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Abstract. High-level, behavioural language specification is seen as a
significant strategy for overcoming the complexity of designing useful and
interesting reconfigurable computing applications. However, appropriate
frameworks for the design of behaviourally specified systems are still
being sought. We are investigating behavioural language and compiler
design based on the Circal process algebra, which is a natural framework
within which to describe the concurrent activity of reconfigurable logic
circuits. In this paper we describe an FPGA interpreter that exploits
the inherent concurrency, hierarchy, and modularity of Circal and its
circuit realization to automatically manage hardware virtualization. The
techniques employed by the interpreter may be used to overcome resource
limitations and adapt circuits to changing application needs at run time.

1 Introduction

One of the attractions of reconfigurable computing systems based on field pro-
grammable gate array (FPGA) technology is that the circuit realizing a design
may change during the run time of an application to achieve better performance,
to reflect changes in the application model, or to make better use of the under-
lying hardware.

This capability has been difficult to realize in practice due to: a lack of
suitable languages in which to describe the attributes of applications that can
profit from and exploit reconfigurable logic; the complexity of the steps that
need to be taken in designing reconfigurable computing applications; and the
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perception that users need to be highly skilled in both software and hardware
engineering to design applications that achieve performance or cost benefits over
application specific integrated circuits and/or microprocessors. For these reasons,
reconfigurable technology has not attracted systems designers who would like to
program reconfigurable systems in an abstract, technology-independent manner
using high-level language concepts.

Traditionally, the specification of reconfigurable computing applications has
been attempted with the aid of inherently structural hardware description lan-
guages (HDLs) such as VHDL [2] and Verilog [18], (augmented) programming
languages such as C++ [1], and schematic design entry, none of which are ideal
since they take a low-level view of systems and their implementation. It is there-
fore difficult to describe systems at a more abstract behavioural level as we do
with high-level programming languages that are oriented towards the function
of a program rather than its realization on the underlying hardware.

To bring reconfigurable computing to the mainstream, to make it more acces-
sible, and to permit faster prototype turnaround, we shall need to allow design
entry via suitable high level languages (HLLs). Such languages will allow people
more versed in algorithms and applications and less experienced with the under-
lying hardware details to apply and experiment with reconfigurable computing.

We have adopted the Circal [9] process algebra as the basis of such a lan-
guage for a number of reasons. First, process algebras (PAs) such as Circal, CSP
[7], and CCS [13] are formal languages developed for the purpose of describing
concurrent systems. We believe them to be appropriate for describing FPGAs
since, as with all VLSI digital logic, they are designed to represent highly con-
current systems. As such, there is a good match between language concepts and
hardware realization vis-a-vis the expression of parallelism and the inherent par-
allelism of digital logic. Second, PAs are elegant, simple, yet powerful formalisms
in which it is easier to explore fundamental language issues than with HDLs and
programming languages. Third, traditional applications of reconfigurable logic
such as prototyping and system control, even the design of the control part
of data-oriented applications, are modelled as interacting finite state machines
(FSMs) — PAs have essentially been created for the purpose of describing as-
semblies of interacting FSMs at a behavioural level. Fourth, there is the hope
that a top-down, hierarchical, and modular focus, as emphasized by a PA such
as Circal, will aid synthesis because ever more complex structures may be built
through assembly, while the effort required to design each module (the unit of
design) remains relatively constant.

This research is related to earlier work in compiling Occam to FPGAs [15,
17,8,16]. The Occam language was seen as a natural language for design input
due to its simplicity and its facility for expressing parallelism. There was also a
belief that the constructive approach used to translate Occam into digital logic
and the formal semantics of the language could lead to the development of a
verifiably correct hardware compiler.

The results reported here extend this research direction and investigate how
to express and control dynamic reconfiguration through the use of a language



that supports the description of changing hardware structures, such as occurs
during reconfiguration, to overcome resource limitations or to adapt circuits to
the changing needs of an application. This paper reports on the techniques we
have developed to overcome resource limitations and applied to an interpreter
for such a language, based on the Circal process algebra. We believe the ideas
presented here will form the basis for the design of a language for reconfigurable
computing modelled on a process algebra that supports the direct description of
dynamically changing hardware structure [11].

In [5] we described an FPGA compiler for Circal that synthesizes complex
systems from high-level behavioural descriptions. In this paper, we describe new
features of a Circal interpreter that exploits language features in order to re-
configure hardware to overcome resource limitations. This scheme allows the
necessary circuitry to be loaded as dictated by execution flow at run time.

2 Description of the Circal language

This section presents Circal as a descriptive medium for reconfigurable comput-
ing. We describe the key language concepts and how they are used to describe
concurrent systems. We also introduce a simple example that serves to illus-
trate these concepts, the presentation of the Circal translation scheme, and our
hardware management strategies later in the paper.

Circal is a formal language used to model the behaviour of complex, concur-
rent systems in a constructive, modular, and hierarchical manner by (1) mod-
elling the behaviour of its component processes, and (2) by modelling the inter-
action of these component processes in terms of how they communicate events
or actions between themselves. Systems, and the processes that model their be-
haviour, are described hierarchically and in a modular fashion. The description
of a system thus typically proceeds in a top-down manner with the elaboration
of component processes leading to further decomposition until the desired level
of description is reached [10].

Circal is an event—based language and processes interact by participating in
the occurrence of events. For an event to occur, all processes that include the
event in their specification must be in a state that allows them to participate in
the event. The Circal language primitives are:

State Definition P < () defines process P to have the behaviour of term (.
Process @ is given the name P.

Termination A is a deadlock state from which a process cannot evolve.

Guarding a P is a process that synchronizes to perform event a and then be-
haves as, or evolves to, P. (ab) P synchronizes with events a and b simulta-
neously and then behaves as P.

Choice P + Q is a term that chooses between the actions in process P and
those in @, the choice depending upon the environment in which the pro-
cess is executed. Usually the choice is mediated through the offering by the
environment of a guarding event.



Non—determinism P & () defines an internal choice that is determined by
the process without influence from its environment. Either branch might
be taken by the process, the reason for the choice being unobservable.

Composition P * ) runs P and @ in parallel, with synchronization occurring
over similarly named events. When P and () share a common event, both
must be in a state in which they can accept that event before the event and
synchronous state evolution can occur. P and @ may independently respond
to events that are unique to their specification. Should such independent
events occur simultaneously, the processes respond simultaneously.

Abstraction P — ¢ hides event set a from P, the actions in a becoming encap-
sulated and unobservable. Unobservable events internal to a process lead to
non-deterministic behaviour.

Relabelling P[a/b] replaces references to event b in P with the event named
a. This feature is similar to calling procedures with parameter substitution.

Circal differs from most Process Algebras in that it has a strict interpretation
of the response of processes to the simultaneous occurrence of events and is
therefore well-suited to modelling synchronous devices such as FPGAs.

Circal has been used extensively to describe systems composed of interacting
finite state machines, to describe control paths for digital systems, to describe
asynchronous logic and to specify cellular automata for FPGA implementation
[10]. To demonstrate the approach to modelling adopted in a Circal descriptive
framework, consider a mobile phone system that is also capable of receiving and
recording television or radio broadcast signals. We shall examine the description
and composition of parts of the broadcast receiver subsystem B and the phone
subsystem P. Consider a mode of operation in which the user initiates broadcast
reception by the s action used to select a channel. Should an urgent phone
call arrive, the system is able to buffer reception of the broadcast while the
user answers the phone with action a. When the user hangs the phone up, the
broadcast may be resumed from the time it was interrupted, by use of event r,
and the remainder of the reception is buffered until the user flushes the buffer
by selecting a new channel or terminates reception with another r event.

In this presentation, we depict a block diagram of the structure of the com-
posed subsystems of the mobile phone M in Figure 1. The following Circal

a r

]

M

Fig. 1. Mobile phone system comprising broadcast and phone subsystems.

definitions describe the broadcast component B in terms of the four distinct



states it may take.

B; + s B, + a B; +r B;, when B is inactive,
B, < a Bs; + s B, +r B;, when B is receiving,
B, <+ r By, when B is storing, and

By + s B, + r B;, when B is buffering.

The phone component may be defined as

P; < a P, +r P;, when P is inactive, and

P, <+ r P;, when P is answering.

Finally, we define the mobile phone system M as the composition or synthesis
of the two components B and P by M < B x P.

Such Circal expressions define the behaviour when in a given state in terms
of the occurrence of permitted events, that in this example model the interaction
between the system and the user.

The focus of this paper is on describing and managing finite FPGA resources
to create a larger virtual resource using Circal as the descriptive medium. In
terms of the example of Figure 1, we provide techniques for automatically swap-
ping active subcomponents of M into hardware when there is insufficient resource
to implement all components of the system at once.

3 Description of the compiler

In [5] we described a compiler that derives and implements a digital logic repre-
sentation of high-level behavioural descriptions of systems specified using Circal.

Significantly, this compiler structures the derived circuits so as to reflect the
design hierarchy and interconnection of process modules given in the specifica-
tion. This approach simplifies the composition of modules since the majority of
interconnections that are to be implemented are between co-located blocks of
logic and the replacement or exchange of system modules is facilitated by the
replacement of a compact region rather than of distributed logic. At the topmost
design level, the circuit is clustered into blocks of logic that correspond to the
processes of a system. These are wired together on similarly labelled ports to
effect event broadcast and to allow process state transitions to be synchronized.
Our strategy for virtual hardware management makes use of an interpreter that
follows a similar translation philosophy.

An overview of the realization of Circal expressions in digital logic is depicted
in Figure 2(a). The process logic blocks individually implement circuits with
behaviours corresponding to the component processes of the specification — see
Figure 2(b). Each block is provided with inputs corresponding to the events
in its sort. Events are realized by the presence or absence of signals that are
generated by the environment on similarly named wires. The response of process
logic blocks to an event is determined by the global acceptability of an event.



Processes independently assert a request signal when acceptable events for the
current state are offered by the environment. Synchronized state evolution occurs
upon the next clock edge if all processes agree on the acceptability of the event.

Environmental Environmental
inputs inputs
events
Process logic Event synchronization avents
blocks logic inthe
process
sort

P Select

I state
Request ] transition Request
signals ‘ signal

Q __ v

= Enable
y date

transition Synch
signal
v — i
0 Process
state
W Synchronization
I signal
state feedback
(a) (b)

Fig. 2. (a) Circuit block diagram, and (b) Circal process logic block.

Below the process level in the hierarchy, the circuits are partitioned into com-
ponent circuit modules that implement combinational logic functions of minor
complexity. A typical example of such a module generates a minterm that recog-
nizes an acceptable event combination; another forms the disjunction of several
such minterms in order to recognize those event combinations that are accept-
able in a particular state. Modules are rectangular in shape and are laid out onto
abutting regions of the array surface. Signals flow from one module to another
via aligned ports. The partitioning of the system circuit into component circuit
modules is fixed during the analysis phase of the compiler, which is programmed
with a particular arrangement of the modules in mind — the module types and
their relative position is thus directed by the compilation process [6].

The component circuit modules are each specified by a number of parameters,
the derivation of which represents the goal of the analysis phase of the compiler.
The following synthesis phase applies each set of module parameters to a corre-
sponding module generator that maps its functional and spatial requirements to
FPGA resources and produces a bitstream fragment for the circuit component.
Circuit module generators perform the physical mapping of the circuit to FPGA
resources in order to obtain quick physical designs and to control the layout.



These factors simplify reconfiguration by allowing precise changes to be carried
out quickly.

For example, to implement the process logic for the broadcast component
B, the Circal definitions (1) through (4) in Section 2 are translated into a set
of boolean equations over similarly labelled literals. One equation describes the
logic for the request signal rp that should be generated for the block,

rg = (s.G.F + 5.a.F + 5.a.r + 5.0.F).B; + (5.0.F + s.a.7 4+ 5.a.r +5.a.7).B,
+(s.a.r +3.a.F).Bs + (s.a.F + 5.a.r +3.a.7).By
The rest describe the input functions for the (D-type) flip-flops implementing the

4 states of the process within the “Enable state transition” block of Figure 2(b).
These equations include a literal for the synchronization signal y.

Dg, = y.([5.aT +35.a.r +35aF].B; + s.a.r.B, +3a.r.By) + y.B;
Dg, =y.(saF.B; + [s.a.T +3.a.F].B, + s.a.F.By) + §.B,

Dp, =y.(5.a.7.B, + 5.a.7.B;) + §.B;

Dg, =y.(5.a.r.B; +5.a.7.By) + §.By

Note that most of the terms in these equations are formed from the con-
junction of a minterm defined over the events the process can respond to and a
process state. In fact the terms in rg are covered by the parenthesized terms of
the flip-flop input functions. Thus r} is implemented as the disjunction of these
latter terms. Each minterm, the disjunction of minterms that combine with a
state, and the disjunction of terms that combine with y in a flip-flop input func-
tion, as well as the disjunction of terms to form rp are encoded as parameterized
modules and implemented as rectangular circuit fragments within the logic block
for a process.

4 A Circal interpreter

The Circal compiler described above, and in more detail in [5,6], produces a
static design prior to circuit loading and execution. Using the same philosophy
for realizing Circal in FPGA logic, the Circal interpreter described in this paper
is, in contrast, able to finalize physical designs and modify designs at run time
either in order to better manage limited reconfigurable resources or to realize
dynamically reconfigurable systems specified in dynamically structured Circal
(dsCircal), a development of Circal that permits the direct description of systems
whose structure changes through time [11,12].

There are several reasons for using an interpreter rather than a compiler
to manage the implementation of a Circal design. First, we could compile and
temporally partition the system off-line, but we may not know in advance of
running the system which Circal processes need to be simultaneously active. If
the partitioning is unsuitable, the performance of the system will be affected.
Second, we need to be prepared to adapt to time-varying resource availability



such as in distributed (networked) or multitasking reconfigurable computing
environments. A static design may be held up or may hold up other applications
due to allocation conflicts. Third, we cannot use a static compilation approach
if the behaviour and/or circuit structure is permitted to change over time, as
may be described in the dsCircal language.

The Circal interpreter pre-processes a system description until functional
module parameters such as the number of variables in minterm blocks are known.
Some spatial parameters, such as sizes of modules and relative offsets are also
determined at the pre-processing stage. At run time, the interpreter looks after
loading modules on an as needs basis, employing techniques for managing the
reconfigurable resource as described in Section 5. This involves finalizing mod-
ule locations on the underlying FPGA substrate and generating the bitstream
fragments for the modules as they are to be loaded. Bitstream generation at
run time does not represent a significant overhead because the time to generate
and emit the bitstream is proportional to its size. The interpreter suspends the
application clock for the duration of the reconfiguration.

5 A strategy for virtual hardware management

The implementation of a system described in Circal exhibits both coarse and fine
grained parallelism. A process logic block is a relatively large unit of computation
or circuit that can be viewed as a “grain of large size”, while the circuit module
subcomponents of a process are small units of computation, typically no larger
than a few gates, and may therefore be viewed as being of a much finer grain size.
Realistic systems will be composed of multiple processes, while within individual
processes high degrees of parallelism may exist between small subcomponents.

We exploit the two extremes of grain size to manage hardware use in three
ways:

1. We sequentialize deployment and execution of circuitry by repeated reconfig-
uration when streams could be executed concurrently but there is insufficient
resource to do so. This strategy is applied at the coarse grain size of indi-
vidual processes.

2. We deploy circuit modules as signals advance through the circuit so as to
allow concurrent execution yet reduce demand on resource. This strategy is
intended to be employed at a fine grain size on time-multiplexed chips [4,
19] and relies upon allocating the subcomponents of processes to successive
context layers so as to keep the cost of reconfiguration low.

3. We load logic as processes evolve when the choice of logic to be executed is
determined at run time. This strategy is applied at both the coarse process
and fine module grain sizes. On the one hand, the deployment of processes
or assemblies of process logic may be guarded by events that will control
the loading of circuitry should such an event occur. On the other hand, the
need for certain modules, such as those to detect specific event combinations,



only arises in particular states. To save on resources, we thus only implement
those modules that are needed given the current state of the system.

Apart from allowing large systems to run on limited FPGA resources, the
benefit of dynamic circuit loading is that it saves loading unnecessary circuitry,
which saves on load time and lowers demand for the resource. However, such
a scheme requires very efficient techniques for loading circuitry to minimize re-
configuration overheads. We tackle this problem by primarily relying upon fast
module generators that produce circuitry in time proportional to the time needed
to load it. The overheads of the interpreter are thus kept low.

To illustrate the use of these techniques, we contrast the runtime control of
the reconfigurable resource performed by the compiler with that carried out by
the interpreter. The host program of the compiler that loads and runs the fixed,
static circuits executes the following loop:

repeat {

wait until event occurs

present events to system

allow system to determine its response and evolve state
} until system halts

The interpreter takes one of two alternative approaches depending upon
whether the design, as described in Circal, is static or dynamic. If the design is
static, it can be partitioned before execution, and all we need do at run time is
cycle between the partitions. Thus the above loop becomes:

partition system by packing components into available area
repeat {
wait until event occurs
for each partition and while event still acceptable
load partition and determine acceptability of event
if event acceptable to entire system
for each partition
load partition and allow state to evolve
} until system halts

If on the other hand the design or the amount of available resource is dynamic,
or we wish to employ the third strategy above, then partitioning is done at run
time during the execution phase. The loop then becomes:

repeat {
wait until event occurs
while event acceptable and components remain to be processed
compute partition by packing components into available area
load partition and determine acceptability of event
if event acceptable to system as a whole
for each partition
load and evolve state
} until system halts



In the mobile phone example pictured in Figure 1, these techniques would
be employed if the circuit to implement M were too large, but B and P on their
own fit into the available FPGA resource.

When a process can assume one of many states, as for process B in our
example, rather than implementing the logic for all possible states in a single
block, strategy 3 suggests we just implement the logic corresponding to the def-
inition of the current state. As the state changes, the behaviour of the new state
is implemented by reconfiguring the subcomponents that recognize acceptable
events for this new state. We thus initially implement the boolean equations
corresponding to the definition for state B;,

B; <—sBr+aBi+rBi,

that is,
rg, = (s.aF +35.aF +35ar+35a7),
and
Dp, =y.(s.aF+35ar+35a7).B; +y.B;, and
Dpg, =y.s.ar.B;

Should an s event occur, for example, the logic for B would be reconfigured to
implement equations corresponding to the definition for state B,..

6 Conclusions

In this paper, we have described a behavioural specification language for recon-
figurable computing together with techniques for managing hardware use at run
time by exploiting the hierarchy and modularity in the language and its imple-
mentation using FPGA technology. The techniques used have been described in
the context of overcoming resource limitations. However, they are equally appli-
cable to the implementation of systems whose circuit structure changes during
execution.

Current work is being carried out to complete the implementation of the
Circal interpreter and the testing of its performance. We are also investigating
techniques and language constructs appropriate for the description and manage-
ment of run-time, dynamically changing circuit structures such as described in
[12].
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