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School of Mechanical and Manufacturing Engineering,
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Email: M.Tordon@unsw.edu.au

Abstract—Comparison of advantages and disadvantages of
control methods used in nonlinear systems is presented. To
take advantage of both adaptive and robust control methods,
a novel method which switches between the two is proposed.
Robust control is used during transients and situations where
parameters are uncertain. During steady state operations,
adaptive control is used. Switching between the two methods is
carried out based on the standard deviation of the estimated
parameter vector. The method has been implemented on a
2 DOF articulated robot. Experimental results are presented
to prove the robustness and the accuracy of the new control
method.

I. INTRODUCTION
Systems in reality are uncertain. Two kinds of uncer-

tainties exist; parametric uncertainties and uncertain non-
linearities. In designing modern high performance systems,
these two types of uncertainties must be accounted for and
the successful elimination of their effects is of practical
significance. So far numerous conventional methods such
as PD, PID, computed torque control (CTC) as well as
advanced control methods have been tried to solve the above
mentioned problems. In general, the advanced methods are
superior to the conventional control methods and the two
principal categories are; the adaptive control (AC) and the
robust control (RC).
Adaptive control methods usually use parameter adapta-

tion laws to update estimated model parameters of systems
on-line. They use updated parameters in control laws to
make systems adapt to parametric changes. Typically, in
AC the transient performance is not considered. In order
to make the systems perform well, nonlinearities of the
systems must be known. Such controllers are described in
[1]-[4].
In [5] the robustness of adaptive controllers applied to

a robot manipulator is analyzed. As an improvement, the
authors modified some adaptive control laws in an attempt
to deal with unmodelled robot dynamics and external dis-
turbances.
Apart from the above, many other adaptive control

methods have been developed to obtain better control per-
formance. The results obtained with the adaptive control
methods cited above indicate that transient errors are large
in comparison to those in the steady state. This drawback
results from the fact that adaptive controllers usually deal
only with the ideal case of parametric uncertainties rather

than disturbances. The process of parameter estimation
takes some time to converge. Especially at the start, the
parameters are poorly estimated, resulting in the poor tran-
sient performance. In addition, when external disturbances
are taken into account, while the robustness increases the
decrease in asymptotic stability can not be avoided. The
reason is that when external disturbances come into play,
they affect the parameter adaptation laws. This leads to
the parameter drift. As a consequence, if the external
disturbances are large, they can cause systems to become
unstable. These problems are well known and are described
in [4]-[6].
Robust control methods, on the other hand, can success-

fully deal with most of the weaknesses of the adaptive con-
trol methods. Two of the popular robust control approaches
are the Sliding Mode Control (SMC) [3], [7]-[9] and H∞
optimal control [10], [11].
For linear systems, H∞ controllers can be obtained in

the state space by solving Riccati equation [10] or by
using Linear Matrix Inequality (LMI) technique [11]. In
nonlinear systems, H∞ control problem becomes much
more difficult since it seeks the solution of the very complex
Hamilton-Jacobi (HJ) equation. In practice, different kinds
of numerical approximation methods are suggested to solve
the HJ equation.
The SMC is preferably applied because of its simplicity.

Many different versions of SMC have been suggested and
developed [3], [7]-[9]. In the SMC, the tracking errors
are forced to zero by applying nonlinear switching control
inputs. That way, systems will slide along a manifold and
reach the origin of the sliding space in spite of external
disturbances and uncertain dynamics. As a result, at the
transient stage when large uncertainties are present, systems
are robust, i.e. have good transient performance. Due to
the absence of parameter adaptation, RC in general and
the SMC in particular, make no discrimination between
external disturbances and parametric uncertainties during
the transient or the steady state periods. Thus, the quality
and performance at the transient and the steady state periods
are similar. Consequently, tracking accuracy in the steady
state shows no improvement. In the classical SMC methods,
the switching control inputs cause chattering. To overcome
this problem, fixed or time varying boundary layers are in-
corporated in the control law, resulting in reduced switching



frequency.
As can be noted, robust controllers and adaptive con-

trollers exhibit good performance under different circum-
stances. Therefore, it is possible to design a methodology
where AC and RC will complement each other to produce
superior overall performance.
This paper presents a new method called Switching

Robust and Adaptive Control (SRAC) that exploits ad-
vantages of both control methods to improve the perfor-
mance of nonlinear systems with modelling uncertainties
and disturbances by switching between adaptive and robust
controllers. Switching criteria are established to ensure
bumpless switching between RC and AC. This method has
been experimentally verified and compared with a number
of other conventional and advanced control methods in a
real 2 DOF manipulator with unknown but fixed para-
meters and payload. The results presented show superior
performance by way of increased adaptability and reduced
tracking errors.

II. THE CONTROLLER

A. The concept of SRAC
The new method exploits the advantages of both adaptive

and robust control methods. It uses one of the methods when
it is advantageous to do so and switches to the other method
when the other method becomes the preferred choice. The
core issue is to determine when either robust or adaptive
controller downgrades their performance so that controller
switching can take place.
Other researchers have taken similar approaches [5] by

treating the parametric uncertainties first and then attempt-
ing to make the system robust. This approach only guaran-
tees asymptotic stability and does not mention the accuracy.
Another approach [12] is to design robust controller as

a baseline controller that ensures the designed transient
response and certain tracking accuracy. However, since in
this method, the two control components are integrated
into one overall control law with the parameter adaptation
running concurrently with the baseline robust control law,
care should be taken to avoid conflict between the two
controllers. This conflict comes from the fact that the
baseline robust controller requires the parametric uncertain-
ties to be bounded, whereas the parameter adaptation may
deliver unacceptably large changes of the parameters due to
external disturbances. To solve this conflict, they modified
the parameter adaptation laws. In their system, the baseline
robust control law component is always in use even when
external disturbances are very small. The permanent pres-
ence of the baseline robust controller increases the steady
state tracking errors. It is better to take full advantage of
AC and turn off the baseline robust control law component.
However, the smooth switching from RC to AC should
be appropriately treated. Usually the process of switching
from AC to RC works well as RC naturally has good

Fig. 1. The SRAC design process.

robustness provided that the robust controller operates alone
without the adaptive controller. On the other hand, switching
from RC to AC needs more careful consideration as the
robustness of AC to the external disturbances is inherently
weak and is not guaranteed. The performance of the system
with the AC is greatly influenced by the initial estimates
of the parameters. The estimates of the parameter vector
and the associated errors can be described by the following
equations:

ã(0) = a(0)− â(0), (1a)
ã(t) = a(t)− â(t), (1b)
ã(t) = f(t)ã(0), (1c)

where:
• a(0), a(t) designate the value of actual parameter
vector at time instants 0 and t respectively;

• â(0), â(t) designate the estimates of parameter vector
at time instants 0 and t respectively;

• ã(0), ã(t) designate the errors in the estimates of
parameter vector at time instants 0 and t respectively;
and function f(t) is chosen such that f(t)→ 0 when
t→∞.

If the parameter guesses are poor, it will take long time
for the parameters to converge. In addition, switching from
RC to AC can give rise to an overshoot worse than that
caused by AC or RC. It can even destabilize the system.
The method proposed in this work guarantees improved

performance in comparison to performance of AC or RC
operating alone all the time. The general block diagram for
designing SRAC controllers in this manner is shown in Fig.
1. The approach considers using RC at the start to cope with
the transient effects. The switching criteria described below
will then switch to AC. This way the system will preserve
the robustness against parametric uncertainties and external
disturbances usually unknown at the start. The main issue to
be addressed is the determination of the switching criteria
that ensures stability and performance when switching



from RC to AC. Given that the success of AC relies on
certainties of the parameters, the appropriate moment to
switch to AC is when the certainty of the parameter vector
is established. To accomplish this, parameter estimation is
carried out in parallel with RC. The data generated by
RC are good and reliable to estimate the parameters of
the system in preparation for switching over to AC. Note,
however, that during this time no parametric adaptation that
would affect RC is carried out. This approach is in contrast
to the parameter adaptation that was embedded into the
methodology presented in [12]. The parameter estimates by
the estimator that runs in parallel with the robust controller
are used as initial parameter vector â(0) for the adaptive
controller after the system has switched from RC to AC.
As â(0) is close to the actual a(0), the vulnerability of
the adaptive controller to poor parameter estimates and
parameter mismatching is minimized. Further, the parameter
adaptation of the adaptive controller converges much faster.
While AC is in use, if the external disturbances cause
parameters to drift unacceptably, the system will switch
to RC and the parameter estimation will recommence. The
switching process between AC and RC will continue to take
place guaranteeing the robustness and the accuracy for the
entire duration of operation.

B. Design of SRAC
The design of our novel SRAC involves the design of

the robust controller, the adaptive controller, the parameter
estimator and the switching criteria.
1) Dynamic model of robot manipulators: It is well

known that a dynamic model of a rigid link manipulator
can be written in the following form [13]:

H(q)q̈ +C(q, q̇)q̇ +G(q) + Ff q̇ + d(q, q̇, t) = u, (2)

where:
• q ∈ Rn is the joint displacement vector.
• u ∈ Rn is the applied joint torque.
• H(q) ∈ Rn×n is the inertia matrix.
• C(q, q̇) ∈ Rn is the Coriolis and centripetal force
matrix.

• G(q) ∈ Rn is the gravitational forces.
• Ff is the viscous friction force vector.
• d(q, q̇, q̈, t) ∈ Rn is the external disturbance vector.
The robot manipulators have several fundamental prop-

erties useful in designing control systems as described in
[13]. They are:
Property 1: The inertia matrix H(q) is symmetric,

positive definite.
Property 2: Each degree of freedom is controlled by an

independent control input.
Property 3: In the absence of disturbances (i.e.

d(q, q̇, q̈, t)), the dynamic model of robot manipulators can
be written in the following form:

H(q)q̈ +C(q, q̇)q̇ +G(q) + Ff q̇ = Y (q, q̇, q̈)a = u, (3)

where:
• The regressor Y (q, q̇, q̈) ∈ Rn×l is a matrix of known
functions.

• a ∈ Rl×1 is a vector of parameters such as link masses,
moments of inertia, etc.

The relationship (3) is a linear relationship of parameters
to control inputs. This property is useful in designing
adaptive control laws.
Property 4: The matrix D(q, q̇) ∆= Ḣ(q) − 2C(q, q̇) is

skew symmetric.
The proofs of these properties of the dynamic model can

be found in [13].
2) Robust controller: As described in [3], the robust

control law to be used in our control method is:

u = û−K · sgn(s/φ), (4)
û = Ĥ(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) + F̂f q̇ − d, (5)

where
s =

·
q̃ + λq̃, (6)

is the sliding surface; qd(t) ∈ Rn is the desired joint motion
trajectory; q̃(t) ∆= q(t)− qd(t) is the motion tracking error
vector; q̇r

∆
= q̇d − λq̃ is the reference velocity vector; φ is

the fixed boundary layer; λ is a symmetric, positive definite
matrix; K is a matrix chosen to ensure the stability of the
system.
The Lyapunov function candidate V (t) is defined as in

[3]:
V (t) =

1

2
s0Hs. (7)

Differentiating V (t) and implementing mathematical
transformations, we obtain for our system:

V̇ = s0 ·
h
H̃(q)q̈r + C̃(q, q̇)q̇r + G̃(q) + F̃f q̇−

−K · sgn(s/φ)− d] , (8)

where 0 denotes transpose of matrices or vectors.
For the system to be stable in Lyapunov’s sense (V̇ 6 0),

the components ki of the vector K are chosen such that:

ki ≥
¯̄̄h
H̃(q)q̈r + C̃(q, q̇)q̇r + G̃(q) + F̃f q̇

i
i

¯̄̄
+

+||di||∞ + ηi, (9)

where ηi > 0 is a small constant.
It is observed that the robust control law comprises the

following terms:
• When decomposing the first term û of (4), we can
see in (5) that it introduces a feed forward action
(with the presence of qd, q̇d, q̈d) to improve the tracking
errors and the disturbance rejection, and a feedback
action (with the feedback of q, q̇) and a component
containing λ to compensate for nonlinear effects and
joint decoupling.

• The second term −K · sgn(s/φ) of (4) introduces
the robust contribution that accommodates the exter-
nal disturbances and the uncertainties. Therefore, the



resulting system has improved control performance in
the presence of uncertainties. Data generated during
RC should be reliable for the parameter estimation.

3) Adaptive controller: The adaptive control method that
the system will switch to is designed using the adaptive
passivity-based control method described in [14]. Accord-
ingly, the proposed control law is

u = Ŷ (q, q̇, q̇r, q̈r)â−KDs, (10)

s =
·
q̃ + λq̃. (11)

The regressor Ŷ (q, q̇, q̇r, q̈r) is determined from:

Ĥ(q)q̈r+Ĉ(q, q̇)q̇r+Ĝ(q)+ F̂f q̇ = Ŷ (q, q̇, q̇r, q̈r)a. (12)

And the online parameter adaptation law is:
·
â = −ΓŶ 0s, (13)

with Γ symmetric positive definite and the initial values of
the adapted parameter vector â(t0) are taken from the values
of the parameters estimated at the end of the robust control
period at the instant t0. Although there is no guaranty that
â(0) will converge to the set of true parameters (when
the persistent exciting condition in [15] is not satisfied) the
convergence time of adaptation by the adaptive controller
can be significantly shortened. Thus the performance of the
adaptive controller is improved.
Define the system Lyapunov function candidate V (t) as

in [14]:
V (t) =

1

2

£
s0H(q)s+ ã0Γ−1ã

¤
. (14)

For Lyapunov stability, it requires:

V̇ (t) = −s0KDs 6 0. (15)

The control law (10) is composed of the following three
contributions:
• The term Y (q, q̇, q̇r, q̈r)â is introduced to compensate
for nonlinear dynamics and joint decoupling.

• The term KDs is to introduce a stabilizing linear
control feedback action of PD type on the tracking
errors.

• The vector of the estimated parameters â is updated
using the integral adaptive law (13) to ensure asymp-
totic compensation of the terms in the manipulator
model. Γ determines the convergence rate of parameter
adaptation law.

In SRAC, the parameter estimation and update rate
should be properly chosen to ensure the robustness of the
system. During transient a smaller sampling interval should
be used to make the system less sensitive to external distur-
bances and measurement noises, which are likely to cause
the parameter drift. It can be increased in the steady state
stage when external disturbances and measurement noises
are insignificant. It is preferable to use faster convergence
rate for the estimator that is running in parallel with the
robust controller as the estimator dynamics do not affect

the robust control law. However, after switching to AC,
the rate of convergence of parameter adaptation must be
kept low as high convergence rate may lead to oscillatory
parameter estimation that can adversely affect the controller
performance. The low convergence rate, however, is now
affordable as â(t) is already a good estimate of a(t).
4) Parameter estimator: In the robotic control, the iden-

tification and the parameter adaptation are usually based on
the relationship (3).
For simplicity, the regressor matrix Y can be replaced

with Yd based on the a priori information of the system,
specifically the reference trajectory of the system instead of
the actual trajectory, as follows:

Ĥ(qd)q̈d + Ĉ(qd, q̇d)q̇d + Ĝ(qd) + F̂f q̇d

= Yd(qd, q̇d, q̈d)a. (16)

This will reduce the sensitivity of the regressor matrix Y ,
and therefore the sensitivity of the estimated parameters, to
the external disturbances and measurement noise.
Since the uncertainties of the system during the transient

stage are strong, parameter estimators with the properties of
fast parameter convergence and robustness to uncertainties
are needed. The gradient estimators and standard least
squares estimators are not suitable because they have slow
convergence. Thus they are not capable of estimating time
varying parameters and are not robust to the disturbances.
As a good candidate, we propose the modified least squares
estimator with a bounded forgetting factor and a dead zone
[16]. Accordingly, we can derive the estimated parameter
vector as follows :

â[k] =

 (I + TP [k]Y 0d[k]Yd[k])
−1 · (â[k − 1]+

+TP [k]Y 0d[k]u[k]) |ε| ≥ ∆
â[k − 1] |ε| < ∆

, (17)

where ε = Ydâ− u (u: control torques); T is the sampling
time; k is a current computing instant; P [k] is the update
gain; and ∆ is the dead zone.
The dead zone ∆ is introduced to avoid the parameter

drift caused by the errors usually mixed with the external
disturbances and measurement noises or by the impersistent
excitation.
And the gain update law for the estimator is:

P [k] = (I + α[k]T ) · (P [k − 1] + TY 0
[k]Y [k])−1, (18)

with the forgetting factor:

α[k] = α0 ·
µ
1− ||P [k]||

P0

¶
||P [k]|| 6 P0, (19)

where α0, P0 are the maximum forgetting rate and the
bound for the gain P [k].
Thus, by introducing the dead zone and the forgetting

factor the parameter estimator obtains the following prop-
erties: large gain bound, smooth parameter estimation, fast
parameter convergence and robustness against external dis-
turbances. These properties are beneficial for the parameter
estimator.



TABLE I
TRACKING ERRORS OBTAINED WITHOUT LOAD

Contr. Track. Without load (in degree)
type errors Transient Steady
PID q̃1 −1.50 to 1.20 −1.50 to 1.20

q̃2 −0.50 to 0.50 −0.50 to 0.50
CTC q̃1 −0.04 to 0.02 −0.04 to 0.02

q̃2 −0.20 to 0.18 −0.20 to 0.18
RC q̃1 −0.10 to 0.03 −0.10 to 0.03

q̃2 −0.10 to 0.03 −0.10 to 0.03
AC q̃1 −0.25 to −0.08 −0.08 to 0.01

q̃2 −0.22 to 0.06 −0.06 to 0.03
SRAC q̃1 −0.10 to 0.03 −0.03 to 0.03

q̃2 −0.10 to 0.03 −0.025 to 0.025

TABLE II
TRACKING ERRORS OBTAINED WITH LOAD

Contr. Track. With load (2kg in degree)
type errors Transient Steady
PID q̃1 −2.20 to 1.30 −2.20 to 1.30

q̃2 −0.80 to 0.60 −0.80 to 0.60
CTC q̃1 −0.06 to 0.04 −0.06 to 0.04

q̃2 −0.48 to 0.22 −0.48 to 0.22
RC q̃1 −0.20 to 0.06 −0.20 to 0.06

q̃2 −0.20 to 0.07 −0.20 to 0.07
AC q̃1 −0.42 to 0.00 −0.10 to 0.01

q̃2 −0.42 to 0.06 −0.06 to 0.03
SRAC q̃1 −0.20 to 0.06 −0.03 to 0.03

q̃2 −0.20 to 0.07 −0.03 to 0.03

5) Switching criteria: As mentioned before, control law
can be switched from RC to AC and vice versa in order
to harness benefits of both controllers. Greater attention
needs to be paid when switching from RC to AC. Given that
the stability and performance of adaptive controllers depend
on the quality of estimated parameters, the convergence of
estimated parameters is used as the condition for switching
from RC to AC.
In the case where the parameters of the system a(t) are

constant, the standard deviation of the parameters estimated
over a certain period of time is used as the switching
criterion:

σ(â) =
p
var(â) < σs, (20)

where var(â) is the variance of the parameter vector â, σs
is a priori chosen constant threshold vector that triggers
switching.

III. EXPERIMENTAL RESULTS
The control methods are now examined and verified in

a typical real system - a 2 DOF articulated manipulator
formed by joints 2 and 3 of a Puma 560 Robot - in the
presence of gravitational forces, frictional forces and the
payload. For simplicity, in our experiments the parameters
of the system including the payload are assumed to be
unknown but fixed although the method can be applied to
the system with slow time varying parameters. Sampling
time is 2 ms, control hardware is a 1.8 GHZ Pentium III
computer equipped with a PCI interface card. The model
of the robot is built using Maple.
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Fig. 2. Tracking errors obtained with RC.
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Fig. 3. Tracking errors obtained with AC.
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Fig. 4. Tracking errors obtained with SRAC.

In the experiment, two trajectory profiles were followed
and the method worked well under the both profiles. For
brevity, however, only results obtained with the first trajec-
tory profile which is extracted from [3]:

qd1(t) =
π

6
(1− cos(2πt)),

qd2(t) =
π

4
(1− cos(2πt)),

with initial states of the system being:



q1(0) = 0,

q2(0) = 0,
are presented in this paper.
The software to control the robot has been written in

Visual C++ and is interrupt driven. The program allows the
implementation of a variety of different controllers.
The detailed experimental results obtained with different

controllers under different conditions are presented in Ta-
bles I and II. Table I shows the comparison without the
payload. Table II shows the same with the payload.
As can be seen in the two tables, the tracking errors

obtained with SRAC in the transient state (labeled transient
tracking errors) are the same as those obtained with RC,
but they are significantly improved during the steady state
(labeled steady tracking errors) in comparison to RC or AC.
Fig. 2, Fig. 3, Fig. 4 show the experimental results

corresponding to the results in Table II (i.e. the payload was
attached) when only RC, only AC, and the SRAC were used
respectively. Up to around 7 seconds, the system was driven
by RC while the parameter estimation takes place in the
background. When the standard deviations of the estimated
parameters fall below σs (a priori chosen), the controller
switches to AC. As can be seen, the transfer was bumpless
and the tracking errors are much less. This can be especially
appreciated by comparing the time histories of Fig. 2 to Fig.
4 for the periods 7 to 15 seconds.

IV. CONCLUSION
A method has been proposed that harnesses the benefits

of robust control and adaptive control. The control algorithm
switches to robust control when the parameter adaptation of
the adaptive controller deteriorates beyond a set standard
deviation vector. During robust control, an independent
parallel parameter estimation is carried out and when the
standard deviations of the estimated parameters fall within
a pre-set standard deviation vector, control switches back to
adaptive control. It is shown by experiments that the SRAC
method improves performance by preserving the advantages
of AC and RC while removing or limiting their drawbacks.
The approach is feasible and applicable in practice and
was verified in an application to a 2 DOF manipulator.
However, the method proposal does not address control of
time varying systems.
It is inferred that the SRAC is very useful in situations

where working conditions of systems often change as in
the robot trajectory control, the force control in compliant
motion tasks and payload uncertainties.
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