
Liveness, fairness and impossible futures

Author:
van Glabbeek, Robert; Voorhoeve, M

Publication details:
Concurrency theory---CONCUR 2006
pp. 126-141
9783540373766 (ISBN)

Event details:
17th international conference on Concurrency theory---CONCUR 2006
Bonn, Germany

Publication Date:
2006

Publisher DOI:
http://dx.doi.org/10.1007/11817949_9

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/44464 in https://
unsworks.unsw.edu.au on 2024-03-29

http://dx.doi.org/http://dx.doi.org/10.1007/11817949_9
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/44464
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Liveness, Fairness and Impossible Futures

Rob van Glabbeek1,2 and Marc Voorhoeve3

1 National ICT Australia, Sydney
2 School of Computer Science and Engineering, The University of New South Wales
3 Dept. of Mathematics and Computer Science, Eindhoven University of Technology

Abstract. Impossible futures equivalence is the semantic equivalence
on labelled transition systems that identifies systems iff they have the
same “AGEF” properties: temporal logic properties saying that reach-
ing a desired outcome is not doomed to fail. We show that this equiva-
lence, with an added root condition, is the coarsest congruence containing
weak bisimilarity with explicit divergence that respects deadlock/livelock
traces (or fair testing, or any liveness property under a global fairness
assumption) and assigns unique solutions to recursive equations.

1 Introduction

This paper deals with a class of system requirements, and related notions of
process equivalence, that we introduce by the following tale.

Pete’s mobile phone allows a number to be redialed as long as connection attempts are

unsuccessful. The phone’s manual charts this functionality (Fig. 1, left hand side; ok and nok

are internal actions that cannot be observed or interacted with). After having lost several

valuable business opportunities, Pete finds out that his redial module contains a bug. During

the redial process, data can become corrupted so that all connection attempts fail from then

on. Pete contacts his vendor for damages, who denies responsibility, since all code has been

certified by a company named TEI (Testing Equivalences Inc). Upon contacting TEI, their

spokesman says: “We indeed have discovered the feature you complain about. Our technical

people have even charted the functionality implemented (Fig. 1, right hand side, dashed arc

omitted). However you have nothing to complain about, because we have verified that the

two systems are equivalent with respect to ready simulation. This is our finest equivalence,

highly recommended by concurrency specialists [4].” Our hero is considering his next step.

t
nok

ok

c

s

Legend

t: try to connect

f: fail

c: communicate

s: stop

t

nok

ok

c

s

t

nok

s

Specification
 Implementation

nok

f
 f

f

f

Fig. 1. Charts of Pete’s mobile phone

2 R.J. van Glabbeek and M. Voorhoeve

The specification in his manual led Pete to believe that his phone satisfies the
requirement: every redial attempt may succeed. Of course, the attempts may fail,
but attempts that are doomed to fail are not acceptable. In CTL [7], when taking
observable histories of states as atomic propositions, Pete’s requirement may be
formulated as, for all k∈ IIN, AG((tf)k has occurred ⇒ EF (tf)ktc has occurred).
We call such requirements AGEF properties. Pete’s requirement is not preserved
by testing equivalences such as ready simulation [4] or failures equivalence [6].

AGAF properties are (conditional) liveness requirements, stating that (de-
pending on past activity) some condition will eventually hold. In Pete’s case,
such a requirement would be: if I keep hitting the redial button, I will eventually be
connected. The implementation in Fig. 1 does not satisfy this AGAF property,
but it is open to debate whether the specification satisfies it. In order to deduce
that requirement, a fairness assumption is needed [9], e.g.: in a recurring state, a
specific option cannot be avoided infinitely often. This assumption allows to dis-
tinguish the processes in Fig. 1, even without testing the AGEF property. We
show that under a sufficiently strong fairness assumption any AGAF property
can be reformulated as a conjunction of AGEF properties. Since the validity
of AGEF properties does not depend on fairness, it appears preferable to di-
rectly verify the AGEF requirements rather than assume fairness and verify the
AGAF requirement. Fair testing equivalence [5] preserves the subset of testable
AGEF properties, including the reformulated AGAF properties. Absence of ini-
tial deadlock and livelock is an example of a testable AGEF property. However,
many reasonable requirements such as Pete’s not-doomed-to-fail requirement are
in fact non-testable AGEF properties. If there is e.g. a possibility that the cor-
rupted data in Pete’s phone can become uncorrupted by redialling frantically, as
indicated by the dashed arc in Fig. 1, the erroneous implementation is fair testing
equivalent to the specification. However, Pete will still be far from satisfied.

In this paper we study the impossible futures (IF) equivalence of [13, 14] that
preserves all AGEF properties. We prove that any process equivalence that is a
congruence w.r.t. the operators of calculi like CCS and CSP either preserves all
AGEF properties, all testable properties only, or no proper AGEF property at all.
Moreover, any equivalence that preserves just the testable AGEF properties and
is coarser than weak bisimilarity with explicit divergence (↔∆

rw) does not respect
the recursive specification principle (RSP), stating that solutions of guarded
recursive equations are unique. This proof principle is of great importance in
equational system verification [2]. So, among the semantic equivalences coarser
than ↔∆

rw,4 IF is the coarsest congruence allowing both the preservation of any
chosen proper AGEF property and equational system verification.

2 Labelled Transition Systems

Let Σ∗ denote the set of finite sequences over a given set Σ. Write ε for the
empty sequence, σρ for the concatenation of sequences σ and ρ, and a for the

4 We were unable to extend our results to equivalences incomparable with both ↔∆
rw

and IF, preserving some AGEF property. However, no such equivalences are known.

Liveness, Fairness and Impossible Futures 3

sequence consisting of the single element a ∈ Σ. Write σ ≤ ρ if σ is a prefix of
ρ, i.e. ∃ν ∈ Σ∗ · σν = ρ, and write σ < ρ if σ ≤ ρ and σ 6= ρ.

We presuppose a countable action alphabet A, not containing the “silent”
action τ and set Aτ = A ∪ {τ}. We assume that our set A consists of comple-
mentary pairs; each a ∈ A has a complement ā such that ¯̄a = a.

Definition 1. A labelled transition system (LTS) is a pair (P,→), where P is a
set (of processes or states) and → ⊆ P ×Aτ × P is a set of transitions.

Assuming a fixed transition system (P,→), we write p
a

−→ p′ for (p, a, p′) ∈ →.
p

a
−→ p′ means that process p can evolve into p′, while performing the action a.

Definition 2. The ternary relation =⇒ ⊆ P × A∗ × P is the least relation

satisfying p
ε

=⇒ p,
p

τ
−→ p′

p
ε

=⇒ p′
,

p
a

−→ p′, a 6= τ

p
a

=⇒ p′
, and

p
σ

=⇒ p′
ρ

=⇒ p′′

p
σρ

=⇒ p′′
.

We write p
σ

=⇒ for ∃p′ · p
σ

=⇒ p′ and p
∗

=⇒ p′ for ∃σ · p
σ

=⇒ p′.
Let T (p) = {σ ∈ A∗ | p

σ
=⇒} be the set of traces of p,

and A(p) = {a ∈ A | a or ā occurs in a trace of p} the alphabet of p.

In this paper we present particular processes that are instrumental in proving
our results (cf. Figs. 2, 3). Therefore our results apply only to transition systems
in which those processes exist. To ensure this, we assume that (P,→)

1. is closed under action prefixing, meaning that for any p ∈ P and a∈Aτ there
is a process ap such that ap

c
−→ q iff a = c and q = p, and

2. is closed under countable summation, meaning that for every countable set
of processes P ⊆ P there is a process

∑
P such that for all a∈A we have∑

P
a

−→ q iff there exists p ∈ P such that p
a

−→ q.

Alternatively we may assume that (P,→) contains finite-state processes only, and
is closed under action prefixing and finite summation (cf. Remark 1 in Sect. 4).
We also postulate the Fresh Atom Principle [11], allowing fresh actions in proofs.

When writing expressions with action prefixing and summation, we let 0
stand for

∑
∅ and p+ q for

∑
{p, q}, and prefixing binds stronger than sum. We

write a for a0 and, when σ = a1 . . . an, write σp for a1 . . . anp and σ̄ for ā1 . . . ān.

3 Coarsest Congruence Relations on Processes

Semantic equivalences on processes are used to assess whether an implementa-
tion has the same functionality as its specification, viz. Fig. 1. The equivalence
of two processes should guarantee that if one has a certain desirable property,
then so has the other. In the context of an LTS (P,→), properties can be mod-
elled as unary predicates ϕ ⊆ P. A semantic equivalence relation ∼ ⊆ P × P

respects or preserves a property ϕ if p ∼ q ⇒ (ϕ(p) ⇔ ϕ(q)). Thus, a semantic
equivalence should respect all relevant properties of the systems on which it is
applied. Naturally, what is relevant depends to a large extent on the intended
application, and consequently many semantic equivalences have been proposed
in the literature [10]. This paper focusses on system requirements that we call

4 R.J. van Glabbeek and M. Voorhoeve

AGEF and AGAF properties; they will be defined in Section 4.
A transition system (P,→) is often equipped with process algebraic operators

f : P
n → P. Throughout this paper, we shall assume that (P,→) is equipped

with the parallel composition (|) and restriction \H for H ⊆ A of CCS [12].

Definition 3. The CCS parallel composition operator is a binary operator (|)

defined on P in such a way that, for all p, q, r∈P and for all a∈Aτ , p | q
a

−→ r iff

1. there exists p′ ∈ P such that p
a

−→ p′ and r = p′ | q; or
2. there exists q′ ∈ P such that q

a
−→ q′ and r = p | q′; or

3. a = τ and ∃p′, q′∈ P and b ∈A such that p
b

−→ p′, q
b̄

−→ q′ and r = p′ | q′.

A restriction operator is a unary operator \H defined on P in such a way that,

for all p, q ∈ P and for all a ∈ Aτ , p \H
a

−→ q iff a, ā 6∈ H and there exists p′ ∈ P

such that p
a

−→ p′ and q = p′\H .

Component-based design often results in processes of the form (p0 | · · · | pn)\H
when formalised in CCS. If the component pi is replaced by an equivalent com-
ponent qi, we want to be able to conclude that the resulting composition is
equivalent to the original. Due to the state explosion phenomenon, it is often
infeasible to check this explicitly. Therefore, a second requirement on semantic
equivalence relations is that they are congruences for all relevant composition
operators; this in order to allow compositional verification.

Definition 4. A semantic equivalence relation ∼ ⊆ P × P is a congruence for
an operator f : P

n → P, or f is compositional for ∼, if pi ∼ qi for i = 1, ..., n
implies that f(p1, ..., pn) ∼ f(q1, ..., qn).

Often, one requires compositionality of all operators of CCS and CSP; the min-
imum requirement typically involves just the operators | and \H of CCS, or
alternatively the parallel composition and concealment operators of CSP.

Let ∼,≈ ⊆ P×P be equivalence relations. Then ∼ is called finer than ≈ and ≈
coarser than ∼ if ∼ ⊆ ≈. (Note that we use these concepts in a non-strict sense.)
As explained above, we seek semantic equivalences that (1) preserve important
properties of the processes on which they will be applied, (2) are congruences for
the operators that are used to compose processes, and (3) possibly satisfy some
other requirements, such as RSP (see the introduction). When the requirements
are completely clear and not subject to change, amongst multiple equivalences
that meet all requirements, the coarsest of them, if it exists, constitutes the
ultimate criterion for system verification, as it enables more implementations to
be shown correct with respect to a given specification. The main goal of this
paper is to characterise such coarsest equivalences.

4 AGEF and AGAF Properties

Definition 5. The set I(p) of impossible futures of a process p is the set of pairs
(σ,G) ∈ A∗ × P(A∗) satisfying

∃p′ · p
σ

=⇒ p′ ∧G ∩ T (p′) = ∅.

Processes p, q are IF-equivalent, notation p ∼I q, iff I(p) = I(q).

Liveness, Fairness and Impossible Futures 5

Note that (tf, {tc}) ∈ I(q) \ I(p), where p, q are respectively the left- and right-
hand processes of Fig. 1. (The transitions ok and nok are labelled τ .) So p and q
are not IF-equivalent. The statement (σ,G) 6∈ I(p) expresses the property

∀p′ · p
σ

=⇒ p′ ⇒ ∃ρ ∈ G · p′
ρ

=⇒.

Pete’s redialling requirement consists of the conjunction of these properties for
σ = (tf)k and G = {tc}. We call them AGEF properties.

Definition 6. For σ∈A∗ and G ⊆ A∗, let AGEF(σ,G) be the property (subset)
of processes with p ∈ AGEF(σ,G) iff ∀p′ · p

σ
=⇒ p′ ⇒ ∃ρ ∈ G · p′

ρ
=⇒.

Now a process p satisfies AGEF(σ,G) iff (σ,G) 6∈ I(p). Thus, an equivalence on
processes respects all AGEF properties if and only if it is finer than ∼I . Note that
AGEF(σ,G∪G′) = AGEF(σ,G) if every ρ ∈ G′ has a prefix ρ′ ∈ G. We therefore
assume w.l.o.g. that the sets G have the prefix property : ∀ρ, ν ∈ G · ρ 6< ν.

The name AGEF is derived from a way to express such properties in Compu-
tation Tree Logic (CTL) [7]. CTL is a formalism to specify temporal properties
of systems that are modelled as states in Kripke structures. The latter are transi-
tion systems in which states rather than transitions are labelled. Amongst others,
CTL features the formulas, interpreted on a state s,

AFϕ meaning that every path from s eventually passes a state satisfying ϕ
EFϕ meaning that some path from s eventually passes a state satisfying ϕ
AGϕ meaning that on every path from s all states satisfy ϕ
EGϕ meaning that on some path from s all states satisfy ϕ
` meaning that state s has label `.

Here ϕ is again a CTL formula. CTL formulas can also be combined with propo-
sitional connectives. In order to interpret CTL formulas on a process p in an
LTS L, we convert the part of L that is reachable from p into a Kripke structure
by unwinding it into a tree, and labelling each state with the trace of the unique
path leading to it. This leads to a Kripke structure Lp whose states are the
finite paths π in L starting from p, labelled with the sequence of visible actions
labelling π, and there is a transition π → π′ iff the path π′ can be obtained
from π by adding one transition. We say that p satisfies a CTL formula ϕ iff
the root of the tree-shaped Kripke structure Lp satisfies ϕ.5 Now the property
AGEF(σ,G) is expressed in CTL as AG(σ ⇒ EF

∨
ρ∈G σρ).

We also consider conditional liveness requirements or AGAF properties, stat-
ing that something good will eventually happen when a specific past has been
observed. The property AGAF(σ,G) with G 6= ∅ states that every run with
visible content σ will be completed to a run with visible content σρ for ρ∈G,
provided no visible action occurs that disables the potential of achieving G. In
contrast, the property AGEF(σ,G) says that any run with visible content σ can
be completed to such a run. A liveness property of the form AGAF(ε,G) states
that something good will happen unconditionally. Pete’s liveness requirement “if

5 Other translations from LTSs to Kripke structures have appeared in the literature
[8], leading to different interpretations of CTL on LTSs.

6 R.J. van Glabbeek and M. Voorhoeve

I keep hitting the redial button, I will eventually be connected” is AGAF(ε, P) with
P = {(tf)ktc | k ∈ IIN}.

We now formulate the fairness principle F : during a system run, a specific set of
states that remains reachable throughout cannot be avoided forever. This amounts
to strong fairness [9] for finite-state processes. We say that a path satisfies F(ψ),
with ψ a set of states, if it is not a infinite path with ψ reachable throughout
and avoiding ψ forever. The requirement AGAF(σ,G) under the assumption F is
written AGAFF(σ,G). The specification of Pete’s phone satisfies AGAFF (ε, P)
but not AGAF(ε, P). The implementation satisfies neither.

In order to conveniently express AGAF properties in temporal logic, we add
a modality AχF to CTL. Here χ is a property on paths, and AχFϕ holds in
state s, if every (possibly infinite) path from s that is maximal (cannot be
extended) amongst the paths satisfying χ, passes through a state satisfying ϕ.
AGAF(σ,G) with σ∈A∗ and ∅ 6= G ⊆ A∗ can be expressed as AG(σ⇒A[G]Fψ),
and AGAFF (σ,G) as AG(σ ⇒ AF(ψ)∧[G]Fψ), where ψ =

∨
ρ∈G σρ and [G] is

the property of a path that all labels σν of its states satisfy ∃ρ∈G · ν ≤ ρ.
Pete’s liveness requirement cannot be expressed as a property of the form

AG(σ⇒AF(ψ)Fψ) with ψ =
∨
ρ∈G σρ. When taking σ = ε and G = P this

property says “eventual connection is guaranteed”, which is easily refuted by
hitting the stop button; taking G = P ∪ {(tf)ks | k ∈ IIN} yields a requirement
that is satisfied by the buggy implementation.

We will show that any AGAFF property can be formulated as a conjunction
of AGEF properties. We write AGEFC with C ⊆ A∗×P(A∗) for the conjunction∧

(σ,G)∈CAGEF(σ,G), and similarly for AGAF C and AGAFF C.

Let σ ∈A∗ and ∅ 6= G ⊆ A∗. Then ↑(σ,G) := {(σρ, ρ−1G) | ρ ∈↓G}, where
↓G := {ν∈A∗ | ∃ρ · νρ∈G} \ {ρν | ρ∈G} (the set of proper prefixes of G) and
σ−1G := {ρ | σρ ∈G}. For instance, ↑(a, {b, cd}) = {(a, {b, cd}), (ac, {d})}.

Lemma 1. Let σ∈A∗ and ∅ 6= G ⊆ A∗. Then
AGAF(σ,G) ⊆ AGAFF (σ,G) ⊆ AGEF(σ,G),
AGAF(σ,G) = AGAF↑(σ,G) and AGAFF(σ,G) = AGAFF↑(σ,G).

Proof. The inclusions are trivial; something that will happen must surely be
possible. The equalities state e.g. that AGAF(σ,G) implies AGAF(σρ, ρ−1G)
for any ρ∈↓G: a promise remains valid as long as it hasn’t been delivered. ut

Theorem 1. The property AGAFF(σ,G) is equal to AGEF↑(σ,G).

Proof. By Lemma 1, we find AGAFF(σ,G) = AGAFF↑(σ,G) ⊆ AGEF↑(σ,G).
Let ψ =

∨
ρ∈G σρ. If p ∈ AGEF↑(σ,G) then from every p′ with p

σρ
=⇒ p′ and

ρ ∈↓G, a ψ-state is reachable. Any run from p that starts with σ, avoids states
labelled σν with 6 ∃ρ∈G · ν≤ρ, and satisfies F(ψ), will eventually reach ψ. ut

By Theorem 1, Pete’s liveness requirement AGAFF (ε, P) (assuming fairness) is
implied by AGEF↑(ε, P) = AGEF{((tf)n, P), ((tf)nt, {c} ∪ fP) | n ∈ IIN}.

The property AGAF(σ,G) can be expressed in CTL as AGEF↑(σ,G) ∧
AG(σ⇒AF

∨
ρ6∈↓Gσρ). We therefore do not need the modality AχF for stating

AGAF properties with or without F .

Liveness, Fairness and Impossible Futures 7

In [5] it is defined when a process p should pass a test. A test is given by a
test process t, whose alphabet may contain an extra action X that cannot occur
in the alphabet of the process p. The test consists of running p and t in parallel
using the CSP parallel composition operator ‖A that forces all actions of p and t
to synchronise, except for the action X. The occurrence of X denotes a successful
outcome of the test. We give an alternative formulation using the CCS operators:
The process p should pass the test, notation p shd t, if (p | t)\(A \ {X}) satisfies
AGEF(ε, {X}). Processes p, q are fair testing equivalent [5], notation p =shd q,
iff p shd t⇔ q shd t for all tests t.

Definition 7. A property ϕ on transition systems is (should-) testable if there
exists a test t such that for all processes p one has p shd t iff p satisfies ϕ.

A property is called trivial if it either always holds or always fails. As p shd X

for any p and p shd 0 for no p, all trivial properties are testable. The trivial
AGEF properties are AGEF(σ,G) with ε ∈ G, and AGEF(ε, ∅).

Proposition 1. A nontrivial AGEF property AGEF(σ,G) is testable iff for each
sequence bρ in G also its prefix b is in G.

Proof. “If”: We assume ε 6∈ G and G has the prefix property (∀ρ, ν ∈ G · ρ 6< ν).
So G consists of singleton traces only. Let σ = a1 . . . am. We define the processes
Ti (0 ≤ i ≤ m) by Ti = āi+1Ti+1 + X for 0 ≤ i < m and Tm =

∑
{b̄X | b ∈ G}.

Fig. 2 displays the processes Ti (0 ≤ i ≤ m) for finite G = {b1, . . . , bn}.

ā1 ām
T0 T1 TmTm−1

b̄1 b̄nX
X

X

X

Fig. 2. The test process T0

Now p satisfies AGEF(σ,G) iff p shd T0. Namely, if (σ,G) ∈ I(p), i.e. p does not
satisfy AGEF(σ,G), then there exists p′ with p

σ
=⇒ p′ such that ∀ρ ∈ G · p′ 6

ρ
=⇒,

so p |T0
ε

=⇒ p′ |Tm 6
X

=⇒. Conversely, if (σ,G) 6∈ I(p), then for any (strict or not)
prefix ν of σ and any p′ with p

ν
=⇒ p′ the X can be done.

“Only if”: Suppose G contains a sequence bρ but not b. Set p := σ(bρ + b)
and q := σbρ+σb if σ 6= ε and p := τ(bρ+ b) and q := τbρ+ τb otherwise. Then
p, q are fair testing equivalent [5], whereas (σ,G) ∈ I(q) \ I(p). So AGEF (σ,G)
is not testable. ut

Theorem 2. All properties of the form AGEF↑(σ,G) are testable.

Proof. Use the same test as above, but with Tm replaced by the deterministic
process TG with T (TG) = {ρ ∈ A∗ | ∃ν · ρν ∈ G} ∪ {ρX | ρ ∈ G}. ut

8 R.J. van Glabbeek and M. Voorhoeve

Remark 1. When working in the context of a finite-state LTS, we only consider
AGEF and AGAF properties with finite sets G. This way the test processes used
above will be finite. That the correspondence between AGEF properties and ∼I

is unaffected by this change follows by

Lemma 2. If (σ,G) ∈ I(q) \ I(q) and q is a finite-state process, then there is a
finite G′ with (σ,G′) ∈ I(q) \ I(q).

Proof. The set R = {r | q
σ

=⇒ r} is finite and for each r ∈R we can choose a
ρr∈G such that r

ρr

=⇒. Hence, (σ, {ρr | r ∈ R}) ∈ I(p) \ I(q). ut

A safety property says that something bad will not happen. Formalising “bad” as
a predicate B ⊆ A∗ on the visible content of system runs, a safety property has
the form B ∩ T (x) = ∅, and can be written as

∧
σ∈BAGEF(σ, ∅). Considering

that the class of testable properties is closed under conjunction (for p shd τt+τt′

iff p shd t and p shd t′), Prop. 1 implies that safety properties are testable. A
property AGEF(σ,G) or AGEF↑(σ,G) is called proper if it is neither trivial, nor
a safety property, i.e. if ε 6∈ G 6= ∅.

5 Four Levels of Respect for AGEF Properties

In this section we show that only four types of congruences exist: those that
respect all AGEF properties, those that respect all testable AGEF properties but
no others, those that respect all safety properties but no other non-trivial AGEF
properties, and those that do not respect a single non-trivial AGEF property.
Examples in each of the four classes are weak bisimilarity [12], fair testing equi-
valence [5], trace equivalence—defined as p =T q iff T (q) = T (q)—and failures
equivalence [6] (where the absence of traces occurring past a divergence is not
recorded), respectively. In this section “congruence” means congruence for the
CCS parallel composition and restriction operators; we could also have used the
CSP parallel composition and concealment operators. The results in this section
are not needed further on, although we will reuse the proof of Lemma 3.

We say that a congruence ∼ is non-IF if there exist processes p, q with p ∼ q

such that I(p) 6= I(q). For a non-IF congruence there exists an AGEF property
that it does not preserve; we shall now prove that in fact it does not preserve
any non-testable AGEF property.

Lemma 3. If ∼ is a non-IF congruence, then for all c∈A there exist processes
pc, qc with A(pc) = A(qc) = {c}, such that pc ∼ qc and (ε, {cc}) ∈ I(pc) \ I(qc).

Proof. The congruence ∼ is non-IF, so there exist processes p, q and σ,G such
that p ∼ q and (σ,G) ∈ I(p)\I(q). Note that ε 6∈ G: if ε ∈ G then (σ,G) 6∈ I(p).

Let σ = a1 . . . am and define H := A(p)∪A(q). We first establish the lemma
for all actions c 6∈ H , and then consider the case c ∈H . Let Ui (0 ≤ i ≤ m),
V and W be defined by Ui = τV + āi+1Ui+1 for 0 ≤ i < m, Um = τV + τcW ,
V = c(τc + τ) and W =

∑
ρ∈G ρ̄(τc + τ) (Fig. 3 displays the processes Ui

Liveness, Fairness and Impossible Futures 9

W

ā1 ām

τ

ccτc

τ

τττ

τ

U0 U1 UmUm−1

V

ρ̄1

ρ̄n

Fig. 3. The process U0

(0 ≤ i ≤ m), V and W for the case that G = {ρ1, . . . , ρn}). As we assume our
alphabet A, and hence G ⊆ A∗, to be countable, the sum W is countable too.
If q is a finite-state process, by Lemma 2 we may even assume it to be finite.
Let pc = (U0 | p)\H and qc = (U0 | q)\H . By construction, A(pc) = A(qc) = {c}.
Since p ∼ q and ∼ is a congruence for | and \H , we have (U0 | p)\H ∼ (U0 | q)\H .
There exists a p′ with p

σ
=⇒ p′ and p′ 6

ρ
=⇒ for all ρ ∈ G. Therefore, we have

(U0| p)\H
ε

=⇒ (cW | p′)\H and (cW | p′)\H 6
cc

=⇒. Hence, (ε, {cc}) ∈ I((U0 | p)\H).
However, as ∀q′ · (q

σ
=⇒ q′) ⇒ (∃ρ∈G · q′

ρ
=⇒), we have (ε, {cc}) 6∈ I((U0 | q)\H).

This proves our lemma for all actions c 6∈ H .
To obtain the required results for c ∈ H , first choose d 6∈ H (appealing to the

Fresh Atom Principle [11] if A \H is empty). By the above, there exist pd and
qd with A(pd) = A(qd) = {d} such that pd ∼ qd and (ε, {dd}) ∈ I(pd) \ I(qd).
Now, since c ∈ A \ {d}, the required pc and qc are obtained by running the same
arguments again, taking p := pd, q := qd, σ := ε, G := {dd} and H := {d}. ut

From this lemma we deduce that no non-testable AGEF property is preserved
by a non-IF congruence.

Theorem 3. Let ∼ be a non-IF congruence. Then for any non-testable property
AGEF(σ,G) there are processes p, q such that p ∼ q and (σ,G) ∈ I(p) \ I(q).

Proof. Let (σ,G) be a non-testable AGEF property. Pick bρ∈G such that ε, b 6∈
G. Let c be an action that does not occur in σbρ. By Lemma 3 there are processes
p and q with A(p) = A(q) = {c}, p ∼ q and (ε, {cc}) ∈ I(p) \ I(q). As ∼ is a
congruence for | and \H , we have (p |σbc̄c̄ρ)\{c} ∼ (q |σbc̄c̄ρ)\{c}.

Whenever (q |σbc̄c̄ρ)\{c}
σ

=⇒r, the process r must be of the form (q′ | bc̄c̄ρ)\{c}

with q
ε

=⇒ q′. Since (ε, {cc}) 6∈ I(q), we have q′
cc

=⇒ and hence (q′ | bc̄c̄ρ)\{c}
bρ

=⇒.
Thus (σ,G) 6∈ I((q |σbc̄c̄ρ)\{c}).

Since (ε, {cc}) ∈ I(p), we have p
ε

=⇒ p′ for a process p′ with p′ 6
cc

=⇒. Hence
(p |σbc̄c̄ρ)\{c}

σ
=⇒ (p′ | bc̄c̄ρ)\{c}, and (p′ | bc̄c̄ρ)\{c}

ν
=⇒ only if ν = ε or ν = b.

It follows that (σ,G) ∈ I((p |σbc̄c̄ρ)\{c}). ut

10 R.J. van Glabbeek and M. Voorhoeve

Next, we prove that a congruence ∼ either preserves all testable properties
(AGEF or otherwise) or does not preserve any proper AGEF property, nor any
proper liveness property under the global fairness assumption F .

Lemma 4. If ∼ is a congruence that does not respect all testable properties,
then for all c∈A there exist processes pc, qc with A(pc) = A(qc) = {c}, such that
pc ∼ qc and (ε, {c}) ∈ I(pc) \ I(qc).

Proof. Let ϕ be a testable property that is not preserved by ∼. As ϕ is testable,
there is a test process t such that ∀p∈P one has p shd t iff p satisfies ϕ. As ϕ is not
preserved by ∼, there are processes p, q such that p ∼ q and ϕ(q) but not ϕ(p).
Hence q shd t but p 6shd t. Let pX = (p | t)\(A\{X}) and qX = (q | t)\(A\{X}).
Then q satisfies AGEF(ε, {X}) but p does not, so (ε, {X}) ∈ I(pX) \ I(qX).
A(pX) = A(qX) = {X}. As ∼ is a congruence for | and \H , we have pX ∼ qX.
The result for actions c 6= X is obtained in a manner similar to the one used in
the proof of Lemma 3. ut

Theorem 4. Let ∼ be a congruence that does not respect all testable properties.
Then for any proper AGEF property AGEF(σ,G) there are processes p and q

such that p ∼ q and p 6∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) 3 q.

Proof. Let (σ,G) be given, satisfying ε 6∈ G 6= ∅, and take ρ ∈G. Let c be an
action that does not occur in the sequence σρ. By Lemma 4 there are processes
p and q with A(p) = A(q) = {c}, p ∼ q and (ε, {c}) ∈ I(p) \ I(q). Since ∼
is a congruence for | and \H , we have (p |σc̄ρ)\{c} ∼ (q |σc̄ρ)\{c}. As in the
proof of Theorem 3, we find that (σ,G) ∈ I((p |σc̄ρ)\{c}) \ I((q |σc̄ρ)\{c}) and
moreover p 6∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) 3 q. ut

Finally we show that a congruence that fails to respect a safety property does
not respect any nontrivial AGEF property.

Lemma 5. If ∼ is a congruence that does not respect all safety properties, then
for all c ∈ A there exist processes pc, qc with A(pc) = A(qc) = {c}, such that
pc ∼ qc and c ∈ T (pc) \ T (qc).

Proof. The congruence ∼ violates a safety property
∧
σ∈GAGEF(σ, ∅), so there

must be an σ∈G and processes p and q with p ∼ q and (σ, ∅) ∈ I(p) \ I(q), i.e.
σ ∈ T (p)\T (q). Note that σ 6= ε: if σ = ε then (σ, ∅) ∈ I(q). By placing p and q
in a context (| σ̄c)\H with c 6∈ H := A(p) ∪ A(q) we obtain processes pc, qc as
required. The result for c∈H is obtained just as in the proof of Lemma 3. ut

Theorem 5. Let ∼ be a congruence that does not respect all safety properties.
Then for any nontrivial property AGEF(σ,G) there are processes p and q with
p ∼ q and (σ,G) ∈ I(p) \ I(q), i.e. q ∈ AGEF(σ,G) and p 6∈ AGEF(σ,G).

Proof. The case σ = ε follows from Theorem 4, as safety properties are testable
and nontrivial properties AGEF(ε,G) are proper. So assume σ 6= ε. Let c be an
action that does not occur in σ. By Lemma 5 there are processes p, q with p ∼ q,
A(p) = A(q) = {c} and c ∈ T (p)\T (q). Since ∼ is a congruence for | and \H , we
have (p | c̄σ)\{c} ∼ (q | c̄σ)\{c}. Now (σ,G) ∈ I((p | c̄σ)\{c}) \ I((q | c̄σ)\{c}).ut

Liveness, Fairness and Impossible Futures 11

6 The Recursive Specification Principle

The Recursive Specification Principle (RSP) [3] says that systems of guarded
recursive equations have unique solutions. Our aim is to characterise ∼I as the
coarsest congruence that respects a proper AGEF property and satisfies RSP.
To this end, we only need a simplification of RSP, called RSP∗, saying that
equations of the form X = σX + p with σ ∈ (Aτ)

∗ \ {τ}∗ have unique solutions.
We denote the unique solution of such an equation as σ∗p. Alternatively, we
could introduce σ∗ as an operator on processes, with σ∗p

a
−→ p′ iff p

a
−→ p′ or

(σ = aρ and p′ = ρ(σ∗p)).

Definition 8. An equivalence relation ∼ satisfies RSP∗ if for all σ ∈ (Aτ)
∗\{τ}∗

and processes p, q
p ∼ σp+ q ⇒ p ∼ σ∗q .

Fair testing congruence [5] does not satisfy RSP∗, since t = a∗0 + a∗ab is fair
testing congruent to at+ ab but not to a∗ab.

7 Impossible Futures Congruence

Just like weak bisimulation equivalence [12] and most other weak equivalences,
impossible futures equivalence ∼I (defined in Sect. 4) fails to be a congruence for
the CCS choice operator +. We apply the usual fix to this problem: the addition
of a root condition. Just like for failures or fair testing equivalence, a one-bit
root condition is sufficient: we merely need to distinguish processes that can do
an initial τ -step from those that can not.

Definition 9. Processes p, q are IF-congruent (notation p =I q) iff p ∼I q ∧

(p
τ

−→) ⇔ (q
τ

−→).

Theorem 12 in [5] (Theorem 4.8 in the journal preprint) shows that =I is finer
than fair testing equivalence, which is itself finer than trace equivalence. In [14],
it is shown that =I is coarser than weak bisimulation congruence. Since a+ τb

and τ(a+b)+τb are IF congruent but not weakly bisimilar, =I is strictly coarser.
We now show that =I is a congruence and satisfies RSP∗.

Proposition 2. =I is a congruence satisfying RSP (and hence RSP∗).

Proof. The argument in [14] can be adapted and extended to yield the required
result. For example, RSP follows from a standard deductive argument [3] based
on the auxiliary finite projection operator and the induction principle AIP. ut

Below, we show that =I is the coarsest of all equivalences that (1) respect a
proper AGEF property, (2) are congruences for the CCS parallel composition,
restriction, choice and prefixing, (3) satisfy RSP∗, and (4) are coarser than an
equivalence ↔max . We show that in (1) it does not matter which AGEF property
we take, so it could for instance be the property AGEF(ε, A), saying that the
system can always do a first visible action, i.e. has no initial livelock or deadlock.

12 R.J. van Glabbeek and M. Voorhoeve

Instead of (1) we may also require that the equivalence respects a proper prop-
erty AGAFF(σ,G) = AGEF↑(σ,G), i.e. a conditional liveness property assuming
global fairness. We do not know whether our result is valid without (4), but we
use it in our proofs. Below, we establish our result with rooted weak bisimilar-
ity in the rôle of ↔max . In CCS, weak bisimilarity is the equivalence of choice
for e.g. comparing specifications and implementations. This equivalence is not a
congruence for all CCS operators, but it becomes so after extending it with a
root condition, yielding rooted weak bisimilarity (observational congruence) [12].

Definition 10. A relation R ⊆ P×P is called a weak bisimulation if it satisfies
for all processes p, q with p R q and for all σ ∈ A∗:
− for all p′ with p

σ
=⇒ p′ there exists q′ such that q

σ
=⇒ q′ and p′ R q′,

− for all q′ with q
σ

=⇒ q′ there exists p′ such that p
σ

=⇒ p′ and p′ R q′.
Processes p, q are called weakly bisimilar (notation p↔w q) if there exists a weak
bisimulation R such that p R q. They are called rooted weakly bisimilar (notation
p↔rw q) if they satisfy the additional root conditions :

− for all p′ with p
τ

−→ p′ there exists q′ such that q
ε

=⇒
τ

−→ q′ and p′ R q′,
− for all q′ with q

τ
−→ q′ there exists p′ such that p

ε
=⇒

τ
−→ p′ and p′ R q′.

Write τa(p) for (p | ā∗0)\{a}. The operator τa renames action a into τ (and
disables ā). By construction of rooted weak bisimulations, one can deduce the
following equivalences for a ∈ Aτ , σ ∈ {a, τ}∗ \ {τ}∗ and processes p:

T1 : aτp ↔rw ap KFAR : τa(σ
∗p) ↔rw ττa(p).

KFAR [3] identifies divergent processes (capable of an infinite sequence of τ
steps) and non-divergent ones. We prove a lemma for later use.

Lemma 6. Let p, q, r be processes with p
ε

=⇒
τ

−→ r↔w q. Then p↔rw p+ τq.

Proof. Let R be ↔w augmented with the pair (p, p+ τq). This is a weak bisim-
ulation satisfying the root conditions. ut

A process equivalence ∼ is called a w-congruence iff it is a congruence w.r.t. the
CCS parallel composition, restriction, choice and prefixing, and is coarser than
↔rw . We proceed to characterise IF congruence as the coarsest w-congruence
that satisfies RSP∗ and preserves some arbitrary proper AGEF property. Recall
that a congruence ∼ is called non-IF iff there exist processes p, q with p ∼ q

such that I(p) 6= I(q). We start with some lemmas.

Lemma 7. If ∼ is a non-IF w-congruence, then for any c ∈ A

τc(τc + τ) ∼ τc(τc + τ) + τc

Proof. Start with the proof of Lemma 3, up to (U0 | p)\H ∼ (U0 | q)\H . Next
we define the relation R in Table 1. This relation is a weak bisimulation, which
can be verified by checking all steps. The crucial argument is that for each q′

satisfying q
σ

=⇒ q′ there exists a ρ ∈G such that q′
ρ

=⇒. The relation satisfies
the root conditions, so

τc(τc + τ)↔rw (U0 | q)\H.

Liveness, Fairness and Impossible Futures 13

simple term merge term condition

τc(τc + τ) (U0 | q)\H true

c(τc + τ) (Uk | q′)\H 0 ≤ k ≤ m ∧ q
a1...ak=⇒ q′

c(τc + τ) (V | q′)\H q
∗

=⇒ q′

τc + τ (τc + τ | q′)\H q
∗

=⇒ q′

c (c | q′)\H q
∗

=⇒ q′

0 (0 | q′)\H q
∗

=⇒ q′

c(τc + τ) (cW | q′)\H q
σ

=⇒ q′

τc + τ (W | q′)\H q
σ

=⇒ q′

τc + τ (ϑ̄(τc + τ) | q′)\H ∃ν 6= ε · νϑ ∈ G ∧ q
σ

=⇒
ν

=⇒ q′
ϑ

=⇒

0 (ϑ̄(τc + τ) | q′)\H ∃ν 6= ε · νϑ ∈ G ∧ q
σ

=⇒
ν

=⇒ q′ 6
ϑ

=⇒

Table 1. The relation R

As (σ,G) ∈ I(p), there must be a process p′ such that p
σ

=⇒ p′ and ∀ρ∈G·p′ 6
ρ

=⇒.
It is trivial to construct a weak bisimulation showing that (cW | p′)\H ↔w c

and hence (U0 | p)\H
ε

=⇒
τ

−→ (cW | p′)\H ↔w c. Using Lemma 6, this implies
that (U0 | p)\H ↔rw (U0 | p)\H + τc. Therefore, as ∼ is a congruence, we have
τc(τc + τ) ↔rw (U0 | q)\H ∼ (U0 | p)\H ↔rw (U0 | p)\H + τc ∼ (U0 | q)\H + τc
↔rw τc(τc+ τ) + τc. Since ∼ is transitive and coarser than ↔rw we obtain the
desired result for c∈A\H . For c∈H , we proceed as in the proof of Lemma 3. ut

Lemma 8. If ∼ is a non-IF w-congruence, then for all processes P,Q and a∈A,

τa(τP +Q) ∼ τa(τP +Q) + τaP. (1)

Proof. Pick c 6∈ A(P)∪A(Q)∪{a} and place the processes equated by Lemma 7
in the context (| τac̄(τP + c̄(τP +Q))\{c}). ut

We now use RSP∗ to show equivalence of processes with and without deadlock.

Lemma 9. Let ∼ be a non-IF w-congruence satisfying RSP∗. Then for any
process Q we have τ(τQ + τ) ∼ τQ.

Proof. Choose Q and a 6∈ A(Q). Set P = a∗0 and R = (τa)∗(τQ+ τ.P), so

(2) P ∼ aP (3) R ∼ τP + τQ+ τaR.

Since τaR = τa(τP + τQ+ τaR), (1) yields τaR ∼ τaR+ τaP . Hence,

τaR+ τQ ∼ τaR + τaP + τQ
2
∼ τaR + τP + τQ

3
∼ R.

Since R ∼ τaR + τQ, RSP∗ yields R ∼ (τa)∗τQ. So, since ∼ is a congruence,

τ.(τQ+ ττ0)↔rw τa((τa)
∗(τQ+ τ(a∗0))) ∼ τa((τa)

∗τQ)↔rw ττQ

applying KFAR and τa(Q) = Q. Using T1, we obtain τ(τQ + τ) ∼ τQ. ut

Fair testing [5] is a non-IF w-congruence that preserves all testable AGEF prop-
erties. However, non-IF w-congruences satisfying RSP do not preserve any proper
AGEF property, nor any nontrivial property AGAFF(σ,G) = AGEF↑(σ,G).

14 R.J. van Glabbeek and M. Voorhoeve

Theorem 6. Let ∼ be a non-IF w-congruence satisfying RSP∗. Then for any
proper AGEF property AGEF(σ,G) there are processes p and q such that p ∼ q

and p 6∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) 3 q.

Proof. Let (σ,G) be proper, i.e. ε 6∈ G 6= ∅, and pick ρ ∈ G. Set Q = ρ. By
Lemma 9, the fact that ∼ is a congruence for the prefix operator, and by identity
T1, we have p = σ(τQ + τ) ∼ σQ = q. Clearly, (σ,G) ∈ I(p) \ I(q) and
p 6∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) 3 q. ut

This theorem also gives a partial answer to van Glabbeek’s first problem in [1]:
what is the coarsest congruence ∼ satisfying RSP and respecting deadlock/livelock
traces?

Definition 11. A sequence σ ∈ A∗ is a deadlock/livelock trace of a process p if
∃p′ · p

σ
=⇒ p′ ∧ T (p′) = {ε}. A process equivalence ∼ respects deadlock/livelock

traces iff p ∼ q implies that p and q have the same deadlock/livelock traces.

Note that σ is a deadlock/livelock trace of p iff (σ,A) ∈ I(p). This is the negation
of a proper AGEF property, so from Theorem 6 we deduce that =I is the coars-
est w-congruence satisfying RSP and respecting deadlock/livelock traces. The
answer is partial, since there exist congruences that respect deadlock/livelock
traces but are not coarser than ↔rw , such as branching bisimilarity [10]. So
the existence of (non-w) congruences respecting deadlock/livelock traces and
satisfying RSP that are incomparable with =I is conceivable.

The results in this section can be generalised to a divergence sensitive setting.
Divergence of a process is the possibility to perform an infinite sequence of τ
steps. By only allowing to relate divergent processes to divergent processes, one
defines weak bisimulation congruence with explicit divergence (notation ↔∆

rw)
[10]. We now relax the requirement in Theorem 6 that ∼ must be a w-congruence.
Instead of requiring ∼ to be coarser than ↔rw we merely require it to be coarser
than ↔∆

rw, i.e. we use ↔∆
rw for ↔max . The proof, which is omitted due to lack

of space, requires a slight extension of RSP∗, still implied by RSP.

Theorem 7. =I is the coarsest congruence coarser than ↔∆
rw, satisfying RSP

and respecting deadlock/livelock traces.

This is a useful addition, because many equivalences in the linear time – branch-
ing time spectrum of [10], such as the CSP failures equivalence [6], fail to be
coarser than ↔rw , although virtually all are coarser than ↔∆

rw. Moreover, the
few equivalences from [10] that are not coarser than ↔∆

rw are certainly finer
than ∼I or do not respect deadlock/livelock traces; thus no known equivalence
is ruled out by the restriction “coarser than ↔∆

rw”.

8 Conclusion

We have discussed the connection between AGAF properties, expressing (con-
ditional) lifeness requirements, AGEF properties, expressing not-doomed-to-fail

Liveness, Fairness and Impossible Futures 15

requirements, and impossible futures congruence, which we have characterised,
under a mild side-condition, as the coarsest congruence that allows verifica-
tion of testable AGEF properties—or AGAF properties under a global fairness
assumption—and assigns unique solutions to guarded recursive equations. Thus,
where such properties are deemed important, equational system verification [2]
requires a semantic equivalence at least as fine as impossible futures congruence.

The fact that we have used the operators of CCS bears no relevance. We could
have used any process calculus that allows action prefix, choice, communication
merge, restriction and abstraction, such as CSP, ACP, LOTOS and many others.

Acknowledgement

We are grateful for the support and advice of our colleague Bas Luttik.

References

1. L. Aceto (moderator) (2003): Some open problems in Process Algebra.
http://www.cs.auc.dk/~luca/BICI/open-problems.html

2. J.C.M. Baeten, editor (1990): Applications of Process Algebra. Cambridge Tracts
in Theoretical Computer Science 17. Cambridge University Press.

3. J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1987): On the consistency of
Koomen’s fair abstraction rule. Theoretical Computer Science 51(l/2), pp. 129–176.

4. B. Bloom, S. Istrael & A. Meyer (1995): Bisimulation Can’t Be Traced. Jour-

nal of the ACM 42(1), pp. 232–268.
5. E. Brinksma, A. Rensink & W. Vogler (1995): Fair Testing. In Proceedings

CONCUR ’95 (I. Lee & S.A. Smolka, eds.), LNCS 962, Springer, pp. 311–327.
Journal preprint: http://eprints.eemcs.utwente.nl/1623/01/submitted.pdf

6. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communi-
cating sequential processes. Journal of the ACM 31(3), pp. 560–599.

7. E.M. Clarke & E.A. Emerson (1981): Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proceedings workshop on Logic

of Programs (D. Kozen, ed.), LNCS 131, Springer, pp. 52–71.
8. R. De Nicola & F.W. Vaandrager (1995): Three logics for branching bisimu-

lation. Journal of the ACM 42(2), pp. 458–487.
9. N. Francez (1986): Fairness. Springer.

10. R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II:
The semantics of sequential systems with silent moves (extended abstract). In
Proceedings CONCUR ’93 (E. Best, ed.), LNCS 715, Springer, pp. 66–81.

11. R.J. van Glabbeek (2005): A Characterisation of Weak Bisimulation Congru-
ence. In Processes, Terms and Cycles: Steps on the Road to Infinity: Essays Dedi-
cated to J.W. Klop on the Occasion of His 60th Birthday (A. Middeldorp, V. van
Oostrom, F. van Raamsdonk & R. de Vrijer, eds.), LNCS 3838, Springer, pp. 26-39.

12. R. Milner (1990): Communication and Concurrency, Prentice-Hall International,
Englewood Cliffs, 1989. An earlier version appeared as A Calculus of Communi-
cating Systems, LNCS 92, Springer-Verlag, 1980.

13. W. Vogler (1992): Modular Construction and Partial Order Semantics of Petri
nets. LNCS 625, Springer.

14. M. Voorhoeve & S. Mauw (2001): Impossible Futures and Determinism. Infor-

mation Processing Letters 80(1), Elsevier, pp. 51–58.

