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Chapter 1

Introduction

Definition 1.0.1. Define the Fourier transform f̂ of a function f ∈ L1(R) by

F(f)(y) = f̂(y) =
1√
2π

∫
R
f(x)e−ixy dx (1.1)

for all y ∈ R.

The uncertainty principle is the phenomenon that a function f and its Fourier

transform f̂ can not both decay rapidly.

To interpret the uncertainty principle rigorously, we need to have a precise def-

inition of what the decay of functions f and f̂ means. Different measurements of

the decay of functions f and f̂ give us different theorems that demonstrate the

uncertainty principle.

Suppose that α > 1 and define the decay of f to be

Df =
‖|x|α f(x)‖L2(R)

‖f(x)‖L2(R)

. (1.2)

Then the uncertainty principle becomes a mild generalization of the Heisenberg-

Pauli-Weyl inequality (see Cowling and Price [6]):

DfDf̂ ≥ C. (1.3)

In particular if α = 1 then the above inequality is the Heisenberg-Pauli-Weyl uncer-

tainty principle (see Dym and McKean [7]).

Also, suppose that the decay of f is defined as

Df (α) =
∥∥∥f(x)eαx

2/2
∥∥∥
∞

(1.4)

Then Hardy’s uncertainty principle says that if Df (α) and Df̂ (β) are both finite and

αβ = 1, then there exists a constant C such that f(x) = Ce−αx
2/2. Also if Df (α)
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and Df̂ (β) are both finite and αβ > 1, then f is zero (see Hardy [11]).

Similarly, suppose that we define the decay of f to be

Df (α) =
∥∥∥f(x)eαx

2/2
∥∥∥
L2(R)

. (1.5)

If Df (α) and Df̂ (β) are both finite and αβ ≥ 1, then f is zero (see Cowling and

Price [5]).

Moreover, the Morgan-Gel’fand-Shilov type uncertainty principle interprets the de-

cay of functions f and f̂ by

Df (α) =

∫
Rn

|f(x)| eαp|x|p/p

(1 + |x|)N
dx, (1.6)

Df̂ (β) =

∫
Rn

∣∣∣f̂(x)
∣∣∣ eβq |x|q/q

(1 + |x|)N
dx, (1.7)

where 1/p+1/q = 1. Gel’fand and Shilov [10] extended the work of Morgan [13] and

proved that if Df (α) and Df̂ (β) are both finite and αβ ≥ 1/4, then f is zero unless

αβ = 1/4 and p = q = 2, in which case f(x) = P (x)e−α
2x2/2 where P is a polynomial.

Suppose N ≥ 0 and 1 ≤ p, q < ∞. Then in the Cowling-Price type uncertainty

principle, the decay of the functions f and f̂ may be defined by

Df (α) =

∫
Rn

(
|f(x)| eα|x|2/2

(1 + |x|)N

)p

dx (1.8)

.

Df̂ (β) =

∫
Rn


∣∣∣f̂(x)

∣∣∣ eβ|x|2/2
(1 + |x|)N

q

dx. (1.9)

If Df (α) and Df̂ (β) are both finite and αβ > 1, then f is zero. Also if αβ = 1 then

f(x) = P (x)e−α
2x2/2, where P is a polynomial (see Cowling and Price [6]).

We notice that the Hardy style theorems are about a pair α and β such that Df (α)

and Df̂ (β) are finite. We can ask a natural problem: if we define

Df = sup
α
{α | Df (α) <∞} (1.10)

and

Df̂ = sup
β

{
β | Df̂ (β) <∞

}
, (1.11)
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what can we say about Df and Df̂ ? Generally if DfDf̂ > 1, then f is zero. So the

interesting case is when DfDf̂ = 1. The growth of Df (α)Df̂ (β) when αβ → 1 plays

an important part here and this leads to our first problem, as follows.

Problem 1.0.2. Suppose that f ∈ L1(R),∫
R
|f(x)| esx2/2 dx ≤ C(1− s)−(N+1)/2 (1.12)

and ∫
R

∣∣∣f̂(y)
∣∣∣ esy2/2dy ≤ C(1− s)−(N+1)/2 (1.13)

when 0 ≤ s < 1. What can we say about the function f ?

Answer: If f satisfies the above conditions, then there exists a polynomial P of

degree at most N such that f(x) = P (x)e−x
2/2. Part of Problem 1.0.2 can be solved

via standard arguments that already exist in Hardy’s paper [11]. In this thesis, it is

also implied by Theorem 4.4.4 in Chapter 4.

In Beurling’s uncertainty principle, f(x) and f̂(y) are considered together, and

the decay is interpreted by

Df =

∫∫
R2

∣∣f(x) f̂(y)
∣∣ e|xy| dx dy. (1.14)

Beurling’s uncertainty principle says if the above integral is finite, then f is equal

to zero. This was generalized by Bonami, Demange and Jaming, who proved that if

∫
Rn

∫
Rn

∣∣∣∣∣ f(x)f̂(y)

(1 + |x|+ |y|)N

∣∣∣∣∣ e|〈x,y〉| dx dy <∞, (1.15)

then f(x) = P (x)e−〈Ax,x〉 where P (x) is a polynomial and A is a positive definite

matrix (see Bonami, Demange and Jaming [3]).

Similarly, in Beurling’s uncertainty principle, we can define

Df = sup
α
{α | Df (α) <∞} , (1.16)

where

Df (α) =

∫∫
R2

∣∣f(x) f̂(y)
∣∣ eα|xy| dx dy. (1.17)

When Df > 1, f is zero by Beurling’s uncertainty principle. Thus the interesting

problem is what we can say about f when Df = 1. Again the growth of Df (α)

when α goes to 1 plays an important part here. In this thesis, the following problem

regarding this uncertainty principle is discussed and solved (Also my paper ”On
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Beurling’s uncertainty principle” was accepted and published by the Bulletin of the

London Mathematical Society).

Problem 1.0.3. If a function f on R is such that∫∫
R2

∣∣f(x) f̂(y)
∣∣ eλ|xy| dx dy = O((1− λ)−N) (1.18)

as λ→ 1−, what can we say about the function f ?

Answer: If f satisfies the above condition, then f is the product of a polynomial

of degree of at most bN − 1/2c and a gaussian. Problem 1.0.3 was open and by

solving this problem we developed an approach that can actually treat Problem 1.0.2

and Problem 1.0.3 in a uniform way in Chapter 4. Also in Chapter 5, this problem

is generalized into higher dimensions by using an Radon-transform reduction.

Before we state the last problem, we define the Mellin transformMk
f of a function

f by

Mk
f (z) =

∫
R
f(x) sgnk(x) |x|z−1/2 dx.

Problem 1.0.4. Suppose that f and f̂ are of gaussian decay and a sequence of

complex numbers {zn} satisfies the condition

∞∑
n=1

1

z2
n

=∞. (1.19)

Is f uniquely decided by the values of Mk
f (zn)?

Answer: This can be answered affirmatively by further exploring the approach

in Chapter 4. In Chapter 6, I showed that the value of Mk
f (zn) uniquely decides the

function f .

In the literature, a useful approach to understand the uncertainty principle for

a given function f is to construct an analytic auxiliary function based on f and

then try to conclude certain properties of that auxiliary function which imply useful

properties of f .

In this thesis three different analytic functions built from f are discussed. The

most obvious one is the natural analytic extension of the Fourier transform, defined

as follows.

Definition 1.0.5 (Analytic continuation of the Fourier transform). Given a function

f in L1(R), we define the analytic extension of f to be

f(z) =

∫
R
f̂(y)ezyi dy, (1.20)

for all complex z for which the integral is defined.

4



The second way of constructing an analytic function from f is by the Bargmann

transform.

Definition 1.0.6 (Bargmann transform). Given a function f in L1(R), we define

its Bargmann transform Bf as follows.

Bf (z) =
〈
f(·) exp((·)2/2), exp

(
−(· − z/2)2

)〉
(1.21)

for all complex z for which Bf (z) is defined. Here 〈·, ·〉 denotes the usual L2(R)

inner product.

The third method of getting an analytic function from f is the Θ transform

which is defined as follows (a formal definition is found in Chapter 3.

Definition 1.0.7 (Θ transform of f). Given a function f in L1(R), we define

Θk
f (z) =

Mk
f (z)

Γ(1
4

+ z
2

+ k
2
)
, (1.22)

for all z ∈ C for which Mk
f (z) is defined.

This transform was not in the literature before and is my main contribution in

this thesis. This thesis is dedicated to showing the idea behind the solution of all

above three problems by examining properties of Θk
f and how these properties can

be used. Roughly speaking, our result about Θk
f can be stated as follows.

Observation 1.0.8. Suppose that there exist positive numbers c, d, α and β such

that |f(x)| ≤ ce−αx
2/2 and

∣∣∣f̂(y)
∣∣∣ ≤ de−βy

2/2 for all x, y ∈ R. Then Θk
f is an analytic

function of order 1 and, by the Hadamard factorization theorem (see Chapter 2),

Θk
f (z) = zmeaz+b

∞∏
n=1

(
1− z

zn

)
exp

(
z

zn

)
(1.23)

for some fixed values m, a and b.
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Chapter 2

Background material

2.1 The Fourier transform and Schwartz space

Definition 2.1.1. Define the Fourier transform f̂ of a function f ∈ L1(Rn) by

F(f)(y) = f̂(y) =

(
1

2π

)n/2 ∫
Rn
f(x)e−i〈x,y〉 dx, (2.1)

for all y ∈ Rn.

In this thesis we denote by γa the gaussian function e−ax
2/2 on R, and then

γ̂a(y) =

√
1

a
γ1/a(y). (2.2)

Definition 2.1.2. The Schwartz space on Rn is the function space

S(Rn) =
{
f ∈ C∞(Rn) : ‖f‖α,β <∞ ∀α, β ∈ Nn

}
,

where C∞(Rn) is the set of smooth functions from Rn to C, and

‖f‖α,β = sup
x∈Rn

∣∣xαDβf(x)
∣∣ ,

where sup denotes the supremum, while xα is the monomial and Dβ is the partial

derivative given by the standard multi-index notation.

It is well known that the Fourier transformation is a bijection on S(Rn), and

hence we may extend the definition of the Fourier transformation to the dual space

S ′(Rn) of tempered distributions.

7



2.2 The Hermite functions

Definition 2.2.1. We denote by hn the nth Hermite functions [18], defined as fol-

lows:

hn(x) =

(
1√
π2nn!

)1/2

(−1)n
dn(e−x

2
)

dx
ex

2/2. (2.3)

It is easy to check that, when m < n,∫
R
xmhn(x)e−x

2/2 dx = C

∫
R
Dn(e−x

2

)xm dx = 0, (2.4)

by repeated integration by parts, whereD denotes differentiation. Thus
∫
R hn(x)hm(x) dx =

0 when m 6= n, and the {hn} form an orthonormal basis in L2(R). Also hn is a poly-

nomial multiplied by γ1(x) and we denote by Hn the Hermite polynomials, defined

as follows.

Definition 2.2.2.

Hn(x) =
dn(e−x

2
)

dx
ex

2

. (2.5)

It is easy to check that

hn(x) =

(
1√
π2nn!

)1/2

(−1)nHn(x)e−x
2/2. (2.6)

Moreover (see Thangavelu [18])

F(γ1Hn) = (−i)nγ1Hn. (2.7)

2.3 The Mellin transform

Suppose that f : R+ → C. Then we can define a function f̃(x) = f(ex) and by

direct computation

F(f̃)(ξ) =
1√
2π

∫
R
f(ex)e−iξx dx

=
1√
2π

∫
R+

f(t)t−iξ
dt

t
.

(2.8)

This leads to the traditional definition of the Mellin transform, as follows.

Definition 2.3.1. Suppose that
∫
R+ |f(x)|xs−1/2 dx < ∞ when s ∈ [α, β] ⊆ R.

Then the Mellin transform Mf is defined by

Mf (z) =
√

2πF(f̃)

(
iz − i

2

)
=

∫
R+

f(t)tz−1/2 dt (2.9)

when Re z ∈ [α, β].

8



If f(t) is in L1(R+, dt/t), then f ◦ exp is in L1(R). Also we can check that by

the above definition

F(f̃)(x) =
1√
2π
Mf (−1/2− ix).

Thus by the Fourier inversion formula we can compute f(x) when x ≥ 0:

f(x) = F−1

(
1√
2π
Mf (−1/2− i(·))

)
(log x)

=
1

2π

∫
R
Mf (−ti− 1/2)ei log xt dt

=
1

2π

∫
R
Mf (−ti− 1/2)xit dt

=
1

2πi

∫ i∞

−i∞
Mf (y)x−y−1/2 dy,

(2.10)

where the last integral is a complex line integral.

Definition 2.3.2. Define the Mellin inverse transform of a complex function f

defined on the strip {z ∈ C : |Re(z)| < c} by

M−1
f (x) =

1

2πi

∫ i∞

−i∞
f(y)x−y−1/2 dy (2.11)

where x > 0 and the integral is a complex line integral.

It follows that, by defining the Mellin inverse transform M−1 as above, we can

reconstruct half of the function f on R+. To reconstruct the whole function f on R
we will also need Mf∨ = F(f̃∨), where f∨(t) = f(−t).

For convenience, to uniquely reconstruct f via M−1, we adjust the definition of

Mf as follows.

Definition 2.3.3. Given a function f ∈ L1(R), define

Mk
f (z) =

∫
R
f(x) sgnk(x) |x|z−1/2 dx, (2.12)

for all z ∈ C for which Mk
f (z) is defined.

It is easy to check that if f is even, then M0
f is twice the traditional Mellin

transform of f . Similarly if f is odd, then M1
f is twice the traditional Mellin

transform of f . Also M0
f =M0

f∨ and M1
f = −M1

f∨ .

A function f can be split into an even part fe and an odd part fo such that

f = fe + fo. Then we can reconstruct f on R by

f(x) =
1

2

(
(M−1M0

f )(|x|) + sgn(x)(M−1M1
f )(|x|)

)
(2.13)

9



for all x in R.

2.4 Multiplicative convolution

Definition 2.4.1. Suppose that |f | and |g| are bounded and in L1(R+, dt/t). Then

we define the multiplicative convolution f ?M g between f and g by

f ?M g(x) =

∫
R+

f(y)g

(
x

y

)
dy

y
(2.14)

for all x ∈ R.

Because we can check that, when u > 0,

Mf◦δu(z) =

∫
R+

f(ux)xz−1/2 dx

=

∫
R+

u−1/2−zf(t)tz−1/2 dt

= u−1/2−zMf (z),

(2.15)

where f ◦δu(x) = f(ux), we can find the formula for the traditional Mellin transform

of a multiplicative convolution as follows:

Mf?Mg(z) =

∫
R+

(∫
R+

f(y)g

(
x

y

)
dy

y

)
xz−1/2 dx

=

∫
R+

f(y)

y

(∫
R+

g

(
x

y

)
xz−1/2 dx

)
dy

=

∫
R+

f(y)y−1/2+zMg(z) dy

=Mf (z)Mg(z).

(2.16)

In this thesis we define an operator ?m that is similar to multiplicative convolu-

tion as follows.

Definition 2.4.2. Suppose that functions f and g are in L2(R). Then we define

f ?m g by

(f ?m g)(x) =

∫
R
f(y)g(xy) dy. (2.17)

From the above definition, we get a similar equation regarding the Mellin trans-

form as follows.

Lemma 2.4.3. Suppose that f and g satisfy the integrability condition∫
R
|f(x)|x−1/2+s <∞ (2.18)

10



and ∫
R
|g(x)|x−1/2+s <∞ (2.19)

for all s ∈ [−a, a]. Then

Mk
f ∗m g(z) =Mk

f (−z)Mk
g(z) (2.20)

when Re(z) ∈ [−a, a].

Proof. When Re z ∈ [−a, a] we have, by computation,

Mk
f◦δα(z) =

∫
R

sgnk(x)f(αx) |x|z−1/2 dx

=

∫
R
|α|−z−1/2 sgnk(t/α)f(t) |t|z−1/2 dt

= sgnk(α) |α|−z−1/2Mk
f (z).

(2.21)

It follows that when Re(z) ∈ [−a, a]

Mk
f ?m g(z) =

∫
R

sgnk(x)

(∫
R
f(y)g(xy) dy

)
|x|z−1/2 dx

=

∫
R
f(y)

(∫
R

sgnk(x)g(yx) |x|z−1/2 dx

)
dy

=

∫
R
f(y) sgnk(y) |y|−z−1/2 dyMk

f (z)

=Mk
f (−z)Mk

g(z),

(2.22)

as required.

2.5 The Γ function

The Γ function shows up in the Mellin transforms of certain functions in this thesis.

Here we recall several useful formulas that are needed to compute the inverse Mellin

transform.

We first define the Γ function as follows.

Definition 2.5.1. For all z ∈ C such that Re(z) > 0, define

Γ(z) =

∫
R+

xz−1e−x dx. (2.23)

To extend the Γ function to the whole plane we use the following reflection

formula, due to Euler.
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Lemma 2.5.2. For all z ∈ C\Z,

Γ(1− z)Γ(z) =
π

sin(πz)
. (2.24)

We can thus quickly conclude that Γ function has no zeros anywhere in the

complex plane; we will need this property in Chapter 4. Also by computing the

Mellin transform of gaussian functions, we get the following result.

Lemma 2.5.3. For all z ∈ C,

M(·)kγa(z) =
1

2

(a
2

)−(z/2+1/4+k/2)

Γ

(
z

2
+

1

4
+
k

2

)
. (2.25)

Proof.

M(·)kγa(z) =

∫
R+

e−ax
2/2xz−1/2+k dx

=
1

2

∫
R+

e−y
(

2

a

)z/2+1/4+k/2

yz/2−3/4+k/2 dy

=
1

2

(a
2

)−(z/2+1/4+k/2)

Γ

(
z

2
+

1

4
+
k

2

)
,

(2.26)

as required.

By changing a to 2e−t we notice that

e−t(1/4+k/2)M(·)kγ2e−t (z) =
1

2
ezt/2 Γ

(
z

2
+

1

4
+
k

2

)
. (2.27)

It follows that

∂n

∂t
(e−t(1/4+k/2)M(·)kγ2e−t )(z) =

1

2
(
z

2
)nezt/2Γ

(
z

2
+

1

4
+
k

2

)
. (2.28)

Thus we have the following lemma to compute the Mellin inverse of functions of the

form Mk
f (z) = P (z/2)ebz Γ

(
z
2

+ 1
4

+ k
2

)
for z ∈ C, where P is a polynomial.

Lemma 2.5.4. Suppose that the Mellin transform Mf (z) satisfies

Mf (z) = P (z/2)ebz Γ

(
z

2
+

1

4
+
k

2

)
, (2.29)

where k = 0, 1, z ∈ C and P is a polynomial of degree d. Then

f(x) = 2

[
P

(
∂

∂t

)]
t=2b

(
xke−t(1/4+k/2) exp(e−tx2)

)
(2.30)

for x ∈ R. Hence f is a polynomial of degree 2d + k times the gaussian function

γ2e−2b.
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Proof. Combine Lemma 2.5.3 and the above arguments.

Suppose that f is a function on the complex plane, analytic except at the points

±i, of the form

f(z) =
1∑

k=0

N∑
j=0

aj,kz
k

(1 + z2)j+1/2
. (2.31)

In order to get the Mellin transform of f on the real line, we need to compute the

Mellin transform of each term in the above equation on the real line. For convenience,

we define θk,n as follows.

Definition 2.5.5. We define

θk,n(x) =
xk

(1 + x2)n+1/2
(2.32)

for all x ∈ R.

It is easy to compute the Mellin transform of each θn,k and we have the following

results.

Mθk,n(z) =

∫
R+

xk+z−1/2

(1 + x2)n+1/2
dx

=

∫ π/2

0

(tan θ)k+z−1/2

(1 + tan2 θ)n+1/2

1

cos2 θ
dθ

=

∫ π/2

0

(sin θ)k+z−1/2(cos θ)2n−1/2−k−z dθ

=
1

2Γ(n+ 1/2)
Γ

(
n+

1

4
− k + z

2

)
Γ

(
1

4
+
k + z

2

)
.

= CnΓ

(
n+

1

4
− k + z

2

)
Γ

(
1

4
+
k + z

2

)
.

(2.33)

It follows that, for f of the form (2.31),

M0
f (z) =

1

2

N∑
n=0

an,0CnΓ

(
n+

1

4
− z

2

)
Γ

(
1

4
+
z

2

)
= P (z)Γ

(
1

4
− z

2

)
Γ

(
1

4
+
z

2

)
,

(2.34)

where P is a polynomial of degree at most N . Also similarly

M1
f (z) =

1

2

N∑
n=0

an,1CnΓ

(
n− 1

4
− z

2

)
Γ

(
3

4
+
z

2

)
= Q(z)Γ

(
3

4
− z

2

)
Γ

(
3

4
+
z

2

)
,

(2.35)
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where Q is a polynomial of degree at most N − 1.

2.6 The Hadamard factorization theorem

In this section we give a quick review of some classical results about analytic func-

tions.

Suppose that f is analytic in B(0, r), the ball around 0 of radius r, and that f

has no zeros in B(0, r). Then log |f | is also a harmonic function in B(0, r) and by

the mean value theorem we have

log |f(0)| = 1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ. (2.36)

Jensen’s formula says that if f is analytic in the ball around zero B(0, r) and f has

zeros {zk}, then

log |f(0)| =
N∑
k=1

log
(zk
r

)
+

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ. (2.37)

From Jensen’s formula, we can derive a lemma regarding the connection between

the number of zeros of an analytic function f and the growth of f .

Lemma 2.6.1. If f is an entire function, B(r) is an increasing function defined on

R+ and |f(z)| ≤ B(|z|) |f(0)| where f(0) is not zero, then

n(r) ≤ logB(2r)

log 2
, (2.38)

where n(r) is the number of zeros in the unit ball B(0, r).

Proof. See Conway [4, p. 282].

If we know that logB(2r) ≤ r log 2, then the number of zeros n(r) of function f

in the ball B(r, 0) is less than r by applying the above estimate. It follows that if

we randomly pick {zn} such that

| {zk : |zk| < r} | ≤ r,

where |S| indicates the cardinality of a set S, then the values f(zk) uniquely deter-

mine the function f .

Definition 2.6.2 (order of an entire function). The order (at infinity) of an entire

14



function f(z) is defined by

ρ = lim sup
r→∞

log(log ‖f‖Br)
log r

,

where Br is the disk of radius r and ‖f‖Br is the maximum value of |f(x)| for all

x ∈ Br. Also it is equivalent to the infimum of all m such that f(z) = O(e|z|
m

) as

z →∞.

Definition 2.6.3 (rank of an entire function). Suppose that f : C→ C is an entire

function with zeros at zn and a zero of order m at 0. If there exists an integer p

such that
∞∑
n=1

|zn|−p−1 <∞ (2.39)

where {zn} is sorted so that |zn| increases, then f is defined to be of finite rank. The

smallest p such that the above inequality holds is defined to be the rank of f . If f

has only finite many zeros, f has rank 0.

We recall the Weierstrass factorization theorem.

Theorem 2.6.4 (Weierstrass Factorization Theorem). Suppose that f is an entire

function with zeros at zn where |zn| 6= 0 and a zero of order m at 0 and there exists

a sequence {pn} such that

P (z) =
∞∏
n=1

Epn

(
z

zn

)
(2.40)

converges, where

Ep(z) = (1− z) exp

(
p∑

n=1

zn

n

)
. (2.41)

Then

f(z) = zmeg(z)P (z). (2.42)

In the Weierstrass factorization theorem g is not necessary a polynomial. How-

ever if g is a polynomial of degree p and the rank (defined by Definition 2.6.3) is q,

we can define the genus µ of the entire function f to be max(p, q). The Hadamard

factorization theorem says that if f is of order λ, then µ ≤ λ.

Theorem 2.6.5 (Hadamard factorization theorem). Suppose that f is an entire

function of finite order λ. Then f also has finite rank p and f has a canonical form

f(z) = zmeg(z)P (z), (2.43)

where g is a polynomial of finite degree q and P (z) is as in Theorem 2.6.4. Moreover

λ− 1 ≤ max(p, q) ≤ λ. (2.44)
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Proof. See Conway [4, p. 289].

2.7 Notation

Suppose that f and g are functions with domain D. We say |f(x)| . |g(x)| when

there exists a constant C such that |f(x)| ≤ C |g(x)| for all x ∈ D. We denote by ◦
the composition operator such that (f ◦ g)(x) = f(g(x)). Also we denote by δu the

dilation function such that δu(x) = ux.
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Chapter 3

Hardy’s uncertainty principle

revisited

3.1 Introduction

Hardy’s uncertainty principle on R is a classical result in harmonic analysis. Hardy

initially states his result by saying that if

|f(x)| . (1 + |x|)mγa(x) and
∣∣∣f̂(y)

∣∣∣ . (1 + |y|)mγb(y)

for all x, y ∈ R and if ab = 1, then f is equal to Pγa where P is a polynomial. Also

if ab > 1, then both f and f̂ are null. Moreover if ab < 1 then there are infinitely

many linearly independent functions that satisfy the condition.

In this chapter, I will firstly review this classical result and then use similar

techniques to get estimates of derivatives of functions that satisfy Hardy’s condition.

With the estimates of derivatives we will be able to estimate the coefficients for

Hermite expansion of function f . It turns out that the estimating of coefficients

for Hermite expansion gives us a new and quicker way to prove Hardy’s uncertainty

principle.

In Garg and Thangavelu [8], it is proved that if f ∈ L1(R) and satisfies estimates

|f(x)| ≤ Ce−ax
2/2 and

∣∣∣f̂(y)
∣∣∣ ≤ Ce−ay

2/2 for some 0 < a < 1, then

|〈f, hk〉| ≤ C(2k + 1)e(2k+1)t/2

where t is determined by the condition tanh(2t) = a/2. Also, conversely, if |〈f, hk〉| ≤
C(2k + 1)e(2k+1)t/2, then |f(x)| ≤ Ce− tanh(t)|x|2/2. In this chapter, we consider the

related condition

|f(x)| ≤ Ce−x
2/2et|x| and

∣∣∣f̂(y)
∣∣∣ ≤ Ce−y

2/2et|y| (3.1)
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for small t. We show that this condition implies that

|〈f, hn〉| .
ntn√
n!
.

Conversely, we show that if |〈f, hn〉| . ntn/
√
n!, then

|f(x)| . (t |x|+ 1)e−x
2/2e

√
2t|x|.

3.2 Analytic continuation of the Fourier trans-

form

3.2.1 Hardy’s uncertainty principle

There are many ways to rephrase Hardy’s uncertainty principle. The simplest way

is the following.

Theorem 3.2.1. Suppose that |f(x)| . e−x
2/2 and

∣∣∣f̂(y)
∣∣∣ . e−y

2/2. Then there

exists a constant C such that f(x) = Ce−x
2/2.

The above theorem has two different proofs in Hardy’s initial paper (see Hardy

[11]), but the usual proof is the following.

Proof. Let z = x+ yi. Then we have∣∣∣f̂(z)
∣∣∣ =

∣∣∣f̂(x+ yi)
∣∣∣ =

∣∣∣∣ 1√
2π

∫
R
f(x)e−xti+ytdt

∣∣∣∣
≤ Ca√

2π

∫
R
e−t

2/2eytdt

= Cae
y2/2.

(3.2)

Thus f̂ is an entire function on the whole complex plane and f̂(z)ez
2/2 is bounded

on both the real and imaginary axes. We can check that the auxiliary function F δ
f ,

given by

F δ
f (z) = f̂(z)ez

2/2eiδz
2/2, (3.3)

is bounded on the line z = reθi when θ = 0. Indeed, when r > 0 and θ = π/2 −
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arctan δ, we have∣∣F δ
f (reθi)

∣∣ =
∣∣∣f̂(reθi)e(reθi)2/2eiδ(r cos θ+ir sin θ)2/2

∣∣∣
≤ Cae

r2 sin2 θ/2e(−r2 sin2 θ+r2 cos2 θ)/2e−δr
2 sin θ cos θ

= Cae
r2 cos2 θ/2e−δr

2 sin θ cos θ

= Cae
(r2 cos2 θ)(1/2−δ tan θ)

= Cae
−(r2 cos2 θ)/2

≤ Ca.

Also F δ
f is of order two in the region{

z ∈ C : Arg(z) ∈
[
0,
π

2
− arctan δ

]}
.

Thus by applying the Phragmen-Lindelöf principle to the auxiliary function F δ
f ,

we know that it is bounded where Arg(z) ∈
[
0, π

2
− arctan δ

]
. Because arctan δ → 0

when δ → 0, by letting δ go to zero, we conclude that F 0
f is bounded in the first

quadrant. Using a similar technique on the other three quadrants of the complex

plane, we can show that F 0
f (z) is bounded on the whole complex plane, and thus

must be constant. Thus f = Cγ1.

Although this proof is simple, it is based on two important techniques. First,

we find an analytic auxiliary function F 0
f based on f and extended it to the entire

complex plane. Second we find attributes of the auxiliary function F 0
f based on the

decay of f . In the above example we conclude that the decay of F 0
f on the real axis

is controlled by the decay of f̂ by definition while the decay of F 0
f on the imaginary

axis is controlled by the decay of f .

Since we are using the most straightforward way to construct an analytic function

A based on f by letting A(z) = F 0
f (z) for all z ∈ C, we only require f(x)eλx to be

integrable on R for all positive λ. Thus if we replace the condition of Theorem 3.2.1

by the following looser pair of conditions

|f(x)| . e−x
2/2 |ψ(x)|∣∣∣f̂(y)

∣∣∣ . e−y
2/2 |ψ(y)| ,

(3.4)

and pick ψ(x) carefully, we can still get an analytic function F 0
f (z).

Remark: If we carefully check the definition of the Bargmann transform in Defi-

nition 1.0.6, we will find that the Bargmann transform of f is very similar to F 0
f .

It is because that if a function f is not of gaussian decay, we can always multiply

f(x) by e−x
2/2 to make a function of gaussian decay. Thus Bf can be treated as a
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normalized version of F 0
f (fe−(·)2/2). This kind of relationship explains why they can

both be used to estimate the coefficients of Hermite expansions of f in the following

sections.

3.2.2 Estimation of Hermite expansions (first approach)

We will develop properties of F 0
f and their applications in this section.

Lemma 3.2.2. Suppose that r > 0, λ > 0 and n is a positive integer. Then

min
r

eλr

rn
= max

rn

eλr
=

(
λe

n

)n
.

Proof. Notice that

d(eλr/rn)

dr
=
λeλrrn − nrn−1eλr

r2n
=

(λr − n)eλn

rn+1
.

Thus
d(eλr/rn)

dr
< 0 when r < n/λ and

d(eλr/rn)

dr
≥ 0 when r ≥ n/λ. So when

r = n/λ,
eλr

rn
is minimal and is equal to

(
λe

n

)n
, as required.

Lemma 3.2.3. Suppose that f satisfies the conditions (3.4) and |ψ(x)| . et|x| where

0 ≤ t ≤ 1. Then
∣∣F 0

f (z)
∣∣ . e

√
2t|z|.

Proof. Let u, v ∈ R, we have∣∣∣f̂(u+ vi)
∣∣∣ =

∣∣∣∣ 1√
2π

∫
R
f(x)e−ix(u+iv) dx

∣∣∣∣
=

∣∣∣∣ 1√
2π

∫
R
f(x)e−uxi+vx dx

∣∣∣∣
.

1√
2π

∫
R
e−x

2/2e(vx+t|x|) dx

≤ 1√
2π

∫
R
e−x

2/2e(|v||x|+t|x|) dx

≤ 1√
2π
e(|v|+t)2/2

∫
R
e−(|x|+|v|+t)2/2 dx

. ev
2/2et|v|.

(3.5)

It follows that F δ
f (z)e−tz+itz, given by

F δ
f (z)e−tz+itz = e−tz+itzf̂(z)ez

2/2eiδz
2/2, (3.6)

satisfies the following: when z = r ∈ R and r ≥ 0,

∣∣F δ
f (z)e−tz+itz

∣∣ = e−tr
∣∣∣f̂(r)er

2/2
∣∣∣ ≤ C.
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Also when z = reθi where θ = π/2− arctan δ and r ≥ 0∣∣F δ
f (z)e−tz+itz

∣∣
= e−tr(cos θ+sin θ)

∣∣∣f̂(reθi)e(reθi)2/2eiδ(e
θi)2/2

∣∣∣
. e−tr(cos θ+sin θ)er

2 sin2 θ/2etr sin θe(−r2 sin2 θ+r2 cos2 θ)/2e−δr
2 sin θ cos θ

. er
2 cos2 θ/2e−δr

2 sin θ cos θ

= e(r2 cos2 θ)(1/2−δ tan θ)

= e−(r2 cos2 θ)/2

≤ 1.

Thus F δ
f (z)e−tz+itz is bounded on the half line z = r where r > 0 and on the half

line z = reθi where θ = π
2
− arctan δ and r > 0. Also F δ

f (z)e−tz+itz is of order two in

the region {
z ∈ C : Arg(z) ∈

[
0,
π

2
− arctan δ

]}
.

Thus by applying the Phragmen-Lindelöf principle to the auxiliary function F δ
f (z)e−tz+itz,

we know that it is bounded where Arg(z) ∈
[
0, π

2
− arctan δ

]
. Because arctan δ → 0

when δ → 0, by letting δ go to zero, we conclude that F 0
f (z)e−tz+itz is bounded in

the first quadrant. Hence

∣∣F 0
f (z)

∣∣ ≤ C
∣∣ezt(1−i)∣∣ ≤ Cet(x+y)

where z = x + iy, that is, F 0
f (z) ≤ Ce

√
2t|z|. By using the same techniques on the

other three quadrants of the complex plane, we get the result.

A direct consequence of the above estimate is that when t approaches 0, the

space of functions satisfying condition (3.4) approaches the one dimensional space

{Cγ1}. Moreover we can use Lemma 3.2.3 to estimate the growth of not only the

function F 0
f itself, but also its derivatives, by analyticity.

Lemma 3.2.4. Suppose that g is an analytic function such that |g(w)| ≤ eλ|w| for

all w ∈ C. Then

|(Dng)(w)| ≤ nλneλ|w|. (3.7)

Proof. Because g is analytic,

|(Dng)(w)| = n!

2π

∣∣∣∣∫
Γ

g(z)

(z − w)n+1
dz

∣∣∣∣ , (3.8)

where Γ is the circle of radius r around w. Because |z| ≤ |w|+ r for y on this circle,

we have the following estimate:
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|(Dng)(w)| = n!

2π

∣∣∣∣∫
Γ

g(z)

(z − w)n+1
dz

∣∣∣∣
≤ min

r

(
n!

2π

2πreλ(|w|+r)

rn+1

)
≤ min

r

(
eλr

rn

)
n!eλ|w|

= n!

(
λe

n

)n
eλ|w|,

(3.9)

where the last line follows from Lemma 3.2.2. Because

n∑
k=1

log k ≤
∫ n

0

log(x+ 1) dx,

it follows that

n! = exp

(
n∑
k=1

log k

)
≤ exp

(∫ n

0

log(x+ 1) dx

)
= exp ((n+ 1) log(n+ 1)− n)

= e

(
n+ 1

e

)n+1

.

(3.10)

Thus (
e

n+ 1

)n+1

≤ e

n!
. (3.11)

It follows that
( e
n

)n
≤ ne

n!
and we can simplify the above inequality to get |(Dng)(w)| ≤

nλneλ|w|.

By combining Lemma 3.2.3 and Lemma 3.2.4, we get the following.

Lemma 3.2.5. Suppose that f satisfies the conditions (3.4) and |ψ(x)| . et|x|. Then∣∣(DnF 0
f )(z))

∣∣ . n(
√

2t)ne
√

2t|z| for all z ∈ C.

A straightforward application of this estimate is that we can estimate inner

products between F 0
f (x) and ex

2/2Dn(e−x
2
) in L2(R) by the following lemma.

Lemma 3.2.6. Suppose that λ > 0 and f has an analytic extension to the whole

complex plane such that ∣∣∣f(w)ew
2/2
∣∣∣ ≤ eλ|w| (3.12)

for all w ∈ C. Then for all n ∈ N,

|〈f, hn〉| ≤ 2neλ
2/4π1/4 λn√

2nn!
, (3.13)
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where

hn(x) =
π−1/4

√
2nn!

ex
2/2Dn(e−x

2

) (3.14)

is the Hermite function defined by Definition 2.2.1.

Proof. Using 3.2.3 and setting g in Lemma 3.2.4 to be fγ−1, we have

Dn(f(x)ex
2/2) ≤ nλneλ|x|

on the real line. Thus∣∣∣∣∫
R
f(x)hn(x) dx

∣∣∣∣ =

∣∣∣∣ π−1/4

√
2nn!

∫
R
f(x)ex

2/2Dn(e−x
2

) dx

∣∣∣∣
=

∣∣∣∣ π−1/4

√
2nn!

∫
R
Dn(f(x)ex

2/2)e−x
2

dx

∣∣∣∣
≤ π−1/4

√
2nn!

nλn
∫
R
e−x

2

eλ|x| dx

≤ 2neλ
2/4π1/4 λn√

2nn!
,

(3.15)

as required.

The reason that we can integrate by parts is that P (x)eλ|x|/ex
2

always tends to

zero as x→ ±∞. Thus we can now conclude the following theorem.

Theorem 3.2.7. Suppose that f satisfies the conditions (3.4) and |ψ(x)| . et|x| for

all x ∈ R. Then

|〈f, hn〉| .
ntn√
n!
, (3.16)

for all n ∈ N when 0 < t ≤ 1.

Proof. By Lemma 3.2.6 and Lemma 3.2.3.

Because the Hermite functions form an orthogonal basis in L2(R), the above

estimate leads to a new proof of the following form of Hardy’s uncertainty principle

as follows.

Theorem 3.2.8. Suppose that |f(x)| . (1+ |x|)Nγ1(x) and
∣∣∣f̂(y)

∣∣∣ . (1+ |y|)Nγ1(y)

for all x, y ∈ R. Then there exists a polynomial P of degree at most N such that

f = Pγ1.

Proof. By Lemma 3.2.2, |x|N ≤ (N/te)Net|x| for all x ∈ R, when 0 ≤ t ≤ 1. Thus

by assumption,

|f(x)| .
(
N

te

)N
et|x|γ1(x) (3.17)

23



and ∣∣∣f̂(y)
∣∣∣ ≤ (N

te

)N
et|y|γ1(y) (3.18)

for all x, y ∈ R. From Theorem 3.2.7 we can conclude that

|〈f, hn〉| .
(
N

te

)N
ntn√
n!
. (3.19)

It follows that |〈f, hn〉| . ntn−N/
√
n! for all n > N . Because this inequality holds

for all 0 ≤ t ≤ 1, by letting t approach zero, we see that |〈f, hn〉| = 0. So there

exists a polynomial P of degree at most N such that

f(x) =
N∑
k=0

akhk(x) = P (x)γ1(x), (3.20)

as required.

So far we have shown that |f(x)| . e−x
2/2et|x| and

∣∣∣f̂(y)
∣∣∣ . e−y

2/et|y| for small t

implies that

|〈f, hn〉| .
ntn√
n!
.

Moreover we claim that if |〈f, hn〉| . ntn√
n!

, then

|f(x)| . (t |x|+ 1)e−x
2/2e

√
2t|x|.

Theorem 3.2.9. Suppose that f is in L2(R) and satisfies the estimate

|〈f, hn〉| .
ntn√
n!

where 0 < t < 1. Then

|f(x)| . (t |x|+ 1)e−x
2/2e

√
2t|x|.

Proof. First we observe that, when 0 ≤ ρ ≤ 1,

∞∑
n=0

n2ρn

n!
= ρ

d

dρ
ρ
d

dρ

∞∑
n=0

ρn

n!
= ρ

d

dρ
ρ
d

dρ
eρ = (ρ2 + ρ)eρ.

We also recall a particular case of Mehler’s formula (see Thangavelu [18, p. 8]):

when 0 ≤ ρ < 1,

∞∑
n=0

(ρ
2

)n |Hn(x)|2

n!
=

1

(1− ρ2)1/2
e2ρx2/(1+ρ).
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By definition of hn, we have

hn(x) =

(
1√
π2nn!

)1/2

Hn(x)e−x
2/2.

Now suppose that |〈f, hn〉| . ntn√
n!

. Then when |x| ≥ 1 and 0 < t ≤ 1, by the

Cauchy-Schwarz inequality,

∣∣∣f(x)e−x
2/2
∣∣∣ =

∣∣∣∣∣ex2/2
∞∑
n=0

〈f, hn〉hn(x)

∣∣∣∣∣
≤ C

∞∑
n=0

tn
n

2n/2n!
|Hn(x)|

≤ C

(
∞∑
n=0

(
√

2t |x|)nn
2

n!

)1/2( ∞∑
n=0

(
t

2
√

2 |x|

)n |Hn(x)|2

n!

)1/2

= C
(2t2 |x|2 +

√
2t |x|)1/2

(1− t2/(2 |x|2))1/4
exp

(
t |x|√

2

)
exp

(
t |x|√

2(1 + t/ |x|)

)
. (t |x|+ 1)e

√
2t|x|/2,

as required.

3.3 Analytic continuation of the Bargmann trans-

form

In this section we introduce another way to produce an analytic auxiliary function.

Let

Bf (z) =

∫
R
f(x)ex

2/2e−(x−z/2)2 dx, (3.21)

where z ∈ C. This auxiliary function Bf is called the Bargmann transform of f and

can be defined by standard convolution: Bf (z) = (fγ−1 ∗ γ2)(z/2).

Recall that in the previous sections we have discussed the auxiliary function

F 0
f (z) = f̂(z)ez

2/2. Notice that

Bf (
√

2w) =

∫
R
f(x)e−x

2/2e
√

2xw−w2/2 dx

=

∫
R
f(t/
√

2)e−t
2/4etw−w

2/2 dx

=
√
πF 0

g (−iw),

where g(x) = f(x/
√

2)e−x
2/4. Thus although the Bargmann transform is usually

treated as a separate topic in the literature, it is related to F .
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3.3.1 Estimation of Hermite expansions (second approach)

Using the Bargmann transform we can prove Theorem 3.2.7 in a different way.

(Recall that Theorem 3.2.7 says that if |f(x)| . γ1(x)et|x| and
∣∣∣f̂(y)

∣∣∣ . γ1(y)et|y|,

then 〈f, hn〉 . ntn/
√
n!. )

Let g(x) = f(x/
√

2)e−x
2/4. Because |f(x)| . γ1(x)et|x| and

∣∣∣f̂(y)
∣∣∣ . γ1(y)et|y|, it

follows that
|g(x)| =

∣∣∣f(x/
√

2)e−x
2/4
∣∣∣

. e−x
2/2e

√
2t|x|/2

. e−x
2/2et|x|

and

|ĝ(x)| =
∣∣∣(√2f̂(

√
2(·)) ∗ e−(·)2

)
(x)
∣∣∣

≤
(
e−(·)2e

√
2t|·| ∗ e−(·)2

)
(x)

≤ 2

∫
R+

e−y
2

e
√

2tye−(x−y)2 dy

= 2e−x
2

∫
R+

exp(−2y2 +
√

2ty + 2xy) dy

= 2e−x
2

∫
R+

exp

−2

(
y −
√

2t+ 2x

4

)2

+
(
√

2t+ 2x)2

8

 dy

= 2et
2/4e−x

2/2e
√

2t|x|/2
∫
R+

exp

−2

(
y −
√

2t+ 2x

4

)2
 dy

. e−x
2/2et|x|.

Thus, by Lemma 3.2.5,
∣∣(DnF 0

g )(z))
∣∣ . n(

√
2t)ne

√
2t|z| for all z ∈ C. It follows that

|(DnBf )(z))| =
∣∣∣∣(DnF 0

g )

(
−zi√

2

)∣∣∣∣ . 2−n/2ntnet|z|.

If Bf (z) =
∑

n cnz
n, then |cn| . 2−n/2ntn/n!. By using the fact that

Bhn(z) = e−z
2/4

(
1√
π2nn!

)1/2

(−1)n
∫
R

dn(e−x
2
)

dx
exz

= (−1)n2−n/2
zn√
n!

and f =
∑∞

n=0〈f, hn〉hn, we have

Bf (z) =
∞∑
n=0

〈f, hn〉(−1)n2−n/2
zn√
n!
.

26



Thus

|〈f, hn〉| =
∣∣∣∣ Dn(Bf )(0)

Dn(Bhn)(0)

∣∣∣∣ =
n! |cn|

2−n/2
√
n!

.
ntn√
n!
, (3.22)

when 0 ≤ t < 1.

Remark: A similar theorem can be found in Garg and Thangavelu [8] where

they used Bargmann transform as a tool to estimate the coefficients of Hermite

expansions of f when f and f̂ are both of gaussian decay. Also in [9], they proved

that if the following Beurling style inequality holds:∫∫
R2

∣∣f(x) f̂(y)
∣∣ eλ|xy| dx dy <∞, (3.23)

then 〈f, hn〉 is of exponential decay with a rate that depends on λ.

3.3.2 Application of the Bargmann transform

In the above proof, we used the estimate of the derivative of Bf to estimate 〈f, hn〉
while, in the proof of Theorem 3.2.7, we use the estimate of derivative of f(x)γ1(x)

at x = 0. Both approaches lead to the same result. Because Bf can be treated as

a normalized version of F 0
f , we claim that we can use both approaches to prove the

following uncertainty principle regarding functions in S ′.

Theorem 3.3.1 (Bonami et al. [3]). Suppose that ex
2/2f(x) ∈ S ′ and that ey

2/2f̂(y) ∈
S ′. Then f(x) = P (x)γ1(x) for some polynomial P .

Proof. We will prove this by estimating the derivative of the Bargmann transform

of f :

Bf (z) = 〈fe|·|
2/2, e−(·−z/2)2〉, (3.24)

where z ∈ C. Because ex
2/2f(x) and ey

2/2f̂(y) are tempered distributions, there

exists an integer N such that

Bf (z) = 〈fe|·|
2/2, e−(·−z/2)2〉

≤ C max
α+β≤N

∣∣∣xα∂βe−(x−z/2)2
∣∣∣

≤ CN |1 + z|N

.

(
1

te

)N
et|z|

(3.25)

for all t ∈ [0, 1]. If Bf (z) =
∑

n cnz
n, then we have

|cn| . etrr−n
(

1

te

)N
. (3.26)
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By computing the maximum value of the right hand side of the above estimate we

get

|cn| .
(
te

n

)n(
1

te

)N
. (3.27)

Therefore for any 0 ≤ t < 1 we have

|〈f, hn〉| =
√
n! |cn|

.
√
n!

(
te

n

)n(
1

te

)N
.

tn√
n!

(
1

te

)N
.

(3.28)

Because the above estimate holds for all t ∈ [0, 1], we can conclude that 〈f, hn〉 = 0

when n > N by letting t go to zero. Thus f(x) = P (x)γ1(x).
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Chapter 4

Beurling’s uncertainty principle

and its generalization

4.1 Introduction

Beurling’s version of the uncertainty principle states that if∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ e|xy| dx dy <∞, (4.1)

then f = 0. This was generalized by Bonami et al. [3], who proved that if

∫
Rn

∫
Rn

∣∣∣∣∣ f(x)f̂(y)

(1 + |x|+ |y|)N

∣∣∣∣∣ e|〈x,y〉| dx dy <∞, (4.2)

then f(x) = P (x)e−〈Ax,x〉 where P (x) is a polynomial and A is a positive definite

matrix.

Hedenmalm extended Beurling’s result in a different way.

Definition 4.1.1 (Hedenmalm auxiliary function). Given function f ∈ L2(R), de-

fine the Hedenmalm auxiliary function Ff by

Ff (λ) =

∫
R
f̄(x)f(λx) dx. (4.3)

Using this auxiliary function, Hedenmalm showed that F (λ) = c0(1 + λ2) for

some constant c0 if f satisfies (4.1). Thus f is an even function and

∣∣M0
f (z)

∣∣ = C

∣∣∣∣Γ(1

4
+
z

2

)∣∣∣∣ , (4.4)

where z ∈ iR and M0
f is the Mellin transform of the even part of f [12].

Although f(x) = Ce−ax
2

is a solution to equation (4.4) when C ∈ C and a > 0,
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it is not clear whether this is the only form of solution for equation (4.4). In this

chapter I will show that if f ∈ L1(R), f̂ ∈ L1(R), and∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy ≤ C

(1− λ)N+1/2
(4.5)

for all λ ∈ [0, 1), then there exists a ∈ R+ and a polynomial P of degree at most N

such that f = Pγa. Also in Chapter 6, I will show that a similar theorem also holds

in Rn.

Remarks: Some original ideas of this chapter are from Hedenmalm[12]. I revis-

ited and translated them into operational statements to obtain new estimates whose

interest is obvious.

4.2 The Θ transform

Recall that we define the Mellin transform of a function f on R by

Mk
f (z) =

∫
R
f(x) sgn(x)k |x|−1/2+z dx (4.6)

for all z ∈ C where the right hand side is defined. It is obvious that given a

function f , the Mellin transform Mk
f might not be defined on the whole complex

plane. However if f is bounded and for all N > 0, there exists CN such that

|f(x)| ≤ CNx
−N when x → ∞, and then Mk

f will be defined on the half plane

Re(z) > −1/2.

However, even if Mk
f is defined on the half plane Re(z) > −1/2, it does not

have an analytic extension to the whole complex plane unless |f(x)| < CNx
N when

|x| → 0 for all N . The condition |f(x)| < CNx
N when |x| → 0 is too strong to

be useful. It can be shown that if f is C∞ near 0, then M0
f has a meromorphic

extension to C with possible poles at −1/2− 2k where k is a non-negative integer,

andM1
f has a meromorphic extension to C with possible poles at −3/2− 2k where

k is a non-negative integer.

Thus we introduce a transform Θf as follows.

Definition 4.2.1. Given f ∈ L1(R), define

Θk
f (z) =

Mk
f (z)

Γ
(

1
4

+ z
2

+ k
2

) (4.7)

for all z ∈ C such that Mf (z) is defined.

Because Γ has no zeros in the whole complex plane, Θf is defined whereverMf

is defined. In particular, if Mf (z) is defined where Re(z) > −1/2, Θf (z) is also
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defined when Re(z) > −1/2.

So far we still can not extend Θf (z) to the points where Mf (z) is not defined.

But we can hope that the singularities ofMf (z) at Re(z) < −1/2 are canceled by the

singularities of the Γ function. More precisely, we will show that Θf (−z) = Θf̂ (z),

whenMf (z) andMf̂ (z) are both defined, that is, when |Re(z)| < 1/2. Thus we can

extend Θf (z) to Re(z) < 0 by extending Θf̂ (z) to Re(z) > 0, which only requires

that f̂(x) has good decay at x→∞.

Lemma 4.2.2. When Re(z) ∈ (−1/2, 1/2),

(
|·|−1/2+z

)∧
=

Γ(1/4 + z/2)

Γ(1/4− z/2)
|·|−1/2−z

and (
sgn(·) |·|−1/2+z

)∧
=

Γ(3/4 + z/2)

Γ(3/4− z/2)
sgn(·) |·|−1/2−z .

Proof. See Theorem 4.1 in Stein and Weiss [16].

Lemma 4.2.3. Suppose that f and f̂ are both integrable. Then Θk
f (−z) = Θk

f̂
(z)

when |Re(z)| < 1/2.

Proof. Because f and f̂ are both integrable, f̂ and f are both bounded. Thus

M0
f (z), M1

f (z), M0
f̂
(z) and M1

f̂
(z) are defined when −1/2 < Re(z) < 1/2. By

direct computation we have

Θ0
f̂
(z) =

∫
R
f̂(x) |x|−1/2+z Γ(1/4 + z/2)−1 dx

=
1

Γ(1/4 + z/2)

∫
R
f(x)Γ(1/4 + z/2)Γ(1/4− z/2)−1 |x|−1/2−z dx

=
1

Γ(1/4− z/2)

∫
R
f(x) |x|−1/2−z dx

= Θ0
f (−z),

(4.8)

and

Θ1
f̂
(z) =

∫
R
f̂(x) sgn(x) |x|−1/2+z Γ(1/4 + z/2)−1 dx

=
1

Γ(3/4 + z/2)

∫
R

Γ(3/4 + z/2)

Γ(3/4− z/2)
f(x) sgn(x) |x|−1/2−z dx

=
1

Γ(3/4− z/2)

∫
R
f(x) sgn(x) |x|−1/2−z dx

= Θ1
f (−z),

(4.9)

as claimed.

Corollary 4.2.4. Suppose that f(·)eα|·| ∈ L1(R) and f̂(·)eβ|·| ∈ L1(R) for some

α > 0 and β > 0. Then Θf (z), initially defined on Re(z) > −1/2, has an analytic
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continuation to the whole complex plane. Also we have

Θf (−z) = Θf̂ (z) (4.10)

for all z ∈ C.

Proof. Since Θf (z) is defined on Re(z) > −1/2, by Lemma 4.2.2 we know that when

|Re(z)| < 1/2,

Θf (−z) = Θf̂ (z). (4.11)

Because the right hand side of the above equation is defined for all Re(z) > 0, Θf (z)

can be extended analytically to the whole half plane Re(z) < 0.

4.3 Estimate of the growth of the Θ transform

Suppose that f and f̂ are bounded and f(·)eα|·| ∈ L1(R) and f̂(·)eβ|·| ∈ L1(R) for

some α > 0 and β > 0. We have shown that Θf (s) is an entire function. Now we

will show that Θf (s) is an analytic function of order at most 1.

Lemma 4.3.1. If f is a bounded function and f(·)eα|·| ∈ L1(R) for some α > 0,

then Θf (z) is defined for all z with Re(z) > −1/2, and there is a constant A, which

depends on α, such that when Re(z) ≥ 0

|Θf (z)| . eA|z| log(1+|z|). (4.12)

Proof. From the definition, we know thatMf is defined when Re(z) ≥ 0. When |z|
is sufficiently large and Re(z) ≥ 1 we have

|Mf (z)| .
(∫

R
|f(x)|2 eα|x| dx

)1/2(∫
R
e−α|x| |x|−1+2 Re(z) dx

)1/2

. ‖f‖1/2
∞

∥∥feα|·|∥∥1/2

1

(∫
R+

e−αxx−1+2 Re(z) dx

)1/2

. α−Re(z)Γ(2 Re(z))1/2

.

(
2 |z|
αe

)Re(z)

,

(4.13)

where the last inequality follows from the Stirling’s approximation. Thus

|Θf (z)| ≤
∣∣∣∣ Mf (z)

Γ(1/4 + z/2)

∣∣∣∣ . eA|z| log(1+|z|), (4.14)
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where A is a constant that depends on α. When 0 ≤ Re(z) ≤ 1 we have

|Mf (z)| .
∫
R+

e−α|x|x−1/2+Re(z) dx

.
∫ 1

0

e−α|x|x−1/2 dx+

∫ ∞
1

e−α|x|x1/2 dx

<∞.

(4.15)

Thus there exists a constant A such that

|Θf (z)| . eA|z| log(1+|z|), (4.16)

when Re(z) ≥ 0, as claimed.

Lemma 4.3.2. If f̂ is a bounded function and f̂(·)eβ|·| ∈ L1(R) for some β > 0,

then Θf (z) is defined for all z with Re(z) ≤ 0, and there is a constant A which

depends on β such that

|Θf (z)| . eA|z| log(1+|z|), (4.17)

for all z when Re(z) ≤ 0.

Proof. This result is a combination of Lemma 4.3.1 and Lemma 4.2.3.

Now we can conclude the following theorem.

Theorem 4.3.3. Suppose that f is a bounded function and f(·)eα|·| ∈ L1(R) and

f̂(·)eβ|·| ∈ L1(R) for some α > 0 and β > 0. Then Θf (z), initially defined on

Re(z) > −1/2, extends analytically to the whole complex plane and is of order 1.

Moreover if Θf (z) has finitely many zeros, then the degree of the canonical Weier-

strass form of Θf (z) is finite, thus it must be of the form P (z)eaz where P is a

polynomial.

Proof. This is a result that follows from Lemma 4.2.4, Lemma 4.3.1 and Lemma

4.3.2, and the fact that the degree of the canonical Weierstrass form of an entire

function with finite order is an integer if it has finite many zeros (see Conway [4]).

4.4 A generalized Beurling style theorem

In this section, we use Hedenmalm’s ideas but define a slightly different auxiliary

function Ff based on f ∈ L2(R) as follows:

Ff (λ) =

∫
R
f(x)f(λx) dx (4.18)

for all λ ∈ R.
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Lemma 4.4.1. Suppose that f is a bounded and integrable function, C > 0, N > 0

and ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy ≤ C

(1− λ)N+1/2
, (4.19)

when 0 ≤ λ < 1. Then Θk
f (z) is entire and can have at most (N − k)/2 zeros.

Proof. Suppose that f satisfies the condition (4.19). Then for λ = 1/2, the following

holds: ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ e|xy|/2 dx dy <∞.

Thus ∫
R

∣∣∣f(x)f̂(y)
∣∣∣ e|xy|/2 dx <∞

for almost all y ∈ R. Hence there exists α > 0 such that∫
R

∣∣f(x)e−α|x|
∣∣ dx <∞. (4.20)

Similarly there exists β > 0 such that∫
R

∣∣∣f̂(y)e−β|y|
∣∣∣ dy <∞. (4.21)

Now we are going to show that there exist constants Ck ∈ C and Dk ∈ C such

that for all λ ∈ R

F (λ) =

∫
R
f(x)f(λx) dx =

N∑
k=0

Ck(1 + λ2)−k−1/2 +
N∑
k=1

Dkλ(1 + λ2)−k−1/2. (4.22)

This is a generalized version of the result of Hedenmalm [12]. To start, we define

G(z) where z ∈ R as follows:

G(z) =
√

1 + z2

∫
R
f(x)f(zx) dx. (4.23)

Now G(z) extends analytically to the strip {z ∈ C : |Im(z)| < 1}, because

G(z) =
√

1 + z2

∫
R

∫
R
f(x)f̂(y)eizxy dy dx,

and ∫
R

∫
R

∣∣∣f(x)f̂(y)eizxy
∣∣∣ dy dx

.
∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ e|Im(z)xy| dy dx

.
1

(1− |Im(z)|)N+1/2
.

(4.24)

34



Secondly we can verify from the definition (4.23) that

G(z) = G

(
1

z

)
, (4.25)

initially for z ∈ R \ {0} and then by analytic continuation wherever both sides are

defined. Because the strip {z ∈ C : | Im(z)| < 1} contains all points of the closed

unit ball except ±i, G will continue analytically to the whole complex plane with

possible singularities at ±i, and is bounded at infinity.

Third, we show that G is meromorphic by showing that G(z)(1 + z2)2N stays

bounded when z tends to ±i. When z tends to ±i inside the closed unit ball,

lim sup
z→±i
|z|≤1

∣∣G(z)(1 + z2)2N
∣∣ . lim sup

z→±i
|z|≤1

∣∣∣∣ (1 + z2)2N

(1− |Im(z)|)N

∣∣∣∣
≤ sup
|z|≤1

(
|1 + z2|2

1− |Im(z)|

)N

.

(4.26)

So it suffices to show that
|1 + z2|2

1− |Im(z)|
is bounded in the unit ball. Write z = u+ iv.

Then |u| ≤
√

1− v2 when |z| ≤ 1, and

|1 + z2|2

1− |Im(z)|
≤ |z − i|

2 |z + i|2

1− |Im(z)|

≤ 4 |u|2 + 4 |1− |v||2

1− |v|
≤ 8.

(4.27)

Thus

sup
|z|≤1

∣∣G(z)(1 + z2)2N
∣∣ <∞. (4.28)

When z goes to ±i from outside the unit ball, by setting w = 1/z, we see that

lim sup
z→±i
|z|≥1

∣∣G(z)(1 + z2)2N
∣∣ = lim sup

w→∓i
|w|≤1

∣∣∣∣G(w)(1 + w2)2N

|w|2N

∣∣∣∣ <∞.
Thus G(z) is meromorphic and we can conclude from (4.24) that the degrees of the

poles of G(z) at ±i are at most N . Thus

∫
R
f(x)f(zx) dx =

G(z)√
1 + z2

=
N∑
k=0

Ck(1 + z2)−k−1/2 +
N∑
k=1

Dkz(1 + z2)−k−1/2. (4.29)
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Notice that by (2.34) the Mellin transform M0
t of the term

t(λ) =
1

(1 + λ2)1/2+k
(4.30)

satisfies

M0
t (z) = CkΓ

(
1

4
− z

2
+ k

)
Γ

(
1

4
+
z

2

)
= P 0(z)Γ

(
1

4
− z

2

)
Γ

(
1

4
+
z

2

)
,

(4.31)

where P 0(z) is a polynomial of degree at most k. It follows that

M0
F (z) = Q0(z)Γ

(
1

4
− z

2

)
Γ

(
1

4
+
z

2

)
,

where Q0(z) is a polynomial of degree at most N . Because

M0
F (z) =M0

f (z)M0
f (−z) ∀z ∈ C,

it follows that

Θ0
f (z)Θ0

f (−z) = Q0(z) ∀z ∈ C. (4.32)

Because Θ0
f (z) is entire by Corollary 4.2.4, Θ0

f (z) has no poles. Thus every zero

of Q0(z) is a zero of Θ0
f (z) or Θ0

f (−z). It follows that Θ0
f (z) can have at most

N/2 zeros. To show that the result also holds for Θ1
f we need to check the Mellin

transform M1
t of the following term

t(λ) =
λ

(1 + λ2)1/2+k
, (4.33)

where k > 0. By (2.35), its Mellin transform M1
t satisfies

M1
t (z) = CkΓ

(
−1

4
− z

2
+ k

)
Γ

(
3

4
+
z

2

)
= P 1(z)Γ

(
3

4
− z

2

)
Γ

(
3

4
+
z

2

)
,

(4.34)

where P 1(z) is a polynomial of degree at most k − 1. It follows that

M1
F (z) = Q1(z)Γ

(
3

4
− z

2

)
Γ

(
3

4
+
z

2

)
,

whereQ1(z) is a polynomial of degree at mostN−1. BecauseM1
F (z) =M1

f (z)M1
f (−z),

it follows that

Θ1
f (z)Θ1

f (−z) = Q1(z). (4.35)
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Because Θ1
f (z) is entire by Corollary 4.2.4, Θ1

f (z) has no poles. Thus every zero of

Q1(z) is a zero of Θ1
f (z) or Θ1

f (−z). It follows that Θ1
f (z) can have at most (N−1)/2

zeros.

Lemma 4.4.2. Suppose that f is a bounded real function on R and∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy ≤ C

(1− λ)N+1/2
(4.36)

for all λ ∈ [0, 1). Then there exist a,b in R+ and two polynomials G and H of degree

at most N such that f = Gγa +Hγb. In particular H is even and G is odd.

Proof. From Lemma 4.4.1 we know that Θk
f (z) can have at most (N − k)/2 zeros.

From Lemma 4.3.1 and Lemma 4.3.2 we know that Θf (z) is of order 1. Thus there

exist α ∈ C, β ∈ C and polynomials P (z), Q(z) such that

Θ0
f (z) = P (z)eαz and Θ1

f (z) = Q(z)eβz, (4.37)

where P (z) is of degree at most N/2 and and Q(z) is of degree at most (N − 1)/2.

Notice that when Re(z) = 0 and f is a real function, by definition of the Θ transform

we have

Θ0
f (z) = Θ0

f (−z) and Θ1
f (z) = Θ1

f (−z). (4.38)

It follows that

P (i)eαi = P (−i)e−αi and Q(i)eβi = Q(−i)e−βi. (4.39)

Thus α and β are real. It follows that there exist {Ck} and {Dk} such that

Θ0
f (z) =

N/2∑
k=0

Ck
∂k

∂αk

 eαz

Θ1
f (z) =

(N−1)/2∑
k=0

Dk
∂k

∂βk

 eβz

(4.40)

and

M0
f (z) =

N/2∑
k=0

Ck
∂k

∂αk

 (Γ(1/4 + z/2)eαz)

M1
f (z) =

(N−1)/2∑
k=0

Dk
∂k

∂βk

(Γ(3/4 + z/2)eβz
)
.

(4.41)
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Thus by Lemma 2.5.4

f(x) + f(−x)

2
=

N/2∑
k=0

Ck
∂k

∂αk

( 1

2eα/2
e−(eαx)2

)

f(x)− f(−x)

2
=

(N−1)/2∑
k=0

Dk
∂k

∂βk

( x

2eβ/2
e−(eβx)2

)
.

(4.42)

So we can conclude that there exist a = 2eα > 0, b = 2eβ > 0 and polynomials

H(x), G(x) of degree at most N such that

f(x) + f(−x)

2
= H(x)e−ax

2/2 (4.43)

and
f(x)− f(−x)

2
= G(x)e−bx

2/2. (4.44)

So f = Gγa +Hγb.

Lemma 4.4.3. Fix n ∈ N. If f = gγa + hγb, g and h are polynomials, and∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ yneλ|xy| dx dy ≤ C

(1− λ)N+1/2
, (4.45)

for all λ ∈ [0, 1), then a = b.

Proof. Assume that a ≤ b, then f̂ = G̃ γ1/a + H̃ γ1/b, where G̃ and H̃ are also

polynomials and 0 < 1/b ≤ 1/a. Therefore there exists a positive constant R such

that
∣∣f(x)

∣∣ ≥ c γa when x ≥ R and
∣∣f̂(y)

∣∣ ≥ d γ1/b when y ≥ R. Further, the first

quadrant is the disjoint union of three sets; the first where 0 ≤ x < R and y ≥ 0;

the second where x ≥ R and 0 ≤ y < R, and the third where x ≥ R and y ≥ R.

When 0 ≤ λ ≤ 1, it is clear that∫ ∞
0

∫ R

0

γa(x) γ1/b(y)yn eλxy dx dy . R

∫ ∞
0

γ1/b(y)yn eRy dy <∞

and ∫ R

0

∫ ∞
R

γa(x) γ1/b(y)yn eλxy dx dy ≤ Rn+1

∫ ∞
R

γa(x) eRx dx <∞,

and so ∫ ∞
R

∫ ∞
R

γa(x) γ1/b(y)yn eλxy dx dy <∞

if and only if ∫ ∞
0

∫ ∞
0

γa(x) γ1/b(y)yn eλxy dx dy <∞.
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Moreover,∫ ∞
0

∫ ∞
0

γa(x) γ1/b(y)yn eλxy dx dy = an
∫ ∞

0

∫ ∞
0

γc(x)γc(y)yn eλxy dx dy

where c = (a/b)1/2; this integral is finite for all λ ∈ [0, 1) if and only if c ≥ 1. So

(4.45) implies that a = b.

Now we can conclude the following final result of this chapter.

Theorem 4.4.4. If f ∈ L1(R), f̂ ∈ L1(R) and∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy ≤ C

(1− λ)N+1/2
, (4.46)

when 0 ≤ λ < 1, then there exist a in R+ and a polynomial P of degree at most N

such that f = Pγa.

Proof. We denote by fr and fi the real and imaginary parts of f . It is easy to check

that fr and fi both satisfy (4.46). Thus, from Lemma 4.4.2, we know that there

exist positive numbers a and b such that fr = Grγa + Hrγb, where Gr and Hr are

polynomials of degree at most N . Thus a = b by Lemma 4.45. Thus fr = Prγa

where Pr is a polynomial of degree at most N . Similarly, there exists c > 0 such

that fi = Piγc where Pi is a polynomial of degree at most N . Thus f = Prγa +Piγc.

Again a = c by Lemma 4.4.3. Thus there exists a polynomial P of degree at most

N such that f = Pγa.

4.5 Applications

Suppose that f satisfies the assumption of Bonami, Demange and Jaming [3] (see

(4.2)). Then for λ = 1/2, the following holds:

∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣

(1 + |x|+ |y|)N
e|xy|/2 dx dy <∞.

Thus ∫
R

∣∣∣f(x)f̂(y)
∣∣∣ e|xy|/3 dx <∞

for almost every y ∈ R when f(y) 6= 0. Thus there exists α > 0 such that∫
R

∣∣f(x)e−α|x|
∣∣ dx <∞. (4.47)
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Similarly there exists β > 0 such that∫
R

∣∣∣f̂(y)e−β|y|
∣∣∣ dy <∞. (4.48)

Using the fact that

Dn(f̂) = F(f(·)(·)n),

we deduce that f̂ and f are real analytic. Thus they will not have compact support.

By using the assumption of (4.2) again, we see that∫
R
|f(x)| eε|x|/2 dx <∞

for all ε > 0. So f and f̂ are bounded and∫∫
min{|x|,|y|}≤1

∣∣f(x) f̂(y)
∣∣ eλ|xy| dx dy <∞

for all λ ∈ R+. Moreover,∫∫
min{|x|,|y|}≥1

∣∣f(x) f̂(y)
∣∣ eλ|xy| dx dy

= O((1− λ)N)

∫∫
min{|x|,|y|}≥1

∣∣f(x) f̂(y)
∣∣

(1 + |x|+ |y|)N
e|xy| dx dy,

since

max
min{|x|,|y|}≥1

e(λ−1)|xy|(1 + |x|+ |y|)N = O((1− λ)N).

Indeed, on a line segment where |x| + |y| is constant, e(λ−1)|xy| is maximum when

|x| = 1 or |y| = 1.

Hence our arguments also imply the result of Bonami, Demange, and Jaming [3].

An argument we give later (see 5.1.4) shows that in fact these results are equivalent

in R. Unlike Hardy’s uncertainty principle, Beurling’s uncertainty does not has Lp

versions in the literature. However by using the generalized version of Beurling’s

uncertainty principle (Theorem 4.4.4) we are able to prove the following theorems.

Theorem 4.5.1. Suppose that 1 < p <∞, that f and f̂ are in Lp(R), and∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p ep|xy| dx dy <∞. (4.49)

Then f is 0.
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Proof. Observe that if 0 < λ < 1, then∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy

=

∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣λ eλ|xy| ∣∣∣f(x)f̂(y)

∣∣∣1−λ dx dy
≤
(∫

R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p ep|xy| dx dy)λ/p(∫

R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ p(1−λ)p−λ

dx dy

)1−λ/p

.

(∫
R
|f(x)|

p(1−λ)
p−λ dx

)1−λ/p
(∫

R

∣∣∣f̂(y)
∣∣∣ p(1−λ)p−λ

dy

)1−λ/p

.

(4.50)

Because ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p ep|xy| dx dy <∞, (4.51)

there exist two positive numbers α, β such that∫
R
|f(x)|p eα|x| dx <∞ (4.52)

and ∫
R

∣∣∣f̂(y)
∣∣∣p eβ|y|dy <∞, (4.53)

by the same argument used to prove (4.47) and (4.48). Thus∫
R
|f(x)|

p(1−λ)
p−λ dx ≤

∫
R
|f(x)|

p(1−λ)
p−λ e

1−λ
p−λα|x|e−

1−λ
p−λα|x| dx

≤
(∫

R
|f(x)|p eα|x| dx

) 1−λ
p−λ
(∫

R
e−

1−λ
p−1

α|x| dx

) p−1
p−λ

.

(
1

1− λ

) p−1
p−λ

.

(4.54)

Similarly∫
R

∣∣∣f̂(y)
∣∣∣ p(1−λ)p−λ

dy ≤
∫
R

∣∣∣f̂(y)
∣∣∣ p(1−λ)p−λ

e
1−λ
p−λβ|y|e−

1−λ
p−λβ|y|dy

≤
(∫

R

∣∣∣f̂(y)
∣∣∣p eβ|y| dy) 1−λ

p−λ
(∫

R
e−

1−λ
p−1

β|y| dy

) p−1
p−λ

.

(
1

1− λ

) p−1
p−λ

.

(4.55)

Thus by combining the above inequalities there exists a positive number N such
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that ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy

.

(∫
R
|f(x)|

p(1−λ)
p−λ dx

) p−λ
p

(∫
R

∣∣∣f̂(y)
∣∣∣ p(1−λ)p−λ

dy

) p−λ
p

.
1

(1− λ)N
.

(4.56)

It follows that there exists a constant t such that f(x) = P (x)e−tx
2

where P is a

polynomial of degree at most N . By checking (4.49) we can conclude that P (x) =

0.

Theorem 4.5.2. Suppose that f and f̂ are in Lp(R) and there exists a positive

number N such that ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p eλp|xy| dx dy .

1

(1− λ)N
, (4.57)

where p > 1. Then f is a polynomial of degree at most N + 1 times a gaussian

Proof. By picking positive numbers λ and σ such that λ < σ < 1, we have, by

Hölder’s inequality,∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy

=

∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣σ eλ|xy| ∣∣∣f(x)f̂(y)

∣∣∣1−σ dx dy
≤
(∫

R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p eλp|xy|/σ dx dy)σ/p(∫

R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ p(1−σ)p−σ

dx dy

) p−σ
p

.

(
1

(1− λ/σ)N

)σ
p
(∫

R
|f(x)|

p(1−σ)
p−λ dx

) p−σ
p

(∫
R

∣∣∣f̂(y)
∣∣∣ p(1−σ)p−σ

dy

) p−σ
p

.

(4.58)

Because ∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣p eσp|xy| dx dy <∞, (4.59)

there exist two positive numbers α, β such that∫
R
|f(x)|p eα|x| dx <∞ (4.60)

and ∫
R

∣∣∣f̂(y)
∣∣∣p eβ|y|dy <∞. (4.61)
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Thus ∫
R
|f(x)|

p(1−σ)
p−σ dx ≤

∫
R
|f(x)|

p(1−σ)
p−σ e

1−σ
p−σα|x|e−

1−σ
p−σα|x| dx

≤
(∫

R
|f(x)|p eα|x| dx

) 1−σ
p−σ
(∫

R
e−

1−σ
p−1

α|x| dx

) p−1
p−σ

.

(
1

1− σ

) p−1
p−σ

.

(4.62)

Similarly∫
R

∣∣∣f̂(y)
∣∣∣ p(1−σ)p−σ

dy ≤
∫
R

∣∣∣f̂(y)
∣∣∣ p(1−σ)p−σ

e
1−σ
p−σβ|y|e−

1−σ
p−σβ|y| dy

≤
(∫

R

∣∣∣f̂(y)
∣∣∣p eβ|y| dy) 1−σ

p−σ
(∫

R
e−

1−σ
p−1

β|y| dy

) p−1
p−σ

.

(
1

1− σ

) p−1
p−σ

.

(4.63)

Thus by combining the above inequalities, for all λ < σ < 1, we have∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy

.

(
1

(1− λ/σ)N

)σ
p
(∫

R
|f(x)|

p(1−σ)
p−σ dx

) p−σ
p

(∫
R

∣∣∣f̂(y)
∣∣∣ p(1−σ)p−σ

dy

) p−σ
p

.

(
1

(1− λ/σ)N

)σ
p 1

(1− σ)2(p−1)/p
.

(4.64)

By picking σ = 1+λ
2

, it follows that,

∫
R

∫
R

∣∣∣f(x)f̂(y)
∣∣∣ eλ|xy| dx dy .

(
(1 + λ)N

(1− λ)N

) 1+λ
2p
(

2

1− λ

) 2(p−1)
p

.
1

(1− λ)N+2
.

(4.65)

Thus by Theorem 4.4.4, there exists a constant t such that f(x) = P (x)e−tx
2

where

P is a polynomial.
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Chapter 5

The Beurling-Hedenmalm problem

on Rn

5.1 Introduction

From the previous chapters, there are strong reasons for us to believe that if the

generalized Beurling style inequality on Rn holds:∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy .

1

(1− λ)N
(5.1)

for all 0 ≤ λ < 1, then f is a polynomial times a gaussian in Rn.

In this chapter we show that the generalized Beurling-Hedenmalm uncertainty

principle with assumption (5.1) is true. Moreover at the end of this chapter we will

show that if we weaken the assumption (5.1) as follows∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

1

(1− λ)N
(5.2)

for all λ ∈ [0, 1), then we can use the tools of spherical harmonics and Bessel

functions to prove that f is a polynomial times e−a|·|
2

, where a ≥ 0.

Before we start our proofs in Rn, we first generalize the auxiliary function that

we used in R.

Definition 5.1.1. Given a bounded L1(R) function f with exponential decay at

infinity, we define the auxiliary function F n
f as follows:

F n
f (s) =

∫
R
rn−1f(r)f(sr) dr (5.3)

for all s ∈ R.
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Recall that in Definition 2.3.3 we defined Mk
f to be

Mk
f (z) =

∫
R
f(x) sgnk(x) |x|z−1/2 dx.

Thus when f is bounded and of exponential decay at infinity,Mk
f (z) is defined when

Re(z) ∈ (−1/2,∞) and Mk
f (−z + (n− 1)) is defined when Re(z) ∈ (−∞, n− 1/2).

Also we can check that

Mk
Fnf

(z) =Mk
f (−z + (n− 1))Mk

f (z), (5.4)

when Re(z) ∈ (−1/2, n− 1/2).

Lemma 5.1.2. Suppose that real functions f and f̂ are both of exponential decay

at infinity and F n
f (s), which is initially defined for s ∈ R, extends analytically to

F n
f (z) to the strip {z ∈ C : |Im(z)| < 1}, and satisfies

∣∣F n
f (z)

∣∣ . ( 1

1− |Im(z)|

)N
(5.5)

there. Then there exist polynomials pk of degree at most bN − n/2c − k such that

Θk
f (z)Θk

f (−z + n− 1) = pk(z).

Thus there exist a positive number a and a polynomial P of degree at most bN−n/2c
such that

f(x) = P (x)e−ax
2/2.

Proof. Let F (z) = (1 + z2)n/2F n
f (z), where we take a branch of (z2 + 1)n/2 that is

positive on the real axis and analytic when |Im(z)| < 1. Also when z 6= 0 and z ∈ R,

F

(
1

z

)
=

(
1 + z2

z2

)n/2
F n
f

(
1

z

)
=

(
1 + z2

z2

)n/2 ∫
R
rn−1f(r)f

(r
z

)
dr

=

(
1 + z2

z2

)n/2 ∫
R
zntn−1f(t)f(zt) dt

= (1 + z2)n/2F n
f (z)

= F (z).

(5.6)

Thus by analytic continuation F (z) = F (1/z) holds when |Im(z)| < 1 and |Im(1/z)| <
1. Because the union {z : |Im(1/z)| < 1} ∪ {z : |Im(z)| < 1} covers the whole com-

plex plane except the points ±i, F can be extended to a meromorphic function on
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C with poles at ±i, and by using a similar argument to that in Chapter 4 we find

the degree of each pole is at most bN − n/2c. By restricting F (z) to the real line

we get

F n
f (s) =

bN−n/2c∑
k=0

ak(1 + s2)−k−n/2 +

bN−n/2c∑
k=1

bks(1 + s2)−k−n/2,

and there exist polynomials p of degree at most bN − n/2c and q of degree at most

bN − n/2c − 1 such that

M0
Fnf

(z) = p(z)Γ

(
z

2
+

1

4

)
Γ

(
1

4
− z

2
+
n− 1

2

)
(5.7)

and

M1
Fnf

(z) = q(z)Γ

(
z

2
+

3

4

)
Γ

(
3

4
− z

2
+
n− 1

2

)
, (5.8)

for all z where Mk
Fnf

(z) are defined. In particular we notice that because F n
f (s)

is bounded, the right hand sides of the above equations are both defined when

|Re(z)| < 1/2. By Theorem 4.3.3, Θk
f (z) is analytic on the whole complex plane,

thus by analytic continuation and equation (5.4), we can conclude that

Θ0
f (z)Θ0

f (−z + n− 1) = p(z)

and

Θ1
f (z)Θ1

f (−z + n− 1) = q(z),

for all z ∈ C. By using same arguments as those in Chapter 4, we can conclude that

there exist a positive number a and a polynomial P of degree at most bN − n/2c
such that

f(x) = P (x)e−ax
2/2,

as required.

Lemma 5.1.3. Suppose that M > 0. Then

e−sr(1 + rM) . s−M

for all r ≥ 0 and all s ∈ (0, 1].

Proof. When 0 ≤ r < 1,

e−sr(1 + rM) ≤ 2e−sr ≤ 2.

When r ≥ 1, by Lemma 3.2.2,

e−sr(1 + rM) ≤ 2e−srrM ≤ 2
MM

eM
1

sM
.
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Thus the lemma follows.

Lemma 5.1.4. Suppose that f ∈ L1(Rn), N > 0 and N is an integer. Then∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy . (1− λ)−N (5.9)

for all λ ∈ [0, 1) implies that

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ e|〈x,y〉|

1 + |〈x, y〉|N+1
dx dy <∞. (5.10)

Conversely, if ∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ e|〈x,y〉|

1 + |〈x, y〉|N
dx dy <∞, (5.11)

then (5.9) holds.

Proof. (5.9) ⇒ (5.10):

If we integrate both sides of (5.9) N + 1 times with respect to λ and change the

order of integration, we see that∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ ∫ 1

0

∫ λ

0

· · ·
∫ λN−1

0

eλN |〈x,y〉| dx dy dλN · · · dλ1 dλ

=

∫ 1

0

∫ λ

0

· · ·
∫ λN−1

0

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλN |〈x,y〉| dx dy dλN · · · dλ1 dλ

.
∫ 1

0

∫ λ

0

· · ·
∫ λN−1

0

C(1− λN)−N dλN · · · dλ1 dλ

<∞.

By changing the order of integration, we also see that∫ 1

0

∫ λ

0

· · ·
∫ λN−1

0

eλN |〈x,y〉| dλN · · · dλ1 dλ

=

∫ 1

0

∫ 1

λN

· · ·
∫ 1

λ1

eλN |〈x,y〉| dλ dλ1 · · · dλN

=

∫ 1

0

∫ 1

λN

· · ·
∫ 1

λ2

(1− λ1)eλN |〈x,y〉| dλ1 · · · dλN

= · · ·

=

∫ 1

0

(1− λN)N

N !
eλN |〈x,y〉| dλN

= I,
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say. If |〈x, y〉| ≤ 1, then

I ≥
∫ 1

0

(1− λ)N

N !
dλ =

1

(N + 1)!
≥ e|〈x,y〉|

e(N + 1)!
≥ e|〈x,y〉|

e(N + 1)!(1 + |〈x, y〉|N)
,

while if |〈x, y〉| > 1 then

I =

∫ 1

0

λN

N !
e(1−λ)|〈x,y〉| dλ

=
e|〈x,y〉|

N !

∫ 1

0

λNe−λ|〈x,y〉| dλ

=
e|〈x,y〉|

N ! |〈x, y〉|N+1

∫ |〈x,y〉|
0

tNe−t dt

≥ e|〈x,y〉|

eN ! |〈x, y〉|N+1

∫ 1

0

tN dt

=
e|〈x,y〉|

e(N + 1)! |〈x, y〉|N+1

≥ e|〈x,y〉|

e(N + 1)!(1 + |〈x, y〉|N+1)
.

(5.11) ⇒ (5.9): From Lemma 5.1.3 we know that

(1− λ)N .
er

eλr(1 + rN)
,

when λ ∈ [0, 1) and r > 0. It follows that

(1− λ)N
∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy .

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ e|〈x,y〉|

1 + |〈x, y〉|N
dx dy

<∞.

Thus the lemma follows.

Lemma 5.1.5. Suppose that f ∈ L1(Rn) and that N > 0. If∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy . (1− λ)−N

for all 0 ≤ λ < 1, then ∫
Rn
|f(x)| er|〈x,w〉| <∞

for all w ∈ Sn−1 and all r ≥ 0. Thus f and f̂ are analytic functions on Cn.

Proof. Because
∫
Rn
∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ dx dy < ∞, f and f̂ are integrable and hence f̂

and f are continuous. Provided that f̂(y0) 6= 0 for some fixed number y0 = |y0|w0,
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there exists a closed ball B̄(y0, ε) such that f̂(y) 6= 0 for all y ∈ B̄(y0, ε). Fix λ in

[0, 1) close to 1. Then for almost all y ∈ B̄(y0, ε),∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx <∞. (5.12)

Notice that for all w ∈ Sn−1, y0 + sgn(〈x, y0〉) sgn(〈x,w〉)εw is in B̄(y0, ε) and

|〈x, y0 + sgn(〈x, y0〉) sgn(〈x,w〉)εw〉| = |〈x, y0〉|+ |ε〈x,w〉| ≥ ε |〈x,w〉| .

We may choose y in B̄(y0, ε) arbitrary close to y0 +sgn(〈x, y0〉) sgn(〈x,w〉)εw so that

(5.12) holds, and thus ∫
Rn
|f(x)| eε|〈x,w〉|/2 dx <∞.

It follows that f̂ is analytic on Rn, thus must have countably many zeros. So for all

r0 > 0 there exists r ≥ r0 such that f̂(y) 6= 0 for all y ∈ B̄(y0, r). Therefore by the

same argument ∫
Rn
|f(x)| er|〈x,w〉| dx <∞,

and the lemma follows.

5.2 The Beurling-Hedenmalm uncertainty princi-

ple on Rn

Definition 5.2.1. Given a continuous function f ∈ L1(Rn), we define the Radon

transform of f relative to the nonzero vector w ∈ Rn to be

Rw
f (r) =

∫
〈w,x〉=r

f(x) dx,

where dx is the n− 1 dimensional Lebesgue measure and r ∈ R.

Lemma 5.2.2. Suppose that f is a continuous function in L1(Rn) and N is a

positive integer such that

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣

1 + |〈x, y〉|N
e|〈x,y〉| dx dy <∞.

Then for almost all vectors w on the unit sphere Sn−1,

∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣ e|rs|sn−1

1 + |rs|N
dr ds <∞.
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Proof. Using the assumption

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣

1 + |〈x, y〉|N
e|〈x,y〉| dx dy <∞,

we can show that, by changing to polar coordinates, that

∫
Sn−1

∫
R

∫
Rn
sn−1

∣∣∣f(x)f̂(sw)
∣∣∣

1 + |〈x, sw〉|N
e|〈x,sw〉| dx ds dw <∞,

hence for almost all vectors w on the unit sphere Sn−1 we have

∫
R

∫
Rn
sn−1es|〈x,w〉|

∣∣∣f(x)f̂(sw)
∣∣∣

1 + |〈x, sw〉|N
ds dx <∞.

Also we can verify that

R̂w
f (s) =

∫
R

(∫
〈x,w〉=t

f(x) dx

)
e−its dt

=

∫
Rn
f(x)e−i〈x,sw〉 dx

= f̂(sw).

(5.13)

So it follows that

∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣

1 + |rs|N
sn−1e|rs| dr ds

=

∫
R

∫
R

∣∣∣∣∫
〈w,x〉=r

f(x) dx

∣∣∣∣
∣∣∣f̂(sw)

∣∣∣
1 + |rs|N

sn−1e|rs| dr ds

=

∫
R

∫
R

∣∣∣∣∫
〈w,x〉=r

f(x)e|〈w,x〉s|

1 + |s〈w, x〉|N
f̂(sw) dx

∣∣∣∣ sn−1 dr ds

≤
∫
R

∫
Rn

∣∣∣f(x)f̂(sw)
∣∣∣

1 + |s〈w, x〉|N
sn−1e|〈w,x〉s| dx ds

<∞

for almost all vectors w on the unit sphere Sn−1.

Corollary 5.2.3. Suppose that f is a continuous function in L1(Rn) and N is a

positive integer such that

∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣

1 + |〈x, y〉|N
e|〈x,y〉| dx dy <∞.
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Then for almost all vectors w on the unit sphere Sn−1,∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣ eλ|rs|sn−1 dr ds .

1

(1− λ)N

for all λ ∈ [0, 1).

Proof. This follows from the previous lemma and Lemma 5.1.3. From Lemma 5.1.3

we know that
1 + |rs|N

e(1−λ)|rs| .
1

(1− λ)N
, when λ ∈ [0, 1). Thus

∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣ sn−1eλ|rs| dr ds

.
1

(1− λ)N

∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣

1 + |rs|N
sn−1e|rs| dr ds

.
1

(1− λ)N

as required.

Lemma 5.2.4. Fix N ∈ N, suppose that f1, f2, . . . fn(n = 1, 2, . . . ) are bounded

analytic functions on [0,∞), and that fn → f locally uniformly as n→∞. If each

fn is of the form pn(x)e−λnx
2/2, where pn is a polynomial of degree at most N and

λn ∈ R+, then so is f .

Proof. By assumption, we may write

fn(x) = pn(x)e−λnx
2/2.

By passing to a sub-sequence if necessary, we may assume that λn → λ in [0,+∞]

as n→∞.

Suppose first that λ→ 0 as n→∞. Then eλnx
2/2fn(x)→ f(x) locally uniformly

as n→∞, so

pn(x)→ f(x).

Thus f is a polynomial of degree at most N . Since f is bounded, f is constant, and

is of the required form.

To deal with the possibility that λn → ∞ as n → ∞, recall the Markov lemma

for polynomials of degree at most N :

max
{∣∣p(k)(x)

∣∣ : 0 ≤ x ≤ 1
}
≤ CN max{|p(y)| : 0 ≤ y ≤ 1}.

This implies that

|p(x)| ≤ CN max{|p(y)| : 0 ≤ y ≤ 1}(1 + x)N
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for all x ∈ R+. In our situation, this implies that

|fn(x)| ≤ |pn(y)| e−λnx2/2

≤ Cn max{|pn(y)| : 0 ≤ y ≤ 1}(1 + x)Ne−λnx
2/2

≤ Cn max{|fn(y)| : 0 ≤ y ≤ 1}(1 + x)Ne(1−λn)x2/2

≤ C(1 + x)Ne(1−λn)x2/2,

whence fn(x)→ 0 uniformly on [2,∞), and hence f = 0.

Finally, if λn → λ ∈ R+, then pn(x) → f(x)eλx
2/2 locally uniformly, whence

f(x)eλx
2/2 is a polynomial, and f is of the required form.

Lemma 5.2.5. Given a f ∈ L1(Rn) and a positive integer N . If∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy . (1− λ)−(N−1)

for all 0 ≤ λ < 1, then Rw
f is equal to a gaussian multiplied by a polynomial of

degree at most bN − n/2c for all w ∈ Sn−1.

Proof. From Lemma 5.1.4 and Lemma 5.2.3 we can conclude that for almost all

vectors w on the unit sphere Sn−1,∫
R

∫
R

∣∣∣Rw
f (r)R̂w

f (s)
∣∣∣ eλ|rs|sn−1 dr ds .

1

(1− λ)N
(5.14)

for all λ ∈ [0, 1). As before, it is sufficient to treat the case when Rw
f is a real

function. Because Rw
f (t) = f̂(wt), it is equivalent to prove the case when f̂ is real.

Now by Lemma 5.1.2, for almost all vectors w on the unit sphere Sn−1, there

exists a polynomial p̃w of degree at most bN − n/2c such that

Θk
Rwf

(z)Θk
Rwf

(−z + n− 1) = p̃w(z). (5.15)

Also by Lemma 5.1.5, for all w ∈ Sn−1,∫
R
e|t|
∣∣Rw

f (t)
∣∣ dt ≤ ∫

R
e|t|
∫
〈w,x〉=t

|f(x)| dx dt

≤
∫
Rn
e|〈w,x〉| |f(x)| dx

<∞,

(5.16)

and for almost w ∈ Sn−1∫
R
e|t|
∣∣∣R̂w

f (t)
∣∣∣ dt ≤ ∫

R
et
∣∣∣f̂(wt)

∣∣∣ dt
<∞.

(5.17)
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So by Theorem 4.3.3, Θk
Rwf

(z) is of order one for almost all w ∈ Sn−1. Thus

Θk
F(Rwf )(z) = Θk

Rwf
(−z) = pw(z)eq(w)z (5.18)

for almost all w ∈ Sn−1, where pw(z) is a polynomial of degree at most bN−n/2c/2.

It follows that, by the arguments to prove Lemma 4.4.2,

F(Rw
f (t)) = Pw(t)e−Qwt

2/2

for almost all w ∈ Sn−1, where Pw is a polynomial of degree at most bN − n/2c
and Qw > 0. Now F(Rw

f (t)) is locally uniformly continuous in the variables w and

t because F(Rw
f (t)) = f̂(wt) and f̂(wt) is continuous. Thus by Lemma 5.2.4,

F(Rw
f (t)) = Pw(t)e−Qwt

2/2

for all w ∈ Sn−1, where Pw is a polynomial of degree at most bN − n/2c and

Qw ≥ 0.

Lemma 5.2.6. Suppose f is a smooth function on Rn, and is homogeneous of degree

M . Then f is a polynomial of degree M .

Proof. We prove this by induction on the degree of f . Firstly, if f is homogeneous

of degree 0, then

f(w) = lim
t→0

(
1

t

)0

f(tw) = lim
t→0

f(tw) = f(0).

Thus f is a constant which is of degree 0. Secondly, assume that a smooth homoge-

neous function on Rn of degree k is a polynomial of degree k. Then given a smooth

function f which is homogeneous of degree k + 1, we can check that each of its

partial derivatives is homogeneous of order k and must be a polynomial of degree k

by assumption. So

f(x) =

∫ 1

0

d(f(tx))

dt
dt =

∫ 1

0

n∑
j=1

∂f

∂xj
(tx)xj dt

is a polynomial of degree k + 1.

Theorem 5.2.7. Suppose that f ∈ L1(Rn) and that N > 0. If∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|〈x,y〉| dx dy . (1− λ)−(N−1)

for all 0 ≤ λ < 1, then there exists a polynomial P and a homogeneous nonnegative
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polynomial Q of degree 2 such that

f̂(x) = P (x)e−Q(x)/2

for all x ∈ Rn.

Proof. Let m = bN − n/2c. From Lemma 5.2.5 we know that for all w on the unit

sphere Sn−1,

f̂(tw) = Pw(t)e−Q(w)t2

= (a0(w) + a1(w)t+ · · ·+ am(w)tm) e−Q(w)t2

for all t ∈ R where a(w) is not always 0. Because f̂(tw) has an analytic extension

to the whole complex plane in variable w, for all w ∈ Rn\ {0} we may also write

f̂(tw) =

(
a0

(
w

|w|

)
+ a1

(
w

|w|

)
|w| t+ · · ·+ am

(
w

|w|

)
|w|m tm

)
e−Q(w)t2

= (a0(w) + a1(w)t+ · · ·+ am(w)tm) e−Q(w)t2 ,

where t ∈ R. So we can extend the domain of aj to Rn\{0} by letting a0(w) =

a0(w/ |w|), a1(w) = a1(w/ |w|) |w| t, and so on. Thus aj(w) is homogeneous of

degree j. Similarly we can extend the domain of Q to Rn\{0} by letting Q(w) =

Q(w/ |w|) |w|2. Now

f̂(tw) = (a0(w) + a1(w)t+ · · ·+ am(w)tm) e−Q(w)t2 ,

for all w ∈ Rn\{0}. Also we can check that

f̂(wz)f̂(−wz)f̂(iwz)f̂(−iwz) = Pw(z)Pw(−z)Pw(iz)Pw(−iz).

Thus by taking derivatives of z on both side for 4m times and let z = 0, we get

m!a4
m(w) =

∂4m(f̂(zw)f̂(−zw)f̂(izw)f̂(−izw)

∂z4m
(0).

Thus a4
m(w) is analytic. Similarly

df̂(zw)

dz
f̂(−zw)f̂(izw)f̂(−izw)

=

(
d

dz
Pw(z)− 2Pw(z)Q(w)z

)
Pw(−z)Pw(iz)Pw(−iz).

Thus by taking derivatives of z on both side for 4m+ 1 times and letting z = 0, we
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get

2m!a4
m(w)Q(w) =

∂4m+1(f̂ ′(wz)f̂(−wz)f̂(iwz)f̂(−iwz))

∂z4m+1
(0).

Thus Q(w) is also real analytic. Because f̂(wz) = Pw(z)e−Q(w)z2 , Pw(z) is analytic

in the variable w as well and

ak(w) =

(
dk

dzk
Pw(z)

)
(0)

is also real analytic. Thus by Lemma 5.2.6, ak(w) is a homogeneous polynomial of

degree k. Thus

f̂(y) = Py(y/ |y|)e−Q(y)

=
m∑
k=0

ak(y)e−Q(y)

= P (y)e−Q(y),

where P is polynomial of degree m as required.

We remark that a similar argument was given by [3].

5.3 The Mellin transform and spherical harmon-

ics

In this section we weaken the assumption (5.1) as follows:∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

1

(1− λ)N
(5.19)

when 0 ≤ λ < 1. By Theorem 5.2.7 we know that f is a polynomial times a gaussian

in Rn. In the rest of this chapter we will prove this weak result in a different way

by using spherical harmonics and Bessel functions.

Spherical harmonics are the restriction of homogeneous harmonic polynomials

to the unit sphere of Rn.

Definition 5.3.1. Suppose that Sn−1 is the unit sphere in Rn and p(x) is a harmonic

homogeneous polynomial on Rn of degree k. Then the restriction of p(x) on Sn−1 is

called a spherical harmonic of degree k. We denote by Sk(z) a spherical harmonic

of degree k.

Definition 5.3.2. The space Ωk is defined to be the set of all the spherical harmonics

of degree k and we take {Sk,j} to be an orthonormal basis of Ωk. Also for convenience

we denote by Sk a spherical harmonic in Ωk.
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Definition 5.3.3. Given a function f in L1(Rn) and a spherical harmonic Sm of

degree m, we define fm by

fm(r) =

∫
Sn−1

f(rx′)Sm(x′) dx′. (5.20)

Definition 5.3.4. Given a function f in L1(Rn), define the Mellin transform of f

related to spherical harmonic Sm,j as follows

Mm,j
f (z) =

∫
R+

rz−1/2

∫
Sn−1

f(rx′)Sm,j(x
′) dx′dr. (5.21)

Because

f(x) =
∞∑
m=1

∞∑
j=1

Sm,j(x)

∫
Sn−1

f(rx′)Sm,j(x
′) dx′,

we have

f(x) =
∞∑
m=1

∞∑
j=1

Sm,j(x)M−1(Mm,j
f )(|x|). (5.22)

It follows that (5.21) can be rewritten as follows.

Mm
f (z) =Mfm(z). (5.23)

Definition 5.3.5. Given a function f ∈ L2(Rn), we define an operator Gm of f as

follows

Gm
f (r) = r−mfm(r) = r−m

∫
Sn−1

f(rx′)Sm(x′) dx′. (5.24)

In most cases, we consider Gm
f to be a radial function on Rn+2m and we have the

following lemma regarding the Fourier transform of Gm
f as a function in Rn+2m.

Lemma 5.3.6. Suppose that f is in L2(Rn) and gm(x) is a radial function in Rn+2m

such that gm(x) = Gm
f (|x|). Then

F(gm)(y) = Gm
f̂

(|y|). (5.25)

Proof. See Stein and Weiss [16].

Because gm(x) is a radial function on Rn+2m,∫
R+

rn+2m−1Gm
f (r)Gm

f (λr) dr

= ω2n+m−1

∫
Rn+2m

gm(x)gm(λx) dx

= ω2n+m−1

∫
Rn+2m

∫
Rn+2m

gm(x)ĝm(y)eiλ〈x,y〉 dx dy

(5.26)
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Recall that the weaker version of the Beurling-Hedenmalm uncertainty principle

assumes the following weaker inequality that∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

1

(1− λ)N
(5.27)

when 0 ≤ λ < 1. To prove that f must be a polynomial times a gaussian if f satisfies

the above inequality, we need to establish the relationship between the Beurling style

inequality of f on Rn and the Beurling style inequality of Gm
f (r) on R.

Definition 5.3.7. Given a positive number r, define

Ωn(r) = ωn−2

∫ 1

0

ers(1− s2)(n−3)/2 ds. (5.28)

and

ψn(r) =

∫
Sn−1

er|〈wx,wy〉| dwy, (5.29)

where wx is a vectors on the unit sphere Sn−1.

Lemma 5.3.8. Suppose that r > 0, and ψn, Ωn are functions defined in Definition

5.3.7. Then

ψn(r) = 2Ωn(r).

Proof. Notice that ψ is a function does not depends on the selection of wx, we

can evaluate the inner integral of ψn by first integrate over the parallel Lθ =

{wy ∈ Sn−1; 〈wx, wy〉 = cos θ} orthogonal to wx. Because er|〈wx,wy〉| is constant on

Lθ and the measure of Lθ is ωn−2(sin θ)n−2, we have

ψn(r) =

∫ π

0

ωn−2(sin θ)n−2er|cos θ| dθ.

Let s = cos θ, we have

ψn(r) = ωn−2

∫ 1

−1

(1− s2)(n−3)/2er|s| ds

= 2ωn−2

∫ 1

0

(1− s2)(n−3)/2er|s| ds

= 2Ωn(r),

(5.30)

as required.

Lemma 5.3.9. Suppose that r > 0, and ψ, Ω are functions defined in Definition

5.3.7. Then

Ωn+2m(r) ≤ (2π)m

rm
Ωn(r). (5.31)
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Thus by Theorem 5.3.8,

ψn+2m(r) . r−mψn(r). (5.32)

Proof.

Ωn(r) = ωn−2

∞∑
k=1

∫ 1

0

(rs)k

k!
(1− s2)(n−3)/2 ds

= ωn−2

∞∑
k=1

rk
Γ(1/2 + k/2)

Γ(k + 1)

Γ(n/2− 1/2)

Γ(k/2 + n/2)

= ωn−2

∞∑
k=1

2−krk

Γ(k/2 + 1)

Γ(n/2− 1/2)

Γ(k/2 + n/2)
,

(5.33)

where the last equation follows from the fact Γ(z)Γ(z+ 1/2) = 21−2z
√
πΓ(2z) for all

z ∈ C. Thus, it follows that

Ωn+2m(r) = ωn+2m−2

∞∑
k=1

2−krk

Γ(k/2 + 1)

Γ(n/2− 1/2 +m)

Γ(k/2 + n/2 +m)

≤ ωn+2m−2

∞∑
k=1

2−krk

Γ(k/2 +m/2 + 1)

Γ(n/2− 1/2 +m)

Γ(k/2 + n/2 +m/2)

≤ ωn+2m−2

∞∑
j=m+1

2m

rm
2−jrj

Γ(j/2 + 1)

Γ(n/2− 1/2 +m)

Γ(j/2 + n/2)

≤ ωn+2m−2
2m

rm
Γ(n/2− 1/2 +m)

Γ(n/2− 1/2)

∞∑
j=m+1

2−jrj

Γ(j/2 + 1)

Γ(n/2− 1/2)

Γ(j/2 + n/2)

≤ ωn+2m−2

ωn−2

2m

rm
Γ(n/2− 1/2 +m)

Γ(1/2− n/2)
Ωn(r)

=
(2π)m

rm
Ωn(r),

(5.34)

as required. (Remark: The first inequality holds because

Γ(a)Γ(b+ 2c) ≥ Γ(a+ c)Γ(b+ c),

when 0 < a < b and c is a positive integer.)

Lemma 5.3.10. Suppose that f is a function in L2(Rn), Sm is a spherical harmonic

of degree m and ∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

(
1

1− λ

)N
, (5.35)

for all λ ∈ [0, 1). Then∫
Rn+2m

∫
Rn+2m

|gm(x)ĝm(y)| eλ|〈x,y〉| dx dy .

(
1

1− λ

)N
, (5.36)
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where gm(x) is a function in Rn+2m and gm(x) = Gm
f (|x|).

Proof. Let

I =

∫
Rn+2m

∫
Rn+2m

|gm(x)ĝm(y)| eλ|〈x,y〉| dx dy

=
1

ωn+2m−1

∫
R+

rn+m−1 |fm(r)|∫
Sn+2m−1

∫
Rn+2m

|ĝm(y)| eλr|〈wx,y〉| dy dwx dr

(5.37)

Because ĝm is a radial function,
∫
Rn+2m−1 |ĝm(y)| eλr|〈wx,y〉|dy is a function does not

depends on wx. Thus

I =

∫
R+

rn+m−1 |fm(r)|
(∫

Rn+2m

|ĝm(y)| eλr|〈wx,y〉| dy
)
dr

=
1

ωn+2m−1

∫
R+

rn+m−1 |fm(r)|(∫
R+

sn+m−1
∣∣∣f̂m(s)

∣∣∣ψn+2m(λrs) ds

)
dr,

By Lemma 5.3.9, ψn+2m(λrs) . (λrs)−mψn(λrs). Thus after putting this inequality

back, we get

I .
∫
R+

∫
R+

sn−1rn−1
∣∣∣fm(r)f̂m(s)

∣∣∣ψn(λrs) dr ds

.
∫
R+

∫
R+

sn−1rn−1eλrs∫
Sn−1

∫
Sn−1

∣∣∣f(rwx)S(wx)f̂(swy)S(wy)
∣∣∣ dwx dwy dr ds

.
∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy

. (
1

1− λ
)N ,

as required.

Lemma 5.3.11. Suppose that f is a function in L2(Rn), Sm is a spherical harmonic

of degree m in Rn and∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

(
1

1− λ

)N
, (5.38)

for all λ ∈ [0, 1). Then ∫
Sn−1

f(rx′)Sm(x′) dx′ = 0 (5.39)

and ∫
Sn−1

f̂(rx′)Sm(x′) dx′ = 0 (5.40)
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when N − n/2 < m.

Proof. As in Lemma 4.4.2 and Lemma 5.3.11, we can conclude that∫
R
rn+2m−1Gm

f (r)Gm
f (λr)dr .

(
1

1− λ

)N
.

Thus by Lemma 5.1.2, result follows.

Lemma 5.3.12. Suppose that f is a function in L2(Rn) and∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

(
1

1− λ

)N
, (5.41)

for all λ ∈ [0, 1). Then for each m, when m ≤ bN − n/2c, there exists a positive

number a such that ∫
Sn−1

f(rx′)Sm(x′) dx′ = Pm(r)e−ar
2

, (5.42)

∫
Sn−1

f̂(rx′)Sm(x′) dx′ = Qm(r)e−r
2/4a, (5.43)

where Pm and Qm are polynomials of degree at most bN − n/2c.

Proof. As in Lemma 4.4.2 and Lemma 5.3.11, we can conclude that∫
R
rn+2m−1Gm

f (r)Gm
f (λr)dr .

(
1

1− λ

)N
.

Thus by Lemma 5.1.2, we can conclude that there exists a positive number a such

that

Gm
f (r) = P (r)e−ar

2

(5.44)

where P is a polynomial of degree at most bN − n/2−mc. By the definition of Gm
f

we know there exists a polynomial P of degree at most bN − n/2−mc such that∫
Sn−1

f(rx′)Sm(x′) dx′ = rmP (r)e−ar
2

. (5.45)

By a similar argument, we can conclude that for any Sm there exists a polynomial

Q of degree at most bN − n/2−mc such that∫
Sn−1

f̂(rx′)Sm(x′) dx′ = rmQ(r)e−r
2/4a. (5.46)

The lemma follows by the fact that bN − n/2 −mc + m ≤ bN − n/2c, when N ,m

are all integers.
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5.4 A weak uncertainty principle on Rn

Now we are ready to prove the weak Beurling-Hedenmalm theorem on Rn.

Theorem 5.4.1. Suppose that f ∈ L2(Rn) and∫
Rn

∫
Rn

∣∣∣f(x)f̂(y)
∣∣∣ eλ|x||y| dx dy .

1

(1− λ)N
, (5.47)

for all 0 ≤ λ < 1. Then there exists positive constant a such that f(x) = P (x)e−ax
2

where P (x) is a polynomial of degree at most N − n/2.

Proof. By Lemma 5.3.12 we know that for all m there exists Pm and Qm and am

such that ∫
Sn−1

f(rx′)Sm(x′) dx′ = rmPm(r)e−amr
2

(5.48)∫
Sn−1

f̂(rx′)Sm(x′) dx′ = rmQm(r)e−
1

4am
r2 (5.49)

where Pm and Qm are polynomials of degree at most bN−n/2−mc. Also by Lemma

5.3.11 we get that if m > N − bn/2c, then Pm = Qm = 0. So by reconstructing f

via its projection to Sm we get the following.

f(x) =

bN−n/2c∑
m=0

fm(|x|)Sm(x) =

bN−n/2c∑
m=0

Pm(|x|)e−am|x|
2

Sm(x) (5.50)

and

f̂(x) =

bN−n/2c∑
m=0

f̂m(|x|)Sm(x) =

bN−n/2c∑
m=0

Qm(|x|)e−|x|
2/4amSm(x). (5.51)

Denote bN − n/2c by M . Then we get∫
Rn

∫
Rn
|f(x)f(y)| eλ|x||y| dx dy

=

∫
Rn

∫
Rn

∣∣∣∣∣
M∑
i

M∑
j

Si(x)Sj(y)Pi(x)Qj(y)eλ|x||y|e−ai|x|
2−|y|2/4aj

∣∣∣∣∣ dx dy
=

∫
Rn

∫
Rn

∣∣∣∣∣
M∑
i

M∑
j

Si(x)Sj(y)Pi(x)Qj(y)

eai(|x|−λ/2ai)2e(1/4aj−λ2/4ai)|y|2

∣∣∣∣∣ dx dy
(5.52)

Because Pi and Qj are of finite degree, the above integral converges if and only if

lim
λ→1

max
i,j

(
1

aj
− λ2

ai

)
≥ 0. (5.53)
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Thus aj = ai. So there exists a positive constant a such that

f(x) =

bN−n/2c∑
m=0

Pm(|x|)e−a|x|
2

Sm(x), (5.54)

as required.
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Chapter 6

Connection to the moment

problem

In this chapter we are going to develop a generalized result about the moment

problem.

6.1 Introduction

Suppose that µ is a measure on the interval I ⊆ R. Then the nth moment of µ on

I is defined by

Mµ(n) =

∫
I

xn dµ. (6.1)

For a positive sequence {sn}, if there exists a positive measure µ such that

Mµ(n) = sn for all n on I, then we say that µ is a solution to the moments {sn} on

I.

Definition 6.1.1. We denote by M(·,I)(n) = sn the classical moment problem of

finding a positive measure µ that has moments {sn} on I.

If there is only one solution to the classical moment problem M(·,I)(n) = sn,

then we say this moment problem is determinate. Otherwise we call this moment

problem indeterminate.

The classical moment problem was studied in great depth by Akhiezer and Kem-

mer [1]. In this chapter we give a quick overview of the standard moment problem,

and we notice that most of the results in the classical moment problems are about

the moments of a positive measure µ with its moments on I ⊆ R. By comparing

the definition of the moments and the Mellin transformMk
f , we notice that the nth

moment Mµ(n) of an absolutely continuous measure µ is just the value of Mf (z)

at z = n + 1/2, where f is the density function of µ. Thus a natural problem is
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raised: whether we can replace the nth moment Mµ(n) by Mf (zn) in the classical

problem and get similar results.

In this chapter we discuss the following generalized moment problem regarding

the Mellin transform of f .

Definition 6.1.2. Suppose that {zn : n = 0, 1, · · · } and {mn : n = 0, 1, · · · } are two

sequences in C. If there exists a function f defined on C such that Mf (zn) = mn,

then we say f is a solution to the moment problemM(·,C)(zn) = mn. If this solution

is unique, then we say that M(·,C)(zn) = mn is determinate. Otherwise we say that

M(·,C)(zn) = mn is indeterminate.

It is worth mentioning that in the above definition we do not require f to be a

density function of some measure µ.

6.2 Review of the moment problem

Here we recall three classical moment problems, by considering three different types

of closed intervals I ⊆ R. When I = R, M(·,R)(n) = mn is called the Hamburger

moment problem. When I = R+, M(·,R+)(n) = mn is called the Stieltjes moment

problem. When I = [0, 1], M(·,[0,1])(n) = mn is called the Hausdorff moment prob-

lem. Following are some basic observations.

• A positive measure with finite support is determined by its moments.

• The Hausdorff moment problem is determinate. More generally moment prob-

lems associated to positive measures with compact support are determinate.

Lemma 6.2.1 (Carleman). Suppose that 0 ≤ mn . Rnn!, where R > 0. Then the

Hamburger moment problem M(·,R)(n) = mn is determinate. Also if there exists R

such that 0 ≤ mn . Rn(2n)!, then the Stieltjes moment problem M(·,R+)(n) = mn

is determinate.

Proof. See Shohat and Tamarkin [14]. See this reference for more details about

Carleman’s condition.

Lemma 6.2.2 (Krein). Suppose that µ is a solution of the Hamburger moment

problem M(·,R)(n) = mn and ∫
R

log f(x)

1 + x2
dx <∞, (6.2)

where f is the density function of µ. Then M(·,R)(n) = mn is indeterminate. Also

if µ is a solution of the Stieltjes moment problem M(·,R+)(n) = mn and∫
R+

log f(x)

1 + x

√
x

x
dx <∞, (6.3)
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where f is the density function of µ, then M(·,R+)(n) = mn is indeterminate.

Proof. See Simon [15].

Here is an example of an indeterminate moment problem.

Lemma 6.2.3. The Stieltjes moment problem of finding a positive measure µ with

given moments mn such that

mn =

∫
R+

xk/4e−x
1/4

xn dx

where (0 ≤ k < 4) is indeterminate.

Proof. This can be easily proved by Krein’s Condition (see Stoyanov [17]). For

simplicity we prove the lemma by showing that(
1 +

1

2
sin(x1/4)x−k/4

)
xk/4e−x

1/4

(6.4)

has the same moment sequence and is positive. It is equivalent to observe that∫ ∞
0

xn sin(x1/4)e−x
1/4

dx

=

∫ ∞
0

4x4n+3 sin(x)e−x dx

=
4

2i

∫ ∞
0

x4n+3e−(1−i)x dx−
∫ ∞

0

x4n+3e−(1+i)x dx

=
4

2i

(
(1− i)−4(n+1) − (1 + i)−4(n+1)

) ∫ ∞
0

x4n+3e−x dx

=
4

2i

(
(−4)1−n − (−4)1−n)Γ (4(n+ 2))

= 0.

(6.5)

In addition to (6.5), we also have∣∣∣∣12 sin(x1/4)x−k/4
∣∣∣∣ < 1,

for all x ≥ 0, which means that
(
1 + 1

2
sin(x1/4)x−k/4

)
xk/4e−x

1/4
is still positive on

R+.

Suppose that u is a positive measure on R. Then we can construct a sequence
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of polynomials {pk} based on µ the via Gram-Schmidt process as follows:

q0(x) =
1∫
I
dµ
, p0 =

q0

〈q0, q0〉

q1(x) = x− 〈x, p0〉p0, p1 =
q1

〈q1, q1〉
q2(x) = x2 − 〈x2, p1〉p1 − 〈x2, p0〉p0, p2 =

q2

〈q2, q2〉
· · ·

qn(x) = xn −
n−1∑
k=0

〈xn, pk〉pk, pn =
qn

〈qn, qn〉
.

(6.6)

It follows that pn is of degree n and∫
I

p2
n(x) dµ(x) = 1, thus {pn} are normalized.∫

I

pi(x)pj(x) dµ(x) = 0, thus {pn} are orthonormal.

(6.7)

Once the sequence {pn} is decided, we can define two closely related matrices,

P and M related to the sequence of moments mn =Mµ(n) as follows.

Definition 6.2.4. Suppose that {mn} is the sequence of moments of some positive

measure and {pn} is the normalized sequence of orthonormal polynomials constructed

via Gram-Schmidt procedure defined in (6.6). Then for all pn(x) there exists a

sequence {cn,i} such that

pn(x) =
n∑
j=0

cn,jx
j. (6.8)

We define the infinite matrix P to be the matrix with elements ci,j in the i, j position.

Also we define the Hankel matrix M to be the matrix with elements mi+j in the i, j

position.

From the definition of the infinite matrices P and M, we can verify that PMPT =

I. Thus M is uniquely decided by P. So it is natural to expect that properties of

{pn} imply the determinism of M. In fact we have the following (see Simon [15] for

stronger theorems).

Theorem 6.2.5. If the Stieltjes moment problemM(·,R+)(n) = mn is indeterminate,

u is one of its solution and pk is the normalized sequence of orthonormal polynomials

constructed via the Gram-Schmidt procedure related to u, then for any z ∈ C, the

sequence pn(z) is in l2.

Proof. See Simon [15].
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Here we present a quicker way to show the inverse of an indeterminate moment

matrix must have bounded entries on its diagonal.

Lemma 6.2.6. Suppose that M is a infinite Hankel matrix whose elements are

moments of a measure µ. Then (M−1)k,k are bounded if the moment sequence of u

is indeterminate.

Proof. Suppose that pi(x) =
∑
Pi,jx

j are the normalized orthonormal polynomials

related to µ . Then PMPT = I which means M−1 = PTP. So

(M−1)k,k =
∞∑
n

C2
n,k =

1

2π

∞∑
n

(∫ 2π

0

pn(eiθ)e−ikθdθ

)2

≤ 1

2π

∞∑
n

(∫ 2π

0

|pn(eiθ)|dθ
)2

≤
∞∑
n

(∫ 2π

0

|pn(eiθ)|2dθ
)

=

∫ 2π

0

(
∞∑
n

|pn(eiθ)|2dθ

)
.

(6.9)

Because µ is indeterminate,
∑

n |pn(z)|2 converges on the whole complex plane

(see Simon [15]). Thus the above term is bounded.

It is worth mention that the above lemma is also implied by Berg, Chen and

Ismail [2], who proved a strong theorem saying that the minimal eigenvalue of M

converges to a strict positive number.

6.3 A generalized moment problem

By the definition of Mellin transform, we notice that a necessary condition for a

moment problem M(·,C)(zn) = mn to be determinate is that Mk
f being uniquely

decided by the moments mn. However Mk
f is not necessarily an analytic function

thus we can not use the argument in Lemma 2.6.1. So we need to build a analytic

function fromMk
f , and again we use the Θ transform of f to achieve this. In Chapter

4 we have showed that Θk
f (z) is of order one when f and f̂ are of exponential decay.

Thus we claim that f can be determined by Θk
f (zn) where {zn} is a sequence of

complex numbers whose modulus are of certain linear growth.

Suppose both f ∈ L2(R) and f̂ ∈ L2(R) are of exponential decay at infinity.

Then, in Chapter 4, we have showed that Θk
f can be extended to the whole com-

plex plane and is of order one. Thus by the Hadamard factorization theorem (see

Theorem (2.6.5)), we can give out a very specific form of Θf .
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Theorem 6.3.1. Suppose that there exist positive numbers α and β such that f(x) .

e−αx
2

and f̂(ξ) . e−βx
2
. Then there exist a complex sequence {zn : n = 0, 1, · · · }

such that

Θf (z) = zmeaz+b
∞∏
n=0

(
1− z

zn

)
exp

(
z

zn

)
(6.10)

Proof. This follows from the Hadamard factorization theorem and Theorem 4.3.3.

Now we are ready to conclude the final result for this chapter. It tells what kind

of point sequence {zn} on the complex plane can be picked such that the values of

Mf on these points uniquely decide a function f that satisfies Hardy’s condition.

Theorem 6.3.2. Suppose that f and f̂ are of exponential decay and a sequence of

nonzero complex numbers {zn : n = 0, 1, · · · } that satisfies the condition

∞∑
n=0

1

|zn|2
=∞. (6.11)

Then the value of Mk
f (zn) uniquely decides the function f .

Proof. Suppose that f , f̂ , g and ĝ are of exponential decay, andMf (zk) =Mg(zk).

Then both f−g and f̂− ĝ are of gaussian decay as well. By Theorem 6.3.1 we know

that if Θf−g is not constantly zero then

Θ(f−g)(z) = zmeaz+b
∞∏
k=0

(1− z

vk
) exp(

z

vk
)
∞∏
n=0

(
1− z

zn

)
exp

(
z

zn

)
(6.12)

where zn and vk are zeros of Θ(f−g)(z). Thus

∞∑
n=0

(r/z2
n) +

∞∑
k=0

(r/v2
k) <∞

for all r > 0. Thus it contradicts the assumption that
∑∞

n=0(1/z2
n) =∞. It follows

that Θ(f−g)(z) = 0 for all z in the complex plane. So f = g as required.
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