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ESM A: Optimal weights for the minimum MSD estimate 42	  

 43	  

We seek the vector of coefficients    
wT = w1, w2 ,...,wK⎡⎣ ⎤⎦  that minimises 44	  

    
µe

j − y j( )2

j=1

J

∑     where      µe
j = wT x j = wk

k=1

K

∑ xk
j

  
(A1) 45	  

with the additional constraint that 
  

wk
k=1

K

∑ = 1 . We should be clear that the xkj  represent bias-corrected 46	  

model time series (i.e. they have zero mean error). This requires minimising the function 47	  

 
   
F w,λ( ) = 1

2
1

J −1( ) µe
j − y j( )2

j=1

J

∑
⎡

⎣
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⎥
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⎞
⎠⎟
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⎝⎜
⎞

⎠⎟
. (A2) 48	  

Note that the first term in this cost function measures the distance between j
eµ  and the observations 49	  

jy  and the second term is a constraint term associated with the Lagrange multiplier λ  that ensures 50	  

that the sum of the weights is equal to one. To simplify (A2), we define the K-vector 

    

1T = 1,1,...,1⎡⎣ ⎤⎦
K −elements
 

 51	  

and define ( )Tjy = j Ty 1  so that 
   
wT y j = wT 1y j = y j wk

k=1

K

∑⎛⎝⎜
⎞
⎠⎟
= y j  provided that 

1

K

k
k
w

=
∑ =1. Using 52	  

wTy j = y j  and (A1) and (A2) gives 53	  

 54	  
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 (A3) 55	  

where A is the sample-based estimate of the covariance of the bias-corrected errors between all of 56	  

the ensemble members 57	  
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A =

x j − y j( ) x j − y j( )T

j=1

J

∑
J −1

. (A4) 58	  

The cost function F is minimized at the value of the weight vector w and Lagrange multiplier λ  59	  

that make the gradients of F with respect to λ  and each element of w zero. The expressions for 60	  

these gradients are given by 61	  

 

    

∂F
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=
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⎥

= Aw − λ1 = 0    and    
∂F
∂λ

= 1− wT 1 = 0  (A5) 62	  

Setting 
  
∂F
∂w

 to zero gives  63	  

 1λ −=w A 1 . (A6) 64	  

Using (A6) for w in the expression for 
 
∂F
∂λ

gives 1

1
Tλ −=
1 A 1

 and hence both of the derivatives in 65	  

(A5) are simultaneously satisfied when 66	  

 
   
w =

A−11
1T A−11

.  (A7) 67	  

Note then that 68	  

    
µe

j = wT x j =
1T A−1x j

1T A−11  (A8) 69	  

defines the minimum error variance estimate. While we noted in Section 2 that performance-only 70	  

weights can be constructed by ignoring error correlation between models, that is 71	  
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,  (A9) 72	  

note also that dependence-only weights can be constructed by scaling the error variance of all 73	  

models to be equal when constructing A.  74	  

 75	  
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The expected error variance of the estimate obtained from (A8) may also be deduced. First note that 76	  

since 
   
1T A−1y j

1T A−11
=

1T A−11
1T A−11

y j = y j , it follows that one can subtract jy  from both sides of (A8) to 77	  

obtain 78	  

 
   
µe

j − y j =
1T A−1x j

1T A−11
−

1T A−1y j

1T A−11
=

1T A−1

1T A−11
x j − y j( )  (A10) 79	  

The average squared error (or distance from observations) over J realizations is then given by 80	  

  (A11) 81	  

As the minimum error variance estimate of the observations, µewill be used as our CPDF mean 82	  

estimate and sm2  used to constrain our replicate Earth-like ensemble variance. This is discussed in 83	  

Section 5. 84	  

 85	  

ESM B: Properties of Earth replicates 86	  

Here we deduce   Ar , the ensemble error covariance matrix A that would be obtained if each 87	  

member of the ensemble 
   
x j( )T

= x1
j ,x2

j ,...,xK
j( )  was a forecast from an Earth replicate and the 88	  

number of observations tended to infinity so that 89	  
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where the angle brackets indicate the expectation operator over an infinite time series of verifying 91	  

observations and ensemble forecasts. Expanding (B1) gives 92	  
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 (B2) 93	  

where µ  is the true instantaneous mean of the true instantaneous CPDF. Note that 94	  

 xm − µ( )− y − µ( )⎡⎣ ⎤⎦ xn − µ( )− y − µ( )⎡⎣ ⎤⎦ =σ r
2 δmn +1( )  (B3) 95	  

because xm − µ( ) y − µ( ) =0 and xm − µ( ) xn − µ( ) = δmnσ r
2  where mnδ  is 1 for m=n but zero for 96	  

 m ≠ n  and where 
  
σ r

2 = y − µ( )2
. Note that because the expectation operator is over time and the 97	  

true mean µ  is evolving in time,   σ r
2  represents a time average of the variance of the time evolving 98	  

CPDF. It is not the instantaneous variance of the time evolving CPDF. Using (B3) in (B2) gives 99	  
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2  σ r
2
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⎥
⎥
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⎠⎟
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2.

 (B4) 100	  

Equation (B4) shows that with a perfect ensemble of Earth replicates (a) the error variance of each 101	  

of the members is equal to twice the average time averaged climatological variance   σ r
2 , and (b) the 102	  

covariance of the errors of one ensemble member with another member is equal to the time 103	  

averaged climatological variance. That is, if we agree that the best we can expect from our climate 104	  

models is to be a perfect replicate Earth, “independence” is not defined by zero error correlation, 105	  
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but rather error covariance equal to σ r
2 . This then implies that the expected error correlation of 106	  

independent models is 
  
σ r

2 / 2σ r ⋅ 2σ r( ) = 1/ 2 . 107	  

 108	  

As a check, we will compute the weights w (from (A7)) for members of a replicate Earth ensemble. 109	  

To do this, we require the inverse of   Ar , given by 110	  

 

   

Ar
−1 =

1

K +1( )σ r
2( )

11T

K
+

1

σ r
2

I − 11T

K
⎛

⎝⎜
⎞

⎠⎟
 (B5) 111	  

To prove that (B5) gives the needed inverse, note that using (B4) and (B5) 112	  

 

   

Ar Ar
−1 = σ r

211T +σ r
2I⎡

⎣⎢
⎤
⎦⎥

1

K +1( )σ r
2( )

11T

K
+

1

σ r
2

I − 11T
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⎛

⎝⎜
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⎠⎟
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⎣

⎢
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⎢

⎤

⎦

⎥
⎥
⎥

=
K
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K
+

1
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K
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⎛

⎝⎜
⎞

⎠⎟

=
11T

K
+ I − 11T

K
⎛

⎝⎜
⎞

⎠⎟
= I,      as was required.

 (B6) 113	  

Using (B5) in (3 or A7) gives the weights 114	  

 

   

wr =
Ar

−11
1T Ar

−11
=

1

K +1( )σ r
2( )

11T

K
+ 1

σ r
2

I − 11T

K
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⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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1

1T 1

K +1( )σ r
2( )

11T

K
+ 1

σ r
2

I − 11T

K
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
1

=

1

K +1( )σ r
2( )

K

K +1( )σ r
2( )

=
1
K

1  (B7) 115	  

so each of the perfect Earth replicate ensemble members would be given an equal weight of 1/K, as 116	  

one would be expect given the equivalent skill of each member of the ensemble.   117	  

 118	  

The average square difference   sr
2  between the estimate of the mean of the CPDF obtained from the 119	  

(perfect) replicate Earth ensemble and any particular replicate Earth is obtained by using    Ar
−1  in 120	  

(A11) to obtain  121	  

 
   
sr

2 =
1

1T Ar
−11

=
K +1

K
σ r

2 = σ r
2 +

σ r
2

K
 (B8) 122	  
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Equation (B8) shows that, for example, the time averaged squared error of the mean of a perfect 123	  

ensemble of Earth replicates decreases from   2σ r
2  to   1.5σ r

2  as the ensemble size is increased from 124	  

K=1 to K=2 while it only decreases from   1.033σ r
2  to   1.017σ r

2  as the ensemble size is increased 125	  

from K=30 to K=60.  Hence, extremely large ensemble sizes should not be necessary to estimate 126	  

the time evolving mean of the CPDF. However, one should recognize that the time evolving 127	  

variance of the CPDF is also of interest and that for this quantity ensemble sizes larger than 60 128	  

would probably be required.  129	  

 130	  

ESM C: The ensemble transformation process 131	  

If the kth preliminary weights  wk  of the weight vector w gave the relative probability that the kth 132	  

ensemble member was a member of the CPDF then the instantaneous mean j
eµ  would be as in (A8) 133	  

while the instantaneous variance 2 j
eσ  of the CPDF would be given by 134	  

 
  
σ e

2 j = wk
k=1

K

∑ xk
j − µe

j( )2
.  (C1) 135	  

Assuming that climate change is relatively slow, the instantaneous CPDF variance, averaged over 136	  

time, will approximate the variance of the observations about the CPDF mean (i.e. the error 137	  

variance of j
eµ ). That is, 138	  

 
  

1
J

σ e
2 j

j=1

J

∑ ≈ se
2  (C2) 139	  

holds. However, the minimization of F in (A2) does nothing to ensure that (C1) would satisfy (C2). 140	  

In particular, if any of the weights  wk  are negative then they cannot be interpreted as probabilities 141	  

and the definition of variance given by (C1) does not make sense. To obtain a transformed 142	  

ensemble that has mean µe  but which also has a meaningful version of (C1) that satisfies (C2), we 143	  

first note that the sum of the ensemble perturbations is zero ' 0T j =1 x  where x j = x j + x ' j . Hence, 144	  

 
( )

' '

1 '

j T j T j T j j T j
e

T
j T j

x x

x
K

µ

α

= = + = +

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

w x w w x w x

1w x
 (C3) 145	  

where α  is any scalar.  However, the sum of the elements of the row vector 
   

wT + α −1( )1
T

K
⎛

⎝⎜
⎞

⎠⎟
 is 146	  

not unity. Their sum is given by 147	  
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wk +
α −1( )

K

⎛

⎝
⎜

⎞

⎠
⎟

k=1

K

∑ = α.  (C4) 148	  

Ensemble variance is not equal to error variance in general. One way to address this mismatch is to 149	  

alter the magnitude of the ensemble perturbations. If we adjust the size of the ensemble 150	  

perturbations by the factor α  to obtain z ' j =αx ' j , (C3) can be rewritten in the form 151	  

 

    

µe
j = x j +

wT + α −1( )1
T

K
⎛
⎝⎜

⎞
⎠⎟

α

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

z ' j

= x j + wT z ' j = x j + wk
k=1

K

∑ z 'k
j

= x j + α wk
k=1

K

∑ x 'k
j

 (C5) 152	  

where the row vector wT  is equal to the term in square brackets. Note that the sum of the K 153	  

elements of w  satisfies 
   
wk

k=1

K

∑ = 1 . Hence, if we define    z
j = x j + z ' j = x j +αx ' j  to be the adjusted 154	  

ensemble, 155	  

 
    
µe

j = wT x j + wT z ' j = wT x j + z ' j( ) = wT z j .  (C6) 156	  

Since each distinct α  value defines a unique weight vector wT  together with a unique adjusted 157	  

ensemble jz , (C6) describes the complete set of adjusted ensembles whose weighted mean gives 158	  

the same minimum error variance estimate as (A8). To obtain an ensemble transformation that only 159	  

involves positive weights, we choose 1α =  if all of the preliminary weights   wk ≥ 0 . Otherwise, we 160	  

choose α  so that the smallest weight is zero:    min( wk ) = 0 . This is achieved by setting 161	  

  α = 1− K min(wk )  where   min(wk )  is the lowest of the (negative) preliminary weights. Having 162	  

chosen α  in this way, we can then ensure that the variance constraints (C1) and (C2) are satisfied 163	  

by letting 164	  

 xk
j = µe

j + β x j +α x 'k
j− µe

j( )  (C7) 165	  

where 166	  

 

   

β =
se

2

1
J

wk
k=1

K

∑ zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑
 (C8) 167	  
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since we want 168	  

 
   

1
J

σ e
2 j

j=1

J

∑ =
1
J

wk
k=1

K

∑ β zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑ =
1
J

wk
k=1

K

∑ β xk
j +αx 'k

j− µe
j( )⎡

⎣
⎤
⎦

2

j=1

J

∑ = se
2  (C9) 169	  

as required by (C2).  170	  

 171	  

With these relationships in hand, we can now prove that the transformed ensemble given by (C7) 172	  

has a weighted mean equal to eµ  and a time averaged weighted variance equal to 2
es . To prove that 173	  

its mean equals eµ , use (C7) to show that 174	  

 

   

wk
xk

k=1

K

∑ =
1
K

wk µe + β x +αx 'k− µe( )⎡⎣ ⎤⎦
k=1

K

∑

= µe − β µe( ) + β wk
k=1

K

∑ x +αx 'k( )

= µe + β µe − µe( ),    because   x + wk
k=1

K

∑ αx 'k( )⎡

⎣
⎢

⎤

⎦
⎥ = µe    from (C5)

= µe

 (C10) 175	  

as was required.  Furthermore, 176	  

 

    

1
J

wk
xk

j − µe
j( )2

k=1

K

∑
j=1

J

∑ =
1
J

wk β x j +αx 'k
j− µe

j( )⎡
⎣

⎤
⎦

2

k=1

K

∑
j=1

J

∑

= β 2 1
J

wk zk
j − µe( )⎡

⎣
⎤
⎦

2

k=1

K

∑
j=1

J

∑ ,    because   z j = x j +αx ' j

=
se

2

1
J

wk
k=1

K

∑ zk
j − µe

j( )⎡
⎣

⎤
⎦

2

j=1

J

∑

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

1
J

wk zk
j − µe( )⎡

⎣
⎤
⎦

2

k=1

K

∑
j=1

J

∑

= se
2

 (C11) 177	  

as was required. Note that the correlation of each model in the perturbed ensemble given by (C7) 178	  

with the original model is equal to one. 179	  

 180	  

 181	  

 182	  

 183	  

  184	  


