright for the subjects were 11.2 for

the female subject and 7 for the male subject. The maximum angular displacement

that was achieved occurred when the subjects were leaning forward and using the

wall for support. In this instance the maximum angular displacement was 22 from

the upright value for both of the subjects.

The maximum displacement of 22 was achieved in an artificial setting in which

subjects were purposely leaning at an uncomfortable angle and using a wall for sup-

port. It was assumed that this angle exceeded the maximum angular displacement

that would be achieved during standing in normal daily living. Consequently, an

angular displacement of 20 was set as the maximum that could be achieved by a

standing subject.

If the angular displacement was greater than this threshold and the subject was

upright, then the subject was classified as sitting. If the angular displacement was

below the threshold then the subject could be either sitting or standing. However,

the likelihood of the subject being in a sitting posture increased as the angle at

which the subject was leaning increased.

This situation was modelled by two probability equations:

P (sit) =

0.5, 0 T < 5
T

30
+ 1

3
, 5 T < 20

0, T 20

(6. )

P (std) = 1 P (sit) (6.2)

where T is the angular displacement in degrees.

Six other factors were identified for use in discriminating between sitting and

standing. These were the duration of the resting state, the SMA of the resting

state, the previous activity, the next activity, the previous resting state and the

next resting state. Figure 6. 4 shows a block diagram of the system, which was a

rule-based classifier. In the classifier, angular displacement, duration, SMA, activity

and rest were decoupled and processed separately. A probability for sitting and a

probability for standing were obtained from each processing block. The probabilities

were then combined and an overall probability for each state was obtained. The

state that had the greater probability was given as the output of the classifier.

Resting state duration was included as a parameter because it is unlikely that

a subject would remain standing without moving for long periods. As the duration

of the rest period increased so did the likelihood that the subject was sitting. This

situation was modelled by two probability equations:
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Figure 6. 4: A rule-based classifer for distinguishing between sitting and standing.

P (sit) =

0.5, 0 D < 10
D

50
+ 0.3, 10 D < 30

0.9, D 30

(6.3)

P (std) = 1 P (sit) (6.4)

where D is the duration in seconds.

In section 6.4 the SMA was investigated for lying, sitting and standing postures

in normal subjects. Figure 6. 5 shows a boxplot comparison between the means of

the SMA when sitting and the SMA when standing for this data. Application of

the student t-test found that the standing postures had a significantly greater SMA

than the sitting postures (P < 0.05). Consequently, the SMA was used as a test

parameter to distinguish between sitting and standing. This was modelled by the

following equations:

P (sit) =

0.9, S < 5

0.00842× S + 0.942, 5 S < 100

0.1, S > 100

(6.5)

P (std) = 1 P (sit) (6.6)

where S is the SMA expressed as a percentage above the known sitting SMA mag-

nitude.

The previous and next resting states and activities can be used to build up a

picture of the movement of the subject. This can be used to deduce the postural
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Figure 6. 5: Boxplot showing the mean SMA values for subjects when sitting and
when standing (N = 26).

orientation of the resting state. If the previous or next activity is identified as a

transition between two upright postures then the resting state can be determined

with the same confidence as the transition identification. If the previous or next

activity is identified as walking, then the current state can be identified as standing.

If both the previous and the next resting states are sitting then it is likely that

the current state is also sitting as it is unlikely that the subject would stand up and

then sit down again without moving anywhere. It is more likely that the subject

has adjusted her or his seating position. The inverse assumption cannot reasonably

be made, that is, that if the previous and next states are standing then the current

state is also likely to be standing.

These heuristics were incorporated into a set of equations for determining the

probabilities of sitting and standing from the previous and next activities and a

set of equations for determining the probabilities of sitting and standing from the

previous and next resting states.

A flowchart of the decision system with the functions that were initially used is

shown in figure 6. 6.

The algorithm as it is shown in figure 6. 6 requires retrospective analysis because

it asks for the next activity and the next states as inputs. A modified version of

the algorithm was developed that could operate within 30 s of the commencement

of the rest state. The 30 s delay is to allow su cient data collection time for the

duration processing block. In the modified algorithm, the inputs N and NS were

removed from the system. This was achieved by changing processing block B4 to

the block shown in figure 6. 7 and removing block B5 altogether.

In both cases, the classification was made by computing the average probability
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tilt > 20°?

Yes

No

subject is
sitting

B1

 If 0° ≤ T < 5° then P(sit) = 0.5
 If 5° ≤ T < 20° then P(sit) = T/30 + 1/3
 P(stand) = 1 - P(sit)

B2

 If 0s ≤ D < 10s then P(sit) = 0.5
 If 10s ≤ D < 30s then P(sit) = D/50 + 0.3
 If D ≥ 30s then P(sit) = 0.9
 P(stand) = 1 - P(sit)

angular
displacment,
T (degrees)

duration, D
(seconds)

B3

 If 0% ≤ S < 5% then P(sit) = 0.9
 If 5% ≤ S < 100% then
         P(sit) = -0.00842xS + 0.942
 If S ≥ 100% then P(sit) = 0.1
 P(stand) = 1 - P(sit)

B4

 If [(P = SitToStd) AND (N <> SitToStd)]
  OR [(N = SitToStd) AND (P <> SitToStd)]
   then P(sit) = 0.2
 If [(P = StdToSit) AND (N <> StdToSit)]
  OR [(N = StdToSit) AND (P <> StdToSit)]
   then P(sit) = 0.8
 If (P = SitToStd) AND (N = StdToSit)
   then  P(sit) = 0
 If (P = StdToSit) AND (N = SitToStd)
   then P(sit) = 1
If (P = walk) OR (N = walk)
    then P(sit) = 0.3
 Otherwise P(sit) = 0.5
 P(stand) = 1 - P(sit)

Previous
Activity,

(P,p)

SMA, S
(% above reference

sit SMA)

B5

 If (PS = Sit) AND (NS = Sit)
     then P(sit) = 0.7
 Otherwise P(sit) = 0.5
 P(stand) = 1 - P(sit)

Previous
state,

(PS, ps)

SIT = [B1(sit) + B2(sit) +  B3(sit) +
  B4(sit) + [0.5 - B4(sit)] x [1 - (p + n) / 2] +
  B5(sit) + [0.5 - B5(sit)] x [1 - (ps + ns) / 2]] / 5

STD = 1 - SIT

subject is sitting

SIT > STD ?

Yes

No

subject is standing

Note that the activities and states are
entered as an activity or a state followed
by a probability (from  0 to 1)

Next
Activity,

(N,n)

Next state,
(NS, ns)

Figure 6. 6: Flow diagram of the rule based sit/stand classification algorithm
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of sitting and standing from the processing blocks. These were compared and the

posture with the greater probability was chosen as the output of the classifier.

Preliminary testing of the algorithm was carried out using a data set taken

from normal subjects in a laboratory setting. This provided some measure of the

expected performance of each of the components of the classifier.

Experimental Procedure

The data set that was described in section 6.5 was used in this study. Data were

obtained from 26 normal subjects sitting, standing and walking in a laboratory

setting by means of a single TA attached at the waist, above the right anterior

superior iliac spine.

Data Analysis

The activity detection algorithm (section 6.5) was applied to the data to distinguish

between periods of activity and periods of rest. The parameters that were used were

n = 3 samples, th = 0.135 g, and w = 1.0 s. This set of parameters performed well

in the activity detection algorithm but was not optimal. This had the e ect of

introducing a small number of false positive detections. These were permitted in

order to add some variety to the sequence of movements, so that the activities

adjacent to a given period of rest could be varied and the algorithm tested under

these conditions.

The actual classifications of each activity and each rest period were known by the

investigator. Each activity was manually labelled as either a sit-to-stand transition,

a stand-to-sit transition, walking or noise. This information was provided to the

algorithm, together with classification certainties for each of these classifications.

B4

 If (P = SitToStd)
   then P(sit) = 0.2
 If (P = StdToSit)
   then P(sit) = 0.8
If (P = walk)
    then P(sit) = 0.3
 Otherwise P(sit) = 0.5
 P(stand) = 1 - P(sit)

Figure 6. 7: Modified rule set that does not rely on knowledge of the future for
processing.
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Periods of walking were given a classification certainty of 1.0. Transitions were

given a classification certainty of 0.7. Periods of noise were left unclassified. These

classification certainties were selected based on the performance of the walking

detection algorithm (section 6.8.4) and the sit-to-stand and stand-to-sit transition

classification algorithms (section 6.9.4).

The heuristic rules employed in this algorithm were based on expected behaviour

of a free-living subject but the sequence of the activities and the durations of each

movement in the data set were dictated by the experimental protocol. This meant

that the duration of the resting state could not validly be used in this analysis and

was excluded.

One standing period was randomly selected for each subject. The median z-

axis value over this period was obtained and used as an upright standing tilt angle

reference for that subject. This period of standing was excluded from the subsequent

classification analysis. The di erence between the mean tilt angle in each resting

period and this reference angle was used as the angular displacement.

The SMA was computed for the first period of sitting for each subject. This

value was used as the sitting reference SMA. This period of sitting was excluded

from the subsequent classification analysis. The SMA of each of the remaining rest

periods was compared to the reference SMA and the ratio of the two was provided

to the classification algorithm.

The probabilities of sitting and standing made by each of the processing blocks

B1, B3, B4 and B5 for each upright resting state were recorded. The overall

probability of sitting was computed as

P (sit)av =
P (sit)B1 + P (sit)B3 + P (sit)B4 + P (sit)B5

4
. (6.7)

The classifications made by the algorithm were compared to the actual postures.

The system performance was evaluated in terms of the overall classification accuracy

and the contribution of each input parameter.

Preliminary Results

The system classified 8 periods of sitting and 74 periods of standing.

The classification results are given in table 6.5. The tilt angle block, B1 classified

27% of postures and left the other 73% unclassified. All sitting postures were

correctly classified or were left unclassified. 3 (7.47%) of the standing postures

were classified as more likely to be sitting, with a mean probability of 0.62 (±0.13

standard deviation). In these instances the subject had an angular displacement
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that was greater than 5 from the measured reference upright tilt angle.

Block B3, the SMA processing block, performed very poorly and classified al-

most every posture as sitting. Further investigation found that there was no sta-

tistically significant di erence in the SMA values between sitting and standing for

this data set. Contrary to the earlier findings, in this data set the mean SMA value

for sitting was slightly higher than the mean SMA value for standing.

The modified B4 block in which only the past activity was used performed

slightly better than the original block in which the past and future activities were

used, particularly in the classification of standing postures, where the accuracy was

improved from 72.57% to 92.57%.

The overall classification was best when the modified B4 block was used and

block B3 was excluded. This resulted in an overall classification rate of 96.86%. The

classification accuracy was similar for classification of sitting (95.16%) and standing

(97.70%), although the system had a higher confidence level in its sitting classifica-

tions. The mean probability of sitting for the correct sitting classifications was 0.75,

compared to a mean probability of 0.60 for the correct standing classifications.

Discussion

Distinguishing between sitting and standing is a simple exercise with piezoresistive

accelerometers attached to the thigh and to the waist because the thigh moves from

vertical when standing to horizontal when sitting. The problem becomes much more

di cult when only a waist-mounted accelerometer is used.

However, as the results of this study show, sitting and standing postures can

be classified using only a single waist mounted TA using a number of parameters

derived from the signal. There are several di erent ways in which these parameters

could be processed to make the classification. A rule-based system was chosen for

this study rather than a neural network because less training data was required,

expert knowledge could be built directly into the system, and the e ect of each

parameter on the outcome could be measured.

The finding that the standing and sitting SMAs were indistinguishable is in

conflict with the result found in section 6.4. This result may have occurred because

the duration of each rest period was quite short. Subjects stood quietly when asked

to stand, which resulted in low SMAs. When asked to sit, subjects would sit down

and then spend some time adjusting their posture until they were in a comfortable

sitting position. This period of adjustment increased the mean SMA during periods

of sitting. More investigation into the behaviour of the SMA between sitting and

standing in free-living environments is required before a decision on its utility in
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correct unclassified incorrect

(%) (%) (%)

B (tilt) sit 69. 4 30.86 0

stand 0 92.53 7.47

total 2 .96 72.94 5. 0

B3 (SMA) sit 98.77 0 .23

stand 4.02 0 95.98

total 34. 2 0 65.89

B4 sit 90. 2 9.88 0

(past and future stand 72.57 27.43 0

activities) total 78. 3 2 .88 0

B4 sit 9 .36 6. 7 2.47

(past activities only) stand 92.57 7.43 0

total 92. 9 7.03 0.78

B5 sit 0 00 0

(past and future stand 0 98.28 .7

resting postures) total 0 98.82 . 8

Overall sit 00 0 0

(past activities only) stand 4.57 0 95.43

total 34.5 0 65.49

Overall sit 95.06 0 4.94

(without SMA & stand 97.70 0 2.30

past activities only) total 96.86 0 3. 4

Table 6.5: Sitting and standing classification algorithm results. Classification results
for each of the parameters (tilt angle, SMA, previous and next activity, and previous
and next resting state) and overall classification (with and without the inclusion
of the SMA) are given. Results are shown as percentage of events (i) correctly
classified, (ii) not classified (probability that the subject is sitting = probability
that the subject is standing = 0.5), and (iii) incorrectly classified.
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this context can be reached.

If the previous activity was known with certainty then the resting state could

be classified with certainty. The ability to do this is limited by the accuracy of the

activity classification. There are two possible sources of error here. The first is that

an activity is unknown or incorrectly classified. The second is that an activity is

not detected. The latter can happen if two or more distinct activities are contained

within the same period of activity. For example, if a subject walks to a chair and sits

down all in the one movement then the classifier will only detect this as a period

of walking and fail to identify the stand-to-sit transition. For these reasons the

classification cannot rely solely on the surrounding activities.

Knowledge of the prior and subsequent rest states was not helpful in identifying

the current rest state. A more sophisticated knowledge of the subject’s movement

patterns would be required before this information could be used to predict the

current state. Probabilistic modelling techniques, such as Markov chains could be

considered for this application once su cient longitudinal data were collected on

the subject.

There are occasions upon which the classifier needs to make a decision based

only on present and past events. For example, if a subject collapses into a chair,

classification needs to be made without waiting for the subject to move again.

On other occasions, if a classification is uncertain, it can be made more certain

retrospectively once movements following the period of rest have occurred. In an

unsupervised monitoring system the algorithm should make a classification based

on past data only. If the classification certainty is low then the classification can be

reviewed once more data becomes available.

The system had a higher level of confidence in its sitting classifications. This was

because there was more information available for classifying a signal as sitting than

there was for classifying a signal as standing. The durations and tilt angles exhibited

by standing signals are subsets of those exhibited by sitting signals (figure 6. 8).

Thus there are occasions when a posture can be classified as sitting with certainty,

but the same is not true for standing postures. This is reflected in the levels of

decision confidence of the system.

In this study the processing blocks were decoupled, and all blocks were given

equal importance in the final vote. The algorithm may be able to be enhanced by

permitting interactions between the inputs. One way of e ecting this is to allow

the voting weights of the blocks to change. For example, if the subject has been

in the same resting state for several minutes, it is highly likely that the postural

orientation is sitting. This information is conveyed by block B2, and so, as the du-
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tilt angle,
duration

sitting

standing

Figure 6. 8: Relationship between tilt angle, duration, sitting and standing.

ration increases, the weight given to the block B2 output in the vote could increase

accordingly. This should be the subject of a future investigation.

The main limitation of this study was that it was conducted in a controlled

setting that did not allow testing of the rules in their designed setting. The set

and ordering of activities, and the durations of the rest periods were all artificially

constructed and did not necessarily reflect those of a free-living subject. Some

compensation for this was made when the activities were manually classified. The

walking activities were classified with a certainty of 1.0 because walking is a distinc-

tive activity that can be reliably identified using the walking detection algorithm of

section 6.8.4. The probabilities indicating the certainty of correctness of the tran-

sitions were set at 0.7. The transition algorithm was able to correctly identify the

transitions with a much higher accuracy under these controlled conditions (refer

to section 6.9.4), but its performance in the uncontrolled home environment was

expected to be reduced due to the addition of noise and additional, unclassified

movements. The value of 0.7 was used in this study in order to reflect some of this

uncertainty.

Despite this di erence in setting, this study was successful in demonstrating

that sitting and standing states can be determined using only a waist mounted TA

by means of a heuristic rule-based classifier. The next stage of the work is to apply

this algorithm to distinguish between sitting and standing in a free-living subject.

This is discussed in section 7.7 where the entire classification algorithm is applied

to data taken from a free-living subject at home.

Conclusion

This study demonstrated that sitting and standing postures can be distinguished

using data from a single waist-mounted TA. A heuristic algorithm was applied to a

data set taken from twenty-six subjects who carried out a routine of sitting, standing

and walking. Periods of sitting and standing were classified with 97% accuracy using

the tilt angle and knowledge of the previous activity.



6. Interpreting the TA Signal 233

6.6.6 Sitting–Parameter Extraction

Once a subject has been classified as sitting, parameters of interest that can be

recorded from the TA are

• the tilt angle, of the subject;

• the time for which the subject remains sitting; and

• the amount of movement as measured by the SMA.

The tilt angle is useful in that it gives an indication of whether the subject is

sitting upright or is reclining or is slouched forward. The duration of the sitting

period can be used to build up a template of the subject’s daily routine that includes

the amount of time spent sitting. The SMA is a useful measure as it indicates the

metabolic energy consumption of the subject. It also indicates whether the subject

is sitting quietly, or whether there is some movement during the period of rest.

6.6.7 Standing–Parameter Extraction

Once a subject has been classified as standing, the parameters of interest that can

be recorded from the TA are

• the tilt angle, of the subject;

• the time for which the subject remains standing;

• the amount of movement as measured by the SMA; and

• the amount of postural sway.

These parameters are the same as those recorded during periods of sitting, with

the addition of postural sway. Measurement of postural sway with a waist mounted

TA is discussed in the following section.



234 6. Interpreting the TA Signal

6.6.8 Measurement of Postural Sway–APreliminary Study

Introduction

The most significant parameter when standing is postural sway. It is hypothesized

that a TA can be used to measure postural sway in both the antero-posterior and

the medio-lateral directions, and that the frequency of the sway is equal to the

frequency of oscillation in the acceleration signal, and that the amplitude of the

acceleration signal provides a measure of the magnitude of the sway.

In preliminary studies Mayagoita et al. [ 63] and Kamen et al. [ 2] found

that an accelerometer attached at the sacrum was able to di erentiate between

di erent balance tasks during quiet standing. Kamen et al. also demonstrated the

repeatability of results by repeating each test thirty times on each subject over a

three day interval. They also found that the results obtained from the low back

were more consistent than the results obtained from the shoulder, knee or forehead.

The following preliminary study was undertaken to assess the feasibility of mea-

suring postural sway using a triaxial accelerometer mounted at the waist, above

the right anterior superior iliac spine. The purpose of the study was to establish

whether or not di erences could be observed in the measured TA signals under

di erent balance conditions.

Experimental Procedure

One female subject (age 29 years) with no balance or gait impediments wore a TA

attached at the waist above the right superior anterior iliac spine. The experimental

procedure had 6 components.

(a) The subject stood as still as possible on a firm, level surface with eyes open

for 60 s.

(b) The subject stood as still as possible on the same surface with eyes closed for

60 s.

(c) The subject stood as still as possible on a soft block of foam with eyes open

for 60 s.

(d) The subject stood as still as possible on the same foam block with eyes closed

for 60 s.

(e) The subject stood on the firm, level surface for 60 s. The subject was asked

to sway vigorously in the forward-backward direction. The subject was moni-
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tored by an investigator and the time at which the subject reached the forward-

most point of each oscillation was recorded by the investigator using a stop

watch. In this way the period and number of oscillations were measured.

(f) The subject stood on the firm, level surface for 60 s. The subject was asked

to sway vigorously in the left-right direction. The time at which the subject

reached the right-most point each oscillation was recorded by the investigator

using a stop watch. In this way the period and number of oscillations were

measured.

The first four tests were then each repeated a further ten times.

Data Analysis

The first 5 s were discarded from the start of each signal. The remaining data

were median filtered, filter length n = 3 samples. The signals were transformed by

rotation about the vertical axis to obtain signals that corresponded to the antero-

posterior and medio-lateral axes of the subject as seen by a TA mounted at the

sacrum. The angle of rotation was 135 . Fast Fourier transforms were computed for

each signal. The frequencies of any peaks in the Fourier transform were measured.

The mean, range and SMA were calculated for each signal.

The variability in the results across the ten repeat trials was computed. The

first trial was excluded from this analysis to avoid including any learning e ects

that may have occurred.

Preliminary Results

The acceleration signals from the first trials of the six tests are shown in figure

6. 9. The results obtained in the first four tests were consistent across all eleven

trials. The acceleration range and SMA were most sensitive to the di erent balance

conditions. The mean ranges are shown in figure 6.20. The range increased from

test (a) to test (d). The SMAs for the four tests are compared in the boxplots of

figure 6.2 . The SMA was lowest for test (a) and increased with every subsequent

test to test (f) where it was greatest.

In tests (e) and (f), there was agreement between the sway frequencies measured

by the investigator and the frequencies obtained from the Fourier transform in the

two tests in which the subject was asked to sway (0.26Hz for the forward-backward

sway and 0.30Hz for the side-to-side sway).
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Figure 6. 9: Antero-posterior, medio-lateral and vertical accelerations from one
subject: (a) standing as still as possible, eyes open; (b) standing as still as possible,
eyes closed; (c) standing on foam, eyes open; (d) standing on foam, eyes closed;
(e) standing on firm surface with antero-posterior sway; and (f) standing on firm
surface with medio-lateral sway. Note the di erence in acceleration scales between
the three accelerations.
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Figure 6.20: Mean acceleration ranges on each axis for ten trials of the first four
postural sway tests. Tests were: (a) standing on firm surface, eyes open; (b) standing
on firm surface, eyes closed; (c) standing on foam, eyes open; and (d) standing on
foam, eyes closed.
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Figure 6.2 : Boxplot of the SMA values recorded from ten trials of the first four
postural sway tests.
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Discussion and Conclusion

The purpose of this study was to assess the feasibility of using a TA mounted at

the front-right of the waist to collect measurements of postural sway. The sway

frequencies of the periodic oscillations made by the subject in tests (e) and (f) were

correctly identified from the Fourier transform of the signal. The increased move-

ment when the subject stood on the compliant surface compared to standing on the

firm surface was detected by the TA. This could be seen in the increased acceler-

ation ranges, and in the increased value of the SMA. These results are consistent

with the expected results.

The results of this preliminary study lend support to the hypothesis that a

triaxial accelerometer attached at the front right is capable of identifying parameters

relating to postural sway, and in particular, that the frequency of the sway in

a given plane is equivalent to the frequency of oscillation measured by the TA

on the appropriate axis, and that there is a relationship between the acceleration

magnitude and the magnitude of the sway. An increase in the levels of postural

sway led to an increase in both the acceleration range and in the SMA.

These preliminary results indicate that future work in this area is warranted.

The next stage of research should involve quantitative validation of the TA as a tool

for assessment of postural sway. A study should be developed in which the postural

sway of a representative sample of subjects is simultaneously measured with the

TA and with an instrument that has already been validated for the assessment

of postural sway, such as a force platform or a swaymeter, or preferably both. A

methodology for such a study is given in chapter 9.

6.6.9 Conclusion

This section has described a set of algorithms for the classification of postural

orientation during rest. The posture is classified as either upright or lying and

then as one of the subpostures of standing, sitting, lying supine, lying face down,

lying on the left side, or lying on the right side.

In studies with normal subjects under controlled conditions, postural orientation

was classified as either upright or lying with 00% accuracy. The lying subposture

was classified with 99% accuracy. Sitting and standing were classified with 97%

accuracy although the controlled conditions and the set routine used in this study

a ected some of the parameters of interest, including the rest period duration and

SMA.

Once the postural orientation has been identified then parameters such as tilt
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angle, duration, amount of movement and postural sway can be extracted from the

signal.

These algorithms have been described in the context of classifying resting states,

but their function is not limited to situations in which the subject is not moving.

The postural orientation of the subject as described by the tilt angle and the x-

and y-axis deviations from the vertical can be identified at any point in time, and

hence, during activity as well as rest. It can easily be determined whether or not

the subject is upright during any activity, and the tilt angle during this activity can

be computed. This is a potentially useful parameter in the assessment of gait and

sit-to-stand transitions.

6.7 Classifying Falls

Activity?

Yes

No

Determine Postural Orientation

Extract Parameters

TA Signal

Fall?

Yes

No

Walking?

Extract Parameters

No

Yes

Extract Parameters

Transition? No

Yes

Extract Parameters

Other movement::
Extract Parameters

Device worn?

Yes

No

Detection of falls.

6.7.1 Introduction

Falls are one of the most significant problems for elderly people who live alone in

the community. Personal alarm systems go some way to addressing the problem by

providing the person with a wearable button that, when pressed, enables communi-

cation with an emergency response centre. However, after a particularly serious fall,

or in the event of unconsciousness, the person may be unable to activate the alarm.
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In order to improve the usefulness, reliability and dependability of event monitor-

ing there is a need to automate the alarm detection process [237]. It has been

hypothesized that accelerometry is suited to automated falls monitoring [ 85, 237].

There are many di erent types of falls. Around the home, common falls include

tripping or falling while walking (walking lying), falling back into a chair while

attempting to rise (sitting sitting), falling into a chair (standing sitting),

slipping over while standing, for example, while showering (standing lying), and

many types of stumbles in which the subject manages to right themselves (standing

standing, or walking walking). The common feature in all of these events is

uncontrolled movement. If the person falls onto the ground or chair the uncontrolled

movement leads to large acceleration peaks generated on impact. If the subject

stumbles while walking this is likely to produce a large acceleration peak although

this may be avoided if the person is able to catch themselves quickly enough. The

event will, however, be visible as a disturbance in the gait pattern.

6.7.2 Falls Detection–A Preliminary Study

Introduction

The purpose of the following study was to develop an algorithm that detected large

acceleration peaks associated with fall events. As a second task, this algorithm was

incorporated into a falls detection algorithm that (i) detected a fall event, and (ii)

decided whether an alarm needed to be raised. This study focussed on falls from

an upright to a lying orientation. The algorithm was developed and tested using

“simulated” falls and stumbles performed by normal healthy subjects.

Experimental Procedure

A data set of “simulated” falls and stumbles taken from two normal, healthy, con-

senting subjects (one male, aged 3 years, and one female, aged 28 years) was

collected for use in developing the fall detection algorithm. Each subject stood or

walked around a room, and, while doing so, stumbled or fell onto the floor. The

floor of the room was covered with a carpeted surface such as is often found in the

home. Eight simulated stumbles during walking and eight falls to the ground from

quiet standing or walking were collected.

A second test set of data was collected from two normal, healthy, consenting

subjects. One subject was the female who participated in the first data collection.

The second was another male subject aged 32 years. These subjects each performed

a routine that consisted of
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. two fall to the ground events, remain lying for 60 s;

2. two fall to the ground events, get up again; and

3. two lie down on the ground events, which were performed in a controlled

manner.

The events were performed in an order chosen by the subject, and events were

separated by normal activity. The routine was carried out in a home environment.

A third data set was collected that consisted of dropping the TA unit to the

ground five times. This set contained large acceleration peaks that were not asso-

ciated with a human fall.

Data Analysis

The first data set was analysed and methods for detecting falls were investigated.

All of the stumble and fall events were characterised by large acceleration spikes on

at least one of the three axes. The data was first median filtered (n = 3) to remove

noise spikes, and then three basic methods of detection were tested.

Method involved looking for excessive acceleration magnitudes on each of the

x-, y-, and z- axes, and in , the magnitude vector. In order for an event to be

recorded the acceleration had to exceed the threshold for a minimum duration.

Thresholds between 0.5 g and 1.5 g were considered. Durations between 1 sample

and 10 samples were considered. Approaches were tested in which 1, 2, 3, and 4

of the x-, y-, z-axis and signals had to detect an excessive acceleration before an

event was logged.

Method 2 involved looking at the magnitude di erence between the current

acceleration and the running average acceleration over the past few seconds, and

the magnitude di erence between the current acceleration and the running average

acceleration over the next few seconds. If the di erence in magnitude exceeded a

threshold then an excessive acceleration was recorded. This method was applied

to accelerations on each of the x-, y-, and z- axes, and in , the magnitude vector.

The running average parameter was varied from 1 s to 10 s. Both mean and median

averages were considered. The same procedure was then followed as for method . In

order for an event to be recorded the acceleration had to exceed the threshold for a

minimum duration. Thresholds between 0.5 g and 1.5 g were considered. Durations

between 1 sample and 10 samples were considered. Approaches were tested in which

1, 2, 3, and 4 of the x-, y-, z-axis and signals had to detect an excessive acceleration

before an event was logged.



242 6. Interpreting the TA Signal

Method 3 involved looking for abnormally large signal magnitude areas between

successive crossings of the average acceleration magnitude (
mean

).

The three methods were evaluated and compared using the first data set. The

methods were ranked, firstly on the number of events that were correctly detected,

and secondly, on the number of false positives that were detected.

The best algorithm was then employed in a fall analysis algorithm. This algo-

rithm is shown in figure 6.22. It firstly identified the occurrence of an abnormally

large acceleration using the best of the three methods that were tested. The pos-

tural orientation of the subject was determined immediately before and after the

large acceleration. If the subject moved from an upright to a lying posture then

the movement was identified as a fall. If a fall was not detected then the event

was logged and normal processing was continued. If, however, a fall was detected

then the subject’s SMA and postural orientation were measured for the next 60 s.

The SMA was used to determine the amount of movement generated by the subject

during this period which could provide an indication of the severity of the fall. If

the subject was able to rise again during the 60 s period then the event was logged

and an alert was raised to indicate that a fall had occurred. If the subject was still

lying after 60 s then the event was logged and an alarm was raised to indicate that

a fall had occurred and assistance was required.

This algorithm was tested using data from the second and third data sets.

Preliminary Results

The most successful single method was comparison of the magnitude vector to a

preset threshold (method ). The optimal threshold was found to be 1.8, and the

signal was required to exceed the threshold for at least 2 samples. At this level all

eight fall events were correctly detected. Four of the eight stumbles were detected,

and one false positive was detected.

Although the parameters could be adjusted for the second and third methods so

that all fall events were detected, this led to an increase in the false positive rate. In

particular, these methods both classified lie/stand transitions as events. Using the

third method, normal transitions generated larger SMA peaks than did fall events.

When the method algorithm was incorporated into the falls algorithm illus-

trated in figure 6.22 and applied to the second data set, there was 100% correct

classification for the first subject, with no false positives detected. For the second

subject, three of the four falls were detected, and no false positives were detected.

Figure 6.23 shows the magnitude signal data taken from the two subjects perform-

ing the routine of four falls and two stand-to-lie transitions. The 1.8 g threshold is
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Figure 6.22: Flowchart showing the fall processing algorithm.
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Figure 6.23: Signals obtained from a routine containing four falls. (a) Subject ,
z-axis acceleration, (b) Subject 2, z-axis acceleration, (c) Subject , , and (d)
Subject 2, . The fall detection threshold is shown as a dashed line in graphs (c)
and (d).

indicated. It can be seen that all of the falls, and no other activities, exceed the fall

detection threshold.

The signals generated by dropping the TA unit were processed by this algorithm.

All five of the drops were detected as falls. Three of the movements in which the

TA was picked up were also detected as abnormally large acceleration peaks by the

algorithm.

Discussion

The algorithm that was developed was able to detect falls from the acceleration

signal. In this preliminary study a fixed threshold was used. In free-living, un-

supervised monitoring it would probably be more appropriate to use an adaptive,

subject-dependent threshold. This threshold could be determined as a function of

the peak walking magnitude acceleration for the subject. This would make the fall

detection more sensitive for lightweight subjects and more robust for subjects who

generate large accelerations while moving about. It would also ensure that the falls

detection algorithm adapted to retain optimal detection sensitivity and specificity if
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the functional status of the subject changed, leading to a change in the acceleration

amplitudes generated.

In the fall event that was not detected by the algorithm, the threshold value was

exceeded for one sample, was not exceeded for the following ten samples (almost 1
4
s),

and was then again exceeded for two consecutive samples. A possible modification

to the algorithm that would allow detection of this fall event is the detection of an

abnormally large acceleration for a minimum number of samples within a specified

period of time, rather than requiring the samples that exceed the threshold to be

consecutive. This requires further investigation with data from genuine falls.

Simulated fall data was used in this study because of the di culties inherent

in obtaining genuine falls data. When a subject falls deliberately, he or she braces

for the fall and this may lead to di erent signals to those obtained from a genuine

fall, which is uncontrolled. However, the e ect of bracing for the fall is to smooth

the acceleration signal, and so reduce the peak accelerations. It would therefore be

expected that in genuine falls the acceleration peaks are even higher.

Few people recover immediately after a fall. Rather, most people remain lying

for a short time before trying to get up again. The 60 s delay in raising the alarm

is to give the subject time to try to get up again, and to identify the extent of any

injury before the alarm sequence is started.

Movements made when the TA unit was not being worn, such as dropping the

unit, or picking the unit up after being dropped generated accelerations that were

large enough to be detected by the fall detection algorithm. In an unsupervised

situation, any fall detection algorithm should be robust enough to detect all falls,

but as the sensitivity increases, the likelihood of false alarms also increases. False

alarms lead to unnecessary expense and inconvenience, and may lead to the system

being disregarded if they occur in su cient numbers. Hence the alarm should only

be raised in the case of a genuine event, not in the case of a false positive detection.

However, as discussed in section 6.4 it is not possible to conclusively distinguish

between a motionless subject and a TA that is not being worn. Thus, an instance in

which the TA unit is dropped may look like a fall to the classification algorithm. In

cases of such uncertainty the system should raise an alarm in case the subject has

fallen and is injured, and so it is proposed that a procedural approach be adopted.

If the algorithm identifies an alarmable event, the subject is notified via an audible

message. In the event of a real emergency, this will act to reassure the patient. In

the event of a false alarm, the subject is able to interact with the system to cancel

the alarm call.
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Conclusion

An algorithm for falls detection was developed in which the magnitude acceleration

was compared to a threshold value. Preliminary testing was carried out on a data set

of “simulated” falls where it correctly detected seven of eight falls and generated no

false positives. The possibility of false positive detections leads to the proposal that

procedural methods involving subject interaction be used to allow the cancellation

of any false alarms that may be generated.

6.8 Classifying Walking
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6.8.1 Introduction

Walking is the most fundamental of the daily movements, and one of the most

complex. The complexities of gait make it sensitive to early changes in balance

and functional independence. Changes such as shu ing rather than stepping, or in-

creased variability in the gait, indicate detrimental changes to health and functional

ability that need to be addressed to prevent further deterioration.

A number of studies have found that accelerometry can be used to detect the

presence of gait [72, 76, 73, 22 , 225]. Gait patterns have been studied manually

from TA signals [70]. There has been less work done on algorithmic detection of
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parameters of gait. Sekine et al. [ 93] developed an algorithm to distinguish between

level walking and walking up and down stairs. Aminian et al. [ 8] developed an

algorithm to automatically identify gait cycle phases using accelerometers attached

to the thighs.

The purpose of this section of work was to identify periods of walking and to

identify parameters of gait, in particular, step rate, from the signals of a single

TA that was attached at the front-right of the waist. It begins with a study to

investigate the use of the Fourier transform to determine gait cadence, a technique

that has been used by other researchers [76]. A di erent technique for determining

the step-by-step gait cadence is then presented.

Following these studies of step rate detection, a rule-based gait detection al-

gorithm is developed. Techniques for identifying periods of walking in the signal

are discussed and important parameters that can be derived from the signal are

described.

6.8.2 Determination of Step Rate using Fourier Transforms

Introduction

Research has found that of the antero-posterior, medio-lateral and vertical accel-

eration signals, the vertical signal is the one that most clearly shows the stepping

sequence [3 , 70, 72, 76, 37]. The study described in section 5.4.6 found that this

was also the case for the data obtained from a TA unit attached at the front-right

of the waist. Fahrenberg et al. [72] used a short-time Fourier transform on the

vertical axis of a sternum-mounted accelerometer to determine walking step rate.

The questions arise of whether using the vertical axis in isolation is the best way

to determine the walking step rate and how good a method the Fourier transform

actually is for determining step rate. In this study the average step rate during

normal, free walking was determined by means of a fast Fourier transform (FFT).

A comparison was made of the e ectiveness of using each of the three di erent

signals, and of combinations of the three signals, to measure the step rate.

Experimental Procedure

Twenty-six normal, healthy subjects (seven female and nineteen male), aged be-

tween fifteen and forty-nine years, participated in the study. Table 6.6 summarises

the physical characteristics of the subjects.

Each subject was tested in a thirty minute session. Each subject performed six

tests:
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Mean Std. Dev. Min Max

Gender 7 female, 9 male
Age (years) 30.7 7.63 5 49
Height (cm) 74. 9. 6 57 92
Weight (kg) 7 .7 0.9 53 90

Table 6.6: Physical characteristics of subjects (N = 26) participating in the step
rate determination study.

• tests -4 : the subject was asked to walk at a normal pace along a flat straight

40m long corridor to the end, and then turn around and walk back down the

corridor. This test was repeated two times.

• test 5 : The subject was asked to walk at a normal pace up a typical flight of

stairs. There were two landings in the flight of stairs with six stairs below the

first landing, nine stairs between the landings and six stairs above the second

landing.

• test 6 : The subject was asked to walk at a normal pace down the same flight

of stairs.

Each of the tests was timed by an observer using a stop watch. The number of

steps taken in each test was counted by the observer. Mean step rate was calculated

by dividing the number of steps by the time taken.

Data Analysis

The three signals from the TA unit were high pass filtered to extract the body ac-

celeration component, and median filtered to remove noise spikes. The acceleration

magnitude, , was computed. The discrete Fourier transforms of the x-, y-, z-axis

and signals were calculated using the Fast Fourier Transform algorithm.

An algorithm was developed to automatically determine the average step rate

from the Fourier transform. Normal walking cadence ranges from 95 steps/min

(1.5Hz) to 115 steps/min (1.9Hz), so the algorithm was designed to look for a

frequency peak within the 0.7 to 3Hz range. The magnitude of the largest signal

peak was compared to a baseline noise value. If the signal to noise ratio (SNR) was

greater than a fixed threshold value then the frequency at which this peak occurred

was identified as the step rate. As a consequence of preliminary testing on earlier

data, the SNR threshold value was set to 10. In order to allow for changing noise

levels in the signal the baseline noise level was derived from the Fourier transform
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signal itself, as the r.m.s. value of the signal between 2 and 20Hz. This range

was chosen because 98% of the power in walking is contained below 10Hz with no

amplitudes greater than 5% of the fundamental existing above this frequency [2 ].

The step rate was determined using

• the x-axis signal alone;

• the y-axis signal alone;

• the z-axis signal alone;

• acceleration magnitude, , alone;

• a voting system in which each component signal had an equal vote; and

• a weighted voting system in which the component signals had unequal votes.

Results

The six walking trials from the 26 subjects resulted in 156 walking records in all.

Of these, two of the corridor walking records were discarded. One was discarded

because the subject’s gait was too erratic (the subject was interrupted by a dis-

turbance in the corridor) and a regular step period could not be determined. The

other was discarded because a technical problem with the data logging resulted in

loss of part of the data for that trial.

The mean time taken to walk along the corridor was 28± 3.6 s (standard devi-

ation). Thus, the mean walking rate along the corridor was 1.4± 0.20m.s 1. The

mean time taken to walk up the stairs was 18± 3.3 s. The mean time taken to walk

down the stairs was 17 s± 5.2 s.

Figure 6.24 shows typical examples of the signals obtained from a subject walking

along the corridor, together with their Fourier transforms.

Visual analysis found that, of the four signals, step rate was most clearly iden-

tified from the z-axis signal. In the Fourier transforms of the x and y signals, a

significant component of the signal energy was present in harmonics and in a signal

at half the mean walking rate (at the gait cycle frequency). The peak corresponding

to the step rate was less easily distinguished in these signals than in the z-axis signal

where most of the signal energy occurred at the stepping frequency.

The values computed by the automated algorithm were compared to the mea-

sured walking rates with the results shown in table 6.7. For each trial, the automated
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Figure 6.24: Typical acceleration signals from a subject walking along the corridor.
(a), (b), and (c) show the x-, y-, and z-axis acceleration signals, respectively, (d) is
the magnitude signal, , (in units of g) versus time (in seconds), and (e), (f), (g),
and (h) show the corresponding Fourier transforms (in hertz).
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algorithm attempted to determine the step rate. If the value determined by the au-

tomated algorithm was within 0.2Hz of the measured value then the algorithm was

deemed to have correctly identified the step rate. If the algorithm did not correctly

identify the step rate then the erroneous identification was placed in one of four

categories:

Type : computed frequency = 1

2
× actual frequency;

Type 2: computed frequency = 2× actual frequency;

Type 3: computed frequency = some other frequency; or

Type 4: no frequency computed (no su ciently large peak in the Fourier trans-

form signal)

The spherical coordinate magnitude vector, , performed poorly, correctly iden-

tifying only 40% of step rates. In one third of cases, the algorithm was unable

to identify a peak in the Fourier transform signal that corresponded to walking,

while in a further 20% of cases, the two-step frequency resulted in a larger peak

than the single-step frequency. When x- or y-axis signals were used, the algorithm

performed reasonably, achieving overall accuracies of 63% and 74% respectively.

However, when the z-axis signals were used, the algorithm performed very well,

correctly identifying 96% of step rates. 100% of step rates were correctly identified

when subjects were walking along the level corridor or walking up the stairs. Six

of the twenty-six trials in which subjects walked down the stairs were misclassified

and all but one of these were classified as type 3 errors.

The voting systems that were tested performed better than using only the x-

axis, y-axis or signals but did not perform as well as simply using the frequency

determined from the z-axis signal. Figure 6.25 compares the results of the best me-

dian voting system, the best weighted mean voting system, and the results obtained

from the individual signals.

Discussion

All of the subjects exhibited a regular step rate when they were walking along the

level corridor. This resulted in large peaks in the Fourier transforms of the signals

at the step rate.

Climbing up the stairs also resulted in a regular step rate. However, subjects

walked down the stairs in a more erratic manner, typically taking several rapid

steps followed by a pause, then several more rapid steps. This variation made it

more di cult to determine a mean step rate and led to increased errors in step-rate

determination.
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Walk x y z

Along corridor N 02 02 02 02
No. correct 80 85 02 35
% correct 78.4 83.3 00 34.3
Type error 0 0 29
Type 2 error 0 0 0 4
Type 3 error 7 0 0
Type 4 error 0 0 0 34

Up stairs N 26 26 26 26
No. correct 5 20 26 9
% correct 57.7 76.9 00 73.
Type error 9 6 0
Type 2 error 0 0 0 0
Type 3 error 0 0 0 3
Type 4 error 2 0 0 3

Down stairs N 26 26 26 26
No. correct 2 9 20 8
% correct 7.7 34.6 76.9 30.8
Type error 4 5 0
Type 2 error 0 0 0 0
Type 3 error 7 8 5 2
Type 4 error 3 3 0 6

Total N 54 54 54 54
No. correct 97 4 48 62
% correct 63.0 74.0 96. 40.3
Type error 24 2 30
Type 2 error 0 0 4
Type 3 error 8 5 5 5
Type 4 error 25 3 0 53

Table 6.7: Results of the automated classification algorithm. Error types are as
follows: Type : computed frequency = 1

2
×actual frequency; Type 2: computed

frequency = 2×actual frequency; Type 3: computed frequency = some other fre-
quency; Type 4: no frequency computed (no su ciently large spike in the Fourier
transform),
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Figure 6.25: Percentage of walking speeds that were correctly identified by each of
the x-, y-, and z-axis and signals and two voting systems, a median voting system
and a weighted mean voting system.

On five of the six occasions during descent when the mean step rate was in-

correctly determined by the algorithm using the z-axis signal, the mean step rate

was not correctly determined by any method. On one occasion, use of the y-axis

acceleration resulted in correct identification of the step rate when use of the x-axis,

z-axis and accelerations resulted in incorrect classification.

This study shows the benefits and limitations of using the Fourier transform to

determine average step rate. Peaks occur in the Fourier transform at frequencies

that are strongly represented in the signal. A peak representing walking rate will

only be detected in the Fourier transform if (i) the walking signal is of su cient

length, and (ii) the walking is regular and the step rate is consistent. If there is

large variability in the stepping frequency then the Fourier transform will be less

e ective in identifying the mean frequency. However, it appears to be a highly

e ective approach when there is low variability within the step rate, as was the case

in the level corridor walking.

Conclusion

An algorithm in which the average step rate was determined from peaks in the

Fourier transform of the acceleration signal was developed and tested on data sam-

ples taken from 26 normal, healthy subjects walking along a level corridor and up

and down a flight of stairs. Methods using the x-, y-, and z-axis accelerations, the
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magnitude acceleration, , and voting systems that combined the individual outputs

were tested. The best results were achieved when the z-axis acceleration was used.

The average step rate was determined with 00% accuracy for level walking and

for walking up stairs. The average step rate was determined with 76.9% accuracy

for walking down stairs. This simple and e cient approach is highly e ective in

determining the average step rate during regular walking, but its accuracy decreases

with increasing step rate variability.

6.8.3 Step-by-Step Determination of Gait Cadence

Introduction

The two limitations of the Fourier transform method are that it is only suitable for

gait with a regular step rate and that it can only give a measure of the average gait

cadence, not of the step-by-step cadence. This study investigated the application

of a new approach to determining step rate during walking. This approach sought

to identify a characteristic point in the signal once every gait cycle and, hence,

determine the step-by-step gait cadence.

Experimental Procedure

Eight healthy subjects without gait impediment (3 female, 5 male, aged 26—60

years) participated in the study. Each subject attached the TA device at the waist,

above the right anterior superior iliac spine and then proceeded to walk about a

level circuit. The circuit was around a house (house (b) in figure 4.3). The circuit

passed through several rooms of the house and subjects had to navigate through

open doorways and around various obstacles such as chairs and tables while walking

at a fixed step rate. Each subject walked at least 80 paces at each of 40, 60, 80,

100 and 120 steps/min. The subject walked in time to a metronome that gave an

audible “click” at the required step rate.

Data Analysis

The TA signals were median filtered (n = 3 samples) and then used in the data

analysis.

In section 5.4.6 it was found that steps during gait could be identified manually

in the signals from a TA attached at the front-right of the waist. In this study, each

step was identified manually in the acceleration signals, using the peak vertical

acceleration as the reference marker. The number of samples between each marker
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was counted and the time between each successive step was computed. This was

used as the reference to which the results of the automated step detection algorithm

were compared.

The algorithm was applied to each one of the three (x-, y-, and z-axis) signals

from the TA. All of the maxima in the signal were identified. One of the maxima

was chosen at random. A 41 point (just under 1 s) sample of the signal centred

about this point was taken. A sliding window of width 41 samples was applied to

the 10 s period of signal following this sample. The correlation coe cient between

the signal sample and the signal contained within the sliding window was calculated.

If a correlation coe cient greater than a threshold of 0.85 was measured then this

sample was retained as a candidate walking template. This threshold value was

chosen as the result of preliminary testing of the algorithm with the data set used in

the last study (section 6.8.2). If no correlation coe cient greater than the threshold

was measured then this sample was rejected and another maxima was randomly

chosen, a 41 point sample about this point was taken and the process of correlation

testing was repeated.

This procedure was repeated until three candidate walking templates were ob-

tained. Of these three candidate templates, only one was chosen for use as the

walking template. The candidate templates were compared in pairs and the cor-

relation coe cient was calculated for each pair. This resulted in two correlation

coe cients being associated with each candidate template. These two correlation

coe cients were summed and the candidate template that had the highest sum was

chosen as the walking template.

A sliding window was then applied to the entire signal. The sliding window had

a width of 41 samples and was o set by 1 sample each time that it was applied. The

walking template was cross-correlated with the sample of signal inside the sliding

window. Maxima in the cross correlation signal that exceeded a threshold value

were marked as step reference points. The threshold value was set at 0.5. This

result was chosen as the result of preliminary investigations using this method of

step determination.

The automated algorithm could choose any point in the step cycle to be the

reference marker. In order to allow comparison between the automated algorithm’s

step identification and the manual step identification, the distance (in samples)

between the algorithm’s step marker and the peak on the z-axis was measured for

a random step. The entire cross correlation signal was shifted by this di erence

so that the automated algorithm step markers should align with the peaks on the

z-axis if the algorithm performed e ectively.
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If the automated algorithm detected exactly one step within the range [m

0.2× s,m+0.2× s], where m is the sample at which the step marker was manually

identified and s is the expected number of samples per step (s = 45×60

step rate
), then this

was accepted as identification of that step. If no step was detected in this range then

the algorithm failed to detect the step. If more than one step was detected in this

range then this was recorded as detection of a false step. Any steps detected outside

this range were also classified as false steps. The algorithmically determined mean,

standard deviation and median walking rates were calculated for each subject at

each walking speed.

The detections from each of the di erent signals were combined to produce an

overall decision on where the step markers should be located. A voting system was

used in which, if the majority of the signals detected a step then a step marker

was added at that position. If the majority of the signals did not detect a step

then no step marker was added. The final result of the step detection algorithm

was compared to the actual step sequence and the system sensitivity and specificity

were computed for each walking rate.

A three-dimensional version of the algorithm was also tested. In this version the

maxima were determined from the z-axis signal. One peak was chosen at random

and a 41 sample range about this point was selected. A sliding window was applied

to the next 10 s of the signal. The x-axis signal in the sample range was correlated

with the x-axis signal in the sliding window, and similarly for the y- and z-axes. The

three correlation coe cients were averaged to obtain a test correlation coe cient to

compare to the threshold value. The threshold value was again set to 0.85. Three

candidate templates were chosen in the same way as for the original algorithm. They

were compared by means of the three-dimensional correlation measure described

above in order to choose the best candidate template. The x-axis of the walking

template was compared to the contents of a sliding window across the entire signal.

This was repeated for the y- and z- axes. The three correlation signals were averaged

to produce a three-dimensional measure of the correlation. The maxima in the three-

dimensional correlation signal were identified, and those exceeding a threshold of

0.3 (chosen as the result of preliminary testing) were identified as step reference

markers. From here, the procedure was the same as for the original algorithm.

Results

All of the subjects found a walking speed of 40 steps/min extremely slow. Two

subjects found it too slow and were unable to step in time with the metronome at

this speed, so data at this walking speed were discarded for these two subjects. All
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Figure 6.26: (a) true positive rate, and (b) false positive rate (as a percentage of
the total number of steps) as a function of walking speed when the most successful
template matching technique was applied to 4020 steps generated by 8 normal
subjects walking at speeds from 40 to 20 steps/min.

subjects were able to walk at every subsequent speed up to a speed of 120 steps/min

which they found uncomfortably fast on this walking circuit. In total, 4020 steps

were analysed.

The best step detection performance was achieved using a voting system that

combined the decisions of the walking classifier applied to each of the one dimen-

sional signals over three trials. This correctly identified 90.5% of the 4020 steps,

with a specificity of 99% and this accuracy increased to 95% sensitivity and 99.6%

specificity when subjects were walking at 60—80 steps/min. At every tested step

rate the sensitivity exceeded 80% and the specificity exceeded 96%. The results

are shown in figure 6.26. The results were best when subjects walked at 60—80

steps/min, which were the most comfortable walking speeds for the subjects.

Discussion

One of the di culties with step identification from a waist mounted TA is that the

acceleration signals are quite individualistic, especially at slow walking speeds and

for people with impaired gait. This limits the useability of simple pattern-matching

techniques (such as looking for the point of steepest descent, or looking for the

highest peak). However, within the one subject at the same walking speed, the

gait cycle is highly repeatable, so much so that “it is generally assumed that all

successions of the cycle are identical” [ 08]. Murray [ 74] found that even highly

individualistic components of the gait cycle such as pelvic rotation were prototypes
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for successive cycles by the same subject.

This template matching step identification algorithm applied in this study achieved

high identification rates (90.5% sensitivity and 99.6% specificity) without any as-

sumptions being made about the shape of the gait signal. The algorithm was based

on only one premise: that, when walking at a given speed, a subject will take each

step with the same foot in the same way [ 08]. The algorithm requires no infor-

mation on the underlying shape of the gait signal. Instead, the algorithm chooses

its own template, and a new template is chosen for each subject at each walking

speed. This gives the algorithm a flexibility that makes it suitable for detection on

any repeated pattern within a signal. This approach overcomes the limitations of

the Fourier transform algorithm of the last study because it makes no assumptions

about the periodicity or the regularity of the gait and so could be applied to a gait

with an irregular step rate. Preliminary testing indicates that the algorithm shows

promise for application to irregular and pathological gaits.

The algorithm detected both left and right steps when applied to the z-axis.

The performance of the algorithm applied to the x- and y-axis signals varied across

subjects, but in general, the algorithm strongly detected every second step (i.e.

steps made by the same foot) but did not detect the alternate steps so well. This is

to be expected because the TA was placed o -centre which means that the signal

seen by the TA was asymmetrical and therefore slightly di erent for a right-foot step

compared to a left-foot step, even if the subject’s gait was perfectly symmetrical.

A 1 s window was used for the template because 1 s is su cient time for the

characteristic features of the gait (such as the signature heelstrike) to occur, even

in a very slow gait. In a rapid gait, more than one step may be contained in this

window. However, gait becomes increasingly rhythmical with increasing speed, and

so, since the step rate becomes more regular at fast speeds, it does not matter that

more than one step is included in the template.

The step template was rigorously chosen to reduce the likelihood of selecting a

poor template. Each of the candidate templates was required to have a high cross

correlation with the subsequent signal. This meant that it must be a pattern that

was repeated in the signal. The candidate templates were then compared to find

the template that had the most in common with both of the other templates. This

again increased the probability of rejecting a poor template. The system accuracy

was significantly improved by repeating the entire procedure three times and then

taking a vote to decide on the final step rate.

The procedure used to find the template in the first place was computationally

demanding. However, once a template was chosen, the algorithm reduced to requir-
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ing only one comparison to be made for each incoming sample, and this could be

further reduced by not testing the samples immediately after a step has been iden-

tified because there will be a lag of at least half a second before the subject takes

the next step during which time there is no benefit in looking for steps. However, if

the algorithm is to be used for monitoring of a particular subject over an extended

period it may be better to manually choose a template from the signal of a specific

walking test rather than randomly choosing the template during arbitrary walking

around the home.

A template need only be selected once for a particular subject. Once a suitable

template has been chosen, it can be used for analysis of all subsequent periods of

walking. Moreover, the cross correlation of the template with the walking signals

can be tracked longitudinally to give a measure of change in gait style, as well as

information on step rate.

Conclusion

In this study an algorithm for step-by-step determination of gait cadence was intro-

duced and tested on a data set taken from eight normal subjects walking around a

house at five di erent rates. The algorithm detected each step with an overall sen-

sitivity of 90.5% and specificity of 99.0%. This accuracy increased to a sensitivity

of 95.0% and a specificity of 99.6% when subjects were walking at 60—80 steps/min.

The algorithm automatically chose a template from the walking signal and used

this template to identify each step in the signal.

The algorithm was able to identify step-by-step gait cadence, which allows pa-

rameters of step rate and variability to be measured, as well as average step rate.

The cross correlation between the template and the gait signal can also be tracked

over time in order to identify longitudinal changes in the subject’s gait style.

6.8.4 Identifying Gait

Introduction

The repeated movement inherent in gait is one important characteristic that can

be used to distinguish it from other daily activities such as transitions between

postural orientations in which the sequence of movements is executed only once.

During walking, the postural orientation of the subject is upright, and close to that

of standing. Walking activities tend to have a longer duration than other basic daily

activities. A normal person completes a transition within a few seconds, whereas
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a period of gait must go for at least a few seconds and has no maximum duration.

Walking activities also tend to have a larger SMA than the other routine daily

activities considered in the current work. Results of data analysis for the activity

detection algorithm (section 6.5) found that the average SMA was greater during

walking than during sit-to-stand or stand-to-sit transitions.

These four features–repeated movement, duration, postural orientation and

SMA–were combined into a rule-based algorithm to identify periods of walking

from a TA signal.

Experimental Procedure

A data set of 208 sit-to-stand and stand-to-sit transitions, 130 stand-to-lie, lie-to-

stand and lie-to-lie transitions, and 77 periods of walking taken from 23 normal

subjects (7 female, 16 male; age 30.5± 6.3 years standard deviation) was analysed.

Each subject carried out two procedures. The first procedure involved sitting, stand-

ing, walking, and moving between the di erent postural orientations with the TA

unit attached at the waist above the right anterior superior iliac spine. This pro-

cedure was described detail in section 6.5. The same subjects were then asked to

leave the TA unit attached at the waist above the right anterior superior iliac spine

and carry out a second procedure. This consisted of (i) standing for 20 s; (ii) lying

down; (iii) lying supine for 20 s; (iv) rolling onto the left side; (v) lying on the left

side for 20 s; (vi) rolling over to lie face down; (vii) lying face down for 20 s; (viii)

rolling onto the right side; (ix) lying on the right side for 20 s; (x) standing up; and

(xi) standing for 20 s. This was the same data set that was used in section 6.6.3.

Data Analysis

The algorithm that was developed and applied is illustrated in figure 6.27. The

subject needed to be upright to be walking. This was determined by looking at the

tilt angle of the averaged z-axis signal over the period of the activity. The criterion

described in section 6.6.2 was used (if the mean z-axis value was greater than a

threshold then the subject was upright), but the threshold value was increased

from 0.5 to 0.8. This was because the posture for walking is closer to the posture

for standing than a sitting posture needs to be. The activity was not regarded as

walking if it was completed within 3 s. Although the subject may have taken a small

number of steps during this period, there was not su cient time for the subject to

travel any distance or for enough data to have been generated for the extraction of

parameters of gait.
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Figure 6.27: Flowchart showing the walking detection algorithm.

If the activity met these first two constraints it was then tested to see whether

the signal was of a repetitive nature. For this study, the Fourier transform of the

z-axis signal was computed. If there was a peak in this signal in the expected range

of walking frequencies such that the signal to noise ratio at the peak was greater

than 10 then this was accepted as evidence of a periodic signal. This procedure was

described in detail in section 6.8.2. Finally the SMA of the activity was computed.

In a preliminary study the mean SMA values for the walking data, the sit/stand

transitions, the stand/lie transitions and the lie/lie transitions were computed. The

mean SMA for walking was found to be significantly greater than the mean SMA

for the other activities (Wilcoxon rank sum test, p < 0.001).

A bootstrapping technique was used in which the mean walking and not-walking

SMAs were computed for all subjects except the subject whose data was currently

undergoing analysis. If the SMA of the activity in question was greater than the
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computed mean non-walking SMA then it was classified as a large SMA by the

algorithm.

The “subject upright”, “activity duration”, “cyclic movement”, and “large SMA”

processing blocks were first applied to every activity to determine their individual

e ects on the data.

After this the complete walking detection algorithm was used to classify each

activity as either (i) not walking; (ii) probably walking; or (iii) definitely walking.

These classifications were compared to the actual activities and the accuracy of the

system was measured.

Results

When the activities were processed by the “subject upright” processing block all

of the transitions that involved a lying posture were excluded. When all of the

activities were processed by the “activity duration” processing block 72 of the 338

non-walking activities (50.8%), but none of the walking activities were excluded.

When all of the activities were processed by the “cyclic movement” processing block

all but 3 of the non-walking activities (3.8%) but none of the walking activities

were excluded. When the “large SMA” processing block was applied to each of the

activities 35 of the non-walking activities (10.4%) returned a “yes” response and 7

of the 77 walking activities (9.1%) returned a “no” response.

When the activities were processed using the entire algorithm shown in figure

6.27 all 338 non-walking activities were correctly identified as “not-walking”. Of

the 77 periods of walking, 70 (90.9%) were classified as “definitely walking”, and 7

(9.1%) were classified as “probably walking”.

Discussion

The Fourier transform algorithm was used to identify cyclic movement in this study

because all of the data were taken from subjects with normal gait and this algorithm

is very e ective in detecting periodic gait (section 6.8.2). However, for a di erent

subject group that may have irregular or pathological gait the template matching

algorithm (section 6.8.3) may be more appropriate.

The rule based algorithm developed in this study discriminated between gait

and other activities with a high degree of accuracy. Identification of the repetitive

nature of the signal was the most powerful single discriminator of gait. Duration

was also a useful parameter but the threshold value needs to be set according to the

subject cohort in order to reject transitions and other activities of short duration.
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For an elderly or disabled subject who moves slowly, the duration threshold would

need to be increased to exclude transitional movements.

The SMA was less e ective in identifying gait. A large SMA suggested that the

activity was walking, but did not guarantee it, and not all periods of walking had a

large SMA. A moderately large SMA sustained over a longer duration was a more

powerful identifier of gait.

Conclusion

An algorithm was developed to distinguish walking activity from non-walking ac-

tivity. The algorithm was based on four features of walking: repeated movement

patterns, upright posture, longer activity duration, and higher SMA. The algorithm

was tested on a data set of walking and routine non-walking activities taken from

26 normal subjects. The algorithm correctly identified all non-walking activity as

“not walking”. It identified 90.9% of walking activity as “definitely walking” and

the remaining 9.1% as “probably walking”.

6.8.5 Parameter Extraction

Once a subject has been classified as walking, parameters of interest that can be

recorded from the TA fall into two categories. Firstly, step-by-step parameters can

be extracted. These include descriptive statistics of step-by-step variability:

• mean step duration;

• median step duration;

• r.m.s.;

• peak amplitude;

• standard deviations; and

• cross correlations between steps.

Internal step timing variations can also be measured once further work is un-

dertaken to relate the components of the signal from di erent waist placements to

the stages of the gait cycle.

Secondly, parameters relating to the overall period of activity can be determined.

These include:
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• Overall mean walking cadence;

• the amount of movement as measured by the SMA; and

• the duration of the walking activity.

6.9 Classifying Transitions

Activity?

Yes

No

Determine Postural Orientation

Extract Parameters

TA Signal

Fall?

Yes

No

Walking?

Extract Parameters

No

Yes

Extract Parameters

Transition? No

Yes

Extract Parameters

Other movement::
Extract Parameters

Device worn?

Yes

No

Classification of transitions.

6.9.1 Introduction

The time taken to make a transition between two postural orientations provides an

important measure of functional ability [ 22, 72]. The basic types of transitions

are changes between sitting and standing, between upright and lying, and between

lying subpostures.

In the approach taken here, the postural orientations of the subject before and

after the activity are determined, and these are used to decide which transition to

test for. Table 6.8 provides a lookup chart of possible transitions based on postural

orientation before and after the activity, and figure 6.28 shows a flowchart of the

classification process.
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before \ after upright lying

upright sit/stand transition upright-to-lying transition
lying lying-to-upright transition lying/lying transition

Table 6.8: Possible transitions based on postural orientation before and after the
activity. The before postures are listed in the left column, and the after postures
are listed in the top row.
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Yes

Other
movement

No
Sit-to-stand?

Yes

Sit-to-stand
transition

Stand-to-sit
transition

Yes

No

Other
movement

No

Figure 6.28: Flowchart for the classification of transitions.
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transition from lying
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transition from lying
right side to lying front

transition from
upright to lying
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right to left side

transition from
upright to lying

transition from lying
back to lying right side

transition from lying
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on right side
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upright to lying

transiton from lying to
upright

transiton from lying to
upright

transiton from lying to
upright

transiton from lying to
upright

Not a lie-lie transition

Figure 6.29: All of the possible lie-to-lie transitions. The transition can simply be
read from the table if the previous and next resting state postures are known.

6.9.2 Transitions Between Upright and Lying

Transitions between upright and lying can be determined by considering the postural

orientation of the subject in the rest periods before and after the activity. These

transitions can be further subclassified, for example, as a transition from sitting to

lying supine if the subclassifications of the resting states are used rather than the

main classifications of upright and lying.

6.9.3 Transitions between Lying Subpostures

Transitions between lying subpostures can be determined by identifying the postural

orientation of the subject before and after the activity. If the postural orientations

before and after the activity were lying but the subject was lying in two di erent

positions, then the activity is classified as a transition between lying subpostures.

Figure 6.29 lists all of the possible transitions.

6.9.4 Transitions Between Sitting and Standing

Introduction

The postural orientations of sitting and standing cannot necessarily be distinguished

using only the resting state signal measured at the waist (refer to section 6.6.5). As

a consequence, the presence of a sit/stand transition cannot be inferred by identifi-

cation of the postural orientation in the adjacent periods of rest. This means that

the transition, if it is to be classified, must be identified by means of characteristics

of the transition signal itself, or deduced from a knowledge of the subject’s routine.
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In this study, methods of identifying sit-to-stand and stand-to-sit transitions from

the TA signal characteristics were investigated.

The sit-to-stand transition was described in section 3.5. It is characterised by a

lean forward, followed by a vertical rise, followed by a straightening up. The stand-

to-sit transition is characterised by the same movements in the reverse order. The

accelerations generated by each of these movements are illustrated in figure 6.30,

which shows the signals from a TA unit attached at the front-right of the waist dur-

ing each of the component movements of the transition, and the transition itself.

The timing between the three components, and the magnitude of each component

are individualistic parameters. However, it can be seen that both transitions gen-

erate a sinusoid-like shape on the z-axis. This is caused by the vertical acceleration

and deceleration in the rise or descent phase. In the sit-to-stand transition, the

peak precedes the trough, and in the stand-to-sit transition the order is reversed.

The x- and y-axis signals increase slightly in value as the subject leans forward and

they tilt away from the horizontal. They reduce in value again once the subject

straightens. In the transitions this leads to a ‘ ’ shape on the x- and y- axes as

is seen in figures (b) and (d). In general, the initial and final steady state values

of the x- and y- axis signals may di er, depending on the tilt angle of the subject

while sitting, but the z-axis value both before and after the transition is close to 1

g.

In the classification framework, the sit-to-stand transition and the stand-to-sit

transition are the last activities to be classified. Thus, only sit-to-stand transitions,

stand-to-sit transitions and other unclassified movements such as bending down or

reaching up are processed by this algorithm.

Three methods of identifying sit-to-stand and stand-to-sit transitions were in-

vestigated. The first method used a neural network that took the normalised raw

signal as input. The second method used a neural network that was provided with

a set of parameters that were deemed to be important. The third method used a

rule-based expert system.

Experimental Procedure

One subject performed 1000 sit-to-stand transitions and 1000 stand-to-sit transi-

tions. Three di erent chairs were used: a dining chair (used 334 times), a lounge

chair (used 333 times) and an o ce chair (used 333 times). The subject began by

standing in front of the dining chair. The subject then sat down into the dining

chair and remained seated for 10 s. The subject then rose and remained standing

for 5 s. The subject then walked approximately 20 paces to the lounge chair, and
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Figure 6.30: Sit-to-stand and stand-to-sit transition signals from a TA unit attached
at the waist above the right anterior superior iliac spine. (a) The three stages of
the sit-to-stand transition: lean forward (occurs at around 00 samples), rise (250
samples), straighten (350 samples). (b) A sit-to-stand transition performed by the
same subject. (c) The three stages of the stand-to-sit transition: lean forward ( 00
samples), descent (250 samples), and straighten (350 samples). (d) A stand-to-sit
transiton performed by the same subject. In each figure the z-axis signal is centered
about 1 g, the x-axis signal is shown in bold, and the y-axis signal closely follows
the x-axis signal.
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stood in front of the lounge chair for 5 s. The subject then sat down into the lounge

chair and remained seated for 10 s. The subject then stood for 5 s and then walked

approximately 20 paces to the o ce chair. The subject stood in front of the o ce

chair for 5 s, sat down for 10 s, stood for 5 s, walked approximately 20 paces to

the dining chair, and then repeated this sequence of steps until 1000 sit-to-stand

transitions had been completed. The data were collected in 1 hour sessions over a

period of one week.

The same subject was then asked to stand for 5 s, walk approximately 20 paces,

and then carry out some common movement other than the movements processed

by the classifier such as bending down or reaching. The subject carried out 1000

such movements. The data were collected in 1 hour sessions over a period of three

days.

These data were used to develop and train the neural network methods. They

were also used to develop the expert system.

Data from the set of activities and rest that was described in section 6.5 were

used to evaluate the performances of the methods. The data consisted of 93 stand-

to-sit transitions, 103 sit-to-stand transitions and 10 short movements that were not

transitions. The movements were made by a cohort of 26 normal, healthy subjects.

Data Analysis

The data were processed by the activity detection algorithm. Periods of walking and

transitions between upright and lying were identified. Any periods of activity where

the subject was not in an upright orientation both before and after the activity were

rejected. The remaining periods of activity were processed to determine whether

the subject was performing a transition between sitting and standing.

If the duration of the activity exceeded 5 s then the activity was classified as

not being a transition. If the duration of the activity was less than 5 s then further

processing was undertaken.

Three stages of testing were undertaken. In the first stage the data set of sit-

to-stand transitions and stand-to-sit transitions was used and each of the methods

was applied to distinguish between the two transitions. In the second stage the

data containing activities that were not transitions was added and each of the three

methods was applied to classify the movements as sit-to-stand transitions, stand-

to-sit transitions or as other movement.

Finally, each of the three methods was evaluated using the set of activities taken

from the cohort of 26 normal subjects.
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Method 1: Neural network with raw signal input The first approach that

was used was a neural network that accepted the raw signals as input. Each of the

periods of activity to be tested was standardised to a 5 s period with the middle of

the detected activity period at the centre of the standardised period. The signals

were then downsampled by a factor of 3 (to a resulting sampling rate of 15Hz)

in order to reduce the number of inputs provided to the neural networks. This

resulted in each test signal having a uniform length of 75 samples. The set of data

were normalised such that the mean was 0 and the standard deviation was across

all of the training data as this improves the performance of the neural network [59].

Five di erent neural network systems were developed and tested. All of the

networks were backpropagation networks and used steepest descent training with a

momentum term to train the networks.

The first system consisted of a 3-layer backpropagation network with 23 inputs,

24 hidden units and 2 outputs. The inputs consisted of 75 normalised acceleration

inputs, and the signal mean and standard deviation before normalisation, for each

of the x-, y-, and z-axis signals. The two outputs were “sit-to-stand transition de-

tected” and “stand-to-sit transition detected”. A “winner takes all” function was

applied to determine the final result. This network was trained with 676 randomly

selected examples of sit-to-stand transitions and stand-to-sit transitions. The net-

work was then tested on a set of 36 di erent transitions.

The network was then extended by adding a third output for “no transition”.

The network was trained with 957 randomly selected examples of sit-to-stand tran-

sitions, stand-to-sit transitions, and other movements. The trained weights from

the two-output network were used as the initial training weights. The network was

tested on the test set of 36 transitions and 36 other activities.

The second network was identical to the first, but the signals from the x-, y-

and z-axes were rotated about the z-axis so that they lined up with the antero-

posterior, medio-lateral and vertical axes of the subject. This rotation was done

before the signals were downsampled and normalised. The same procedure as above

was followed for training and testing the network.

The third network consisted of a 3-layer backpropagation network with 77 input

neurons, a hidden layer containing 2 neurons and 2 output neurons. The inputs to

the network were 75 samples of the normalised magnitude vector, , and its signal

mean and standard deviation. This network was trained with the data set of 676

transitions and tested on the data set of 36 transitions. It was then extended to

include a third output and the new network was trained with the data set of 957

activities and tested with the set of 72 activities.
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The fourth network was identical to the third except that the input signal was

the z-axis signal.

The fifth system consisted of three networks identical to the third network. Each

network used one of the three x-, y- and z-axis signals as input. The same procedure

was followed as for the third network, except that rather than a “winner takes all”

algorithm being applied to each network, the output values for each output from

each network were summed together and then a “winner takes all” algorithm was

applied to determine the final result.

Method 2: Neural network with parameters as inputs A 3-layer back-

propagation neural network was developed with 21 inputs, 7 hidden neurons and 2

outputs. The seven input parameters were:

. maximum value;

2. sample at which the maximum occurs;

3. minimum value;

4. sample at which the minimum occurs;

5. r.m.s.;

6. mean; and

7. standard deviation.

The network was trained with the data set of 676 transitions and tested on the

data set of 36 transitions. It was then extended to include a third output and the

new network was trained with the data set of 957 activities and tested with the set

of 72 activities.

Method 3: Expert system The expert system used a rule-based pattern match-

ing technique that was developed from the nature of the transition signals. The

signals from the TA were rotated so that the x-, y- and z-axes corresponded to the

antero-posterior, medio-lateral and vertical axes of the subject respectively. Two

rule-based systems were developed: one for the x-axis, and the other for the z-axis.

The y-axis was omitted because the three basic components of the transitions are

in the forward-back and up-down directions, and there is not a significant left-right

component.



272 6. Interpreting the TA Signal

The rotated x-axis signal was compared to the ‘ ’ shape of the ideal sit/stand

transition. If the signal was in this form then this part of the algorithm classified the

activity as a sit/stand transition. This was achieved in the following manner. The

rotated x-axis signal was modelled by a smooth spline. Turning points in the spline

were found and peaks and troughs were identified. If there were too many distinct

peaks (global maxima) in the signal (threshold was set to 5 after preliminary

testing) then the signal was classified as not being a sit/stand transition by this part

of the algorithm. Otherwise, the algorithm then tested to see whether the shape of

the x-axis signal matched the expected shape. If it did not then it was classified

as not being a sit/stand transition by this part of the algorithm. Otherwise, it was

classified as being a sit/stand transition by this part of the algorithm.

Next, the x-axis tilt angle before the activity was compared to the x-axis tilt

angle after the activity. If the change in angle exceeded a threshold (here set

to 20 after preliminary testing) then this second part of the algorithm classified

the movement as a sit/stand transition. If the starting tilt angle was less than the

finishing tilt angle, it was regarded as evidence in favour of a stand-to-sit transition.

If the starting tilt angle was greater than the finishing tilt angle, it was regarded

evidence in favour of a sit-to-stand transition.

The z-axis signal was similarly modelled by a smooth spline and global peaks

and troughs (as opposed to local inflexions) were identified in the signal. If there

were too many distinct peaks (threshold = 5) then the signal was classified as not

being a sit/stand transition by this part of the algorithm. Otherwise, the biggest

peaks and the biggest troughs were identified. If there was one large peak and one

large trough, and if the peak preceded the trough then the signal was classified

as a sit-to-stand transition. If the trough preceded the peak it was classified as

a stand-to-sit transition. If there was a sequence of peak-trough-peak, or trough-

peak-trough then the signal was classified as a sit/stand transition but the algorithm

could not tell which one.

The results of these algorithms were collated and another algorithm used to

decide whether the activity was a sit-to-stand transition, a stand-to-sit transition

or neither. The algorithm began with the three parameters:
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x =

(
1, if sit/stand transition

0, otherwise
(6.8)

z =

1, if sit-to-stand transition

2, if stand-to-sit transition

0, otherwise

(6.9)

t =

1, tilt angle < 20

2, tilt angle > 20

0, otherwise

(6. 0)

where x was the result of processing of the x-axis signal, z was the result of process-

ing of the z-axis signal, and t was the result of processing of the tilt angle.

These parameters were combined according to the following rules:

. transition := x+ signum(z) + signum (t)

2. std =

(
(z = 1) + (t = 1) if transition > 0

0 otherwise

3. sit =

(
(z = 2) + (t = 2) if transition > 0

0 otherwise

4. if transition > 0 then the movement was classified as a sit/stand transition.

5. if sit > std then the movement was classified as a stand-to-sit transition.

6. if std > sit then the movement was classified as a sit-to-stand transition.

7. if sit = std then the movement was classified as indeterminate.

Results

Method 1: Neural network with raw signal input The first system in which

all data from all three axes was provided to a single, large neural network gave the

best performance. When this network with two outputs was trained and tested

on the data set of 36 sit/stand transitions made by 1 subject it made 34 correct

classifications and 2 incorrect classifications. When the network with three outputs

was trained it correctly classified 28 of the 36 test transitions (78%) but only 13 of

the 36 other activities (33%). One stand-to-sit transition was classified as a sit-to-

stand transition. The other five incorrectly classified transitions were classified as

non-transitions.
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total number correctly classified

activities net1 net2 expert

tested system

test data set 1 sit 8 2 8 5
stand 8 6 8 5
other 36 3 23 0
total 72 4 (56.9%) 59 (8 .9%) 40 (55.6%)

test data set 2 sit 93 48 90 87
stand 03 50 9 0
other 0 3 0 5
total 206 0 (49.0%) 99 (48. %) 93 (93.7%)

Table 6.9: Results of the three sit/stand transition classification methods when
applied to a data set of 72 activities from subject (test data set ), and to a data
set of 206 activities from 26 subjects (test data set 2).

When this network was tested on the data set of movements made by the 26

normal, healthy subjects, it correctly classified 49.03% of the activities.

Method 2: Neural network with parameters as inputs The parameterised

neural network was trained on the same data set as the neural network that accepted

the raw signal as input. When this network with two outputs was trained and tested

on the data set of 36 sit/stand transitions made by 1 subject it made 35 correct

classifications and 1 incorrect classifications. When the network with three outputs

was trained it correctly classified all of the 36 test transitions (100%) and 23 of the

36 other activities (63.9%).

When this network was tested on the data set of movements made by the 26

normal, healthy subjects, it correctly classified 48.1% of the activities.

Method 3: Expert system When the expert system was tested on the data set

of 36 sit/stand transitions and 36 other movements made by 1 subject it correctly

classified 15 of the 18 sit-to-stand transitions (83.3%), and 15 of the stand-to-sit

transitions, but only 10 of the 36 other movements (27.8%). When it was tested

on the data set of movements made by the 26 normal, healthy subjects, it correctly

classified 93.7% of the activities. Two sit-to-stand transitions (1.9%) were incor-

rectly classified as stand-to-sit transitions. Six stand-to-sit transitions (6.5%) were

identified as sit/stand transitions but the transition could not be sub-classified as

sit-to-stand or stand-to-sit.

The results from the three di erent classification methods are summarised in

table 6.9.
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Discussion

The neural networks were trained on a data set taken from a single subject. When

tested on data from this same subject, the best performance was achieved by the

parameterised neural network (81.9% correct classification). The other neural net-

work and the expert system gave similar performances (56.9% and 55.6% respec-

tively). However, when these methods were applied to data from the 26 di erent

subjects the parameterised network performed poorly (48.1%), classifying almost

every movement as a stand-to-sit transition and the first network gave a similar

performance (49.0%) although it identified about half of the activities in each cat-

egory, whereas the expert system performed very well (93.7%), identifying almost

all of the transitions correctly, and half of the other movements.

These results suggest that the neural networks identified features that were

specific to the one subject on whom they were trained, rather than identifying

general features of sit-to-stand and stand-to-sit transitions. This resulted in good

classification results for this one subject, but much poorer results when applied to

the activities of other subjects.

On the other hand, the expert system method performed only moderately on the

data from the single subject. It can be seen from table 6.9 that the main di erence

in performance between the parameterised network and the expert system was in

the classification of other movements. The expert system classified almost all of

the transitions correctly, but only correctly classified 25% of the other movements,

compared to 63.9% for the parameterised neural network. Most of the movements

performed by the subject were bending and reaching movements that were chosen

because of their similarity in form to the transitions. Movements such as wiggling

of the hips or turning around result in a very di erent signal trace and are relatively

easily identified as not being a transition. In the data from the 26 other subjects,

the other movements were random movements made by the subjects and the expert

system performed better here, correctly identifying half of them as other movement.

The main disadvantage to using the neural network approach is that the neural

networks require a large amount of training data and take a long time to train. In

this study a training data set from a single subject was used because large amounts

of data from a range of di erent subjects was not available at the time. The expert

system has the advantage that only a small quantity of training data is required.

On the other hand, once trained, neural networks provide very rapid classification.

The first neural network approach has a second limitation in that all of the input

signals need to be the same length but not all transitions are of the same duration.
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time

signal 1 signal 2 

Figure 6.3 : Example showing the same activity accomplished in di erent amounts
of time. Signal is one period of a sine wave. Signal 2 is identical to signal ,
except that it is completed in half the time. The marked points indicate the values
provided to the neural network at each point in time. It can be seen that these two
signals result in very di erent sets of input values.

This means that two instances of the same transition may result in very di erent

values for the normalised signal input parameters (figure 6.3 ), which may increase

the di culty in training the network.

The 5 s duration limit on the neural network input data was introduced to the

algorithm to prevent unnecessary processing time being spent on movements that

could not be simple transitions. The 5 s threshold was chosen for this subject cohort

because all subjects could complete a sit-to-stand or a stand-to-sit transition in 1—

3 s. The duration threshold would need to be extended or omitted before this

algorithm was applied to data from an elderly or disabled person who took longer

to perform transitions.

It may be possible to increase the accuracy of these classifications if the activi-

ties and resting states before and after the activity can be identified. For example,

if the subject walks, rests (standing), an upright/upright movement occurs, rests

(standing), and walks, it could be deduced that the movement was not a transi-

tion. On the other hand, if the subject sits, an upright/upright movement occurs,

a resting period occurs, and then the subject walks, it can be deduced that the

subject performed a sit-to-stand transition and then stood before walking. Similar

deductions can be made for other scenarios that may occur.
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Conclusion

Three di erent systems were used to classify sit-to-stand transitions, stand-to-sit

transitions and non-transitional movement. These were a neural network that used

TA signals as input, a neural network that used parameterised data from the TA

signals as input, and a rule-based expert system. The parameterised neural network

performed best on test data taken from the same subject from which it was trained,

with an accuracy of 81.9%. The expert system performed best on a second data set

taken from 26 normal subjects with an accuracy of 93.7%. The expert system has

the advantage that no training is required.

If an activity is known to be a transition between sitting and standing, it can be

classified with a high degree of accuracy. The classification accuracy is reduced by

the introduction of movements such as bending over and straightening which have

a signal pattern similar to that of a transition.

Future work should involve the collection of data from a cohort of free-living

subjects at home. These data should be used to train the second neural network in

order to evaluate its performance when trained with data from multiple subjects,

and to evaluate its performance in identifying transitions in the same subject over

time. A second stage of future work should involve developing a heuristic overlay

for this algorithm that deduces the nature of the activity given some knowledge

of the activities and postural orientations immediately preceding and following the

activity.

6.9.5 Transitions–Parameter Extraction

Once a transition between postural orientations has been identified, parameters of

interest that can be recorded from the TA are

• the time taken for the transition; and

• the amount of movement as measured by the SMA.
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6.10 Classifying Other Activities

Activity?

Yes

No

Determine Postural Orientation

Extract Parameters

TA Signal

Fall?

Yes

No

Walking?

Extract Parameters

No

Yes

Extract Parameters

Transition? No

Yes

Extract Parameters

Other movement::
Extract Parameters

Device worn?

Yes

No

Classification of other activities.

There is scope in the classifier framework for algorithms to be developed and

added to identify and parameterize other activities. However, given the virtually

infinite domain of activities that can be carried out by a free-living subject there

will always be some unclassified activities.

The parameters of interest that can be recorded for these activities are

• the time taken for the movement;

• the amount of movement as measured by the SMA; and

• the overall amount of time spent each day in unclassified activities.

In addition, the signal pattern of the unclassified activity can be stored and

compared to the signal patterns of other unclassified activities. Similar activities

can be grouped together. The occurrence of di erent activity groups can be tracked

over time. Suggested methods for achieving this are discussed in section 9.5.
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6.11 The Complete Classifier

The data analysis framework is based on examining windows of signal, and clas-

sifying each window as either activity or rest. Once a complete activity signal is

obtained (a period of rest following the activity is identified) then the activity is

classified according to the binary ripple-down system that has been described. Peri-

ods of rest can be processed as soon as they are first identified, and the classification

updated as the period of rest continues, or they can be stored and processed at the

completion of the period of rest. The complete classifier is shown in figure 6.32.

6.12 Discussion

The aim of this chapter was to determine methods for interpreting the TA signal

and to ascertain what could, and could not be identified by a single waist mounted

TA. A waist mounted TA has obvious limitations when compared to systems with

multiple instruments. For example, it is not as e ective in distinguishing between

sitting and standing, nor at identifying temporal parameters of gait than a system

that includes accelerometers attached to the thigh, but it has the advantage of being

easier to use for the subject and hence more practical for unsupervised monitoring.

Even though the single waist mounted TA has limitations when compared to

systems with multiple accelerometers, the studies described in this chapter have

demonstrated that such a device can be used to collect a large amount of valuable

information on a subject’s movement, and in a way that is practical and appropriate

for continuous, unsupervised monitoring of free-living subjects. Activity and rest

can be distinguished with a high degree of accuracy. Upright and lying postures can

be distinguished with certainty, gait can be detected with confidence and the step

rate reliably identified. Individual steps can be identified within the walking signal

- the template matching algorithm detected 4020 walking steps with an overall

sensitivity of 90.5% and specificity of 99.0%.

The modular design of the overall classification framework means that the perfor-

mance of each algorithm can be individually evaluated. New or improved algorithms

can easily be incorporated into the classification structure.

All of the algorithms were designed to be suitable for close to real-time data

processing (within approximately 10 s of data being received). The fall detection

algorithm continuously monitors incoming activities for high acceleration peaks,

which initiate the rest of the fall detection algorithm. The other activity identi-

fication algorithms were designed for processing to take place once the activity is
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Figure 6.32: The complete classifier
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completed. However, if the activity continues for longer than a threshold value (ap-

proximately 5 10 s, depending on the subject being monitored) then the hypothesis

that the movement is a transition can be rejected and the part of the activity that

has already occurred can be tested to determine whether or not the subject is walk-

ing. Resting states can be classified immediately, and the classification checked

periodically during the rest period as new data is received.

The studies in this chapter have demonstrated that important parameters, such

as activity duration, energy expenditure, tilt angle, step rate and peak accelera-

tion, can be measured using a single waist-mounted TA. In addition to parameter

tracking, the data from the TA can be used to develop a “behavioural map” for the

subject. If the times at which each movement occurs are logged then a picture of

the subject’s daily activities can be built up. This can be developed into a daily

activity template that can be tracked longitudinally to detect behavioural changes

that may be indicative of changes in functional health status [43].

6.13 Chapter Conclusion

This chapter has presented a method for interpreting the signals from a waist-

mounted TA in terms of human movement. A framework for classification based

around a hierachical binary tree with “ripple down” rules was introduced. This

enabled a classification of the acceleration signals into movements performed by the

subject. The framework was designed to be suitable for real time use.

An implementation of the framework specific to the needs of unsupervised mon-

itoring of free-living subjects at home was presented. This focussed on the identi-

fication of important basic movements, including lying, sitting, standing, walking

and falls. A suite of algorithms was developed for each stage of the processing.

These algorithms were evaluated using data taken from normal subjects performing

directed movements in a laboratory setting.

The root mean square of the signal was used to determine whether or not the

TA unit was being worn by the subject. This was tested with data taken from 26

normal subjects who stood, sat and lay as still as possible while wearing the TA

unit. These data were compared to data from periods in which the TA unit was not

being worn. There was a statistically significant di erence between the root mean

square values of the signals when the TA unit was being worn and when it was not

being worn (p < 0.02).

An algorithm was developed to distinguish between periods of activity and pe-

riods of rest in the signal. The algorithm was developed using data from 3 normal
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subjects, and was tested using data from a further 3 normal subjects. The algo-

rithm used three codependent parameters–median filter length, n, window width,

w, and energy threshold level, th. When the algorithm was applied to the control

group, optimal parameters were determined to be n = 13 samples, w = 0.8 s, and

th = 0.1575 g. Use of the algorithm with these parameters gave a true positive

rate of 99% and a false positive rate of 6% in the test group when distinguishing

between periods of activity and periods of rest.

Algorithms were developed to distinguish between resting states. Upright and

lying were distinguished with 100% accuracy by means of the vertical tilt angle.

Lying subpostures were determined by comparing the mean acceleration vectors of

the lying state to nominal values for each subposture, derived from the model de-

veloped in section 5.4.3. This algorithm subclassified 92 instances of 4 lying subpos-

tures with 99% accuracy. In a preliminary study a rule based classifier successfully

distinguished between sitting and standing with 97% accuracy.

A two stage algorithm was developed for the detection of falls. The algorithm

firstly identified abnormally large accelerations in the signal. When a large acceler-

ation was detected then the postural orientation of the subjects was monitored to

determine whether or not the subject had fallen. Several variations on the algorithm

were evaluated on a data set consisting of 8 falls and 8 stumbles performed by two

normal subjects. The algorithm parameters were optimised so that the algorithm

detected all of the falls and stumbles and generated no false positives. This was

then tested on a new data set of 8 falls performed by two normal subjects, where it

detected 7 of the 8 fall events.

Three approaches to the detection and assessment of walking were developed

and evaluated. Firstly, an algorithm based on the Fourier transform was developed.

This algorithm was evaluated on a set of 56 periods of walking performed by

26 normal subjects. The highest detection rates were obtained when the z-axis

(vertical) acceleration alone was used. This algorithm determined the average step

rate for the period of gait. However, it was unable to measure the step-by-step

period, nor was is suitable for irregular gait. A second method was developed in

which a template in a sliding window was applied to the signal and periods in

the signal that matched the template were identified as steps. This method was

tested on data taken from 8 normal subjects each walking at 5 di erent speeds.

The algorithm detected each step with a sensitivity of 90.5 /% and a specificity of

99%. This algorithm allowed the step-by-step period and variability to be measured.

The third method developed was a rule based system designed to e ciently detect

periods of walking activity. The Fourier based method and the template matching
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method were included in this algorithm to determine whether or not the movement

that was being performed was cyclic. Other rules assessed the postural orientation

of the subject and the duration of the period of activity. This system was tested on

periods of walking taken from 26 normal subjects. It identified 90.9% of the periods

of walking as “definitely walking”, and the remaining 9.1% as “probably walking”.

All non-walking activies were correctly classified as “not walking”.

Postural transitions were identified in a series of algorithms. Transitions between

upright and lying states were identified with 100% accuracy. Transitions between

sitting and standing were identified by an expert system with 93.7% accuracy. Sev-

eral backpropagation-based neural networks were also used to identify transitions

between sitting and standing, but these performed with lower accuracy rates (49%

on the same data set). The training data for the neural networks was limited and

the results may be improved by training with more data from a range of di erent

subjects.

Once a movement was identified, movement-specific parameters could be ex-

tracted from the signal. These parameters included tilt angle, activity duration,

walking speed, postural sway and energy expenditure as measured by SMA. Many

of these parameters, such as sit-to-stand transition time and walking speed, have

known clinical relevance as indicators of functional status. Others provide further

information on the movement that may prove clinically useful when tracked lon-

gitudinally. All of these parameters were able to be directly and simply extracted

from the signal once the movement was identified.

The next chapter describes the design of experimental studies to use, and evalu-

ate the use of, the TA system in unsupervised settings in the monitoring of free-living

subjects at home.



Chapter 7

Experimental Design

7.1 Overview

In chapter 6 a framework for the classification of movements from the TA signal was

presented. A classification algorithm that identified important activities and resting

postures was developed and evaluated using data obtained from a cohort of normal,

healthy subjects under controlled conditions. Once a movement was identified, a set

of parameters deemed to have potential clinical significance was extracted from the

signal. These included measurements of sit-to-stand transition time and walking

step rate. The system was developed for the purpose of unsupervised monitoring

of human movement in order to identify adverse events and changes in functional

status.

In order to evaluate the performance of the TA monitoring system (including the

TA unit, the classification algorithm and parameter extraction techniques) for un-

supervised monitoring of free-living subjects, a series of experimental studies were

conducted in laboratory and home environments, under supervised and unsuper-

vised conditions. This chapter describes the experimental designs of these studies.

A methodology for use of the TA system in free-living conditions was developed.

In this methodology there were two stages to the assessment of movement. Each day

the subject was required to carry out a short routine of basic daily movements. The

movements were identified in the signal and parameters were extracted and tracked

longitudinally. The subject then continued to wear the TA unit for the remainder

of the day. During this period of free movement, the subject was monitored in order

to identify adverse events such as falls. General parameters of movement, such as

metabolic energy expenditure (as measured by the signal magnitude area, SMA)

and time spent in activity were recorded and tracked longitudinally.

284
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The two stages of monitoring were evaluated separately. The procedure for mon-

itoring directed movement was tested in both laboratory and home settings, under

supervised and unsupervised conditions. The procedure for monitoring free move-

ment was tested in a home setting under supervised and unsupervised conditions.

The studies in which data were collected from directed movements performed in

a supervised laboratory setting were described in chapter 6. In this chapter the

designs of the other studies are described. The results of the studies are presented

and discussed in chapter 8.

7.2 Development of aMethodology for Unsupervised

HomeMonitoring with a Triaxial Accelerometer

The laboratory studies that were described in chapter 6 demonstrated the feasibility

of using a single waist-mounted TA to

• identify adverse events such as falls; and

• longitudinally track parameters that are sensitive to changes in health or

functional status.

However, before the classification framework could be applied to the processing

of signals from unsupervised free-living subjects there were a number of issues that

needed to be addressed:

. The subject may attach the TA unit in a di erent position on di erent days.

A daily calibration procedure was required to identify the TA placement so

that postural orientations could be correctly identified.

2. There are limitations to what can be achieved with only a single TA unit. For

example, sitting and standing postures cannot be distinguished with certainty.

In free movement, basic daily activities and postures can be identified with a

high degree of probability, but not with certainty. However, for longitudinal

tracking of parameters of movement it is necessary that activities and postural

orientations be correctly identified.

3. It is also necessary for longitudinal tracking of parameters of movement that

the activities are repeated in the same manner each day. For example, the

sit-to-stand durations of the same subject rising from a low-seated lounge

chair and from an upright dining chair are di erent as the movements are
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di erent. Sit-to-stand transitions carried out by the same subject can only

be monitored for longitudinal changes if carried out in the same manner from

the same chair. The same applies to all other movements.

A methodology that addressed each of these issues was developed for assessment

of movement using the TA in a free-living context. In this, the monitoring was ac-

complished in two stages. The first stage involved monitoring of movement through

a directed routine. The second stage involved monitoring of free movement.

The purpose of the first stage was to identify the placement of the device on

the waist, and to allow clinically significant parameters to be tracked from day-to-

day by repeating a series of known movements on a daily basis. This required the

subject to carry out a short sequence of movements each morning while wearing the

TA. The sequence took approximately five minutes to complete and included basic

daily activities and postures such as standing, sitting, lying, transitions between

sitting and standing and between standing and lying, and walking. If the sequence

were to be used for monitoring patients with a specific condition it could be adapted

to include activities that provide useful information specific to the condition of the

subject. To ensure that the movements are carried out in the same manner each

time, it is important that the same routine be carried out each time, that the

activities occur in the same order, and that the same furniture (chair and bed) are

used on each occasion.

The quiet standing and lying components of the routine allow the placement

of the TA device to be determined as both the postural orientation and the TA

signal are known (refer to section 5.4). Since a known sequence of movements is

performed in the routine, these movements can be identified more reliably than in

free movement. If the same routine is then repeated on a daily basis, the extracted

parameters can be tracked over time.

After completing the routine of directed movement, the subject was required to

continue wearing the TA device for the rest of the day. The primary purpose of the

second stage of monitoring was to identify any adverse events that may occur. This

phase was also used to track other relevant parameters such as hourly and daily

SMA, and the amount of time spent in rest and activity.

This two-stage approach to monitoring free-living subjects satisfies all of the

monitoring requirements listed above. It allows parameters to be extracted from

known movements that are repeated in the same sequence and manner each day,

which allows them to be tracked longitudinally. It provides a simple method for

identifying the placement of the TA unit on the waist of the subject. It also allows

the subject to be monitored continuously for adverse events and for the collection
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of general parameters of movement, such as energy expenditure. Moreover, use of

the directed routine greatly reduces the amount of data processing and information

storage that is required. All of the important movements are carried out every day

within a period of only a few minutes. Outside of the directed routine period, only

the general parameters of movement and information pertaining to adverse events

need to be calculated and stored.

7.3 Stages of Experimental Processing

Before the system could be used in an unsupervised home setting its performance

needed to be tested and validated in controlled conditions.

There are four basic stages to testing and validating a system for unsupervised

monitoring of a given subject group. These stages are:

. testing in a supervised laboratory environment. In this setting, the

activities undertaken by the subject can be carefully controlled and indepen-

dently measured.

2. testing in an unsupervised laboratory environment. The activities

undertaken by the subject can be carefully controlled, but the manner in

which the subject undertakes them cannot be controlled.

3. testing in a supervised home environment. The activities undertaken

by the subject are those normally undertaken by the subject, and cannot

be controlled by the investigator, but the manner of carrying out the activi-

ties, including the manner of wearing the ambulatory monitoring device, are

supervised by the investigator.

4. testing in an unsupervised home environment. Here, neither activi-

ties nor the manner of carrying out those activities is under the control or

observation of the investigator. An independent measure, for example, video

or a diary, is needed to provide a reference against which the accelerometer

measurements can be validated.

This four-stage process needs to be undertaken first using normal subjects. If

there is a particular cohort of interest, the tests can then repeated using the target

subject group.

There is a natural ordering of activities, which is shown in figure 7. . Each

successive activity is more complicated than, and dependent upon, the preceding
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1

3 2

4

supervised laboratory
testing

unsupervised laboratory
testing

supervised home
testing

unsupervised home
testing

Figure 7. : The flow of activities in testing and evaluation. . Supervised labo-
ratory testing; 2. unsupervised laboratory testing; 3. supervised home testing; 4.
unsupervised home testing. Each activity is dependent upon the activities higher
up in the tree.

activities. Steps 2 and 3 can only be carried out once step is complete, and step

4 is dependent on the completion of the first three steps.

In the current work, both directed and free movement were studied in di erent

settings. Figure 7.2 shows the studies that were undertaken in the current work.

The routine of directed movement was evaluated in all four settings (in supervised

and unsupervised studies performed in the laboratory and in the home) using co-

horts of normal subjects.Performance of the system in monitoring free movement

was only evaluated in the home environment. This was because movements per-

formed in a laboratory setting could not adequately reflect movements performed

in a home setting, and so were of little value in establishing patterns of movement

in a home setting. In the current work, studies are referred to by a two character

code, e.g. ‘3D’. The first character is a number between and 4, corresponding to

the type of study–supervised or unsupervised, laboratory or home–the numbers

correspond to those shown in figure 7. . The second character is either ‘D’ for

directed movement, or ‘F’ for free movement.

The supervised and unsupervised laboratory studies of directed movement were

conducted using di erent cohorts of normal subjects. The supervised home studies

of directed and free movements were performed by the same subject in the same
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Directed movement
study only (study 1D)

Directed and free
movement studies

(studies 4D and 4F)

Directed movement
study only (study 2D)

Directed  and free
movement studies

(studies 3D and 3F)

Figure 7.2: Studies undertaken in the current work. The codes ‘D’ and ‘F’ are
used to represent the studies of directed and free movement, respectively. The
studies were D: supervised laboratory study of directed movement, 2D: unsuper-
vised laboratory study of directed movement, 3D: supervised home study of directed
movement, 3F: supervised home study of free movement, 4D: unsupervised home
study of directed movement, and 4F: unsupervised home study of free movement.
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home. The unsupervised home studies of directed and free movements were con-

ducted in a single study using a cohort of healthy elderly subjects.

7.4 Experimental Procedure for the Supervised

Laboratory Studies of DirectedMovement (study

1D)

1D

3D 2D

4D

The supervised laboratory studies were conducted in the Biomedical Systems

Laboratory and in the School of Electrical Engineering and Telecommunications

at the University of New South Wales. Cohorts of normal subjects carried out

carefully controlled programmes of routine daily activities while being observed by

an investigator who directed each step of the testing. These studies were designed to

allow the collection of high-quality data from known movements. These data were

used to facilitate understanding of the TA signals, and to develop the algorithms

for automated real-time interpretation of the signals. All of these experiments have

been described in the preceding chapters.
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7.5 Experimental Procedure for the Unsupervised

Laboratory Study of DirectedMovement (study

2D)

1D

3D 2D

4D

Introduction

The next phase of the work involved carrying out a directed routine in an unsuper-

vised setting. Subjects carried out a specific programme of routine daily activities

but movements were neither observed nor controlled by an investigator.

The aims of this study were

. to collect data from subjects performing in an unsupervised, controlled envi-

ronment;

2. to determine normal values and ranges for the parameters extracted by the

classification system; and

3. to compare these values to the values obtained from the supervised laboratory

studies.

This study di ered from the supervised laboratory study of directed movement in

two ways. Firstly, the subjects were not directed by an investigator and, secondly,

the same subjects repeated the routine on di erent days. This allowed the way

that the subjects performed the routine without supervision to be measured in a

controlled testing environment. The repetition of the test by the subjects allowed

the data to be examined for intra- and inter-subject variability.

Setting

The unsupervised laboratory study of directed movement was conducted in the

o ces of the Centre for Health Informatics (CHI) at the University of New South
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Wales. A TA system was set up in the central, open plan design, o ce. Subjects

carried out the test routine in this o ce space.

Equipment

The system employed in the study consisted of a dedicated personal computer run-

ning the Microsoft Windows 98 operating system, a TA unit and a receiver board.

A graphical user interface (GUI) was developed for the study to guide the subject

through the routine. At the commencement of each test, the subject was required

to log on to the system. The first instruction was then presented to the subject on

the GUI. Once this task was completed, the next instruction was displayed on the

GUI, and so on until the routine was completed.

The wording of the instructions was developed by means of an iterative process

prior to the study in which the set of instructions was shown to the subjects, who

provided feedback. The instructions were modified on the basis of the feedback and

the process repeated until all of the subjects found all of the instructions very clear.

The final set of instructions that were given during the test procedure were:

. Press the button on the monitoring device when you are standing up and

ready to start the testing.

2. Please remain standing for the next 30 seconds.

3. Please sit down.

4. Once you are seated, press the button on the monitoring device.

5. Please stay seated.

6. Now stand up again.

7. Once you are standing, press the button on the monitoring device.

8. Please stay standing.

9. Now walk around the o ce. Follow the same route that you always take

during this testing programme.

0. Once you have finished and are standing beside your bed, press the button on

the monitoring device.

. Please stay standing.
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2. Now lie down.

3. Once you are lying down, press the button on the monitoring device.

4. Please stay lying.

5. Now stand up again.

6. Once you are standing, press the button on the monitoring device.

7. Please stay standing.

8. That completes these tests for today. Thank you.

Figure 7.3 shows the graphical user interface for instructions and 4.

The computer was configured so that when it was powered up, the TAmonitoring

programme automatically started up. The system was designed to run continuously,

but in the event of a “crash” the user needed only to reboot the machine to fix the

problem.

Subjects

The purpose and methodology of the study were explained to the CHI sta . Sta

who volunteered to participate in the study gave their informed consent. The gender

and age of each subject were recorded. All subjects were healthy and had no

functional disability.

Experimental Procedure

The study ran for a four week period. Each subject was asked to carry out the

predetermined routine of basic daily activities at least once for each day that they

were in the o ce. The routine could be carried out at any time during the day,

and it did not need to be carried out at the same time each day. This was so that

participation in the study would not interfere with the subjects’ work programmes.

When a subject wished to carry out the routine, he or she selected one of four

rechargeable AA batteries and inserted it into the TA unit, which was then attached

to the waist above the right anterior superior iliac spine. The subject then logged

into the system. The login procedure was used to identify the subject.

The subject was asked to press the button after completing each activity (steps

4, 7, 0, 3 and 6). The system waited until the subject pressed the button before

moving on to the next instruction. This ensured that the speed at which the test
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(a)

(b)

Figure 7.3: Two sample screens from the graphical user interface.
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procedure was carried out was controlled by the subject rather than being dictated

by the computer. As was indicated by the instructions, the subject was asked to

carry out movements, namely:

. stand for 30 s (movement );

2. sit down (movement 2);

3. remain sitting for 10 s (movement 3);

4. stand up (movement 4);

5. remain standing for 10 s (movement 5);

6. walk (movement 6);

7. remain standing for 10 s (movement 7);

8. lie down (movement 8);

9. remain lying for 10 s (movement 9);

0. stand up (movement 0); and

. remain standing for 10 s (movement ).

The 10 s periods of standing were included to ensure that there was a clear

period of rest between each movement. Each of the rest periods was held for at

least 10 s before the next instruction was presented. A period of 5 s was allowed for

each transition activity before the instruction to press the button was displayed. A

period of 60 s was allowed for the walk. The entire test procedure took less than 5

minutes to complete.

Before commencing the unsupervised study each subject was guided through the

test procedure by a supervising investigator to ensure that the subject was able to

carry out the procedure and that the procedure was well understood. All subjects

followed the same walking route through the o ce, and used the same o ce chair

to sit on. As there was no bed or couch in the o ce, subjects lay down on the

carpeted floor.

A log book was provided with the system. Subjects were asked to add an entry

to the log each time that they used the system. The entry consisted of their code

name, the date and time of the test, and any comments that they had about the

system. At the conclusion of the study, subjects were interviewed to gauge their

opinions of aspects of the system. Subjects were asked to comment on
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• the useability of the TA unit;

• the useability of the rechargeable batteries;

• the useability of the graphical user interface; and

• the level of ease or inconvenience with which the routine was carried out.

A set of printed instructions that described in detail the experimental procedure

was left with the computer system, together with a copy of the information and

consent statements for the study. These were available to subjects at all times

during the study.

The computer recorded the three-dimensional acceleration signal and the on/o

state of the TA button. The data were sampled at 45Hz and each recorded sam-

ple was time-stamped. The button presses acted as markers that indicated the

completion of each activity. These provided an independent measure of activity

identification and classification.

Data Analysis

Preliminary Processing Data were analysed retrospectively using purpose-built

algorithms in Matlab version 6. The date and time of each test were extracted from

the file and compared to the log book. If any discrepancies were detected, the

investigator would speak to the subject to establish what actually occurred. If the

discrepancy could not be resolved then the data were discarded. The number of

tests undertaken by each subject was recorded.

The TA signal from each test was processed in the following way. Six button

presses were expected. The number of distinct button presses in the data signal

were counted. If there were too many button presses then the algorithm checked to

see whether there was a double press, where the subject pressed the button twice

in rapid succession. If so, then this was counted as a single button press. If there

were still too many button presses then the signal was examined manually and any

extraneous button presses were identified and removed.

It was not possible to have too few button presses and still complete the test

routine. If there were too few button presses then the signal was discarded as the

test routine was not completed.

Movement Identification Next, the activity detection algorithm was applied to

the signal to distinguish between periods of activity and periods of rest. The six
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button presses provided markers in the signal that separated the di erent periods

of activity. Ideally, there should have been exactly one period of activity that cor-

responded to the directed activity between each consecutive pair of button presses.

However, between any two button presses there could be:

• no periods of activity;

• exactly one period of activity; or

• two or more periods of activity.

If there were no periods of activity then the directed activity was not detected.

If there was exactly one period of activity then this should have been the directed

activity. If there were two or more periods of activity then either (i) there was at

least one period of extraneous activity; or (ii) there was a compound movement,

in which two or more consecutive periods of activity each contained part of the

directed movement. One example of a compound movement occurs when a subject

stops moving during a period of walking. This introduces a period of rest into the

middle of the movement, and the walking movement is subsequently characterised

by two periods of walking activity, separated by a period of rest (standing). A second

example of a compound movement occurs when a subject performs a lie-to-stand

transition as a lie-to-sit transition, followed by a pause, followed by a sit-to-stand

transition. In this case the one stand-to-lie transition is recorded as two component

transitions, separated by a period of rest.

Every period of activity was inspected manually and classified as either (i) a di-

rected movement; (ii) part of a compound movement; or (iii) an extraneous activity.

Extraneous activities were categorised according to when they occurred. Possible

categorisations included

• movement during standing;

• movement during sitting;

• movement during lying;

• movement during button press;

• movement before performing the directed activity (for example, walking to

the chair before sitting down); and

• movement after performing the directed activity (for example, taking a step

to regain balance after standing up).
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Every period of activity was then classified automatically using the following

procedure.

. All of the periods of activity between two consecutive button presses were

identified.

2. If there were no periods of activity then it was recorded that the directed

activity was not detected.

3. If there was exactly one period of activity then this was classified as the

directed activity.

4. If there was more than one activity then:

(a) Any activities that occurred while the button was being pressed were

classified as extraneous activities.

(b) Any activities that occurred during a known period of rest (for example,

during the 30 s period after the first button press during which the subject

was standing) were also classified as extraneous activity.

(c) The number of remaining activities between the two button presses were

counted.

(d) If exactly one activity was detected between the two button presses then

this was classified as the directed activity.

(e) If there was more than one period of activity remaining then the complete

classification algorithm (refer to section 6. ) was applied to classify each

of the periods of activity.

(f) If the classification of exactly one of the periods of activity matched the

directed activity then this was classified as the directed activity and the

remaining periods of activity were classified as extraneous activity. Oth-

erwise, the periods of activity were tested to see whether any of them

could form a compound movement. When the directed movement was

walking, successive periods of walking were classified as a compound

walking movement. When the directed movement was a lie-to-stand

transition, a lie-to-sit transition followed by a sit-to-stand transition was

classified as a compound movement, and similarly for a stand-to-lie tran-

sition.
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(g) If the directed movement was not uniquely identified by the classification

algorithm and the periods of activity did not form a compound move-

ment then a rule-based system was employed to determine the directed

activity. The rule-based system chose the period of activity that was

most likely to be the directed activity, based on the output of the classi-

fication algorithm and the time at which the period of activity occurred.

Activities that occurred immediately after an instruction was given were

deemed more likely to be the directed activities.

The period of activity that was automatically selected as containing the directed

activity was compared to the period of activity that was identified manually and

the classification accuracy of the automated system was evaluated.

After the periods of directed activity were identified, the periods of directed

rest–sitting, standing and lying–were then identified. These were deemed to be-

gin at the button press and to extend to the time at which the next instruction

was presented to the subject (either 10 or 30 s later), and included any periods of

extraneous activity that occurred during that time.

Statistical Analysis Once the movements were identified, all parameters deemed

clinically relevant were extracted for each posture and activity. In each case the

mean, median, standard deviation, minimum, maximum and range of each para-

meter were calculated for each subject and across all subjects. The parameters and

statistics that were computed are summarised in table 7. .

Three di erent methods were used to measure mean step rate. These were

. the Fourier transform based algorithm (described in section 6.8.2);

2. the template matching algorithm (described in section 6.8.3), applied to the

signals from all three axes with a majority vote at the end; and

3. the template matching algorithm applied only to the z-axis signal.

The median step rate and the standard deviation between steps were obtained

using the third of these methods. All of the other parameters were obtained using

the methods described in chapter 6.

The mean and standard deviation for each parameter were used to assess the

consistency of the data. The mean values were compared to the mean values that

were expected, based on the literature and on the supervised laboratory studies.
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movement 1 2 3 4 5 6 7 8 9 10 11

tilt angle

postural sway

duration

SMA

step rate - median

step rate - mean

step rate - std dev

median acceleration

x,y,z-axes, and

mean acceleration

x,y,z-axes,and

std dev acceleration

x,y,z-axes,and

min acceleration

x,y,z-axes,and

max acceleration

x,y,z-axes,and

range acceleration

x,y,z-axes,and

Table 7. : Descriptive statistics that were measured for each of the periods of
activity and rest. Movements are: . stand, 2. stand-to-sit, 3. sit, 4. sit-to-stand,
5. stand, 6. walk, 7. stand, 8. stand-to-lie, 9. lie, 0. lie-to-stand, and . stand.
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The standard deviations measured the variability (and hence also the repeatability)

of the measurements for each subject and between subjects.

The mean parameter values obtained across all subjects were compared across

the di erent activities and resting postures. Boxplots and hypothesis tests were

used to determine whether two sets of data had di erent mean values. If both data

sets were normal (tested with the D’Agostino Omnibus normality test [57]) and had

the same variance (tested with the Modified-Levene equal-variance test [ 0 , 35]),

then the 2-sample t-test was used. Otherwise the Aspin-Welch Unequal-Variance

test or the Wilcoxon Rank-Sum test was used. The significance level was set at 0.05

in all of the tests (i.e. if the probability that the means of the two sets are the same

is less than 0.05 then there is said to be a statistically significant di erence in the

means of the two data sets).

As an additional task, the walking detection algorithm was applied to all of

the detected activities. This was done in order to evaluate the performance of the

walking detection algorithm (described in section 6.8.4) on walking patterns that

were not rigorously controlled. The performances of each of the three methods

listed above were evaluated separately. The algorithm illustrated in figure 6.27 was

then used to discriminate between periods of walking and periods of other activity.

This algorithm was used with a two-stage cyclic test that involved use of both the

Fourier transform based algorithm and the template matching algorithm, and is

shown in the flowchart of figure 7.4. When the cyclic test was applied the period

of activity was first tested using the Fourier transform based algorithm. If this

classified the activity as cyclic then the cyclic test returned a true response. If the

Fourier transform based algorithm did not classify the activity as cyclic then the

period of activity was tested using the template matching algorithm applied to the

z-axis alone. If this classified the activity as cyclic then the cyclic test returned a

true response. Otherwise the test returned a false response.
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Apply Fourier
transform based

algorithm

cyclic?

Yes

No

Apply cross
correlation based

algorithm

cyclic?

Yes

No

movement is
cyclic

movement is
not cyclic

Figure 7.4: Flowchart showing the processing that was used within the cyclic ac-
tivity testing block of the walking detection algorithm.
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7.6 Experimental Procedure for the Supervised

Home Study of Directed Movement (study

3D)

1D

3D 2D

4D

Introduction

The purposes of this study were to

• evaluate the performance of the system; and

• collect representative data from a normal subject during directed movement

in a supervised home setting.

In this study the movements were directed and supervised but the study took

place in a normal home rather than in a controlled laboratory environment. This

provided a measure of the e ect of the environment on the way in which the subject

performed the routine. The daily repetition of the test by the subject allowed the

data to be tracked longitudinally.

Setting

The study was carried out in the home shown in figure 4.3b.

Equipment

The same TA system was used in this study as was used in study 2D. However, in

this study, the instructions to the subject were presented orally as well as visually.

Subjects

The investigator (a healthy 28 year old female) also acted as the subject for the

study.
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Experimental Procedure

The routine was identical to the routine carried out in study 2D. The computer was

installed in a bedroom of the house. The subject stood, sat and lay in this room.

The subject walked from the bedroom through the kitchen to the lounge room,

through the dining room to the kitchen and back to the bedroom. The subject was

asked to carry out the routine at least once a day over a 65-day period.

Data Analysis

The procedure for data analysis was identical to that used in study 2D.

7.7 Experimental Procedure for the Supervised

Home Study of Free Movement (study 3F)

1F

3F 2F

4F

Introduction

The supervised home study of free movement was a feasibility study to evaluate the

performance of the TA system when the subject was engaged in free-living activity

at home. The aims of the study were

. to collect data on the complex and arbitrary movements and sequences of

movements performed in free-living;

2. to evaluate the performance of the classification algorithm (refer to section

6. ) on signals recorded during free-living; and

3. to introduce and assess the impact of a heuristic overlay to the classification

algorithm for the classification of movements during free-living.



7. Experimental Design 305

Setting

The study was set in the same home as the study 3D and occurred during the same

65-day period.

Equipment

The equipment consisted of the same TA system that was used in study 3D and a

diary.

Subjects

The investigator also acted as the subject for this study.

Experimental Procedure

The subject wore the TA device and recorded all movements and timing in the diary

on any days during the study period when she spent at least half the day at home.

This allowed the collection and analysis of signal data that included complex and

arbitrary movements of free-living.

Data Analysis

Preliminary Processing Data were analysed retrospectively using Borland Del-

phi version 5, Matlab version 6 and the statistical software package NCSS (Dawson

Edition). The number of samples received during the monitoring period was com-

pared to the expected number of samples transmitted (45 samples per second ×

duration of monitoring period) to determine the percentage of transmitted data

that was received. This provided a measure of the reliability of the wireless com-

munications in this setting.

Movement Identification The data from the TA during these periods was

processed using the classification framework and algorithms described in chapter

6. A 1 s window was applied to the signal and each window was classified as con-

taining either activity or rest using the activity detection algorithm (section 6.5).

The complete classification algorithm (section 6. ) was then used to identify and

classify the activities and postural orientations. The periods of rest were subclas-

sified as upright or lying, and then as either sitting, standing, or a subposture of

lying. Baseline data on tilt angles and SMA for use in the classification algorithm
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were obtained from the routine of directed movement that was carried out on the

same day (refer to section 7.6).

The periods of activity were tested for falls. If a fall was detected then this was

logged, together with parameters of peak acceleration, duration, SMA and postural

orientation after the period of activity. In addition, all acceleration spikes in the

magnitude vector exceeding 1.8 g for at least 3 consecutive samples were logged,

together with their amplitude and duration as these potentially contained data

pertaining to stumbles or other near falls. If a period of activity was not identified

as a fall then it was classified as walking, a transition or some other activity using

the algorithms described in chapter 6.

The automated signal classifications were compared to the movements described

in the subject’s diary. For each diary entry that described a specific movement, the

classifier output for the same time (±30 s) was checked. If the classifier output

agreed with the diary entry then the movement classification was deemed correct.

If the classifier output did not agree with the diary entry then the movement classi-

fication was incorrect. This provided a measure of the accuracy of the classification

algorithm on these occasions.

Additionally, the acceleration patterns corresponding to other, more complex

movement patterns that were described in the diary were identified and examined.

Heuristic Decision Making The activity classification algorithm identified each

movement in isolation, without regard to whether or not the resulting pattern of

movements was reasonable. For example, it was possible for the activity classifica-

tion algorithm to classify a sequence of movements as:

sitting sit-to-stand transition sitting walking,

although such a sequence can never be carried out. Clearly, the second period of

sitting should actually be a period of standing. A rule-based system could be used

to identify and correct this error.

A heuristic overlay was developed in order to check the sequence of classifications

made by the classification algorithm. The system inspected the sequence of classified

movements, movement by movement, in chronological order. If an inconsistency

was identified then changes were made to the sequence of classifications so that the

sequence became consistent. The rules that were applied are listed in figure 7.5.

This resulted in a new set of classifications. This new set was compared to the

set of movement patterns described in the diary and the classification accuracy was

evaluated.
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sit →→→→ stand-to-sit

� If the rest state after the transition is  standing then reclassify the  stand-to-sit transition as a

sit-to stand transition.

� Else, if the rest state after the transition is sitting then reclassify the  stand-to-sit transition as

other movement.

� Else (the next rest state is upright, but not subclassified) classify the next rest state and then

return to classify the activity.

stand →→→→ sit-to-stand

� If the rest state after the transition is  sitting then reclassify the  sit-to stand transition as a

stand-to-sit transition.

� Else if the rest state after the transition is standing then reclassify the  sit-to-stand transition

as  other movement.

� Else (the next rest state is upright, but not subclassified) classify the next rest state and then

return to classify the activity.

sit →→→→ walk

� If the duration of the  sitting period is short and the activity before the  sitting period is other

movement then reclassify the  other movement as a sit-to-stand transition and the sitting

state as standing.

� Else assume that the  sit-to-stand transition is contained in the same period of activity as the

walk and was not detected separately.

upright resting state, not subclassified

� If the activity after the  upright resting state is walking then classify the  upright resting state

as  standing.

� Else, if the activity before the  upright resting state is a sit-to-stand transition then classify

the  upright resting state as  standing.

� Else, if the activity before the  upright resting state is a  stand-to-sit transition then classify

the  upright resting state as  sitting.

� Else, if the activity after the  upright resting state is a  sit-to-stand transition and this is

consistent with the next resting state then classify the  upright resting state as  sitting.

� Else, if the activity after the  upright resting state is a  stand-to-sit transition and this is

consistent with the next resting state then classify the  upright resting state as  standing.

� Else, if the activity before the  upright resting state is a lying-to-upright transition then

classify the  upright resting state as  sitting.

� Else classify the  upright resting state as the same as the previous resting state, and

reclassify the activity before the  upright resting state as other movement.

upright-to-upright transition, not subclassified

� Classify the  upright-to-upright transition based the resting states before and after the

transition.

� If the resting state after the activity is  upright but not subclassified then subclassify the

resting state and then return to classify the activity.

Figure 7.5: Heuristic rules applied in study 3F to classify postures and activities of
free movement.
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7.8 Experimental Procedure for the Unsupervised

Home Study of Directed and FreeMovements

(studies 4D and 4F)

1D

3D 2D

4D

1F

3F 2F

4F

Introduction

The unsupervised home study was designed as a pilot study for the TA system. The

directed and free movement components were combined in this study. Each morn-

ing subjects carried out the directed routine. The results of the directed routine

were used for longitudinal tracking of movement-specific parameters and to provide

baseline data with which to identify the placement of the TA unit. The free move-

ment component was used to evaluate the technical performance and useability of

the system, and to longitudinally track general parameters of movement, including

amount of time spent in activity and energy expenditure.

The study had four specific aims:

. to assess the technical performance of the system in more homes;

2. to assess the useability of the system for an elderly cohort;

3. to determine normal parameter values and ranges for a healthy elderly cohort;

and

4. to test and validate the data processing algorithms in an unsupervised setting

with an elderly cohort.

Setting

The study was carried out in the homes of the subjects.
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Equipment

Each subject was given a TA system (computer, receiver and TA unit), four recharge-

able AA batteries and a recharger, daily and weekly health questionnaires, and a

falls diary. All systems were tested in the laboratory for at least 2 days before being

installed in the field.

Subjects

Subjects were recruited through the Prince of Wales Medical Research Institute

(POWMRI). Subjects were required to be aged over 65 years, living independently

at home, and able to use the TA system. Subjects were selected from a list of

subjects who had previously participated in a study on the e ect of exercise on the

risk of falls, conducted by the POWMRI. The investigator was blind to the selection

of subjects. A researcher from the POWMRI contacted potential subjects and

explained the study to them. If they were interested, an information and consent

statement was posted to them. A copy of the information and consent statement is

included in appendix B. This was followed up a week later with a phone call from

the researcher to establish whether the person was still interested in participating.

If so, their name and contact details were passed on to the investigator (the current

author) who then contacted the person to arrange a time to visit. During the

home visit the investigator showed the person the equipment and explained the

trial protocol again. If the person was still willing, they were asked to give written

consent, and the TA system was set up in the home.

Experimental Procedure

The study extended for a period of up to 3 weeks. The computer and TA receiver

were set up in a location in the subject’s home that provided optimal coverage of

the TA unit around the home and that was convenient for the subject.

The subject’s health and medical histories were assessed at the beginning and

the end of the study using the Stanford University School of Medicine Health As-

sessment Questionnaire (HAQ) Disability Index and Pain Scale [36, 78, 79, 89] and

a customised medical history questionnaire. The coop/wonca health questionnaire

[ 77] was also completed by the subject at these times. The HAQ Disability Index

measures the ability of the subject to function in daily life through a series of ques-

tions on a range of ADLs and IADLs. It is scored from 0 to 3, where 0 indicates no

The Stanford HAQ is available from the Department of Immunology and Rheumatology at
Stanford University in Stanford, California, USA.
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disability and 3 indicates severe functional disability. For the Pain Scale, subjects

were asked to indicate the level of pain that they had su ered in the last week. The

pain scale is scored from 0 to 3, where 0 indicates no pain, and 3 indicates severe

pain. The medical history questionnaire obtains information on significant medical

illnesses and conditions and current medications. The coop/wonca health ques-

tionnaire measures overall health status with six questions encompassing physical,

emotional, social and overall health. Each question is given a score from —5, with

indicating the best response and 5 indicating the worst response. The scores from

the six questions are summed to give a total score for the questionnaire. Copies of

the questionnaires are included in appendix C.

The subject was trained in the use of the TA unit and in the required tasks.

Figure 7.6 shows the tasks that were required of the subject each day. The subject

was required to place a rechargeable battery into the TA unit, attach the unit at

the waist, and wear it for the rest of the day. In addition, once each day the subject

was required to carry out the same routine that was used in study 2D (section 7.5).

Instructions were presented orally and visually during the routine. The subject was

also required to complete a daily question on overall health status and a weekly

health questionnaire.

The daily question was:

“How would you rate your health today compared to yesterday?”.

The subjects were required to choose between five options:

• much better;

• a little better;

• about the same;

• a little worse; and

• much worse.

The question was scored on an ordinal scale from to 5, with “much better”

registering the lowest score.

The weekly health questionnaire was the coop/wonca questionnaire [223]. This

questionnaire was administered by the investigator, either face-to-face or by tele-

phone.
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1. Remove a battery from the recharger unit
2. Insert the battery into the monitoring device
3. Attach the monitoring device to your waist
4. Go to the computer.
5. Push the mouse to "wake up" the computer screen.
6. Once you are standing and ready to start the daily routine, press the button on
the monitoring device to start.
7. Continue to follow the instructions given by the computer until the daily routine
is complete.
8. Wear the monitoring device for the rest of the day.

In the morning

If you are going out

You don't need to do anything - you can continue to wear the monitoring device
while you are out.

However, if you are concerned about losing the monitoring device while you are
out, or do not want to wear it while you are out, then you can take it off and place
it near the computer until you come home. When you come home again, simply
pick up the monitoring device and attach it to your waist. You do not need to do
anything else - there is no need to press the button.

In the evening

1. Complete the daily health questionnaire for today.
2. Remove the monitoring device from your waist.
3. Remove the batter from the monitoring device.
4. Place the battery in the recharger unit.
5. Plug in the recharger unit, turn on the power, and allow to recharge overnight.

Figure 7.6: “How to use the ambulatory monitor”–the tasks required by subjects
in order to use the TA system.
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Each subject was asked to attach the TA unit at the waist after getting up in the

morning, and to wear the unit until going to bed in the evening. Subjects were told

that they could remove the TA unit if they were going out, although this was not

necessary and the unit could be worn outside the home. If subjects were going out

and planned to remove the TA unit, they were asked to place it beside the receiver

unit until they returned home, whereupon they were requested to reattach the unit

at the waist.

When the system was installed in the subject’s home the most convenient time

for carrying out the daily routine was discussed with the subject. It was explained

that the routine could be carried out at any convenient time during the day, and

that the computer could be used to issue a reminder to carry out the routine. All

subjects elected to carry out the routine in the morning, after getting out of bed

and dressing. The automated reminder was set to activate if the daily routine had

not been commenced by the time nominated by the subject.

When the automated reminder was activated the computer commenced execu-

tion of the daily routine programme. The subject was asked to press the button

on the monitoring device when standing and ready to commence the daily routine.

This instruction was presented on the monitor and was also presented orally once a

minute until the button was pressed by the subject or ten minutes had elapsed. If

the subject did not commence the routine within ten minutes of the reminder ac-

tivation then the oral reminders stopped but the instruction remained on the GUI

until the routine was undertaken.

The plan for the daily routine, including choice of chair, bed and walking route

were determined when the system was installed in the subject’s home. Each subject

was guided through the routine by the investigator several times until she or he

felt confident and could complete the daily routine without assistance from the

investigator. Subjects also practised using the rechargeable batteries and attaching

the TA unit to the waist in the presence of the investigator until they felt confident.

Once the subject was comfortable with the system she or he was left alone with

the system for one week. The following week, the subject received a follow-up

visit from the investigator. The training that was provided on the first visit was

repeated on this visit, and any questions raised by the subject about the system were

answered. The investigator asked the subject for feedback on use of the system. The

data captured by the system were recorded onto compact disc by the investigator

using a portable compact disc writer. Once this was successfully completed, the

data were removed from the computer’s hard disk to allow space for future data

collection.
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During the training, the TA unit was attached above the right anterior superior

iliac spine of the subject. However, subjects were not told that they needed to wear

the unit in this position, merely that it had to be attached at the waist.

Once every week the investigator contacted each subject to complete the coop/

wonca health questionnaire, either by telephone or by visiting. The investigator

visited each subject at least once every two weeks to collect the data from the

system, and to ensure that the system was running properly.

Subjects were also given a falls diary. In the event of a fall or stumble, subjects

were asked to press the button on the TA unit if it was being worn, and to make

an entry in the falls diary noting the time, location, nature and cause of the event.

Subjects were also invited to make notes about their daily activities in the falls

diary although this was not required of them.

Mid-way through the study, a short-form physiological assessment was con-

ducted on each subject to assess falls risk. The assessment was developed by Lord

et al. and has been well validated [ 4 , 42, 43, 44, 46]. This assessment was

carried out in the subject’s home. Edge contrast sensitivity, hand reaction time,

proprioception, knee extension (quads strength) and balance were assessed and a

measure of falls risk was determined. The falls risk was graded as one of (i) very

low; (ii) low; (iii) mild; (iv) moderate; and (v) marked.

At the conclusion of the study, the health and medical questionnaires that were

applied at the start of the study were reapplied to each subject. Subjects were then

interviewed to formally obtain feedback on their use of the TA system.

Data Analysis

Data were analysed retrospectively. The procedure for analysing the data from

the daily routine was identical to that used in study 2D. The data from the free

movements carried out during the rest of the day were processed in a similar manner

to those from the supervised home study of free movement (section 7.7), except that

the movements were not classified beyond discrimination between activity and rest.

The procedure that was used for this study is described below.

The time stamp on each data sample was examined to determine whether or

not any data had been lost. The amount of missing data was recorded on an hourly

and daily basis for each subject. This provided a measure of the reliability of the

wireless communications in these settings.

The TA data signals were median filtered using a filter of length 3 samples.

(This value was found to be one of the optimal lengths in the activity detection

algorithm of section 6.5.) The signals were then high-pass filtered (fc = 0.25Hz) to
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extract the body acceleration component. The FIR filter described in section 5.2.7

was used to achieve this. The data were then processed in one second blocks.

The incoming signal was tested to determine whether or not the device was

being worn. The a.c. magnitude vector,
ac
, was computed and averaged over the

last 60 s. The mean value was compared to a threshold to determine whether or not

the device was being worn. The threshold value was determined from the results of

the study of section 6.4. It was set as 0.0325 g/ s, a value that corresponded to the

mean plus one standard deviation of
ac
when the device was not being worn, but

which was less than the mean value of
ac
when the device was being worn and the

subject was resting. If the 60 s average of
ac
was less than the threshold then the

subject was deemed to not be wearing the device over that period.

If the subject was wearing the TA device then the SMA was computed for each

second of data. The activity threshold was set as th = 135 × 10 3 g, as per the

results of section 6.5. If the 1 s-averaged SMA exceeded the threshold then the

subject was classified as being engaged in activity during that period.

All periods of activity were tested for fall events, and all abnormally large ac-

celeration spikes (those exceeding 1.8 g on the magnitude vector for at least 3

consecutive samples–refer to section 6.7.2) were logged.

An overview of this processing is shown in figure 7.7.

The parameters extracted from the collected data were collated hourly and daily

for each subject and tracked longitudinally. The parameters sets were tested for

correlations with self-reported health status. These parameters were:

• the time at which the system started collecting data that day;

• the time at which the system stopped collecting data that day;

• the percentage of transmitted data that was captured by the receiver unit;

• the percentage of time for which the TA unit was worn;

• the percentage of time for which the subject was engaged in activity;

• the total and mean SMA during periods of activity; and

• the total and mean SMA during periods of rest.
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Figure 7.7: Flowchart of the sample-by-sample processing of the TA data. Every
second the signal was tested to determine whether the subject was wearing the
device and, if so, whether the subject was engaged in activity or rest. Parameters
were recorded on an hourly and a daily basis.
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7.9 Comparisons Between Directed Routine Data

Sets

The performance of subjects in carrying out the directed routine was evaluated in

a supervised laboratory setting (these studies were described in chapter 6), in an

unsupervised laboratory setting (study 2D), in a supervised home setting (study

3D), and in an unsupervised home setting (study 4D). All of these studies used

cohorts of normal, healthy subjects. In study 4D a group of elderly subjects was

used.

The purpose of repeating the testing in di erent settings was to determine the

e ect of the setting and the presence of supervision on the way in which the sub-

jects carried out the routine. The parameter values obtained in each study were

compared, using the same testing procedures that were described in section 7.5.

The variabilities in the parameters were compared. Classification accuracies were

compared. The number of extraneous movements were tallied and compared. The

number of compound movements were compared. The data sets from the directed

routine were then compared between the cohorts of young subjects and the cohort

of elderly subjects, using the same procedures.

7.10 Chapter Conclusion

A methodology for unsupervised home monitoring of free-living subjects was de-

signed. This methodology consisted of two components: a routine of directed move-

ment from which clinically sensitive parameters were extracted and tracked longi-

tudinally, and a period of free movement in which the TA monitored the subject for

abnormal events such as falls. Each component of the system was tested systemat-

ically in a series of experimental studies that included supervised and unsupervised

laboratory monitoring of directed movements; supervised and unsupervised home

monitoring of directed movements; and supervised and unsupervised home moni-

toring of free movements. The results of these studies are presented in the next

chapter.



Chapter 8

Experimental Results and

Discussion

8.1 Overview

Chapter 7 presented the design of a series of experiments to assess the performance

of the TA in monitoring of human movement patterns. Data were collected from

movements performed during a directed routine and during free movement. The

directed routine was used to track parameters of specific movements over time. It

was also used to identify the placement of the TA on the subject. The monitoring of

free movement was used to identify abnormal events and to track general parameters

of movement, including hourly and daily SMA and the amount of time spent in

activity.

The performance of the TA in monitoring the directed routine was studied in

supervised and unsupervised laboratory and home environments. The performance

of the TA in monitoring free movement was studied in supervised and unsupervised

home environments. Figure 8. summarises the studies that were undertaken. The

laboratory studies of the daily routine were undertaken using cohorts of normal sub-

jects. The supervised home studies of directed and free movements were undertaken

using the same normal subject in the same home environment. The unsupervised

home studies of directed and free movements were undertaken together in a pilot

study of the TA in a community setting, using a cohort of healthy elderly subjects.

The studies of directed movement in a supervised laboratory setting (study D)

were used to develop the algorithms used in the classifier and are presented in

chapter 6. This chapter presents the results of the other studies. Firstly, the user

feedback from all of the subjects is presented. Next, the results for the studies

3 7
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Figure 8. : Experimental studies undertaken in the current work. The codes ‘D’
and ‘F’ are used to represent the studies of directed and free movement, respectively.
The studies were D: supervised laboratory study of directed movement, 2D: un-
supervised laboratory study of directed movement, 3D: supervised home study of
directed movement, 4D: unsupervised home study of directed movement, 3F: su-
pervised home study of free movement, and 4F: unsupervised home study of free
movement.

of directed movement (studies 2D, 3D and 4D) are presented and compared. The

results of the feasibility study for monitoring of free movement (study 3F) are then

presented. Finally, the results of the free movement component of the pilot study

(study 4F) are presented.

8.2 User Feedback

Studies 2D, 3D and 3F

The subjects who participated in studies 2D, 3D and 3F all reported that they

found the TA unit comfortable to wear and that the system was easy to use in

every respect. However, the subject who participated in studies 3D and 3F found

changing the battery each day inconvenient.

All subjects reported that the instructions on the graphical user interface were

clear and easy to follow. All subjects stated that the directed routine was easy to

carry out, caused no inconvenience, and required a minimal time commitment.

A subject who participated in study 2D suggested that instructions be presented
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audibly as well as visually on the graphical user interface so that there was no need

to continually watch the user interface while carrying out the routine. When this

suggestion was made to the other participants in the study, they were in agreement.

Audible instructions were consequently incorporated into the test procedures for

the later studies of directed movement (studies 3D and 4D).

Studies 4D and 4F

The elderly subjects who participated in the pilot study used the TA system far

more extensively than the other subjects, and hence had more detailed comments on

the system. They also raised issues that were not raised by the younger subjects,

which pertained to their lack of familiarity with the technology and their more

fragile health status.

All of the subjects who participated in the pilot study were initially nervous

about using the technology, for fear of damaging the equipment, particularly the

computer. It was emphasized to the subjects that they could not cause any damage

to the system.

TA Unit Subject feedback with regard to the wearability of the TA unit varied.

All subjects agreed that the unit was comfortable and that they forgot that they

were wearing it. However, the attachment clip was too loose for two of the female

subjects who found that the unit tended to slip o when bending over or toileting.

One female subject found it limiting that she was unable to wear dresses due

to the need for attachment at the waist. However, another female subject chose to

wear the unit attached to undergarments beneath dresses and she reported that she

found this arrangement completely comfortable.

Three of the subjects found that placement of the unit was very important for

comfort and the prevention of bruising. The first of these subjects found that the

unit was most comfortable when worn in the middle of the waist as it dug into

her hip when attached above the iliac spine and caused bruising. The second of

these subjects found that the device was most comfortable when worn on the right

side. When he wore the unit above the right anterior superior iliac spine it knocked

against his right arm and he was concerned about this causing bruising. The third

of these three subjects found that she needed to change the location at which the TA

was worn every three or four days due to pressure on the body from the unit. She

alternated between wearing the unit above the right and left anterior superior iliac

spines. The other three subjects reported no problems with discomfort or bruising
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and wore the unit above one of the anterior superior iliac spines for the duration of

the study.

TA Batteries All subjects initially found changing the battery di cult but in the

final assessment all agreed that changing the battery posed no problems. Subjects

agreed that introducing a recharger cradle that would remove the need to change

the battery would be simpler to use, but did not feel that this was an important

issue.

TA Push Button Two subjects found that the push button on the TA unit was

too small and sharp, and had concerns that it would pierce the skin. A layer of

padding was attached to the button for these two subjects. This both enlarged and

softened the surface of the button and solved this problem. A third subject found

that the button was di cult to reach as the top of the TA unit became buried under

soft tissue when attached at the waist.

Computer None of the subjects interacted with the computer other than to follow

the instructions given in the daily routine. One subject said that he would like to

learn how to use computers, but felt that he was too old. None of the other subjects

expressed any interest in using the computer. All of the subjects said that they

would have preferred the system without the computer.

Several subjects observed that the receiver and computer system formed a very

bulky arrangement that would be particularly inconvenient for people living in small

units, and that the entire system appeared very expensive. These subjects felt

that the computer monitor should not be included with the system as the audible

instructions were su cient and the graphical user interface was not necessary. They

would also have preferred to see the receiver and computer reduced in size.

Daily Routine All subjects found that the daily routine was easy to manage,

and did not pose any inconvenience. All subjects agreed that the instructions were

very clear and easy to follow.

System Overall All subjects stated that the system was easy to use “once you

got used to it” and that using it did not cause any inconvenience.

All of the subjects felt that the concept of a “smart” personal alarm system that

could automatically detect falls would be very valuable. One subject said that he

could not see any value in identifying early indicators of falls or changes in health
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status. He felt that education, exercise regimes and environmental monitoring to

detect hazards were far more important. He also felt that the system needed to work

outside as well as in the home. The other five subjects supported the concept of

home monitoring for early identification of changes in functional status. Monitoring

at home to reduce the need to travel to the clinic was also seen as a positive feature.

One subject remarked that “if this system could avoid a trip to the specialist, it’s

worth its weight in gold”.

8.3 Studies of Directed Movement

8.3.1 Introduction

Four studies of directed movement were undertaken. These studies were set in:

. a supervised laboratory environment (study D);

2. an unsupervised laboratory environment (study 2D);

3. a supervised home environment (study 3D); and

4. an unsupervised home environment (study 4D).

The D studies were used to develop and evaluate the classification algorithm

and parameter extraction techniques that are described in chapter 6. Studies 2D

and 3D were undertaken to determine the e ect of supervision and environment

on the way in which subjects performed the routine. In study 4D a cohort of

healthy elderly subjects carried out the directed routine in an unsupervised home

environment on a daily basis. The way in which these elderly subjects performed the

routine was tracked longitudinally and compared to the way in which the younger

subjects performed the routine.

In the following sections the subject cohorts for each study are described and

the number of times that each subject used the system is given. The preliminary

processing and movement identification are then presented for each study. The

statistical analyses are presented for all studies and the results are compared across

studies.
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Subject Gender Age Repetitions

F 23 6
2 F 25 4
3 M 4 5
4 M 35 3
5 F 25 3
6 M 25 4
7 F 28 2
8 M 32 5
9 F 56 6
0 M 44 6

M 49

Table 8. : Characteristics of subjects participating in study 2D.

8.3.2 Unsupervised Laboratory Study of DirectedMovement

(study 2D)

1D

3D 2D

4D

The unsupervised laboratory study was described in section 7.5. Normal, healthy

volunteers from the Centre for Health Informatics (CHI) carried out a short rou-

tine consisting of basic daily activities while wearing a TA unit. The testing was

conducted, unsupervised, in the o ces of CHI.

Use

Eleven subjects participated in the study. Subject characteristics are listed in table

8. . Several of the female subjects who participated in study 2D stated that they

had not carried out the routine on days when they were wearing skirts or dresses

as they did not wish to lie down on the carpet of the o ce when so attired. Other

subjects stated that they had not always carried out the routine because they had

been too busy, out of the o ce, or because they had forgotten.
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Data Analysis

Preliminary Processing The record of tests that was compiled by the subjects

in the log book agreed with the test files on the computer in all respects (number

of tests carried out, date and time at which tests were performed, and the subject

who performed the test). Sixty-five iterations of the routine were performed and

they were all included in the analysis.

All subjects successfully completed the test routine on each occasion, with the

exception of subject 7, who did not carry out the lying down component in one of

the two test routines performed. All activities and rest periods after the walk were

disregarded for this iteration of the routine. All other movements were included

in the analysis. This resulted in 7 0 directed movements being included in the

analysis. Of these, 323 were periods of activity and 387 were periods of rest.

The number of button presses recorded in each iteration of the routine were

counted. Six button presses were expected each time. There were more than the

six expected button presses in nineteen of the routine iterations. On eighteen of

these occasions, the subject had pressed the button twice in rapid succession, as

part of the same button press action. In these cases, the anomaly was automatically

corrected and the first of the two button presses was used as the marker to indicate

completion of the last activity. On the remaining occasion, the subject had pressed

the button twice at the start of the test. The first of the two button presses was

removed manually and the test routine was considered to have commenced with the

second button press.

Movement Identification When the activity detection algorithm (refer to sec-

tion 6.5) was applied to the signals it correctly identified all 323 periods of directed

activity and an additional 46 periods of extraneous activity. The extraneous ac-

tivities occurred at various times during the routine. The greatest number ( 9)

occurred while the subject was standing. They also occurred during button presses

and due to movement before undertaking the next activity (for example, when a

subject walked several steps to reach the chair before sitting down). Seven of the

extraneous activities that were identified were false positives. These were caused by

ringing artefact introduced into the signal by the filtering process (refer to section

5.2.7). These were identified by comparing the change in signal magnitude area of

the high-pass filtered signal to the change in signal magnitude area of the signal be-

fore filtering. Table 8.2 lists the extraneous activities that were identified according

to type.

One period of compoundmovement was identified. This occurred during a stand-
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Type of movement Occurrences

movement during button press 7
movement while standing 9
movement while sitting 3
movement while lying
walk to chair 4
walk to bed
pre-walk movement 4
false positives 7
Total 46

Table 8.2: Extraneous movements occurring during 65 iterations of the directed
routine in study 2D.

Iterations of routine (N = 11) 65
Directed activities 323
Directed rest periods 387
Total activities detected 369
Extra periods of activity detected 46
Compound movements 3
Directed activities correctly classified 3 6 (97.8%)
Directed activities incorrectly classified 7 (2.2%)

Table 8.3: Characteristics of collected data and classification results from study 2D.

to-lie transition where the movement was composed of a stand-to-sit transition

followed by a sit-to-lie transition. This transition was correctly identified as a

compound movement by the automated algorithm.

The automated algorithm correctly identified all but seven of the directed activ-

ities, leading to an overall activity classification rate of 97.8%. On seven occasions

the algorithm incorrectly identified a period of extraneous activity as the directed

activity. The results are summarised in table 8.3.
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8.3.3 Supervised Home Study of DirectedMovement (study

3D)

1D

3D 2D

4D

The supervised home study was described in section 7.6. One normal, healthy

28-year-old female carried out the same short routine that was used in the unsu-

pervised laboratory study of directed movement. The testing was conducted in the

subject’s home.

Use

The subject carried out 62 repetitions of the routine over the 65 day testing period.

Data Analysis

Preliminary Processing Sixty-two iterations of the routine were performed and

they were all included in the analysis. The subject successfully completed the test

routine on each occasion but one in which she did not carry out the walking task.

The walk period and the periods of standing preceding and following this were

excluded from the analysis. All other data were included in the analysis. This

resulted in 679 directed movements being included in the analysis. Of these, 309

were periods of activity and 370 were periods of rest.

The number of button presses recorded in each iteration of the routine were

counted. Six button presses were expected each time. There were more than the six

expected button presses in five of the routine iterations. On each of these occasions,

the subject had pressed the button twice in rapid succession, as part of the same

button press action. In each case the anomaly was automatically corrected and the

first of the two button presses was used as the marker to indicate completion of the

last activity.
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Type of movement Occurrences

movement during button press 3
movement while sitting 2
pre-walk movement
false positives 6
Total 2

Table 8.4: Extraneous movements occurring during 65 iterations of the directed
routine in study 3D.

Iterations of routine (N = 1) 62
Directed activities 309
Directed rest periods 370
Total activities detected 32
Extra periods of activity detected 2
Compound movements 0
Directed activities correctly classified 308 (99.7%)
Directed activities incorrectly classified (0.3%)

Table 8.5: Characteristics of collected data and classification results from study 3D.

Movement Identification When the activity detection algorithm (refer to sec-

tion 6.5) was applied to the signals it correctly identified all 309 periods of directed

activity and an additional 2 periods of extraneous activity.

The extraneous activities occurred during button presses, while sitting, at the

start of the period of walking, and due to false positives caused by ringing artefact

introduced into the signal by the filtering process (refer to section 5.2.7). Table 8.4

lists the extraneous activities that were identified according to type. No periods of

compound movement were identified.

The automated algorithm correctly identified all but one of the directed activ-

ities. On one occasion the algorithm incorrectly identified a period of extraneous

activity as the period of directed activity. This led to an overall activity classifica-

tion rate of 99.7%. These results are summarised in table 8.5.



8. Experimental Results and Discussion 327

Subject Gender Age

F 82
2 M 85
3 M 82
4 F 80
5 F 83
6 F 85

Table 8.6: Characteristics of subjects participating in the unsupervised home study.

8.3.4 Unsupervised Home Study of DirectedMovement (study

4D)

1D

3D 2D

4D

The design of the unsupervised home study was described in section 7.8. The

study was conducted in the homes of functionally independent, elderly, community

dwelling subjects. Each morning the subjects were required to attach the TA unit

to the waist and carry out a directed routine consisting of sitting, standing, walking

and lying. Following this, subjects were required to wear the TA unit for the rest of

the day as they performed their daily activities. They were also required to complete

a daily health question, a weekly health questionnaire and a falls diary. The results

pertaining to the directed routine are presented here. The results pertaining to the

monitoring of free movement are presented in section 8.5.

Subjects

Six subjects participated in the study. Subject characteristics are shown in table

8.6. Other subject characteristics pertinent to the study of free movement are

presented in section 8.5. All subjects were over 80 years of age, healthy and living

independently at home.
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Subject no. days routine

carried out

no. days routine

missed

no. routine

repetitions

92 0 96
2 78 0 80
3 66 7 69
4 59 0 59
5 60 8 6
6 48 8 52

Table 8.7: Details of daily routine performance in study 4D

Use

During the study period, 4 7 repetitions of the daily routine were recorded (table

8.7). Subjects and 2 carried out the daily routine every day during the study. The

other subjects did not carry out the daily routine on a number of occasions due to:

• confusion on how to use the system;

• technical di culties with the system;

• being away from home; and

• going out for the day and not getting around to carrying out the routine.

Self-Reported Health Status

Most of the time subjects reported their daily health as being about the same as the

previous day. This indicates that the subjects’ health remained stable throughout

the study period. The histogram in figure 8.2 shows the complete set of responses

given by the six subjects.

Figure 8.3 shows the overall scores for the weekly coop/wonca test for each of

the six subjects by date.

Directed Movement - Data Analysis

Preliminary Processing A total of 4 7 iterations of the daily routine were car-

ried out. The routine consisted of a 30 s stand (movement ), a stand-to-sit tran-

sition (movement 2), a period of sitting (movement 3), a sit-to-stand transition

(movement 4), a period of standing (movement 5), walking (movement 6), a period

of standing (movement 7), a stand-to-lie transition (movement 8), a period of lying

(movement 9), a lie-to-stand transition (movement 0), and a period of standing
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Figure 8.2: Histogram of self-reported daily health status (N = 337). The question
asked was “How would you rate your health today compared to yesterday?”, and
the responses were . much better; 2. a little better; 3. about the same; 4. a little
worse; and 5. much worse.

0

5

10

15

20

25

1/9 21/9 11/10 31/10 20/11 10/12 30/12

Date

C
o

o
p

-
W

o
n

c
a
 S

c
o

r
e Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Figure 8.3: Self-reported weekly health status–scores from the coop/wonca health
questionnaire for each subject. Lower scores indicate a better health status.
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(movement ). Of these, the following were discarded from the analysis due to

either corruption of the signal , or failure of the subject to perform the movement

in such a way that allowed unambiguous identification (for example, pressing the

button at the wrong time, or not carrying out a movement):

• 7 instances of movement ;

• 2 instances of movement 2;

• 4 instances of movement 3;

• 3 instances of movement 4;

• 4 instances of movement 5;

• 2 instances of movement 6;

• 4 instances of movement 7;

• 3 instances of movement 8;

• 3 instances of movement 9;

• instances of movement 0; and

• instances of movement .

All remaining instances were included in the subsequent analysis. This resulted

in the analysis of 2054 directed activities and 245 directed rest periods.

The number of button presses recorded in each iteration of the routine were

counted. Six button presses were expected each time. There were more than the

six expected button presses in 34 of the routine iterations. On 30 of these occasions,

the subject had pressed the button twice in rapid succession, as part of the same

button press action. In these cases, the anomaly was automatically corrected and

the first of the two button presses was used as the marker to indicate completion of

the last activity. On four occasions the subject had pressed the button at the wrong

time (for example, in the middle of a period of lying) and these button presses were

removed manually from the signal so that the signal data could be included in the

statistical analysis.

This occurred intermittently in the data from subject 2 due to a bad solder joint. There were
also a small number of occasions when data were lost in transmission during a movement and
these movements were excluded from the analysis.
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Type of movement Occurrences

movement during button press 264
movement while standing 64
movement while sitting 39
movement while lying 28
walk to chair 8
walk to bed 83
pre-walk movement 27
pre-routine movement 7
post-routine movement 0
other 35
Total 555

Table 8.8: Extraneous movements occurring during 4 7 iterations of the directed
routine in study 4D.

Movement Identification When the activity detection algorithm (refer to sec-

tion 6.5) was applied to the signals it correctly identified all of the 2054 periods of

directed activity and an additional 555 periods of extraneous activity.

The extraneous activities occurred at various times during the routine. The

most common cause of extraneous activity was the subject moving the TA unit

in order to reach the button. Extraneous activities also occurred in the middle of

periods of rest as subjects adjusted their postures, and when they took several paces

before carrying out the next activity. For example, when instructed to lie down,

some subjects would typically be standing several paces away from the bed and

would need to move closer before they could lie down. When instructed to walk,

some subjects would often take one or two steps and then pause before embarking

on the period of walking. Table 8.8 lists the extraneous activities according to type.

03 periods of compound movement were identified by manual inspection. Most

of these occurred during walking. They occurred because the subjects sometimes

stopped for several seconds during the 60 s period of walking before continuing,

and these interruptions were identified as periods of rest by the activity detection

algorithm. Others occurred during the stand-to-lie transitions and the lie-to-stand

transitions when the subject performed the movement in two stages; as a transition

between standing and sitting, and a transition between sitting and lying. The

compound movements are summarised in table 8.9. Almost all of the compound

movements between standing and lying were performed by a subject . When

the way in which she performed the routine was discussed with the subject, it

eventuated that whenever she was wearing shoes that had been outside or that she

had been working in, she performed the sit-to-lie transition by sitting down on the
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Movement Occurrences Correctly Identified

walk 67 52
stand-to-lie 3 0
lie-to-stand 23 6

Table 8.9: Compound movements occurring during 4 7 iterations of the directed
routine in study 4D.

bed, removing her shoes, and then lying down. To stand up again, she performed

the procedure in reverse. If the shoes were loose slip-on shoes she was often able to

kick them o rapidly without needing to reach down and remove them. On these

occasions the stand-to-lie transition was recorded as a single movement. On the

other occasions the movement was recorded as a compound movement. Hence more

compound lie-to-stand movements were recorded than stand-to-lie movements.

The automated algorithm correctly identified 78% of the walking compound

movements. Four of the compound walking movements that were not detected

as such contained a period of activity of duration of less than 3 s (the duration

threshold for the walking identification algorithm) that was not classified as walking.

The other eleven compound walking movements that were not detected as such

contained a period of activity that was not identified as cyclic activity and so was

not classified as walking. In all of these cases, the other period of activity contained

between the two button presses was identified as walking and so was identified as

the directed activity by the automated algorithm.

The automated algorithm correctly identified only 44% of compound transitions

between standing and lying. This was due to the di culty of identifying transitions

between sitting and standing in this context. After performing a lie-to-sit transition,

the subject sat upright rather than reclining. She remained sitting only briefly before

performing the sit-to-stand transition. As a result, the classifier could not determine

whether the subject was sitting or standing during the period of sitting, and this

made it very di cult for the classifier to distinguish between a sit-to-stand transition

and other movement in this context. On all of the occasions on which a compound

transition was not detected, the sit/stand transition was not identified and the

sit/lie transition was identified as the directed activity.

The results of the automated classification are summarised in table 8. 0. In this

study 20 0 (97.9%) of the 2054 directed activities were correctly identified. The

errors were as follows.

• On occasion the system failed to identify either of the two periods of activity

that were contained between two button presses as the expected directed
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Iterations of routine (N = 6) 4 7
Directed activities 2054
Directed rest periods 245
Total activities detected 2609
Extra periods of activity detected 555
Compound movements 03
Activities correctly classified 20 0 (97.9%)
Activities incorrectly classified 44 (2.1%)

Table 8. 0: Characteristics of collected data and classification results from study
4D.

activity.

• On 5 occasions an extraneous period of activity was incorrectly determined

to be the directed activity.

• On 35 occasions the system did not detect a compound movement as being

such, but rather identified one part of the movement as being the complete

movement.

• On 3 occasions the system erroneously identified a compound movement.

8.3.5 Statistical Analysis of Directed Movements

Mean, median, standard deviation, minimum, maximum and range were computed

for each of the parameters listed in table 7. for each subject and across all subjects

in each study. The descriptive statistics across all subjects in each of the three

cohorts are tabulated in appendices D—F. These appendices also contain boxplots

of tilt angle, SMA, x, y and z-axis acceleration means and ranges, and magnitude

acceleration vector, , mean and range, plotted for each of the movements across

all subjects in the cohort, for each of the three cohorts of studies 2D, 3D and 4D.

Boxplots showing the vertical tilt angle and the SMA for each of the directed

movements for each subject for studies 2D and 4D are also included in the appen-

dices.

Consistency of Results

The tables in appendices D—F give the means and standard deviations for every

parameter for each cohort. In each subject cohort, the results obtained for each

parameter for each subject were similar in each repetition of the directed routine.
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study 2D study 3D study 4D

duration SMA duration SMA duration SMA
(s) (×10 3 g) (s) (×10 3 g) (s) (×10 3 g)

resting N/A 73 N/A 57 N/A 58
stand-to-sit 4.4 284 3.4 345 4.8 284
sit-to-stand 2.6 278 3.9 334 3.5 257
walk N/A 379 N/A 433 N/A 282
stand-to-lie 6. 376 5.7 388 6.4 323
lie-to-stand 6.6 38 5.5 360 6.0 262

Table 8. : Mean values for some parameters from the directed studies.

In study 3D, in which the subject remained healthy throughout the study and

performed 62 iterations of the routine, the standard deviation in the parameter

values was less than 5% of the range for the parameters. In studies 2D and 4D the

parameter values were also similar between subjects within the cohort.

Mean Values of Selected Parameters

In study 2D, the average step rate (mean ± standard deviation) across all subjects

in study 2D was 1.85± 0.30Hz (measured by the Fourier transform method). The

mean step rate variability for each period of walking (measured by the template

matching method) was 0.25 s. In study 3D, the mean step rate for the subject was

1.55 ± 0.12Hz and the mean step rate variability for each period of walking was

0.23 s. In study 4D the average step rate across all subjects was 1.77± 0.25Hz, as

estimated by the Fourier transform method and the mean step rate variability was

0.3 s.

Small amounts of postural sway were detected for all subjects during the 30 s

period of quiet standing. In study 2D the mean frequency of the sway across all sub-

jects was 0.27Hz with an average interquartile range of 6×10 3 g in the magnitude

acceleration vector. In study 3D the mean frequency of the sway was 0.25Hz with

an average interquartile range of 15× 10 3 g in the magnitude acceleration vector.

In study 4D the mean frequency of the sway across all subjects was 0.28Hz with

an average interquartile range of 8× 10 3 g in the magnitude acceleration vector.

The mean values for some of the other significant parameters across all iterations

of the routine for all subjects in each cohort are given in table 8. .
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Figure 8.4: Boxplot showing the SMA values for periods of activity and periods of
rest for studies 2D, 3D and 4D.
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Figure 8.5: Boxplot showing the acceleration magnitude range values for periods of
activity and periods of rest for studies 2D, 3D and 4D.
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Di erences Between Activity and Rest

Figures 8.4 and 8.5 show the values of the SMA and acceleration magnitude range

during periods of rest and activity for each of the three studies, 2D, 3D and 4D.

In each case, the values are taken across all iterations of the routine performed

by all subjects. In each study there was a significant di erence in mean values of

SMA and acceleration range between the periods of activity and the periods of rest.

Within each study, the average value of each directed period of activity di ered

significantly from the average value of each directed period of rest, and vice versa,

with one exception. This exception occurred in study 2D, movement (when

the subjects were standing after performing a lie-to-sit transition). The subjects

exhibited significantly more movement during this period of rest than in any period

of rest and the SMA and the acceleration ranges were comparable to those obtained

during activity (this can be seen in the data presented in appendix D). There are

several possible causes for the di erence in movement levels between this period of

standing and the other periods of standing:

• Subjects may have pressed the button early, before they had fully completed

the lie-to-stand transition, and so some activity at the end of the transition

was included in the period of standing.

• Subjects may have taken several seconds to fully regain their standing balance

after lying down and this may have led to more movement at the start of the

standing period.

• Subjects knew that this was the last required action and this may have led to

some restlessness as they waited for the testing to finish.

Further study would be required to determine the actual cause of the di erence.

Di erences Between Postural Orientations

In all three studies statistically significant di erences were obtained between lying

and other postures in the mean x-axis accelerations and in the tilt angles. Sta-

tistically significant di erences were also found in all three studies between sitting

and standing in the mean x-axis acceleration and in the tilt angle. Both the mean

tilt angle and the mean x-axis acceleration were greatest when subjects were lying

and least when subjects were standing. In studies 2D and 3D, statistically signif-

icant di erences between all three postural orientations were found in the mean

y-axis accelerations, but in study 4D no significant di erences were found between
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movements study (stand) 3 (sit) 5 (stand) 7 (stand) 9 (lie)

(stand) 2D *** *** *** *** ***

3D * *** - - ***

4D - *** - - ***

9 (lie) 2D *** *** *** ***

3D *** *** *** ***

4D *** *** *** ***

7 (stand) 2D - *** -

3D * *** *

4D - *** -

5 (stand) 2D - ***

3D - ***

4D - ***

3 (sit) 2D ***

3D ***

4D ***

Table 8. 2: A comparison of mean x-axis accelerations for di erent postural orienta-
tions for studies 2D, 3D and 4D. The postural orientations listed in the left column
are being compared to the postural orientations listed in the top row for each of the
three studies. These postural orientations were taken from the daily routine of
directed movements. The table indicates pairs of postural orientations for which the
mean x-axis acceleration is significantly di erent. indicates p < 0.05, indicates
p < 0.01, indicates p < 0.001 and indicates that there was not a statistically
significant di erence in mean values.

any postural orientations in the y-axis acceleration. The results are summarised in

tables 8. 2, 8. 3 and 8. 4.

Detection of Walking

Each period of detected activity was tested to determine whether or not it was a

period of walking. Three techniques for determining whether the movement was

cyclic were tested. These were (i) the algorithm based on the Fourier transform;

(ii) the template matching algorithm applied to the signals from all three axes with

a majority vote at the end; and (iii) the template matching algorithm applied only

to the z-axis signal. The complete walking detection algorithm was also applied to

detect periods of activity. The results of the walking detection are summarised in

table 8. 5.

In study 2D the Fourier transform algorithm performed best in terms of iden-

tifying periods of walking. This method correctly identified 64 of the 65 periods

of walking, compared to 37 instances detected by the template matching algorithm
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movements study (stand) 3 (sit) 5 (stand) 7 (stand) 9 (lie)

(stand) 2D - *** - - ***
3D - *** - - ***
4D - - - - -

9 (lie) 2D *** *** *** ***
3D *** *** *** ***
4D - - - -

7 (stand) 2D - *** -
3D - *** -
4D - - -

5 (stand) 2D - ***
3D - ***
4D - -

3 (sit) 2D ***
3D ***
4D -

Table 8. 3: A comparison of mean y-axis accelerations for di erent postural orienta-
tions for studies 2D, 3D and 4D. The postural orientations listed in the left column
are being compared to the postural orientations listed in the top row for each of the
three studies. These postural orientations were taken from the daily routine of
directed movements. The table indicates pairs of postural orientations for which the
mean y-axis acceleration is significantly di erent. indicates p < 0.05, indicates
p < 0.01, indicates p < 0.001 and indicates that there was not a statistically
significant di erence in mean values.
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movements study (stand) 3 (sit) 5 (stand) 7 (stand) 9 (lie)

(stand) 2D *** *** *** *** ***
3D - *** - - ***
4D ** *** *** *** ***

9 (lie) 2D *** *** *** ***
3D *** *** *** ***
4D *** *** *** ***

7 (stand) 2D - * -
3D ** *** *
4D - *** -

5 (stand) 2D - **
3D - ***
4D - ***

3 (sit) 2D **
3D ***
4D ***

Table 8. 4: A comparison of mean tilt angles for di erent postural orientations for
studies 2D, 3D and 4D. The postural orientations listed in the left column are being
compared to the postural orientations listed in the top row for each of the three
studies. These postural orientations were taken from the daily routine of directed
movements. The table indicates pairs of postural orientations for which the mean
tilt angle is significantly di erent. indicates p < 0.05, indicates p < 0.01,
indicates p < 0.001 and indicates that there was not a statistically significant
di erence in mean values.

Method walking identification rate

study 2D study 3D study 4D
Fourier transform method 98.5% 100% 85.8%
template matching method, 3 axes 56.9% 100% 83.9%
template matching method, z-axis 75.4% 100% 86.7%
complete walking detection algorithm 98.5% 100% 99.5%

Table 8. 5: Performance of the three walking detection algorithms.
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applied to all three axes and 49 instances detected by the template matching al-

gorithm applied only to the z-axis signal. The one period of walking that was not

detected by the Fourier transform method was not detected by either of the other

methods and so application of the complete walking detection algorithm led to a

true positive classification rate of 98.5% (64 of 65 instances correctly detected). In

study 3D all three walking algorithms detected every instance of walking. In study

4D the Fourier transform method identified 85.8% of walking activity with no false

positive detections. The template matching algorithm applied to all three axes cor-

rectly identified 83.9% of walking activity. When the template matching algorithm

was applied to the z-axis acceleration alone it correctly identified 86.7% of walking

activities. Application of the complete walking detection algorithm led to a true

positive classification rate of 99.5% (4 3 of 4 5 instances correctly detected). None

of the methods resulted in any false positive classifications in any of the studies.

The average step periods were then determined for each of the periods of walk-

ing that were detected by all three methods. In study 2D the Fourier transform

method consistently measured the single step period, whereas the template match-

ing method consistently measured the cycle time (double step period). When this

di erence was corrected for (by halving the estimates obtained from the template

matching method) the average di erence (mean ± standard deviation) in the esti-

mated average walking period between the first two methods was 5.4±2.7 samples.

(Given a sampling rate of 45 Hz, this is equivalent to an average di erence of

0.12± 0.06 s between estimates from the di erent methods.) In study 3D, all three

methods consistently measured the single step period. The mean di erence (± stan-

dard deviation) in estimated average walking period between the first two methods

was 2.39 ± 1.75 samples. In study 4D the Fourier transform method consistently

measured the single step period in this cohort, whereas the template matching

method consistently measured the cycle time. When this di erence was corrected

for (by halving the estimates obtained from the cross correlation method) the di er-

ence (mean ± standard deviation) in the estimated average walking period between

the first two methods was 8.77± 8.01 samples. The results are summarised in table

8. 6.

Longitudinal Tracking of Parameters

Study 2D Insu cient data were collected from each subject in study 2D for any

longitudinal tracking to be undertaken.
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study 2D study 3D study 4D
method 24.99± 4.86 29.22± 1.87 25.90± 3.22
method 2 21.58± 4.76 29.67± 5.04 24.58± 5.66
method 3 23.57± 5.68 28.51± 3.12 21.50± 5.56

Table 8. 6: Average step period (mean± standard deviation) in samples for subjects
in each study, computed by each of the three methods. Method : Fourier transform
method; method 2: template matching on 3 axes, and method 3: template matching
on the z-axis. One sample corresponds to 1

45
s

Study 3D Slight to moderate correlations were found between day of testing

(from the beginning of the study period) and

• the duration of the stand-to-sit movement (Spearman-rank r = 0.320);

• the SMA of the stand-to-sit movement (r = 0.422);

• the SMA of the sit-to-stand movement (r = 0.288);

• the SMA when sitting (r = 0.389); and

• the tilt angle when sitting (r = 0.534).

There was no change in the mean value of any of the other parameters over time.

The time-based correlations that were detected suggest a learning e ect that

occurred as the study proceeded. At the start of the study, the subject was less

sure of the sequence of events and as a consequence, needed to move into position

before sitting down, remained sitting upright during the sitting phase, and moved

more vigorously than normal. As the study progressed the subject became more

accustomed to the routine and carried out the movements more promptly, resulting

in a decreased stand-to-sit duration. The subject also became more relaxed, and

this led to more natural movements with a reduction in SMA and an increase in

tilt angle when sitting.

Study 4D A learning e ect was also evident in the signals recorded from the

directed routine in this cohort. As subjects became more familiar with the proce-

dure, the signals became smoother, with less extraneous movement. This e ect is

illustrated in figure 8.6, which shows the traces obtained from subject on the first

day of use (figure 8.6a) and five days later (figure 8.6b). It took —2 weeks of using

the system before subjects became comfortable with the procedures. This agrees

with feedback provided by the subjects, which changed over the course of the study.
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At the start of the study all subjects reported being nervous and were concerned

that they would not carry out the routine correctly. However, after two weeks all

subjects reported that they had no di culty in carrying out the directed routine

and at the end of the study all of the subjects reported that they found the directed

routine very simple and straightforward. Regardless of this learning e ect, all of

the signal traces were included in the analysis.

Each of the parameters of movement was tested for correlation with day of

testing (from the beginning of the study period) and with the daily and weekly

self-reported health status. Although there was a learning e ect present over the

first —2 weeks for each subject, there was no change in the mean value of any of

the parameters over time and no correlations were found between day of testing and

any of the measured parameters. No correlations were found between self-reported

health status and any of the measured parameters. This suggests that the functional

status of each of the subjects remained stable throughout the study period. This

is in agreement with the self-reported health status from the weekly questionnaire,

and the assessments performed at the beginning and end of the study, which showed

no change in functional status over the study period.

E ects of Supervision and Environment

The presence of supervision had no noticeable e ect on the manner in which the

directed routine was performed. In study 2D the activity detection algorithm cor-

rectly identified every period of directed activity as activity and every period of

directed rest as rest. This indicates that the activity detection algorithm that was

developed and evaluated in supervised laboratory studies was appropriate for use in

an unsupervised laboratory setting with a similar cohort of subjects, and that the

same algorithm parameter values (for parameters th, w, and n) which were optimal

in the supervised environment were also suitable in the unsupervised environment.

Similar results were achieved in study 3D, in which the same algorithm with the

same parameter settings was used in a supervised home environment, and so it can

be concluded that this algorithm is also suitable for use in a home setting.

The parameter values obtained in studies 2D and 3D were similar to those

obtained in the supervised laboratory studies. This indicates that the algorithms

developed in chapter 6 are also suitable for use in unsupervised and home settings

with a similar subject cohort. Moreover, the parameter values obtained in studies

2D and 3D were similar to each other. Three statistically significant di erences were

detected in parameters of two di erent movements between the subject groups.

The home subject of study 3D recorded a statistically greater SMA and a more
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Figure 8.6: An example of learning on the daily routine signal in study 4D. (a) the
trace obtained from subject on the first day of use, and (b) the trace obtained
from subject five days later. The second trace is smoother than the first and
contains less extraneous movement and pauses during activities. The three signals
have been shifted vertically to allow them to be seen more clearly. From top: z-axis,
y-axis, x-axis, and button press.
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upright posture than the laboratory subjects during the stand-sit-stand phase of

the routine, and a lower SMA during the final stand phase (p < 0.001). There was

also a statistically significant di erence in the duration of the lie-to-stand transition

(p < 0.001), with the home subject carrying out the activity more quickly than the

subjects in the laboratory. The higher SMA recorded in the study 3D subjects

during the final period of standing is consistent with the earlier finding that these

subjects moved about more during this period of standing than in the earlier periods

of standing. As discussed, this may have been due to a preemptive pressing of

the button before the lie-to-stand transition was completed, or due to anxiety to

complete the test. The home subject did not demonstrate this characteristic. The

finding that the home subject carried out the lie-to-stand transition more quickly

than the subjects in the laboratory was to be expected as the home subject lay on

a bed, whereas the CHI subjects lay on the floor.

In every study, the SMA alone could be used to distinguish between rest and

activity, and tilt angle alone could be used to distinguish between upright and lying

postures. Moreover, there was found to be a statistically significant di erence in the

acceleration signals on the x- and z-axes between sitting and standing postures. All

of these results are in agreement with the results found in the supervised laboratory

tests.

E ect of Age

The parameters obtained in study 4D were compared to those obtained in study

2D. Since it was established that neither the presence or absence of supervision, nor

a laboratory or a home setting a ected the way in which the directed routine was

performed, this allowed a comparison between the manner in which the directed

routine was performed by a young cohort and the way in which it was performed

by an elderly cohort.

The postural orientations of both subject groups were similar for each posture.

The activity durations were also similar between the two groups. The mean (±

standard deviation) time taken for the sit-to-stand transition was 2.6± 0.8 s for the

younger cohort, and 3.5±1.3 s for the elderly cohort. This di erence was statistically

significant (p < 0.001), but there were no other significant di erences in activity

durations.

The elderly group recorded lower SMA values for all activities but the stand-

to-sit transition (p < 0.001). They also recorded greater SMA values during the

30 s stand and during the lying period (p < 0.001), and a lower SMA value during

the final standing period (p < 0.001). Consistent with this, the elderly cohort
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recorded a smaller acceleration range during activity than the younger cohort and

a greater acceleration range during periods of rest (p < 0.01), except in the last

period of standing when they recorded a significantly smaller acceleration range

(p < 0.001). As these results were obtained consistently for almost every movement,

it can be concluded that the younger cohort were able to remain more still than

the older cohort during rest periods, and moved more vigorously during periods of

activity than the elderly subjects, although there was no di erence in the amounts

of postural sway measured in the two groups.

There was no di erence between the cadence or the variability of the gait between

the two groups.

8.3.6 Discussion

The values of the parameters that were extracted from the routines showed consis-

tency within subjects and between subjects. This indicates that the waist mounted

TA is a reliable instrument for unsupervised monitoring of movement. Other studies

have demonstrated a high test-retest reliability when using accelerometers attached

to the head and trunk for posture and activity analysis [92, 69]. The current study

demonstrates a similar reliability when the TA unit is attached at the waist and

used in an unsupervised setting. The values of the parameters that were extracted

are also comparable to the values that would be expected, based on the literature.

For example, normal sit-to-stand transition times are around 1—3 s [ 2 , 22], and

typical step rates during walking are around 1.5—2 steps per second [56, 70, 87].

The sit-to-stand and stand-to-sit transition times obtained in this study were at

the high end of those expected from the literature, although they are well within

the ranges reported by Kralj et al. [ 28] and are substantially less than those times

reported for subjects with disability [ 72]. In the current work, the start and stop of

each activity were defined in terms of the magnitude of the acceleration generated

by the subject and encompassed the entire period over which the body was not

at rest. This definition of start and stop di ers from that used in biomechanical

studies in which the start and stop of the activity are defined in terms of reaction

forces and body position, and the defined transition can start after the body has

begun moving and end before the body has completely stopped moving. This led

to slightly longer timing results for activities using this TA system when compared

to results presented in the literature. The stand-to-sit transition times were also

lengthened slightly in studies 2D and 4D by subjects needing to move into position

(for example, needing to turn around) in order to sit down. The subject in the
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supervised study 3D always commenced the period of standing (movement ) in a

position from which she could sit directly down, although she was given the same

instructions as the other subjects, and this resulted in shorter measured stand-to-sit

transition times for this subject.

There were no significant di erences in the results obtained between the 2D and

3D studies, except that the unsupervised laboratory cohort exhibited a greater level

of movement during the final period of standing. In each study, the results indi-

cated that activities and postures could be identified using the same methods and

algorithmic parameter settings that were applied to the supervised laboratory data.

The results that were obtained indicate that the methodologies and parameters de-

veloped in the supervised laboratory studies for directed movement are appropriate

for monitoring of a similar subject cohort in an unsupervised setting and in the

home. Moreover, the durations, tilt angles, mean acceleration values, SMA values

and acceleration ranges obtained in this study were similar to those obtained in the

supervised laboratory studies, which indicates that the manner of performance of

the routine is basically una ected by the presence or absence of supervision.

Study 4D collected data from a cohort of elderly subjects. When these data

were compared to those of the younger subjects it was found that the elderly sub-

jects performed the sit-to-stand transition more slowly, exhibited more movement

while resting and recorded lower SMA values for all activities but the stand-to-sit

transition than the younger subjects. All of these di erences indicate changes con-

sistent with normal ageing [ 05, 22, 66, 82, 234], and are the result of age related

reductions in body strength and postural control.

Although postural sway was recorded during quiet standing for every subject,

the levels of sway that were detected were very slight (6—15 × 10 3 g) compared

to those achieved by the subject who performed the postural sway study of section

6.6.8. That subject recorded a peak-to-peak sway amplitude of over 100 × 10 3 g

when swaying as vigorously as possible. The mean sway frequency was similar in

both studies–around 0.26Hz, and this is in agreement with values reported in the

literature [240].

In addition to the parameters that were recorded, the amount of extraneous

activity recorded during the directed routine and the presence of compound move-

ments may also prove to be clinically useful. Periods of extraneous activity were

more common among the elderly subjects than among the younger subjects. The

amount of extraneous activity following directed activity, and during standing, are

parameters that warrant further investigation. The amount of movement carried

out by a subject immediately following a sit-to-stand or a lie-to stand transition
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may provide a measure of the dynamic balance capabilities of the subject. For ex-

ample, if a subject needs to take several steps after standing up in order to regain

balance it may be an indicator of poor balance. The same may be true of movement

during quiet standing.

Compound movements were also more common among the elderly cohort than

among the younger cohorts. Further work is required to determine whether com-

pound movements become increasingly prevalent with increasing frailty or illness,

but if so, then the time-spread of energy expenditure during the activity may be a

useful parameter in characterising the activity, particularly for transitions (i.e. was

the subject able to complete the transition as a single movement, or were several

stages of movement required?). Future work should investigate the utility of these

parameters.

One of the reasons for introducing a directed routine was so that data could be

obtained from known movements. In spite of the presence of extraneous activities,

the use of the directed routine with button presses acting as markers resulted in

very high classification accuracies (at least 97.8% for all activities in every study).

This performance far exceeds the classification rates that have been achieved in the

classification of free movement, which is discussed in section 8.4. It also ensures that

the movements are performed in the same way so that there is as little uncontrolled

variation as possible in the performance of the movements over time.

In these studies, during the directed routine, subjects were asked to remain sit-

ting and lying for 10 s. This value was chosen as a trade-o between compliance

and data collection, because in directed laboratory studies subjects expressed im-

patience if the routine took too long. However, in the unsupervised studies, and

particularly in study 4D, subjects often spent several seconds getting comfortable

in the new posture, and this reduced the amount of time spent in the directed pe-

riods of quiet rest. Time constraints were a less important factor for the elderly

cohort, and the time spent in sitting and lying could probably be increased to 30 s

without increasing the inconvenience to the subject. This would increase the time

over which the average parameter values were measured during these periods, by a

factor of 3, and so increase the accuracy of the measurements. The standing period

should not be increased from 30 s, as several of the elderly subjects found that this

was a long time to be standing quietly and were glad to sit down at the end of it.

For frail or ill subjects, this period of standing would be more di cult. Moreover,

30 s appears to be a su cient time in which to collect information on balance and

sway [ 2, 39, 62] so a longer period is not required.

There were a substantial number of extraneous activities performed in the di-
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rected routine, particularly by the elderly subjects. Many of these periods of activity

occurred when subjects moved the TA unit in order to press the button. The pe-

riods of extraneous activity made it more di cult to identify the actual directed

activities. A period of 5 s was allowed for the directed transition activities before

the instruction to press the button was given. This led to a situation in which

subjects would complete the transition and almost immediately reach to press the

button. Increasing the period allowed to 10 s would increase the spacing between

the directed activity and extraneous activity due to button press, which would add

a clear period of rest of at least five seconds after the directed activity and this

would make it easier to identify the directed activity.

This would require a slight modification of the instructions. For example, the

instruction, “Please sit down” would need to be modified to “Please sit down and

then remain sitting quietly” to ensure that the subject understood the requirement

for quiet rest at the completion of the activity. The requirement for quiet rest was

not specifically mentioned in the instructions that were given due to a decision to

keep the instructions as simple as possible. During training it was ensured that all

subjects understood that they were required to stand, sit and lie quietly during the

periods of rest. However, it may be beneficial to specifically mention during the

directed routine that the subject should remain still during the rest periods.

The walking algorithms that were presented in section 6.8 were tested on the

data obtained from the sequences of directed movement. This allowed a direct

comparison of the di erent methods on walking that was not strictly regulated. In

study 2D the Fourier transform method performed substantially better than the

template matching methods, but in studies 3D and 4D there was little di erence

between the methods. The most likely reason for the di erence in performance

of the template matching algorithm in study 2D compared with the other studies

is that the subjects of study 2D changed their walking style during the period of

walking whereas the subjects who performed the routine at home did not. In the

home subjects were able to carry out the routine uninterrupted and perform the

walk along a familiar route that was free of obstacles. On the other hand, study 2D

was carried out in an o ce environment during business hours. Subjects may have

been interrupted by colleagues during the period of walking, or needed to avoid

obstacles or other people moving along the corridor. This would lead to subjects

changing their gait styles. The template matching algorithm depended on each

step being carried out in the same way. If the template matching algorithm chose

a template from a period in which the subject’s gait was a ected by interruption

then it may not have found su cient repetitions of the template in the signal for
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it to declare the period of activity to be cyclic. Better results were obtained in the

home studies because subjects maintained a more regular gait.

If this reasoning is correct, then the template matching algorithm could be

improved by using a specific, rather than a random, template. A template could be

chosen for the subject from a sample of free walking and then this template used

in the analysis of other periods of walking.

No benefit was found in using the three-dimensional template matching tech-

nique over the z-axis alone. Moreover, in all of these studies, the Fourier-based

method performed as well as the pattern-matching techniques. This is because all

of the subjects involved in these studies exhibited normal, regular gait. The Fourier

based method is expected to perform less well in the presence of irregular or patho-

logical gait where a clear frequency peak is not present. In these cases, the template

matching technique is expected to be more e ective. Future work should involve the

identification and analysis of abnormal gait with a TA using automated algorithms.

The complete walking detection algorithm identified all of the periods of walking

in study 3D and all but one period in studies 2D and 4D. In study 4D this gave

a better performance than either the Fourier transform method or the template

matching method alone. It also generated no false positives, so from this study it

can be concluded that the sequential use of classifiers improves the true positive rate

of walking identification without having a detrimental e ect on the false positive

rate.

Each of the three methods for measuring the mean step rate gave a slightly

di erent value. This is to be expected as the average was computed in a di erent

way in each case. Moreover, it would be expected that several applications of the

template matching method would give slightly di erent values, depending on the

template that was selected. However, each of the estimates of mean step rate was

within one standard deviation of the other mean estimates (table 8. 6).

The Fourier transformmethod consistently measured the single step rate, whereas

the template matching method sometimes identified the single step rate and some-

times identified the double step rate. When there was su cient regularity and

symmetry between left and right steps then the template matching algorithm found

that both left and right steps matched the template signal su ciently well and the

single step rate was measured. When there was not su cient symmetry then the

template matching algorithm only matched the steps performed by the same foot

that the template was taken from and this resulted in a measurement of the double

step rate.

In study 4D all of the subjects remained relatively healthy throughout the study
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and no changes in health or functional status were measured between the start and

the finish of the study. The finding that there were no trends in the measured

parameters over time for any of the subjects was consistent with this. The next

stage of work requires a field trial to test the hypothesis that longitudinal trends

will be found in the measured parameters when the health status of the subject

changes over time (refer to section 9.6).

In these studies the button on the TA unit was used as an indicator that an

activity was completed. This methodology also provides a convenient means of

regularly testing the performance of the button, which can be used as a personal

alarm during periods of free movement.

In these studies all subjects carried out the same directed routine. The move-

ments that were tested were all movements basic to independent living. However,

in cases where a subject with a specific condition is being monitored the directed

routine could and should be customised to monitor movements particular to the

needs of the subject.

8.3.7 Conclusion

The studies of directed movement that were carried out in supervised and unsuper-

vised laboratory and home settings demonstrated that the TA system can be easily

used by subjects, both young and elderly. The high degree of consistency between

subjects in di erent studies in the values of the parameters extracted from the

routines indicates that the manner of performing the routine was not significantly

a ected by investigator supervision or by location (laboratory or home). Thus, the

system that was developed using normal healthy subjects performing in a super-

vised laboratory environment can validly be extended for use in an unsupervised

home setting.

The movements in the directed routine were automatically classified with 98%

accuracy. The parameters of movement that were discussed in the previous chapter,

including transition times, postural sway and walking speed were successfully ex-

tracted from the acceleration signals. The values obtained were in agreement with

values obtained in other published research. When the parameters obtained from

the elderly cohort were compared to those obtained from the younger cohorts, it was

found that the elderly subjects took significantly longer to stand up after sitting,

that they recorded significantly lower SMA values during activity, and higher SMA

values during rest.
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8.4 Supervised Home Study of Free Movement

(study 3F)

1F

3F 2F

4F

8.4.1 Introduction

One 28 year old, healthy female subject was provided with a TA system for three

months. The subject was asked to wear the TA device whenever she spent at least

half a day at home during that period. She was asked to keep a diary to record her

movements during these periods.

8.4.2 Use

During the three month period for which the subject had the TA system, she wore

the TA during the day on fifteen separate occasions and kept a diary record on ten

of these occasions. The five days on which the device was worn, but no diary record

kept, were excluded from the analysis.

On five occasions, the subject’s diary was insu ciently detailed for it to be

of use in identifying movements. For example, the diary entry for one occasion

read, “Started around 9:30. Stopped around 5. Wandered around home. Did some

computing, washing, sat round and played with the dogs.”. Other diary entries

were extremely detailed, specifying the exact time of each movement, for example,

“... 0:32:57: sat down again to write in log. 0:33:46: hung out washing ...”.

The five occasions for which the diary entry was not adequate were included in the

calculation of the proportion of transmitted data that were received, but were not

used to evaluate the classification algorithms.

Details of the ten occasions on which data were collected and a diary kept are

summarised in table 8. 7.
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Occasion Duration (hours) Diary adequate?

7. 9 yes
2 0.50 yes
3 4.77 yes
4 8.50 no
5 0.29 yes
6 .08 yes
7 2.04 no
8 9.02 no
9 3.37 no
0 8.67 no

Table 8. 7: Summary of data captured in study 3F.

8.4.3 Data Analysis

Preliminary Processing

The ten occasions on which the subject wore the TA unit and kept a diary gave 45.5

hours of movement around the home. The data capture rate was 90.09%. During

this study, the subject was quite sedentary and was classified as being engaged in

activity for only % of the time.

Movement Identification

The TA signals from the five occasions on which data were collected and a su -

ciently detailed diary was kept were processed by the complete classification algo-

rithm. The baseline values for upright tilt angles and mean SMA that were used in

processing the signal were taken from the data obtained in the directed routine that

was performed on the same day. No abnormally large acceleration spikes indicative

of fall events were present in the data, and no such events were mentioned in the

diary.

The diary entries were compared to the classifications made on the signal. For

each diary entry that described a specific movement, the classifier output for the

same time, plus or minus thirty seconds, was checked. If the classifier output agreed

with the diary entry then the movement classification was deemed correct. If the

classifier output did not agree with the diary entry then the movement classification

was deemed incorrect.

In total, 98 movements were identified from the diary entries. Of these, 64 (65%)

were correctly identified by the classifier. Table 8. 8 shows the results broken down

into basic movements of walking, sit-to-stand and stand-to-sit transitions, standing,
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Walking No. Correct Incorrect Not Detected Not Subclassified

3 2 0 0

detected as other movement (x )

Sit To Stand No. Correct Incorrect Not Detected Not Subclassified

20 9 4 6

detected as lying to upright (x3), stand to sit (x )

Stand To Sit No. Correct Incorrect Not Detected Not Subclassified

24 8 8 7 0

detected as other movement (x3), upright to lying (x3), and

sit to stand (x2)

Standing No. Correct Incorrect Not Detected Not Subclassified

2 0 0 0 2

detected as upright (x2)

Sitting No. Correct Incorrect Not Detected Not Subclassified

23 22 0 0

detected as upright (x )

Toileting No. Correct Incorrect Not Detected Not Subclassified

3 0 3 0 0

detected as lying (x3)

General Movement No. Correct Incorrect Not Detected Not Subclassified

3 3 0 0 0

(cooking, washing hands, housework, wandering about)

detected as upright, with walking and other movement (x 3)

Total No. Correct Incorrect Not Detected Not Subclassified

98 64 6 3 4

Table 8. 8: Classification results from study 3F. The table shows each of the move-
ments listed in the diary, the number of occurrences, the number of occurrences
that were correctly classified, the number that were misclassified, the number that
were not detected, and the number that were classified at the main classification
level but could not be subclassified. The second row in the table for each movement
lists all of the other classifications made for that activity or posture.
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sitting, toileting and general movements. The “general movements” category was

introduced for activities that were described in the diary as “cooking”, “washing

hands”, “housework” and “wandering about the house”. Once the signal had been

classified using the classification algorithm, periods of general movement were iden-

tified. A period of signal was classified as general movement if the subject had an

upright posture and was engaged in short periods of walking and periods of other

activity, interspersed with brief periods of rest, and this pattern was continued for a

period of at least one minute. An example is shown in figure 8.7. In this figure, the

subject is washing the dishes. The period of general movement lasts for about eight

minutes and during this time the subject is upright and periods of other activity

are interspersed with brief periods of rest.

The number of instances of each type of movement were listed in table 8. 8,

together with the number of correct classifications. Instances in which the correct

classification was not achieved were categorised according to the type of error. The

three types were:

. incorrect classification: the movement was classified but the classification was

incorrect,

2. not detected: the activity detection algorithm failed to identify the movement.

In every case this was due to an activity being combined with another activity

with the result that the two distinct activities were detected as a single period

of activity, and

3. not subclassified: the classification algorithm was unable to subclassify the

movement beyond the basic classification.

The incorrect classifications are shown for each category below the main tab-

ulated data. Incorrect classifications were made on 6 occasions. Nine of these

incorrect classifications were made when the subject toileted. The subject recorded

using the toilet on three occasions. On each of these occasions the sitting posture

was recorded as a lying posture. This was due to the trousers to which the TA was

attached being adjusted relative to the subject so that the orientation of the TA

relative to the subject was changed, and resulted in the apparent posture being one

of lying. This also led to the stand-to-sit and sit-to-stand transitions being clas-

sified as upright-to-lying and lying-to-upright transitions, respectively. The other

incorrect classifications were due to sit-to-stand and stand-to-sit transitions being

confused, and walking and transitions being classified as “other activity”.
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Activities were not detected on 3 occasions. All of these activities were sit/stand

transitions that preceded or succeeded a period of walking and in each case the

subject performed the transition and the walk without pausing between the two

movements. An example of this is shown in figure 8.8.

Subclassifications were not made in four instances. In three cases the classifier

could not determine whether the subject was sitting or standing, and in the fourth

it could not subclassify an upright-upright transition. In the other cases involving

sitting and standing the parameters of duration and tilt angle proved very e ective

in discriminating between the two as the subject rarely remained in a quiet standing

posture for more than a few seconds (other than during the routine of directed

movement), and the tilt angle tended to be greater when sitting than when standing.

(This can be seen in figure 8.7.) When these two parameters were used together

with the classification of the preceding activity, all but one of the periods of sitting

were correctly identified. The remaining period of sitting was of short duration and

the subject was sitting upright and the posture could not be distinguished from a

standing posture based on the signal alone. Neither of the periods of standing were

subclassified from an upright posture. As was discussed in section 6.6.5, it is more

di cult to identify a period of upright rest as standing than as sitting based on the

signal alone. Rule-based analysis would be expected to assist in this discrimination,

and this is discussed in the next section.

Heuristic Decision Making

The preceding results describe the performance of the classifier at the times for

which there was a specific diary entry. There were activities identified in the signals

that were not described by specific diary entries. Most of this activity occurred

during periods in which the diary entries inferred that the subject was sitting,

working at her desk. It may be assumed that the subject was predominantly seated,

but that she moved around in order to reach di erent items, and possibly stood up

for brief periods for the same purpose.

In this section, the signals and diary entries were compared for two of the col-

lected data sets. These two data sets were chosen because the accompanying diary

records provided the most detail of the subject’s movements. The purposes of these

comparisons were to observe complex, free movement patterns, to identify char-

acteristic, complex movements, and to determine the e ect of adding a heuristic

overlay to the decision system on the classification accuracy.

The two data sets are shown in figures 8.9 and 8. 0. The classification from

the diary is shown in pink, while the output of the signal classification algorithm is
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Figure 8.7: Illustration of general movement. In this figure the subject is washing
the dishes. The period of general movement is composed of short periods of activity
interspersed with brief periods of rest while the subject is in an upright posture.
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Figure 8.8: Example of an instance in which the subject performs a sit-to-stand
transition and then walks away, all as part of the one movement. Note the irregu-
larity in the gait.
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Data Set 1 Data Set 2

correct incorrect correct incorrect
Algorithm Alone 22 29 8 34
+ Heuristic Decision 9 32 20 32

Table 8. 9: Classification rates for the two data sets when the activity classification
algorithm alone and the activity classification algorithm plus the heuristic overlay
were applied to identify each of the movements in study 3F.

Data Set 1 Data Set 2

correct incorrect correct incorrect
Algorithm Alone 0 8 2
+ Heuristic Decision 7 20 3

Table 8.20: Classification rates after periods of identified activity that were not
described in the diary were disregarded.

shown in black in parts (a) of the figures and the output of the heuristic decision is

shown in black in parts (b) of the figures.

In the first data set, 5 distinct periods of activity and rest (identified by the

activity detection algorithm) were classified. In the second data set, 52 distinct

periods of activity and rest were classified. The automatically classified output was

compared to the output from the diary. Each time that either the diary output or

the classifier output (or both) changed, the two values were compared. If the two

were in agreement then the classification was correct and was given a score of . If

the two were not in agreement then the classification was incorrect and was given a

score of 0. The scores were summed to give an overall accuracy rating. The results

are given in table 8. 9.

Many of the di erences between the diary and the automated classification oc-

curred because the activity detection algorithm detected activities where none were

mentioned in the diary (figures 8.9 and 8. 0). Some of these were classified as pe-

riods in which the subject stood up briefly, while others were classified as “other

movement”. It is likely that the subject moved around a little during periods of

sitting at her desk, working, even though these are not explicitly mentioned in the

diary. If these periods of movement are disregarded and the classification rates are

computed only for the specifically mentioned periods of activity and rest then the

classification rates become those shown in table 8.20.
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Figure 8.9: A comparison between the diary entries (pink) and the automated
activity classifications (black) for study 3F (data set ). (a) shows the output from
the classification algorithm, and (b) shows the output after the heuristic rules were
applied.
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Figure 8. 0: Another comparison between the diary entries (pink) and the auto-
mated activity classifications (black) for study 3F (data set 2). (a) shows the output
from the classification algorithm, and (b) shows the output after the heuristic rules
were applied.
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8.4.4 Discussion

This study allowed the collection of a data set of free movement in which the

movements were known. This enabled complex movement patterns to be identified,

and the performance of the classification algorithm on free movement to be explored.

The activity detection algorithm performed reliably. It detected as activity all

of the periods that the subject described as activity, and classified as rest all of the

periods that the subject described as rest. Thus, the timing of events was accurately

detected in the free movement, although the actual classification accuracy was much

lower than for a data set of directed movement.

Classification of free movement is di cult because of the huge range of di erent

movements that can be performed. Also, basic activities can become complex be-

cause they are performed simultaneously with another activity, or are interrupted

by another movement. The irregular walking pattern shown in figure 8.8 is an ex-

ample of this. The subject has no gait abnormalities but the gait in this instance

is irregular because the subject did not walk directly from one location to another,

but paused to look at, pick up, and put down things, and stepped around obstacles

along the way. Di erent activities can also be joined together in the same period of

activity, as was also illustrated in figure 8.8, which showed a sit-to-stand transition

that was followed immediately by a period of walking, and this makes them harder

to classify than a period of activity containing a single movement.

The introduction of the heuristic overlay did improve the classification accuracies

for the two data sets to which it was applied (tables 8. 9 and 8.20). However,

the main contribution of the heuristic overlay was to ensure that the sequence of

movements was consistent.

The rules that were used, both in the heuristic overlay, and in the classification

algorithm (to identify falls, and to distinguish between sitting and standing) were

based on assumptions of the subject’s normal behaviour. These rules must be

tailored for the situation in which the monitoring is to occur. In the current work

the rules were designed for a housebound patient, and the rules required for other

types of subjects could be quite di erent. For example, if a period of upright rest

continued for more than 30 s, it was deemed to be a period of sitting because a

housebound subject is unlikely to stand quietly for long periods.

It may be possible to identify some complex movements as a particular sequence

of basic movements. For this subject, toileting is one such movement. Each time

that the subject toileted, the same distinctive sequence of events–walk, stand,

stand-to-lie, lie, lie-to-stand, upright + other movement (approx. 60 s)– appeared
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in the signal. Pattern-matching techniques (either rule-based, or neural network

type) could be developed to identify such complex movements.

However, in general, identifying particular complex movements from within the

signal is a di cult task as complex movements, such as preparing dinner, are not

carried out in the same way on every occasion. In this study a very simple set of rules

was used to categorise all extended complex movements as “general movements”, a

category that indicated that the subject was engaged in some daily activity rather

than resting, and that the activity was not a basic movement. In terms of monitoring

functional status, it is hypothesized that longitudinal tracking of parameters of

movement from the directed routine together with general parameters of SMA and

time spent in activity over the day will prove as valuable as a complete knowledge

of the subject’s daily activities, and are appreciably simpler to determine. These

parameters are extracted and monitored in the unsupervised home study with the

elderly subjects, and the results are described in section 8.5.

8.4.5 Conclusion

Study 3F was a feasibility study in which one healthy 28 year old subject wore the

TA unit while engaged in daily activities at home. The subject found the TA unit

comfortable to wear and easy to use. Data were collected on complex movements

undertaken in free movement. Some of these movements, such as toileting, had a

distinctive sequence that could be identified in the signal. Other movements, such

as washing the dishes, had non-specific movement patterns, making them di cult

to identify.

Classification was performed on the free movement, and it was found that the

basic movements of standing, sitting, lying, walking and transitions were identified

with an overall accuracy of 65%. Two of the data sets were studied in greater detail

and a heuristic overlay was added to assist in the classification. The addition of

this overlay increased the classification accuracy from 51.2% (2 /4 movements) to

75.6% (3 /4 movements) for these data sets.

Future work could involve investigation of complex movement patterns and fur-

ther development of heuristic classification methods. However, if the purpose of the

monitoring is to extract clinically significant parameters from the movement, then

this can be better done through the used of the directed routine than by monitoring

free movement. The directed routine has the advantages of much higher classifica-

tion rates (98% compared to 65%), less processing is required, and the movements

are performed in the same manner on each occasion. Then the monitoring in free
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movement need only collect general parameters of movement, and watch for abnor-

mal activities.

8.5 Unsupervised Home Study of Free Movement

(study 4F)

1F

3F 2F

4F

8.5.1 Introduction

The design of the unsupervised home study of directed and free movements was

described in section 7.8. The study was conducted in the homes of functionally

independent, elderly, community dwelling subjects. Each morning the subjects

were required to attach the TA unit to the waist and carry out a directed routine

consisting of sitting, standing, walking and lying. Following this, subjects were

required to wear the TA unit for the rest of the day as they performed their daily

activities. They were also required to complete a daily health questionnaire, a

weekly health questionnaire and a falls diary. This section reports on the free

movement component of the study.

8.5.2 Subjects

Six subjects participated in the study. Subject characteristics are shown in table

8.2 . All subjects were over 80 years of age, healthy and living independently at

home.

The Stanford Health Assessment Questionnaire disability index (HAQDI) and

pain scale (HAQPS) results are presented. The HAQDI measures the ability of

the subject to function in daily life. It is scored from 0 to 3, where 0 indicates no

disability and 3 indicates severe functional disability. For the pain scale, subjects

were asked to indicate the level of pain that they had su ered in the last week.
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Subject Gender Age Abode HAQDI HAQPS falls risk

F 82 flat 0. 25 .08 mild
2 M 85 house 0. 25 0 moderate
3 M 82 house 0 0.92 moderate
4 F 80 flat 0 0 mild
5 F 83 flat 0. 25 2.72 mild
6 F 85 flat 0.25 0.9 moderate

Table 8.2 : Characteristics of subjects participating in the unsupervised home
study. Subjects lived either in a house or a flat. The Disability Index (HAQDI)
and the Pain Scale (HAQPS) from the Stanford Health Assessment Questionnaire
are presented. Scores range from 0 to 3. Higher scores indicate higher levels of
disability or pain. The falls risk for each subject is also presented.

Subject No. days Mean hours/day

92 2.9
2 78 8.8
3 73
4 60 0.6
5 67 0.9
6 56 2.8

Table 8.22: Details of TA use during free living in study 4F.

The pain scale is scored from 0 to 3, where 0 indicates no pain, and 3 indicates

severe pain. Subjects were assessed at the start and the end of the study. The

results of both HAQDI tests were exactly the same for each subject and the pain

scale ratings were approximately the same between the two tests. The falls risk

assessment results are also presented. The falls risk was assessed on an ordinal

scale as very low, low, mild, moderate or marked.

8.5.3 Use

Subjects wore the device for a total of 426 days, for an average of 11.15 hours a day

(range — 7 hours). The breakdown of these statistics for each subject are given in

table 8.22.

8.5.4 Technical Performance

Overall, the technical performance of the system was good and useable data were

collected from all six systems.
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Computers

The pentium computers used in the study were adequate for purpose. They had

capacity to store four weeks’ worth of TA data. No data were lost or corrupted by

the machines. Subjects and 2 chose to turn their computers o each night before

going to bed and they experienced no technical di culties with the computers. The

remaining four subjects left their computers running continuously. Subjects 3, 4 and

5 each reported a small number of computer crashes (one crash for subject 4, two

crashes for subject 3, and three crashes for subject 5), but these were overcome by

rebooting the system. This was able to be done by the subjects themselves without

the need for investigator intervention. Although all of the machines had the same

technical specification, subject 6 experienced more problems with the computer

than the other subjects (more than 6 crashes). In most instances the subject was

able to rectify the problem by rebooting the system without the need for assistance

but in two instances investigator intervention was required.

TA units

The technical performance of the TA units has been reported in the earlier chapters.

However, two issues pertaining to their performance became apparent during this

study. Firstly, the prototype TA units were insu ciently robust, and secondly, the

construction of the TA units was such that it allowed movement of the componentry

within the TA units.

Two of the six TA units su ered faults caused by bad solder joints. After one

week of use it was observed that the z-axis signal from the TA unit of subject 2

consisted of noise rather than acceleration signal. The subject explained that he

had dropped the TA unit and that its performance had been changed since that

time. The unit was replaced with a spare unit that was recalibrated. The TA unit

of subject 4 failed completely due to a bad solder joint. A week’s worth of data was

lost before the fault was rectified. No technical problems were encountered with the

other four TA units.

Movement of the componentry within the units meant that the d.c. o set cali-

bration of the units changed as the units were worn in. The TA units were tested

and calibrated before being installed in the field. They were recalibrated on instal-

lation, after 2 weeks and after 4 weeks of operation, and at the end of the study.

Significant changes were measured in the d.c. o set of the device between the initial

calibration and the 2 week calibration but, after this time, none of the units showed

any fluctuation in calibration and no further adjustments to the calibration were
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made.

These issues indicate that consideration needs to be given to the manufacture

of the TA units. Techniques to seal the components in place and to make the unit

robust against falls and rough handling need to be investigated. These are discussed

in section 9.2.

Wireless Operation

Careful placement of the receiver unit was required to ensure adequate reception

about the home. The receiver unit was originally installed in the location that

was favoured by the subject. The subject was asked to walk through each room

in the home while holding the TA unit. The investigator observed the receiver

unit to see whether a signal was being received. If the performance of the system

was not satisfactory then the receiver unit was moved to a new location and the

process was repeated until a satisfactory location was found. The measure of a

satisfactory location was somewhat subjective and did depend on the home in which

the installation was taking place. Ideally, the system was satisfactory when the

signal could be reliably received from every room. If this was not possible then the

best reception that could be achieved was accepted.

In general, the receiver needed to be placed near to the centre of the home.

In the testing, the final placement location gave access to almost all of the home

(estimated to be around 90%), in five of the six homes. In these, the loss was at the

limits of the range; there were not obvious “dead spots” in the home but rather,

reception failed at the extremities of the further rooms. The receiver was placed in

the living room in three instances, and in a spare bedroom in two instances.

In the sixth case, the subject lived in a large flat located close to a television

transmission tower. The subject reported that her home had poor television and

radio reception. Her flat included a rooftop garden. The TA unit had reception

over somewhat less than half her home, and no reception in the rooftop garden.

There were dead spots about this home. The flat was built as a large open plan

living area with the kitchen in the centre. The bedrooms were built as wings o

this central area. The receiver unit was located in the main bedroom from where it

received TA signals from the nearer living area, part of the kitchen, and the further

living area that was not directly behind the kitchen. There was no reception from

the further half of the living area, nor the other bedrooms.

For clinically critical monitoring or for a personal alarm system, better reception

is needed. There are several possible means for achieving this and these are discussed

in section 9.2.
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Battery Performance

Grandcell AA 1.5V rechargeable batteries were used for the study. In tests, a new

battery lasted for around 80 hours of continuous transmission and could easily last

for a twelve hour day of transmission before being recharged. Grandcell state that

these batteries are good for 25 or more recharges [ 7]. In fact, the Grandcell website

stated that “if used correctly, Grandcell can provide well over 00 recharges during

its service life” [ 7]. However, after around 5 recharges, the battery only lasted

for half a day before needing to be replaced. Subjects were provided with a set of

four batteries, and subject who used the system for the longest time was provided

with a new set of batteries during the study. Subject 2 stated that he changed the

battery twice a day during the last month of the study because he noticed that as

the battery discharged the transmission range was reduced.

Based on these results, and with the same level of power consumption, a new

set of four batteries is required every two months, which amounts to 24 of these

batteries per year.

8.5.5 Data Analysis

A Case Study Example

Subject kept notes of her daily activities during the study period. The results of

the processing were compared to these notes. Good agreement was found between

the two. In this section, a subset of the data obtained during the course of one day

is presented, together with the notes provided by the subject. The intent of this

is to illustrate the relationship between the movements described in the subject’s

notes and the acceleration signals that were obtained.

Data taken from subject on 9th September 2002 are presented as typical

examples of the data obtained from the subjects. The notes made by the subject

on this data are given in figure 8. . A detail of the TA signals recorded on that

day between :48 a.m. and : 2 p.m. are shown in figure 8. 2. It can be seen

by looking at the signal that the subject moved around until just after noon, when

she sat down–for lunch, according to her notes. Half an hour later she got up

and moved around–while cleaning up after lunch. Then she sat down again–in

order to write a letter, and the TA slipped o her skirt. This event is visible in the

signal trace as the large spike on all four axes just after 2.8 hours. The subject

then remained sitting for the rest of the time shown in the graph.

The proportion of transmitted data that were captured, the proportion of time
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Figure 8. : Example of the notes made by subject regarding her daily activities
during the study period.

for which the subject wore the device, the proportion of time that the subject spent

engaged in activity, and the mean SMA per second were each computed for each

hour.

Figure 8. 3 shows the percentage of transmitted data that was captured by the

receiver unit on an hourly basis. At :47 p.m. the subject left the house and did

not return until 3: 5 p.m. No data were captured during this period so it can be

inferred that the subject wore the TA unit while she was out. The subject was in

her home for most of the remainder of the day but the signal from the TA unit was

not always received.

Figure 8. 3 also shows the proportion of time for which the subject was deter-

mined to be wearing the TA unit. The subject was determined to be wearing the

TA unit all of the time that data were captured, except for the last hour, between

9 and 0 o’clock at night, when the subject was deemed to have worn the unit for

60% of the time. The subject recorded that she shut down the system at 9:30 p.m.

According to the log file, logging ceased at 9:36 p.m. The system identified that

the subject was not wearing the device from 9: 0—9:24 p.m. Inspection of the signal

revealed that the acceleration vector was not changing during this period. Following

this there was a short burst of vigorous movement and then the logging stopped.
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Figure 8. 2: TA signal from subject between 2 and o’clock on 9th September.
(a) x-axis, (b) y-axis, (c) z-axis, (d) acceleration magnitude, . Note the di erent
acceleration ranges on the vertical axes. Just after noon the subject sat down for
lunch. Half an hour later she got up and moved around while cleaning up after
lunch. Then she sat down again and the TA unit slipped o her skirt (this is
indicated by the large spike on all four axes just after 2.8 hours). The subject then
remained sitting for the rest of the visible trace.
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Figure 8. 3: Monitoring results for subject on 9th Sept. : Percentage of trans-
mitted data that was captured, and O: Percentage of time for which data were
captured and subject was wearing the TA device.

This signal trace is consistent with the subject deciding to go to bed, taking o the

TA unit and placing it on the table while she prepared to go to bed, then picking

up the TA unit and removing the battery for recharging, before turning o the

computer.

Figure 8. 4 shows the hourly mean normalised SMA values for the day. The

hourly mean SMAs that were generated while the subject was engaged in activity

and in rest are also shown in the figure. It can be seen that when the subject was

engaged in activity, she was most vigorous from 2— p.m., and from 4—5 p.m. The

2— p.m. activity was the preparation for, and cleaning up after, lunch. The 4—5

p.m. activity was not described by the subject. Both of these periods of activity

took place after an extended period of rest, according to the subject’s notes. Her

mean levels of activity were higher during these times than during the earlier hours

of the day when she was engaged in sustained housework activity. It is to be

expected that the subject would be more vigorous during relatively short periods

of activity following periods of rest, than during extended periods of work.

Figure 8. 5 shows the proportion of time that the subject spent engaged in

activity. The subject spent the most time engaged in activity from — 2 noon

and from 3—4 p.m. These two hours also recorded the highest mean SMA overall
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Figure 8. 4: Hourly mean recorded signal magnitude area (SMA) for subject
on 9th Sept. O: Overall hourly mean SMA, ¤: hourly mean SMA for periods of
activity, and : hourly mean SMA for periods of rest.

(figure 8. 4). However, there was not a direct correlation between the overall SMA

and the amount of recorded time spent engaged in activity. This is illustrated in a

comparison of the subject’s activity from 9— 0 a.m. and 0— a.m. From 9— 0 a.m.

the subject spent 45% of her time in activity, as compared to 58% the following

hour. However, the overall mean SMA was greater for the hour from 9— 0 than

for the following hour because the subject’s movements became less vigorous in the

second hour.

All of the other data recorded by this subject were compared to the description

of activities provided by the subject and the agreement between the two was good

in every case. After several weeks the subject began taking o the TA unit and

leaving it beside the receiver unit whenever she went out.

The same parameters were computed and tracked on an hourly basis for every

day that the subject wore the TA unit. They were also tracked on a daily basis. The

same procedure was applied to the data from the other five subjects except that no

record of activities had been kept and so no activity verification was undertaken.
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Figure 8. 5: Monitoring results for subject on 9th Sept. ¤: Percentage of time
for which subject was recorded as wearing the TA device and engaged in activity.

Data Capture Rates

Overall, 63.5% of the transmitted data were received. The average data capture

rates for each of the six subjects are given in table 8.23. Data were lost when the

TA unit was out of range of the receiver. This could occur if the subject left home

while wearing the TA unit, or if there was insu cient reception in some areas of the

home. In general, there was no way of distinguishing between times when a subject

went out wearing the TA unit, and occasions when the subject was at home and

data were not received.

Subject 2 recorded the least amount of data captured. This subject also reported

that he spent most of each day away from home and that he often wore the TA

while he was out.

Falls Detection

No falls or stumbles were reported by any of the subjects during the course of the

study. Large acceleration magnitudes (exceeding 1.8 g for at least 3 consecutive

samples) were detected on sixteen occasions but none of these were indicative of a

fall. In each case, the device was either not being worn or the subject remained in an
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Subject % data captured

7 .04
2 33.6
3 7 .23
4 45. 9
5 67.58
6 89.4

Table 8.23: Data capture rates for study 4F.

upright posture after the event, and continued performing activities either immedi-

ately after or shortly (several seconds) after the event. The events are summarised

in table 8.24.

In seven of the cases, the event was not caused by body movement. On three

occasions the subject was putting on, or taking o the TA unit. On four further

occasions the TA unit was not being worn, but was picked up and shaken then

replaced. These four events all occurred during investigator visits and were caused

by the investigator who was demonstrating the functionality of the system to the

subject.

Statistical Analysis

The data were tested for hourly and daily trends in amount of data captured,

percentage of time that the unit was worn, amount of time spent in activity and

mean SMA. The data were also tested for correlations between self-reported health

status, time spent in activity and mean SMA. All tests were carried out using the

complete data set from all six subjects.

A strong correlation was found between mean hourly SMA and proportion of

time spent in activity each hour (Spearman-rank r = 0.951). A scatterplot of

the data is presented in figure 8. 6. A moderate correlation was detected between

coop/wonca health score and mean SMA (r = 0.507). A scatterplot of the data

is presented in figure 8. 7. A weak correlation was detected between Coop score

and the amount of time spent in activity over the course of a day (r = 0.157), but

it was not statistically significant (p = 0.069). No correlations were found between

any of the measured parameters and time (either hour of day or day of study).
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Subject Before After Possible Cause

upright,

genera l m ovem ent

upright,

general m ovem ent

un it fell o sk irt (th is was recorded by the sub ject)

upright,

genera l m ovem ent

upright,

general m ovem ent

un it fell o sk irt

2 lying face down,

unit not worn

ly ing face down,

unit not worn

un it picked up and shaken

2 upright,

genera l m ovem ent

upright,

resting

2 upright,

genera l m ovem ent

ly ing face up ,

unit not worn

un it taken o

2 upright,

unit not worn

upright,

unit not worn

un it picked up and shaken

2 upright,

genera l m ovem ent

upright,

general m ovem ent

2 upside down,

not worn

upright,

general m ovem ent

un it put on

3 upright,

genera l m ovem ent

upright,

general m ovem ent

un it picked up and shaken

4 unit not worn , then

genera l mvt

upright,

general m ovem ent

un it put on

4 upright,

genera l m ovem ent

upright,

general m ovem ent

5 upright,

v igorous movement

unit rested on each

face in turn ,

unit not worn

un it picked up and shaken

5 walking walking sub ject may have stumbled and not recorded the event, or de-

v ice may have b een knocked

6 lying right s ide,

resting

ly ing face down,

resting

ly ing-to -ly ing transition

6 vigorous movement vigorous movem ent these two events o ccurred w ithin a p eriod of 2 m inutes. The

sub ject was engaged in vigorous cyc lical activ ity. The signal

patterns were sim ilar to those generated during walk ing , but

the acce lerations generated were tw ice those generated by a

sub ject wa lk ing rap idly ( 20 steps / m in). The signa l exceeded

the .8g thresho ld most p eriods of the movem ent It may have

b een generated by stamping or runn ing. The activ ity o ccurred

at 7 o’clo ck at night.

6 vigorous movement vigorous movem ent see above

Table 8.24: Summary of large acceleration magnitudes generated in study 4F.
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Figure 8. 6: Scatterplot showing mean hourly SMA plotted against mean hourly
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Figure 8. 7: Scatterplot showing mean weekly SMA plotted against coop/wonca
score across all subjects in study 4D (N = 6).
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8.5.6 Discussion

This pilot trial evaluated the use of the TA unit for unsupervised, long term mon-

itoring of human movement. Although several issues pertaining to the technical

performance and the useability of the system were raised, all of the subjects were

able to use the system without di culty after a short period of use. None of the

subjects found wearing the unit inconvenient, nor did they find performing the daily

routine inconvenient. The subjects who wore the unit for extended periods com-

mented that they often forgot that they were wearing it. Subjects were happy with

the size and the shape of the unit.

Although the basic system was well accepted the study also revealed several

shortcomings that should be rectified. In particular the TA unit push button, at-

tachment clip, and power supply should be redesigned and the TA unit transmission

power should be boosted.

All subjects showed a high rate of compliance in using the system and in per-

forming the directed routine. The system generated an audible reminder if the

subject had not completed the routine by a specified time. Subjects were also con-

tacted on a weekly basis by the investigator. These measures may have helped to

maintain high compliance rates.

Several of the elderly subjects reported that they needed to move the attachment

position of the device because of rubbing at the attachment site. Thus it is important

that the interpretation system is able to interpret data obtained from di erent

locations on the waist. As discussed in the earlier chapters (5 and 6), it was able to

do so provided that the placement location was known, and the placement location

was able to be identified from the average acceleration vectors obtained from quiet

standing and supine lying during the daily routine. Signals from the daily routine

were also able to be used to determine baseline values for standing and sitting tilt

angles and SMA, which could be used in the activity identification algorithms for

the identification of activities during free movement, if required.

The best time for the directed routine to be carried out is first thing in the

morning so that the day’s positioning information is available for the monitoring of

free movement from the earliest possible occasion. This was also the time that was

preferred by all of the subjects.
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Introduction of the directed routine into the daily programme had a number of

benefits:

• it reduced the amount of data processing that was required;

• it ensured that each important movement was performed in the same manner

each day so that parameters could be longitudinally tracked and compared;

and

• it ensured that movements from which parameters were extracted were clas-

sified with a very high level of accuracy.

The free movement was processed on a second-by-second basis. The 1 s window

was chosen because this provided close to optimal results for the activity detection

algorithm and it also meant that fall events could be detected promptly. Each

second the additional SMA was computed and added to a running total. The total

and mean for each hour was stored, and at the end of the day, the daily mean was

computed. This process required only one bu er 45 samples long (at a sampling

rate of 45 samples per second) and a second bu er 60 samples long (one sample per

second) to determine whether or not the subject was wearing the TA unit. It was

su ciently e cient to be carried out in real time, as the data were received, on a

regular personal computer. It could potentially also be carried out on the TA unit

itself if appropriate enhancements were made to the technology.

Although none of the subjects su ered any significant accidents or illness during

the study period and no longitudinal trends were detected in the data from the

directed routine, the subjects’ health did fluctuate slightly during the study period.

This was captured in the coop/wonca health scores. The coop/wonca charts are

well validated and reliably reflect the overall self-perceived health status of the

subject [224]. The moderate negative correlation obtained between the coop/wonca

scores and the mean weekly SMA indicates that when subjects felt less healthy they

engaged in less physical activity. Further studies using statistically large samples

of subjects are needed, but this preliminary result lends support to the hypothesis

that the TA unit can be used for preventative health monitoring by detecting early

changes in overall health status through changes in mean SMA. Future work should

also involve field trials to capture data from subjects with poor health, whose health

is likely to change significantly during the study period, and from subjects who have

a high risk of falling so that relationships between health status, fall events and

parameters from the TA signal can be investigated.
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8.5.7 Conclusion

In long-term, unsupervised use, subjects chose to wear the TA unit at di erent posi-

tions on the waist, and even to wear the unit at di erent positions on di erent days.

It is thus important to be able to analyse the signal regardless of the placement.

As discussed in chapter 6, all of the algorithms that were used to identify move-

ments and to extract parameters could be applied to any placement on the waist,

provided that the placement was known. The placement could be determined from

the directed routine, by analysing the acceleration vectors generated during quiet

standing and supine lying. The directed routine also provided baseline data on

standing and sitting tilt angles and mean SMA values for the activity classification

algorithm.

In the instances where a log of movements was kept by the subject during free

movement at home, the accelerometer signals showed good agreement with the log.

Parameters of energy expenditure (SMA) and the proportion of time spent in

activity were computed on an hourly and a daily basis. There was a strong cor-

relation between these two parameters (r = 0.951) when compared on an hourly

basis.

A moderate negative correlation was obtained between weekly self-perceived

health status (coop/wonca score) and mean energy expenditure (SMA) of r =

0.507. This preliminary result lends support to the hypothesis that the TA unit

can be used for preventative health monitoring by detecting changes in overall health

status through changes in mean SMA.
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8.6 Chapter Conclusion

The results of four experimental studies were presented in this chapter. The studies

encompassed the use of the TA unit for monitoring directed and free movements in

laboratory and home environments, and under supervised and unsupervised condi-

tions.

The purposes of the directed routine were

• to provide daily baseline data for the subject, including tilt angle and SMA

when sitting and standing; and

• to collect parameters of movement that could be tracked longitudinally.

The movements in the directed routine were automatically identified using a

combination of button presses, the activity classification algorithm presented in

section 6. , and heuristic rules. This identified the activities and movements with

at least 97.8% accuracy.

Overall, the results obtained in the three studies of directed movement showed

a high degree of consistency. There were no significant di erences in the sets of

parameters obtained in the supervised laboratory study, the unsupervised labora-

tory study, and the supervised home study. Parameter values were similar for all

subjects, and were also consistent within individual subjects. Moreover, all subjects

found the system easy to use, and all reported that the TA unit was comfortable and

convenient to wear. These results indicate that the waist mounted TA is a reliable

instrument for monitoring movement in an unsupervised home environment.

In every subject cohort, there were statistically significant di erences between

the acceleration vectors obtained during quiet standing, sitting and lying. There

were several statistically significant di erences between the parameters obtained

from the elderly cohort and those obtained from the younger cohorts. The elderly

group recorded lower SMA values and smaller acceleration ranges for all activities

but the stand-to-sit transition. They also recorded greater SMA values and acceler-

ation ranges during the 30 s stand and during the lying period. From these results

it can be concluded that the younger cohort were able to remain more still than

the older cohort during rest periods, and moved more vigorously during periods

of activity than the elderly subjects. The elderly subjects took slightly longer to

complete the sit-to-stand transition (3.5± 1.3 s, as compared to 2.6± 0.8 s). There

was no di erence in the amounts of postural sway between the groups, nor were

there any di erences in gait cadence or variability.
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No fall events occurred during any of the studies. During study 4F, sixteen

abnormal acceleration events were identified, but none of these were followed by

a lying posture. Seven of these incidents were not related to body movements,

occurring when the subject took o , or put on the TA unit, or when the TA unit

was picked up and shaken (caused by system demonstration during an investigator

visit).

In long-term, unsupervised use, subjects chose to wear the TA unit at di erent

positions on the waist, and even to wear the unit at di erent positions on di er-

ent days. It is thus important to be able to analyse the signal regardless of the

placement. As discussed in chapter 6, all of the algorithms that were used to iden-

tify movements and to extract parameters could be applied to any placement on the

waist, provided that the placement was known. The placement could be determined

from the directed routine, by analysing the acceleration vectors generated during

quiet standing and supine lying. The directed routine also provided baseline data on

standing and sitting tilt angles and mean SMA values for the activity classification

algorithm.

In the instances where a log of movements was kept by the subject during free

movement at home, the accelerometer signals showed good agreement with the log.

Parameters of energy expenditure (SMA) and the proportion of time spent in ac-

tivity were computed. There was a strong correlation between these two parameters

(r = 0.951) when compared on an hourly basis.

A moderate negative correlation was obtained between weekly self-perceived

health status (coop/wonca score) and mean energy expenditure (SMA) of r =

0.507. This preliminary result lends support to the hypothesis that the TA unit

can be used for preventative health monitoring by detecting early changes in overall

health status through changes in mean SMA.



Chapter 9

Future Directions

9.1 Overview

The current work has demonstrated the feasibility of using accelerometry for un-

supervised home monitoring. It has rigorously analysed the signals obtained from

a TA, and developed an understanding of the component signals and the way in

which they can be used. It has developed a system for using a single waist mounted

TA unit to monitor human movement in an unsupervised home environment. A

framework for signal identification and classification has been introduced. Algo-

rithms for discriminating between periods of activity and periods of rest, and for

identifying and classifying movements have been developed and evaluated. It has

been demonstrated that once movements have been identified, clinically sensitive

parameters can be extracted from the signal. A two stage monitoring process has

been introduced in order to allow longitudinal tracking of sensitive parameters and

monitoring for adverse events. This process has been assessed in a pilot study with

six elderly subjects over a three month period.

Additionally, in the course of the current work a number of issues worthy of

further research and development were raised. This chapter discusses the recom-

mendations for future work that have arisen as a result of the current work.

380
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9.2 Technical Enhancements

Improvements to the TA Unit

During the course of testing undertaken in the current work it became apparent that

some aspects of the TA unit needed to be improved. These were the robustness of

the unit, the choice of power supply, the design of the push button and the design

of the attachment clip. These are discussed in the following sections.

The TA unit needs to be more robust. Two problems arose during testing

because the TA units were not su ciently robust. Firstly, the componentry within

the TA units shifted during initial use. Secondly, two of the units failed during the

pilot field study due to bad solder joints. The units were not specifically manufac-

tured to tolerate being knocked and dropped. These problems could be prevented

through the use of di erent manufacturing techniques. For example, the unit could

be filled with resin to set the components in place. It is important that the compo-

nents cannot shift during use so that the unit does not go out of calibration or fail

if it is dropped or knocked.

An improved power supply is required. The TA units used in the current

work were powered by a single AA battery. An alkaline battery provided around 80

hours of continuous transmission before needing to be replaced. In the pilot study,

rechargeable AA batteries were used and recharged every night. After several weeks

of practice, none of the elderly subjects in the pilot trial found this a di culty

or an inconvenience. However, the subject must remember to change the battery.

Additionally, manipulation of the batteries requires finger strength and coordination

and may be too di cult for frail elderly or ill subjects. Consequently, consideration

should be given to alternative approaches to powering the TA unit.

One possibility is to use a battery that can be recharged by means of an inductive

coupling. The a recharger cradle could be designed for the TA unit, similar to those

used for mobile telephone batteries. Each evening, the subject could place the entire

TA unit in the recharger. This would alleviate the need for changing the battery

each evening. It also means that the unit remains active during the night, should

the subject need to press the personal alarm button.

Battery life in the TA unit was short because the data were transmitted con-

tinuously. If the amount of data transmission was reduced, this would increase the

life of the battery.
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TA UNIT

CURRENT PUSH
BUTTON

PROPOSED PUSH
BUTTON

Figure 9. : Illustration of the TA unit showing the current and proposed push
buttons.

The push button needs to be redesigned. In the prototype design, the push-

button was a small protruding knob attached to the top face of the TA unit. The

small size of the button made it di cult for subjects to find. Its small surface area

led to concerns about it piercing the skin. Its position on the top face made it

di cult for some subjects to reach when the TA was worn at the waist as it became

buried under soft tissue. Replacing the existing button with a large recessed button

on the front face of the device would solve these di culties (see figure 9. ).

The attachment clip needs to be redesigned. Two elderly subjects found

that the clip on the TA unit did not grasp firmly enough and the unit slipped o

when bending over or toileting. A new clip is required that grasps more firmly,

without damaging the fabric of the clothing.

Increasing the Data Capture Rate

During testing the TA system was found to have a line-of-sight transmission range

of 50m. It was also found to function reliably throughout the three houses in

which it was tested (refer to section 4.4). However, data were lost during periods of

monitoring subjects at home in the studies of free movement (refer to sections 7.7,

7.8, 8.4 and 8.5). The range over which data were received also decreased as the

battery discharged. It is important that the system function reliably throughout

the home if it is to o er capabilities as a personal alarm system.
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Three approaches that could be investigated for improving the data reception

rate are:

. increasing the TA unit transmission power,

2. installing repeater units around the home, and

3. changing to a wireless transmission frequency that is less susceptible to inter-

ference.

Improvements to the Receiver Unit

The elderly subjects who participated in the pilot study responded negatively to

the introduction of a personal computer into their homes. Consideration should

be given to redesigning the TA system in such a way that the personal computer

is not required. The functions of the personal computer were data processing and

storage, and the provision of a user interface for the subjects. These functions could

be added to the receiver unit, so that the personal computer and monitor are no

longer required.

Data Processing Location

In the current work, all data captured by the TA unit were transmitted to the

receiver unit and stored by the personal computer. This was essential in order that

the signals could be studied and algorithms developed. However, the high rates of

transmission reduce the life of the battery in the TA. If some data processing was

undertaken in the TA unit then less data would need to be transmitted and hence

less battery power would be consumed.

There are three basic models for data processing:

. All of the data are transmitted from the TA unit to the receiver unit and the

data processing is carried out at the receiver end. This was the method that

was used in the current work.

2. All of the processing is done in the TA unit and only relevant parameters

are transmitted. This requires the least amount of data transmission. The

drawback is that as the raw data is not stored, it cannot be reviewed should

further information be required.

3. The TA unit makes some decisions about which data to transmit but the bulk

of the processing takes place at the receiver end. For example, the TA unit
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might only transmit data when the conditions for a fall event have been met,

and it would then transmit the raw acceleration data.

The recommended approach is a combination of the three methods. It is pro-

posed that the TA unit has two modes, one in which all of the data are transmitted,

and one in which only important parameters are transmitted. During the directed

routine, all of the data are transmitted and are processed at the receiver end. This

ensures that the original data are available for all of the important movements that

are tracked longitudinally. During periods of free movement, data processing is

carried out in the TA unit. Parameters of time spent in activity and SMA are

computed and transmitted on an hourly basis. These data are then stored at the

receiver end. Carrying out this processing in the TA unit has the added advantage

that no data are lost in transmission before the computations are made. During

periods of free movement the TA unit also monitors for large accelerations, which

may be indicative of fall events. If a large acceleration peak is detected, then the

TA unit switches modes to transmit all of the raw data to the receiver unit. If

the subject did not fall, or falls and rises again, the TA unit switches back to the

onboard processing mode after the subject has recovered. If the subject did fall and

did not rise again, then the TA unit continues to transmit all of the data until it is

reset.

The hourly reporting during free movement also provides an indication that the

TA unit is functioning properly. Handshaking between the TA unit and the receiver

unit could be introduced so that if an hourly report is not correctly received, it is

re-sent, with the request being maintained by the receiver unit until the data are

received. Then, if the TA unit is out of range of the receiver, the parameters can be

stored until the unit comes back into range when they can be transmitted. If the

receiver unit does not receive an hourly data set for a period of time that exceeds

a preset threshold then an alert can be generated to indicate that the TA unit may

be faulty.

This method would require the TA unit to be redesigned with more data process-

ing and storage capability, but would be expected to reduce the load on the battery,

and the requirement for data storage space at the receiver end would also be greatly

reduced as only small amounts of raw data would need to be stored.
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9.3 Physiological Understanding of the Signal

Modelling of Pelvic Acceleration During Gait

In the current work it was found that a simple model of the surface area of the

subject at the waist could be used to relate TA output, device placement and

postural orientation during periods of rest. The same model could be used to

relate the signals obtained from di erent placements at the waist during sit-stand-

sit movements. However, this model could not be used to relate the acceleration

signals obtained from di erent placements at the waist during walking, and neither

could a simple biomechanical displacement model.

The relationship between the signals from a waist mounted TA and parameters

within the gait cycle is not well understood. Further work should involve studying

the ways in which parameters of gait such as single and double stance times are

characterised within the acceleration signals at di erent places on the waist.

It would be useful to develop an acceleration-based model that relates accel-

eration signals obtained during gait from di erent parts of the waist. This would

then allow the direct comparison of parameters within the gait cycle from accelera-

tion signals taken at di erent places on the waist, which would in turn allow these

parameters to be monitored in an unsupervised setting.

Modelling the Relationship Between SMA and EE

There has been shown to be a high overall correlation between SMA (signal mag-

nitude area) and EE (metabolic energy expenditure) during routine daily activities

[3 ]. However, the optimal regression parameters change with di erent activities

and in some circumstances the general regression equation does not result in a good

estimate of EE [34, 74, 98, 2 0]. Future work should involve developing a better

understanding of the relationship between SMA and EE for di erent activities. The

activity classification framework could be used to identify the activity and then the

EE could be computed from the SMA using the optimal regression parameters for

that activity to provide more accurate estimates of EE during daily living.
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9.4 Enhancement of the Classifier Framework

Functionality for Self-Correcting Classifications

The activity classification framework that was developed and described in the cur-

rent work consisted of a binary tree with “ripple down” rules. The introduction of

backpropagation to this framework should be considered. If a decision is made and

the process ripples down to a lower level of detail, where it is found that none of the

sub-classifications adequately describe the actual movement, then the possibility

that the original classification was incorrect should be considered. In this case, the

process should return to the higher level of detail, reject the classification that was

previously made, and continue along the processing flowchart in search of another

movement that matches the actual movement. This type of approach could allow

the system to become self-correcting.

Functionality for Adaptive Learning

Each time that the system is used and a classification is made, parameters of the

movement could be recorded and, over time, a subject-specific template could be

developed for each movement. Pattern-matching techniques using these templates

could then be employed to support classification decisions.

Development of a Heuristic Overlay

In study 3F (refer to sections 7.7 and 8.4) a set of rules was developed to assist in

classification of free movement. After the classification algorithm had been applied

to the acceleration signals, the rule-based system examined the sequence of classi-

fications. If an impossible sequence of classified movements was identified then the

rules were used to correct the classifications. This system provided improved clas-

sification results for the two data sets on which it was tested. It also ensured that

the classification decisions resulted in a reasonable sequence of movements. Future

work should further investigate the use of a heuristic overlay to check and correct

the decisions made by the classification algorithm.
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9.5 Algorithmic Development

Identifying When the Device is Not Being Worn

If the recorded level of movement is below the threshold at which it is certain that

the TA unit is being worn, then there is no way of telling, based on the root mean

square acceleration value alone, whether the subject is wearing the TA unit and

lying very still, or whether the TA unit is not being worn (refer to section 6.4).

Heuristic methods may be able to make this decision by considering the movement

leading up to the period without motion.

However, a simpler and more reliable method is to introduce a recharger cradle

into the system, such as was described in section 9.2. A protocol could be established

in which, whenever the subject is not wearing the TA unit, it is placed in the

recharger cradle. The recharger cradle could acknowledge receipt of the TA unit,

and then it would be certain that the TA unit was not being worn. Then, it could be

assumed that the TA unit was being worn whenever it was not stored in its cradle.

If the recorded r.m.s. value was below the threshold for an extended period of time

then this may indicate that the person is unable to move, or is unconscious, and

help is required, and the system should raise an alarm. If the alarm is false (because

the person was not wearing the TA unit and did not comply with the procedure)

then the person can cancel the alarm (refer to section 9.8).

Discriminating Between Sitting and Standing

The sit/stand posture classifier algorithm introduced in the current work (refer to

section 6.6.5) used decoupled inputs. Future work could involve investigating the

performance of an algorithm with input coupling.

Assessing Postural Sway

Preliminary work has indicated that the accelerometer is capable of identifying para-

meters relating to postural sway. Future work in this area should involve laboratory-

based validation tests with statistically significant sample sizes. The output of the

TA also needs to be understood in clinical terms as well as being correlated to other

measurement techniques. If this is achieved then the TA can be used as a tool for

the investigation of postural sway under free living conditions in the target subject

group. A methodology for the evaluation of the accelerometer an instrument for

the measurement of sway is described.
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Proposed Experimental Methodology

A representative sample of at least 200 subjects should be recruited. Subjects

should be drawn from the population of elderly (aged 65 years and over) community

dwellers. Each subject should be asked to perform four tests:

. Stand on firm surface with eyes open for 30 s,

2. Stand on firm surface with eyes closed for 30 s,

3. Stand on compliant surface (foam block) with eyes open for 30 s, and

4. Stand on compliant surface (foam block) with eyes closed for 30 s.

A force plate should be placed underneath the surfaces on which the subject

stands. A swaymeter (described in section 2.4.2) should be attached to the subject

to trace the sway path. A TA should be attached to the waist of the subject above

the right anterior superior iliac spine.

The TA signals should be compared to the sway path measured by the force

plate using the methodology described by Mayagoita et al. [ 63]. The TA signals

should also be compared to the values determined by a swaymeter. The Pearson

correlation coe cients between the measurements from the three instruments should

be computed. Linear regression should be applied to quantify the relationships.

Identifying Falls

The falls detection algorithm was developed and tested using “simulated” falls per-

formed in the laboratory. A data set of genuine fall events from free living subjects

needs to be collected, and the performance of the falls detection algorithm evaluated

using these events.

Identifying Stumbles

The occurrence of stumbles is one of the predictors of falls. It is hypothesized that

stumbles can be identified by abnormally large accelerations, in the same way as

fall events, or by unexpected anomalies in cyclic motion. Figure 9.2 shows the

acceleration signals generated by a “simulated” stumble during walking. Figure

9.3 shows the acceleration signals generated by a second “simulated” stumble in

which the subject fell back into the chair after attempting to rise. In both of these

instances the stumble is characterised by a large acceleration spike and, in the first

instance, the walking pattern is interrupted at the time of the stumble.
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Figure 9.2: Acceleration signals generated by a “simulated” stumble during walking.
At the time of the stumble there is a large acceleration spike and the cyclic walking
pattern is interrupted.
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Figure 9.3: Acceleration signals generated by a “simulated” stumble in which the
subject fell back into the chair after attempting to rise.
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The problem with deliberate stumbles is that they may not reflect the patterns

that occur in genuine stumbles because, in the deliberate stumble, the subject does

not lose balance control, which is not the case in the genuine event. The subjects

who performed the deliberate stumbles were young, healthy subjects, whereas the

primary subjects of concern with regard to falls are the frail elderly. The stumbles

performed by the young, healthy subjects may have been performedmore vigorously,

and hence have more clearly defined acceleration patterns, than those that occur in

the frail elderly. A set of genuine stumble, and near fall events needs to be collected,

and the performance of the abnormal acceleration detection algorithm evaluated in

this context.

Identifying Walking with Pathological Gait

The template matching algorithm for the step by step determination of gait period

(refer to section 6.8.3) should be evaluated on pathological gaits and on gaits with

a high variability.

Discriminating Between Sit-to-Stand and Stand-to-Sit Transitions

In the current work, sit-to-stand and stand-to-sit transitions were most success-

fully identified and distinguished using an expert system (refer to section 6.9.4).

Neural network methods were tested, but they were trained with a data set taken

from a single subject, and their classification rates were poor when presented with

data from other subjects. However, the comparative success of the expert system

indicates that there are parameters contained within the signal that allow discrim-

ination to be achieved and, given a su ciently large and varied training set, the

neural network performance should be able to be improved.

Future work should involve the collection of data from a cohort of free-living

subjects at home. These data should be used to train a neural network in order

to evaluate its performance when trained with data from multiple subjects, and to

evaluate its performance in identifying transitions in the same subject over time.

Accurate Determination of Activity Endpoints - A Preliminary Study

In the current work, endpoints were approximated by the activity detection algo-

rithm. The accuracy of the endpoint detection in this algorithm is dependent on

the choice of window width, w.

Preliminary work was undertaken to develop a method for identifying the activ-

ity endpoints more accurately. This work is summarised here.
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Introduction In the current work, endpoints were approximated by the activity

detection algorithm. The accuracy of the endpoint detection in this algorithm is

dependent on the choice of window width, w. For most purposes, this level of

accuracy is su cient. However, there may be some requirement to measure the

timing of a short activity more precisely.

An endpoint detection algorithm was developed and preliminary testing was

conducted. The algorithm was based on an algorithm developed by Rabiner and

Sambur for endpoint detection in speech signals [ 32, 88, 238].

The problems of finding endpoints in speech and accelerometry signals are analo-

gous in many ways. In both cases the signals are time-varying and consist of periods

of speech or activity (high energy signal) interspersed with periods of silence or rest

(low energy signal). This is a simple problem for signals with high signal-to-noise

ratios. However, it becomes significantly more di cult when the speech signals are

low in level relative to the background noise, or when the background noise becomes

highly nonstationary [238].

The Endpoint Detection Algorithm The activity detection algorithm (sec-

tion 6.5) was used to identify periods of activity in the signal. The exact start

point of the activity was deemed most likely to occur either in the first 1 s window

that was classified as containing activity, or in the window immediately preceding

this. Similarly, the end point was deemed most likely to occur in the last window

containing activity or the first window succeeding this.

The body acceleration component of the magnitude acceleration vector,
BA
,

was computed as 0

BA
= 0

GA
. This estimate was used rather than application

of a filter because the ripple introduced by the filter distorts the endpoints (refer to

section 5.2.7).

A threshold, th, based on the r.m.s. value was set as th = t×r.m.s.(
0

BA
), where

t was an experimentally determined constant between 0 and and r.m.s.(
0

BA
) was

the root mean square of the body acceleration magnitude vector estimate,
0

BA
.

To find the start point of the activity, the two windowed periods in which the

activity was determined to have commenced were considered. The algorithm began

at the start of this search area and looked for the first occasion on which the

magnitude of
0

BA
exceeded the threshold. Since the threshold was set below the

r.m.s. of
0

BA
, this point must exist. This point became the first estimate of the

start point. Starting from this point, the signal was searched backwards until a

zero crossing was found. The sample point immediately after this zero crossing

was designated the start of the activity. If a zero crossing was not detected within
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Figure 9.4: Raw acceleration signals obtained from a stand-to-sit transition.

the two window interval then the start point estimate from the activity detection

algorithm was retained. The end point was then identified in the same manner.

The algorithm is illustrated in figures 9.4—9.8.

Experimental Procedure A study was carried out to determine the e ect of

white noise on the system. The algorithm was provided with an idealised magnitude

acceleration signal. This consisted of 200 samples of moving acceleration. Before

and after the 200 sample period were 1000 samples, all set to 1.0. Di erent levels of

noise were added to the signal and the accuracy of the endpoint detection algorithm

was evaluated.

As a second task, a study was conducted to assess the performance of the algo-

rithm on experimental data. The endpoint detection algorithm was applied to three

data sets obtained from the TA. The first data set was obtained by placing the TA

unit on a table. The unit was then lifted by the investigator, moved around briskly,

and then replaced on the table. The movements were timed with a stopwatch. This

produced clearly defined periods of rest and activity. This procedure was repeated

27 times. Every data sample was time stamped so that each activity could be

identified on the resultant signal trace. The investigator manually identified the

endpoints of each period of activity. This data formed the first data set.

The first data set was then modified to create a more idealised second data set

in the following manner. Noise in the signal during periods of rest was removed by

setting the magnitude vector to 1.0 g during these periods.
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Figure 9.5: Magnitude acceleration for the stand-to-sit transition.
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Figure 9.6: Endpoint detection, step : the body acceleration component estimator
is computed.



394 9. Future Directions

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time (samples)

a
cc

e
le

ra
ti
o
n

(
g

)

th

Figure 9.7: Endpoint detection, step 2: the absolute value of the body acceleration
magnitude vector is computed. The period of activity is indicated. The threshold
value, th, is also shown.
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Figure 9.8: Endpoint detection, step 3: determining the start point. The point at
which the absolute value of the body acceleration magnitude vector first exceeds
the threshold value, th, is identified (top graph). The start point estimate is the
first point before this point at which the body acceleration magnitude vector passes
through 0 (bottom graph).
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Figure 9.9: The e ect of white noise on the endpoint detection algorithm. As the
signal to noise ratio decreases, the error in endpoint estimate increases until the
endpoints cannot be determined.

The third data set consisted of signals obtained from 26 normal subjects, each

of whom performed activities, being: standing up, sitting down and walking,

interspersed with rest periods. The subject was directed through the procedure by

an investigator who timed each activity segment using a stopwatch. Every data

sample was time stamped so that each activity could be identified on the resultant

signal trace. The investigator manually identified the endpoints of each period of

activity.

The endpoints of each data set were calculated using the endpoint detection

algorithm. For each data set, di erent threshold values were tested, and the three

di erent methods of obtaining the a.c. signal were tested. The results were com-

pared to the manually determined values.

Preliminary Results Figure 9.9 shows the e ects of white noise on the detection

capability of the algorithm. As the level of white noise increases, the ability of

the system to identify the endpoints decreases. The algorithm became completely

ine ective when the signal to noise ratio reached 1.57 and the algorithm had a

detrimental e ect on the endpoint estimates when the SNR was below this value.

The optimal threshold value was found to be th = 1

3
(th was varied increments
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median errors data set data set 2 data set 3

from activity detection algorithm 7 7 27
from endpoint detection algorithm 6 3 9

on start point 4 7
on end point 8 6 4

Table 9. : Results of preliminary testing with the endpoint detection algorithm.

of 1

12
). As expected, performance was best on the idealised data of the second data

set, where the median error between the estimated and the actual endpoints was

only 3 samples. The median errors for each data set are shown in table 9. . In the

third data set, the standard deviation in the error when detecting the endpoints for

walking was double the standard deviations for the other activities.

Discussion and Conclusion In this preliminary study the algorithm led to a

mean reduction in the median endpoint error in the data set of real movements

by 63%. This indicates a significant improvement in this case. However, the real

measure of the quality of the algorithm is in whether or not it causes an improve-

ment in classification accuracies. Accurate endpoint detection is not necessary for

classification of upright/lying transitions, nor for the detection of walking, nor for

the classification of sit/stand transitions when an expert system is used. Accurate

classification is, however, necessary for comparison of activity signals using pat-

tern matching techniques, such as are used in the dynamic time warping algorithm

that is described in the next section. Thus, the utility of the endpoint detection

algorithm should be evaluated in conjunction with a classification algorithm.

It may also be supposed that accurate endpoint detection would result in more

accurate estimates of activity durations. However, this is not the case, because the

activity durations are not measured based on specific body movement events (such

as foot touches ground) but on the presence or absence of a level of movement. Thus,

the measured activity durations are only approximations. They would be expected

to be accurate to within 1—2 s, but not more so than this, and hence, increasing the

accuracy of the endpoint detection will not actually improve the estimate of activity

duration.

Classifying Unidentified Activities Using Template Matching Techniques

All periods of activity that were not explicitly classified by the classification algo-

rithm were categorised as “other activities”. However, there were large di erences

between the activities in this category–some were of short duration while some
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were of long duration, some had a low SMA while others had a high SMA, and

there was a wide range of di erent signal patterns.

Although the actual activity performed in these movements is not known, it is

possible to subclassify them into groups of similar signals. This can be useful in

that it provides statistical information on the unclassified activities. It can then be

seen whether a particular activity is prevalent, in which case, it may warrant more

detailed examination. It can also provide an indication of the duration and level of

energy expenditure in the unclassified activities.

One of the di culties in doing this is that di erent instances of the same activity

may yield signals of di erent magnitudes and durations. Moreover, the timing

between the component movements of the activity may di er in di erent instances

of the activity. In order to compare the signals from two activities, they need to be

able to be normalised with respect to magnitude and duration.

Magnitude normalisation can be performed by removing the mean and dividing

the signal by its root mean square, or other appropriate value. Duration normali-

sation can be performed by means of the nonlinear dynamic time warping (DTW)

algorithm. This is a deterministic template-matching algorithm, in which a test

signal is stretched in a nonlinear manner according to a set of constraints until the

best possible match with a template signal is achieved. The algorithm describes the

stretching and squashing that needs to be done to achieve the best match. It also

provides a measure of the (mathematical) distance between the time warped test

signal and the template signal. A lower distance score indicates a better match.

The algorithm is described in detail by Deller et al. [60].

A proposed algorithm that automatically categorises the activities is as follows.

The test signal is normalised in magnitude and then compared to the template for

the first category using the DTW algorithm and a distance score is calculated. This

procedure is repeated for all of the other categories. The category that gave the

lowest distance score is chosen. If the distance score for the chosen category is

less that a preset threshold then the test signal is added to this category and the

category template is updated by averaging all of the signals that are contained in

that category. If the distance score exceeds the preset threshold then the test signal

is placed in a new category and becomes the initial template for that category.

This algorithm uses arbitrarily many adapting categories. There are several

variations on this algorithm that can be performed. Firstly, the test signal could

be tested against category templates only until a comparison gives a distance score

that is lower than the preset threshold. This reduces the amount of processing

required. Secondly, fixed categories could be used. Then the test signal is placed
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in the category that resulted in the lowest distance score, regardless of the value.

Thirdly, fixed templates, rather than adaptive templates, could be used.

In preliminary testing, this DTW-based algorithm was applied to all of the

activity data collected in the study of section 6.5, and data from early laboratory

testing. The early results showed promise, although further work is required to

obtain a measure of the performance of this algorithm. The performance of the

algorithm is very dependent on the choice of parameters, particularly on the preset

distance score threshold and work would be needed to determine suitable parameter

values.

The DTW algorithm depends on receiving accurate estimates of the activity

endpoints. If the endpoint estimates are too inaccurate then the test signal cannot

be adequately matched to the template signal, regardless of how similar the two

activities may actually be. The DTW algorithm and the endpoint detection algo-

rithm should be evaluated together, and optimal parameters determined for the two

algorithms at the same time.

Other approaches to the categorisation of unidentified activities that could be

considered are hidden Markov models and self-learning neural networks. These

two methods add a stochastic dimension to the decision making that may provide

superior performance to the DTW algorithm. This remains to be investigated.

Extracting Simple Activities from Complex Movement Patterns

The current work focussed on the classification of simple activities; that is, activities

where there was only one action performed during the period of activity. The next

stage of work is to investigate the automated classification of periods of activity

that incorporate multiple activities. An analogous problem has received a great

deal of attention in speech processing where research has focussed on continuous

speech recognition, that is, identification of the message from speech uttered in an

unconstrained manner [60]. The techniques that have been used most successfully in

speech processing may also be able to be applied to the signal from the TA. These

include the use of hidden Markov models, formal language modelling techniques

and artificial neural networks. In study 3F (sections 7.7 and 8.4), heuristic rules

were used to infer the presence of a complex movement (a sit-to-stand transition

followed by walking) when a sit-to-stand transition was not detected between a

period of sitting and a period of walking. Future work could involve investigation

of techniques to extract simple activities from complex movement patterns.



9. Future Directions 399

9.6 Clinical Testing

In the current work algorithms for classification of activities and postural orienta-

tions, and for the extraction of parameters, were developed and tested using cohorts

of healthy subjects. The next stage of the work requires statistical validation of

these algorithms for cohorts of subjects who are most likely to derive benefit from

unsupervised monitoring. These include patients in rehabilitation after an illness

or injury, those with a chronic disease condition, and the frail elderly. The methods

that were developed in this study for falls detection and parameter extraction need

to be tested in randomised trials. The hypothesis that the longitudinally tracked

parameters can provide early indicators of changes in health and functional status

also needs to be tested in randomised trials.

Possibilities for studies include:

• A field trial to validate the activity classification algorithms for a di erent

subject cohort of subjects. Possible cohorts include rehabilitation patients,

the frail elderly and patients with chronic disease. This study would also

collect data on parameters of basic daily activities for this subject cohort.

The parameter values could be compared to those obtained from the normal

subject cohorts used in the current work.

• A field trial to validate the use of the system for detection of falls and predic-

tors of falls. A cohort of at least fifty subjects would be required for a period

of at least six months. The subjects would be required to be elderly, living

independently at home, and to have had more than one fall in the last two

years in order to maximise the likelihood of detecting fall events. In this trial,

subjects would be required to wear the TA device every day. They would

keep a diary to record all falls, stumbles and “turns”. In the event of a fall,

stumble or “turn”, the subject would press the button on the TA to indicate

the event. TA data would be recorded by the system and the results of the TA

falls detection algorithm would be correlated with the falls diary and button

press record. The data would be studied for anomalies that may be predictors

of falls.

• A field trial to validate the use of the system for detection of early changes in

health and functional status through longitudinal parameter tracking. This

study would be conducted in the same manner as the unsupervised home field

study (refer to section 7.8), but the subjects would be chosen from either frail

elderly or housebound patients with chronic disease, whose health status is
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liable to change. The study would need to run for at least six months with at

least fifty subjects.

9.7 Longitudinal Monitoring with an Adaptive

Template

Parameters of movement were extracted from the acceleration signals during the

directed routine and the periods of free movement. These parameters were stored

and tracked longitudinally. It is known from the literature that changes in these

parameters can indicate changes to health or functional status (refer to chapters 2

and 3).

The parameters obtained from an individual subject can be compared to pop-

ulation norms to provide an indication of the functional status of the subject. As

more data are collected from the subject, the newly collected parameters can be

compared to parameters collected earlier from the same subject to monitor change

in functional status.

Changes in the parameters due to changes in health can occur abruptly or grad-

ually over time. Abrupt changes will occur with acute illness. If, for example, a

subject becomes ill with a cold, or urinary tract infection, there will be a sudden

decrease in the amount of energy expended by the subject. This may be seen as

a decrease in the daily SMA and proportion of time spent in activity. Gradual

changes will occur with chronic illness or increasing frailty. Over a period of several

months it may become apparent that a subject is performing the sit-to-stand tran-

sition more slowly and that their step-by-step gait variability is increasing, both of

which indicate a declining functional status and an increase in falls risk.

As the data are collected a statistical template can be developed for the subject.

Each time more data are collected, the template can be adapted by the addition

of the new data. Short term and long term thresholds can be applied to the data.

The newly collected parameters can be compared to the short term thresholds. If

any of the thresholds are exceeded, the event can be flagged and a carer or clinician

notified. The rate of change of the longitudinal trends can be compared to the long

term thresholds. If any of the long term thresholds are exceeded, this event can

also be flagged to indicate a gradual but marked deterioration in health status, and

a carer or clinician notified.
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9.8 KnowledgeManagement and DecisionMaking

The focus of the current work was on understanding and interpreting the data

obtained from a waist-mounted TA during unsupervised monitoring. The next

stage of work must consider the presentation and dissemination of the collected

information.

Time-based trends of parameters, plotted together with normal values and tem-

plate thresholds is a way to present the collected data that shows clearly the impor-

tant aspects. An example of this presentation is shown in figure 9. 0. In this figure

the parameter values are genuine, and are taken from one of the elderly subjects

involved in the unsupervised home monitoring study, but the normal and threshold

values are arbitrary. In this example, the parameter value measured on day 7

exceeds the short term threshold value. In this case, this was just a statistical fluc-

tuation (caused by the subject continuing to move after completing the transition)

and none of the other parameters measured on the same day exhibited abnormal

behaviour. Histograms, pie charts and other graphs can also be applied to illustrate

the performance of a subject over a specified time interval (see, for example, the

paper by Kiani et al. [ 23])

The time-based trends should be made available to the patient’s clinician or

care manager, via the Internet or any other appropriate means. In addition, regular

(weekly or monthly) reports should be generated and provided to the patient’s

clinician or care manager (and also the patient, should she or he wish it). The

report should summarise the information from the reporting period. Each item

should be listed together with a rating. Possible ratings include:

• very low, low, normal, high, or very high;

• normal, or abnormal;

• much worse than last time, worse than last time, same as last time, better

than last time, or much better than last time.

Any items that have changed since the last report should be highlighted.

When the monitoring system detects an abnormal event it needs to alert an

appropriate person. Some of the events that need to be flagged are:

• falls in which aid is required;

• falls and stumbles in which aid is not required;
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Figure 9. 0: Example presentation of monitoring data. The data shown are the
duration of the sit-to-stand transition. The measured parameter value for each day
of the study is plotted. The 90-day mean value is shown. The normal value for
the subject cohort, and the short term and long term template threshold values
for the subject are shown. (The plotted values for these last three parameters are
arbitrary, since this information has not been collected or determined. They are
graphed merely to illustrate the data presentation method.)
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• extended periods without movement (when the TA unit is being worn), re-

gardless of the posture of the subject;

• parameter values exceeding either a short-term or a long-term threshold;

• the detection of an upside-down posture;

• large acceleration peaks; and

• faulty operation of the system.

The level of flagging will depend on the nature of the event. Events can be

classified as one of three main levels:

. Alarm generation required. This is the highest level of notification and occurs

when an immediate response is required. This level is used if a fall is detected

in which aid is required, or if an extended period without movement is re-

quired. The system immediately contacts an emergency carer or call centre

by means of telephone, or any other appropriate means and makes them aware

of the problem. The same methods that are currently used in personal alarm

systems are appropriate for use here [45, 92, 237]. It is important that the

system continues attempting to make contact until it knows that a person has

received the message. An alert is also generated, and the event is also logged.

2. Alert generation required. This is the second level of notification and occurs

after an event is detected that indicates a change in health or functional

status, but in which immediate response is not required. This level is used

if a fall or stumble is detected in which aid is not required, if a longitudinal

template threshold is exceeded, or if faulty operation of the system is detected.

A single parameter exceeding the longitudinal template threshold such as

occurred in the example case above would not be su cient to generate an alert.

This would require supporting evidence from other parameter values before a

decision was taken that the subject’s health status had deteriorated. In the

event of an alert being required, the system sends a message–by electronic

mail, facsimile, or any other appropriate method–to an appropriate person–

a clinician or carer, in the case of clinical changes, and a technician or carer,

in the case of faulty operation–to alert them to the problem. The event is

also logged.

3. Log generation required. This is the lowest level of event notification and oc-

curs when an abnormal, but not immediately significant, event occurs. Large
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acceleration peaks and upside-down postures will be logged, as will all events

that require an alert or alarm to be generated. The event time and description

are recorded in a log file. Appropriate people such as the patient’s clinician

can inspect the log file at any time, but no message is generated at the time

of the event to alert them to the event. The primary purpose of the log file is

to provide a record of events that can be referred to if historical information

is required.

Before an alarm is generated, the patient should be notified by means of an

audible message. The message should tell the patient that an alarm condition has

been identified and that an alarm will be generated unless the patient cancels the

alarm. If the alarm is genuine, then this message will reassure the patient that aid

is being sought. If the alarm is false, then the patient has an opportunity to cancel

the alarm. Alarm cancellation should only be possible from the receiver unit. All

false alarms should be recorded as such.

9.9 Integration into the Health Care System

In the current work the TA system was used in isolation. However, in order to

disseminate the information from the system, and to ensure that information from

the system is responded to appropriately, the system needs to be integrated into

the existing health care system. There are a number of ways in which this can be

achieved.

Firstly, it can be used as a stand-alone, intelligent personal alarm system for

falls detection. In this case, the system would need to be told who to contact in the

event of an emergency, and how to contact them. Existing personal alarm systems

usually contact either a 24-hour call centre or a carer by means of telephone. This

TA system could do the same.

Secondly, it can be used for stand-alone monitoring of unsupervised movement.

In this case, the system needs to be told who to contact in the event of an emergency,

and how to contact them. Secondly, the parametric information collected by the

system needs to be made available to the patient’s clinician or case manager so that

appropriate interventions can be taken.

Thirdly, it can be used as part of a comprehensive home telecare system and

the data obtained from the ambulatory monitoring correlated with other measures

of physiological and behavioural health status to provide additional information on

the wellbeing of the patient.
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Conclusion

This thesis has investigated the hypothesis that accelerometry is a suitable technique

for monitoring human movement patterns in unsupervised free-living subjects over

extended periods, and that it can be used to quantitatively measure parameters

that can provide clinical insight into the health status of the subject.

Previously, it has been shown that there are a number of parameters of human

movement that provide an indication of the functional status of the subject. These

parameters include the amount of postural sway exhibited during quiet standing,

the time taken to perform a sit-to-stand transition, walking speed, and variability

in the walking step rate. The functional status of a subject can be determined to be

normal or impaired based on measurement of such parameters. Similar parameters

have also been found to be sensitive indicators of a risk of falling.

It has also been suggested that accelerometers are suitable instruments for mon-

itoring human movement under free-living conditions. Accelerometers have been

successfully used in the measurement of energy expenditure during routine daily

activities. They have also been used in the assessment of sit-to-stand transitions,

gait and balance, and in systems for automatic classification of movements. Most

of the assessment of particular movements has taken place inside a laboratory, and

has used multiple instruments, placed at two or more locations on the body. How-

ever, no studies have investigated the utility of a single accelerometer instrument

for long-term monitoring of health and functional status in an unsupervised envi-

ronment.

The current work has presented a study of the use of a single triaxial accelerom-

eter (TA) for monitoring in an unsupervised environment. For reasons of simplicity,

useability and compliance, it was determined that an instrument attached to a sin-

gle location on the body would be most suitable for unsupervised monitoring. A

405
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system was developed by the Biomedical Systems Laboratory at the University of

New South Wales that consisted of a TA and a push button contained within a

pager-like casing. The unit was designed to be clipped on to a belt or to the waist

of a skirt or trousers. It sampled accelerations at 45Hz and transmitted the data

via a wireless link to a personal computer where the data were stored and analysed.

The current work determined the range of clinically useful information that could

be obtained from this instrument. It began by developing a theoretical understand-

ing of the signals from a TA, based on the physical properties of the instrument. The

signal was made up of two main components, a gravitational acceleration compo-

nent and a body acceleration component. The gravitational acceleration component

indicated the postural orientation of the subject, while the body acceleration com-

ponent described the movement of the subject. The accelerometer output signal

was the vector sum of these two components. The two components overlapped one

another in frequency and in time and so neither could be perfectly extracted from

the signal.

A range of techniques for the approximate separation of the two components

were considered. The two most successful techniques were a low pass FIR filter

that was designed to have a close to optimal impulse response, which minimised

the amount of ringing in the filtered signal, and a method in which the gravita-

tional acceleration component was estimated using splines and subtracted from the

magnitude acceleration signal to estimate the body acceleration component. The

two methods were appropriate in di erent circumstances. The filtering method was

more appropriate when removal of the d.c. component was important, such as in

the estimation of metabolic energy expenditure. The spline method was more ap-

propriate when distortion of signal characteristics was not acceptable, such as when

accurate identification of activity endpoints was required.

Since perfect separation cannot be achieved, integration of the body acceleration

component estimate does not provide accurate estimates of velocity or displacement

of the movement. This was demonstrated both theoretically and in an experimental

study.

The preferred placement for the TA unit was found to be on the waist above the

anterior superior iliac spine. The waist was chosen because here the unit was close to

the centre of mass and so could measure “whole body” movements. The placement

above the iliac spine was chosen primarily for the comfort and convenience of the

subject. The unit could be easily attached at this location and it was unlikely to be

knocked or inconvenient while being worn. However, the exact placement of the unit
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in an unsupervised setting was dependent on subject preference, body shape and

choice of clothing. A series of experimental studies were undertaken to determine

the e ect of device placement on the output signal. It was found that a simple

model could be used to relate the TA signal output, TA placement and postural

orientation. If two of these three measures were known then the third could be

deduced by means of the model. This meant that, in an unsupervised setting, the

placement of the TA could be determined from the TA signals by having the subject

carry out a known routine that included a period of standing and a period of lying

supine.

The same model was used to relate the signals obtained from TA units placed at

di erent locations around the waist during sit-to-stand and stand-to-sit transitions.

This meant that di erent instances of the transition could be directly compared,

even if they were measured from di erent waist placements. This is important for

longitudinal monitoring of parameters in unsupervised situations where the subject

may change the placement of the device from day-to-day.

However, the same model could not be applied to relate signals from the more

complex activity of walking. A model that has been used successfully to repre-

sent pelvic displacement during walking was adapted to predict pelvic accelerations

during walking, but it failed to adequately reflect the true accelerations due to the

amplification of errors within the model during the di erentiation process. It was,

however, found that the vertical axis acceleration signals measured from di erent

waist placements were in phase and highly correlated. This allowed parameters of

gait such as cadence and step rate variability to be measured from the TA signal

from any placement on the waist. Further work is required before parameters within

the gait cycle, such as single and double stance times, can be measured from the

signals of a TA unit placed anywhere on the waist.

It was concluded that a system for monitoring postural orientation, sit-to-stand

movements and parameters of step rate during walking can use a waist mounted

TA placed above the anterior superior iliac spine and can tolerate variations in the

placement position, both across subjects and for the same subject over time.

Most studies of accelerometer-estimated energy expenditure by other researchers

have placed the accelerometer at the sacrum. Thus, a study was undertaken to de-

termine the validity of using a TA placed above the right anterior superior iliac spine

to estimate energy expenditure. In a study of treadmill walking at various speeds

by twelve subjects, a correlation statistic exceeding 0.99 was obtained between the

signal magnitude area (an estimator of metabolic energy expenditure, referred to
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as the SMA), measured by a sacrum mounted TA and a TA placed above the right

anterior superior iliac spine. This indicated that there was an almost perfect linear

relationship between the measurements at the two placements. It was concluded

that energy expenditure could be measured by a TA at either location with the

same degree of accuracy.

The majority of studies by other researchers that have classified movements

from an accelerometer signal have developed a classifier specific to the movements

of interest. In the current work, a general framework for movement classification

was developed. This framework was designed to be suitable for classification of

any set of movements. It was structured as a hierachical binary decision tree. At

each node, a single yes/no decision was made about whether or not the section of

signal in question satisfied a certain condition. If the condition was satisfied then

the processing would ripple down to a lower level in the tree to make more detailed

decisions until a final classification was obtained. If the condition was not satisfied

then the processing would flow along to the next node at the same level in the

hierachy and the process would be repeated. One algorithm was associated with

every node. This made it simple to measure the accuracy of each algorithm, and

to modify, add and remove algorithms. All of the algorithms were designed to be

suitable for real time processing, and a combination of signal processing techniques

and heuristic rules were used.

An implementation of the framework specific to the needs of unsupervised mon-

itoring of free-living, housebound subjects was presented. This focussed on the

identification of important basic movements, including lying, sitting, standing, walk-

ing, postural transitions and fall events. A suite of algorithms was developed and

evaluated using data taken from normal subjects performing sequences of directed

movements in a laboratory setting. These algorithms determined whether or not

the TA unit was being worn; distinguished between activity and rest; distinguished

between upright and lying resting states; identified lying subpostures; distinguished

between sitting and standing; identified fall events; identified periods of walking and

walking step rate; and identified postural transitions. Each algorithm was tested

and evaluated using data taken from a cohort of healthy, normal subjects. All of the

algorithms performed with better than 90% accuracy on the controlled data sets

taken from normal subjects.

Once a movement was identified, movement-specific parameters could be ex-

tracted from the signal. These parameters included tilt angle, activity duration,

walking speed, postural sway and energy expenditure as measured by SMA. Many
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of these parameters, such as sit-to-stand transition time and walking speed, have

known clinical relevance as indicators of functional status. Others provide further

information on the movement that may prove clinically useful when tracked longi-

tudinally.

It was determined that there were two primary requirements in long term un-

supervised monitoring of human movement. The first requirement was to identify

abnormal events, such as falls, so that an alarm could be raised. The second require-

ment was to longitudinally track clinically sensitive parameters that were indicative

of functional status. A methodology for unsupervised home monitoring of free-living

subjects was designed to address these requirements. This methodology consisted

of two components: a routine of directed movement from which clinically sensitive

parameters were extracted and tracked longitudinally, and a period of free move-

ment in which the TA monitored the subject’s movements for falls, and recorded

general parameters of movement, including energy expenditure. Each component

of the system was tested systematically in a series of experimental studies.

These studies were:

• a study of directed movements in an unsupervised laboratory setting with

normal, healthy subjects;

• a study of directed movements in a supervised home setting with a normal,

healthy subject;

• a study of free movements in a supervised home setting with a normal, healthy

subject; and

• a study of directed and free movements in an unsupervised home setting with

healthy, elderly subjects.

All subjects found the system easy to use, and all reported that the TA unit was

comfortable and not inconvenient to wear, although several of the elderly subjects

changed the placement of the device to prevent discomfort.

The movements in the directed routine were automatically identified using a

combination of button presses, the activity classification algorithm, and heuristic

rules. This identified the activities and movements in every study with at least

97.8% accuracy. Overall, the results obtained showed a high degree of consistency.

There were no significant di erences in the sets of parameters obtained in the su-

pervised laboratory study, the unsupervised laboratory study, and the supervised
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home study. Parameter values were similar for all subjects, and were also consis-

tent within individual subjects. In every subject cohort, there were statistically

significant di erences between the signals from quiet standing, sitting and lying.

There were several statistically significant di erences between the parameter val-

ues obtained from the healthy elderly cohort and those obtained from the healthy

younger cohorts. The elderly group recorded lower SMA values and smaller ac-

celeration ranges for most activities. They also recorded greater SMA values and

acceleration ranges during the 30 s stand and during the lying period. The elderly

subjects also took slightly longer to complete the sit-to-stand transition. There was

no di erence in the amounts of postural sway between the groups, nor were there

any di erences in gait cadence or variability.

No fall events occurred during any of the studies.

In the study of free movement with the elderly subjects, parameters of energy

expenditure (SMA) and the proportion of time spent in activity were computed

on an hourly and a daily basis. There was a strong correlation between these two

parameters (r = 0.951) when compared on an hourly basis. A moderate negative

correlation was obtained between weekly self-perceived health status and mean en-

ergy expenditure of r = 0.507, indicating that subjects were less active when they

felt less well. This preliminary result lends support to the hypothesis that the TA

unit can be used for preventative health monitoring by detecting early changes in

overall health status through changes in mean SMA.

These results indicate that the waist mounted TA is a reliable instrument for

monitoring movement in an unsupervised home environment, which can provide

measurements of clinically significant parameters.

This work has undertaken a rigorous and systematic analysis of all of the aspects

involved in using accelerometry for unsupervised monitoring in a home environment.

It has found that a single waist-mounted triaxial accelerometer is a practical instru-

ment for this purpose. It was well accepted by all subjects, including the cohort of

elderly subjects who used the device daily for 2—3 months. Important movements

were able to be identified from the signals. Clinically significant parameters were

able to be extracted from the signals and tracked to provide a longitudinal measure

of functional ability, which may, in the future be used to provide early identification

of changes in functional status. Fall events, extended periods without movement

and other adverse events could be identified by the device.

In conclusion, the waist mounted triaxial accelerometer has been shown to be a

suitable instrument for monitoring human movement patterns in unsupervised free-
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living subjects over extended periods, and it can be used to quantitatively measure

parameters that can provide clinical insight into the health status of the subject.

This device has a great deal of potential as a low cost instrument for preventing

morbidity and maintaining quality of life in community dwelling, housebound pa-

tients, by providing the security of continuous monitoring and by providing useful

clinical information on the functional status of the subject in the home environment.
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Appendix A

A Model of the Pelvis During Gait

Research has found that the displacement of the pelvis during ambulation can be

accurately represented in terms of a model with six degrees of freedom. Movement

in each dimension is independent and is represented by a sinusoid (refer to section

3.6.4).

The pelvis was modelled as a rigid body with an elliptical cross section, as shown

in the figure.

Representation of the pelvis with six degrees of freedom of movement.

The model was described by the following equations:
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x = xm sin( t) (lateral translation)

y = ymt (forward translation)

z = zm sin(2 t
2
) = zm cos(2 t) (vertical translation)

= m sin(2 t
2
) = m cos(2 t) (x-axis rotation)

=
m
sin( t) (y-axis rotation)

=
m
sin( t

2
) =

m
cos( t) (z-axis rotation)

where:

t is the time in seconds

is the angular frequency, or, in this case, 2.

gait cycle period
, and

xm = 2.5 cm, ym = 140 cm, zm = 2.5 cm, m = 2.5 ,
m
= 2.5 ,

m
= 5

were used as initial parameters.

In this model, all rotation is about the centre of the ellipse (assumed to be

the centre of mass of the subject). From these equations, the three-dimensional

position, velocity, and acceleration of any point on the ellipse at any point in time

can be calculated.

The acceleration at any point on the ellipse, at any point in time is composed

of the gravitational acceleration and the body movement acceleration. These can

be computed separately and then added together.

Consider first the displacement of point P . The position of point P at time

t + t is given by rotating the position at time t through the rotations that have

occurred during the period t. These rotations are given by:

= m cos(2 t) (A. )

=
m
sin( t) (A.2)

=
m
cos( t) (A.3)

Multiplication by rotation matrices does not commute, that is, the order in which

the rotations occur is important, but if the angles of rotation are small then the

operation is approximately commutative and the entire rotation can be represented

by:

R =

1

1

1

=

1
m
cos( t)

m
sin( t)

m
cos( t) 1 m cos(2 t)

m
sin( t) m cos(2 t) 1

(A.4)
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and so

P (t+ t) = RP (t)

=

1
m
cos( t)

m
sin( t)

m
cos( t) 1 m cos(2 t)

m
sin( t) m cos(2 t) 1

a cos( )

b sin( )

0

=

a sin( ) b sin( )
m
cos( t)

a cos( )
m
cos( t) + b sin( )

a cos( )
m
sin( t) + b sin( ) m cos(2 t)

(A.5)

for small changes in angle. The gravitational acceleration thus needs to be deter-

mined incrementally.

Consider now the body movement component. If orthonormal vectors along the

x-, y-, and z- axes are represented by units i, j, and k respectively then the linear

displacement, velocity and acceleration are given by:

dO(t) = xm sin( t)i y
m
tj+ zm cos(2 t)k (A.6)

vO(t) = d0(t) = xm cos( t)i y
m
j+ 2 zm sin(2 t)k (A.7)

aO(t) = d00(t) = 2xm sin( t)i 4 2zm cos(2 t)k (A.8)

and the angular displacement, velocity and acceleration are given by:

(t) = m cos(2 t)i+
m
sin( t)j

m
cos( t)k (A.9)

(t) = 0(t) = 2 m sin(2 t)i+
m
cos( t)j+

m
sin( t)k (A. 0)

(t) = 00(t) = 4 2

m cos(2 t)i 2

m
sin( t)j+ 2

m
cos( t)k (A. )

Then the acceleration at P (t) is given by:

abP = aO +
0
× rP |O + × ( × rP |O)[ 67] (A. 2)

where rP |O represents the distance from origin O to point P . This can be

calculated from equation A.5.

The gravitational acceleration component can also be computed from equation

A.5. Once the position of point P is known in space then the gravitational compo-

nent along each TA axis can be computed simply by considering the projection of

the gravitational vector on to the axis.

Once the body acceleration (abP ) and the gravitational acceleration (agP ) have

been computed the acceleration seen by the TA can be calculated as the vector sum

of the two, a = abP + agP .



Appendix B

Subject Information and Consent

Forms

This appendix contains forms for:

• the unsupervised laboratory study (2D) test procedure;

• the unsupervised laboratory study (2D) additional information;

• the unsupervised home study (4D and 4F) subject information; and

• the subject consent form.
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Unsupervised laboratory study (2D) - test procedure
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Unsupervised laboratory study (2D) - additional information, page of 3
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Unsupervised laboratory study (2D) - additional information, page 2 of 3
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Unsupervised laboratory study (2D) - additional information, page 3 of 3
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A pprovalN o:...................

THE UNIVERSITY OF NEW SOUTH WALES

SUBJECT INFORMATION STATEMENT AND CONSENT FORM 

Home Monitoring with a Triaxial Accelerometer 

You (i.e. the subject) are invited to participate in a study on ambulatory monitoring using a small, pager-

sized device called a triaxial accelerometer.  We (i.e. the investigators) hope to evaluate the device in terms 

of its usability and its medical benefit. Your acceptance of the system will also be evaluated. 

You were selected as a possible participant because the study focuses on elderly patients living at home. 

The study will be conducted over a period of up to 13 weeks. The triaxial accelerometer will measure and 

record how well you are able to walk and move around. It is hoped that this data will be used to identify 

falls, stumbles and poor mobility within the home and to eventually be used as a means for assessing 

patient progress and for understanding and preventing falls. 

If you decide to participate, you will be given a triaxial accelerometer and a personal computer. You will be 

required to wear the triaxial accelerometer device each day for the duration of the trial. A researcher from 

the university will visit your home to set up the monitoring system. The data collected by the triaxial 

accelerometer will be transmitted to the computer where it will be stored until it is collected by a researcher 

from the university. A researcher from the university will visit your home each week to collect the data that 

has been stored by the system.  

At the commencement and conclusion of the study we may require you to complete an assessment of your 

balance and fall risk, and may ask for information on your relevant medical history. 

No computer experience is required in order to use the system or participate in the trial. The system has 

been specifically designed to be very simple to use. At the time of installation you will receive full training 

in the operation of the system. A technical support line will be available to you for the duration of the study 

should you have any difficulty with this system. All the equipment and its installation will be provided to 

you free of charge.  

For the duration of the study, you will be required to attach the triaxial accelerometer to your waist belt 

when you get up in the morning. You will then need to carry out a short procedure which will take several 

minutes and will involve lying on the bed, sitting, standing and walking. You will then be required to wear 

the triaxial accelerometer throughout the day until you go to bed, except when bathing or showering. Once 

a week you will be asked to complete a short questionnaire on your health. This questionnaire will take 

around five minutes to complete. Once during the trial, and at the conclusion of the trial you will be asked 

to complete a questionnaire on your opinion of the triaxial accelerometer device. This questionnaire will 

take about fifteen minutes to complete. You will be asked to keep a falls diary. If at any stage during the 

study you fall, nearly fall, or stumble, you are requested to make a note of this in the diary. 

Unsupervised home study - subject information, page of 2
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THE UNIVERSITY OF NEW SOUTH WALES 

SUBJECT INFORMATION STATEMENT AND CONSENT FORM 

Home Monitoring with a Triaxial Accelerometer 

Possible inconveniences using the Home Telecare System may include having to fulfill the tasks for this 

study as stated above. Technical issues or problems may also arise from the use of this system for which 

you may need to contact our technical support line or we may need to contact you. 

It must be stressed that this system is under trial and therefore we cannot and do not guarantee or 

promise that you will receive any benefits from this study. Furthermore, this system should not be 

viewed as a substitute for your existing management procedures. If you have any concerns about 

your condition during the study you should consult your doctor/hospital as you would normally. 

Any information that is obtained in connection with this study and that can be identified with you will 

remain confidential and will be disclosed only with your permission or except as required by law.  If you 

give us your permission by signing this document, we plan to publish the results of the study in academic 

journals. The results to be published will be your perceptions of the system, the reliability of the system and 

the usefulness of the device for home monitoring. In any publication, information will be provided in such 

a way that you cannot be identified.

Your decision whether or not to participate is entirely voluntary and will not prejudice your future relations 

with the University of New South Wales. If you decide to participate, you are free to withdraw your 

consent and to discontinue participation at any time without penalty or prejudice. 

While the purpose of this trial is to evaluate the triaxial accelerometer in terms of its usability and its 

medical benefit, you should be aware that in the future, parts of the technology that you are using may be 

modified for incorporation into products for the purpose of making a medical device for commercial gain. 

Should you wish to participate, you should indicate this to Anne Tiedemann (who gave you this 

form). Anne will inform the research team at the University of New South Wales. Ms Merryn Mathie 

(from the University of New South Wales) will then contact you about participating in the study. 

If you have any questions, please feel free to ask us.  If you have any additional questions later, Merryn 

Mathie (phone 9385 5316) will be happy to answer them. 

Complaints may be directed to the Ethics Secretariat, University of New South Wales, SYDNEY 2052 

AUSTRALIA (phone 9385 4234, fax 9385 6648, email ethics.sec@unsw.edu.au). 

You will be given a copy of this form to keep.   

Unsupervised home study - subject information, page 2 of 2
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THE UNIVERSITY OF NEW SOUTH WALES 

SUBJECT INFORMATION STATEMENT AND CONSENT FORM 

Home Monitoring with a Triaxial Accelerometer 

You are making a decision whether or not to participate.  Your signature indicates that, having read 

the information provided above, you have decided to participate. 

Signature of subject Signature of witness 

_______________________________________ _______________________________________ 

Please PRINT name Please PRINT name 

_______________________________________ _______________________________________ 

Date Nature of Witness 

_______________________________________ _______________________________________ 

Signature(s) of investigator(s)  

_______________________________________ 

Please PRINT Name  

_______________________________________ 

REVOCATION OF CONSENT 

I hereby wish to WITHDRAW my consent to participate in the research proposal described above and 

understand that such withdrawal WILL NOT jeopardise any treatment or my relationship with the 

University of New South Wales (Hospital or my medical attendants).

Signature Date 

_______________________________________ _______________________________________ 

Please PRINT name  

_______________________________________ 

       

The section for Revocation of Consent should be forwarded to Merryn Mathie (Biomedical Systems 

Laboratory, UNSW Sydney NSW 2052, fax: (02) 9385 5316).            

Subject consent form



Appendix C

Health Questionnaires and

Assessment Forms

This appendix contains forms for:

• the Stanford Health Assessment Questionnaire disability index and pain scale;

• the medical history questionnaire; and

• the coop/wonca health questionnaire.
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Stanford Health Assessment Questionnaire, page of 3
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Stanford Health Assessment Questionnaire, page 2 of 3
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Stanford Health Assessment Questionnaire, page 3 of 3
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University of New South Wales – Triaxial Accelerometer Field Study 

Medical History Questionnaire 

Name:       Date:    

Gender: M/F 

Date of birth: 

Medical History 

Describe any significant medical illnesses/conditions 

Neurological

Strokes 

Parkinson’s Disease 

Seizures 

Middle Ear Problems 

Cardiovascular

Arrhythmia or heart attack 

Valve Disease 

Rhythm problems 

Blood Pressure

High blood pressure 

Low blood pressure 

Metabolic

Thyroid disease – over/under 

Diabetes 

Anaemia 

Musculoskeletal

Rheumatoid arthritis 

Osteoarthritis 

Osteoporosis 

Back pain / injury 

Foot disorders 

Psychological Disorders

Depression / Anxiety 

Visual problems

Alcohol History

Current: 

Past: 

Medical history questionnaire, page of 2
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University of New South Wales – Triaxial Accelerometer Field Study 

Medical History Questionnaire 

Medication History 

List of regular medications: 

Sedatives 

Blood pressure tablets 

Pain tablets 

Anti-epileptics 

Antidepressants 

Medical history questionnaire, page 2 of 2
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coop/wonca health questionnaire, page of 6
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©

coop/wonca health questionnaire, page 2 of 6
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coop/wonca health questionnaire, page 3 of 6
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coop/wonca health questionnaire, page 4 of 6
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coop/wonca health questionnaire, page 5 of 6
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Name: ___________________________________ 

Short Form Physiological Assessment 

The first value in the parentheses to the right of the entry box is the default value that 

should be used if the patient could not perform the test. The second value is the average 

value for the test (in case of equipment failure). 

1. Edge Contrast sensitivity (MET)  

Score  (1) 

2. Reaction Time -Hand 

 Trial 1  Trial 2  

score 1    (360 - 244) 

score 2    (360 - 244)

score 3    (360 - 244)

score 4    (360 - 244)

score 5    (360 - 244)

score 6    (360 - 244)

score 7    (360 - 244)

score 8    (360 - 244)

score 9    (360 - 244)

score 10    (360 - 244)

3. Proprioception 

score 1  (6 - 1.5) 

score 2  (6 - 1.5) 

score 3  (6 - 1.5) 

score 4  (6 - 1.5) 

score 5  (6 - 1.5) 

4. Knee extension (quads) 

Dominant Leg  (kg) (5 - 20.1) 

5. Balance 

Sway on foam eyes open 

Anterior/posterior  mm (50) 

Lateral  mm (50) 

Short form physiological assessment for falls risk



Appendix D

Parametric Data from Study 2D

mvt median m ean s.d . m in max mvt m ed ian mean s.d . m in max

sway duration (s)

0 0 0 0 0 8 5 .820 6 .0 9 .449 - .000 9 .830

tilt (deg) 9 6 .430 6 .975 3 .9 - .000 26 .590

4.99 4.26 6 .875 0.000 34 .956 0 6 .430 6 .508 .563 - .000 .750

3 6.684 7.623 7 .557 0.000 34 .95 4 .340 3 .6 8 3 . 3 - .000 9 .550

5 5.323 4.286 6 .966 0.000 36 .423 SMA (g)

6 4.443 3.648 7 .423 0.000 36 .26 0 .0 9 0 .023 0 .0 0 0.0 4 0 .063

7 5.954 4.6 7 6 .65 - .000 27 .300 2 0 .28 0 .284 0 .062 0. 8 0 .473

9 87.9 0 84.558 4 .978 - .000 06 .644 3 0 .055 0 .056 0 .0 4 0.029 0 . 0

32.904 34.92 5 .654 - .000 60 .5 0 4 0 .280 0 .278 0 .042 0. 89 0 .430

duration (s) 5 0 .042 0 .044 0 .0 6 0.0 8 0 .098

30.700 32.602 5 .274 27.740 48 .060 6 0 .379 0 .379 0 .064 0. 97 0 .5 5

2 3.4 0 4.4 5 3 .029 2. 40 23 .390 7 0 .059 0 .046 0 . 33 - .000 0 . 06

3 7.970 9.957 2 .007 4. 20 02 .980 8 0 .37 0 .354 0 . 82 - .000 0 .543

4 2. 50 2.632 0 .829 .040 5 .550 9 0 .072 0 .058 0 . 35 - .000 0 . 30

5 8.570 0.664 5 .923 5. 70 33 .070 0 0 .350 0 .360 0 . 92 - .000 0 .639

6 23.840 25.67 5 .7 5 7.530 42 .300 0 . 73 0 . 60 0 . 66 - .000 0 .392

7 7.520 8.366 4 .05 - .000 3 .420

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page of 6.
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mvt median mean s.d. m in max mvt median m ean s.d . m in max

median x (g) standard deviation x (g)

-0.092 -0.097 0. 4 -0 .446 0.209 7 0.02 0 .0 2 0 . 29 - .000 0 . 29

2 -0. 0 -0.095 0. 58 -0 .395 0.328 8 0.335 0 .305 0 . 87 - .000 0 .484

3 -0.234 -0.236 0. 44 -0 .560 0. 44 9 0.0 0 -0 .004 0 . 26 - .000 0 .036

4 -0.095 -0.092 0. 52 -0 .4 7 0.2 3 0 0.337 0 .3 5 0 . 88 - .000 0 .589

5 -0.077 -0.083 0. 36 -0 .498 0.209 0.262 0 .244 0 .2 4 - .000 0 .6 3

6 -0.072 -0.08 0. 8 -0 .38 0. 95 max x (g)

7 -0.075 -0.094 0. 74 - .000 0. 97 0.020 0 .0 5 0 . 54 -0.3 7 0 .360

8 -0.438 -0.395 0.242 - .000 0.005 2 0.25 0 .269 0 . 8 -0. 9 0 .7 7

9 -0.692 -0.6 6 0.228 - .000 0.053 3 -0. 63 -0 . 55 0 . 64 -0.50 0 .398

0 -0.224 -0.278 0.220 - .000 0.203 4 0. 70 0 . 96 0 . 69 -0. 87 0 .724

-0.054 -0.055 0. 96 - .000 0.378 5 0.005 0 .023 0 . 53 -0.397 0 .449

m ean x (g) 6 0.322 0 .36 0 .237 -0.024 .57

-0.092 -0.096 0. 39 -0 .450 0.2 5 7 0.0 -0 .00 0 . 82 - .000 0 .35

2 -0. 00 -0.090 0. 40 -0 .396 0.234 8 0.289 0 .273 0 .242 - .000 0 .963

3 -0.23 -0.236 0. 43 -0 .562 0. 37 9 -0.645 -0 .577 0 .233 - .000 0 .088

4 -0.086 -0.082 0. 43 -0 .347 0.3 5 0 0.387 0 .400 0 .309 - .000 .376

5 -0.072 -0.08 0. 35 -0 .49 0.205 0.665 0 .7 8 0 .508 - .000 2 .670

6 -0.074 -0.079 0. 22 -0 .380 0. 73 m in x (g)

7 -0.073 -0.09 0. 72 - .000 0. 88 -0. 72 -0 . 73 0 . 57 -0.5 8 0 . 74

8 -0.360 -0.349 0. 56 - .000 -0. 04 2 -0.4 7 -0 .425 0 . 72 -0.909 0 .050

9 -0.692 -0.6 7 0.227 - .000 0.052 3 -0.320 -0 .3 7 0 . 45 -0.726 0 .097

0 -0.30 -0.296 0. 45 - .000 0.027 4 -0.320 -0 .3 6 0 . 65 -0.806 0 .074

0.079 0.043 0.2 4 - .000 0.364 5 -0. 87 -0 . 7 0 . 52 -0.587 0 . 2

standard deviation x (g) 6 -0.5 -0 .495 0 . 5 -0.882 -0 .08

0.0 6 0.02 0.0 6 0 .005 0.075 7 -0. 6 -0 . 76 0 . 73 - .000 0 . 24

2 0. 67 0. 74 0.052 0 .092 0.38 8 - .003 - .078 0 .302 - .898 -0 .647

3 0.0 9 0.024 0.0 6 0 .008 0. 02 9 -0.7 6 -0 .659 0 .22 - .004 0 .029

4 0. 46 0. 46 0.038 0 .079 0.234 0 -0.828 -0 .857 0 . 35 - . 87 -0 .589

5 0.026 0.027 0.0 4 0 .006 0.068 -0.446 -0 .642 0 .679 -3.739 0 . 50

6 0. 29 0. 3 0.0 9 0 .086 0. 78

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 2 of 6.
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mvt median m ean s.d. m in max mvt m edian m ean s.d . m in max

range x (g) mean y (g)

0. 7 0. 88 0 . 9 0 .032 0.523 7 0. 34 0 . 03 0. 90 - .000 0 .456

2 0.663 0.694 0 .220 0 .322 .626 8 -0.262 -0 .272 0. 47 - .000 -0 .0 5

3 0. 28 0. 62 0 . 24 0 .044 0.778 9 -0.655 -0 .69 0. 60 - .000 -0 .3 6

4 0.497 0.5 2 0 . 47 0 .27 0.955 0 -0. 99 -0 .200 0. 60 - .000 0 .07

5 0. 90 0. 94 0 . 2 0 .033 0.885 0. 26 0 . 08 0. 85 - .000 0 .344

6 0.832 0.856 0 .2 9 0 .558 2.086 standard deviation y (g)

7 0. 48 0. 60 0 . 72 - .000 0.606 0.0 3 0 .0 9 0.0 8 0.004 0 . 09

8 .239 .335 0 .457 - .000 2.258 2 0. 67 0 . 78 0.060 0.052 0 .369

9 0.065 0.067 0 . 45 - .000 0.247 3 0.0 9 0 .025 0.0 9 0.007 0 . 33

0 .22 .24 0 .404 - .000 2.379 4 0. 46 0 . 44 0.036 0.06 0 .247

. 50 .345 0 .963 - .000 4.646 5 0.023 0 .026 0.0 3 0.006 0 .066

m ed ian y (g) 6 0. 45 0 . 50 0.037 0.080 0 .244

0. 09 0.084 0 . 37 -0 .346 0.355 7 0.020 0 .009 0. 29 - .000 0 . 25

2 0. 00 0.096 0 . 5 -0 .28 0.406 8 0.4 8 0 .407 0.206 - .000 0 .690

3 -0.063 -0.056 0 . 28 -0 .329 0.240 9 0.009 -0 .004 0. 26 - .000 0 .05

4 0. 20 0. 3 0 . 40 -0 .283 0.477 0 0.402 0 .4 3 0.2 3 - .000 0 .695

5 0. 7 0. 0 . 37 -0 . 63 0.489 0. 62 0 . 62 0. 74 - .000 0 .388

6 0. 03 0.093 0 . 7 -0 .220 0.375 max y (g)

7 0. 32 0. 00 0 . 92 - .000 0.458 0.203 0 . 89 0. 76 -0.263 0 .76

8 -0.335 -0.302 0 .277 - .000 0.205 2 0.5 9 0 .484 0.233 -0.075 .070

9 -0.658 -0.692 0 . 60 - .000 -0.338 3 0.006 0 .0 5 0. 52 -0.255 0 .630

0 -0. 42 -0. 59 0 .264 - .000 0.308 4 0.404 0 .395 0. 5 0.000 0 .729

0. 7 0.099 0 . 88 - .000 0.472 5 0.220 0 .22 0. 4 -0.077 0 .558

m ean y (g) 6 0.646 0 .653 0.278 0. 89 .5 9

0. 0 0.085 0 . 36 -0 .345 0.353 7 0.224 0 .202 0.207 - .000 0 .529

2 0.096 0.096 0 . 39 -0 .277 0.32 8 0.495 0 .487 0.270 - .000 .047

3 -0.065 -0.055 0 . 28 -0 .326 0.227 9 -0.624 -0 .648 0. 68 - .000 -0 .206

4 0. 0 0. 3 0 . 26 -0 . 86 0.423 0 0.625 0 .700 0.468 - .000 2 .06

5 0. 2 0. 3 0 . 34 -0 . 57 0.482 0.54 0 .535 0.289 - .000 . 6

6 0. 5 0. 0 . 26 -0 .239 0.4 8

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 3 of 6.



462 D. Parametric Data from Study 2D

mvt median mean s.d. m in max mvt median m ean s.d . m in max

m in y (g) median z (g)

0.0 4 0.006 0. 48 -0 .482 0.26 7 0.963 0 .93 0 .245 - .000 .003

2 -0.226 -0.240 0. 65 -0 .785 0. 43 8 0.6 6 0 .529 0 .289 - .000 0.949

3 -0. 63 -0. 37 0. 29 -0 .507 0. 83 9 0.037 0 .053 0 .222 - .000 0.534

4 -0. 32 -0. 29 0. 29 -0 .395 0. 95 0 0.7 0 .656 0 .268 - .000 0.927

5 0.043 0.022 0. 45 -0 .332 0.358 0.948 0 .89 0 .258 - .000 0.998

6 -0.28 -0.287 0. 69 -0 .834 0.0 7 mean z (g)

7 0.066 0.023 0. 83 - .000 0.42 0.966 0 .962 0 .03 0.820 .005

8 - .000 - .049 0.304 -2 .322 -0.682 2 0.934 0 .924 0 .072 0.492 0.986

9 -0.692 -0.732 0. 6 - .060 -0.372 3 0.958 0 .945 0 .04 0.820 .00

0 -0.785 -0.845 0. 92 - .344 -0.436 4 0.942 0 .938 0 .038 0.793 .00

-0.344 -0.480 0.49 - .935 0.235 5 0.964 0 .962 0 .033 0.805 .004

range y (g) 6 0.968 0 .964 0 .034 0.806 .0 2

0. 4 0. 83 0. 45 0 .026 0.878 7 0.960 0 .930 0 .245 - .000 .002

2 0.673 0.724 0.274 0 .25 .573 8 0.5 0 0 .483 0 .224 - .000 0.84

3 0. 35 0. 53 0.095 0 .040 0.7 9 9 0.029 0 .053 0 .222 - .000 0.535

4 0.527 0.523 0. 42 0 .249 0.83 0 0.595 0 .569 0 .22 - .000 0.792

5 0. 89 0. 98 0. 9 0 .034 0.854 0.8 8 0 .759 0 .268 - .000 0.996

6 0.908 0.940 0.278 0 .497 .729 standard deviation z (g)

7 0. 60 0. 64 0. 77 - .000 0.596 0.007 0 .0 0 .009 0.004 0.052

8 .550 .52 0.50 - .000 2.835 2 0. 6 0 . 34 0 .074 0.059 0.526

9 0.063 0.068 0. 47 - .000 0.298 3 0.0 4 0 .0 7 0 .0 0.005 0.084

0 .427 .529 0.630 - .000 3.277 4 0. 2 0 . 27 0 .035 0.065 0.254

.045 0.999 0.569 - .000 2.260 5 0.0 7 0 .020 0 .0 3 0.005 0.078

m edian z (g) 6 0.2 0 .2 7 0 .039 0. 0 0.288

0.965 0.962 0.03 0 .820 .006 7 0.0 9 0 .006 0 . 27 - .000 0.082

2 0.942 0.930 0.055 0 .602 0.997 8 0.435 0 .4 0 . 96 - .000 0.643

3 0.954 0.946 0.040 0 .82 .004 9 0.0 6 0 .008 0 . 30 - .000 0. 43

4 0.954 0.946 0.039 0 .798 .0 2 0 0.408 0 .388 0 . 94 - .000 0.630

5 0.965 0.963 0.033 0 .805 .004 0.248 0 .25 0 .233 - .000 0.72

6 0.963 0.956 0.037 0 .798 .020

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 4 of 6.
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mvt median m ean s.d. m in max mvt m edian m ean s.d . m in max

max z (g) range z (g)

.020 .037 0 .087 0 .89 .5 6 7 0.200 0 . 93 0 . 89 - .000 0.636

2 .308 .355 0 .243 .0 6 2.570 8 .666 .674 0 .494 - .000 2.9 8

3 .0 4 .022 0 .067 0 .86 . 93 9 0. 32 0 . 62 0 .2 4 - .000 0.807

4 .2 5 .234 0 . 09 .028 .630 0 .577 .604 0 .454 - .000 2.383

5 .04 .069 0 .099 0 .9 7 .492 .450 .505 0 .92 - .000 3.688

6 .573 .593 0 . 80 . 96 2.522 median r (g)

7 .042 .026 0 .263 - .000 .307 .000 0 .99 0 .022 0.908 .0 5

8 .256 .277 0 .356 - .000 2.383 2 0.999 0 .992 0 .02 0.909 .020

9 0. 30 0. 44 0 .242 - .000 0.586 3 .000 0 .996 0 .0 4 0.946 .0 3

0 .4 6 .398 0 .375 - .000 2.08 4 0.998 0 .992 0 .020 0.9 5 .03

.3 3 .404 0 .456 - .000 2.68 5 .00 0 .992 0 .020 0.9 8 .0

m in z (g) 6 .00 0 .995 0 .030 0.897 .047

0.905 0.875 0 .094 0 .602 0.992 7 .000 0 .959 0 .248 - .000 .0 0

2 0.642 0.58 0 .3 5 - .29 0.833 8 0.992 0 .947 0 .248 - .000 .02

3 0.888 0.860 0 .089 0 .529 0.968 9 .002 0 .945 0 .25 - .000 .028

4 0.6 7 0.6 5 0 . 4 0 .22 0.855 0 0.998 0 .952 0 .249 - .000 .025

5 0.877 0.860 0 .074 0 .542 0.960 .000 0 .943 0 .25 - .000 .0

6 0.427 0.428 0 . 9 -0 .044 0.660 mean r (g)

7 0.864 0.8 7 0 .243 - .000 0.968 .000 0 .99 0 .022 0.906 .0 5

8 -0.339 -0.4 3 0 .275 - . 60 -0.007 2 .006 0 .994 0 .026 0.9 8 .026

9 -0.065 -0.034 0 .236 - .000 0.479 3 .000 0 .996 0 .0 4 0.949 .0 3

0 -0. 85 -0.22 0 . 97 - .000 0.078 4 0.999 0 .990 0 .026 0.898 .024

-0.092 -0. 7 0 .690 - .698 0.927 5 .00 0 .992 0 .020 0.9 4 .0 0

range z (g) 6 .0 7 .008 0 .030 0.904 .052

0. 2 0. 62 0 . 5 0 .027 0.8 2 7 .000 0 .959 0 .248 - .000 .0 0

2 0.69 0.774 0 .5 0 0 .3 6 3.86 8 0.992 0 .95 0 .249 - .000 .027

3 0. 33 0. 6 0 . 06 0 .033 0.664 9 .002 0 .945 0 .25 - .000 .028

4 0.587 0.6 8 0 . 9 0 .296 .35 0 0.996 0 .957 0 .249 - .000 .040

5 0. 72 0.209 0 . 47 0 .032 0.8 6 0.979 0 .929 0 .252 - .000 .03

6 . 5 . 65 0 .276 0 .692 2.566

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 5 of 6.
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mvt median mean s.d. m in max mvt m ed ian m ean s.d . m in max

standard deviation r (g) m in r (g)

0.006 0.0 0 0.008 0 .004 0.052 7 0 .909 0 .85 0.249 - .000 0.988

2 0. 0. 20 0.046 0 .057 0.249 8 0 .558 0 .526 0.224 - .000 0.797

3 0.0 2 0.0 4 0.007 0 .005 0.044 9 0 .960 0 .903 0.248 - .000 .007

4 0. 2 0. 26 0.035 0 .058 0.264 0 0 .49 0 .458 0.260 - .000 0.845

5 0.0 7 0.0 9 0.0 3 0 .005 0.079 0 .489 0 .473 0.29 - .000 0.932

6 0.224 0.225 0.04 0 . 03 0.294 range r (g)

7 0.0 7 0.004 0. 27 - .000 0.072 0 . 0 . 60 0. 54 0.026 0.8 0

8 0. 38 0. 28 0. 47 - .000 0.267 2 0 .695 0 .739 0.350 0.3 5 2.507

9 0.008 -0.005 0. 25 - .000 0.039 3 0 . 4 0 . 47 0.094 0.032 0.583

0 0. 40 0. 38 0. 52 - .000 0.30 4 0 .594 0 .626 0. 97 0.270 .4 6

0. 6 0.093 0. 49 - .000 0.246 5 0 . 8 0 .209 0. 50 0.027 0.854

max r (g) 6 . 96 .226 0.282 0.689 2.450

.038 .072 0.089 0 .953 .5 8 7 0 . 83 0 . 88 0. 90 - .000 0.628

2 .370 .4 4 0.239 . 22 2.603 8 .09 . 09 0.44 - .000 2.0 7

3 .055 .069 0.057 0 .990 .333 9 0 .065 0 .07 0. 49 - .000 0.339

4 .268 .293 0. 2 . 04 .8 6 0 .025 .099 0.476 - .000 2.406

5 .084 . 0 0.096 0 .985 .5 2 . 45 . 9 0.758 - .000 3.355

6 .654 .686 0. 87 .334 2.545 step rate (samples)

7 .083 .054 0.266 - .000 .3 0 m ed (2) 37.00 52.05 57 .59 22 .00 359 .00

8 .664 .650 0.449 - .000 2.438 m ed (3) 25.50 30.02 9 .97 8 .00 56 .50

9 .032 0.989 0.258 - .000 . 75 mn( ) 24.3 24.99 4 .86 7 .36 47 .65

0 .547 .573 0.4 9 - .000 2.6 6 mn (2) 42.70 59.32 57 .77 30 .84 359 .00

.557 .679 0.684 - .000 3.859 mn (3) 34.29 37.06 9 .59 24 .32 74 .50

m in r (g) sd (2) 20.94 26.64 20 .5 0 .00 08 .78

0.94 0.9 3 0.088 0 .627 0.993 sd (3) 9.49 2 .33 9 .88 0 .80 69 .39

2 0.705 0.675 0. 33 0 .096 0.857

3 0.942 0.922 0.056 0 .726 0.99

4 0.660 0.667 0. 00 0 .285 0.870

5 0.909 0.892 0.075 0 .547 0.989

6 0.47 0.460 0. 20 0 .094 0.732

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 2D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 6 of 6.



D. Parametric Data from Study 2D 465

median mean s.d. min max

frequency (Hz)

x-axis 0.24 0.28 0. 4 0.20 0.94

y-axis 0.23 0.26 0. 2 0.00 0.84

z-axis 0.22 0.28 0.24 0.00 .3

signal-to-noise ratio

x-axis 54 57 25 7 4

y-axis 50 55 25 0 44

z-axis 9 20 5 0 93

interquartile range

x-axis 0.0 0 0.0 9 0.022 0.004 0. 44

y-axis 0.0 0.0 7 0.020 0.003 0. 4

z-axis 0.006 0.009 0.007 0.005 0.058

magnitude 0.006 0.008 0.004 0.005 0.030

Parameters of postural sway measured during 30 s of quiet standing:

sway frequency, magnitude of frequency peak and interquartile range

of sway acceleration. Overall median, mean, standard deviation, min

and max are given across all repetitions of the routine by all subjects in

study 2D.
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Boxplots comparing mean values for each activity across all repetitions

for all subjects (N = 11) by movement in study 2D: (a) tilt angle; (b)

SMA; (c) mean x-axis acceleration; (d) x-axis range; (e) mean y-axis

acceleration; (f) y-axis range. Movements are : stand, 2: stand-to-sit,

3: sit, 4: sit-to-stand, 5: stand, 6: walk, 7: stand, 8: stand-to-lie, 9: lie,

0: lie-to-stand, : stand. Page of 2.



D. Parametric Data from Study 2D 467

-0.50

0.17

0.83

1.50

1 2 3 4 5 6 7 8 9 10 11

movement

m
e

a
n

 z
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

0.00

1.33

2.67

4.00

1 2 3 4 5 6 7 8 9 10 11

movement

ra
n

g
e

 z
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

(g) (h)

0.75

0.87

0.98

1.10

1 2 3 4 5 6 7 8 9 10 11

movement

m
e

a
n

 m
a

g
n

it
u

d
e

 a
c
c
e

le
ra

ti
o

n
 (

g
)

0.00

1.17

2.33

3.50

1 2 3 4 5 6 7 8 9 10 11

movement

ra
n

g
e

 m
a

g
n

it
u

d
e

 a
c
c
e

le
ra

ti
o

n
 (

g
)

(i) (j)

Boxplots comparing mean values for each activity across all repetitions

for all subjects (N = 11) by movement in study 2D: (g) mean z-axis

acceleration; (h) z-axis range; (i) mean magnitude acceleration, ; (j)

magnitude acceleration, , range. Movements are : stand, 2: stand-to-

sit, 3: sit, 4: sit-to-stand, 5: stand, 6: walk, 7: stand, 8: stand-to-lie, 9:

lie, 0: lie-to-stand, : stand. Page 2 of 2.
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Boxplots of mean tilt angle for each subject in study 2D (N = 11) for

each of the movements in the daily routine. Movements are (a) stand;

(b) stand-to-sit; (c) sit; (d) sit-to-stand; (e) stand; (f) walk; (g) stand;

(h) stand-to-lie; (i) lie; (j) lie-to-stand; and (k) stand. Note the di erent

vertical axis scales between the graphs.
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Boxplots of mean SMA for each subject in study 2D (N = 11) for

each of the movements in the daily routine. Movements are: (a) stand;

(b) stand-to-sit; (c) sit; (d) sit-to-stand; (e) stand; (f) walk. Note the

di erent vertical axis scales between the graphs.
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Boxplots of mean SMA for each subject (N = 11) in study 2D for each

of the movements in the daily routine. Movements are: (g) stand; (h)

stand-to-lie; (i) lie; (j) lie-to-stand; and (k) stand. Note the di erent

vertical axis scales between the graphs.



Appendix E

Parametric Data from Study 3D

mvt median m ean s.d . m in max mvt m ed ian m ean s.d. m in max

sway duration (s)

0 0 0 0 0 8 5 .007 5.720 2 .7 7 3 .805 25.437

tilt (deg) 9 6 .8 0 7.237 2 .285 2 .804 3.0 9

23.072 22.69 4.0 9 0 .952 30 .27 0 5 .008 5.452 0 .839 4 .006 9.0 3

3 29.897 29.747 6.55 2 .848 42 .5 4 5 .823 5.8 3 2 . 89 .803 2 .030

5 23.259 22.4 8 4. 06 2 . 02 29 .966 SMA (g)

6 9.979 9.585 3.680 0 .427 24 .590 0 .025 0.026 0 .005 0 .0 7 0.036

7 2 . 46 20.550 4. 22 .988 29 .025 2 0 .334 0.345 0 .073 0 .233 0.788

9 88. 79 86.865 5.479 7 .270 96 .626 3 0 .064 0.065 0 .0 4 0 .039 0. 08

2 .726 2 .5 0 4.509 .788 29 .686 4 0 .325 0.334 0 .048 0 .238 0.445

duration (s) 5 0 .050 0.052 0 .0 0 .035 0. 0

28.64 28.965 . 02 27 .640 33 .829 6 0 .426 0.433 0 .058 0 .300 0.609

2 3.005 3.379 0.666 .00 5 .027 7 0 .075 0.074 0 .0 3 0 .053 0. 25

3 8.8 3 9.999 4.640 6 .008 36 .652 8 0 .390 0.388 0 .03 0 .300 0.468

4 3.004 3.904 4.969 .803 4 .659 9 0 .073 0.075 0 .0 3 0 .05 0. 07

5 7.82 8.094 .86 5 .8 9 4 .030 0 0 .358 0.360 0 .030 0 .292 0.44

6 2 .43 2 .20 2.70 6 .2 9 26 .438 0 .039 0.050 0 .037 0 .030 0.246

7 7.0 0 7.020 .540 2 .003 .0 5

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page of 6.
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mvt median mean s.d. m in max mvt m edian mean s.d . m in max

median x (g) standard deviation x (g)

-0.34 -0.327 0.077 -0 .468 0.077 7 0.023 0 .027 0 .0 2 0.0 2 0.065

2 -0.283 -0.276 0.088 -0 .4 6 0.088 8 0.305 0 .292 0 .057 0. 34 0.386

3 -0.433 -0.43 0. 0 -0 .6 3 0. 0 9 0.0 6 0 .0 7 0 .007 0.007 0.045

4 -0.279 -0.258 0.097 -0 .4 0 0.097 0 0.330 0 .3 7 0 .064 0. 58 0.469

5 -0.326 -0.3 7 0.083 -0 .47 0.083 0.023 0 .032 0 .038 0.009 0.280

6 -0.253 -0.249 0.074 -0 .368 0.074 max x (g)

7 -0.289 -0.280 0.078 -0 .44 0.078 -0.270 -0 .26 0 .078 -0.425 0.078

8 -0.354 -0.365 0. 8 -0 .753 0. 8 2 0.3 7 0 .334 0 . 28 0.08 0.6 2

9 -0.72 -0.699 0. 29 -0 .937 0. 29 3 -0.36 -0 .357 0 . 07 -0.543 0. 07

0 -0.336 -0.343 0. 22 -0 .608 0. 22 4 0.279 0 .323 0 .2 -0.068 .262

-0.307 -0.298 0.084 -0 .465 0.084 5 -0.23 -0 .229 0 .094 -0.365 0.094

m ean x (g) 6 0. 75 0 . 94 0 . 32 -0.043 0.665

-0.337 -0.324 0.077 -0 .466 0.077 7 -0.2 3 -0 . 82 0 . 02 -0.322 0. 02

2 -0. 84 -0. 84 0.085 -0 .375 0.085 8 0.272 0 .26 0 . 39 -0.074 0.606

3 -0.434 -0.430 0. 02 -0 .606 0. 02 9 -0.670 -0 .643 0 . 39 -0.872 0. 39

4 -0. 83 -0. 80 0.090 -0 .350 0.090 0 0.354 0 .348 0 . 5 0.035 0.846

5 -0.325 -0.3 2 0.082 -0 .464 0.082 -0.2 8 -0 . 78 0 . 63 -0.343 0.7 4

6 -0.267 -0.259 0.076 -0 .38 0.076 m in x (g)

7 -0.286 -0.276 0.077 -0 .435 0.077 -0.377 -0 .364 0 .079 -0.5 0 0.079

8 -0.4 0 -0.397 0.077 -0 .577 0.077 2 -0.452 -0 .454 0 . 26 - .07 0. 26

9 -0.724 -0.70 0. 27 -0 .938 0. 27 3 -0.482 -0 .488 0 . 0 -0.769 0. 0

0 -0.395 -0.367 0.094 -0 .503 0.094 4 -0.456 -0 .462 0 . 9 -0.867 0. 9

-0.300 -0.293 0.082 -0 .462 0.082 5 -0.395 -0 .382 0 .085 -0.553 0.085

standard deviation x (g) 6 -0.772 -0 .772 0 . 08 -0.953 0. 08

0.0 7 0.0 9 0.008 0 .006 0.043 7 -0.344 -0 .335 0 .078 -0.565 0.078

2 0.22 0.23 0.046 0 . 5 0.383 8 -0.880 -0 .886 0 . 47 - .200 0. 47

3 0.020 0.022 0.0 0 .009 0.058 9 -0.773 -0 .762 0 . 22 -0.990 0. 22

4 0.2 3 0.233 0.057 0 . 38 0.395 0 -0.798 -0 .784 0 . 7 - .073 0. 7

5 0.022 0.025 0.0 0 .0 0.077 -0.356 -0 .356 0 . 23 -0.873 0. 23

6 0. 65 0. 69 0.02 0 . 22 0.232

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 2 of 6.
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mvt median m ean s.d. m in max mvt m edian mean s.d . m in max

range x (g) m ean y (g)

0.096 0. 02 0 .039 0 .039 0. 9 7 0.06 0 .064 0 . 09 -0.209 0.288

2 0.782 0.788 0 . 55 0 .523 . 74 8 -0.34 -0 .333 0 .097 -0.598 0.097

3 0. 2 0. 3 0 .068 0 .048 0.386 9 -0.676 -0 .677 0 . 25 -0.927 0. 25

4 0.732 0.785 0 .259 0 .467 2. 29 0 -0.3 0 -0 .3 6 0 .083 -0.525 0.083

5 0. 37 0. 52 0 .07 0 .067 0.5 2 0.063 0 .066 0 . 0 -0. 42 0.264

6 0.942 0.966 0 . 35 0 .688 .397 standard deviation y (g)

7 0. 34 0. 54 0 .072 0 .054 0.372 0.0 0 0 .0 0 .004 0.005 0.029

8 . 46 . 46 0 .209 0 .572 .590 2 0.230 0 .235 0 .047 0. 50 0.357

9 0. 0. 20 0 .056 0 .036 0.277 3 0.0 4 0 .0 6 0 .0 0.007 0.085

0 . 68 . 3 0 .202 0 .609 .682 4 0.2 7 0 .22 0 .038 0. 43 0.294

0. 5 0. 78 0 .225 0 .039 .587 5 0.023 0 .024 0 .009 0.0 0.066

m ed ian y (g) 6 0. 83 0 . 88 0 .03 0. 29 0.256

0.040 0.032 0 . 03 -0 .244 0.2 2 7 0.023 0 .024 0 .007 0.0 0.040

2 0.057 0.05 0 . 07 -0 .244 0.277 8 0.439 0 .428 0 .06 0.26 0.54

3 -0. 54 -0. 47 0 . 22 -0 .399 0. 22 9 0.0 6 0 .0 7 0 .007 0.006 0.038

4 0.072 0.07 0 . 07 -0 . 67 0.320 0 0.425 0 .42 0 .062 0.274 0.565

5 0.04 0.045 0 . 3 -0 .206 0.258 0.0 7 0 .028 0 .035 0.007 0.25

6 0.023 0.028 0 .098 -0 . 90 0.2 8 max y (g)

7 0.063 0.062 0 . 09 -0 .206 0.286 0.075 0 .078 0 . 02 -0. 23 0.304

8 -0.500 -0.452 0 .226 -0 .8 8 0.242 2 0.683 0 .683 0 . 68 0.30 .023

9 -0.678 -0.680 0 . 26 -0 .93 0. 26 3 -0. 07 -0 .088 0 . 22 -0.322 0.22

0 -0.506 -0.48 0 . 92 -0 .838 0. 92 4 0.6 6 0 .642 0 . 7 0.252 .042

0.062 0.065 0 . 0 -0 . 45 0.264 5 0. 3 0 . 38 0 . 22 -0.095 0.370

m ean y (g) 6 0.686 0 .737 0 .226 0.35 .463

0.038 0.032 0 . 03 -0 .243 0.2 2 7 0. 46 0 . 44 0 . 6 -0. 39 0.335

2 0. 6 0. 5 0 . 07 -0 . 98 0.365 8 0.440 0 .438 0 . 33 0. 06 0.865

3 -0. 57 -0. 46 0 . 22 -0 .397 0. 23 9 -0.636 -0 .6 8 0 . 26 -0.875 0. 26

4 0. 07 0. 0 0 . 05 -0 . 6 0.3 0 0.406 0 .4 3 0 . 39 0. 03 0.863

5 0.047 0.048 0 . -0 . 89 0.259 0. 34 0 . 63 0 . 49 -0.086 0.765

6 0.042 0.050 0 . 07 -0 . 88 0.246

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 3 of 6.
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mvt median mean s.d. m in max mvt m edian mean s.d . m in max

m in y (g) m ed ian z (g)

-0.0 2 -0.0 0. 5 -0 .327 0. 87 7 0.932 0.933 0 .025 0.872 0.976

2 -0. 85 -0. 88 0. 55 -0 .793 0. 55 8 0.555 0.529 0 .224 0.054 0.9 5

3 -0.2 6 -0.203 0. 3 -0 .466 0. 3 9 0.036 0.053 0 .094 -0. 6 0.3 6

4 -0. 8 -0.20 0.26 - .963 0.26 0 0.678 0.644 0 . 66 0.094 0.960

5 -0.030 -0.044 0. 28 -0 .340 0. 84 0.930 0.928 0 .028 0.867 0.979

6 -0.509 -0.503 0. 47 -0 .950 0. 47 m ean z (g)

7 -0.0 8 -0.0 5 0. 7 -0 .293 0.258 0.920 0.920 0 .026 0.864 0.982

8 - . 33 - . 24 0. 58 - .848 0. 58 2 0.889 0.890 0 .03 0.8 6 0.940

9 -0.727 -0.722 0. 2 -0 .966 0. 2 3 0.867 0.863 0 .056 0.737 0.975

0 - .020 - .020 0. 4 - .407 0. 4 4 0.894 0.895 0 .03 0.8 0.958

0.0 -0.02 0. 89 -0 .853 0.2 8 5 0.9 9 0.922 0 .026 0.866 0.978

range y (g) 6 0.940 0.940 0 .020 0.909 0.983

0.070 0.088 0.054 0 .040 0.335 7 0.933 0.934 0 .025 0.874 0.978

2 0.867 0.870 0. 69 0 .552 .227 8 0.475 0.487 0 .079 0.290 0.694

3 0.099 0. 5 0.078 0 .037 0.559 9 0.032 0.054 0 .095 -0. 5 0.32

4 0.773 0.843 0.293 0 .5 2.748 0 0.520 0.532 0 .067 0.408 0.762

5 0. 64 0. 82 0.088 0 .064 0.483 0.929 0.927 0 .028 0.869 0.979

6 . 94 .240 0.267 0 .782 2.204 standard deviation z (g)

7 0. 54 0. 59 0.060 0 .052 0.3 5 0.008 0.008 0 .003 0.004 0.02

8 .555 .56 0.202 0 .978 2. 83 2 0.094 0. 02 0 .057 0.054 0.502

9 0. 0 0. 04 0.045 0 .03 0.273 3 0.0 5 0.0 7 0 .009 0.007 0.054

0 .427 .434 0.207 0 .908 .946 4 0.084 0.090 0 .028 0.049 0.2 5

0. 04 0. 84 0.27 0 .043 .458 5 0.0 5 0.0 6 0 .007 0.007 0.049

m edian z (g) 6 0.2 3 0.2 8 0 .043 0. 39 0.449

0.920 0.920 0.026 0 .86 0.98 7 0.0 7 0.0 7 0 .006 0.007 0.034

2 0.903 0.899 0.036 0 .722 0.965 8 0.459 0.45 0 .050 0.307 0.520

3 0.870 0.862 0.057 0 .725 0.976 9 0.0 7 0.020 0 .0 0 0.006 0.05

4 0.907 0.905 0.028 0 .850 0.970 0 0.428 0.424 0 .047 0.300 0.522

5 0.9 5 0.92 0.027 0 .86 0.976 0.0 0.0 8 0 .025 0.005 0. 55

6 0.9 7 0.9 9 0.02 0 .88 0.964

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 4 of 6.
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mvt median m ean s.d. m in max mvt m edian mean s.d . m in max

max z (g) range z (g)

0.953 0.954 0 .028 0 .898 .042 7 0. 44 0. 58 0 .077 0 .040 0 .4 7

2 . 87 .222 0 .222 0 .955 2.5 3 8 .588 .578 0 .2 7 .048 2 .260

3 0.935 0.932 0 .057 0 .8 0 .096 9 0. 24 0. 42 0 .075 0 .029 0 .332

4 . 58 . 58 0 . 6 0 .956 .663 0 .457 .472 0 .242 0 .935 2 .287

5 0.984 0.998 0 .060 0 .9 8 .3 8 0.09 0. 66 0 .2 8 0 .043 .423

6 .633 .636 0 . 38 .377 2. 25 m ed ian r (g)

7 .0 3 .0 9 0 .053 0 .9 5 . 86 0.988 0.985 0 .0 0 .9 9 0 .999

8 .330 .347 0 . 45 .036 2.0 0 2 0.985 0.983 0 .0 5 0 .898 0 .999

9 0. 02 0. 26 0 . 06 -0 .044 0.388 3 0.993 0.990 0 .0 3 0 .92 .006

0 .358 .334 0 . 58 0 .982 .989 4 0.985 0.984 0 .0 0 0 .929 0 .997

0.984 .025 0 . 7 0 .9 8 .606 5 0.987 0.985 0 .0 0 .922 .000

m in z (g) 6 0.98 0.980 0 .0 4 0 .929 .027

0.894 0.895 0 .029 0 .806 0.96 7 0.988 0.986 0 .0 0 .922 0 .999

2 0.654 0.637 0 .09 0 .287 0.783 8 0.992 0.989 0 .0 2 0 .926 .008

3 0.802 0.789 0 .085 0 .540 0.907 9 .002 0.997 0 .0 9 0 .9 .0 2

4 0.700 0.666 0 . 77 -0 .46 0.820 0 0.998 0.995 0 .0 3 0 .930 .009

5 0.852 0.850 0 .05 0 .7 4 0.950 0.988 0.986 0 .0 0 0 .923 0 .999

6 0.489 0.472 0 . 02 0 .048 0.668 m ean r (g)

7 0.86 0.86 0 .042 0 .769 0.933 0.988 0.985 0 .0 0 .9 9 0 .999

8 -0.234 -0.23 0 . 47 -0 .525 0. 78 2 0.987 0.986 0 .007 0 .944 0 .997

9 -0.02 -0.0 6 0 . 08 -0 .298 0.293 3 0.993 0.990 0 .0 3 0 .922 .006

0 -0. 2 -0. 38 0 . 5 -0 .756 0. 89 4 0.987 0.987 0 .007 0 .950 0 .996

0.893 0.859 0 . 3 0 . 63 0.947 5 0.987 0.986 0 .0 0 .922 .000

range z (g) 6 .0 3 .0 3 0 .0 2 0 .962 .035

0.054 0.059 0 .026 0 .026 0. 57 7 0.988 0.986 0 .0 0 .923 .000

2 0.55 0.585 0 .268 0 .288 2.226 8 0.998 0.996 0 .0 0 .950 .0 0

3 0. 3 0. 43 0 .086 0 .049 0.466 9 .003 0.997 0 .0 9 0 .9 .0 2

4 0.437 0.492 0 .23 0 .225 .782 0 0.998 0.997 0 .0 0 0 .956 .0

5 0. 35 0. 47 0 .085 0 .040 0.572 0.988 0.987 0 .0 0 .923 .007

6 . 27 . 63 0 .2 8 0 .78 2.077

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 5 of 6.
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mvt median m ean s.d. m in max mvt m edian mean s.d . m in max

standard deviation r (g) m in r (g)

0.005 0.005 0.00 0.004 0 .008 7 0.9 7 0 .9 0 .036 0 .802 0 .962

2 0.08 0.092 0.059 0.043 0 .5 4 8 0.687 0 .665 0 . 06 0 .349 0 .8 4

3 0.0 0 0.0 2 0.005 0.005 0 .033 9 0.956 0 .948 0 .032 0 .858 0 .989

4 0.08 0.086 0.022 0.030 0 . 46 0 0.723 0 .702 0 .090 0 .364 0 .838

5 0.0 0.0 3 0.007 0.006 0 .047 0.944 0 .9 6 0 .072 0 .533 0 .976

6 0.225 0.237 0.046 0. 48 0 .462 range r (g)

7 0.0 4 0.0 5 0.006 0.006 0 .035 0.037 0 .045 0 .023 0 .027 0 . 43

8 0. 08 0. 6 0.034 0.054 0 .25 2 0.509 0 .577 0 .293 0 .236 2 .445

9 0.0 0 0.0 0 0.003 0.005 0 .0 8 3 0. 05 0 . 26 0 .070 0 .037 0 .375

0 0.094 0.096 0.022 0.046 0 . 67 4 0.5 0 .549 0 .233 0 . 99 .7 8

0.007 0.0 4 0.02 0.005 0 . 46 5 0. 30 0 . 46 0 .090 0 .030 0 .550

max r (g) 6 . 79 .2 7 0 .220 0 .829 2 .034

.008 .009 0.0 7 0.947 .059 7 0. 46 0 . 53 0 .074 0 .036 0 .372

2 .269 .3 8 0.227 . 2 2 .753 8 0.7 4 0 .770 0 .264 0 .445 .799

3 .04 .048 0.038 0.975 . 8 9 0.086 0 .097 0 .046 0 .023 0 .200

4 .292 .308 0. 60 .099 2 .2 5 0 0.693 0 .707 0 .203 0 .336 .633

5 .044 .062 0.062 0.963 .333 0.088 0 . 59 0 . 82 0 .03 . 8

6 .73 .740 0. 49 .503 2 . 85 step rate (samples)

7 .060 .065 0.047 0.957 .2 m ed (2) 26 .00 26.42 .77 7.50 30.00

8 .400 .435 0. 93 .072 2 .274 mn( ) .54 .55 0. 2 .39 2.30

9 .048 .044 0.032 0.94 . 06 mn (2) 29 .63 30. 8 3.37 7.40 37.65

0 .405 .409 0. 38 . 75 .997 sd (2) 9 .96 0.23 4.35 . 4 20.26

.032 .075 0. 6 0.983 .65

m in r (g)

0.968 0.963 0.0 5 0.90 0 .984

2 0.762 0.74 0.089 0.308 0 .885

3 0.932 0.922 0.04 0.766 0 .977

4 0.770 0.759 0.084 0.363 0 .899

5 0.9 8 0.9 6 0.039 0.772 0 .979

6 0.533 0.523 0.087 0. 5 0 .684

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 3D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 6 of 6.
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median mean s.d. min max

frequency (Hz)

x-axis 0.23 0.25 0.05 0.20 0.40

y-axis 0.22 0.22 0.02 0.20 0.27

z-axis 0.28 0.29 0. 3 0.20 . 8

signal-to-noise ratio

x-axis 85 89 24 48 70

y-axis 7 72 9 3 20

z-axis 25 29 4 0 65

interquartile range

x-axis 0.088 0.099 0.043 0.036 0.3 2

y-axis 0. 5 0. 34 0.052 0.059 0.288

z-axis 0.062 0.074 0.043 0.0 8 0.205

magnitude 0.0 4 0.0 5 0.003 0.0 0.027

Parameters of postural sway measured during 30 s of quiet standing:

sway frequency, magnitude of frequency peak and interquartile range of

sway acceleration. Overall median, mean, standard deviation, min and

max are given across all repetitions of the routine in study 3D.



478 E. Parametric Data from Study 3D

-20.00

20.00

60.00

100.00

1 2 3 4 5 6 7 8 9 10 11

movement

ti
lt
 a

n
g

le
 (

d
e

g
re

e
s
)

0.00

0.20

0.40

0.60

1 2 3 4 5 6 7 8 9 10 11

movement

S
M

A

(a) (b)

-1.20

-0.73

-0.27

0.20

1 2 3 4 5 6 7 8 9 10 11

movement

m
e

a
n

 x
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

0.00

0.70

1.40

2.10

1 2 3 4 5 6 7 8 9 10 11

movement

ra
n

g
e

 x
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

(c) (d)

-1.20

-0.67

-0.13

0.40

1 2 3 4 5 6 7 8 9 10 11

movement

m
e

a
n

 y
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

0.00

0.70

1.40

2.10

1 2 3 4 5 6 7 8 9 10 11

movement

ra
n

g
e

 y
-a

x
is

 a
c
c
e

le
ra

ti
o

n
 (

g
)

(e) (f)

Boxplots comparing mean values for each activity across all repetitions

by movement in study 3D: (a) tilt angle; (b) SMA; (c) mean x-axis

acceleration; (d) x-axis range; (e) mean y-axis acceleration; (f) y-axis

range. Movements are : stand, 2: stand-to-sit, 3: sit, 4: sit-to-stand,

5: stand, 6: walk, 7: stand, 8: stand-to-lie, 9: lie, 0: lie-to-stand, :

stand Page of 2.
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Boxplots comparing mean values for each activity across all repetitions

by movement in study 3D: (g) mean z-axis acceleration; (h) z-axis range;

(i) mean magnitude acceleration, ; (j) magnitude acceleration, , range.

Movements are : stand, 2: stand-to-sit, 3: sit, 4: sit-to-stand, 5: stand,

6: walk, 7: stand, 8: stand-to-lie, 9: lie, 0: lie-to-stand, : stand Page

2 of 2.



Appendix F

Parametric Data from Study 4D

mvt median m ean s.d . m in max mvt median m ean s.d . m in max

sway duration (s)

0 0 0 0 0 8 6.040 6.4 8 .723 0.904 3 .5 0

tilt (deg) 9 4.940 4.696 2.824 .302 22 .960

4.267 3.508 9 .729 0 .000 64. 42 0 5.740 5.996 .483 0.863 25 .930

3 28.2 4 29.363 9 .5 3 0 .000 87.779 23. 80 23.055 3.208 .573 38 .340

5 3.526 3.042 9 .5 3 0 .000 6 .860 SMA (g)

6 4.669 2.835 9 .278 0 .000 59.797 0.025 0.028 0.0 3 0.007 0 .2

7 3.082 2.35 9 .446 0 .000 62.964 2 0.279 0.284 0.052 0.024 0 .484

9 83.859 82.563 2 .998 6 .49 .908 3 0.054 0.058 0.020 0.0 0 0 . 69

5.349 6.248 .488 0 .000 62.602 4 0.258 0.257 0.054 0.022 0 .456

duration (s) 5 0.040 0.044 0.0 8 0.008 0 .2 5

28.865 27.982 4 .259 .858 67.780 6 0.277 0.282 0.043 0.0 5 0 .428

2 4.280 4.78 2 .344 0 .896 6.260 7 0.056 0.06 0.024 0.0 2 0 .360

3 5.550 5.706 3 .2 2 .597 30.650 8 0.326 0.323 0.062 0.034 0 .530

4 3. 90 3.496 .348 0 .726 4.550 9 0.065 0.066 0.0 2 0.009 0 . 43

5 8.070 8.646 4 .332 2 .582 4 . 40 0 0.259 0.262 0.050 0.026 0 .504

6 6 .350 62.936 .39 3 . 26 37.480 0.082 0.089 0.038 0.020 0 .285

7 4. 70 5.252 7 .546 3 .255 96.560

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page of 6.
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mvt median m ean s.d. m in max mvt m edian mean s.d . m in max

median x (g) standard deviation x (g)

-0. 88 -0. 3 0 .2 0 -0 .777 0.52 7 0.033 0 .04 0 .036 0 .0 0 0 .499

2 -0. 56 -0. 32 0 .207 -0 .835 0.584 8 0.37 0 .340 0 . 69 0 .052 0 .734

3 -0.3 0 -0.370 0 .272 -0 .978 0.758 9 0.024 0 .027 0 .0 3 0 .007 0 . 6

4 -0. 72 -0. 50 0 .226 -0 .838 0.5 4 0 0.30 0 .303 0 . 49 0 .047 0 .660

5 -0. 87 -0. 35 0 .206 -0 .728 0.424 0.062 0 . 04 0 . 9 0 .0 4 0 .703

6 -0. 59 -0.094 0 . 94 -0 .639 0.430 max x (g)

7 -0. 83 -0. 26 0 .20 -0 .74 0.499 -0.069 -0 .022 0 .224 -0 .503 0 .898

8 -0.327 -0.38 0 .277 -0 .952 0.728 2 0. 86 0 .223 0 .249 -0 .248 .049

9 -0.824 -0.66 0 .379 - .2 3 0.983 3 -0. 93 -0 .209 0 .258 -0 .929 0 .846

0 -0.295 -0.308 0 .252 -0 .962 0.687 4 0.094 0 . 73 0 .270 -0 .240 . 6

-0. 72 -0. 5 0 .207 -0 .756 0.46 5 -0.05 0 .0 8 0 .237 -0 .488 .503

m ean x (g) 6 0.202 0 .297 0 .299 -0 .324 .379

-0. 87 -0. 29 0 .209 -0 .772 0.544 7 -0.032 0 .037 0 .23 -0 .497 .266

2 -0. 69 -0. 44 0 . 88 -0 .63 0.573 8 0.204 0 .230 0 .244 -0 .239 .423

3 -0.303 -0.365 0 .265 -0 .975 0.74 9 -0.676 -0 .549 0 .376 - .093 .099

4 -0. 79 -0. 58 0 .208 -0 .664 0.4 4 0 0. 2 0 .205 0 .276 -0 .299 .246

5 -0. 84 -0. 32 0 .205 -0 .725 0.426 0.097 0 . 96 0 .282 -0 .396 .482

6 -0. 53 -0.09 0 . 94 -0 .630 0.43 m in x (g)

7 -0. 75 -0. 22 0 . 97 -0 .740 0.503 -0.246 -0 .205 0 .2 5 - .383 0 .393

8 -0.338 -0.347 0 . 72 -0 .80 0.57 2 -0.543 -0 .562 0 .294 - .498 0 .396

9 -0.823 -0.66 0 .376 - .2 0 0.978 3 -0.405 -0 .489 0 .272 - .298 0 .555

0 -0.305 -0.3 7 0 . 82 -0 .7 5 0.478 4 -0.445 -0 .474 0 .253 - .498 0 .309

-0. 79 -0. 24 0 .206 -0 .745 0.439 5 -0.280 -0 .262 0 .2 -0 .9 5 0 .347

standard deviation x (g) 6 -0.448 -0 .433 0 . 73 - . 09 0 .2 2

0.0 8 0.024 0 .026 0 .005 0.427 7 -0.275 -0 .243 0 .2 9 - .563 0 .4 8

2 0. 76 0. 95 0 .095 0 .032 0.463 8 - .029 -0 .920 0 .3 - .530 0 .3

3 0.034 0.044 0 .03 0 .009 0.286 9 -0.927 -0 .766 0 .370 - .34 0 .927

4 0. 86 0. 9 0 .092 0 .034 0.446 0 -0.889 -0 .797 0 .268 - .288 0 .268

5 0.032 0.036 0 .02 0 .009 0.255 -0.396 -0 .468 0 .736 - 3 .207 .665

6 0. 06 0. 9 0 .039 0 .008 0.442

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 2 of 6.



482 F. Parametric Data from Study 4D

mvt median m ean s.d. m in max mvt m ed ian mean s.d. m in max

range x (g) m ean y (g)

0. 63 0. 83 0. 34 0 .028 .54 7 -0 .066 -0.047 0. 3 -0 .443 0 .376

2 0.736 0.785 0.325 0 . 43 .95 8 -0 .075 -0.059 0.225 -0 .584 0 .400

3 0.238 0.280 0. 69 0 .062 .4 7 9 -0 .094 -0.078 0.499 - .008 0 .808

4 0.605 0.647 0.288 0 .098 2 .066 0 -0 .06 -0.056 0. 89 -0 .533 0 .380

5 0.254 0.28 0. 74 0 .054 2 . 54 -0 .050 -0.036 0. 29 -0 .494 0 .447

6 0.643 0.730 0.26 0 .099 2 .207 standard deviation y (g)

7 0.234 0.279 0.202 0 .05 2 .829 0 .0 7 0.020 0.02 0 .005 0 .244

8 .279 . 50 0.459 0 . 66 2 .223 2 0 . 5 0. 55 0.054 0 .027 0 .357

9 0. 9 0.2 7 0. 32 0 .036 .595 3 0 .028 0.033 0.020 0 .008 0 . 68

0 .0 2 .002 0.429 0 . 57 2 .422 4 0 . 3 0. 36 0.050 0 .03 0 .354

0.469 0.664 0.804 0 .097 3 .434 5 0 .027 0.03 0.0 7 0 .008 0 . 70

m ed ian y (g) 6 0 . 09 0. 3 0.030 0 .0 3 0 .499

-0.068 -0.046 0. 45 -0 .369 0 .44 7 0 .028 0.033 0.024 0 .008 0 .328

2 -0.062 -0.033 0. 63 -0 .427 0 .6 9 8 0 .289 0.303 0. 49 0 .039 0 .645

3 -0.080 -0.043 0. 9 -0 .463 0 .488 9 0 .026 0.028 0.0 4 0 .006 0 .082

4 -0.042 -0.024 0. 57 -0 .473 0 .463 0 0 .298 0.294 0. 37 0 .038 0 .597

5 -0.066 -0.049 0. 39 -0 .4 5 0 .388 0 .063 0.076 0.049 0 .0 0 0 .5 6

6 -0.063 -0.032 0. 46 -0 .388 0 .404 max y (g)

7 -0.069 -0.048 0. 3 -0 .44 0 .378 0 .036 0.050 0. 50 -0 .295 0 .572

8 -0.063 -0.072 0.3 2 -0 .954 0 .657 2 0 .25 0.276 0. 90 -0 .264 0 .989

9 -0.088 -0.080 0.497 - .008 0 .806 3 0 .040 0.074 0.205 -0 .427 .259

0 -0.053 -0.05 0.230 -0 .823 0 .582 4 0 . 9 0.2 8 0. 93 -0 .267 0 .8 7

-0.060 -0.046 0. 32 -0 .496 0 .443 5 0 .059 0.086 0. 54 -0 .373 0 .7 4

m ean y (g) 6 0 .270 0.320 0. 98 -0 .062 .235

-0.067 -0.046 0. 45 -0 .346 0 .439 7 0 .059 0.085 0. 7 -0 .39 .246

2 -0.06 -0.039 0. 50 -0 .4 0 0 .622 8 0 .538 0.509 0.29 -0 .052 .733

3 -0.075 -0.040 0. 88 -0 .467 0 .492 9 -0 .00 0.039 0.524 -0 .969 .078

4 -0.047 -0.028 0. 48 -0 .50 0 .492 0 0 .446 0.493 0.30 -0 .063 .287

5 -0.060 -0.047 0. 37 -0 .438 0 .376 0 . 86 0.227 0.205 -0 .324 .276

6 -0.063 -0.03 0. 48 -0 .387 0 .4 4

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 3 of 6.
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mvt median m ean s.d. m in max mvt median mean s.d . m in max

m in y (g) m edian z (g)

-0. 39 -0. 26 0 . 58 -0.8 2 0.322 7 0.973 0 .97 0 .099 0.020 .284

2 -0.365 -0.365 0 . 75 -0.909 0.387 8 0.652 0 .606 0 .250 -0. 36 .027

3 -0. 6 -0. 4 0 . 8 -0.709 0.378 9 0. 02 0 . 20 0 . 89 -0.379 0.927

4 -0.267 -0.285 0 . 82 -0.928 0.293 0 0.8 4 0 .797 0 . 3 0.077 .00

5 -0. 58 -0. 60 0 . 56 - .058 0.283 0.974 0 .969 0 .098 0.0 7 .299

6 -0.366 -0.4 7 0 .638 - 2.407 .48 m ean z (g)

7 -0. 69 -0. 67 0 . 63 - . 85 0.24 0.969 0 .965 0 .099 0.025 .264

8 -0.496 -0.58 0 .30 - .50 0.352 2 0.930 0 .922 0 . 04 0.030 .224

9 -0.2 4 -0. 66 0 .490 - . 38 0.7 5 3 0.88 0 .825 0 . 89 0.039 . 05

0 -0.483 -0.555 0 .262 - .5 0.262 4 0.93 0 .9 8 0 . 05 0.028 . 86

-0.278 -0.32 0 .698 - 3.645 .728 5 0.972 0 .969 0 .098 0.0 9 .295

range y (g) 6 0.967 0 .968 0 .095 0.025 .294

0. 60 0. 76 0 . 0.026 .253 7 0.974 0 .97 0 .099 0.023 .289

2 0.644 0.640 0 . 9 0. 08 .868 8 0.544 0 .552 0 . 33 0.073 0.959

3 0. 83 0.2 5 0 . 30 0.057 .79 9 0. 07 0 . 26 0 . 87 -0.373 0.925

4 0.497 0.503 0 . 73 0.099 .096 0 0.692 0 .686 0 . 0 0.080 0.947

5 0.224 0.246 0 . 25 0.048 .554 0.964 0 .946 0 . 0.025 .305

6 0.658 0.737 0 .643 0.093 3.08 standard deviation z (g)

7 0.2 5 0.252 0 . 65 0.050 .977 0.0 0 0 .0 3 0 .0 0.003 0. 8

8 .089 .092 0 .407 0. 66 2.379 2 0. 33 0 . 40 0 .042 0.02 0.333

9 0. 88 0.205 0 . 0 0.037 0.8 3 3 0.028 0 .038 0 .029 0.009 0.272

0 . .048 0 .39 0. 60 .88 4 0. 0 0 . 4 0 .047 0.0 5 0.398

0.479 0.548 0 .709 0.094 3.925 5 0.0 9 0 .024 0 .025 0.005 0.339

m edian z (g) 6 0. 50 0 . 52 0 .037 0.0 6 0.646

0.970 0.966 0 .099 0.026 .26 7 0.02 0 .025 0 .020 0.006 0.293

2 0.936 0.928 0 . 02 0.026 .2 9 8 0.4 6 0 .4 3 0 .080 0.058 0.62

3 0.878 0.8 9 0 . 98 0.035 . 05 9 0.04 0 .045 0 .026 0.008 0.249

4 0.937 0.930 0 . 0 0.027 . 64 0 0.325 0 .3 9 0 .085 0.064 0.637

5 0.972 0.968 0 .098 0.020 .293 0.053 0 .090 0 . 07 0.008 0.475

6 0.959 0.957 0 .095 0.027 .287

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 4 of 6.
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mvt median mean s.d. m in max mvt median mean s.d . m in max

max z (g) range z (g)

.033 .04 0. 7 0.038 .63 7 0.2 4 0 .262 0 . 83 0 .03 .654

2 .377 .404 0.24 0. 25 2.582 8 .434 .462 0 .276 0 . 49 2.275

3 .022 0.984 0. 66 0.056 .545 9 0.278 0 .304 0 . 86 0 .042 .809

4 .207 .2 0. 53 0.073 .784 0 . 4 . 20 0 .249 0 . 62 3.270

5 .08 .097 0. 33 0.053 .782 0.577 0 .665 0 .35 0 .089 2.307

6 .560 .564 0. 94 0.08 2.084 m edian r (g)

7 .086 . 04 0. 39 0.064 .768 .002 .0 0 0 .095 0 .005 .336

8 .249 .26 0. 8 0.079 .8 9 2 0.999 .000 0 .095 0 .009 .327

9 0.287 0.303 0.203 -0.322 . 5 3 .004 0 .970 0 . 40 0 .004 .292

0 . 50 . 66 0. 52 0.068 2. 39 4 .00 .003 0 .095 0 .007 .306

.263 .293 0.205 0. 22 .826 5 .003 .0 0 0 .095 0 .005 .342

m in z (g) 6 0.996 .004 0 .094 0 .007 .35

0.908 0.895 0. 29 -0.488 . 4 7 .004 .0 0 0 .095 0 .005 .345

2 0.6 2 0.58 0. 69 -0. 74 .0 2 8 .003 0 .953 0 . 6 0 .003 .243

3 0.739 0.700 0.2 3 -0. 56 .0 8 9 .006 0 .9 2 0 .223 0 .004 .444

4 0.707 0.677 0. 63 -0.443 .080 0 .004 0 .992 0 . 06 0 .004 . 43

5 0.864 0.835 0. 54 -0. 40 . 97 .003 .0 0 0 .095 0 .004 .360

6 0.575 0.522 0.750 - 4.380 .946 m ean r (g)

7 0.865 0.842 0. 38 -0. 77 .026 .002 .0 0 0 .095 0 .005 .338

8 -0.202 -0.200 0.209 -0.887 0.483 2 .005 .006 0 .095 0 .006 .33

9 0.00 -0.00 0.2 5 - .020 0.870 3 .004 0 .972 0 . 35 0 .004 .294

0 0.046 0.047 0. 98 - .3 3 0.646 4 .005 .004 0 .097 0 .006 .320

0.7 4 0.628 0.282 -0.628 . 0 5 .003 .0 0 .095 0 .005 .343

range z (g) 6 .008 .0 8 0 .095 0 .006 .360

0. 9 0. 46 0. 24 0.025 .236 7 .003 .0 0 .095 0 .005 .348

2 0.778 0.824 0.269 0. 59 2.033 8 .007 0 .958 0 . 47 0 .003 .232

3 0.238 0.284 0. 65 0.074 .220 9 .006 0 .9 3 0 .222 0 .004 .442

4 0.502 0.535 0.204 0.089 2.227 0 .005 0 .978 0 . 2 0 .003 .2 6

5 0.2 4 0.262 0. 87 0.065 .566 .003 .0 0 .095 0 .005 .362

6 0.992 .04 0.765 0. 8 5.798

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 5 of 6.
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mvt median mean s.d. m in max mvt m ed ian m ean s.d. m in max

standard deviation r (g) m in r (g)

0.008 0.0 0 0.007 0 .002 0.087 7 0 .900 0.890 0. 8 0.047 .05

2 0. 0 0. 9 0.04 0 .0 5 0.3 4 8 0 .7 8 0.635 0.2 7 0.056 0.954

3 0.0 8 0.023 0.0 8 0 .006 0.232 9 0 .9 6 0.8 5 0.242 0.044 .309

4 0.082 0.087 0.030 0 .0 6 0.204 0 0 .802 0.7 4 0.208 0.04 0.940

5 0.0 7 0.02 0.023 0 .005 0.324 0 .782 0.759 0. 44 0.065 . 75

6 0. 54 0. 54 0.037 0 .0 5 0.57 range r (g)

7 0.0 9 0.022 0.0 3 0 .005 0. 34 0 . 09 0. 39 0. 9 0.026 .2 9

8 0. 03 0. 3 0.072 0 .0 4 0.390 2 0 .738 0.795 0.280 0. 69 2.0 6

9 0.0 6 0.02 0.0 6 0 .005 0. 80 3 0 .207 0.253 0. 64 0.052 .506

0 0.067 0.097 0.069 0 .008 0.36 4 0 .463 0.482 0. 70 0.087 .882

0.044 0.052 0.042 0 .007 0.683 5 0 .202 0.257 0. 87 0.073 .546

max r (g) 6 .039 .090 0.846 0. 7 3.68

.072 .084 0. 2 0 .034 .7 4 7 0 .2 5 0.259 0. 74 0.030 .557

2 .478 .5 3 0.238 0 . 26 2.594 8 0 .736 0.783 0.300 0. 2 .6 4

3 . 4 . 06 0. 48 0 .058 .600 9 0 . 85 0.206 0. 22 0.026 .006

4 .269 .286 0. 58 0 .060 2.332 0 0 .473 0.546 0.25 0.078 .869

5 . 8 . 44 0. 45 0 .055 .924 0 .560 0.656 0.936 0.090 8.356

6 .638 .693 0.847 0 .09 4.384 step rate (samples)

7 . 2 . 49 0. 44 0 .046 .882 med (2) 45.00 45 .60 22 .36 9 .03 348 .00

8 .404 .4 8 0.20 0 .083 2.077 med (3) 26.00 32 . 5 28 .8 . 6 360 .00

9 .088 .022 0.2 3 0 .053 .646 mn( ) .75 2 .77 8 .94 0 .06 356 .00

0 .236 .260 0. 6 0 .055 2. 98 mn (2) 48. 5 53 . 25 .98 6 .69 348 .00

.345 .4 5 0.9 0 . 20 9.007 mn (3) 34.94 40 .37 28 .35 3 .69 360 .00

m in r (g) sd (2) 25.09 30 .85 28 .53 5 .79 348 .00

0.954 0.946 0. 03 0 .03 .2 7 sd (3) 2 .84 26 . 4 3 .42 4 .24 439 .82

2 0.74 0.7 8 0. 50 0 .07 . 63

3 0.90 0.852 0. 52 0 .068 . 56

4 0.826 0.805 0. 8 0 .042 . 49

5 0.904 0.888 0. 26 0 .047 .254

6 0.6 0 0.603 0.096 0 .055 0.963

Median, mean, standard deviation, min and max for parameters across

all repetitions for all subjects by movement in study 4D. Movements

are: . stand; 2. stand-to-sit; 3. sit; 4. sit-to-stand; 5. stand; 6. walk;

7. stand; 8. stand-to-lie; 9. lie; 0. lie-to-stand; . stand. Page 6 of 6.
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median mean s.d. min max

frequency (Hz)

x-axis 0.24 0.27 0. 0.00 .4

y-axis 0.24 0.29 0. 3 0.00 .38

z-axis 0.23 0.28 0.22 0.00 .43

signal-to-noise ratio

x-axis 48 57 35 0 248

y-axis 44 47 22 0 2 5

z-axis 8 20 5 0 30

interquartile range

x-axis 0.0 7 0.027 0.046 0.006 0.824

y-axis 0.0 6 0.02 0.028 0.005 0.433

z-axis 0.0 0 0.0 2 0.009 0.005 0. 09

magnitude 0.008 0.0 0 0.004 0.005 0.053

Parameters of postural sway measured during 30 s of quiet standing:

sway frequency, magnitude of frequency peak and interquartile range

of sway acceleration. Overall median, mean, standard deviation, min

and max are given across all repetitions of the routine by all subjects in

study 4D.
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Boxplots comparing mean values for each activity across all repetitions

for all subjects (N = 6) by movement in study 4D: (a) tilt angle; (b)

SMA; (c) mean x-axis acceleration; (d) x-axis range; (e) mean y-axis

acceleration; (f) y-axis range. Movements are : stand, 2: stand-to-sit,

3: sit, 4: sit-to-stand, 5: stand, 6: walk, 7: stand, 8: stand-to-lie, 9: lie,

0: lie-to-stand, : stand. Page of 2.
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Boxplots comparing mean values for each activity across all repetitions

for all subjects (N = 6) by movement in study 4D: (g) mean z-axis

acceleration; (h) z-axis range; (i) mean magnitude acceleration, ; (j)

magnitude acceleration, , range. Movements are : stand, 2: stand-to-

sit, 3: sit, 4: sit-to-stand, 5: stand, 6: walk, 7: stand, 8: stand-to-lie, 9:

lie, 0: lie-to-stand, : stand. Page 2 of 2.



F. Parametric Data from Study 4D 489

-5.00

10.00

25.00

40.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(a)

-15.00

15.00

45.00

75.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(b)

-5.00

10.00

25.00

40.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(c)

-5.00

10.00

25.00

40.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(d)

-5.00

10.00

25.00

40.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(e)

50.00

70.00

90.00

110.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(f)

-15.00

10.00

35.00

60.00

1 2 3 4 5 6

subject

ti
lt
 a

n
g
le

(g)

Boxplots of mean tilt angle for each subject (N = 6) in study 4D for

each of the movements in the daily routine. Movements are (a) stand;

(b) stand-to-sit; (c) sit; (d)sit-to-stand; (e) stand; (f) walk; (g) stand;

(h) stand-to-lie; (i) lie; (j) lie-to-stand; and (k) stand. Note the di erent

vertical axis scales between the graphs.
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Boxplots of mean SMA for each subject (N = 6) in study 4D for each

of the movements in the daily routine. Movements are: (a) stand; (b)

stand-to-sit; (c) sit; (d) sit-to-stand; (e) stand; (f) walk. Note the dif-

ferent vertical axis scales between the graphs. Page of 2.
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Boxplots of mean SMA for each subject (N = 6) in study 4D for each

of the movements in the daily routine. Movements are: (g) stand; (h)

stand-to-lie; (i) lie; (j) lie-to-stand; and (k) stand. Note the di erent

vertical axis scales between the graphs. Page 2 of 2.
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