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Abstract

Financial markets worldwide have grown rapidly over the last few decades

and so have the number of modelling approaches to analyse and price financial

assets. With the emergence of more complex models, emphasis has also been

placed on calibrating the models to market data. This thesis consists of three

distinct components which investigate the estimation of financial models and

the pricing of derivatives. The focus of these studies is stochastic volatility

models and the crude oil futures market.

The first component investigates discrete-time stochastic volatility mod-

els by comparing the estimation performance of three maximum-likelihood

procedures. The analysis is conducted empirically on the fixed income and

crude oil markets and also tests the validity of different stochastic volatility

model specifications in-sample and out-of-sample. The study finds that the

choice of estimation procedure is important if conditional volatility estimates

are required. Also, a traditional AR(1) specification for the log-variance is

sufficient in the fixed income and crude oil markets.

The second component introduces a three-factor short/long factor com-

modity model which allows for mean-reversion in spot prices, expected in-

creases in long-term prices and a time-varying market price of risk. The

model is able to accurately capture the term structure of futures prices in

the crude oil futures market with evidence suggesting that risk premiums are

time-varying. Using the cross-section of futures prices we estimate a time-

series of the market price of risk implied by the model. We find that the risk

premiums in the crude oil market are driven by the same risk factors as equity

and bond markets.

In the final component, the short/long factor model is extended to in-

corporate both jumps and stochastic volatility. Semi-analytical solutions of

futures and European option prices are derived for the model. The futures

and option pricing performance is compared with nested specifications. The
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empirical results demonstrate that although introducing jumps or stochastic

volatility does not impact futures pricing much, they are required for option

pricing applications. When fitting the implied volatility surface of crude oil

futures options, stochastic volatility is required to fit implied volatility over

the maturity and moneyness dimensions but jumps are required when fitting

the steep volatility smiles exhibited by short-term options.
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Chapter 1

Introduction

Financial modelling has been at the forefront of the finance literature as both aca-

demics and practitioners alike have attempted to understand and predict the be-

haviour of financial markets. The rapid growth of financial markets worldwide over

the last few decades has fueled the growth in the literature. From the introduc-

tion of the model of stock prices by Black and Scholes (1973) and Merton (1973)

(BS-M), the financial modelling literature has grown tremendously. As the assump-

tions behind the BS-M modelling approach have proven too simple to accurately

model asset prices in practice, the literature has introduced dynamics to models

which reflect the empirical bahaviour of asset prices. This has resulted in numer-

ous modelling approaches which attempt to explain many of the “stylized facts” or

characteristics exhibited by asset prices. However, in order to capture many of these

characteristics, the models introduced have increased in complexity. Consequently,

this has come at the cost of an increased difficulty when calibrating the models to

market data and pricing derivative securities based on the models.

However, the literature has also expanded in these areas with advances in esti-

mation techniques and techniques for pricing derivatives. Progress in these areas

have focussed on equity, fixed-income, and foreign exchange markets, but the liter-

ature has tended to lag behind for commodities due to the relatively smaller size

of commodity markets. Also, as commodities are consumption assets, they tend to
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exhibit different characteristics to assets in financial markets. This has spawned

modelling approaches slightly removed from the wider finance literature. However,

commodities still show behaviour similar to financial markets which allows the same

techniques introduced in other markets to be applied in commodity markets. This

thesis contributes to the literature in this regard by considering some of the advances

in modelling and estimation in financial markets and applying them to commodity

markets. The focus of this thesis is on stochastic volatility models and the empirical

applications mainly consider crude oil as it is the world’s most liquid commodity.

However, other areas in the finance literature are also covered.

The first component of the thesis in Chapter 2 investigates discrete-time stochastic

volatility (SV) models. The discrete-time SV modelling literature has spawned

from the model introduced by Taylor (1986) where the log-variance is modelled as

an autoregressive process. They have proven to be a popular alternative to GARCH

for modelling time-varying volatility and have been found to be able to capture the

behaviour of volatility more accurately. The study concentrates on two areas that

have received little attention in the SV literature, the fixed income market and crude

oil markets. The study considers the suitability of SV models for these markets

and looks at what difference the estimation procedure has on the choice of model.

To achieve this, three maximum likelihood estimation procedures are employed to

estimate alternative SV model specifications. The three procedures include quasi-

maximum likelihood (QML), Monte Carlo likelihood (MCL) and particle filtering

(PF) where the latter two approaches apply importance sampling techniques. Using

a number of diagnostic tests, the model specifications and conditional volatility

estimates are evaluated both in-sample and out-of-sample. The traditional tests of

predictive accuracy such as root mean-squared errors or mean absolute errors for

SV models are problematic given that volatility is unobserved and a suitable proxy

for volatility is difficult to obtain. The study considers an alternative diagnostic test
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to compare the performance of SV models based on the distribution of the asset

returns.

The second component in Chapter 3 considers a three-factor short/long factor model

for the modelling of commodity prices. The model consists of two short-term factors

which represent the short term deviation in spot prices, and a long-term factor which

represents an equilibrium price level. The model captures a number of features

exhibited by commodities such as mean-reversion in short-term prices, expected

long-term increase in prices, the Samuelson effect and also allows for time-varying

risk premiums. Using a panel data set of crude oil futures data, the performance

of the three-factor model and a two-factor nested specification are analysed. It is

found that the three-factor model is able to accurately capture the term structure of

futures prices with evidence suggesting that risk premiums in the crude oil market

are time-varying. We then extract a time-series of the model implied risk premiums.

This allows for an analysis of risk premiums where it is determined whether they

can be explained by the same risk factors as equity and bond markets.

Chapter 4 comprises the third component where an extension to the short/long fac-

tor model is introduced which incorporates jumps in prices and stochastic volatility.

Similar to financial markets, commodity prices have been empirically observed to

exhibit large movements in prices resulting in fat tails of return distributions, time-

varying volatility and volatility clustering. Although the Gaussian short/long model

is able to accurately recover the term structure of futures prices, it cannot explain

the distribution of returns and option pricing performance is likely to be poor due

to the assumption of constant volatility. The study introduces a stochastic volatil-

ity jump-diffusion model to capture the behaviour exhibited by commodities and

derives semi-closed form1 solutions to futures and option prices. Using crude oil

1Semi-closed form as they are solvable up to the solution of a system of ordinary differential
equations.
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futures and options data, the study investigates the impact of introducing either

jumps or stochastic volatility to the model dynamics. Although the extra dynamics

have little effect on the futures term structure, crude oil prices clearly exhibit non-

Gaussian behaviour. Also, it is well known that options in equity markets exhibit

implied volatility “smiles” and “skew” and the same behaviour has been found in

some recent studies of crude oil futures options. This study investigates the op-

tion pricing performance and determines whether jumps or stochastic volatility are

necessary for modelling in the crude oil futures market.

Finally, Chapter 5 summarises the thesis and provides future avenues of research.

1.1 State Space Models

In each component of the thesis, estimation is conducted under a state space mod-

elling framework. State space models have become popular in financial modelling as

it allows filtering and estimation using tools which already exist in engineering disci-

plines. They typically consist of a measurement or observation equation and a state

or transition equation. The state equation describes the evolution of a latent state

variable from past states to future states. The measurement equation describes the

relationship of the latent state variable to the observations. Throughout this thesis,

we will denote the vector of observations at each time by yt, for t = 1, . . . , T , and

the entire set of observations by y = (y1, · · · , yT )
′

. Similarly, the vector of states

are represented by xt and the entire set of states by x = (x0, · · · , xT )
′

. The simplest

case of a state space model is a linear Gaussian state space model and is described
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by the following equation,

yt = Ztxt + dt + ǫt,

xt = Ttxt−1 + ct + ηt,

(1.1)

where for t = 1, . . . , T , yt ∈ Rn, xt ∈ Rm and the error terms, ǫt ∈ Rn and

ηt ∈ Rm are Gaussian with ǫt ∼ N(0, Ht) and ηt ∼ N(0, Qt). The other variables,

Zt ∈ Rn × Rm, dt ∈ Rn, Tt ∈ Rm × Rm and ct ∈ Rm describe the dynamics of the

state space system. For the linear Gaussian model, the well-known Kalman filter

and smoother can be applied for model inference such as estimating the posterior

mean or estimating the likelihood function. The Kalman filter is described in the

next section as it is used throughout this thesis.

In many situations considered in finance, the models are not linear Gaussian models.

A more general state space model which does not assume linearity of either the

observation or state equations can be expressed as follows

yt = h(xt, ǫt),

xt = f(xt−1, ηt),

(1.2)

where the functions are the mappings h : Rm×Rn 7→ Rn and f : Rm×Rm 7→ Rm. In

this thesis, it is assumed that the state is a Markov process and that the observations

are independent given the states. This means that the distributions of ǫt and ηt also

satisfy those requirements. Under this specification the observations and states

can be both nonlinear and non-Gaussian. However, when the model is nonlinear

and/or non-Gaussian, estimation is generally not analytically tractable and various

methods have been introduced in the literature to tackle the issue. Chapter 2 will

investigate a few of these procedures in the case of maximum likelihood estimation

for SV models.
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1.2 The Kalman Filter

Originally developed by Kalman (1960), the Kalman filter aims to estimate the

true values of an underlying model given noisy measurements or observations. It is

the most optimal filter for linear Gaussian state space models in the sense that it

produces the minimum mean-square estimator (MMSE). The procedure is applied

extensively in this thesis and is introduced here for future reference. The algorithm

for performing the Kalman filter has a number of references in the literature, how-

ever for a thorough treatment of its application to financial modelling, readers are

directed to Harvey (1989). Here we only describe the linear Kalman filter recur-

sions. Given the initial state x0 ∼ N(x̄0, P0) and iterating over t = 1, . . . , T , the

Kalman filter consists of a prediction step,

x̄t|t−1 = Ttx̄t−1|t−1 + ct, (1.3)

Pt|t−1 = TtPt−1|t−1T
′

t +Qt, (1.4)

and an update step,

ȳt|t−1 = Ztx̄t|t−1 + dt, (1.5)

vt = yt − ȳt|t−1, (1.6)

Ft = ZtPt|t−1Z
′

t +Ht, (1.7)

Kt = Pt|t−1Z
′

tF
−1
t , (1.8)

x̄t|t = x̄t|t−1 +Ktvt, (1.9)

Pt|t = (I −KtZt)Pt|t−1. (1.10)

Generally, parameter estimation is conducted via maximum likelihood estimation.

For a linear Gaussian state space model, an analytical solution for the likelihood
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function is known. Given the parameter set of the model, Θ, the marginal log-

likelihoods at each time-step are given by

log lt(Θ) = log p(yt|y1:t−1; Θ) = −1

2

(
n log(2π) + log |Ft|+ vtF

−1
t v

′

t

)
. (1.11)

where the use of Θ in the equation emphasizes the dependence of the marginal log-

likelihoods on the parameters of the model2. The log-likelihood is therefore given

by

logL(Θ) =

T∑

t=1

log lt(Θ). (1.12)

The parameter estimates are obtained by maximizing the likelihood function.

2The parameter set depends on the particular model being studied. As no model has been
specified as yet, Θ is left undefined.
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Chapter 2

Comparing Maximum Likelihood

Estimation of Stochastic Volatility: The

case of short-term interest rates and

crude oil

2.1 Introduction

In most of the modelling approaches in finance, it is generally accepted that non-

Gaussian dynamics are needed in asset pricing models. Assuming more complex

distributions allows researchers to develop theoretical models that are able to repli-

cate many of the empirical properties observed in financial markets. For instance,

the distribution of financial returns have been observed to have fatter tails than

a Gaussian distribution as well as exhibiting time-varying variance. However, a

critical issue then becomes how to calibrate the model to real data and in the case

of latent variable models, how to estimate the underlying latent state variables.

Generally this issue is addressed by the choice of estimation procedure although for

more complex models this is not always straightforward. The choice of estimation

procedure can be complicated by not only how accurate the procedure is but also

the ease of implementation and its computational efficiency.
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One area of financial modelling that has spawned many different estimation proce-

dures with varying degrees of efficiency and speed is stochastic volatility modelling.

Stochastic volatility (SV) models in discrete time have been traditionally used to

model time-varying volatility as an alternative to generalized autoregressive condi-

tional heteroscedasticity (GARCH) models introduced by Bollerslev (1986). In SV

models, volatility is defined as a random, unobserved latent variable of an underly-

ing return series, where the log of the squared residuals is most commonly modelled

as a first-order autoregression. SV models are attractive to researchers as they have

been found to capture the empirical properties observed in financial time-series bet-

ter than GARCH models. However, estimation is not straightforward, which has

resulted in the introduction of a number of procedures in the literature to estimate

SV models.

Estimating stochastic volatility models has been the subject of a number of surveys

in the literature. A fairly comprehensive review of the recent literature can be found

in Part II of Anderson et al. (2009). Broto and Ruiz (2004) also provides a survey

of some of the techniques available for estimation in SV models and we discuss

some of the main techniques here. The earliest techniques include the generalized

method of moments (GMM) approach of Melino and Turnbull (1990) or the quasi-

maximum likelihood (QML) approach of Harvey et al. (1994). These approaches

provide relatively less efficient estimates than most approaches proposed in the

literature but have been popular due to their computational efficiency and simplicity.

More accurate techniques can be split between Monte Carlo Markov Chain (MCMC)

methods such as the Jacquier et al. (1994) method or simulated maximum likelihood

procedures that have followed from the Danielsson (1994) approach which employs

importance sampling. Two approaches that use importance sampling techniques

include the Monte Carlo Likelihood (MCL) of Sandmann and Koopman (1998) and

particle filters (PF). Whilst MCMC procedures are quite popular in the literature
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for SV modelling, they are known to be very computationally demanding. On

the other hand, Broto and Ruiz (2004) found that in terms of estimation accuracy,

some simulated maximum likelihood procedures performed comparably with MCMC

techniques and tend to be much less computationally intensive. In this chapter,

we compare three maximum likelihood estimation procedures in the SV modelling

literature, QML, MCL and PF.

The motivation for the choice of estimation procedures used in the comparison is due

to a number of reasons. With QML, despite the known inefficiency of its estimates,

has been quite popular due to its ease of implementation and fast computational

time. For the MCL procedure, whilst less popular than MCMC, has been found

by Sandmann and Koopman (1998) and Broto and Ruiz (2004) to exhibit similar

performance to MCMC in finite samples whilst being much more computationally

efficient. Particle filters have become increasingly popular in financial applications

for estimating nonlinear and/or non-Gaussian models and have also been found

to have comparable performance to MCMC methods in financial modelling. Fur-

thermore, implementation for each of these procedures is not overly difficult and

all three are easily modified for applications other than SV modelling. Broto and

Ruiz (2004), Koopman and Lee (2004) and Sapp (2009) also provide a comparison

of estimation procedures for SV models, however no study has compared particle

filters.

To compare the estimation procedures, we firstly conduct a brief finite-sample study

of the performance of the estimators. We then consider an empirical application in

two areas that have received relatively little attention within the stochastic volatil-

ity literature, fixed income and commodity markets. It has been well established

that most asset markets exhibit time-varying volatility and both fixed-income and

commodity markets are no exception. In terms of the literature on discrete-time SV

10



models in these two areas, Ball and Torous (1999) used the framework of Chan et al.

(1992) (hereafter CKLS) and showed that the volatility of short-term interest rates

depends not only on the level of interest rates but also exhibits stochastic volatility.

This was further confirmed by Sapp (2009) who estimated a similar model to Ball

and Torous (1999) by comparing the performance of a GMM estimator and the

QML approach. Other papers (e.g. Smith (2002), Kalimipali and Susmel (2004),

Sun (2005), Vo (2009)) consider extending the SV model to incorporate Markov

switching in the volatility dynamics of short-term interest rates. For the commod-

ity market, the only paper that investigates SV models of the type considered here

includes the paper by Vo (2009) who investigates stochastic volatility in the crude

oil market. This chapter demonstrates estimation of stochastic volatility models for

short-term interest rate and crude oil markets using the three maximum likelihood

procedures, QML, MCL and PF. This study aims to determine what difference,

if any, the estimation procedure has on the parameter estimates and conditional

volatility estimates. It also investigates the validity of using SV models in these

markets.

As mentioned previously, a standard approach to modelling stochastic volatility in

the literature for equity and foreign exchange markets is an AR(1) specification of

the log-variance. This study considers an extension to this model by including a

moving average (MA) component in the volatility dynamics to capture any corre-

lation with past shocks in volatility. Additionally, for short-term interest rates, it

is known that macroeconomic announcements and in particular, central bank an-

nouncements, impact the volatility of interest rates as found in Das (2002). In order

to capture this behaviour, the SV model for short-term interest rates is augmented

to incorporate an explanatory variable for the Federal Open Market Committee

(FOMC) meeting dates in the volatility dynamics.
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Apart from the estimation procedures, the validity of the different specifications

are also explored through various diagnostic tests which investigate both the in-

sample and out-of-sample performance. As each of the procedures are filters, this

facilitates estimation of the unobserved volatility process allowing us to directly

compare the volatility estimates of each specification and estimation procedure. A

number of empirical studies have used the absolute or squared residuals as a proxy

for volatility to evaluate the performance of stochastic volatility models in empirical

studies. However, the use of either of these measures as a proxy for volatility is

problematic as neither can be considered accurate measures of volatility. Instead,

we demonstrate alternative tests, both in-sample and out-of-sample, which examine

the distributional properties of the underlying return or yield data. This study finds

that the use of metrics based on the squared residuals are not reliable as the tests

based on the absolute residuals gave inconsistent results especially when comparing

between estimation procedures. Alternatively, for the out-of-sample tests, we adapt

the Berkowitz (2001) forecast density test for SV models to determine the accuracy

of the model forecasts.

This chapter is organized as follows - Section 2.2 introduces the interest rate mod-

elling framework that incorporates stochastic volatility. Section 2.3 describes the

estimation procedures used in this study. Section 2.4 presents the empirical analysis

including a description of the data and the parameter estimation results. Section

2.5 conducts in-sample and out-of-sample testing for the SV model and looks at the

impact of the choice of estimation procedure. Section 2.6 concludes the chapter.
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2.2 Stochastic Volatility Model

2.2.1 Short-term interest rates

We consider the class of short-term interest rate models given by the following

stochastic differential equation (SDE)

drt = (a + brt)dt+ σtr
γ
t dZt, (2.1)

where Zt is standard Brownian motion. In the model, a and b determine the drift

of the interest rate process and γ is commmonly known as the elasticity of variance

in the literature. Although all parameters are allowed to be freely estimated, they

should satisfy some implicit assumptions that also give an additional check when

estimating the model parameters. As the interest rate process is a strictly positive

process, a should be positive and as interest rates tend to mean-revert, b should be

negative. Also, due to the presence of γ, the model belongs to a class of models

known as “constant elasticity of variance” (CEV) models, although here the model

is augmented with stochastic volatility.

In this study, we consider the following discrete-time version of this model similar to

the one introduced in CKLS which is based on an Euler-Maruyama (EM) scheme,

rt − rt−1 = (a+ brt−1)∆t+ σtr
γ
t−1ǫt, ǫt ∼ NID(0, 1), (2.2)

where ∆t is time between each observation. Whilst CKLS assumed σt to be deter-

ministic, a number of subsequent empirical studies found this not to be the case.

As a result, a number of authors have considered extending the CKLS modelling
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approach by incorporating stochastic volatility (e.g. Ball and Torous (1999), Smith

(2002), Kalimipali and Susmel (2004) and Sun (2005)). In terms of estimating SV

models under the CKLS framework, the usual approach involves firstly estimating

(2.2) by OLS and then estimating the SV model using the residuals from the re-

gression. In this chapter we follow a similar approach and allow the log-variance to

evolve as an AR(1) process. Setting

yt = σtr
γ
t−1ǫt, (2.3)

and letting σt = exp(xt/2), the log-variance is given by

log σ2
t ≡ xt = µ(1− φ) + φxt−1 + ηt, ηt ∼ NID(0, σ2

η),

x0 ∼ N(µ, σ2
η/(1− φ2)),

(2.4)

where µ is the long-term mean of the log-variance, φ is the volatility persistence

parameter, ση is the volatility of volatility parameter, and ǫt and ηt are assumed to

be independent of each other.

2.2.2 Commodities

As commodities, unlike stocks or bonds, are physically traded goods, there is usu-

ally a known cost of producing them. Consequently, commodity prices generally

exhibit mean-reversion toward the cost of production. Commodity prices therefore

exhibit characteristics which are common to both stock prices and interest rates.

By incorporating these characteristics, a model for the price of a commodity, St, is

assumed to be given by the following dynamics,

St = exp{Xt}, (2.5a)
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dXt = (a+ bXt)dt+ σtdZt, (2.5b)

where Xt = log St, Zt is standard Brownian motion and σt is assumed to be stochas-

tic. The equation for Xt is similar to the process for the short-term interest rate

process, rt, except that the elasticity parameter γ is set to zero so that volatility

does not depend on the spot price3. Also, a and b have a similar interpretation as in

the interest rate model in (2.1), except that a does not need to be strictly positive,

although b should still be negative to reflect mean-reversion in commodity prices.

As with the interest rate process, a discrete-time version of this model is given by

Xt −Xt−1 = (a + bXt−1)∆t + σtǫt, ǫt ∼ NID(0, 1). (2.6)

In this model, yt is defined by (2.3) with γ = 0 and the log-variance is given by

(2.4). Hence, the only difference between the two models is that the commodity

model does not include the level of the commodity price in the volatility equation

whereas the level of interest rates is included in the interest rate model.

2.2.3 Extensions

As an extension to the traditional AR(1) specification, this chapter also investigates

specifying the log-variance as an ARMA(1,1) process. This gives a more general

specification for the SV model which allows for the volatility process to be correlated

not only with past levels but also past shocks in volatility. In this case, when there is

3Although one could use a CEV-type specification for Xt with γ unrestricted, this specification
is more typically found in the literature for commodity models. However, the model was also
estimated using the more general model where γ is unrestricted. However, the γ was found to be
both close to zero and highly insignificant. Hence, only the results of the model given by (2.6) are
reported where γ is restricted to zero.
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an increase (decrease) in volatility during a previous period, the increase (decrease)

would be expected to persist for the current period. With the addition of the MA

component, the transition equation becomes

xt = µ(1− φ) + φxt−1 + θηt−1 + ηt, ηt ∼ NID(0, σ2
η),

x0 ∼ N(µ, σ2
η(1 + (θ + φ)2/(1− φ2))).

(2.7)

Although this is a simple extension, it has not been covered in the literature for SV

models. We investigate whether it can improve volatility modelling in the empirical

application.

In addition, if any explanatory variables are thought to impact volatility, this can

be incorporated in the SV modelling framework. For instance, some studies have

considered the impact of US Federal Reserve announcements on short-term interest

rates as the yields on short-term bonds tend to closely track the federal funds rate.

Das (2002) considers the effect of the Federal Open Market Committee meetings on

the jump probability of the federal funds rate where an increase in jump probability

corresponds to an increase in the volatility of the federal funds rate. The findings

suggest that the effect of 2-day FOMC meetings increased the probability of jumps

occurring. Furthermore, Jones et al. (1998) and Ball and Torous (1999) found that

shocks in the volatility of U.S. treasury bonds caused by macroeconomic announce-

ments are not persistent. We attempt to model this behaviour by incorporating

a dummy variable for the FOMC meetings to determine whether the activity of

central banks has any impact on volatility. Denoting the FOMC dummy as ft, the

value is 1 if there is an FOMC meeting during the period [t,t+1] and zero otherwise.

For the SV models, this can be incorporated as follows,

xt = µ(1− φ) + φxt−1 + κ(1− φL)ft + ηt, (2.8)

xt = µ(1− φ) + φxt−1 + κ(1− φL)ft + θηt−1 + ηt, (2.9)
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where L denotes the lag operator. In this case, the meeting dates only affect the

period in which the FOMC meetings occurred so that any changes in volatility as

a result of the FOMC meetings do not persist.

In what follows, we will denote the AR(1) specification as SV-AR, the ARMA(1,1)

specification as SV-ARMA. Additionally, the short-term interest rate volatility

model augmented with an FOMC dummy variable is denoted as SV-AR(MA)X.

The next section describes the estimation procedures.

2.3 Estimation

The estimation procedures introduced previously are maximum likelihood estima-

tors based on a state space modelling framework. As mentioned in the introduction,

state space models can be described by a state equation and a measurement equa-

tion. In the context of SV models, the state equation describes the log-variance

process whereas the measurement equation describes the observations. For the in-

terest rate model, the observations are the yields and for the crude oil model, the

observations are the returns.

We refer readers to Chapter 1, Section 1.1 for details on the description of state

space models. In particular, for the QML procedure, the estimation procedure uses

the linear state space model given by (1.1) as it uses a transformed linear form of

the SV model. On the other hand, the MCL and PF procedures work with the

untransformed version of the model and so the state space models are described by

(1.2).
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Throughout the rest of this chapter, we will use the following notation. We let

y = (y1, . . . , yT )
′ represent the entire vector of observations and y1:t = (y1, . . . , yt)

′

for t ≤ T represent a subset of y. Similarly, we let x = (x0, . . . , xT )
′ represent the

entire vector of unobserved state variables and x0:t = (x0, . . . , xt)
′ represent a subset

of x.

For most applications related to state space models, the aim is to estimate the latent

state process through filtering which involves estimating the marginal distribution

of xt given the observations, i.e. p(xt|y1:t). For the linear Gaussian state space

model, the well known Kalman filter can be used to estimate p(xt|y1:t). However,

for general SV models including the model given by (2.3) and (2.4), an analytical

form for p(xt|y1:t) does not exist. The estimation procedures introduced in the

literature consider different approaches to estimate the density.

We will now briefly discuss the approaches taken by each of the three procedures,

QML, MCL and PF in the next few sections and demonstrate the practical imple-

mentation of the SV models.

2.3.1 Quasi-Maximum Likelihood (QML) Estimation

Consider again the residuals defined in Section 2.2, yt = σtr
γ
t−1ǫt. Then in a manner

similar to Ball and Torous (1999), the model can be linearized as follows,

log y2
t = log σ2

t + 2γ log rt−1 + log ǫ2t , (2.10)

where xt = log σ2
t for t = 1, . . . , T . If ǫt ∼ N(0, 1), then log ǫ2t is known to follow a

logχ2 distribution where E[log ǫ2t ] = −1.2704 and V ar[log ǫ2t ] = π2/2. Under QML
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estimation, if it is assumed that log ǫ2t ∼ N(−1.2704, π2/2)4, then the system of

equations is in a linear state space form allowing for estimation using the Kalman

filter. Applying the Kalman filter in this manner results in a minimum mean square

linear estimator rather than the minimum mean square estimator. However, the

assumption of normality allows for parameter estimation to be conducted by max-

imizing the likelihood, L(Θ), obtained via the Kalman filter recursions introduced

in Section 1.1.

As the parameters of the model can be estimated using the linear Kalman filter,

the main advantage of QML is that it is computationally efficient compared to most

other proposed methods. Some studies make the comment that QML is sufficient in

empirical applications involving SV models, however as will be shown later, the re-

sults can vary depending on the estimation procedure used. The standard errors for

the parameter estimates are computed using the White (1982) consistent estimate

of the asymptotic covariance matrix for the maximum likelihood estimate of the

parameter set Θ̂. This is given by T−1(I2DI
−1
OPI2D) where I2D denotes the Hessian

estimate of the information matrix and IOP denotes the outer product (variance of

the score) estimate of the information matrix. These are given by

I2D = T−1∂
2 logL(Θ)

∂Θ∂Θ′

∣∣∣
Θ=Θ̂

, (2.11a)

IOP = T−1

T∑

t=1

(
∂ log lt(Θ)

∂Θ

∣∣∣
Θ=Θ̂

)(
∂ log lt(Θ)

∂Θ

∣∣∣
Θ=Θ̂

)′

, (2.11b)

where lt(Θ) is the marginal likelihood. As these quantities are not known in closed-

form, they are evaluated numerically.

We are also able to estimate the posterior mean of the volatility process and produce

4It is also possible to leave V ar[log ǫ2t ] unspecified and estimate it as a free parameter to improve
the performance of QML. However, doing this still resulted in values close to π2/2 in the empirical
applications. We thus keep it fixed at this value.
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forecasts. As xt above is assumed normal, σ2
t should be lognormal. However, it has

been noted by Harvey and Shephard (1993) that due to the non-normality of the SV

model after linearization, when xt is estimated, xt|T does not converge to normality.

This means the expectation of exp(xt|T )−exp(xt) is non-zero. Harvey and Shephard

(1993) suggest that in practice, the estimate of the variance process should be given

by,

E[σ2
t|T ] = σ̂2

t|T = exp(x̂t|T ), (2.12)

where x̂t|T is the smoothed estimate of x̂t obtained through the Kalman smoother5.

Similar to the posterior mean estimation, the one-step ahead forecast is constructed

as

σ̂2
T+1|T = exp(x̂T+1|T ). (2.13)

Hence we can determine whether the QML procedure is able to accurately estimate

and forecast the variance.

2.3.2 Monte Carlo Likelihood (MCL) Estimation

The MCL estimation procedure was first applied to SV models by Sandmann and

Koopman (1998) on the linearized model of Harvey et al. (1994) without making

the assumption of Gaussian disturbances in the observation equation. This involved

estimating Equation (2.10) where log ǫ2t is estimated as a logχ2 random variable

using Monte Carlo simulations through an importance sampler. However, as the

model was originally specified in a nonlinear form in (2.3) the model parameters are

estimated from this form. In the literature, Godambe (1985) and Thavaneswaran

5See Harvey (1989) for details about the Kalman smoother.
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and Abraham (1988) demonstrate estimating nonlinear models using estimating

equations. More recently, Koopman and Lee (2004) considered a nonlinear form

of the SV model and in this study (not reported) a comparison of the parameter

estimates obtained from either the linear or non-linear versions were found to be

similar6.

The idea of importance sampling under MCL can be explained as follows. If we

denote the observations by yt, the latent log-variance by xt for t = 1, · · · , T and let

y = (y1, · · · , yT ) and x = (x0, · · · , xT ), then the likelihood function can be expressed

as

p(y) =

∫
p(y|x)p(x)dx. (2.14)

For the SV model, it is not possible to derive an analytical expression for the inte-

gration above due to the multi-dimensional densities involved. One could estimate

the above expression using a näıve approach to Monte Carlo simulations as follows,

p̂(y) = N−1

N∑

i=1

p(y|x(i)), (2.15)

where x(i) is a draw from p(x). However, this estimator is very inefficient as many of

the draws from p(x) would contribute little to p(y|x) and the number of simulations

needed to obtain an accurate estimate would be prohibitively large even for relatively

small T. Durbin and Koopman (1997) proposed importance sampling techniques to

improve the performance of Monte Carlo simulations in the estimation of nonlinear

and non-Gaussian state space models. In order to estimate the likelihood, the

6The MCL procedure for both the linear and non-linear model was used to estimate the model
and resulted in very small differences between the parameter estimates. These differences are most
likely due to machine errors as a result of discretization and different Monte Carlo samples used
in estimation. As such, the original nonlinear specification was retained in this study.
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following result was shown by Durbin and Koopman (1997),

p(y) =

∫
p(y|x)p(x)dx

=

∫
p(y|x)p(x)
q(x|y) q(x|y)dx

= q(y)

∫
p(y|x)p(x)
q(y|x)q(x)q(x|y)dx

= q(y)Eq

[
p(y|x)p(x)
q(y|x)q(x)

]
, (2.16)

where q(x|y) is the importance density and the expectation is with respect to the

importance density. The second step above uses Bayes’ rule to give

q(x|y) = q(y|x)q(x)
q(y)

. (2.17)

If we consider the stochastic volatility model given by (2.3) and (2.4), then since

both σt and ǫt are stochastic, the model is nonlinear. The methodology relies on

approximating the model by a linear Gaussian model where both q(y|x) and q(x)

are Gaussian. Furthermore, (2.4) allows us to set q(x) = p(x) as xt is assumed

to be Gaussian. This means the procedure only relies on finding an importance

density for q(x|y) in order to perform Monte Carlo simulations. Following Durbin

and Koopman (1997) and Koopman and Lee (2004), an approximating Gaussian

model is constructed as follows,

yt = at + xt + et, et ∼ NID(0, bt), (2.18)

where xt is defined by (2.4). The two parameters, at and bt are estimated to provide

a good match of the approximating Gaussian model and the true model. This is

achieved by equating the first and second derivatives of the conditional likelihood

functions so that the modes of the two distributions coincide. In general the values

for at and bt can not be analytically solved as they require knowledge of the value
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of the latent state variable. We provide a summary of the iterative procedure to

derive the values of at and bt in Appendix 2.A at the end of this chapter. However,

for further details see Durbin and Koopman (1997) and Koopman and Lee (2004).

Once the importance density is found, simulations from the importance density can

be performed using the simulation smoother of de Jong and Shephard (1995) or

Durbin and Koopman (2002). By drawing N sample paths of the state vector x, an

estimate of the likelihood function is given by the following

L(Θ) = LG(Θ)N−1

N∑

i=1

w(x(i)), (2.19)

where Θ denotes the parameter set, LG(Θ) is the Gaussian likelihood based on the

importance density q(x|y,Θ), x(i) is a draw from the importance density q(x|y,Θ)

and

w(x(i)) =
p(y|x(i),Θ)

q(y|x(i),Θ)
, (2.20)

for i = 1, . . . , N are the importance weights for each simulated sample path. Since

under the SV model we have yt|xt ∼ N(0, xt), the two conditional likelihood func-

tions are given by

p(y|x) =
T∏

t=1

1√
2πrγt−1 exp(xt/2)

exp

(
− y2

t

2rγt−1 exp(xt)

)
, (2.21)

q(y|x) =
T∏

t=1

1√
2πbt

exp

(
−(yt − at)

2

2b2t

)
. (2.22)

The likelihood could be interpreted as the Gaussian likelihood of the approximating

model scaled by a correction for the departure from Gaussian of the true likelihood.

The degree by which the true likelihood deviates from the Gaussian likelihood is

governed by the importance weights. In practice, the log-likelihood is maximized
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for parameter estimation, however Durbin and Koopman (1997) show that a bias

correction is required in this case. They show that an unbiased estimate of the

log-likelihood is given by

logL(Θ) = logLG(Θ) + log w̄ +
s2

2Nw̄2
, (2.23)

where w̄ and s2 are the sample mean and variance of the importance weights

respectively. The number of simulations used here is N = 4007 which is large

enough so that the bias is quite small and computational time is not too long.

When maximizing the likelihood function, the same random numbers should be

used in the Monte Carlo simulations for different parameter sets. This ensures the

log-likelihood function is smooth with respect to the parameters allowing for the

use of gradient-based optimization methods and estimating the standard errors of

the parameter estimates. The standard errors in this case are estimated using the

numerical Hessian of the log-likelihood based on the maximized likelihood values

from one draw of random numbers.

We are also able to obtain the posterior mean and make forecasts of the variance.

For the MCL procedure, we can estimate the posterior mean by making use of

the draws from the importance density. As the model remains in its original form

unlike in the case of the QML procedure, it is appropriate to consider the variance

as log-normally distributed. An estimate of the posterior variance is therefore given

by

σ̂2
t|T = exp(x̂t|T +

1

2
P̂t|T ), t = 1, . . . , T, (2.24)

7Simulations are augmented with antithetic variables to increase the number of simulations
whilst only marginally increasing computation time.
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where both x̂t|T and P̂t|T are estimated from the importance samples as follows,

x̂t|T =

N∑

i=1

w(x(i))xi
t|T/w̄, P̂t|T =

N∑

i=1

w(x(i))P i
t|T/w̄, w̄ =

N∑

i=1

w(x(i)). (2.25)

Here x(i)

t|T and P (i)

t|T correspond to the smoothed state and covariance obtained by

applying the Kalman smoother to the Gaussian approximating model for each draw

x(i) from the importance density q(x|y). Forecasts of the variance can also be con-

structed in a similar manner. The one-step ahead forecast of the variance is given

by,

σ̂2
T+1|T = exp(x̂T+1|T +

1

2
P̂T+1|T ), t = 1, . . . , T, (2.26)

where

x̂T+1|T =
N∑

i=1

w(x(i))xi
T+1|T/w̄, P̂T+1|T =

N∑

i=1

w(x(i))P i
T+1|T/w̄,

and w̄ is the same as for the smoothed estimates. In this case, xi
T+1|T and P i

T+1|T

are obtained from the Kalman filter applied to the Gaussian approximating model

for each draw x(i) from the importance density q(x|y).

2.3.3 Particle Filter (PF) Estimation

Particle filtering techniques (also known as Sequential Monte Carlo techniques)

have been applied in a number of different disciplines but are becoming increasingly

popular in financial econometrics. They were developed in order to estimate and

sample from the posterior distribution of nonlinear and/or non-Gaussian state space

models when it is not possible to sample directly from the posterior density. Kim et

al. (1998) and Pitt and Shephard (1999) were the first authors to consider particle
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filtering methods for SV models, although mainly for filtering purposes rather than

parameter estimation. However, Pitt (2002) introduced a smooth particle filter

which allows for maximum likelihood estimation of the parameters in SV models.

As the procedure uses importance sampling, the technique is similar to MCL except

that the procedure is a sequential filter where samples are drawn iteratively from

an importance density. On the other hand, MCL uses a simulation smoother to

generate draws from an importance density. A further difference is that whilst

MCL requires a Gaussian importance density due to the use of the Kalman filter

and smoother in determining the approximating model, the only restriction for the

particle filter is that the importance density can be simulated from. Whilst this

allows for more flexibility in the applications available under the particle filter,

this usually comes at the cost of efficiency in estimation as an optimal importance

density is generally either not available analytically nor computationally efficient

to use in Monte Carlo simulations. This has resulted in a number of variations to

the particle filter to improve its efficiency, although most of the recent incarnations

have evolved from the ‘bootstrap filter’ approach described in Gordon et al. (1993).

For interested readers, an overview of recent advances in particle filtering techniques

that have followed Gordon et al. (1993) can be found in Doucet et al. (2001) and

Cappé et al. (2007). However, in this chapter, we consider the smooth particle filter

of Pitt (2002) which allows for maximum likelihood estimation of SV models.

In order to perform parameter estimation using particle filtering methods, we need

to evaluate the likelihood function given the parameters, L(Θ) = p(y|Θ) where Θ

denotes the parameter set. However, when using particle filters that incorporate

a resampling step, the likelihood function will not be smooth with respect to the

parameter set, even if the same random numbers are drawn for each run of the par-

ticle filter. This happens because the resampling step essentially involves sampling

from the discrete cdf generated by the normalized importance weights. When the
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parameters are changed, the importance weights will have changed resulting in a

different resampling distribution. If even only a few particles resampled during the

early time steps are different, it is clear that this can result in very different particle

values as the different particles will be propagated through all later time steps. This

could lead to quite different likelihood values even when the parameter values have

only changed a little. Pitt (2002) proposed a solution that incorporates a smooth

bootstrapping procedure when resampling. This results in a likelihood function that

is smooth with respect to the parameter set. Having a smooth likelihood function

is desirable for a number of reasons including allowing the use of gradient-based

methods for maximizing the likelihood function and computing standard errors for

the parameter estimates. The main weakness of this approach is that it can only be

applied to one-dimensional state variables strictly limiting its application, although

it is suitable for SV modelling application studied here.

In what follows, it is assumed that the likelihood is dependent on the parameter

set but we drop Θ in the notation for simplicity. If we consider the state space

model defined by (1.2), then Doucet et al. (2000) show that the likelihood can be

decomposed as follows,

p(y) = p(y1)

T∏

t=2

p(yt|y1:t−1), (2.27)

where p(yt|y1:t−1) is the conditional likelihood or alternatively the log-likelihood is

given by

log p(y1:T ) = log p(y1) +
T∑

t=2

log p(yt|y1:t−1).

It is shown in Pitt (2002) that when the importance density used for simulation

is assumed to satisfy the Markov property, then the conditional likelihoods can be
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estimated by

p̂(yt|y1:t−1) = E[wt(x0:t)], (2.28)

where wt(x0:t) are the importance weights defined by

wt(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
, (2.29)

and q(x0:t|x0:t−1, y1:t) is the importance density. As shown in Doucet et al. (2000)

and Cappé et al. (2007) among others, if it is assumed that the distribution of the

states are Markov and that the observations are conditionally independent given

the states, then the importance weights can be represented recursively as,

wt = wt−1

p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1, y1:t)
. (2.30)

By sampling from the importance density at each step, Pitt (2002) shows that an

unbiased estimate of the conditional likelihoods is given by

p̂(yt|y1:t−1) =
1

N

N∑

i=1

w(i)
t , (2.31)

where w(i)
t are the importance weights associated with the ith draw from the im-

portance density. One final consideration is the choice of importance density. In

general and in the case of SV models, an optimal importance density does not ex-

ist. A popular alternative choice of importance density is the prior density, i.e.

q(xt|x0:t−1, y1:t) = p(xt|xt−1). If this choice of importance density is substituted into

(2.30), the weights are then given by the following simple representation,

w(i)
t = w(i)

t−1p(yt|x(i)
t ), (2.32)
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where for the interest rate SV model,

p(yt|xt) =
1√

2πrγt−1 exp(xt/2)
exp

(
y2
t

2r2γt−1 exp(xt)

)
. (2.33)

The main drawback of this choice of proposal distribution is that the most recent

observation is not considered when generating the particles. With the addition of

the resampling step, this is mitigated substantially and is not considered much of an

issue. However, as mentioned previously the resampling step causes a non-smooth

likelihood function.

Pitt (2002) addressed this issue by proposing a modification to the resampling proce-

dure. It involves firstly sorting the sampled particles and constructing an empirical

cdf for the particles at each time step. During resampling, rather than resampling

directly from the discrete empirical cdf generated by the importance weights, a

smooth and continuous cdf is constructed by linearly interpolating between each

particle in the discrete cdf. The particles are resampled from the smooth cdf result-

ing in resampled particles that are close for small changes in the parameters. An

algorithm for the smooth resampling procedure can be found in Pitt (2002) and to

conserve space it is not reproduced here. It should also be noted that the construc-

tion and resampling from the smooth cdf results in some additional computational

cost over SIR as a result of sorting the particles at each time step. As sorting can

be completed in O(NlogN) time8, the complexity of each run of the smooth particle

filter is O(TNlogN) and is found here and by Pitt (2002) to increase computational

time only slightly. Going by the number of particles typically used in the literature

for PF techniques and to keep a balance between computation time and accuracy,

the number of particles used here is set to N = 2000. A brief algorithm of the

smooth particle filter used in this chapter can be found in the Appendix 2.B but

8Commonly known sorting algorithms with O(NlogN) complexity include merge sort, heap sort
or quick sort. In this thesis, quick sort is used.
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more interested readers should refer to Pitt (2002).

As we evaluate the log-likelihood in practice rather than the likelihood itself this

introduces a bias due to the Monte Carlo sampling error of the weights similar to the

MCL procedure. Pitt (2002) gives an unbiased estimate of the log-likelihood func-

tion as the sum of the marginal log-likelihoods where the marginal log-likelihood,

lt(θ), is given by

log lt(Θ) = log

N∑

i=1

w(i)
t − s2

2Nw̄2
, (2.34)

where w̄ and s are the sample mean and standard deviation of the unnormalized

importance weights, w(i)
t , i = 1, . . . , N . Hence the log-likelihood is estimated as

logL(Θ) = log l1(Θ) +
T∑

t=2

log lt(Θ), (2.35)

which is maximized for parameter estimation. To estimate the standard errors, Pitt

(2002) uses the variance of the scores (outer-product estimator) as an estimate of

the variance-covariance matrix and we follow the same approach.

Having estimated the parameters, we can estimate the posterior mean and make

forecasts conditionally on the parameters in a similar manner as MCL. To estimate

the posterior mean, we require smoothed estimates of xt which can be obtained by

applying smoothing techniques based on particle filters. Smoothing techniques in

particle filtering are generally computationally expensive procedures but as we only

need to run them once after parameter estimation, this does not pose a problem

here. We consider here the smoothing procedure of Doucet et al. (2000) which

involves estimating the posterior density p(xt|T ) by Monte Carlo simulation. They
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approximate the posterior density using the following expression,

p̂(dxt|y1:T ) =
N∑

i=1

w̃(i)

t|Tδx(i)
t
(dxt), (2.36)

where w̃(i)

t|T are the normalized smoothing weights and δx(i)
t
(·) is the Dirac delta

function. This means the posterior density has the same draws (x(i)
t , i = 1, . . . , N ,

t = 1, . . . , T ) as the filtering density but with different weights. The smoothing

weights are obtained recursively as follows,

w̃(i)

t|T =

N∑

j=1

w̃(j)

t+1|T

w̃(i)
t p(x(j)

t+1|x(i)
t )

∑N

k=1 w̃
(j)
t p(x(j)

t+1|x(k)
t )

, (2.37)

where w̃(i)
t = w(i)

t /
(∑N

j=1 w
(i)
t

)
are the normalized importance weights and w(i)

t comes

from Equation (2.32). The smoothed estimates of the posterior mean and covariance

of xt are given by,

x̂t|T =
N∑

i=1

w̃(i)

t|Tx
(i)
t , P̂t|T =

N∑

i=1

w̃(i)

t|T (x
(i)
t − x̂t|T )

2. (2.38)

An estimate of the posterior mean of the smoothed variance σ̂t|T is given by Equation

(2.25). To make conditional forecasts of the state variables under the PF procedure,

Doucet et al. (2000) suggest the following approach. The one-step ahead forecast

for the state involves firstly sampling from the conditional density p(xT+1|x(i)
T ), i =

1, . . . , N to obtain the random samples, x(i)
T+1. An estimate of the conditional density

is given by

p̂(dxT+1|y1:T ) =
N∑

i=1

w̃(i)
T δx(i)

T+1
(dxT+1). (2.39)

Hence the forecast mean and covariance can be estimated by

x̂T+1|T =
N∑

i=1

w̃(i)
T x(i)

T+1, P̂T+1|T =
N∑

i=1

w̃(i)
T (x(i)

T+1 − x̂T+1|T )
2. (2.40)
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The one-step ahead forecast of the variance, σ2
T+1 can be obtained from (2.26).

Under both the PF and MCL procedure, the smoothing and forecasting of the states

is fairly straightforward requiring only a little additional computational effort.

2.3.4 Implementation

In terms of ease of implementation, QML was the simplest as it only requires ap-

plication of the Kalman filter. Both MCL and PF were fairly straightforward but

required significantly more effort to implement. For the MCL, this was a two stage

process where in the first step, the importance is derived, and in the second step

the simulations were conducted from the importance density. For the particle filter,

although the general algorithm was fairly straightforward, the most difficulty lay in

the smoothing algorithm. The estimation procedures were all implemented using

Matlab and C9. As a comparison of computational efficiency, we report the times

to evaluate the likelihood function for each procedure. The times are based on the

average time to evaluate the likelihood function for a time-series of length T = 1000

using the standard AR(1) SV model on a 2.53Ghz processor. The QML takes 0.04s,

MCL takes 3.75s and PF takes 4.91s.

2.3.5 Finite Sample Performance

Although a number of studies have compared the finite sample performance of QML

and MCL in the literature, PF has not received much attention in terms of parameter

9Matlab was used in conjunction with C to improve computational efficiency through the use
of Mex files. Matlab is known to handle loops very inefficiently and for the recursive steps in each
estimation procedure, C was used instead. This makes no negligible difference to the results as
using either language for the loops results in differences close to double precision (i.e. 1e-16) whilst
substantially reducing computation time.
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estimation. In this section, a brief study of the finite sample performance of each

of the three procedures is conducted using the standard AR(1) model. In this case,

we consider the model given by (2.3) - (2.4) with γ = 0 and where yt represents

the demeaned returns. To conduct the study, 500 sample paths of the volatility

and return process are simulated using the same parameter set. The length of each

sample path is set to T = 1000 where it is assumed that the frequency of returns

is weekly. For the traditional AR(1) model, the parameter set is Θ = (φ, ση, µ).

In this application we set the parameters to that commonly found in the literature

on empirical studies of equity returns. In some of these studies such as Jacquier

et al. (1994) or Sandmann and Koopman (1998), a typical parameter set found for

S&P500 returns is Θ = (0.96, 0.2, 1).

Table 2.1
Simulation Results

This table reports the mean of the parameter esti-
mates for each estimation procedure based on 500
simulations of a return series with stochastic volatil-
ity with sample paths of length T = 1000. The row
labelled ’True’ denotes the actual parameter set used
in the simulations. The RMSE of the estimates are
in parentheses.

Parameter

φ ση µ

True 0.9500 0.2000 1.0000

QML 0.9434 0.2244 1.0100

(0.0422) (0.0916) (0.1740)

MCL 0.9519 0.2081 1.0090

(0.0221) (0.0427) (0.1675)

PF 0.9520 0.2098 1.0147

(0.0219) (0.0432) (0.1715)

The simulation results can be found in Table 2.1. The QML and MCL results tend

to agree with previous findings in the literature with slightly higher bias exhibited

by QML in the φ and ση estimates. Interestingly, although the two importance

sampling procedures take fundamentally different approaches, PF shows very similar

performance to MCL. This is true for both the mean of the parameter estimates
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and the root mean-squared errors (RMSE) of the estimates. For both the MCL and

PF procedures, the RMSE of φ and ση is around half the size of the RMSE for the

QML estimates. This demonstrates that PF is able to correct for some of the finite

sample bias exhibited by QML.

2.4 Empirical Results

This section conducts an empirical study using short-term interest rate and crude oil

data. The models outlined in Section 2.2 are estimated using the three estimation

procedures for each data set. We firstly provide some descriptive statistics of the

data and compare the parameter estimates obtained under the various models and

estimation procedures. We then evaluate the performance of the models and look

at whether the choice of model is affected by the estimation procedure. Finally, we

conduct a comparison of the performance of each model and estimation procedure

when conducting out-of-sample volatility forecasts.

2.4.1 Data

The short-term interest rate data consisting of the yield on three-month constant

maturity U.S. treasury bills and the FOMC meeting dates are obtained from the

Board of Governors of the Federal Reserve website10. The crude oil spot price data

is obtained from the Energy Information Administration (EIA) website11. Both the

short-term interest rate and crude oil data consists of weekly observations from Jan-

uary 1990 to May 2006 giving a sample size of 856 observations for each data set.

10http://www.federalreserve.gov.
11http://www.eia.doe.gov.
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The estimation procedure used for this chapter follows the approaches taken previ-

ously in the literature where first OLS is performed to estimate a and b in Equation

(2.2) for interest rates, or Equation (2.6) for crude oil. Once this is estimated, the

residuals from the regression are used in order to estimate the volatility process

σt where for interest rates yt = σtr
γ
t−1ǫt and for crude oil yt = σtǫt. Descriptive

statistics for the interest rate and crude oil data can be found in Table 2.2 including

the residuals from the CKLS discretization. The plots of the data can be found in

Figure 2.1.

Table 2.2
Description of Data

Panel A reports the linear regression estimates defined by (2.2) for short-term interest rates and (2.6) for crude
oil. Panel B reports some descriptive statistics for weekly observations of short-term interest rates (SR) and the
crude oil (CO) data for the period January 1990 to May 2006. JB is the Jarque-Bera test for normality, Q(20) is
the Ljung-Box portmanteau test for serial correlation at a lag of 20, ADF is the augmented Dickey-Fuller test for
unit root and ARCH LM is the autoregressive conditional heteroscedasticity Lagrange multiplier test at a lag of 20.
P-values for the test statistics are in parentheses.

Panel A: Linear Regression

SR CO

Parameter a b a b

Estimate 0.0001 −0.0040 1.7701 −0.0051

(S.E.) (0.0000) (0.0020) (1.5213) (0.0047)

Panel B: Descriptive Statistics

Mean S.D. Skew. Kurt. JB Q(20) Q2(20) ADF ARCHLM

SR

rt 4.187 1.808 -0.156 2.398 16.39 26270.63 86.46 -1.64 844.67

(0.000) (0.000) (0.000) (0.095) (0.000)

yt 0.000 0.108 -0.680 10.889 2283 166.16 187.70 -31.33 127.12

(0.000) (0.000) (0.000) (0.000) (0.000)

CO

log st 3.195 0.391 0.862 3.366 110.884 13628.72 13663.83 0.626 822.55

(0.000) (0.000) (0.000) (0.851) (0.000)

yt 0.000 5.377 -0.540 9.053 1332.93 49.46 173.65 -33.45 106.12

(0.000) (0.000) (0.000) (0.000) (0.000)

If we firstly consider the estimated coefficients of the linear regressions in the top

panel of Table 2.2, the estimate of b is negative for both the interest rate and crude

oil data indicating that they are mean-reverting. However, the mean-reversion rates

are very low and the mean-reversion of the crude oil data is not significant. This
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can be seen in Figure 2.1b where both the yield and log crude oil price plots show

that the plots stay within a band of values most of the time, although they also

exhibit some periods of steep increases and decreases. Figure 2.1 also shows the

residuals from the regression where evidence of both time-varying volatility and

volatility clustering can be observed in the plots of yt. This can be observed by

periods of high volatility and low volatility occuring in “clusters” for both data

sets. Two such periods of high volatility in both the yields and crude oil prices can

be identified during the period surrounding the Iraq war around 1990-92 and the

period immediately following September 11, 2001.

1990 1992 1995 1997 2000 2002 2005 2007
0

2

4

6

8

10
US 3−month Treasury Yields

r t

1990 1992 1995 1997 2000 2002 2005 2007
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Residuals

y
t

(a) Interest Rate Data

1990 1992 1995 1997 2000 2002 2005 2007
2

2.5

3

3.5

4

4.5
Log Crude Oil Price

lo
g

 s
t

1990 1992 1995 1997 2000 2002 2005 2007
−40

−20

0

20

40

y
t

Residuals

(b) Crude Oil Data
Figure 2.1
Plots of yields, crude oil prices and regression residuals, January 1990 - May 2006. The yields
and residuals are in percentage points. The log crude oil price is in $US.

Looking at the descriptive statistics of the data in the bottom panel of Table 2.2 both

the yield and crude oil data exhibit some similar characteristics. It can be seen from

the augmented Dickey-Fuller (ADF) unit root test statistic that non-stationarity can

not be rejected for the yields and crude oil prices which is consistent with what was
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observed in regards to the mean-reversion rates. The residuals of both series exhibit

negative skewness, high kurtosis and the Jarque-Bera statistic indicates strong non-

normality. There is some evidence of autocorrelation in both residuals series as

indicated by the Ljung-Box (LB) Q test statistic, although of particular interest is

autocorrelation squared residuals. Applying the LB test to the squared residuals

and testing for autoregressive conditional heteroscedasticity (ARCH) effects gives

an indication of whether time-varying volatility is present. The results of both

tests indicate that the residuals exhibit autocorrelation in the squared residuals

and ARCH effects for both the yield data and crude oil data. This suggests that

volatility is time-varying in both data series and that a stochastic volatility model

may be appropriate.

2.4.2 Parameter Estimates

The results of the maximum likelihood parameter estimate can be found in the top

panel of Tables 2.3 and 2.4 for the interest rate and crude oil data respectively.

Each table lists the parameter estimates and their standard errors under each of the

different estimation techniques described in Section 2.3.

Short-Term Interest Rates

If we examine the values of the parameter estimates, it is clear from the tables that

the parameter estimates of the three estimation procedures differ by varying degrees

even though most parameters for all models are statistically significant at the 5%

level. The parameter estimates for the short-term interest rate data can be found in

Table 2.3. We firstly concentrate on the estimates of the basic SV-AR specification.
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The main difference in parameter estimates for the three procedures can be found

in the two main parameters of the model, φ and ση, commonly referred to as the

persistence in volatility and the volatility of volatility respectively. Whilst φ governs

how quickly the models revert to the long-term mean level of volatility, ση could

be considered as the main driver in the stochastic nature of volatility. Differences

in both these values can lead to significant differences in the conditional variances

estimated. It has been noted in Ruiz (1994) that as φ and ση decrease, the finite

sample bias of the QML estimates increases for these parameters. This seems to be

the case here where the QML estimates of φ and ση were found to be approximately

0.58 and 0.95 respectively which tend to differ from the MCL estimates of 0.68 and

0.75 and the PF estimates of 0.65 and 0.77. For this sample, it seems that QML

underestimates φ and as a result, overestimates ση. This agrees with the finite

sample performance of QML estimates observed previously in the literature (see

e.g. Jacquier et al. (1994), Sandmann and Koopman (1998) and Broto and Ruiz

(2004)) and the brief study above. For µ and γ, both are estimated very closely

between MCL and PF, whilst again a fairly substantial difference is evident with

the QML estimate. The value of γ is around 0.59 for both MCL and PF whereas

it is higher for QML at 0.65. These are quite close to a value of 0.5 which implies

that the CIR model of interest rates holds when stochastic volatility is incorporated.

This is consistent with Ball and Torous (1999) and provides further evidence that

the original value of 1.5 estimated in CKLS is too high.

Similar results are exhibited for the other specifications when comparing the estima-

tion procedures. Looking at the ARMA estimates in Table 2.3, the QML estimate

of θ is negative and not significant. The estimate for θ under both MCL and PF is

significant at the 5% level with a value close to 1 although the standard errors are

quite high. This implies that the level of volatility is highly correlated with past

shocks or innovations. However, the inclusion of the MA term lowers both the φ
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Table 2.3
Parameter Estimates for Short-Term Interest Rates

This table provides the parameter estimates for each model specification and grouped by
estimation procedure for the short-term interest rate data. Standard errors for the parameter
estimates are in parentheses.

Parameter

Model φ θ ση µ γ κ

QML

SV-AR 0.5783 − 0.9511 −6.9195 0.6569 −
(0.1090) − (0.1584) (0.2698) (0.0950) −

SV-ARMA 0.6402 −0.1950 1.0332 −6.9194 0.6569 −
(0.1338) (0.2725) (0.1760) (0.2732) (0.0950) −

SV-ARX 0.5756 − 0.9463 −6.9847 0.6561 0.4238

(0.1101) − (0.1584) (0.2698) (0.0945) (0.2234)

SV-ARMAX 0.6320 −0.1779 1.0403 −6.9843 0.6560 0.4223

(0.1377) (0.2827) (0.1790) (0.2734) (0.0955) (0.2252)

MCL

SV-AR 0.6238 − 0.7492 −6.6990 0.5884 −
(0.0701) − (0.0740) (0.2209) (0.0777) −

SV-ARMA 0.5096 0.9913 0.4776 −6.6907 0.5880 −
(0.1062) (0.3866) (0.0681) (0.2188) (0.0769) −

SV-ARX 0.6278 − 0.7194 −6.7835 0.5894 0.5394

(0.0734) − (0.0768) (0.2194) (0.0766) (0.1684)

SV-ARMAX 0.5359 0.9943 0.4597 −6.7806 0.5903 0.5402

(0.1122) (0.3634) (0.0529) (0.2149) (0.0750) (0.1654)

PF

SV-AR 0.6538 − 0.7677 −6.7412 0.5943 −
(0.0590) − (0.0575) (0.2384) (0.0858) −

SV-ARMA 0.5655 0.9991 0.4663 −6.7176 0.5930 −
(0.0924) (0.4701) (0.0685) (0.2304) (0.0823) −

SV-ARX 0.6565 − 0.7365 −6.8119 0.5932 0.5288

(0.0734) − (0.0843) (0.2383) (0.0840) (0.1535)

SV-ARMAX 0.5823 0.9991 0.4355 −6.8155 0.5989 0.5255

(0.0919) (0.1291) (0.0718) (0.2274) (0.0812) (0.1469)
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and ση values compared to the AR(1) model. Of some concern is the MA value close

to 1 for both the MCL and PF estimates as it implies that the processes are close

to non-invertible. However, since a non-invertible MA process is still a stationary

process, this does not pose a problem for the model specification and the results

remain valid.

The inclusion of the FOMC dummy to the SV model has less of an effect than an

MA term on the other parameter estimates as can be seen in Table 2.3. Moreover, κ

is significant at the 5% level for both MCL and PF, but only significant at the 10%

level for the QML estimate. Whilst the parameter estimate differs for all three esti-

mation procedures, it is positive for all three which indicates that FOMC meetings

increases the volatility of interest rates. Again there appears to be some differences

between the QML estimates of around 0.42 compared to the MCL and PF esti-

mates of around 0.53-0.54. However, it should be noted that the estimates imply

that during the week surrounding FOMC meetings, volatility increased by around

20% under QML, and around 30% under MCL and PF. There is quite a substantial

increase in volatility in all three cases. This is consistent with the findings in Das

(2002) where the volatility of the federal funds rate increased when meetings of the

FOMC occur. Das (2002) considered a jump-diffusion model of the federal funds

rate and found that the frequency of jumps increased after two-day FOMC meet-

ings consistent with an increase in volatility. There are two possible explanations

for the increase in volatility. It could suggest that either markets are efficient so

that trading activity and volatility increases when new information arrives or that

surprise announcements after the meetings substantially increase volatility of inter-

est rates. Whilst it is difficult to distinguish between the two possibilities without

looking at additional data, the large increase in volatility implied by the estimates

suggests that surprise announcements during the meetings have a large impact on

volatility. It should also be noted that all parameter estimates except κ are rela-
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tively unaffected compared to the models without the FOMC factor. This means

that the impact of FOMC meetings on interest rate volatility is not captured by

the other parameters in the model. Although this only applies to this sample, this

suggests that when modelling volatility in bond markets, the activities of central

banks should be accounted for.

Crude Oil

The results of the crude oil parameter estimates can be found in Table 2.4 where all

parameters are significant at the 5% level for each model and estimation procedure.

The parameter estimates are substantially different to the short-term interest rate

results indicating that the dynamics of volatility for both markets are largely differ-

ent. In fact, the parameter estimates tend to be similar to those reported for equity

markets which is not surprising given the parameterisation of the model is closer

to those typically applied in equity and foreign exchange market studies. In terms

of the differences between estimation procedures, the results are slightly different

to the interest rate results. Concentrating on the SV-AR specification first, the

persistence parameter, φ, is estimated slightly higher under QML a value of 0.967

and 0.958 under both MCL and PF. On the other hand, the QML estimate for ση

of 0.161 is lower than the MCL and PF estimates of 0.229 and 0.231 respectively.

Although these differences are lower than for the interest rate results, this is the

opposite result when comparing the QML estimates to MCL and PF. In this case,

QML overestimates φ and underestimates ση although the result is not contradic-

tory to previous studies since this holds only for this sample. Also, it seems that the

difference between the QML estimate of φ to the MCL and PF estimates is much

smaller than the difference in the estimate of ση. This is consistent with the finding

in Ruiz (1994) who found a larger bias when either φ or ση is low with the bias
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decreasing when these two parameters increase. Finally, there is little difference

between the long-term mean volatility parameter, µ, similar to the interest rate

results.

Similar results hold for the SV-ARMA specification. There appears to be some

differences in the QML estimates of φ, θ and ση compared to MCL and PF estimates

although they are not large. Both φ and µ differ only slightly from the SV-AR values

and as with the interest rate data, ση differs somewhat from the SV-AR values.

However, contrary to the interest rate data, ση is higher under the SV-ARMA

specification and θ is negative and quite high for all procedures. This suggests that

volatility is negatively correlated with past shocks in volatility and that an increase

in volatility in the previous period will likely be followed by a decrease in volatility

in the following period.

Whilst the evidence is not conclusive, it is clear from the two data sets that the

parameter estimates under QML differ from either MCL and PF more than the

MCL and PF estimates differ. When comparing the MCL and PF estimates, the

only differences arise from the estimates of φ and ση although they are relatively

small compared to the difference in the QML estimates. It is also interesting to note

that when using the smooth version of the particle filter, the estimated standard

errors are quite close to the standard errors estimated under MCL for both data sets.

This is encouraging for the smooth PF estimation procedure, as whilst it is noted in

Pitt (2002) that the standard errors estimated for linear Gaussian state space models

are close to the values estimated under the Kalman filter, no comparison was made

for nonlinear or non-Gaussian state space models. Although this result holds only

for these particular data sets and models, this shows promise for both the MCL

and PF procedures in other applications involving nonlinear and/or non-Gaussian

models.

42



Table 2.4
Parameter Estimates for Crude Oil

This table provides the parameter estimates for each model specification and grouped by
estimation procedure for the crude oil data. Standard errors for the parameter estimates are
in parentheses.

Parameter

Model φ θ ση µ

QML

SV-AR 0.9666 − 0.1608 2.9823

(0.0794) − (0.0578) (0.1780)

SV-ARMA 0.9709 −0.7799 0.6566 2.9828

(0.0787) (0.1868) (0.2189) (0.1823)

MCL

SV-AR 0.9580 − 0.2292 2.9963

(0.0557) − (0.0421) (0.1903)

SV-ARMA 0.9670 −0.6251 0.5045 2.9473

(0.0528) (0.0612) (0.0902) (0.1999)

PF

SV-AR 0.9584 − 0.2319 3.0319

(0.0521) − (0.0371) (0.1279)

SV-ARMA 0.9670 −0.6406 0.5241 2.9903

(0.0552) (0.1443) (0.0850) (0.2085)

A comparison of the estimated volatility can also be made from the smoothed es-

timates of each of the filters. Plots of the volatility estimated under all three es-

timation procedures for the SV-AR(1) model are shown in Figure 2.2 for both the

interest rate and crude oil data. The plots show that whilst the volatility estimates

for the interest rate data tends to be fairly similar, the crude oil volatility estimates

tend to differ between the estimation procedures. The QML volatility estimates

vary less than either the MCL and PF volatility estimates, although the PF esti-

mates appear to be the most volatile. This is most evident during periods of high

volatility including during the Gulf War of 1990-1991 for the crude oil data and

around September 11, 2001 for both sets of data. In either case, the QML estimates

tend to be much lower than the volatility estimates of either MCL or PF. In the
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next section we will determine how well volatility is estimated using a number of

diagnostic tests.
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Figure 2.2
Plots of volatility estimated under the AR(1) model for each estimation procedure
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2.5 Model Tests

2.5.1 In-Sample Tests

Having compared the parameter estimates using the different estimation procedures,

we now consider the difference in model selection criteria. The first set of criteria to

test model specification are the likelihood ratio tests, the Akaike Information Crite-

rion (AIC) and Bayesian (Schwartz) Information Criterion (BIC). For the likelihood

ratio tests, the AR model was taken as the base model and tested against each of

the other specifications. For instance, testing against the ARMA specification, the

null hypothesis is H0 : θ = 0 and the alternative hypothesis is Ha : θ 6= 0. For the

AIC and BIC values, the model is chosen according to the lowest value obtained

under the two measures where the models are penalized depending on the number

of parameters to be estimated.

All three procedures also allow for estimation of the latent volatility process as

described in Section 2.3. We are thus able to determine the estimation performance

with goodness-of-fit tests. The first metrics we apply to evaluate the goodness-of-fit

are the root mean squared error (RMSE), mean absolute error (MAE) and Theil’s

inequality coefficient (TIC). Similar to Smith (2002), Kalimipali and Susmel (2004)

and Sun (2005), we take the absolute residuals as a proxy for volatility and compute

the RMSE and TIC as follows,

RMSE =

√√√√1/T

T∑

t=1

(
|yt| − σ̂t|T r

γ
t−1

)2

, (2.41)

MAE = 1/T
T∑

t=1

∣∣∣|yt| − σ̂t|T r
γ
t−1

∣∣∣, (2.42)
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TIC =

√
1/T

∑T

t=1

(
|yt| − σ̂t|T r

γ
t−1

)2
√

1/T
∑T

t=1 |yt|2 +
√

1/T
∑T

t=1(σ̂t|T r
γ
t−1)2

, (2.43)

where γ = 0 for the crude oil model. For all tests, a lower value indicates a better

model fit although RMSE and MAE depends on the scale used whereas TIC does

not. An issue with these tests is that volatility is unobserved. By using the absolute

residuals as a proxy for volatility, the tests may not tell us how accurately volatility is

captured as the absolute residuals are at best a noisy estimate of volatility12. In this

case we consider an additional test to evaluate the different SV model specifications

by considering the empirical distribution of the standardized residuals13. The test

can be described as follows - let us define ǫ̂t = yt/σ̂t|T r
γ
t−1 where σ̂t|T = E[σt|y1:T ] are

the smoothed estimates outlined in Section 2.3. If the estimates of σt are accurate

under each procedure, then ǫ̂ should approximately follow a N(0,1) distribution. A

standard normal distribution for the standardized residuals is determined using the

Jarque-Bera test for normality and an examination of the QQ-plots.

The results of the likelihood ratio tests can be found in Table 2.5 whilst the remain-

ing test results can be found in Table 2.6 for the interest rate data and Table 2.7

for the crude oil data.

Short-Term Interest Rates

As with the parameter estimates of the three estimation procedures, the model

selection criteria show some differences. The LR tests found that none of the al-

ternative unrestricted models should be chosen under QML estimation as opposed

12The tests were also conducted using the squared residuals as a proxy for volatility. As similar
results were found to the absolute residuals, for brevity, the results have not been reported.

13A similar test was conducted in Liesenfeld and Richard (2003) for evaluating SV models in
equity markets.
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Table 2.5
Likelihood Ratio tests

This table provides LR tests for each model vs. the SV-AR model for each estimation
procedure. The table reports the LR test statistics which are χ2

DOF distributed where DOF
denotes the degrees of freedom. P-values for the LR tests are in parentheses.

Estimation Procedure

Model DOF QML MCL PF

Panel A: Short-Term Interest Rates

SV-ARMA 1 0.3503 1.4999 0.7740

(0.5539) (0.2207) (0.3790)

SV-ARX 1 3.6022 10.7123 9.8574

(0.0577) (0.0011) (0.0017)

SV-ARMAX 2 3.8646 12.6655 11.1297

(0.1448) (0.0018) (0.0038)

Panel B: Crude Oil

SV-ARMA 1 1.7928 5.1030 3.9892

(0.1806) (0.0239) (0.0458)

to the standard AR(1) model. However, under both MCL and PF estimation, the

LR tests indicate that both the ARX and ARMAX models are more favourable

although the AR model can not be rejected in favour of the ARMA model.

The AIC and BIC results are consistent with the LR tests. Under QML, the AIC

ranks the models (in descending order) as follows: ARX, AR, ARMAX, ARMA;

under MCL, the AIC ranks are: ARX, ARMAX, AR, ARMA; and under PF the

AIC ranks are: ARX, ARMAX, AR, ARMA. Using the BIC values, the ranks under

QML are: AR, ARX, ARMAX, ARMA; under MCL: ARX, ARMAX, AR, ARMA;

and under PF: ARX, AR, ARMAX, ARMA. The ARX model is chosen as the most

appropriate model for all cases except for the BIC value under QML which chose the

AR model. However, although there was agreement on the best performing model,

there were differences between the rankings of the other models which again shows
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Table 2.6

Model Diagnostics for Short-Term Interest Rates

This table provides diagnostic tests for the short-term interest rate data for each model and
estimation procedure. AIC and BIC are the Akaike and Bayesian (Schwartz) information criterion.
RMSE, MAE and TIC are computed according to (2.41), (2.42) and (2.43) respectively. JB is the
Jarque-Bera test-statistic applied to the standardized residuals with p-values in parentheses.

Model Loglik AIC BIC RMSE MAE TIC JB

QML

SV-AR −1994.58 3997.17 4016.17 0.0624 0.0429 0.0197 144.48

(<0.001)

SV-ARMA −1994.40 3998.82 4022.56 0.0617 0.0423 0.0192 105.15

(0.000)

SV-ARX −1992.78 3995.56 4019.31 0.0622 0.0428 0.0196 68.17

(<0.001)

SV-ARMAX −1992.65 3997.30 4025.80 0.0608 0.0420 0.0186 49.93

(<0.001)

MCL

SV-AR 869.75 −1731.50 −1712.50 0.0702 0.0544 0.0212 4.67

(0.0891)

SV-ARMA 870.44 −1730.87 −1707.12 0.0725 0.0559 0.0225 2.28

(0.3041)

SV-ARX 875.11 −1740.22 −1716.47 0.0669 0.0506 0.0205 1.81

(0.3892)

SV-ARMAX 876.08 −1740.17 −1711.67 0.0689 0.0515 0.0215 0.41

(>0.5)

PF

SV-AR 871.83 −1735.66 −1716.66 0.0575 0.0444 0.0154 12.69

(0.0049)

SV-ARMA 872.22 −1734.44 −1710.68 0.0601 0.0454 0.0168 9.72

(0.0118)

SV-ARX 876.76 −1743.52 −1719.77 0.0576 0.0447 0.0155 13.09

(0.0044)

SV-ARMAX 877.40 −1742.79 −1714.29 0.0599 0.0456 0.0168 9.94

(0.0110)
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that the choice of estimation procedure may affect results.

Comparing the model specifications for each estimation procedure, the RMSE, MAE

and TIC results are fairly consistent with the AIC, BIC and LR test results. When

comparing these metrics between the estimation procedures, it is interesting to note

that PF is the best performing estimation procedure whereas MCL is the worst

performing. However, both the QML and PF procedures indicate worse fits for the

more specified models compared to SV-AR(1). On the other hand, under MCL

the metrics indicate improving performance for the more specified models with SV-

ARX(1) providing the best fit.
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Figure 2.3

QQ-plots of standardized residuals for short-term interest rates
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If we consider the distributional properties, the JB test shows that under both QML

and PF, the smoothed volatility estimates are not able to capture volatility very

accurately as normality can be rejected for the standardized residuals of all models.

On the other hand, under MCL estimation, normality can not be rejected for any

of the models. The QQ-plots of the standardized residuals are shown in Figure

2.3. It can be seen that there is a significant degradation in the tails for the QML

estimates, whereas the standardized residuals are much closer to a standard normal

distribution for both the MCL and PF estimates. The plots suggest that the QML

standardized residuals are much more dispersed than a standard normal distribution

and that the estimated volatilities under QML are too smooth14. The opposite case

is found for both MCL and PF. The QQ-plots for both MCL and PF show that the

standardized residuals are less dispersed than standard normal random variables.

This suggests that the models are over fitted under both MCL and PF estimation,

although the degree of over fitting is much larger for PF. Examining the QQ-plots for

MCL indicate that going from the SV-AR model to the SV-ARMAX model, adding

both the MA and FOMC terms improve the volatility estimates as the standardized

residuals progressively become closer to standard normal. This trend is not observed

for the QQ-plots of the QML and PF procedures.

Interestingly, the RMSE, MAE and TIC values are not consistent with the what

can be seen in the QQ-plots. In particular, although the QQ-plots demonstrate

better performance of the MCL estimates, it was worst when considering the other

metrics. Hence, this sample shows that although RMSE, MAE and TIC can give an

indication of the relative size of the errors in the volatility estimates for the models,

it does not give any information on whether volatility is accurately estimated.

14This is consistent with previous findings of the QML procedure, e.g. see Broto and Ruiz
(2004).
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Crude Oil

Looking at the crude oil results, they show similar characteristics to the interest

rate results. The LR test shows that under both MCL and PF, the AR model can

be rejected in favour of the ARMA model at the 5% level. However, under QML

the AR model can not be rejected. For the AIC values, both MCL and PF ranks

the ARMA model over AR, but QML chooses the AR model as more appropriate.

For the BIC values, the higher penalty given to the extra parameter in the ARMA

model results in the AR chosen over ARMA for all estimation procedures.

Table 2.7
Model Diagnostics for Crude Oil

This table provides diagnostic tests for the crude oil data for each model and estimation
procedure. AIC and BIC are the Akaike and Bayesian (Schwartz) information criterion.
RMSE, MAE and TIC are computed according to (2.41), (2.42) and (2.43) respectively.
JB is the Jarque-Bera test-statistic applied to the standardized residuals with p-values in
parentheses.

Model Loglik AIC BIC RMSE MAE TIC JB

QML

SV-AR −1940.57 3887.15 3901.40 3.6896 2.5620 0.3650 247.80

(0.0000)

SV-ARMA −1939.68 3887.36 3906.36 3.4648 2.4017 0.3420 129.66

(0.0000)

MCL

SV-AR −2553.43 5112.85 5127.11 3.5909 2.6023 0.3373 6.00

(0.0481)

SV-ARMA −2550.88 5109.76 5128.76 3.3411 2.4055 0.3180 7.86

(0.0226)

PF

SV-AR −2554.50 5115.00 5129.25 3.4222 2.4600 0.3261 6.02

(0.0477)

SV-ARMA −2552.50 5113.01 5132.01 3.2135 2.3067 0.3086 6.64

(0.0366)

The RMSE, MAE and TIC values all indicate that the ARMA model improves

model fit under all of the estimation procedures which somewhat agrees with the
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results above. The final tests which investigate the distributional properties of the

standardized residuals for each model shows that QML results in poor volatility

estimates. The MCL and PF standardized residuals also reject normality at the

5% level of significance although significance is marginal and none of the models

reject normality at the 1% level. Interestingly, the ARMA model appears to result

in standardized residuals that are more non-normal for both MCL and PF. To get a

better idea of the behaviour of the volatility estimated under each of the models and

estimation procedures we look at the QQ-plots. As with the interest rate results,

there is clear evidence that the QML estimates poorly capture crude oil volatility

as the plot significantly deviates from standard normal. Both MCL and PF are

much closer to the standard normal line for both the AR and ARMA models than

QML. However closer inspection indicates more of a deviation from the standard

normal line for the ARMA models similar to the interest rate results which suggest

overfitting of volatility for the more specified ARMA model. Interestingly, the best

fit according to the QQ-plots appears to be the MCL estimates of the AR model.

The slightly poorer fit of the PF estimates appears to be as a result of trying to

fit outliers. This is especially true of the PF estimates of the ARMA model where

the interior of the plot seems to fit poorly but the two outliers seem to lie on the

standard normal line.

Combining the QQ-plots with the results of the JB tests tells us that the MCL

procedure is able to more accurately estimate volatility than the two other proce-

dures and that the SV model is appropriate for interest rate modelling when an

efficient estimation procedure is used. These results demonstrate that choosing

stochastic volatility models based on metrics which compare the absolute residuals

or squared residuals with the volatility estimates of the different models should not

be solely relied on. Although RMSE, MAE and TIC was able to agree with the

other measures when comparing between models, there appear to be inconsisten-
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Figure 2.4

QQ-plots of standardized residuals for crude oil

cies when comparing between estimation procedures. Thus, it is recommended that

additional diagnostic tests such as the one applied here which considers the distri-

butional properties of the return series should be used to gauge the performance of

SV models.

2.5.2 Forecasting Results

An important consideration of both the estimation procedure and the model choice is

the out-of-sample forecasting performance. In this study, we investigate whether the

estimation procedure makes any difference in forecasting performance. To maintain
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a sufficient sample size for both estimation purposes and evaluating the out-of-

sample forecasts, we choose a rolling window method where we fix the sample size

for estimation to 654 observations and produce one-week ahead forecasts for 200

observations. The procedure is as follows, we estimate the model using the first

654 observations and forecast the 655th observation, then estimate the model using

the next 654 observations starting from the 2nd observation and forecast the 656th

observation, and so on until 200 forecasts are obtained.

To evaluate the forecasts, we again consider metrics similar to the in-sample tests.

We compare the absolute residuals with the conditional volatility forecasts E[σT+1|T ]

by computing the RMSE, MAE and TIC as above. However, as mentioned previ-

ously, using the absolute residuals as a proxy for volatility does not give the full

indication of model performance15. Hence we again conduct an additional test to

determine the distributional properties of the residuals. Whilst we could attempt to

construct a standardized residuals series similar to the in-sample test, this will not

be appropriate in this case. This is because using the conditional mean of volatility

to standardize the residuals will not result in standard normal random variables.

This can be shown as follows,

yt+1

E[σt+1|y1:t−1]r
γ
t

=
ǫt+1σt+1

E[σt+1|y1:t−1]
,

where the right hand side is still a non-normal process.

An alternative is to consider the forecast density (FD) test of Berkowitz (2001) which

uses the result from Rosenblatt (1952). This test is similar to the test considered by

Kim et al. (1998) and Liesenfeld and Richard (2003) for stochastic volatility models

15As with the in-sample tests, the squared residuals were also used as a proxy for volatility,
however the results remained the same as using absoluate residuals. They are thus not reported
here.
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but is not specific to the estimation procedures considered by these authors16. The

FD test was introduced due to the inadequacy of value at risk (VaR) as a risk

measure. This is because VaR can only detect whether forecasts lie within a certain

forecast interval, whereas this test evaluates forecasting performance by considering

the entire density of the forecasts. Consider the following transformation,

ut =

∫ yt

−∞

f̂y(u|y1:t−1)du = F̂y(yt|y1:t−1), (2.44)

where yt are the residuals defined by (2.3), t = T + 1, . . . , T + R, f̂y(·|y1:t−1) is

the conditional probability density function (pdf) of yt given observations up to

time t− 1 and F̂y(·|y1:t−1) is the cumulative distribution function (cdf) of yt. If the

SV model is properly specified, then Rosenblatt (1952) showed that ut should be

approximately uniformly distributed between 0 and 1. To evaluate the expression

ut, we need to derive the conditional cdf of yt, F̂y(·|y1:t−1) which can be obtained

using (2.3). If we define et = yt/r
γ
t−1 = σtǫt, then

F̂y(yt|y1:t−1) = Fe(et|y1:t−1).

We show in Appendix 2.C that Fe(·|y1:t−1), is given by

Fe(et|y1:t−1) =





∫ et

−∞

∫ 0

−∞

φ(u; 0, 1)φ

(
log

(v
u

)2

; x̄t|t−1, ση

)
1

|u|dudv, if et < 0,

1

2
+

∫ et

0

∫ ∞

0

φ(u; 0, 1)φ

(
log

(v
u

)2

; x̄t|t−1, ση

)
1

u
dudv, if et ≥ 0,

(2.45)

where the expression can be evaluated using numerical integration routines available

in Matlab. Having obtained ut, evaluating the forecast density requires testing the

16Kim et al. (1998) requires application of a particle filter and Liesenfeld and Richard (2003)
requires output of their importance sampler to apply the tests. The test here still relies on the
output of the filters but does not rely on the estimation procedure.
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sequence for uniformity. However, it is much easier to test for normality than

uniformity and Berkowitz (2001) shows that if the sequence, ut, is transformed by

applying a standard normal inverse transform, the transformed sequence retains the

same inaccuracies of the density forecast as the original sequence. This means we

can apply standard tests of normality when testing the transformed sequence. Thus

we transform ut as follows: zt = Φ−1(ut) where Φ
−1(·) is the standard normal inverse

function. The model is correctly specified if zt is a sequence of serially uncorrelated

standard normal random variables. To determine the distributional properties of

zt, Berkowitz (2001) suggests the following LR test. Consider the following AR(1)

model for zt,

zt − µ = ρzt−1 + νt, (2.46)

where νt ∼ i.i.d. N(0, σ) distributed. If zt are serially uncorrelated standard normal

random variables, it implies that µ = 0, σ = 1 and ρ = 0. Hence the LR test involves

testing the null hypothesis that µ = 0, σ = 1 and ρ = 0, against the alternative

of no restrictions to µ, σ and ρ. Berkowitz (2001) provides the likelihood function

for the AR(1) model and the unrestricted parameter estimates can be found by

maximizing this likelihood function. If we denote the log-likelihood function for the

AR(1) model by L(µ, σ, ρ), then the log-likelihood function for the AR(1) model

given by (2.5.2) is

L(µ, σ, ρ) =− 1

2

{
T log(2π) + log(σ2/(1− ρ2)) +

[zT+1 − µ/(1− ρ2)]2

2σ2(1− ρ2)

+ (T − 1) log(σ2) +

T+R∑

t=T+2

(zt − µ− ρzt−1)
2

2σ2

}
.

(2.47)

The LR test statistic is then given by

LR = −2(L(0, 1, 0)− L(µ̂, σ̂, ρ̂)), (2.48)
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where µ̂, σ̂ and ρ̂ are the maximum likelihood estimates of µ, σ and ρ respectively,

and LR is a χ2(3) distributed random variable. However, this test only has power to

detect non-normality in the first two moments, and so in addition to this LR test we

also determine normality of zt by applying the Jarque-Bera (JB) test. The JB test

detects non-normality from the sample skewness and kurtosis. By jointly applying

the LR and JB test, we are able to determine whether the models are misspecified.

Short-Term Interest Rates

The results of the out-of-sample forecast tests for the interest rate data can be

found in Panel A of Table 2.8. If we look at the RMSE, MAE and TIC values, then

there appears to be little distinguishing the estimates under the three procedures

although QML appears to have the lowest RMSE, MAE and TIC values whereas

PF has the largest. This result disagrees with the in-sample results where PF had

the lowest values for these metrics giving more of an indication that this approach

is not appropriate. Hence to gain a better idea of how well the procedures perform

out-of-sample we consider the FD test results.

Looking at the distributional properties of the forecasts, we first consider the JB test

of the transformed variables. Although not reported here, the results of the JB tests

found that normality could not be rejected for any of the estimation procedures and

model specifications. This allows us to proceed with the forecast density LR tests.

Similar to the in-sample results, QML performs quite poorly as an i.i.d. standard

normal distribution is strongly rejected for all model specifications. However, both

MCL and PF appear to perform quite well as an i.i.d. standard normal distribution

can not be rejected at the 5% level for all models except for the SV-ARX model

under MCL. The forecasts generated under PF also appear to perform slightly
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Table 2.8
Out-of-sample tests

This table reports the out-of-sample forecast tests for each model and estimation procedure. Panel A contains
the tests for short-term interest rate data and Panel B contains the tests for the crude oil data. Each panel
is divided into sub-tables by model type. RMSE, MAE and TIC are computed according to (2.41), (2.42)
and (2.43) respectively. JB is the Jarque-Bera test-statistic. FD-LR is the forecast density likelihood ratio
test statistic computed using (2.48). The p-values for the FD-LR test are in parentheses.

Panel A: Short-term interest rates

SV-AR(1) SV-ARMA(1,1)

Estimation Procedure Estimation Procedure

QML MCL PF QML MCL PF

RMSE 0.0429 0.0460 0.0471 RMSE 0.0428 0.0484 0.0474
MAE 0.0332 0.0369 0.0380 MAE 0.0331 0.0402 0.0384
TIC 0.0160 0.0169 0.0174 TIC 0.0160 0.0180 0.0176
JB 0.35 0.07 0.28 JB 0.39 0.68 0.06

(>0.5) (>0.5) (>0.5) (>0.5) (>0.5) (>0.5)
FD-LR 120.61 7.36 6.19 FD-LR 124.99 7.05 6.21

(0.0000) (0.0613) (0.1028) (0.0000) (0.0701) (0.1018)

SV-ARX(1) SV-ARMAX(1,1)

Estimation Procedure Estimation Procedure

QML MCL PF QML MCL PF

RMSE 0.0440 0.0476 0.0486 RMSE 0.0439 0.0496 0.0490
MAE 0.0341 0.0377 0.0386 MAE 0.0340 0.0401 0.0388
TIC 0.0167 0.0179 0.0185 TIC 0.0166 0.0189 0.0186
JB 0.38 0.88 0.11 JB 0.43 1.77 0.32

(>0.5) (>0.5) (>0.5) (>0.5) (0.3632) (>0.5)
FD-LR 130.77 7.85 6.44 FD-LR 134.60 7.09 6.41

(0.0000) (0.0492) (0.0922) (0.0000) (0.0689) (0.0933)

Panel B: Crude Oil

SV-AR(1) SV-ARMA(1,1)

Estimation Procedure Estimation Procedure

QML MCL PF QML MCL PF

RMSE 3.2263 3.2722 3.3916 RMSE 3.2263 3.2923 3.4730
MAE 2.5843 2.6535 2.7723 MAE 2.5803 2.6668 2.8539
TIC 0.3815 0.3605 0.3335 TIC 0.3584 0.3351 0.3080
JB 13.44 7.59 6.29 JB 8.79 7.55 5.79

(0.0073) (0.0274) (0.0404) (0.0200) (0.0277) (0.0480)
FD-LR 268.80 4.06 4.16 FD-LR 225.64 4.44 4.66

(0.0000) (0.2553) (0.2444) (0.0000) (0.2182) (0.1985)
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better than MCL as the LR test values are slightly lower. In terms of comparing

the model specifications, a formal comparison between models can not be conducted

using the FD test statistic. However, lower values of the FD statistic indicate that

the transformed variables are closer to an N(0,1) distribution. In this sense, the

FD tests indicate that forecasting performance degrades with the more specified

models under QML and PF. However for MCL, it appears that the SV-ARX(1)

model performs the worst out-of-sample and the SV-ARMA(1,1) performs the best

although again there is little distinguishing the models.

Crude Oil

The results of the crude oil forecast tests can be found in Panel B of Table 2.8.

The results show some similar characteristics with the out-of-sample interest rate

results. For instance, the QML forecasts performed better than both MCL and

PF according to the RMSE, MAE and TIC values. These are also inconsistent

with the in-sample results where PF performed the best according to these metrics.

However, both the JB test and the forecast density LR test both reject standard

normality of zt for both the AR and ARMA models. This indicate that the forecasts

estimated under QML poorly capture future volatility. For MCL and PF, the JB

test is rejected at the 5% level for all of the models, although similar to the in-

sample results normality can not be rejected at the 1% level. An inspection of zt

and the returns rt found the presence of two large negative outliers. Exluding either

of these observations results in non-rejection of normality for all of the tests which

suggests that using more observations may be needed to determine how well the

forecasts perform. As the FD-LR tests found that it can not be rejected that zt

is serially uncorrelated with a mean of 0 and standard deviation of 1, it suggests

a longer forecasting window may reveal whether volatility is captured well by the
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SV models. The FD-LR tests therefore indicate that volatility forecasted with the

parameters estimated under MCL and PF performed better than QML. However,

this result is not conclusive since normality is rejected for all estimation procedures.

Overall, both MCL and PF have fairly similar results, with the density forecast

test results suggesting that the SV model captures the volatility of short-term in-

terest rates and crude oil quite well out-of-sample. Combining the in-sample and

out-of-sample results, it appears that MCL produces the most efficient estimates

of volatility and whilst PF performed slightly better out-of-sample, the in-sample

results were worse than MCL.

2.6 Conclusion

This chapter has conducted a comparison of three maximum likelihood estimation

procedures, QML, MCL and PF, for the estimation of stochastic volatility models

using interest rate and crude oil data. Whilst it is clear that all models can be

estimated freely using the three estimation procedures, there are advantages and

disadvantages between them. The consistency of the QML estimator is question-

able for finite samples although it is by far computationally the most efficient and

the estimator is asymptotically normally distributed. From the empirical results

it appears that MCL estimation provides the most robust results as the procedure

searches for a Gaussian importance density close to the true posterior density. How-

ever, whilst the popularity of the particle filter has increased substantially recently,

the same can not be said about the MCL procedure. One possible reason for this

is the difficulty in determining an appropriate importance density under MCL es-

timation. The choice of importance density is crucial in its performance and can
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be difficult (if it exists) to derive. It also must be obtained through an iterative

procedure when attempting to match the modes of the importance density to the

posterior density which increases the difficulty of implementation. On the other

hand, although choosing an optimal importance density can improve performance

in PF methods, the choice is not as crucial as MCL. A popular choice of importance

density is the prior distribution which leads to straightforward calculations when

updating the weights and propagating the filter forward.

A finite sample study of the three procedures found that QML exhibited slightly

more bias than either MCL or PF. In the empirical application, the QML param-

eter estimates differed from the MCL and PF estimates which were quite close.

Both the in- and out-of-sample goodness-of-fit tests demonstrate some mixed re-

sults, which shows a number of different tests should be considered when choosing

the best model. In terms of in-sample performance, it was found that the QML

procedure is not accurate enough when estimating volatility compared to MCL and

PF. When comparing the performance of extensions to the SV model, although the

tests indicated some improvement from the more specified models, the differences

were not substantial. For interest rates, the results are consistent with the view that

short-term interest rates follow a CIR model with stochastic volatility. They also

showed that meetings of the FOMC significantly affect interest rate volatility, which

suggests that the actions of central banks should be considered when modelling in-

terest rate volatility. For crude oil, the standard AR(1) specification was found to

be sufficient as it is not significantly outperformed by the ARMA(1,1) specification.

In respect of the out-of-sample results, there appears to be little distinguishing the

different SV model specifications. However, the MCL and PF estimation results

suggest that volatility is captured reasonably well by this class of stochastic volatil-

ity models. The main suggestions out of this study is that when choosing between
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model specifications for univariate SV models, a number of different criteria should

be considered and that the estimation procedure is important in accurately recov-

ering the latent volatility process. In evaluating the performance of the models and

estimation procedures, it was found that using the absolute residuals as a proxy

for volatility in goodness-of-fit tests is not appropriate when evaluating volatility

models, an approach taken by a few previous studies. The results showed that the

RMSE, MAE and TIC values indicate QML has comparable or better performance

than both MCL and PF in both in- and out-of-sample tests despite demonstrat-

ing much worse performance when comparing the distributional properties. This

indicates that evaluating volatility models using absolute or squared residuals as a

proxy for volatility should be supplemented by additional tests such as the forecast

density test used in this study. In terms of the choice of a maximum likelihood

estimation procedure, the MCL procedure performed the best both in-sample and

out-of-sample. However, in applications where an importance density does not exist

for the MCL procedure, the PF is a viable alternative.
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Appendices

Appendix 2.A MCL Algorithm

As described in Section 2.3.2, the approximating Gaussian model is chosen to coin-

cide at the mode of the true density. We determine the approximating model using

the same approach as Koopman and Lee (2004) for the SV model given by Equation

(2.3) and (2.4). The conditional log-density function for the true model is

pt = log p(yt|xt) = −1

2

(
log(2π) + 2γ log(rt−1) + xt +

y2
t

r2γt−1ext

)
, (2.49)

and for the approximating model

qt = log q(yt|xt) = −1

2

(
log(2πb2t ) +

(yt − at − xt)
2

b2t

)
. (2.50)

The first and second derivatives with respect to xt for the two density functions are

given by

p′
t =

1

2
(y2

t /r
2γ
t−1e

xt − 1) q′t = (yt − at − xt)/b
2
t ,

p′′
t = −1

2
y2
t /r

2γ
t−1e

xt q′′t = −1/b2t ,

and equating gives

b2t = 2r2γt−1e
xt/y2

t yt − at = xt + 1− 1

2
b2t . (2.51)

As the solutions of both at and b2t require the latent variable xt which is not known

initially, the solutions need to be approximated. Koopman and Lee (2004) suggest
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this is achieved in practice by choosing a trial x and estimating the values of at

and b2t using the equations above. Given the approximating model, a new x can

be extracted using the Kalman filter and smoother. These steps are repeated until

either at, b2t or x converge. Convergence is generally quite fast with around 10

iterations required for the changes in either at or b2t to be less than 1e−7. Once

the approximating model has been found, the simulation smoother of Durbin and

Koopman (2002) can be applied to make draws from q(x|y). Readers are referred

to that paper for details of implementing the simulation smoother.

The algorithm for the MCL procedure is as follows,

1. Choose a trial x

2. Use equation (2.51) to generate b2t and yt − xt

3. Apply the Kalman filter and smoother to the approximating model with ỹt =

yt − at

4. Obtain the smoothed state x̂t = Eq(·|y)[xt|y] for t = 1, . . . , T . Set x = x̂ and

repeat steps 2 & 3 until convergence.

5. Simulate from the importance density q(x|y) using a simulation smoother.

Appendix 2.B PF Algorithm

When applying the smooth particle filter for parameter estimation, it is assumed

that the importance density is the prior, q(xt|yt, xt−1) = p(xt|xt−1). The algorithm

for the smooth particle filter of Pitt (2002) is given as follows,
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1. Initialize at t = 0. For i = 1, . . . , N , sample x(i)
0 from the prior p(x0).

2. For t = 1, . . . , T and i = 1, . . . , N

– Sample x(i)
t from q(xt|x(i)

0:t−1, y1:t) = p(xt|x(i)
t−1), i = 1, . . . , N .

– Sort particles.

– Evaluate the importance weights

w(i)
t = w(i)

t−1p(yt|x(i)
t ).

– Normalize importance weights

w̃(i)
t =

w(i)
t∑N

j=1 w
(j)
t

.

– Construct smooth empirical cdf of sorted particles using linear interpo-

lation. Resample from smooth cdf. Set weights of resampled particles to

1/N.

Appendix 2.C Conditional PDF of the SV model

First we need to determine the pdf of σt|y1:t−1 = exp(xt/2)|y1:t−1, which we use the

following result. For a random variable x with pdf fx(x), the pdf of y = g(x), fy(y)

is given by

fy(y) =
fx(g

−1(y))

g′(g−1(y))
. (2.52)

From Equation (2.4), we have fxt
(xt|y1:t−1) = φ(xt; x̄t|t−1, ση) where φ(·;µ, σ) denotes

the normal pdf with mean µ and variance σ2 and x̄t|t−1 = E[xt|y1:t−1]. By setting
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g(x) = exp(x/2), we have g′(x) = exp(x/2)/2 and g−1(y) = log y2. Letting x =

xt|y1:t−1 and y = σt|y1:t−1, the conditional pdf of σt is given by,

fσ(σt|y1:t−1) =
2φ(log σ2

t ; x̄t|t−1, ση)

σt

. (2.53)

To derive the conditional pdf, et|y1:t−1, we need to determine the pdf of the product

of the two random variables ǫt|y1:t−1 and σt|y1:t−1. This is derived by using the

result of Rohatgi (1976) who shows that for two random variables x and y, with

joint density fx,y(x, y), the pdf of v = xy is

fv(v) =

∫ ∞

−∞

fx,y

(
u,

v

u

) 1

|u|du. (2.54)

We note that under the assumption that ǫt and ηt are independent implies that ǫt

and σt are also independent and so the joint density of ǫt and σt is

fǫ,σ(ǫt, σt|y1:t−1) = fǫ(ǫt|y1:t−1)fσ(σt|y1:t−1). (2.55)

This means the conditional pdf of et is given by,

fe(et|y1:t−1) =

∫ ∞

−∞

fǫ(u|y1:t−1)fσ

(et
u
|y1:t−1

) 1

|u|du

=





∫ 0

−∞

φ(u; 0, 1)φ

(
log

(et
u

)2

; x̄t|t−1, ση

)
1

|u|du, if et < 0

∫ ∞

0

φ(u; 0, 1)φ

(
log

(et
u

)2

; x̄t|t−1, ση

)
1

u
du, if et ≥ 0

,

(2.56)

where φ(·;µ, σ) is the pdf of a normally distributed random variable with mean

µ and standard deviation σ. Given the pdf above, we obtain the expression for

Fe(et|y1:t−1) given by Equation (2.45) by integrating the density, fe(·|y1:t−1) over the
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domain [−∞, et].
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Chapter 3

Time-varying Market Price of Risk in the

Crude Oil Futures Market17

3.1 Introduction

Trading in commodity futures markets has grown considerably over the last decade

with crude oil being the most actively traded commodity in the world. It has be-

come increasingly important to accurately model crude oil prices and a number

of different modelling approaches have been proposed in the literature. However,

due to empirical evidence suggesting that commodities exhibit mean-reversion (e.g.

Schwartz (1997)), the modelling approaches have differed somewhat from that of

stock markets. One of the main approaches of modelling commodity prices advo-

cates the theory of storage where spot prices are driven by convenience yields and

interest rates such as Schwartz (1997), Routledge et al. (2000) and Casassus and

Collin-Dufresne (2005). However, as convenience yields are not directly identifiable

or tangible streams of income, the concept proves difficult to interpret. An alterna-

tive approach considers the empirical properties of commodities where spot prices

may deviate from some equilibrium level in the short term but tend to mean-revert

17A shortened version of this chapter is forthcoming in the Journal of Futures Markets. The
article is currently available for early view on the journal’s website. The article reference is: Bhar,
R., Lee, D., 2010. Time-varying market price of risk in the crude oil futures market. Journal of

Futures Markets, Forthcoming. doi: 10.1002/fut.20493.
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to this equilibrium level, which is itself uncertain. This approach was introduced

by Schwartz and Smith (2000) (SS hereafter) and has been a popular approach due

to its intuitive appeal for the modelling of commodity spot prices.

In this chapter and the next, the latter approach to commodity modelling is taken

where a three-factor short/long term factor model is considered. The approach is

similar to Cortazar and Naranjo (2006) and Dempster et al. (2008) and extends the

SS short/long term two-factor model for the modelling of commodity prices. Under

this modelling approach commodity prices are decomposed into two main compo-

nents. One component represents the long-term equilibrium price level, whereas

the other component represents short-term deviations from the equilibrium price.

The long-term component is modelled by a geometric Brownian which represents

the uncertainty in the equilibrium price level due to factors such as technological

advancements, major supply discoveries or exhaustion, and regulatory or political

factors. The short-term component is modelled by two Ornstein-Uhlenback pro-

cesses which represent short-term fluctuations in prices. These fluctuations could

be due to changes in supply and demand caused by short-term supply disruptions,

or fluctuations in the cost of production such as storage, transportation and fi-

nancing costs. A side effect of the mean-reversion in prices is that the models are

consistent with the “Samuelson effect” (Samuelson (1965)) where the volatility of

futures prices close to maturity are higher than the volatilities of futures contracts

with longer maturities.

As the model is an affine-diffusion model, it allows for tractable solutions to deriva-

tive prices. In this study, we price futures contracts under the three-factor model.

To derive the futures price, we take a no-arbitrage approach where futures prices

are considered to be the expectation of future spot prices under a “risk neutral”

or “equivalent martingale measure”. In terms of specifying a risk-neutral mea-
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sure, the main consideration is the market price of risk (MPR) specification. The

methodology involves postulating a model for the spot price under the real-world

measure and by no-arbitrage arguments assuming a form of the MPR to obtain a

model under the risk-neutral measure. Whilst the most popular specification for

the MPR is a constant in most applications, there is evidence to suggest that in-

corporating a time-varying MPR can better explain the distribution of asset prices.

Cheridito et al. (2007) estimated a number of one-, two- and three-factor affine term

structure models with different specifications of the MPR and found that incorpo-

rating time-varying MPR improved the time-series fit of the models. Casassus and

Collin-Dufresne (2005) estimated a three-factor stochastic convenience yield model

for commodity futures prices that incorporates a time-varying MPR specification in

the convenience yield factor that depends on the spot price and interest rates. They

found some evidence that time-varying risk premiums exist in crude oil, copper,

gold and silver futures markets.

Other authors consider variations on the SS short/long term model to estimate the

market price of risk. Kolos and Ronn (2008) estimated the sign and magnitude of

the market price of risk for energy futures prices under the assumption that the

MPR was constant. They found that the MPR for most energy commodities were

positive, reflecting the state of normal backwardation exhibited by futures prices.

Weron (2008) investigated the MPR implied by Asian-style options and futures

in the Nordic electricity market and found that it varied significantly over time.

Cartea and Williams (2008) investigated time-varying MPR under the short/long

term model with seasonality in the natural gas market although no conclusive finding

could be made due to the high standard error of the time-varying MPR parameter.

In terms of the crude oil futures market, allowing risk premiums to be time-varying

is well motivated by the literature, albeit from a different modelling perspective. For
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instance, Deaves and Krinsky (1992), Moosa and Al-Loughani (1994) and Considine

and Larson (2001) found evidence for time-varying risk premiums by analyzing the

returns on futures contracts. Both Deaves and Krinsky (1992) and Moosa and Al-

Loughani (1994) tested whether the efficient market hypothesis holds in the crude oil

futures market. Moosa and Al-Loughani (1994) found that market efficiency should

be rejected whilst Deaves and Krinsky (1992) could not find conclusive evidence that

the market is not efficient, although both suggest the results are due to time-varying

risk premiums. Considine and Larson (2001) finds evidence for time-varying risk

premiums in the crude oil and natural gas markets and found that risk premiums

rose sharply with greater price volatility.

Thus to allow risk premiums to be time-varying under the three-factor model, we

allow the MPR specification to be time-varying. In defining the risk-neutral mea-

sure, we follow a similar framework to Duffee (2002) and Cheridito et al. (2007)

and assume an MPR that is a linear function of the state variables. This allows

the MPR to be time-varying and also has the implication that the mean-reversion

of the two short-term factors is different under the real-world and risk-neutral mea-

sures. The model is estimated using data consisting of weekly observations of futures

prices with contract maturities ranging from 1 month to 5 years allowing informa-

tion from both cross-sectional and time-series data to be used in estimation. The

Kalman filter is employed to estimate the model parameters by maximum likeli-

hood and evaluate how well the three-factor model fits the term structure of futures

prices compared to nested specifications. This chapter also compares the constant

and time-varying MPR specifications and to determine whether there is evidence

suggesting that time-varying risk premiums exist in the crude oil futures market.

The forecasting performance is evaluated and whether a time-varying MPR specifi-

cation outperforms a constant MPR specification. However, as the choice of MPR

specification is based only on the statistical fit of the model, further investigation
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of the risk premiums is needed.

Given the estimated parameters of the model, an estimate of the latent time-varying

market price of risk is extracted, which enables us to determine whether any rela-

tionship exists between the risk premiums in the crude oil futures market and risk

factors in the macroeconomy. A number of studies have linked time-varying risk pre-

miums in commodity futures markets to the macroeconomy although not much work

has involved energy markets. Bessembinder and Chan (1992) found that macroe-

conomic variables such as Treasury bill yields, equity dividend yields and ‘junk’

bond premium possess forecast power in agricultural, metals and currency futures

markets. Bailey and Chan (1993) found that the variability in the basis of a num-

ber of agricultural and metal commodities can be attributed to time-varying risk

premiums and that this variability is correlated with risk factors common to stock

and bond markets such as credit spreads and stock dividend yields. Baum and

Barkoulas (1996) conducted a similar study for the currency futures basis where

they found time-varying risk premiums exist and can be forecast by dividend yields,

default spreads and term spreads. More recently, Sadorsky (2002) found that four

macroeconomic variables have significant forecast power in explaining time-varying

risk premiums in petroleum futures markets and improve the out-of-sample fore-

casting performance. These studies estimate risk premiums using either ex-post

returns as the difference between futures prices and realized future spot prices or

excess returns from holding futures contracts. They also only consider contracts

with one or two maturities and hence do not incorporate the entire term structure

of futures prices when estimating the relationships. For this thesis, we follow a

similar approach to these studies by conducting a regression analysis of the MPR

and the risk factors described above. The findings suggest that although crude oil

futures prices are affected by idiosyncratic risk factors, risk premiums in crude oil

markets are driven by the same factors as equity and bond markets.
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The contributions of this chapter are as follows. Firstly, by considering a three-

factor model for commodity prices, the model is able to model the term structure

of futures prices more accurately than previous studies that consider two-factor

short/long term models. The model also incorporates a time-varying MPR specifi-

cation that is found to better explain the time-series behaviour of crude oil prices

than under a constant MPR specification. As the data set includes futures prices

with maturities ranging from 1 month to 5 years this ensures that the risk premiums

are representative of a range of futures contracts with varying maturities. Further-

more, whilst most authors make certain assumptions about the MPR specification

when pricing derivatives, there is little economic justification for this choice apart

from the fact that the models admit no arbitrage. For instance, although some of the

modelling approaches in the literature mentioned above incorporate a time-varying

MPR, the risk premiums themselves are not investigated in much detail. As many

MPR specifications satisfy the no-arbitrage assumption, it is not clear which MPR

specification is appropriate. Additionally, given that the model is able to accurately

capture futures prices, we turn to the MPR assumption and explore whether the

risk premiums have any economic justification. As such, this chapter investigates

whether the financial mathematical approach of modelling crude oil spot prices and

the assumptions made about risk premiums when pricing derivatives is consistent

with what is observed in the macroeconomy. Furthermore, whilst a number of

studies have investigated systematic risk factors in commodity markets, few have

included energy markets and thus this study adds to the literature in this regard by

investigating the crude oil market.

This chapter is structured as follows. Section 3.2 introduces the model and the

time-varying market price of risk specification. Section 3.3 discusses the role of risk

premiums in the crude oil market and provides some evidence of their existence.

Section 3.4 provides a description of the data and estimation procedure. Section 3.5
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presents the empirical results. Section 3.6 discusses the time-varying risk premiums

estimated in this model. Section 3.7 concludes the chapter.

3.2 Short/Long Term Factor Model

The short/long factor model was introduced by SS and has proven quite popular as a

basis for commodity pricing models in the literature due to its simple and intuitively

appealing interpretation. The model separates the spot price into two components -

a short-term factor which captures any short-term deviations in prices as a result of

short-term supply and demand fluctuations; and a long-term factor which represents

the equilibrium price level and captures permanent changes in prices related to the

cost of production. To name a few papers using the approach, Sørensen (2002) and

Cartea and Williams (2008) consider the SS model with the inclusion of seasonality

for pricing commodity futures contracts and Aiube et al. (2008) extend the model

by including a jump process in the short-term component.

However, although the model is intuitively appealing, the original SS model consists

of only two factors resulting in poor performance in capturing the term structure of

futures prices for a wide range of maturities. To improve the modelling performance,

some authors have extended the two-factor model to include additional factors. For

instance, Dempster et al. (2008) proposed a three-factor short/long factor jump-

diffusion model and Cortazar and Naranjo (2006) generalized the SS model to an

N-factor model. In both cases, it was found that at least two mean-reverting factors

are required to accurately model the term structure of futures prices whilst Cor-

tazar and Naranjo (2006) found marginal improvement in futures pricing fit when

including a fourth factor although the model is better able to capture the volatility
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term structure. This study takes a similar approach by considering a three-factor

model with two mean-reverting short-term factors and one long-term factor but

incorporates a time-varying MPR specification.

In our model specification, we assume that the spot price St is defined on the

probability space (Ω,F ,P) where the filtration F = {Ft}t≥0 is generated by a 3-

dimensional Brownian motion Zt. The spot price is described by a three-factor

model and is given by the following set of equations,

logSt = X1,t +X2,t +X3,t,

dX1,t = −κ1X1,tdt+ σ1dZ1,t,

dX2,t = −κ2X2,tdt+ σ2dZ2,t,

dX3,t = µ3dt+ σ3dZ3,t,

(3.1)

where Zi,t, i = 1, 2, 3 are correlated Brownian motions under P and dZi,tdZj,t = ρijdt,

for i, j = 1, 2, 3, i 6= j. The model allows for non-stationary long-term prices due to

X3,t consistent with the recent trend in commodity markets where prices have been

increasing. Also, as commodities are consumption assets, X1,t and X2,t allow prices

to exhibit a supply-demand equilibrium in the short-term.

This approach of modelling commodity prices is in contrast to convenience yield

models which attempt to capture the most important features consistent with the

theory of storage as advocated by Kaldor (1939), Working (1949), Brennan (1958),

Deaton and Laroque (1996) and Routledge et al. (2000). These authors found

that convenience yields arise endogenously as a result of the interaction between

supply, demand and storage decisions. The three-factor convenience yield models

of Schwartz (1997) and Casassus and Collin-Dufresne (2005) model the relationship

between these factors by a single stochastic process which represents the convenience
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yield net of storage costs. Some authors also introduce an exogenous stochastic

interest rate process to model commodity prices. However, as noted by Dempster

et al. (2008), in empirical studies where stochastic interest rates are introduced, the

volatility of the interest rate process is very low compared to the volatility of the

convenience yield and spot price process. This is the case found in Schwartz (1997)

and Casassus and Collin-Dufresne (2005) where the volatility of the interest rate

factor is found to be less than 5% the size of the volatility of the convenience yield

and spot price process with little improvement in model fit18.

Although the model does not explicitly take account of convenience yield and stor-

age costs in its dynamics, the two-factor model has been shown by SS to be equiv-

alent to the Gibson and Schwartz (1990) model that incorporates stochastic conve-

nience yields. Furthermore, Dempster et al. (2008) demonstrate that a three-factor

short/long factor model is equivalent to a two-factor convenience yield model where

the cost of carry is modelled by two factors. In effect, the model captures the in-

teraction between supply, demand and storage decisions using two factors rather

than one factor. The model is therefore able to remain consistent with the “theory

of storage” whilst retaining an intuitively appealing interpretation and accurately

modelling futures prices19. A further appeal of this modelling approach is that the

mean-reverting short-term factor allows futures price to exhibit the “Samuelson Ef-

fect” (Samuelson (1965)). This is where the volatility of futures prices decreases

with increasing time to maturity and is a property found in a number of commodity

markets.

18Both Schwartz (1997) and Casassus and Collin-Dufresne (2005) estimated the volatilities of
the interest rate process to be around 0.008-0.009 in comparison to the volatilities of the spot price
and convenience yields of over 0.3. In addition, Schwartz (1997) did not find much evidence of an
improvement in model fit over the model without the interest rate factor.

19Whilst we could consider the equivalent convenience yield model instead, we remain with
this three-factor model as it allows for a simpler time-varying market price of risk specification.
Also, convenience yields are not tangible income streams and representing the relationship between
supply, demand and storage decisions directly seems more intuitively appealing.
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To price futures and options contracts the usual approach in the literature is to

use the risk-neutral pricing framework. For diffusion models, pricing under the

risk-neutral measure usually involves adjusting the drift of the diffusion process by

a constant amount where the drift adjustment is termed the market price of risk.

Recently, some papers have considered incorporating a time-varying MPR approach

such as Casassus and Collin-Dufresne (2005) and Cartea and Williams (2008) in

commodity markets or Duffee (2002) and Cheridito et al. (2007) in the fixed income

market where the MPR is specified as linear functions of the state variables. This

approach is applied to the short/long factor model allowing for a more flexible MPR

specification which can capture difference in the time-series properties of the model

under the real world and risk-neutral measures.

Assuming that the market is arbitrage-free and complete, by the fundamental theo-

rem of asset pricing of Harrison and Pliska (1981) an equivalent martingale measure

(EMM) or risk-neutral measure, Q, exists. For the model studied in this chapter,

whilst the MPR is allowed to be time-varying, it is assumed that the model remains

structurally of the same class under both P and Q20. Under this assumption, only

the two short-term factors are allowed to have time-varying MPR specifications

whereas the long-term factor MPR remains a constant. To derive the risk-neutral

measure, we consider a different representation for the model involving standard

Brownian motions. If Zt = (Z1,t, Z2,t, Z3,t)
′

are correlated Brownian motions, then

(3.1) can be re-expressed in terms of standard Brownian motion as follows,

dXt = (µ+ κXt)dt+ ΣdWt, (3.2)

20This means that both X1,t and X2,t remain OU processes under P and Q whereas X3,t remains
a Brownian motion under P and Q.
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where

µ =




0

0

µ3




, κ =




−κ1 0 0

0 −κ2 0

0 0 0




,

Σ =




Σ11 0 0

Σ21 Σ22 0

Σ31 Σ32 Σ33




=




σ1 0 0

ρ12σ2

√
1− ρ2

12σ2 0

ρ13σ3
ρ23−ρ13ρ12√

1−ρ2
23

σ3

√
1− ρ2

12 − ρ23−ρ13ρ12√
1−ρ2

23

σ3




,

and Wt = (W1,t,W2,t,W3,t)
′

is a 3-dimensional standard Brownian motion under P.

Assuming that the market is arbitrage-free and complete, by the fundamental theo-

rem of asset pricing of Harrison and Pliska (1981) an equivalent martingale measure

(EMM) or risk-neutral measure, Q, exists. We define the change of measure by the

Radon-Nikodym derivative,

dQ

dP
= exp

(
−
∫ T

0

γt · dWt −
1

2
|γt|2dt

)
= ηT , (3.3)

where | · | is the Euclidean norm and γt is the MPR defined as

γt = Σ−1(α + βXt), (3.4)

where

α =




α1

α2

α3




and β =




β1 0 0

0 β2 0

0 0 0




.

The MPR is therefore a linear combination of each state variable. By assuming
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sufficient regularity so that Novikov’s condition holds in some finite positive time

interval, i.e.

E

[
exp

(1
2

∫ T

0

|γt|2dt
)]

< ∞,

then ηT is a martingale and E(ηT ) = 1. By Girsanov’s theorem, dW ∗
t = dWt + γtdt

is a 3-dimensional standard Brownian motion under Q. The dynamics of Xt under

the risk-neutral measure become

dXt = (µ∗ + κ∗Xt)dt+ ΣdW ∗
t , (3.5)

where µ∗ = µ − α and κ∗ = κ − β. Making the transformation back to correlated

Brownian motion Zt, the risk neutral dynamics of the model is

dX1,t =
(
−α1 − κ∗

1X1,t

)
dt+ σ1dZ

∗
1,t,

dX2,t =
(
−α2 − κ∗

2X2,t

)
dt+ σ2dZ

∗
2,t,

dX3,t = µ∗
3dt+ σ3dZ

∗
3,t,

(3.6)

where Zi,t, i = 1, 2, 3 are correlated Brownian motions under Q with dZi,tdZj,t =

ρijdt, for i, j = 1, 2, 3, i 6= j, µ∗
3 = µ3 − α3, κ

∗
1 = κ1 + β1 and κ∗

2 = κ2 + β2. It should

be noted that under the short/long term model, the risk-free rate is assumed to be

constant and implicit in the risk premium. It is therefore not explicitly specified.

Given that the short-term factors are a linear combination of each factor, if we

set β1 and β2 to zero, then the model reverts to a constant MPR specification.

Under the terminology introduced by Duffee (2002), the time-varying MPR model

specification is a special case of the essentially affine class whereas the constant

MPR model specification belongs to the completely affine class21. Furthermore, as

21According to Duffee (2002), a requirement for the completely affine class is that variation in
the market price of risk depends entirely on volatility. As volatility is constant in this model,
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volatility is assumed constant in the model, if we denote the instantaneous risk

premium of the model by Λt, then

Λt = λ1,t + λ2,t + λ3,t

= α1 + β1X1,t + α2 + β2X2,t + α3.

(3.7)

The risk premium is therefore also a linear combination of the two short-term factors.

To derive the futures price, it is noted that the solutions to the set of stochastic

differential equations (SDE) for X1,t, X2,t and X3,t can be easily found as they

are jointly normally distributed. As the log of the spot price is just the sum of

the factors, it is also normally distributed. This means the conditional mean and

variance of lnST under the risk neutral measure is given by

EQ[log ST |Ft] = e−κ∗

1(T−t)X1,t −
α1

κ∗
1

(
1− e−κ∗

1(T−t)
)
+ e−κ∗

2(T−t)X2,t

− α2

κ∗
2

(
1− e−κ∗

2(T−t)
)
+X3,t + (µ3 − α3)(T − t),

(3.8a)

VarQ[log ST |Ft] =
(
1− e−2κ∗

1(T−t)
) σ2

1

2κ∗
1

+
(
1− e−2κ∗

2(T−t)
) σ2

2

2κ∗
2

+ σ2
3(T − t)

+
(
1− e−(κ∗

1+κ∗

2)(T−t)
)2ρ12σ1σ2

κ∗
1 + κ∗

2

+
(
1− e−κ∗

1(T−t)
)2ρ13σ1σ3

κ∗
1

+
(
1− e−κ∗

2(T−t)
)2ρ23σ2σ3

κ∗
2

,

(3.8b)

where EQ[·] and VarQ[·] are the mean and variance under the risk-neutral probability

measure Q.

Given that the futures price at time t is the expected value of the future spot price

at time T under the risk-neutral measure (Cox et al. (1981)), the futures price,

then the MPR must be constant to be completely affine. Under the essentailly affine class, this
restriction is relaxed and the market price of risk is allowed to be a linear combination of the state
variables.
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F (t, T ), is defined by

F (t, T ) = EQ[ST |Ft]. (3.9)

As lnST is normally distributed, ST is log-normally distributed and the expected

spot price under Q is given by

EQ[ST |Ft] = exp
{
EQ[log ST |Ft] +

1

2
VarQ[logST |Ft]

}
. (3.10)

Substituting (3.8a) into (3.10) and (3.9), the futures price, F (t, T ), is therefore given

by

F (t, T ) = exp
(
A∗(T − t) + B∗(T − t)

′

Xt

)
, (3.11)

where

A(τ) = (µ3 − α3)τ − α1

κ∗
1

(
1− e−κ∗

1τ
)
− α2

κ∗
2

(
1− e−κ∗

2τ
)
+

1

2

[
(1− e−2κ∗

1τ )
σ2
1

2κ∗
1

+
(
1− e−2κ∗

2τ
) σ2

2

2κ∗
2

+ σ2
3τ +

(
1− e−(κ∗

1+κ∗

2)τ
)2ρ12σ1σ2

κ∗
1 + κ∗

2

+
(
1− e−κ∗

1τ
)2ρ13σ1σ3

κ∗
1

+
(
1− e−κ∗

2τ
)2ρ23σ2σ3

κ∗
2

]
,

and B(τ) = (e−κ∗

1τ , e−κ∗

2τ , 1)
′

. A few models are nested under this specification. For

instance, the constant MPR model of SS corresponds to having no X2,t factor and

setting β1 = 0 or the 2-factor time-varying MPR model considered by Cartea and

Williams (2008) without seasonality is equivalent to the model without X2,t. Whilst

we are concerned with the risk premiums implied by the model, we also estimate

the nested two-factor model as a comparison. In particular, we investigate whether

the MPR specifications are plausible in either model.
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3.3 Risk premiums in the crude oil market

As there are a number of different interpretations of risk premiums in the literature

for commodities, we firstly define how risk premiums should be interpreted. The

price risk premium, Πt, is defined as the difference between the expected spot price

under the real-world measure and the futures price,

Πt = EP[ST |Ft]− F (t, T ). (3.12)

A similar definition is given in Geman (2005) and Weron (2008). Using this defi-

nition, the risk premium can be considered as the compensation required for hold-

ing the risky asset (commodity) over the risk-free asset (forward/futures contract).

When risk premiums are positive, the market is said to be in backwardation and

when risk premiums are negative the market is in contango. The theory of back-

wardation originated in Keynes (1930) where it was suggested that spot prices must

exceed futures prices by the amount which producers are prepared to sacrifice to

hedge themselves from the risk of a decrease in prices.

The evidence for risk premiums in commodity futures markets is mixed as noted

by Fama and French (1987). However, there are a number of reasons for normal

backwardation occurring in the crude oil futures market. As crude oil is a con-

sumption commodity, long hedgers (i.e. companies or entities that hold crude oil in

their inventory) do so for its consumption value and not for its investment value.

Such entities would be unwilling to hedge the price of oil by selling oil and buying

futures contracts. Also, as the short-term demand elasticity of crude oil is known

to be very low and the ability for some to pass on any increase in the price of

oil to their customers (e.g. airlines introduced a fuel levy due to the recent high
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oil prices) reduces the need for hedging. Hence long hedgers may be able to afford

short-term increases in prices and will only hedge using futures contracts if the price

is favourable for them to do so. On the other hand, short hedgers do not have the

same flexibility and it would be expected that hedgers in the market would be net

short forward/futures contracts and it is speculators who make up the shortfall in

buyers. Hence as speculators are essentially providing insurance for short hedgers,

they require a risk premium to compensate them for their position resulting in

futures prices lower than current spot prices.

Risk premiums could also arise due to a mismatch in the timing of hedging require-

ments for producers as opposed to consumers (including wholesalers and retailers).

For producers, the capital required to fund the initial exploration and construc-

tion of production facilities requires long-term future cash flows to meet financing

demands. Producers would therefore want to sell long dated forward/futures con-

tracts to reduce the risk of adverse movements in oil prices. On the other hand,

long hedgers such as wholesalers would not have as large capital requirements and

would only want to enter shorter term forward/futures contracts for hedging pur-

poses. Hence whilst hedgers exist on both sides of futures transactions for short

dated contracts, it is generally only producers that require long dated contracts.

As a result, it is speculators who buy the long dated contracts and again require a

risk premium for providing this insurance to producers resulting in lower prices for

longer dated futures contracts.

Evidence for the above can be found over the last 10 years, where spot oil prices

have exhibited consistent growth and the market has remained in backwardation

for much of the period. Whilst crude oil is a non-replenishable resource and has

been viewed as an increasingly scarce resource for some time now, the 5 year futures

contract usually does not trade above the nearby contract. This suggests that whilst
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spot prices have exhibited a positive trend, the futures price for long-term contracts

incorporate a risk premium as they have generally traded below the nearby contract.

This can be clearly seen if we consider a plot of the futures prices for 1 month, 1

year and 5 year futures contracts in Figure 3.1 over the period February 1999 to

August 2007. During the sub-period from 1999 - mid 2005, the market exhibited

strong backwardation as the 5 year prices plotted below the 1 year prices and well

below the 1 month prices for most of the period. Even from mid 2005 onwards,

the 5 year futures price has remained quite close to both the 1 month and 1 year

prices. In fact over the entire period, the average differential of the 5 year and 1 year

contract prices over the 1 month contract price was -$4.79 and -$0.44 respectively.

This is consistent with the view that risk premiums are paid by short hedgers to

speculators to insure them against future price decreases and where the longer the

maturity, the higher the risk premiums paid.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
10

20

30

40

50

60

70

80

90

100

F
u

tu
re

s 
P

ri
c
e
 (

$
U

S
)

 

 

1 month
1 year
5 year

Figure 3.1
Plot of 1-month, 1 year and 5 year futures prices, Jan 1999 - Jan 2008

In our analysis of risk premiums in the crude oil market, we investigate the market
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price of risk implied by the model introduced in Section 3.2. A few authors (e.g.

Weron (2008), Kolos and Ronn (2008) and Cartea and Williams (2008)) have esti-

mated different MPR specifications in energy markets although the risk premiums

themselves are only investigated quite briefly. Weron (2008) estimated the MPR im-

plied by Asian options in electricity markets using a mean-reverting jump diffusion

model and described the evolution of MPR over time. Kolos and Ronn (2008) and

Cartea and Williams (2008) estimated the MPR implied by the SS model. Kolos and

Ronn (2008) assumed a constant MPR and estimated its sign and magnitude over

different periods for crude oil and other energy commodities. Cartea and Williams

(2008) estimated a time-varying MPR for the UK gas market but only discuss the

sign and magnitude of the MPR over the period of study. They found no conclusive

evidence about whether time-varying risk premiums exist in the UK gas market

as the standard errors on the time-varying MPR parameters were not statistically

significant. One of the possible reasons for the poor result is that the sample size

and cross section of maturities they considered was quite small.

3.4 Data and Methodology

3.4.1 Data

The data consists of weekly observations of crude oil futures prices on the New

York Mercantile exchange (NYMEX) obtained from Datastream. In order to obtain

a substantial number of futures contracts with sufficient liquidity, the observation

dates span from January 1999 to January 2008. Trading of these contracts ends on

the third business day prior to the 25th calendar day preceding the delivery month.

If the 25th is not a business day, trading ends on the fourth business day prior to
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the last business day before the 25th calendar day. For the purpose of pricing the

contracts, the maturity date of each contract is assumed to occur on the first day

of the delivery month where we have chosen contracts of 9 different maturities with

maturities of approximately 1 month, 3 months, 6 month, 1 year, 18 months, 2

years, 3 years, 4 years and 5 years.

As a note, every maturity month up to 60 months in the future were only available

from the start of 2006. Prior to 2006, only maturities for the first 30 months are

available, with subsequent contracts having maturities at approximately 6 month

intervals up to 7 years in the future. For contracts with no exactly matching ma-

turity, we choose the closest maturing contract. The total number of observations

in the data set is 468 × 9 = 4212, which allows both the information from the

time-series of crude oil futures prices and the cross-sectional data to be used for

parameter estimation. The data is also split into a sub-sample from Janauary 1999

- January 2006 to use for diagnostic testing in-sample with a hold out period from

January 2006 - January 2008 to conduct out-of-sample tests.

It should also be noted that for the nearby maturity contract, open interest decreases

rapidly during the last couple of weeks prior to the last trading day22. To mitigate

the effects of the drop in open interest, only futures contracts with at least 10 trading

days prior to the last trading day are included in the analysis.

Descriptive statistics for the data is provided in Table 3.1. As can be observed

from the mean of the futures price, the market has mainly been in backwardation

as higher prices are observed for shorter maturity contracts as opposed to longer

maturity contracts. Interestingly, the standard deviation of longer term futures

prices are generally higher than the standard deviation of shorter term futures prices.

22The last trading day of the NYMEX crude oil futures contract occurs on the third business
day prior to the twenty-fifth calendar day of the month preceding the delivery month.
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Table 3.1
Descriptive Statistics for WTI Crude Oil Futures Contracts

This table reports the mean and standard deviation of the futures price and the annualized
weekly returns (in percentages) of the West Texas Intermediate (WTI) crude oil futures
contracts covering the period 6 January 1999 - 2 January 2008. The data set consists of
468 weekly observations of 9 futures contracts with the mean contract maturity (in months)
reported in the second column.

Futures Price Futures Return (%)

Contract Mean
Maturity
(years)

Mean Standard
Deviation

Mean Standard
Deviation

1 0.0994 41.2087 19.4143 3.2849 31.5411
2 0.2380 41.1450 19.9062 3.2570 29.1394
3 0.4897 40.6401 20.5006 3.1706 24.6295
4 0.9934 39.5954 21.0877 3.0109 20.2823
5 1.4965 38.7567 21.2480 2.8795 18.2543
6 1.9999 38.1093 21.1781 2.7678 17.3604
7 2.9958 37.2465 20.9123 2.6435 17.4445
8 3.9872 36.7209 20.6377 2.5684 17.4747
9 4.9871 36.3504 20.4172 2.5201 17.8006

However, this does not reflect the volatility of futures prices on a weekly basis but

rather the deviation of the price from the mean over the sample period. A better

measure of futures price volatility is the standard deviation of the weekly returns

where it is clear that the shorter maturity contract are more volatile than longer

term contracts. It is also clearly seen in Figure 3.1 that the 1 month futures contract

is much more volatile than 1 year and 5 year contracts. This demonstrates that the

“Samuelson effect” is present in the crude oil futures market.

3.4.2 Estimation Procedure

There are two main approaches taken in the literature for calibrating the parameters

of the model and estimating the MPR. One approach involves estimating the pa-

rameters of the model under the real-world measure using data from the underlying

asset. Then whilst holding the parameters that are the same under both measures
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constant, the MPR is estimated using either futures or options data by minimizing

a loss function such as the sum of squared errors. This is the usual approach when

estimating models for assets where both spot prices and futures or options are easily

observed. For instance, Weron (2008) use this approach for estimating the MPR

in electricity markets and Cartea and Williams (2008) in the natural gas market.

However, for many commodities including crude oil, spot prices are not directly

observable and most studies take the near month futures contract as a proxy for the

spot price.

Another approach involves estimating the parameters under both the real world and

risk neutral measures simultaneously when spot prices are not available. This is the

approach taken by Schwartz (1997), Schwartz and Smith (2000) and Casassus and

Collin-Dufresne (2005) to estimate the parameters in commodity models, Cheridito

et al. (2007) to determine MPR specifications in a number of multi-factor term

structure models and Kolos and Ronn (2008) to estimate the MPR in a number

of energy markets using a term structure of forward and futures prices. Similarly,

Pandher (2001) used estimating functions to estimate the MPR parameters from

options on the S&P500 index.

As spot prices are not readily available in the crude oil market, the latter approach

is taken. Parameter estimation is carried out using the Kalman filter in a similar

manner to Schwartz (1997), Schwartz and Smith (2000) and Cortazar and Naranjo

(2006). The Kalman filter is a recursive procedure for estimating the unobserved

state variables from the observations given a particular state space model. In order

to facilitate use of the Kalman filter, we need to cast the model into a state space

form consisting of a state equation and a measurement equation. The state equation

describes the evolution of the state variables to future states whilst the measurement

equation describes the relationship between the observations and the latent states.
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For the models considered here, the unobserved state variables are the three factors

(X1,t, X2,t, X3,t) and the observations are the futures prices. As the Kalman filter is

a discrete filter and the models above are continuous-time models, the evolution of

the state variables is described assuming discrete time steps corresponding to the

exact solutions of the SDE given by (3.1).

It should be noted that the state equation depends on the transition density under

the real-world measure P. However, as we only observe futures prices that are

priced under the risk-neutral measure Q, the market price of risk parameters are not

directly identifiable. To address this issue, a modified approach is taken to Schwartz

(1997) and Schwartz and Smith (2000) where it is assumed that all futures prices

are observed with measurement errors representing the errors from the reporting of

prices or the estimation errors of the model. This allows the entire cross-section of

futures prices to be used in estimating the time-series of the state variables with the

Kalman filter. The transition density of the state variables can then be estimated

from the time-series which also allows estimation of the model parameters under the

real-world measure, P. This includes estimating the market price of risk parameters.

However, rather than assuming that the errors are independent and identically dis-

tributed as in Schwartz (1997) and Schwartz and Smith (2000), a more robust ap-

proach involves assuming that the measurement errors follow independent Gaussian

AR(1) processes as it allows us to detect for model misspecification. This is similar

to the approach used in Casassus and Collin-Dufresne (2005) and Cheridito et al.

(2007), although they do not use the Kalman filter for estimation. For simplicity,

we assume that all errors have the same autoregressive factor, φ, although they

are allowed to have different variances as futures contracts of different maturities

tend to exhibit idiosyncratic behaviour. The measurement errors therefore have the
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following form,

νi,t = φνi,t−1 + ǫi,t, ǫt ∼ N(0, s2i ), (3.13)

for the ith futures contract where i = 1, . . . , 9 denotes the number of each contract

described in Table 3.1.

As the three-factor model and the nested two-factor model can be specified as linear

Gaussian state space models, the likelihood functions can be calculated directly us-

ing the linear Kalman filter. This allows us to estimate the parameters by maximum

likelihood estimation.

State Space Model Estimation

The state space model described above is now shown in more detail. Since the

measurement errors follow an AR(1) process, they must be placed in the state

equation. This results in the state space model having the following form,

yt = Ztxt + dt,

xt = Ttxt−1 + ct + ηt,

(3.14)

where for t = 1, . . . , T , yt are the Rn observation vectors, xt are the R(m+n) state

vectors and ηt ∼ N(0, Qt) are the state errors. Given that there are n futures con-

tract maturities and m = 3 for the three-factor model, the variables in the state

space model are defined as follows:

yt =
(
lnF (t, t+ T1) . . . lnF (t, t+ Tn)

)′

is the vector of observed log futures

prices with maturities T1, . . . , Tn,

xt =
(
X1,t X2,t X3,t ν1,t . . . νn,t

)′

is the vector of the latent states representing
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the two short-term and long-term factors and the measurement errors,

Zt =




e−κ∗

1T1 e−κ∗

2T1 1 In
...

...
...

e−κ∗

1Tn e−κ∗

2Tn 1




is the Rn×(m+n) matrix that relates the latent states

to the log futures price where In is the n× n identity matrix,

dt =
(
A(T1) . . . A(Tn)

)′

, is a Rn vector defined in (3.9),

Tt =




e−κ1∆t 0 0 0

0 e−κ2∆t 0 0

0 0 1 0

0 0 0 φIn




is the R(m+n)×(m+n) state transition matrix,

ct =
(
0 0 µ3∆t 0 . . . 0

)′

is a R3+n vector,

Qt =



Cov

(
X1,t X2,t X3,t

)
0

0 diag
(
s1 . . . sn

)


 is the covariance matrix of the

state errors.

If the state space model matrices are examined, then it can be seen that the state

transition equation depends only on the real-world parameters whereas the mea-

surement equation depends only on the risk-neutral parameters. This allows both

sets of parameters to be estimated from the state space model.

The two-factor models of Schwartz and Smith (2000), Sørensen (2002) and Cartea

and Williams (2008) are nested in the three-factor model and can be obtained

by restricting all parameters related to the second short-term factor, X2,t to zero.

The parameter estimates are obtained by maximizing the (log-)likelihood function.

The standard Kalman filter recursions introduced in Chapter 1, Section 1.2 can be

applied in this case given that the model is linear and Gaussian.

In terms of parameter inference, standard errors are estimated by taking the in-
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verse of the Hessian matrix which is computed using finite difference methods. All

procedures were programmed in Matlab and the likelihood was maximized with the

BFGS method used by the Matlab optimization routines. As there are a large num-

ber of parameters to be estimated, we used a number of different starting values to

ensure that we have reached a global maximum rather than a local maximum.

3.5 Empirical Results

The maximum likelihood parameter estimates can be found in Table 3.2. The

parameters estimated include the mean-reversion parameters under the risk-neutral

measure for the two short-term factors, the drift of the long-term factor, the market

price of risk parameters, the volatility and correlation parameters, and the volatility

of the measurement errors. For the full three-factor model with time-varying MPR,

a total of 23 parameters are estimated. In contrast, the nested constant and time-

varying MPR models of SS have 16 and 17 parameters respectively to be estimated.

The log-likelihood values are also included at the bottom of Table 3.2 allowing us

to conduct likelihood ratio tests to compare the nested models. We now describe

the parameter estimates for both the two-factor and three-factor models with and

without a time-varying MPR.

3.5.1 Two-Factor Model

Considering the estimates under the two-factor model for the constant MPR speci-

fication, all parameters are highly significant except for α1 and ρ13. If we consider

the values of the parameters themselves, a few things should be noted. Firstly, σ1
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Table 3.2

Parameter Estimates
This table reports the parameter estimates for the two-factor and three-factor models obtained by maximum likelihood using
the Kalman filter for the full-sample and a sub-sample period. Const denotes a constant MPR specification and TV denotes
a time-varying MPR specification. The parameters are defined by equations (3.6), (3.7) and (3.13). Standard errors for the
parameters are in parentheses.

Full Sample 1999-2006

Two-Factor Three-Factor Two-Factor Three-Factor

Parameter Const TV Const TV Const TV Const TV

κ∗
1 0.7349 0.7345 1.3300 1.3241 0.7471 0.7466 1.4555 1.4612

(0.0114) (0.0114) (0.0677) (0.0679) (0.0127) (0.0127) (0.0870) (0.0877)

α1 0.2339 0.1916 0.0281 0.0188 0.2816 0.2286 0.0314 0.0126

(0.0930) (0.0346) (0.1018) (0.1252) (0.1111) (0.0332) (0.1129) (0.1255)

β1 − −1.3156 − 0.2437 0.0000 −1.8641 0.0000 0.1642

− (0.5381) − (0.4617) (0.0127) (0.6731) (0.0870) (0.6332)

σ1 0.2780 0.2795 0.3006 0.3022 0.2928 0.2944 0.2979 0.2971

(0.0085) (0.0086) (0.0183) (0.0192) (0.0106) (0.0107) (0.0178) (0.0181)

κ∗
2 − − 0.6081 0.6134 − − 0.6281 0.6318

− − (0.0265) (0.0269) − − (0.0277) (0.0279)

α2 − − 0.1806 0.1325 − − 0.2419 0.1689

− − (0.0935) (0.0340) − − (0.1056) (0.0421)

β2 − − − −1.2227 − − − −1.1093

− − − (0.4046) − − − (0.4657)

σ2 − − 0.2778 0.2823 − − 0.2769 0.2789

− − (0.0171) (0.0181) − − (0.0160) (0.0163)

µ3 0.1814 0.1814 0.1783 0.1781 0.1851 0.1850 0.1789 0.1785

(0.0586) (0.0586) (0.0597) (0.0597) (0.0681) (0.0681) (0.0693) (0.0692)

µ∗
3 −0.0108 −0.0108 −0.0155 −0.0155 −0.0103 −0.0103 −0.0154 −0.0153

(0.0017) (0.0017) (0.0016) (0.0016) (0.0019) (0.0019) (0.0019) (0.0019)

σ3 0.1755 0.1755 0.1789 0.1788 0.1798 0.1798 0.1832 0.1831

(0.0068) (0.0068) (0.0069) (0.0069) (0.0067) (0.0067) (0.0079) (0.0079)

ρ12 − − −0.4144 −0.4396 − − −0.2995 −0.3134

− − (0.0938) (0.0954) − − (0.0991) (0.0994)

ρ13 −0.1636 −0.1582 0.1614 0.1644 −0.2156 −0.2094 0.1483 0.1500

(0.0456) (0.0457) (0.0500) (0.0500) (0.0507) (0.0508) (0.0574) (0.0574)

ρ23 − − −0.3097 −0.3026 − − −0.3545 −0.3455

− − (0.0457) (0.0458) − − (0.0508) (0.0511)

φ 0.9712 0.9712 0.8729 0.8730 0.9702 0.9702 0.8783 0.8794

(0.0044) (0.0044) (0.0117) (0.0117) (0.0223) (0.0223) (0.0135) (0.0135)

s1 0.0164 0.0164 0.0106 0.0106 0.0174 0.0174 0.0114 0.0114

(0.0005) (0.0005) (0.0005) (0.0005) (0.0006) (0.0006) (0.0005) (0.0005)

s2 0.0067 0.0067 0.0034 0.0034 0.0072 0.0072 0.0035 0.0034

(0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

s3 0.0000 0.0000 0.0018 0.0018 0.0000 0.0000 0.0020 0.0021

(0.0004) (0.0004) (0.0002) (0.0002) (0.0005) (0.0005) (0.0002) (0.0002)

s4 0.0041 0.0041 0.0015 0.0015 0.0043 0.0043 0.0016 0.0016

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

s5 0.0051 0.0051 0.0022 0.0022 0.0052 0.0052 0.0025 0.0026

(0.0002) (0.0002) (0.0001) (0.0011) (0.0002) (0.0002) (0.0001) (0.0001)

s6 0.0057 0.0057 0.0041 0.0041 0.0060 0.0060 0.0046 0.0046

(0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

s7 0.0029 0.0029 0.0023 0.0023 0.0030 0.0030 0.0025 0.0025

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

s8 0.0000 0.0000 0.0000 0.0000 0.0005 0.0005 0.0000 0.0000

(0.0004) (0.0004) (0.0002) (0.0002) (0.0004) (0.0004) (0.0002) (0.0002)

s9 0.0026 0.0026 0.0025 0.0025 0.0028 0.0028 0.0027 0.0027

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Loglik 14739.38 14742.18 15611.53 15616.65 11308.65 11312.51 11913.15 11916.35
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is much larger than σ3 which indicates most of the variation in spot prices is due to

the short-term factor. There is also some indication that significant risk premiums

are present, especially for long-term contracts, as the value of µ3 is much larger than

µ∗
3 and α1 is quite large and significant. The values of µ3 and µ∗

3 suggest that whilst

long-term prices were expected to increase at a rate of around 18% each year under

the real-world measure, this was not reflected in the futures price as the long-term

risk-neutral drift was only 1%. Furthermore, the value of α1 = 0.23 suggests large

risk premiums in short-term futures prices. The combined effect of the two results

is that the futures market is generally in backwardation. This means that futures

contracts usually trade at a lower price than the current spot price even though spot

oil prices were generally rising over the period of study. This is consistent with what

could clearly be seen in Figure 3.1. It is also consistent with the view that hedgers

trading short positions in crude oil futures contracts pay a premium to speculators

as they are essentially providing insurance to the hedgers for potential drops in oil

prices.

In order to determine whether time-varying risk premiums exist in the crude oil

futures markets we estimate the model incorporating time-varying MPR. For the

two-factor model with a time-varying MPR in the short-term factor, it can be seen

that the parameter estimates are very similar to the constant MPR model. All

of the risk-neutral parameters differ only marginally from the estimates under the

constant MPR model and they are all significant. This is similar to other papers that

estimate time-varying MPR models who find that only the time-series properties of

the underlying state variables are affected by incorporating a time-varying MPR23.

If we consider the parameters related to the time-varying MPR, α1 is significant with

23As only changes in the risk-neutral parameters affect the cross-sectional fit of futures prices,
this is not improved by incorporating time-varying MPR as mentioned by SS and is the reason for
the minor improvement in the likelihood values.
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a value of 0.19 which is slightly lower than the value estimated in the constant MPR

model. The value of β1 is −1.32 and is significant at the 5% level. The standard

errors are relatively high compared to the other parameters which was also observed

by SS and Cartea andWilliams (2008) among others for MPR parameters. The main

reason for this is the MPR parameters can not be directly identified from futures

prices as the underlying spot price process is not directly observed. However, as

this study has used a wider range of futures contracts and a longer time-series than

these two studies, the level of statistical accuracy for β1 is improved with evidence

suggesting that a time-varying MPR is present. A likelihood ratio (LR) test is also

applied to determine whether time-varying MPR exists. The results of the test can

be found in the first set of columns under “Two-Factor” in Table 3.3. The parameter

restriction in this case is β1 = 0 and the LR test statistic is 5.6 which is higher than

the χ2
0.05,1 critical value of 3.84. Thus under the two-factor model, there is evidence

that a time-varying MPR exists in the crude oil market. The implications for the

negative value of β1 is that when the price of crude oil falls, risk premiums will be

higher. This means that whilst the short-term price decrease may not be expected

to last for long, this is not reflected in the futures price as speculators will tend to

bid a lower price to hedgers.

However, although the two-factor model short/long model has been popular for

modelling commodity prices, there is evidence that the model is misspecified here.

The autocorrelation parameter of the measurement errors, φ is 0.97 which is very

high. This suggests that the model is misspecified and that an additional factor

may be required to correctly model futures prices.
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Table 3.3

Likelihood Ratio tests

This table reports details of likelihood ratio (LR) tests conducted on the two and three-factor models
for the full-sample and a sub-sample period. The columns labelled “Two-Factor” contain the LR tests
of each model against the two-factor constant MPR model. The columns labelled “Three Factor”
contain the LR test of the three-factor constant MPR against the three-factor time-varying MPR
model. DOF denotes the degrees of freedom and LR denotes the LR test statistic which is a χ2

DOF

distributed. P-values for the LR tests are in parentheses.

Full-Sample 1999-2006

Two-Factor Three-Factor Two-Factor Three-Factor

Model DOF LR DOF LR DOF LR DOF LR

Two-Factor

TVMPR 1 5.6043 − − 1 7.7306 − −
(0.0179) − (0.0054) −

Three-Factor

Constant MPR 5 1744.30 − − 5 1209.00 − −
(0.0000) − (0.0000) −

TVMPR 7 1754.53 2 10.2306 7 1215.40 2 6.3962

(0.0000) (0.0060) (0.0000) (0.0408)

3.5.2 Three-factor Model

If we compare the parameters with the three-factor model, the parameters of the

long-term factor are quite similar. However, as both of the two short-term fac-

tors have significant mean-reversion and volatility coefficients, it suggests that the

additional short-term factor is necessary for modelling crude oil prices. Also, the

correlations between the three-factors are quite low and suggest that movements in

the three-factors are largely independent of each other.

Investigating the improvement in model fit of the three-factor model over the two-

factor model, it can be seen that the measurement errors are much lower for most

contract maturities. The autocorrelation parameter of the measurement errors is

also lower than the two-factor model, with a value of 0.87 although it still suggests

some model misspecification. If we conduct an LR test with the two-factor constant
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MPR against the three-factor models, then the likelihood ratio tests are for 5 and

7 parameter restrictions. The LR statistics in this case are 1744.30 and 1154.53

for the three-factor constant and time-varying MPR models respectively. These

are much larger than the χ2
0.05,5 and χ2

0.05,7 values of 11.07 and 14.07 implying that

the two factor model is highly misspecified. Similarly, if we consider the futures

pricing errors for both the two-factor and three-factor models a large improvement

in the cross-sectional fit can be observed. Figure 3.2 plots the difference between

the observed and estimated log futures price for the 1 month, 1 year and 5 year

contracts and both the two- and three-factor TVMPR models. The plot shows that

the errors for the two-factor model are much more variable than the three-factor

model and the magnitudes of the errors are also higher. This can be seen for each

of the three contracts clearly showing that the three-factor model errors are lower.

Further evidence for the improvement in futures pricing can be found in Table 3.4.

The table reports the mean error and the root-mean squared error (RMSE) of the es-

timated futures prices for each contract maturity both in-sample and out-of-sample

under the two- and three-factor TVMPR models. The in-sample results are based

on the estimated futures prices for the full-sample and the sub-sample period fom

1999-2006. The out-of-sample errors are obtained from the estimated futures prices

in 2006-2008 using the parameters estimated in the sub-sample period of 1999-2006.

Also, as the futures pricing fit is very similar for the constant and time-varying MPR

versions of the models, only the time-varying versions were compared. The results

show that the three-factor model outperforms the two-factor model both in-sample

and out-of-sample for nearly every contract. Both the mean-error and the RMSE

of the two-factor model are at least double the magnitude of the three-factor model

for most contracts. The mean-errors of the two-factor models is negative for short

and long-term contracts and positive for medium-term contracts which suggests

that the two-factor model is unable to fit the entire term structure. Although both
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Figure 3.2
Plot of the difference between the true and estimated log futures price for 1-month, 1 year
and 5 year contracts, Feb 1999 - Aug 2007

models tend to have higher errors for 1 month and 5 year contracts, the three-factor

model exhibits much lower pricing errors across the full term structure with RMSE

only exceeding 1% for 1 month contracts. These results hold both in-sample and

out-of-sample which indicates that the two-factor model is largely misspecified and

that three factors are necessary for modelling the term-structure of crude oil futures

prices.

Looking at the MPR parameters implied by the three-factor model for the full-
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Table 3.4

Futures Pricing Errors
This table reports the mean errors and root mean-squared errors (RMSE) of the difference between the observed
log futures price and the estimated log futures price for each maturity. The in-sample results are the futures
pricing errors for the full-sample and the sub-sample period, 1999-2006. The out-of-sample results are the futures
pricing errors during 2006-2008 from the model estimated using data during 1999-2006. The errors are measured
in percentage points.

In-Sample Out-of-Sample

Full Sample 1999-2006 2006-2008

Two-Factor Three-Factor Two-Factor Three-Factor Two-Factor Three-Factor

Mean Error

1 month −1.51 −0.66 −1.01 −0.70 −3.83 0.06

3 months −0.56 −0.02 −0.28 −0.01 −1.90 0.21

6 months 0.00 0.13 0.00 0.18 0.00 −0.06

1 year 0.40 −0.03 0.11 −0.04 1.89 −0.10

18 months 0.55 −0.14 0.22 −0.19 2.42 0.06

2 years 0.65 −0.11 0.41 −0.14 2.24 0.17

3 years 0.48 0.02 0.39 0.01 1.27 0.26

4 years −0.00 0.00 −0.00 −0.00 −0.03 −0.00

5 years −0.71 −0.19 −0.70 −0.21 −1.34 −0.48

RMSE

1 month 4.36 1.60 4.21 1.66 4.97 0.80

3 months 2.25 0.43 2.21 0.41 2.44 0.31

6 months 0.00 0.29 0.00 0.35 0.00 0.16

1 year 1.97 0.25 1.89 0.26 2.27 0.19

18 months 2.53 0.36 2.42 0.45 2.95 0.21

2 years 2.39 0.65 2.31 0.77 2.78 0.47

3 years 1.20 0.47 1.10 0.51 1.57 0.49

4 years 0.00 0.00 0.04 0.00 0.04 0.00

5 years 1.25 0.67 1.27 0.74 1.60 0.72

sample, the results are fairly similar to the two-factor model. The values of α1,

α2 and µ∗
3 all suggest the market is generally in backwardation as the long-term

means of long-term futures contracts tend to be lower than the long-term means of

short-term contracts. In terms of the time-varying MPR parameters in both of the

short-term factors, the constant risk-neutral parameters under a time-varying MPR

specification are fairly similar to the constant MPR specification. However, only α2

and β2 are significant at the 5% level which suggests that the time-varying MPR

is mostly generated by only one of the short-term factors. However, as α1 is not

significant for either the constant or time-varying MPR models, it could mean that
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either more data is needed to accurately estimate both α1 and β1 or a non-linear

relationship may exist between the MPR and one of the short-term factors. As an

additional test for time-varying MPR, an LR test is conducted with the restrictions

that β1 = β2 = 0. The LR test results can be found in the “Three Factor” columns

in Table 3.3 where the LR statistic is 10.23. This is larger than the χ2
0.05,2 critical

value of 5.99 with a p-value of 0.006 so we can reject the hypothesis that the MPR is

constant in the crude oil futures market. These results also hold in the sub-sample

period.

In terms of the implications of the time-varying MPR, Casassus and Collin-Dufresne

(2005) has suggested that a desirable property of commodity models is that we

can distinguish between different sources of mean-reversion. One of the sources of

mean-reversion is due to the negative correlation between risk premiums and spot

prices. Evidence that confirms this in the crude oil market can be seen from the

parameter estimates. In this case β2 is negative and whilst β1 is positive, it has

a lower absolute value than β2 and is not statistically significant. This suggests

that negative correlation does exist between risk premiums (or the MPR) and spot

prices. Hence in terms of our model, mean-reversion in spot prices can be seen to

be generated by the negative correlation between risk premiums and spot prices

and from short-term fluctuations in prices due to storage costs, transportation and

financing costs as well as supply and demand factors.

3.5.3 Forecasting

Incorporating a time-varying MPR specification also has implications in terms of

forecasting as the distributions of the underlying state variables differ under either

constant or time-varying MPR. As a means of looking at whether the time-varying
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MPR specification improves forecasting performance, the following approach is

taken: At each time-step, given the model parameters and estimated state vari-

able values, generate forecasts of the future spot price under the real-world measure

at maturity where the maturity date is assumed to occur on the 1st day of the

maturity month. The forecast error is then defined as the difference between the

actual value at maturity of the contract and the expected spot price. This is given

by

et = ST − EP(ST |Ft), (3.15)

where ST is the spot price of the futures contract at T and et is the error at T for

the forecast made at time t. The spot price data is obtained from the U.S. Energy

Information Administration24 (EIA). To compare the errors generated from each of

the model specifications, both the mean forecast errors and the RMSE is reported.

The forecasts are conducted both in-sample and out-of-sample in a similar manner

as for the futures pricing errors except both the constant and time-varying MPR

models are included.

The in-sample forecasts are conducted for the full-sample and the sub-sample period

of 1999-2006. The out-of-sample forecasts are conducted using the parameters es-

timated in the sub-sample period of 1999-2006 to compute the expected spot price

during 2006-2008. Since only 2 years of data is used for out-of-sample forecasts,

forecasts of up to 18 months only are included. Also, to benchmark the out-of-

sample forecasting performance, the futures price and the spot price are included25.

In these two cases, the forecasts are EP(ST |Ft) = F (t, T ) for the futures price and

EP(ST |Ft) = St for the spot price where the nearby futures price is used as a proxy

24http://www.eia.doe.gov
25Using the spot price as a forecast of future spot prices implies a random walk model. However,

Alquist and Kilian (2010) found that it performed better than a number of econometric models
for forecasting crude oil spot prices and is thus a suitable benchmark.
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for the current spot price.

The forecasting results can be found in Table 3.5. Concentrating on the in-sample

results first, all models seem to overestimate future spot prices as the mean errors

are negative for all maturities in the full-sample and sub-sample. The forecasting

errors tend to be quite high for all models and maturities with RMSE exceeding 20%

for a number of maturities. However, the bias tends to be much lower for the time-

varying MPR versions of the models as both the mean errors and RMSE are lower.

In fact, it can be observed that at longer maturities, the two-factor time-varying

MPR model outperforms the three-factor constant MPR model. This suggests that

incorporating a time-varying MPR may be more important for forecasting than the

addition of an extra factor.

For the out-of-sample forecasts, the results are consistent with the in-sample results.

Of the two benchmarks, the futures price performed slightly better than the spot

price for forecasting future oil prices. Between the estimated model specifications,

the three-factor time-varying MPR also performed the best out-of-sample. How-

ever, none of the estimated models clearly outperformed the two benchmarks. The

three-factor time-varying MPR model did perform better than futures prices for 1

and 3 month contracts but performed worse for 6, 12, and 18 month contracts. This

does not provide any conclusive evidence that the short/long factor model performs

better than the benchmark models in out-of-sample forecasts. However, between

the different model specifications, the in-sample and out-of-sample forecasts does

suggest that including a time-varying MPR specification improves forecasting per-

formance.

Whilst the results are restricted to the sample studied, they show that a time-

varying MPR specification can be important for modelling crude oil prices. This
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Table 3.5

Forecast Errors
This table shows the in-sample mean and root mean-squared errors (RMSE) of the difference between the observed
log spot price (log ST ) at maturity and the forecast value (logEP(ST )) for each model. The in-sample results are
the forecast errors for the full-sample and the sub-sample period, 1999-2006. The out-of-sample results are the
forecast errors during 2006-2008 from the model estimated using data during 1999-2006. The errors are measured
in percentage points.

Panel A: In-sample Full Sample 1999-2006

Two-Factor Three-Factor Two-Factor Three-Factor

Const TV Const TV Const TV Const TV

Mean Error

1 month −3.87 −3.78 −2.39 −2.26 −4.01 −3.90 −3.31 −3.12

3 months −4.27 −3.89 −2.33 −1.84 −4.52 −4.02 −3.41 −2.79

6 months −6.37 −5.09 −3.78 −2.37 −6.34 −4.81 −4.71 −3.01

1 year −10.72 −7.35 −7.38 −4.06 −11.50 −7.93 −9.59 −5.35

18 months −14.32 −9.47 −10.55 −5.81 −17.37 −12.29 −15.63 −9.12

2 years −15.76 −10.02 −11.77 −6.11 −20.76 −14.67 −19.30 −11.02

3 years −20.40 −13.98 −16.40 −9.81 −26.61 −19.37 −25.40 −15.17

4 years −18.36 −11.77 −14.64 −7.45 −25.29 −17.61 −24.33 −12.89

5 years −19.86 −13.15 −16.23 −8.45 −27.38 −19.44 −26.35 −13.96

RMSE

1 month 9.96 9.76 8.66 8.54 10.32 9.86 9.38 9.23

3 months 14.89 14.10 13.78 12.46 15.04 13.42 14.22 12.91

6 months 19.09 18.15 18.39 15.76 18.30 16.19 17.80 15.08

1 year 25.25 22.86 25.13 20.10 24.97 21.25 25.11 19.69

18 months 28.26 25.15 27.98 22.29 30.34 26.40 30.60 24.11

2 years 29.46 26.10 28.37 24.04 32.52 28.30 32.28 26.04

3 years 31.94 28.32 29.60 26.47 36.21 31.34 35.37 28.88

4 years 30.45 26.89 28.36 25.18 35.07 29.92 34.38 27.31

5 years 30.10 26.22 27.82 24.21 35.53 29.89 34.71 26.64

Panel B: Out-of-Sample 2006-2008

Two-Factor Three-Factor

Futures Spot Const TV Const TV

Mean Error

1 month 3.05 3.05 −6.13 −8.14 −1.77 −2.02

3 months 4.52 6.71 −9.00 −13.03 −5.91 −6.01

6 months 3.36 8.38 −17.86 −23.34 −16.85 −15.59

1 year 4.30 10.87 −32.12 −35.41 −33.69 −28.49

18 months 18.16 22.84 −33.62 −33.16 −35.58 −27.43

RMSE

1 month 8.79 8.79 9.87 11.99 6.68 6.43

3 months 13.82 14.04 16.20 19.71 13.74 12.42

6 months 19.02 20.76 25.96 30.52 24.96 22.50

1 year 17.96 22.52 37.53 40.47 38.26 32.99

18 months 21.05 25.18 34.95 34.89 36.05 28.25
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could potentially alter decisions in risk management applications such as value at

risk (VaR). For instance, if the different levels of mean reversion under the real-world

and risk-neutral measures are not accounted for, it could lead to an overestimation

of the VaR measure, thus tying up capital that could be used in other areas.

3.6 Time Varying Risk Premiums

Having estimated the model under a time varying MPR, we can estimate the risk

premium using (3.7) and the output from the Kalman filter. As the parameter

estimation results suggest the two-factor model is misspecified, we only consider

the time-varying MPR of the three-factor model. As mentioned, the Kalman filter

provides the minimum mean squared estimate of the state variables allowing us to

estimate the MPR and risk premium implied by the model. A plot of the estimated

risk premiums is shown in Figure 3.3. The figure shows that risk premiums are

fairly stable over the period although large increases in risk premiums are generally

consistent with major market events.

The most prominent features of the plot include the low risk premiums exhibited

during 2000 when oil prices tripled between January 2000 and September 2000,

a sharp increase in risk premiums following September 11 compounded by Enron

filing for bankruptcy and the Argentinian government’s default in December 2001,

and the increase in risk premiums from late 2002 to early 2003 coinciding with

the uncertainty in oil prices surrounding the Iraq invasion. From 2004 - 2007, risk

premiums have tended to be relatively lower reflecting a period where oil prices were

increasing rapidly as a result of a number of factors including supply disruptions

due to political instability, an increase in world oil demand and constrained OPEC
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Figure 3.3

Plot of the market price of risk under the three-factor model

output. The lower risk premiums during this period are possibly an indication of

the perception that oil is an increasingly scarce resource. As explained in Section

3.3, risk premiums can be thought of as insurance paid by sellers to speculators to

insure them against a future fall in prices. Hence, in a market where the resource

is scarce and future price rises are likely, risk premiums are likely to be lower. This

period was also characterized by low historical volatility and credit spreads and high

growth in asset prices worldwide. Hence risk premiums in equity and bond markets

were most likely quite low during this period similar to the behaviour in the crude

oil futures market.

The plot therefore highlights that although major changes in risk premiums are due

to events idiosyncratic to crude oil markets, they are also consistent with systematic

market events. This gives some indication that systematic risk factors may play a

role in risk premiums exhibited in the crude oil market. Using the estimate of the

risk premium, we can determine whether any relationship exists between the risk

premiums in the crude oil market and equity and bond markets. As risk premiums
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are unobservable, we consider the approach taken by Bailey and Chan (1993) and

Baum and Barkoulas (1996) to determine whether factors that are indicative of

risk premiums in stock and bond markets give similar information in the crude oil

market. The factors considered in Bailey and Chan (1993) and Baum and Bark-

oulas (1996) are credit spreads, dividend yields and treasury bond yields. Keim and

Stambaugh (1986) and Fama and French (1989) found that credit spreads and div-

idend yields have forecast power for the returns on stocks and bonds leading Bailey

and Chan (1993) to suggest that this allows them to be considered as indicators of

risk premiums in equity and bond markets. Furthermore, treasury bill yields give

an indication of the state of the economy which tends to be lower during economic

downturns and higher during growth periods. As an additional indicator of market

risk, this study also considers the market return variance or volatility. In this case,

the CBOE volatility index (VIX) is considered. The VIX index is a model-free

measure of implied volatility of S&P500 index options that represents the market’s

expectation of volatility over the next 30 days. As such, the VIX index is able to

give an indication of the expected risk in equity markets. If risk premiums in the

crude oil market contain systematic risk factors, then these measures should be able

to explain the variation in the market price of risk.

To test whether these macroeconomic risk factors provide information about crude

oil risk premiums, we conduct a linear regression of the crude oil risk premium

and the variables which represent risk premiums in equity and bond markets. The

multivariate regression includes the four variables above - credit spreads, dividend

yields, treasury bond yields and market volatility. The regression equation is as

follows,

Λt = a0 + a1CRSPRt + a2SPDYt + a3TBt + a4VIXt + ǫt, (3.16)
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where Λt is the risk premium defined by (3.7).

The data used covers the same sample period as the crude oil futures data consisting

of weekly observations spanning the period from Feb 1999 - Aug 2007. The variables

are defined as follows, the credit spread (CRSPR) is the difference between the yield

on 30 year Baa and Aaa Moody’s rated bonds, dividend yield (DY) is the dividend

yield on the S&P500 index, the treasury bond (TB) yield is the yield on the 3-month

constant maturity US Treasury bill and VIX is the Chicago Board Options Exchange

Volatility Index. The corporate and treasury bond yield data is obtained from the

Board of Governors of the Federal Reserve System website whilst the dividend yield

and VIX data were obtained from Datastream. If we consider all of the variables

of interest a priori, credit spreads, dividend yields and market volatility should be

positively related to risk premiums whilst interest rates should be negatively related

to risk premiums in equity and bond markets.

Table 3.6

Regression of the market price of risk and macroeconomic factors

This table gives the parameter estimates for the regression equation given by (3.6) obtained by
OLS. The Newey and West (1987) heteroscedasticity and autocorrelation consistent standard
errors are in parentheses.

Parameter Constant CRSPR SPDY TB VIX R̄2

Estimate 2.9127 26.5735 2.1310 -3.3062 1.0323 0.2130

S.E. (26.4323) (12.9079) (11.5379) (1.6732) (0.4467)

The results of the regression can be found in Table 3.6. Credit spreads and the VIX

index have significantly positive relationships with the risk premium, whilst treasury

bill yields have a significantly negative relationship. Although dividend yields were

found to have no significant relationship with the MPR this does not suggest that

equity risk premiums play no role in crude oil risk premiums. It could suggest either

that equity volatility risk plays a larger role in crude oil risk premiums than equity

risk premiums or that dividend yields provide less information about equity risk
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premiums than volatility. Overall, these results are broadly what would be expected

as large credit spreads, high volatility and low interest rates are indicative of high

risk premiums in equity and bond markets and these are able to explain some of the

risk premiums in the crude oil futures market. If we also consider the adjusted R2

value of 0.213, it implies that risk premiums in the crude oil futures market can be

partially explained by risk factors common to equity and bond markets. The results

agree with some of the previous findings for other non-energy related commodities,

demonstrating that the perception of risk in crude oil markets is partially due to

systematic risk factors in equity and bond markets.

3.7 Conclusion

This chapter estimates a three-factor model for crude oil that incorporates a time-

varying market price of risk specification. The model considered is an extension of

the short/long term factor model of SS which incorporates both an additional short-

term factor and a time-varying MPR. The model is intuitively appealing as it can be

interpreted as consisting of two components - a long-term component representing

an equilibrium price level which is uncertain and a short-term component consisting

of two mean-reverting factors representing the short-term variations in prices from

the equilibrium price level. Also, the MPR is specified as a linear function of the

two short-term factors allowing risk premiums to be time-varying.

Using the Kalman filter to estimate the model parameters, it is found that the

model captures the term-structure of futures prices more accurately than the two-

factor model. Additionally, by incorporating the time-varying MPR specification

the model is better able to describe the time-series behaviour of crude oil spot prices

108



where it was found that the spot price has a different level of mean-reversion under

the real-world measure compared to the mean-reversion implied by futures prices

under the risk-neutral measure. Whilst the model fit supports the model and MPR

specification, like most other approaches to modelling asset prices, the choice of

MPR specification is arbitrary. By extracting the MPR and risk premium implied

by the model parameters, it allows us to further investigate the MPR specification

and whether it is economically justified.

The study examines the relationship between risk premiums in the crude oil futures

market and risk factors in the macroeconomy. Our findings confirm that whilst the

main determinants of risk premiums are idiosyncratic, macroeconomic risk factors

which drive risk premiums in equity and bond markets have explanatory power for

risk premiums in the crude oil market. The results suggest that incorporating a

time-varying MPR is important when modelling crude oil futures prices as they are

correlated with systematic risk factors in equity and bond markets. This leads to

possible future avenues of research in the area such as an investigation of modelling

approaches which incorporate systematic risk factors directly in the model dynamics.

The findings could also have implications for portfolio management as using crude oil

futures may be useful in hedging and managing portfolio risk. Finally, the modelling

approach is not restricted to crude oil or energy-related products and incorporating

a time-varying MPR specification may be suitable for other commodities which

exhibit similar characteristics.
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Chapter 4

Commodity Modelling with Stochastic

Volatility and Jumps

In the previous chapter, a three-factor short/long factor model was used to estimate

futures prices in the crude oil futures market. However, the model is Gaussian and

in light of recent history (the most recent being the global financial crisis), the model

is not able to explain some of the characteristics exhibited by commodity prices.

Although the model can account for mean-reversion in short term prices, expected

increases in long-term prices and the “Samuelson Effect”, it fails to account for

non-Gaussian behaviour. This includes large changes in spot prices, time-varying

volatility and volatility clustering. In particular, evidence for the latter two effects

were found in Chapter 2, where a discrete-time stochastic volatility model was

examined for crude oil volatility. The study showed that time-varying volatility is

present in crude oil prices and that volatility is highly persistent which is evidence of

the volatility clustering effect26. However, the discrete-time approach does not easily

facilitate pricing derivatives and neither does the form of the stochastic volatility

factor. Alternatively, continuous-time models and affine jump-diffusion models in

particular, are appealing for pricing derivatives as they allow the use of established

pricing frameworks under the assumption of no-arbitrage.

26The volatility persistence parameter for crude oil in Chapter 2 was found to be above 0.95.
This implies that volatility in each period will be highly correlated with the previous period’s
volatility level and indicates volatility clustering is present.
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The commodity modelling literature has considered continuous-time models with

non-Gaussian dynamics where a number of authors have introduced jumps and

stochastic volatility to model commodity prices. However, this is mainly done sep-

arately and it is only recently that stochastic volatility has gained some attention.

On the other hand, introducing jumps in model dynamics has been somewhat more

popular in the literature. Some authors who have taken this approach include Vil-

laplana (2002), Casassus and Collin-Dufresne (2005), Aiube et al. (2008), Askari

and Krichene (2008), Dempster et al. (2008) and Crosby (2008) among others. The

modelling approach of these authors fall under the affine jump-diffusion class of

models which allows for tractable solutions to derivative prices. These studies take

either a single or multi-factor approach (usually up to a maximum of three factors)

to model spot prices, where the empirical studies were mainly applied to futures

and/or the physical (spot) markets.

In terms of stochastic volatility modelling, Richter and Sørensen (2002), Hikspoors

and Jaimungal (2008), Hughen (2010) and Trolle and Schwartz (2009) incorporate

stochastic volatility in the model dynamics to price commodities. Of these stud-

ies, Richter and Sørensen (2002), Hikspoors and Jaimungal (2008), Hughen (2010)

proposed models which explain the spot price dynamics using an affine set of state

variables including a stochastic volatility factor. Trolle and Schwartz (2009) ap-

ply the Heath, Jarrow and Morton (1992) (HJM) approach to commodity futures

pricing which incorporates stochastic volatility. However, the commodity literature

has not paid much attention to stochastic volatility modelling where it has been

relatively unpopular until recently.

For most of the studies on commodity markets, the focus has been on futures mar-

kets. The commodity pricing literature also tends to be quite sparse when it comes

to models with stochastic volatility or jumps in price dynamics. Compared to the
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financial market literature, it is much smaller and few have considered options pric-

ing performance. Of the studies above, only Richter and Sørensen (2002), Hughen

(2010) and Trolle and Schwartz (2009) analysed option pricing empirically. For

some of the studies on jump-diffusion models, only theoretical option prices were

considered. Also, the only study that we are aware of which considers a commodity

model with both jumps and stochastic volatility to price commodity derivatives is

a paper by Yan (2002). However, although the paper derives futures and option

prices, it does not provide an empirical analysis of the model and so the model’s

performance for pricing commodities is not known. A likely reason for the lack of

empirical studies on pricing commodity options could be due to data being more eas-

ily accessible in equity and bond markets than commodity markets. Those markets

are also larger and have higher liquidity.

However, the market for other derivatives has grown considerably, especially for

crude oil, as options have become increasingly popular for hedging and risk man-

agement as an alternative to futures contracts. Recent reports by the U.S. Com-

modity Futures Trading Commission (CFTC) found that at the start of 2000, the

proportion of the open interest in delta-adjusted WTI crude oil options27 to the

total open interest in futures and options traded on NYMEX amounted to around

27%. However, by the start of 2009, the proportion increased to about 60% of total

open-interest. This means that a majority of derivatives traded on NYMEX are

now options rather than futures. Given the increased importance of options, it is

necessary that models can price options accurately.

In this chapter, the three-factor short/long factor model is extended to incorporate

both stochastic volatility and jumps. The extension follows similar approaches in

27“Option open interest and traders’ option positions are computed on a futures-equivalent
basis using delta factors supplied by the exchanges. Long-call and short-put open interest are
converted to long futures-equivalent open interest. Likewise, short-call and long-put open interest
are converted to short futures-equivalent open interest.” Source: http://www.cftc.gov.
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equity markets such as Heston (1993) who introduced stochastic volatility to the

Black-Scholes model and Bates (1996) who introduced jumps to the Heston (1993)

model. For the volatility process, we follow Heston (1993) and introduce a square-

root volatility process. For the jumps, as the model consists of three spot price

factors, jumps are introduced for each factor. The jump specification allows for

some jumps to affect short-term futures prices more than long-term futures prices,

a feature deemed necessary for commodities by Crosby (2008). The approach follows

Dempster et al. (2008) which nests a number of jump-diffusion models introduced

in the commodity market literature, although their approach does not consider

stochastic volatility. The model also allows for a time-varying market price of risk

specification in both the spot price and volatility processes. This chapter adds

to the literature by investigating commodity models with stochastic volatility and

jumps. The study is conducted empirically and analyses the futures and option

pricing performance. As in previous chapters, although the model can be applied to

other commodities, the empirical study is restricted to the crude oil futures market

as it is the most liquid commodity market. This study attempts to fill a gap in

the literature by introducing a commodity model with both jumps and stochastic

volatility and empirically analysing the model using futures and options data.

In this study, we derive semi-closed form solutions to futures and options prices for

the stochastic volatility jump-diffusion model under the assumption of no-arbitrage.

We empirically test the impact of introducing either jumps or stochastic volatility for

estimating futures prices and compare the results to the Gaussian three-factor model

introduced in Chapter 3. The models are estimated using the estimation approaches

analysed in Chapter 2. In particular, the jump-diffusion model is estimated using a

Monte Carlo likelihood (MCL) approach whereas the SV model is estimated using

a quasi-maximum likelihood (QML) approach. The findings suggest that although

there is little improvement in futures pricing performance, there is evidence that the
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model is able to explain the distributional properties of crude oil prices better when

either jumps or stochastic volatility are added. The option pricing performance of

the models are also compared. This is initially conducted by pricing European call

and put options using model parameters estimated from futures prices only.

As the pricing performance was found to be quite poor for all models when options

are priced this way, a more direct approach of estimating option prices is considered.

This involves estimating the model parameters using both futures and option prices

in the estimation process. As there is a nonlinear relationship between option prices

and state variables, the linear Kalman filter is inappropriate for estimation. Instead,

we use the Unscented Kalman Filter (UKF) to estimate the model parameters.

We estimate the fully specified stochastic volatility jump-diffusion model, which

enables a comparison of its futures and options pricing performance to the nested

specifications.

This chapter is organised as follows - Section 4.1 describes the extension which

incorporates stochastic volatility in the model, Section 4.2 derives pricing equations

for futures and European futures options for the short/long SVJ model, Section 4.3

presents the empirical results using futures prices to estimate the models, Section

4.4 presents the empirical results using both futures and option prices to estimate

the models and 4.5 concludes the chapter.
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4.1 Short/Long Factor Stochastic Volatility

Jump-Diffusion Model

We assume a fixed probability space (Ω,F ,P) and the filtration F = (Ft)t≥0. The

three-factor long/short model of the previous chapter can be extended to incorporate

stochastic volatility and jumps as follows,

dX1,t = −κ1X1,tdt+ σ1

√
VtdZ1,t + J1,tdN1,t,

dX2,t = −κ2X2,tdt+ σ2

√
VtdZ2,t + J2,tdN2,t,

dX3,t = µ3dt+ σ3

√
VtdZ3,t + J3,tdN3,t,

dVt = κv(θv − Vt)dt+ σv

√
VtdZv,t,

(4.1)

where Zi,t, i = 1, 2, 3, v are correlated Brownian motions with instantaneous corre-

lation coefficients dZi,tdZj,t = ρijdt, dNi,t are Poisson processes with jump intensity

P(dNi,t = 1) = λidt and jump size density fJi
(j). The jumps have the following

distributions - the jumps in the first factor are positive exponentially distributed,

the jumps in the second factor are negative exponentially distributed and the jumps

in the third factor are Gaussian, i.e.

J1,t ∼ exp(ωu), −J2,t ∼ exp(ωd) and J3,t ∼ N(0, σ2
j ). (4.2)

The volatility factor, Vt, follows the well-known square-root process which has the

desirable property of being non-negative and never hits the zero boundary under

certain parameter restrictions. This condition is well-known in the literature and

for this model, the parameter restriction is

2κvθv > σ2
v.
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It is assumed throughout this chapter that this condition holds. Additionally, the

three spot price factors are governed by the volatility factor although the degrees

to which they depend on the volatility factor is determined by σ1, σ2 and σ3.

In the empirical application, three nested models are considered. They are a three-

factor jump-diffusion model with no stochastic volatility component (Vt is constant),

a stochastic volatility model with no jumps, (i.e. λ1 = λ2 = λ3 = 0) and a three-

factor Gaussian model with no stochastic volatility or jumps. We will refer to the

jump-diffusion model as JD, the stochastic volatility model as SV and the Gaussian

model as Gaussian. Also, the stochastic volatility jump-diffusion model will be

referred to as SVJ. In the analysis of the models in later sections, we will refer to

X1,t, X2,t and X3,t as the spot price factors and Vt as the volatility factor.

As the model given by (4.1) is specified under the real-world measure, a specification

of the risk-neutral measure is needed to derive derivatives prices. In order to achieve

this, we make the usual assumption that the market admits no arbitrage. However,

when stochastic volatility and jumps are introduced, the market is incomplete. This

means that when specifying the risk-neutral measure, there is no unique choice for

the market price of risk specification. In order to obtain one, the approach taken

here is to assume that the market price of risk (MPR) is derived from the market

although an assumption is made about the functional form of the MPR. To facilitate

application of Girsanov’s theorem and specifying the market price of risk, the model

is reformulated in terms of standard Brownian motion. The model given by (4.1)

can be equivalently represented as

dXt = (µ+ κXt)dt+
√

VtΣdWt, (4.3)
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where Xt = (X1,t, X2,t, X3,t, Xv,t)
′, Xv,t ≡ Vt, µ = (0, 0, µ3, κvθv)

′,

κ =




−κ1 0 0 0

0 −κ2 0 0

0 0 0 0

0 0 0 −κv




, ΣΣ′ =




σ11 σ12 σ13 σ1v

σ12 σ22 σ23 σ2v

σ13 σ23 σ33 σ3v

σ1v σ2v σ3v σvv




,

ΣΣ′ positive semidefinite with σij = ρijσiσj, i 6= j, σij = σ2
i , i = j for i = 1, 2, 3, v,

and Wt = (W1,t,W2,t,W3,t,Wv,t)
′ is 4-dimensional standard Brownian motion.

As the estimation approach requires pricing derivatives under the risk-neutral mea-

sure and estimation of the underlying state variables, the change of measure must be

specified. The existence of an equivalent martingale measure (EMM) under Heston

stochastic volatility has been established in the literature when certain parameter

restrictions apply. However, as the market is incomplete under the model when

either stochastic volatility or jumps are present, we make a few assumptions re-

garding the MPR. In terms of the jump component, a number of authors in the

commodity pricing literature assume that the jump risk is diversifiable (e.g. Casas-

sus and Collin-Dufresne (2005), Cartea and Figueroa (2008), Aiube et al. (2008) and

Dempster et al. (2008)). This assumption follows from Merton (1976) who argued

that jump risk in equity markets can be considered a non-systematic risk and is

therefore diversifiable. Although a major reason for this assumption is for compu-

tational tractability when estimating the model parameters, a few of these studies

(see Casassus and Collin-Dufresne (2005) and Dempster et al. (2008)) found little

additional improvement in model fit when the jump intensity is allowed to change

under a change of measure. Given these studies and to reduce the complexity of

estimating the model, the same assumption is made here. This means that only the

drift is adjusted in relation to the jump component when changing measures.
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Although this assumption restricts the set of valid equivalent martingale measures,

there is still scope for flexibility in the choice of an EMM due to the diffusion

component. In the previous chapter, the MPR was allowed to be a linear function

of each state variable. However, when stochastic volatility is present, the existence

of an EMM is not guaranteed. Wong and Heyde (2006) shows that the EMM exists

under the Heston (1993) model when the volatility process is strictly positive (i.e.

the restriction 2κvθ > σ2
v is imposed). Cheridito et al. (2007) also demonstrates

the existence of an EMM for term structure models with multi-dimensional square-

root processes and an MPR which is affine in the state variables. They refer to

their MPR specification as an “extended affine” market price of risk28. The only

restriction under an “extended affine” MPR specification relates to the existence

and boundary non-attainment conditions of square-root processes. Here the MPR

is restricted so that the boundary non-attainment conditions are satisfied and each

of the state factors remains structurally of the same class under the change of

measure29. It is therefore possible to establish existence of the EMM.

We define the change of measure by the Radon-Nikodym derivative,

dQ

dP
= exp

(
−
∫ T

0

γt · dWt −
1

2
|γt|2dt

)
= ηT , (4.4)

28This is in contrast to Dai and Singleton (2000) who introduced the completely affine and
Duffee (2002) who introduced the essentially affine MPR specifications. In terms of the relationship
between the classes, the essentially affine class nests the completely affine class, whilst the extended
affine class nests the essentially affine class.

29In this case, it means that only the MPR for X1,t, X2,t and Vt are allowed to be linear functions
of themselves. The MPR for X3,t is assumed to be constant.
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where γt = (
√
VtΣ)

−1(α + βXt + λ(EP[e
Jt ]− 1))30 and

α =




α1

α2

α3

αv




, β =




β1 0 0 0

0 β2 0 0

0 0 0 0

0 0 0 βv




and λ =




λ1

λ2

λ3

0




.

When αv = 0, Wong and Heyde (2006) show that the EMM exists and the model

admits no arbitrage. However, when αv 6= 0, it is not clear whether the Novikov or

Kazamaki condition is satisfied and existence of the EMM can not be established

this way. Alternatively, Cheridito et al. (2007) show that a requirement for existence

of Q is that the zero-boundary for the volatility factor is never hit under either P

or Q31. Although this approach is applied to term-structure modelling, the same

approach can be used here as jump risk is ignored which means that the MPR

specification in the SVJ model is a special case of the extended affine specification.

This leads to the following restriction on the volatility factor,

2κ∗
vθ

∗
v > σ2

v ⇔ αv < κvθv −
σ2
v

2
.

From Theorem 1 in Cheridito et al. (2007), given that the boundary non-attainment

condition is satisfied, then EP(ηT ) = 1. Hence, by Girsanov’s theorem, dW ∗
t =

dWt + γtdt is a 4-dimensional standard Brownian motion under Q. Under the risk-

neutral measure Q, the model is specified by the following SDE,

dXt = (µ∗ + κ∗Xt)dt+
√

VtΣdW
∗
t + JtdNt, (4.5)

30 The additional term in γt, λ(EP[e
Jt ] − 1) relates to the jump risk premium. This allows the

jump terms to be martingales under Q with respect to the spot price and is added for convenience
when computing derivative prices. As the terms are constant and only affect the drift of the spot
price factors, it has no impact on the existence of the change of measure.

31As stated in Cheridito et al. (2007) in the context of term-structure models, by allowing αv

to be non-zero, this allows the market price of risk to be non-zero when Vt is near zero. Previous
literature did not make it clear whether arbitrage opportunities exist in this case. However, they
showed that there is no arbitrage.
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where

µ∗ = µ− α =




−α1 − λ1(EP[e
J1,t ]− 1)

−α2 − λ2(EP[e
J2,t ]− 1)

µ3 − α3 − λ3(EP[e
J3,t ]− 1)

κvθv − αv




,

κ∗ = κ− β =




−(κ1 + β1) 0 0 0

0 −(κ2 + β2) 0 0

0 0 0 0

0 0 0 −(κv + βv)




,

Jt =




J1,t 0 0 0

0 J2,t 0 0

0 0 J3,t 0

0 0 0 0




,

Σ as defined in (4.3), βi < κi for i = 1, 2, v and Nt = (N1,t, N2,t, N3,t, N4,t)
′ is a

4-dimensional Poisson process. Also, in terms of the nested MPR specifications, the

completely affine specification is obtained when β1 = 0, β2 = 0 and αv = 0 and the

essentially affine specification is obtained when αv = 0.

Transforming back to the specification with correlated Brownian motions,

dX1,t = (−α1 − κ∗
1X1,t)dt+ σ1

√
VtdZ

∗
1,t + J1,tdN1,t − λ1(ν1(1)− 1)dt,

dX2,t = (−α2 − κ∗
2X2,t)dt+ σ2

√
VtdZ

∗
2,t + J2,tdN2,t − λ2(ν2(1)− 1)dt,

dX3,t = µ∗
3dt+ σ3

√
VtdZ

∗
3,t + J3,tdN3,t − λ3(ν3(1)− 1)dt,

dVt = κ∗
v(θ

∗
v − Vt)dt+ σv

√
VtdZ

∗
v,t,

(4.6)

where κ∗
i = κi + βi, for i = 1, 2, v, µ∗

3 = µ3 − α3, θ∗v = (κvθv − αv)/κ
∗
v, Z∗

i,t,

i = 1, 2, 3, v are correlated Brownian motions under the risk neutral measure Q,
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with instantaneous correlation coefficients dZ∗
i,tdZ

∗
j,t = ρijdt, for i = 1, 2, 3, v and

i 6= j and νi(c) = EQ[e
cJi,t]. For the distribution of the jump sizes defined above,

ν1(c) =
ωu

ωu − c
, (4.7a)

ν2(c) =
ωd

ωd + c
, (4.7b)

ν3(c) = ec
2σ2

j /2. (4.7c)

4.2 Pricing Derivatives

4.2.1 Futures Prices

Given the above risk-neutral dynamics of the model we can price a number of

derivatives with semi-analytical formulas. For commodity markets, the main traded

assets are futures contracts. For a futures contract which matures at time T , it is

known that the futures price is the expected future spot price under the risk neutral

measure (Cox et al. (1981)), i.e.

F (t, T ) = EQ

[
ST |Ft

]
, (4.8)

where Ft is the information set at time t. As the model above is an exponen-

tially affine jump-diffusion model, the solution to the futures price has the following

form32,

F (t, T ) = exp
(
A(τ) + B(τ) ·Xt

)
, (4.9)

32For instance, see Duffie et al. (2000)
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where τ = T − t and B(τ) = (B1(τ), B2(τ), B3(τ), Bv(τ))
′. In order to determine

the solution to the futures price, we first state the generalized Itô’s lemma for

multidimensional jump-diffusion processes.

Let Xt = (X1,t, ..., Xd,t) be a d-dimensional jump-diffusion process defined on the

probability space (Ω,F ,P) and is given by the following equation

dXt = µ(t, Xt)dt+ σ(t, Xt)dWt + J(t, Xt)dNt, (4.10)

where µ : [0, T ] × Rd → Rd vector, σ : [0, T ] × Rd → Rd×d, Wt is d-dimensional

standard Brownian motion and Nt is a d-dimensional Poisson process with jump

sizes J(t, Xt). Then for any C1,2 function f : [0, T ] × Rd → R, the process Yt =

f(t, Xt) can be represented as,

dYt =
∂f

∂t
(t, Xt)dt+

d∑

i=1

∂f

∂Xi

(t, Xt)µi(t, Xt)dt+

d∑

i=1

∂f

∂Xi

(t, Xt)σi(t, Xt)dWi,t

+
d∑

i,j=1

1

2

∂2f

∂Xi∂Xj

(t, Xt)σi(t, Xt)σj(t, Xt)
′dt

+
d∑

i=1

[
f(t, Xt− +∆Xi,t)− f(t, Xt−)

]
dNi,t,

(4.11)

where µi(t, Xt) is the ith element of µ(t, Xt) and σi(t, Xt) is the ith row of σi(t, Xt).

Let Ft ≡ F (t, T ). Applying the generalized Itô’s lemma to the futures price in (4.9)

and using the SDE in (4.5) gives

dFt =

[
∂F

∂t
+

∑

i=1,2,3,v

∂F

∂Xi

(µ∗
i + κ∗

iXi,t) +
1

2

∑

i,j=1,2,3,v

∂2F

∂Xi∂Xj

Vtσij

]
dt

+
∑

i=1,2,3,v

∂F

∂Xi

σidZ
∗
i,t +

∑

i=1,2,3

Ft−

(
exp{Bi(τ)Ji,t} − 1

)
dNi,t,

(4.12)
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where µ∗
i denotes the ith element of µ∗ in (4.5).

Since futures contracts cost nothing to enter, to preclude arbitrage opportunities,

the futures price must be a martingale under the risk neutral measure. Noting that

∫ t

0

[
exp{Bi(τ)Ji,s} − 1

]
dNi,s −

∫ t

0

λi

[
νi
(
Bi(τ)

)
− 1

]
ds,

is a martingale and setting the drift of the futures price to zero in (4.12) leads to

the following partial differential equation (PDE) for the futures price

A′(τ) +
∑

i=1,2,3,v

B′
i(τ)Xi,t +

∑

i=1,2,3,v

Bi(τ)(µ
∗
i + κ∗

iXi,t)

+
1

2

∑

i,j=1,2,3,v

Bi(τ)
2Vtσij +

∑

i=1,2,3

λi

[
νi
(
Bi(τ)

)
− 1

]
= 0,

(4.13)

Collecting terms in (4.13), the futures price must satisfy the following system of

ordinary differential equations,

B′
1(τ) = − κ∗

1B1(τ), (4.14a)

B′
2(τ) = − κ∗

2B2(τ), (4.14b)

B′
3(τ) = 0, (4.14c)

B′
v(τ) = − Bv(τ)κ

∗
v +

1

2

(
B1(τ)

2σ2
1 + B2(τ)

2σ2
2 +B3(τ)

2σ2
3

+Bv(τ)
2σ2

v + 2B1(τ)B2(τ)σ12 + 2B1(τ)B3(τ)σ13 + 2B1(τ)Bv(τ)σ1v

+ 2B2(τ)B3(τ)σ23 + 2B2(τ)Bv(τ)σ2v + 2B3(τ)Bv(τ)σ3v

)
,

(4.14d)

A′(τ) =−B1(τ)α1 −B2(τ)α2 +B3(τ)µ
∗
3 +Bv(τ)κ

∗
vθ

∗
v + λ1

[
ν1(B1(τ))− 1

− B1(τ)(ν1(1)− 1)
]
+ λ2

[
ν2(B2(τ))− 1− B2(τ)(ν2(1)− 1)

]

+ λ3

[
ν3(B3(τ))− 1−B3(τ)(ν3(1)− 1)

]
,

(4.14e)

with boundary conditions, A(0) = 0 and B(0) = (1, 1, 1, 0)′. Although the solutions
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B1(τ) = e−κ∗

1τ , B2(τ) = e−κ∗

2τ , B3(τ) = 1 can be found easily, the ODE for Bv(τ) is

of the Ricatti type. As the coefficients in the ODE for Bv(τ) are non-constant and

depend on τ , there is no known closed-form solution for Bv(τ) and subsequently

A(τ). However, there are efficient methods for finding numerical solutions to the

two ODE’s such as Runge Kutta methods. This is the approach taken here for

estimating the solutions to both futures and options prices.

For the nested Gaussian three-factor model and jump-diffusion model with no

stochastic volatility, the futures price does have a closed form solution. This is

shown in Appendix 4.A.

4.2.2 European Options on Futures

We now derive expressions for the price of European put and call options under

the SVJ model. Consider an European call option on a futures contract where the

futures contract expires at time TF and the option expires at time T , T < TF . The

dynamics of the futures price process under the risk-neutral measure can be derived

using the generalized Itô’s lemma as,

dF (t, TF )

F (t, TF )
=
√

Vt

(
B1(τF )σ1dZ

∗
1,t +B2(τF )σ2dZ

∗
2,t +B3(τF )σ3dZ

∗
3,t +Bv(τF )σvdZ

∗
v,t

)

+
(
exp

{
e−κ∗

1τJ1,t

}
− 1

)
dN1,t − λ1

( ωu

ωu − e−κ∗

1τ
− 1

)
dt

+
(
exp

{
e−κ∗

2τJ2,t

}
− 1

)
dN2,t − λ2

( ωd

ωd + e−κ∗

2τ
− 1

)
dt

+
(
eJ3,t − 1

)
dN3,t − λ3

(
eσ

2
j /2 − 1

)
dt,

(4.15)

where τF = TF − t. As it is easier to deal with the log-futures price when calculating

option prices, we set Yt = logF (t, TF ). Again, using the generalized Itô’s lemma,
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the dynamics of Yt is given by the following SDE,

dYt =
(
A′(τF ) + B′(τF )Xt

)
dt+B(τF ) · dXt− + (Yt − Yt−)dNt

= −1

2
VtσF (τF )

2dt+
√

Vt

(
B1(τF )σ1dZ

∗
1,t +B2(τF )σ2dZ

∗
2,t +B3(τF )σ3dZ

∗
3,t

+Bv(τF )σvdZ
∗
v,t

)
+ e−κ∗

1τFJ1,tdN1,t − λ1

(
ωu

ωu − e−κ∗

1τF
− 1

)
dt

+ e−κ∗

2τFJ2,tdN2,t − λ2

(
ωd

ωd + e−κ∗

2τF
− 1

)
dt+ J3,tdN3,t − λ3

(
eσ

2
j /2 − 1

)
dt,

(4.16)

where

σF (τF )
2 = B1(τF )

2σ2
1 +B2(τF )

2σ2
2 +B3(τF )

2σ2
3 +Bv(τF )

2σ2
v

+ 2B1(τF )B2(τF )σ12 + 2B1(τF )B3(τF )σ13 + 2B1(τF )Bv(τF )σ1v

+ 2B2(τF )B3(τF )σ23 + 2B2(τF )Bv(τF )σ2v + 2B3(τF )Bv(τF )σ3v,

(4.17)

Using the risk-neutral pricing framework, the price of the European futures call

option at t maturing at T is given by the following expectation under the risk-

neutral measure,

c = EQ

[
e
∫

T

0
rsds(F (T, TF )−K)+|Ft

]
, (4.18)

where rt denotes the instantaneous interest rate at time t. As it is assumed that

interest rates are independent of the asset price under this modelling framework33,

the bond prices can be taken out of the expectation and we can represent the option

price as,

ct = P (t, T )EQ

[
(F (T, TF )−K)1F (T,T

F
)>K|Ft

]

= P (t, T )
(
EQ

[
F (T, TF )1F (T,T

F
)>K|Ft

]
−KEQ

[
1F (T,T

F
)>K|Ft

])
, (4.19)

33This is a reasonable assumption for commodity markets (including the crude oil market) since
the volatility of interest rates has been found to be very small compared to the volatility of spot
commodity prices by e.g. Schwartz (1997) and Casassus and Collin-Dufresne (2005).
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where P (t, T ) is the value of a zero-coupon price maturing at time T . This expres-

sion can be evaluated by Fourier inversion of the characteristic function. Computing

option prices by fourier inversion was introduced by Heston (1993) for stochastic

volatility models and has been further expanded by Duffie et al. (2000) to accom-

modate general affine jump-diffusion models with jumps and stochastic volatility.

A similar approach is used here given that the SVJ model is also an affine jump-

diffusion model. This requires deriving the characteristic function for the futures

price (or equivalently the log futures price) in the expectations above. The charac-

teristic function for the log futures price maturing at time TF is defined as

φ(logF (t, TF ), Vt, t, T ; u) = EQ

[
eiu logF (T,TF )|Ft

]
, (4.20)

where i =
√
−1. From the transform analysis in Duffie et al. (2000), the characteris-

tic function φ(logF (t, TF ), Vt, t, T ; u), for the log-futures price Yt, has the following

functional form

φ(Yt, Vt, t, T ; u) = exp
{
M(τ) +N(τ)Vt + iuYt

}
, (4.21)

where τ = T − t and with the boundary condition φ(YT , VT , T, T ; u) = eiu logF (T,TF ).

Using a slight abuse of notation by letting φt = φ(Yt, Vt, t, T ; u), the generalized

Itô’s lemma gives the dynamics of φt as

dφt

φt

=
(
−M ′(τ)−N ′(τ)Vt

)
dt+N(τ)dVt + iudYt− +

1

2

(
N(τ)2d〈V 〉t

− u2d〈Y c〉t + 2iuN(τ)d〈Y c, V 〉t
)
+ (φt − φt−)
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=

[
−M ′(τ)−N ′(τ)Vt +N(τ)κ∗

v(θv − Vt) + iuσFv(τF )N(τ) +
1

2

(
N(τ)2σ2

vVt

+ iu(iu− 1)σF (τF )
2Vt

)]
dt+

√
Vt

(
B1(τF )σ1dZ

∗
1,t +B2(τF )σ2dZ

∗
2,t

+ (Bv(τF ) +N(τ))σvdZ
∗
v,t

)
+
(
exp

{
iue−κ∗

1τFJ1,t

}
− 1

)
dN1,t

+
(
exp

{
iue−κ∗

2τFJ2,t

}
− 1

)
dN2,t +

(
exp

{
iuJ3,t

}
− 1

)
dN3,t, (4.22)

where Y c
t denotes the continuous part of Y and

σFv(τF ) = B1(τF )σ1v +B2(τF )σ2v +B3(τF )σ3v +Bv(τF )σ
2
v. (4.23)

Here, σFv(τF ) is the instantaneous covariance of the log-futures price with Vt and

σF (τF )
2 defined by (4.17) is the instantaneous variance of the continuous part of

the log-futures price. Using the fact that the characteristic function is a martingale

under Q so that the drift in (4.22) is zero leads to the following equation for M(τ)

and N(τ),

M ′(τ) +N ′(τ)Vt = N(τ)κ∗
v(θ

∗
v − Vt) + iuσFv(τF )N(τ)

+
1

2

(
N(τ)2σ2

vVt + iu(iu− 1)σF (τF )
2Vt

)
.

(4.24)

Collecting terms and noting that τF = τ +Tf −T = τ + τ̄ , it can be seen that M(τ)

and N(τ) satisfy the following system of ODE’s,

M ′(τ) = N(τ)κ∗
vθ

∗
v + λ1

(
ν1
(
iuB1(τ + τ̄)

)
− 1− iu

(
ν1(B1(τ + τ̄ )− 1

))

+ λ2

(
ν2
(
iuB2(τ + τ̄ )

)
− 1− iu

(
ν2(B2(τ + τ̄)− 1

))

+ λ3

(
ν3
(
iuB3(τ + τ̄ )

)
− 1− iu

(
ν3(B3(τ + τ̄)− 1

))
, (4.25a)

N ′(τ) = −N(τ)κ∗
v +

1

2
N(τ)2σ2

v + iuσFv(τ + τ̄ )N(τ) +
1

2
iu(iu− 1)σF (τ + τ̄)2,

(4.25b)
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with boundary conditions M(0) = 0 and N(0) = 0. This system of ODE’s is

again of the Riccati type. However, similar to the futures price, the coefficients in

the Riccati ODE’s partially depend on the maturity of the option, τ , and so the

solutions to both M(τ) and N(τ) do not exist. Numerical methods are therefore

required to solve for both M(τ) and N(τ) to obtain the characteristic function. For

the nested jump-diffusion model with no stochastic volatility, as with futures prices,

the characteristic function has a closed-form solution. This is also demonstrated in

Appendix 4.A.

European call and put options can then be priced using the Fourier inversion theo-

rem considered by Heston (1993) and expanded by Bakshi and Madan (2000). We

firstly introduce the following well-known result. For a random variable, X , with

density function, f(x) and characteristic function, φ(X ; u) defined by

φ(X ; u) = E
[
eiuX

]
=

∫ ∞

−∞

eiuxf(x)dx, (4.26)

then

P (X > a) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iuaφ(X ; u)

iu

]
du. (4.27)

Using this result and following Bakshi and Madan (2000), the value of a call option

is therefore given by,

ct = P (t, T )(F (t, TF)Π1 −KΠ2), (4.28)

where

Π1 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iu logK−Ytφ(Yt, Vt, t, T ; u− i)

iuφ(Yt, Vt, t, T ;−i)

]
du,
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Π2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iu logKφ(Yt, Vt, t, T ; u)

iu

]
du.

Furthermore, if European put option prices are required then these can be easily

obtained using put-call parity.

4.3 Estimation using Futures Data

In this section, we determine whether incorporating either jumps or volatility im-

proves futures pricing performance in the crude oil futures market. Firstly, the

estimation procedure for the models is introduced where due to the difficulty in

estimating the stochastic volatility jump-diffusion model, only the SV and JD mod-

els are estimated. Next, the data used in the empirical study is described and the

results of the estimation are presented where the impact of stochastic volatility or

jumps on the model dynamics is analysed. This includes determining whether the

extra dynamics improve futures pricing performance as well as whether they are

able to better explain the distribution of crude oil prices. The last part in the sec-

tion looks at the option pricing performance of each model when the option prices

are computed using parameters estimated using futures prices only.

4.3.1 Estimation

Estimating stochastic volatility and jump-diffusion models in continuous-time is an

ongoing area of research in financial modelling. Introducing these features causes

the models to become nonlinear and/or non-Gaussian which complicates estima-

tion. This is especially true for SV models when the volatility factor is governed
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by a square-root diffusion process which is known to follow a non-central chi-square

distribution. Additionally, for multi-factor models such as those used in this study,

there are a large number of parameters, which motivates the need for computation-

ally efficient estimation procedures. Due to this, many studies consider maximum

likelihood estimation procedures which tend to be more computationally efficient

than Bayesian methods such as MCMC whilst still giving reasonable results. A fur-

ther complication with estimating continuous-time models is that data is observed

discretely, which means that the model needs to be discretized to allow estimation.

The simplest and most popular method for discretizing continuous-time models is

the Euler-Maruyama (EM) approach. Whilst the EM scheme has a lower order of

convergence than other schemes, it is simple to implement and the bias tends to be

small when observations are observed at a daily or higher frequency. A few studies

have considered more accurate schemes for estimating continuous-time models in-

cluding SV models and have compared them to the EM procedure. Lamoureux and

Paseka (2009) derived a semi closed-form expression for the joint transition den-

sity of returns and the volatility process under the Heston (1993) model in terms

of a single integral of Bessel functions. They compared their scheme to the EM

scheme and found that although there was some bias when observations were infre-

quently sampled (> weekly), the discretization bias resulting from EM discretiza-

tion was small when sampling at a daily or higher frequency. Äıt-Sahalia (2002)

derived an approximate analytical expression for the maximum likelihood estima-

tor (MLE) for discretely sampled continuous-time models. Although his approach

clearly outperformed the EM scheme for parameter estimation, the bias was not

large34. Johannes et al. (2009) found that using EM discretization on stochastic

volatility jump-diffusion models with infrequently sampled data (> weekly) results

34Aı̈t-Sahalia (2002) found that his procedure was highly accurate to within a number of decimal
places compared to a set of true ML parameter values. This was much better than estimation
using EM, although EM was still accurate to within a couple of decimal places of the true ML
parameter values.
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in poor detection of jumps and daily or higher observations are required. They also

found that the use of data augmentation35 substantially reduces discretization bias

on weekly or lower frequencies. However, for daily or higher frequencies, there is no

economic difference in the filtering results when data augmentation is applied over

no augmentation. Hence from these studies of both stochastic volatility and jump-

diffusion models, the use of an EM discretization is sufficient for daily or higher

frequencies. The size of each time-step for observations is therefore set to a daily

frequency with the assumption that the size of each time-step is ∆t = 1/252. This

assumes a year consists of 252 trading days.

Using an EM discretization, the model is cast into a state space form. As mentioned

in previous chapters, the state space model consists of a state transition equation

which maps the state variables and errors to future states; and a measurement

equation which relates the states to the observations. Although we present the

state space form for the SVJ model here, only the nested models will be considered

for estimation, namely the SV, JD and Gaussian models36. For the state transition

equation, (4.3) can be discretized using the EM procedure as follows,

Xt = Xt−1 + (µ+ κXt−1)∆t +
√
Vt−1∆tǫt + Jt∆Nt, ǫt ∼ N(0,ΣΣ′), (4.30)

where µ, κ, Σ and Jt come from (4.3), ǫt is a R4 conditionally Gaussian random

variable with mean 0 and variance ΣΣ′, Nt is a R4 Poisson process and ∆Nt =

Nt −Nt−1.

For the measurement equation, as more maturities are observed than state vari-

ables to be estimated, the futures prices are assumed to be observed with er-

ror. To help detect any model misspecification, it is assumed that the errors

35Johannes et al. (2009) describe data augmentation as simulating prices between observations
during filtering to reduce discretization bias.

36The SVJ model is estimated later using options data.
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are modelled as AR(1) Gaussian errors similar to the previous chapter. Letting

Yt = (logF (t, t+ T1), . . . , logF (t, t + TN))
′, the observations and states are related

through the following expressions,

Yt = At +BtXt + et,

et = φet−1 + νt,

(4.31)

where At = (A(T1 − t), . . . , A(TN − t))′, B = (B(T1 − t), . . . , B(TN − t))′, νt are

RN serially uncorrelated N(0, Ht). For simplicity it is assumed that φ is the same

for all contracts and that the measurement errors are uncorrelated such that Ht =

diag(s21, . . . , s
2
N). To accommodate the AR(1) measurement errors in the state space

model, they must be placed in the state equation. This requires a slight modification

to the state space model with the state variable defined as xt = (X1,t, X2,t, X3,t, Vt,

ǫt)’ and the state transition equation as

xt = Ttxt−1 + ct + ηt, (4.32)

where Tt =



1− κ∆t 0

0 φ


, Tt ∈ R(4+N)×(4+N), ct = (µ∆t, 0)′, ct ∈ R4+N and

ηt = (ǫt, νt)
′, ηt ∈ R(4+N).

Due to the nature of the nonlinearity introduced by the SV model, it is difficult

to implement more efficient maximum likelihood procedures such as the MCL pro-

cedure37 or the smooth particle filter due to the multi-dimensional model. Also,

given the number of parameters to be estimated and the desire for computational

efficiency, the choice was made to use a quasi-maximum likelihood (QML) proce-

dure to estimate the stochastic volatility model. Under this procedure, although the

distribution of each state variable depends on the volatility factor Vt, it is assumed

37However, the MCL procedure is used to estimate the jump-diffusion model with no stochastic
volatility.

132



that the state variables are conditionally Gaussian. This assumption means that

the likelihood function can be estimated using the Kalman filter recursions which

were outlined in Chapter 1, Section 1.2.

Whilst this approach is computationally efficient, the resulting maximum likelihood

estimator is the minimum linear mean-squared estimator (rather than the minimum

mean-square estimator) and is inconsistent. A modification is also needed to be ap-

plied to the Kalman filter recursions in order to incorporate the stochastic volatility

factor. As the covariance matrix of the state errors are assumed to depend on Vt−1,

the covariance matrix must be updated during each time step. This is essentially

the same as applying the extended Kalman filter (EKF) although in this case the

approach is specific to this model. For brevity, we do not include the EKF recur-

sions for general nonlinear state space models here, although it requires only minor

modifications to the standard linear Kalman filter by linearising the model through

a first-order Taylor expansion of the state space model. Also, an issue with making

a Gaussian assumption for Vt is that the Kalman filter equations can result in a

negative value for Vt despite the parameter restrictions in place. In cases where Vt

becomes negative, Vt is set to −Vt to ensure that it is both positive and non-zero38.

Although the use of QML results in biased estimates, studies in the term structure

literature tend to suggest that the bias is small when estimating the square-root

diffusion process using QML (e.g. Duan and Simonato (1999) and Chen and Scott

(2003)). Also, when incorporating the stochastic volatility factor in the state equa-

tion, the Kalman filter has been found to perform reasonably well in practice for

Heston-type volatility models (e.g. Bibkov and Chernov (2009) and Trolle and

Schwartz (2009) among others). Based on these studies, there is no reason to be-

lieve that a large bias in the estimator exists as a result of using QML.

38This is only an issue when Vt approaches 0. For the parameters estimated using the crude oil
futures data, Vt was never close to zero or became negative and so this was not an issue.
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As a check, a small finite-sample study was conducted on the QML procedure based

on an EM discretization of the model described by (4.1) and the corresponding

futures price given by (4.9) and (4.14a). The study consists of simulations of the

state variables and futures prices with maturities of up to 2 years and uncorrelated

normally distributed measurement errors. The length of each time series was set to

2500 daily observations and a cross-section of 7 futures contracts with maturities of

1, 3, 6, 9, 12, 18 and 24 months. A total of 400 simulations were conducted using

parameters set close to the parameters estimated from the real data set. The model

parameters were then estimated using the QML procedure for each simulated data

set using a range of starting values for the parameters.

Table 4.1

Finite Sample performance of the QML estimator

This table reports the estimation results for simulations of the model given by (4.30) to produce

a cross-section of futures prices with measurement errors given by (4.31). Each simulation

consists of 2500 daily observations and 400 simulations were conducted. The parameters used

to generate the simulations are listed in the rows labelled “True”. The table also lists the mean

parameter estimates based on QML estimation of each simulated sample path and the root

mean squared error (RMSE) of the estimated parameters from the true parameters.

Parameter True Mean RMSE Parameter True Mean RMSE

κ∗
1 2.0000 1.9980 0.0263 ρ12 −0.1000 −0.1001 0.0169

α1 0.1000 0.0898 0.0322 ρ13 0.0000 0.0021 0.0146

σ1 0.2500 0.2505 0.0101 ρ1v 0.2000 0.1995 0.0132

κ∗
2 1.0000 1.0009 0.0159 ρ23 0.0000 −0.0010 0.0133

α2 0.0500 0.0404 0.0286 ρ2v 0.1000 0.0985 0.0161

σ2 0.2000 0.2000 0.0091 ρ3v 0.1500 0.1472 0.0116

µ3 0.0500 0.0504 0.0163 s1 0.0010 0.0010 0.0001

µ∗
3 −0.0500 −0.0438 0.0139 s2 0.0010 0.0010 0.0000

σ3 0.3000 0.2892 0.0237 s3 0.0010 0.0010 0.0000

κ∗
v 3.0000 2.9914 0.0998 s4 0.0010 0.0010 0.0000

θ∗v 1.0000 1.0027 0.0312 s5 0.0010 0.0010 0.0000

θv 1.0000 1.0001 0.0330 s6 0.0010 0.0010 0.0000

σv 0.5000 0.4819 0.0431 s7 0.0010 0.0010 0.0000

The results of the finite-sample performance are reported in Table 4.1. Overall the
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bias was found to be quite small for most of the parameter estimates. The means

for most parameters are close to the true parameter values except for some of the

risk premium parameters. The RMSE of the parameters are also small relative to

the values of the parameters. Hence, these results suggest that it is reasonable to

use the QML procedure for parameter estimation of the SV model.

Additionally, for the jump-diffusion model with no stochastic volatility, estimating

the model via the MCL procedure is possible if it is assumed that the state variables

are uncorrelated (i.e. ρij = 0, i 6= j). The approach was used in Dempster et al.

(2008) and the same approach is used here. Details of the implementation for the

jump-diffusion model can be found in Appendix 4.B.

As we have introduced the jump-diffusion and stochastic volatility model as an ex-

tension to the long/short three factor model, we compare the three specifications,

the Gaussian, JD and SV models. To estimate the parameters, the likelihood func-

tion is maximized in the same manner as before using the Kalman filter recursions

outlined in Chapter 1 and a BFGS optimization procedure provided in Matlab. The

standard errors are computed using (2.11) in Chapter 2 which gives a consistent es-

timate of the standard errors for the QML procedure. Also, to compute the futures

prices, numerical solutions to the ODE’s in equation (4.14a) are needed. These are

computed using the ode45 function in Matlab which implements a Runge-Kutta

(4,5) method for solving the ODE’s. For the SV model, there are 22 parameters

related to state variables to be estimated and for the jump-diffusion model with no

stochastic volatility and uncorrelated state disturbances, there are 16 parameters.

Also, as the jump-diffusion model does not include correlations between the three

factors, only the Gaussian and SV model are nested specifications. However, com-

parisons can be made between all three models through the model pricing errors

and the Akaike and Bayesian (Schwartz) information criterion (or AIC and BIC)
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values.

4.3.2 Data

The data used for estimation consists of daily observations of the West Texas In-

termediate (WTI) crude oil futures traded on the New York Mercantile Exchange

(NYMEX). The data spans the period from January 2000 - March 2009 giving a to-

tal of 2200 observation dates. The contract maturities chosen include the following:

1, 3, 6, 9, 12, 18 and 24 month contracts giving a total of 7 different maturities.

Contracts with longer maturites were also available, however only contracts with

up to two years to maturity were trading on a daily basis with sufficient volume39.

Also, we only include contracts with at least 10 trading days before the last day of

trading in each contract for the same reasons as in the previous chapter. This is

because during the final week of trading in futures contracts, open interest rapidly

declines. With daily data, the microstructure effects of this is likely to be quite

high and to mitigate these effects, these observations are not included for analysis.

As the data consists of observations during the “global financial crisis” (GFC), a

sub-sample prior to the peak of the crisis in September 2008 is also considered.

We provide some descriptive statistics of the annualized daily futures returns in

Table 4.2. As expected for futures returns, the mean of the returns for all contracts

are close to zero, although the standard errors are quite high indicating that futures

returns are highly variable. The “Samuelson effect” is evident in daily futures

returns as variance decreases with increasing maturity. The returns also exhibit

negative skewness and leptokurtosis which suggests that they are non-normal and

39Although all contract settlement prices were adjusted daily, these maturities were found to be
traded frequently enough to be used in the analysis for daily observations.
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have fat tails. This is mostly indicated by the kurtosis of returns, which is quite high

for all contracts. This gives some indication that incorporating jumps or stochastic

volatility may improve modelling performance.

Table 4.2

Descriptive Statistics for Futures Returns, 2000-2009

This table provides descriptive statistics for the annualized daily continu-
ously compounded returns (in percentage points) of crude oil futures contracts
traded on NYMEX during the period Jan 2000 - Mar 2009.

Contract Mean Maturity Mean Variance Skewness Kurtosis

(in months) (SE) (SE) (SE) (SE)

1 0.84 0.52 40.40 -0.21 6.43

(0.84) (48.14) (0.05) (0.10)

2 2.85 0.59 35.64 -0.26 5.59

(0.74) (37.47) (0.05) (0.10)

3 5.87 0.69 31.74 -0.27 5.94

(0.66) (29.72) (0.05) (0.10)

4 8.89 0.75 29.50 -0.22 5.86

(0.62) (25.68) (0.05) (0.10)

5 11.90 0.80 27.94 -0.21 5.86

(0.58) (23.02) (0.05) (0.10)

6 17.94 0.87 26.05 -0.21 5.83

(0.54) (20.02) (0.05) (0.10)

7 23.99 0.91 25.75 -0.17 6.91

(0.54) (19.56) (0.05) (0.10)

4.3.3 Empirical Results

Parameter Estimates

Table 4.3 report the parameter estimates for the Gaussian, JD and SV models for

the full-sample and the sub-sample period from 4 January 2000 - 29 August 2008.

We will mainly concentrate on the spot price parameters for the full-sample but will

briefly comment on whether the GFC has impacted the parameters much. Overall,

most of the parameter estimates are significant for all of the models apart from
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some of the risk premium terms. The risk-neutral mean-reversion parameters for all

models seem to be fairly similar and as the futures term structure is mainly driven

by these parameters, it suggests that the introduction of non-Gaussian dynamics

does not affect the futures term structure much.

If we consider the risk-premium parameters, although the significance can be estab-

lished for some of the constant MPR parameters, most of the time-varying MPR

parameters are insignificant. A likely explanation for this is that using daily ob-

servations introduces additional noise in the spot price dynamics which makes it

difficult to accurately estimate the risk-premium parameters. Although β1 and β2

were very different between each of the models, the insignificance of most of these

parameters means meaningful comparisons cannot be made. However, the results do

give some indication that the levels of mean-reversion differ under each of the model

specifications. The most notable differences between the models is the real-world

mean-reversion of X1,t as β1 is significant for the JD and SV models with a value

of 4.14 and -1.84 respectively. This does suggest that the behaviour of spot prices

differs for each model under the real-world measure and that they imply different

dynamics of risk premiums. Whilst this does pose some interesting questions with

regard to the impact of jump risk and volatility risk on risk premiums, this is not

the focus of this study and is left for future research consideration.

Turning to the jump-diffusion model, the parameters for all of the jumps are signif-

icant indicating that jumps are exhibited by spot prices. For the full sample, the

frequency of short-term up jumps is around 8.6 per year, 18 per year for short-term

down jumps and 48.9 per year for the long-term jumps. However, although there

are a fairly large number of jumps exhibited, these jumps tend to be quite small,

the mean jump sizes are 2.8% for J1, 2% for J2, and 2.4% for J3. Although the

down jump size are smaller on average than the up jumps, the down jumps occur
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on average 2 times as often. This is consistent with the skewness exhibited by the

futures returns. Also, the jump parameters for the sub-sample prior to September

2008 were not substantially affected apart from the long-term jumps. This suggests

that the GFC caused an increase in large parallel shifts of the futures curve.

Examining the stochastic volatility factor, all of the volatility parameters are sig-

nificant except for the long-term mean under the real-world measure, θv. For the

volatility parameter values under the risk-neutral measure, volatility exhibits quite

strong mean-reversion with κ∗
v = 6.05. However, under the real-world measure, the

mean-reversion is much lower with a value of κv = κ∗
v − βv = 0.57. This suggests

that volatility is quite persistent with low mean-reversion. An implication of the

high value of βv is that there are significant volatility risk premiums present. This

is also supported by the value of αv = κvθv − κ∗
vθ

∗
v = −0.40 which suggests negative

volatility risk premiums are present. The volatility of volatility parameter, σv is

quite high with a value of 1.166 which suggests that volatility does tend to vary

substantially over time. However, this value does appear to be inflated as a result

of the GFC as the value of σv estimated on the sub-sample period is only 0.72.

It is also worth commenting on the correlation parameters for the SV model. The

parameter estimation results show that there are significant correlations between

the spot price factors and the volatility factor. It has been suggested in the liter-

ature (e.g. Geman (2005), pg. 105) that contrary to the behaviour of equities, an

inverse “leverage effect” is present in commodity markets where volatility is posi-

tively related to the spot price. This comes from the view that higher commodity

prices negatively impact the world economy. From a simple calculation, the instan-

taneous correlation coefficient of the spot price with volatility can be calculated as

0.06. This suggests that there is a very weak inverse leverage effect, although it is

suspected that the behaviour of crude oil prices during the peak of the GFC may
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have affected this result. During the peak of the GFC, commodity prices (along

with all other assets) worldwide collapsed when volatility was extremely high which

implies a negative correlation between volatility and prices. However, the instanta-

neous correlation of volatility and spot prices for the sub-sample period of January

2000 - August 2008 is only slightly higher with a value of 0.12. As the correlation

is quite low, this does not provide strong evidence for the existence of an inverse

leverage effect in crude oil prices.

It is possible to see how well the SV model is able to capture the volatility of futures

prices. A plot of the estimated volatility for the nearby futures contract can be found

in Figure 4.1. In the figure, historical volatility is computed using the discrete-time

SV model considered in Chapter 240. The volatility of the nearby futures contract

under this chapter’s SV model is given by (4.17). The plot shows that the estimated

volatility tracks historical volatility reasonably well, although the fit appears to be

much better during the second half of the sample from about 2005 onwards. The

sample correlation between historical volatility and the estimated volatility is about

0.73 which supports what can be observed in the plot. This demonstrates that

the model dynamics may be sufficient to capture volatility in the crude oil futures

market although it is unclear whether a more accurate estimation procedure than

QML or a better specified model will improve the estimates.

These results are somewhat contradictory to Hughen (2010), who found little cor-

relation between the volatility of the nearby crude oil futures contract and the

estimated volatility of the SV model in his paper. He used this result to provide

40The most appropriate measure for daily volatility is arguably a realized volatility estimate.
However, as intra-daily data was not available a compromise is the volatility estimated under
the discrete-time SV model of Chapter 2. Even though we do not know what the true model
of volatility is, from the analysis in Chapter 2, the discrete-time model was found to estimate
crude oil volatility reasonably well. Comparisons (not reported) with other volatility measures
such as GARCH or rolling window measures gave similar volatility estimates. Hence, it seems
reasonable to assume that historical volatility can be represented by the volatility estimated under
the discrete-time SV model.
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evidence of “unspanned stochastic volatility” (USV), a term first introduced in the

term strucutre literature. Unspanned stochastic volatility can be defined as markets

which can not be completed using futures (bonds) only so that derivatives can not

be perfectly replicated using futures (bonds) in commodity (fixed income) markets.

However, poor correlation between the estimated volatility and historical volatility

does not necessarily imply USV in this case. Firstly, Hughen (2010) only used two

spot price factors to price futures contracts. As demonstrated in the previous chap-

ter, two spot price factors are not sufficient for modelling the futures term structure.

This means that the volatility factor in Hughen (2010) was used in a dual role as

a substitute for an additional spot price factor for futures pricing and to model

volatility. This is in contrast to this study where three spot price factors are used to

capture the futures term structure, leaving the volatility factor to mainly capture

volatility. In fact, when Hughen (2010) used a USV version of the model where

the volatiltiy factor has no impact on futures pricing, he found a similar correlation

coefficient (0.74 for historical volatility) to what was observed here. However, this

does not preclude that USV exists in the crude oil market, although we do not deal

with USV directly in this study. This issue is discussed more in the next section in

relation to option pricing.

Model Performance and Futures Pricing

We firstly compare the futures pricing performance based on the estimation results

above. Although the SV and Gaussian models are nested, the JD model is not nested

with the other models, meaning direct comparison of likelihood values is limited.

However, we can compare the Akaike and Bayesian (Schwartz) Information Criterion

or AIC and BIC values for all three models. These values are reported in Table 4.4

where it can be seen that the SV model has the lowest values for both metrics by

142



2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
n
n
u
al

iz
ed

 V
o
la

ti
li

ty

 

 

Historical Volatility
Estimated Volatility

Figure 4.1

Plot of historical volatility and estimated volatility on the nearby futures contract,
Jan 2000 - March 2009

a substantial margin, followed by the JD model. This suggests that incorporating

either stochastic volatility or jumps in the dynamics improves the goodness of fit.

A likelihood ratio (LR) test between the SV model and the Gaussian model is

also possible41. The LR test is conducted for the restricted Gaussian model and

the unrestricted SV model where the restricted model has 8 parameter restrictions.

The LR test statistic given the log-likelihoods in Table 4.3 is 1174.18 which is much

larger than the χ2
0.05,8 value of 15.51. Hence the hypothesis that there is no stochastic

volatility is strongly rejected.

To compare the futures pricing performance of each model, the in-sample estimates

of the futures prices are obtained from the filtered values of the state variables for

41Whilst the JD model could possibly be compared using the Vuong (1989) LR test for non-
nested models, it should be noted that the MCL procedure does not provide the marginal likeli-
hoods. This means it is not possible to conduct the LR test. Thus we only consider the informal
comparisons for the JD model.
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each model. The daily root mean-squared errors (RMSE)42 of each model are then

computed from the cross-section of log-futures prices. The values in Table 4.4 report

the mean of the daily RMSE values. Interestingly, the Gaussian model is able to

provide the best fit to the futures prices, although there is not a large difference

between each of the three specifications. This result is not completely unexpected

given that the the extra dynamics in the jump-diffusion and SV models have little

effect on the first moment of the spot price. Hence, futures prices will tend to be

similar despite the addition of non-Gaussian features. However, it is surprising that

the Gaussian model performs the best. This indicates that whilst the underlying

spot price dynamics are better explained by the non-Gaussian elements, this does

not translate into better futures pricing performance.

It should also be noted that φ is quite high and similar for each model. All three

models have an estimate around 0.97 indicating that the models are misspecified.

Whilst this is of some concern, it should be noted that the high correlation in

measurement errors can partly be explained by the noise in daily futures prices.

This tends to be mitigated over weekly or monthly observations43. Also, given that

the daily RMSE is less than 1% for all models, this does not seem to be a major

issue as the models are still able to fit the futures curve well.

In summary, the improved performance of the two extended models, as shown by

the AIC and BIC values and the LR test, is most likely due to their being able

to better explain the distributional properties of the underlying state variables.

Hence, although futures prices fit better under the Gaussian model, the distribu-

tional properties of the state variables implies that a Gaussian model is insufficient

for modelling spot prices. This may also be an issue in relation to pricing more

42The daily RMSE is calculated from the cross-section of observed and estimated futures prices
each day.

43This is the case in the previous chapter where the three-factor Gaussian model exhibits much
lower values of φ when weekly observations were used.
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complex derivatives such as options where the Gaussian model is likely to perform

poorly compared to the other models. This leads to the next section where we

compare the option pricing performance of the models.

Table 4.4

Model Errors on Futures Contracts

This table reports the AIC and BIC values for each model specification for the full sample and the
sub-sample period. RMSE denotes the mean of the daily root-mean squared error of the difference
between the observed log futures prices and the estimated log futures prices. The values of the
errors are reported in percentage points.

Jan 2000 - Mar 2009 Jan 2000 - Aug 2008

Model AIC BIC RMSE AIC BIC RMSE

Gaussian −135319.19 −135150.10 0.67 −129561.65 −129393.95 0.58

JD −135761.08 −135568.92 0.79 −129849.76 −129659.18 0.70

SV −136159.01 −135920.74 0.75 −130131.55 −129895.24 0.68

Option Pricing

The options data used in the analysis consists of daily settlement prices of call and

put options on WTI crude oil futures contracts traded on NYMEX and accessed

through Datastream. However, only data from 30 August 2006 was available on

Datastream. Also, on inspection of the data obtained, it was found that there was a

lot of missing data for contracts maturing in September 2008 - December 200844. As

a result of this, only data from 30 August 2006 - 1 August 2008 is considered. This

means that the options data set does not span the the same length as the futures

data, although the sample lies within the futures data sample. Also, since there are

a large number of option prices for a range of strike prices available, only a subset

of the options data is used. The options are chosen at each date according to their

maturity and moneyness, where moneyness is defined as the strike price divided by

the futures price. This means for a given strike price K and futures price Ft, call

44Most put option contracts were missing for September - December options and all call option
data was missing for these contracts.
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options are at-the-money (ATM) when K = Ft, in-the-money (ITM) when K < Ft

and out-of-the-money (OTM) when K > Ft and vice-versa for put options. The

moneyness categories chosen in this empirical study are 0.8, 0.85, 0.9, 0.95, 1, 1.05,

1.1, 1.15 and 1.2. The options closest to each moneyness category at each date and

maturity are chosen to ensure consistency in the comparison over time. As trading

in the options ends three business days before the termination of trading in the

underlying futures contract, the maturity of the options is assumed to occur on the

date when trading ceases. Also, to remain consistent with the futures data set, only

options with at least 10 trading days to maturity are considered.

When comparing option pricing performance, the convention in the literature is to

compare implied volatilities rather than prices as they tend to be more stable across

maturities and strikes. Given that the options are on futures, the Black (1976) im-

plied volatilities are to gauge option pricing performance. Also, the options traded

are of the American type which means there is an early exercise premium that needs

to be accounted for45. In order to estimate the early exercise premium, the implied

volatilities are obtained by inverting the Barone-Adesi and Whaley (1987) Ameri-

can option pricing formula which uses a quadratic analytic approximation46. The

equivalent European option prices were then obtained using the Black (1976) futures

option formula with the estimated implied volatilities. Although other methods for

computing American option prices are available such as binomial/trinomial trees,

the Barone-Adesi and Whaley (1987) approach is chosen as it provides comparable

accuracy to tree methods, is simple to implement and computationally more effi-

cient. Similar approaches are taken by Richter and Sørensen (2002) and Trolle and

Schwartz (2009) using commodity options and Broadie et al. (2007) using equity

options to estimate European futures options prices when only American option

45Although European options have recently begun trading on NYMEX, data was not available
on Datastream and is thus not used in the analysis.

46The approximation is based on the assumption of an asset with a continuous cost of carry.
For futures options, the cost of carry is assumed to be 0.
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prices are available. Although the early exercise premium is assumed to be derived

from a single factor lognormal model, as it is the implied volatilities rather than the

prices that are compared, this approach seems reasonable.

Also, only ATM and OTM options are used in the analysis. There are two reasons

for this. The first reason is that it is a convention in the literature as ATM and

OTM options tend to be more liquid than ITM options. The other reason is due to

Barone-Adesi and Whaley (1987) noting that the American option prices estimated

using their formula are likely to have relatively higher errors for ITM options than

ATM or OTM options. Additionally, the errors from converting to American option

prices are much higher for longer maturity options. Thus only options with up to 8

months to maturity are considered. When filtering the data set taking account of all

of the above considerations, the total number of option prices used in the analysis

is 15,708.

The European call and put options prices used in the analysis are computed using

(4.28) and the characteristic function given by (4.21). For the SV model, we set

λ1 = λ2 = λ3 = 0 and a numerical solution of (4.25) for computing the charac-

teristic function is used to price options. The numerical solution is obtained in

the same manner as for futures prices using a Runge-Kutta method with the ode45

function in Matlab. For the jump-diffusion and Gaussian models, the solution for

the characteristic function of (4.21) is known with N(τ) = 0 and the solution of

M(τ) given by (4.41) in Appendix 4.A. The jump-diffusion model also requires

that we set ρ12 = ρ13 = ρ23 = 0 and for the Gaussian model, we need to set

λ1 = λ2 = λ3 = 0 in (4.41). To compute the option prices, we need to evaluate

the integrals in (4.28). This is also evaluated numerically using adaptive Gaussian-

Kronrod quadrature which is an extension of Gaussian-Legendre quadrature. This

is implemented in Matlab using the quadgk function which uses adaptive quadrature
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based on a Gauss-Kronrod pair (15th and 7th order formulas). The integrals are also

truncated at 1,000 to speed up the calculations47.

Additionally, the option price equations require the price of zero-coupon bonds

(ZCB). To estimate the price of a zero-coupon bond, the yield curve was estimated

using a Nelson and Siegel (1987) scheme and applying the procedure to LIBOR

and swap data of up to 2 years to maturity. The yields for each option maturity

is then interpolated from the yield curves at each time-step to estimate the ZCB

prices. Also, it should be noted that the parameters used to price the options are

inferred from futures price data only. This means that the estimates not only give an

indication of how well each model performs in pricing options, but also whether the

information contained in futures prices can be used to accurately estimate options

prices.

Of the three specifications considered, only the stochastic volatility model provides

additional flexibility when fitting implied volatility surfaces over a range of maturi-

ties. Although the JD model should be able to match implied volatility curves for

single maturities well, this is generally not the case over a range of maturities and

when fitting curves over time. This is because the Poisson processes of the jump

component have stationary increments which makes it difficult to match implied

volatilities for different sets of maturities. Also, both the jump intensity of the

Poisson processes and the volatility of the diffusion component are assumed to be

constant which means it is difficult for the model to match implied volatility curves

over time. Hence, the SV model should be expected to perform much better across

the cross-section of option maturities and strikes for the entire time-series.

47Although higher accuracy can be achieved by integrating to a higher value, the differences
are negligible when integrating to 10,000 for instance. Hence, the integrals are truncated at 1,000
when calculating option prices.
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Table 4.5 reports the root mean-squared errors (RMSE) of the implied volatilities for

each model with the columns ordered by strike and rows ordered by option maturity.

The results demonstrate that there is little distinguishing the models with no model

clearly outperforming any other model over every maturity and moneyness value.

If we compute the RMSE for all options together, then it seems that the jump-

diffusion model performed the best overall with an RMSE of 3.99% followed by

the SV model with 4.20% and 4.71% for the Gaussian model. These results are

supported by Table 4.5, where the Gaussian model prices performed the worst for

most option categories, although it priced options with moneyness < 0.9 the best.

Also, although the SV model priced some options well, it performed poorly for a

number of other options too. The JD model, however, performed fairly consistently

over the entire range although not significantly better than any other models. The

errors for all models also tend to be quite high with most option errors being above

3%. It is clear from these results that the implied volatility curves are not fitted

well using only futures prices for any of the models including the SV model.

There are a few possible reasons for the poor performance of the models in pricing

options when using only futures prices. One possible reason is that option prices

generated using futures price data is akin to using historical volatility to price op-

tions in equity markets using the Black-Scholes-Merton (BS-M) model. The poor

performance when using historical volatility in the BS-M model could possibly be

due to the BS-M model being mis-specified and unable to accurately price options.

This is a likely possibility in this case, given that none of the models were able to

accurately recover option implied volatilities over the entire sample.

Another possibility is that the crude oil futures market exhibits USV. This was

mentioned in the previous section where in this case, it means there are risks in

the options market not spanned by futures contracts. A weakness of the modelling
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Table 4.5

RMSE on Option Prices using Futures Data Only

This table reports the option root mean-squared errors (RMSE) where the errors are defined as
the difference between the actual implied volatilities and the model implied volatilities reported
in percentage points. Options in the table are grouped by moneyness and maturity. The sample
period is from 30 August 2006 - 1 August 2008. The option prices for each model were computed
assuming parameters estimated from futures data only using (4.25) and (4.28).

Moneyness

Maturity 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Gaussian

0-1 mth 9.29 4.60 4.46 6.40 6.73 6.43 5.60 4.86 6.09

1-2 mth 3.88 4.02 5.06 6.25 6.27 5.94 5.38 4.90 4.36

2-3 mth 2.83 3.68 4.59 5.69 5.55 5.02 4.95 4.46 4.30

3-4 mth 2.86 3.20 4.84 4.97 5.11 4.74 4.69 4.45 4.08

4-5 mth 2.74 2.96 3.88 4.78 4.92 4.61 4.48 4.46 4.04

5-6 mth 2.04 2.76 2.94 3.92 4.43 4.76 4.24 4.20 3.88

6-7 mth 1.88 2.41 3.29 4.03 4.22 3.99 4.81 4.10 3.77

7-8 mth 1.98 1.56 2.47 3.03 4.00 3.78 3.49 3.51 4.32

JD

0-1 mth 10.45 5.63 4.20 5.55 5.59 5.33 4.95 5.96 8.73

1-2 mth 5.06 4.20 4.59 5.50 5.15 5.02 4.55 4.60 4.79

2-3 mth 3.60 3.81 4.26 5.16 4.42 3.66 3.94 3.46 4.02

3-4 mth 3.37 2.80 4.68 4.52 3.97 3.04 3.24 3.16 3.40

4-5 mth 3.11 2.58 3.08 4.25 3.91 2.91 2.83 2.84 2.84

5-6 mth 2.58 2.91 2.32 2.92 3.16 2.98 2.55 2.49 2.42

6-7 mth 3.01 2.92 3.41 3.64 3.09 2.46 3.15 2.57 2.21

7-8 mth 3.52 2.47 2.37 2.42 2.78 2.25 2.08 2.13 2.89

SV

0-1 mth 12.48 8.26 5.98 5.70 5.40 5.35 5.32 6.73 8.80

1-2 mth 6.66 5.28 4.90 5.27 4.94 4.78 4.30 4.30 4.59

2-3 mth 4.00 3.88 4.18 4.94 4.16 3.47 3.71 3.35 3.69

3-4 mth 3.13 2.78 4.23 4.19 3.98 3.63 3.54 3.23 3.27

4-5 mth 2.68 2.48 3.44 4.15 4.14 3.53 3.44 3.45 3.13

5-6 mth 1.97 2.62 2.42 3.56 3.96 4.43 3.49 3.47 3.20

6-7 mth 1.84 2.26 3.02 3.77 3.99 3.66 4.81 3.93 3.36

7-8 mth 1.81 1.57 2.80 2.91 4.06 3.65 3.34 3.35 4.49
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approach considered in this study is that it cannot accommodate USV. The model

in Hughen (2010) allows for USV where it is shown that if certain parameter re-

strictions are applied to a suitably specified model, the model can exhibit USV. If

the model in this study is reparameterized, then USV could possibly be accommo-

dated with appropriate parameter restrictions. However this would not be possible

without substantially altering the model dynamics and changing the interpretation

of the state variables. Additionally, a few studies in the term structure literature

found that restricting affine term structure models to accommodate USV results in

worse option pricing performance than the unrestricted versions48.

An alternative approach is considered by Trolle and Schwartz (2009) which does

not require parameter restrictions to accommodate USV. In their approach, they

price commodity derivatives using a HJM framework which models forward curve

dynamics rather than spot price dynamics. The approach is appealing as it allows

for USV naturally whilst still allowing tractable solutions for derivatives prices.

However, the approach does come with some tradeoffs in flexibility compared to the

approach in this study and other studies which directly model spot price dynamics.

For instance, it is restricted in the choice of volatility structures of the forward cost

of carry which allow Markovian dynamics of the spot price. These restrictions mean

that the model may not be able to provide realistic dynamics for spot prices. It also

makes it difficult to allow for jumps in prices which is easily accommodated under

the modelling approach in this study.

Despite the possible presence of USV, this does not imply that option pricing per-

formance of the models is adversely affected. Rather it means that the risk-neutral

dynamics of the volatility process cannot be accurately inferred from futures prices

48For instance, Bibkov and Chernov (2009) estimated two stochastic volatility models to price
eurodollar options, one unrestricted and one restricted to allow for USV. The USV model was
found to perform significantly worse than the unrestricted model when pricing the options.

151



which results in poor option pricing performance. In the next section, the models

are calibrated to fit option prices directly which should give a better gauge of the

option pricing performance of the SVJ model and its nested specifications.

4.4 Estimation using Futures and Options Data

Given the poor options pricing performance in the previous section when using

only futures prices, this section looks at how well the models price options using

a more direct approach. This is achieved by using both futures and options data

to estimate the model parameters. The estimation is conducted using the options

data of the previous section from 30 August 2006 - 1 August 2008 as well as futures

data spanning the same dates. The futures maturity contracts consist of the same

maturities as the previous section with maturities closest to 1, 3, 6, 9, 12, 18 and

24 months. However, only a subset of the options strikes and maturities is used

as estimation is quite computationally intensive due to having to calculate option

prices using Fourier inversion.

The options are chosen from options on data available on the six closest to maturity

futures contracts. For the two closest maturity options, options with moneyness

closest to 0.9, 0.95, 1, 1.05 and 1.1 are chosen to ensure that the implied volatility

smile is recovered. For longer maturities, only ATM options are chosen to reduce

the computational burden and only up to 6 months to maturity. This gives around

14 option prices for each time step to be used for estimation in addition to the 7

futures prices. This gives a maximum total cross-section of around 21 futures and

options prices for each daily observation with a total of 482 daily observations.
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As options prices are nonlinear functions of the stochastic volatility state variable,

Vt, the measurement equation of the corresponding state space model will also be

nonlinear. This means that applying the standard linear Kalman filter when option

prices are present is not appropriate. An alternative is the Unscented Kalman Filter

(UKF) introduced by Julier and Uhlmann (1997) for estimating nonlinear state

space models. The procedure has been used to estimate models using option prices

by Carr and Wu (2007) and Bakshi et al. (2008). It has been found to be superior

to the extended Kalman filter (EKF) for estimating nonlinear models whilst having

comparable computational efficiency. The UKF also does not require computing

Jacobians which is necessary when using the EKF, a generally difficult task for

option prices (or adds to computational complexity if numerically obtained). The

procedure also has the advantage that as option prices for some maturities were not

available for a number of dates, the Kalman filter recursions are still valid and poses

no problem in terms of estimation.

Similar to the previous section, it is the implied volatilities of the option prices

rather than the actual options prices which are used for estimation. However, as

computing options prices is quite computationally expensive49, computing implied

volatilities by inverting option prices is not practical. A much faster alternative

considered by Carr and Wu (2007), Bakshi et al. (2008) and Trolle and Schwartz

(2009) is to divide the option prices by the Black (1976) vega at the actual option

price. As described in Carr and Wu (2007), this essentially converts the options

prices to the implied volatility space via a linear approximation. Dividing the true

and estimated option price by the vega gives an approximation to the difference in

implied volatilities for the two option prices50. This quantity is used in the UKF

49Evaluating options prices requires computing the integrals for Fourier inversion and the ODE’s
in (4.25) which must be solved using numerical methods. This requires multiple evaluations
to estimate both the solutions to the ODE’s and to compute the integrals resulting in a high
computational cost.

50This is shown by Trolle and Schwartz (2009) by using a first-order Taylor series approximation
to the estimated option price. The explanation is as follows. Assume the call option price, C,
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procedure when computing the model errors.

The state space model for estimating the parameters is similar to the one consid-

ered previously in (4.30) - (4.32). However, there are a few differences. The first

difference is that the state variables are assumed to be Gaussian even though jumps

and stochastic volatility are specified. The main reason for this assumption is that

efficient methods for filtering the model such as MCMC or particle filter methods

would be very computationally demanding when also computing option prices. This

assumption allows application of the standard Kalman filter recursions which are

computationally efficient. Also, the main focus in this section is the pricing perfor-

mance of the models rather than estimating the impact of jumps51. Hence, although

this assumption means the maximum likelihood estimator is biased, it is still possi-

ble to determine the pricing performance of the different model specifications. Given

this assumption, the state transition equation is assumed to be

Xt = Xt−1 + (µ+ µj + κXt−1)∆t + ηt, ηt ∼ N(0, Qt), (4.34)

where µ and κ are the same as for (4.30), µj = E(
∑Nt

i=Nt−1
Ji) and Qt = Vt−1∆tΣΣ′+

Var(
∑Nt

i=Nt−1
Ji). Whilst the dependence on the volatility factor is the same as pre-

viously, the mean and variance of the jump terms are also included in the equation,

yet still assuming that ηt is Gaussian.

The other difference in the estimation approach is that it is assumed that the vari-

is a function of its Black (1976) implied volatility, σ, i.e. C = f(σ). Denote the actual option
price by C0, its implied volatility by σ0 and its vega by V = ∂C

∂σ |σ=σ0
. Then a first-order Taylor

approximation around the estimated option price C1 with corresponding implied volatility, σ1 is

C1 ≈ C0 + V(σ1 − σ0) ⇔ σ0 − σ1 = (C0 − C1)/V . (4.33)

Hence the difference in implied volatilities for the two sets of options prices can be approximated
by dividing the difference in the option prices by the Black (1976) vegas.

51More efficient estimation of the model and the dynamics of prices under stochastic volatility
and jumps is left for future research consideration.
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ance of the measurement errors for all futures contracts is the same and the variance

of the measurement errors for all options implied volatilities is the same. The main

reason for this is again for computational reasons as it means that less parameters

need to be estimated. It is also due to options for some strikes and maturities

not being available for each observation and it would be impractical to have a dif-

ferent standard deviation for each option as there are generally over 10 different

options estimated at any given observation. The measurement equation under this

assumption is given by

Yt = h(Xt) + ǫt, N(0, Ht), (4.35)

where h(·) maps the state variables to the vector of futures and options prices

given by Yt ∈ R(Nf,t+No,t), ǫt ∈ R(Nf,t+No,t) are serially uncorrelated N(0, Ht) random

variables and Nf,t and No,t denote the number of observed futures and options

prices at time t respectively. Furthermore, the measurement covariance matrix Ht

is assumed to be diagonal with the standard deviation of the measurement errors

for the futures prices denoted by sf and for the options implied volatilities denoted

by so.

The Unscented Kalman Filter

Generally, the EKF is applied when the observations are a nonlinear function of

the state variables. However, the EKF has been found to perform poorly when the

nonlinearities are severe as it relies on a linear approximation based on only a first

order Taylor approximation of the nonlinear functions. The UKF was introduced by

Julier and Uhlmann (1997) to address some of the issues with the EKF by retaining

the nonlinear relationships of the models whilst using a Gaussian approximation to
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the distribution of the state variable.

The state distribution is specified by a set of deterministically chosen sample points

called sigma points to capture the true mean and covariance of the state variable.

When propogated through the nonlinear filter, the posterior mean and covariance

are accurately estimated up to the 2nd order for nonlinearity and errors are only

incorporated at 3rd or higher orders. The UKF procedure relies on applying an

“unscented transformation” to the state variables enabling the calculation of certain

statistics on the variables that undergo a nonlinear transformation. The motiva-

tion behind the unscented transform is that “it is easier to estimate a probability

distribution than an arbitrary nonlinear function or transformation” (Julier and

Uhlmann (2004)). The details of the UKF procedure for this application are given

in Appendix 4.C.

Similar to the standard Kalman filter, the log-likelihood function for the UKF can

be represented in terms of the prediction error, vt, and its covariance matrix, Ft.

Assuming the errors are normally distributed, the log-likelihood for the state space

model of (4.35) and (4.30) given the parameter set, Θ, is

L(Θ) = −1

2

T∑

t=1

(Nf,t +No,t) log(2π) + |Ft|+ vtF
−1
t v′

t. (4.36)

For both the JD and SV models, the procedure will be a quasi-maximum likelihood

procedure as the transition densities in the state equations rely on a Gaussian ap-

proximation to the non-Gaussian models. Whilst it is questionable for either model

as to whether the approximations are valid, it can be noted that the UKF allows

for some flexibility in fitting the first 4 moments of a distribution and should be

sufficient if the non-Gaussian features are not too severe. Although there are no

studies confirming whether this is the case for these types of models, Carr and Wu
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(2007) used the UKF procedure in an application on currency options where the

model included jumps and square-root processes. They found little bias in their

results, and there is no reason to believe that a large bias exists in this application

given some of the similarities in the model dynamics.

4.4.1 Estimation Results

Firstly, we briefly comment on the parameter estimates and then compare the model

pricing performance. In particular, we will discuss how well the option implied

volatilities are recovered from each of the models. Table 4.6 reports the estimated

parameters for each model and the mean of the daily RMSE of both futures and

option prices for each model. There are a number of features in the table that are

worth commenting on. The results are fairly consistent with the results of Table

4.3 in the previous section. For instance, most parameters are significant at the 5%

level apart from some of the risk premium parameters and most parameters have

the same signs for the corresponding models. Also, the risk-neutral mean-reversion

parameters are quite similar for all models. This result is similar to the previous

section which indicates that the futures curve dynamics do not differ much between

the models. However, the magnitude of most parameters are largely different from

the previous section indicating the different price dynamics of the two samples and

when accounting for option prices.

If we consider the two models with jumps, JD and SVJ, it should first be noted that

as the jumps are not explicitly detected in the estimation process, only their effect

on pricing can be commented on. For the JD model, it appears that both of the

short-term jump factors are largely insignificant for pricing futures and options and

that only the long-term jump factor matters. However, when stochastic volatility
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Table 4.6
Parameter Estimates

This table reports the parameter estimates for the short/long term Gaussian, jump-diffusion (JD) and stochastic
volatility (SV), and stochastic volatility jump models obtained by maximum likelihood using the unscented Kalman
filter. The data consists of futures prices with maturities of approximately 1, 3, 6, 9, 12, 18, and 24 months and
European futures call and put option prices with maturities of 1 to 6 months. AIC and BIC denotes the Akaike
and Bayesian Information Criterion, S.E. denotes the standard errors of the parameter estimates and RMSEf and
RMSEo denote the mean daily RMSE for futures and option prices respectively. The sample period is from 30
August 2006 - 1 August 2008.

Gaussian JD SV SVJ

Parameter Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

κ∗
1 4.0634 (0.0896) 4.0585 (0.0897) 3.9582 (0.0936) 3.8573 (0.0690)

α1 −0.0629 (0.0794) −0.0649 (0.0996) 0.1838 (0.0552) 0.1507 (0.5111)

β1 0.7275 (1.4330) 0.7575 (2.2517) 2.6137 (1.0383) 3.0029 (1.2465)

σ1 0.1544 (0.0081) 0.1238 (0.0062) 0.2051 (0.0021) 0.1405 (0.0039)

κ∗
2 1.1752 (0.0163) 1.1747 (0.0163) 1.1776 (0.0179) 1.1684 (0.0159)

α2 0.0073 (0.0762) 0.0119 (0.0480) 0.0165 (0.0530) 0.0308 (0.0569)

β2 −2.0721 (0.7932) −2.3632 (1.1848) −1.8849 (1.0675) −1.9604 (0.2698)

σ2 0.1878 (0.0067) 0.1855 (0.0101) 0.3213 (0.0152) 0.2655 (0.0076)

µ3 0.2632 (0.1573) 0.2595 (0.1723) 0.1949 (0.1795) 0.1781 (0.1906)

µ∗
3 −0.0369 (0.0011) −0.0208 (0.0037) −0.0329 (0.0007) −0.0258 (0.0007)

σ3 0.2174 (0.0045) 0.1239 (0.0297) 0.4200 (0.0049) 0.3882 (0.0088)

κ∗
v − − − − 2.3522 (0.0131) 3.4643 (0.0763)

θ∗v − − − − 0.2512 (0.0014) 0.1864 (0.0088)

θv − − − − 0.8373 (0.9788) 0.7045 (0.2494)

βv − − − − 0.6510 (3.3244) 0.9578 (1.9524)

σv − − − − 1.0849 (0.0039) 0.9292 (0.0255)

ρ12 −0.2110 (0.0512) −0.2122 (0.0543) −0.3785 (0.0442) −0.9641 (0.0072)

ρ13 0.0887 (0.0516) 0.1729 (0.1056) −0.1891 (0.0292) −0.6796 (0.0327)

ρ1v − − − − 0.2588 (0.0017) 0.4235 (0.0135)

ρ23 0.2664 (0.0408) 0.7387 (0.3599) 0.3131 (0.0214) 0.4624 (0.0158)

ρ2v − − − − −0.0069 (0.0006) −0.0470 (0.0013)

ρ3v − − − − −0.3469 (0.0022) −0.2535 (0.0001)

λ1 − − 0.2305 (4.3433) − − 0.0190 (0.0040)

ωu − − 80.0254 (26.7185) − − 1.2347 (0.0969)

λ2 − − 0.3344 (0.4071) − − 0.7589 (0.2257)

ωd − − 12.0349 (6.3064) − − 8.7235 (1.3755)

λ3 − − 3.0642 (1.4594) − − 0.0872 (3.4301)

σj − − 0.0821 (0.0151) − − 0.0093 (0.3355)

sf 0.0016 (0.0000) 0.0016 (0.0000) 0.0017 (0.0000) 0.0017 (0.0000)

so 0.0494 (0.0004) 0.0493 (0.0004) 0.0145 (0.0001) 0.0142 (0.0001)

Loglik 24196.81 24213.87 31321.38 31544.18

AIC −48361.62 −48383.75 −62594.76 −63028.35

BIC −48294.77 −48291.83 −62494.49 −62903.02

RMSEf 0.12 0.12 0.12 0.12

RMSEo 4.36 4.32 1.28 1.22
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and jumps are introduced, the reverse seems to hold true as only the jumps in the

two short-term factors matter and long-term jumps are insignificant. To explain

this, it should be noted that from the previous section it was found that jumps have

little effect on futures pricing performance so that it is option prices that are mainly

affected by introducing jumps. For the JD model, implied volatility for a particular

strike and moneyness is constant over time given the model parameters. This could

mean that the long-term jump factor is able to better match the average implied

volatility smile than the two short-term jump factors. However, for the SVJ model,

the implied volatility smiles are time-varying due to the volatility factor and the

average smile is accounted for by the volatility factor. In this case, the normally

distributed long-term jumps are mainly useful for matching the steep volatility

smiles observed in shorter maturity options. However, on inspection of the volatility

smiles, it appears that the volatility smiles are skewed. The jumps in the two

short-term factors are able to introduce some skew in the implied volatility smile

if either the jump intensity or jump sizes differ. Given that the jump parameters

are substantially different and significant for the two short-term factors, it seems

that they are able to capture the skew as well as match implied volatility smiles at

shorter maturities. This renders jumps in the long-term factor obsolete in option

pricing when stochastic volatility is also present.

For the stochastic volatility factor, the risk-neutral parameters are highly significant

for both the SV and SVJ models. Comparing the parameters between the two

models, the mean-reversion of the volatility factor in the SVJ model is higher,

whereas the long-term means and volatility-of-volatility parameters are lower. This

is to be expected due to the SVJ model accounting for jumps. Hence, as the SV

model does not take account of jumps in prices, the persistence in volatility, long-

term means and volatility-of-volatility should be inflated. Also, commenting on

the risk premium parameters for the volatiltiy factor, the parameters are mostly
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not significant. For instance, βv is not significant for either model and θv is only

significant for the SVJ model. However, the values are consistent with the futures

only estimation results except this suggest that negative volatility risk premiums

are possibly priced in options as well as futures. This is not conclusive though, since

the parameters are not significant.

In terms of pricing, there is little difference in the futures pricing performance for all

of the models with an error of around 0.12%. This shows that even when pricing op-

tions in addition to futures, the futures pricing performance of the models does not

differ much. This is consistent with our previous observation that the risk-neutral

mean-reversion parameters are similar. However, there is clearly a difference in the

option pricing performance as both the Gaussian and JD models have a RMSE of

over 4% whereas the SV and SVJ models have a RMSE of 1.22% and 1.28% respec-

tively. These results are more in line with the expected performance of the models.

This shows that introducing jumps only marginally improves option pricing fit over

the time-series. This is because when the jump intensities are assumed constant,

the model does not have the flexibility to account for time-varying implied volatili-

ties. However, incorporating stochastic volatility results in a large improvement in

option price fits as it allows for more flexibility when fitting the implied volatility

surface across both the maturity and moneyness space.

As these errors were only for a subset of the total options data, an inspection of the

option pricing performance for the full data set is also conducted. Figure 4.2 shows

the mean errors vs. moneyness of each of the models for 1,3 and 6 month options.

The plot gives a visual indication of whether any bias can be found in the implied

volatility fits. The plot shows that 0-1 month options exhibit the most bias for each

model, although the SVJ has the least amount of bias with mean errors closest to

zero. However, all of the other model specifications underestimate implied volatility
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for 0-1 month options with mean errors substantially above zero and a marked

’smile’ shape can be observed indicating a bias for deep OTM options. This clearly

demonstrates the inadequacy of the Gaussian and JD models to match implied

volatility smiles for short-term options with mean errors above 5% for options with

moneyness of 0.8 or 1.2. The bias decreases with increasing maturity as the mean

errors are mostly within 2% for all of the models. The bias also appears to be

higher for deep OTM put options. This can be seen by the higher mean errors for

put options with a moneyness of 0.8 compared to call options with a moneyness

of 1.2. Interestingly, the SVJ model appears to price 6 month options worse than

the SV model. This suggests that the SVJ model sacrifices some of its overall fit to

better capture the implied volatility smile at shorter maturities.

We now consider the RMSE of implied volatilities which are reported in a similar

manner as the previous section. The RMSE for each model is reported in Table

4.7 with the errors grouped by moneyness and maturity. The option prices used to

compute the errors for each model are based on the parameter estimates in Table

4.6. The pricing errors are reported on the full-sample used in Table 4.5 and includes

the SVJ model in the analysis. Of the three models analysed in Table 4.5, only the

SV model demonstrates a substantial decrease in the option pricing errors. The

errors in the implied volatility estimates for the SV model are less than half the

size of the errors when estimating the model using futures data only. Although

the Gaussian and jump diffusion models demonstrate some improvement in option

pricing performance, as described previously, they are not able to replicate the

implied volatility curves across both the moneyness and maturity dimensions. This

is especially true for the Gaussian model where the implied volatility curves are flat

for each maturity resulting in the worst performance for deep OTM options.

If we consider the overall performance, it is clear that the SVJ model is the best
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Table 4.7

RMSE on Option Prices using Futures and Options Data
This table reports the option root mean-squared errors (RMSE) where the errors are defined as the difference
between the actual implied volatilities and the model implied volatilities reported in percentage points. Options
in the table are grouped by moneyness and maturity. The sample period is from 30 August 2006 - 1 August 2008.
The option prices for each model were computed assuming parameters estimated from futures and options data
using (4.25) and (4.28).

Moneyness

Maturity 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Gaussian

0-1 mth 7.49 6.69 4.72 5.55 5.55 5.32 5.04 6.27 9.17

1-2 mth 5.44 4.63 4.67 5.51 5.11 5.02 4.57 4.66 4.87

2-3 mth 3.98 4.00 4.32 5.17 4.40 3.65 3.94 3.47 4.01

3-4 mth 3.52 2.84 4.70 4.53 3.99 3.08 3.29 3.20 3.39

4-5 mth 3.14 2.58 3.08 4.25 3.95 3.01 2.93 2.94 2.88

5-6 mth 2.53 2.85 2.30 2.97 3.24 3.15 2.70 2.65 2.54

6-7 mth 2.87 2.80 3.32 3.62 3.18 2.62 3.36 2.75 2.39

7-8 mth 3.29 2.25 2.29 2.40 2.92 2.46 2.25 2.30 3.10

JD

0-1 mth 5.46 4.66 4.14 5.55 5.55 5.32 4.97 5.29 6.77

1-2 mth 4.04 4.10 4.59 5.51 5.10 5.03 4.56 4.53 4.43

2-3 mth 3.36 3.80 4.28 5.17 4.39 3.64 3.94 3.46 3.93

3-4 mth 3.24 2.78 4.68 4.53 3.97 3.05 3.27 3.20 3.38

4-5 mth 3.01 2.56 3.08 4.25 3.91 2.94 2.87 2.91 2.88

5-6 mth 2.48 2.87 2.31 2.92 3.17 3.02 2.60 2.57 2.50

6-7 mth 2.91 2.88 3.40 3.63 3.10 2.48 3.20 2.63 2.29

7-8 mth 3.44 2.44 2.37 2.42 2.78 2.27 2.10 2.16 2.95

SV

0-1 mth 2.43 3.18 2.00 1.16 1.37 1.25 2.16 3.95 5.93

1-2 mth 2.53 1.80 1.02 1.71 1.04 1.05 1.43 2.20 3.13

2-3 mth 1.57 1.22 0.77 2.82 0.91 0.82 0.95 1.53 2.22

3-4 mth 1.31 1.04 1.09 2.01 1.08 1.06 0.95 1.22 1.74

4-5 mth 1.16 1.05 2.34 1.78 1.32 1.18 0.94 0.98 1.21

5-6 mth 1.13 2.45 1.79 1.61 1.29 1.44 1.03 0.94 1.09

6-7 mth 1.65 1.96 2.04 2.05 1.54 1.19 1.33 1.08 0.86

7-8 mth 1.85 1.87 1.66 1.62 1.52 1.13 0.98 0.89 1.24

SVJ

0-1 mth 1.44 1.59 1.60 1.38 1.27 1.29 1.97 2.66 3.38

1-2 mth 1.46 1.42 1.11 1.77 0.97 1.06 1.27 1.77 2.87

2-3 mth 1.48 1.33 0.91 2.84 0.88 0.84 0.85 1.10 1.49

3-4 mth 1.50 1.28 1.28 2.04 1.07 1.07 0.89 0.95 1.38

4-5 mth 1.62 1.39 2.46 1.84 1.30 1.15 0.91 0.88 1.01

5-6 mth 1.96 2.89 2.16 1.72 1.31 1.40 1.02 0.87 0.99

6-7 mth 2.60 2.67 2.53 2.31 1.65 1.25 1.29 1.06 0.82

7-8 mth 3.05 2.75 2.32 2.06 1.69 1.31 1.18 1.00 1.25
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Figure 4.2
Mean option errors for 1 month, 3 month and 6 month options. Each plot shows errors for
the Gaussian (solid line), JD (dashed line), SV (dotted line) and SVJ (dash-dot line) models.

performing model. It demonstrates the best overall fit of option implied volatilities

across maturities and moneyness and substantially outperforms the other models

for near maturity options. The worst RMSE of the SVJ model is 3.38% for OTM

1-month call options with a moneyness of 1.2. This is much better than the SV

model with an RMSE of 5.93% for the same group of options and is better than

the RMSE of most option categories for the Gaussian and JD models. However,

although the overall performance of the SV was worse than the SVJ model, it does

fit some option categories better than the SVJ model which suggests its performance

is also quite good.
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We also plot the volatility estimated under the SV amd SVJ models and compare

it to the nearby futures price volatility in Figure 4.3. The approach is similar to

the previous section where the nearby futures price volatility is estimated using

the discrete-time SV model which is labelled as historical volatility in the plot.

Interestingly, the volatility plots of both the SV and SVJ models track the nearby

futures volatility quite closely which indicates that at least for this sample, volatility

is largely spanned by futures prices. However, there is some divergence of the two

models from the historical volatility line from around March 2008 onwards. This

was during a time of high uncertainty in financial markets leading up to the peak

of the GFC in September 2009. As mentioned previously, a possible reason for the

divergence is that the crude oil options market exhibits USV and that the options

market accounts for risk during this period not accounted for by futures contracts.
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Figure 4.3

Plot of historical volatility and estimated volatility for the SV and SVJ models.
Volatility is measured on the nearby futures contract.

This is a possible reason for the poor option pricing performance of the SV model

when using only futures prices to estimate the model parameters compared to using
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both futures and option prices. Although this does suggest that USV may be present

in the crude oil futures and options markets, this does not necessarily imply that

futures and option pricing performance will be improved. Trolle and Schwartz (2009)

found evidence for USV in the crude oil options market, although their study only

considered a stochastic volatility model without accounting for jumps. Although

they did not deem jumps as important for pricing options, these results suggest

that jumps are necessary for matching the implied volatility smiles of short-term

options. It is also a possibility that a model with jumps can explain the behaviour

of spot prices which an SV model cannot, such as infrequent but large price moves.

Whilst USV could possibly improve both futures and option pricing performance,

as the main focus in this study is on the impact of jumps and stochastic volatility

on pricing dynamics, the issue is left for future research consideration.

The results of this section show that although the Gaussian and JD models are

sufficient when pricing futures prices, this is not the case for options. They clearly

do not have the flexibility to fit the option implied volatility surface when considering

both the cross-sectional and time-series fit. This suggests that stochastic volatility

is necessary when pricing options, whilst jumps are also important but only in

conjunction with stochastic volatility. This is especially the case when attempting

to fit volatility smiles for options close to maturity. These results suggest that crude

oil option prices exhibit similar features to other financial options markets. Hence,

some of the modelling approaches introduced in those markets have potential to

improve modelling of commodities.
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4.5 Conclusion

This chapter considered an extension to the three-factor short-long diffusion model

with jumps and stochastic volatility. The purpose of the extensions was to capture

some of the empirical characteristics evident in commodity markets not explained

by a Gaussian model and to fill a gap in the literature. This includes infrequent but

large movements in spot prices, time-varying volatility and the volatility clustering

effect. The model in this study introduced jumps which allow for skewness in

returns, jumps which affect short-term futures prices more than long term prices,

and stochastic volatility. We also derived semi-closed form solutions for futures and

European option prices for the model.

Using futures price data on WTI crude oil traded on NYMEX, this study conducted

an empirical analysis of the model and its nested specifications. The results showed

that incorporating either jumps or stochastic volatility was able to explain the dy-

namics of the crude oil price process better than a Gaussian model. However when

fitting the futures term structure, there is little improvement in performance as fu-

tures prices rely only on the first moment of the stock price distribution of which

jumps and stochastic volatility add little.

In order to gauge the effects of jumps or stochastic volatility on higher moment

effects, a study of the model’s option pricing performance is conducted. Incorporat-

ing either jumps or stochastic volatility was shown to improve on the option pricing

fits over a Gaussian model. However, it is clear that using futures prices alone to

estimate the models is insufficient when it comes to pricing options. This suggests

that options possibly contain information not accounted for by futures prices.
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When estimating the model using both futures and options prices, the findings sug-

gest that there are clear improvements in option pricing performance when stochas-

tic volatility and jumps are added to the Gaussian model. Although stochastic

volatility is required to match option prices over the moneyness and maturity space

as well as over time, jumps substantially improve the fit of short-term options.

These results are similar to empirical studies of financial options and demonstrates

that the same holds in the crude oil options market.
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Appendices

Appendix 4.A Futures and Option Prices of the

Jump-Diffusion Model

For the jump-diffusion model with no stochastic volatility, it is assumed that Vt is

constant and set to 1 in (4.1) and (4.6). Under the nested model, the risk-neutral

dynamics are

dX1,t = (−α1 − κ∗
1X1,t)dt+ σ1dZ

∗
1,t + J1,tdN1,t − λ1(ν1(1)− 1)dt,

dX2,t = (−α2 − κ∗
2X2,t)dt+ σ2dZ

∗
2,t + J2,tdN2,t − λ2(ν2(1)− 1)dt,

dX3,t = (µ3 − α3)dt+ σ3dZ
∗
3,t + J3,tdN3,t − λ3(ν3(1)− 1)dt.

(4.37)

For the futures price, given the PDE for the futures price in (4.13), if Vt is assumed

constant and set to 1 (or equivalently setting V0 = 1, θv = 1 and σv = 0), then the

futures price can be seen as the solution to the following system of ODE’s,

B′
1(τ) = − κ1B1(τ), (4.38a)

B′
2(τ) = − κ2B2(τ), (4.38b)

B′
3(τ) = 0, (4.38c)

A′(τ) = − α1B1(τ)− α2B2(τ) + (µ3 − α3)B3(τ) +
1

2

[
B1(τ)

2σ2
1 +B2(τ)

2σ2
2

+B3(τ)
2σ2

3 + 2B1(τ)B2(τ)σ1σ2ρ12 + 2B1(τ)B3(τ)σ1σ3ρ13

+ 2B2(τ)B3(τ)σ2σ3ρ23

]
+ λ1

[
ν1(B1(τ))− 1− B1(τ)(ν1(1)− 1)

]

+ λ2

[
ν2(B2(τ))− 1−B2(τ)(ν2(1)− 1)

]

+ λ3

[
ν3(B3(τ))− 1−B3(τ)(ν3(1)− 1)

]
. (4.38d)
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Solving the system of ODE’s leads to the following expression for the futures price

F (t, T ) = exp
{
A(τ) + B(τ) ·Xt

}
, (4.39)

where

B1(τ) = e−κ∗

1τ , B2(τ) = e−κ∗

2τ , B3(τ) = 1,

A(τ) = − α1

κ∗
1

(
1− e−κ∗

1τ
)
− α2

κ∗
2

(
1− e−κ∗

2τ
)
+ (µ3 − α3)τ +

1

2

[
(1− e−2κ∗

1τ)
σ2
1

2κ∗
1

+
(
1− e−2κ∗

1τ
) σ2

1

2κ∗
1

+ σ2
3τ +

(
1− e−(κ∗

1+κ∗

2)τ
)2ρ12σ1σ2

κ∗
1 + κ∗

2

+
(
1− e−κ∗

1τ
)2σ1σ3ρ13

κ∗
1

+
(
1− e−κ∗

2τ
)2σ2σ3ρ23

κ∗
2

]

+
λ1

κ∗
1

[
log

(ωu − e−κ∗

1τ

ωu − 1

)
− 1− e−κ∗

1τ

ωu − 1

]
+

λ2

κ∗
2

[
log

(ωd + e−κ∗

2τ

ωd + 1

)
+

1− e−κ∗

2τ

ωd + 1

]
.

Similarly for the characteristic function given by (4.21) and (4.22) with Vt = 1 and

N(τ) = 0, M(τ) is a solution to the following ODE,

M ′(τ) =
1

2
iu(iu− 1)

(
e−2κ∗

1τFσ2
1 + e−2κ∗

2τFσ2
2 + σ2

3 + 2e−(κ∗

1+κ∗

2)τFσ1σ2ρ12

+ 2e−κ∗

1τFσ1σ3ρ13 + 2e−κ∗

2τFσ2σ3ρ23

)
+ λ1

( ωu

ωu − iue−κ∗

1τF
− 1

)

− iuλ1

( ωu

ωu − e−κ∗

1τF
− 1

)
+ λ2

( ωd

ωd + iue−κ∗

2τF
− 1

)

− iuλ2

( ωd

ωd + e−κ∗

2τF
− 1

)
+ λ3

(
e−u2σ2

j /2 − 1
)
− iuλ3

(
eσ

2
j /2 − 1

)
.

(4.40)
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This leads to the following solution for M(τ),

M(τ) =
1

2
iu(iu− 1)

[(
1− e−2κ∗

1τ
)
e−2κ∗

1 τ̄σ2
1

2κ∗
1

+

(
1− e−2κ∗

2τ
)
e−2κ∗

2 τ̄σ2
2

2κ∗
2

+ σ2
3τ

+
2
(
1− e−(κ∗

1+κ∗

2)τ
)
e−(κ∗

1+κ∗

2)τ̄ρ12σ1σ2

κ∗
1 + κ∗

2

+
2
(
1− e−κ∗

1τ
)
e−κ∗

1 τ̄σ1σ3ρ13

κ∗
1

+
2
(
1− e−κ∗

2τ
)
e−κ∗

2 τ̄σ2σ3ρ23

κ∗
2

]
+

λ1

κ∗
1

[
log

(ωu − iue−κ∗

1(τ̄+τ)

ωu − iue−κ∗

1 τ̄

)

− iu log
(ωu − e−κ∗

1(τ̄+τ)

ωu − e−κ∗

1 τ̄

)]
+

λ2

κ∗
2

[
log

(ωd + iue−κ∗

2(τ̄+τ)

ωd + iue−κ∗

2 τ̄

)

− iu log
(ωd + e−κ∗

2(τ̄+τ)

ωd + e−κ∗

2 τ̄

)]
+ λ3

(
e−u2σ2

j /2 − iueσ
2
j /2 + iu− 1

)
τ.

(4.41)

European call option prices can then be computed using (4.28).

Appendix 4.B MCL Estimation of the Jump-

Diffusion Model

This appendix describes estimation of the jump-diffusion model with no stochastic

volatility. In this section, we assume the state space model given by (4.30) and

(4.35) but without volatility factor and without the assumption of normality in the

state equation. Hence the state vector is defined by Xt = (X1,t, X2,t, X3,t)
′. The

system is linear although incorporating jumps means the state space model is non-

Gaussian. If we set ηt = [∆Zt+Jt · qt]′, then the state space model can be described

alternatively as,

yt = Ztxt + dt + ǫt, ǫt ∼ N(0, Ht),

xt+1 = Ttxt + ct + ηt, ηt ∼ p(ηt),

(4.42)
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for t = 1, . . . , T where yt is the vector of observed log-futures prices at time t and

xt = Xt. As described in Chapter 2, the Monte Carlo likelihood (MCL) estimation

procedure involves using importance sampling techniques to estimate nonlinear,

non-Gaussian state space models. The approach here follows Dempster et al. (2008)

who applied the MCL procedure to estimate a three-factor jump-diffusion model.

Assuming the state space model given by (4.42), Durbin and Koopman (1997) show

that the likelihood function can be represented as

L(y|Θ) = LG(y|Θ)EG

(
p(x, y)

q(x, y)

)
, (4.43)

where L(·|Θ) is the true likelihood, LG(·|Θ) is the likelihood of the approximating

linear Gaussian model, Θ denotes the parameter set and EG(·) is expectation under

the approximating model’s density. Hence the aim is to estimate this likelihood

function. Although the procedure is similar to the application in Chapter 2, there

are some differences when adapting the procedure to this model. Firstly, the linear

approximating Gaussian model is assumed to have the following state space form,

yt = Ztxt + dt + ǫt, ǫt ∼ N(0, Ht),

xt+1 = Ttxt + ct + ηt, ηt ∼ N(0, Qt),

(4.44)

for t = 1, . . . , T which is similar to (4.42) except that ηt is Gaussian in this equation.

Denote the conditional and joint densities of the general state space model by p(x|y)

and p(x, y) and the linear Gaussian approximating densities by q(x|y) and q(x, y).

Durbin and Koopman (1997, 2001) show that the mode x̂ of the above model is

the solution to ∂ log q(x|y)/∂x = 0. However, since q(x|y) = q(x, y) + q(y), x̂ is

also the solution to ∂q(x, y)/∂x and as q(x, y) generally has a more tractable form

than q(x|y), this is the quantity we work with. As further specified in Durbin and

Koopman (1997, 2001) or derived from the model above, the linear Gaussian state
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space model has the following log joint density

log q(x, y) = constant− 1

2

T∑

t=1

[(xt − Ttxt−1 − ct)
′Q−1

t (xt − Ttxt−1) +

(yt − Ztxt − dt)
′H−1

t (yt − Ztxt − dt)] ,

(4.45)

and differentiating with respect to xt, t = 1, . . . , T and equating to zero gives

−Q−1
t (xt − Ttxt−1 − ct) + itT

′
t+1Q

−1
t+1(xt+1 − Tt+1xt − ct+1) + Z ′

tH
−1
t (yt − Ztxt) = 0,

(4.46)

where it = 1 for t < T and it = 0 for t = T . The solutions to these sets of equations

is the conditional mode x̂, but as the model is a linear Gaussian state space model,

the mode coincides with the mean. Hence the conditional mode can be obtained

through an application of the Kalman filter and smoother recursions.

For the non-Gaussian state space model described by (4.42), the log joint density

is,

log p(x, y) = constant −
T∑

t=1

[
log p(ηt) +

1

2
(yt − Ztxt − dt)

′H−1
t (yt − Ztxt − dt)

]
.

(4.47)

As with the linear Gaussian model, the mode of p(x|y) is a solution to ∂p(x, y)/∂x =

0. Hence, by taking the partial derivative with respect to xt and equating to 0, the

mode x̂ is a solution to

∂ log p(ηt)

∂ηt
+ itT

′
t+1

∂ log p(ηt+1)

∂ηt+1

+ Z ′
tH

−1
t (yt − Ztxt) = 0, (4.48)

where ηt = xt − Ttxt−1 − ct, t = 1, . . . , T , it = 1 for t < T and it = 0 for t = T . As

can be seen from the form of both (4.46) and (4.48), the two models will have the
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same mode if the following set of equalities hold,

−Q−1
t ηt =

∂ log p(ηt)

∂ηt
or Q−1

t = −∂ log p(ηt)

∂ηt
/ηt. (4.49)

For the above equation to have a unique solution, the state errors must be assumed

to be independent. If correlation between each of the state variables is introduced,

then the inequalities above will result in a system of equations with more variables

to solve than equations. To ensure that there is a unique solution to the system of

equations, the correlation between each state variable is set to 0. This means that

ρij = 0 for i 6= j in (4.37) so that Qt is diagonal.

Given the above, we thus need to compute both the densities and the partial deriva-

tives of the densities for each of the factors. For the exponentially distributed jumps

in the two short-term factors, we use the densities derived in Ramezani and Zeng

(2007) who use the fact that the sum of independent exponentially distributed

random variables are Gamma distributed. This means that if xi ∼ exp(ωu) for

i = 1, . . . , n and X =
∑n

i=1 xi, then X ∼ Γ(n, ωu) where

p(X|n) = ωn
u

(n− 1)!
Xn−1e−ωuX . (4.50)

Similarly, for the negatively distributed jumps, if −yi ∼ exp(ωd) for i = 1, . . . , n

and Y =
∑n

i=1 xi, then −z ∼ Γ(n, ωd) where

p(Y |n) = ωn
d

(n− 1)!
(−Y )n−1eωdY . (4.51)

For each factor, the number of jumps that occur between each observation is denoted

by ∆Ni,t = Ni,t−Ni,t−1. For η1,t, only positive exponentially distributed jumps occur
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so an approximation to the density is given by52

p(η1,t) ≈
∞∑

i=0

Pr(N1,t = i)p1(η1,t|∆N1,t = i)

=
∞∑

i=1

Pr(∆N1,t = i)
ωi

u

(i− 1)!

∫ ∞

0

xi−1e−ωuxφ(η1,t; x, σ2
1∆t)dx,

(4.52)

where φ(x;µ, σ2) denotes the normal pdf with mean µ and variance σ2. Similarly,

for η2,t, the jumps are negative exponentially distributed so it has a pdf given by,

p(η2,t) ≈
∞∑

i=0

Pr(∆N2,t = i)p2(η2,t|N2,t = i)

=
∞∑

i=1

Pr(∆N2,t = i)
ωi

d

(i− 1)!

∫ ∞

0

(−x)i−1eωdxφ(η2,t; x, σ2
2∆t)dx.

(4.53)

For the long-term factor, the jumps are normally distributed, so the density of η3,t

is

p(η3,t) =

∞∑

i=0

Pr(∆N3,t = i)p3(η3,t|∆N3,t = i)

=

∞∑

i=0

Pr(∆N3,t = i)φ(η3,t; iµj, σ
2
3∆t + iσ2

j ),

(4.54)

where Pr(∆Nk,t = i) = exp(−λk∆t)(λk∆t)i/i! for k = 1, 2, 3. For estimation pur-

poses, the infinite sums need to be truncated and for the parameter estimates found

here, the probability of more than 2 jumps per day is extremely small. As men-

tioned previously, to reduce the computational burden in estimation, the sums are

truncated to 2 jumps per day. When jumps are truncated to two, the integrals in

(4.52) and (4.53) can be evaluated to give the conditional densities of η1,t and η2,t

52Although both of the short-term factors have mean-reversion factors, it is assumed that the
jumps occurred sufficiently close to the current time step so that the mean-reversion only impacts
jumps in the subsequent time-step.
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as

p(η1,t|∆N1,t = 1) = ωu exp
(1
2
ω2

uσ
2
1∆t− ωuη1,t

)
Φ
(η1,t − ωuσ

2
1∆t

σ1

√
∆t

)
, (4.55a)

p(η1,t|∆N1,t = 2) = ω2
uσ1

√
∆t exp

(1
2
ω2

uσ
2
1∆t− η1,tωu

)[
φ
(
η1,t;ωuσ

2
1∆t, σ1

√
∆t

)

× σ1

√
∆t +

η1,t − ωuσ
2
1∆t

σ1

√
∆t

Φ
(η1,t − ωuσ

2
1∆t

σ1

√
∆t

)]
, (4.55b)

p(η2,t|∆N2,t = 1) = ωd exp
(1
2
ω2

dσ
2
2∆t + ωdη2,t

)
Φ
(−η2,t − ωdσ

2
2∆t

σ2

√
∆t

)
, (4.55c)

p(η2,t|∆N2,t = 2) = ω2
dσ2

√
∆t exp

(1
2
ω2

dσ
2
2∆t + η2,tωd

)[
φ
(
η2,t;−ωdσ

2
2∆t, σ2

√
∆t

)

× σ2

√
∆t− η2,t + ωdσ

2
2∆t

σ2

√
∆t

Φ
(−η2,t − ωdσ

2
2∆t

σ2

√
∆t

)]
, (4.55d)

where Φ(x) denotes the standard normal cumulative distribution function.

For the densities of ηt given above, the partial derivative of the log-density are,

∂ log p(ηt)

∂ηt
=

1

p(ηt)

∂p(ηt)

∂ηt
. (4.56)

Assuming that the jumps are truncated at 2 for each observation, then the partial

derivatives for each factor can be easily derived from (4.52) - (4.55) to give the

following for k = 1, 2, 3,

∂p(ηk,t)

∂ηk,t
= Pr(∆Nk,t = 0)

∂p(ηk,t|Nk,t = 0)

∂ηk,t
+ Pr(∆Nk,t = 1)

∂p(ηk,t|∆Nk,t = 1)

∂ηk,t

+ Pr(∆Nk,t = 2)
∂p(ηk,t|∆Nk,t = 2)

∂ηk,t
, (4.57)

where

∂p(η1,t|∆N1,t = 0)

∂η1,t
=

−η1,t
σ2
1∆t

φ(η1,t; 0, σ2
1∆t), (4.58a)

175



∂p(η1,t|∆N1,t = 1)

∂η1,t
= ωu exp

(
−1

2
ω2

uσ
2
1∆t− ωuη1,t

)[
φ
(
η1,t;ωuσ

2
1∆t, σ1

√
∆t

)

− ωuΦ
(η1,t − ωuσ

2
1∆t

σ1

√
∆t

)]
, (4.58b)

∂p(η1,t|∆N1,t = 2)

∂η1,t
= ω2

uσ1

√
∆t exp

(1
2
ω2

uσ
2
1∆t− η1,tωu

)
(4.58c)

×
{
−ωu

[
φ
(
η1,t;ωuσ

2
1∆t, σ1

√
∆t

)
σ1

√
∆t+

η1,t − ωuσ
2
1∆t

σ1

√
∆t

×Φ
(η1,t − ωuσ

2
1∆t

σ1

√
∆t

)]
− 1

σ1

√
∆t

Φ
(η1,t − ωuσ

2
1∆t

σ1

√
∆t

)}
,

∂p(η2,t|∆N2,t = 0)

∂η2,t
=

−η2,t
σ2
2∆t

φ(η2,t; 0, σ2
2∆t), (4.58d)

∂p(η2,t|∆N2,t = 1)

∂η2,t
= ωd exp

(1
2
ω2

dσ
2
2∆t + ωdη2,t

)[
φ
(
η2,t;−ωdσ

2
2∆t, σ2

√
∆t

)

+ ωdΦ
(−η2,t − ωdσ

2
2∆t

σ2

√
∆t

)]
, (4.58e)

∂p(η2,t|∆N2,t = 2)

∂η2,t
= ω2

dσ2

√
∆t exp

(1
2
ω2

dσ
2
2∆t+ η2,tωd

)
(4.58f)

×
{
ωd

[
φ
(
η2,t;−ωdσ

2
2∆t, σ2

√
∆t

)
σ2

√
∆t− η2,t + ωdσ

2
2∆t

σ2

√
∆t

×Φ
(−η2,t − ωdσ

2
2∆t

σ2

√
∆t

)]
− 1

σ2

√
∆t

Φ
(−η2,t − ωdσ

2
2∆t

σ2

√
∆t

)}
,

∂p(η3,t|∆N3,t = n)

∂η3,t
=

−η3,t
σ2
3∆t

φ(η3,t; 0, σ2
3∆t+ nσ2

j ). (4.58g)

As Qt requires ηt, the approximating model can not be solved for analytically.

Durbin and Koopman (1997) instead suggest that the approximating model can be

found by using the following iterative procedure,

1. Generate a trial value for ηt, t = 1, . . . , T .

2. Using (4.49) compute Qt.

3. Using the Kalman filter and smoother on the linear state space model of the
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approximating model, a new estimate of ηt is derived.

4. Repeat steps 2 and 3 until convergence.

Having derived the approximating Gaussian model for importance sampling, we

then need to calculate the likelihood function for parameter estimation. This is

achieved using Monte Carlo simulations from the approximating Gaussian model.

It is shown in Durbin and Koopman (1997) that for a given parameter set, Θ, the

likelihood can be expressed as,

L(Θ) = LG(Θ)EG

[
p(x, y)

q(x, y)

]
, (4.59)

which for the jump-diffusion model reduces to

L(Θ) = LG(Θ)EG

[
p(η)

q(η)

]
. (4.60)

By sampling from the approximating Gaussian model, the expectation can be ap-

proximated by Monte Carlo simulation and so an estimate of the likelihood is given

by

L̂(Θ) = LG(Θ)
1

T

T∑

i=1

p(ηi)

q(ηi)
, (4.61)

where ηi denotes a draw from q(η) and the densities for each state variable, p(ηi,t),

i = 1, 2, 3, are given by (4.52) - (4.54). To obtain the parameter estmates for

this model, the likelihood function or alternatively the log-likelihood function is

maximized using the BFGS procedure. Each random draw used in the likelihood

evaluation is obtained using a simulation smoother and in this case, the Durbin

and Koopman (2002) method is used to sample from the approximating Gaussian

density.
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Appendix 4.C The Unscented Kalman Filter

The unscented Kalman filter (UKF) relies on a scaled unscented transformation53

for propagating the states through a nonlinear function. Consider the state space

model given by (1.2) in Chapter 1, Section 1.1 where the function h(·) is nonlinear.

For the application considered here, it is assumed that the measurement errors are

additive, i.e.

yt = h(xt) + ǫt, ǫt ∼ N(0, Ht). (4.62)

For the state variable, it is assumed that xt has mean x̄t and covariance Pt although

the errors are nonlinear with respect to the state variables. The scaled unscented

transform estimates the first two moments of yt using a set of deterministically

chosen points called “sigma” points. Given that the measurement errors are additive

and the state errors are not, the state variable is redefined to be augmented with

the state errors54 so that xa
t = [x′

t η
′
t]
′ where xa

t ∈ Rma

, ma = 2m and ηt ∼ N(0, Qt).

Therefore, the mean of xa
t is x̄a

t = [x̄′
t 0]

′ and its covariance is

P a
t =



Pt 0

0 Qt


 .

The scaled unscented transform is applied to the augmented state variable xa
t using

2m+1 sigma points. The sigma points are chosen to match the mean and variance

53The original UKF relied on an unscented transform but could result in estimating a posterior
covariance matrix that was non positve semi-definite. The scaled unscented transformation was
introduced to address this issue.

54In the case of non-additive measurement errors, the state variable would also be augmented
with the measurement errors. For further details on the more general UKF, readers are referred
to Julier and Uhlmann (1997) and Wan and van der Merwe (2001).
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of xa
t (accurate to the second order) in the following manner:

Xi,t = x̄a
t , (4.63a)

Xi,t =
√
(ma + λ)P a

i,t , i = 1, . . . , m, (4.63b)

Xi,t =
√
(ma − λ)P a

i−m,t , i = m+ 1, . . . , 2m, (4.63c)

for t = 1, . . . , T where
√
(ma − λ)P a

i,t denotes the i’th column of the Cholesky

factorisation of the matrix (ma − λ)P a
t . Each of the sigma points is associated

with weights that depend on certain control parameters. These parameters are κ,

α, β and have the following properties for calibrating the UKF: κ ≥ 0 guarantees

positive semi-definiteness of the covariance matrix, 0 ≥ α ≥ 1 controls the size

of the sigma point distribution, and β ≥ 0 gives partial control of higher order

errors related to the estimation of the covariance matrix. For a Gaussian xt, it

is shown in Julier (2002) that β = 2 minimizes the higher order errors (although

does not eliminate) when estimating the covariance matrix. Setting the additional

parameter, λ = α2(ma + κ)−ma, the weights for the sigma points are

Wm
0 =

λ

ma + λ
, (4.64a)

Wc
0 =

λ

ma + λ
+ (1− α2 + β), (4.64b)

Wm
i = Wc

i =
1

2(ma + λ)
, i = 1, . . . , 2m, (4.64c)

where Wm
i and Wc

i denote the weights associated with calculating the mean and

covariance respectively. Given the sigma points, their associated weights and the

initial state, xa
0 with mean x̄a

0 and covariance P a
0 , the UKF prediction step is given

by,

X x
i,t|t−1 = f(X x

i,t−1,X η
i,t−1), (4.65)
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x̄t|t−1 =
2m∑

i=0

Wm
i X x

i,t|t−1, (4.66)

Pt|t−1 =

2m∑

i=0

Wc
i (X x

i,t|t−1 − x̄t|t−1)(X x
i,t|t−1 − x̄t|t−1)

′, (4.67)

The update step is then,

Yi,t|t−1 = h(X x
i,t|t−1), (4.68)

ȳt|t−1 =

2m∑

i=0

Wm
i Yt|t−1, (4.69)

vt = yt − ȳt|t−1, (4.70)

Ft =
2m∑

i=0

Wc
i (Yi,t|t−1 − ȳt|t−1)(Yi,t|t−1 − ȳt|t−1)

′ +Ht, (4.71)

Pxtyt
=

2m∑

i=0

Wc
i (X x

i,t|t−1 − x̄t|t−1)(Yi,t|t−1 − ȳt|t−1)
′, (4.72)

Kt = Pxtyt
F−1

t , (4.73)

x̄t = x̄t|t−1 +Ktvt, (4.74)

Pt = Pt|t−1 +KtFtK
′
t, (4.75)

where Kt is the Kalman gain matrix.
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Chapter 5

Summary and Conclusion

This thesis analysed approaches to estimate stochastic volatility models and in-

vestigated modelling techniques for pricing derivatives in commodity markets. The

studies undertaken demonstrated application techniques, which have been tradition-

ally applied to financial markets, to commodity markets. This included estimating

stochastic volatility models, analysing risk premiums and pricing futures and op-

tions.

The first component of the thesis investigated discrete-time stochastic volatility

modelling and compared three methods to estimate the models: a quasi-maximum

likelihood estimator, a Monte Carlo likelihood estimator and a particle filter esti-

mator. The analysis was conducted empirically using short-term interest rate and

crude oil price data and considered simple extensions to the standard SV model.

The analysis consisted of evaluating the in-sample and out-of-sample performance

of the SV model using a number of diagnostic tests. This included an analysis

of the parameter and conditional volatility estimates generated by the models and

an investigation of the impact that the estimation procedure has on the estimates.

Through the use of tests which evaluate the distributional properties of the model,

the findings suggest that the choice of estimation procedure is more important than

the choice of model when extracting the latent volatility process. For estimating

SV models, the MCL procedure was found to perform the best. Also, based on
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diagnostic tests in-sample and out-of-sample, the traditional AR(1) formulation of

the SV model was found to be sufficient for modelling the volatility of short-term

interest rates and crude oil prices.

The second component investigated a three-factor short/long factor model for com-

modity prices with the assumption of a time-varying market price of risk speci-

fication. The model was estimated using crude oil futures price data traded on

NYMEX and demonstrated its performance over a two-factor model. The study

found evidence to suggest time-varying risk premiums exist in the crude oil futures

market and that they can help to improve forecasting performance. After extracting

a time-series of the risk premium, the study also investigated whether risk premiums

can be explained by risk factors in equity and bond markets. The evidence suggests

that a portion of the risk premium in the crude oil futures market is correlated with

equity and bond markets.

The third component extended the short/long factor model with jumps and stochas-

tic volatility. Semi-closed form solutions to futures and European option prices

were derived for the model using the properties of affine jump-diffusion models.

The model was empirically evaluated using daily futures and options data traded

on NYMEX. An initial study investigated whether options prices can be inferred

from futures prices. Although it was found that adding jumps or stochastic volatil-

ity explains the distributional properties of crude oil prices better, this did not

translate into significantly better option pricing performance. Thus, estimating the

models using both futures and options prices, it was found that stochastic volatility

is necessary for fitting option prices over the maturity and moneyness dimensions.

However, whilst jumps without the presence of stochastic volatility did not improve

options pricing much, it was found necessary in the SVJ model to fit the steep

implied volatility smiles exhibited by short term options.
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The implications of this thesis apply to the areas of financial modelling, risk man-

agement and portfolio investment. The first component demonstrated methods for

evaluating and estimating risk using SV models in fixed income and commodity

markets. It analysed different methods to estimate volatility and volatility models,

as well as determine the accuracy of volatility forecasts. The second component

considered an intuitive modelling approach for commodities and found evidence of

time-varying risk premiums in the crude oil futures market. An analysis of the

risk premiums demonstrates its potential use in portfolio diversification with other

financial assets. The third component proposed a model for futures and option pric-

ing which can recover market implied volatilities. By providing realistic behaviour

of both spot and derivative prices, the model can be used in risk management ap-

plications such as determining hedge ratios for commodity option portfolios.

There are a number of areas in which the research can be expanded. Firstly, the

empirical analysis has focussed mainly on the crude oil futures market. The empir-

ical analysis in each of the studies can be easily expanded to other commodities,

especially other energy commodities such as other petroleum products, heating oil

and natural gas. Also, in terms of the estimation of the commodity risk premiums,

only price risk premiums were investigated. With the stochastic volatility jump-

diffusion model introduced in Chapter 4, both volatility risk and jump risk can be

extracted and analysed.

Furthermore, the SVJ model can be extended to incorporate features considered

in the literature in other financial markets. As the model falls under the affine

jump-diffusion class of models, this gives scope for the model to be extended within

this class. For instance, the jumps in the model were assumed to have a constant

intensity. However, the jump intensity can be allowed to vary over time which could

possibly allow better fits to option prices over maturity and moneyness. This also
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allows for fitting of time-varying skew in option prices which has been exhibited in

other markets. Lastly, as mentioned in Chapter 4, there is evidence for unspanned

stochastic volatility in the crude oil futures market. The SVJ model could be refor-

mulated so that it accommodates unspanned stochastic volatility. Ideally, a model

would be able to account for all of these dynamics. However, as mentioned in the

introduction, the complexities involved with these features increase the difficulty of

both pricing derivatives and calibrating the models to market data. This motivates

further research in these areas.
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