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Abstract

Modelling stochastic temporal events is a classic machine learning problem that has

drawn enormous research attentions over recent decades. Traditional approaches

heavily focused on the parametric models that pre-specify model complexity. Com-

prehensive model comparison and selection are necessary to prevent over-fitting and

under-fitting problems.

The recently developed Bayesian nonparametric learning framework provides

an appealing alternative to traditional approaches. It can automatically learn the

model complexity from data. In this thesis, I propose a set of Bayesian nonpara-

metric approaches for stochastic temporal event modelling with the consideration of

event similarity, interaction, occurrence time and emitted observation. Specifically,

I tackle following three main challenges in the modelling.

1. Data sparsity. Data sparsity problem is common in many real-world temporal

event modelling applications,e.g., water pipes failures prediction. A Bayesian non-

parametric model that allows pipes with similar behaviour to share failure data is

proposed to attain a more effective failure prediction. It is shown that flexible event

clustering can help alleviate the data sparsity problem. The clustering process is

fully data -driven and it does not require predefining the number of clusters. (This

work has been published on [1])

ii



2. Event interaction. Stochastic events can interact with each other over time.

One event can cause or repel the occurrence of other events. An unexplored theoreti-

cal bridge is established between interaction point processes and distance dependent

Chinese restaurant process. Hence an integrated model, namely infinite branching

model, is developed to estimate point event intensity, interaction mechanism and

branching structure simultaneously. (This work has been published on [2])

3. Event correlation. The stochastic temporal events are correlated not only

between arrival times but also between observations. A novel unified Bayesian

nonparametric model that generalizes Hidden Markov model and interaction point

processes is constructed to exploit two types of underlying correlation in a well-

integrated way rather than individually. The proposed model provides a compre-

hensive insight into the interaction mechanism and correlation between events. (This

work has been published on [3])

At last, a future vision of Bayesian nonparametric research for stochastic tem-

poral events is highlighted from both application and modelling perspectives.
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Chapter 1

Introduction

1.1 Objective and Challenges

The evolving of our world can be regarded as series of stochastic temporal events.

The research of stochastic temporal events modelling has drawn enormous attention

during the past few decades. It has wide applications in various areas, such as finan-

cial modelling, social event analysis, infrastructure failure prediction, seismological

and epidemiological forecasting.

In general, the objective of stochastic temporal events modelling is to learn

the mechanism of event generation from observed historical events and then apply

it to forecast forthcoming new events characteristics, e.g., occurrence time, latent

state, observable appearance. Fig. 1.1 gives an illustration of temporal events

characteristics and generation mechanisms.

The characteristics of a temporal event consist of an occurrence time t, a latent

state s and an observable appearance y. The generation mechanisms describe the

rules of generating events characteristics. Occurrence time of an event is usually

impacted by the occurrence times of its predecessors. In Fig. 1.1, the red arrow

curves indicate the mechanism of occurrence time generation. It is worth noting that,
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Figure 1.1: Characteristics and generation mechanisms of temporal events.

as an illustration, it only shows the first order of occurrence time relationship, i.e.,

an events time is only impacted by the previous event’s occurrence time. Similarly,

the latent state of an event is influenced by the previous event’s state. The yellow

arrow curves show the generation mechanism of latent states.

Fig. 1.1 also illustrates an example possessing Markov property, i.e., an event’s

latent state is only determined by the state of its previous event. The generation of

event appearance is usually governed by its latent state, as illustrated by green arrow

lines. Indeed, the real-world scenarios are much more complicated than the illus-

trated situation whose purpose is for introducing the components of the modelling

problem only.

Concrete examples can help us better understand the problem. Using a Twitter

user’s tweets stream as an example, a tweet has a time, a latent topic and the content.

The occurrence time of a new tweet is impacted by the users previous tweets. Its

topic is influenced by previous tweets topics. The content is generated based on the

topic. Another example can be a market trading event stream. A trading event
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has its occurrence time which can put an impact on the following events, and a

latent trading intention which governs the observable prices and amount. In the

area of infrastructure asset predictive maintenance, an infrastructure asset failure,

e.g., drinking water pipe burst, has a failure time, failure type, e.g., circular break,

and failure cost, e.g., repair cost.

The main challenges of stochastic event modelling come from two aspects: the

intrinsic complexity of stochastic events and the limitation of traditional modelling

approaches. On the one hand, real-world stochastic events are complicated. In or-

der to fully understand them, people need to consider as many aspects of events

as possible, e.g., occurrence time, latent state, emitted observation, the correlation

between events, generation or triggering mechanism. These aspects often need to

be considered together, which makes the problem extremely difficult. Determining

model complexity beforehand is almost impossible. On the other hand, most tra-

ditional approaches of stochastic event modelling are parametric, which means the

form of the model needs to be pre-defined beforehand based on somewhat biased

assumptions or priors. A model is competent only when its prior can adequately

capture the true underlying data structure while an invalid prior makes the model

vulnerable to over-fitting or under-fitting problems. The support of a comprehen-

sive model selection process is often required for finding the proper model form.

The process is computationally costly and cannot guarantee the optimal solution.

Hence, traditional approaches are deficient in flexibility to model complex stochastic

events.

Bayesian nonparametric (BNP) approaches have attracted increasing interests

in recent years due to its flexibility and expression power for modelling compli-

cated real-world scenarios. A BNP approach fits a single model whose complexity

is determined by data rather than comprehensive model selection over a family of

parameterized models with predefined different complexities. Comparing with tra-

ditional parametric approaches, the number of parameters in a BNP model can

increase with data. Therefore, its model form adapts to the data. A BNP approach
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has the ability to model over infinite dimensional function or measure spaces. It

supplies a broad class of flexible priors allowing data to speak for itself. Hence, it

have been widely used for modelling various data structures, e.g., array, partition,

matrix, tree, network, graph and temporal sequence.

Another benefit of BNP approaches is that many existing Bayesian parametric

approaches can be enhanced by introducing a nonparametric prior that incorporates

more data information which the original model cannot consider. The derived non-

parametric model will be more expressive, hence more powerful. As a result, BNP

approaches open another door for us to better model stochastic temporal events.

The thesis focuses on Bayesian nonparametric-based stochastic temporal events

modelling. I aim to demonstrate how to use nonparametric theory building flexible

but principled models to understand interaction and correlation between stochastic

events and predict the incoming events, thereby helping solve real-world problems.

1.2 Thesis Overview

A fundamental assumption of the thesis is that there exist learnable patterns(e.g.,

analogy, correlation and interaction among events) hidden in the real-world tem-

poral events, despite how complicated they are. Understanding these patterns will

help yield effective solutions. Although the underlying true physical relationship

patterns of stochastic events are generally complicated, they can often be modelled

as a combination of infinite multiple simpler patterns, with the support of BNP

approaches.

Dirichlet process (DP)[4] and its variants (see Sec. 2.2) provide elegant tools

for exploring such complicated relationships. As one of the most popular BNP

approaches, it has been widely adopted as a flexible BNP prior over countably-

infinite partitions of a space. The realization of a DP is discrete, which means DP

is not suitable for directly modelling continuous variables. However, it fits perfectly
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for the cases of modelling an unknown number of relationships among patterns via

combining forces of possibly infinite statistical models. The literature is rich on

the subjects of how DP model family (abbreviated to DPs) are utilized to extend

existing models to represent complicated underlying patterns of data and outperform

traditional approaches (see survey in Sec. 2.2.7)

A particularly important and foundational model derived from Dirichlet process

is Dirichlet process mixture model (DPMM) [5] (see Sec. 2.2.4) It has been the

cornerstone of many BNP approaches. In DPMM, the observed data are assumed

to belong to one of an infinite number of clusters and the data from the same cluster

share the same distribution which is distributed according to a random measure.

In this thesis, with the supports of DPs and DPMM, I investigate the problems

in modelling stochastic temporal events from the following three perspectives:

Conducting flexible grouping to facilitate sparse event prediction Many

real-world stochastic events exhibit sparseness feature. Such sparse ness brings

significant challenges to the modelling. For example, in the scenario of water pipe

failure prediction, the data sparsity problem makes the prediction model difficult to

train as very few pipes have failure records during the observation period. In the

thesis, with the support of DPMM, a hierarchical BNP model that clusters similar

pipes together to share failure events is developed to conduct more accurate and

efficient failure event prediction (see Chapter 3 for details).

Learning infinite branching structure to generalize interactive point pro-

cess Many stochastic events series such as stock trades, earthquakes and epi-

demics, usually exhibit strong interactive patterns and cluster properties in both

temporal space and feature space. In other words, one event can trigger the oc-

currences of others. Interaction point processes (IPPs) (see Sec. 2.4) represent a

class of stochastic point processes that can model the interaction between points. In

this thesis, a variant of DP, distance dependent Chinese restaurant process(ddCRP)
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(see Sec. 2.2.6), is adopted to generalize and improve the IPPs, yielding a Bayesian

nonparametric branching model(See Chapter 4 for further explanation).

Modelling infinite latent states to capture observation and arrival time

correlation In stochastic events series, the correlation exists not only between

events’ emitted observations, but also between their arrival times. State space mod-

els (e.g., hidden Markov model) and stochastic interaction point process models (e.g.,

Hawkes process) have been studied extensively yet separately for the two types of

correlations. In this thesis, hierarchical Dirichlet process(HDP)(see Sec. 2.2.5) is

adopted to model the state transition matrix to construct a Bayesian nonparametric

model (details are discussed in Chapter 5) that considers both types of correlations.

1.3 Thesis Organization

We organize the rest of thesis as follows: Chapter 2 Background, Chapter 3 Bayesian

nonparametric approach for sparse event prediction, Chapter 4 Infinite Branching

Model, Chapter 5 Infinite Hidden Semi-Markov Modulated Interaction Point Pro-

cess, Chapter 6 Conclusions and future works.

Chapter 2: Background

In Chapter 2, I first review the background of BNP approaches. Then, I provide an

overview of the stochastic events models investigated in this thesis. Also, I introduce

the foundation of Markov chain Monte Carlo (MCMC) inference framework.
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Chapter 3: Bayesian Nonparametric Approach for Sparse

Event

In chapter 3, I present a novel BNP approach, namely Dirichlet process mixture of

hierarchical beta process model, for sparse temporal event prediction and apply it to

the task of water pipe failure prediction. A prediction model that can predict future

failure probability is developed and hence the high-risk pipes can be prioritized for

preventative physical condition assessment. As a result, disastrous infrastructure

failures can be prevented proactively.

Dealing With Sparse Event Using Flexible Grouping Like many other real-

world machine learning applications, water pipe failure events prediction encounters

the sparse data problem, as very few pipes have failure records during the observation

period. Such sparsity makes traditional methods incompetent for accurate pipe

failure prediction since most pipes do not have failure data for training. I propose

tackling this sparse data problem by sharing failure data via a flexible hierarchical

modelling of failure behaviours. The key concept is a flexible grouping scheme that

clusters pipes with similar failure pattern together for modelling so that failure data

can be shared by similar pipes for training. The failure probability of a pipe segment

is modelled by beta process and the failure records of pipes are represent with an

infinite binary matrix. The pipes with similar failure patterns are presumed to

constitute a cluster whose pipes’ average failure probability is distributed based on

a new beta process. The Dirichlet process is adopted as a flexible prior for the pipe-

cluster assignment variable with no assumptions on the number of clusters. Based

on this tactic, the Dirichlet process mixture of hierarchical beta process (DPMHBP)

model is constructed.

Model Inference The proposed model has no analytical solution. I develop an

approximated yet computational efficient Metropolis-within-Gibbs sampling method
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for model parameter inference. Also, a Gibbs sampling inference step for large-scale

datasets is derived by making use of the sparsity property of failure records to obtain

an approximated conjugacy.

Failure Prediction The proposed model is applied to a metropolitan water sup-

ply network. Area under curve (AUC) is calculated for measuring the performances

of different approaches and one-sided paired t-test is performed on AUC to evaluate

the significance of performance difference. The comparison results show that the

proposed approach significantly outperforms the state-of-the-art prediction meth-

ods, including Weibull[6], Cox [7], SVM, HBP [8] . Many failures could be prevented

and significant economic and social savings could be brought to the water utility if

the proposed method were applied.

Chapter 4: Bayesian Nonparametric Approach for Event In-

teraction

In chapter 4, I propose the infinite branching model (IBM), a Bayesian nonpara-

metric model that generalizes and extends some popular interaction point pro-

cesses(IPPs). IBM redefines the IPP as an infinite mixture of basis point processes

with the aid of a distance dependent prior over infinite branching structure that

describes the relationships between points.

Modelling the Infinite Branching Structure by Point Connection Many

IPPs, e.g., Hawkes process, can be redefined equivalently as Poisson cluster pro-

cesses which are constituted by collection of basic Poisson processes following a

specific branching structure that describes the relationship between events. This

branching structure is defined in temporal space and effective to capture the im-

pact of event interaction on arrival time. However, the strengths of original IPPs

are insufficient in terms of capturing the branching structure in observation(feature



1.3. Thesis Organization 9

space) that reflects the interactive and cluster trait as well. To fill this gap, I resort

to distance dependent Chinese restaurant process(ddCRP) [9] (see Sec. 2.2.3), which

defines a class of non-exchangeable distributions over branching structure. In dd-

CRP, observations constitute infinite number of branching by connecting each other

based on the distance between them. The distance metrics can be defined on time,

physic or feature spaces. DdCRP is placed as an infinite prior over the branching

structure, in which the interaction between points is depicted by their connection.

Then a Bayesian nonparametric model, namely Infinite Branching Model (IBP)

is formed. IBM can learn the point events intensity, interaction mechanism and

branching structure simultaneously. The cluster traits in both temporal space and

feature spaces are captured in an integrated way. Unlike traditional IPPs where

the offsprings share the same intensity, IBM allows different offspring intensities for

different clusters, which grants more flexibility for modelling real-world events. In

addition, I construct hierarchical IBM model in which similar point clusters form a

hyper-cluster sharing the same offspring intensity. Hierarchical IBM extends IBM

model in a similar way that the Chinese restaurant franchise (CRF) process [10]

extends the CRP. It can automatically discover the point clusters that share the

same triggering scheme even when they are disjoint in spatiotemporal space.

Inference Because the proposed model is not tractable analytically, a generic

Metropolis-within-Gibbs sampling method is developed for model parameter infer-

ence. Due to the cluster trait of IPPs, the immigrant term and offspring term in

likelihood function are independent conditioning on the latent branching structure.

Therefore, calculation of Hastings ratios for latent branching parameters update can

be simplified by considering only three distinct cases.

Empirical Study Experiments are constructed on both synthetic and real-world

data to evaluate the proposed model. I firstly demonstrate the IBM’s performance

on branching structure estimation based on synthetic data that generated from tradi-
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tional Hawkes process with two triggering kernels: exponential and Weibull kernels,

respectively. For the real-world application, the proposed method is applied to the

water pipe failure prediction problem. Hierarchical IBM is compared with methods

such as Model independent stochastic declustering (MISD) [11], Bayesian Hawkes

process(BHawk) [12], homogeneous Poisson process (HPP), sigmoidal Gaussian Cox

process (SGCP)[13] and cascades of Poisson process (CPP)[14], etc. For failure

amount prediction. The comparison result shows that the proposed method outper-

forms others for accurate failure clustering. The superiority relies on the model’s

capability to capture the event interaction with hierarchical structure exhibited in

spatiotemporal space.

Chapter 5: Bayesian Nonparametric Approach for Event

Correlation

In this chapter, I propose Infinite Hidden Semi-Markov Modulated Interaction Point

Process(iHSMM-IPP) model to investigate stochastic events considering the obser-

vation correlation and arrival time correlation in a unified manner.

Exploring Arrival Time Correlation and Observation Correlation Simul-

taneously In stochastic events series, the correlation exists not only between

events emitted observations but also their arrival times. Hidden Markov model

(HMM) [15] has been a powerful tool for modelling the correlation between obser-

vations in the way that the latent state behind an event observation is influenced

by its predecessors. However, HMM does not considering the correlation between

arrival times. Interaction point process (IPP) is widely adopted for modelling ar-

rival time correlation by defining a conditional intensity that depicts the interaction

that an event arrival time depends on all the previous events. However, it lacks

of the capability of modelling events latent states and their interactions. Inspired

by hidden semi-Markov model (HSMM) [16, 17] that allows each state to emit a
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sequence of observations, a novel Bayesian nonparametric model, iHSMM-IPP, is

proposed to acquire the merits of both HMM and IPPs to model the two types of

correlation simultaneously with an integrated manner. The core of proposed model

is a latent semi-Markov state chain with infinitely countable number of states which

govern both the observation emission and new event triggering mechanism. Hier-

archical Dirichlet process(HDP) is employed as the prior over infinite latent state

transformation matrices. The resulting model unifies and generalizes HMMs and

IPPs and can model stochastic events series by simultaneously considering the cor-

relations between arrival times and between emitted observations. As a Bayesian

nonparametric model, it can infer the number of states based on events data.

Inference The proposed iHSMM-IPP model faces challenges for posterior infer-

ence: strong correlation nature of its temporal dynamics and non-Markovianity

introduced by the event triggering mechanism. As traditional sampling methods

for high dimensional probability distributions, e.g., MCMC, sequential Monte Carlo

(SMC), are unreliable when highly correlated variables are updated independently, I

develop the inference algorithm within the framework of particle MCMC (PMCMC)

[18], a family of inferential methods that use SMC to construct a proposal kernel for

an MCMC sampler. For tackling the non-Markovianity, ancestor resampling scheme

[19] is incorporated into the inference algorithm, which uses backward sampling to

improve the mixing of PMCMC and thereby provides effective sampling.

Empirical Study The superiority of the proposed model is demonstrated by syn-

thetic data experiment and two real-world data applications. For the synthetic data

experiment, the synthetic data is drawn via Gaussian emission HMM and several

related methods are compared including sticky HDP-HMM [20], HDP-HSMM [21]

and marked Hawkes process [12]. The first real-world application is to understand

energy consumption behaviours of households based on reference energy disaggrega-

tion dataset. The appliance types can be modelled as latent states in the proposed
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iHSMM-IPP model and the readings are state’s emitted observations governed by

Gaussian distributions. The triggering kernels of states in the model depict the in-

fluences of appliances on triggering the following energy consumption. The second

application is to understand water pipe networks behaviours and impact. The fail-

ure types are modelled as latent states and labour hours for repair are modelled as

states’ emissions, which are Gaussian-distributed. The proposed model outperforms

the other methods in both applications due to the fact that it well utilizes both the

observed information and occurrence times while others only consider part of the

information or have limitations on model flexibility.

Chapter 6: Conclusions and Future Work

In Chapter 6, I conclude by summarizing the contributions of this thesis. I also

summarize potential directions of future work.



Chapter 2

Background

In this chapter, the techniques that are related to the thesis are reviewed. The

review mainly focuses on three parts. First, the related Bayesian nonparametric ap-

proaches that are utilized in the thesis for improving traditional stochastic temporal

event modelling are summarized. Second, I review some of the most popular frame-

works that have been widely adopted for temporal event modelling, particularly for

modelling event interaction and event latent state. At last, the inference methods

that are used for inferring the parameters of the proposed models are introduced.

For each technique, I briefly introduce its theory and summarize its applications.

At the beginning, I introduce Dirichlet process (Sec. 2.2) and its extensions.

Then I review beta process (Sec. 2.3) which depicts the occurrence of temporal

series as a sequence of independent binary variable. Next, the theory of interaction

point process is introduced in Sec. 2.4. After that, a quick review of hidden Markov

model and its extension is given in Sec. 2.5. At the end, as exact Bayesian inference

is infeasible for the proposed model, Markov chain Monte Carlo methods are used.

They are introduced in Sec. 2.6.
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2.1 Bayesian Nonparametric: from Finite to Infi-

nite

Classic Bayesian approach derives the posterior distribution based on both likelihood

and prior:

p(θ|X) ∝ p(θ)× p(X|θ), (2.1)

where, likelihood p(X|θ) defines a family of probability distributions over observa-

tions X with parameter θ restricted in a finite-dimensional space. A density function

p(θ) is placed to represent the prior beliefs over the parameter. When we infer the

posterior of parameter θ given observations X, the dimension of parameter is fixed,

so the complexity and scale of methods are fixed.

Nonparametric methods have achieved remarkable success in frequentist statis-

tics (non-Bayesian) [22]. This kind of methods makes fewer assumptions about the

form of probability distributions and the complexity of models can be determined

from data.

Bayesian nonparametric (BNP) inherits the schemes of traditional paramet-

ric Bayesian and the concept of frequentist nonparametric. Distinctive from classic

Bayesian, a BNP approach is built through more flexible and expressive parame-

ter that is designed as a general stochastic process, an infinite-dimensional random

variable. The inference process can be formulated [23] as:

p(G|X) ∝ p(G)× p(X|G), (2.2)

where, likelihood p(X|G) represents a far richer family of distributions over X with

parameter which lies in infinite-dimensional space (G denotes a stochastic process).

The prior believe p(G) represents a probability measure on infinite-dimensional vari-

ables. In the inference process, the parameter complexity adapts and fits to the data

automatically.
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Using probability measure over a general stochastic process p(G) rather than

probability distribution over fix-dimensional parameter p(θ) as the prior grants BNP

model infinite flexibility and expressiveness. Among all the models, Dirichlet process

[4] and beta process [24] are extensively adopted and have become the pillars for

building many sophisticated Bayesian non-parametric models.

2.2 Dirichlet Process and Its Variants

Dirichlet process (DP) [4] is one of the most popular Bayesian non-parametric pro-

cesses. It has been applied with tremendous success in diverse domains, such as

computer vision [25, 26], musical analysis [27, 28], social network analysis [29], nat-

ural language parsing [30] and information retrieval [31], etc. In this section, we will

make a quick review of current Dirichlet process models and its extensions.

2.2.1 Dirichlet Process

Dirichlet Process defines a random measure over a family of probability distributions

and usually serves as a prior over random partitions. A Bayesian nonparametric

model with DP prior does not set any assumptions on the number of partitions.

Instead, it allows the number to grow as the data observation increases.[5]

Suppose that G is a probability distribution over a measurable space Θ. If the

marginal distribution of G is DP, which is parameterized by a concentration param-

eter α and a base measure H, then for any finite measurable partition T1, T2, ..., TK

of Θ, random vector (G(T1), G(T2), ..., G(TK)) will obey Dirichlet distribution.

(G(T1), G(T2), ..., G(TK)) ∼ Dirichlet(αH(T1), αH(T2), ..., αH(TK)). (2.3)

In other words, the probabilities that G with any finite partition of Θ obeys a

Dirichlet distribution.
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The two parameters α and H can be intuitively explained. Base measure H is

the mean of DP: E(G) = H. On the other side, the concentration parameter can

be understood as an inverse of variance: V (G) = H(1−H)
1+α

.

Let θ1, θ2, ..., θn denote a sequence of independent samples from G. Posterior

over G is also a DP.

G|θ1, ..., θn ∼ DP (α + n,Gn), (2.4)

where

Gn =
1

α + n
(αH(θ) +

N∑
i=1

δ(θ = θi)). (2.5)

Thus, DP is the conjugate prior for arbitrary distribution over a measurable space

Θ.

The posterior shows a weighted average of prior base measure and the empirical

measure. If the weighted factor α → 0, the prior becomes non-effective and the

posterior distribution will only be given by the empirical distribution. On the other

hand, if the observations is sufficiently large, such that n � α, the posterior will

be dominated by the empirical distribution. This property makes DP suitable to

estimate the true underlying distribution.

Suppose θn+1 is a new sample of G, using the conjugacy property, the predictive

distribution over θn+1 can be obtained directly as follows.

θn+1|θ1, ..., θn ∼
1

a+ n
(αH +

n∑
i=1

δθi(A)). (2.6)

Dirichlet process describes essentially a ”distribution over distribution”. Several

constructive representations from different schemes are proposed. Stick-breaking

construction and Chinese restaurant process are the most popular two of them.
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2.2.2 Stick-breaking Construction of DP

Stick-breaking process [32] generates an infinite sequence of independent random

variables as follows.

Vi ∼ Beta(1, α)

πi = Vi

j−1∏
j=1

(1− Vj).
(2.7)

When πi is drawn this way, we denote πi ∼ GEM(α). It is clear that
∑∞

k=1 πk = 1.

Based on stick-breaking process, a fundamentally important construction process of

DP can be obtained as follows [32].

Consider an arbitrary measurable space ω and a probability measure H on ω.

Any G ∼ DP (α,H) can be formulated as

θk ∼ H

G(θ) =
∞∑
k=1

πkδθk(θ),
(2.8)

where, δθk denotes a unit mass at point θk. Clearly G is also a measure and is

composed of a weighted sum of infinite point masses, therefore a draw from G is

discrete with probability one.

Because of the discreteness, the sample θi from DP will be repeated during

the generation process, a clustering property is thereby manifested. Such clustering

property is explicit in another construction process of DP, Chinese restaurant process

(see Sec. 2.2.3).

Stick-breaking representation plays an important role in Bayesian nonparamet-

ric. It has been the cornerstone of constructive definitions of many nonparametric

models. For instance, it is employed to generate extensions of DP that allow depen-

dence across a collection of distributions (see Sec. 2.2.7).
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2.2.3 Chinese Restaurant Process

Chinese restaurant process(CRP) is another widely-used construction of DP. It de-

scribes the marginal distribution over a random partition. Specifically, if the prior

on random variable G is a Dirichlet process, then the CRP defines how observations

are assigned to clusters when we integrate out G [4].

Chinese restaurant process exhibits the clustering property of DP in an explicit

manner via a metaphor. Imagine there is a Chinese restaurant that has an infinite

number of tables that correspond to clusters. A sequence of customers that corre-

spond to data points enter and select a table to sit. The first customer sits at the

first table. The succedent customers sit at a previously occupied table with prob-

ability proportional to the number of customers already sitting at the table, and

they sit at an unoccupied table with probability proportional to a concentration

parameter:

p(zl = r|z−l, α) ∝


nr

n−1+α
if r 6 k

α
n−1+α

if r = k + 1,

(2.9)

where, zl indicates a customer, z−l denotes all the customers that enter the restau-

rant before zl, r indicates a table index, and k represents the current sited number

of tables. nr is the amount of customers sitting on table r and α is the concentra-

tion parameter for CRP, controlling the probability that a new customer selects an

unoccupied table to sit. This metaphor has turned out to be useful in considering

various generalizations of the Dirichlet process.

The CRP offers an exchangeable distribution over the table assignments zl. The

joint distribution is invariant to the order of customers. The procedure of assigning

a table for a customer can be performed as he or she is the last customer entering the

restaurant. As described by Eq. 2.9, the i-th customer sits at an occupied table with

a probability proportional to the number of customers who are already sitting at

that table. He or she sits at an unoccupied table with a probability proportional to

the concentration parameter α. As currently occupied tables are more likely to get
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new customers, CRP possesses a kind of rich get richer property. Theoretically, the

number of occupied tables K will almost surely grow logarithmically with dataset

size [33].

As a prior over partition of the data, CRP is exchangeable, by which it means

the probability that a table is selected only depends on the number of pre-existing

customer at the table. This exchange-ability can be exhibited from the fact that the

joint distribution for (θ1, ..., θn) is invariant to order, which can be obtained easily

via Eq. 2.9.

2.2.4 DP Mixture Model

DP can be adopted as the prior of latent parameters of mixture model, yielding the

Dirichlet process mixture model (DPMM) [5] which comprises a countable infinite

number of mixture components and self-adjust the number of mixture for fitting

observed data.

Suppose we have n observations, denoted by xi(i ∈ [1 : n]). The generative

process for the DP mixture model is as follows:

G|α,H ∼ DP (α,H)

θi ∼ G

xi|θi ∼ F (θi),

(2.10)

where, F () is a likelihood function parameterized by θi. Due to the clustering

property of DP, some θi(i ∈ [1 : n]) take the same value and the observations xi:n

that share the same parameter θi belong to the same cluster. Each data point xi is

drawn from a component of the mixture model. zi is the component indicator for

xi. θk represents the parameter for component k. Fig. 2.1 shows the graphic model

of DPMM.

In practical application, the clusters number in DPMM can be automatically
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Figure 2.1: DP mixture model

inferred from data by using Bayesian posterior inference framework. Literature [34]

makes a comprehensive review of MCMC inference methods for DP mixture model.

2.2.5 Hierarchical Dirichlet Process

Hierarchical Dirichlet process (HDP) [10] is a distribution over a group of random

probability measures. It defines a set of random probability measures Gj, one for

each group, and a global random probability measure G0. The global measure

G0 is distributed as a Dirichlet process with concentration parameter γ and base

probability measure H. The random measures Gj are distributed as a Dirichlet

process with the base probability measure G0.

G0|γ,H ∼ DP (α,H)

Gj|αj, G0 ∼ G0.
(2.11)

Akin to Dirichlet Process, HDP can be constructed using a metaphor of Chinese

restaurant franchise process [10], which extends Chinese restaurant process by al-
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lowing multiple restaurants (corresponding groups) share the dishes (corresponding

clusters) from a global menu.

Hierarchical Dirichlet process yields a natural way of modelling groups of data

where the same clusters are shared among all the groups. Assume we have J groups

of data. For each of group j, the observations xji (i ∈ [1, 2, ...]) are drawn from

the model F (θji) with parameters θji be i.i.d. random variables distributed as

Gj that is drawn from DP (αj, G0) which itself is drawn from another Dirichlet

processDP (γ,H). This produces the HDP mixture model, the generative formula-

tion is represented as

θji|Gj ∼ Gj

xji|θji ∼ F (θji).
(2.12)

In HDP mixture model, the HDP supplies a prior for the hierarchical partition

of the data. Not only observations within one group xji1 , xji2 share the atom (pa-

rameters θ), but also observations across groups xj1i1 , xj2i2 might share the atom.

2.2.6 Distance Dependent Chinese Restaurant Process

Distance dependent Chinese restaurant process(dd-CRP)[9] is a generalization of the

Chinese restaurant process (CRP) that is an exchangeable prior over partitions for

many popular Bayesian nonparametric models. Unlike CRP, the ddCRP assumes

non-exchangeability of data. The order of data affects the distribution of partition

structures. It supplies a flexible class of distributions over partitions that allow for

dependencies between observations.

The generative process of dd-CRP is based on Chinese restaurant metaphor,

where a sequence of customers (correspond to data points) enter and select a table

(correspond to clusters) to sit. However, unlike traditional CRP, dd-CRP represents

with customer assignments instead of table assignments. Specifically, dd-CRP draws
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the customers linkages based on the customers distance measurement. A customer is

either linked to another customer with probability proportional to a decay function

output depending on their distance or self-linked with probability proportional to

a concentration parameter. The customers who are linked together will sit on the

same table thus belongs to the same cluster while the customers who self-linked will

sit on a new unoccupied table. The customer assignment is based on

p(ci = j|α, f,D) ∝

f(dij) if j 6= i

α if i = j,

(2.13)

where, dij is the distance between customers i and j. f() is decay function, which

defines how distance measurement impact the linkage probability. Decay function

is a non-increasing and finite non-negative, and satisfies f(∞) = 0.

In dd-CRP, table assignment can be obtained via customer assignment as a

byproduct. It is worth noting that a same table assignment can correspond to

several different customer assignments.

The dd-CRP defines a probability distribution over partitions using the connec-

tion among observations. In this setting, the connection can be transmitted from

one observation to another. This property allows it to model a complicated scenario

where influence between observations can be transmitted from one to another.

2.2.7 Other Variants of DP

The research on Dirichlet process has attracted a fair amount of attention. In

Bayesian non-parametric framework, DP mainly serves as a flexible prior on parti-

tion over a measurable space, allowing to learn without predefining the number of

partition, such as [35], [36], [37],[38], etc.

DPs have been adopted to reinvent some classic machine learning model as the

nonparametric version models with enhanced flexibility and expressiveness. Such as
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infinite hidden Markov model [39], infinite support vector machine [40], nonpara-

metric k-means [41], Dirichlet process mixtures of generalized linear models[42], etc.

The models derived from Dirichlet process have a common character: the obser-

vations are assumed infinitely exchangeable, which means the order of observations

does not affect the joint distribution of data. However, in many circumstances, this

assumption does not hold. For example, in the hierarchical clusters structure, the

data from different groups may not be exchangeable. In the time series analysis,

the observations are often correlated in time space. Another example that we have

studied in-depth in this thesis is that in stochastic events series such as water pipe

failures, the occurrence of one failure may trigger another in the adjacent spatial-

temporal space.

A series of studies introduce hierarchical or nested structure to DP to model

multilevel cluster structure. A pioneering work is Hierarchical Dirichlet Process

(HDP) [10]. As a two-layer model, the base measure for the child Dirichlet processes

is itself a draw from a parent Dirichlet process. HDP provides a nature way of

modelling groups of data where the same atoms (clusters) are shared among all the

groups. There are various applications of HDP, includes hierarchical topic model

[43, 44, 45], human intracranial electroencephalogram [46], universal binary model

[47], etc. Nesting is another way to supply prior for multilevel cluster structure. One

attractive works is nested Dirichlet process (nDP)[48] which replaces the random

atoms of DP with random probability measures drawn from a DP. In other words,

the base measure that nDP uses is itself a DP. NDPs have several extensions that

combine nDPs with HDPs, such as nested CRFP(nCRFP) [49], nested hierarchical

Dirichlet Processes [50], hybrid nested/ hierarchical Dirichlet process (hNHDP)

[51].

Both hierarchy and nesting supply good tools to capture the multi-layer struc-

ture. Nevertheless, their difference is significant. The distributions generated by

HDP share the same atoms but with different weights while the different distri-
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butions drawn from nDP have either the same atoms with the same weights or

completely different atoms and different weights.

One commonly used approach for introducing non-exchangeability is to use ap-

propriate distribution/processes to capture dependency in the atoms/weights in

stick-breaking representation of DP and HDP. One of the pioneering works

is order-dependent DP (πDDP) [52], which uses a point process to control the as-

signment of the weights and atoms. Transformed DP (tDP)[26] extends HDP by

introducing random transformations for the global atoms which are shared in the

sub-groups. Dynamic HDP [53] adds extra innovation distributions and random

parameters to HDP to control the time-evolving weights for shared atoms across

groups. Another interesting work is Hierarchical Dirichlet scaling process [45] that

scales the mixture components using gamma representation of HDP.

Another approach to model the non-exchangeability in clustering is to capture

the correlation and influence between observations. Such kind of works usually

employ Chinese restaurant process(CRP) representations to define the depen-

dency between observations. A representative model is distance dependent Chinese

restaurant process (dd-CRP)[9], which we have reviewed in detail. Similarly, spectral

CRP [54] uses the similarity between documents to map them into a low-dimensional

spectral space where we then compare several clustering methods. Region-based

dd-CRP(rdd-CRP) [55] generalizes dd-CRP to a hierarchical structure, sharing the

cluster components across groups while allows within-group clustering to depend on

external distance measurements. Another important work of this type is recurrent

Chinese restaurant process (rCRP) [56] that introduces epochs that evolve over time

in a Markovian fashion to capture temporal order of observation for evolutionary

clustering.
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2.3 Beta Process and Its Variants

Beta process was originally developed for survival analysis on life history data [24].

It was utilized as a prior distribution over the space of cumulative hazard function.

As its name suggests, it produces cumulative hazard rates whose increments are

independent and beta distributed. Later, the work in [57] extended beta process to

more general spaces for different applications, such as factor analysis [58], dictionary

learning [59, 60], image interpolation and document analysis [57].

2.3.1 Beta Process

On a measurable space Ω, a beta process H is defined as a positive Levy process,

a positive random measure whose masses on disjoint subsets of Ω are independent.

It is parameterised by a positive concentration function c and a base measure H0,

which is also defined on space Ω. In simplified cases, where function c(ωi) becomes

a constant, we call c concentration parameter.

For disjoint infinitesimal partitions of Ω, the beta process can be generated as:

H(Bk) v Beta(cH0(Bk), c(1−H0(Bk)), (2.14)

where Bk indicates a partition, and k ∈ {1, · · · , K} is the index. The process can

be denoted as H v BP (c,H0).

When the base measure H0 is discrete and has a set function form of H0 =∑
i piδωi , H turns to have atoms at the same locations as H0’s and can be written

in a set function form accordingly as:

H(ω) =
∑
i

πiδωi(ω)

πi v Beta(cqi, c(1− qi)),
(2.15)

where δωi(ω) = 1 when ω = ωi and 0 otherwise.
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It is worth noting that πi does not serve as a probability mass function on Ω.

It is a part of beta process, a positive random measure over Ω. It also helps beta

process to parameterize Bernoulli process (see Sec. 2.3.1.1).

With beta process as a non-parametric prior, the series of latent Bernoulli vari-

ables become a Bernoulli process which is useful to construct infinite latent model.

2.3.1.1 Bernoulli Process

For a Bernoulli process BeP (H), each of its draws Xj is again a measure on space

Ω. j represents the draw index. H indicates a beta process on Ω, as defined before.

It acts as the prior of the Bernoulli process. A draw of the Bernoulli process can

also be represented via a set function form as:

Xj(ω) =
∑
i

xijδωi(ω)

xi,j ∼ Bernoulli(πi),

(2.16)

where δωi corresponds to the same atom location of H. The random variable xij

is generated from a Bernoulli distribution parameterized by πi which is defined as

Eq. 2.15. With xij as its elements, an infinite binary column vector, also denoted by

Xj, can be used for representing a draw of the Bernoulli process. Then the draws

of the Bernoulli process can form an infinite binary matrix X, with Xj represent-

ing a column and j representing the column index. Each row of the matrix X:,i

corresponds to an atom location δωi .

H ∼ BP (c,H0)

X:,i ∼ BeP (H).
(2.17)

It is worth noting that beta process is a conjugate prior of Bernoulli process. Given

a beta process prior and a set of m observations drawn from a Bernoulli process,
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the posterior is again a beta process, with parameters updated as follow:

H|X1,··· ,m v BP (c+m,
c

c+m
H0 +

1

c+m

m∑
j=1

Xj). (2.18)

The conjugacy significantly simplifies the inference procedure for parameter esti-

mation. We can see that the beta process appears to be a proper Bayesian non-

parametric prior for such infinite binary matrices.

2.3.2 Hierarchical Beta Process

Hierarchical beta process(HBP) was originally proposed to model the complex hier-

archical structure in documents classification[57]. In a manner akin to Hierarchical

Dirichlet process, a hierarchy over beta process is proposed

B ∼ BP (c0, B0)

Bj ∼ BP (cj, B)

Xj
:,i ∼ BeP (Bj),

(2.19)

where Xj
:,i denotes the ith observation in jth group. Similar to hierarchical Dirichlet

process that allows group of data to share the atoms across group, HBP has proved

a good choice as a non-parametric prior in latent factor analysis for multiple groups

of data [61], where the factorial subspace is shared across the group.

Because the property of Levy process, the space ω can be partitioned into discrete

part and continues part, and inference can be performed separately on each part[57].

For the discrete part, we have:

b ∼ Beta(c0, b0)

bj ∼ Beta(cj, b)

xij ∼ Ber(bj),

(2.20)
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where b0 = B0(ω), b = B(ω), bj = Bj(ω), xij = Xi,j(ω), Let mj =
∑nj

i=1 xij. The

log posterior distribution of b given x can be obtained by marginalization out bj:

f(b|x) = (c0b0 − 1)log(b) + (c0(1− b0)− 1)log(1− b))

+
N∑
j=1

(

mj−1∑
i=0

log(cjb+ i) +

nj−mj−1∑
i=0

log(cj(1− b) + i)).
(2.21)

The posterior is log concave and thus can be maximized at b ∈ (0, 1).

2.3.3 Other Variants of BP

Beta process and its construction representation, Indian buffet process (IBP)[62],

have become models of choice in building non-parametric Bayesian latent feature

model where the observations are represented using an unknown number of latent

features.

In non-parametric latent feature learning model, BP or IPB is adopted as a prior

of the binary matrix that governs the feature allocation with an infinite number of

exchangeable columns. The linear-Gaussian formulation or its extension is used as

the likelihood function, which relates the binary feature allocation matrix to ob-

servation with assistance of a feature value matrix that governs the scale of the

features. This model is applied in various domains, including dyadic data modelling

[63], non-parametric factor analysis[58], non-parametric Bayesian dictionary learn-

ing for sparse image [59], non-parametric link prediction[64] and infinite canonical

correlation Analysis [65], etc.

A distinctive application of BP is infinite hidden causes model [66], where BP is

used as the latent cause allocation binary matrix while the combination impacts of

causes on the observed variables is modelled via a Noisy-Or [67] distribution.

Akin to DP, beta process assumed that the observations are infinitely exchange-

able which is not valid in many cases. Therefore, various extensions of BP are
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proposed to solve this issue. Kernel beta process [68] introduces the covariate depen-

dence through a kernel that defines the distance of feature and sample in covariate

space. Dependent Hierarchical Beta Process [60] removes the local exchangeability

in HBP by introducing a covariates kernel that captures the relationships between

samples.

Other works that introduce non-exchangeability are based on IBP representation.

The common approach is to use a distribution to control the generation process of

feature allocation matrix entries. Phylogenetic Indian buffet process(pIBP) [69]

summarizes the prior knowledge about the dependency of observations using a tree

structure to control the activation of the matrix entries. Distant dependent Indian

buffet process[70] biases nearby data to share more features by using the connection

between data points based on distance. Dependent Indian buffet process [71] capture

the latent covariate dependence of data var a hierarchical Gaussian process.

2.4 Interaction Point Processes

Stochastic point process [72] is a collection of mathematical random points falling

in some underlying mathematical space. It is designed for tackling various tempo-

ral event modelling problems. In most applications, the point represents the time

and/or location of an event. Point process is useful in modelling a wide variety fields

of natural phenomena, including epidemiology, finance, ecology, forestry, mining and

meteorology.

Stochastic Point Process: If a sequence of random variables T = t1, t2, ..., tn,

taking values in [0,∞), has P (0 ≤ t1 ≤ t2 ≤ ...tn) = 1, and the count of points N(t)

in a bounded region is finite, then T is a (simple) point process. Correspondingly,

N(t) is called counting process.

A stochastic point process can be defined via its conditional intensity function

that provides an equivalent representation as a counting process for temporal events.
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Consider a point process T = {ti}Ni=1 with the countN(t) and the associated histories

H(t). If a (non-negative) function λ∗(t) exists, which has such form

λ∗(t) = lim
∆t→0

E[N(t+ ∆t)−N(t)|H(t)]

∆t
. (2.22)

The conditional intensity function λ∗(t) of point process T can be intuitively inter-

preted as the average number of points arrived per unit time at t. Clearly, λ∗(t)

only depends on the history information H(t).

Homogeneous Poisson Process is the simplest and most ubiquitous point

process model. Its conditional intensity is a constant.

λ∗(t) = λ (2.23)

There is no interaction between events because the current intensity is not affected

by historic occurrence of points. Thus, once the number of event is determined, the

locations of points are independently distributed. Homogeneous Poisson process has

been a basis of the investigation of many point process. However, the expressiveness

of it is fairly limited as many events in our world are non-independent.

Interaction point process (IPP) 1 [73, 74] defines a broad range of stochas-

tic point processes that can model various interaction mechanisms. In IPP, the

interaction between two points is described by a pair interaction function, usually

a function of the inter-points distance in the observation space. An IPP is called

self-exciting if each event’s arrival increases the rate of future event arrivals and

self-correcting if on the contrary decrease the future arrivals.

2.4.1 Hawkes Process

Hawkes process is one of the most general and flexible self-exciting IPPs, named

after its inventor Alan G. Hawkes [75, 76]. In Hawkes process, an event tends to

1Specifically in this thesis, we only consider pair-wise interaction point processes.
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’trigger’ the future events, by which it means each arrival increases the probability

of subsequent arrivals for a period of time. Hawkes process can be defined in two

equivalent ways: definition using conditional intensity function and definition as

Poisson cluster process.

2.4.1.1 Definition by Conditional Intensity

Let X = {ti}Ni=1 be a stochastic point process on temporal space, where ti ∈ R

indicates the time of point. Hawkes process is a family of point processes having

the following form of conditional intensity function:

λ∗(t) = u(t) +
∑
i:ti<t

αβ(t− ti), (2.24)

where, µ(t) is a non-negative function on R, called background intensity. The prod-

uct αβ(t − ti) represents the overall excitation intensity, in which, parameter α

describes the degree that each historic arrival influences the intensity while function

β(t) which is defined on [0,∞) indicates how this influence lasts by time 2.

Typical β(t) selections are in decay function forms, e.g., exponential decay

function[75] and power law decay function[77] etc. Thus, the triggering effect of a

point appears immediately after its occurrence and quickly decays in certain ways,

thereby showing clustering patterns. It is worth noting that we use λ(t) to represent

intensity function conditioned on previous points with the consideration of notation

simplicity.

Assume we have observed a set of data points X = {ti}Ni=1 that distributed on

Hawkes process. The likelihood function [72] is given by :

L(X|u, α, β) =

(
n∏
i=1

λ∗(ti)

)
exp (−Λ(T )) , (2.25)

2It is worth noting that we do not consider edge effect in this thesis, hence no events exist
before time 0.
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where,

Λ(T ) =

∫ t

0

λ∗(s)ds =

∫ t

0

u(s)ds+
∑
i:ti<t

αB(t− ti), (2.26)

where, B() is the cumulate distribution function of β().

If the prior of parameter is denoted by p(u, α, β), the posterior is derived by

p(u, α, β|X) ∝ p(u, α, β)L(X|u, α, β). (2.27)

2.4.1.2 Poisson Cluster Process

Because the superposition of several Poisson processes is also a Poisson process,

Hawkes process can also be viewed equally as a Poisson cluster process that is

constituted by a background Poisson process and a collection of triggered Poisson

processes following a certain branching structure [76, 78].

The branching structure can be intuitively described by a metaphor of counting

the population in a country where people are either immigrated from abroad or

by birth. The arrival of immigrants to the country follows a homogeneous Poisson

process at intensity u(t) and each individual immigrant independently breeds zero

or more number of children that is modelled by Poisson process. Fig. 2.2 illustrates

this immigration-birth description.

Figure 2.2: Immigration birth representation

In this representation, a Poisson cluster process consists of two types of points:

immigrants (denoted by red pentacles in Fig. 2.2) and offsprings (denoted by bank

dots in Fig. 2.2). The generative procedure of points for a Poisson cluster process

can be described as following: (1) The immigrant points ti ∈ I are generated via
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a Poisson process with an immigrant intensity µ(t). (2) Every immigrant point

ti can generate a cluster of offspring points and the clusters are independent. (3)

Within each cluster, points are organised in generations. Generation 0 is simply

the immigrant point itself. Every point tj of a generation can recursively generate a

Poisson processOj with an offspring intensity αβ(t−tj), forming the next generation.

(4) Finally, Poisson cluster process is the combination of all points.

If a point tj is generated by a Poisson process Oi, namely tj ∈ Oi, then we

say that point tj is a child of point ti and point ti is the parent of point tj. The

collection of all the parent-child relationships forms the branching structure, denoted

by C = {cj}, where cj = i means point j is the child of point i and cj = j

means point j is an immigrant point. It is worth noting that for traditional Hawkes

process, the offspring intensities are the same for all the points. But we can extend

it by allowing different offspring intensities for different clusters. The details will be

described in the proposed method. Besides, Poisson cluster process is recursively

defined. Consequently, more than one generation of descendants can be generated.

Based immigration birth representation, the likelihood of function of Hawkes

process can be written with a multiplying of two parts: immigrant term and offspring

term. given by:

L(X|y, u, α, β) = p(I|y, u, α, β)
n∏
i=1

p(Oi|u, α, β), (2.28)

where, y represents the branching structure. The immigrant term and the offspring

term are respectively given by:

p(I|y, u, α, β) =

(
n∏
ti∈I

u(ti)

)
exp

(
−
∫ t

0

u(s)ds

)

p(O|y, u, α, β) =

 n∏
tj∈O

αβ(tj − tp(j))

 exp

(
−
∑
ti∈I

αB(T − ti)

)
,

(2.29)

where, tp(j) denotes the parent of tj
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2.4.2 Other Interaction Point Processes

While Hawkes process addresses an important case in which an occurrence of a

point can cause additional points in near future, there exist other types of IPPs.

e.g., Hawkes process [75, 76], cascades of Poisson processes [14] and Neyman-Scott

process [79]. The work in [80] provides a brief summary of some popular IPPs.

Within the Poisson cluster process framework, many IPPs with distinct interac-

tion mechanisms can be defined by choosing different offspring intensity functions.

Due to the space limit, we only make a few examples to illustrate it. For instance,

cascades of Poisson processes [14] can be defined as a Poisson cluster process in

which offspring intensity function considers all the previous points in its previous

generation instead of just its parent. Neyman-Scott process [79] is a Poisson cluster

process that only allows one generation of offspring. For repulsive point processes

[80, 81], which show inhabitation behaviours, intensity increment is suppressed once

a point occurs and released in certain ways when the point is far away. Thus, they

can be defined as Poisson cluster processes via, for instance, a Gaussian or Weibull

shape offspring intensity. As discussed in [14], periodic activity can also be modelled

by Poisson cluster process by using a step function of time as the offspring intensity.

Moreover, it is possible to obtain complex interaction mechanisms by defining

offspring intensity as a mixture of base intensities as described in [75, 82]. Hence,

all these IPPs can be unified and generalized with the support of the Poisson cluster

process.

Poisson cluster process representation of IPPs is an important characteristic,

which can be adopted to derive more expressive extensions of point process model by

placing different prior on cluster structure. It institutes the basis of the contribution

in Chapter 4 and Chapter 5.
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2.5 Hidden Markov Model

The HMM [83, 84] is one of the most popular approaches for temporal event mod-

elling. It has be applied in various fields where the underlying state sequence is

not observable, such as speech recognition [85, 83], natural language processing [86],

finance[87, 88, 89], etc.

HMM utilizes a sequence of latent states with Markovian property to model the

dynamics of temporal events. Each event in the HMM is associated with a latent

state that determines the event’s observation via an emission probability distribu-

tion. The state of an event is independent of all but its most recent predecessor’s

state (i.e., Markovianity) following a transition probability distribution.

The HMM consists of four components: (1) an initial state probability distribution,(2)

a finite latent state space, (3) a state transition matrix and (4) an emission probabil-

ity distribution. As a result, the inference for the HMM involves four corresponding

parts. The graphic model is shown in Fig. 2.3.

Figure 2.3: Hidden Markov model

The joint distribution of a sequence of latent states and observations can be

factorized as:

p(S, Y |Θ) = p(s1|π)p(y1|s1)
N∏
t=2

p(st|st−1, A)p(yt|st, φ), (2.30)

where, A denotes the sate transition matrix, φ denotes emission distributions pa-

rameter, π represents the initial latent state distribution parameter. Y is the obser-

vations and S is the latent states.
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HMM can be viewed as a typical dynamic variant of a finite mixture model[10],

in which the mixture component corresponds to the emission models and the latent

variable corresponds to the hidden state. So it is quite natural to consider set-

ting a Dirichlet process related prior on the mixture underlying the HMM, yielding

a nonparametric model that can automatically infer the states’ number based on

observations.

2.6 Markov Chain Monte Carlo

The key task in exact Bayesian inference is to evaluate the posterior distribution

p(Θ|X) of the parameters Θ given the observation X, such as estimating its ex-

pectation. In many cases, with a conjugation prior, the closed form of posterior

distribution can be obtained by marginalization of the uninterested variables. How-

ever, in most circumstance, it is infeasible to marginalize variables as the lacks of

conjugacy, thus the closed form of posterior distribution cannot be obtained. For

example, for many Bayesian model has high dimension, it is possible to construct

the form of equation for the posterior p(θ|x) ∝ p̃(θ, x), but infeasible to normalize

the equation duo to the intractability of
∫
p̃(θ, x)dx.

Markov chain Monte Carlo (MCMC) methods provides an effective tool to es-

timate the required distribution. It uses a Markov chain mechanism to generate

samples to explore the objective space. The samples are drawn in a manner that

emulates the sampling from the real target distribution. One of the significant

advantages of MCMC lies on the fact that it does not rely on the form of the

distribution. Actually, it can be with arbitrary complex form.

2.6.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings(MH) algorithm is one of the most popular examples of

MCMC method. Most of the practical MCMC algorithms can be interpreted as
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special cases or extensions of it.

The basic problem that MH solves is to sample from a distribution p(x) from a

function p̃(x) that is proportional to the density of p(x). Suppose we have current

state of the Markov chain xn, and we want to sample the next state xn+1. The

drawing can be described into two stages. The first stage is to generate a candidate

x∗ drown from a proposal distribution q(x∗|xn), which depends on the current state.

The second stage is to accept or reject the candidate. If accepted, the candidate

will be the next state, otherwise use the current state value as the next state.

xn+1 =

x
∗ accept

xn reject,

(2.31)

where the acceptance probability A(xn+1 −→ x∗) is:

A(xn+1 −→ x∗) = min

(
1,
p̃(x∗)

p̃(xn)

q(xn|x∗)
q(x∗|xn

)
. (2.32)

Note p̃(x∗)
p̃(xn)

does not depend on the normalizing constant Xp =
∫
p̃(x)dx. Thus p̃(x)

can be any un-normalized distribution over of x. The ratio rA = p̃(x∗)
p̃(xn)

q(xn|x∗)
q(x∗|xn is often

called acceptance ratio.

This procedure essentially defines a Markov chain on x whose stationary distri-

bution is p(x). Although theoretically the proposal distribution q(x) can be with

any form as long as it is feasible to draw candidates x∗, the selection of proposal dis-

tribution has a significant impact on the algorithm performance. For a continuous

states space, a typical option is to use a normal distribution centred on the current

state xn.
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2.6.2 Gibbs Sampling Algorithm

Gibbs sampling [90] is a simple and widely applicable MCMC algorithm and can

be seen as a special case of the Metropolis Hastings algorithm. It draws random

samples based on the conditional distributions of variables.

Consider we wish to sample distribution from p(z) = p(z1, ..., zi, ..., zM). Firstly,

some values for the variables are set as the initial state of the Markov chain. Then

the variable vector z is updated iteratively. In each iterative, the algorithm updates

variable zi with a new draw from a conditional distribution on the other variables.

zi ∼ p(zi|zı) for i ∈ [1,M ], (2.33)

where zı represent z1, ..., zM but with zi omitted.

Compared with MH algorithm, which “corrects” the Markov chain by “accept-

ing” or “rejecting” strategy to ensure the invariant distribution can converge to

the target distribution p(x), Gibbs sampling is simpler while providing a general

framework that simplifies high dimensional sampling by successively sampling each

dimension based on the conditional distribution. In Bayesian inference, this char-

acteristic is greatly favourable as Bayesian models can be typically defined via a

collection of conditional distributions.



Chapter 3

Bayesian Nonparametric

Approach for Sparse Event

Prediction

In this chapter, I propose a Bayesian nonparametric approach, namely the Dirichlet

process mixture of hierarchical beta process, to handle the sparsity problem occurred

in many real-world temporal event modelling scenarios. In these scenarios, the

occurrence of temporal events are rare, which causes the lack of event samples for

model training. Particularly, in the area of infrastructure asset (e.g., water pipe

network) predictive maintenance, we aim to accurately predict future asset failures

so that preventative maintenance can be wisely planned and conducted to avoid

disastrous failures. However, the failures of asset are usually rare. Many assets even

have no failure events in the history for training. Hence, a modelling method that

can handle sparse events becomes critical for these scenarios. With the support of

BNP, the chapter demonstrates that the sparsity problem can be well tackled via

the mechanism of flexible clustering and event sharing.

In this chapter, I use water pipe failure prediction as an concrete application

example to present the proposed method for solving the sparsity problem. How-
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ever, the model itself is general enough to be applied to other spare temporal event

modeling problems.

3.1 Introduction

Water supply networks are valuable urban infrastructure assets that are responsible

for reliable water resource distributions. However, as urbanization trends continue

and urban populations rise, water utilities find it increasingly difficult to meet grow-

ing water demand with aging and failing water pipe networks. Water pipe failures,

which can cause tremendous economic and social costs, as illustrated in Fig. 3.1,

have become the primary challenge to water utilities. In order to tackle the prob-

lem in a financially viable way, preventative risk management strategies are widely

adopted by water utilities to prevent disastrous failures. The basic idea of the

strategies is to identify high-risk pipes proactively and renew them in time to avoid

potential failures. Meanwhile, it is also required to avert any replacements of pipes

that are still in healthy condition. Therefore, the strategies consist of two main

steps accordingly: (1) high-risk pipe prioritization, in which pipes are ranked based

on their risks of failures, and (2) physical condition assessment, in which physical

inspections are conducted on highly rated pipes to confirm their actual conditions

for replacements. The pipes, which are not identified as high-risk pipes at the pri-

oritization step, will only be renewed reactively. Hence, the success of the strategies

heavily relies on the prioritization step. For making accurate selections of high-risk

pipes, the prioritization step requires a failure prediction method that can give a

precise estimation of pipe failure likelihood, based on which the estimated failure

cost and renewal cost can be readily obtained.

The mechanisms of water pipe failures have been studied for many decades, and

two main research avenues exist for water pipe failure prediction, namely physical

modelling and statistical modelling. For physical modelling, a variety of models has

been proposed for explaining and predicting the deterioration processes of water
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Figure 3.1: Scenes of water pipe failures.

pipes, such as pipe-soil interaction analysis, residual structural resistance, corrosion

status index and hydraulic characteristics modelling. A comprehensive review can

be found in [91]. For statistical modelling, it considers historical failure records,

pipe attributes and environmental factors together for making predictions. It as-

sumes that pipes with similar intrinsic attributes and environmental factors share

similar failure patterns, and that failure patterns which appeared before are likely

to reappear in the future.

Although physical models can help understand the mechanisms of water pipe

failures, they have strong limitations when being applied to large-scale pipe networks

for failure prediction[1]. In order to improve high-risk pipe prioritization for large-

scale metropolitan pipe networks, I propose a Bayesian nonparametric statistical

approach, namely the Dirichlet process mixture of hierarchical beta process model,

for water pipe failure prediction. Unlike parametric approaches, the structure and

complexity of the proposed model can grow as the amount of observed data increases.

It makes the model invulnerable to faulty assumptions of model forms and adaptable

to various failure patterns, thereby leading to more accurate predictions for different

application scenarios.

It is worth noting that water pipe failure data is extremely sparse in reality.

Very few pipes have failure records during the observation period. Such sparsity

makes traditional failure prediction methods incompetent for accurate pipe failure
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Figure 3.2: Water supply networks in the selected regions.

prediction since most pipes do not have failure data for training. The proposed

approach deals with this issue by sharing failure data via a flexible hierarchical

modelling of failure behaviours. The key component of the hierarchical modelling is

a flexible grouping scheme. It clusters similar pipes together for modelling so that

failure data can be shared by similar pipes for training. Additionally, the failure data

sparsity is exploited for developing an approximated yet computationally efficient

Metropolis-within-Gibbs sampling method for model parameter inference.

The proposed method has been applied to the water supply network of an inter-

national metropolis that has a total population of near five million people. In this

work, three representative regions are selected from the metropolis for comparison

experiments. The regions and the networks are shown in Fig. 3.2. As I can see, the

water supply network is constituted of two main categories of water pipes, critical

water main (CWM) indicated by red lines and reticulation water main (RWM) indi-

cated by blue lines. CWMs have larger diameters (300 millimetres and above), and

RWMs have smaller diameters (smaller than 300 millimetres). Each water pipe is

composed of a set of pipe segments connected in series. Failure records can be pre-

cisely matched with pipe segments, allowing the proposed method to model failure

behaviours of pipe segments.

Although CWM only takes a small portion of the network, it plays a more impor-

tant role than RWM. The consequences caused by CWM failures are significantly
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more severe than RWM failures. Given the large scale of the network and the high

cost of physical inspection, it is infeasible to inspect both types of pipes physically.

Thus, the preventative risk management strategy just focuses on preventing CWM

failures in practice. Accordingly, in this work, the proposed approach is compared

with other state-of-the-art prediction methods for predicting CWM failures, of which

the data sparsity is even more significant. The experimental results obtained from

the real-world pipe data demonstrate the superiority of the proposed approach over

the others.

The rest of the paper is organised as follows. Section 3.2 reviews the related

work. Section 3.3 describes the details of the proposed method. Empirical studies

are shown in Section 3.5, and the conclusions are drawn in Section 3.6.

3.2 Statistical Failure Prediction Methods

In recent decades, many statistical models have been proposed for water pipe failure

prediction. In the early stages, various methods were developed for modelling the

relationship between pipe age and pipe failure rate. For instance, the work in [92]

proposed a time-exponential model, which formulates the number of failures per

unit length per year as an exponential function of pipe age. Similarly, time-power

model [93] and time-linear model [94] were developed with comparable performances.

Later on, multivariate probabilistic models were suggested. They make pre-

dictions based on a variety of pipe attributes, such as age, material, length and

diameter. One of the most popular multivariate approaches is the Cox proportional

hazards model [7]. It is a semi-parametric method, in which the baseline hazard

function has an arbitrary form and the pipe attributes alter the baseline hazard

function via an exponential function multiplicatively. The Weibull model and its

variants [95, 6] are also widely adopted in practice. They utilize either a Weibull

distribution or a Weibull process for modelling pipe failure behaviours.
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Recently, a ranking-based method [96] was proposed for predicting water pipe

failures. It treats failure prediction as a ranking problem. Pipes are ranked based on

their failure risk. The method performs failure prediction via a real-valued ranking

function rather than an estimation of failure probability.

3.3 The Proposed Method

The proposed Dirichlet process mixture of hierarchical beta process model consists

of two main components working with each other interactively: a hierarchical repre-

sentation of water pipe failure behaviours and a flexible pipe grouping scheme. The

grouping scheme generates a set of groups, on each of which the hierarchical rep-

resentation can be constructed. The hierarchical representation provides a precise

modelling of each group’s failure behaviours, hence acts as the basis of grouping.

The two main components are described in Section 3.3.1 and Section 3.3.2 respec-

tively. The details of the proposed model are given in Section 3.3.3. The inference

algorithm is developed in Section 3.4.

3.3.1 Hierarchical modelling of Water Pipe Failure Behaviours

The hierarchical beta process is adopted in this work as the hierarchical prior of

water pipe failure events which themselves can be modelled by Bernoulli process.

The details of the hierarchical failure model are illustrated in Fig. 3.3.

With the aid of beta-Bernoulli process, a hierarchical representation can be de-

veloped for modelling water pipe failure behaviours. Firstly, failure events can be

modelled by a Bernoulli process BeP (H). Let an infinite binary matrix X, as il-

lustrated in Fig. 3.3, represent failure records of pipes. Each of its columns, Xj,

can be treated as a draw from the Bernoulli process BeP (H). It is an infinite bi-

nary column vector with the i-th element xi,j generated from xi,j v Bernoulli(πi).



3.3. The Proposed Method 45

Figure 3.3: Binary failure matrices for pipes and pipe segments

xi,j = 1 means pipe i failed in year j, and xi,j = 0 otherwise. Then the beta process,

H v BP (c,H0), defined as a positive Levy process on pipe space Ω, can be used

as a prior of failure events, namely failure probability. Its set function is defined as

follows.

Xj(ω) =
∑
i

xijδωi(ω)

xi,j ∼ Bernoulli(πi).

(3.1)

With beta process H as a prior, each row of the matrix X corresponds to an atom

location δωi in the pipe space Ω, which can be infinitely large. We assume that two

pipes share the same failure patterns if they have the same intrinsic attributes and

environmental factors. Hence, we treat such two pipes as the same in the pipe space

Ω. Considering all the possible combinations of pipe attributes and environmental

factors, the number of ”unique” pipes in the pipe space becomes infinite. Therefore,

each column of the matrix X is an infinite binary vector that is drawn from a

Bernoulli process. The beta process H is then a conjugate prior of the infinite

binary matrix X. It models the failure probabilities of pipes via πi.

While beta-Bernoulli process is capable of modelling failure behaviours as de-

scribed above, there are two issues of adopting it in practice. Firstly, the number of

failures is extremely small compared with the number of pipes, especially for CWMs.

Only a small portion of CWMs have failure records since most of CWMs did not fail
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during the observation period. Thus, the majority of CWMs have no failure data for

model training. Secondly, in addition to pipe failure histories, pipe attributes and

environmental factors are also crucial for estimating failure probabilities. However,

they are not properly considered in beta-Bernoulli process. The fact that the pipes

with similar intrinsic attributes and environmental factors often share similar failure

patterns is ignored by beta-Bernoulli process.

In order to address these issues, the hierarchical beta process (HBP) model [8, 57]

can be adopted as a hierarchical modelling of water pipe failure behaviours. Given

a water pipe grouping, e.g., grouping by intrinsic attributes, one more beta process

can be added into the model hierarchy for modelling the failure behaviours of groups.

The new beta process is on top of the existing beta process, serving as the prior of

its mean parameter. The HBP model can also be described as the followings:

qk v Beta(c0q0, c0(1− q0)), k ∈ [1, · · · , K],

πi v Beta(ckqk, ck(1− qk)), i ∈ [1, · · · , N ],

xi,j v Bernoulli(πi), j ∈ [1, · · · ,mi],

(3.2)

where πi and xij are defined as before, modelling the failure probability of pipe i

and failure history of pipe i in year j respectively. qk and ck are the mean and

concentration parameters for group k. qk can be regarded as modelling the failure

rate of group k. q0 and c0 are the hyper parameters.

By adding one more hierarchy level, the HBP model estimates failure probabili-

ties through the inferences on both group level and pipe level. Group level inference

estimates the group failure rate qk, and pipe level inference estimates the pipe failure

probability πi. Failure data can be shared by the same group of pipes for estimating

group failure rate qk. It helps to solve the failure data sparsity problem. The failure

patterns that are shared by similar pipes are captured at the group level since the

pipes within the same group share the same qk. At the pipe level, the pipe failure

probability πi is estimated by considering not only the failure observations xij, but
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also the group similarity through the group failure rate qk.

3.3.2 Flexible Water Pipe Grouping

Real world data is complicated and often demonstrates multi-modality property,

which is the case for water pipe failures. Consequently, single-modality models

become insufficient in such circumstances for modelling the whole data corpora.

Mixture model is a widely adopted probabilistic approach for modelling the data

arising from different modalities. It assumes that the final model consists of a set

of mixture components, each of which can accurately model a portion of data.

For conventional parametric mixture models, the number of mixture components

is required to be known in advance, which is unrealistic for many real world appli-

cations, such as water pipe grouping. Therefore, we adopt Dirichlet process (DP),

a nonparametric approach, for pipe grouping. It serves as a flexible prior for data

partitioning and sets no assumptions on the number of partitions. Correspondingly,

the Dirichlet process mixture model, which is built based on Dirichlet process, can

comprise a countably infinite number of components and adjust itself for fitting

observed data.

In order to adopt DP as the prior of pipe grouping, we use the Chinese restaurant

process (CRP) [97] as the constructive representation of DP. With the aid of the

CRP, we can group pipes adaptively for fitting data observations. As a result, pipes

with similar failure behaviours are grouped together. Moreover, the CRP helps

to integrate the grouping process and the failure modelling process for achieving

accurate performance.
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3.3.3 Dirichlet Process Mixture of Hierarchical Beta Pro-

cess

In this section, we give the detailed description of the proposed Dirichlet process

mixture of hierarchical beta process (DPMHBP) model for water pipe failure pre-

diction.

For the proposed DPMHBP model, a water pipe is treated as a set of pipe

segments that are connected in series. The failure probability of a pipe segment

is modelled by a beta process. It is different from the HBP model [8] where beta

process is used for modelling failure probabilities of pipes.

Pipe length is an important attribute for estimating failure probability. The

intuition is that longer pipes tend to have higher failure probabilities if other at-

tributes and external factors are the same. However, the HBP model ignores the

impact of the length attribute when estimating failure probabilities. It only focuses

on pipe age attribute and failure histories. The significant variance of pipe lengths is

neglected. In order to tackle the problem, the proposed approach suggests to model

the failure probabilities of pipe segments whose lengths are relatively constant with

a very small variance.

Figure 3.4: Binary failure matrices for pipes and pipe segments

Another difference between the HBP model and the proposed DPMHBP model

is that the HBP model groups pipes based on heuristic domain information e.g.,
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pipe age. Its grouping is predefined and fixed during the inference process. The

number of the groups is also required to be set beforehand, which can be heuristic.

In contrast, for the proposed DPMHBP method, the grouping process is integrated

with the inference process via the DP mixture model. They interact with each other

for achieving an optimal model. The number of groups is not fixed and can grow as

the size of the training data increases.

Considering all the issues mentioned above, the DPMHBP model can finally be

given as follows:

qk v Beta(c0q0, c0(1− q0)), k ∈ [1, · · · , K],

zl v CRP (α), zl ∈ [1, · · · , K],

ρl v Beta(czlqzl , czl(1− qzl)), l ∈ [1, · · · , L],

yl,j v Bernoulli(ρl), j ∈ [1, · · · ,ml],

πi = 1−
si∏
l=1

(1− ρl), l ∈ [1, · · · , si].

(3.3)

The failure probability estimation is conducted on three levels: segment group level,

segment level and pipe level. The failure events are recorded for segments rather

than pipes. The grouping is performed on segments via the CRP, as illustrated

by Fig. 3.4. At segment group level, qk denotes the failure rate of segment group

k. zl represents the group index for segment l. At segment level, ρl indicates the

failure probability of segment l. Once the segment level estimation is obtained, pipe

failure probability πi can be readily computed via the failure probability of a series

of connected segments. Fig. 3.5 shows the graphical model of the DPMHBP model.

It is worth noting that Bernoulli process is more suitable for modelling segment

failures than modelling pipe failures because it is very rare for a segment to fail

twice in a year.
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Figure 3.5: Graphical models for HPMHBP

3.4 Inference Algorithm

In this section, we describe the inference algorithm for the proposed DPMHBP

model. Suppose we are given: (1) a set of pipes, {ui}Ni=1, (2) the segment com-

position {vl}sil=1 for each pipe ui, and (3) m-year failure records for segments,

{yl,j}l∈[1,L],j∈[1,m]. The aim of the inference is to estimate pipe failure probabilities

{πi}Ni=1, which are required for both physical condition assessment and proactive re-

placement. In order to achieve the goal, we need to estimate the variables {qk}Kk=1,

{zl}Ll=1 and {ρl}Ll=1.

Since no analytical solution is available for the proposed model, we use Markov

chain Monte Carlo (MCMC) sampling algorithm for inference. Gibbs sampling is

the MCMC-based method that has been widely used for DP mixture models when

conjugacy exists between prior and likelihood. However, for the DPMHBP model,

such conjugacy is broken by the extra hierarchy of the HBP model. Therefore, we

choose to utilise Metropolis-within-Gibbs sampling method for inference.

For Metropolis-within-Gibbs sampling method, model variables are updated one

by one iteratively until convergence as Gibbs sampling does. However, for each

update step, Metropolis-Hastings sampling is used if the conditional distribution of
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a model variable is not available for sampling. It is the case for {qk}Kk=1 and {zl}Ll=1.

To update each variables, because the conjugate prior for the likelihood function

does not exist, Metropolis-Hastings sampling method is used to update group index

zl. The CRP conditional prior of zl, defined by Eq. 2.9, is used as the proposal

distribution for generating a candidate z∗l . As a result, we can find that this factor

cancels when computing the acceptance probability defined in Eq. 2.32 , leaving the

acceptance ratio as:

rzl =
p(yl,1...m|qz∗l , cz∗l )
p(yl,1...m|qzl , czl)

. (3.4)

For the CRP conditional prior of zl, defined in Eq. 2.9, k indicates the current

number of segment groups, r denotes group index, α is the concentration parameter

for CRP, nr indicates the number of segments in group r, and z−l represents all the

z’s with zl removed. Non-informative prior is used for ck’s.

The likelihood function in rzl can be obtained by marginalizing out ρl:

p(yl,1...m|qzl , czl)

=

∫
p(yl,1...m|ρl)p(ρl|qzl , czl)dρl

=

∫
p(ρl|qzl , czl)

m∏
j=1

p(yl,j|ρl)dρl

=
Γ(czl)Γ(czlqzl +

∑m
j=1 yl,j)

Γ(czlqzl)Γ(czl(1− qzl))
∗

Γ(czl(1− qzl) +m−
∑m

j=1 yl,j)

Γ(czl +m)
. (3.5)

Similar to zl, Metropolis-Hastings sampling can be used for updating qk. We use the

normal distribution with the current value of qk as mean for proposing a new candi-

date q∗k. Hence, the Metropolis-Hastings sampling reduces to Metropolis sampling

because of the symmetric proposal distribution. The acceptance ratio, rqk , can be
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calculated accordingly as:

rqk =
p(q∗k)p({yl,1...m}zl=k|q∗k, ck, {zl} = k)

p(qk)p({yl,1...m}zl=k|qk, ck, {zl} = k)
. (3.6)

The likelihood function in rqk can be computed by marginalizing out {ρl}zl=k as:

p({yl,1...m}zl=k|qk, ck, {zl} = k)

=
∏
l,zl=k

[∫
p(ρl|qk, ck, {zl} = k)

m∏
j=1

p(yl,j|ρl)dρl

]

=
∏
l,zl=k

[
Γ(ck)Γ(ckqk +

∑m
j=1 yl,j)

Γ(ckqk)Γ(ck(1− qk))

·
Γ(ck(1− qk) +m−

∑m
j=1 yl,j)

Γ(ck +m)

]
(3.7)

Although the Metropolis sampling approach can sample new qk, it is much less

efficient than Gibbs sampling. Therefore, we derive an approximated Gibbs sampling

step for updating qk, in favour of the inference for large-scale datasets.

p(qk|ck, {zl} = k, {yl,1...m}zl=k)

∝ p(qk, {yl,1...m}zl=k|ck, {zl} = k)

= p(qk)p({yl,1...m}zl=k|qk, ck, {zl} = k)

≈ Γ(c0)

Γ(c0q0)Γ(c0(1− q0))
qc0q0−1
k (1− qk)c0(1−q0)−1

·
∏
l,zl=k

[
(ckqk)

sl
∏m−sl−1

t=0 (ck(1− qk) + t)∏m−1
t=0 (ck + t)

.

]
(3.8)

The approximation made on the last step of Eq. 3.8 is based on the sparse nature

of the pipe failure prediction problem. For water supply networks, most of the pipe

segments never fail during the observation period. It is even more rarer for a pipe

segment to have more than one failures during the observation period. Therefore,

the number of failures for a segment, sl =
∑

j yl,j, satisfies sl ≤ 1, which leads to

the approximation in Eq. 3.8.
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By applying Taylor expansion, the posterior distribution in Eq. 3.8 can be further

approximated as:

p(qk|ck, {zl} = k, {yl,1...m}zl=k)

∝ qc0q0−1
k (1− qk)c0(1−q0)−1

·
∏
l,zl=k

[(
ckqk

ck +m− 1

)sl

(1− qk)
∑m−sl−1
t=0

ck
ck+t .

]
(3.9)

Based on Eq. 3.9, we can see that the posterior of qk can finally be approximated

by a beta distribution:

p(qk|ck, {zl} = k, {yl,1...m}zl=k) v

Beta
(
c0q0 +

∑
l sl, c0(1− q0) +

∑
l

∑m−sl−1
t

ck
ck+t

.
)

(3.10)

It dramatically improves the efficiency of the updates for qk.

For updating ρl, we can directly sample a new value from its conditional distri-

bution given the other variables:

p(ρl|qzl , zl, czl , yl,1...m) v

Beta(czlqzl +
m∑
j=1

yl,j, czl(1− qzl) +m−
m∑
j=1

yl,j). (3.11)

Once, ρl is obtained, pipe failure probability πi can be readily calculated via πi =

1−
∏

l(1− ρl), l ∈ [1, · · · , si].

All the updating steps described above are performed iteratively until conver-

gence is reached. Then the estimations for the model variables can be obtained by

taking means of the sampled variable values, with burn-in samples omitted.



54 Chapter 3. Bayesian Nonparametric Approach for Sparse Event Prediction

# Pipes # Failures Laid years Observation period

Region A
All 15189 4093 1930− 1997 1998− 2009

CWM 3793 520 1930− 1997 1998− 2009

Region B
All 11836 3694 1888− 1997 1998− 2009

CWM 2457 432 1888− 1997 1998− 2009

Region C
All 18001 4421 1913− 1997 1998− 2009

CWM 5041 563 1913− 1997 1998− 2009

Table 3.1: Summary of pipe network data and pipe failure data .

3.5 Experiments

In this section, we conduct comparison experiments on the metropolitan water sup-

ply network data to demonstrate the superiority of the proposed DPMHBP model.

We first introduce the pipe network data and the failure data in Section 3.5.1. The

features used in the experiments are explained in Section 3.5.2. Then the compared

methods are listed in Section 3.5.3. Finally, we give the comparison results and

discuss the impact of the proposed method in Section 3.5.4.

3.5.1 Data Collection

Three representative regions from the metropolis are selected to perform the exper-

iments. Region A is a local government area with a population around 210, 000,

which is one of the most populous local government areas in its state. Its popu-

lation density is 629 people per km2. Region B is a local government area with a

high population density of 2, 374 people per km2. Its population is about 182, 000.

Region C is a low density suburban local government area, which has a population

of 205, 000 and a population density of 300 people per km2.

For each region, both network data and failure data are collected. Network data

consists of pipe IDs, pipe attributes, pipe locations and environmental factors. Pipe

location is represented as a set of connected line segments, each of which corresponds

to a pipe segment. Failure data contains pipe IDs, failure dates and failure locations.
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Pipe amount, failure amount, laid year range and observation period are summa-

rized for different pipe types in Table 3.1. As we can see, CWMs only take a small

portion of the network, 24.97% for region A, 20.76% for region B, and 28.00% for

region C. The ratio between CWM failures and all the failures is even more smaller,

12.71% for region A, 11.70% for region B, and 12.74% for region C.

The observation period covers 12 years, spanning from 1998 to 2009. It is short

compared with pipe life span which can be more than 100 years as shown in Ta-

ble 3.1. The majority of the pipes did not fail or just failed once during the ob-

servation period. If considering pipe segment failures, the failure events are even

more sparser. Hence, the sparsity assumption holds for the proposed approximated

sampling algorithm.

Failure locations are used for matching failures with pipe segments. It enables

the proposed DPHBP model to work on pipe segment level for estimating failure

probabilities.

As mentioned before, we focus on CWMs for comparison experiments since both

physical condition assessment and proactive replacement are conducted for CWMs.

For comparing the performances of different approaches, we use the first 11 years’

failure records as training data and the last year’s failure records as testing data.

All the compared methods have the same setting for fair comparison.

3.5.2 Feature Description

In this section, we describe the pipe attributes and the environmental factors that we

used in the experiments. There are five pipe attributes utilized in the experiments

including protective coating, diameter, length, laid date, and material. Two types

of environmental factors are considered in the experiments. One is the surrounding

soil condition, and the other is the distance between pipe segment and its closest

traffic intersection. These features are summarized in Table 3.2.
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For pipe attributes, protective coating and material are categorical features in-

dicating the type of coating and material. Typical protective coatings are polyethy-

lene sleeve and tar coating. Typical materials are cast iron cement lined (CICL) and

polyvinyl chloride (PVC). Diameter, length, and laid date are continuous features.

Surrounding soil condition is one of the most complex and important environmen-

tal factors for water pipe failure prediction. It puts direct impact on pipe degradation

process. In the experiments, four different soil features are considered including soil

corrosiveness, soil expansiveness, soil geology and soil map. They depict different

perspectives of soil characteristics.

Soil corrosiveness describes the risk of pipe pitting (metal corrosion) which is

essentially an electrical phenomenon and can be measured by linear polarization

resistance test. Soil expansiveness describes the shrinking and swelling of expansive

clays in response to moisture content change. It is a phenomenon that affects clay

soil and can be measured by shrink swell test. Soil geology depicts the information

of rocks, e.g., sandstone and shale. Soil map represents the landscape information,

e.g., fluvial, colluvial and erosional. It also include the information of the soil types

that are associated with different landscapes.

Each soil factor is a categorical feature containing several distinct values. The

selected local government areas are partitioned into small regions according to the

distinct values of soil factors. Pipe segments falling into the same region share the

same soil factor value.

A large portion of CWMs are buried underneath roads. It makes the change of

road surface pressure another important environmental factor for estimating water

pipe failures. It has been shown that frequent pressure changes can lead to high

failure rate. One of the main sources causing road surface pressure change comes

from traffic intersections due to the frequent vehicle starting and stopping. In order

to measure the impact of road surface pressure change, we calculate the distance

between each pipe segment and its closest traffic intersection. The obtained con-
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Property and factors Description

Protective coating Categorical value indicating the
type of coating

Diameter Continuous value indicating pipe
diameter.

Length Continuous value indicating pipe
length

Laid date Laid date for pipe

Material Categorical value indicating the
type of pipe material

Soil corrosiveness Categorical value indicating soil
Soil expansiveness property for the corresponding
Soil geology soil factor
Soil map

Distance to traffic Continuous value indicating the
intersection distance between pipe segment

and the closest traffic intersection

Table 3.2: Pipe attributes and environmental factors

tinuous value is regarded as a feature of the pipe segment for predicting its failure

probability.

3.5.3 Compared Approaches

In order to evaluate the proposed approach, four state-of-the-art methods are com-

pared in the experiments including Cox proportional hazard model, Weibull model,

HBP model and support vector machine (SVM) based ranking method. Addition-

ally, different grouping methods are used with HBP model as comparisons for demon-

strating the advantage of the grouping scheme of the proposed approach.

The Cox proportional hazard model [7] is one of the most popular approaches for

survival analysis. It is a semi-parametric approach, in which the form of the baseline

hazard function can be arbitrary, and the explanatory features put impacts on the

baseline hazard function via an exponential function multiplicatively. Formally, the

Cox proportional hazard model can be described as:

h(t, z) = h0(t)eb
T z, (3.12)
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where h0 indicates the baseline hazard function, z indicates the explanatory features

of water pipe, and b is the parameter vector that can be learned from training data

via a partial likelihood maximization procedure.

For Weibull model [95, 6], water pipe failures are modelled as a set of stochastic

events governed by a time dependent stochastic process, namely the Weibull process.

It can be regarded as a nonhomogeneous Poisson process whose intensity varies as

time changes. The intensity function can be formally given as:

λ(t) = αβtβ−1, (3.13)

where t represents pipe age, α and β are parameters that need to be learned from

training data. Similar to Cox proportional hazard model, the explanatory features

can also be utilized via an exponential function multiplicatively.

Analogous to the method proposed in [96], an SVM-based ranking approach is

compared. This approach formulates pipe failure prediction as a ranking problem.

It ranks pipes according to their failure risks without estimating their actual failure

probability. It learns a real-valued ranking function H that maximizes the objective

function: ∑
z∈P,z′∈N

I(H(z) > H(z′))

|P | · |N |
, (3.14)

where P and N represent the positive class dataset (failure dataset) and negative

class dataset respectively. I(·) is the indicator function. |P | and |N | indicate the

numbers of data points in the positive and negative class datasets respectively.

The HBP model proposed by [8] is also compared. In order to evaluate the

grouping scheme of the proposed approach, three different grouping methods are

integrated with HBP model for comparisons. They group pipes based on pipe at-

tributes according to domain expert suggestion. Specifically, pipes are grouped

based on material, diameter and laid year.

For fair comparison, the features described in the previous section are used for
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Figure 3.6: Failure prediction results for the selected regions by different models.

Region A Region B Region C
DPMHBP HBP

Weibull Cox
SVM

DPMHBP HBP
Weibull Cox
SVM

DPMHBP HBP
Weibull Cox

SVM

AUC(100%)
82.67% 77.05%
68.44% 66.91%
56.45%

74.51% 72.56%
65.20% 65.53%
61.90%

78.37% 73.54%
55.84% 64.50%
69.48%

AUC(1%)
8.09� 5.64�
5.84h 4.67�
4.32�

4.21� 3.60�
2.70� 2.46�
3.41�

5.11� 2.48�
2.98� 2.50�
1.73�

Table 3.3: AUC of different approaches.

all the compared methods. For HBP and DPMHBP, the features are applied mul-

tiplicatively similar to Cox proportional hazard model and Weibull model. A linear

kernel is used for the SVM-based ranking approach.

3.5.4 Prediction Results and Real Life Impact

In this section, we compare the prediction results to demonstrate the superiority of

the proposed approach. As mentioned before, the historical failure data from 1998 to

2008 is used for training and the failures occurred in 2009 are used for testing. Water

pipes are ranked by different methods based on their estimated failure risks. The

failure prediction results are shown in Fig. 3.6. The x-axis represents the cumulative

percentage of the inspected water pipes, and the y-axis indicates the percentage of

the detected pipe failures.
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Region A Region B Region C
vs.HBP vs.Weibull
vs.Cox vs.SVM

vs.HBP vs.Weibull
vs.Cox vs.SVM

vs.HBP vs.Weibull
vs.Cox vs.SVM

AUC(100%)

2.56 9.37
(= 0.08) (< 0.05)

10.58 18.88
(< 0.05) (< 0.05)

3.12 22.01
(= 0.05) (< 0.05)

21.17 30.11
(< 0.05) (< 0.05)

7.83 43.55
(< 0.05) (< 0.05)

26.08 15.63
(< 0.05) (< 0.05)

AUC(1%)

44.29 40.46
(< 0.05) (< 0.05)

62.44 69.01
(< 0.05) (< 0.05)

1.26 4.64
(< 0.05) (< 0.05)

5.53 1.99
(< 0.05) (< 0.05)

65.90 53.43
(< 0.05) (< 0.05)

65.43 61.72
(< 0.05) (< 0.05)

Table 3.4: Statistical significance test (t-test) results.

Figure 3.7: The detection results with 1% of pipe network length inspected.

Besides, we calculate AUC for measuring the performances of different approaches.

The results are shown in Table 3.3. Statistical significance tests, particularly the

one-sided paired t-test at 5% level of significance, are performed on AUC to evaluate

the significance of the performance differences. The results are shown in Table 3.4.

For Table 3.3 and Table 3.4, only the results from the best groupings are shown for

the HBP model.

As we can see from Fig. 3.6 and Table 3.3, the proposed DPMHBP model con-

sistently gives the most accurate prediction for all the three regions, whereas the

other methods only perform accurately for some of the regions. It demonstrates the

adaptability of the proposed approach to the diversity of failure patterns. The sig-

nificance test results, listed in Table 3.4, show that the proposed model significantly

outperforms the other methods.
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Figure 3.8: Risk maps for the selected three regions

In addition to the comparison studies shown above, we also demonstrate the

real-life impact of the proposed method by showing its improvements in its real-

world application. Different from the standard performance measurement, domain

experts often adopt evaluation criteria that can reflect the constraints encountered

in reality. In the context of water pipe failure prediction, as mentioned before, only

a small portion of the pipes can be physically inspected each year. Specifically,

due to budget constraint, only 1% of the total CWMs can be inspected every year.

Therefore, we show the performance curves with 1% of CWMs inspected in Fig. 3.7.

AUC and significance test results are also given in Table 3.3 and Table 3.4 for

the situation of inspecting 1% of CWMs. As we can see, the proposed approach

significantly outperforms the other methods for all the three regions. In region C,

the proposed approach nearly doubles the number of detected failures compared

with the second best method.

A risk map, as shown in Fig. 3.8, is another widely used method for visualizing

real-life impact. As illustrated in the figure, the prioritization of pipes is coded

by different colours. For instance, red lines indicate the top 10% high-risk pipes

predicted by our method. Black stars in the figure denote the failures which occurred

in the testing year. As we can see, many failures could be prevented and significant

economic and social savings could be brought to the water utility if the proposed

method were applied.
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3.6 Conclusions

In this chapter, I present the Dirichlet process mixture of hierarchical beta process

model for water pipe failure prediction. The model demonstrates high adaptability

to the diversity of failure patterns. Its structure and complexity can grow as the

number of data points increases. It tackles the sparse failure data problem by

sharing failure data through pipe grouping. An efficient Metropolis-within-Gibbs

sampling algorithm is also proposed for handling large-scale datasets. The empirical

studies conducted on the real water pipe data verifies the superiority of the proposed

approach.



Chapter 4

Bayesian Nonparametric

Approach for Event Interaction

The previous chapter aims to solve the sparsity problem in the real-world temporal

event modelling. This chapter focuses on the interactions of events. Temporal

events are usually not isolated. One event may trigger the occurrence of another.

Hence, understanding such interactions can help us better model the generation

mechanism of events and thereby providing more accurate prediction. Particularly,

in this chapter, a distance dependent prior over branching structure is developed to

describe the relationship between events. The proposed model, namely the infinite

branching model (IBM), generalizes interaction point processes(IPPs) to model the

infinite interaction between events.

4.1 Introduction and Motivation

Most events in the world are generally non-independent, by which it means one event

may cause or repel the occurrences of others. Examples can be readily found in var-

ious areas. For instance, many biological phenomena compete for local resources,

hence demonstrate spatial over-dispersion property. Strong clustering patterns are
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often observed by seismologists [11] and epidemiologists [98], as earthquakes and

epidemics are well known diffusible events. Buy and sell trades in financial markets

also arrive in clusters [99]. Information prorogation in social network shows conta-

gious and clustering trait [100]. All these events exhibit strong interactive property.

Understanding their characteristics can help us categorize, predict and manipulate

these events, thereby making positive impacts in our physical and social world.

Despite the high diversity of the aforementioned areas, there are three common

tasks for understanding these interactive events:

1. Event intensity estimation, which aims at predicting the number of events

for a specific time period. It helps to gain insight into the temporal trends in

events.

2. Interaction mechanism estimation, which tries to reveal the triggering or

repelling mechanism of events. It provides informative hints for dissemination

control and influence manipulation.

3. Branching structure1 estimation, in which the relationship between events

is inferred. It helps to determine the connection of events, understand the

underlying causal structure and support event grouping. These three tasks

tangle with one another, making the overall problem complex. As a result,

most existing approaches only consider one or two of these tasks.

Stochastic point process [101] provides us a generic yet adaptable tool for mod-

elling series of events occurring at random locations and times. It considers a random

collection of points falling in some space. When modelling purely temporal events,

each point represents the time of an event and the space in which the points fall is

simply a portion of the real line. A variety of point processes has been developed

with distinct modelling purposes. In this chapter, we mainly focus on interaction

1The formal definition of branching structure will be given later. It can be understood as
relationship between events for now.
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point processes (IPPs) [73, 74] that model not only the generation of points but also

their interactions. Specifically, a Bayesian statistical model, which can generalize

and extend some popular IPPs, e.g., Hawkes process [75, 76], is proposed with the

consideration of the aforementioned three tasks.

Many statistical methods exist for modelling events in spatial and temporal

space, and most of them make an ex-changeability assumption on a certain com-

ponent of the overall model [102]. For instance, random walk models [103] and the

infinite hidden Markov model [39], which are widely used for discrete time series,

assume Markov ex-changeability [104, 105] implying that the joint probability only

depends on the initial state and the number of transitions. Lévy process, the con-

tinuous time analog of random walk and the foundation of many other widely used

continuous time models, assumes ex-changeability over increments.

However, in general, the observed events in spatial and temporal space are sel-

dom exchangeable, especially for their dependencies. Distance dependent Chinese

Restaurant process (ddCRP) [106] is a simple yet flexible class of distributions over

partitions allowing non-exchangeability. It can be used for directly modelling de-

pendencies between data points in infinite clustering models and the dependencies

can be across space and time. In this paper, we adapt the ddCRP as a prior

over the branching structure of spatial and temporal events. With its support, a

Bayesian statistical model is proposed treating IPP as a mixture of basis point pro-

cesses (bPPs). It allows discovery of a potentially unbounded number of mixing

bPPs, while simultaneously estimating branching structure. We therefore call our

approach the infinite branching model (IBM).

4.2 Infinite Branching Model

Inspired by the Poisson cluster process, in this work, we propose a Bayesian statisti-

cal model, the IBM, that generalises IPPs as a mixture of Poisson processes. The key
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component of IBM is a distance dependent prior over branching structure of points.

As mentioned in the introduction section, most of the statistical models designed

for spatio-temporal events assume ex-changeability, which is unrealistic for mod-

elling point dependencies. Hence, we adapt the ddCRP, a class of non-exchangeable

distributions over partitions, as a prior of branching structure.

4.2.1 Prior Belief of Branching Structure

The direct modelling of customer relationships and its non-exchangeability property

make the ddCRP suitable as a prior for branching structure of stochastic points in

spatiotemporal space. In the IBM, customers represent points, tables represent

point clusters. Customer assignments represent point connections. We say point j

is the child of point i (or point j is triggered by point i) if point j is assigned with

point i. The distribution of point assignment can be formally described as:

p(cj = i|η, f,D) ∝

 f(dij) if i 6= j

η if i = j,

(4.1)

where cj indicates the point assignment for point j, dij is the distance between the

points i and j, D is the matrix defining pair-wise point distances, and f(·) is a

function that mediates how the distance affects the probability of point connection,

e.g., window decay function.

Dist-CRP exhibits an interesting prior belief of branching structure. It also

makes sure that a point can only be assigned to a previously occurred point. A

point is an immigrant if it is assigned to itself, and it is an offspring otherwise.

Hence, the concentration parameter η controls how likely a point is an immigrant.

As we can see that the point type can be determined by point assignment. Point

clustering can also be obtained via point assignment indirectly. As in the CRP, each

point cluster is endowed with a specific point generation scheme. It is also worth
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noting that the overall collection of point assignments C = {cj} can now equally

represent the branching structure C as described in the previous section 2.4.1.2.

Thus, the ddCRP can be used as a distribution over branching structures.

4.2.2 Infinite Branching model

With the support of DD-CRP as the prior over branching structure , the Infinite

Branching model(IBM) can be formally defined. Unlike traditional Hawkes process

in which all point clusters share the same offspring intensity, the IBM can allow

different offspring intensities for different clusters, which grants more flexibility for

modelling real-world events.

For defining a concrete model, we assume both immigrant intensity and total

offspring intensity are constant variables drawn from exponential distributions. Nor-

malized offspring intensity is in exponential distribution form, β(t) = λβ exp(−λβt),

with λβ as its inverse scale parameter drawn from a Gamma distribution. We use

R(c1:N) to represent the mapping from point assignment to point cluster assignment,

RO(c1:N) to represent the immigrant of the corresponding cluster, and RI(c1:N) to

represent the offspring of the corresponding cluster. The IBM can be described as

following for generating a sequence of points {ti}:

1. Sample immigrant intensity µ ∼ Exponential(λµ).

2. Sample t1 from PP(µ), sample its total offspring intensity α1 ∼ Exponential(λα)

and sample inverse scale parameter for its normalized offspring intensity λβ1 ∼

Gamma(γ1, γ2).

3. For n > 1 :

(a) Sample tn > tn−1 from PP(µ+
∑n−1

i=1 αiβi(t− ti)).

(b) Sample point assignment cn ∼ ddCRP (η, f,D). It indirectly determines

cluster assignment and point types: R(cn), R∗(cn) and R
′
(cn).
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(c) If tn is an offspring, then set αn = αR(cn) and λβ = λβR(cn). Otherwise, for a

new cluster, sample its total offspring intensity αR(cn) ∼ Exponential(λα)

and sample inverse scale parameter for its normalised offspring intensity

λβR(cn) ∼ Gamma(γ1, γ2).

In the above, λµ, λα, γ1 and gamma2 are hyper-parameters. PP(·) indicates a Pois-

son process. Samples can be drawn from an inhomogeneous Poisson process by util-

ising a thinning process, a point process variant of rejection sampling. Specifically,

the Ogata’s modified thinning [107] can be used, as summarised by the Algorithm

7.5.IV in [101].

The graphic model is given by Fig. 4.1

Figure 4.1: Graphic model of infinite branching model

Where, the subscript r denotes the infinite choice of R(c1:N).

The model can be readily simplified for mimicking the traditional Hawkes pro-

cess. Although we adopt exponential distribution form for normalized offspring

intensity, other distribution forms or combinations can be used for modelling differ-

ent interaction mechanisms, e.g., spatiotemporal interaction. It has been noted that

the CRP can be regarded as a special case of the ddCRP. As a result, the branching

structure prior in the IBM can become exchangeable in terms of clustering when
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the ddCRP prior degrades to the CRP. It means that the probability of a point

belonging to a cluster only depends on the number of points that are already in the

cluster.

Such prior fits for some real-world phenomena, e.g., tweets from opinion leaders

or celebrities often invoke huge amount of following tweets. The ”rich gets richer”

behaviour exhibits. In a special case, the branching structure in IBM can be ex-

changeable. That is when the distance in ddCRP is proportional to the number

of descendent, e.g., sequential CRP, the probability of a branching structure de-

pends only on the size of the descendent, but not on which events are children of

which. Hence, it becomes exchangeable. However, in general, the branching struc-

ture in IBM is not exchangeable. For instance, the influence estimation of social

information, influence maximisation, and the probability of ultimate extinction, of

the influential idea leaders in LinkedIn, Facebook and Tweeter, anyway it is a prior

reflexing your belief of reality, you can design the distance, for instance like the

affinity prorogation, both the similarity and the responsibility are considered.

4.2.3 Relation with IRM

The IBM is related to the infinite relational model (IRM) [108]. The IRM aims

at inferring meaningful latent structure within observed graph or network. An

unbounded number of blocks of nodes with similar behaviour can be automatically

revealed with the support of the CRP prior on node partitions. Distinctively, IBM

is interested in discovering the implicit branching structure of a collection of spatial

and temporal points based on their positions and distances in space. In terms of the

adopted prior for partition, the IBM can be regarded as a distance dependent version

of IRM, but for discovering latent branching structure in spatial and temporal space.
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4.3 Hierarchical Infinite Branching model

It is always desirable to discover latent hierarchical structure from data. For IPPs, it

is beneficial to reveal the relationship between point clusters. For instance, finding

similar clusters of buy and sell trades in financial market can be insightful for mak-

ing trading strategy. Hence, we extend the IBM to a hierarchical model in which

similar point clusters can form a hyper-cluster sharing the same offspring intensity.

For defining a concrete extension, we again assume µ and α are constant variables

drawn from exponential distributions. But, for this time, we let normalised offspring

intensity be in Weibull distribution form for showing its capability of capturing dif-

ferent interaction mechanism: β(t) =
(
kβ/λβ

) (
t/λβ

)kβ−1
e−(t/λβ)k

β

. The hierarchical

model is described as follow:

1. Sample immigrant intensity µ ∼ Exponential(λµ).

2. Sample t1 from PP(µ), sample its total offspring intensity α1 ∼ Exponential(λα)

and sample inverse scale parameter for its normalized offspring intensity λβ1 ∼

Gamma(γ1, γ2).

3. For n > 1 :

(a) Sample tn > tn−1 from PP(µ+
∑n−1

i=1 αiβi(t− ti))

(b) Sample point assignment cn ∼ ddCRP (η, f,D). It indirectly determines

cluster assignment and point types: R(cn), R∗(cn) and R
′
(cn).

(c) Sample hyper-cluster assignment hR(cn) ∼ CRP (γ), γ is the concentra-

tion parameter for CRP.

(d) If R(cn) belongs to an existing hyper-cluster, then set αn = αhR(cn)
and

βn = βhR(ci)
. Otherwise, for a new hyper-cluster, sample its total off-

spring intensity αh ∼ Exponential(λα), and sample scale parameter for

normalised offspring intensity λβh ∼ InverseGamma(γ1, γ2).
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In the above, λµ, λα, γ1, γ2 and kβ are hyper-parameters. It is worth noting that this

hierarchical model extends the IBM in a similar way that the Chinese restaurant

franchise (CRF) process [109] extends the CRP. The main difference is that the

point clustering in our model is achieved via a ddCRP instead of a CRP with the

consideration of branching structure. This hierarchical model can automatically

discover the point clusters that share the same triggering scheme even when they

are disjoint in spatiotemporal space.

4.4 Inference with Generic Metropolis-with-Gibbs

Sampling

The purpose of the inference is to estimate the posteriors of branching structure,

immigrant intensity and offspring intensity given observed points. Since it is not

tractable analytically, we adopt the Markov chain Monte Carlo (MCMC) algorithm.

Assume we have observed a set of points, X = {ti}Ni=1, for a time period [0, T ]. We

do not consider edge effect in this work, hence no point exists before time 0. As

described in [101], with the support of local Janossy density, the likelihood function

for a realization X of a regular point process can be represented as:

L =

(
N∏
i=1

λ(ti)

)
exp

(
−
∫ T

0
λ(t)dt

)
, (4.2)

where λ(t) denotes conditional intensity function. Unlike the traditional Hawkes

process, the conditional intensity function in the IBM can be written separately for

immigrants and offspring. Furthermore, directly modelling the branching structure

grants us the computational simplicity to decompose the likelihood function into

independent parts:

p(X|µ,α,β, C) = p(I|µ,C)
N∏
i=1

p(Oi|αR(ci), βR(ci), C), (4.3)
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where I represents immigrants and Oi denotes the offspring whose parent is point

i. The likelihood functions for I and Oi can be written as:

p(I|·) =

∏
ti∈I µ(ti)

exp
(∫ T

0 µ(t)dt
) , (4.4)

p(Oi|·) =

∏
tj∈Oi αR(ci)βR(ci)(tj − ti)

exp
(
αR(ci)

∫ T
ti
βR(ci)(t− ti)dt

) . (4.5)

In some cases in which the conditional distributions of parameters are tractable,

Gibbs sampling method can be used for inference. However, here we present a

generic Metropolis-within-Gibbs algorithm [34] despite the specific form of inten-

sities. For Metropolis-within-Gibbs approach, each inference iteration updates pa-

rameters alternatively as Gibbs sampling does, while Metropolis-Hasting method is

used for each parameter’s update. In order to update a parameter w, a proposal

distribution q(·) is used to generate a candidate value w∗. Its acceptance probability

is defined as: min
(

1, q(w|w
∗)τ(w∗)

q(w∗|w)τ(w)

)
, where τ(·) can be any un-normalized measure for

parameter w. The second input of the min function is called Hastings ratio. In the

following, we give the Hastings ratio for each parameter’s update in the IBM:

Aµ =
p(µ̂)

p(µ)

∏
ti∈I

(
µ̂(ti)

µ(ti)

)
exp

(∫ T

0
µ(t)dt−

∫ T

0
µ̂(t)dt

)
, (4.6)

AαR(ci)
=
p(α̂R(ci))

p(αR(ci))

∏
tj∈R′ (ci)

(
α̂R(ci)

αR(ci)

)

· exp

 ∑
tj∈R′ (ci)

(
αR(ci) − α̂R(ci)

)
BR(ci)

 ,

(4.7)

AβR(ci)
=
p(β̂R(ci))

p(βR(ci))

∏
tj∈R′ (ci)

(
β̂R(ci)(tj − tcj )
βR(ci)(tj − tcj )

)

· exp

 ∑
tj∈R′ (ci)

αR(ci)U

 .

(4.8)

For the above Hastings ratios, we assume the prior distributions of parameters

are independent. In Eq. 4.7 and Eq. 4.8, intermediate variables are defined for
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notation simplicity: BR(ci) =
∫ T
tj
βR(ci)(t−tj)dt, B̂R(ci) =

∫ T
tj
β̂R(ci)(t−tj)dt, and U =

BR(ci) − B̂R(ci). Variables µ̂, α̂R(ci) and β̂R(ci) indicate the candidate values drawn

from proposal distributions, e.g., Gaussian distribution. For updating the branching

structure variables, the branching structure prior defined by Eq. 4.1 is used as the

proposal distribution. The conditional prior and the proposal distribution cancel

when calculating Hastings ratios, and only the likelihood ratio is left. There are three

different cases for branching structure variable update: (1) update from immigrant

to offspring. (2) update from offspring to immigrant, and (3) change parent. For

the first case, the Hastings ratio can be represented as:

AI→Oci =
αR(ĉi)βR(ĉi)(ti − tĉi)

µ(ti)
·

∏
tj∈R′ (ci)

V · exp

 ∑
tj∈R′ (ci)

W

 ,

(4.9)

where V =
αR(ĉi)

βR(ĉi)
(tj−tcj )

αR(ci)
βR(ci)

(tj−tcj )
and W = αR(ci)BR(ci) − αR(ĉi)BR(ĉi) are intermediate

variables for notation simplicity. The first part of Eq. 4.9 represents the likelihood

ratio for point i, and the second part represents the likelihood ratio for all of its

offspring indicated by tj ∈ R
′
(ci). Similarly, we can have the Hastings ratio for the

second case:

AO→Ici =
µ(ti)

αR(ci)βR(ci)(ti − tci)
·

∏
tj∈R′ (ĉi)

V · exp

 ∑
tj∈R′ (ĉi)

W

 ,

(4.10)

where V and W are as defined before. The second part of Eq. 4.10 also represents

the likelihood ratio for all the offspring of point i, which are indicated by tj ∈ R
′
(ĉi).
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For the third case, we have the Hastings ratio:

AO→Ôci =
αR(ĉi)βR(ĉi)(ti − tĉi)
αR(ci)βR(ci)(ti − tci)

∏
tj∈R′ (ci)∧tj∈R′ (ĉi)

V

· exp

 ∑
tj∈R′ (ci)∧tj∈R′ (ĉi)

W

 ,

(4.11)

where V and W are as defined before. For the second part of Eq. 4.11, we use the

notation tj ∈ R
′
(ci)∧ tj ∈ R

′
(ĉi) to represent point i’s offspring that change clusters

when ci is changed. Each of these Metropolis-Hasting updates can be performed

several times before combining via Gibbs sampling. The Metropolis-within-Gibbs

inference algorithm for the extended hierarchical IBM can be derived based on the

above derivations with the consideration of hyper-cluster assignment.

4.5 Experiments

We conduct experiments on both synthetic and real-world data to evaluate the

proposed IBM. The state-of-the-art approaches are compared to demonstrate its su-

periority. For the synthetic data, we evaluate and visualize the IBM’s performance

on offspring intensity and branching structure estimations. For the real-world ap-

plication, we compared the IBM with several popular IPP based models on water

pipeline failure prediction and failure type categorization.

4.5.1 Synthetic Data

In this section, we use the synthetic data generated from traditional Hawkes process

to evaluate the IBM. Two triggering kernels, exponential and Weibull kernels, are

used to generate the data. Immigrant intensities are set to 0.8 for both kernels. For

each kernel, 130 synthetic temporal samples are generated on time interval [0, 20].

The simplified IBM with all points sharing the same offspring intensity is applied
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Method EMLL MISD BHawk IBM(CRP) IBM(Wind)

Diff 0.46 0.41 0.45 0.40 0.36
LogLik −1063 −917 −1121 −862 −736

Table 4.1: Results of Diff and LogLik.

to the first 100 samples. Both the traditional CRP and the ddCRP with window

decay function are adopted as branching structure prior for the IBM. Bayesian

model averaging is applied to the estimated models obtained from the first 100

samples. The final model is used to (1) measure the difference between the true

and estimated triggering kernels, and (2) measure the log-likelihood on the rest

30 samples. A relative distance called Diff defined by [82] is used to measure the

difference between kernels.

Three state-of-the-art approaches are compared with the proposed method: Hawkes

process with expectation maximization on a lower bound of log-likelihood function

(EMLL) [110], model independent stochastic declustering (MISD) [11] and Bayesian

inference approach for Hawkes process (BHawk) [12]. The comparison results for

Diff and log-likelihood are given in Table 4.1. As we can see that the IBM can

achieve the best performance for both Diff and log-likelihood. The ddCRP prior

with window decay function outperforms the traditional CRP prior. Besides, we

Figure 4.2: Estimated branching structure matrices.
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select a synthetic sample from exponential kernel to visualize and demonstrate the

IBM’s performance on branching structure estimation. A matrix called branch-

ing structure matrix is used to demonstrate the estimation of branching structure.

Fig. 4.2 (1) and Fig. 4.2 (2) show the branching structure matrices for the ddCRP

prior and the CRP prior respectively. For these matrices, column indices represent

child points and row indices represent parent points. The element in row i and col-

umn j represents the estimated probability of the parent-child relationship cj = i.

Bright colour in the matrices indicates higher probability. As we can see that both

matrices show strong clustering behaviours. The ddCRP prior gives more clusters

with fewer points in each cluster, while the CRP prior gives fewer clusters with

more points in each cluster. Correspondingly, Fig. 4.3 (1) and Fig. 4.3 (2) show

the results of point type estimation. In these figures, the vertical bars on time line

denote the simulated points and the lines show the overall intensity. The circles

on bars indicate that the points are estimated as offspring and the circles at higher

positions indicate that the points are estimated as immigrants. As we can see in

Fig. 4.3 (2), the CRP prior tends to underestimate the number of immigrants and

exhibits strong ”rich gets richer” behaviour. The ddCRP prior, shown in Fig. 4.3

(1), gives a more accurate estimation for the number of immigrants. Both priors

can detect temporal clustering behaviours. The CRP prior tends to find coarser

clusters, while the ddCRP prior tends to find finer clusters.

4.5.2 Real-world Application

For the real-world application, we apply our method to the water pipe failure predic-

tion problem. Domain experts have observed that water pipe failures exhibit strong

spatiotemporal clustering behaviours [111, 110, 8, 1, 112]. One failure can cause

other failures in adjacent spatiotemporal space. As a result, pipe failures can be

categorized into two types: background failure that occurs due to material fatigue

or corrosion, and triggered failure that is caused by another failure. It is desired for
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Figure 4.3: Estimated point types.

# Pipes Laid years # Failures Observation period

District 5121 1930− 1997 922 2003− 2010

Table 4.2: Summary of pipe failure data

water utilities to accurately estimate both the type and amount of pipe failures.

Figure 4.4: Failure points and estimated failure types.

In this experiment, we collected 922 failures from a metropolitan water supply

network (The details of the selected dataset are shown in Table 4.2). The failures

occurred in a district during 8 years. As shown in Fig.4.4 (1), black lines represent

pipelines, warm color dots indicate recent failures and cool color dots indicate old

failures. We treat each pipe failure as a point in spatiotemporal space as shown in

Fig.4.4 (2). Hence, we can use our model for both failure type estimation and failure
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Method HPP SGCP EMLL MISD BHawk CPP IBM

MSE 69.3 64.5 60.3 57.5 60.8 57.0 52.8
F1 - - 0.70 0.75 0.71 0.76 0.79
SC - - - - - - 0.76

Table 4.3: Results of MSE and F1

amount prediction. For the branching structure prior, we adopt a decay function

considering both spatial and temporal distances:

f(dS , dT ) = I(dS ≤ aS) · I(dT ≤ aT )

· 1√
2πσ2

exp

(
−
d2
S

2σ2

)
· exp

(
−dT
ρ

)
,

(4.12)

where dS and dT represent spatial and temporal distances respectively. σ and ρ are

pre-determined parameters. I(·) denotes a indicator function that returns 1 if the

input condition satisfies and 0 otherwise. aS and aT are constants that determine

the window sizes for spatial and temporal spaces. They can be set by domain ex-

perts as hard constraints to quickly filter out unrealistic branching structures. The

hierarchical IBM is used for modelling the failures. It can automatically discover

the failure clusters that share the similar failure triggering pattern. In additional to

EMLL, MISD and BHawk, homogeneous Poisson process (HPP), sigmoidal Gaus-

sian Cox process (SGCP) [13] and cascades of Poisson process (CPP) [14] are also

compared with the IBM for failure amount prediction. We use 4, 5, 6 and 7 years

data for training and the obtained models are used to predict the amount of the

failures in the coming year. The mean square error (MSE) is used to measure the

difference between the true and predicted failure amounts. For failure type catego-

rization, the IBM, EMLL, MISD, BHawk and CPP are applied to all the failures

to estimate their types. F1 score is used to measure the performances. The failure

type categorization result by the proposed method is also visualized in Fig.4.4 (3).

Blue dots indicate the triggered failures and red dots indicate the failures that cause

other failures. Additionally, we use silhouette coefficient (SC) [113], to measure the

clustering performance for the hierarchical IBM’s hyper-clusters. The spatial and
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temporal distances between the triggering and triggered failures are used to calcu-

late silhouette coefficient. The other approaches do not have the ability to discover

the hidden hierarchical structure. The results of MSE, F1 and SC are shown in

Table 4.3. As we can see, the proposed method outperforms others for both MSE

and F1 score and it can also achieve an accurate clustering on top of the failure

clusters.

4.6 Conclusion and Future Directions

In this paper, we proposed the IBM, a Bayesian statistical model that generalizes

and extends popular IPPs. It considers point intensity, interaction mechanism and

branching structure simultaneously. The experimental results on both synthetic and

real-world data demonstrate its superiority. There are also many potential venues

for future work. It will be interesting to consider high order point interaction [114],

the connection between branching structure and causality measure of point pro-

cesses [115] and the extension for multivariate IPPs.



Chapter 5

Bayesian Nonparametric

Approach for Event Correlation

In the previous Chapter, we propose a Bayesian statistical model that generalizes

and extends interaction point processes to model the interaction of events. In this

chapter, we propose a Bayesian nonparametric approach that considers both types

of correlations via unifying and generalizing the hidden semi-Markov model and in-

teraction point process model. The proposed approach simultaneously models both

the observations and arrival times of temporal events, and automatically determine

the number of latent states from data.

5.1 Introduction and Motivation

Temporal events modelling is a classic machine learning problem that has drawn

enormous research attentions for decades. It has wide applications in many areas,

such as financial modelling, social events analysis, seismological and epidemiological

forecasting. An event is often associated with an arrival time and an observation,

e.g., a scalar or vector. For example, a trading event in financial market has a

trading time and a trading price. A message in social network has a posting time
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and a sequence of words. A main task of temporal events modelling is to capture

the underlying event correlation and use it to make predictions for future events’

observations and/or arrival times.

The correlation between events’ observations can be readily found in many real-

world cases in which an event’s observation is influenced by its predecessors’ obser-

vations. For examples, the price of a trading event is impacted by former trading

prices. The content of a new social message is affected by the contents of the previous

messages. State space model (SSM), e.g., the hidden Markov model (HMM) [84],

is one of the most prevalent frameworks that consider such correlation. It models

the correlation via latent state dependency. Each event in the HMM is associated

with a latent state that can emit an observation. A latent state is independent of

all but the most recent state, i.e., Markovianity. Hence, a future event observation

can be predicted based on the observed events and inferred mechanisms of emission

and transition.

Despite its popularity, the HMM lacks the flexibility to model event arrival time.

It only allows fixed inter-arrival time. The duration of a type of state follows a

geometric distribution with its self-transition probability as the parameter due to

the strict Markovian constraint. The hidden semi-Markov model (HSMM) [16, 17]

was developed to allow non-geometric state duration. It is an extension of the HMM

by allowing the underlying state transition process to be a semi-Markov chain with

a variable duration time for each state. In addition to the HMM components, the

HSMM models the duration of a state as a random variable and a state can emit a

sequence of observations.

The HSMM allows the flexibility of variable inter-arrival times, but it does not

consider events’ correlation on arrival times. In many real-world applications, one

event can trigger the occurrences of others in the near future. For instance, earth-

quakes and epidemics are diffusible events, i.e., one can cause the occurrences of

others. Trading events in financial markets arrive in clusters. Information propa-
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gation in social network shows contagious and clustering characteristics. All these

events exhibit interaction characteristics in terms of arrival times. The likelihood

of an event’s arrival time is affected by the previous events’ arrival times. Stochas-

tic interaction point process (IPP), e.g., Hawkes process [75], is a widely adopted

framework for capturing such arrival time correlation. It models the correlation via

a conditional intensity function that depicts the event intensity depending on all the

previous events’ arrival times. However, unlike the SSMs, it lacks the capability of

modelling events’ latent states and their interactions.

It is clearly desirable in real-world applications to have both arrival time cor-

relation and observation correlation considered in a unified manner so that we can

estimate both when and how events will appear. Inspired by the merits of SSMs and

IPPs, we propose a novel Bayesian nonparametric approach that unifies and gener-

alizes SSMs and IPPs via a latent semi-Markov state chain with infinitely countable

number of states. The latent states governs both the observation emission and new

event triggering mechanism. An efficient sampling method is developed within the

framework of particle Markov chain Monte Carlo (PMCMC) [18] for the posterior

inference of the proposed model.

5.2 Preliminaries

In this section, we review a technique that is closely related to the proposed method,

namely hierarchical Dirichlet process hidden Markov model.

Hierarchical Dirichlet process hidden Markov model (HDP-HMM) [10] is a nice

nonparametric extension of HMM. The HDPHMM provides an promising methods

to various applications such as natural scene recognition [116] abnormal recognition[117],

speaker diarization[118], etc.

In the HDP-HMM model, HDP serves as the prior over the state transitions

matrix in order to make the model allow an unbounded set of states. The generative
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HDP-HMM model can be summarized as:

β | γ ∼ GEM(γ),

πk |α0, β ∼ DP(α0, β),

θk | λ,H ∼ H(λ),

sn |sn−1, (πk)
∞
k=1 ∼ πsn−1 ,

yn | sn, (θk)∞k=1 ∼ F (θsn),

(5.1)

where, GEM denotes stick-breaking process. The variable sequence πk indicates

the latent state sequence. yn represents the observation. HDP acts the role of

a prior over the infinite transition matrices. Each πk is a draw from a DP, it

depicts the transition distribution from state k. The probability measures from

which πk’s are drawn are parameterized by the same discrete base measure β. The

emission distribution F is parameterized by θ. Usually H is set to be conjugate of

F simplifying inference. γ controls base measure β’s degree of concentration. α0

plays the role of governing the variability of the prior mean measure across the rows

of the transition matrix.

As HDP prior does not distinguish self-transitions from transitions to other states

thus can not perfectly model the states persistence time, it is vulnerable to unnec-

essary frequent switching of states and more states. [119] proposed a sticky HDP-

HMM to include a self-transition bias parameter into the state transition measure

πk ∼ DP (α0 + κ, (α0β + κδk)/(α0 + κ)), where κ controls the stickiness of the

transition matrix. Another remarkable variant to solve this problem is Hierarchi-

cal Dirichlet process hidden semi-Markov model (HDP-HSMM) [21] that can learn

non-geometric state duration by introducing a super state sequence that governs the

states’ duration distribution.
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5.3 Infinite Hidden Semi-Markov Modulated In-

teraction Point Process

The HMM has proven to be an excellent general framework modelling sequential

data, but it has two significant drawbacks: (1) The durations of events (or the

inter-arrival times between events) are fixed to a common value. The state duration

distributions are restricted to a geometric form. Such setting lacks the flexibility for

real-world applications. (2) The size of the latent state space in the HMM must be

set a priori instead of learning from data.

The hidden semi-Markov model (HSMM) [16, 17] is a popular extension to the

HMM, which tries to mitigate the first drawback of the HMM. It allows latent

states to have variable duration, thereby forming a semi-Markov chain. It reduces

to the HMM when duration follow a geometric distribution. Additional to the 4

components of the HMM, HSMM has a state duration probability distribution. As

a result, the inference procedure for the HSMM also involves the inference of the

duration probability distribution.

The recent development in Bayesian nonparametric theory helps address the

second drawback of the HMM. In HDP-HMM model, Because the HMM can be

treated as a set of mixture models in a dynamic manner, each of which corresponds

to a value of the current state, the HDP becomes a natural choice as the prior over

the state transitions [39, 10].

We notice that all the aforementioned SSMs(HMM, HSMM and HDP-HMM)

neglect the interaction between events in terms of event arrival time, which is well-

depicted in interaction point processes (IPPs). We propose an infinite hidden semi-

Markov modulated interaction point process model (iHSMM-IPP), which hybridizes

SSMs and IPPs by a natural way and thereby owns the merits of both.

iHSMM-IPP is a Bayesian nonparametric stochastic point process with a latent

semi-Markov state chain determining both event emission probabilities and event
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triggering kernels. An intuitive illustration is given in Fig. 5.1. Each temporal event

in the iHSMM-IPP is represented by a stochastic point and each point is associated

with a hidden discrete state {si} that plays the role of determining event emission

and triggering mechanism. As in SSMs and IPPs, the event emission probabilities

guide the generation of event observations {yi} and the event triggering kernels

influence the occurrence times {ti} of events. The hidden state depends only on the

most recent event’s state. The size of the latent state space is infinite countable

with the HDP prior.

Figure 5.1: An intuitive illustration of the iHSMM-IPP model.

In Fig. 5.1, every event in the iHSMM-IPP model is associated with a latent state

s, an arrival time t and an observable value y. The colours of points indicate latent

states. Blue curve shows the event intensity. The top part of the figure illustrates

the IPP component of the iHSMM-IPP model and the bottom part illustrates the

HSMM component. The two components are integrated together via an infinite

countable semi-Markov latent state chain.
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The model can be formally defined as the following.

β | γ v GEM(γ), πk | α0, β v DP(α0, β), θk | η,H v H(η),

ρk | χ,H ′ v H ′(χ), sn | sn−1, (πk)
∞
k=1 v πsn−1 ,

tn | · v PP(µ+
n−1∑
i=1

ψρsi (t− ti)), yn | sn, (θk)∞k=1 v F (θsn).

(5.2)

The corresponding graphical model is given in Fig. 5.2.

Figure 5.2: Graphical model of the iHSMM-IPP model.

We use ψρsi (·) to denote the triggering kernel parameterized by ρsi which is

indexed by latent state si. We use ψsi(·) instead of ψρsi (·) for the remaining of the

paper for the sake of notation simplicity. The iHSMM-IPP is a generative model

that can be used for generating a series of events with arrival times and emitted

observations. The arrival time tn is drawn from a Poisson process. We do not

consider edge effect in this work. Therefore, the first event’s arrival time, t1, is

drawn from a homogeneous Poisson process parameterized by a hyper-parameter µ.
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For n > 1, tn is drawn from an inhomogeneous Poisson process whose conditional

intensity function is defined as: µ +
∑n−1

i=1 ψsi(t − ti). As defined before, ψsi(·)

indicates the triggering kernel of a former point i whose latent state is si. The

state of the point sn is drawn following the guidance of the HDP prior as in the

HDP-HMM. The emitted observation yn is generation from the emission probability

distribution F (·) parameterized by θsn which is determined by the state sn.

5.4 Posterior Inference for iHSMM-IPP

In this section, we describe the inference method for the proposed iHSMM-IPP

model. Despite its flexibility, the proposed iHSMM-IPP model faces three chal-

lenges for efficient posterior inference: (1) strong correlation nature of its temporal

dynamics (2) non-Markovianity introduced by the event triggering mechanism, and

(3) infinite dimensional state transition.

The traditional sampling methods for high dimensional probability distributions,

e.g., MCMC, sequential Monte Carlo (SMC), are unreliable when highly correlated

variables are updated independently, which can be the case for the iHSMM-IPP

model. So we develop the inference algorithm within the framework of particle

MCMC (PMCMC), a family of inferential methods recently developed in [18]. The

key idea of PMCMC is to use SMC to construct a proposal kernel for an MCMC

sampler. It not only improves over traditional MCMC methods but also makes

Bayesian inference feasible for a large class of statistical models.

For tackling the non-Markovianity, ancestor resampling scheme [19] is incorpo-

rated into our inference algorithm. As existing forward-backward sampling methods,

ancestor resampling uses backward sampling to improve the mixing of PMCMC.

However, it achieves the same effect in a single forward sweep instead of using sep-

arate forward and backward sweeps. More importantly, it provides an effective way

of sampling for non-Markovian SSMs.



88 Chapter 5. Bayesian Nonparametric Approach for Event Correlation

5.4.1 Particle Gibbs Sampling for iHSMM-IPP

Given a sequence of N events, {yn, tn}Nn=1, the inference algorithm needs to sample

the hidden state sequence, {sn}Nn=1, emission distribution parameters θ1:K , back-

ground event intensity µ, triggering kernel parameters, ψ1:K (we omit ρ and use

ψ1:K instead of ψρ1:K for notation simplicity as before), transition matrix, π1:K , and

the HDP parameters (α0, γ, κ, β). We use K to represent the number of active

states and Ω to indicate the set of variables excluding the latent state sequence,

i.e., Ω = {α0, β, γ, κ, µ, θ1:K , ψ1:K , π1:K}. Only major variables are listed, and Ω

may also include other variables, such as the probability of initial latent state. At

a high level, all the variables are updated iteratively using a particle Gibbs (PG)

sampler. A conditional SMC is performed as a proposal kernel for updating latent

state sequence in each PG iteration. An ancestor resampling scheme is adopted

in the conditional SMC for handling the non-Markovianity caused by the triggering

mechanism. Metropolis sampling is used in each PG iteration to update background

event intensity µ and triggering kernel parameters ψ1:K . The remaining variables in

Ω can be sampled by following the scheme in [119, 10] readily. The proposal distri-

bution qΩ(·) in the conditional SMC can be set by following [20]. The PG sampler

is given in the following:

Step 1: Initialization, i = 0, set Ω(0), s1:N(0), B1:N(0).

Step 2: For iteration i > 1

(a) Sample Ω(i) ∼ p{·|y1:N , t1:N , s1:N(i− 1)}.

(b) Run a conditional SMC algorithm targeting pΩ(i)(s1:N |y1:N , t1:N) condi-

tional on s1:N(i− 1) and B1:N(i− 1).

(c) Sample s1:N(i) ∼ p̂Ω(i)(·|y1:N , t1:N).

We use B1:N to represent the ancestral lineage of the prespecified state path s1:N

and p̂Ω(i)(·|y1:N) to represent the particle approximation of pΩ(i)(·|y1:N). The details
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of the conditional SMC algorithm are given in the following. It is worth noting that

the conditioned latent state path is only updated via the ancestor resampling.

Step 1: Let s1:N = {sB1
1 , sB2

2 , · · · , sBNN } denote the path that is associated with the

ancestral lineage B1:N

Step 2: For n = 1,

(a) For j 6= B1, sample sj1 ∼ qΩ(·|y1), j ∈ [1, · · · , J ]. (J denotes the number

of particles.)

(b) Compute weights w1(sj1) = p(sj1)F (y1|sj1)/qΩ(sj1|y1) and normalize the

weights W j
1 = w1(sj1)/

∑J
m=1 w1(sm1 ). (We use p(sj1) to represent the

probability of the initial latent state and qΩ(sj1|y1) to represent the pro-

posal distribution conditional on the variable set Ω.)

Step 3: For n = 2, · · · , N :

(a) For j 6= Bn, sample ancestor index of particle j: ajn−1 ∼ Cat(·|W 1:J
n−1).

(b) For j 6= Bn, sample sjn ∼ qΩ(·|yn, s
ajn−1

n−1 ). If sjn = K + 1 then create a new

state using the stick-breaking construction for the HDP:

(i) Sample a new transition probability πK+1 ∼ Dir(α0β).

(ii) Use stick-breaking construction to expand β ← [β, βK+1]:

β′K+1 ∼ Beta(1, γ), βK+1 = β′K+1

K∏
l=1

(1− β′l).

(iii) Expand transition probability vectors πk to include transitions to

state K + 1 via the HDP stick-breaking construction:

πk ← [πk,1, · · · , πk,K+1], ∀k ∈ [1, K + 1],where

π′k,K+1 ∼ Beta(α0βK+1, α0(1−
K+1∑
l=1

βl)), πk,K+1 = π′k,K+1

K∏
l=1

(1− π′k,l).
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(iv) Sample parameters for a new emission probability and triggering

kernel θK+1 ∼ H and ψ1:K ∼ H ′.

(d) Perform ancestor resampling for the conditioned state path. Compute

the ancestor weights w̃p,jn−1|N via Eq. 5.5 and Eq. 5.6 and resample aBnn as

p(aBnn = j) ∝ w̃p,jn−1|N .

(e) Compute and normalize particle weights:

wn(sjn) = π(sjn|s
ajn−1

n−1 )F (yn|sjn)/qΩ(sjn|s
ajn−1

n−1 , yn), Wn(sjn) = wn(sjn)/(
J∑
j=1

wn(sjn)).

5.4.2 Metropolis Sampling for Background Intensity and

Triggering Kernel

For the inference of the background intensity µ and the parameters of triggering

kernels ψk in the step 2 (a) of the PG sampler, Metropolis sampling is used. As

described in [72], the conditional likelihood of the occurrences of a sequence of events

in IPP can be expressed as:

L , p(t1:N |µ, ψ1:K) =

(
N∏
n=1

λ(tn)

)
exp

(
−
∫ T

0
λ(t)dt

)
. (5.3)

We describe the Metropolis update for ψk, and similar update can be derived for µ.

The normal distribution with the current value of ψk as mean is used as the proposal

distribution. The proposed candidate ψ∗k will be accepted with the probability:

A(ψ∗k, ψk) = min
(

1,
p̂(ψ∗k)

p̂(ψk)

)
. The ratio can be computed as:

p̂(ψ∗k)

p̂(ψk)
=
p(ψ∗k)

p(ψk)
·
p(t1:N |ψ∗k, rest)

p(t1:N |ψk, rest)
=
p(ψ∗k)

p(ψk)
·

(
N∏
n=1

µ(tn) +
∑

u<n ψ
∗
su(tn − tu)

µ(tn) +
∑

u<n ψsu(tn − tu)

)

· exp

 ∑
u∈[1,N ]

(
Ψsu(T − tu)−Ψ∗su(T − tu)

) .

(5.4)

We use Ψ(·) to represent the cumulative distribution function of the kernel function

ψ(·). We use ψ∗su(·) to represent the u-th event’s triggering kernel candidate if



5.5. Empirical Study 91

su = k. It remains the current triggering kernel otherwise. [0, T ] indicates the time

period of the N events.

5.4.3 Truncated Ancestor Resampling for Non-Markovianity

Truncated ancestor resampling [19] is used for tackling the non-Markovianity caused

by the triggering mechanism of the proposed model. The ancestor weight can be

computed as:

w̃p,jn|N = wjn
γn+p({sj1:n, s

′
n+1:n+p})

γn(sj1:n)
(5.5)

γn+p({sj1:n, s
′
n+1:n+p})

γt(s
j
1:n)

=
p(s1:p, y1:p, t1:p)

p(s1:n, y1:n, t1:n)
=
L(t1:p)

L(t1:n)
·

p∏
j=n+1

F (yj |sj)π(sj |sj−1) (5.6)

For notation simplicity, we use wjn to represent wn(sjn). In general, n + p needs to

reach the last event in the sequence. However, due the computational cost and the

influence decay of the past events in the proposed iHSMM-IPP, it is practical and

feasible to use only a small number of events as an approximation instead of using

all the remaining events in Eq. 5.6.

5.5 Empirical Study

In the following experiments, we demonstrate the performance of the proposed in-

ference algorithm based on synthetic data and show the applications of the proposed

iHSMM-IPP model in real-world settings.

5.5.1 Synthetic Data

As in [120, 119, 20], we generate the synthetic data of 1000 events via a 4-state

Gaussian emission HMM with self-transition probability of 0.75 and the remaining

probability mass uniformly distributed over the other 3 states. The means of emis-

sion are set to −2.0 −0.5 1.0 4.0 with the deviation of 0.5. The occurrence times of



92 Chapter 5. Bayesian Nonparametric Approach for Event Correlation

Synthetic

Method Diff

iHSMM-IPP 0.36
M-MHawkes 0.55
VI-MHawkes 0.62

Table 5.1: Results on Synthetic data

events are generated via the Hawkes process with 4 different triggering kernels, each

of which corresponds to a HMM state. The background intensity is set to 0.6 and the

triggering kernels take the exponential form: λ(t) = 0.6+
∑

tn<t
α′ · exp(−β′(t− tn))

with {0.1, 0.9}, {0.5, 0.9}, {0.1, 0.6}, {0.5, 0.6} as the {α′, β′} parameter pairs of the

kernels. A thinning process [107] (a point process variant of rejection sampling) is

used to generate event times of Hawkes process.

We compared 4 related methods to demonstrate the performance of the proposed

iHSMM-IPP model and inference algorithm: particle Gibbs sampler for sticky HDP-

HMM [20], weak-limit sampler for HDP-HSMM [21], Metropolis-within-Gibbs sam-

pler for marked Hawkes process [12] and variational inference for marked Hawkes

process [121]. The normalized Hamming distance error is used to measure the per-

formance of the estimated state sequences. The Diff distance used in [82] (i.e.,∫
(ψ̃(t)−ψ(t))2dt∫

(ψ(t))2dt
, ψ(t) and ψ̃(t) represent the true and estimated kernels respectively)

is adopted for measuring the performance of the estimated triggering kernels. The

estimated ones are greedily matched to minimize their distances from the ground

truth.

The average results of the normalized Hamming distance errors are shown in

Fig. 5.3 and the Diff distance errors are shown in the second column of Table 5.1.

The results show that the proposed inference method can not only quickly converge

to an accurate estimation of the latent state sequence but also well recover the

underlying triggering kernels. Its clear advantage over the compared SSMs and

marked Hawkes processes is due to its considerations of both occurrence times and

emitted observations for the inference.
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Figure 5.3: Normalized Hamming distance errors for synthetic data.

5.5.2 Understanding Energy Consumption Behaviours of House-

holds

In this section, we use energy consumption data from the Reference Energy Disag-

gregation Dataset (REDD ) [122] to demonstrate the application of the proposed

model. The dataset was collected via smart meters recording detailed appliance-level

electricity consumption information from approximately 40 homes in the Boston and

San Francisco metropolitan areas. All of the data were collected for 48 different cir-

cuit breakers, with the collection period for each home typically ranging from 2 to 4

weeks. The dataset was collected with the intension to understand household energy

usage patterns and make recommendations for efficient consumption. The 1 Hz low

frequency REDD data is used and down sampled to 1 reading per minute covering

1 day energy consumption. Very low and high consumption readings are removed

from the reading sequence. Fig. 5.4 (Left) shows the cleaned reading sequence.

Readings are in Watts and colours indicate appliance types: lighting, refrigerator,

disposal, dishwasher, washer dryer, kitchen outlets, microwave, stove.

The appliance types are modelled as latent states in the proposed iHSMM-IPP

model. The readings are the emitted observations of states governed by Gaussian
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Figure 5.4: Left: Cleaned energy consumption readings of the REDD dataset. Right:
Estimated states by the proposed iHSMM-IPP model.

distributions. The relationship between the usages of different appliances is modelled

via the state transition matrix. The triggering kernels of states in the model depict

the influences of appliances on triggering the following energy consumption, e.g.,

the usage of washing machine triggers the following energy usage of dryer. As in the

first experiment, exponential form of trigger is adopted and independent exponential

priors with hyper-parameter 0.01 are used for kernel parameters (α′, β′). Fig. 5.4

(Right) shows the estimated states by the proposed iHSMM-IPP model.

The 4 methods used in the first experiment are compared with the proposed

model. The average results of the normalized Hamming distance errors and the log

likelihoods are shown in the third and fourth columns of Table 5.2. The proposed

model outperforms the other methods due to the fact that it has the flexibility to

capture the interaction between the usages of different appliances. Other models

mainly rely on the emitted observations, i.e., readings for inferring the types of

appliances.
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REDD

Method Hamming LogLik

iHSMM-IPP 0.30 −120.11
M-MHawkes 0.63 −173.36
VI-MHawkes 0.76 −193.62
HDP-HSMM 0.42 −147.52
S-HDP-HMM 0.55 −163.28

Table 5.2: Results on REDD sets.

5.5.3 Understanding Infrastructure Failure Behaviours and

Impacts

Drinking water pipe networks are valuable infrastructure assets. Their failures (e.g.,

pipe bursts and leaks) can cause tremendous social and economic costs. Hence,

it is of significant importance to understand the behaviours of pipe failures (i.e.,

occurrence time, failure type, labour hours for repair). In particular, the relationship

between the types of two consecutive failures, the triggering effect of a failure on the

intensity of future failures and the labour hours taken for a certain type of failure

can help provide not only insights but also guidance to make informed maintenance

strategies.

In this experiment, a sequence of 1600 failures occurred in the same zone within

15 years with 10 different failure types [2] are used for testing the performance of

the proposed iHSMM-IPP model (The details of the selected dataset are shown in

Table 5.3). Failure types are modelled as latent states. Labour hours for repair are

emissions of states, which are modelled by Gaussian distributions. It is well observed

in industry that pipe failures occur in clusters, i.e., certain types of failures can cause

high failure risk in near future. Such behaviours are modelled via the triggering

kernels of states.

# Pipes Laid years # Failures Observation period

District 12461 1930− 1997 1600 1998− 2012

Table 5.3: Summary of pipe failure data
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Pipe

Method Hamming LogLik MSE Failures MSE Hours

iHSMM-IPP 0.39 −677 82.8 28.6
M-MHawkes 0.64 −1035 142.2 80.2
VI-MHawkes 0.78 −1200 166.7 93.7
HDP-HSMM 0.52 −850 103.8 42.3
S-HDP-HMM 0.59 −993 128.5 55.9

Table 5.4: Results of the water pipe dataset.

As in the first experiment, we compare the proposed iHSMM-IPP model with 4

related methods. The sequence is divided into two parts 90% and 10%. The first

part of the sequence is used for training models. The normalized Hamming distance

errors and log likelihoods are used for measuring the performances on the first part.

Then the models are used for predicting the remaining 10% of the sequence. The

predicted total number of failures and total labour hours for each failure type are

compared with ground truth by using mean square error. The results are shown

in the last four columns of Table 5.4. It can be seen that the proposed iHSMM-

IPP achieves the best performance for both the estimation on the first part of the

sequence and the prediction on the second part of the sequence. Its superiority comes

from the fact that it well utilizes both the observed labour hours and occurrence

times while others only consider part of the observed information or have limitations

on model flexibility.

5.6 Conclusion

In this work, we proposed a new Bayesian nonparametric stochastic point process

model, namely the infinite hidden semi-Markov modulated interaction point process

model. It captures both emitted observations and arrival times of temporal events

for capturing the underlying event correlation. A Metropolis-within-particle-Gibbs

sampler with truncated ancestor resampling is developed for the posterior inference
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of the proposed model. The effectiveness of the sampler is shown on a synthetic

dataset with the comparison of 4 related state-of-the-art methods. The superiority

of the proposed model over the compared methods is also demonstrated in two real-

world applications, i.e., household energy consumption modelling and infrastructure

failure modelling.



Chapter 6

Conclusion and Future Work

In the previous chapters, a set of novel BNP models are developed to learn the

underlying relations of stochastic events series. The proposed BNP models allow us

to extract the underlying complex patterns of observed data with fewer assumptions

about the model form. In this chapter, I summarize the main contributions and

discuss potential future directions.

6.1 Works Summary

In general, this thesis successfully demonstrates that BNP theory serves as a promis-

ing pathway to introduce flexibility and extendibility in modelling the complicated

relationships and structures for stochastic temporal events. Specifically, I have made

several advances as listed in the following.

Tackling Data Sparsity : Data sparsity problem has been one of the most com-

mon challenges in machine learning applications. The true underlying structure of

patterns and relations are difficult to capture as there is not enough data to train

the model. In Chapter 3, I demonstrated that flexibly clustering capability granted

by Dirichlet process helps alleviate the data sparsity problem in water pipes failure

prediction application. The proposed model, namely Dirichlet process mixture of Hi-
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erarchical beta process (DPMHBP), makes it possible to share failure data among

pipes that have similar behaviours to enhance failure prediction. The clustering

process is fully data-driven and does not require predefining the number of clusters.

The application based on the metropolitan water supply network data has shown

the advantage of the proposed model in comparison with other failure prediction

models.

Capturing Infinite Interaction: Interaction relation in social and natural events

series usually exhibits a cluster property via a specific branching structure. To ex-

plore such interaction, in Chapter 4, I established an unexplored theoretical bridge

between distance dependent CRP and interaction point processes (IPPs). An in-

tegrated model, infinite branching model (IBM), is constructed to estimate point

event intensity, interaction mechanism and branching structure simultaneously. The

proposed model showed that stochastic events series can be readily represented as

infinite branches of points. The prior belief over events’ interactions is depicted as

the points connections determined by distance, thereby enable the interaction point

process to incorporate the observation information in feature space. The empirical

study on synthetic data regression and water pipe failure understanding has shown

an inspired superiority comparing with other traditional interactive point process

models.

Modelling Event Correlation: The events in stochastic event series are correlated

both between arrival times and between observations. Separately, interaction point

processes (IPPs) concentrate on modelling the former and Hidden Markov model

(HMM) focus on capturing the latter. In Chapter 5, I unified and generalized HMM

and IPPs via a novel Bayesian nonparametric point process model, which allows

a stochastic point process to capture both emitted observations and arrival times

of events. The proposed model exploits two types of underlying correlation in a

well-integrated way rather than individually. It not only provides us with better

prediction accuracy but also allows us to obtain a deeper insight into the inter-

action mechanism and correlation between events. Several challenges in inference



100 Chapter 6. Conclusion and Future Work

procedure are also tackled. Experiments based on real world data demonstrated its

high potential for event prediction in various domains.

6.2 Suggestion for Future Direction

The result in this thesis has enriched previous insights on stochastic temporal series

of natural and social events. Moreover, it has led to several future directions, which

can be summarized in 3 aspects as follows.

6.2.1 Computationally Efficient Inference

The inference methods used in this thesis are all based on MCMC framework and

have been elaborately optimized. However, due to the potential high geometry of

models, for large dataset, the mixing rate can be slow and the convergence diagnosis

can be difficult, and computation can be one of the major bottlenecks for system

application. This means the proposed models’ productivity would be confined for

large scale real-world applications. It is desirable to pay enough attention to develop

less computationally consuming inference methods for proposed model.

Variational inference[123] technique supplies a sound alternative to MCMC in

the context of large-scale problem. It formulates the conditional probability in-

ference as an optimization problem and seeks an exact analytical solution for ap-

proximation of the probability. Usually, the optimization goal is set to minimize

the Kullbeck-Leibler (KL) distance between the variational distribution and the

original distribution. Because the solution of variational inference is deterministic

rather than stochastic, it delivers faster solution and has a remarkable advantages

on computation resource consumption compared with MCMC.

Considering MCMC’s good property of asymptotically exactness, developing a

hybrid inference method that makes the best of both will be desirable. Some pre-
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vious works such as variational inference for DPMM [124], collapsed variational in-

ference for HDP [125] and mean-field approximation for Hawkes process [126] have

supply valuable basis for solving models in current thesis. However, a sophisticated

variational approximation for proposed models can still introduce new theoretical

challenges due to the inhomogeneity and complicacy of models.

6.2.2 Latent Feature Relation

The thesis dedicates to using Dirichlet process and its extensions to model the cluster

relation in stochastic events. In this kind of relation, each event is associated with

one single latent cluster. However, in stochastic events series, there is another type

of relation in which each observation is associated with several latent features and

can be generated based on a distribution parameterized by these features. Thus,

how to capture these underlying features in a series of stochastic events is worthwhile

to study.

As surveyed in 2.3.3, beta process (BP) can be the model of choice for this task.

BP has been successfully applied in infinite latent feature models [127], where a

binary matrix with infinite columns generated by BP controls which features are

possessed by observations. Similarly, BP can be used to model the allocation of

features that each event is associated with. A promising first step is to extend

the previous works [128, 129] that tried to using BP to capture the underlying

latent dynamical behaviours. The next step that further explore how to model the

interaction between events which share the underlying features will be challenging

but interesting.

There are also many others relation structures such as nesting structure, blocks

structure and graphical structure are worthy further exploring.
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6.2.3 Applications

I have proposed innovative Bayesian nonparametric approaches for modelling stochas-

tic temporal events. It is expected that the results of this thesis could have wider

spectrum of applications in infrastructure, financial and Internet domains.

A potential application is to use Bayesian nonparametric models to learn patterns

on financial transaction such as buy and sell intensities of stocks. Due to the large

number and diversity of economic indicators, the estimation of invisible states that

control the behaviour of market transaction is usually complicated. However, It has

been known that market transaction are generally clustered over time and strong

characteristics of interaction between transactions are exhibited. It can be imagined

that using proposed model in chapter 5 to investigate the transaction events will be

predictably fruitful.

Another profitable application is discovery of social clusters. For example, the

Twitter and Facebook are a rich source of high quality data as users register with

personal information. Each social cluster of users is essentially composed of infinite

connections between users. The users’ posts have observed a marked self-exciting

property and infinite branching structure. Not only the user profile information, but

also the temporal information of posts provides important clues to the clustering.

The model proposed in chapter 4 supplies an extensible framework to explore the

social communities behind the posts. It will be a powerful tool to predict the posts

cascade after the occurrence of public accident news.
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