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Abstract

Modelling stochastic temporal events is a classic machine learning problem that has
drawn enormous research attentions over recent decades. Traditional approaches
heavily focused on the parametric models that pre-specify model complexity. Com-
prehensive model comparison and selection are necessary to prevent over-fitting and

under-fitting problems.

The recently developed Bayesian nonparametric learning framework provides
an appealing alternative to traditional approaches. It can automatically learn the
model complexity from data. In this thesis, I propose a set of Bayesian nonpara-
metric approaches for stochastic temporal event modelling with the consideration of
event similarity, interaction, occurrence time and emitted observation. Specifically,

I tackle following three main challenges in the modelling.

1. Data sparsity. Data sparsity problem is common in many real-world temporal
event modelling applications,e.g., water pipes failures prediction. A Bayesian non-
parametric model that allows pipes with similar behaviour to share failure data is
proposed to attain a more effective failure prediction. It is shown that flexible event
clustering can help alleviate the data sparsity problem. The clustering process is
fully data -driven and it does not require predefining the number of clusters. (This

work has been published on [I])

i



2. Event interaction. Stochastic events can interact with each other over time.
One event can cause or repel the occurrence of other events. An unexplored theoreti-
cal bridge is established between interaction point processes and distance dependent
Chinese restaurant process. Hence an integrated model, namely infinite branching
model, is developed to estimate point event intensity, interaction mechanism and

branching structure simultaneously. (This work has been published on [2])

3. Event correlation. The stochastic temporal events are correlated not only
between arrival times but also between observations. A novel unified Bayesian
nonparametric model that generalizes Hidden Markov model and interaction point
processes is constructed to exploit two types of underlying correlation in a well-
integrated way rather than individually. The proposed model provides a compre-
hensive insight into the interaction mechanism and correlation between events. (This

work has been published on [3])

At last, a future vision of Bayesian nonparametric research for stochastic tem-

poral events is highlighted from both application and modelling perspectives.

il
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Chapter 1

Introduction

1.1 Objective and Challenges

The evolving of our world can be regarded as series of stochastic temporal events.
The research of stochastic temporal events modelling has drawn enormous attention
during the past few decades. It has wide applications in various areas, such as finan-
cial modelling, social event analysis, infrastructure failure prediction, seismological

and epidemiological forecasting.

In general, the objective of stochastic temporal events modelling is to learn
the mechanism of event generation from observed historical events and then apply
it to forecast forthcoming new events characteristics, e.g., occurrence time, latent
state, observable appearance. Fig. gives an illustration of temporal events

characteristics and generation mechanisms.

The characteristics of a temporal event consist of an occurrence time ¢, a latent
state s and an observable appearance y. The generation mechanisms describe the
rules of generating events characteristics. Occurrence time of an event is usually
impacted by the occurrence times of its predecessors. In Fig. [1.1] the red arrow

curves indicate the mechanism of occurrence time generation. It is worth noting that,
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Temporal characteristics
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Stochastic temporal event modelling

Figure 1.1: Characteristics and generation mechanisms of temporal events.

as an illustration, it only shows the first order of occurrence time relationship, i.e.,
an events time is only impacted by the previous event’s occurrence time. Similarly,
the latent state of an event is influenced by the previous event’s state. The yellow

arrow curves show the generation mechanism of latent states.

Fig. [I.1] also illustrates an example possessing Markov property, i.e., an event’s
latent state is only determined by the state of its previous event. The generation of
event appearance is usually governed by its latent state, as illustrated by green arrow
lines. Indeed, the real-world scenarios are much more complicated than the illus-
trated situation whose purpose is for introducing the components of the modelling

problem only.

Concrete examples can help us better understand the problem. Using a Twitter
user’s tweets stream as an example, a tweet has a time, a latent topic and the content.
The occurrence time of a new tweet is impacted by the users previous tweets. Its
topic is influenced by previous tweets topics. The content is generated based on the

topic. Another example can be a market trading event stream. A trading event
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has its occurrence time which can put an impact on the following events, and a
latent trading intention which governs the observable prices and amount. In the
area of infrastructure asset predictive maintenance, an infrastructure asset failure,
e.g., drinking water pipe burst, has a failure time, failure type, e.g., circular break,

and failure cost, e.g., repair cost.

The main challenges of stochastic event modelling come from two aspects: the
intrinsic complexity of stochastic events and the limitation of traditional modelling
approaches. On the one hand, real-world stochastic events are complicated. In or-
der to fully understand them, people need to consider as many aspects of events
as possible, e.g., occurrence time, latent state, emitted observation, the correlation
between events, generation or triggering mechanism. These aspects often need to
be considered together, which makes the problem extremely difficult. Determining
model complexity beforehand is almost impossible. On the other hand, most tra-
ditional approaches of stochastic event modelling are parametric, which means the
form of the model needs to be pre-defined beforehand based on somewhat biased
assumptions or priors. A model is competent only when its prior can adequately
capture the true underlying data structure while an invalid prior makes the model
vulnerable to over-fitting or under-fitting problems. The support of a comprehen-
sive model selection process is often required for finding the proper model form.
The process is computationally costly and cannot guarantee the optimal solution.
Hence, traditional approaches are deficient in flexibility to model complex stochastic

events.

Bayesian nonparametric (BNP) approaches have attracted increasing interests
in recent years due to its flexibility and expression power for modelling compli-
cated real-world scenarios. A BNP approach fits a single model whose complexity
is determined by data rather than comprehensive model selection over a family of
parameterized models with predefined different complexities. Comparing with tra-
ditional parametric approaches, the number of parameters in a BNP model can

increase with data. Therefore, its model form adapts to the data. A BNP approach
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has the ability to model over infinite dimensional function or measure spaces. It
supplies a broad class of flexible priors allowing data to speak for itself. Hence, it
have been widely used for modelling various data structures, e.g., array, partition,

matrix, tree, network, graph and temporal sequence.

Another benefit of BNP approaches is that many existing Bayesian parametric
approaches can be enhanced by introducing a nonparametric prior that incorporates
more data information which the original model cannot consider. The derived non-
parametric model will be more expressive, hence more powerful. As a result, BNP

approaches open another door for us to better model stochastic temporal events.

The thesis focuses on Bayesian nonparametric-based stochastic temporal events
modelling. I aim to demonstrate how to use nonparametric theory building flexible
but principled models to understand interaction and correlation between stochastic

events and predict the incoming events, thereby helping solve real-world problems.

1.2 Thesis Overview

A fundamental assumption of the thesis is that there exist learnable patterns(e.g.,
analogy, correlation and interaction among events) hidden in the real-world tem-
poral events, despite how complicated they are. Understanding these patterns will
help yield effective solutions. Although the underlying true physical relationship
patterns of stochastic events are generally complicated, they can often be modelled
as a combination of infinite multiple simpler patterns, with the support of BNP

approaches.

Dirichlet process (DP)[4] and its variants (see Sec. provide elegant tools
for exploring such complicated relationships. As one of the most popular BNP
approaches, it has been widely adopted as a flexible BNP prior over countably-
infinite partitions of a space. The realization of a DP is discrete, which means DP

is not suitable for directly modelling continuous variables. However, it fits perfectly
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for the cases of modelling an unknown number of relationships among patterns via
combining forces of possibly infinite statistical models. The literature is rich on
the subjects of how DP model family (abbreviated to DPs) are utilized to extend
existing models to represent complicated underlying patterns of data and outperform

traditional approaches (see survey in Sec. [2.2.7)

A particularly important and foundational model derived from Dirichlet process
is Dirichlet process mizture model (DPMM) [5] (see Sec. It has been the
cornerstone of many BNP approaches. In DPMM, the observed data are assumed
to belong to one of an infinite number of clusters and the data from the same cluster

share the same distribution which is distributed according to a random measure.

In this thesis, with the supports of DPs and DPMM, I investigate the problems

in modelling stochastic temporal events from the following three perspectives:

Conducting flexible grouping to facilitate sparse event prediction Many
real-world stochastic events exhibit sparseness feature. Such sparse ness brings
significant challenges to the modelling. For example, in the scenario of water pipe
failure prediction, the data sparsity problem makes the prediction model difficult to
train as very few pipes have failure records during the observation period. In the
thesis, with the support of DPMM, a hierarchical BNP model that clusters similar
pipes together to share failure events is developed to conduct more accurate and

efficient failure event prediction (see Chapter [3| for details).

Learning infinite branching structure to generalize interactive point pro-
cess Many stochastic events series such as stock trades, earthquakes and epi-
demics, usually exhibit strong interactive patterns and cluster properties in both
temporal space and feature space. In other words, one event can trigger the oc-
currences of others. Interaction point processes (IPPs) (see Sec. represent a
class of stochastic point processes that can model the interaction between points. In

this thesis, a variant of DP, distance dependent Chinese restaurant process(ddCRP)
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(see Sec. [2.2.6]), is adopted to generalize and improve the IPPs, yielding a Bayesian

nonparametric branching model(See Chapter 4| for further explanation).

Modelling infinite latent states to capture observation and arrival time
correlation In stochastic events series, the correlation exists not only between
events’ emitted observations, but also between their arrival times. State space mod-
els (e.g., hidden Markov model) and stochastic interaction point process models (e.g.,
Hawkes process) have been studied extensively yet separately for the two types of
correlations. In this thesis, hierarchical Dirichlet process(HDP)(see Sec. is
adopted to model the state transition matrix to construct a Bayesian nonparametric

model (details are discussed in Chapter [5)) that considers both types of correlations.

1.3 Thesis Organization

We organize the rest of thesis as follows: Chapter 2 Background, Chapter 3 Bayesian
nonparametric approach for sparse event prediction, Chapter 4 Infinite Branching
Model, Chapter 5 Infinite Hidden Semi-Markov Modulated Interaction Point Pro-

cess, Chapter 6 Conclusions and future works.

Chapter 2: Background

In Chapter 2, I first review the background of BNP approaches. Then, I provide an
overview of the stochastic events models investigated in this thesis. Also, I introduce

the foundation of Markov chain Monte Carlo (MCMC) inference framework.
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Chapter 3: Bayesian Nonparametric Approach for Sparse

Event

In chapter 3, I present a novel BNP approach, namely Dirichlet process mixture of
hierarchical beta process model, for sparse temporal event prediction and apply it to
the task of water pipe failure prediction. A prediction model that can predict future
failure probability is developed and hence the high-risk pipes can be prioritized for
preventative physical condition assessment. As a result, disastrous infrastructure

failures can be prevented proactively.

Dealing With Sparse Event Using Flexible Grouping Like many other real-
world machine learning applications, water pipe failure events prediction encounters
the sparse data problem, as very few pipes have failure records during the observation
period. Such sparsity makes traditional methods incompetent for accurate pipe
failure prediction since most pipes do not have failure data for training. I propose
tackling this sparse data problem by sharing failure data via a flexible hierarchical
modelling of failure behaviours. The key concept is a flexible grouping scheme that
clusters pipes with similar failure pattern together for modelling so that failure data
can be shared by similar pipes for training. The failure probability of a pipe segment
is modelled by beta process and the failure records of pipes are represent with an
infinite binary matrix. The pipes with similar failure patterns are presumed to
constitute a cluster whose pipes’ average failure probability is distributed based on
a new beta process. The Dirichlet process is adopted as a flexible prior for the pipe-
cluster assignment variable with no assumptions on the number of clusters. Based
on this tactic, the Dirichlet process mixture of hierarchical beta process (DPMHBP)

model is constructed.

Model Inference The proposed model has no analytical solution. I develop an

approximated yet computational efficient Metropolis-within-Gibbs sampling method
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for model parameter inference. Also, a Gibbs sampling inference step for large-scale
datasets is derived by making use of the sparsity property of failure records to obtain

an approximated conjugacy.

Failure Prediction The proposed model is applied to a metropolitan water sup-
ply network. Area under curve (AUC) is calculated for measuring the performances
of different approaches and one-sided paired t-test is performed on AUC to evaluate
the significance of performance difference. The comparison results show that the
proposed approach significantly outperforms the state-of-the-art prediction meth-
ods, including Weibull[6], Cox [7], SVM, HBP [8] . Many failures could be prevented
and significant economic and social savings could be brought to the water utility if

the proposed method were applied.

Chapter 4: Bayesian Nonparametric Approach for Event In-

teraction

In chapter 4, I propose the infinite branching model (IBM), a Bayesian nonpara-
metric model that generalizes and extends some popular interaction point pro-
cesses(IPPs). IBM redefines the IPP as an infinite mixture of basis point processes
with the aid of a distance dependent prior over infinite branching structure that

describes the relationships between points.

Modelling the Infinite Branching Structure by Point Connection Many
IPPs, e.g., Hawkes process, can be redefined equivalently as Poisson cluster pro-
cesses which are constituted by collection of basic Poisson processes following a
specific branching structure that describes the relationship between events. This
branching structure is defined in temporal space and effective to capture the im-
pact of event interaction on arrival time. However, the strengths of original IPPs

are insufficient in terms of capturing the branching structure in observation(feature
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space) that reflects the interactive and cluster trait as well. To fill this gap, I resort
to distance dependent Chinese restaurant process(ddCRP) [9] (see Sec. [2.2.3)), which
defines a class of non-exchangeable distributions over branching structure. In dd-
CRP, observations constitute infinite number of branching by connecting each other
based on the distance between them. The distance metrics can be defined on time,
physic or feature spaces. DACRP is placed as an infinite prior over the branching
structure, in which the interaction between points is depicted by their connection.
Then a Bayesian nonparametric model, namely Infinite Branching Model (IBP)
is formed. IBM can learn the point events intensity, interaction mechanism and
branching structure simultaneously. The cluster traits in both temporal space and
feature spaces are captured in an integrated way. Unlike traditional IPPs where
the offsprings share the same intensity, IBM allows different offspring intensities for
different clusters, which grants more flexibility for modelling real-world events. In
addition, I construct hierarchical IBM model in which similar point clusters form a
hyper-cluster sharing the same offspring intensity. Hierarchical IBM extends IBM
model in a similar way that the Chinese restaurant franchise (CRF) process [10]
extends the CRP. It can automatically discover the point clusters that share the

same triggering scheme even when they are disjoint in spatiotemporal space.

Inference Because the proposed model is not tractable analytically, a generic
Metropolis-within-Gibbs sampling method is developed for model parameter infer-
ence. Due to the cluster trait of IPPs, the immigrant term and offspring term in
likelihood function are independent conditioning on the latent branching structure.
Therefore, calculation of Hastings ratios for latent branching parameters update can

be simplified by considering only three distinct cases.

Empirical Study Experiments are constructed on both synthetic and real-world
data to evaluate the proposed model. I firstly demonstrate the IBM’s performance

on branching structure estimation based on synthetic data that generated from tradi-
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tional Hawkes process with two triggering kernels: exponential and Weibull kernels,
respectively. For the real-world application, the proposed method is applied to the
water pipe failure prediction problem. Hierarchical IBM is compared with methods
such as Model independent stochastic declustering (MISD) [11], Bayesian Hawkes
process(BHawk) [12], homogeneous Poisson process (HPP), sigmoidal Gaussian Cox
process (SGCP)[13] and cascades of Poisson process (CPP)[14], etc. For failure
amount prediction. The comparison result shows that the proposed method outper-
forms others for accurate failure clustering. The superiority relies on the model’s
capability to capture the event interaction with hierarchical structure exhibited in

spatiotemporal space.

Chapter 5: Bayesian Nonparametric Approach for Event

Correlation

In this chapter, I propose Infinite Hidden Semi-Markov Modulated Interaction Point
Process(iHSMM-IPP) model to investigate stochastic events considering the obser-

vation correlation and arrival time correlation in a unified manner.

Exploring Arrival Time Correlation and Observation Correlation Simul-
taneously In stochastic events series, the correlation exists not only between
events emitted observations but also their arrival times. Hidden Markov model
(HMM) [15] has been a powerful tool for modelling the correlation between obser-
vations in the way that the latent state behind an event observation is influenced
by its predecessors. However, HMM does not considering the correlation between
arrival times. Interaction point process (IPP) is widely adopted for modelling ar-
rival time correlation by defining a conditional intensity that depicts the interaction
that an event arrival time depends on all the previous events. However, it lacks
of the capability of modelling events latent states and their interactions. Inspired

by hidden semi-Markov model (HSMM) [16, [I7] that allows each state to emit a



1.3. Thesis Organization 11

sequence of observations, a novel Bayesian nonparametric model, iHSMM-IPP; is
proposed to acquire the merits of both HMM and IPPs to model the two types of
correlation simultaneously with an integrated manner. The core of proposed model
is a latent semi-Markov state chain with infinitely countable number of states which
govern both the observation emission and new event triggering mechanism. Hier-
archical Dirichlet process(HDP) is employed as the prior over infinite latent state
transformation matrices. The resulting model unifies and generalizes HMMs and
IPPs and can model stochastic events series by simultaneously considering the cor-
relations between arrival times and between emitted observations. As a Bayesian

nonparametric model, it can infer the number of states based on events data.

Inference The proposed iHSMM-IPP model faces challenges for posterior infer-
ence: strong correlation nature of its temporal dynamics and non-Markovianity
introduced by the event triggering mechanism. As traditional sampling methods
for high dimensional probability distributions, e.g., MCMC, sequential Monte Carlo
(SMC), are unreliable when highly correlated variables are updated independently, I
develop the inference algorithm within the framework of particle MCMC (PMCMC)
[18], a family of inferential methods that use SMC to construct a proposal kernel for
an MCMC sampler. For tackling the non-Markovianity, ancestor resampling scheme
[19] is incorporated into the inference algorithm, which uses backward sampling to

improve the mixing of PMCMC and thereby provides effective sampling.

Empirical Study The superiority of the proposed model is demonstrated by syn-
thetic data experiment and two real-world data applications. For the synthetic data
experiment, the synthetic data is drawn via Gaussian emission HMM and several
related methods are compared including sticky HDP-HMM [20], HDP-HSMM [21]
and marked Hawkes process [12]. The first real-world application is to understand
energy consumption behaviours of households based on reference energy disaggrega-

tion dataset. The appliance types can be modelled as latent states in the proposed
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iHSMM-IPP model and the readings are state’s emitted observations governed by
Gaussian distributions. The triggering kernels of states in the model depict the in-
fluences of appliances on triggering the following energy consumption. The second
application is to understand water pipe networks behaviours and impact. The fail-
ure types are modelled as latent states and labour hours for repair are modelled as
states’ emissions, which are Gaussian-distributed. The proposed model outperforms
the other methods in both applications due to the fact that it well utilizes both the
observed information and occurrence times while others only consider part of the

information or have limitations on model flexibility.

Chapter 6: Conclusions and Future Work

In Chapter [0 I conclude by summarizing the contributions of this thesis. I also

summarize potential directions of future work.



Chapter 2

Background

In this chapter, the techniques that are related to the thesis are reviewed. The
review mainly focuses on three parts. First, the related Bayesian nonparametric ap-
proaches that are utilized in the thesis for improving traditional stochastic temporal
event modelling are summarized. Second, I review some of the most popular frame-
works that have been widely adopted for temporal event modelling, particularly for
modelling event interaction and event latent state. At last, the inference methods
that are used for inferring the parameters of the proposed models are introduced.

For each technique, I briefly introduce its theory and summarize its applications.

At the beginning, I introduce Dirichlet process (Sec. and its extensions.
Then I review beta process (Sec. which depicts the occurrence of temporal
series as a sequence of independent binary variable. Next, the theory of interaction
point process is introduced in Sec. 2.4l After that, a quick review of hidden Markov
model and its extension is given in Sec. [2.5] At the end, as exact Bayesian inference
is infeasible for the proposed model, Markov chain Monte Carlo methods are used.

They are introduced in Sec. 2.6]
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2.1 Bayesian Nonparametric: from Finite to Infi-

nite

Classic Bayesian approach derives the posterior distribution based on both likelihood
and prior:

p(0].X) o< p(0) x p(X]0), (2.1)

where, likelihood p(X6) defines a family of probability distributions over observa-
tions X with parameter 6 restricted in a finite-dimensional space. A density function
p(0) is placed to represent the prior beliefs over the parameter. When we infer the
posterior of parameter 6 given observations X, the dimension of parameter is fixed,

so the complexity and scale of methods are fixed.

Nonparametric methods have achieved remarkable success in frequentist statis-
tics (non-Bayesian) [22]. This kind of methods makes fewer assumptions about the
form of probability distributions and the complexity of models can be determined

from data.

Bayesian nonparametric (BINP) inherits the schemes of traditional paramet-
ric Bayesian and the concept of frequentist nonparametric. Distinctive from classic
Bayesian, a BNP approach is built through more flexible and expressive parame-
ter that is designed as a general stochastic process, an infinite-dimensional random

variable. The inference process can be formulated [23] as:
p(G]X) o< p(G) x p(X|G), (2:2)

where, likelihood p(X|G) represents a far richer family of distributions over X with
parameter which lies in infinite-dimensional space (G denotes a stochastic process).
The prior believe p(G) represents a probability measure on infinite-dimensional vari-
ables. In the inference process, the parameter complexity adapts and fits to the data

automatically.
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Using probability measure over a general stochastic process p(G) rather than
probability distribution over fix-dimensional parameter p(6) as the prior grants BNP
model infinite flexibility and expressiveness. Among all the models, Dirichlet process
[4] and beta process [24] are extensively adopted and have become the pillars for

building many sophisticated Bayesian non-parametric models.

2.2 Dirichlet Process and Its Variants

Dirichlet process (DP) [4] is one of the most popular Bayesian non-parametric pro-
cesses. It has been applied with tremendous success in diverse domains, such as
computer vision [25, 26], musical analysis [27), 28], social network analysis [29], nat-
ural language parsing [30] and information retrieval [31], etc. In this section, we will

make a quick review of current Dirichlet process models and its extensions.

2.2.1 Dirichlet Process

Dirichlet Process defines a random measure over a family of probability distributions
and usually serves as a prior over random partitions. A Bayesian nonparametric
model with DP prior does not set any assumptions on the number of partitions.

Instead, it allows the number to grow as the data observation increases.[5]

Suppose that G is a probability distribution over a measurable space ©. If the
marginal distribution of G is DP, which is parameterized by a concentration param-

eter a and a base measure H, then for any finite measurable partition T, 75, ..., Tk

of ©, random vector (G(11),G(13), ..., G(Tk)) will obey Dirichlet distribution.

(G(T),G(T3),....,G(Tk)) ~ Dirichlet(aH(T}),«H (1), ..., H(Tk)). (2.3)

In other words, the probabilities that G with any finite partition of © obeys a
Dirichlet distribution.
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The two parameters o and H can be intuitively explained. Base measure H is

the mean of DP: E(G) = H. On the other side, the concentration parameter can

H(1—H)

be understood as an inverse of variance: V(G) = =

Let 04,6,,....0, denote a sequence of independent samples from G. Posterior

over G is also a DP.

Glby,...,0, ~ DP(a+n,G,), (2.4)
where
1 N
G, P n(a 0) + ;:1 (0 =146,)) (2.5)

Thus, DP is the conjugate prior for arbitrary distribution over a measurable space

©.

The posterior shows a weighted average of prior base measure and the empirical
measure. If the weighted factor a« — 0, the prior becomes non-effective and the
posterior distribution will only be given by the empirical distribution. On the other
hand, if the observations is sufficiently large, such that n > «, the posterior will
be dominated by the empirical distribution. This property makes DP suitable to

estimate the true underlying distribution.

Suppose 0,1 is a new sample of GG, using the conjugacy property, the predictive

distribution over 6,1 can be obtained directly as follows.

1
a+n

9n+1|917"'79n ~ (QH—{_Z(S(%(A)) (26)
i=1

Dirichlet process describes essentially a ”distribution over distribution”. Several
constructive representations from different schemes are proposed. Stick-breaking

construction and Chinese restaurant process are the most popular two of them.
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2.2.2 Stick-breaking Construction of DP

Stick-breaking process [32] generates an infinite sequence of independent random

variables as follows.

Vi ~ Beta(1, a)
i1 (2.7)

When ; is drawn this way, we denote m; ~ GEM (). It is clear that > ;- m; = 1.
Based on stick-breaking process, a fundamentally important construction process of

DP can be obtained as follows [32].

Consider an arbitrary measurable space w and a probability measure H on w.

Any G ~ DP(a, H) can be formulated as

O ~ H

o0 (2.8)
G(8) =) mda,(6).

where, 0p, denotes a unit mass at point ;. Clearly G is also a measure and is
composed of a weighted sum of infinite point masses, therefore a draw from G is

discrete with probability one.

Because of the discreteness, the sample 6; from DP will be repeated during
the generation process, a clustering property is thereby manifested. Such clustering

property is explicit in another construction process of DP, Chinese restaurant process
(see Sec. [2.2.3).

Stick-breaking representation plays an important role in Bayesian nonparamet-
ric. It has been the cornerstone of constructive definitions of many nonparametric
models. For instance, it is employed to generate extensions of DP that allow depen-

dence across a collection of distributions (see Sec. [2.2.7)).
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2.2.3 Chinese Restaurant Process

Chinese restaurant process(CRP) is another widely-used construction of DP. It de-
scribes the marginal distribution over a random partition. Specifically, if the prior
on random variable G is a Dirichlet process, then the CRP defines how observations

are assigned to clusters when we integrate out G [4].

Chinese restaurant process exhibits the clustering property of DP in an explicit
manner via a metaphor. Imagine there is a Chinese restaurant that has an infinite
number of tables that correspond to clusters. A sequence of customers that corre-
spond to data points enter and select a table to sit. The first customer sits at the
first table. The succedent customers sit at a previously occupied table with prob-
ability proportional to the number of customers already sitting at the table, and

they sit at an unoccupied table with probability proportional to a concentration

parameter:
n—nlr-f-oz if r < k
plz =r|z,a) x (2.9)
nff+a ifr=~kFk+1,

where, z; indicates a customer, z_; denotes all the customers that enter the restau-
rant before z;, r indicates a table index, and k represents the current sited number
of tables. n, is the amount of customers sitting on table r and « is the concentra-
tion parameter for CRP, controlling the probability that a new customer selects an
unoccupied table to sit. This metaphor has turned out to be useful in considering

various generalizations of the Dirichlet process.

The CRP offers an exchangeable distribution over the table assignments z;. The
joint distribution is invariant to the order of customers. The procedure of assigning
a table for a customer can be performed as he or she is the last customer entering the
restaurant. As described by Eq.[2.9] the i-th customer sits at an occupied table with
a probability proportional to the number of customers who are already sitting at
that table. He or she sits at an unoccupied table with a probability proportional to

the concentration parameter «. As currently occupied tables are more likely to get
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new customers, CRP possesses a kind of rich get richer property. Theoretically, the
number of occupied tables K will almost surely grow logarithmically with dataset

size [33].

As a prior over partition of the data, CRP is exchangeable, by which it means
the probability that a table is selected only depends on the number of pre-existing
customer at the table. This exchange-ability can be exhibited from the fact that the

joint distribution for (