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The Individual and Collective Token

Interpretations of Petri Nets

Rob van Glabbeek

National ICT Australia
and School of Computer Science and Engineering

The University of New South Wales
rvg@cs.stanford.edu

Abstract. Starting from the opinion that the standard firing rule of
Petri nets embodies the collective token interpretation of nets rather
than their individual token interpretation, I propose a new firing rule
that embodies the latter. Also variants of both firing rules for the self-
sequential interpretation of nets are studied. Using these rules, I ex-
press the four computational interpretations of Petri nets by semantic
mappings from nets to labelled step transition systems, the latter be-
ing event-oriented representations of higher dimensional automata. This
paper totally orders the expressive power of the four interpretations,
measured in terms of the classes of labelled step transition systems up
to isomorphism of reachable parts that can be denoted by nets under
each of the interpretations. Furthermore, I extend the unfolding con-
struction of place/transition nets into occurrence net to nets that may
have transitions without incoming arcs.

Introduction

In the literature on Petri nets 2 × 2 = 4 computational interpretations of nets
can be distinguished, that in Van Glabbeek & Plotkin [6] were called the
individual token and the collective token interpretation, and, orthogonally, the
self-sequential and the self-concurrent interpretation. The differences show up
only when dealing with non-safe place/transition nets and, as far as the individ-
ual/collective token dichotomy concerns, only when precisely keeping track of
causal dependencies between action occurrences.

The individual token interpretation has been formalised by the notion of a
process, described in Goltz & Reisig [7]. A causality respecting bisimulation
relation based on this approach was proposed by Best, Devillers, Kiehn &

Pomello [3] under the name fully concurrent bisimulation. Engelfriet [4]
and Meseguer et al. [8] define an unfolding of Petri nets into occurrence nets
that preserves this interpretation. Best & Devillers [2] adapted the process
concept of [7] to fit the collective token philosophy. Equivalence relations on
Petri nets based on the collective token interpretation were proposed in [6].

In older papers on Petri nets a multiset of transitions was allowed to fire
only if it was a set, i.e., no transition could fire multiple times concurrent with
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itself. The argument for this restriction was that a transition can be thought of
as a subsystem like a printer, that can only print one file at a time. When there
are enough tokens in its preplaces (representing print-requests and other pre-
conditions for printing) to handle two files, these have to be printed one by one.
Goltz & Reisig [7] exemplified that not all subsystems suffer from such limita-
tions; when one does, this is a matter of scarcity of recourses that can be modelled
by an extra place. Since [7] multisets are generally allowed to fire. Nevertheless,
for the sake of completeness, I take both interpretations into account.

The present work can be understood as a way of formally pinpointing the
differences between these computational interpretations. This is done by for-
mulating four different firing rules, and by giving four translations from Petri
nets into labelled step transition systems, one for each interpretation. Labelled

step transition systems arose from discussions with Vaughan Pratt in 1991 as
an event-oriented representation of higher dimensional automata [10], an angle
that will not be pursued here. Step transition systems were used to describe the
operational behaviour of Petri nets in Mukund [9]. In the form proposed here,
but without the labelling, they appear in Badouel [1].

I compare the expressive power of classes of Petri nets under each of the four
interpretations in terms of the labelled step transition systems they can denote
up to isomorphism of reachable parts, and find that the class of all Petri nets
under either one of the individual token interpretations is equally expressive as a
subclass of nets on which all four interpretations coincide. Likewise, the class of
all Petri nets under the self-concurrent collective token interpretation is equally
expressive as a subclass of nets on which both collective token interpretations
coincide. This gives rise to the following hierarchy:

self-sequential individual token interpretation
?6

self-concurrent individual token interpretation

6
self-sequential collective token interpretation

6
self-concurrent collective token interpretation

Fig. 1. Relative expressiveness of four computational interpretations of Petri nets

The expressiveness results above were first claimed by me in [5], using a different
model of higher dimensional automata for interpreting the dynamic behaviour
of Petri nets, namely cubical sets instead of labelled step transition systems.
However, the individual token interpretations of [5] apply to standard nets only,
nets in which each transition has at least one incoming arc, and a proof is given
for the expressiveness result relating the two self-concurrent interpretations only.

As a spin-off, this study provides a particularly simple definition of the unfold-
ing of an arbitrary place/transition net into an occurrence net. My construction
extends the constructions of [11], [4] and [8] by including non-standard nets.
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1 Petri Nets and the Firing Rule

Definition 1. A (labelled, marked) Petri net is a tuple (S, T, F, I, l) with

– S and T two disjoint sets of places (Stellen in German) and transitions,
– F : (S × T ∪ T × S) → IN, the flow relation,
– I : S → IN, the initial marking,
– and l : T → A, for A a set of actions, the labelling function.

Petri nets are pictured by drawing the places as circles and the transitions as
boxes, containing their label. For x,y∈S∪T there are F (s, t) arcs from x to y.
When a Petri net represents a concurrent system, a global state of this system is
given as a marking, a function M : S → IN. Such a state is depicted by placing
M(s) dots (tokens) in each place s. The initial state is given by the marking I .
In order to describe the behaviour of a net, one defines the step transition relation

between markings.

Definition 2. A multiset over a set S is a function M : S → IN, i.e. M ∈ INS .
For multisets M and N over S write M ≤ N if M(s) ≤ N(s) for all s ∈ S.
M + N ∈ INS is the multiset with (M + N)(s) = M(s) + N(s), and M − N is
the function given by (M − N)(s) = M(s) − N(s)—it is not always a multiset.
The function 0 : S → IN given by 0(s) = 0 for all s ∈ S is the empty multiset.
A multiset M ∈ INS with M(s) ≤ 1 for all s ∈ S is identified with the set
{s ∈ S | M(s) = 1}. A multiset M over S is finite if {s ∈ S | M(s) > 0} is finite.
Let M(S) denote the collection of finite multisets over S.

Definition 3. For a finite multiset U : T → IN of transitions in a Petri net, let
•U, U• : S → IN be the multisets of input and output places of U , given by

•U(s) =
∑

t∈T

F (s, t) · U(t) and U•(s) =
∑

t∈T

U(t) · F (t, s) for all s ∈ S.

U is enabled under a marking M if •U ≤ M . In that case U can fire under M ,
yielding the marking M ′ = M − •U + U•, written M

U
−→ M ′.

If a multiset U of transitions fires, for every transition t in U and every arc
from a place s to t, a token moves along that arc from s to t. These tokens are
consumed by the firing, but also new tokens are created, namely one for every
outgoing arc of t. These end up in the places at the end of those arcs. If t occurs
several times in U , all this happens several times (in parallel) as well. The firing
of U is only possible if there are sufficiently many tokens in the preplaces of U

(the places where the incoming arcs come from).
The components of a net N are called SN, TN, FN, IN and lN, a convention

that also applies to other structures given as tuples. When clear from context,
the index N is omitted.

Two nets P and Q are isomorphic, written P ∼= Q, if they differ only in the
names of their places and transitions, i.e. if there are bijections β : SP → SQ

and η : TP → TQ such that, for s ∈ SP and t ∈ TP: IQ(β(s)) = IP(s),
FQ(β(s), η(t)) = F P(s, t), FQ(η(t), β(s)) = F P(t, s) and lQ(η(t)) = lP(t).
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2 The Individual and Collective Token Interpretations

In the individual token interpretation of Petri nets one distinguishes different
tokens residing in the same place, keeping track of where they come from. If a
transition fires by using a token that has been produced by another transition,
there is a causal link between the two. Consequently, the causal relations between
the transitions in a run of a net can always be described by means of a partial
order. In the collective token interpretation, on the other hand, tokens cannot be
distinguished: if there are two tokens in a place, all that is present there is the
number 2. This gives rise to more subtle causal relationships between transitions
in a run of a net, which cannot be expressed by partial orders.

The following example illustrates the difference between the two interpreta-
tions.

A: • a • b •

In this net, the transitions labelled a and b can fire once each. After a has
fired, there are two tokens in the middle place. According to the individual
token philosophy, it makes a difference which of these tokens is used in firing
b. If the token that was there already is used (which must certainly be the
case if b happens before the token from a arrives), the transitions a and b are
causally independent. If the token that was produced by a is used, b is causally
dependent on a. Thus, the net A above has two maximal executions, that can be
characterised by the partial orders a

b and a - b . According to the collective
token philosophy on the other hand, all that is present in the middle place after
the occurrence of a is the number 2. The preconditions for b to fire do not change,
and consequently b is always causally independent of a.

The following illustrates that both philosophies yield incomparable notions
of equivalence.

B: • a • b •

In the collective token philosophy the precondition of b expressed by the place
in the middle is redundant, and hence A must be equivalent to B. However,
A and B are not fully concurrent bisimulation equivalent (a causality respecting
equivalence based on the individual token approach [3]), as B lacks the execution
a - b . On the other hand, A is fully concurrent bisimulation equivalent with
C below.

C: • a b •

b•

In fact, C is the occurrence net obtained from A by the unfolding of [4, 8]. In
the individual token philosophy, both A and C have the executions a - b and
a

b. However, in the collective token philosophy A does not have a run a - b

and can therefore not be equivalent to C in any causality preserving way.
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•

HCT(D)

◦

a

◦

c

◦

b

b c ◦

b

a b

c

◦

b

◦

a
c

a c

a

c

D

•

a

•

b

•

•

HIT(D)

◦

a

◦

ca

◦

b

b ca ◦

b

a b

ca

◦

b

◦

a cb

◦

cb

a cb

a

The Petri net D above (ignore HCT(D) and HIT(D) for now) illustrates how
the collective token interpretation gives rise to causal relationships that cannot
be expressed by partial orders. Under the collective token interpretation this
net features disjunctive causality : c is causally dependent on a ∨ b. In contrast,
under the individual token interpretation D admits two executions, one in which
c depends only on a, and one in which c depends only on b.

Antoni Mazurkiewicz once argued for the collective reading of this net by
letting a and b be £1 contributions of two school children to buy a present for
their teacher. The act of buying the present, which only costs £1, is represented
by c. Now the individual token interpretation suggests that the present is bought
from the contribution from either one child or the other, whereas the collective
token interpretation admits only one complete execution, in which the buying
of the present is caused by the disjunction of the two contributions. The latter
would be a fairer description of the intended state of affairs.

3 A Firing Rule for the Individual Token Interpretation

In my opinion, the standard definition of a marking and the corresponding firing
rule (Def. 3) embody the collective token interpretation rather than the individ-
ual one. Here I will redefine these concepts in a way that embodies the individual
token interpretation. To this end I define the notion of a token as it could occur
in a Petri net, in such a way that all possible token occurrences have a differ-
ent name. A token will be a triple (t′, k, s), with s the place where the token
occurs, and t′ the transition firing that brought it there. For tokens that are in
s initially, I take t′ = ∗. When the number of tokens that t′ deposits in s in n,
I distinguish these tokens by giving them ordinal numbers k = 0, 1, 2, . . . , n−1.
In order to define tokens as announced above I need to define transition firings
simultaneously. These will be pairs (X, t) with t the transition that fires, and X

the set of tokens that is consumed in the firing. Transitions t that can fire with-
out consuming tokens can fire multiple times on the same (empty) input; these
firings will be called (k, t) with k ∈ IN instead of (∅, t). I define the functions β

from tokens to the places where they occur by β(x, k, s) = s, and η from tran-
sition firings to the transition that fires by η(x, t) = t. The function β extends
to a function from sets of tokens X to multisets of places β(X) : S → IN, by
β(X)(s) = |{s′ ∈ X | β(s′) = s}|.
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Definition 4. Given a Petri net N = (S, T, F, I, l), the sets of tokens S• and
transition firings T• of N are recursively defined by

– (∗, k, s) ∈ S• for s ∈ S and k < I(s);
– (t′, k, s) ∈ S• for s ∈ S, t′ ∈ T• and k < F (η(t′), s);
– (X, t) ∈ T• for t ∈ T and X ⊆ S• such that β(X) = •t 6= 0;
– (k, t) ∈ T• for k ∈ IN and t ∈ T such that •t = 0.

The labelling function l• : T• → A on transition firings is given by l•(t) = l(η(t)).
An individual marking of N is a multiset M : S• → IN of tokens. The initial

individual marking I• : S• → IN is given by I•(∗, k, s) = 1 and I•(t
′, k, s) = 0.

Standard Nets. A standard net is a net N in which each transition has at least
one incoming arc: ∀t ∈ T. •t > 0. A net is standard iff its set of spontaneous

transition firings T◦ = {(k, t) ∈ T• | k ∈ IN} is empty. I define the firing rule
embodying the individual token interpretation for standard nets first.

Definition 5. For a finite set U ⊆ T• of transition firings in a standard net, let

•U =
∑

(X,t)∈U

X and U• = {(t′, k, s) | t′ ∈ U ∧ k < F (η(t′), s)}

be the multiset of input tokens and the set of output tokens of U . The set U is
enabled under an individual marking M ∈ INS• if •U ≤ M . In that case U can
fire under M , yielding M ′ = M − •U + U• ∈ INS• , written M

U
−→• M ′.

A chain I•
U1−→• M1

U2−→• · · ·
Un−→• Mn is called a firing sequence. An individual

marking M ∈ INS• is reachable if there is such a sequence ending in M = Mn.

The following proposition says that I succeeded in giving all possible token oc-
currences a different name.

Proposition 1. In a standard net, any reachable multiset of tokens is a set.

Proof. I show that in a firing sequence I•
U1−→• M1

U2−→• · · ·
Un−→• Mn the

multiset I• +
∑n

i=1 U•
i , which includes Mn, is a set. Applying induction on n,

the base case holds by the definition of I•. For the induction step, if a token
occurs twice in I• +

∑n

i=1 U•
i , the definitions of I• and U• imply that it has the

form (t′, k, s), hence the transition firing t′ occurs twice in
∑n

i=1 Ui. As t′ is not
spontaneous, it has the form (X, t) with X a nonempty set of tokens. By the

definition of •U , a token in X occurs twice in I• +
∑n−1

i=1 U•
i . ut

Prop. 1 also shows that there is no point in upgrading Def. 5 to multisets U .

Non-standard Nets. For arbitrary nets, the definition of U •, for U a finite set
of transitions, remains the same, but in the definition of •U one needs to decide
on the input conditions of spontaneous transition firings. The simplest solution
would be to treat k as ∅ in the definition of •U or, equivalently, to let the sum
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range over the non-spontaneous transition firings in U only. However, this would
lead to a failure of Prop. 1 for non-standard nets, as a spontaneous transition
firing (k, t) could occur multiple times in a firing sequence, leaving multiple
copies of its output tokens in the resulting reachable marking. A solution for
this problem would be to upgrade the definition of a firing sequence with the
requirement that each spontaneous transition firing may only occur once in it.
This condition would be motivated by the idea that every time a transition t

with •t = 0 fires, its firing gets a different identifier.
Here I aim at the same result by using a notion of state that consists of an

individual marking, together with the set names of spontaneous transition firings
that may still fire. I could just as well have taken the set of spontaneous transition
firings that have already occurred, this set being equally rich in information
content, but the choice above allows me to combine both components of a state
into one set of resources that need to be available for transition firings to occur.

Definition 6. Let N be a Petri net. Let S+
• = S•∪{tk | (k, t)∈T◦} be the set of

resources of N. An individual state M ∈ INS+
• of N is the union of an individual

marking and a multiset of names tk of spontaneous transition firings (k, t). The
initial state I+

• = {(∗, k, s) | k < I(s)} ∪ {tk | (k, t) ∈ T◦} is the union of I•
and the set of names of all spontaneous transition firings. The multiset of input

resources of a finite set of transition firings U ⊆ T• is given by

•U =
∑

(X,t)∈U−T◦

X + {tk | (k, t) ∈ U ∩ T◦}.

All other elements of Def. 5 apply unchanged, but using individual states instead
of individual markings, and I+

• instead of I•.

Corollary 1. In any Petri net, all reachable individual states are sets.

4 The Individual and Collective Firing Rules Agree

Having defined a new firing rule that caters to the individual token interpreta-
tion, I now show how it is consistent with the standard firing rule of Definition 3.
I use variables M• to range over individual states, and U• to range over sets of
transition firings. The function η from transition firings to the transition that
fires extends to a function from sets of transition firings U• to multisets of tran-
sitions η(U•) : T → IN, by η(U•)(t) = |{t′ ∈ U• | η(t′) = t}|. Moreover, the
function β from tokens to the places where they occur extends to a function
from individual states (multisets of resources) to markings (multisets of places)
by β(M•)(s) =

∑

s′∈β−1(s) M•(s
′) (where non-token resources are ignored).

Now the following theorem, whose proof is trivial, says that the functions β

and η constitute a bisimulation between the step transition relations of a given
net under the individual and collective token interpretations.

Theorem 1. β(I+
• ) = I and for any individual states M• and markings M ′:

β(M•)
U
−→ M ′ ⇔ ∃U•, M

′
• : M•

U•−→• M ′
• ∧ η(U•) = U ∧ β(M ′

•) = M ′.
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5 Firing Rules for the Self-sequential Interpretations

The firing rules of Sections 1 and 3 embody the self-concurrent interpretations
of Petri nets, allowing a transition to fire concurrently with itself. Here I inves-
tigate how they need to be adapted to obtain firing rules for the self-sequential

interpretations, excluding transitions from firing concurrently with themselves.
The firing rule for the self-sequential collective token interpretation is evident:

a multiset U of transitions is enabled under the self-sequential interpretation of
nets if it is enabled in the sense of Def. 3 and U is a set. The self-sequential step

transition relation →ss between markings is given by M
U
−→ssM ′ iff M

U
−→ M ′

and U is a set.
On standard nets, a firing rule for the self-sequential individual token inter-

pretation can be obtained in the same way: a multiset U of transition firings
is enabled under the self-sequential interpretation of nets if it is enabled in the
sense of Def. 5 and U is a set with the property that if (X, t), (Y, t) ∈ U for
t ∈ T then X = Y . Thus, all transition firings in U should be firings of different
transitions. One defines →ss

• by imposing the same requirement.
On non-standard nets, before employing the same definitions, I take the op-

portunity to rectify an unfortunate design decision that was unavoidable under
the self-concurrent interpretation. Namely, if a net contains a transition t with-
out input places, Def. 6 yields an infinitely branching transition relation: there

is a transition I•
{(k,t)}

−−−→• M(k,t) for any k ∈ IN. The reason this was unavoid-
able under the self-concurrent interpretation is that any number of transition
firings (k, t) can happen simultaneously, and I want to preserve the fundamental
property of Petri nets that whenever a number of transition firings can happen
in one step, they can happen in any order; so any of the firings (k, t) can hap-
pen first. Under the self-sequential interpretation, on the other hand, it is much
more natural so take the point of view that although the transition t allows
arbitrary many firings to occur sequentially, there is no point in distinguishing
different kinds of first firings. Thus, I will use k not merely as a label taken from
an arbitrary countable set, but as an actual number, (k, t) denoting the k+1th

firing of transition t. The set S+
• of resources of a net and the individual states

M ∈ INS+
• are as in Def. 6, but this time the presence of tk in a state signifies

that the k+1th firing of t is enabled. The multiset of input resources remains
the same as in Def. 6, but the notions of initial state and output resources need
to be adapted.

Definition 7. Let N be a Petri net. The initial state of N under the self-
sequential interpretation is Iss

• = {(∗, k, s) | k < I(s)}∪{t0 | t∈T ∧• t = 0}, and
the set of output resources of a finite set of transition firings U ⊆ T• is

U•
ss = {(t′, k, s) | t′ ∈ U ∧ k < F (η(t′), s)} ∪ {tk+1 | (k, t) ∈ U ∩ T◦}.

The set U is enabled in an individual state M : S+
• → IN under the self-sequential

interpretation if •U ≤ M and ∀t((x, t), (y, t)∈U ⇒ x = y). In that case U can
fire under M , yielding the state M ′ = M − •U + U•

ss, written M
U
−→ss

• M ′.
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Again, it is trivial to check that all →ss
• -reachable individual states are sets, and

β and η constitute a bisimulation between the step transition relations of a net
under the self-sequential individual and collective token interpretations.

Theorem 2. β(Iss
• ) = I and for any individual states M• and markings M ′:

β(M•)
U
−→ssM ′ ⇔ ∃U•, M

′
• : M•

U•−→ss
• M ′

• ∧ η(U•) = U ∧ β(M ′
•) = M ′.

6 Labelled Step Transition Systems

Definition 8. A labelled step transition system is a tuple (Q, E,→, I, l) with

– Q and E are two disjoint sets of states and events,
– → ⊆ Q × M(E) × Q, the step transition relation, satisfying

(1) if (p, u, q), (p, u, q′) ∈ → then q = q′ (determinism)
(2) (p, 0, p) ∈ → (trivial step)
(3) if (p, u + v, r) ∈ → then ∃q : (p, u, q), (q, v, r) ∈ → (asynchronousness)

– I ∈ Q, the initial state,
– and l : E → A, for A a set of actions, the labelling function.

Henceforth, write p
u

−→ q for (p, u, q) ∈ →.

Notes. A labelled transition system (LTS) is a quadruple (Q, Σ,→, I) with Q a
set of states, Σ a set of labels, → ⊆ Q×Σ×Q, and I ∈ Q. An LTS is deterministic,
if it satisfies (1) above; in that case the transition relation → is really a partial

function from Q×Σ to Q. A step transition system is an LTS whose labels are
sets or multisets of actions, rather than single actions. Here p

u
−→ q means that

the represented system can transition from state p to state q by performing the
actions in u in one step, meaning simultaneously or concurrently. Property (2)
says that in any state p it is possible to do nothing and stay in p. Together with
(1), property (2) implies that p

0
−→ q iff q = p, so without performing actions it

is not possible to move to another state. The information content would be the
same if in Def. 8 instead of (2) it would be required that transitions are labelled
by nonempty multisets.

A step transition system is asynchronous if it satisfies (3). This requirement
represents the postulate that different action occurrences do not synchronise in
any way; they can happen simultaneously only if they are causality independent,
and in that case they can also happen in any order.

Now a labelled step transition system (LSTS) is a doubly labelled transition
system. First of all the arrows are labelled by sets of events, and secondly the
events are labelled by actions. This double layer of labelling is reflected in the
name, as the word “step” already implies “labelled”. The creation of events as an
intermediate concept between transitions and actions is a trick that allows me to
control the non-determinism of concurrent systems on the level of actions. I want
to be able to model that a system in state p has a choice between two a-actions,
leading to different successor states, and at the level of abstraction at which the
system is represented there is no way to tell the two as apart (or influence the
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choice). However, optionally based on the belief that the world is not truly non-
deterministic, the nondeterminism can be attributed to a difference between the
two a actions that, although not observable, does account for the fact that they
lead to different successor states. An event is now an action together with all its
subtle qualities that influence which state it leads to when executed in a given
state. Thus, an action is an equivalence class of events that are indistinguishable
at the chosen level of abstraction.

When used for representing concurrent systems, LSTSs need to be considered
modulo a suitable semantic equivalence. One the finest possible candidates is the
following notion of isomorphism of reachable parts, ∼=R:

Definition 9. Two LSTSs A and B are isomorphic, written A ∼= B, if they
differ only in the names of their states and events, i.e. if there are bijections
β : QA → QB and η : EA → EB such that β(IA) = IB, and, for p, q ∈ QA,

u : EA → IN and e∈EA: β(p)
η(u)
−→ β(q) iff p

u
−→ q and lB(η(e)) = lA(e).

The set R(Q) of reachable states in A = (Q, E,→, I, l) is the smallest set such

that I is reachable and whenever p is reachable and p
u

−→ q then q is reachable.
The reachable part of A is the LSTS R(A) = (R(Q), E,→ \R(Q), I, l).

Write A ∼=R B if R(A) and R(B) are isomorphic.

To check A ∼=R B it suffices to restrict to subsets of QA and QB that contain all
reachable states, and construct an isomorphism between the resulting LSTSs.

7 Interpreting Petri Nets in LSTSs

I now give four translations from Petri nets into labelled step transition systems,
one for each of the computational interpretations of this paper. This is a way of
formally pinpointing the differences between these interpretations; it amounts
to giving four different semantics of Petri nets.

Definition 10. Let N = (S, T, F, I, l) be a net. Then HCT(N) = (INS , T,→, I, l)
is the LSTS associated to N under the self-concurrent collective token interpre-

tation, and HIT(N) = (INS+
• , T•,→•, I

+
• , l•) is the LSTS associated to N under

the self-concurrent collective token interpretation. Hss
CT(N) = (INS , T,→ss, I, l)

and Hss
IT(N) = (INS+

• , T•,→ss
• , Iss

• , l•) are the LSTSs associated to N under the
self-sequential interpretations.

Example 1. The LSTSs below express the collective and individual token inter-
pretation of the net A from Sect. 2, respectively. The equivalence of A and B

HCT(A) ∼=R HCT(B) ∼=R HIT(B)

•

◦

a

◦

b

a b ◦

b

a

HIT(A) ∼=R HIT(C) ∼=R HCT(C)

•

◦

a

◦

ba

◦

b∗

a b∗ ◦

b∗

a
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under the collective token interpretation, and of A and C under the individual
token interpretation, manifests itself as isomorphism of reachable parts of the
associated LSTSs.

The pictures above display LSTSs up to isomorphism of reachable parts. Let-
ters like ba and b∗ stand for “different events labelled b”. In fact, if the places of A
are called s1, s2 and s3, respectively, and its transitions a and b, then the event b∗
is ({(∗, 0, s2), (∗, 0, s3)}, b), whereas ba = ({(({(∗, 0, s1)}, a), 0, s2), (∗, 0, s3)}, b).

Example 2. The LSTSs associated to the net D of Sect. 2 under the the collective
and individual token interpretations can be found right next to it.

Example 3. In the previous examples there was no difference between the self-
sequential and the self-concurrent interpretations. The following shows, however,
that in general all four interpretations yield a different result.

••

a

E

•

HIT(E) :

◦

a0

◦

a1

a0 a1 ◦

a1

a0

•

H
ss

IT(E) :

◦

a0

◦

a1

◦

a1

a0

•

HCT(E) :

◦

a

◦

a

a a

•

H
ss

CT(E) :

◦

a

◦

a

8 The Relative Expressiveness of the Four Interpretations

Each of the four computational interpretations above makes a different model of
concurrency out of Petri nets. These models can now be compared with respect
to their expressive power in denoting labelled step transition systems.

8.1 The Individual versus Collective Token Interpretations

The following theorem says that Petri nets under the self-concurrent collec-
tive token interpretation are at least as expressive as Petri nets under the self-
concurrent individual token interpretation, in the sense that any LSTS that can
be denoted by a net under the latter interpretation can also be a denoted by a net
under the former interpretation. On the other hand, the LSTS HCT(D) in Sect. 2
cannot be denoted by a Petri net under the individual token interpretation.

Theorem 3. For every net N there is a net N• such that HCT(N•) = HIT(N).
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Proof. N• = (S+
• , T•, F•, I

+
• , l•) with S+

• , T•, I+
• and l• as in Def. 4 and 6, and

– F•(s
′, t′) = 1 if t′ = (X, t) with s′ ∈ X , or t′ = (k, t) ∈ T◦ and s′ = tk;

F•(s
′, t′) = 0 otherwise;

– F•(t
′, s′) = 1 if s′ has the form (t′, k, s); F•(t

′, s′) = 0 otherwise.

That HCT(N•) = HIT(N) is straightforward. ut

The net N• constructed above is a close relative of the unfolding of a Petri net
into an occurrence net, as defined in [11, 4, 8] (see Sect. 9). The difference is that
I have not bothered to eliminate unreachable places and transitions.

8.2 The Self-sequential versus Self-concurrent Interpretations

In general, results as strong as the one above can not be obtained: in order to
compare expressiveness in a meaningful way, processes represented by LSTSs,
Petri nets, or other models of concurrency should be regarded modulo some se-
mantic equivalence relation. A particularly fine equivalence relation that allows
me to totally order the computational interpretations of Petri nets is isomor-
phism of reachable parts of LSTSs (see Def. 9 in Sect. 6).

The following theorem shows that the behaviour of nets under the self-
sequential interpretations can easily be encoded into the behaviour of nets under
the corresponding self-concurrent interpretation.

Theorem 4. For every net N there is a net Nss such that HCT(Nss) ∼=RHss
CT(N)

and HIT(Nss) ∼=R Hss
IT(N).

Proof. Following [7], Nss is obtained from N by adding for every transition t

a self-loop, consisting of a place st with I(st) = F (st, t) = F (t, st) = 1 and
F (st, u) = F (u, st) = 0 for all u 6= t. Write Snew for the set of new places st.

To check that HCT(Nss) ∼=R Hss
CT(N), restrict the states of HCT(Nss), i.e. the

markings M of Nss, to the ones with M(st) = 1 for all st∈Snew ; this set of states
surely contains all reachable ones. Let β(M)∈ INS be obtained by restricting the
domain of M ∈ INS∪Snew to S, and η be the identity. Now the bijections β and η

constitute an isomorphism of reachable parts between HCT(Nss) and Hss
CT(N).

To check that HIT(Nss) ∼=R Hss
IT(N), restrict the states of HIT(Nss) to the

individual states M• of Nss that contain exactly one token of the form (x, 0, st)
for each st ∈ Snew; this set of states surely contains all reachable ones. Also, in
view of Cor. 1, the states of HIT(Nss) and Hss

IT(N) may be restricted to sets of
resources rather than multisets. Let S◦ = {st∈Snew | •t = 0 (in N)}. For st∈S◦,
let s0

t = (∗, 0, st) and sk+1
t = (({sk

t }, t), 0, st). Then all tokens (x, k, st) of Nss

are of the form sk
t for k ∈ IN. Now the mappings η from the transition firings in

Nss to the transition firings in N, for convenience extended with η(∗) = ∗, and
β from sets of individual tokens in Nss to sets of individual resources in N, are
defined with recursion on the structure of transition firings and sets of tokens

by η(X, t) =

{

(β(X), t) if •t 6= 0
(k, t) if •t = 0 ∧ X = {sk

t }

and β(X) = {(η(x), k, s) | (x, k, s)∈X ∧ s 6∈Snew} ∪ {tk | sk
t ∈X ∧ st∈S◦}.
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Again, the bijections β and η constitute an isomorphism between the reachable
parts of HIT(Nss) and Hss

IT(N). ut

The construction of Nss above, reducing the self-sequential to the self-concurrent
interpretation of nets is well known [7]. The point of the proof above is to some
extent just a sanity check on the definitions of HCT, Hss

CT, HIT and Hss
IT.

By Theorem 4, any LSTS that can be denoted by a Petri nets under the self-
sequential collective token interpretation, can also be denoted by a net under
the self-concurrent collective token interpretation, and likewise for nets under
the individual token interpretations. On the other hand, the LSTS HCT(E) of
Example 3 cannot be denoted by a Petri net under the self-sequential collective
token interpretation.

8.3 Subsumption

So far, I proved the expressiveness results Hss
IT � HIT ≺ HCT � Hss

CT, where
J ≺ K means that up to ∼=R the class of LSTSs that can be denoted by Petri
nets under the computational interpretation J is a proper subclass of the class
that can be denoted by Petri nets under the computational interpretation K.
Here I will strengthen and augment these results by considering the following
subsumption relation between computational interpretations and classes of nets.

Definition 11. Write J �C K if C is a class of Petri nets such that

– for any net N ∈ C one has J (N) ∼=R K(N) and
– for any net N there is a net N′ ∈ C such that J (N′) ∼=R J (N).

If J �C K, then up to ∼=R, the class of all Petri nets under interpretation J is
equally expressive as the subclass C on which the two interpretations coincide.

Observation 1. If J �C K �D L and C ⊆ D then J �C L.

Observation 2. If J �C K �C L then K �C J .

Moreover, J �C K implies J � K. Also note that in the presence of the first
clause, the second clause of Def. 11 is equivalent with

– for any net N there is a net N′ ∈ C such that K(N′) ∼=R J (N).

8.4 Self-sequential Petri Nets

Definition 12. A Petri net is self-sequential if, using the standard firing rule of
Def. 3, under no reachable marking a proper multiset of transitions is enabled,
i.e. a transition is doubly enabled. Let SS be the class of self-sequential nets.

Theorem 5. Hss
CT �SS HCT and Hss

IT �SS HIT.

Proof. If N is self-sequential, trivially R(Hss
CT(N)) = R(HCT(N)), and therefore

Hss
CT(N) ∼=R HCT(N). Likewise, R(Hss

IT(N)) = R(HIT(N)), considering that self-
sequential nets can have no transitions t with •t = 0. The second clause of Def. 11
is satisfied because the net N ss constructed in the proof of Theorem 4 is self-
sequential.
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8.5 Unique-Occurrence Nets

Definition 13. A Petri net is a unique-occurrence net if ∀t ∈ T. •t > 0 (i.e.
it is a standard net), ∀s ∈ S. I(s) + Σt∈T F (t, s) = 1 and the flow relation F

is well-founded, i.e. there is no infinite alternating sequence x0, x1, . . . of places
and transitions such that F (xi+1, xi) > 0 for i ∈ IN. Let UO be the class of
unique-occurrence nets.

This class of nets is a close relative of the class of occurrence nets of Winskel

[11]; it just lacks the requirements that cause the elimination of unreachable
places and transitions (see Sect. 9).

Proposition 2. For every Petri net N, the net N• is an unique-occurrence net.

Moreover, if N is an unique-occurrence net, then N•
∼= N.

Proof. The first statement follows immediately from the construction of N•, the
well-foundedness of F being a consequence of the recursive nature of Def. 4.

The second statement follows with induction on the well-founded order F ,
using the mappings β and η of Sect. 3. ut

Prop. 2 tells that in a unique-occurrence net there is a bijective correspondence
between places and token occurrences, and between transitions and transition
firings. In particular, in a run of a net each place will be visited at most once,
and each transition will fire at most once. Hence the name “unique-occurrence
nets”. It follows that unique-occurrence nets are self-sequential.

Theorem 6. HIT �UO HCT.

Proof. Let N be a unique-occurrence net. Then HIT(N) = HCT(N•) ∼= HCT(N),
using Theorem 3, Prop. 2 and the observation N•

∼= N ⇒ HCT(N•) ∼= HCT(N).
Now let N be any Petri net. Then N• ∈ UO by Prop. 2 and HCT(N•) ∼= HIT(N)
by Theorem 3.

Theorem 7. Hss
IT �UO HIT �UO Hss

CT and HIT �UO Hss
IT �UO HCT.

Proof. Let N be a unique-occurrence net. As unique-occurrence nets are self-
sequential, Theorems 5 and 6 yield Hss

IT(N) ∼=RHIT(N) ∼=RHCT(N) ∼=RHss
CT(N).

Now let N be any Petri net. Then (Nss)• is a unique-occurrence net by Prop. 2
and Hany

any
((Nss)•) ∼=R HCT((Nss)•) ∼=R HIT(Nss) ∼=R Hss

IT(N) by Theorems 3
and 4.

This yields the expressiveness hierarchy of Fig. 1.

9 Unfolding into Occurrence Nets

Definition 14 ([11]). An occurrence net is a unique-occurrence net such that

– the conflict relation #⊆ T × T is irreflexive, where

x#y ⇔ ∃t, t′∈T. t 6= t′, •t ∩ •t′ 6= ∅, tF ∗x, tF ∗y

– and ∀t ∈ T. {t′ | t′F ∗t} is finite.
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Here F ∗ denotes the reflexive and transitive closure of the flow relation, given by
xFy iff F (x, y) > 0. It is easy to see that transitions in a unique-occurrence net
that violate the conditions above can never fire, and in fact an occurrence net
is a unique-occurrence net with the property that every place occurs in a reach-
able marking and every transition in a firing sequence. Therefore, any unique-
occurrence net can be converted into an occurrence net by the operation R that
omits all transitions t that violate the requirements above, together with all
places and transitions x with tF ∗x. The net R(N) consists of the reachable places
and transitions in N, and H(R(N)) ∼=R H(N) for H ∈ {HCT,HIT,Hss

CT,Hss
IT}.

This allows me to define an unfolding operator U , turning any given Petri net N
into an occurrence net U(N) with HIT(U(N)) ∼=R HIT(N), as follows.

Definition 15. Let N be a Petri net. The unfolding U(N) of N is R(N•).

This construction extends the prior unfolding constructions of Winskel [11],
Engelfriet [4] and Meseguer, Montanari & Sassone [8]. The latter, and
most general, was given for standard nets only. Instead of restricting to reachable
transitions at the end, these approaches do so on the fly. The same could be done
here, by applying the two requirements of Def. 14 in the third clause of Def. 4.
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