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Abstract

Data mining (DM) is the process of finding patterns and relationships in databases.
The breakthrough in computer technologies triggered a massive growth in data
collected and maintained by organisations. In many applications, these data arrive
continuously in large volumes as a sequence of instances known as a data stream.
Mining these data is known as stream data mining. Due to the large amount of data
arriving in a data stream, each record is normally expected to be processed only
once. Moreover, this process can be carried out on different sites in the organisation
simultaneously making the problem distributed in nature. Distributed stream data
mining poses many challenges to the data mining community including scalability
and coping with changes in the underlying concept over time.

In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a
class of classification algorithms - have the potential to work efficiently in distributed
stream data mining. LCSs are an incremental learner, and being evolutionary
based they are inherently adaptive. However, they suffer from two main drawbacks
that hinder their use as fast data mining algorithms. First, they require a large
population size, which slows down the processing of arriving instances. Second,
they require a large number of parameter settings, some of them are very sensitive
to the nature of the learning problem. As a result, it becomes difficult to choose a
right setup for totally unknown problems.

The aim of this thesis is to attack these two problems in LCS, with a specific focus
on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it
has been tested extensively on classification tasks and it is the supervised version
of XCS, a state of the art LCS.

In this thesis, the architectural design for a distributed stream data mining system
will be first introduced. The problems that UCS should face in a distributed data
stream task are confirmed through a large number of experiments with UCS and
the proposed architectural design.

To overcome the problem of large population sizes, the idea of using a Neural
Network to represent the action in UCS is proposed. This new system - called NLCS
– was validated experimentally using a small fixed population size and has shown
a large reduction in the population size needed to learn the underlying concept in
the data.
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An adaptive version of NLCS called ANCS is then introduced. The adaptive version
dynamically controls the population size of NLCS. A comprehensive analysis of the
behaviour of ANCS revealed interesting patterns in the behaviour of the parameters,
which motivated an ensemble version of the algorithm with 9 nodes, each using a
different parameter setting. In total they cover all patterns of behaviour noticed in
the system. A voting gate is used for the ensemble. The resultant ensemble does
not require any parameter setting, and showed better performance on all datasets
tested.

The thesis concludes with testing the ANCS system in the architectural design for
distributed environments proposed earlier.

The contributions of the thesis are: (1) reducing the UCS population size by an
order of magnitude using a neural representation; (2) introducing a mechanism
for adapting the population size; (3) proposing an ensemble method that does not
require parameter setting; and primarily (4) showing that the proposed LCS can
work efficiently for distributed stream data mining tasks.
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Chapter 1

Introduction

1.1 Overview

The breakthrough of computer technology has facilitated the ability to gen-

erate, transfer, collect, and store data in the world. At the same time, data are

produced in greater amounts with a greater frequency than at any time in the past.

Data mining, the process of discovering novel and potentially useful patterns in

databases (Fayyad et al., 1996), has become a key discipline to assist companies and

organizations to discover the tacit knowledge hidden in the overwhelming amount

of data. Within many learning tasks offered by data mining, classification is one of

the most popular ones.

In many applications, the data arrive continuously in large volumes as a se-

quence of instances known as a data stream. Mining these data is known as stream

data mining. There is a range of tasks in stream data mining and this thesis only

focusses to classification tasks where the data is labeled and a classifier is required.

Due to the large amount of data arriving in a data stream, each record is nor-

mally expected to be processed only once. The data can be re-routed to different

sites in the organization, or get sent to different sites by the customers. Process-

ing data at different sites adds another dimension to the problem that it becomes

distributed in nature. Distributed stream data mining poses many challenges to
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the data mining community including scalability and coping with changes in the

underlying concept/class in the data, over time.

The author hypothesizes that the genetics based machine learning systems

(Holland, 1975) (Goldberg, 1989), particularly its Michigan-style learning classifier

system (LCS), has the potential to be useful and efficient in this domain due to

three main reasons.

• LCSs have been successfully applied to various data-mining problems, and

can achieve competitive accuracy in comparison with other machine learning

algorithms including the decision tree learner C4.5, Naive Bayes classifier, rule

extraction methods such as PART, and support vector machines (Bernadó-

Mansilla et al., 2002),(Butz, 2004),(Dixon et al., 2001).

• The mining knowledge is captured by a set of rules that can be easily inter-

preted by a human. This can be important: in many data mining problems,

the ability to understand the learnt knowledge is sometimes as important as

obtaining an accurate model.

• LCSs are incremental learners, and being evolutionary based they are inher-

ently adaptive.

However, LCSs suffer from two main drawbacks that hinder their use as fast

data mining algorithms. First, they require a large population size, which slows

down the processing of arriving instances. Second, they require a large number of

parameter settings, some of them are very sensitive to the nature of the learning

problem. Consequently, it becomes difficult to choose a right setup for totally

unknown problems. The aim of this thesis is to attack these two problems in LCSs.

Many models of LCSs have been introduced in the last two decades. Recently,

the accuracy-based models have captured most attention from researchers in the

field because of their better performance on both supervised and reinforcement

learning problems. XCS (Wilson, 1995) (Wilson, 1998) is the first system of this

type, which works for both supervised learning and reinforcement learning prob-

lems. UCS (Bernadó-Mansilla and Garrell-Guiu, 2003) is a derivation of XCS that

Hai H. Dam October 6, 2008
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specializes on classification tasks. Since we are working on classification (supervised

learning) problems, UCS was chosen as our baseline LCS learner.

Three main issues of stream data mining considered in this thesis are (1) how

does the system adapt in dynamic environments, (2) how fast the system is to

process instances as they arrive continuously, and (3) how does the system work in

distributed environments. An empirical study of UCS, carried out in Chapter 3,

shows that UCS is a potential online system for stream data mining because it is

robust to noise and is able to adapt quickly to changes in dynamic environments.

A distributed framework is also proposed using the clients-server architecture

to make UCS more efficient in distributed environments. This framework allows

each local site (or client) to employ a completely independent UCS. Local models

(or UCS’s populations) are transmitted occasionally to the server for combination.

The server then represents a complete knowledge base of the overall classification

problem. Experiments show that this framework helps to reduce traffic load in the

system, to protect raw data, and importantly maintain the predictive accuracy in

comparison to the centralized framework.

However, the study in this chapter also shows that UCS suffers from two main

drawbacks in stream data mining: (1) they require a large population size which

increases communication overhead and the processing time for each instance, (2)

some of the parameters are sensitive to the initial setup values such as the maximum

population size.

This thesis is about a distributed neural-based learning classifier system. To

overcome the problems of large population sizes, the idea of using a Neural Network

to represent the action in UCS is proposed. This new system - called NLCS – is

validated experimentally using a small fixed population size and has shown a large

reduction in the population size needed to learn the underlying concept in the data.

An adaptive version of NLCS called ANCS is then introduced. A compre-

hensive analysis of the behaviour of ANCS revealed interesting patterns in the

behaviour of the parameters which motivated an ensemble version of the algorithm

with 9 nodes, each using a different parameter setting. In total they cover all pat-

Hai H. Dam October 6, 2008
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terns of behaviour noticed in the system. A voting gate was used for the ensemble.

The adaptive version in the ensemble framework dynamically controls the popu-

lation size of the system. The resultant ensemble does not require any parameter

setting, and showed better performance on all data sets tested.

The thesis concludes with testing the ANCS system in the architectural design

proposed earlier for UCS for both logical and physical distributed environments.

1.2 Research Questions and Hypothesis

The scope of this thesis is the study of evolutionary learning classifier systems

on classification problems. The study in this thesis aims at answering the following

research question:

Can an evolutionary-based classifier system - such as UCS - meet

the challenges imposed by distributed stream data mining?

This research question can be broken down into several sub-questions for investiga-

tion as follows:

• Is traditional UCS suitable for distributed stream data mining? Sev-

eral studies have tested UCS on data mining problems and claimed that the

algorithm is competitive in terms of the predictive accuracy in comparison to

other non-evolutionary machine learning algorithms. Testing environments

were mainly static, which are not always the case in stream data mining. De-

pending on the environment, the underlying concept of the data may change;

the noise level in the data may fluctuate; the number of learning concepts may

vary; to name a few. Therefore understanding the adaptive ability of the sys-

tem in dynamic and noisy environments would give new insights into whether

UCS is appropriate for stream data mining. The experiments in Chapter 3

are designed to answer these concerns.

Moreover, experiments on UCSs traditionally assume that the training data

is hosted at a centralized data repository. This is not always the case in the

Hai H. Dam October 6, 2008
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real world, where many organizations might have distributed data sources.

Despite the fact that the centralized UCS can still work well in the distributed

environment by transmitting the data to a central location, the distributed

framework is better because traffic load can be reduced and security and

privacy issues in raw data can be protected. The experiments in Chapter 3

are also devoted to investigate a distributed framework of UCS called DUCS,

which is compared against the centralized framework in terms of generalization

and communication load.

• Is a neural network’s representation beneficial for evolutionary learn-

ing classifier systems?

One of the main drawbacks of UCS is that the number of classifiers generated

is normally quite large. This is a bottleneck in distributed data streams

since the computation time required to process an instance increases, and the

transmission time for the models between sites in a distributed environment

also increases.

The author hypothesizes that a neural network’s representation will help to

compact the population of UCS, while maintaining the predictive accuracy.

Chapter 4 proposes the neural representation in UCS and compares the pre-

dictive accuracy of NLCS (Neural-based Learning Classifier System) against

the traditional UCS. Negative correlation learning is also added to NLCS in

order to localize those networks in the same region.

• How to reduce the bias caused by the initial choice of parameters’

values? Many parameters of UCS need to be tuned in order to perform

well on a new data set. Some of them are very sensitive such as the maximum

population size. This parameter influences the overall performance of the

system and its best value is problem-dependent. As a result, UCS is restrained

when it gets exposed to a new domain, especially those ones where the analyst

has limited knowledge.

Chapter 5 proposes an adaptive framework called ANCS which does not rely

on a predefined maximum population size as in UCS. ANCS allows the pop-

Hai H. Dam October 6, 2008
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ulation to grow freely over time without the upper limit as in UCS.

Moreover, an ensemble framework of several ANCSs with non-overlapping

setups that cover the parameter space is investigated in this chapter as a

potential solution to overcome the bias in parameters’ setting.

• Is the proposed system appropriate for distributed stream data

mining? Chapter 6 employs ANCSs in two distributed frameworks for

distributed stream data mining. The first framework is simulated using a

client-server architecture in Chapter 3, aiming at reducing the traffic load

in a physically distributed environment. The second framework utilizes the

ensemble technique to logically route the data in order to boost the overall

accuracy and also to allow more instances to be processed at the same time.

The chapter is mainly devoted to comparing these two systems with DUCS,

considering several issues of distributed data streams such as accuracy, concept

drift and noise levels.

1.3 Original Contributions of the Thesis

This section summarizes a list of scientific contributions from this research

work. The main contribution of this thesis is to bear out a claim that UCS, the

evolutionary-based classifier, can meet the challenges of distributed stream data

mining. Testing UCS on distributed stream data mining reveals two key drawbacks

that may limit its use in real life. These are a large population size and sensitivity to

initial parameters’ setup. The author proposes a neural representation and ensemble

framework to overcome these problems.

In general, the contributions of the thesis can be gathered as follows:

• Providing an empirical study of UCS in distributed stream data

mining. Although testing UCSs in data mining has been done elsewhere in

the literature, the novelty of this work is to take several issues of stream data

mining into consideration, including concept drifts, noise levels, processing

Hai H. Dam October 6, 2008
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time, and distributed environments. The study reveals that UCSs are poten-

tially good for stream data mining as they are robust and also can recover

quickly after the concept changes. A client-server framework is proposed to

employ UCSs in physically distributed environments. This framework reduces

the data transmission within the system, and provides a high level protection

on the raw data.

• A neural-based representation that reduces the population size of

UCS by orders of magnitude. The thesis introduces a neural represen-

tation in UCS, that modifies the traditional representation by replacing a

scalar action by a simple neural network. This neural representation helps to

compact the population of UCS, while maintaining the predictive accuracy.

Moreover, this is the first attempt to apply negative correlation learning in

UCS in order to build the correlation between classifiers that match to the

same environmental state. The negative correlation learning is added to the

error function for training neural networks of those classifiers, aiming to push

these networks far away from each other.

• Proposing an adaptive mechanism to dynamically eliminate the ini-

tial setup of the sensitive parameters (e.g. the maximum population

size). An adaptive framework is employed in NLCS to internally change the

parameters’ values, based on the training performance in order to control the

population size.

To visualize the knowledge obtained in the end, a multi-dimensional scaling

function is employed in LCS for the first time. The visualization reveals that

the system is able to decompose closely to the hidden underlying structure of

the testing data in some data sets.

Moreover, an ensemble method is proposed to dynamically control the param-

eters setup in the system. The study shows that this framework does not only

reduce the bias due to parameters’ values, but also increases the predictive

accuracy.

Hai H. Dam October 6, 2008
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• The enhanced UCS is able to face the distributed stream data

mining challenges. Two frameworks are proposed to help the enhanced

system handle logically and physically distributed environments. The first

case allows more data instances to be handled at once by distributing the

work load over multiple classifier systems. The latter case reduces the traffic

load required in the system, while maintaining the predictive accuracy.

1.4 Road Map

The thesis is organized as follows:

Chapter 1 presents an introduction to the thesis. It first provides a glance

at the research field, followed by the motivation and research questions. A list of

scientific contributions from this research work is discussed in detail. Finally, a brief

outline of the thesis is given.

Chapter 2 provides a short review of data mining in general, concentrating on

the classification task. It is followed by a short discussion about challenges of stream

and distributed classification in the literature. Two techniques for classification are

reviewed: evolutionary learning classifier systems and feed-forward artificial neural

networks.

Chapter 3 starts with an initial investigation of UCS for stream data mining.

A number of aspects of data streams is considered such as noise levels, concept

drifts, and processing time. This chapter also proposes a distributed framework of

UCS to handle distributed data sources. Several aspects of a distributed system

are explored in this chapter such as knowledge combination methods at the central

location, traffic load, and knowledge exchange.

A novel neural representation is proposed in chapter 4. The enhanced system,

a neural-based learning classifier system (NLCS), differs from UCS in the represen-

tation of the action. NLCS is then evaluated on real-world data mining problems.

NLCS is extended with an adaptive framework in chapter 5. An ensemble

system is proposed in order to reduce the effect of initial parameter settings.

Hai H. Dam October 6, 2008
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The proposed system is applied to the distributed framework and tested on

distributed stream data mining problems in chapter 6.

Chapter 7 concludes the thesis and opens several research directions that

emerged from the current work.

Hai H. Dam October 6, 2008
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Chapter 2

A Survey of Data Mining and

Evolutionary Learning Classifier

Systems

2.1 Overview

The interest in data mining (DM) has been growing rapidly in both the re-

search and industry communities, coupled with the increasing volume of data. The

breakthrough of computer technology has facilitated the ability to generate, trans-

fer, collect, and store data at a greater frequency than at any time in the past.

Many DM techniques have been introduced in the past and many of them have

been claimed to effectively extract “knowledge” from massive amounts of data.

Recently, data streams, continuously and rapidly arriving data, have posed a

number of challenges to traditional data mining methods (Aggarwal, 2007). Some

of them include the ability to process the data on the fly instead of using multiple

passes; and the ability of the system to handle concept drifts, to name a few.

Michigan-style evolutionary learning classifier systems (Holland, 1975) were

chosen in this study due to several reasons: their rule-based learning knowledge is

the easiest representation for a human to interpret and understand; their design to
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Figure 2.1: The road-map to research on stream data mining.
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Table 2.1: A summary of literature survey on learning classifier systems that is
closely relevant to the main issues of this thesis
Research Areas Year Authors
Representational Issues
Condition 2000 Wilson

2001 Wilson
2003 Stone and Bull
2005 Butz
2005 Dam, Abbass, and Lokan
2006 Butz
2006 Lanzi

Action 2002 Wilson
2007 Lanzi and Loiacono
2007 Loiacono, Marelli, and Lanzi

Others 1999 Lanzi and Perrucci
2002 Bull
2002 Bull and O’Hara
2004 Hurst and Bull
2005 Mellor
2005 O’Hara and Bull
2007 Bull, Lanzi, and O’Hara

Population Compactness 2002 Wilson
2002 Fu and Davis
2003 Dixon, Corne and Oates
2004 Wyatt, Bull, and Parmee

Scalability 2002 Llorà
2006 Llorà and Sastry
2006 Llorà, Marelli and Lanzi

Adaptive Parameters 2000 Bull and Hurst
2001 Hurst and Bull
2002 Hurst and Bull

Ensemble Learning 2005 Bull, Studley, Bagnall and Whittley
2005 Gao, Huang, Rong and Gu
2007 Bull, Studley, Bagnall and Whittley

Data Mining Classification 2001 Bernadó-Mansilla, Llorà, and Garrell-Guiu
2003 Bernadó-Mansilla, Garrell-Guiu
2007 Bacardit and Butz

process data instances on the fly may potentially work for data streams; and their

abilities to achieve an equivalent accuracy as other traditional techniques on several

classification problems (Butz, 2004).

This chapter provides a brief review of distributed stream data mining. Fig-

ure 2.1 demonstrates a road-map of the literature of the thesis. Table 2.1 reviews
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the main focus of this thesis in evolutionary learning classifier systems.

The chapter is structured as follows. Section 2.2 presents a brief overview of

data mining. The classification problem in data mining is studied in Section 2.3.

Challenges of classification in stream data mining are discussed in Section 2.4.

The background of evolutionary learning is presented in Section 2.5 followed by

a review of Michigan-style learning classifier systems. Section 2.7 explains feed-

forward artificial neural networks. Finally, several emergent questions are discussed

in Section 2.8 and conclusions are drawn in the last section.

2.2 Data Mining

Data mining (DM) has been attracting considerable attention from research,

industry, and media in the last two decades because of its powerful tools and tech-

niques for connecting the dots from raw data. Either an inside view of the database

or predictive outcomes would promise some potential competitive advantages to

organizations, especially once combined with opinions from experts in the field.

2.2.1 The Scope of Data Mining

The term “Data Mining” has been widely used in the last two decades by statis-

ticians and database researchers, but only recently recognized within the business

community. There are some debates about the exact definition of this term. Many

researchers consider DM as a single step in the multi-step process of knowledge

discovery in databases (KDD). Alternatively, others view it as a synonym for KDD.

However according to Cantu-Paz and Kamath (2002) most people have agreed that

DM combines ideas from multiple fields including machine learning and artificial

intelligence, statistic, signal and image processing, mathematical optimization, and

pattern recognition. Several definitions of DM are presented as follows.

Data Mining or KDD as it is also known, is the nontrivial extraction of

implicit, previously unknown, and potentially useful information from
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data. This encompasses a number of different technical approaches, such

as clustering, data summarization, learning classification rules, find-

ing dependency networks, analyzing changes, and detecting anomalies

(Frawley et al., 1992).

Data Mining is a step in the KDD process consisting of particular data

mining algorithms that, under some acceptable computational efficiency

limitations, produces a particular enumeration of patterns (Fayyad et al.,

1996).

Data mining is the analysis of (often large) observational data sets to

find unsuspected relationships and to summarize the data in novel ways

that are both understandable and useful to the data owner (Hand et al.,

2001)

In this thesis DM is referred to as a single step of KDD, which automatically

searches for potentially useful patterns of interest from large volumes of data and

presents those patterns in a particular form that can be potentially understood by

a human. Patterns or models, outcomes from a data mining task, often draw the

relationships of the underlying data or describe the data in particular ways.

In general, the KDD process starts with raw data (e.g. records of financial

transactions, information of coming network packets, etc.) and in the end produces

some valid, novel, and potentially useful patterns, which promise unfolding the

hidden information.

Figure 2.2: Knowledge discovery in databases (Reproduced from (Cantu-Paz and
Kamath, 2002))

The following steps depicted in Figure 2.2 are required to fulfil the KDD pro-

cess:
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• Data selection: this step requires an understanding of the domain and the

goals of the end-user. As a result, potentially useful and relevant features are

selected and extracted from the raw data. This step aims at reducing the

amount of time needed for processing; thanks to human experts.

• Data cleaning and preprocessing: this step is responsible for cleaning the

data in such a way that it is useful for the program. It includes the removal of

noise, outliers and irrelevant data; fixing incorrect formats of data; deciding

on methods to handle missing values, etc.

• Data transformation: converts the data to another form using dimensional-

ity reduction or transformation, if needed, for better understanding of the

relationship among the features or filtering irrelevant data.

• Data Mining: searches for patterns of interest by employing the data mining

algorithm(s) on the data.

• Data interpretation and Evaluation: reorganizes the learning patterns in such

a way that a human can easily understand. This also involves in resolving

potential conflicts with previously believed knowledge.

While these above steps are equally important, the DM is a key step. This

thesis mainly focuses on this step. The author assumes that the data is clean,

consistent, and ready to be used by the mining algorithm.

2.2.2 Reasons for Using Data Mining

To explain why DM has become so important recently, Han (2005) presented

two key reasons: (i) the wide availability of massive amounts of data; (ii) the

imminent need for transforming such data into useful knowledge and information.

In the last few decades, a huge amount of data can be collected daily in many

organizations. For example, phone companies have the huge transactional data

of customers’ calls; internet companies collect data of network load, faults, etc.

Previously we are familiar with Terabyte and Gigabyte sizes of databases. However,
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many companies and organizations have started to use databases of up to the size

of Petabyte and Exabyte. Figure 2.3 from the Red Brick company illustrates the

exponential growth of data during the past few years.

Figure 2.3: The growth of electronic data (Reproduced from
http://www.redbrick.com )

Hidden knowledge from these huge databases is likely to benefit many organi-

zations in marketing, decision making, management, future prediction, to name a

few. Although knowledge discovery is not a new idea, it became popular recently

due to the tremendous amounts of data available. Naisbitt (1988) stated that we

are drowning in information, but starving for knowledge. It is because the scale of

data seems to grow beyond human capacities to analyze and interpret manually.

In fact, traditional analysis methods have become impractical after the ex-

ponential growth of data volumes. For instance, human analysts used to take an

important role in understanding and obtaining knowledge from the data with the

assistance of software such as Microsoft Excel, SPSS, etc. Three main problems

associated with this approach are the human brain, which is normally unable to

search for complex multi-dependencies in data; the analysis packages/software that

can not handle large data sets; and the lack of objectivity in such an analysis.

A further attractiveness of using DM is that it requires lower cost and produces

faster results than a team of professional statisticians. In 1989, the first KDD Work-

shop was organized in response to the need of an automated method for knowledge

discovery in large databases. Later, this workshop grew into the KDD conference

as interests in the field continued to increase.
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2.2.3 Data Mining Tasks

The goals of DM can be broken down into two main high-level categories of data

analysis: description and prediction (Han, 2005). The former aims at identifying

general properties of the data, reorganizing it, and transforming it into some forms

of human-interpretable patterns. An example of patterns is a customer similarity

that can be used to form a group of customers with similar behaviours. The latter

performs some kinds of model fitting based on current and past data in order to

make predictions. The importance of these goals might vary considerably depending

on domains and applications. For example, machine learning is concerned more

about prediction, while KDD tends to favour description.

Figure 2.4: Data mining models and tasks

Figure 2.4 shows several primary learning tasks in data mining applications to

accommodate these goals. The popular learning tasks of DM are:

• Classification: aims at developing a model that can discriminate accurately

unseen samples among a finite set of categories. The model is designed to

identify commonalities in a data set through training instances.

• Regression: tries to fit a model to identify the underlying trend in the data.

• Clustering: attempts to group a set of examples that are close to each other

based on some sorts of a similarity measure to form a descriptive model to

describe the data.
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• Association learning: intends to classify input instances into appropriate

classes as well as to build the relationship among those features.

Among these, classification is one of the most popular tasks. This thesis focuses

on the classification problem in data mining.

2.2.4 Framework of Data Mining

After the learning task is identified, one might consider what to do next. Nor-

mally the answer to this question involves two main phases: building the model

and using it. In the first phase, mining algorithms need to be constructed in order

to fit a model to the characteristics of the data. Fayyad et al. (1996) outlines three

primary components in any data mining algorithm: model representation; model

evaluation; and the optimization and search method. The simple algorithm of DM

is described in Algorithm 1.

Learning task: Identify the learning task based on the goals of the job;
Model representation: Determine an appropriate representation of the
learning knowledge;
Model Evaluation: Decide how to evaluate the learning model (e.g. choosing
a score function);
Optimization and Search Method: Choose a learning algorithm to optimize
the score function;
repeat

Search for particular patterns (either parameters and model);
Add them to the knowledge base and revise the learning model
accordingly;
Evaluate how good the learning model is by the chosen evaluation model;

until the termination conditions are met ;
Algorithm 1: A DM algorithm (Fayyad et al., 1996)

The model representation component forms the format in which proposed pat-

terns and models of the underlying data will be described. The model evaluation

component is used to measure how well the proposed patterns or models match the

data. Finally, the search component is responsible for determining the appropriate

models or patterns.

Once the model is built, it can be used for solving several tasks stated in the
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previous section. The first phase is very important in forming models, which are

potentially useful later.

2.3 Classification

Classification is one of the most popular tasks of data mining. Han (2005) pre-

sented five criteria for comparison between different learning algorithms: predictive

accuracy, learning speed, robustness, scalability, and interpretability. This section

will provide a brief review of classification.

2.3.1 The Problem Definition

Classification is the task of predicting the category/concept associated with

some data instances based on a model derived from previously observed data. This

process is made up from two key phases, which are normally called the training

and testing phases. The first one aims at building a descriptive model or extracting

potentially useful patterns from a set of previously observed data instances. The

second one is carried out by applying the model on new instances of the data.

Normally data is divided into two subsets for training and testing. The training

set consists of an input vector and a label vector that are used together to train the

system. The testing set, on the other hand, consists only of an input vector and is

used to measure the generalization of the learning model. That is, how good the

model is when confronted with unseen instances.

The training set contains a set of data instances or examples as

D = (x1, t1), .., (xn, tn), ..., (xN , tN)

A data instance is a tuple (xi, yi), where xi ∈ X is the input vector to the system,

and ti ∈ T is the associated target. The output space T is discrete, where T =

c1, c2, c3, ... and ci is a possible ’class’ or target output. Consider an unknown

function φ : X −→ T , which maps an input space X to an output space T. The
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classification task is to learn a target function f(x; ξ) as our estimated model of φ.

When we do not wish to refer to any specific data or parameter, f is simply used.

Both training and testing sets are assumed to represent samples of the under-

lying problem. In some cases, the test and training data are distinct in nature. If

they are not distinct to each other, the performance of testing and training data are

likely similar, and therefore the performance of testing data is not a good indicator

of the performance on future data. All updates and revisions of the model happen

only during the training phase. The testing instances are only used to measure the

performance of the system, and are not used to update the model.

The first step is to observe the behaviour of the random process within a period

of time in order to build the model. This step is done by employing one or more

learning algorithms to accomplish the task.

Once the learning model has accumulated enough information, it can be used

for prediction. Figure 2.5 depicts the use of a classification model in the testing

phase. The model can be considered as a black box to map a testing input x into

its outcome y. This prediction can be used to draw a future trend with a reference

Figure 2.5: Classification model for mapping an input x and an output y

to the history. Traditionally, the data is assumed to be static, that once the model

has learned it, the model can be used all the time. However, this is not always the

case. More details will be provided in Section 2.4.

2.3.2 Classification Criteria

In order to verify the learning algorithm, several criteria are normally used

for judging a model. These include accuracy, compactness, robustness, efficiency,

and interpretability. The best algorithm would be the one which satisfies all these

criteria in all datasets. However, according to the “No Free Lunch Theorem”,
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no single model will always outperform all other models. This was theoretically

investigated by Wolpert and Macready (1997).

Mitchell (1997) argues that the choice of representation involves a crucial trade-

off between expressive, accurate, and compact models. The predictive accuracy

measures the generalization of the learning model when exposed to unseen instances.

Compactness refers to the length or size of the learned model, while expressiveness

relates to the understandability of the knowledge represented by the learned model.

These three criteria will be used throughout the thesis for designing an algorithm.

This subsection will give a brief summary for some of these criteria.

2.3.2.1 Predictive Accuracy

Classification tasks are solved by one or more machine learning algorithms.

The main target is to capture as much underlying information as possible from

the training data. A good algorithm is the one which can generalize wider than its

original training data so that it is still able to predict correctly in new and unknown

situations.

After receiving a training/testing instance, the classifier will provide its predic-

tion based on its current knowledge. If the predicted label is identical to the real

target of the instance, it will be counted as a success; otherwise it is a misclassifi-

cation. The predictive accuracy of training/testing is the percentage of successful

predictions with regards to the whole training/testing sets. The function of the

predictive accuracy is described as follows:

a(f(; ξ)) =
1

N

N∑
n=1

L(f(xn; ξ), yn) (2.1)

L(a, b) =





1 if a=b

0 if a 6= b

(2.2)

High accuracy on training sets reveals good learning ability of the system but

it does not indicate good generalization. A model that generalizes well is the one
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which achieves as high accuracy as possible on the testing set.

Many learning methods can suffer from either under-fitting or over-fitting. The

sign of over-fitting is that the model fits very well to the training data, but produces

poor results on unseen instances. In this case the learning knowledge cannot gener-

alize to other cases. In contrast, an under-fitting model is the one which under-fits

the data because the underlying problem is too complicated for it to learn.

2.3.2.2 Compactness and learning speed

This refers to the computational cost (time and space complexity) of the system

to form a learned model and to classify an instance. The faster model provides a

better solution when dealing with data streams as it is able to handle more data

instances.

2.3.2.3 Robustness

This refers to the ability of the system to deal with noisy environments. Noise

is an unavoidable factor in the real world. Noisy data would mislead learning and

therefore might lead to inaccurate models. A good model is the one which can cope

well with noise in order to produce correct predictions.

2.3.2.4 Efficiency and scalability

Data streams always involve large amounts of data. A good model on data

streams is the one that can perform efficiently on not only small data sets but also

large ones.

2.3.2.5 Expressiveness

This refers to the ease of understanding and gaining an insight from the learned

model. A good model not only produces a good predictive accuracy, but also

represents the knowledge in an easy format that a human can understand. Many

researchers value the extracted knowledge in data mining. Many believe that the
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explicit knowledge structures acquired from learning are at least as important as the

ability to perform well on new examples in many data mining applications (Witten

and Frank, 2005) (Freitas, 2003).

2.3.3 Representation

In data mining, the learning knowledge needs to be represented in an explicit

form so that an algorithm can recognize and manipulate a given task. In order

for the DM program to formulate the target function and therefore to discover

interesting patterns, the representation of the mined knowledge needs to be chosen

in advance. This is the way that the mining patterns are structurally expressed and

described. There are many ways for representing knowledge in machine learning

such as: decision tables, decision trees, classification rules, neural networks, etc.

Each representation has its own advantages and disadvantages depending on the

mining techniques being used.

• Decision tables: are the simplest approach but their big problem is to define

attributes to leave out without affecting the overall performance.

• Decision trees: are a “divide-and-conquer” approach to the problem of learn-

ing, where the knowledge is represented naturally in a tree format.

• Decision rules: are a popular alternative to decision trees because a set of

classification rules can be formed easily from a decision tree. Each leaf in the

tree can be expressed by a rule, which includes conditions of all nodes on the

path from the root to the leaf, and the class at the leaf becomes the class of

the rule.

• Neural networks: are presented as a black box as they are very complicated

for a human to understand. This representation mimics the human brain with

many units interconnected in layers that form a directed acyclic graph.

Mitchell (1997) recommended that a ruleset is one of the most expressive and

human readable representations. The major benefit of this representation is the
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accessibility of the subsequent knowledge (a set of rules) obtained by the system.

The rule is normally represented in the following form:

IF < some conditions are satified > THEN < predict some value >

An example of a set of rules derived from a learning system for forecasting the

weather is as follows:

IF < todayishumidandcloudy > THEN < itwillraintomorrow >

IF < todayishotanddry > THEN < itwillbesunnytomorrow >

Learning decision rules can be carried out by traditional algorithms such as

C4.5 (Quinlan, 1993). Alternatively, genetic algorithms and learning classifier sys-

tems (Goldberg, 1989) have been confirmed to work well in this domain. This thesis

focuses on learning classifier systems.

2.3.4 Training Modes

There are two principal training modes in the literature, mainly depending on

the presentation of the training examples: online and offline learning.

• Online Learning (also known as sequential training or stochastic training

mode): in this mode, the learning algorithm processes one example at a time,

then updates and revises the learning model accordingly.

• Offline Learning (also known as batch learning): in this conventional method,

changes to the learning model are accumulated over an entire presentation of

the training data (an epoch). The update is only applied at the end of an

epoch.

Some people believe that the batch learning mode would produce a better

performance due to its use of the true gradient direction for updates. Others argue
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that the gradient direction might be trapped easily in a local optimum while the

online mode can overcome this problem due to its stochastic nature (Bishop, 1995).

The main drawback of offline learning in data mining is that it is not adequate

for large data sets as it requires more time and computational cost in comparison

to the online learning (Bottou et al., 1990). Moreover, if a training environment

changes, the learning algorithm using the online mode can adapt more quickly to

new information. Therefore, training in the batch mode would be inappropriate for

many domains due to the size of the data and the rate at which the training data

is generated.

Online learning becomes more important than ever for dealing with these prob-

lems. The main problem is to deal with an infinite stream of one-pass instances,

which requires the learning algorithm to continuously refine and revise the current

knowledge.

2.3.5 Classifier Ensembles

The ensemble technique has been widely used to improve the accuracy of the

classifiers. In this approach, predictions from multiple classifiers are combined to

produce a single classifier, which is generally more accurate than any of the indi-

vidual classifiers in the ensemble (Krogh and Vedelsby, 1995). Many researchers

have shown that a committee of experts can produce better performance than an

individual expert (Nguyen et al., 2004),(Liu et al., 2000).

Polikar (2006) stated five reasons why an ensemble system is preferred: (1)

statistical reasons - the averaging of ensemble reduces the overall risk of making a

poor selection; (2) large volumes of data - training different classifiers with subsets

of data is often more efficient than training a single classifier; (3) too little data

- re-sampling the data to create several overlapping subsets for training different

classifiers has been proven to work effectively ; (4) divide and conquer – the complex

problem can be divided into several simpler ones for different classifiers to learn;

(5) data fusion – if data comes from different sources with heterogeneous features

or different noise levels, a single classifier cannot learn the whole data.
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In order to build an ensemble classifier, two major components need to be

considered when designing an algorithm: pre-gate and post-gate (Abbass, 2003).

The first one is how to route data to several individual classifiers. The second one

is how to combine their responses at the gate level.

Polikar (2006) suggested that no single ensemble generation algorithm or com-

bination method is universally better than others. A good ensemble is one where

individual classifiers learn different parts of the input space and therefore make

different errors (Hansen and Salamon, 1990) (Krogh and Vedelsby, 1995)(Nguyen

et al., 2004). In other words, diverse individuals need to be maintained so that

there is always disagreement among them. Studies in (Opitz and Shavlik, 1996a)

(Opitz and Shavlik, 1996b) empirically verified that such ensembles generalize well.

One of the most popular methods for promoting the diversity within an ensem-

ble is to re-sample the training set. Two typical methods of this type are bagging

(Breiman, 1999) and boosting (Schapire, 1990). The B=bagging approach was ini-

tially used in (Breiman, 1996) as a “bootstrap” to increase the accuracy of a learning

algorithm by averaging the outputs from different models generated with different

data subsets (not necessarily distinct). It will randomly generate a new training

set with a uniform distribution for each network member, from the original data

set. The boosting approach, on the other hand, re-samples the data set with a non-

uniform distribution for each ensemble member. The whole idea of boosting and

bagging is to improve the performance by creating some weak and biased classifiers.

When aggregating these classifiers, using an average or other mechanisms, the bias

of the ensemble is hoped to be less than the bias of an individual classifier. In short,

boosting and bagging are used to diversify the ensemble in order to perform better

in comparison to a non-diverse ensemble (Skurichina et al., 2002).

Beside the re-sampling technique, other methods try to create different bias

within classifiers in order to maintain diversity. Alpaydin (1993) appointed different

learning parameter sets to each classifier so that they will converge to different

solutions. Other work by Maclin and Opitz (1997) generated various initial neural

network weight settings. Hashem (1997) applied different classifier architectures.

Hai H. Dam October 6, 2008



CHAPTER 2. A SURVEY OF DATA MINING AND EVOLUTIONARY LEARNING

CLASSIFIER SYSTEMS 28
Additionally, other researchers exploit the evolutionary computation to gen-

erate diversity (Opitz and Shavlik, 1996b) (Opitz and Shavlik, 1996a). Moreover,

Abbass (2003) proposed the multi-objective optimization approach to evolve a group

of networks with different objectives. Other group of work promotes diversity based

on individual’s correlation (Krogh and Vedelsby, 1995) (Rosen., 1996) (Liu and Yao,

1997) (McKay and Abbass, 2001).

Predictions from individuals need to be combined for the final prediction. There

are three simple but quite popular methods for decision making at the post-gate

level in ensemble learning:

• Majority voting : The output of the ensemble is the class which receives the

vote of the majority of networks in the ensemble.

• Simple averaging : The output of the ensemble is the arithmetic mean of the

individual outputs of the network.

ŷens =
M∑
i=1

ŷi

M
(2.3)

• Winner take all: The output of the ensemble is the output of the network

whose output is maximally different from the classification threshold.

ŷens = argmax,i(|ŷi − threshold|)i ∈ [1,M ] (2.4)

Research by Lincoln and Skrzypek (1990) and Mani (1991) showed that a

simple averaging is a good composite method. Recently, other studies suggested

that the voting scheme would provide better performance (Maclin, 1998) (Hashem,

1997) (Wolpert, 1992).

Chan and Stolfo (1993) introduced another approach for combining models

called meta-learning. In this approach, each local site may employ a different in-

ductive learning algorithm for learning its local model. A meta-classifier is trained

using data generated by the local models. This process is applied recursively to

produce an arbiter tree, which is a hierarchy of meta-classifiers. Meta-learning has
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been used for fraud detection in the banking domain.

An alternative to meta-learning is the knowledge probing method developed by

Guo et al. (1997). This method is similar to meta-learning but it does not build

an arbiter tree. Instead, one descriptive model is generated from the predictions of

local models from a distributed environment.

Both meta-learning and knowledge probing methods were applied to tradi-

tional inductive learning algorithms such as decision tree learning: ID3, CART,

C4.5; memory-based learning: WPEBLS; Bayesian learner based on conditional

probabilities: Bayes, etc (Guo and Sutiwaraphun, 2000) (Prodromidis et al., 2000).

These approaches are efficient and effective. However, they are normally used as

off-line learning mechanisms, where the training of the model needs to be completed

before one can use the model for mining. Moreover, the model structure can be

sensitive to small modifications in the data.

According to Sharkey (1996), other methods for fusing the knowledge include

averaging and weighted averaging, non-linear combination methods with rank-

based, probability distribution for experts’ knowledge, stacked generalization, deci-

sion template, and the Dempster-Shafer based classifier fusion.

2.4 Data Stream Classification

Many algorithms designed for classification work in the off-line mode, which

requires the whole data set to remain in the memory for multiple passes through

the algorithm. In some cases, the data set is static and small so that the algorithm

can be updated at the end of each pass.

However, in many applications such as sensor networks, satellite communica-

tion, internet, email logs, network, survey, and credit card transactions, the amount

of data can be so large that it may not be possible to be stored in the memory.

Moreover, the data is generated continuously and there is a need to analyze data in

near real time, for example, to detect network intrusions, credit card fraud, anoma-

lous activity, etc. Such kind of data, or so-called data streams, have posed many
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challenges to traditional data mining techniques.

Aggarwal (2007) expressed that it is impossible to process data streams with

multiple passes as in many conventional methods. Moreover, the data may evolve

over time in many applications. Therefore, a straightforward adaptation of one-pass

learning algorithms need to be considered with a clear focus on the evolution of the

underlying data.

2.4.1 Data Streams

A data stream is a sequence of instances that continuously arrive in real time.

Several unique characteristics of data streams have been identified by Babcock et al.

(2002) as follows:

• The data instances arrive continuously and rapidly in real time. Each data

record can be processed once or a small number of times due to limited com-

putation and storage capabilities of the system.

• The system has no control over the order of which data instances arrive to be

processed.

• Data streams are potentially unbounded in size.

• Once an element from a data stream has been processed or archived, it cannot

be retrieved easily unless it is explicitly stored in memory, which is typically

small relative to the size of the data streams.

In order to handle data streams, these characteristics need to be taken into

account. Gaber et al. (2007) summarized several research issues of stream data

mining as follows:

• High speed nature of data streams: The rate of building a classification model

needs to be higher than the data arrival rate. Moreover the one-pass constraint

is enforced during training.
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• Unbounded memory requirements: the volume of data streams is always large.

Many researchers have concentrated on this issue using load shedding, sam-

pling to create subset of data, etc.

• Concept drifting: data normally change over time, which requires the classifier

to update accordingly. The use of an outdated model could result in inaccurate

predictions and low accuracy models.

• Tradeoff between accuracy and efficiency: this is the main tradeoff in stream

data mining algorithms.

• Challenges in distributed applications: many applications are structured in

a distributed nature. The challenge in these applications is to reduce the

bandwidth limits in transferring data.

• Visualization of stream data mining results: the need for visualization in data

mining is always essential. Stream data mining algorithms need to be able

to visualize on the fly the discovered patterns for the user to make quick

decisions.

• Modeling change of mining results over time: modeling the change in data

streams over time could be important in some cases.

• Interactive mining environment to satisfy user results: the fast nature of data

streams could make it difficult to allow user interaction.

• The integration of data stream management systems and stream data mining

approaches: many applications might require to add storage, querying, and

reasoning into the mining algorithm in order to obtain a complete system for

stream processing.

• Hardware and other technological issues: burden of data streams can be

shared with hardware solutions.

• Real time accuracy evaluation and formalization.
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The methods proposed in this thesis consider speed, and the trade off between

efficiency and accuracy, and some contribution is made in visualization. However,

the main focus is on two issues: concept drift, and distributed environment.

2.4.2 Concept Drifts

An essential requirement of an algorithm in data streams is to be able to detect

and recover quickly from hidden changes, while reusing previous knowledge. In the

literature of data mining, a dynamic environment is mainly concerned with concept

change (or concept drift), in which a target learning concept changes over time

(Widmer and Kubat, 1996). In the real world, concept change occurs so frequently

that any online data mining application needs to take it into account seriously. For

example, a company’s policy may need to change frequently to reflect the consumer’s

market.

2.4.2.1 Characteristics

The target learning concept can change in many ways under many aspects.

Abbass et al. (2004) determined six common kinds of changes:

• Change in the model. A learned model may become incorrect after a period of

time. For example, customers’ preferences for shopping change due to changes

in seasons, fashion, etc. Hence a model of customers’ preferences in summer

is quite different to the one in winter.

• Change in the number of underlying concepts. The number of concepts may

not stay constant forever in real-life applications. Some new concepts may be

introduced and some old ones may become obsolete. For example, a school

may introduce a new class on network security, due to high demand from

students, and may stop teaching programming in Pascal because not many

students take the unit. A model to classify a unit based on students’ pref-

erences needs to be modified to capture new concepts and eliminate obsolete

ones.
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• Change in the number of features. The number of available features may vary

over time.

• Change in the level of noise. Noise is an unwanted factor but it occurs very

often in real world data. The noise level may change reflecting the condition

of an environment. For instance, voice data may have a high level of noise

at a supermarket during daytime, but may have a low level of noise during

nighttime.

• Change in the class distribution. The class distribution of training data can

be changed over time.

• Change in the sample bias. Sample bias can be changed reflecting different

conditions under which data is collected.

They grouped these changes into two main areas: model boundary changes and

sample changes. The first three changes belong to the first category and the last

three changes belong to the latter category. This thesis focuses mainly on changes

in the model boundary.

2.4.2.2 Techniques

An effective learning algorithm for tracking concept change is one that can

identify changes in the target concept without being explicitly informed about them;

can recover quickly from changes by adjusting its knowledge; and can use previous

knowledge in the case that old concepts reappear (Widmer and Kubat, 1996).

Much work has been focusing on utilizing traditional classification techniques

for data streams. Gaber et al. (2007) grouped these into two main categories:

data-based and task-based techniques. The idea of the first technique is to obtain

a smaller set of data by re-sampling the data set (e.g. sampling, load shedding,

sketching, etc.) or transforming the data set (e.g. synopsis structure, aggregation,

etc.). The latter approach, in contrast, employs some modification techniques (such

as approximation algorithms, sliding window, algorithm output granularity, etc.) in

order to cope with time and memory requirements of data streams.
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The first system designed for concept changes is STAGGER (Schlimmer and

Fisher, 1986), using probabilistic concept description. The system responds to

concept change by adjusting weights in the model, and discarding any concepts

that fall below a threshold accuracy.

Since then, researchers have proposed several rule-based algorithms to deal

with concept changes. A family of FLORA algorithms (Widmer and Kubat, 1996)

is one of them, which learns rules from an explicit window of training instances.

A window means that oldest examples are replaced by newly arrived ones so that

they fit into the window. The learner trusts only the latest examples. FLORA2

allows dynamic size of the window in response to the system performance. FLORA3

stores concepts for future use and reassesses their utilities when context changes are

perceived. FLORA4 is designed to deal with noise in the input data.

Klinkenberg and Joachims (2000) developed an alternative method to detect

concept change using support vector machines. They also use a window of recent

instances to detect changes. Even though the system might be sensitive to changes

in the distribution of instances, the window technique is almost an acceptable ap-

proach.

Classifier ensembles are an alternative approach in data mining for dealing

with concept change. A set of experts is maintained. The prediction is made by

combining the experts’ knowledge, using voting and/or weighted voting.

Street and Kim (2001) suggested that building separate classifiers on sequential

chunks of training data is also effective to handle concept change. These classifiers

are combined into a fixed size ensemble using a heuristic replacement strategy.

Kolter and Maloof (2003) presented an approach based on the weighted majority

algorithm to create and remove base learners in response to changes in performance.

An important challenge of the ensemble approach is that the system needs

to have a strategy to create new experts and eliminate old ones to adapt to the

environment.

Beside those conventional methods, many researchers are working on evolution-

ary techniques for classification as in (Goldberg, 1989), (Wilson, 1995), (Bernadó-
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Mansilla and Garrell-Guiu, 2003).

This thesis focuses on an evolutionary learning classifier system. The system

can be trained on the fly, potentially good for data streams. Moreover, the approach

employs the genetic algorithm as a search technique, which has been claimed in

(Goldberg, 1989), (Goldberg, 2002) to be suitable for problems with complex fitness

landscapes, noise, change over time, and many local optima.

2.4.3 Distributed Environments

Most databases in large companies/organizations are often inherently distributed

in multiple locations. A centralized mining approach is a straightforward process

as shown in the left hand side of Figure 2.6. It involves two main steps in which the

first one is mainly concerned with transferring all local data to a central location.

A data mining algorithm is employed on the integrated data at the central site.

This approach would be inefficient, especially in the domain of data streams, as

fast communication channels with large bandwidths are required. In many cases,

security is a big concern if the raw data needs to be sent over the network.

The primary purpose of distributed data mining (DDM) is to allow parallel

processing of databases at multiple sites, to discover and combine useful knowledge

from multiple models (Prodromidis et al., 2000).

DDM is a relatively new area but has been receiving much attention, espe-

cially in distributed environments where trust between sites is not always complete

or mutual (Jones et al., 2000). In many applications, data are privacy-sensitive, so

that centralizing the data is usually not acceptable (Giannella et al., 2004). There-

fore, a DDM technology needs to be adopted in these applications to minimize the

transmission of raw data and thus protect raw data.

Data in DDM can be divided into two categories: homogeneous and heteroge-

neous. In homogeneous DDM, the databases located at different sites have the same

attributes in the same format, while in heterogeneous DDM, the attributes at each

site are different or in different format. The focus of this thesis is on homogeneous
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Figure 2.6: Distributed environments - centralized data mining model (left hand
side) and distributed data mining model (right hand side)

DDM.

DDM overlaps with parallel data mining in many ways. Kargupta and Chan

(2000) divided parallel data mining into two main approaches: coarse-grained and

fine-grained. The former means that data is distributed physically, and a collection

of loosely coupled algorithms is employed at each location for mining local knowl-

edge. This approach is quite similar to distributed data mining. The latter is for

tightly coupled systems.

Scaling up the algorithm is desirable in stream data mining due to the large

size of the training set. Provost (2000) stated that the motivation of parallel data

mining starts from the need to scale up to massive data. He explained that the run-

time complexity of data mining is linear or worse in the total number of instances,

and large data sets can be expensive to mine unless attention is paid to scaling up.

A large fraction of DDM approaches focuses on centralized ensemble-based

methods (Kuncheva and Whitaker, 2003), which first form local models at the local

sites and then combine these models at a central site. For example, a company may

have different branches. Each local model represents an independent data mining

for each branch, then the central office of the company combines the models sent
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by each branch to gain an overall view of the company as a whole. Giannella et al.

(2004) state two main advantages of DDM using ensembles. The first advantage can

be obviously seen when the local model is much smaller than the local data: sending

only the model thus reduces the load on the network and the network bandwidth

requirement. The second one is that sharing only the model, instead of the data,

gains reasonable security for some organizations since it overcomes issues of privacy.

2.5 Evolutionary Learning

The previous three sections have summarized the problem areas: what data

mining is, what classification is, and issues with data streams and distributed data

mining. The next three sections summarize some techniques that are investigated

in this thesis as potential solutions to these problems, beginning with evolutionary

learning.

2.5.1 Genetic Algorithms

Inspired by biological evolution, Genetic algorithms (GAs) are a stochastic

population-based technique for search and optimization. A solution is encoded in

GAs by one or many chromosomes in the population. The survival of the fittest

(Darwin, 1859) of Darwin’s theories of evolution is a key concept used in the system,

aiming at preserving best individuals through the evolution. In order to apply

this concept computationally, one needs to distinguish inferior solutions from good

solutions, encapsulating the distinction in an appropriate fitness function. The

fitness function plays an important role to guide the selection process so that good

solutions are chosen over inferior ones for recombination.

GAs differ from other conventional search techniques in four ways (Goldberg,

1989): (i) they work with a coding of the parameter set instead of the parameters

themselves; (ii) they search for a population of solutions, not a single solution; (iii)

they evolve with the help of an objective function; (iv) they use probabilistic rules

instead of deterministic ones.
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A typical evolutionary algorithm is summarized in Algorithm 2.

Initialize the population;
Evaluate individuals in the population;
repeat

Select parents for recombination based on their fitness;
Apply genetic operators to generate offspring;
Form a new population by offspring with partial/whole current
population;
Evaluate individuals in the population;

until the termination conditions are met ;
Algorithm 2: An evolutionary algorithm

As pointed out by Goldberg (1989), one of the main strengths of GAs is that

they can perform well for problems with complex fitness landscapes, which are

noisy; change over time; and have many local optima. His recent study (Goldberg,

2002) showed that selection and mutation contribute to the improvement of the

population, while selection and recombination are sources for innovation in the

population. The first two operators together work as a hillclimbing technique, in

which the mutation searches through the neighborhood of the current solution and

the selection will accept only those good ones, thus moving towards to a better set

of solutions. The last two operators work together to invent new solutions in the

population.

Another strength of GAs is their ability to perform global search with little

prior knowledge. However, GAs also have several disadvantages including: (i) a

genetic search is comparatively slow due to its requirements to evolve a population

of solutions before they can be used; (ii) stochastic search techniques using genetic

operators (e.g. selection, mutation, crossing–over) normally require several runs

with different seeds.

2.5.2 Evolutionary Learning Classifier Systems

The use of GA to evolve a set of rules was first introduced by John Holland and

his colleagues in 1970s (Holland, 1975), (Holland and Reitman, 1977) as a cognitive

model called the learning classifier system (LCS). In this framework, the knowledge
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(experience) of a particular person (cognitive entity) is viewed as a set of rules that

are evolved over time by interaction with the environment. Beside using natural

selections and genetics as other GA applications to evolve a population, the knowl-

edge about the problem which is represented by a set of rules is accumulated in real

time reflecting their competence with others for survival under certain conditions

of the environment. In this first version of LCS, GA was described as a primary

learning system and the credit assignment system is a second one. Each rule is

associated with a strength. The credit assignment adjusts rules’ strength through

backwards averaging. The first real-life application of LCS was implemented by

Goldberg (1983) to simulate the gas pine-lines problem.

Since each environmental state might match with more than one rule in the

population, how payoff can be distributed between those rules has become a seri-

ous problem. Holland (1986) developed a “bucket brigade” algorithm for solving

this problem by distributing the payoff to those rules actively involved in predic-

tion. Over time, those stronger rules are more likely to fire in the decision making

problem.

Goldberg (1989) mentioned in his book a wide range of areas where LCS is

investigated such as biology and medicine; business; computer science; engineering

and operations research; machine learning; parallel implementations; and social

sciences. Some impressive examples of LCS applied in real-life applications are

control vision systems (Wilson, 1985), classification of letters (Frey and Slate, 1991),

Wisconsin breast cancer diagnosis (Wilson, 2000), free flight traffic environments

(Chen et al., 2007), intrusion detection (Shafi et al., 2007), to name a few.

Recently, many researchers have started to compare LCSs with other conven-

tional techniques. An investigation on a benchmark synthetic test-bed, the Monk’s

problem, by Saxon and Barry (2000) showed that LCS’s performance is at least as

good as traditional machine learning techniques.

Moreover, studies on real-world problems also confirmed that LCSs are com-

petitive for data-mining problems in comparison to other non-evolutionary learning

algorithms in terms of predictive accuracy. Bernadó-Mansilla et al. (2002) com-
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pared LCSs with 0-R, IB1, IBk, NBa, C4.5, PART, and SMO on 15 data sets.

Dixon et al. (2001) applied LCS to twelve data sets and also found that LCS has

the potential to be a powerful data mining tool. Researches in (Butz, 2004) and

(Butz, 2006) compared LCS with C4.5, the Naive Bayes classifier, PART, the in-

stance based learning algorithm with one and three nearest neighbor settings, and

the support vector machine on 42 data sets. The statistical test on accuracy in

these studies showed that LCSs outperform the other learners in some data sets,

while being themselves outperformed in the other data sets.

2.5.3 Knowledge Discovery

According to Bull and Kovacs (2005) the ability of LCS to solve complex real-

world problems is clear. However, the accuracy is not the only concern in data

mining, but the discovery of knowledge is also important.

An early work by Holmes (1996) in an epidemiologic surveillance domain

demonstrated that LCSs can be effective for both predicting and describing a rapidly

evolving phenomenon, such as the occurrence of a certain epidemic disease. Further-

more, LCSs have successfully been employed in (Arthur et al., 1996), (Schulenburg

and Ross, 2001) to model artificial stock markets, which requires rapid adaptation

to changing in the market situations.

An alternative study by Ferrandi et al. (2003) showed that LCS is able to mine

interesting patterns, which can be used for the analysis of data from Hardware-

Software Codesign applications. The obtained population of classifiers represents

high level and accurate knowledge about the cost function (the interrelationships

among hardware-software components). The authors suggested that the informa-

tion can be used to guide the search for the best partitioning or to provide knowledge

for a human designer.

Recently, Kharbat et al. (2007a) confirmed that LCSs can be more effective

than C4.5 in terms of knowledge discovery. A complete knowledge discovery pro-

cess using LCS is discussed in this paper including data preparation, knowledge

exploration, and knowledge compactness. In this study, a rule compactness ap-
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proach is added to LCS to gain better understanding of the generated rules and

their underlying knowledge. The analysis showed that LCS has obtained a set of

rules which is more informative and qualitatively useful than the one obtained from

C4.5.

2.5.4 Michigan vs. Pittsburgh Systems

Work on LCS can be divided into one of three categories: the Pittsburgh

(Smith, 1980) (De Jong et al., 1993), the Michigan (Holland, 1975) (Goldberg,

1983), and the hybrid approaches. The major difference between the Michigan and

Pittsburgh approaches is in the encoding of genetic chromosomes. In the Pittsburgh

approach, each individual is a set of rules representing a complete solution to the

learning problem. In contrast, an individual of the Michigan approach is a single rule

that represents a partial solution to the overall learning task. Thus, the Michigan

and the Pittsburgh systems are quite different approaches to learning.

The Pittsburgh systems that can be efficiently used for machine learning and

data mining techniques include GALE (Llorà, 2002) and GAssist (Bacardit and

Garrell, 2007). Examples of the Michigan system that have been confirmed to

work for data mining include XCS (Butz, 2004) and UCS (Bernadó-Mansilla and

Garrell-Guiu, 2003).

Several studies have conducted a comparison of the two approaches on sev-

eral classification problems in order to determine circumstances that one approach

would perform better than the other. Bernadó-Mansilla et al. (2002) compared the

learning performance between XCS (a Michigan system) and GALE (a Pittsburgh

system). The study found no significant difference in the predictive accuracy of

both systems on sixteen data sets even though two different rule sets were pro-

duced. However GALE required a longer training time than XCS.

Another study of Bacardit and Butz (2007), conducted on XCS and GAssist,

also suggested a comparative performance in terms of predictive accuracy. The

population size of the best individual of GAssist is much smaller than the one of

XCS. However, since GAssist maintains a population of individuals, the overall
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number of rules in this system is actually similar to the number of rules of XCS.

However, GAssist is observed to run faster than XCS due to its parallel learning,

and also because XCS learns each instance one by one.

Both approaches are suitable under certain conditions, and the question of

which approach is the best depends largely on the form of problem. The popular

view in general is that the Michigan approach is more useful in an online, real

time environment, whereas the Pittsburgh approach is usually applied for off-line

learning problems (Butz, 2004).

2.6 Michigan Classifier Systems

2.6.1 Overview

In Michigan-style LCSs, a set of syntactically simple string rules (called the

population of classifiers) is evolved cooperatively that together guide the system

to achieve some tasks in an arbitrary environment. A classifier contains two main

components: a rule and its associated parameters. One of the most prominent

parameters is the fitness, which rates how good a classifier is with respect to others

in the population.

A rule is represented in the stimulus-response (i.e. condition-action) formula.

Those rules are potentially symbolic, which can be easily interpreted by a human.

Traditionally, the condition is encoded in ternary (0,1,#) and the action is encoded

in binary. The # symbol is employed in the condition to enforce the generalization

in the population. This symbol is also called don’t care, which indicates that the

particular position of the condition can match with any corresponding states of the

environment. The structure of a rule is

< condition >:< action >

For example: a rule #011:1 matches both an input 0011 and an input 1011.

LCSs employ two biological metaphors to accomplish the task as shown in
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Figure 2.7: A simple structure of a learning classifier system

Figure 2.7. The evolutionary component plays a key role in discovering and intro-

ducing novel and potentially useful rules into the population. This function works

as a search technique for the system. Unlike conventional evolutionary algorithms,

two parents might be chosen at each time step from the population/niche. The

recombination and mutation are carried out on these parents and two new offspring

are created and inserted in the population. Offspring inherit the fitness from their

parents.

The learning component, on the other hand, is responsible for updating clas-

sifiers’ parameters by assigning credits to classifiers based on their contributions

to execute some tasks and the feedback from the environment. Classifiers in the

population are re-evaluated frequently in order for their parameters to reflect accu-

rately their real qualities. Based on these parameters, the system will nominate a

classifier for the GA or will decide which one to delete.

Thereby, the learning component will guide the search by the evolutionary

component to move towards a better set of rules. The two components interact

with each other and together contribute to the success of LCS.
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2.6.2 Fitness Update

Many LCSs traditionally rely on the strength, the magnitude of the reward it

received. The strength-based fitness serves twofold: a predictor of the future payoff

and also a guider of the evolutionary component. There are many ways to distribute

the reward for individual classifiers, the bucket brigade algorithm introduced in

(Holland, 1985) is one of the most common early methods.

In this approach, the reward is paid to a number of sequentially acting classifiers

through their local interactions as an information trading. Each classifier maintains

a net worth called the strength and makes a bid proportional to its strength once

it is matched. Classifiers in the population have the right to buy and sell the

information and a chain of classifiers is formed from information manufacturer (the

environment) to information consumer (the final outcome).

However, Wilson and Goldberg (1989) suggested two primary weaknesses of

this technique: (i) it is difficult to maintain long bucket brigade chains, and (ii)

those chains are difficult to generate in the first place.

ZCS (Wilson, 1994)(Bull and Hurst, 2002) simplifies the original framework

for better performance and understanding. However, Cliff and Ross showed that

ZCS can suffer by two main problems: over-general classifiers and greedy classifier

creation (Cliff and Ross, 1994). The first problem refers to over-general classifiers

which match in multiple states which might be correct or incorrect. Those clas-

sifiers, which match correctly in many states, might end up with a high fitness.

It is not reliable to use for prediction in the system in areas where they overgen-

eralized. Second, classifiers with high payoff levels tend to multiply faster in the

population. This might create gaps in the covering map, which results in poor

performance. Third, it challenges the system to evolve a population of general but

accurate classifiers as an overgeneralization problem.

Some researchers proposed the use of the fitness sharing technique to prevent

these problems (Horn et al., 1994). However, the sharing makes the meaning of the

strength become unclear to GAs in order to distinguish accurate classifiers from

inaccurate ones.
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The accuracy-based fitness was then introduced in (Wilson, 1995) and has cap-

tured most attention from researchers in the field. Its important improvement is

that the fitness is based on the accuracy of the predictive reward with regards to the

actual one. By using the accuracy of the predictive reward instead of the reward

itself, this model can overcome the previous problems. It was later shown that

the accuracy-based fitness is able to achieve better generalization, smaller popula-

tion sizes, and a complete mapping from inputs and actions to reward predictions

(Kovacs, 1997) (Wilson, 1998) (Kovacs, 2000).

Mutual information based fitness is another study that utilizes mutual infor-

mation for fitness feedback (Smith and Jiang, 2007b), (Smith and Jiang, 2007a).

The mutual information is calculated from the probability bivariate distribution

over the matched/unmatched condition of each classifier. The preliminary results

of the proposed system, MILCS, show a slower convergence in comparison to XCS.

However, MILCS is able to produce a smaller and more explanatory rule set.

2.6.3 Learning Approaches

Learning can take many forms: reinforcement learning, supervised learning,

etc. The eXtended Classifier System (XCS) (Wilson, 1995) (Wilson, 1998) is the

first accuracy-based classifier system. It was designed for reinforcement learning.

XCS works for both single- and multiple-step tasks. Since this thesis concentrates

on classification, the discussion is limited to single-step environments.

UCS (supervised classifier system) (Bernadó-Mansilla and Garrell-Guiu, 2003)

is a derivation of XCS that specializes on supervised environments. The accuracy

is computed differently as the proportion of correct classifications with respect to

the number of matches.

Since the author is working on classification, UCS was chosen as the baseline

LCS learner. However, UCS preserves the principal features of XCS such as a fitness

based on the accuracy, a niche GA, generalization mechanism, etc. Moreover most

works are tested on XCS. Therefore, it is worthwhile to discuss both UCS and XCS

in order to have in depth understanding of the underlying system.
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2.6.3.1 Reinforcement learning - XCS

The full description of XCS is discussed in (Butz and Wilson, 2001). The

feedback from the environment is given to XCS after each time step in the form of

a reward to indicate how good was the prediction.

A single strength parameter is replaced by three new ones: prediction P , pre-

diction error ε, and fitness F . The prediction parameter estimates an average payoff

received by the classifier when it is fired by the system. The prediction error param-

eter measures an average error in the prediction parameter. The fitness parameter

is an inverse function of the prediction error, which is the accuracy of the classifier

to predict the receiving payoff.

A classifier in XCS is a macro–classifier, which contains a distinct combination

of the Condition and Action parts in the population. Whenever a new classifier is

introduced, the population is scanned to see if the new classifier already exists. If

so, the new classifier is not added to the population, but a numerosity parameter

of its copy in the population is incremented by one; otherwise, the new classifier is

added to the population and its numerosity parameter is set to 1.

The experience parameter indicates how often the classifier has appeared in

the match set; over time, this reflects its generality.

Given an input, the match set [M ] is formed as a collection of classifiers in

the population whose conditions match the input. The system then forms a system

prediction set [PA] for each action that appears in [M ] using a fitness–weighted

average of the predictions. The action with the largest prediction is selected and

exported to the environment. The action set [A] is then formed of the classifiers in

[M ] that have the selected action.

The fitness is updated during the exploration phase. The update is based on

the predictive accuracy of the received reward instead of the reward itself from the

environment. After receiving the reward R from the environment, XCS updates the

values of prediction P , prediction error ε, and fitness F parameters of each classifier
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appeared in the current action set [A]:

P ←− P + β(R− P ) (2.5)

where β(0 < β ≤ 1) denotes the learning rate. The prediction error ε is updated

as:

ε ←− ε + β(|R− P | − ε) (2.6)

The fitness F is updated according to the current relative accuracy k′ of the classifier

as follows:

k =





1 if ε < ε0

α(ε0/ε)
v otherwise

(2.7)

k′ =
k × num∑

cl∈[A] k × num

F ←− F + β(k′ − F ) (2.8)

where k is the accuracy, k′ is the relative accuracy, num is the numerosity field of

the classifier; α and v are constants controlling the rate of decline in the accuracy

k when ε0 is exceeded.

XCS executes GAs in niches defined by the match set. Later, Wilson makes it

to the action set (Wilson, 1998). This modification helps GA to choose parents not

too different from each other, and therefore it has a higher chance to obtain better

offspring. During the selection process, two parents from the action set [A] are

selected with probability proportional to their fitness. Two offspring are generated

by reproducing, crossing–over, and mutating the parents. Parents continue to stay

in the population competing with their offspring. If the population size is less than

a certain number, offspring are inserted into the population; otherwise, two of the

most inaccurate classifiers are deleted from the population before the offspring can

Hai H. Dam October 6, 2008



CHAPTER 2. A SURVEY OF DATA MINING AND EVOLUTIONARY LEARNING

CLASSIFIER SYSTEMS 48
be inserted.

The principle of XCS’s evolution was first outlined by Wilson’s generalization

hypothesis, which stated that the interaction of accuracy based fitness and the use of

a niche GA could result in evolutionary pressure toward classifiers that are not only

accurate but also maximally general (Wilson, 1995). An example of the accurate,

maximally general classifier corresponding to the inputs of 000000, 000001, 000010,

000011, 000100, 000101, 000110, 000111 is 000###. He also showed experimental

results that support his hypothesis. Later, Kovacs investigated this hypothesis in

more details and suggested that XCS is able to evolve accurate, complete, and

minimal representations in boolean function problems (Kovacs, 1997).

Butz et al. (2003b) took a further step to investigate Wilson’s hypothesis and

also lay out a fundamental theory of XCS. In this reference, several evolutionary

pressures are present including the set pressure, the mutation pressure, the deletion

pressure, and the subsumption pressure. An equation of the set pressure, to demon-

strate an interaction between the deletion pressure and evolutionary pressure, along

with a number of experiments confirm Wilson’s hypothesis.

2.6.3.2 Supervised learning - UCS

Since UCS is a supervised learner, a desired class/outcome accompanies the

input. A correct set [C] is formed, containing those classifiers in [M] that have the

same action as the input. If [C] is empty, covering is applied, where a classifier

that matches the input is created and assigned the same outcome as the input.

UCS is an incremental learner, where knowledge is updated as more data becomes

available. All parameters of the classifiers in [M] are revised for each training

instance, reflecting the system’s response to new knowledge.

UCS removed the fitness-relative adjustment of XCS. The fitness of classifiers

is based on their accuracy, which is computed as the ratio of correct classifications

by the classifier to the number of times the classifier has been in the match set:

acc =
Ncorrect

Nmatches

(2.9)
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The fitness is computed as a function of accuracy:

F = (acc)v (2.10)

where v is a predefined constant. The selection purely based on error (such as the

one of UCS) is able to solve similar boolean function problems as normal XCS, but

requires less parameters and depends less on the learning rate.

Unlike XCS with the relative fitness sharing, the fitness of UCS initially is cal-

culated based on the real accuracy of the classifier without the fitness sharing. Later

Orriols-Puig and Bernadó-Mansilla (2006) proposed fitness sharing in UCS. Results

showed that fitness sharing is beneficial in UCS, especially with class imbalances.

However, a study by Butz et al. (2007) showed that fitness sharing is actually not

necessary in the LCS/XCS framework. The study in this thesis will be based on

the basic UCS without fitness sharing.

Similar to XCS, the niche GA in UCS also create the generalization pressure

to push the population towards a set of maximal general and accurate classifiers.

GA is invoked in [C] if the average time since the last GA activation of classifiers

in [C] surpasses a user-defined threshold. Two parents are selected from [C] with

a probability that is proportional to their fitness. Two offspring are generated by

reproducing, crossing–over, and mutating the parents with certain probabilities.

Offspring are inserted in [P] if they are not subsumed by the parents. If the popu-

lation size hits a predefined limit, some classifiers are removed by voting within the

population.

UCS inherits the generalization technique from XCS, which mainly applies the

GAs on niches and deletion happens in the whole population. UCS replaces the

action set by the correct set in order to take full advantage of supervised learning.

The correct set [C] contains all classifiers in the match set [M], which predict

correctly the outcome of the input. The selection operator occurs in the correct set,

which selects two best classifiers for crossing-over and mutation. The deletion is to

choose a classifier from the whole population in a similar way as XCS.

Bernadó-Mansilla and Garrell-Guiu (2003) showed that UCS is able to achieve
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comparable accuracy as XCS on real world domains. Moreover, experiments on

two artificial data sets show that UCS converges faster and also obtains smaller

population size in comparison to XCS.

2.6.3.3 The underlying difference between XCS and UCS

XCS aims at developing a complete and accurate mapping of the problem space

through efficient generalization (Bull and Kovacs, 2005). Since the fitness of XCS

is based on the accuracy of the prediction, the GA is responsible for searching for

classifiers that can predict accurately. Those classifiers can belong to two opposite

categories: correct and incorrect classifiers. The correct classifiers are those leading

to the maximum payoff in return if they are fired. The incorrect classifiers, on the

other hand, would result in the lowest payoff. Both classifiers are preserved in the

population of XCS as long as they predict consistently and correctly the payoff that

they will receive.

UCS, on the other hand, tends to form the best action map, which consists

of only high-rewarded classifiers (Bernadó-Mansilla and Garrell-Guiu, 2003). The

fitness of UCS is based on the actual accuracy of the classifier, therefore only correct

classifiers can survive in the population. Incorrect classifiers will receive low fitness

and therefore would not be part of the GA process and also have more chance of

deletion than correct ones.

The classification problem is normally a single step problem with two payoff

levels: a maximum payoff for correct predictions, and a minimum payoff for incorrect

ones. In this case, a set of correct rules in the best action map would be more

favoured than a set of both correct and incorrect rules in the complete action map

as incorrect rules have no use for classification. Bernadó-Mansilla and Garrell-Guiu

(2003) have laid out five different aspects when comparing between two maps as

follows:

• Population size: In data mining, a problem with high numbers of attributes

and classes is quite common. If a problem has n classes, the complete action

map would be as much as n times larger than the best action map. The more
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classes and attributes the problem has, the bigger the complete action map

becomes. It is obvious that the complete action map is normally much larger

than the best action map. Therefore, evolving a complete action map requires

higher population sizes and more computational resources than a best action

map.

• Exploration: Since the complete action map is much bigger than the best

action map, a longer time would be needed to search completely.

Others believe that the existence of incorrect rules would avoid exploring them

repetitively and also would be an advantage in the exploitation phase to guide

the system not doing things (Kovacs, 2002).

• Complexity: The larger the population is, the greater the number of cycles

required for learning. Therefore, the evolution of complete action maps may

require longer time than best action maps.

• Generalization: the complete action map might generalize better than the

best action map.

• Changing environment: Some researchers argue that the complete action maps

would help the system to recover faster than the best action map when the en-

vironment changes abruptly (Hartley, 1999). It is because some incorrect rules

might become correct after the change. Therefore the system does not need

to discover the rule but only has to adjust the parameters. If the magnitude

of change is small or moderate, the system can recover quickly, otherwise it

would take much longer time to recover since XCS needs to delete inaccurate

classifiers before adding a new one (Dam et al., 2007).

2.6.4 Adaptive Parameters

Traditional XCS with a ternary representation requires around 20 parameters

to control the learning process (Butz and Wilson, 2001). The number of parameters

is reduced to 12 in UCS. Some of them are very sensitive to the overall performance
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of the system. In XCS, the most sensitive parameters relate to the learning rate,

mutation rate, population size, and probability of covering. UCS, on the other

hand, does not require the learning rate for updating the knowledge.

Several researchers have taken efforts to create self-adaptive parameters for

XCS/UCS in order to avoid the effect of initial parameter setting. An early study

was carried out by Hurst and Bull (2001), that made the discount factor and the

tax rate of ZCS adaptive. Each classifier has its own values for those adaptive

parameters. The enforced co-operation method is used to adapt these parameters

in order to prevent classifiers selfishly adapting their parameters. However, these

parameters did not respond to changes in the environment.

Another study by Bull and Hurst (2000) made the mutation rate vary as in

evolutionary programming (Meta-MP) in (Fogel, 1992). In this approach, each

classifier has its own mutation rate, which is transferrable from parents to offspring.

After getting the value from the parent, the mutation rate of the offspring is re-

calculated using a Gaussian distribution before being used. Their study indicated

that an adaptive mutation rate in ZCS responded well to environmental change.

A similar study on XCS also confirmed the benefit of an adaptive mutation rate

(Hurst and Bull, 2002).

2.6.5 Ensembles of Classifiers

Several researchers are working on applying evolutionary algorithms for ensem-

ble learning (Guerra-Salcedo and Whitley, 1999), (Jong et al., 2004). However, in

traditional ensemble learning, the members of the ensemble are usually trained on

the same datasets. Moreover, the training is usually done in batch off-line mode.

In the early days, Dorigo (1993) developed ALECSYS, which is a single LCS

parallelized on transputer network through parallelizing the CFprocess (i.e. the

process for creating the match set). Each CFprocess responded for equal number of

classifiers over N CFprocesses. The higher N is, the more intensive the concurrency

is. ALECSYS was then extended to include a number of LCS in a hierarchical struc-

ture in (Colombetti et al., 1996). Level 0 receives an input from the environment
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and the other levels receive inputs from the immediate predecessor level.

A more specific implementation of classifier systems for distributed environ-

ments was examined in (Bull et al., 2004), where a distributed control system for

traffic signal was developed. The system simulates a distributed environment where

each traffic light is operated by a classifier system and the time needed for an object

to travel is investigated.

An alternative study by Gao et al. (2005) also found that an ensemble of LCSs

is able to improve the generalization. They employed the bootstrap technique for

creating different bias in individuals.

Bull et al. (2005) presented the idea of rule sharing in ensembles of LCS. Their

system consisted of 10 LCSs and was tested on the 20-bit multiplexer problem.

The prediction of the system is computed by majority voting among the outputs

from the 10 LCSs. The study found that the ensemble framework improves the

performance, particularly as task complexity increases. A rule migration technique

helps to improve the performance of the ensemble further. Their later study Bull

et al. (2007b) also confirmed these findings. Moreover, they showed a better than

linear speed-up for the 70-bit multiplexer problem through niche triggered sharing

where each of the 10 nodes learns individually on effectively randomly sampled

data. This sharing scheme is shown to be better than a global rule-base scheme.

The first attempt to use LCS in heterogeneous distributed environments was

investigated by Gershoff and Schulenburg (2007). In their framework, called CB-

HXCS, the environment is partitioned vertically into smaller subspaces. Each sub-

space is handled by a team of XCS through voting. The study found that CB-HXCS

is able to get a similar degree of accuracy as one XCS. Moreover, less data is required

to solve classification problems.

2.6.6 Knowledge Representation

The rule-based population of LCS is one of the most common representations

as the condition-action format is straightforward for a human to understand. Tradi-
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tionally, the condition is denoted by ternary alphabets (0,1,#), whereas the action

is represented in binary. This ternary representation is only applicable in binary

problems. Other representations have been introduced in LCS for solving more

complex problems in the real-world. One direction is to develop new representa-

tions for the condition in order to improve the decomposition of the problem. The

other direction is to modify the action.

2.6.6.1 Classifier Conditions

According to Stone and Bull (2003) and Llorà et al. (2005a), rule encoding

may introduce bias to LCS that would affect the scalability of learning maximally

general and accurate rules.

One of the earliest works of alternative encoding is the interval-based repre-

sentation introduced by Wilson (2000) for handling continuous-valued instances.

The proposed representation, called the center-spread, takes the form (ci, si) where

ci, si ∈ [pmin, qmax), pmin and qmax are the lower and upper bound of an interval. ci

is the center of the interval and si is the width of the interval from the center.

Wilson (2001c) later proposed the min-max representation (MMR) for integer

values. An interval predicate in the min-max representation is represented as (li, ui)

where li and ui are the minimum and maximum bounds of the interval. This

representation is well known in traditional machine learning but was new for LCS.

Stone and Bull (2003) argued that the MMR can also be applied for real-valued

inputs and they extended it to what they called the Unordered-Bound Representa-

tion (UBR). Stone and Bull proposed this representation to fix the problem of the

MMR by allowing the interval to be represented as (pi, qi) where either pi or qi can

be the maximum or minimum bound. UBR has solved the problem of generating

infeasible intervals but raises another challenge: the unordered bound representa-

tion. We pointed out in (Dam et al., 2005a) that this representation may violate

Holland’s schema theorem (Holland, 1975) and the building block hypothesis. We

explained that LCS depends heavily on the evolutionary learning process to drive

classifiers of low accuracy to those of high accuracy (Butz et al., 2003a). However,
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the UBR changes the semantics of the chromosome by alternating between the min

and max genes; that is, in one generation the genes representing the lower bound of

an interval can become the genes representing the upper bound of an interval in the

following generation. This discrepancy will generate a challenge to building blocks.

We introduced the Min-Percentage representation which maintains the semantics

of the genes over the whole evolutionary run.

The min-percentage representation (MPR) (Dam et al., 2005a) was introduced

to overcome this problem by maintaining the semantics of the genotype. Similar

to other approaches, each attribute in the Condition of the classifier is represented

as an interval predicate in the form of (mi, pi) where mi is the minimum bound

of an interval in phenotype and pi is the proportion of the distance between the

minimum and maximum bound of an interval and the distance between the upper

bound and minimum bound of an interval of the phenotype. The transformation

from genotype (mi, pi) to phenotype (li, ui) is taken as follows:

li = mi (2.11)

si = pi ∗ (pmax − li) (2.12)

ui = mi + si (2.13)

where si is the distance between the lower and upper bound.

A study by Butz (2005) found that LCS with the hyper-rectangular condi-

tion suffered from problems with nonlinear decision boundaries. The experiments

showed that learning takes longer and the consequent population size is much higher

on oblique data sets. Butz (2005) conducted an experiment in which the hyper-

rectangular conditions were replaced by hyper-spheres or hyper-ellipsoids. The

study also confirmed that LCS is a general and flexible learning system since the

condition structures can be easily changed to other forms without affecting the

overall performance. LCS with the kernel-based condition is able to obtain better

rules over complex problems. Their later study (Butz et al., 2006) analyzed the

evolving ellipsoidal structures, which showed that XCS is able to stretch and rotate
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the evolving ellipsoids according to the shape of the underlying function.

Furthermore, Lanzi and Wilson (2006) represented the conditions by sets of

points in the problem space. The convex hull, the smallest convex region enclos-

ing those points, defines the boundary of classifiers. A number of points needed

in each classifier can be either fixed or variable. Their experiments showed that

the proposed representation helps to converge faster in comparison to the interval

representation. This representation is more flexible since the conditions can ap-

proximate any shapes depending on the problem. However, extra computation cost

is added to build convex hulls during the matching process.

Alternatively, other representations include the messy (Lanzi and Perrucci,

1999a), S-expressions (Lanzi and Perrucci, 1999b), fuzzy representation (Bonarini,

2000), and first order logic (Mellor, 2005).

This thesis focuses on the interval representation since this is the most widely

used in LCS due to its simple but very effective representation.

2.6.6.2 Classifier Actions

A pioneer work is made by Ahluwalia and Bull (2009) to introduce a general

form of a traditional LCS with a computed action in genetics programming.

Wilson later applied the computed action in XCS for the function approxi-

mation problems (Wilson, 2001b), (Wilson, 2002). Later Wilson (2004) applied

XCSF to a single step problem with continuous payoff functions with respect to

the learning space. The system, called XCS-LP, obtains high accuracy with smaller

population compared to XCS. A more recent study of Lanzi et al. (2007) showed

that XCSF is sensitive to the range of classifier inputs because of its weight’s update

mechanism.

Another research direction is to build an anticipatory classifier system by re-

placing an action by a function. The neural anticipation is added to each classifier

in the population of the neural-based XCS (X-NCS) (O’Hara and Bull, 2005). The

additional anticipatory neural networks are trained in a supervised mode based on
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the current input and the next input that is encountered after the classifier action

has been performed. Related study by Bull et. al. proposed XCSAM using the

anticipation mapping for XCS based on an array of perceptron array or neural net-

works (Bull et al., 2007a). XCSAM can provide as accurate anticipatory predictions

as X-NCS, while requiring a smaller population.

A similar but separate series of studies by Lanzi and Loiacono proposed XCS

with Computed Action (XCSCA) to tackle a problem with a large number of discrete

actions (Lanzi and Loiacono, 2007). XCSCA is restricted to supervised learning

problems and borrows ideas from UCS, XCS, and XCSF. Each classifier in this

system consists of a condition and a set of parameters. The action is not included

as it is computed on the fly for each instance based on the action functions. The

authors suggest four different action functions for computing the action: (1) a

constant action function which represents the action by one parameter w0. This

parameter is changed every time the classifier enters the match set during training;

(2) a perceptron function which feeds the input through a simple perceptron, the

weights associated with the perception are updated accordingly; (3) the sigmoid

function which extends the perceptron with a sigmoid function; (4) a complete

neural network. An initial investigation found that XCSCA with neural networks

requires less classifiers in comparison to other methods. Moreover XCSCA is slightly

faster than a single neural network in terms of number of learning iterations, but

slower in terms of computation time as it has multiple networks.

Loiacono et al. (2007) extended XCSCA to the Support Vector Machines (SVM)

for computing the classifier action. The proposed system, named XCSCAsvm, re-

places the action function by the SVM with a set of support vectors. Each time

the classifier is in the match set, its SVM is trained from scratch using the actual

set of support vectors and the latest available sample. To overcome the problem of

an indefinitely large set of support vectors, XCSCAsvm removes the oldest sample

from the memory. The study shows that XCSCAsvm reaches the optimal perfor-

mance faster than XCSCA. However, the computational complexity of XCSCAsvm

is more expensive than XCSCA due to the need to retrain SVM from scratch at

each time step.
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2.6.6.3 Other Representations

Bull and colleagues proposed to use neural networks (NNs) in LCSs (Bull,

2002) (Bull and O’Hara, 2002). In their framework, called NCS, the condition-

action of classifiers is replaced by a fully connected multi-layer perceptron (MLP).

The classifier, in this framework, consists of an MLP and a set of parameters.

Neurons of each MLP at the output layer are responsible for each possible

outcome (classification problems). An extra neuron is added to the output layer for

signifying its membership of a match set [M].

For each input from the environment, all classifiers (neural networks) in the

population are required to process independently. The input values are fed forward

through hidden layers by sigmoid transfer functions in each network. If the extra

neuron at the output layer has the highest activation value, the classifier will not

form part of the match set [M]. Otherwise, it will belong to the match set, proposing

the action corresponding to the output neuron with the highest activation value.

Action selection in NCS is performed in the match set using a simple roulette wheel

selection policy based on fitness.

NNs in NCS are built around the neurobiological theory of neural construc-

tivism (Quartz and Sejnowski, 1997). NCS starts with a small network. An appro-

priate structure is then added through the learning process, particularly through

growing/pruning dendritic connectivity, until some satisfactory level of utility is

reached. The use of self-adaptive constructivism helps the realization of appropri-

ate autonomous behaviour. Experiments showed that NCS is able to solve several

maze problems (Bull and O’Hara, 2002) and to learn appropriate structure in simple

robotics applications (Hurst and Bull, 2004).

In a later study, back-propagation is used in conjunction with the genetic algo-

rithm to evolve the population (O’Hara and Bull, 2007). In the exploration phase,

the weights of MLPs in the match set are updated using this function. Other oper-

ators such as the activation of GA and the parameters’ update are carried out in a

similar way as XCS.
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However, by replacing a rule completely by a neural network, NCS lacks the

main advantage of LCSs; that is, being a rule-based system that is potentially easy

to understand. In many data mining problems, the ability to understand learnt

knowledge can be as important as obtaining an accurate model. For instance,

a company might want to profile customers’ expenditures in terms of their con-

sumption, services, location, income, season, etc. LCS will provide a set of rules

drawing the relationship between those features with regards to customers’ spend-

ing. Understanding their purchase behaviour might help managers to identify the

best segments that influence their spending so that they can be used for future

prediction as well as investment decisions.

2.6.6.4 Population Compactness

Even though LCS has been successfully applied in many problems, its main

issue is the scalability of the learning knowledge. The rule-based representations

always require a large population in order to cover the whole input space. When

applying LCS for data mining rules in the steel industry, Browne (1999) found that

many rules had similar patterns. As a result, the population becomes unnecessarily

hard to interpret and slow to learn.

A study by Lanzi (2001) found that XCSL (a version of XCS using Lisp-like

s-expressions) performs better than C4.5 from the point of view of a predictive

data mining approach. However as a descriptive data mining, the knowledge in the

data is complex and the solutions might be difficult to analyze and present. It is

because the population of XCSL is quite big, which requires many pages of text. In

the end, Lanzi raised a question “are symbolic representations or general variable

length representations interesting?”

Some early work of Butz and Wilson (2001) showed that XCS scales up poly-

nomially in problem length and exponentially in order of problem difficulty.

Llorà and Sastry (2006) recently pointed out that the population size can have

a great impact on the computation time in LCS. They showed that the process of

finding a set of matching classifiers (or forming a match set) in LCS is the one that
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takes most of the execution time. Their experiments revealed that the matching

process of small data sets with tens of attributes and few thousand of records takes

more than 85% of the overall execution time, and more than 98% has been observed

on bigger data sets with few hundreds of attributes and few hundred thousands of

records.

There are several ways for solving this problem. The first one is to exploit the

hardware for faster rule matching as in (Llorà and Sastry, 2006). Moreover, the

matching process can be carried out in parallel since each matching is independent

of each other. This study engaged vector instructions to perform parallel logical,

integer, and floating point operations in order to speed up the matching process.

An alternative is to build a coarse-grain parallelism model for distributing

the evaluation load (Llorà et al., 2006). This approach utilizes several processors,

each runs the same LCS algorithm. Each processor only accesses a portion of the

population (a chunk), the fitness of classifiers in its chunk is shared with the rest

of the processors. The population is the collection of chunks of all processors.

Another approach is to replace traditional genetic operators (crossing-over and

selection) by the estimation distribution algorithm (EDA). First of all, a probabilis-

tic model of promising rule sets is built. After that, a new set of rules is sampled

from the obtained model. A study by Llorà et al. (2005b) demonstrated that us-

ing a compact genetic algorithm, the simplest version of EDA, in a Pittsburgh-style

classifier system would help to evolve a compact population with maximally general

and accurate rules. Later, Butz and Pelikan (2006) showed that XCS with EDA is

able to solve challenging hierarchical problems more efficiently.

Furthermore, other researchers proposed an abstraction algorithm in LCS to

produce higher order (abstracted) rules from the rule-based population (Browne and

Scott, 2005). The authors suggested that higher level rules are needed in real-world

data mining in order to produce more useful patterns. The process of abstraction

is similar to the information processing theory in conventional machine learning.

The study showed that the performance of LCS is improved. The compactness of

the abstracted population is not discussed, however. Later work in this direction
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(Browne and Ioannides, 2007) showed that this method is able to provide compact

results and has potential for scaling up well in complex domains.

One of the most common approaches is to reduce the population size by im-

proving the generalization. The advantage of this approach is to provide compact

and accurate knowledge. This is, in fact, very prominent in data mining, where

the knowledge discovery is as important as the predictive accuracy. A rule can be

easily interpreted by a human when considered by itself. However, each rule in

LCS represents a partial solution to the problem. In order to understand a com-

plete solution, the whole population needs to be interpreted simultaneously. In this

case, a population of a few thousand classifiers surpasses the ability of a human to

understand.

Wilson suggested that the population of XCS will compact over time due to

the increase in generalization (Wilson, 2001a). His study on the Wisconsin Breast

Cancer database showed that XCS reaches 100% accuracy after exploring approx-

imately 50,000 instances. Continuing the training after this point does not make

a difference to the accuracy, but helps to decrease the population size. From ap-

proximately 4,000 classifiers after 50,000 instances, XCS’s population size decreases

gradually to a stable point of around 1,000 classifiers. Wilson suggested that it is

the smallest population obtained by XCS in this problem. A question arises here is

whether all of those classifiers are really necessary or they are simply an artifact of

XCS?

One series of studies to compact the population started from the work of Wilson

(2001a). He proposed the Compact Ruleset Algorithm to filter out unnecessary

classifiers. This algorithm first arranges all classifiers in the population in order of

their performance and generality. The next step is to find a smallest subset B of top

classifiers (or best classifiers), that is able to maintain similar predictive accuracy

as the whole population on the training set. The final step is to find the smallest

set of classifiers in B, which is able to match to all training instances.

In the end, this algorithm is able to obtain a population of 25 classifiers from

1155 classifiers (a reduction of 97.8%) on the Wisconsin Breast Cancer problem,
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whilst the predictive accuracy remains highly competitive. Several works continued

in this direction (Dixon et al., 2003), (Fu and Davis, 2002), (Wyatt et al., 2004),

(Gao et al., 2006). One big challenge of those works is that selecting classifiers based

on a data set, which is normally quite small, would bias towards the sample’s size

and data distribution. Especially, noisy data sets would mislead the compaction

process and therefore end up with inaccurate subsets of the population. To overcome

this problem, a study conducted by Kharbat et al. (2007b) proposed a clustering

method to measure the similarity of attributes and features instead.

The key disadvantage of those approaches is the explicit assumption that the

level of predictive accuracy on the training set needs to reach a certain level. If

the system has not accumulated enough knowledge, the compaction process might

eliminate potential classifiers, resulting in longer training time. Clearly, this process

needs to be delayed until the population is experienced and knowledgable.

Perceptrons have been used in LCS to compact the population. Study in (Lanzi

and Loiacono, 2007) has shown that a perceptron was able to reduce the population

size. Chapter 4 will look further into this idea.

2.7 Artificial Neural Networks

An alternative popular method for classification tasks in the literature is arti-

ficial neural networks. This method is quite different to LCS in the sense that its

knowledge is a black box to a human. Its model is very compact, however.

The idea of artificial neural networks, inspired by the human brain, was first

introduced in early 1950s. Artificial neural networks, commonly referred to as neural

networks (NNs), started to attract attention for further research in late 1970s and

early 1980s. Haykin (1999) presented several powerful properties and characteristics

of neural networks including an ability to learn nonlinearity that is suitable to model

complex problems; a capability of built-in adaptivity that can respond to changes

of surrounding environments, a capability of robust computation, and a compact

learned model. In a survey of neural networks for classification, Zhang (2000)
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noticed that NNs have emerged as a promising alternative to various traditional

methods for classification as the vast research activities have been established in

this field. According to Zhang (2000), a variety of real world classification problems

has been solved successfully by neural networks such as bankruptcy prediction,

handwriting recognition, speech recognition, product inspection, fault detection,

medical diagnosis, etc.

2.7.1 Multi-layer Perceptrons

A NN is built out of a group of artificially interconnected units (neurons). One

type of units is the perceptron, where each input to the perceptron associates with

a real-valued constant, or weight, that determines the contribution of that input

to the output of the perceptron. Each unit is responsible for taking a number of

real-valued inputs (or outputs from other units) and produces a single real-valued

output using an activation function. The activation function is used to introduce

nonlinearity into the network. One of the most popular activation functions is the

sigmoidal function

ϕ(x) =
1

1 + e−ax
(2.14)

where the coefficient a determines the shape of the sigmoid curve.

Figure 2.8: A neural network for classification – three input variables and four
possible outcomes.

A NN might consist of one to many perceptrons arranged in one or many

hidden layers. The number of neurons in the input layer is the same as the number
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of input features. The outputs are encoded using m output neurons corresponding

to m classes.

Figure 2.8 illustrates a single layer perceptron. In this example, each input is

a vector of three variables and an outcome needs to be drawn from four distinct

groups (classes). The decision is made based on the network’s knowledge (a set of

weights) as the input is fed-forward from the input layer through the network to the

output layer. Once the output layer is reached, the output neuron with the highest

activation value is chosen as the prediction.

Training an NN is mainly concerned with tuning a set of weights that minimizes

the output error of the network. The back-propagation algorithm (Rumelhart et al.,

1986), which is quite similar to the gradient search, has proven successful in many

applications such as handwritten characters recognition (LeCun et al., 1990).

2.7.2 Negative Correlation Learning

In order to improve further the performance of neural networks within ensem-

bles, one way is to train individuals interactively so that each member specializes

on a part of the task. This method is called anti-correlation learning, which adds an

additional penalty term into the error function in order to maximize the distance

between all individuals in an ensemble to achieve a nice spread in the ensemble

space. The negative correlation term should not have a larger magnitude than the

original error function and is dimensionally consistent with the error function. Neg-

ative correlation learning (NCL) (Liu, 1999) is an approach of this type. McKay

and Abbass (2001) reveal that negative correlation learning acts to push the mem-

bers of the ensemble away from their mean, but not necessarily away from each

other.

NCL (Liu, 1999) (Liu et al., 2000) was introduced in NN ensembles to improve

the learning performance in classification, regression and time-series problems. The

idea of NCL is to introduce a correlation penalty term into the error function of

each individual network, so that all networks can be trained simultaneously and

interactively (Liu and Yao, 1997). The success of NCL was explained by Brown
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(2004): training individual networks with error functions plus their contributions

to overall ensemble error helps to diversify individuals in the ensemble, and therefore

improves the learning performance.

Negative correlation works as follows. Given a training data set

D = (x1, y1), . . . , (xn, yn), . . . , (xN , yN)

we want to estimate the output ŷ and update the knowledge of the population

for each instance.

Consider the nth training instance , and an ensemble of M neural networks. We

determine ŷen (the output of the ensemble on the nth training instance) by averaging

the outputs from the networks in the ensemble:

ŷen(n) =
1

M

M∑
i=1

ŷi(n) (2.15)

where ŷi(n) is the output of the ith network in the ensemble on the nth training

instance.

Negative correlation is added to the error function Ei of each network i in the

ensemble before back-propagation is executed. If the mean-squared error is used,

the error function of each individual network i is defined by

Ei =
1

N

N∑
n=1

Ei(n) (2.16)

=
1

N

N∑
n=1

[
1

2
(ŷi(n)− y(n))2] (2.17)

where N is a number of training instances, Ei(n) is the value of the error function

of network i on the nth training instance, and y(n) is the desired output of the nth

training instance. A negative correlation term is added to the error function:

Ei =
1

N

N∑
n=1

[
1

2
(ŷi(n)− y(n))2 + λpi(n)] (2.18)

where the parameter λ is used to adjust the strength of the penalty and pi is a
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penalty term. The purpose of the back-propagation is to minimize the error in the

future by adjusting the weights accordingly. Minimizing pi is to negatively correlate

each individual’s error with the rest of the ensemble. The penalty function pi is

defined by

pi(n) = (ŷi(n)− ŷen(n))
∑

j 6=i

(ŷj(n)− ŷen(n)) (2.19)

The partial derivative of Ei with respect to the output of individual i on the

nth training instance is

∂Ei(n)

∂ŷi(n)
= ŷi(n)− y(n) + λ

∂pi(n)

∂ŷi(n)
(2.20)

= ŷi(n)− y(n) + λ
∑

j 6=i

(ŷj(n)− ŷen(n)) (2.21)

= ŷi(n)− y(n)− λ(ŷi(n)− ŷen(n)) (2.22)

under the assumption that the output of the ensemble ŷ has constant value with

respect to yi(n). λ is a parameter used to adjust the negative term in each indi-

vidual. λ = 0 means that negative correlation is not enforced in the system. The

higher λ is, the more strongly the errors of the rest of the ensemble are correlated in

each individual’s error. This parameter is important because it controls the weight

of the negative correlation term when adding it to the error function.

A single weight connected to the output layer in the network is updated by the

formula

∆wi(n) = β[(ŷi(n)− y(n))− λ(ŷi(n)− ŷen(n))]
∂ŷi(n)

∂wi(n)
(2.23)

where β is a learning rate to decide on the update step.

The value of λ was initially forced to lie inside the range [0, 1]. Brown (2004)

later showed that this constraint is not necessary. He also introduced a strength

parameter γ, a function of λ and the number of networks in the ensemble:

γ = λ[
M

2(M − 1)
] (2.24)

In this thesis the author shall refer to the γ parameter instead of λ.
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2.7.3 Generating Rules from a Neural Network

The main challenge of using neural networks in data mining is its black-box

knowledge obtained from the algorithm. In order to understand the knowledge of

NN, many studies have tried to trigger classification rules out of the learning model.

In fact, it is possible to obtain a set of rules from the trained neural network but

the process requires a special rule extraction algorithm as in (Towell and Shavlik,

1993)(Andrews et al., 1995). This post-processing generally needs to run off-line

and therefore cannot provide an explicit set of rules on the fly as required in many

stream data mining applications.

2.8 The Emergent Questions

As we have seen, the research into LCS/UCS for data mining has mainly fo-

cused on static training data sets. Surprisingly, few works in LCS have considered

concept drift (Wyatt et al., 2004). This problem will be investigated in Chapter 3.

LCS/UCS has been reported as a good technique for data mining because it

can get high accuracy and provide a comprehensive rule-set. A rule in UCS is

represented as stimulus-response (i.e. condition-action). The major benefit of this

representation is that the rules can be easily interpreted by a human. This can

be important: in many data mining problems, the ability to understand the learnt

knowledge is sometimes as important as obtaining an accurate model. However, the

rule-based populations of LCS/UCS are normally so large that they grow beyond

the ability for a human to understand (Lanzi, 2001) (Butz, 2005). This makes the

system less efficient in terms of computational time, memory usage and comprehen-

sibility. This is the motivation of Chapter 4, where a new representation, aiming for

a population with fewer classifiers while still maintaining the predictive accuracy,

is proposed.

NCS benefits from using neural networks to solve simple robotics applications.

However, by replacing a whole rule completely by a neural network, NCS destroys

the expressiveness of LCS. The issue of how to use neural networks in LCS without
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losing too much expressiveness, is tackled in Chapter 4.

2.9 Chapter Summary

This chapter has provided a brief review of data mining classification tasks for

data streams. It has been widely accepted that data mining is an effective method

for triggering novel, potentially useful patterns hidden within massive amounts of

data. This thesis focuses on the classification task, which attempts to develop a

model from previous observed data for future prediction of values in a finite set.

Finally this chapter gives an overview of parallel learning. The review looks

at how scalability can be enhanced through parallel or distributed learning. This

thesis will show how these mechanisms can be used to improve the performance of

LCS system.
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Chapter 3

Challenges Facing UCS in Stream

Data Mining: An Empirical Study

The following papers are based on this chapter:

1. H.H. Dam, P. Rojanavasu, H.A. Abbass and C. Lokan (2008) Distributed learning classifier systems. In

Learning Classifier Systems in Data Mining, L. Bull, E. Bernadó-Masilla and J. Holmes Editors, Springer-

Verlag, In Press.

2. H.H. Dam, C. Lokan and H.A. Abbass (2007) Evolutionary Online Data Mining: An Investigation in a Dy-

namic Environment. In Evolutionary Computation in Dynamic and Uncertain Environments, Shengxiang

Yang, Yew-Soon Ong and Yaochu Jin Editors, Studies in Computational Intelligence Series, Springer-Verlag,

Volume 51/2007, pages 153-178, ISBN 978-3-540-49772-1.

3. H.H. Dam, H.A. Abbass, and C. Lokan (2005) DXCS: an XCS system for distributed data mining. Genetic

and Evolutionary Computation Conference (GECCO’2005), Washington D.C., ACM Press, 2005.

3.1 Overview

UCS is the main focus in this thesis because it is specially designed for clas-

sification tasks. Most work of UCS has assumed that the environment is static

and centralized. However, the environment of data streams is likely to be dynamic

and distributed in real life. The objective of this chapter is to investigate the be-

haviour of UCS, when confronted with three issues of stream data mining: (1) fast

processing, (2) concept change (or concept drift), (3) distributed environments.
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The chapter will start with an investigation on the time required for UCS to

process a training instance. The faster speed UCS can perform, the better it is

when dealing with data streams. The population size is an important factor that

affects the processing time of UCS. It motivates the author to propose the neural

representation in the next chapter.

The concept drift is then examined in UCS. The noise factor is also taken into

account. It is important to notice that the noise of data streams is not fixed as it is

likely to change over time. Experiments in this chapter generate the noise following

the Gaussian distribution.

Finally, UCS is investigated in a distributed environment. The architectural

design of a set of UCSs, called DUCS, for distributed data streams is proposed in this

chapter. This framework can work in either centralized or distributed environments.

In the first case, it helps to reduce the processing time in order to keep pace with

high speed arriving data. In the second case, the data transmission in the system

can be reduced and also a high level protection is given to the raw data.

The chapter is structured as follows. The next section provides the experi-

mental setup used in this chapter for stream data mining. Section 3.3 discusses

the processing time of UCS. Section 3.4 investigates UCS in dynamic and noisy

environments. Section 3.5 proposes DUCS, the framework of UCS in distributed

environments, followed by an investigation of DUCS in Section 3.6 and Section 3.7.

Finally, the summary section concludes the chapter.

3.2 Methodology

3.2.1 Synthetic Data Streams

Some systems designed to handle concept change have been tested on real-

world data such as spam filtering data (Delany et al., 2005), US Census Bureau

data (Street and Kim, 2001), and credit card fraud data (Wang et al., 2003). A

repository of such data sets (Blake and Merz, 1999) is maintained by the University
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of California at Irvine (UCI).

The main disadvantage of those data is that they do not contain significant con-

cept change. Thus concept changes are added artificially, and therefore it becomes

an artificial problem.

Artificial problems tend to be favoured by researchers, however. They have

the advantage that the researcher can control the type and rate of concept change,

context recurrence, presence of noise, irrelevant features, etc.

The most popular artificial testing benchmark for concept change in data min-

ing is the STAGGER concept (Harries et al., 1998), (Kolter and Maloof, 2003),

(Schlimmer and Fisher, 1986), (Widmer and Kubat, 1996). The problem contains

3 simple Boolean concepts of 3 features with a total of 120 instances and 3 cycles

of change. However, this problem cannot be extended to a large scale of data.

Scalability is very important as concept change mostly occurs in a stream of data.

In this chapter, we experiment on the multiplexer problem. A binary string of

length k+2k is used as an input. The first k bits determine the position of an output

bit in the last 2k bits. The multiplexer problem is one of the most popular testing

benchmarks in learning classifier system research in general and XCS in particular

(Butz et al., 2003b), (De Jong et al., 1993), (Wilson, 1995).

Wilson (2000) extended the multiplexer problem to a continuous domain by

introducing a real-threshold to convert a real number to a binary number. For

example, assume a real number is in the range [0, 1) and the real-threshold is 0.5.

The real input number r will be converted to 0 in binary if r < 0.5, otherwise it is

set to 1 in binary. The real multiplexer problem then becomes a traditional binary

multiplexer problem.

The real multiplexer problem is also considered a challenging artificial problem.

It can extend to large scale data. The magnitude and rate of changes, as well as noise

in the system, can be controlled easily by the researcher. Unless stated differently,

experiments in this chapter are carried out with the 6-real multiplexer problem.
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3.2.1.1 Noisy Data

In this chapter, the noise distribution is normal. This is one of the most

common distributions for noise in the literature. A parameter called noise level

refers to how noisy the data set is.

Noise is incorporated only in the training set by flipping the class with a certain

probability. For example, a noise level of 0.05 means that the flipping probability

is 5% (or approximately 5 noisy instances occur in each 100 training inputs).

3.2.1.2 Concept Change

The target concepts may change at different rates depending on the nature

of the application. Some concepts may change slowly, resulting in ambiguity and

uncertainty in between periods of stability. Other concepts might change suddenly;

new instances become no longer consistent with the current concepts of the learned

model. This thesis investigates the second case; leaving the first one for future work.

Figure 3.1: A concept change in the 6-real-multiplexer problem
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The concept changes in the real multiplexer problem are simulated by changing

the real-threshold used for mapping a real number to a binary number. Figure 3.1

illustrates the dynamic environments of the 6-real multiplexer problem. In this

example, the concept of data is altered as the real-threshold is changed. This

influences the mapping from a real number to a binary number. The concept at the

continuous level is changed, but the concept at the binary level remains unchanged.

The magnitude of change (MoC) in this problem is the absolute difference of

the real-threshold before and after the change. For example, if the real-threshold is

changed from 0.4 to 0.5, the MoC is 0.1.

3.2.2 Experimental Setup

In this chapter, the author conducted several experiments to study UCS in

stream data mining. The first experiment aims to learn the processing time of UCS

in a centralized static environment.

The second experiment investigates UCS in dynamic environments by learning

the impact of different MoCs on the system’s predictive performance in both noisy

and noise-free environments. In this experiment, a single run consists of two cycles.

The real-threshold of the first cycle is set to 0.1. After 4000 iterations (each iteration

includes 50 training instances and 50 testing instances) the threshold is changed.

The author chooses 4000 iterations because it gives any learning algorithm enough

time to accumulate full knowledge in this problem. Hence, we can evaluate accu-

rately its adaptive ability after the concept change. The real-threshold is altered

with different levels of MoC, such as MoC = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. For

example, if MoC = 0.4, the real-threshold of the second cycle will change from 0.1

to 0.5.

The last experiment aims to understand UCS in a distributed environment.

Several issues related to the distributed environment are investigated such as the

effect of different numbers of clients, the effect of different methods to combine local

knowledge at the server, the traffic load, the effect of knowledge sharing, etc.
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In (Dam et al., 2005c), the author found out that imbalance of class distribution

has an effect on the system performance. Experiments in this chapter avoid this

problem, by generating data with equal distribution of each class.

All experiments presented in this paper are averaged over 30 independent runs,

each has different random seed consistent in all experiments.

3.2.3 System Setup

If not stated differently, UCS is set up with the same parameter values used

by Wilson (2000), Stone and Bull (2003), and Dam et al. (2005b) as follows: N =

1000, α = 0.1, v = 10, θGA = 12, χ = 1, µ = 0.04, θdel = 20, δ = 0.1, θsub = 20, pI =

10, εI = 0, fI = 0.01.

3.3 Processing Time of UCS

In many stream data mining applications, a training instance can only be

passed through a learning system once due to the high speed and the large volume

of data. The first requirement for any algorithm in such an application is to learn

on the fly. Moreover, the processing time of an instance is another important factor

to judge the algorithm. A smaller processing time means more instances a system

can handle and therefore more up-to-date knowledge it can capture in real time.

A large processing time, on the other hand, indicates that some arriving instances

might be discarded as the learning speed is slower than the speed of data arrival.

This section is designed to study the processing time of UCS for each data

instance. The investigation starts with a theoretical analysis, followed by some

experiments of UCS with a number of different population sizes and a number of

different features.
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3.3.1 A Theoretical Study

Let P be the number of classifiers in the population, f the number of learning

features, Φ the number of time steps required before GA can be activated. Let Tp

be the real time needed to update all these parameters in one classifier. Let Tc be

the real time needed for one comparison.

For each training instance, UCS performs three major steps as follows.

• Evaluating the instance with respect to the current knowledge. Let Teval be

the time required to complete this component.

• Updating the population in light of the new information. Let Tupdate be the

time required to complete this step.

• Evolving the population. Let Tevolve be the time required to complete this

step.

3.3.1.1 Evaluation Time

Evaluation of a training instance starts by generating a match set for the in-

stance from a population of classifiers. It involves comparing the instance against

each classifier’s condition in the population. Assume the interval predicate represen-

tation and particularly the min-max representation is used to represent a condition

in UCS. In this case, each gene consists of two values representing the lower and up-

per bounds. The upper and lower bounds on the total number of comparisons (nc)

required for each classifier are 2 ∗ f and 2 respectively. Let T1 be the time required

for comparing an instance with one classifier. T1 can be estimated as follows

T1 = nc × Tc (3.1)

2× Tc ≤ T1 ≤ 2× f × Tc (3.2)

In order to form a match set [M], the instance needs to be compared with all
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P classifiers in the population. Hence the cost of forming the match set is

T[M ] = P × T1 (3.3)

2× P × Tc ≤ T[M ] ≤ 2× f × P × Tc (3.4)

If the match set is empty, the covering process is performed to create a matching

classifier and insert it to the population. It is normally assumed that the covering

only happens at the very beginning of the learning cycle thanks to the evolutionary

component. It means the match set always has at least one classifier and the cost

of covering can be ignored at this stage. The match set size n[M ] can be

1 ≤ n[M ] ≤ P (3.5)

UCS divides classifiers in the match set into a correct set [C] and an incorrect set

[!C]. A classifier in [M] belongs to [C] if its action is the same as the input’s class.

The correct set size n[C] has the minimal size of 1 classifier and maximum size as

the match set.

n[C] ≈ n[M ] (3.6)

1 ≤ n[C] ≤ P (3.7)

The evaluation time of each instance is the time T[M ] needed to form a match

set.

2× P × Tc ≤ Teval ≤ 2× f × P × Tc (3.8)

3.3.1.2 Updating Time

UCS is an incremental learner as all classifiers’ parameters in the match set

are updated for each training instance. All classifiers in the match set are revised

after the evaluation. The parameters in each classifier required to be updated are

the accuracy, fitness, experience, correct set size, etc. The update time Tupdate for
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all classifiers in the match set is

Tupdate = Tp × n[M ] (3.9)

Tp ≤ Tupdate ≤ P × Tp (3.10)

3.3.1.3 Evolving Time

Evolving the population in UCS occurs if the average time since the last GA

activation hits a threshold Φ, which is equivalent of the frequency of around 1/Φ.

The GA process starts by selecting two classifiers from the correct set with

probability proportional to their fitness. However, if the tournament selection is

used, the time needed for the reproduction would be similar for all UCS. Therefore

we can ignore this time.

If children are not subsumed by parents, they will be added to the population.

It requires a maximum of (P−2) classifiers to be compared with (except its parents)

in order to ensure a distinct set of classifiers. The time required to complete this

job is:

Tcomp = T1 × (P − 2) (3.11)

2× (P − 2)× Tc ≤ Tcomp ≤ 2× f × (P − 2)× Tc (3.12)

The time needed to complete this phase is

Tevolve =
1

Φ
Tcomp (3.13)

2× (P − 2)× Tc

Φ
≤ Tevolve ≤ 2× f × (P − 2)× Tc

Φ
(3.14)
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3.3.1.4 Total Time

Adding up the computation time derived from 3.8, 3.10, and 3.14, we have

TTotal = Teval + Tupdate + Tevolve (3.15)

Tp + 2× (P +
(P − 2)

Φ
)× Tc ≤ TTotal ≤ P × Tp + 2× f × (P +

(P − 2)

Φ
)× Tc

(3.16)

It can be easily seen that Equation 3.16 is dominated by the term 2×f ×P ×Tc. It

is in fact the matching time of the system. In general, the matching time requires

a large portion of processing time in UCS, which is affected by two main factors:

the population size and the number of feature. The next two sub-sections will

investigate the effect of these factors in UCS through several experiments.

3.3.2 The Effect of the Population Size

Experiments in this section study the effect of the population size on the per-

formance of UCS in terms of the predictive accuracy and the processing time on the

6-bit multiplexer problem. In order to understand the effect of the macro population

size, the author decided to merge the macro population and the micro population.

In other words, the numerosity of each classifier is always 1 and duplicate classifiers

are allowed in the population. In this version, UCS evolves to the maximum pop-

ulation size from an empty population before deletion takes place. The maximum

population size defined by the user will become the population size of the system.

Figure 3.2 shows the learning curves over time of UCS with different population

sizes. The result reveals that the maximum population size is indeed very important

for the learning performance. Extremely small population sizes would make the

system suffer from insertion-deletion cycles. The system will not be able to learn

in this case as the deletion is too active and destroys the accumulated knowledge.

In this experiment, the population sizes of 100 and 300 can be considered as too
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Figure 3.2: The learning curves of UCS with different population sizes

small as the learning curves do not present a sign of improvement. The population

size of 300 is able to give better accuracy than the population size of 100 because

it has lower deletion pressure and also allows more classifiers in the population.

The population sizes of 600 or over enable the system to reach 100% accuracy after

1000 iterations. Increasing the population size from 600 to 1500 does not make

a difference to the accuracy in the end but in fact affects the learning rate. The

population size of 1500 achieves 100% accuracy after approximately 400 iterations,

while it requires almost 500 iterations for the population size of 600 to get similar

accuracy.

Figure 3.3 shows the processing time (TTotal) and the matching time (Teval)

needed for UCS to process 5000 iterations with different population sizes. Exper-

iments in this section were run on the supercomputer: 304 processors Dell Linux

Pentium 4 Beowulf cluster and each node consists of two 3GHz CPUs with 2GB

memory. The time reported in this section is the smallest time recorded within

30 runs. The minimal time is used instead of the averaged time because the wait-

ing time is also included. The smallest time indicates the smallest waiting time,

therefore it is closer to the real time.

As we can see easily, the higher the population size is the longer time needed
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Figure 3.3: The processing time (above) and the matching time (below) of UCS
with different population sizes

for UCS to complete the job or to do the matching. The curves again confirmed

that the matching time takes most of the processing time of LCS. Increasing the

population size from 600 to 1500 requires more than double comparisons for each

data instances and therefore double the time would be expected to run. In fact,

200(ms) is required for the population size of 600 in comparison to 1700(ms) for

the population size of 1500. The equation 3.16 has showed that the learning time

is also related to the frequency of GA activation. That is the overhead time needed
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to put on top of the comparison times.

3.3.3 The Effect of the Number of Features

This section studies the effect of the number of features on matching time of

UCS, since the matching time is the dominant time during the training and testing.

UCS used in this section is similar to the one in previous experiments. UCS will be

tested for 2000 iterations on four multiplexer data sets, each of which has different

number of features: the 6 real multiplexer, the 11 real multiplexer, the 20 real

multiplexer, and the 37 real multiplexer.

Figure 3.4 presents the matching time of UCS for problems with different num-

ber of features using two maximum population sizes: 2000 (above) and 6400 (below).

Increasing the number of features requires longer time for matching as the

condition becomes bigger. As a result, the matching time required increases.

3.3.4 Summary

In conclusion, this section shows that the population size is very important

in UCS in terms of the processing time. In general, increasing the population

size would result in better accuracy and faster learning rate. It also increases the

processing time, however. There is always the trade-off between the learning rate

and the learning time.

The study confirms the trend in UCS: a large population is required to main-

tain accuracy. However, it highlights a problem in stream data mining related to

the slow processing due to a large population, which required longer time in the

matching process. This critical problem motivates the author to propose the neural

representation discussed in the next chapter.

Hai H. Dam October 6, 2008



CHAPTER 3. CHALLENGES FACING UCS IN STREAM DATA MINING 82

6 11 20 37

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of features

T
im

e 
(m

s)

Matching time of UCS, different numbers of features, noise 0.00,pop. size 2000

6 11 20 37

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of features

T
im

e 
(m

s)

Matching time of UCS, different numbers of features, noise 0.00,pop. size 6400

Figure 3.4: The matching time of UCS with different numbers of features using the
population size of 2000 (above) and 6400 (below)

3.4 A Study of UCS on Dynamic and Noisy En-

vironments

This section will investigate UCS in a dynamic environment, which is very

common in stream data mining. The dynamic environment reflects the popular

phenomenon in the real world that things keep changing over time. A good learning

algorithm needs to revise its knowledge over time to capture new situations.
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Table 3.1: The accuracy of UCS after the change and the recovering time upto 98%
with different MoC.

MoC Accuracy after the change Recovering time
0.10 0.660 ± 0.074 ≈ 5000
0.20 0.600 ± 0.071 ≈ 5000
0.30 0.548 ± 0.064 ≈ 5000
0.40 0.531 ± 0.063 ≈ 5000
0.50 0.530 ± 0.057 ≈ 5000
0.60 0.524 ± 0.062 ≈ 5000
0.70 0.517 ± 0.054 ≈ 5000
0.80 0.509 ± 0.057 ≈ 5000

3.4.1 The Influence of MoC

Figure 3.5 shows the predictive accuracy curve and the population size curve

of UCS over 8000 iterations, with the change occurring at the 4000th iteration. The

magnitudes of change are MoC = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} respectively.

Observing the graphs, a sharp decrease in the predictive accuracy is obvious at the

4000th time step, where the concept change takes place.

Table 3.1 presents UCS’s accuracy right after a concept is changed, and the

number of time steps required for UCS to recover to 98% accuracy, at each level of

MoC.

A similar study on XCS has been investigated in (Dam et al., 2007). The study

reveals that XCS can recover quickly from a small MoC. If MoC is large (more than

0.2), XCS requires a much longer time to learn and adapt to the new concepts. If

MoC is extremely large (more than 0.4), it is quicker to start learning from scratch

rather than continuing with the current knowledge since XCS is not able to recover.

Surprisingly UCS behaves quite differently. Increasing MoC does not seem

to require much longer time to recover even though it has an influence on the

accuracy. The accuracy after the change drops down to about 65% with MoC = 0.1,

approximately 57% with MoC = 0.2, and almost 50% with other MoC. It is not

unusual because UCS aims at developing a partial action map with only accurate

classifiers, whereas XCS maintains a complete action map.
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Figure 3.5: The learning curves and the population sizes of UCS in dynamic envi-
ronment with different MoC values in noise-free environments; MoC = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8.
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After small changes, some classifiers in the population remain accurate, result-

ing in better predictions than random guesses (normally would be 50% for a two

classes problem). Moreover, when the threshold is changed from 0.1 to 0.2, any

real numbers in the range (0.1, 0.2) in the previous time step that were considered

as a binary 1, but now become a binary 0. Since data is generated with a uniform

distribution, about 10% of the real numbers are converted to a different binary

number in the new environment. There are 50 × 6 = 300 real numbers required

for 50 training instances (a training window). 10% of them which is about 30 real

numbers, would be converted differently. Therefore, at least 5 instances (6 real

numbers form an instance) and at most 30 instances contain the real numbers that

are modified. At least 20 instances (40%) in the training window are unchanged in

the new condition. This explains why the learning curve does not drop as low as

the starting point at time step 0 and also the population size does not rise as high

as 0.7 as the first time step.

If MoC is higher (more than 0.1), UCS seems to offer random guesses as most

classifiers become inaccurate after the change and also most of the data instances

would get different classes after the change. As a result, the predictive accuracy

right after the change drops lower than the first cycle to around 50%.

Three different behavioural patterns can be drawn with further observing the

population sizes when MoC is more than 0.1

The first pattern happens when MoC = 0.2, 0.3, 0.4. The population size rises

quickly after the change, but not as high as the peak in the first cycle. At the end of

the second cycle, the population size stabilizes at around 0.1 as the end of the first

cycle. A lower peak of the population size in the second cycle indicates that some

classifiers in the first cycle are still useful after the change, therefore the system

does not have to learn from scratch.

The second pattern happens when MoC = 0.5, 0.6. The population size rises

quickly after the change, but not as high as the peak in the first cycle. At the

end of the second cycle, the stable point of the population size is much higher

than the one in the first cycle. Similar to the previous region, the peak of the
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population size in the second cycle is lower than the one of the first cycle, indicating

that the system keeps some classifiers in the previous cycle as they are acceptable.

The higher population size in the end indicates that UCS fails to generalize in this

situation. One reason to explain this behaviour is that some classifiers that survived

from the first cycle cannot be subsumed by others in the population as they cover

different areas (a mixture of the area of previous concepts and new concepts after

the change). They in fact cannot subsume other classifiers because they are not

general and accurate in the new situation.

The last pattern happens when MoC = 0.7, 0.8. The population size also rises

quickly after the change with a similar peak as in the first cycle. The population

size manages to get stable at around 0.1 similarly to the end of the first cycle. The

results suggest that most classifiers become incorrect after the change. As a result,

UCS managed to delete all and starts learning from scratch.

In essence, the behaviour of UCS with different MoCs might be different due

to several suggestions above. The learning accuracy in all cases does not change

much as 100% accuracy is obtained in most cases. This indicates that UCS is able

to adapt in dynamic environments under different levels of change.

3.4.2 The Effect of Noise

Figures 3.6, 3.7, 3.8 show the learning curves and the population size curves

with different levels of noise after different MoCs of 0.1, 0.5, and 0.8 respectively.

Observing the graphs, we notice three regions of noise that affects the recovery

time of UCS from concept changes. These are: low noise, which results in a slow

recovery; medium noise, which helps the system to recover almost as fast as the

original learning; and high noise, which increases the recovery time dramatically.

The levels of noise in each region are [0.00, 0.03),[0.03, 0.15), and [0.15, 1.00) for low,

medium, and high respectively.

In the first cycle, UCS starts without prior knowledge. The population curve

increases dramatically after a few steps at the beginning for all three regions. At
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this stage, GA is working hard to introduce new classifiers into the system. Those

classifiers might be either good or bad. The learning component is responsible for

updating their parameters accurately to reflect their suitability.
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Figure 3.6: The learning curves and the population sizes of UCS in smooth dynamic
environments (MoC=0.1) and noisy environments (Noise = 0.00, 0.02, 0.07, 0.10,
0.15, 0.20)

When noise is small, UCS is able to differentiate effectively good classifiers

from the bad ones. As a result, the population curve starts to decrease gradually

after the peak. By the time the concept change happens, the system has achieved a

compact population, which contains only accurate and maximally general classifiers
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(Kovacs, 1997).

When the concept change is small (MoC = 0.1), some classifiers in the pop-

ulation becomes incorrect. However, the number of these classifiers may be small,

resulting in a lower peak of the population size after the change than the one in the

first cycle.

When the concept change is medium (MoC = 0.5) or severe (MoC = 0.8),

most of these classifiers become inaccurate after the change. GA starts working

hard as a large number of classifiers are inserted in the population. In order to

recover completely, the incorrect classifiers need to be re-evaluated and removed

from the population. In order to remove those classifiers, it requires a sufficient

time to update their parameters from good to bad so that they can be eliminated.

This explains why the accuracy in the second cycle improves more slowly than in

the first cycle.

Medium noise, on the other hand, affects the learning process as Lanzi and

Colombetti (1999) has suggested. UCS is not able to compact the population as

much as it could in low noise cases. The population curve decreases insignificantly

in the first cycle. Before a concept change, the population contains both good

and bad classifiers. As a result, the performance can never achieve 100% accuracy.

Observing the decrease in the population suggests that UCS has achieved a certain

level of generalization. After the concept change, only a small number of classifiers

are inserted in the population. Some inaccurate classifiers in the previous cycle

might become accurate under new conditions. UCS does not have to remove and

discover these classifiers. Hence the recovering time is reduced significantly.

When the noise level is high, UCS is unable to eliminate bad classifiers com-

pletely. The population always evolves both bad and good classifiers. The last

row of Figure 3.8 shows that the population curves don’t decrease at all after the

initial peak. A large population implies that the system was not able to general-

ize. It seems that the population contains many bad and specific classifiers. Unlike

the previous cases, some inaccurate classifiers appear to be still inaccurate after

the concept change because they are over-specific. Hence, the recovery time starts
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Figure 3.7: The learning curves and the population sizes of UCS in medium dynamic
environments (MoC=0.5) and noisy environments (Noise = 0.00, 0.02, 0.07, 0.10,
0.15, 0.20)

increasing as the noise level increases in this region.

3.4.3 Summary

The study in this section indicates that UCS is able to work well in dynamic

environments under different MoCs. Noise indeed affects the overall learning in UCS

as higher population size is required in noisy environments. However, in general,

the predictive accuracy is not affected by the noise. In general, UCS is robust and
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Figure 3.8: The learning curves and the population sizes of UCS in severe dynamic
environments (MoC=0.8) and noisy environments (Noise = 0.00, 0.02, 0.07, 0.10,
0.15, 0.20)

suitable for dynamic environments.

3.5 Distributed Environments

This section describes a distributed framework of UCSs, called DUCS, for a

distributed environment. The system is built up from several distributed sites and a

central site. These sites are described in terms of the client and server architecture.
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Figure 3.9 depicts the structural architecture of DUCS.

Figure 3.9: The framework of DUCS with three clients and one server

A client is placed at each distributed site and is responsible for extracting the

knowledge (learning model) from the local database. The local learning model needs

to be transferred occasionally to the server. The server combines the information

from clients to form a descriptive model for the global environment.

3.5.1 Distributed Sites

Each client employs a complete UCS, which is trained independently on the

local data stream. Local UCSs normally start with an empty population, assuming

no prior knowledge is available in advance. They are responsible for evolving the

population during the training process, aiming at capturing the local knowledge.

The data transmitted to the server consists of the local model along with a set

of data instances. The local model is a population of classifiers learned by the local

UCS. The set of data instances is mainly used for training at the server if required.
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3.5.2 Server Site

The server stores local models in the memory and avoids any modification

to their contents. Local models at the server are synchronized with the client’s

knowledge through the exchanging data coming from local sites. It allows the server

to update its knowledge with the most up-to-date information. Any change at the

clients will be realized by the server through the exchanged model. The frequency

of transmission normally affects the knowledge of the server. In many cases, if the

local models are updated more frequently, the server is more up-to-date.

After receiving the updated models and training data from all clients, the server

will combine the local models into a single coherent knowledge base. The clients’

models are aggregated at the server using a knowledge fusing technique.

Each input instance at the server is processed by all local models, which might

result in different predictions due to different bias learned by clients. The final

output, chosen between those predictions, is decided by a fusing method employed

at the server.

3.6 An Investigation of DUCS

This section is designed to investigate DUCS in several issues: (1) how to

combine the local knowledge at the server; (2) how does DUCS handle data trans-

mission; (3) what is the effect of having different number of clients?

3.6.1 Knowledge Combination at the Server

This thesis chose two approaches of knowledge combination for investigation:

knowledge probing and majority voting.
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3.6.1.1 Knowledge Probing

A simple UCS is employed at the server to learn the outputs from the local

models. This technique requires a training process at the server. Clients are required

to send some data along with the local model for training the server. The first step

is to generate training instances for the global UCS based on local UCSs. Figure

3.10 illustrates the process to create a new training instance at the server. In this

example, the server maintains four local models. 11110001 is a server training

instance to input into each local model. 1 is a target class associated with that

training sample. Outputs from local models are 1, 0, 0, 1 respectively. Thus

1001 : 1 is an ensemble training instance.

After receiving the updated models from all clients, the server applies the

knowledge probing approach (Guo et al., 1997) to combine the local models. The

key idea of this approach is to derive a descriptive model using the output of the

local models. All training data received by the server are used as inputs for all

copies of local models available at the server, then the server trains a UCS to learn

the mapping between the output of these local models and the target class. In

other words, the training instances for the server’s UCS are created online at the

server by all local models. Each server’s training instance is inserted to each local

UCS and the class exported out of the model becomes an attribute of the ensemble

training instance.

The training phase at the server using this knowledge probing technique is

described as follows:

• Form New Inputs:

– A set T of n training instances obtained from clients

T = {(t1, c1); (t2, c2); ..; (tn, cn)} where t is a training instance and c is an

associated class.

– A set L of m local UCS models L = {l1, l2, .., lm}

– A learning algorithm UCS on top of local models, which provides a final

descriptive output of the server. That model represents the global view
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Figure 3.10: An example of the knowledge probing approach at the server in DUCS

of the server.

• Prediction Phase: Obtain outputs from each model in L for each data item in

T and form an ensemble of training instances. The outputs of the nth instance

tn from the set of models in L are a set On: On = {on1, on2, .., onm}. The set

O consists of the ensemble of training instances for UCS O = {O1, O2, ..On}.
The new server training set becomes S = {(O1, c1); (O2, c2); ...; (On, cn)}

• Learning Phase: Learning from data entries in the server training set S, L∗ =

UCS{(O1, c1); (O2, c2); ...; (On, cn)}

• Output: descriptive model L* obtained from the learning phase.

Once the descriptive model is defined, it will be used to combine the outputs

from clients and propose the final output at the server.

3.6.1.2 Majority Voting

An outcome of the server is contributed by all local models in DUCS. The

server will choose the final outcome by voting between local models.

Assume DUCS has a set L of m local UCS models L = {l1, l2, .., lm}. For

each testing instance Ti ∈ T (T = {(t1, c1); (t2, c2); ..; (tn, cn)}, where t is a training

instance and c is an associated class) we have:
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• Obtain predictive outputs from local models in L for each data item Ti.

• Voting is carried out between local predictive outputs in order to choose the

most preferred outcome.

• The winning outcome is the one whose number of votes is greater than half

of the numbers of individuals.

3.6.1.3 An Investigation of the Knowledge Probing Approach

Before comparing voting against knowledge probing, the author first investi-

gates one of the most sensitive parameters of the knowledge probing approach: the

training set of UCS at the server. The training data at the server is combined from

all local data received from clients. More training instances at the server would

result in faster learning at the server.

Figure 3.11 presents the learning curves at the server with different training

sizes (5, 10, 50, 100 instances) in both noise-free and noisy environments. The

training size refers to the amount of training instances that each client sends to the

server along with its model. The data is chosen randomly from incoming instances

at clients.

Clearly, learning is slowest with the training size of 5 instances, fastest with

the training size of 50 instances. The difference between the size of 50 instances and

10 instances is mainly observed during the first 400 iterations. Because UCS starts

without prior knowledge, it requires a period of time to build up the knowledge

base. Sending more training data to the server would provide more information

and therefore speed up the initial learning of UCS. A small training size would not

provide enough data for training the server, resulting in unstable performance.

The difference between learning with 100 instances and 50 instances is fairly

small. However, the training size of 100 instances requires the transmission of

double the amount of training data. The author decided to choose the training size

of 50 instances for investigation from this point in the chapter.
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Figure 3.11: The learning curves at the server using the knowledge probing approach
with different training sizes – In the noise-free environment (upper) and the noisy
environment (lower).

3.6.1.4 Comparison of Knowledge Probing and Voting

Figure 3.12 shows the learning curves at the server of DUCS using the voting

and knowledge probing approaches in noise-free environments. The learning at the

server with the knowledge probing approach is slower at the beginning (the first

200 iterations) in comparison to the majority voting method. This is because the
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Figure 3.12: The learning curves at the server of knowledge probing and voting in
noise-free environments

knowledge probing approach has another UCS on top of the local models. The

server first forms its new training instances from the predictions of local models

and then uses them for training the extra UCS. In order for UCS to obtain enough

knowledge, initial training time is required. The majority vote, on the other hand,

does not require learning time because the decision is based directly on voting

between clients’ predictions. However, once UCS accumulates enough knowledge in

the knowledge probing approach, it starts to speed up its learning and converges

faster than the voting approach. Both approaches are able to achieve 100% accuracy

after about 200 iterations.

Figure 3.13 shows the learning curves at the server, using the knowledge probing

and majority voting methods, with the noise level of 0.2. A similar pattern applies

for noise level of 0.1.

It is easily observed that majority voting is more robust to noise than knowledge

probing, as it learns faster and achieves higher accuracy than the knowledge probing

approach in noisy environments.

In the knowledge probing approach, the training data of UCS at the server is

constructed from predictions of local models. If predictions of local models are in-
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Figure 3.13: The learning curves at the server of knowledge probing and voting in
noisy environments (noise level of 0.2)

correct, the training data becomes noisy for training. At an early stage of learning,

some predictions of local models are incorrect due to their inexperience, since UCS

normally requires a substantial time for the evolutionary and learning components

to explore the search space and evolve the population. Once UCS receives enough

training data, its knowledge (population of classifiers) becomes more reliable. There

is also a high chance of misclassification by local models as the learning algorithm

normally requires more time to eliminate the effects of noise. The knowledge accu-

mulated in the system is unreliable due to noisy data encountered in the past and

more training is required to reduce their impact.

When the training size is too small (50 instances), knowledge probing is not able

to converge as seen with a larger training size (500 instances). Clearly increasing

the training size will help the system to overcome noise more quickly.

The voting method is more advantageous than the knowledge probing approach

in noisy environments because it can reduce the bias in the system by their votes.

In conclusion, both the knowledge probing approach and the voting approach

can attain 100% accuracy. The knowledge probing approach learns slower than

the voting approach in noise-free environments. When noise occurs in the data,
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majority voting is more robust. Thus from this point, the author will only consider

the majority voting method for combining predictions at the server.

3.6.2 Effects of the Number of Clients

In this sub-section, DUCS is simulated with three, five, seven, and nine clients

in noise-free environments. Each client is trained by a similar amount of data. In

the other words, the training data of a system with nine clients is three times larger

than the one with three clients.

The purpose of this experiment is to reassure us with DUCS performance in

a real environment, since it means that people could use a number of clients that

suits their business arrangements, or as needed to cope with the rate of arriving

instances, rather than a particular number of clients that makes a difference to

accuracy.
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Figure 3.14: The learning curves and population sizes at clients with different num-
bers of clients in noise-free environments

Figure 3.14 shows the averaged learning curves and the averaged population

size curves at the client with different numbers of clients in noise-free environments.

Increasing the number of clients slightly improves the learning rate in the be-
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ginning, but the population size does not seem to be affected. In this experiment,

each client might learn a different bias as it is exposed to different portions of the

data. As a result, the averaged accuracy is slightly better for the system with more

clients. The population size curves, on the other hand, are not different because

they are averaged over the number of clients; and also each client would go through

a similar generalization process after training with a similar amount of training

data. This indicates that increasing the number of clients will result in bigger data

communication in DUCS because all clients need to update their models at the

server and each client will end up with a model with similar size.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

A
cc

ur
ac

y

Server Performance, noise 0.00

 

 

3 clients
5 clients
7 clients
9 clients

Figure 3.15: The learning curves at the server with different numbers of clients in
noise-free environments

Figure 3.15 shows the learning curves at the server with different numbers

of clients in noise-free environments. The number of clients affects the predictive

performance of the server only at the beginning. The server with nine clients learns

faster than with three and five clients. Increasing the number of clients from five to

nine results in a faster learning rate. At the beginning, the clients might not have yet

discovered all hidden information due to bias in data distributions. Therefore having

more clients gives more information to the server, and results in faster learning by

the server. Once the clients have learned completely, the performance at the server

is not affected by the number of clients. More clients also means a larger data
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transmission, without any benefit in improved accuracy once the server has learned

enough.

In conclusion, the number of clients seems to affect the learning rate of the

server. More clients tends to result in faster learning, but only up to a fairly small

number of clients. Moreover, more clients mean larger data transmission is required

in the system.

3.7 Knowledge Passing in DUCS

This section is designed to understand the effect of knowledge passing in DUCS.

The system builds up its knowledge over time by learning at clients. The knowledge

of clients is represented by populations of classifiers. Knowledge passing refers to

the migration of classifiers within the system. Two main channels of transmission

are explored in this section: between the clients and the server, and between clients.

3.7.1 Data Transmission between Client and Server

In (Dam et al., 2005b) the author proposed the data transmission between

clients and server for binary domain based on the Minimum Description Length

(MDL) principle following the path of Bacardit and Garrell (2007). MDL is nor-

mally used to evaluate the complexity and accuracy of the model in terms of data

compression. The main difference between this work and the one of Bacardit and

Garrell (2007) is in the way that the MDL principle is used. In (Bacardit and

Garrell, 2007), the MDL principle is used in the fitness function to combine the

accuracy and the complexity of the individual, whereas the MDL principle is used

in this work to measure the real traffic between clients and server.

The data needed for transmission between clients and the server includes the

model and the training instances. Therefore, the cost of transmission is equivalent to

the number of bits needed to encode the model (theory bits) plus training instances
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(exception bits).

MDL = TheoryBits(TL) + ExceptionBits(EL) (3.17)

The length of the theory bits (TL) is the number of bits required to encode a set

of classifiers that will be transferred in the network. In the previous papers, the

author ignored all parameters associated with each classifier. This section presents

a formula that takes into account the length of all parameters associated with all

classifiers.

The classifiers have a common structure: Condition −→ Action : parameters.

Their lengths are defined as follows:

TL =
nr∑
i=1

(TLi) +
nr∑
i=1

(CLi) +
nr∑
i=1

(PLi) (3.18)

Where nr is the number of classifiers needed for transmission; TLi, CLi, PLi are the

length of a condition, an action and a set of parameters in one classifier respectively.

Assume that the interval predicate is used to encode a condition, the action is

presented in integer, and that each classifier will transfer three parameters: fitness

(a real value), numerosity (an integer), and experience (an integer). The length of

each component of a classifier can be estimated as follows:

TLi = 2× nc× nreal (3.19)

CLi = nint (3.20)

PLi = 2× nint + nreal (3.21)

where nc is the number of features; nreal and nint are the number of bits required

to encode a real value and an integer respectively. Therefore, the theory bits are

estimated as:

TL = ((2× nc + 1)× nreal + 3× nint)× nr (3.22)
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Similarly, the exception part (EL) is estimated as follows:

EL = nu× (nc× nreal + nint) (3.23)

where nu is the number of training instances sent to the server.

Thus, the length of data sent from a client to the server is:

MDL = (2×nr+nu)×(nc)×(nreal)+(nr)×(nreal)+(3×nr+nu)×(nint) (3.24)

This equation is used to measure the communication load between a client and a

server in DUCS. This data consists of the learning model and the training data at

the server. Reducing the traffic requires two conditions: (i) small model and (ii)

less data instances. If voting is used at the server, the second condition can be

ignored. Therefore, obtaining smaller local model is a focus of this thesis.

3.7.2 Investigations of Data Transmission Between Clients

and Server

The knowledge passed between clients and the server includes the clients’ learnt

models and some training data. The training data will be used for training at the

server, if required in order to resolve any conflicts between local models. A collection

of local models at the server represents the knowledge of the whole distributed

databases. The training data is normally small in comparison to the local model.

In particular, the simple voting approach does not require any training data at

the server. Hence, knowledge passing between clients and server in this section is

mainly concerned with the transmission of local models without training data.

In the previous DXCS framework (Dam et al., 2005b), populations of classifiers

at clients are regularly transmitted to the server. The transmission data is reduced

over time as the learnt models become more accurate and therefore compact. The

advantage of this approach is that it is quite simple and also reserves the local

knowledge at the server. However sending the whole population when the system
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is in a stable condition uses more network bandwidth than is actually needed.

To reduce the amount of data transmitted between clients and the server, in

DUCS the author introduces an approach to transfer partial knowledge. In this

approach, each classifier is associated with a distinct identification number (ID)

that differentiates it from others in the population. The main purpose of this

parameter is to synchronize the local models and their copies at the server without

sending the whole population. Figure 3.16 illustrates the data transmission from a

client to a server using the partial knowledge passing approach.

Figure 3.16: The partial knowledge passing approach - An example of the data
contained in a transmission packet from a client to the server

Data transmitted to the server consists of three main types of data: newly

created classifiers, parameters of those classifiers that have been updated since the

last transmission, and the unchanged index. The unchanged index contains the

ID of those classifiers that have not been modified from the previous transmission.

This index is used to synchronize the local model at the server.

When the data arrives at the server, it will have to wait for the server to update

its corresponding local model. The server will first insert newly created classifiers

into the population. The parameters of the updated classifiers are revised to record

their new values. The server will discard classifiers that were not updated and

whose ID was not listed in the unchanged index.

When we tested the approach using partial model transmission, the learning

rate and accuracy were exactly the same as with full model transmission. This is

as expected, since the difference between the approaches is just how the models are
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transmitted; the models still contain the same information.
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Figure 3.17: The data transmission between clients and a server with whole/partial
population

Figure 3.17 shows the amount of data transmission in DUCS from clients to

the server, measured by the MDL equation, with full model and partial model

transmission. It can be seen that the amount of data transmitted using the partial

knowledge passing approach is about half that with full knowledge passing. Thus

the partial knowledge passing helps to reduce substantially the network traffic while

still maintaining equivalent accuracy and learning speed.

3.7.3 Investigations of Knowledge Transferring Between Clients

In this section, the learning speed at clients is improved by sharing knowledge

between clients. In (Bull et al., 2005) and (Bull et al., 2007b), the rule sharing

takes place when the average time since the last rule sharing exceeds a threshold

defined by users. A single rule is chosen according to fitness using the standard

roulette-wheel selection. This rule is sent to another population in the ensemble.

The study found that sharing rules chosen from an action set is superior than from

the whole population.
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In this chapter, a similar idea of rule sharing between clients is applied. The

rule sharing is carried out at the client level, where clients exchange their available

knowledge to each other. The main difference with the work of Bull and Kovacs

(2005) and Bull et al. (2007b) is that clients in this chapter are trained with inde-

pendent data sets and the migration classifiers are chosen in the whole population.

The sharing decision is chosen after each fixed time window. Each client maintains

its own temporary pools for keeping migration classifiers from other sites. After a

time window, in this experiment set to 5 instances, each client chooses a classifier

from its population with probability proportional to its fitness. The client sends

the chosen classifier to a random client in the system. The classifier is placed in the

pool of that client waiting for integration into its population.

Figures 3.18 and 3.19 show the learning curves at the clients and server with

and without knowledge sharing. We can see that clients learn a little bit faster

with the knowledge sharing. The population with knowledge sharing is able to cut

down faster. The migration of classifiers in the system increases the diversity in the

population, giving faster convergence.
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Figure 3.18: The learning curves and population sizes at clients with/without knowl-
edge sharing

However, its population is not able to achieve the same compactness as the
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Figure 3.19: The learning curves at the server with/without knowledge sharing

population without knowledge sharing. Continuing the knowledge sharing when the

system is stable prevents UCS from compacting its knowledge because diversified

classifiers are introduced to the population.

Results so far have been for the 6-real-multiplexer problem. The knowledge

sharing also has a significant impact in the binary domain. Figures 3.20 and 3.21

show the learning curves at client and server, respectively, of the binary 20-bits

multiplexer problem. Similar pattern can be observed in the binary domain. Clients

learn much faster with knowledge sharing. UCS is able to achieve 100% accuracy

after 400 iterations in comparison to 900 iterations without knowledge sharing.

The population with the knowledge sharing is able to reduce in size faster as it

becomes stable after 400 iterations, which is around half time required without the

knowledge sharing. The migration of classifiers in the system increases the diversity

in the population, which is why faster convergence is observed.

The improvement of learning speed at the clients has a direct impact at the

server. The server is able to achieve 100% accuracy after 200 iterations in compar-

ison to more than 300 iterations without knowledge sharing.

Thus knowledge sharing between clients helps to speed up the learning at clients
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Figure 3.20: The learning curves and population size curves at clients with/without
knowledge sharing on the 20-bits multiplexer
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Figure 3.21: The learning curves at the server with/without knowledge sharing on
the 20-bits multiplexer problem

and therefore at the server. However, the population size is bigger with knowledge

sharing than without. This is the trade-off between faster learning speed and the

compactness of the population.
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3.7.4 Summary

This section studies DUCS, the proposed distributed framework for UCS. The

first experiment investigates DUCS under two approaches for combining the knowl-

edge at the server. The study found that both approaches are comparable in terms

of the predictive accuracy. The knowledge probing approach is able to learn faster

in noise-free environments, whereas, the voting approach is more robust to noise.

Since noise always exists in real life, the author decided to choose the voting ap-

proach for further investigation.

The second experiment is carried out to test DUCS with different numbers of

clients. This experiment tries to simulate the real life where an organization might

have different branches depending on their need. A study found that more clients

results in faster learning at the server, but only up to a fairly small number of

clients.

The last experiment investigates knowledge passing in DUCS. The MDL func-

tion is proposed to measure the traffic between a client and a server. The author

believes that the traffic load within the system can be reduced by cutting down

local models. A method to transfer partial models in DUCS is then proposed. The

result shows that DUCS requires much less data transmission using this method.

Finally, the knowledge sharing between clients is investigated indicating that faster

learning can be obtained using this method.

3.8 The Comparison between DUCS and Cen-

tralized UCS

Two algorithms are investigated in a simulated distributed environment with

three clients and one server. The first algorithm is our proposed DUCS and the

second one is a centralized UCS. The centralized UCS system is equivalent to having

one UCS in the server and the clients keep sending all local data to the server.

In this experiment, the transmission between the client and the server occurs
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using a fixed window. We call the training of each local UCS in DUCS using each

window an epoch. After each epoch, the clients send their local information to the

server. A similar process is followed for the centralized UCS system, where all data

(since there is no local learning) get transmitted from the clients to the server after

an epoch.

3.8.1 The Predictive Accuracy
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Figure 3.22: The learning curves at the server of DUCS and the centralized UCS
with the epoch size of 50 in noise-free environments

Figure 3.22 shows the testing curves at the server of DUCS and the centralized

UCS in terms of the accuracy. The testing accuracy of DUCS is almost as good

as the testing accuracy of the centralized UCS. In fact, DUCS seems to generalize

slower than the centralized UCS at the start of the time interval. This behaviour

is expected since DUCS needs more time in the beginning to combine correctly

the models from the clients. However, with time the testing performance of DUCS

achieves the same level as the centralized UCS.

Figure 3.23 plots the MDL values over time to measure the data transmission

between the clients and the server after each epoch. Because the system starts

with an empty population, the MDL value is high at the start. The covering
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Figure 3.23: The data transmission of DUCS with the epoch size of 50 in noise-free
environments

technique is invoked often, creating new classifiers to match each of the previously

unseen data. During this stage, the population is full of inaccurate macro-classifiers

and many misclassified instances are sent to the server. As training proceeds,

the fitness pressure of UCS pushes its population towards accurate and general

classifiers. There are fewer misclassified instances, and the model becomes smaller as

the system discards inaccurate and specific classifiers. After about 1500 generations,

MDL seems more stable.

Overall, the results show that DUCS is very competitive when compared with

the centralized UCS. Data transmission in DUCS is high to start with, but stabilizes

rapidly.

3.8.2 The Effect of Epoch Size

We have shown that data transmission in DUCS decreases over time. However,

if the epoch size is small, we will need to send the model more frequently. In

addition, the size of the data used to train the model in each epoch may actually

be smaller when compared to the size of the model itself. Therefore, it may sound

as though there is not any real saving in terms of network load.
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In this sub-section, the author decided to increase the epoch size; thus, more

data is used to train each client before the model is sent to the server. In this way,

the model size would be smaller than the size of the data used, and we can also

estimate the effect of the epoch size on the performance of the server.
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Figure 3.24: The learning curves at the server of DUCS and the centralized UCS
with the epoch size of 500 in noise-free environments

Figure 3.24 depicts the testing performance of DUCS and centralized UCS

when the epoch size is increased from 50 to 500. The training accuracy of DUCS

is almost as good as the centralized UCS. The two curves may look smoother than

the corresponding ones with epoch size of 50 because we now have less number of

epochs and we average over more data. The real differences are not much when

we inspected the data. In terms of generalization, however, it seems that both the

decentralized and centralized versions improved their generalization when the epoch

size increases. This is logical since each model is exposed to more data before it is

sent to the server, allowing it to learn better and improve its generalization.

Figure 3.25 shows the MDL of both DUCS and centralized UCS with the new

epoch size. Since centralized UCS sends a constant amount of data to the server

(as the author assumes data arrives at the client and is passed onto the server at

a constant rate), its curve is a horizontal line. Data transmission in DUCS quickly
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Figure 3.25: The data transmission of DUCS and the centralized UCS with the
epoch size of 500 in noise-free environments

drops below that line, and settles at less than half the data transmission for the

centralized UCS. The results show that an increase in the epoch size improves gen-

eralization and reduces data transmission. However, the author cannot generalize

these findings to other problems.

Increasing the epoch size means the server is updated less frequently, delay-

ing its response to changes in the environment. The trade-off between accuracy,

data transmission, and up-to-date server will vary depending on the nature of the

problem.

3.9 Chapter Summary

This section has investigated UCS with three issues of stream data mining:

processing speed, concept changes, and distributed environments.

The first study in this chapter has shown that the population size is a cru-

cial issue in UCS, which affects the learning performance in terms of accuracy

and processing time. Theoretical equations and experimental results show that

the execution of UCS is dominated by the matching time. In many cases, larger
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population size means faster learning, better accuracy, and higher matching time

(in other words, higher processing time). However, in stream data mining, smaller

processing time is more favourable as less training instances are discarded to keep

pace with the high speed data arrived.

The second study tests UCS in dynamic and noisy environments. UCS showed

to be robust to noise and adaptive to changes in the underlying data.

The last study is carried out in a distributed environment. The distributed

framework of UCS, called DUCS, is proposed and investigated. Two knowledge

fusion methods at the server were tested. The voting approach is favoured as it

learns faster and is more robust to noise. Other issues of DUCS such as different

number of clients, knowledge sharing and different epochs size are also studied.

Moreover, the data transmission in DUCS is studied by theory and experiment. In

general, this study found that DUCS is able to offer equivalent accuracy, smaller

traffic, more accurate models in comparison to the centralized UCS.

In conclusion, the study in this chapter confirms the first research sub-question,

stated in Chapter 1, that UCS is suitable for stream data mining as it is robust to

noise, adaptive in dynamic environments, and able to handle distributed environ-

ments. However, the population size is a significant issue affecting: (i) learning in

centralized environments; (ii) learning at clients and server and data transmission

in distributed environments; (iii) and more importantly the processing time. The

big question related to the population size in UCS is how to reduce it while still

maintaining the accuracy and expressiveness of the rule-based population. The next

chapter is designed to tackle this problem.
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Chapter 4

Neural-based Representation

The following paper is based on this chapter:

1. H.H. Dam, H.A. Abbass, C. Lokan, X. Yao (2008) Neural-Based Learning Classifier Systems, IEEE Trans-

actions on Data and Knowledge Engineering, 20(1):26-39.

4.1 Overview

The representation of a rule in UCS as a univariate classification rule is straight-

forward for a human to understand. However, the system may require a large num-

ber of rules to cover the input space. This makes the system less efficient in terms

of computational time, memory usage, and comprehensibility. This motivated the

author to propose a new representation, aiming for a population with fewer rules

while still maintaining the predictive accuracy.

Artificial neural networks, commonly referred to as neural networks (NNs), are

inspired by the human brain. Haykin (1999) presented several useful properties and

capabilities of neural networks, such as nonlinearity, built-in adaptivity to changes

in the surrounding environment, capability of robust computation, and a compact

model. These properties motivated the author to investigate the use of neural

networks in UCS. Their disadvantage is in the expressiveness: they are normally

treated as black boxes, due to their complicated representation.

The use of neural networks in LCS was first proposed by Bull and colleagues
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in (Bull, 2002) and (Bull and O’Hara, 2002). In their approach (called NCS) the

condition-action parts of classifiers were replaced by a fully connected multi-layer

perceptron. Experiments showed that NCS is able to learn appropriate structure

in simple robotics applications (Hurst and Bull, 2004), and can solve several maze

problems (Bull and O’Hara, 2002). However, by replacing a rule completely by a

neural network, NCS lacks the main advantage of LCS; that is, being a rule-based

system that is potentially easy to understand.

In order to use neural networks without losing too much expressiveness, the

author decided to only modify the action part of classifiers. In the proposed rep-

resentation, the conditions are unchanged but each action is replaced by a simple

neural network. The conditions are used to decompose a complex problem into a

number of relatively simple tasks. Each task is then learnt by a complete but simple

neural network.

A smaller number of more general classifiers can be the result of this represen-

tation. Those classifiers might not be accurate, and can cover an area containing

some boundaries. It is then the responsibility of the neural network to capture the

decision boundaries inside the local area and provide an appropriate outcome when

required by the system. This in theory should result in a smaller population size

than the traditional univariate rule representation used by UCS.

The author also employs negative correlation learning (NCL) (Liu, 1999) in

the proposed neural-based LCS (NLCS) for maintaining diversity in the population

in order to improve the system’s performance.

This chapter addresses two primary questions in order to answer the second

research sub-question, stated in the first chapter:

• Is the proposed neural-based representation beneficial to UCS? The author

hypothesizes that the neural-based representation will help to compact the

population while still maintaining an equivalent predictive accuracy.

• Can negative correlation learning help NLCS to achieve better accuracy? The

author hypothesizes that NCL is able to diversify individuals in the neural
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network ensemble in order to improve the overall predictive accuracy. This

is the first attempt to apply NCL in LCS; hence it is important to study the

effect of NCL on the system.

The chapter is structured as follows. Section 4.2 describes the proposed rep-

resentation and discusses the framework of NLCS. The experimental setup is ex-

plained in Section 4.3. Sections 4.4 and 4.5 investigate each of the above research

questions. The final section provides the conclusion of the chapter.

4.2 Neural-based Learning Classifier Systems (NLCS)

In the proposed representation, a rule in NLCS consists of two main compo-

nents as in traditional LCS: the condition and the action. The classifier condition

can be encoded by any existing representation of LCS such as interval predicates

(Wilson, 2001c), kernel-based ellipsoid (Butz, 2005), messy coding (Lanzi and Per-

rucci, 1999a), S-expression (Lanzi and Perrucci, 1999b), to name a few. In this

chapter, the interval representation is used for better expressiveness. The major

modification is with respect to the action of NLCS, where the traditional class

value is replaced by a complete, but simple, neural network (NN).

Figure 4.1: An example of a classifier in NLCS. The input space is divided into six
local spaces by the upper-bound and lower-bound of classifiers’ intervals. A neural
network of each classifier is responsible for learning its local area and deciding on
the possible outcome of the classifier depending on the input values.

Figure 4.1 illustrates a population of neural-based classifiers for a binary clas-
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sification. In this example, the population has six rules. Each rule is responsible for

a small input region matching its condition. The neural network of a rule is only

fed by inputs belonging to the local region.

The idea of the proposed representation is that the whole input space is divided

into relatively small areas by the classifier conditions. Each local region is then

handled by one or more NNs.

The following example demonstrates the compactness of the population using

neural network for recognizing a fruit. A complete set of rule is as follows:

IF (shape = round)and(color = red)and(weight < .50)THEN(itisagrape)

IF (shape = round)and(color = red)and(weight > .50)THEN(itisanapple)

By using the neural network in the action, the above two rules can be merged into

the following rule:

IF (shape = round)and(color = red)THEN(IFweight > .50(itisanapple)ELSE(itisagrape))

The NN is then responsible to distinguish several common objects once the condi-

tions are satisfied. It can easily be seen that expressiveness is lost in the second

example.

The type of NN used in this paper is the MLP, which has been shown to be a

universal approximator (Hornik et al., 1989). This is a directed graph with several

layers, including an input layer, hidden layers, and an output layer. A bias unit is

connected to each hidden unit. Static and simple MLPs with only one hidden layer

and one hidden node are used in this framework. The number of neurons in the

input layer is the same as the number of input features. The outputs are encoded

using m output neurons corresponding to m classes. The output node with the

highest activation designates the class.

Figure 4.2 shows the simple neural network in each classifier. In this example,
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Figure 4.2: A neural network for classification, with three input variables and four
possible outcomes.

each input is a vector of three variables and an outcome needs to be drawn from four

distinct groups (classes). The decision is made based on the network’s knowledge (a

set of weights) as the input is fed-forward from the input layer through the network

to the output layer. Once the output layer is reached, the output neuron with the

highest activation value is chosen as the prediction. Usually, each output neuron is

associated with a group (or class) defined by users.

In order to preserve the expressiveness of a rule-based system, simple neural

networks with one hidden node are used. The more complex a neural network is

the bigger search space it can handle, and therefore the rule can be more general.

As a result, the less expressive the system is because the neural network is normally

more difficult for a human to understand.

4.2.1 The NLCS Algorithm

The algorithm of NLCS is presented in Algorithm 3. NLCS inherits most

parameters from UCS, except the deletion and subsumption parameters. In short,

the system is evolved and guided by the discovery and update components. These

are described in the next two subsections respectively.

During the training process, the error is computed by Equation 2.17 which

compares the system prediction against the desired class. The error is then back-

propagated and the network weights are altered as in Equation 2.23. The key goal
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Initialize NLCS parameters;
Initialize [P] to empty;
repeat

Given the training data set D = (x1, y1),. . . ,(xN , yN) from the
environment;
for each training instance (xi : yi) do

Form a match set [M] of those classifiers in [P] that match the input
xi;
if [M] is empty then

if the population size is less than N then
Create a general classifier Ccover;
Insert Ccover to [P] and [M] ;

else
Find the closest classifier in the search space and extend its
condition to cover xi;
Insert this classifier to [M] ;

end

end
if the population size is less than N and at the end of the
covering window then

Create a classifier that matches all misclassified instances during
the last covering window;
Insert the classifier to [P] ;

end
Update the fitness of classifiers in [M] ;
Adjust networks’ weights of classifiers in [M] ;
if the average time since last GA activation of classifiers in [M] is
higher than θGA and the population size is less than N then

Select and reproduce (mutation and crossover) two classifiers in
[M] ;
Insert offspring in [P] ;

end

end

until the termination conditions are met ;
Algorithm 3: Algorithm of NLCS

of back-propagation is to determine a set of weights that minimizes the error in the

future.

4.2.2 The Discovery Component

As in UCS, the rule discovery of NLCS is conducted by the covering and evo-

lutionary components.
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The covering component is activated if one of the following two conditions is

true: (i) the match set [M] is empty; or (ii) some instances have been misclassi-

fied, and the current population size has not exceeded the predefined maximum

population size. The first condition occurs when the system starts with an empty

population. The covering function will create the most general rule, which matches

all instances or extends a rule to cover this instance. With the latter condition, the

system will generate a rule to cover all instances misclassified by the system during

a previous covering window. The size of this window affects the level of generality

of newly-created classifiers. Section 4.4.4 investigates in detail the effect of this

window size.

The evolutionary component is applied to the correct set [C] by selecting two

parents, with probability proportional to fitness, for crossover and mutation.

Children are produced by crossing–over and then mutating parents’ genes.

The offspring are inserted into the population if their genes are distinct from the

parents. This process occurs when the mean experience of rules in [C] is greater

than a predefined threshold and the current population size is less than a predefined

maximum.

4.2.3 The Update Component

Rules are updated incrementally whenever they appear in the match set [M].

Their parameters such as fitness and weights of MLPs are updated appropriately.

As in UCS, the fitness of classifiers is based on their accuracy, which is com-

puted as the ratio of correct classifications by the classifier to the number of times

the classifier has been in the match set:

acc =
Ncorrect

Nmatches

(4.1)

The fitness is computed as a function of accuracy:

F = (acc)v (4.2)
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where v is a predefined constant.

The MLPs learn to perform various tasks by adaptation of their weights using

the back-propagation algorithm.

The error of the output at neuron i when presented with the nth training

instance is defined by:

ei(n) = yi(n)− ŷi(n) (4.3)

where yi(n) refers to the desired outcome and ŷi(n) is the actual outcome. The

instantaneous value of the error of neuron i is 1
2
ei(n)2. The instantaneous value of

the total error of the network with M classes (M neurons in the output layer) for

instance n is:

E(n) =
1

2

M∑
i=1

ei(n)2 (4.4)

The back-propagation algorithm updates the weight wi connecting the input

of neuron i by ∆wi(n), which is proportional to the partial derivative ∂E(n)
∂wi(n)

. It can

be expressed as:
∂E(n)

∂wi(n)
=

∂E(n)

∂ei(n)

∂ei(n)

∂ŷi(n)

∂ŷi(n)

∂wi(n)
(4.5)

Differentiating both sides of Equations 4.3 and 4.4, we get

∂ei(n)

∂ŷi(n)
= −1 (4.6)

∂E(n)

∂ei(n)
= ei(n) (4.7)

The ∆wi is applied to wi(n) by the delta rule as following:

∆wi(n) = −β
∂E(n)

∂wi(n)
(4.8)

where β is the learning rate parameter. Thus, the correction ∆w used for a single

update of each weight in the network is

∆wi(n) = βei(n)
∂ŷi(n)

∂wi(n)
(4.9)
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Equation 4.9 indicates that the calculation of ∆w depends on the error function at

the output neuron i. There are two ways to calculate ei(n) depending on its layer.

Equation 4.3 can be used to compute the error of neurons at the output layer. If

a neuron is a hidden node, the error needs to be computed recursively in terms of

the errors of all neurons to which that hidden node is directly connected.

4.3 Experimental Setup

UCS and NLCS are developed in C++. If not stated differently, UCS is setup

as follows: v = 5, θGA = 50, χ = 1, µ = 0.04, θdel = 50, θsub = 50, m0 = 0.1, s0 =

0.6, N = 6400. Two points crossover and roulette wheel selection are used. For

NLCS, each MLP has one hidden layer and one hidden node. The learning rate of

MLPs is β = 0.1. Other parameters are: v = 5, θGA = 50, χ = 1, µ = 0.04,m0 =

0.1, s0 = 0.1, covering window = 50, γ = 0.5.

Each learner performs three stratified 10-fold cross validations in each data set

(that is 30 runs). Each run uses different random seeds which are consistent in all

experiments. The results reported in this paper are averaged over those 30 runs.

The term iteration is used to refer to a single pass through the training set. The

statistical data is collected after 500 iterations in each experiment.

4.4 An Investigation of the Neural-based Repre-

sentation

This section is designed to answer the first research question about NLCS.

The author starts by investigating the effect of the neural representation on UCS,

followed by a comparison of UCS and NLCS in terms of accuracy and compactness.

Several factors such as the population size, the size of the covering window, and

the conflict resolution methods among NNs in the match set are also considered to

provide a better understanding of NLCS.
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4.4.1 Effects of the neural representation

To understand the effect of the neural representation on UCS, we need to

compare the prediction accuracy of UCS with the traditional representation and

the proposed neural representation.

For the first experiment, the genetic algorithm is switched off and a simple

covering technique is used. If covering alone is sufficient to give high accuracy, the

whole UCS mechanism within NLCS is not useful.

The top half of Table 4.1 presents the mean and the standard deviation (over

30 runs) of the predictive accuracy of the traditional and neural representations

without GA. The statistical test of significance used is the t–test with a significance

level of 0.05.

There is a statistically significant improvement in accuracy with the neural rep-

resentation, in nine of the fourteen data sets (balance-scale, bupa, credit-a, glass,

heart-statlog, iris, segment, tao, and vowel). The opposite trend is not observed

in any data set. Moreover, ten data sets (balance-scale, bupa, credit-a, diabetes,

ionosphere, iris, segment, sonar, tao, and vowel) have a smaller standard deviation

with the neural representation. This experiment suggests that the neural repre-

sentation has an advantage over the traditional representation, with improved and

more consistent prediction accuracy.

The performance on several data sets is bad (e.g. heart-statlog (31%), iono-

sphere (29%), sonar (4%)). This can be attributed to disabling the GA component,

which means the input space is explored only by the covering technique. If the

covering process is not able to generalize between instances, the system will not be

able to handle test cases in areas of the input space that are not represented in the

training set.

The bottom half of Table 4.1 presents the mean and the standard deviation

of the predictive accuracy of the traditional and neural representations with GA

enabled. It can be easily observed that the accuracy of both UCS and NLCS with

GA are better than accuracy without GA. This confirms that covering alone is not
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Table 4.1: The mean and standard deviation of accuracy of NLCS and UCS
with/without GA. ¥(¤) symbols indicate that the neural representation is bet-
ter(worse) than the traditional representation at a significance level of 0.05.

No GA
Problem UCS NLCS

balance-scale 0.788 ± 0.040 0.825 ± 0.034 ¥
breast-w 0.759 ± 0.033 0.761 ± 0.040

bupa 0.549 ± 0.077 0.612 ± 0.066 ¥
credit-a 0.716 ± 0.064 0.796 ± 0.048 ¥
diabetes 0.676 ± 0.043 0.693 ± 0.043

glass 0.491 ± 0.079 0.555 ± 0.094 ¥
heart-statlog 0.275 ± 0.091 0.319 ± 0.104 ¥
ionosphere 0.288 ± 0.064 0.298 ± 0.064

iris 0.809 ± 0.128 0.929 ± 0.052 ¥
lymph 0.566 ± 0.114 0.563 ± 0.126

segment 0.810 ± 0.036 0.829 ± 0.033 ¥
sonar 0.045 ± 0.050 0.042 ± 0.047
tao 0.768 ± 0.087 0.847 ± 0.029 ¥

vowel 0.487 ± 0.050 0.575 ± 0.050 ¥

With GA
Problem UCS NLCS

balance-scale 0.815 ± 0.038 0.886 ± 0.022 ¥
breast-w 0.969 ± 0.012 0.970 ± 0.015

bupa 0.683 ± 0.062 0.723 ± 0.055 ¥
credit-a 0.835 ± 0.028 0.860 ± 0.032 ¥
diabetes 0.748 ± 0.044 0.765 ± 0.042

glass 0.825 ± 0.078 0.830 ± 0.079
heart-statlog 0.648 ± 0.116 0.612 ± 0.071
ionosphere 0.729 ± 0.051 0.874 ± 0.065 ¥

iris 0.949 ± 0.042 0.949 ± 0.067
lymph 0.759 ± 0.112 0.846 ± 0.094 ¥

segment 0.968 ± 0.008 0.809 ± 0.055 ¤
sonar 0.736 ± 0.073 0.799 ± 0.073 ¥
tao 0.887 ± 0.015 0.867 ± 0.023 ¤

vowel 0.910 ± 0.031 0.560 ± 0.072 ¤
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sufficient for accurate predictions, and that GA indeed plays a positive role in both

UCS and NLCS.

NLCS performs significantly better than UCS on six data sets: the balance

scale, bupa, Australian credit card, ionosphere, lymph, and sonar problems. Both

systems have achieved similar accuracy on five data sets: breast cancer, diabetes,

heart statlog, glass, and iris. In three of these five the accuracy is marginally better

with NLCS, but the difference is not statistically significant.

If we take a closer look at the result, the accuracy gain typically lies in the

range [0.02, 0.08], as in balance-scale, bupa, credit-a, lymph, and sonar. Ionosphere

shows the biggest gain of around 0.14.

UCS, on the other hand, does significantly better than NLCS on three data sets:

segment, vowel, and tao. The segment and vowel problems have many classes (7

classes for the segment and 11 classes for the vowel) and high number of features (19

features for the segment and 13 features for the vowel). The tao problem challenges

NLCS due to its non-linear boundaries in the data.

The author hypothesizes that the reason for NLCS’s low performance on these

three data sets is the use of a small population size, and low training time for the

neural network.
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Figure 4.3: The learning curves of UCS (left) and NLCS (right) over time. An
iteration refers to a single pass of the training data set through the system.

NLCS learns more slowly than UCS in many data sets such as bupa, glass, iris,

lymph, and vowel. Figure 4.3 shows the learning curves of both UCS and NLCS over

time, for one illustrative data set. Each iteration is a complete feed of a training
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set (or exploration phase) following by a testing set (or exploitation phase).

NLCS normally requires extra time at the beginning for adjusting the weights

of neural networks; hence the slow climb in accuracy at the start of the training

for NLCS. UCS, on the other hand, has only one action and therefore does not

need this time. Training neural networks is slowest in problems with many classes,

as a high number of weights needs to be adjusted. This is seen on the segment

and vowel problems, for which accuracy grows gradually at the beginning. Longer

training times are needed for problems with many features and classes. (This is

investigated further in Section 4.5.3.)

Overall, the results show that NLCS has obtained an equivalent or better

predictive accuracy than UCS on most of the tested data sets. Hence, a neural-

based representation of the classifiers’ action can be considered to be applicable,

with good accuracy, to be used as a LCS for classification tasks.

4.4.2 The Effect of Population Size

UCS requires a few thousand classifiers to capture the whole input space on

each problem. The results confirm the finding by Butz (2005) that lower and upper

boundaries in the classifiers require a large population size to approximate non-

linear classification boundaries such as those in real-world data sets.

The results for NLCS in Table 4.1 are all obtained using a population of only

25 macro-classifiers, which even so yields similar or better predictions than UCS

in many cases. It is clear that the neural representation can help to compact the

population.

A classifier generated by the covering technique can be either general or specific.

Since the covering spread used in the experiments is 0.6, it is likely to create more

general classifiers than specific ones. The traditional representation allows each

classifier to have one action, while the proposed method allows all possible actions

to be associated with a classifier. If a classifier is too general, more than one class

can be observed in the area. The traditional representation can only predict one
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action correctly, while the neural representation can predict multiple actions as long

as enough training is provided. That might explain why the neural representation

helps to compact the population, by allowing general classifiers in the population

instead of only accurate classifiers as in UCS.

To understand the effect of the population size on the performance of NLCS,

the author experimented with population sizes of 1, 10, 25, 50, 75, and 100. Table

4.2 presents the performance of NLCS with different population sizes.

With many data sets there is a slight trend in favour of larger population sizes.

In most cases, though, the difference is small and not statistically significant.

A larger population size is clearly helpful with the vowel and segment problems.

This supports the hypothesis that the low accuracy of NLCS on segment, tao, and

vowel problems is due to the population size.

In essence, the population size of 25 classifiers yields an acceptable perfor-

mance on most data sets. From this point on in this chapter, all experiments use a

population of 25 rules unless stated differently.

The population size has an impact on execution time. LCS starts by first com-

paring the condition of all classifiers in the population against each input instance.

A population of m classifiers would require m times of comparison against the whole

input instance. If there are n features in the input, we need up to mn comparisons

for each input instance. Increasing m raises dramatically the computational cost

of LCS. Thus, it clearly indicates that NLCS is better than UCS in terms of com-

putation time. However, the cost of NLCS to back-propagate the error in order to

adapt the weights of its MLPs is also added. Since there are only 25 classifiers in

the population and even less in the match set, the author expects this time to be

much smaller than the comparison time. In addition, with a simple neural network

architecture, back-propagation can be optimized to work faster than the traditional

genetic algorithm. The population size of 25 classifiers would be much faster in

terms of execution time in comparison to thousands of classifiers.

Hai H. Dam October 6, 2008



CHAPTER 4. NEURAL-BASED REPRESENTATION 129

Table 4.2: The mean and standard deviation of accuracy of NLCS with different
population sizes. ¥ symbol means that accuracy with that population size is better
than with a population size of 25 at a significance level of 0.05.

Population 1 10 25
balance-scale 0.865 ± 0.023 0.884 ± 0.021 0.886 ± 0.022

breast-w 0.966 ± 0.015 0.969 ± 0.015 0.970 ± 0.015
bupa 0.714 ± 0.050 0.726 ± 0.057 0.723 ± 0.055

credit-a 0.858 ± 0.040 0.857 ± 0.034 0.860 ± 0.032
diabetes 0.767 ± 0.047 0.766 ± 0.047 0.765 ± 0.042

heart-statlog 0.816 ± 0.078 0.832 ± 0.085 0.830 ± 0.079
glass 0.597 ± 0.073 0.607 ± 0.083 0.612 ± 0.071

ionosphere 0.863 ± 0.061 0.865 ± 0.069 0.874 ± 0.065
iris 0.967 ± 0.034 0.944 ± 0.066 0.949 ± 0.067

lymph 0.842 ± 0.101 0.844 ± 0.099 0.846 ± 0.094
segment 0.581 ± 0.037 0.780 ± 0.069 0.809 ± 0.055
sonar 0.785 ± 0.075 0.797 ± 0.082 0.799 ± 0.073
tao 0.842 ± 0.014 0.863 ± 0.023 0.867 ± 0.023

vowel 0.415 ± 0.046 0.523 ± 0.065 0.569 ± 0.072

Population 50 75 100
balance-scale 0.889 ± 0.021 0.890 ± 0.022 0.891 ± 0.022

breast-w 0.968 ± 0.016 0.967 ± 0.015 0.968 ± 0.016
bupa 0.721 ± 0.055 0.721 ± 0.053 0.723 ± 0.054

credit-a 0.861 ± 0.032 0.859 ± 0.032 0.857 ± 0.033
diabetes 0.764 ± 0.041 0.766 ± 0.043 0.766 ± 0.043

heart-statlog 0.826 ± 0.080 0.825 ± 0.078 0.824 ± 0.076
glass 0.607 ± 0.078 0.607 ± 0.064 0.613 ± 0.059

ionosphere 0.874 ± 0.068 0.870 ± 0.068 0.875 ± 0.066
iris 0.953 ± 0.056 0.962 ± 0.038 0.964 ± 0.038

lymph 0.848 ± 0.094 0.855 ± 0.092 0.855 ± 0.092
segment 0.831 ± 0.044 ¥ 0.858 ± 0.041 ¥ 0.847 ± 0.043 ¥
sonar 0.810 ± 0.075 0.812 ± 0.077 0.815 ± 0.077
tao 0.871 ± 0.020 0.872 ± 0.020 0.874 ± 0.022

vowel 0.614 ± 0.069 ¥ 0.632 ± 0.061 ¥ 0.632 ± 0.060 ¥
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4.4.3 The Match set [M]

Figure 4.4 plots the average match set size in proportion to the population

size. The trend is that as the population size increases, the size of the match set

decreases as a proportion of the total population size. This is associated with a

reduction in the variance, thus the networks are almost distributed uniformly.
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Figure 4.4: The average match set size as a proportion of the population size in
NLCS on the training data set

4.4.4 The Effect of the Covering Window

The covering approach is used in NLCS in two cases: when the match set [M]

is empty, and when it fails to classify a training instance.

In the first case, a new classifier is created to cover an instance that the system

currently has no knowledge about. The covering classifier is added straight to the

population and the match set. This process happens mainly at the beginning of

the learning cycle. If the population is full, a closest existing classifier is extended

to cover the new instance.

The second case happens when the system produces incorrect predictions. The

covering approach in this case aims to put extra knowledge of the area into the

system, hoping that instances around that area will be predicted correctly in the

future. Since the system already holds some knowledge about the instance (because

[M] is not empty), it is not as urgent to insert a new classifier into the population.
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Table 4.3: The mean accuracy and standard deviation of NLCS with different
covering window sizes.

Window Size 10 50 75 200
balance-scale 0.90 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02

breast-w 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.02
bupa 0.72 ± 0.06 0.72 ± 0.06 0.73 ± 0.06 0.72 ± 0.05

credit-a 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.04
diabetes 0.76 ± 0.04 0.77 ± 0.04 0.76 ± 0.04 0.77 ± 0.05

glass 0.60 ± 0.08 0.61 ± 0.07 0.61 ± 0.08 0.60 ± 0.07
heart-statlog 0.83 ± 0.07 0.83 ± 0.08 0.83 ± 0.08 0.83 ± 0.09
ionosphere 0.88 ± 0.06 0.87 ± 0.06 0.87 ± 0.06 0.87 ± 0.07

iris 0.96 ± 0.04 0.95 ± 0.07 0.96 ± 0.05 0.97 ± 0.04
lymph 0.83 ± 0.08 0.85 ± 0.09 0.85 ± 0.10 0.84 ± 0.10

segment 0.89 ± 0.03 0.81 ± 0.05 0.79 ± 0.04 0.76 ± 0.05
sonar 0.79 ± 0.07 0.80 ± 0.07 0.81 ± 0.08 0.80 ± 0.07
tao 0.89 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.85 ± 0.02

vowel 0.65 ± 0.04 0.57 ± 0.07 0.51 ± 0.08 0.46 ± 0.07

Instead the author uses a covering window, which represents a particular number

of training instances: at the end of each window, a new classifier is added to cover

all instances that were classified incorrectly during that window. The size of the

covering window affects the generality of the classifier: the larger the window, the

more general the new classifier becomes as it must cover more instances.

Table 4.3 shows the accuracy achieved on each data set with four different sizes

of covering window: 10, 50, 75 and 200 instances. On most data sets, the covering

window does not seem to have much effect on the predictive accuracy of the system.

Once again, tao, segment and vowel behave differently. A small covering win-

dow, which means specific classifiers are more likely to be added than more general

classifiers, is clearly better for these problems.

For the tao problem, this is explained by the problem containing non-linear

boundaries. Specific classifiers are more accurate than general classifiers in this

situation, because they are responsible for a smaller area. For vowel and segment,

the explanation could be that it is hard for general classifiers to be accurate in

problems with many output classes, so there is a preference for specific classifiers.

The covering window of size 10 or 50 tends to obtain good performance in all
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data sets.

4.4.5 Neural Network Ensembles

This section addresses the question of how to combine knowledge from different

rules in the match set in the exploitation phase. The author investigates three simple

methods, which are quite popular for decision making at the gate level in ensemble

learning: majority voting, simple averaging, and winner take all.
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Figure 4.5: Predictive accuracy of NLCS using different gates: majority voting
(VOT), simple averaging (AVG), winner-takes-all (WTA)

Each of these three methods was tested on the fourteen data sets. ANOVA

tests were used to determine whether there were statistically significant differences

in prediction accuracy using the different gates. There were statistically significant

differences in three data sets: segment, vowel, and tao. Figure 4.5 shows predictive

accuracy with each gate on these four data sets.

The segment and vowel problems show the best accuracy when using the simple
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averaging approach. The winner-takes-all method is the second best, significantly

outperforming the majority voting method.

The tao problem favours the winner-take-all approach, because this favours

the more specific classifiers that suit a problem with non-linear boundaries. The

difference is small though; it is statistically significant because it is consistent rather

than because it is large.

There is no significant difference in the accuracy on the other eleven data

sets. Six (breast-w, credit-a, diabetes, glass, iris, and lymph) do best with the

simple averaging method; three (balance-scale, ionosphere, and sonar) do worst

with simple averaging. The differences in mean accuracy with the different gates

are small.

In summary, in the only data sets where the gate makes an important difference

to mean accuracy, the simple averaging approach performs best. Hence, from this

point in this paper, the author only report the results of NLCS using the simple

averaging approach.

4.4.6 Comparison to Other Classifier Systems

Table 4.4 shows the predictive performance of 14 datasets on UCS, NLCS

and three other popular classifiers including Majority, C4.5, and Naive Bayes. The

accuracy of the last three classifiers was published in (Butz, 2004) using the WEKA

system Garner (1995).

Clearly, NLCS is significantly better than Majority algorithm in all problems.

The performance of NLCS is better than C4.5 and Naive Bayes in nine problems,

while is lower in other six problems. In general, NLCS is comparable with other

existing learning classifiers in terms of the predictive accuracy.

4.4.7 Summary

This section has investigated the neural representation in learning classifier

systems. The author tested NLCS on several data sets under several conditions.
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Table 4.4: Comparing NLCS’s performance with other typical machine learning
algorithms. The mean accuracy and standard deviation of Majority, C4.5, Naive
Bayes and NLCS.

Problem Majority C4.5 Naive Bayes NLCS
balance-scale 0.461 ± 0.002 0.779 ± 0.040 0.905 ± 0.018 0.886 ± 0.022

breast-w 0.655 ± 0.003 0.945 ± 0.026 0.960 ± 0.021 0.970 ± 0.015
bupa 0.580 ± 0.008 0.650 ± 0.086 0.548 ± 0.083 0.723 ± 0.055

credit-a 0.555 ± 0.004 0.854 ± 0.042 0.778 ± 0.042 0.860 ± 0.032
diabetes 0.651 ± 0.003 0.742 ± 0.046 0.756 ± 0.049 0.765 ± 0.042

glass 0.356 ± 0.014 0.674 ± 0.088 0.481 ± 0.082 0.830 ± 0.079
heart-statlog 0.556 ± 0.000 0.778 ± 0.080 0.839 ± 0.064 0.612 ± 0.071
ionosphere 0.641 ± 0.006 0.900 ± 0.053 0.825 ± 0.071 0.874 ± 0.065

iris 0.330 ± 0.000 0.948 ± 0.059 0.955 ± 0.051 0.949 ± 0.067
lymph 0.550 ± 0.029 0.777 ± 0.111 0.830 ± 0.086 0.846 ± 0.094

segment 0.143 ± 0.000 0.968 ± 0.011 0.801 ± 0.018 0.809 ± 0.055
sonar 0.534 ± 0.012 0.738 ± 0.085 0.678 ± 0.096 0.799 ± 0.073
tao 0.500 ± 0.000 0.956 ± 0.013 0.809 ± 0.029 0.867 ± 0.023

vowel 0.091 ± 0.000 0.801 ± 0.036 0.632 ± 0.049 0.560 ± 0.072

The experiments show that:

• The neural representation does help to improve predictive accuracy, compared

to the traditional representation;

• A search method like genetic algorithms is essential to cover the input space;

• NLCS is able to obtain equal or even better accuracy than UCS, while requir-

ing a much smaller population;

• Increasing the population size generally improves the accuracy in NLCS, but

a population of only about 25 classifiers seems to be sufficient for acceptable

accuracy;

• The size of the covering window does not have a major effect on the overall

predictive performance of NLCS.

• To resolve conflicts between neural networks in the match set, the simple

averaging approach is the best choice.
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4.5 Negative Correlation Neural Learning based

Classifier Systems

4.5.1 Diversity and Accuracy in Ensembles

The notion of combining networks to form more reliable ensembles was first

raised by Nilsson (1965). Ensembles normally perform better than single networks

by minimizing loss of information due to bias. Sharkey (1996) defined the notion

of combining NNs for improving the performance in that we try exploiting rather

than losing the information contained by imperfect networks.

In order for an ensemble to generalize well, two vital factors need to be consid-

ered: diversity and accuracy. Brown et al. (2005) suggests that two neural networks

are diverse if they make different errors on the same data points/inputs. Accuracy

refers to how good the learning model is in comparison to random guessing on a

new input (Brown et al., 2005).

In LCS, the training data is inherently re-sampled by classifier conditions. Each

NN is trained by partial data which belongs to its local region. Therefore, LCSs

implicitly maintain diversity in the population without using Bagging or Boosting

techniques.

Each time a rule appears in the match set [M], its weights and fitness are up-

dated. This raises another question in this research: how will the system perform

if those individual networks in the match set are trained interactively like (Islam

et al., 2003), (Liu, 1999), etc? It is similar to anti-correlation learning, where mem-

bers in the ensemble are trained interactively so that each member specializes on

a part of the task. Anti-correlation learning adds an additional penalty term into

the error function in order to maximize the distance between all individuals in an

ensemble to achieve a nice spread in the ensemble space. The negative correla-

tion term should not have a larger magnitude than the original error function and

is dimensionally consistent with the error function. Negative correlation learning

(NCL) (Liu, 1999) is an approach of this type. McKay and Abbass (2001) reveal
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that negative correlation learning acts to push the members of the ensemble away

from their mean, but not necessarily away from each other. The author decided

to blend NCL with NLCS by adding a negative term into the error function before

back-propagating in those classifiers in the match set [M].

4.5.2 The Effect of Negative Correlation Learning

The second research question in this chapter is to find out if NCL helps NLCS

to achieve better accuracy. This section focusses on answering this research question

by learning the effects of NCL on NLCS. In other words, the strength parameter γ

of NCL is investigated in several experiments, each with different values of γ in the

range [0.0, 0.7]. γ = 0.0 implies that NCL is not used in the system, which was the

case in all the experiments reported in Section 4.4.

Table 4.5 shows accuracy achieved on each data set with each value of γ from

0.0 to 0.7. The statistical t-test was used to compare the means of predictive

accuracy between NLCS with NCL (γ > 0) and NLCS without NCL (γ = 0).

In five out of fourteen data sets, NCL produces a statistically significant im-

provement in predictive accuracy. Within those five data sets, there is little signif-

icant difference in the performance when γ is small (γ = 0.1). As γ increases, we

can observe significant improvement. However, there is also a significant decrease

in the performance in most of the data sets when γ is high (γ > 0.6).

In general, five out of the fourteen data sets present an identifiable trend: in-

creasing γ results in improvement of the predictive performance, up to a particular

point, beyond which the performance starts decreasing. This result is consistent

with the finding by Brown (2004) as he believes that the higher γ will push individ-

uals be far away from each other and therefore destroys the correlation of classifiers

in the match set.

Some problems such as balance-scale, bupa, diabetes, glass, segment, and vowel

suffer a huge decrease in accuracy when γ surpasses 0.6. With other data sets the

decrease in accuracy is more gradual when γ is bigger than 0.6.
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Table 4.5: The mean and standard deviation of accuracy of NLCS with different
values of γ. ¥(¤) indicate that NLCS with NCL is better(worse) than the one
without NCL (γ = 0) at a significance level of 0.05

γ 0.0 0.1 0.2 0.3

balance-scale 0.89±0.02 0.89±0.02 0.90±0.02¥ 0.90±0.02¥
breast-w 0.97±0.02 0.97±0.01 0.97±0.01 0.97±0.01

bupa 0.72±0.06 0.73±0.05 0.72±0.06 0.73±0.05

credit-a 0.86±0.03 0.86±0.03 0.86±0.03 0.86±0.03

diabetes 0.77±0.04 0.76±0.04 0.77±0.05 0.77±0.04

glass 0.61±0.07 0.61±0.07 0.62±0.07 0.62±0.05

heart-statlog 0.83±0.08 0.83±0.08 0.83±0.08 0.84±0.08

ionosphere 0.87±0.06 0.87±0.06 0.88±0.07 0.88±0.06

iris 0.95±0.07 0.95±0.06 0.95±0.06 0.96±0.05

lymph 0.85±0.09 0.85±0.10 0.85±0.09 0.85±0.09

segment 0.81±0.05 0.85±0.04¥ 0.88±0.03¥ 0.90±0.02¥
sonar 0.80±0.07 0.80±0.08 0.82±0.07 0.82±0.07

tao 0.87±0.02 0.87±0.02 0.88±0.02¥ 0.89±0.02¥
vowel 0.57±0.07 0.61±0.05¥ 0.62±0.06¥ 0.63±0.06¥

γ 0.4 0.5 0.6 0.7

balance-scale 0.90±0.02¥ 0.90±0.01¥ 0.90±0.01¥ 0.79±0.07¤
breast-w 0.97±0.01 0.97±0.01 0.97±0.02 0.96±0.02¤

bupa 0.73±0.06 0.73±0.06 0.58±0.04¤ 0.58±0.04¤
credit-a 0.86±0.03 0.86±0.04 0.86±0.03 0.85±0.03

diabetes 0.77±0.04 0.77±0.04 0.74±0.05¤ 0.66±0.02¤
glass 0.61±0.06 0.60±0.07 0.45±0.06¤ 0.36±0.07¤

heart-statlog 0.83±0.08 0.84±0.08 0.83±0.06 0.81±0.07

ionosphere 0.87±0.07 0.88±0.06 0.87±0.06 0.83±0.08¤
iris 0.96±0.05 0.96±0.05 0.94±0.07 0.87±0.12¤

lymph 0.84±0.08 0.84±0.08 0.84±0.08 0.85±0.08

segment 0.92±0.02¥ 0.92±0.02¥ 0.76±0.07¤ 0.44±0.07¤
sonar 0.83±0.07¥ 0.83±0.06¥ 0.81±0.07 0.75±0.08¤
tao 0.89±0.02¥ 0.89±0.02¥ 0.88±0.02¥ 0.81±0.05¤

vowel 0.64±0.05¥ 0.66±0.05¥ 0.67±0.06¥ 0.27±0.07¤
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Figure 4.6: The mean and error bar of the predictive accuracy of NLCS with regard
to different values of the parameter γ

In conclusion, NCL does help to improve the accuracy of NLCS for medium

γ values. If γ is greater than 0.6, it yields a dramatic decrease in the performance
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Figure 4.7: The mean and error bar of the predictive accuracy of NLCS with regard
to different values of the parameter γ

of the system. Thus, the key requirement for achieving better performance using

NCL in NLCS is to tune the γ parameter carefully. As suggested by Brown (2004)

and also from the experimental results, γ = 0.5 seems to give the best accuracy.

4.5.3 Population Size and Training Epochs

This section investigates three special data sets — segment, tao, and vowel —

because of the low performance of NLCS compared to the traditional UCS.
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Table 4.6: The mean and standard deviation of accuracy of NLCS on segment, tao
and vowel problems with different values of γ and the population size of 100. ¥(¤)
symbols indicate that NLCS with NCL is better(worse) than the one without NCL
at a significance level of 0.05

γ 0.0 0.1 0.2 0.3
segment 0.84±0.04 0.88±0.03¥ 0.89±0.03¥ 0.92±0.02¥

tao 0.87±0.02 0.88±0.02 0.89±0.02¥ 0.90±0.01¥
vowel 0.62±0.05 0.64±0.05 0.64±0.06 0.65±0.06¥

γ 0.4 0.5 0.6 0.7
segment 0.93±0.02¥ 0.93±0.02¥ 0.75±0.06¤ 0.58±0.10¤

tao 0.90±0.01¥ 0.90±0.02¥ 0.88±0.02¥ 0.83±0.02¤
vowel 0.68±0.04¥ 0.74±0.05¥ 0.28±0.04¤ 0.26±0.04¤

NCL helps to improve significantly the predictive accuracy of these data sets

especially when γ = 0.5 as shown in Table 4.5. The accuracy of the segment

problem raises from 81% without NCL to 92% with NCL. The accuracy of the tao

problem increases from 87% to 89%. The accuracy of the vowel problem increases

from 57% to 66%. The tao problem seems to be able to achieve the same level of

accuracy as UCS (average accuracy of UCS is 88% and average accuracy of NLCS

is 89%). However the accuracy of the segment problem is still worse than UCS at

92% compared to 96%. Also, the accuracy of the vowel problem is much worse than

UCS at 66% compared to 91%.

The author hypothesizes that NLCS performs significantly worse than UCS on

these data sets due to two main reasons: small population size and small number

of training epochs. We noted in section 4.4.1 that NLCS learns more slowly than

UCS in several data sets.

The vowel and segment problems are similar in that they have many possible

outcomes (seven for segment and eleven for vowel), and many learning features

(nineteen for segment and thirteen for vowel). Therefore the number of weights

of each neural network increases dramatically in both problems. It requires more

time for each neural network to adjust these weights correctly before they can be

used. The tao problem, in contrast, is a binary classification problem with a small

number of features. Its challenge is the non-linear boundaries that favour specific

classifiers.
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Table 4.6 presents the mean and standard deviation of accuracy on these three

data sets using a larger population size (of 100). Accuracy improves on all three

data sets (as also seen earlier in table 4.2), and peaks at γ = 0.5. The tao problem

reaches the same level of accuracy as UCS. However, the performance of NLCS on

the segment and vowel problems is still not as good as UCS.
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Figure 4.8: Predictive accuracy of NLCS with different population sizes and training
time

Figure 4.8 shows the mean and standard deviation of accuracy on the vowel

problem, with different population sizes and different numbers of training epochs.

Increasing the population size clearly leads to an improvement in the predictive

accuracy.

Moreover, the number of epochs (or the number of times a whole training set

is fed through the system) has a strong influence on the accuracy of the vowel

problem. As mentioned before, neural networks in the vowel problem are more

complex than in other problems since there are more weights to tune. In order for

each neural network to gain enough information, a longer training time is needed.

As we can see, feeding training data through the system 2000 times instead of 500
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times improves the accuracy, to a level that now matches UCS.

A similar pattern applies for segment, though it is not as strong and still does

not quite achieve the accuracy of UCS.

Another factor that would degrade the performance of the system is over-fitting.

In fact, NLCS employs single hidden networks, which are very simple and would

not be over-fitted. Also, the generalization pressure in non-enhanced UCS/LCS

systems prevents it from over-fitting as presented in (Shafi et al., 2006). Therefore

over-fitting in NLCS is not a concern.

Hence, the results in this section support the hypothesis that the population

size and the training time have some impact on the predictive accuracy.

4.6 Chapter Summary

In this chapter, the author argued that the predictive accuracy is not the

only factor to judge a classifier system. The compactness and expressiveness of

the system are other important issues in traditional machine learning. The author

proposed a neural representation in LCS to balance these factors.

The author proposes a novel way to incorporate neural networks into UCS.

The approach offers a good compromise between compactness, expressiveness, and

accuracy. By using a simple artificial neural network as the classifier’s action, the

system can obtain a more compact population size, better generalization, and the

same or better accuracy, while maintaining a reasonable level of expressiveness.

The first research question of this chapter is whether the neural representation

is beneficial. The author considered this by testing UCS and NLCS on fourteen

data sets. The t-test results show that NLCS performs equivalently to UCS on five

data sets, significantly better on six data sets, but significantly worse on three data

sets.

The population size also plays an important role in comparing the performance

of UCS and also NLCS. In all tested data sets, UCS requires at least a few thousand
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rules to capture the whole search space. NLCS, in general, requires only 25 rules

to perform as well as UCS. The population size of 25 classifiers would be much

faster in terms of execution time in comparison to thousands of classifiers. Thus,

the neural-based representation is indeed beneficial to LCS.

The author also investigated three common approaches for decision making

in the match set: majority voting, simple averaging, and winner-takes-all. Simple

averaging is the best choice in most data sets.

The second research question was whether negative correlation learning (NCL)

will improve the performance of NLCS. The author tested NLCS with different

values for the strength parameter, γ. The results show that NCL improves the

predictive performance of NLCS on several data sets when γ < 0.6. The author

concluded that γ = 0.5 is the best value to use in NLCS in order to achieve good

performance in most problems.

Three data sets (tao, vowel, and segment) were investigated further. The

author found that the population size and the training time have an impact on

these three data sets, especially on the vowel data set.

Overall, the neural-based representation is able to achieve equivalent or even

better performance than the traditional representation. Also, the new representa-

tion in general requires a significantly smaller population size than the traditional

one. The incorporation of negative correlation learning in the training improves the

predictive accuracy of the system. The author also found a consistent region of the

strength parameter, with which NLCS performs well.

Though answering two research questions of this chapter, the second research

sub-question in the first chapter is also solved. It is clearly shown that the neural

representation is indeed beneficial for evolutionary learning classifier systems in

terms of population size and predictive accuracy.
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Chapter 5

Adaptive Neural-based Learning

Classifier Systems

5.1 Overview

The previous chapter proposed a neural representation, to compact the pop-

ulation of UCS. The proposed system, called NLCS, replaces the action of the

rule-based classifier by a simple neural network. Experiments reveal that a much

smaller population is required to reach an equivalent accuracy in comparison to

UCS.

The main disadvantage of NLCS is that the population size remains fixed and

unchanged after reaching the maximal threshold. The neural networks play an

important role in learning after this point. This chapter will show that the condi-

tion part of NLCS in some cases can not decompose the search space. Therefore,

one of the main benefits of LCSs in data mining, the comprehensive rule-based

representation, may not be realized.

In this chapter, the author will propose an enhanced version of NLCS, called

Adaptive NCS (ANCS), which allows the population to vary. Several visualization

tools are proposed in this chapter in order to have a better understanding of the

underlying system.
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In order to answer the third research sub-question, stated in the first chapter,

this chapter needs to solve two smaller questions. The first one is:

• Is the proposed adaptive framework beneficial in NLCS? The author hypothe-

sizes that ANCS is able to achieve the equivalent predictive accuracy as NLCS

and UCS. Moreover, by allowing the population to grow and shrink, ANCS is

able to form better patterns than NLCS.

The investigation of ANCS reveals some sensitivity to the setting of some

parameters. This motivates the author to propose an ensemble framework, each of

which has a different parameter setup. The author hypothesizes that the ensemble

framework can overcome the problem of sensitivity to parameters of LCS in general

when dealing with new problems.

The second question is:

• Does the ensemble framework help to reduce the number of parameters?

The chapter is structured as follows. Section 5.2 describes the proposed frame-

work of ANCS. The experimental setup is explained in Section 5.3. Section 5.4

describes visualization methods that help us to obtain a better insight into the

knowledge learned by ANCS. Sections 5.5 and 5.6 investigate each of the research

questions. Section 5.7 concludes the chapter.

5.2 Adaptive Neural-based Learning Classifier Sys-

tems (ANCS)

ANCS extends NLCS, by removing a fixed population size. ANCS allows the

population to vary through the cooperation of five key operators: covering, GA,

subsumption, deletion, and merge. The first three functions operate similarly to

those of UCS. We will use both subsumption in GA and subsumption in the correct

set. The deletion and merge operators are explained below.

Hai H. Dam October 6, 2008



CHAPTER 5. ADAPTIVE NEURAL-BASED CLASSIFIER SYSTEMS 147

The subsumption and deletion functions are responsible for shrinking the pop-

ulation. The covering, GA, and merge functions, on the other hand, introduce

more classifiers into the population. A balance between these functions is necessary

to keep the population stable. In UCS, the maximal population size is defined to

control the balance. In this chapter, the author will not use a fixed upper bound

of the population size; instead a technique is proposed to control the frequency of

activation of those functions.

5.2.1 Deletion Function

The first improvement of ANCS over NLCS is the deletion technique, which

eliminates inaccurate classifiers from the population.

Normally, inaccurate classifiers arise due to their hyper-rectangle conditions,

which form a larger local area than a simple neural network can learn. In this case,

the neural network will be under-fitted as it does not have enough power to handle

the area. These classifiers can be either removed, or could employ more complicated

neural networks. The first option seems better, since a full neural network would

dramatically reduce the expressiveness of the model, which is quite important in

data mining.

The deletion method in ANCS operates similarly to deletion in UCS/XCS

as described in (Kovacs, 1999). Deletion will occur under two conditions: the

population size (Plb) exceeds a threshold, and a place is needed for offspring in GA.

The deletion decisions are carried out within the whole population. All classifiers in

the population compete against each other for survival. Those classifiers with high

fitness and belonging to small niches are more likely to remain in the population.

Classifiers that have not yet been in the population for 5000 training instances are

not considered for deletion, to give them time for the neural networks to learn.

As well, ANCS employs a self–deletion technique based on the accuracy of

local neural networks. Each classifier constantly estimates the difference between

its lowest and highest accuracy of any two classes. A parameter called θSdel is used

as a threshold. If the difference in accuracy exceeds the threshold, and the classifier
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has been in the population for at least 5000 training instances, the classifier is

deleted.

This technique will eliminate classifiers that are accurate in one class but in-

accurate in the others. This might be due to an unbalanced data set, which makes

some classifiers favour the majority class. Although the overall accuracy of these

classifiers might be high, they are unable to handle minority classes within the area.

Deleting them will make room in the population for more specific classifiers that

can handle minority classes.

5.2.2 Merge Function

The merge function is introduced in ANCS to improve the generalization of

the population. The subsumption and merge functions work together to compact

the population. Both functions take place in the correct set.

Figure 5.1: Overlapping area of two classifiers for merging

The first task of the merge function is to find a set of experienced classifiers in

the correct set [C]. A classifier is considered “experienced” if it has survived in the

population for longer than some threshold. In this chapter, the author uses 5000

learning steps as the threshold.

The amount of overlap is then calculated between each pair of experienced clas-

sifiers in the set. Note that there must be some overlap between any two classifiers

in the correct set, because they all match at least this input instance. The over-

lapping area represents the commonality of two classifiers. We hypothesize that
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the bigger area they have in common, the closer their decisions would be when

confronted with the same problem.

Figure 5.1 illustrates the way to calculate the overlapping area. A pair with

the largest overlap is chosen for merging. A new classifier is created by combining

the condition of these classifiers. Its action will be inherited from the classifier with

higher accuracy.

The classifier is then inserted in the population to compete with the parents.

It will survive in the population if it is accurate. If so, subsequently it will subsume

its parents. Otherwise it will end up being deleted.

5.2.3 Fixed Parameters

As described above, Plb is used to activate the deletion function when GA

needs a place for its offspring. It is important to clarify that the population can

grow beyond this limit, through covering and merging. Plb determines how big the

population can get before GA starts to trigger deletion. The value of Plb in theory

should not affect the performance of the system, but might delay or speed up the

convergence.

An important parameter in ANCS is the deletion threshold θSdel. It is used in

the self-deletion function, to decide when to delete a classifier based on its network’s

accuracy.

The third important parameter is the covering range. It is used in covering, to

decide how general or specific a new classifier should be. In theory this parameter

should not affect the performance of the system, since the covering function mainly

happens at the beginning. However, it affects the convergence of the system, de-

pending on the nature of the training problem. Some problems might suit general

classifiers, so it would be better to generate general classifiers from the start rather

than having to generalize from specific classifiers. Others might favour specific clas-

sifiers, so starting with a population of specific classifiers would save a lot of training

time.
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The effect of each of these parameters on the accuracy of the system is inves-

tigated in Section 5.5.

5.2.4 Adaptive Parameters

The two most important components of ANCS in the exploration phase are

the GA and merging.

GA has a role as a search function that introduces new classifiers into the

population. GA needs to be fully active when the system lacks knowledge (in the

learning stage), to give the capacity to explore the full search space.

However, when the system is stable, an active GA might damage the balance

in the system due to the deletion/GA cycles. In this case we want to reduce the

activity of GA.

The merge function, on the other hand, needs to wait while the system is still

learning. It becomes involved once the system has reached a stable condition. Its

main objective is to improve the generalization based on the current population.

The stable condition indicates that the knowledge in the system is reliable, so it is

time to start thinking of improving the generalization.

This analysis motivated the introduction of two parameters to control the fre-

quency of GA and merging: the probability of GA, called PGA, and the probability

of merge, called PM . PGA and PM are not fixed. Their values are changed over

time, adapting as the performance of the system indicates the trend of learning.

In order to identify the trend of learning, the performance of ANCS (in terms

of the predictive accuracy on the training data) is measured over time. The trend

in performance indicates whether the system is learning or stable.

The training data is divided into windows, and the predictive accuracy within

each window is calculated. The values of the current window are compared against

the ones of the previous window. The statistical t-test is used to test the significance

of changes in the predictive accuracy of the system. There are three possibilities:

• Improved performance: the accuracy of the current window significantly im-
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proves over the previous window. This implies that the system is still in the

learning phase. GA needs to continue its job to further improve the accuracy.

• Decreased performance: the predictive accuracy is reduced in comparison to

the previous window. This might be caused by several things: a new area

in the search space is seen; there are concept drifts; or good classifiers were

mistakenly deleted. In any case, GA needs to continue working in order to

explore the whole search space.

• Stable performance: the predictive accuracy is unchanged in comparison to

the previous window. This indicates that the system is stable, and the predic-

tive accuracy might not be changed by GA. In this case, GA needs to reduce

working and merge needs to be activated to compress the population.

The relationship between the learning performance and these functions is de-

scribed in Table 5.1.

Table 5.1: The relationship between the system performance and GA/Merge func-
tions

Learning Performance GA Merge
IMPROVED ACTIVE INACTIVE

DECREASED ACTIVE INACTIVE
STABLE INACTIVE ACTIVE

repeat
if the end of the current window then

Compare the accuracy of the current window with the previous
window.
if significant change then

PGA = p max value;
PM = p min value;

end
if stable then

PGA = p min value
PM = p max value

end

end

until stop condition is met ;
Algorithm 4: Adaptive parameters in ANCS
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PGA, PM are changed according to the performance of the system, as shown in

Algorithm 4. We allow two levels of probabilities. The minimum value is greater

than zero, allowing both GA and merge functions to work all the time with low

probabilities. This means that the GA function always has a chance to help the

system escape from local optima.

5.2.5 Description of ANCS

Figure 5.2: The flowchart of ANCS

Figure 5.2 shows the flowchart of the training phase in ANCS. Assuming no

available prior knowledge at the beginning, ANCS will start from an empty popu-

lation. For each training instance, the system will search through its population in

order to form a match set [M] as in NLCS and UCS. If the match set is empty, nor-

mally happening early in learning, the covering function is activated to introduce
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some knowledge into the system.

ANCS works as a supervised learner, in which each training/testing instance

is associated with a desired outcome. The correct set [C] is immediately formed

from those classifiers in [M] making a correct prediction. As in UCS, if the correct

set is empty the covering function is used to hasten convergence.

GA is carried out in the correct set under two conditions: the average time

since the last activated GA of all classifiers in the set exceeds a threshold, and a

random number is less than the probability of GA PGA.

The decision to delete a classifier is made immediately after GA inserts a new

classifier to the population. If the current number of macro classifiers exceeds Plb,

deletion is enforced in order to put pressure towards a more accurate and compact

population.

The merge is carried out under similar conditions of GA: if the average time

since the last merge is higher than a threshold, and a random number is less than

PM . Subsumption will then remove redundant classifiers from the population.

The self-deletion function then checks each classifier in the population in terms

of its internal accuracy and experience. Unappropriate classifiers are eliminated in

this process to make rooms for others.

Finally, the learning performance is recalculated at the end of each training

window defined by the user. This function is responsible for updating PGA, PM

with regards to the current learning trend in the system.

5.3 Experimental Setup

Unless stated differently, UCS is setup with the same parameter values used by

Bernadó-Mansilla and Garrell-Guiu (2003) as follows: v = 5, θGA = 50, χ = 1, µ =

0.04, θdel = 50, θsub = 50,m0 = 0.1, s0 = 0.6, N = 6400. Two point crossover and

roulette wheel selection are used.

For NLCS, each MLP has one hidden layer and one hidden node. The learning
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rate of MLPs is β = 0.1. Other parameters are: v = 5, θGA = 50, χ = 1, µ =

0.04,m0 = 0.1, s0 = 0.1, covering window = 50, γ = 0.5, population size N = 25.

ANCS is setup using similar parameters as NLCS, except the following pa-

rameters: v=10, Plb = 100, θSdel = 0.3, covering range c=1, p max value=1,

p min value=0.01. Two points crossover and roulette wheel selection are used.

Each learner performs three stratified 10-fold cross validation runs in each data

set (that is 30 runs). Each run uses different random seeds which are consistent

in all experiments. The results reported in this chapter are averaged over those 30

runs. The term iteration is used to refer to a single pass through the training set.

The statistical data is collected after 500 iterations in each experiment.

5.4 The Learning Knowledge of ANCS

This section aims to give more insight into the knowledge learned by ANCS,

and therefore to help us obtain a better understanding of the learning patterns.

A classifier consists of a rule and a set of parameters that qualify the rule. The

knowledge learned by a classifier system is the final set of rules. This section will

visualize the final population of ANCS, looking at both the condition and action

parts of the rule. The first part reveals the ability to decompose the search space.

The second one, on the other hand, reveals the learning ability of the system within

its local search area.

5.4.1 Decomposition of the search space

The first visualization is taken on the tao problem, which has two features and

can easily be pictured in two dimensions. The search space of this problem can be

divided into three regions: left, middle, and right. The left and right areas contain

only one class. The middle area contains several non-linear boundaries, that make

this problem harder to learn by any machine learning.

Figure 5.3 presents the visualization of the final population of ANCS and NLCS
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Figure 5.3: Visualization of the final population of ANCS (left) and NLCS (right)
on the tao problem. Both systems are able to achieve similar accuracy of around
89% using their best parameter setting.

on the tao problem. The best parameter settings were used for NLCS, which

achieved accuracy of around 89%. A small covering range was used for ANCS,

and other parameters were set so that it achieved the same accuracy.

Most classifiers obtained by NLCS are general. The conditions do not seem to

help the system to decompose the search space well in the middle area. The high

performance of NLCS would be mainly due to the local neural networks. As there

is no deletion in NLCS, the networks can accumulate a lot of knowledge by the end.

Also, the negative correlation learning in NLCS becomes very important to push

those networks in the middle area far from each other so that each can specialize

on different areas.

Observing ANCS, we can see that the middle area seems to gather more classi-

fiers than the other areas. The left and right hand sides of the search space contain

a single class, and therefore do not need many classifiers. Many specific classifiers

are created in the middle area by the covering and GA functions. This visualization

illustrates that ANCS with its adaptive framework is better than NLCS in terms

of mining patterns.

Many datasets in the real world have more than two features and therefore

cannot be visualized as obviously as the tao problem. In order to visualize the pop-

ulation of other data sets the author decided to employ multi-dimensional scaling
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methods, which are widely used in the literature to map data from high dimensions

into lower dimensions. Some researchers have used this approach to visualize rule-

based knowledge (Berthold and Holve, 2000), (Berthold and Hall, 2003), (Tsumoto

and Hirano, 2003). To the best of the author’s knowledge, it has not been used

previously to visualize a population of a LCS.

The first step is to filter the population, keeping a portion of classifiers with

high accuracy and experience. Each classifier will be sampled with a number of

important points. Those points will be transformed into two dimensions, and later

used to reconstruct the classifier. In this thesis, the author chooses the corner and

center points of a classifier for transformation.
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Figure 5.4: Visualization of the final population of ANCS on the breast-w problem

The final population of the breast-w problem can be viewed in Figure 5.4. As

we can see, this is an easy problem as the negative and positive data points are quite

distinguishable from each other. Therefore a simple neural network can easily solve

the problem. As a result, ANCS tends to maintain several very general classifiers.

Several smaller classifiers also exist in the intersection area of the two classes, so

that more accurate predictions can be made within that area.

Figure 5.5 presents the final population of the iris problem. This problem has

three classes, located in three different areas. One class is totally separated from

the other two classes. It can easily be seen that ANCS divides the population into

three areas, so that each area can be handled by one classifier.
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Figure 5.5: Visualization of the final population of ANCS on the iris problem

These two visualizations reflect that ANCS is able to decompose the problem

nicely using the condition part. This technique also provides more insight into the

learning problem. Thus it is a useful technique to understand the problem as well

as the learned knowledge.

5.4.2 Neural Network boundaries

In order to understand how the neural networks work within a classifier, the

predictions of neural networks are visualized and discussed in this section.

Figure 5.6: Visualization of three most common patterns in the last population on
the breast cancer problem

In this experiment, the predictions of each classifier in the final population

are determined, and used to judge its ability to learn. This process consists of

two steps. The first step is to determine which data instances in the training set
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Figure 5.7: Visualization of three most common patterns in the last population on
the iris problem

belong to which classifiers. This is done by feeding each data instance through each

classifier so that the classifier’s condition can decide whether or not it can deal with

the instance. The second step requires each classifier to make a prediction on each

data instance that it does match. The decision will be made by its neural network

based on its accumulated knowledge.

As in the previous section, the data sets of each classifier are re-scaled into

two dimensions using the multi-dimensional scaling function. The decision of each

classifier on the same class is bounded using the convex hull algorithm as described

in (Nguyen, 2006).

Figures 5.6 and 5.7 show the decision boundaries of the neural networks of

the three most experienced and accurate classifiers in the final population, on the

breast cancer and iris problems respectively.

As we can see the boundaries of the breast cancer problem in the three classifiers

are quite similar. A small difference between neural networks is in the intersection

area of two classes. Due to different bias caused by different training instances,

each network will propose different predictions in this overlapping area.

On the iris problem, neural networks can distinguish the separate class well.

However, the overlapping area of the other two classes is not separable and therefore

is very difficult for a simple neural network to handle. As in the breast cancer prob-

lem, different bias in the training data will derive networks with slightly different

decisions in this area.

In general, we can see that a complex learning boundary would challenge simple
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neural networks, as expected. Neural networks are able to provide better predictions

within a simpler boundary. To get full advantage of the neural networks it helps to

decompose the search space well with the condition parts of the classifiers.

This simple visualization technique is quite effective for helping us to under-

stand the learning of neural networks, adding more insight into the analysis besides

the results reported in tables or figures. The results also showed that ANCS is able

to mine better pattern than NLCS.

5.5 The Performance of ANCS

This section aims to provide a better understanding of ANCS.

First, the effect of each of the three fixed parameters is studied. Since it is

very difficult to estimate their effects all together, experiments in this section are

presented based on an assumption that these parameters can be treated indepen-

dently. In each preliminary experiments, the value of one parameter is varied in

order to find reasonable initial values. The following experiments then identify the

best value for each parameter. In each experiment, one parameter is varied while

keeping the others unchanged.

The experiments are carried out on a subset of seven of the fourteen prob-

lems. These problems have a small number of features, but otherwise have all the

characteristics of the full set of problems: different representations (real, integer,

and category), different numbers of classes (2 and 3 classes), popular data sets,

non-linear boundary, etc.

The overall performance of ANCS (with the fixed parameters set to what seem

good values) is then compared with NLCS on all of the test problems.

5.5.1 The effect of the population threshold Plb

ANCS allows the population to grow freely over time. Plb is a threshold which

affects whether deletion takes place after GA inserts a classifier into the population.

Hai H. Dam October 6, 2008



CHAPTER 5. ADAPTIVE NEURAL-BASED CLASSIFIER SYSTEMS 160

Table 5.2: The mean and standard deviation of accuracy of ANCS with different
values of Plb. The highest accuracy in the row is bolded.

Problem 25 100 200 500
balance-s 0.884 ± 0.03 0.895 ± 0.02 0.891 ± 0.03 0.895 ± 0.02
breast-w 0.968 ± 0.02 0.970 ± 0.02 0.970 ± 0.01 0.969 ± 0.01
bupa 0.663 ± 0.05 0.663 ± 0.07 0.700 ± 0.06 0.683 ± 0.06
credit-a 0.856 ± 0.03 0.859 ± 0.03 0.861 ± 0.04 0.857 ± 0.04
diabetes 0.754 ± 0.04 0.746 ± 0.04 0.757 ± 0.05 0.754 ± 0.04
iris 0.951 ± 0.06 0.951 ± 0.05 0.967 ± 0.05 0.967 ± 0.05
tao 0.854 ± 0.02 0.866 ± 0.02 0.879 ± 0.02 0.890 ± 0.02

It plays an important role to create pressure within the system towards a population

of accurate and maximally general classifiers. An interaction between deletion and

GA in LCS was first identified by Wilson in his generalization hypothesis (Wilson,

1995). Butz and his colleagues later provided equations to support it theoretically

in (Butz et al., 2003b). Wilson’s generalization hypothesis suggested that the set

pressure is obtained by taking reproduction in niches and deletion in the popula-

tion. General classifiers normally have higher chances to appear in the correct set.

As a result, they participate more often in the reproduction of GA. This favours

generality in the population. Deletion in the population, on the other hand, could

happen to any classifier within the population with higher probability toward the

ones with low fitness. The deletion allows the population to keep its most accurate

ones.

Table 5.2 presents the mean and the standard deviation of the predictive ac-

curacy of ANCS with four different values for Plb. The best value for each problem

is highlighted. Table 5.3 displays the mean and standard deviation of the final

population size with each value of Plb.

In terms of accuracy, Plb = 200 seems to be the optimal threshold as it produces

the highest accuracy on five data sets, followed by Plb = 500 and Plb = 100 with the

highest accuracy on three and one data sets respectively. The differences are mainly

small. This confirms the author’s expectation that Plb should not affect accuracy in

the long run. However, we can see some different behaviours on different problems.

In principle, increasing the population size allows the system to accumulate
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Table 5.3: Final population sizes of ANCS with different values of Plb. The smallest
population size in the row is bolded.

Problem 25 100 200 500
balance-scale 27 ± 9 65 ± 9 169 ± 7 428 ± 12
breast-w 4 ± 4 37 ± 8 73 ± 13 216 ± 25
bupa 284 ± 86 327 ± 124 744 ± 146 1165 ± 237
credit-a 365 ± 81 152 ± 43 427 ± 114 609 ± 101
diabetes 94 ± 35 146 ± 71 279 ± 152 568 ± 111
iris 122 ± 53 59 ± 22 196 ± 41 384 ± 42
tao 80 ± 23 53 ± 12 159 ± 11 291 ± 24

more knowledge. Therefore the system is able to obtain better accuracy. However,

this is normally not the case in LCS. Too large a population reduces the deletion

pressure required to lead to a population of accurate and maximally general classi-

fiers. That is clearly shown with Plb = 500: final population sizes are always larger,

but accuracy decreases compared to Plb = 200 on several problems. The biggest

drop can be observed in the bupa problem, where accuracy drops from 70% to

68.3% while the population size increases greatly. It seems that the deletion thresh-

old of Plb = 500 is not strong enough to eliminate inaccurate classifiers from the

population. Inaccurate classifiers staying in the population can lead to inaccurate

productions in GA. It delays the convergence of the system.

Plb only triggers deletion after GA, not after covering or merging. Merging

is the main function that increases the population, while subsumption decreases

the population. In Table 5.3 we can see several problems where the final popula-

tion size is much larger than Plb. This shows that merging is more frequent than

subsumption, indicating the problem favours more specific classifiers. In contrast,

some problems favour more general classifiers, and the final population size can be

smaller than Plb.

It can be best not to set Plb too small. The smallest final population sizes were

obtained with Plb = 25 on four problems, but with Plb = 100 on three problems. For

these three problems, it is likely that when Plb is small, too many useful classifiers

are being deleted after GA; the merge function cannot find classifiers with enough

overlap, and generalization is hard.
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Table 5.4: The mean and standard deviation of accuracy of ANCS with different
covering ranges. The highest accuracy in the row is bolded.

Problem 0.10 0.20 0.30 0.40 0.50
balance-scale 0.888 ± 0.03 0.885 ± 0.02 0.894 ± 0.02 0.894 ± 0.02 0.892 ± 0.02
breast-w 0.968 ± 0.01 0.971 ± 0.01 0.969 ± 0.02 0.974 ± 0.01 0.968 ± 0.02
bupa 0.624 ± 0.08 0.635 ± 0.06 0.627 ± 0.06 0.617 ± 0.07 0.640 ± 0.06
credit-a 0.857 ± 0.04 0.863 ± 0.03 0.860 ± 0.03 0.859 ± 0.03 0.862 ± 0.02
diabetes 0.744 ± 0.04 0.742 ± 0.04 0.741 ± 0.03 0.743 ± 0.03 0.741 ± 0.04
iris 0.964 ± 0.03 0.953 ± 0.05 0.951 ± 0.04 0.953 ± 0.04 0.951 ± 0.05
tao 0.880 ± 0.03 0.868 ± 0.03 0.880 ± 0.02 0.867 ± 0.02 0.873 ± 0.02

Problem 0.60 0.70 0.80 0.90 1.00
balance-scale 0.894 ± 0.02 0.894 ± 0.02 0.893 ± 0.02 0.899 ± 0.02 0.895 ± 0.02
breast-w 0.970 ± 0.01 0.972 ± 0.01 0.974 ± 0.01 0.969 ± 0.01 0.970 ± 0.01
bupa 0.640 ± 0.07 0.648 ± 0.07 0.648 ± 0.07 0.636 ± 0.06 0.663 ± 0.07
credit-a 0.860 ± 0.03 0.865 ± 0.03 0.861 ± 0.03 0.865 ± 0.03 0.867 ± 0.03
diabetes 0.745 ± 0.03 0.749 ± 0.03 0.751 ± 0.03 0.743 ± 0.04 0.746 ± 0.04
iris 0.947 ± 0.06 0.960 ± 0.04 0.960 ± 0.04 0.969 ± 0.04 0.951 ± 0.05
tao 0.870 ± 0.03 0.869 ± 0.02 0.872 ± 0.02 0.868 ± 0.02 0.866 ± 0.02

It can be observed that Plb = 100 gives slightly better accuracy than Plb = 25 on

most problems, and achieves the best accuracy overall on two problems. Plb = 100

seems a better choice than Plb = 25.

It appears that Plb = 200 gives better accuracy while Plb = 100 produces

smaller populations. The trade-off between accuracy and compactness is quite

common in machine learning. It would be difficult to say definitely which Plb is

the best in this experiment. Except for the bupa problem, all other problems do

not show much difference in accuracy between Plb = 100 and higher thresholds.

However, the final population size is usually less than half. Thus from this point,

Plb = 100 is used.

5.5.2 The Effect of the Covering Range

The covering function happens in ANCS when the correct set is empty. When

a new classifier is created by this function, the covering range affects the size of

the boundaries of the classifier around the instance. Random values within the

covering range are chosen for the lower and upper bounds of the condition. If the

covering range is large, more general classifiers are created. If the range is small,

more specific classifiers are created. Either could be advantageous depending on

the application domain.
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Table 5.4 presents the mean and the standard deviation of the predictive accu-

racy of ANCS on the seven problems, with different values for the covering range.

The best value for each problem is highlighted. The variation in performance be-

tween different covering ranges is generally small. This confirms the author’s ex-

pectation that the covering range is likely to affect the rate of convergence rather

than accuracy.

Three different patterns can be seen in Table 5.4. In the breast cancer, credit-a,

diabetes, and iris problems, the covering range has almost no effect on accuracy. In

the balance scale and bupa problems, accuracy is better with large covering ranges

of 0.9 or 1. In the tao problem, accuracy is best with small covering ranges of 0.1

or 0.3.

Each classifier in ANCS tries to capture a local area which represents a simple

part of the target problem. A neural network is responsible for providing further

discrimination within that area. Neural networks can solve complex problems, but

they normally require lots of hidden layers and hidden units. We used very simple

neural networks, to preserve expressiveness, which limits their effectiveness to simple

problems.

The non-linear boundaries in tao are clearly not a simple problem. If ANCS

creates general classifiers, simple networks cannot provide correct predictions within

most of them so they are inaccurate. They will just have to be deleted anyway, so

it is better not to create general classifiers in the first place. Thus small covering

ranges are best for the tao problem.

Problems in which the covering range makes little difference do not suffer from

either specific or general sites. The evolutionary pressure together with deletion

pressure in ANCS cooperate nicely to eliminate the effect of the covering range.

The responsibility to bring generality in LCSs normally belongs to GA. In

ANCS, merging also takes part of this responsibility. If the population starts from

general classifiers this duty can be reduced, but a heavier load is placed on deletion

to filter out inaccurate classifiers from the population.

Bupa is the hardest problem. Even though its final population size is larger
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than for any other problem, its best accuracy is only 66%. If the system starts with

specific rules, a significant time is required until the whole search area is covered.

As a result, a low accuracy is obtained until then.

Overall, a high covering range seems to be better in many problems. From this

point in the chapter the author will choose a value of 1 unless stated differently.

5.5.3 The Effect of the Deletion Threshold

The last parameter to be investigated is the deletion threshold θSdel. This is

used in the self-deletion function, which deletes classifiers that have an imbalance

in the accuracy of their predictions for different classes.

A small threshold increases the pressure toward accurate classifiers. For exam-

ple, suppose a problem has two classes M and N. A classifier with 100% accuracy

on class M and 89% accuracy on class N will be deleted if the threshold is 0.1, even

though its overall accuracy is more than 90%. A small threshold will only accept

highly accurate classifiers, which might not be good in many cases.

A high threshold, on the other hand, make this form of deletion rare. Classifiers

with high differences in their predictive accuracy are likely to be deleted beforehand

by the normal deletion function due to low accuracy in general.

Table 5.5 presents the mean and the standard deviation of ANCS with different

deletion thresholds ranging from 0.1 to 0.7. The best accuracy in each problem is

bolded. From the result, we can see three regions of the threshold: small ([0.1,0.3)),

moderate ([0.3,0.6)), and large ([0.6,0.7]).

Observing each region, we can see that the best accuracy is generally obtained

within moderate thresholds. Six out of seven problems achieve their highest accu-

racy when the deletion threshold is in the range [0.3,0.6). Bupa is the only problem

for which accuracy is best outside that range, but the difference between 71.1%

with a threshold of 0.5 and 71.4% with a threshold of 0.6 is very small.

From this experiment it seems that this self-deletion function is indeed useful,

since it does affect accuracy. Moderate thresholds seem to support better accuracy
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Table 5.5: The mean and the standard deviation of accuracy of ANCS with different
deletion thresholds. The highest accuracy in the row is bolded.
Problem 0.10 0.20 0.30 0.40
balance-scale 0.883 ± 0.03 0.883 ± 0.03 0.892 ± 0.02 0.883 ± 0.03
breast-w 0.971 ± 0.02 0.970 ± 0.01 0.968 ± 0.02 0.971 ± 0.01
bupa 0.707 ± 0.06 0.693 ± 0.06 0.640 ± 0.06 0.707 ± 0.06
credit-a 0.856 ± 0.03 0.857 ± 0.04 0.862 ± 0.02 0.858 ± 0.04
diabetes 0.756 ± 0.04 0.753 ± 0.04 0.741 ± 0.04 0.755 ± 0.04
iris 0.960 ± 0.05 0.964 ± 0.05 0.951 ± 0.05 0.964 ± 0.05
tao 0.866 ± 0.02 0.864 ± 0.02 0.873 ± 0.02 0.865 ± 0.02

Problem 0.50 0.60 0.70
balance-scale 0.883 ± 0.03 0.883 ± 0.03 0.883 ± 0.03
breast-w 0.971 ± 0.01 0.969 ± 0.01 0.969 ± 0.01
bupa 0.711 ± 0.06 0.714 ± 0.05 0.705 ± 0.05
credit-a 0.859 ± 0.04 0.858 ± 0.03 0.856 ± 0.04
diabetes 0.761 ± 0.05 0.761 ± 0.04 0.759 ± 0.04
iris 0.960 ± 0.05 0.960 ± 0.05 0.958 ± 0.05
tao 0.867 ± 0.02 0.866 ± 0.02 0.865 ± 0.02

than high thresholds. When the threshold is 0.3, three problems have obtained the

best accuracy. Fewer problems achieve the best accuracy with higher thresholds

(two when the threshold is 0.4, and only one when the threshold is 0.5), so 0.3

seems the best value to use. From this point, the author will test the system with

a threshold of 0.3.

5.5.4 Comparison with NLCS

Table 5.6 shows the mean accuracy and standard deviation of ANCS on each

of the fourteen problems. Based on the results from the previous sections, the

parameter values used were Plb = 100, covering range c=1, θSdel = 0.3.

Table 5.6 also presents the results for NLCS (with a population size N=25),

and compares the two systems. The statistical t-test is used to check for statistically

significant differences in accuracy, at a significance level of 0.05. The results show

statistically significant differences in accuracy in six problems. ANCS is better on

two problems, NLCS is better on four problems, and there is no significant difference

on the other eight problems.
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Table 5.6: The mean and the standard deviation of accuracy of NLCS and ANCS.
¥(¤) symbols indicate that ANCS is better(worse) than NLCS at a significance
level of 0.05.

Problem NLCS ANCS
balance-scale 0.903 ± 0.014 0.895 ± 0.024
breast-w 0.966 ± 0.013 0.970 ± 0.015
bupa 0.729 ± 0.064 0.663 ± 0.074 ¤
credit-a 0.859 ± 0.037 0.859 ± 0.032
diabetes 0.768 ± 0.042 0.746 ± 0.037 ¤
glass 0.604 ± 0.069 0.627 ± 0.100
heart-statlog 0.837 ± 0.080 0.832 ± 0.063
ionosphere 0.880 ± 0.065 0.900 ± 0.055
iris 0.958 ± 0.048 0.951 ± 0.049
lymph 0.841 ± 0.077 0.822 ± 0.081
segment 0.923 ± 0.019 0.943 ± 0.014 ¥
sonar 0.831 ± 0.059 0.789 ± 0.071 ¤
tao 0.891 ± 0.018 0.866 ± 0.024 ¤
vowel 0.657 ± 0.049 0.912 ± 0.035 ¥

The key difference between ANCS and NLCS is that ANCS employs the adap-

tive architecture to vary the population while NLCS has a fixed population size.

ANCS does better on the segment and vowel problems. These have many

classes, and are hard for NLCS to learn with a small population size. The adaptive

population size is important for these problems.

Sensitivity to parameters may explain why ANCS performs worse than NLCS

on some problems. As noted above, a covering range of 1 does not suit the tao

problem, and a relatively low value of Plb = 100 is not good for the bupa problem.

Similar reasons may explain why ANCS performs worse than NLCS on the diabetes

and sonar problems.

Considering accuracy alone, it is unclear how to answer the first research ques-

tion in this chapter: ANCS is not clearly better than NLCS. In terms of knowledge

discovery, though, there is a difference. ANCS and NLCS differ in how their learn-

ing is shared between their conditions and their actions (neural networks). Once

its maximum population size is reached, NLCS will not allow any insertion. From

this point on, covering still plays some role but most of the learning is put on the
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Table 5.7: Comparing ANCS’s performance with other typical machine learning
algorithms. The mean accuracy and standard deviation of Majority, C4.5, Naive
Bayes and ANCS.

Problem Majority C4.5 Naive Bayes ANCS
balance-scale 0.461 ± 0.002 0.779 ± 0.040 0.905 ± 0.018 0.895 ± 0.024

breast-w 0.655 ± 0.003 0.945 ± 0.026 0.960 ± 0.021 0.970 ± 0.015
bupa 0.580 ± 0.008 0.650 ± 0.086 0.548 ± 0.083 0.663 ± 0.074

credit-a 0.555 ± 0.004 0.854 ± 0.042 0.778 ± 0.042 0.859 ± 0.032
diabetes 0.651 ± 0.003 0.742 ± 0.046 0.756 ± 0.049 0.746 ± 0.037

glass 0.356 ± 0.014 0.674 ± 0.088 0.481 ± 0.082 0.627 ± 0.100
heart-statlog 0.556 ± 0.000 0.778 ± 0.080 0.839 ± 0.064 0.832 ± 0.063
ionosphere 0.641 ± 0.006 0.900 ± 0.053 0.825 ± 0.071 0.900 ± 0.055

iris 0.330 ± 0.000 0.948 ± 0.059 0.955 ± 0.051 0.951 ± 0.049
lymph 0.550 ± 0.029 0.777 ± 0.111 0.830 ± 0.086 0.822 ± 0.081

segment 0.143 ± 0.000 0.968 ± 0.011 0.801 ± 0.018 0.943 ± 0.014
sonar 0.534 ± 0.012 0.738 ± 0.085 0.678 ± 0.096 0.789 ± 0.071
tao 0.500 ± 0.000 0.956 ± 0.013 0.809 ± 0.029 0.866 ± 0.024

vowel 0.091 ± 0.000 0.801 ± 0.036 0.632 ± 0.049 0.912 ± 0.035

shoulders of the neural networks. The decomposition part of NLCS is relatively

unimportant, and the neural networks within classifiers have the most important

role in the learning of the system. ANCS, on the other hand, employs deletion

and subsumption to ensure that the condition is also an important component. As

seen in Section 5.4, the result is that ANCS shares its learning better between the

conditions and the neural networks. This means that ANCS is better than NLCS

in terms of knowledge discovery.

5.5.5 Comparison with Other Classifiers

Table 5.7 shows the performance of three typical classifiers in the literature in-

cluding Majority, C4.5, and Naive Bayes on the same datasets. The results obtained

from the WEKA system by Butz (2004).

Similar to NLCS, ANCS outperforms the majority algorithm in all datasets.

ANCS is better than C4.5 in ten problems and the naive bayes in eight problems.

Even though the significant test were not performed, the results indicate that ANCS

is able to achieve similar accuracy as other classifiers in the literature.
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5.6 An Ensemble Framework

The previous section presented the performance of ANCS when the fixed pa-

rameters were always set to the same fixed values that seemed best overall: Plb =

100, covering range c=1, θSdel = 0.3.

We noted above that the accuracy of ANCS can be sensitive to the values of

the fixed parameters. Table 5.4 showed three different patterns, suggesting that

covering range can be divided into three different areas: small ([0.1–0.4)), moderate

([0.4–0.8)), and large ([0.8–1]). Similarly, we saw three ranges for the deletion

threshold: small ([0.1,0.3)), moderate ([0.3,0.6)), and large ([0.6,0.7]). Each of

these settings might suit different types of problem. In practice the characteristics

of a data set might not be known in advance, so there is no way to know the best

parameter values to use.

This motivates the author to propose an ensemble version of ANCS, called

EANCS. Figure 5.8 depicts the framework of EANCS. Each individual in the en-

semble will be set up with one of three different values for the covering range and

one of three different values for the deletion threshold. We choose values close to

the midpoint of each range: 0.2, 0.55, 0.9 for the covering range, and 0.15, 0.4, 0.65

for the deletion threshold. The proposed framework contains nine nodes, repre-

senting all nine possible combinations of values for the covering range and deletion

threshold.

In the training phase, all individuals in EANCS are trained independently

with the same training data. Different parameter settings might lead to different

knowledge in the system, resulting in different prediction for testing instances.

In the testing phase, each data instance is evaluated by each individual in the

ensemble. The final outcome is decided by a voting scheme at the gate level.

5.6.1 Individuals in EANCS

Table 5.8 shows the predictive accuracy of each individual in the ensemble,

and the ensemble as a whole. The results for the individuals show variation in the
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Figure 5.8: The framework of EANCS

predictive accuracy in all problems except the breast cancer. This again confirms

that these parameters have an impact on the predictive accuracy of ANCS.

The accuracy of the ensemble is higher than that of almost every individual.

This confirms that the ensemble framework is able to overcome the bias of different

setups.

The covering range and deletion threshold parameters are handled internally

within the ensemble. In effect the only fixed parameter the author has introduced is

Plb. The ensemble framework does reduce the number of parameters. This answers

the second research question.

5.6.2 Comparison with Other Systems

Table 5.9 shows the mean accuracy and standard deviation of EANCS, NLCS,

and UCS. The statistical t-test is used to compare NLCS and UCS against EANCS

at a significant level of 0.05. The results for a single ANCS are also presented and
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Table 5.8: The mean accuracy of each individual and the ensemble of EANCS.

Covering range 0.20 0.55 0.90 0.20 0.55 0.90 0.20 0.55 0.90
Deletion threshold 0.15 0.15 0.15 0.40 0.40 0.40 0.65 0.65 0.65 Ensemble
balance-scale 0.886 0.895 0.898 0.890 0.898 0.902 0.893 0.899 0.894 0.899 ± 0.018
breast-w 0.963 0.963 0.964 0.963 0.964 0.964 0.963 0.963 0.964 0.965 ± 0.014
bupa 0.594 0.654 0.664 0.577 0.665 0.678 0.594 0.664 0.668 0.712 ± 0.059
credit-a 0.841 0.860 0.860 0.860 0.860 0.860 0.836 0.850 0.860 0.865 ± 0.008
diabetes 0.752 0.749 0.749 0.755 0.758 0.754 0.755 0.753 0.761 0.769 ± 0.041
glass 0.619 0.642 0.659 0.613 0.655 0.665 0.622 0.621 0.639 0.701 ± 0.099
heart-statlog 0.822 0.820 0.823 0.804 0.826 0.821 0.823 0.823 0.821 0.833 ± 0.069
ionosphere 0.826 0.836 0.858 0.816 0.845 0.864 0.814 0.833 0.871 0.866 ± 0.081
iris 0.944 0.953 0.947 0.956 0.947 0.956 0.958 0.949 0.947 0.967 ± 0.034
lymph 0.830 0.793 0.785 0.769 0.800 0.790 0.798 0.807 0.794 0.827 ± 0.097
segment 0.938 0.938 0.935 0.936 0.938 0.942 0.936 0.939 0.879 0.942 ± 0.012
sonar 0.805 0.759 0.793 0.789 0.776 0.789 0.786 0.803 0.733 0.810 ± 0.069
tao 0.904 0.879 0.879 0.906 0.901 0.891 0.910 0.895 0.891 0.899 ± 0.013
vowel 0.867 0.862 0.868 0.871 0.853 0.872 0.858 0.849 0.672 0.887 ± 0.032

Table 5.9: The mean and standard deviation of accuracy of EANCS, ANCS, NLCS,
and UCS. ¥/¤ symbols indicate that ANCS, NLCS, or UCS is better/worse than
EANCS at a significance level of 0.05.

Problem Ensemble ANCS NLCS UCS
balance-scale 0.899 ± 0.018 0.895 ± 0.024 0.903 ± 0.014 0.815 ± 0.038 ¤
breast-w 0.965 ± 0.014 0.970 ± 0.015 0.966 ± 0.013 0.969 ± 0.012
bupa 0.712 ± 0.059 0.663 ± 0.074 ¤ 0.729 ± 0.064 0.683 ± 0.062 ¤
credit-a 0.865 ± 0.008 0.859 ± 0.032 0.859 ± 0.037 0.835 ± 0.028 ¤
diabetes 0.769 ± 0.041 0.746 ± 0.037 ¤ 0.768 ± 0.042 0.748 ± 0.044 ¤
glass 0.701 ± 0.099 0.627 ± 0.100 ¤ 0.604 ± 0.069 ¤ 0.648 ± 0.116 ¤
heart-statlog 0.833 ± 0.069 0.832 ± 0.063 0.837 ± 0.080 0.825 ± 0.078
ionosphere 0.866 ± 0.081 0.900 ± 0.055 ¥ 0.880 ± 0.065 0.729 ± 0.051 ¤
iris 0.967 ± 0.034 0.951 ± 0.049 0.958 ± 0.048 0.949 ± 0.042 ¤
lymph 0.827 ± 0.097 0.822 ± 0.081 0.841 ± 0.077 0.759 ± 0.112 ¤
segment 0.942 ± 0.012 0.943 ± 0.014 0.923 ± 0.019 ¤ 0.968 ± 0.008 ¥
sonar 0.810 ± 0.069 0.789 ± 0.071 0.831 ± 0.059 0.735 ± 0.073 ¤
tao 0.899 ± 0.013 0.866 ± 0.024 ¤ 0.891 ± 0.018 ¤ 0.887 ± 0.015 ¤
vowel 0.887 ± 0.032 0.912 ± 0.035 ¥ 0.657 ± 0.049 ¤ 0.910 ± 0.031 ¥

compared, to show what accuracy can be obtained if a single ANCS is preferred

because an ensemble is too expensive.

The results show that EANCS gets better accuracy than ANCS on four prob-

lems (bupa, diabetes, glass, and tao), and worse accuracy on two problems (iono-

sphere, vowel). The accuracy of both ionosphere and vowel problems seems to vary

a lot with different setups of parameters as in Table 5.8, [0.814–0.871] for the iono-

sphere and [0.672–0.872] for the vowel. The parameter values for a single ANCS

are not the same as any individual in the ensemble, which is why a single ANCS

still sometimes does better.

EANCS achieves significantly better accuracy than NLCS on four problems
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(glass, segment, tao, and vowel), and equivalent accuracy on the other ten problems.

The ensemble version of ANCS is clearly better than NLCS. This gives a positive

answer to the first research question.

Similarly, EANCS achieves significantly better accuracy than UCS on ten prob-

lems, equivalent accuracy on two problems, and significantly worse accuracy on only

two problems (segment and vowel).

It was noted earlier that the segment and vowel problems are a challenge for the

neural-based representation, due to the large number of possible outcomes – seven

classes for the segment problem and eleven for the vowel problem. Simple neural

networks have difficulty learning a large set of weights. The adaptive framework

in EANCS has helped in these problems, compared to the fixed population size of

NLCS, but UCS still does better unless much more training time is allowed to train

the neural networks correctly.

Overall, EANCS performs at least competitively with other systems, and in

most cases better, except on problems that are a challenge for any system using a

neural-based representation.

5.6.3 Population Size

Figure 5.9 presents the population sizes in the final population of EANCS (the

sum of all nine individuals), ANCS and UCS. As we can see, ANCS obtains much

smaller population sizes in thirteen out of fourteen testing data sets, because the

neural networks compact the population.

EANCS always requires a larger population than ANCS due to the use of nine

ANCS systems. It requires larger population sizes than UCS on six problems, and

smaller population sizes on eight problems. This means there is a trade-off between

accuracy and population size.

This section investigated EANCS, having nine ANCSs with each system set up

differently. The study found that the ensemble system is able to reduce bias caused

by different setups of parameters, while maintaining or even improving accuracy.
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Figure 5.9: The population sizes of UCS, ANCS and EANCS

EANCS requires larger population sizes than a stand-alone system, however.

5.7 Chapter Summary

In this chapter, the author argued that the fixed population size of NLCS is a

disadvantage because the decomposition of the search space by the condition part

might be limited and that NLCS has to rely mainly on the neural networks in

learning.

ANCS is an adaptive version of NLCS, varying the population size as needed.

The visualization tools reveal that in ANCS the condition part is able to de-

compose the problem correctly, and a simple network in each classifier is working

well within its local area.

An investigation of ANCS reveals a set of parameters that affects the predic-

tive accuracy of the system. This motivates the author to introduce the ensemble

system, aiming at no parameter setting and better performance. The result shows

that the ensemble framework can overcome the bias caused by the parameters, effec-

tively removing them. The ensemble framework achieves equal or better predictive
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accuracy than either single ANCS, NLCS, or UCS, except in problems that are a

challenge for any system using a neural-based representation.

The results confirm that (1) the proposed adaptive framework is beneficial in

NLCS; (2) the ensemble framework helps to reduce the number of parameters. In

conclusion, this chapter was designed to answer the third research sub-question

“How to reduce the bias caused by the initial choice of parameters’ values?” The

results showed that ANCS/EANCS is a potential solution to overcome the bias

caused by the initial setup.
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Chapter 6

Distributed Stream Data Mining

Systems

The following paper is partially based on this chapter:

1. P. Rojanavasu, H.H. Dam, H.A. Abbass, C. Lokan and O. Pinngern (2007) A Self-Organized, Distributed,

and Adaptive Rule-Based Induction System, IEEE Transactions on Neural Networks. (conditionally ac-

cepted, revised version submitted on 29-Jan-2008)

6.1 Overview

Chapter 3 proposed the framework of UCS in distributed computing envi-

ronments, called DUCS. In this framework, the distributed and central sites are

described in terms of a clients and a server architecture. To validate the system, it

was compared against the centralized UCS, which basically transfers all data from

remote sites to a central location for normal data mining. The results revealed that

DUCS is competitive as a distributed data mining system due to two reasons. First,

DUCS has similar accuracy to the centralized system. Second, the amount of data

that needs to be transferred to the central location is reduced enormously in DUCS

compared to the centralized UCS system.

This chapter focuses on how to build a distributed system based on ANCS.

A comprehensive analysis of the behaviour of ANCS revealed interesting patterns

in the behaviour of the parameters which motivated an ensemble version of the
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algorithm with 9 nodes, each using a different parameter setting. In total they

cover all patterns of behaviour noticed in the system. A voting gate was used

for the ensemble. EANCS does not require any parameter setting, and showed

better performance on all datasets tested. However, the computation of EANCS

is normally higher than ANCS because EANCS evolves multiple ANCSs, each of

which has a different parameter setting.

This chapter investigates ANCS in distributed environments, in which the

training data can be logically or physically distributed. This first case is handled by

EANCS. The distributed framework in Chapter 3 is revisited in this chapter with

the use of ANCS to handle the latter case. The chapter focuses on the following

issues:

• Stream data mining architecture: how to build a framework to handle dis-

tributed environments of stream data mining using LCS?

• Dynamic and noisy environments: how quickly ANCS/EANCS can recover

after the changes and how robust the system is?

• Processing time: how fast ANCS/EANCS is to process one training instance?

• Traffic load: the amount of data being transferred in the system.

The purpose of this chapter is to verify that ANCS/EANCS, whose develop-

ment in Chapter 5 was studied in a centralized environment, can be effective in a

distributed environment.

This chapter is structured as follows. Section 6.2 describes the design of phys-

ical and logical distributed environments. The methodology is then given in Sec-

tion 6.3, followed by an investigation of DANCS in Section 6.4. The comparison

between DANCS, EANCS, and DUCS is carried out on a synthetic data set in Sec-

tion 6.5 and on a large real-world data set in Section 6.6. Finally, the last section

summarizes the findings in this chapter.
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6.2 Distributed Architectures

This section describes the integration of ANCS in the distributed environment

for data streams. In general, the environment can be distributed either physically or

logically. This chapter proposes a distributed adaptive neural-based classifier sys-

tem (DANCS) for the physically distributed environment, and an ensemble adaptive

neural-based classifier system (EANCS) for the second environment.

Both frameworks are responsible for building a complete knowledge as a whole

from local mining systems.

6.2.1 Description of DANCS

DANCS is built based on the client-server framework discussed in Chapter

3. Figure 6.1 displays the framework of DANCS. The distributed environment

consists of multiple data sources, which are called clients in this thesis. A server

is responsible for combining the information from local clients. This framework is

a many-to-one relationship, in which all clients are required to communicate with

the server occasionally in order to update their information at the server.

6.2.1.1 The Client

Clients might or might not communicate with the each other for exchanging

their experience. Experiments in Chapter 3 showed that the communication be-

tween clients might help to speed up the learning at each client, especially in binary

domains. The difference is not significantly observed in real-valued problems, how-

ever. Since this chapter focuses on real-valued problems, this communication will

not be examined here.

Each client is an independent component, which is able to operate in its own

right. A complete ANCS is employed at each client in order to obtain local patterns

coming from local data sources. Data arrives at each client in a stream fashion, so

its learning model updates the knowledge on the fly.
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Figure 6.1: The framework of DANCS in a distributed environment

Each client is responsible for updating its knowledge at the server. The com-

munication frequency is decided by the user. Experiments in Chapter 3 showed

the trade-off between accuracy, data transmission, and up-to-date server may vary

depending on the nature of the problem. In general, more frequent communication

provides faster update at the server, but more traffic load is required. This chapter

will not focus on this issue as it was discussed in Chapter 3.

6.2.1.2 The Server

The server contains all separate local models in its memory. Clients are respon-

sible for updating their models regularly. The server does not make any changes to

the content of local models as they are only used in the testing mode. Figure 6.1

shows three local models, being maintained at the server. These models represent

the local knowledge of clients. From the management’s point of view, a company

might want to build a single knowledge source rather than several independent

sources of information. Commonly, the local knowledge has many things in conflict

due to different learning bias under different local situations. The responsibility of
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the server is to integrate these local models into a single coherent knowledge-based

system.

Experiments in Chapter 3 showed that the majority voting is a simple but

quite efficient approach for combining the knowledge from multiple models since no

training is required and acceptable performance was observed. Therefore, DANCS

also employs the voting approach to combine local knowledge. Any conflict in the

outcomes of local models is resolved through voting. The majority outcome will be

chosen as the final decision at the server.

Each testing instance at the server is fed directly into all local models. Based

on the current knowledge, each model proposes an outcome after processing the

instance. At the end, the server chooses the best one within these outcomes by

voting.

6.2.1.3 The Traffic Load in DANCS

Chapter 3 introduced the MDL formula for estimating the traffic flow within

DUCS in terms of the number of transmission bits. The main difference between

DANCS and DUCS is that the action of each classifier in DUCS is replaced by a

neural network. This section provides the modified MDL formula, considering the

cost of transferring neural networks.

MDL is the theory bits or the length of the model. That is the number of bits

required to encode a set of classifiers for transferring in the network.

The classifiers have a common structure: Condition −→ Action : parameters.

Their lengths are defined as follows:

MDL =
nr∑
i=1

(CLi) +
nr∑
i=1

(ALi) +
nr∑
i=1

(PLi) (6.1)

Where nr is the number of classifiers needed for transmission; CLi, ALi, PLi are the

length of a condition, an action and a set of parameters in one classifier respectively.

Assuming that the interval predicate is used to encode a condition, the action is

presented by a neural network, and each classifier will transfer three parameters:

Hai H. Dam October 6, 2008



CHAPTER 6. DISTRIBUTED STREAM DATA MINING SYSTEMS 180

fitness (a real value), numerosity (an integer), and experience (an integer). The

length of each component of a classifier can be estimated as follows:

CLi = 2× nc× nreal (6.2)

ALi = (nc + 2 + na)× nreal (6.3)

PLi = 2× nint + nreal (6.4)

where nc is the number of features; na is the number of actions; each neural network

has nc input nodes, 1 hidden node, 1 bias node, and na output nodes; nreal and nint

are the number of bits required to encode a real value and an integer respectively.

Thus, the length of data sent from a client to the server is estimated as:

MDL = (CLi + ALi + PLi)× nr (6.5)

MDL = nr × ((3nc + na + 3)× (nreal) + 2× nint) (6.6)

where nr is the total number of classifiers being sent to the server.

Comparing this MDL with the one in Chapter 3 ignoring the exception part,

we can see that the amount of data needed to transfer using this equation is higher

due to the extra data used to encode the neural network. However, since the

population size is smaller using the neural-based representation, we can expect the

data transmission to be smaller.

6.2.2 Description of EANCS

EANCS was presented in the previous chapter as an ensemble system for re-

ducing the effect of the parameters setting. This chapter provides further details

of using EANCS for stream data mining. In contrast to DANCS, EANCS is de-

signed for a centralized environment, which has only one data source. Figure 6.2

demonstrates EANCS in centralized environments.
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6.2.2.1 The Ensemble Framework

EANCS consists of several ANCSs, each of which is trained independently. To

maintain the diversity in EANCS, each ANCS uses different parameters setups. A

setup with nine ANCSs such as the one in the previous chapter is a good example

of how to initialize the system.

Figure 6.2: The framework of EANCS in a centralized environment

All training instances are required to go through a router that is responsible for

splitting a single stream of data into several logically distributed streams of data.

Each logically distributed stream of data is assigned to a complete ANCS, which

operates independently. The number of ANCS can be decided based on several

factors, such as the data generated speed, the computational power of the system,

etc. This chapter inherits the study in the previous chapter by using similar setups

with nine local models and nine sets of parameters’ values.

In order to distribute the training data between multiple ANCSs, a simple task

assignment function is employed at the router. The author uses round robin task

assignment because this is the simplest technique that can do the job well and also

requires a limited computation time.
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In the training phase, the task assignment component assigns the arriving

instances equally to individual ANCSs. Each ANCS learns only a part of the data

set. The communication between ANCSs is not investigated in this chapter. Each

ANCS is responsible for building its own knowledge independently.

If EANCS is operated in one machine, the server does not really exist. The

communication between clients and server is no concern. For each testing instance,

the data is fed directly to all ANCSs without going to the task assignment function.

The final decision is made by the voting scheme among outcomes of all ANCSs.

It is important to make it clear that EANCS in this chapter is different to

the one in the previous chapter. The previous EANCS is designed to test on small

data sets, which are required to pass the whole data set through each ANCS several

times. As a result, each training instance is seen by all members in the ensemble.

EANCS in this chapter, on the other hand, is designed for data streams. It would be

impossible to process data streams in a similar manner because they are normally

large in volume and fast in arriving speed. Each local ANCS in this chapter is

given a separate portion of the data, split by the router. Each portion of data

might not contain complete information. But it is not really a concern because the

data stream is normally very large.

6.2.2.2 EANCS in Logically Distributed Environments

It is well known in distributed environments (Cantu-Paz and Kamath, 2002)

however, that we cannot simply scale the population size linearly with the number

of processors. In other words, a population size of 1000 on a single processor does

not map to a population size of 250 in a 4-processor environment.

One may wonder why we need an ensemble if the individual nodes require a

worst case population size equal to the population size of the single UCS. A simple

queuing analysis below can be used to explain.

Assume that the traditional UCS is able to process TN instances per second,

where N is the population size. Let R instances per second denote the rate of data

arrival. Assume a single pass-learner (for stream data mining) as being presented
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in (Dam et al., 2005c).

We now need to compare between the single population approach and the

ensemble environment. In this analysis, we will assume that the inter-arrival time

is uniform for simplicity. In the former, if R > TN , queuing theory would tell us

that we need an infinite queue to accumulate the data waiting for processing. In a

multi-server environment, the condition for handling this data set without the need

for any queues is R < min(UM ,M×TN), where M is the minimum number of UCS

nodes in EANCS and UM is the number of instances a router can route per second

(in EANCS, the router is a simple round robin function) to distribute the incoming

data to one of the M UCS populations. We assume here that all UCS nodes have

the same population size and therefore, the processing time of an instance across

the nodes is homogenous.

Let us take a hypothetical example to illustrate this. Assume that the data

arrival rate is 10,000 instances per second. Assume that the population size for a

single UCS is 1,000 rules and the time needed to scan this population size is 0.001

second; thus, in a second, the single UCS can process 1000 data instances. This

implies that we can’t use a single population as the queue will grow exponentially.

Here we are assuming for illustrative purposes that all data require processing and

the data arrives in a constant rate indefinitely. If we use a EANCS environment,

we may need 11 UCS (notice that we need exactly 10 UCSs if the time to route

the data is 0, but because of the time needed by the simple round robin function to

route an instance is assumed in this example to be much less than the time needed

to process an instance using UCS, we will need 11 UCSs). This simple example

illustrates our future use of EANCS and one of the main advantages of such an

architecture.
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6.3 Methodology

6.3.1 Experiment Setup

This chapter conducts three experiments to test EANCS, DANCS, and DUCS

in data stream environments. Since both EANCS and DUCS have been studied

in previous chapters, the first experiment will examine DANCS alone. DANCS is

studied on several issues such as the effect of the population threshold, the effect of

learning at the server with different numbers of clients, and the learning performance

in comparison to the one of DUCS. Unless stated differently, the system in this

experiment uses a basic setup with three clients as in Chapter 3.

The second experiment compares EANCS, DANCS, and DUCS on a synthetic

data set in noisy and dynamic environments. This experiment aims to learn the

behaviour of three systems on a simulated data stream problem. Similar tests as

Chapter 3 on noisy and dynamic environments are carried out for this experiment.

Since EANCS has nine clients, both DANCS and DUCS are simulated with nine

clients.

The last experiment investigates EANCS, DANCS, and DUCS on a large data

set to simulate a data stream, using the forest data set from UCI repository (Blake

and Merz, 1999). Again each system is setup with nine clients as in the previ-

ous experiment. Originally, Blackard (1998) used this data set to compare neural

networks and discriminant analysis. Blackard divided the data set into three sub-

sets: training set (1,620 instances), validation set (540 instances), and testing set

(565,892 instances). The chosen training set is able to represent roughly 60% of the

data set.

Since this thesis focuses on stream data mining, the whole data set is used to

simulate data streams. The data is divided into ten stratified subsets; one set is

used for testing, and nine sets are used for training different clients.

In this experiment, all systems: EANCS, DANCS and DUCS are set up with

nine clients, where each one is trained one time by one training set. The training at

clients is recorded after each 50 instances in order to monitor the learning ability.
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The testing data is used at the server, after finishing all training at clients, to

validate the learning of the whole system.

6.3.2 System Setup

Unless stated differently, UCS in DUCS is setup with the same parameter

values used by Bernadó-Mansilla and Garrell-Guiu (2003) as follows: v = 5, θGA =

50, χ = 1, µ = 0.04, θdel = 50, θsub = 50,m0 = 0.1, s0 = 0.6, N = 6400. Two points

crossover and roulette wheel selection are used.

ANCS is setup using similar parameters found in the previous chapter. Each

MLP has one hidden layer and one hidden node. The learning rate of MLPs

is β = 0.1. Other parameters are: v = 10, θGA = 50, χ = 1, µ = 0.04,m0 =

0.1, s0 = 0.1, γ = 0.5, Plb = 1000, θSdel = 0.3, covering range c = 1, p max value=1,

p min value=0.01. Two points crossover and roulette wheel selection are used.

For the forest data set, each learner performs a stratified 10-fold cross validation

runs in each data set (that is 10 runs). Each run uses different random seeds which

are consistent in all experiments. The results reported in this chapter are averaged

over those 10 runs.

For the multiplexer data set, each learner performs 30 runs, in which each run

uses different random seeds. The results reported in this chapter are averaged over

those 30 runs.

6.4 Preliminary Investigation of DANCS

This section investigates the performance of DANCS over time on synthetic

data sets, in terms of the learning accuracy and the traffic load. The learning

curves and traffic load of DUCS are used for comparison.

Three experiments are conducted in this section. The first one studies the ef-

fect of the lower bound population size in DANCS. The second experiment learns

the behaviour of the learning at the server with different numbers of clients. This
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experiment tests DANCS using three, five, seven, and nine clients. The last experi-

ment aims at studying the predictive accuracy and traffic load over time of DANCS

in comparison to DUCS. This experiment is setup with three clients and a server

in both DANCS and DUCS.

6.4.1 Population Threshold Plb
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Figure 6.3: The learning curves of DANCS at the server (above) and the client
(below) with different population thresholds
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Figure 6.3 shows the learning curves at the client and server of DANCS with

different population thresholds varied from 100 to 1000. It can be observed from the

learning curves that increasing the population threshold Plb speeds up the learning

in both client and server.

A small population threshold (e.g. 100) increases the pressure for deletion in the

system, resulting in many deletions which might also delete good classifiers before

they are fully developed. Therefore the system converges slower in comparison to

the other with a higher threshold.

Increasing the population threshold from 100 to 300 results in the faster learn-

ing, where the learning curve at clients rises very steeply at the beginning. Moving

the population threshold from 300 and 600 also appears to have a similar behaviour.

However, the difference is not clearly observed between the population thresholds

600 and 1000. It is worthy to repeat a finding from the last chapter that the popu-

lation threshold affects the learning speed at the client. A population threshold of

1000 is used from here on.

Increasing the learning at clients directly affects the learning at the server. The

accuracy at the server seems to be higher than at the clients, because the server can

overcome the bias in one model through the combination of several models. It is

quite consistent with many findings in the literature that the ensemble framework

increases the accuracy in comparison to a single model.

6.4.2 Learning with Different Numbers of Clients

To understand the learning at the server, DANCS is tested with different num-

bers of clients. Figure 6.4 shows the learning curves of DANCS at the server with

three, five, seven, and nine clients in noise-free environments.

Clearly, increasing the number of clients results in a slightly faster learning and

the higher accuracy obtained at the end. The difference in the accuracy is not really

significantly observed, but the increase in the learning speed can be noticed. More

clients means that more knowledge becomes available at the server. Also testing
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Figure 6.4: The learning curves at the server of DANCS with different numbers of
clients in noise-free environments.

at the server involves the contributions from all local models, therefore overcomes

more bias in the system.

A similar trend can be observed in noisy environments. Figures 6.5 and 6.6

shows the learning curves of DANCS at the server with three, five, seven, and nine

clients in noisy environments: noise levels 0.1 and 0.2 respectively. Noise affects

both the training speed and the training accuracy at the server.

Adding noise to the training data at the clients would result in some instability

in the system. It is not easily observed in the noise level 0.1, but the learning curves

with noise level 0.2 show that the learning speed is reduced in comparison to noise-

free environment. A small decrease in accuracy reveals the robustness of the system

in noisy environments. Similar to DUCS discussed in chapter 3, DANCS seems to

be quite robust in noisy environments.

6.4.3 Comparing DANCS and DUCS

This subsection studies the learning ability of DANCS and DUCS over time. A

system of three clients and the voting scheme at the server is used in this experiment.
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Figure 6.5: The learning curves at the server of DANCS with different numbers of
clients in noisy environments (noise level: 0.1).
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Figure 6.6: The learning curves at the server of DANCS with different numbers of
clients in noisy environments (noise level: 0.2).

Figure 6.7 shows the learning curves over time at the client and server of

DANCS and DUCS. The learning curves at clients indicate that DUCS learns faster

than DANCS. DUCS is able to achieve up to 98% accuracy after 800 iterations, while

DANCS requires as much as 1200 iterations to get similar accuracy. This is not a
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Figure 6.7: The learning curves at the server (below) and the clients (above) of
DANCS and DUCS in noise-free environments

surprise. It confirms the findings in previous chapters: the neural representation

requires longer to converge than the traditional representation due to the need of

extra training to adjust neural networks’ weights.

In noisy environments, the difference between the accuracy in both systems is

not significant, as displayed in Figure 6.8. Increasing noise level from 0.1 to 0.2

degrades the performance of the server in both DANCS and DUCS. Both DANCS

and DUCS are very robust since the performance does not decrease a lot even though
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Figure 6.8: The learning curves of the server of DANCS and DUCS in noisy envi-
ronments: noise level of 0.1 (upper) and noise level of 0.2 (lower)

noise level at the client is quite high (e.g 0.2 which means 20 noisy instances within

100 instances).
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6.5 A Case Study of EANCS, DANCS, and DUCS

in Dynamic Environments

This section investigates the three systems EANCS, DANCS, and DUCS on a

synthetic data set, simulating a dynamic environment. A concept change is simu-

lated in a similar way as in Chapter 3. Noisy data is also investigated.

6.5.1 Small Changes

6.5.1.1 Noise-free Environments

Figure 6.9 shows the system performance of the client and server on the 6-real-

multiplexer in the dynamic environment with small changes at the 2000th iteration.

Each point in the graph represents the classification accuracy of 50 time steps. In

this experiment, the threshold is changed one time from 0.1 to 0.2 (or MoC=0.1).

The graphs of both the clients and server display two cycles of performance curves,

where each cycle corresponds to one threshold value.

The performance of the server and the clients are synchronized with each other

because the server gains its knowledge from the local models obtained at the clients.

When the environment changes, the client models of the previous time step become

unsuitable. It results in many misclassified instances at that time. It requires a

period of time for the clients to recover and adapt to the new situation. Since the

clients keep sending incorrect learning models to the server, the bad performance at

the server can be understood at the beginning of the environment changes. Again,

the server seems to converge faster and better than the clients because knowledge

from the clients may be obtained differently depending on the training data. One

client might learn something which another client at that time has not yet learned.

At the 2000th iteration, the threshold is changed from 0.1 to 0.2. Any real

numbers in the range [0.1, 0.2) in the previous time step were considered as a binary

1, but now become a binary 0. Since data is generated with a uniform distribution,

about 10% of the real numbers are converted to the binary number differently in
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Figure 6.9: The learning curves at the client (above) and the server (below) of
DANCS, EANCS, and DUCS in a noise-free environment with a small concept
change (MoC=0.1)

the new environment. There are 50× 6 = 300 real numbers required for 50 training

instances (a training window). 10% of them, which is about 30 real numbers,

would be converted differently. Therefore, at least 5 instances (6 real numbers form

an instance) and at most 30 instances contain real numbers which are converted

differently. At least 20 instances (40%) in the training window are unchanged in

the new condition. This explains why the learning curve does not drop as low as
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the starting point at time step 0, but drops down to about 80% accuracy.

All three systems evolve a best action map, which contains only correct rules

(correct classification) in the population. Since the change is small, only part of

the population becomes incorrect. The rest needs to update the quality of their

parameters in order to adapt to changes in the environment. As a result, the system

would adapt quickly to changes. Thus, the learning curve manages to recover faster

than the first cycle.

The accuracy at the server of DANCS and EANCS right after the change

is higher than DUCS because of their neural networks that can provide different

outcomes based on the conditions. However, DUCS is able to adapt more quickly to

a change than both DANCS and EANCS, as DUCS converged faster at the client. It

is because DANCS and EANCS need additional time for training neural networks

on top of the time needed to eliminate incorrect classifiers; to discover new and

potentially useful classifiers; and to update the population.

After the change, the learning at the client of both DANCS and EANCS does

not have much difference, but the learning at the server does. DANCS is able to

achieve better accuracy at the server than EANCS. It is because EANCS employs

different parameters’ setups at each client. DANCS, on the other hand, employs the

best parameters’ setup suggested in the previous chapter. Diversity is important

for complicated problems, such as those ones of UCI datasets, but the multiplexer

problem is a straight forward problem, where the hyper-rectangular condition plays

an important role to decide on the performance. The best parameters’ setup seems

to provide better accuracy in comparison to a set of parameter setups.

Figure 6.10 shows the traffic load from one client to the server in DANCS

and DUCS (EANCS is not considered since it simulates a logically distributed but

physically centralized environment). The improvement in the client performance

results in less misclassified instances and a smaller learning model at the end of

each cycle. The more training one system receives, the more compact its model

becomes. All systems keep filtering out irrelevant and incorrect classifiers in order

to maintain a smallest set of correct and general classifiers.
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Figure 6.10: Data transmission of DANCS and DUCS in noise-free environments
with a small concept change (MoC=0.1)

When the environment changes, the models become partially incorrect. Some

correct classifiers in the previous cycle certainly become misclassified ones that

increase the size of the learning model. The genetic algorithm needs to introduce

more classifiers into the system in order to expand the search space for adapting to

the new situation. That is why the traffic load in the three systems grows after the

change.

The traffic load of DUCS is normally less than DANCS due to two reasons.

The first one is that the neural representation of the action in two systems require

extra bits in comparison to the one of DUCS. Secondly, the real-multiplexer is more

suitable to DUCS because the condition of DUCS is able to decompose the search

space correctly using the hyper-rectangle condition. For the real 6 multiplexer prob-

lem, eight classifiers are required to represent the whole search space. Therefore,

the neural representation is not really an advantage in comparison to the traditional

representation in this problem. However, all three systems seem to converge to a

similar amount of bits required in the end.
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Figure 6.11: The learning curves of DANCS, EANCS, and DUCS at the server
(below) and the clients (above) in a noisy environment with a small concept change
(MoC=0.1, noise=0.1)

6.5.1.2 Noisy Environments

Figure 6.11 shows the system performance of the client and server on the 6-

real-multiplexer in the dynamic environment with small changes from 0.1 to 0.2 (or

MoC=0.1) in noisy environments. The graphs of both the clients and server display

two cycles of performance curves, in which each cycle corresponds to one threshold
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value.
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Figure 6.12: Data transmission of DANCS and DUCS in a noisy environment with
a small concept change (MoC=0.1, noise=0.1)

Adding noise to the training instances in all three systems does not affect

the accuracy at both client and server, but the traffic load is affected as showed

in Figure 6.12. DUCS is unable to compact its population, and the traffic load

becomes stable after the increase at the beginning. DANCS, on the other hand, are

able to compact the population as their transmission data drops less than DUCS

at the end of cycle 1. It indicates that the neural representation is more robust to

noise in comparison to the traditional representation.

In conclusion, experiments in this section show that both DANCS and EANCS

are able to recover in dynamic environments as well as DUCS. In noisy environ-

ments, DANCS and EANCS are able to generalize better than DUCS.

6.5.2 Severe Changes

This subsection investigate both DUCS and DANCS in dynamic environments

with severe change. In this experiment, the threshold is changed in the order of

MoC=0.8 (from 0.1 to 0.9), after 2000 iterations.
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6.5.2.1 Noise-free Environments
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Figure 6.13: The learning curves at the client (above) and the server (below) of
DANCS, EANCS, and DUCS in noise-free environments with a severe concept
change (MoC=0.8)

Figure 6.13 shows the learning curves of the server and the client on 6-real-

multiplexer problem with severe changes to the underlying data in noise-free envi-

ronments.

Clearly, DUCS is able to adapt more quickly than both DANCS and EANCS.
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It can easily be observed that the accuracy at the server of DUCS gets back to

approximately 100% at the 2500th iteration, whereas both DANCS and EANCS

seem to reach to the similar accuracy at the 3000th iteration. After that all three

systems achieve the same level of accuracy. The slower convergence in DANCS and

EANCS can be blamed on the neural representation, where the neural networks

require extra time to revise their knowledge.

Taking a close look at the learning performance of DANCS and EANCS, we

can see that EANCS converges slower than DANCS, especially at the client. One

set of parameters in DANCS seems to be better than several sets of parameters in

EANCS. It can be explained that some sets of parameters in EANCS might not be

suitable for this problem, whereas parameters’ values of DANCS seem to be better.

However the similar level of accuracy at the server again confirms that the ensemble

approach is able to overcome the bias of different parameters’ setups at clients.
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Figure 6.14: Data transmission of DANCS and DUCS in noise-free environments
with a severe concept change(MoC=0.8, noise=0.0)

Figure 6.14 shows the data transmission using the MDL function of DANCS

and DUCS in the noise-free environment with a severe dynamic change. Similar to

the result of previous section, the data transmission in DUCS is less than that of

DANCS. Again it confirms that the multiplexer is indeed more suitable for DUCS
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than DANCS.

6.5.2.2 Noisy Environments
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Figure 6.15: The learning curves at the client (above) and the server (below) in
noisy environments with a medium concept change (MoC=0.5, noise=0.10)

Figure 6.15 shows the learning curves of the server and the client on 6-real-

multiplexer problem with severe changes to the underlying data in the noisy en-

vironment. All three systems are able to achieve quite similar accuracy as in the
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noise-free environment. Similar behaviour in EANCS, DANCS and DUCS in the

noise-free environment can be observed here. This indicate that all three systems

are robust to noise as the learning accuracy does not drop in the noisy environment.
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Figure 6.16: Data transmission of DANCS and DUCS in noisy environments with
a severe concept change (MoC=0.8, noise=0.10)

Figure 6.16 shows the data transmission of DANCS and DUCS in the severe

dynamic and noisy environment. Again, DUCS does not seem to generalize as the

amount of data transmission in the system stay stable after the peak. DANCS,

on the other hand, seems to generalize very well as the population increases at the

beginning, but then decreases dramatically. At the end of the first cycle, it seems

to achieve a smaller model than DUCS.

In conclusion, experiments in this section show that the multiplexer problem

is more suitable for DUCS than both DANCS and EANCS. Due to the neural-

representation, both DANCS and EANCS seem to converge slower than DUCS.

However, both systems are able to recover after the change in both noise-free and

noisy environments. Moreover, all three systems seem to be robust to noise as the

learning accuracy does not decrease in comparison to the noise-free environment.
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6.6 A Case Study of DANCS, EANCS, and DUCS

on a Large Data Set

This section presents an experiment with DANCS, EANCS and DUCS on a

large and real data set.

6.6.1 The Forest Data Set

The forest cover type data set of the Roosevelt national forest in northern

Colorado (Blake and Merz, 1999) is chosen for testing in this section. According to

Blackard (1998), the collected data covers an area of 70 miles northwest of Denver

in Colorado, which has seven major forest cover types (or seven classes). The data

was obtained from the U.S. Geological Survey.

The data set has 581,012 observations, 54 attributes, and no missing values.

This data is used to model a stream input by continuously feeding instances into

the system. The processing time will be reported in order to measure if the system

is able to handle a stream of data.

6.6.2 Learning at Clients

This subsection will investigate the learning at the client in all three systems

using two experiments: the noise-free environment and the noisy environment.

6.6.2.1 Noise-Free Environments

Figure 6.17 shows the learning curves over time of EANCS, DANCS and DUCS

during the training at clients. We can see that all three systems are able to achieve

similar accuracy and similar learning speed over time. The accuracy of DUCS

seems slightly better than both DANCS and EANCS, even though the difference

is not statistically significant. The 70% accuracy that these three systems achieve

is equivalent to the accuracy obtained in (Blackard, 1998). DANCS and EANCS
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Figure 6.17: The training accuracy of clients on the forest problem

then catch up with DUCS and the learning curves of three systems seem to merge

in the end. Again, it confirms that the neural representation in many situations

is slower than the traditional representation, since the internal learning of each

classifier requires extra time for training neural networks’ weights.
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Figure 6.18: The population size of clients on the forest problem

Figure 6.18 shows the population size curves over time of EANCS, DANCS and
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DUCS during the training process at clients. The population sizes of both EANCS

and DANCS are quite similar. The population size of clients in DUCS is much

larger than both other systems. Even though DUCS seems to generalize in the end

as the population size gradually decreases over time, the final population sizes of

EANCS and DANCS are much smaller than DUCS.

This study on the large data set shows that both EANCS, DANCS and DUCS

are able to perform as well as each other on a large data set. EANCS and DANCS

are able to offer a more compact population size than DUCS in the end.

6.6.2.2 Noisy Environments

Figure 6.19 shows the learning curves of EANCS, DANCS, and DUCS in noisy

environments. Adding a noise level in training instances directly affect the testing

performance at the client in all systems. In the noise-free environment, the final

accuracy of three systems is approximately about 70%. The accuracy is decreased

to about 60% and to around 55% with noise levels 0.1 and 0.2, respectively.

Figure 6.20 shows the population size curves of EANCS, DANCS, and DUCS in

noisy environments. Surprisingly, the population sizes of all systems do not increase

as in experiments with the multiplexer in the previous section. It is because the

large number of attributes in this data set normally leads to a large number of

classifiers anyway in order to cover the whole input space. In this case, a longer

time is normally required for the population to generalize well.

6.6.3 Learning at the Server

Table 6.1: The mean and standard deviation of accuracy at the server of EANCS,
DANCS, and DUCS

Noise DANCS EANCS DUCS
0.00 0.6932 ± 0.0030 0.7071 ± 0.0021 0.6928 ± 0.0021
0.10 0.6923 ± 0.0021 0.7072 ± 0.0017 0.6941 ± 0.0035
0.20 0.6920 ± 0.0029 0.7066 ± 0.0023 0.6904 ± 0.0036

This section discusses the predictive accuracy at the server. Table 6.1 presents
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Figure 6.19: The training accuracy at the client on the forest problem in noisy
environments: noise level 0.1 (upper) and noise level 0.2 (lower)

the mean accuracy and standard deviation at the server of EANCS, DANCS, and

DUCS. A statistical t-test is carried out to test the significance of differences in the

accuracy between three systems.

The accuracy of EANCS appears slightly better than both DUCS and DANCS,

even though no statistically significant differences are observed. The use of differ-

ent parameter setups helps to diversify local ANCSs and therefore increases the
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Figure 6.20: The population size at the client on the forest problem in noisy envi-
ronments: noise level 0.1 (upper) and noise level 0.2 (lower)

accuracy at the server after the combination.

6.6.4 Processing Time

Table 6.2 shows the training time (in seconds) of EANCS, DANCS, and DUCS.

The time is estimated by averaging the total real time needed during the training.

DUCS requires much longer to process an instance, because it has a larger
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Table 6.2: The training time required for each data instance in noisy environments
Noise DANCS EANCS DUCS
0.00 0.0445 0.0882 0.4531
0.10 0.0492 0.0807 0.4481
0.20 0.0516 0.0839 0.3351

population size than both EANCS and DANCS. Experiments in Chapter 3 showed

that the matching time to form a match set is the step which takes most of the

processing time in learning classifier systems. Reducing the population size from

6000 classifiers to less than 800 classifiers means much less time is required for

matching for each training instance.

EANCS seems to require more time than DANCS. It is because the population

size of DANCS is smaller than that of EANCS in both noise-free and noisy envi-

ronments. A slight difference in the population size results in a large difference of

the processing time (as much as double the time needed in EANCS in comparison

to DANCS).

Again, it comes to the trade-off between the accuracy and the population size

in order to decide if DANCS or EANCS is better. EANCS is able to offer better

accuracy at the server, but requires longer processing time than DANCS. Moreover

the distribution time on top of the processing time to divide the data into smaller

subset also needs to be considered.

However, both DANCS and EANCS are designed for two different environ-

ments: physically and logically distributed environments. The comparison between

two systems is not really a big concern in this thesis. Experiments in this chapter

confirm that the neural representation is able to reduce the traffic in distributed

environments, to be able to handle more data instances in comparison to DUCS.

These are two main concerns in stream data mining.

Table 6.3 shows the testing time for an instance (in percentage) of EANCS,

DANCS in comparison to DUCS.

It is clearly shown that both DANCS and EANCS require much less time

than DUCS during the testing phase. The testing time of DANCS and EANCS is
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Table 6.3: The testing time required for each data instance in noisy environments
Noise DANCS/DUCS EANCS/DUCS
0.00 13.52% 19.89%
0.10 13.21% 18.45
0.20 14.15% 19.51%

measured around 13-14% and 19-20% of the time needed for DUCS, respectively.

6.7 Chapter Summary

The aim of this chapter is to compare the traditional UCS and enhanced UCS

in stream data mining. Three issues of stream data mining: (i) processing time, (ii)

dynamic and noisy environments and (iii) distributed environments, are investigated

in this chapter.

Three systems are studied in this chapter: the Distributed Supervised Clas-

sifier System (DUCS), the Distributed Adaptive Neural-based Classifier System

(DANCS), and the Ensemble Adaptive Neural-based Classifier System (EANCS).

The first system has been proposed in Chapter 3, using traditional UCS in dis-

tributed environments. The last two systems employ the enhanced UCS with the

neural representation in distributed environments. DANCS is proposed in this

chapter for physically distributed environments. EANCS has been discussed in the

previous chapter and extended in this chapter for logically distributed environments.

Both synthetic and real data sets are tested in these systems.

The first experiment was taken on DANCS alone as both DUCS and EANCS

have been partially tested in previous chapters. Several issues were investigated,

such as the number of clients, and noisy environment, on a synthetic data set –

the multiplexer problem. The results show that DANCS is able to achieve similar

accuracy as DUCS.

The second experiment tests three systems in dynamic and noisy environ-

ments. Two cases of dynamic environments were simulated: small change and

severe change. The results reveals that DUCS, DANCS, EANCS are capable of
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adapting to environment changes and reusing information gained from the past.

Although DUCS seems to converge faster than both DANCS and EANCS, all three

systems are able to achieve quite similar accuracy at the server in the end. More-

over all three systems show the tolerance to noise as the learning accuracy does not

seem to be affected by noise.

The last experiment was taken on a large real-world data set: the forest cover

types, with more than half a million instances. The results showed that EANCS,

DANCS and DUCS are able to perform as well as each other at the client. EANCS

is able to get slightly higher accuracy than both DUCS and DANCS. DANCS is able

to obtain a smaller model than EANCS. Both DANCS and EANCS are able to get

much smaller population size than DUCS. Moreover, the testing time of DANCS and

EANCS is reduced to approximately 14% and 20% of the one of DUCS, respectively.

Testing on the forest data set again confirms that the neural representation

and the adaptive framework is able to reduce the population size in comparison to

non-enhanced version. By reducing the population size, both the traffic load in the

system and the processing time of each training instance are dropped dramatically.

However, it is not always a case as shown on the multiplexer problem. The nature

of this problem is likely to favour the representation (with lower and upper bounds)

of UCS, and therefore smaller population is observed on this problem.

Experiments in this chapter confirm the last research sub-question in Chapter 1

that ANCS/EANCS can be effective in a distributed environment and also suitable

for stream data mining.
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Chapter 7

Conclusions and Future Research

7.1 Summary of Results

This thesis presents a study of the evolutionary-based classifier on distributed

stream data mining problems. The Michigan-style classifier system is chosen in this

thesis because it is widely accepted in the literature as a more useful approach in

an online, real time environments than the Pittsburgh approach. UCS was chosen

as a base system for investigation because the thesis focuses on supervised learning.

A comprehensive analysis of UCS in distributed stream data mining indicates

that it is potentially useful, as it is robust to noise and is able to recover quickly after

a concept change. The study also reveals that the large population size required to

cover the whole search space is a key drawback in UCS. Most of the time needed for

processing an instance is used for matching it against all classifiers in the population.

As a result, longer processing time is a bottleneck of UCS when faced with data

streams.

In order to reduce the population size, a neural representation is employed in

UCS in order to capture more information within a classifier. The traditional action

in UCS is replaced by an artificial neural network. A very simple neural network is

used so that the expressiveness of the rule-based knowledge can be protected.

The enhanced UCS is improved further by employing an adaptive framework
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that internally controls several parameters’ values by observing the training perfor-

mance. An ensemble framework is applied to reduce the effect of initial parameters’

setups.

Finally, the proposed system is tested on distributed data streams. Two dis-

tributed frameworks are proposed to help the system in distributed environments.

The first framework simulates a physically distributed environment using a client-

server architecture. The second framework employs an ensemble framework to

logically distribute the data streams.

Overall, contributions of this thesis can be summarized as follows:

1. An empirical study of UCS on distributed stream data mining is presented in

Chapter 3. The results confirm that UCS is able to handle several issues of

data streams, such as concept change and noisy environments. The population

size is the key drawback of UCS as it is very sensitive: too small a population

might delay or sometimes prevent the convergence of UCS. Expanding the

population size will affect the processing time of UCS. Moreover UCS normally

requires a large population size to cover the whole search space. This factor

affects directly the processing time of UCS, as most of the time is used for

matching.

The client-server framework helps UCS perform as well as the centralized

framework in distributed environments, in terms of the predictive accuracy

and convergence rate. Furthermore, traffic can be reduced within the system

and also the raw data is protected from being transferred through the network.

The aim of Chapter 3 is to answer the first research sub-question discussed

in the first chapter. The results showed that UCS is useful for distributed

data streams in terms of robustness, ability to recover after concept changes,

and ability to work in distributed environments. However, the results re-

veal that UCS requires a large population to cover the whole search space.

Also, the overall learning performance of the system is very sensitive to some

parameters, such as the maximum population size.

2. The neural representation was proposed in Chapter 4 to replace classifiers’ ac-
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tion. Experiments on UCI data sets confirmed that the neural-based learning

classifier system (NLCS) is better than UCS since a much smaller population

is required in order to achieve equivalent accuracy.

The main findings in this chapter are NLCS is able to achieve equivalent

or even better accuracy than UCS. The incorporation of negative correlation

learning during the training of NLCS improves further the predictive accuracy

of the system because the networks in the same regions are localized.

This chapter is motivated by the findings in the previous chapter. The study

in this chapter aims at answering the second research sub-question that “is a

neural network’s representation beneficial for evolutionary learning classifier

systems?” Indeed it is found to be beneficial for UCS because the new repre-

sentation in general requires a significantly smaller population size than the

traditional representation.

3. NLCS is extended to the adaptive version in Chapter 5. The adaptive neural

learning classifier system (ANCS) allows the population size to vary depending

on the training performance. Moreover, an ensemble framework is proposed

to reduce the effect of initial choice of parameters.

The main findings in this chapter are that ANCS is able to learn as well as

NLCS without fixing the population size. By allowing regular insertion/deletion,

ANCS takes advantage of the condition part to decompose the learning prob-

lem. Visualization showed that ANCS is able to find more useful patterns in

the underlying information of the data than NLCS. Moreover the ensemble

framework of several ANCSs with different setups produces higher predictive

accuracy and also avoids the bias of each setup. The ensemble framework

avoids the need of setting up parameters. This is extremely useful when faced

with a new problem with little knowledge about it.

The findings in this chapter solve the third research sub-question of “how to

reduce the bias caused by the initial choice of parameters’ values?”. Overall,

the chapter has proposed both the internally and externally adaptive frame-

works to control several parameters’ value dynamically. The results show that
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the adaptive framework is useful in terms of less parameters setup and better

accuracy.

4. The distributed framework proposed in Chapter 3 and also the ensemble

framework in Chapter 5 are constructed in Chapter 6. ANCS is used in these

frameworks as the base learner. DANCS and EANCS are tested against DUCS

in distributed data streams. The findings are that both DANCS and EANCS

are able to recover as quickly as DUCS in dynamic environments. Moreover,

they are also very robust to noise. Testing the three systems on a large data set

reveals that DANCS and EANCS are much faster than DUCS because their

populations are smaller. The testing time of DANCS and EANCS requires

approximately 14% and 20%, respectively, of the time needed in DUCS.

The results in this chapter answer positively the last research sub-question

that the proposed system is appropriate for distributed stream data mining.

In conclusion, experiments and findings have answered all sub-questions derived

from the main research question stated in Chapter 1: Can an evolutionary-based

classifier system meet the challenges imposed by stream data mining?

With support from experimental results, the study in this thesis found that DANCS

and EANCS are evolutionary techniques which indeed are efficient for distributed

and stream data mining.

7.2 Future Research

Through out the development of this research, a number of areas for future work

have been identified. Some open research questions have already been discussed

through the thesis; this section gives more philosophical future research directions.

The use of NNs would certainly make the learning algorithm more flexible in

terms of handling different learning tasks. Beside classification, other tasks such

as prediction, function approximation, etc can be easily implemented. It will be

interesting to expand ANCS to other data mining tasks.
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ANCS was tested on single-step problems. The algorithm can be easily ex-

tended to multi-step problems using a similar Q-Learning approach as in XCS for

delaying the immediate reward. The error for back propagating in ANCS can be es-

timated or delayed until the destination is reached. Several forms of delayed reward

tasks used in XCSF Lanzi et al. (2007) can be applied in ANCS.

The distributed framework in this thesis could be modified to handle hetero-

geneous distributed environments efficiently. A more sophisticated and complex

method could be employed at the server to combine sources that are partitioned

vertically.

Experiments in this thesis were limited to simple neural networks so that ex-

pressiveness does not degrade dramatically. The visualization tools proposed in

Chapter 5 are able to draw a search boundary only for simple neural networks.

However, if more complicated visualization tools for the networks’ boundary can be

implemented, more complicated neural networks can be employed to allow LCS to

have more complex behaviours with smaller population sizes.

Hai H. Dam October 6, 2008



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 216

Hai H. Dam October 6, 2008



Appendix A

Supervised Classifier Systems

(UCS)

UCS aims to evolve a population of classifiers during training through its learn-

ing and searching components. Each classifier consists of a rule and a set of pa-

rameters. The rule is made up from two main components: a condition (a body

of the rule), an action (a prediction of the rule). The condition refers to several

environmental states, to which the classifier may match. The action is an outcome

if the classifier is fired/activated.

The algorithm of UCS is presented in Algorithm 5.

A.1 Parameters

The parameters it uses are listed in Table A.1.

The key parameter is the fitness F, which measures how good the classifier

is relative to the rest in the population. Another two important parameters are

numerosity and experience. A classifier of LCS is a macro–classifier, which holds

a distinct rule (a unique pair of Condition:Action) within the population. The

numerosity parameter records the number of copies of the classifier in [P]. Whenever

a new classifier is introduced, the population is scanned through to check if a copy of
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Initialize UCS parameters;
Initialize [P ] to empty;
repeat

Given the training dataset D = (x1, y1), ..., (xN , yN) from the env;
for the training instance I trn: (xi : yi) do

Form a match set [M] of those classifiers in [P] that match xi;
Form the correct set [C] of those classifiers in [M] which predicted yi

correctly;
if [C] is empty then

Create a classifier Ccover that matches xi and assigned yi to its
action ;
Insert Ccover to [P] and [C];

end
Update the fitness of those classifiers in [M] by:

acc =
number of correct classification

number of matches

F = (acc)v

if The average experiences of classifiers in [C] is higher than θGA

then
Select and reproduce (mutation and crossover) two classifiers in
[C];
Offspring inherit the fitness from the parents;
Insert offspring in [P ];
while the current population size is larger than N do

Remove a classifier from [P ] wrt the fitness;
end

end

end
for each testing instance Itst from env do

Form a match set [M ];
Select the best prediction from the vote (weighted by fitness) of all
classifiers in [M];
Return the prediction to the environment;

end

until the termination conditions are met ;
Algorithm 5: The simple algorithm of UCS

it already exists. If it does not, the classifier is added to the population; otherwise,

the numerosity value is incremented by one. The experience parameter indicates

how often the classifier is chosen for making the prediction; in other words, how

general the classifier is.
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Table A.1: Parameters of UCS
Parameter Meaning

N maximum population size
v A constant of the fitness function

θGA threshold to activate GA
χ probability of applying crossover
µ probability of applying mutation

θdel minimum experience to be considered during deletion
θsub minimum experience to be considered for subsumption
r0 Covering range in interval codification
m0 Mutation range in interval codification

A.2 The Learning Component

During the learning cycle, the system repeatedly receives an input from the

environment. After processing the input, an appropriate outcome is produced and

returned to the environment. Feedbacks by the environment is given immediately

in terms of a reward (in the case of XCS) or a simple year/no answer (in the case

of UCS) reflecting how good the decision was.

A match set [M] is formed for each input, containing all classifiers in the popu-

lation [P] whose condition matches the input. Classifiers in [M] will work together

to decide on the system’s outcome.

In exploitation phase, a prediction array [PA] is formed for estimating the value

of each possible action in [M] with regards to their fitness. An action having the

highest value in [PA] will be selected to be exported to the environment.

The exploration phase, on the other hand, is more complicated. A correct set

[C] is formed, containing those classifiers in [M] that have the same action as the

input. If [C] is empty, covering is applied, where a classifier that matches the input,

is created and assigned the same class with the input.
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A.3 The Searching Component

The parameters of classifiers in [M] are updated incrementally. GA is invoked

in [C] when the average experience of classifiers in [C] is higher than a threshold

defined by the user. Two parents are selected from [C] with probability proportional

to their fitness. Two offspring are generated by reproducing, crossing–over, and

mutating the parents with certain probabilities. Offspring are inserted in [P]. The

parents also remain in [P] to compete with the offspring. If the population size

exceeds the predefined limit, some inaccurate classifiers are removed from [P].
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Data Sets

B.1 Synthetic Data Sets

The multiplexer and checkerboard problems were studied in this research. Re-

sults from the multiplexer problem are given in this thesis. Results from the checker-

board problem are given in (Dam et al., 2005a) and (Dam et al., 2005c). The mul-

tiplexer problem is one of the most popular testing benchmarks in the literature of

learning classifier systems.

A data instance of this problem is a binary string of length k + 2k. The first

k bits determine the position of an output bit in the last 2k bits. The length of an

input can be varied by the variable k. For example, the 6-bits multiplexer problem

has 6 binary attributes such as 110000, 101010, 010000, etc. The first two attributes

decide the position of the output bit such as: 11000→0, 101010→1, 010000→0. The

11-bits multiplexer has 11 binary attributes, where the first three attributes decide

the final output. Similarly, the 20-bits multiplexer has 20 binary attributes and the

first four attributes are used to calculate the position of the output. The 37-bits

multiplexer uses the first five attributes in 37 attributes to decide on the outcome.

In order to make this problem closer to the real world ones, Wilson (2000)

extended the multiplexer problem to a continuous domain by introducing a real-

threshold to convert a real number to a binary number. For example, assume a real
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number is in the range [0, 1) and the real-threshold is 0.5. The real input number

r will be converted to 0 in binary if r < 0.5, otherwise it is set to 1 in binary. The

real multiplexer problem then becomes a traditional binary multiplexer problem.

B.2 Real Data Sets

B.2.1 Small Data sets

This thesis tests the proposed framework on thirteen data sets available from

the University of California at Irvine (UCI) repository Blake and Merz (1999) and

one artificial data set. All represent classification problems. This set of problems

was selected to give us a range of important characteristics, such as (i) number of

features: low (up to 10 features) or high (more than 10 features)); (ii) features’

representations: real, integer, nominal, or a mixture; (iii) number of outcomes:

binary (2 possible outcomes), small (3 or 4 outcomes), or large (5 or more outcomes).

Table B.1 shows the properties of the data sets used in this paper: Inst (the

number of instances in the data set), Fs (the number of features), R (the number

of real-valued features), I (the number of integer-valued features), N (the number

of nominal-valued features), and C (the number of possible outcomes).

The chosen test problems:

• are well known data sets that have been used in many research papers (e.g.

breast cancer, diabetes, ionosphere, and iris);

• include some with a large number of features (e.g. heart statlog, lymph and

sonar) and some with a small number (e.g. balance scale, iris, and tao);

• include some with a high number of classes (e.g. glass, segment, vowel);

• include different representations (e.g. breast cancer, Australian credit card,

lymph, and vowel);

• include non-linear decision boundaries (e.g. Tao).
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Table B.1: The properties of testing data sets
Problem # Inst # Fs # R # I # N # C
balance-scale 625 4 4 0 0 3
breast-w 699 9 0 9 0 2
bupa 345 6 6 0 0 2
credit-a 690 15 10 0 5 2
diabetes 768 8 8 0 0 2
glass 214 9 0 0 0 6
heart-statlog 270 13 13 0 0 2
ionosphere 351 34 34 0 0 2
iris 150 4 4 0 0 3
lymph 148 18 3 6 9 4
segment 2310 19 19 0 0 7
sonar 208 60 60 0 0 2
tao 1888 2 2 0 0 2
vowel 990 13 10 0 3 11

By considering those factors, this small set of problems is an appropriate set

to study.

• Balance scale: this data set was generated to model psychological experimen-

tal results of weight and distance.

• Breast cancer: this data set was obtained from the University of Wiscon-

sin Hospitals, Madison. The problem is to distinguish malignant (cancer)

from benign (non-cancer) samples. The data contains 65.5% for benign class

and 34.5% for malignant class. Those 16 instances with missing values are

removed, left the data set with 683 instances.

• Bupa contains the information of blood tests which were thought to be sensi-

tive to liver disorders that might arise from alcohol consumption.

• The Australian credit card has two classes with distribution 44.5% and 55.5%.

• Diabetes: The data has two classes, positive or negative for diabetes.

• Glass contains information to identify types of glass.

• Heart Statlog is a heart disease database donated by Ross King.
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• Ionosphere contains 351 instances for classifying of radar returns from iono-

sphere.

• Iris: The data contains three classes referring to three types of Iris plants: Iris

Setosa, Iris Versicolour, and Iris Virginica. The first class is linearly separable

from the other two. The latter are not linearly separable from each other.

The data is distributed equally for each class (33.3%).

• Lymph is the medical data in lymphography domain.

• Segment: The data is drawn randomly from a database of 7 outdoor images.

The images were hand-segmented to create a classification for each pixel.

• Sonar: This data set has 60 features, representing a potential challenge for

LCSs.

• TAO: This data set was previously investigated with LCSs. The data set

contains samples from the Tao figure where white areas are assigned class zero

and black areas class one. This problem is well known in machine learning,

but the particular data set, used in this thesis was first introduced in Llorà

and Garrell (2001). Although there are only two features, it is a very hard

problem for LCSs (using interval encoding) due to the non-linear decision

boundaries.

• Vowel: This data set has 11 classes equally distributed.

B.2.2 Large Data Set

The forest cover type data set of the Roosevelt national forest in northern

Colorado, available at (Blake and Merz, 1999), is chosen for testing. According to

Blackard (1998), the collected data covers an area of 70 miles northwest of Denver in

Colorado (30m x 30m cells obtain from US Forest Service (USFS) Region 2 Resource

Information System (RIS)), which has 7 major forest cover types (or seven classes).

The data was obtained from the U.S. Geological Survey.
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The data set has 581,012 observations, 54 attributes, and no missing values.

Each observation is labeled as one of 7 different classes (forest cover types).
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