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ESM A: Optimal weights for the minimum MSD estimate 42	
  

 43	
  

We seek the vector of coefficients    
wT = w1, w2 ,...,wK⎡⎣ ⎤⎦  that minimises 44	
  

    
µe

j − y j( )2

j=1

J

∑     where      µe
j = wT x j = wk

k=1

K

∑ xk
j

  
(A1) 45	
  

with the additional constraint that 
  

wk
k=1

K

∑ = 1 . We should be clear that the xkj  represent bias-corrected 46	
  

model time series (i.e. they have zero mean error). This requires minimising the function 47	
  

 
   
F w,λ( ) = 1

2
1

J −1( ) µe
j − y j( )2

j=1

J

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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k=1

K

∑⎛⎝⎜
⎞
⎠⎟
−1

⎛

⎝⎜
⎞

⎠⎟
. (A2) 48	
  

Note that the first term in this cost function measures the distance between j
eµ  and the observations 49	
  

jy  and the second term is a constraint term associated with the Lagrange multiplier λ  that ensures 50	
  

that the sum of the weights is equal to one. To simplify (A2), we define the K-vector 

    

1T = 1,1,...,1⎡⎣ ⎤⎦
K −elements
 

 51	
  

and define ( )Tjy = j Ty 1  so that 
   
wT y j = wT 1y j = y j wk

k=1

K

∑⎛⎝⎜
⎞
⎠⎟
= y j  provided that 

1

K

k
k
w

=
∑ =1. Using 52	
  

wTy j = y j  and (A1) and (A2) gives 53	
  

 54	
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 (A3) 55	
  

where A is the sample-based estimate of the covariance of the bias-corrected errors between all of 56	
  

the ensemble members 57	
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A =

x j − y j( ) x j − y j( )T

j=1

J

∑
J −1

. (A4) 58	
  

The cost function F is minimized at the value of the weight vector w and Lagrange multiplier λ  59	
  

that make the gradients of F with respect to λ  and each element of w zero. The expressions for 60	
  

these gradients are given by 61	
  

 

    

∂F
∂w

=

∂F
∂w1


∂F
∂wK

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

= Aw − λ1 = 0    and    
∂F
∂λ

= 1− wT 1 = 0  (A5) 62	
  

Setting 
  
∂F
∂w

 to zero gives  63	
  

 1λ −=w A 1 . (A6) 64	
  

Using (A6) for w in the expression for 
 
∂F
∂λ

gives 1

1
Tλ −=
1 A 1

 and hence both of the derivatives in 65	
  

(A5) are simultaneously satisfied when 66	
  

 
   
w =

A−11
1T A−11

.  (A7) 67	
  

Note then that 68	
  

    
µe

j = wT x j =
1T A−1x j

1T A−11  (A8) 69	
  

defines the minimum error variance estimate. While we noted in Section 2 that performance-only 70	
  

weights can be constructed by ignoring error correlation between models, that is 71	
  

 

    

 A =
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  
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1
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⎟
⎟

,  (A9) 72	
  

note also that dependence-only weights can be constructed by scaling the error variance of all 73	
  

models to be equal when constructing A.  74	
  

 75	
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The expected error variance of the estimate obtained from (A8) may also be deduced. First note that 76	
  

since 
   
1T A−1y j

1T A−11
=

1T A−11
1T A−11

y j = y j , it follows that one can subtract jy  from both sides of (A8) to 77	
  

obtain 78	
  

 
   
µe

j − y j =
1T A−1x j

1T A−11
−

1T A−1y j

1T A−11
=

1T A−1

1T A−11
x j − y j( )  (A10) 79	
  

The average squared error (or distance from observations) over J realizations is then given by 80	
  

  (A11) 81	
  

As the minimum error variance estimate of the observations, µewill be used as our CPDF mean 82	
  

estimate and sm2  used to constrain our replicate Earth-like ensemble variance. This is discussed in 83	
  

Section 5. 84	
  

 85	
  

ESM B: Properties of Earth replicates 86	
  

Here we deduce   Ar , the ensemble error covariance matrix A that would be obtained if each 87	
  

member of the ensemble 
   
x j( )T

= x1
j ,x2

j ,...,xK
j( )  was a forecast from an Earth replicate and the 88	
  

number of observations tended to infinity so that 89	
  

 

   

Ar = lim J →∞
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∑
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⎥
⎥
= x − y( ) x − y( )T  (B1) 90	
  

where the angle brackets indicate the expectation operator over an infinite time series of verifying 91	
  

observations and ensemble forecasts. Expanding (B1) gives 92	
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2 =

µe
j − y j( )2

j=1
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∑
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A−11
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1T A−1AA−11

1T A−11( )2

=
1

1T A−11( ) .
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Ar =

x1 − y

x2 − y


xK − y

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x1 − y,x2 − y,...,xK − y⎡⎣ ⎤⎦
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x1 − µ( ) − y − µ( )
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
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⎢

⎤
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⎥
⎥
⎥
⎥
⎥

x1 − µ( ) − y − µ( ),..., xK − µ( ) − y − µ( )⎡⎣ ⎤⎦

 (B2) 93	
  

where µ  is the true instantaneous mean of the true instantaneous CPDF. Note that 94	
  

 xm − µ( )− y − µ( )⎡⎣ ⎤⎦ xn − µ( )− y − µ( )⎡⎣ ⎤⎦ =σ r
2 δmn +1( )  (B3) 95	
  

because xm − µ( ) y − µ( ) =0 and xm − µ( ) xn − µ( ) = δmnσ r
2  where mnδ  is 1 for m=n but zero for 96	
  

 m ≠ n  and where 
  
σ r

2 = y − µ( )2
. Note that because the expectation operator is over time and the 97	
  

true mean µ  is evolving in time,   σ r
2  represents a time average of the variance of the time evolving 98	
  

CPDF. It is not the instantaneous variance of the time evolving CPDF. Using (B3) in (B2) gives 99	
  

 

    

Ar =
2σ r

2  σ r
2

  

σ r
2  2σ r

2

⎡
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⎢
⎢
⎢
⎢
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⎦

⎥
⎥
⎥
⎥

= σ r
211T +σ r

2I = 2σ r
2( )11T + I − 11T( )σ r

2

= 2σ r
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⎛

⎝⎜
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σ r

2 −
K −1( )11T

K
σ r

2
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2K − (K −1)( )σ r

2

K
11T + I − 11T

K
⎛

⎝⎜
⎞

⎠⎟
σ r

2

= K +1( )σ r
2 11T

K
+ I − 11T

K
⎛
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⎞

⎠⎟
σ r

2.

 (B4) 100	
  

Equation (B4) shows that with a perfect ensemble of Earth replicates (a) the error variance of each 101	
  

of the members is equal to twice the average time averaged climatological variance   σ r
2 , and (b) the 102	
  

covariance of the errors of one ensemble member with another member is equal to the time 103	
  

averaged climatological variance. That is, if we agree that the best we can expect from our climate 104	
  

models is to be a perfect replicate Earth, “independence” is not defined by zero error correlation, 105	
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but rather error covariance equal to σ r
2 . This then implies that the expected error correlation of 106	
  

independent models is 
  
σ r

2 / 2σ r ⋅ 2σ r( ) = 1/ 2 . 107	
  

 108	
  

As a check, we will compute the weights w (from (A7)) for members of a replicate Earth ensemble. 109	
  

To do this, we require the inverse of   Ar , given by 110	
  

 

   

Ar
−1 =

1

K +1( )σ r
2( )

11T

K
+

1

σ r
2

I − 11T

K
⎛

⎝⎜
⎞

⎠⎟
 (B5) 111	
  

To prove that (B5) gives the needed inverse, note that using (B4) and (B5) 112	
  

 

   

Ar Ar
−1 = σ r

211T +σ r
2I⎡

⎣⎢
⎤
⎦⎥

1

K +1( )σ r
2( )

11T

K
+

1

σ r
2

I − 11T

K
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
K

K +1
11T

K
+

1
K +1

11T

K
+ I − 11T

K
⎛

⎝⎜
⎞

⎠⎟

=
11T

K
+ I − 11T

K
⎛

⎝⎜
⎞

⎠⎟
= I,      as was required.

 (B6) 113	
  

Using (B5) in (3 or A7) gives the weights 114	
  

 

   

wr =
Ar

−11
1T Ar

−11
=

1

K +1( )σ r
2( )

11T

K
+ 1

σ r
2

I − 11T

K
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
1

1T 1

K +1( )σ r
2( )

11T

K
+ 1

σ r
2

I − 11T

K
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
1

=

1

K +1( )σ r
2( )

K

K +1( )σ r
2( )

=
1
K

1  (B7) 115	
  

so each of the perfect Earth replicate ensemble members would be given an equal weight of 1/K, as 116	
  

one would be expect given the equivalent skill of each member of the ensemble.   117	
  

 118	
  

The average square difference   sr
2  between the estimate of the mean of the CPDF obtained from the 119	
  

(perfect) replicate Earth ensemble and any particular replicate Earth is obtained by using    Ar
−1  in 120	
  

(A11) to obtain  121	
  

 
   
sr

2 =
1

1T Ar
−11

=
K +1

K
σ r

2 = σ r
2 +

σ r
2

K
 (B8) 122	
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Equation (B8) shows that, for example, the time averaged squared error of the mean of a perfect 123	
  

ensemble of Earth replicates decreases from   2σ r
2  to   1.5σ r

2  as the ensemble size is increased from 124	
  

K=1 to K=2 while it only decreases from   1.033σ r
2  to   1.017σ r

2  as the ensemble size is increased 125	
  

from K=30 to K=60.  Hence, extremely large ensemble sizes should not be necessary to estimate 126	
  

the time evolving mean of the CPDF. However, one should recognize that the time evolving 127	
  

variance of the CPDF is also of interest and that for this quantity ensemble sizes larger than 60 128	
  

would probably be required.  129	
  

 130	
  

ESM C: The ensemble transformation process 131	
  

If the kth preliminary weights  wk  of the weight vector w gave the relative probability that the kth 132	
  

ensemble member was a member of the CPDF then the instantaneous mean j
eµ  would be as in (A8) 133	
  

while the instantaneous variance 2 j
eσ  of the CPDF would be given by 134	
  

 
  
σ e

2 j = wk
k=1

K

∑ xk
j − µe

j( )2
.  (C1) 135	
  

Assuming that climate change is relatively slow, the instantaneous CPDF variance, averaged over 136	
  

time, will approximate the variance of the observations about the CPDF mean (i.e. the error 137	
  

variance of j
eµ ). That is, 138	
  

 
  

1
J

σ e
2 j

j=1

J

∑ ≈ se
2  (C2) 139	
  

holds. However, the minimization of F in (A2) does nothing to ensure that (C1) would satisfy (C2). 140	
  

In particular, if any of the weights  wk  are negative then they cannot be interpreted as probabilities 141	
  

and the definition of variance given by (C1) does not make sense. To obtain a transformed 142	
  

ensemble that has mean µe  but which also has a meaningful version of (C1) that satisfies (C2), we 143	
  

first note that the sum of the ensemble perturbations is zero ' 0T j =1 x  where x j = x j + x ' j . Hence, 144	
  

 
( )

' '

1 '

j T j T j T j j T j
e

T
j T j

x x

x
K

µ

α

= = + = +

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

w x w w x w x

1w x
 (C3) 145	
  

where α  is any scalar.  However, the sum of the elements of the row vector 
   

wT + α −1( )1
T

K
⎛

⎝⎜
⎞

⎠⎟
 is 146	
  

not unity. Their sum is given by 147	
  



	
   8	
  

 
  

wk +
α −1( )

K

⎛

⎝
⎜

⎞

⎠
⎟

k=1

K

∑ = α.  (C4) 148	
  

Ensemble variance is not equal to error variance in general. One way to address this mismatch is to 149	
  

alter the magnitude of the ensemble perturbations. If we adjust the size of the ensemble 150	
  

perturbations by the factor α  to obtain z ' j =αx ' j , (C3) can be rewritten in the form 151	
  

 

    

µe
j = x j +

wT + α −1( )1
T

K
⎛
⎝⎜

⎞
⎠⎟

α

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

z ' j

= x j + wT z ' j = x j + wk
k=1

K

∑ z 'k
j

= x j + α wk
k=1

K

∑ x 'k
j

 (C5) 152	
  

where the row vector wT  is equal to the term in square brackets. Note that the sum of the K 153	
  

elements of w  satisfies 
   
wk

k=1

K

∑ = 1 . Hence, if we define    z
j = x j + z ' j = x j +αx ' j  to be the adjusted 154	
  

ensemble, 155	
  

 
    
µe

j = wT x j + wT z ' j = wT x j + z ' j( ) = wT z j .  (C6) 156	
  

Since each distinct α  value defines a unique weight vector wT  together with a unique adjusted 157	
  

ensemble jz , (C6) describes the complete set of adjusted ensembles whose weighted mean gives 158	
  

the same minimum error variance estimate as (A8). To obtain an ensemble transformation that only 159	
  

involves positive weights, we choose 1α =  if all of the preliminary weights   wk ≥ 0 . Otherwise, we 160	
  

choose α  so that the smallest weight is zero:    min( wk ) = 0 . This is achieved by setting 161	
  

  α = 1− K min(wk )  where   min(wk )  is the lowest of the (negative) preliminary weights. Having 162	
  

chosen α  in this way, we can then ensure that the variance constraints (C1) and (C2) are satisfied 163	
  

by letting 164	
  

 xk
j = µe

j + β x j +α x 'k
j− µe

j( )  (C7) 165	
  

where 166	
  

 

   

β =
se

2

1
J

wk
k=1

K

∑ zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑
 (C8) 167	
  



	
   9	
  

since we want 168	
  

 
   

1
J

σ e
2 j

j=1

J

∑ =
1
J

wk
k=1

K

∑ β zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑ =
1
J

wk
k=1

K

∑ β xk
j +αx 'k

j− µe
j( )⎡

⎣
⎤
⎦

2

j=1

J

∑ = se
2  (C9) 169	
  

as required by (C2).  170	
  

 171	
  

With these relationships in hand, we can now prove that the transformed ensemble given by (C7) 172	
  

has a weighted mean equal to eµ  and a time averaged weighted variance equal to 2
es . To prove that 173	
  

its mean equals eµ , use (C7) to show that 174	
  

 

   

wk
xk

k=1

K

∑ =
1
K

wk µe + β x +αx 'k− µe( )⎡⎣ ⎤⎦
k=1

K

∑

= µe − β µe( ) + β wk
k=1

K

∑ x +αx 'k( )

= µe + β µe − µe( ),    because   x + wk
k=1

K

∑ αx 'k( )⎡

⎣
⎢

⎤

⎦
⎥ = µe    from (C5)

= µe

 (C10) 175	
  

as was required.  Furthermore, 176	
  

 

    

1
J

wk
xk

j − µe
j( )2

k=1

K

∑
j=1

J

∑ =
1
J

wk β x j +αx 'k
j− µe

j( )⎡
⎣

⎤
⎦

2

k=1

K

∑
j=1

J

∑

= β 2 1
J

wk zk
j − µe( )⎡

⎣
⎤
⎦

2

k=1

K

∑
j=1

J

∑ ,    because   z j = x j +αx ' j

=
se

2

1
J

wk
k=1

K

∑ zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

1
J

wk zk
j − µe( )⎡

⎣
⎤
⎦

2

k=1

K

∑
j=1

J

∑

= se
2

 (C11) 177	
  

as was required. Note that the correlation of each model in the perturbed ensemble given by (C7) 178	
  

with the original model is equal to one. 179	
  

 180	
  

 181	
  

 182	
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