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Abstract

User-generated video content sites such as Youtube have become extremely pop-

ular. Understanding video online popularity is of great value for network and service

providers, marketing industries, entertainment businesses and content creators. In

this thesis, we develop novel frameworks to evaluate the impacts of different content-

agnostic factors on Youtube videos popularity and use the resulting insights to study

and model their popularity growth patterns.

The first significant subject of our thesis is developing and applying a novel

methodology that is able to accurately assess, both qualitatively and quantitatively,

the impacts of various content-agnostic factors on video popularity. When controlling

for video content, we observe a strong linear “rich-get-richer” behavior, with the total

number of previous views as the most important factor except for very young videos.

We analyze a number of phenomena that may contribute to rich-get-richer, including

the first-mover advantage, and search bias towards popular videos. Our findings also

confirm that inaccurate conclusions can be reached when not controlling for video

content.

The second central topic of our research is performing a characterization and

modeling of the videos popularity dynamics using only the total view count for anal-

ysis. We develop a framework for studying the popularity dynamics of user-generated

videos, present a characterization of the popularity dynamics, and propose a model

that captures the key properties of these dynamics. Using a dataset that tracks the

views to a sample of recently-uploaded Youtube videos over the first eight months

of their lifetime, we study the popularity dynamics. We find that the relative pop-

ularities of the videos within our dataset are highly non-stationary, owing primarily

to large differences in the required time since upload until peak popularity is finally

achieved, and secondly to popularity oscillation. We propose a model that can ac-

curately capture the popularity dynamics of collections of recently-uploaded videos
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as they age. Another important aspect of our research is illustrating the biases that

may be introduced in the analysis for some choices of the sampling technique used

for collecting data.
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Chapter 1

Introduction

‘look at 2006 through a different lens and you’ll see another story,

one that isn’t about conflict or great men. It’s a story about community

and collaboration on a scale never seen before. It’s about the cosmic

compendium of knowledge Wikipedia and the million-channel people’s

network YouTube and the online metropolis MySpace. It’s about the

many wresting power from the few and helping one another for nothing

and how this will not only change the world, but also change the way the

world changes.’

You Yes, You Are TIME’s Person of the Year. By Lev Grossman

Time Magazine, 25 December 2006

When Time magazine selected ‘You’ as person of the year in 2006, where ‘You’

represented the Internet users, it obviously recognized the significance and impact of

user-generated content (UGC). UGC is any online content produced and published

by the users themselves. Different types of UGC, including images, videos, articles,

audio files, and reviews, are generated and published continuously on a myriad of

platforms such as social networking sites, blogs, podcasts, wikis and social media

sites.
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The emergence of UGC was the outcome of a new phase in the life of the Web.

Until the early 2000’s (a period referred to as Web or Web 1.0), a relatively small

number of organizations created and published content and most end-users were re-

stricted to passive viewing of the available content. Since then, the Web experienced a

tremendous transition in how it was used by businesses, software developers, and indi-

viduals. It evolved from a static Web into a more dynamic, interactive, collaborative,

and social Web.

The term ‘Web 2.0’ was coined by Tim O′Reilly to describe this second generation

of the World Wide Web. Web 2.0 is user-centric; it’s focused on empowering the user

to take part in producing and shaping the content. If Web 1.0 was a monologue to

users, Web 2.0 is a dialogue with users. This architecture of participation has led to

the development and evolution of social media, ‘a group of Internet-based applications

that build on the ideological and technological foundations of Web 2.0, and that allow

the creation and exchange of User Generated Content’ [40].

The phenomenal success of online media sharing and social networking services has

resulted in massive volumes of user-generated content being created and has spawned

new content consumption approaches. One important and influential form of UGC

is user-generated video. Popular video-sharing services such as YouTube host a large

and rapidly growing catalogue of user-generated videos, and serve large numbers of

video streams each day. Any video uploaded on YouTube has an enormous potential

for reaching audiences and thus could have widespread impacts on the technical,

social, and political sphere. The extent and implications of the evolution of user

generated content gave rise to a great research interest in this area and raised many

fundamental research questions and problems. In this thesis, we focus on one such

problem: understanding the online popularity of user-generated video content.

In this chapter, we begin by providing background information about user-

generated content in general, and video content in particular. We then discuss the
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research questions we raise, the problems we are trying to solve, the motivation

behind this research, and the contributions of this work. Section 1.1 examines the

drivers contributing to the emergence of UGC. Sections 1.2 and 1.3 discuss on a

broad scale the motivation behind our interest in the area of user-generated video

content. We first examine the potential structural impacts of UGC on the social,

political sphere and economics, respectively. Next, we discuss the scale of video

content generated by users on social media platforms such as YouTube. Section 1.4

highlights the motivation of our work. Section 1.5 presents the main objectives in

this thesis and Section 1.6 describes our key contributions. We conclude with an

outline of the remainder of the thesis.

1.1 Drivers of user-generated content

Tim O′reilly defined Web 2.0 as ‘a set of economic, social, and technology trends that

collectively form the basis for the next generation of the Internet – a more mature, dis-

tinctive medium characterized by user participation, openness, and network effects’.

The appearance of a series of technologies and services was a key factor contributing

to the emergence of UGC. User-generated content has been rapidly growing with the

the global penetration and development of broadband and software technologies and

the dramatical decrease in production costs. High speed connections translated into

higher Internet usage and spawned new user content production. Users became able

to upload larger media files with less time and were no longer limited to low quality

graphics and texts. The increasing popularity of wireless broadband technologies was

another factor impacting the growth of UGC as it allowed users to be connected from

literally everywhere. The rise of accessible and advanced software tools facilitated

the process of content creation and publishing without the need of prior professional

knowledge.
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In addition to the technological factors, several social factors influenced UGC

adoption: the desire of people to express themselves and their thoughts, their need

to connect, and their aspiration to collaborate and develop communities. Given the

chance to connect, onlines users accommodated to the new Web transformations and

changed their consumption habits; they did not only connect, they engaged.

UGC adoption was also influenced by economic drivers. Diverse commercial play-

ers have acknowledged the new revenue opportunities resulting from UGC; monetiza-

tion of UGC has began and continues to rapidly grow [36]. Fearing the loss of profits

in traditional media, and exploiting the opportunity to leverage the ‘long tail’ [6] were

the primary motivations for these investments.

1.2 Implications of user-generated content

The rise of UGC offered new opportunities to individuals to participate in powerful

ways. User participation and collaboration on a massive scale has been changing the

world. UGC has revolutionized our lives today and resulted in radical social, political,

and economic transformations.

1.2.1 Social Impacts

UGC has shaped a new structure of communication and caused a shift from a pas-

sive culture of content consumption to a participatory one. The increased level of

communication and interactivity has positively influenced the quality of life of in-

dividuals. When offered the opportunity to produce an online identity, users have

expressed themselves, shared their experiences, connected with individuals around

the globe, and found support through online communities. In addition, users have

experienced more active social relationships built around exchange, without space or

time boundaries. UGC has made it easier to meet new people, discover others with
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similar interests, and sustain friendships. UGC has also influenced the personal and

societal attitudes, values and behaviors.

UGC has democratised the media production environment by diffusing the power

to generate cultural goods such as music. Today, almost anyone can unleash their

creativity and show their skills and talents. Any Internet user can become a comedian,

a music star, or a filmmaker.

UGC has also encouraged a culture of sharing. Sharing knowledge and skills has

positively impacted the educational development worldwide. One of the greatest

examples is the birth of Wikipedia. This huge online user-generated and user-edited

encyclopedia is a ‘cosmic compendium of knowledge’ [32] built as a result of collective

intelligence.

The collaborative site has sustained an enormous growth rate; it has currently

3,865,591 articles, 16,213,885 users, and the total number of user edits exceeds 500

millions [2]. An additional implication of the culture of sharing is the appearance

of online communities used to gain knowledge, exchange information, and discuss

ideas. ‘My language exchange’ is an interesting example of an educational online

community where individuals practice and learn foreign languages from each other.

The community has more than 1 million members from 133 countries, practicing

115 languages [1]. Online health communities are another example; here users find

health care information and gain clinical knowledge from other patients and medical

professionals. In fact, in 2011, a survey found that 80% of Internet users search for

health information online [37].

A key feature of user-generated content is the potential to rapidly reach a global

audience. This feature has been empowering users to accomplish any goal through

building public will, raising public awareness and mobilizing people to a cause. In

January 2010, news about the tragic earthquake of Haiti spread rapidly worldwide

via countless videos on Youtube, microblogs on Twitter, images and status updates
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on Facebook, etc. Online activity was at the heart of spreading awareness and infor-

mation and at the center of a mass mobilisation that raised millions of dollars [25].

1.2.2 Political Impacts

UGC has positively impacted transparency in politics, which led to reduced corruption

and increased deliberative democratic process. Launched in 2007, OpenCongress.org.

is an example of a popular website for government transparency in the federal U.S.

Congress.

The era of social media has increased user involvement in the political process.

Users utilize the UGC platforms to initiate public debates and exchange opinions,

analysis, and political commentary. The powerful user engagement can influence

the political selection process. Obama′s use of social media is considered to have

contributed to his presidential win. Some even stated that his win was driven more

by social media than by his Harvard degree and his political ideology [13]. ‘Were it

not for the Internet, Barack Obama would not be president’ said Arianna Huffington,

editor-in-chief of The Huffington Post, while speaking on a panel at the Web 2.0

Summit in San Francisco [52]. Through the approximately 2,000 YouTube videos,

Obama spoke to the citizens about his views and plans to raise the USA.

As user-generated services gained popularity, audience engagement in news pro-

duction increased dramatically and led to rise of citizen journalism. The power of

established media institutions, editors, and publishers shifted to the online user. To-

day every citizen is a reporter. Today it’s the people who are in control. Users

participation and active role in delivering the news has changed and democratized

online professional journalism. Adopting and recognizing the strong user engagement

in news creation became a key to the success and continuity of the traditional mass

media. The Telegraph and many other newspapers provide their readers with services

to blog, upload photos and exchange opinions on forums. The CNN’s iReport website
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and the Guardian’s CommentIsFree separate the user-generated content by providing

different platforms for the readers to blog and discuss the issues of the day.

The developed publishing technology available to users through social media plat-

forms gave citizens the power to impact and shape political events. Most recently,

user-generated content has played a critical role in the pro-democracy upsurges of

protests and demonstrations currently occurring across North Africa and the Middle

East, commonly referred to as the ‘Arab Spring’ uprising [50]. From Tunisia and

Egypt to Libya, Bahrain, Syria, and Yemen, the social media and UGC have been

the power tools in the propagation of democratic revolution. The liberation tech-

nology was used by protesters to speak up, virally spread information, coordinate

actions, and produce intense public activism. In Tunisia, after Mohammed Bouazizi

set himself ablaze, it was videos about the abusive state in the country, uploaded

and watched on YouTube and Facebook, that inspired and mobilized people across

the country to stand up for democracy and freedom [50]. In Egypt, the massive-

scale revolts that caused President Hosni Mubarak’s authoritarian regime to fall were

sparked by a Facebook page created by Google executive Wael Ghonim. The page was

in memory of a man arrested and beaten to death by the country’s police in 2010.

The extent of public support for the 2011 Egyptian revolution grew tremendously

through the social media and shaped the future of the country. In an interview with

CBS’s 60 Minutes Ghonim said: ‘Because the whole thing before the revolution was

the most critical thing. Without Facebook, without Twitter, without Google, without

You Tube, this would have never happened.’ The government of many authoritarian

regimes (e.g Iran, Tunisia and Egypt), made huge efforts to suffocate social media

by banning Twitter, Facebook, and video sites such as YouTube and DailyMotion

because they recognized the political impact of the combination of social networks

and user generated content. This combination has been the trigger and catalyzer of

many revolutions and has changed forever the political future of many countries. In
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contrary to Gladwell’s assertion in late 2010 that ‘the revolution will not be tweeted’,

the revolution has been tweeted.

1.2.3 Economic Impacts

The culture of participation has direct economical impact on various industries; it

is a disruptive force that created new economic opportunities and introduced new

challenges. UGC can impact the profits of entertainment business, marketing and

advertising industries. In fact, the survival of many commercial products, media,

recreation and technologies rely on a significant user base. The power of UGC to

affect purchase decisions forced different industry sectors and firms to transform the

way they deal with their customers and do business. The consumer became a co-

creator with an increased business value and increased power. And as a consequence,

the world of web marketing and advertising has been radically altered. The new

concept involves the users and communities to create the campaign or brand identity.

One of the massively successful Internet campaign is the Australian Government’s

‘Best job in the world’ campaign to promote tourism in Queensland. Applicants were

requested to post videos on a special page on Youtube to explain why they were the

right candidate for the job. The person chosen for the position was required to post

video blogs every week to promoting the Great Barrier Reef. It even scooped the two

top awards at the Cannes Lions International Advertising Festival. The campaign

produced more than $70 million worth of worldwide publicity.

Another example demonstrating the effect of user-generated content on economy

is the significance of reviews on the consumers buying behavior [72, 31]. Reviews are

becoming one of the key factors for success on travel websites such as Trip Advisor [47].
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1.3 User-generated video content: scope and scale

User-generated video is one dominant form of user-generated content. The arrival

of YouTube, the world’s largest video-sharing website, in February 2005, marked the

beginning of the online video era. In 2006, after YouTube has been acquired by

Google Inc. for $1.65 billion, the online video market began to explode. The number

of viewers and the volume of video content consumed have increased dramatically. By

mid-2006, YouTube had approximately 65,000 video uploads and 100 million video

requests per day [66]. The bandwidth consumed by YouTube in 2007 is evaluated

to be approximately equal to the entire Internet in 2000 [62]. Since 2006, the online

video industry has experienced a 706% impressive growth [28], to become nowadays a

tremendous global market. YouTube today is the most powerful online video provider

worldwide, with more than 90 billion videos viewed in October 2011 and a market

share of approximately 45% [26]. In January 2012, YouTube reported that users

around the world upload an average of one hour of video to the site every second,

and that the site has surpassed four billion global views a day (more than half the

world’s population) [14]. More recently, the most popular video-sharing site with

revenues of approximately $10 billion a quarter [65], invested more than $100 million

into original content channels, from partners including the Wall Street Journal, the

online magazine Slate and Madonna [64].

Today, over half of all Internet traffic is web video. Based on the current trends,

Cisco predicted in November 2011 that online video will soon account for more than

90% of all Internet traffic [63]. The prediction was later confirmed by YouTube [55],

the God Father of the online video revolution.

So far, we have identified various reasons why UGC is an area of significant re-

search interest. We have discussed the substantial implications of user-generated

content in general and demonstrated the enormous scale of user-generated video con-
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tent in particular. Next, we discuss on a narrower scale the motivation behind this

work.

1.4 Motivation

With the tremendous and rapidly growing number of online user-generated videos,

there is interest in understanding the popularity characteristics of user-generated

video content and understanding the characteristics and processes governing their

popularity dynamics. There is interest as well in understanding what factors cause

some videos to become more popular than others.

Such insights are valuable for myriad reasons. First, content popularity may have

significant impact on system design issues. New and efficient content distribution

approaches can be developed using workload models developed from characterization

of user-generated content usage [18, 7]. Understanding the popularity characteristics

of user-generated video content can be helpful in identifying potential bottlenecks in

discovering content [18]. Second, understanding online popularity is crucial to detect

the onset of a video becoming popular. Online popularity impacts the profits of en-

tertainment business, marketing and advertising industries. In fact, the survival of

many commercial products, media, recreation and technologies survives on grounding

popular content. Thus, such insights can be useful for the design of marketing and

advertising campaigns [40, 45]. Third, from a theoretical point of view, the massive

amount of data available from these online services provides an unprecedented oppor-

tunity to understand the underlying social behavior and collective human dynamics

governing content creation and consumption processes [27, 59].

Vast amounts of new video, audio, image, and text content are created each year.

What determines which items become popular and which do not? Several factors

can impact the popularity of user-generated videos. Although the content of the
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item (is it interesting, is it topical, is it high-quality, and so on) plays an important

role, it has been widely recognized that other “content-agnostic” factors can also

have a substantial impact on popularity. For videos shared through a site such as

YouTube for example, content-agnostic factors that may impact a video’s current

viewing rate include the video uploader’s social network size, the video’s current view

count, the video’s title, the keywords associated with the video, the time that has

elapsed since the video was uploaded (the video “age”), and the service provider’s

search and featuring algorithms that also influence a video’s popularity. Such fac-

tors can directly impact the choices of potential viewers, as well as indirectly impact

these choices through their influence on the service provider’s search and featuring

algorithms. Since both content-related and content-agnostic factors impact video

popularity, understanding how content-agnostic factors influence popularity, and sep-

arating the influence of content and non-content related factors has been challenging.

For instance, videos uploaded by users with large social networks may tend to become

more popular because they generally upload more interesting content, not because

social network size has any direct impact on popularity. Prior studies have used

datasets consisting of videos with widely-varying contents, and thus are unable to

rigorously distinguish the impacts of content-agnostic factors on popularity, from the

impacts arising from differing contents.

In the first part of this thesis, we provide a qualitative and quantitative answer

to this fundamental question [15]. We develop and apply a methodology that is able

to accurately assess the impact various content-agnostic factors have on popularity.

Our methodology is based on studying the dynamics of identical copies of a video

content; we refer to such videos as clones. This approach allows us to control the bias

introduced when studying videos that do not have the same content. When controlling

for video content, one of our key findings was observing a strong linear “rich-get-

richer” behavior, with the total number of previous views as the most important
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factor, except for very young videos. When looking across different contents, we

demonstrate that the rich-get-richer behavior gets weaker and becomes inaccurate,

and thus rich-get-richer type of models do not accurately capture content popularity.

In the second part of this thesis we perform a characterization and modeling of

the videos popularity dynamics using only the total view count for analysis [16]. We

study and model how viewing rates of user-generated videos change over time, which

we refer to as popularity dynamics or popularity evolution. Studying the popularity

dynamics, however, is challenging because of the extremely large and rapidly growing

number of videos available from such services. We make several contributions that

address this challenge. Given the huge volume of content available from popular

services, and given that sampling may yield datasets biased towards content with

elevated short-term and/or long-term popularity, we first tackle the issue of sampling

techniques. We then examine the popularity dynamics and churn of user-generated

videos using seemingly unbiased datasets collected from YouTube1, and we show that

current popularity is not a reliable predictor of future popularity. Based on this key

finding, we propose a characterization of popularity evolution and a new model that

can capture the popularity dynamics of a collection of videos.

1.5 Objectives

Fundamentally, we address in this thesis two aspects of content popularity. The first

aspect deals with understanding the popularity characteristics and the factors impact-

ing users’ behavior in the choice of specific online content. Modeling the popularity of

content in video-sharing services has been challenging due to the complex interactions

among content quality, content highlighting and discovery chosen by the social media

platform, and social influence among peers. While these factors make it hard to fore-

cast popularity a priori, most previous works on popularity prediction have mainly

1http://www.youtube.com
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proposed rich-get-richer types of models, where future success is based on early mea-

surements of popularity [30, 73, 49, 19]. In the first part of this thesis, we aim to take

the first step in isolating the influence of the impossible to measure factor, content

quality. We attempt to understand how content-agnostic factors influence popularity.

Our high level goals in the first part include the following:

• Developing a methodology that allows us to providing a wide ranging analy-

sis that covers nearly all endogenous and exogenous content-agnostic factors

impacting videos’ popularity on YouTube.

• Investigating to what extent, the rich-get-richer model [51], explains the popu-

larity evolution of user-generated video content.

The second part of this thesis deals with the second aspect of popularity; specifi-

cally, the long-term temporal dynamics of user-generated videos popularity. We use

our results and insights to suggest a model that captures the temporal dynamics of

views to videos. We also aim at addressing the issue of sampling biases introduced

by the commonly utilized sampling techniques. While this issue could have direct

impact on the reported results, no prior work has approached it. Our high level goals

in the second part of this work include the following:

• Developing a framework that allows us to provide an in-depth analysis and

characterization of the temporal aspects of content popularity.

• Developing a model that captures the key properties of the observed popularity

dynamics.

• Developing methods that allow us to collect a dataset seemingly unbiased to-

wards popular content.
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1.6 Contributions

Our main contributions in this thesis are centered upon understanding the different

factors that impact the evolution of popularity over time and the long-term temporal

dynamics of user-generated videos popularity.

1.6.1 Factors impacting videos’ popularity on YouTube

• We develop a data collection methodology that is able to accurately

assess the impacts various content-agnostic factors have on video pop-

ularity.

Our methodology is based on studying popularity differences among videos

that have essentially the same content; i.e., can be considered as “clones” of

each other. Popularity differences among clones can only be due to content-

agnostic factors. Through manual exploration, search, and viewing of YouTube

videos, 48 sets of videos were identified, with each set containing between 17

and 94 videos that are sufficiently similar in content that they can be considered

clones. We used the YouTube developer’s API and HTML scraping to extract

video information and statistics for each of these 1,761 videos. This data was

collected twice, with a week separation between the two collections, so as to

capture both the “current” popularity of each video (as measured by the new

views acquired over that week) as well as lifetime statistics.

• We apply a multivariate linear regression and other statistical meth-

ods on our dataset to systematically determine the content-agnostic

factors that most influence a video’s current popularity.

In particular, by analyzing a large number of explicit measurable factors that are

provided through the YouTube API, we find that the most significant content-

agnostic factors are the total number of previous views and the video age. We

14



also show that determining the relative importance of these factors without

controlling for video content (i.e., ignoring clone set memberships) would result

in inaccurate results; in particular, the relative importance of factors such as

video age and the number of followers of the uploader would be significantly

overestimated.

• We find that when controlling for video content, “rich-get-richer”

preferential selection based on the total number of previous views

appears to provide a good model of video popularity evolution.

Specifically, using regression analysis and statistical hypothesis testing we show

that current video popularity, among videos of similar “generation” (age within

a multi-year window), follows a scale-free rich-get-richer model with power-law

exponent of approximately one. We also show that carrying out this analysis

without controlling for video content would result in erroneously concluding

that preferential selection is significantly weaker, not scale-free, with a power-

law exponent smaller than one. We investigate a number of possible contributors

to the observed rich-get-richer behavior, including the “first-mover” advantage

and search bias towards popular videos.

• We demonstrate that the total number of previous views becomes

less significant for very young (newly-uploaded) videos that have not

yet accumulated many views.

For such videos, we show that other factors such as uploader characteristics and

the number of keywords become much more significant. Their significance is

substantially underestimated, however, when not controlling for video content.
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1.6.2 Temporal dynamics of user-generated videos popular-

ity

• We examine the popularity dynamics and churn, for our sample of

recently-uploaded videos, over the first eight months of their lifetime.

An important observation is that the relative popularities of the videos are

highly non-stationary. One cause of the observed non-stationarity is the pres-

ence of large differences in when videos peak in popularity. While a majority

of the videos peak in popularity, as measured by weekly viewing rate, within

the first six weeks of their lifetime, many others do not peak until much later.

Another cause of non-stationarity is the presence of oscillations in video popu-

larity.

• We propose a three-phase characterization of popularity evolution for

our sample of recently-uploaded videos.

This characterization is motivated by the observed non-stationarity in the rel-

ative popularity of these videos and the differences in how long it takes video

popularity to peak. For each week, the videos are partitioned into three disjoint

sets, based on whether they are before, at, or after their observed popularity

peak. Grouping the videos in this manner, we identify several interesting prop-

erties of video popularity evolution. First, we find that within each set of

videos, the distribution of the number of weekly views is heavy tailed, where

the tails may be approximated by a lognormal distribution. Second, we find

that these distributions are approximately week-invariant. Third, as a specific

consequence of the second property, we find that the viewing rate at peak pop-

ularity is approximately independent of how long it takes videos to attain their

peak popularity.
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• We develop a model, based on our three-phase characterization, that

can capture the popularity evolution of newly-uploaded videos.

In particular, using only a small number of distributions based on the three-

phase characterization, our model is able to generate synthetic datasets in which

key characteristics and consequences of the video popularity dynamics match

those observed in the empirical data, including the distribution of the weekly

viewing rate for videos at a particular age, the distribution of total accumulated

views to videos at a particular age, and measures of churn in the relative popu-

larity of videos. The model is developed in two stages. We first present a basic

model in which popularity churn results only from the movement of videos (at

varying times) between their before-peak, at-peak, and after-peak phases. We

find that this model successfully captures the first-order dynamics of popularity

evolution and yields results matching most of the characteristics of the empir-

ical data. So as to better capture churn characteristics, in particular hot set

evolution, we present an extended model that adds a tunable degree of addi-

tional popularity variation by shuffling the popularities of the videos within each

phase. Our model can be considered a first step towards a synthetic workload

generator for user-generated video services.

1.6.3 Sampling biases

• Our last contribution concerns biases that may be introduced in the

analysis of user-generated video popularity owing to use of sampling

techniques.

Sampling is necessary as popular services host millions of videos with restric-

tions on the rate at which data may be fetched from the service. Furthermore,

sampling is not straightforward because services often restrict how videos may

be discovered from these services. From YouTube, for example, videos may
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be sampled from various “most-popular” lists (such as most viewed today, this

week, this month, or all time most popular), the “recently-uploaded” list, or by

searching using keywords. Evidently, sampling from any of the most-popular

lists provides a set of videos that are biased towards popular content. In this

work, we used the YouTube developer’s API to collect two datasets, one based

on sampling from the recently-uploaded videos, and another based on keyword

searches. We tracked the views to these videos over an eight month period. Per-

haps not surprisingly, we find that sampling based on keyword searches yields a

dataset biased towards more popular content. Fortunately, however, our results

suggest that the YouTube API call that returns details on recently-uploaded

videos gives an unbiased sample of such videos.

1.7 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents related work

within the context of the contributions of our work. Chapter 3 first describes our

novel clone-based methodology and analysis framework. Second, it presents an anal-

ysis for the relative impacts of the measured content-agnostic factors on current video

popularity and shows the importance of controlling for video content in this analy-

sis. This Chapter also studies the applicability of rich-get-richer preferential selection

models, and examines contributors to rich-get-richer behavior. Finally, Chapter 3

analyzes the content-agnostic factors impacting the popularity of newly-uploaded

videos. Chapter 4 studies the temporal evolution of videos popularity with emphasis

on understanding data collection strategies impact the findings. The Chapter be-

gins by describing our data collection methodologies, the basic characteristics of our

datasets and our measurement and analysis framework. Afterwards, some initial anal-

yses concerning possible biases in the datasets owing to use of sampling techniques is
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introduced. Chapter 4 presents our three-phase characterization of popularity evolu-

tion and provides the underpinnings for the model proposed in this work. The chapter

ends by presenting the basic model, its extension, its validation, and insights drawn

from the model. Chapter 5 concludes the thesis and gives directions for future work.
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Chapter 2

Literature Review

The great success of online media sharing and social networking services has re-

sulted in massive volumes of user-generated content being produced and spawned

new research interests and activities related to the generation and evolution of the

content consumption patterns. One area that has attracted interest from the scien-

tific community lately has been the analysis of content popularity in social media

platforms [60, 8, 70, 27, 29, 17, 18, 59, 67, 56]. In particular, the success of video-

sharing services has led to a surge in research on various facets of YouTube and

other similar services. There has been considerable prior work concerning measure-

ments, analyses of these measurements, and/or models, for various user-generated

video properties including popularity. Studies have examined the characteristics of

user-generated video files [30, 21, 18, 49, 73], use of social networking features in

video-sharing services [35, 49], the structure of YouTube’s “friend” network [48], the

use of the “video response” feature of YouTube [11], the different aspects of user-

generated video metrics [19, 49, 21], the popularity characteristics of user-generated

videos [18, 73, 30, 49, 17, 29], and also models for user-generated video popularity

prediction [43, 60].

20



In this thesis, we are also interested in the analysis of user-generated video content

popularity, with primary focus on the analysis of factors impacting users’ behavior

in social media applications, the characteristics of online content popularity, and the

the temporal patterns of content consumption by users. We also focus on the issue

of dataset biases introduced by the sampling techniques used for the selection of a

suitable sample for study and analysis.

Many prior works have been centered upon characterizing online popularity and

understanding the factors impacting users’ behavior in the choice of specific online

resources, which is of central importance in anticipating online content popular-

ity [19, 20, 30, 71, 49, 73, 17, 29]. A large number of studies addressed the endogenous

(internal to the online content concerned) factors influencing popularity on YouTube.

Overall, these works focused mostly on one popularity metric: view count. Cha et.

al [19] studied the correlation between the user participation and the view count of

YouTube videos, but the user participation was represented by only the number of

ratings. Chatzopoulou et al. [20] took the first step in studying popularity metrics

other than view count, but still limited to about four other variables only, the number

of comments, favourites, ratings, and the average rating. A few studies analyzed the

exogenous (external to the online content concerned) factors influencing popularity.

For instance, Figueiredo et al. [29] and Zhou et al. [71] both studied the significance

and effect of video referrers, through which videos are being discovered, on the pop-

ularity evolution of Youtube videos. They reported that YouTube’s internal search

and recommendation engines are the central sources of views for videos [71, 29].

Most characterization studies have reported that the total view count of an online

content is the key factor affecting its future popularity [30, 73, 49, 19]. It has also

been established that the total view count distribution of user-generated content is

heavy-tailed [30, 73, 49, 18], and subsequently, cumulative advantage and rich-get-

richer types of models, where the probability that a content experiences an increase
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in popularity is directly proportional to its current popularity, has been suggested

to model content popularity [19, 60]. All the aforementioned studies, however, have

disregarded the influence of the content quality, simply because it is hard to measure

in a convincing manner. Our work is complementary as we are also interested in un-

derstanding the characteristics of user-generated videos’ popularity and we address

how different factors impact the users’ behavior in the choice of specific content. We

propose a new clone-based methodology that allows us to isolate the influence of the

video quality. Our unique dataset offers the opportunity to study the significance

and impact of content-agnostic factors while controlling for differences in video con-

tent. To the best of our knowledge, no prior work has separated out the impacts of

content-related and content-agnostic factors on popularity. Using our novel dataset,

we provide a wide ranging analysis that covers nearly all endogenous and exogenous

metrics that could affect videos’ popularity on YouTube. Our investigation of the

content-agnostic elements validates the intuition that view count is the central fac-

tor. Our systematic study supports the hypothesis that popularity is governed by

a strong rich-get-richer behavior, however, only when controlling for video content.

When looking across different contents, we demonstrate that the rich-get-richer be-

havior gets weaker and becomes inaccurate, and thus rich-get-richer type of models

do not accurately capture content popularity.

The temporal aspects of user-generated content popularity has been another major

research interest in the last few years. There has been a parallel increase in interest

in characterizing and modeling how UGC evolves over time. Works addressing the

popularity dynamics have frequently relied on crawling the social media networks

over and capturing a set of snapshots. Some studies have used only few snapshots

and provided a short-term analysis of how popularity changes over time, while other

works dealt with the longer-term evolution. Cha et al. [19] has performed a large-scale

analysis addressing the user-generated video content; they analyzed the consumption
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pattern and popularity distribution of videos on YouTube and Daum. Papadopoulos

et al. [53] provided insights into content popularity evolution while considering the

social aspects represented by the process of content rating by the user community.

Many recent works have focused on predicting the future popularity of a content based

on early popularity measurements, motivated again by rich-get-richer types of models.

For example, using early measurements of user comments in online debates, different

studies have proposed models to predict the popularity of online articles [61, 41],

discussion threads on Slashdot [39], news on the social news portal Digg [44, 38],

online discussion forums [43], and more. Huberman et al. proposed a model to

predict the number of views to a Youtube video using its early view count [60]. Our

work is complementary as we provide, in the second part of this thesis, a systematic

study of the long term popularity evolution of videos. We show that although there

is a strong correlation between early and future popularity measurements, individual

video popularity is highly unstable and unpredictable. This observation in the long

term popularity analysis, along with the observations in the first part of our work,

motivate the need for a new model that captures the evolution of content popularity

in time. We propose a model for how the popularity statistics of a collection of

recently-uploaded videos evolve over time, instead of considering popularity evolution

for individual videos.

An overview of previous research efforts addressing user-generated video content

popularity are summarized in Sections 2.1, 2.2, 2.3, and 2.4. In this chapter,

we restrict our attention mostly to related prior work on characterizating the pop-

ularity of user-generated videos, analyzing the impacting factors, and modeling the

phenomenon of popularity evolution in video-sharing platforms.
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2.1 Characterization of the UGC popularity dis-

tribution

There has been many research studies concerned with the analysis and characteri-

zation of user-generated video popularity. Previous studies on characterization has

commonly used network traffic traces from a network gateway [30, 73] or meta-data

sampled from video sharing services [18, 49, 29, 17, 4].

Both Gill et al. [30] and Zink et al. [73] analyzed YouTube video requests from a

campus network and observed that the video requests follow a Zipf-like distribution

and substantial network bandwidth savings would be feasible if large proxy caches

were used. Zink et al. [73] performed a trace-driven study of caching policies confirm-

ing the benefits of local edge network caching.

Halvey et al. [35] investigated the use of social networking features on YouTube to

understand community behavior. Their results showed that many users do not form

social networks in the online media sharing platforms such as YouTube. Instead,

social connections are formed by only a few users who frequently utilize the social

interaction facilities available within the site. Halvey et al. did not observe a Zipf-

like behavior in the popularity distribution of Youtube; however, they reported that

the number of favourite videos and the number of uploads are best fit by a Zipf

distribution.

Abhari et al. [4] provided a workload characterization study of YouTube video

characteristics and user behavior using meta-data collected through crawling YouTube

for a five months period. The authors then developed a synthetic workload generator

for YouTube to study different proxy cache approaches for popular YouTube files.

Their results suggested again that reduced network traffic and increased scalability

of YouTube could be achieved if proxy caching of YouTube popular videos is used.
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Plissonneau at al. [54] characterized the effect of YouTube traffic on an ADSL plat-

form of an ISP in France. The authors investigated the users’ behavior on YouTube

and found that video viewing abortions happen mainly due to the lack of interest for

the content, and not because of low network throughputs.

Several prior works have been centered upon studying the properties and structure

of YouTube social networks. Mislove et al. [48] provided a comprehensive study of the

network of YouTube friends, and compared this network of users to the network of

Web pages and to two other online social networks. Biel [12] presented a large-scale

static analysis of the network of YouTube subscriptions, which represents how users

with mutual interests are connected to each other. The author also described the

small-world, power-law, and reciprocity characteristics of the network of YouTube

subscriptions.

Haddad et al. [33] presented a survey of many classes of caching policies on

YouTube while investigation and discussing how to improve the scalability and per-

formance on YouTube. The authors conclude that access time and boot delay in

watching videos could be reduced by using local caching combined with prefetching

techniques.

The aforementioned characterization studies revealed interesting properties re-

garding the popularity of user-generated videos and the traffic demand on media-

sharing platforms. They confirmed the popularity skewness among online content

and the heavy tailed popularity distributions, and they addressed YouTube perfor-

mance issues such as scalability and large bandwidth demand. However, they do not

address the temporal aspects of online videos popularity.
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2.2 Temporal aspects of UGC popularity

Many recent studies have addressed the temporal aspects of the popularity dynamics,

and were based on meta-data sampled from video sharing services. Few studies have

analyzed different aspects of user-generated video metrics such as total views, total

ratings, total comments, and uploader social network size (e.g., see [19, 49, 21]). Cha

et al. [19] presented one of the first large-scale experimental work that studied the

process of popularity evolution of user-generated videos. The authors used meta-data

collected by crawling videos from Daum,the most popular UGC service in Korea, and

YouTube. analyzed the consumption pattern and popularity distribution of uploaded

videos. They found that the total views since upload for videos of various ages is

best fit by a power law distribution with exponential cutoff. The exponential decay

observed in the tail of the total views distribution was explained by information

filtering through recommendation and search engines where only a small number

of popular items is returned, and by a ‘limited fetch’ model where some users do

not request the same content many times. Cha et al. [19] demonstrated a strong

correlation between the view count and the user participation, but they limited the

user participation to one popularity metric, the number of ratings. They reported the

absence of any correlation between the video view count and its upload time, which

is confirmed in our results. However, their analysis is limited to pairwise correlation

to evaluate the impact of the video age on its popularity.

Mitra et al. [49] compared four popular video sharing workloads other than

YouTube and established the presence of “invariants” among their characteristics,

such as heavy-tailed total view count distributions and positive correlation between

total views and total ratings to a video. In addition, Mitra et al. distinguish between

lifetime and short-term popularity measures, and evaluate their respective degrees of

relevance for cache management. They found total views popularity to be ineffective

for making caching decisions due to variations in the viewing rates of videos.
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Chatzopoulou et al. [20] investigated the popularity evolution of a collection of

videos (instead of individual videos) by grouping videos into age bins. Starting from

the standard feeds, the authors recursively collected the related videos of every video

in the list. They took the first step in studying popularity metrics other than view

count, but still limited to about four other variables only, the number of comments,

favourites, ratings, and the average rating. They showed that all metrics, except

the average rating, are highly correlated with the video view count and that the

correlation increases with video popularity. They used linear regression to develop a

model that evaluates the video view count as a function of the number of favorites

and ratings. The model could be used to detect artificial boosting of video popularity.

Chatzopoulou at al. report the small world network properties for the related video

graph by focusing on a subgraph of only popular nodes. The authors took the first

step in studying popularity metrics other than view count, but still limited to about

four other variables only, the number of comments, favourites, ratings, and the average

rating. They showed that all metrics, except the average rating, are highly correlated

with the video view count and that the correlation increases with video popularity.

Our work again is complementary as we study all the possible video variables provided

by YouTube to determine which factors influence shaping the success trajectory of a

content.

Cheng et al. [23] analyzed Youtube from an internal and external perspectives.

Using meta-data crawled in a 1.5 year span, the authors provided an in depth study

of the characteristics of YouTube. The authors presented an active life span model

to study popularity trends and predict its future growth. In addition, the impacts of

the external links of YouTube were investigated in [23], using information from ap-

proximately 1 million videos’ external link. The authors reported that videos benefit

from external links more in their early lifetime, an observation that we confirm in our

analysis. Cheng et al. [21, 22, 23] also studied the relationship of related videos on
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YouTube and showed that the related video graph has small-world characteristics and

has a large clustering coefficient. They suggest subsequently the possibility of using

new caching techniques and peer-to-peer content distribution systems to deliver the

videos.

More recently, Zhou et al. [71] studied the influence of some of YouTube’s referrers

on views to videos: the featured, search and related videos referrers. They observed

that Youtube search and the related videos recommendation system are the most

important source of traffic to videos. The analysis was based on two datasets, one

consisting of video requests at a university network gateway, and the other consisting

of an initial set of featured videos and their related videos, collected recursively for

three levels. They also observed a strong correlation between the views to a video

and the number of views of its related videos, and suggest to consider it as a factor

in video popularity prediction.

In recent work, Figueiredo et al. [29] studied popularity dynamics using three

different YouTube datasets, specifically, a sample of most popular videos, a sample of

deleted videos, and a sample of videos obtained via keyword searches. Similar to our

work, the authors utilized a recently available feature of the YouTube API (‘Insight

Data’) that provides high-level and limited statistics of how clicks to a particular video

grows over time, along with some information on sources of these clicks. Figueiredo

et al. show that the popularity characteristics of the three datasets are different, and

that among different types of referrers, search and internal mechanisms are the most

important sources of traffic to Youtube videos.

Papadopoulos et al. [53] presented an analysis framework to investigate the em-

pirical properties of a Social Bookmarking System. Besides verifying the heavy-tailed

behavior of popularity and studying the dynamics of content popularity in social

media, the authors quantified the influence of the social factor on it. The proposed

framework was validated using data from Digg, a social news website. The effect of
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social influence on the evolution of popularity has been investigated in an interesting

experiment by researchers at Columbia University [59]. The authors created an arti-

ficial music market in a form of website, where users can listen to 48 unknown songs

from unknown bands, download them for free, and rate them. In the experiment,

14341 participants were randomly allocated to either a ‘social influence’ group, where

they can see how many times the song has been previously downloaded, or an ‘inde-

pendent’ group, where they chose which songs to listen to based only on the names

of the bands and their songs. The results showed that social influence was the key

factor impacting the popularity of content instead of its quality. The authors argue

that popularity is unpredictable.

Unlike these prior works, our novel dataset of YouTube video clones allows us

to study the significance and impact of content-agnostic factors while controlling for

differences in video content. In addition, our analysis is more comprehensive, as we

study all the possible internal and external video metrics provided by YouTube to

determine which factors influence shaping the success trajectory of a content.

Cha et al. [19] first noted the presence of YouTube video clones which they referred

to as “aliases”. They observe that aliases tends to “dilute” popularity, as the views

for the same content are spread out over several videos. The authors definition of

a clone is not necessarily an identical copy of a content as it includes videos having

non-overlapping parts up to one min. The authors did not use aliases to study how

different factors influence content popularity, as we have done in our work.
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2.3 Modeling the popularity evolution of user-

generated videos

Understanding which newly-uploaded content will become popular has been a major

research problem that attracted much attention. Many recent studies on popularity

dynamics have focused on classification, modeling and prediction of online popularity.

2.3.1 Classification models

There has been interest in clustering and classifying user-generated videos based on

the diversity in changes to the viewing patterns [17, 27]. For instance, Crane and

Sornette [27] developed a method for classifying collective dynamics of a social system

based on whether the factor responsible for a viewing activity was caused by internal

or external influences. The authors implicitly define internal and external events as

video referrers; they consider external links, embeds, and featured links as exogenous

factors and search links, and internal links as endogenous factors. Crane and Sornette

applied their model to a time-series of views to 5 million YouTube videos, and based

on the diversity in video popularity growth patterns, they labeled videos as viral,

quality, and junk. Figueiredo et al. [29] characterized the videos belonging to the

different datasets they collected into the classes defined by Crane and Sornette [27].

Based on the videos’ popularity evolution patterns, they classify the most popular

video lists into the quality category, whereas the list of deleted videos, and the list of

videos obtained via keyword searches into the viral category.

Popularity classes based on the heterogeneity in popularity growth behavior were

also proposed in [17], and explained by the level of socialness of a video. Video social-

ness is defined by assigning the video referrers as social (external links and embeds)

or non-social (search and internal mechanisms). Even though different explanations
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were used for categorization in [27] and [17], similar growth patterns were found

across classes.

Yang et al. [68] presented a time-series analysis associated with online content.

The authors showed that content popularity can be classified in six different groups

with distinct temporal shapes of attention. They presented a time-series clustering

algorithm that finds clusters using their proposed similarity metric and suggested a

simple prediction model that forecasts the shape of attention of online content. Yang

et al. validated their approach using data from blogging (a set of 170 million blog

posts and news media articles), and micro-blogging (a set of 580 million Tweets).

In a more recent work, Asur et al. [8] brought attention to the importance of

content in variations among popularity. The authors proposed a model for forecasting

a range of popularity of news items on Twitter, prior to their release. Instead of

using early measurements as predictors of online popularity, they used the following

properties obtained from the content of news articles: the source, the category, and

the subjectivity in the language of the article. Asur et al. found that the source of

the article is one of the key predictors of it’s popularity. Their model achieve 84%

accuracy, using classifiers. A similar study on the variations of the spread of content

was performed by Romero et al. [57], where only the categories of Twitter hashtags

is used for analysis.

2.3.2 Prediction models

Many studies addressed the issue of predicting the future popularity of user-generated

content using early measurements of popularity. Early measurements are defined by

early view counts on video sharing services such as YouTube, early votes on Digg,

early number of comments on sites and forums, early number of likes on facebook,

etc.
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Avramova et al. [9] empirically studied and modeled the change in popularity of

online videos. The popularity evolution of online videos is modeled using a closed-form

expression. Depending on the form-determining parameter, the cumulative popular-

ity can be represented either as a power-law distribution or an exponential decay

distribution.

Lerman and Hogg [44] presented a stochastic model of user behavior to predict the

future success of a newly uploaded user-generated content. The simple model is based

on extrapolating from the early measurements of user reactions to a new content. The

authors validated their approach through a dataset collected from Digg.

Perhaps most closely related to our work are the models by Szabo and Huber-

man [60] and Raktiewicz et al. [56]. Szabo and Huberman [60] presented a model

for predicting the total future view counts gathered by a video based on the total

view count received at the time of prediction. They tracked approximately 7,000

recently-uploaded YouTube videos for a period of one month and observed a strong

linear correlation between the logarithmically transformed total views early in the

lifetime and later in the lifetime of the video. The authors modeled future total view

counts as the sum of the current total view count, plus a linear term, that defines the

relationships between the logarithmically transformed total view counts accumulated

over times, and a noise term, that captures the randomness in the data. The error

margin produced by their approach is relatively large because the percentage error is

based on the total views since upload. Szabo and Huberman also studied the pop-

ularity evolution on Digg. Their results showed that the user-generated contents on

Digg have a faster decay in popularity when compared to video contents in YouTube.

Raktiewicz et al. [56] provided an analysis of the temporal aspects of online content

popularity in two large-scale systems, the Wikipedia and the Chilean Web space. The

authors suggested a model that combines the classical “rich-get-richer” model [10]

with random popularity shifts, with the goal of capturing the influence of exogenous
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events on content popularity. The model was validated using click-through data for

Wikipedia and the Chilean Web.

Our work is complimentary, as after empirically demonstrating that individual

video popularity is highly unstable and unpredictable, we proposed a model for how

the popularity statistics of a collection of recently-uploaded videos evolve over time,

instead of considering popularity evolution for individual videos.

2.4 Sampling biases

Social media platforms offer the opportunity to access tremendous amounts of human

social dynamics over time. for Recent works on user-generated video content is using

the most popular video-sharing site, YouTube, as the key source of large-scale data.

A majority of the studies has typically relied either on network traffic traces from

a network gateway [30, 73] or meta-data collected via crawling from video sharing

services [19, 21, 34, 35, 49, 60, 43, 27, 29, 17]. Cheng et al. [21] indicated that the usual

crawling techniques results with datasets biased towards popular content. However,

none of the prior works, except [60], considered the issue of sampling biases. When

using a biased, non-random sample of videos to study the popularity phenomenon,

erroneous results may be attributed to the popularity evolution process, instead of

the method of sampling.

A few studies introduced even more bias in the datasets by limiting the analysis

to videos with a certain popularity threshold [17] or selecting only the first result

in every keyword search entry list when using keyword-search techniques [29]. Our

work builds upon this body of work [18, 73, 30, 49, 17, 29] by studying how biases

occur owing to sampling. We demonstrate that biases are introduced when keyword-

search techniques are used for sampling videos and we show that a seemingly unbiased
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dataset for the analysis of UGC popularity could be extracted by tracking a collection

of newly uploaded videos.
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Chapter 3

Content-agnostic Factors that

Impact YouTube Video Popularity

When analyzing the factors that most impact video popularity, it is important to

take into account the content itself. Some content may attract more views because it

simply is better content or because there are more people interested in this content.

Analyzing large sets of identical videos, which we refer to as ’clone sets’, with many

videos of the same content, allow us to control the impact of content, provide an

unbiased analysis and focus on capturing the content-agnostic factors that allow a

video to attract more views. Our novel dataset allows us to answer questions that

could not be answered in previous studies. We identified large clone sets, which allow

a number of statistical methods to be applied on each clone set individually, as well as

more advanced methods that take into account the impact of differences in contents

across a larger set of videos.

The remainder of this chapter is organized as follows. Section 3.1 describes our

data collection methodology, basic characteristics of our dataset including the vari-

ables captured for each video, and our analysis approach. Section 3.2 presents an

analysis for the relative impacts of the measured content-agnostic factors on current
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video popularity, while Section 3.3 shows the importance of controlling for video con-

tent in this analysis. Section 3.4 studies the applicability of rich-get-richer preferential

selection models, and examines contributors to rich-get-richer behavior. Section 3.5

analyzes the content-agnostic factors impacting the popularity of newly-uploaded

videos. Finally, Section 3.6 concludes the chapter.

3.1 Methodology

In this section, we describe our datasets, the data collection methodologies, the anal-

ysis approaches and techniques used for the examination of the factors influencing

user-generated video popularity. In the following sections, we provide the analysis

details and results.

3.1.1 Data Collection

To analyse factors influencing video popularity, we start by identifying a large corpus

of identical or nearly identical videos on YouTube. By identical we mean the same

video content and audio soundtrack. We allow subtitles, variations in encodings

(quality), and small variations in video duration. In this paper, we refer to such a set

of nearly identical videos as a clone set and videos in such a set as clones. Through

extensive exploration, search, and viewing of YouTube videos, we manually identified

48 clone sets, each of which contain between 17 and 94 clones, with a median size of

29.5. 1 In total we identified 1,761 videos.2

We developed a web-based collection system which allows us to easily enter clone

video urls in a database. Each video entered is assigned a clone set id and a video id.

Once in the database, the system then extracts video and uploader information using

1Our dataset is available at http://www.ida.liu.se/ nikca/papers/kdd12.html.
2 Our initial dataset was somewhat larger, but we removed all videos whose duration deviated

more than 15% from the median duration within their clone set.
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(a) Total view counts (b) Next week’s views

(c) Video age (d) Uploader followers

Figure 3.1: High-level clone set summary.

both the YouTube developer’s API [69] and through HTML scraping. The system

collects three types of information:

• Video statistics: These include statistics such as view count, uploader’s fol-

lowers count, number of comments, “likes” and “favourite” events and average

rating. For each clone set, two snapshots were collected, spaced one week apart.

For all videos in a clone set, the data collection was done as close together in
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time as possible (within minutes). Table 3.1 describes all variables collected,

and Figure 3.1 provides an overview of the variations of four example variables.

• Historical view count: When available, we extract historical video view

counts from the YouTube HTML page. This information is referred to by

YouTube as “insight data”; an example is presented in Figure 3.2. We pro-

grammatically obtain this historical view count information by intercepting the

URL request which the YouTube website uses to plot the graph. This URL

contains 100 points with date/view count pairs.

• Influential events: The YouTube insight data also contains information on

how users discover a video. It reveals the top 10 “most significant” sources of

discovery, or where the video was linked from. Common sources of discovery

include “discovered through YouTube search” and “embedded on Facebook”.

We also collect this list of referrers and, for each referrer, the first date of referral

and the associated view count.

The dataset used in this work was collected between February 2010 and April 2011.
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Figure 3.2: Example of YouTube insight data.

39



V
ar

ia
b

le
D

es
cr

ip
ti

on
T

y
p

e
S

ca
le

C
a
te

g
o
ry

C
lo

n
e

se
t

ID
U

n
iq

u
e

cl
on

e
se

t
id

en
ti

fi
er

–
–

–
C

ap
tu

re
ti

m
e

T
im

e
at

w
h

ic
h

th
is

v
id

eo
d

at
a

w
as

ca
p

tu
re

d
–

–
–

U
p

lo
ad

ti
m

e
T

im
e

at
w

h
ic

h
th

e
v
id

eo
w

as
fi

rs
t

p
u

b
li

sh
ed

–
–

–
U

p
d

at
e

ti
m

e
T

im
e

at
w

h
ic

h
th

e
v
id

eo
w

as
la

st
u

p
d

at
ed

–
–

–
C

at
eg

or
ie

s
co

u
n
t

N
u

m
b

er
of

ca
te

go
ri

es
as

so
ci

at
ed

w
it

h
th

is
v
id

eo
–

–
–

N
ex

t
w

ee
k

v
ie

w
s

N
u

m
b

er
of

v
ie

w
s

b
et

w
ee

n
tw

o
w

ee
k
s

P
re

d
ic

te
d

lo
g

V
id

eo
p

o
p

u
la

ri
ty

R
at

in
g

av
er

ag
e

A
ve

ra
ge

ra
ti

n
g

(m
in

an
d

m
ax

ra
ti

n
gs

al
so

m
ea

su
re

d
)

P
re

d
ic

to
r

li
n

ea
r

V
id

eo
p

o
p

u
la

ri
ty

T
ot

al
co

m
m

en
ts

N
u

m
b

er
of

co
m

m
en

ts
P

re
d

ic
to

r
lo

g
V

id
eo

p
o
p

u
la

ri
ty

T
ot

al
d

is
li

ke
s

N
u

m
b

er
of

’d
is

li
k
e’

ev
en

ts
P

re
d

ic
to

r
lo

g
V

id
eo

p
o
p

u
la

ri
ty

T
ot

al
fa

vo
u

ri
te

s
N

u
m

b
er

of
ti

m
e

th
is

v
id

eo
w

as
’f

av
ou

ri
te

d
’

P
re

d
ic

to
r

lo
g

V
id

eo
p

o
p

u
la

ri
ty

T
ot

al
li

ke
s

N
u

m
b

er
of

’l
ik

e’
ev

en
ts

P
re

d
ic

to
r

lo
g

V
id

eo
p

o
p

u
la

ri
ty

T
ot

al
ra

ti
n

gs
N

u
m

b
er

of
ra

ti
n

gs
P

re
d

ic
to

r
lo

g
V

id
eo

p
o
p

u
la

ri
ty

T
ot

al
v
ie

w
co

u
n
t

N
u

m
b

er
of

v
ie

w
s

P
re

d
ic

to
r

lo
g

V
id

eo
p

o
p

u
la

ri
ty

U
p

lo
ad

er
ag

e
A

ge
of

th
e

u
p

lo
ad

er
P

re
d

ic
to

r
lo

g
U

p
lo

a
d

er
ch

a
ra

ct
er

is
ti

cs
U

p
lo

ad
er

co
n
ta

ct
s

N
u

m
b

er
of

(Y
ou

T
u

b
e)

’f
ri

en
d

s’
of

th
e

u
p

lo
ad

er
P

re
d

ic
to

r
lo

g
U

p
lo

a
d

er
p

o
p

u
la

ri
ty

U
p

lo
ad

er
fo

ll
ow

er
s

N
u

m
b

er
of

fo
ll
ow

er
s

fo
r

th
e

u
p

lo
ad

er
P

re
d

ic
to

r
lo

g
U

p
lo

a
d

er
p

o
p

u
la

ri
ty

U
p

lo
ad

er
v
id

eo
co

u
n
t

N
u

m
b

er
of

v
id

eo
s

u
p

lo
ad

ed
b
y

th
e

u
p

lo
ad

er
P

re
d

ic
to

r
lo

g
U

p
lo

a
d

er
p

o
p

u
la

ri
ty

U
p

lo
ad

er
v
ie

w
co

u
n
t

N
u

m
b

er
of

ti
m

e
an

y
of

th
e

u
p

lo
ad

er
’s

v
id

eo
s

w
er

e
v
ie

w
ed

P
re

d
ic

to
r

lo
g

U
p

lo
a
d

er
p

o
p

u
la

ri
ty

V
id

eo
ag

e
A

ge
of

th
e

v
id

eo
P

re
d

ic
to

r
lo

g
V

id
eo

ch
a
ra

ct
er

is
ti

cs
V

id
eo

k
ey

w
or

d
s

N
u

m
b

er
of

ke
y
w

or
d

s
as

si
gn

ed
to

th
e

v
id

eo
P

re
d

ic
to

r
lo

g
V

id
eo

ch
a
ra

ct
er

is
ti

cs
V

id
eo

q
u

al
it

y
T

h
e

b
es

t
q
u

al
it

y
(f

ra
m

e
si

ze
)

av
ai

la
b

le
fo

r
th

is
v
id

eo
(h

ig
h

er
is

b
et

te
r)

P
re

d
ic

to
r

li
n

ea
r

V
id

eo
ch

a
ra

ct
er

is
ti

cs

T
ab

le
3.

1:
V

ar
ia

b
le

s
co

ll
ec

te
d

an
d

an
al

y
ze

d
.

40



As mentioned previously, in this work, two videos are considered identical when

they have identical audio and video content. Despite our best effort to identify such

identical videos, some error is introduced by this manual data collection. These

errors can be classified as objective errors (i.e., when the video or audio content is

quite different), or subjective errors (i.e., when the video is close to identical, for

example, the video can be pre-fixed by a short clip or logo advertising the uploader’s

identity or organization). We have taken care to ensure that most objective errors

are eliminated. Subjective errors remain in the dataset and are inherent to the data

collection method.

In addition, while the YouTube insight data provides valuable information regard-

ing a video’s popularity evolution, it also has some limitations. First, this data is not

available for all videos, as uploaders can choose to hide it from public view. We could

retrieve the insight data for approximately 40% of the videos in our dataset. Second,

the historical view count data includes only 100 points, irrespective of the video’s age.

To extract the view count at a specific point in time, we applied linear interpolation,

which introduces an error dependent on video age. Finally, the referrer’s data only

reveals 10 referrers, with the exact method used by YouTube to select which referrer

to include in the list being unknown. This limits the number of views that can be

mapped to a specific source, but also leaves some uncertainty in whether there are

other more significant sources not accounted for. In our analysis we try to minimize

the effect of these limitations.

3.1.2 Analysis Approach

In this section, we introduce our analysis approach. Since our dataset contains mul-

tiple sets of (near) identical content, we are able to apply a range of techniques, both

on individual clone sets and on the overall set of videos across all clone sets. When

using the overall set, we can then choose to take the content (clone set id) into consid-
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eration or not. This allows us to identify factors impacting video popularity, as well

as evaluate the errors of other methods that do not take into account the impacts of

differing video contents. Specifically, we focus on the following:

• Individual clone set statistics: Calculated for each clone set. We present

results for an example clone set and summary statistics across all clone sets.

• Content-based statistics: These are calculated across all videos using an

extended model that takes into account each video’s clone set identity.

• Aggregate video statistics: These are calculated across all videos, ignoring

clone set identity. These statistics are used for comparison.

Our analysis utilizes statistical techniques such as multivariate linear regression,

collinearity analysis and principle component analysis, as well as hypothesis testing

when applicable.

Several techniques used in the following assume a linear relationship between

variables and normally distributed errors. To validate these assumptions, we first

performed a univariate linear regression to examine the relationship between the

response variable (weekly view count) and each other variable. Secondly, we examine

the residual plots and corresponding tests to check that the conditions for using linear

regression are satisfied.

To ensure linearity with regards to the weekly view count, some variables require

log transformation. In addition, some other variables clearly are weak predictors,

with higher variation in their residuals. To avoid introducing subjective biases, we

did not remove such variables. Instead, we allow the analysis to help us identify

suitable candidates. This turned out to be important as some variables are weak

predictors on their own, but complement other variables well. The resulting variables

used in the remainder of this thesis and any transformations used are summarized

in Table 3.1.
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• Principal component analysis (PCA)

The relationships between variables can often be characterized using PCA [3].

This technique allows us to identify groups of variables (called principal com-

ponents (PCs)), which explain different parts of the variations in the future

popularity. The resulting PCs can be used in following analyses such as regres-

sion. A principal component is defined as a linear combination of optimally

weighted observed variables (weighted such that the resulting components ex-

plain a maximum amount of variance in the data set). To calculate scores on

PCs generated using PCA, the following formula is used:

PC1 = β11(X1) + β12(X2) + ...β1p(Xp), where :

– PC1= the subject’s score on principal component 1 (the first component

extracted)

– β1p= the regression coefficient (or weight) for observed variable p, as used

in creating principal component 1

– Xp= the subject’s score on observed variable p

When a variable is given a great deal of weight in constructing a principal

component, we say that the variable loads on that component. The regression

weights (loadings) are determined using a type of equation called an eigenequa-

tion.

• Correlation and collinearity analysis

Interrelated explanatory variables can have negative effects on regression results.

It is therefore important to detect and understand these relationships. For this

purpose, we first perform a preliminary analysis to discover any correlations

between the predictors themselves, and if there are groups of variables that
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provide redundant information and/or explain the same variation. We leverage

a number of different statistical techniques, including relative importance of

predictors, pair-wise correlation matrices and auxiliary regression.

We investigate the strength of the linear relationships among the variables using

Pearson’s correlation. We assess the relative importance of each predictors in

linear regression. We compute the univariate coefficient of determination R2
i ;

i.e., how much the variable explains on its own. We then use the “LMG”

metric [46] to decompose R2 into contributions that sum to the total R2. When

using the LMG method, the R2 contribution is averaged over orderings among

regressors.

In addition, we use collinearity analysis techniques to check if there are linear

relationships among the set of explanatory variables. To find out which predic-

tor Xi is a linear combination of other predictors, we run auxiliary regressions.

We determine the coefficient of determination R2
i of how well the remaining

explanatory variables Xj 6=i explains Xi.

• Multi-linear Regression with variable selection

When many explanatory variables captures the same effect, it is desirable to

reduce the number of explanatory variables. Using multi-linear regression with

variable selection techniques, we identify a subset of the variables that captures

the majority of the variations and eliminate variables that does not provide

much information regarding future popularity.

In this section, we describe how we use multi-linear regression to determine

which factors most influence video popularity. For this purpose, we define the

response variable as the weekly view count (difference in view count between

our two data collections), and the measured factors (also called predictors) as
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all the other variables. The use of linear regression is motivated by the observed

linear relationships between the measured predictors and the response variable.

We perform three types of multi-linear analysis. We first use the standard

multi-linear regression model

Yi = β0 +
P∑
p=1

Xi,pβp + εi,

where the response variable Yi is modeled as a linear function of the indepen-

dent variables (Xi,p), and the method of least squares is used to estimate the

coefficients βp for the P predictors. Individual clone set statistics are obtained

by applying the above model on each clone set independently; this allows us

to determine which factors are the best predictors for each clone set. We then

apply this model on all videos together, regardless of the clone set identity, to

obtain aggregate clone set statistics. This allows us to evaluate the error when

not using our content-aware approach as discussed below.

In order to obtain content-based statistics, we design an extended model that

incorporates a categorical variable for the clone set identity. This model is useful

in understanding the influence of individual clone sets on the regression, and

whether or not the classification makes a difference. Assuming that we have

K clone sets (or categories), we introduce K − 1 additional category variables,

each capturing the relative difference against a reference clone set. The extended

multi-linear model is then given as:

Yi = β0 +
P∑
p=1

Xi,pβp +
K∑
k=2

Zi,kγk + εi,

where K is the number of clone sets; P is the number of predictors; and Zi,k is

the category regressor, encoded as Zi,k = 1 if clone i is from clone set k, and as
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0 otherwise. Note that γk can be interpreted as the relative distance between

the regression lines of clone sets 1 and k, or in other words, a measure of their

relative popularity.

• Hypothesis testing

Throughout the paper we apply standard hypothesis testing techniques to as-

sess the significance of our observations. The problem of statistical hypothesis

testing may be stated simply as follows: Is a given observation or finding com-

patible with some stated hypothesis or not? In the language of statistics, the

stated hypothesis is known as the null hypothesis and is denoted by the sym-

bol H0. The null hypothesis is usually tested against an alternative hypothesis

denoted by H1. When we reject the null hypothesis, we say that our finding

is statistically significant. On the other hand, when we do not reject the null

hypothesis, we say that our finding is not statistically significant. Many of these

tests are made possible by the large number of large clone set that we identified,

and would not be possible with previously reported datasets.

3.2 Factors and Their Importance in Prediction

In this section, we present our factor strength and importance analysis and results.

We first describe some preliminary analysis which qualitatively explains the variation

in weekly view count from the variables, then present our regression model, variable

selection, and reduced models.

3.2.1 Preliminary Analysis

Before looking at which factors best capture the future popularity, we perform a

preliminary analysis to discover any correlations between the factors themselves, and

if there are groups of variables that provide redundant information and/or explain the
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same variation. First, we we perform a thorough correlation and collinearity analysis:

We investigate the strength of the linear relationships among the variables using

Pearson’s correlation, we assess the relative importance of each predictor in linear

regression, and we apply collinearity analysis techniques to check if there are linear

relationships among the set of explanatory variables. Second, we apply Principal

Component Analysis (PCA) on each of the individual clone sets to take a closer look

at the interdependence between the predictor variables.

Correlation and collinearity analysis

To examine the strength of the linear relationships among the variables we use Pear-

son’s correlation. Figure 3.3 shows the correlation matrix plot for an example clone

set. The variables in the matrix plot are ordered based on their correlation with the

response variable, and each entry shows the pairwise correlations between the cor-

responding two variables. The correlation’s magnitude is represented by the ellipse

symbol, and its sign is represented by colors (and slope), with red (with slope to the

left) used for negative values and blue (with slope to the right) for positive values.

We note that many of the variables have high pairwise correlation and very similar

clustering of the pairwise correlation for most clone sets. In particular, two sets can

be identified: (i) the set of variables related to the past video popularity (i.e., the

total view count, favourite count, comment count, ratings count, likes and dislikes),

and (ii) the set of variables related to the uploader characteristics (e.g., the number

of uploader followers, contacts, videos, and views).

Relative importance is the evaluation of an individual predictor’s contribution to

a multiple regression model. To assess the relative importance of each predictor in

linear regression we first compute the univariate coefficient of determination R2
i ; i.e.,

how much the variable explains on its own. We then use the “LMG” metric [46] to

decompose R2 into contributions that sum to the total R2. When using the LMG
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Figure 3.3: Correlation matrix for clone set 41.

method, the R2 contribution is averaged over orderings among regressors. Figure 3.4

shows the boxplots of the relative importance of regressors, using both methods,

across the aggregate of all clone sets. One can see that the total view count is the

strongest predictor, explaining more than 80% of the response variance on its own.

Collinearity analysis techniques can also be used to check if there are linear re-

lationships among the set of explanatory variables. Understanding and detecting

collinearity is important, as interrelated variables could have negative effects on the

regression results. To find out which predictor Xi is a linear combination of other

predictors, we run auxiliary regressions to determine the coefficient of determination

R2
i of how well the remaining explanatory variables Xj 6=i explain Xi. The auxiliary

regressions on all individual clone sets and on all videos aggregated across clone sets

show that the R2
i values of the following regressor factors exceed the overall R2 value

of the model including all the explanatory variables: the total view count, the number

of times a video was favourited, the number of comments, the number of ratings, the
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(a) The univariate coefficient of determination R2
i

(b) The R2
i contributions that sum to the total R2.

Figure 3.4: Relative importance of predictors.

number of times the video was “liked” or “disliked”, as well as the total number of

views to all videos uploaded by the uploader, and the count of the uploader’s fol-
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lowers. We note that these factors fall into the two previously identified groups of

correlated variables. Overall, these results provide evidence of a serious collinearity

and its sources.

Principal Component Analysis

The first step when performing PCA is extracting all the original components and

their regression weights (loadings) through the eigendecomposition for the correla-

tion (or covariance) matrix of observable variables. The PCs are determined such

that the first component is responsible for the highest fraction of total variance in

the data set, and the second component is responsible for the highest fraction of vari-

ance that was not explained by the previous component(s). Every additional PC is

responsible for increasingly less and less significant amounts of variance. The analysis

proceeds till the total variance has been accounted for, but only the first few impor-

tant components are held for rotation and interpretation. To find the number PCs to

retain, we use several standard criteria: the eigenvalue-one criterion, the cumulative

variance accounted for criterion, as well as the scree test. Our results show that typi-

cally two to four components account for an important fraction of the variance in our

dataset.

Next, we interpret the meaning of each retained component by examining the

weight (or factor loading) of the observed variables, which is equivalent, in an or-

thogonal analysis, to the correlations between the component and the variables. We

find the two aforementioned variable groups, (i) the set of variables related to the

past video popularity, and (ii) the set of variables related to the uploader charac-

teristics), to correspond to the two primary principal components, particularly for

younger clone sets. Figure 3.5 shows the scatterplot of factor loadings for the two

first principal components for one such clone set. The variables giving a significant

weight (higher than 0.5) in constructing principal components 1 and 2 are marked by
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Figure 3.5: Principal components plot for clone set 41.

blue squares and red circles respectively. Referring to Table 3.1, these roughly refer to

video popularity and uploader popularity metrics, respectively. For many other clone

sets, particularly clone sets with big variation in video age, other video characteristics

(such as video age and video quality) forms a third important component.

In summary, the results in this section indicate that there are many explana-

tory variables in our dataset that are responsible for the same variation in the total

view count. In the subsequent sections we proceed to variable selection, to prune

unnecessary variables and limit the negative impact of collinearity in the regression.

3.2.2 Variable Selection within Clone Sets

To determine which predictor variables have the most impact on the popularity of

a clone within a clone set, we applied multivariate regression analysis on individual
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clone sets. We use variable selection techniques to identify a good subset of variables

that explains most of the variations, and to help eliminate redundant variables.

Multivariate Regression

This section presents our results for variable selection. Table 3.2 summarizes the

results for an example clone set, and presents summary statistics across all clone sets.

We used the standard t-test to assess the significance of individual regression

coefficients, and test the hypothesis that the true value of the coefficient is non-zero.

A small p-value (0.05 or less) is used to reject the null-hypothesis that the parameter

is zero, in favor of the alternative hypothesis which suggests that the parameter in fact

is of value to the model. These probabilities are summarized in the p-value column.

Significance codes are added to emphasize the importance of predictors, with p-values

of (0.001, 0.01, 0.05) represented by (***, **,*) respectively.

We used the F-test to assess the significance of the model as a whole by testing

whether the dependent variable (i.e., the weekly view count) has a linear relationship

with at least one of the explanatory variables. The large F-value and the correspond-

ing small p-value indicate that there clearly are strong linear relationships, validating

our previous observations.

Finally, we calculate the coefficient of determination (R2), which summarizes the

portion of the variation in the response variable explained by the fitted model. If a

model has perfect predictability, R2 = 1. If a model has no predictive ability, R2 = 0.

Note that both multiple R2 and adjusted-R2 suggest a strong predictive relationship

between the model and the weekly view count.3

The results from the multivariate regression analysis, as shown for an example

clone set in Table 3.2, indicate a significant predictive ability with high coefficient of

3The adjusted-R2 is an R2-like measure, which penalizes the excess number of regressors that do
not add to the explanatory power of the regression. Unlike R2, adjusted-R2 does not increase unless
the new variables have additional predictive capability.
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Clone set 41 Median all clone sets
Predictor βi (σi) p-value p-value
(Intercept) -4.467 (3.098) 0.157 0.336
Ratings average 0.119 (0.230) 0.607 0.449
Total comments -0.063 (0.218) 0.775 0.603
Total dislikes -0.024 (0.242) 0.920 0.493
Total favourites -0.100 (0.211) 0.638 0.416
Total likes 0.501 (0.497) 0.320 0.533
Total ratings -0.730 (0.572) 0.210 0.543
Total views 1.456 (0.236) 0.000 *** 0.003 **
Uploader age 0.333 (0.596) 0.580 0.485
Uploader contacts 0.050 (0.119) 0.677 0.500
Uploader followers 0.232 (0.197) 0.248 0.361
Uploader video count -0.121 (0.277) 0.663 0.522
Uploader view count -0.137 (0.206) 0.511 0.511
Video age -0.590 (0.424) 0.172 0.044 *
Video keywords 0.036 (0.242) 0.884 0.552
Video quality 0.080 (0.183) 0.666 0.498

Table 3.2: Summary of multivariate regression results. Clone set 41 have 40 degrees
of freedom in comparison to the median clone set which have 13.5 degrees of freedom.
Other summary statistics include the residual standard error (1.34 and 1.01), the
F-statistic (22.78 and 18.83) using 15 (15) variables, the overall p-value (5.9 · 10−15

and 2.1 · 10−6), the multiple R2 (0.895 and 0.936) and the adjusted-R2 (0.856 and
0.876).

determination values; however, most explanatory variables are statistically insignifi-

cant and have high standard errors. In addition, some coefficients have the opposite

sign to what would be suggested if using the univariate regression, with one variable

at a time. For example, the full model suggests that the coefficients for the number

of comments and the number of ratings should be negative. Yet, Figure 3.3 shows

that both these variables have strong linear correlation with the predicted variable.

These observations are classic symptoms of collinearity. To limit the impact of this

collinearity, we next proceed to variable reduction, to eliminate redundant variables

and select the best model.
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Figure 3.6: Percentage of occurrences in the set of “best models”, using the best
subset approach with Mallow’s Cp. Dark color shows fraction of models in which the
variable was selected while having a p-value smaller than 0.001 in the final model. In
the remaining occurrences the variable was selected, but with a higher p-value.

Reduced models

The elimination of redundant and unnecessary predictors is crucial to minimize the

impact of collinearity and additional noise on the regression models. Variable selec-

tion includes a search strategy and a selection criterion or benchmark to compare

two models. The two commonly used search strategies are stepwise regression and

best subsets regression. Stepwise regression is a greedy step-by-step algorithm that

sequentially selects explanatory variables to be included or excluded in the model

based on a given criterion. This method proceeds either by forward selection, where

one explanatory variable is introduced at a time, or backward selection, where all

the explanatory variables are included using multivariate regression and one vari-
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able is eliminated at a time. Another approach in stepwise regression is to combine

forward and backward selection and test at each step for variables to be added or

dropped. The best subsets regression method inspects all the possible models that

could be generated from the combination of potential predictors and finds the best

model based on a specific criterion. Several criteria could be used with either search

method to select the best model. We examined the following: (a) adjusted R2, (b)

Akaike information criterion (AIC), and (c) Mallow’s Cp criterion. The goal of these

criteria is to minimize the residual sum of squares (RSS) while imposing a penalty

for adding more regressors. Thus when selecting a model, there is a tradeoff between

the model complexity and its goodness of fit.

We proceed to eliminate redundant variables using the best subset search tech-

nique and Mallow’s Cp as the selection criterion [5]. We have obtained qualitatively

similar results using the other commonly used search methods and selection crite-

ria. The results on Figure 3.6 show that the total view count is the most important

explanatory variable. It is selected in 92% of the total set of “best models”, and

is determined to be highly significant. The video age is the second most important

predictor, being very significant and having the second most common variable in the

models. While the video age did not appear a good predictor on its own, as exem-

plified by the ordering in Figure 3.3 and low individual R2 values (with a median of

0.081), its frequent inclusion indicates that it accounts for different variations than

the total view count. This has also been observed in some of our PCA analyses. It is

also interesting to note that other independent variables, such as variables related to

the uploader characteristics, did not appear important in the original regression are

now significant when selected in the final model, and are often significant for younger

clone sets. One factor that seldomly is significant (even when included) is the video

quality. In part, this may be a consequence of use of default encodings. However,

although our analysis does not find a significant linear relationship, we believe that
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quality differences may be important in clone sets with wide variations in video age

and associated wide variations in quality. The quality variations in such cases may

play a role in making age our second most important predictor.

From Figure 3.6, we can see that the best subset approach with Mallow’s Cp, on

average, reduces the number of variables by about 60%. The multiple R2 values for

the chosen models are then only slightly smaller than the original R2 value of the full

model.

3.2.3 Summary

This section analysed the importance of different variables in explaining video popu-

larity. We first established that several variables are redundant and can be eliminated.

We find the most significant variables to be total views and video age. Other factors

include the uploader popularity (as measured by the number of its followers). An

interesting observation is that the most influential factors also are the only statistics

available to the YouTube users, when searching for a video.

In the following sections we take a closer look at the impact of clone identity on

the video popularity over time, and how the popularity is influenced by other external

factors such as external links/embeds, the video being featured, or more accessible

through searches.

3.3 Impact of Content Identity

The regression analysis presented in the preceding section was applied on individual

clone sets. Using the model extension presented in Section 3.1.2, we perform regres-

sion analysis over the entire dataset while taking into account the content identity,

and thus by extension study the impact of the video content on popularity dynam-
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Estimate Std. Error t-value p-value
Total view count (βi) 1.100 0.013 87.83 0.000 ∗ ∗ ∗

Video age (βi) -1.008 0.039 -25.80 0.000 ∗ ∗ ∗
Clone set (minkγk) -0.727 0.348 -2.08 0.037 ∗
Clone set (maxkγk) 2.802 0.345 8.08 0.000 ∗ ∗ ∗

Table 3.3: Summary of extended regression analysis using categorical variables for
clone set identification. With 95% confidence, the rejection rate of the hypothesis
that the category variables (γk) are equal to zero is 94%.

ics. Evaluating the importance of the clone set categorical variable is important as it

allows us to separate the impact of content-related and content-agnostic factors.

We perform the content-based regression analysis using the most important ex-

planatory variables identified in Section 3.2.2. We use our default clone set ordering,

where sets are numbered from 1 to 48, and choose one clone set as the baseline set.

Summary results are presented in Table 3.3, for the baseline clone set number

1. The coefficients of the category variables (γk) explain by how much the intercept

of the selected clone set differs from the intercept of the baseline clone set. The

significance of the categorization, i.e. the impact of video content, is then measured

by the corresponding p-values. We also report range values minkγk and maxkγk,

across the 47 non-baseline clone sets.

We find that 44 out of 47 category variables have p-value smaller than 0.05. When

averaging over all possible baseline clone sets, we found approximately 60% of the

category variables to be significant. This illustrates the importance of taking clone

identity into consideration.

As a second step to evaluate the importance of video content, we compare the

regression analysis results of the content-aware extended model and the regular indi-

vidual clone set models with the aggregate model which ignores clone identity.

For each model type, we used four different models: three partial models and one

full model. The first partial model includes only the view count variable, the second
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model includes both the view count and the video age, and the third model further

adds the uploader followers.

Table 3.4 shows the coefficient of determination R2 values for each model when

running the regression analysis on each clone set individually (“Individual”), across

all clones and clone sets as an aggregate (“Aggregate”), and when we take the clone

identity into account using category variables (“Content-based”). Comparing the

last two rows, we note that the ’Content-based’ models consistently explain a larger

portion of the variation, as evidenced by higher R2 values. This is another indication

that taking into account the clone identity is an important factor in modeling the

video popularity.

View count + age + followers all
(1 variable) (2 var.) (3 var.) (15 var.)

Individual (mean) 0.788 0.864 0.871 0.933
Individual (median) 0.803 0.873 0.875 0.940

Individual (41) 0.861 0.870 0.874 0.895
Content-based 0.792 0.850 0.852 0.855

Aggregate 0.707 0.808 0.808 0.821

Table 3.4: Summary of R2 values for example models.

Table 3.4 also reveals that the view count by itself explains the biggest percentage

of the variance, especially when taking into account the clone identity. Adding the

video age variable increases the R2 values relatively significantly. Adding the uploader

followers variable can result in an occasional incremental increase in the goodness of

fit, while the other variables impact is even less important.

However, perhaps more importantly, this table also shows that if one tried to

analyze the relative importance of age, followers, etc., without controlling for video

content, one would conclude that factors such as age and followers are relatively

more important (compared to view count) than they really are. This is illustrated

by comparing the difference in values from left to right, for the aggregate and the
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content-based models. In one case, R2 is improved by 0.114, and in the other by only

0.063.

The next section will take a closer look at the impact clone identity may have on

predictive models, such as the rich-get-richer model.

3.4 A Closer Look at Preferential Attachment

Prior works have suggested that video popularity evolves according to rich-gets-richer

preferential selection [10] or a variant thereof (e.g., [60, 19]), wherein the current view-

ing rate of a video is proportional to the total number of views the video has already

acquired. In Section 3.4.1, we evaluate whether or not our data is consistent with a

rich-get-richer model of popularity evolution. Section 3.4.2 considers a more restricted

form of rich-get-richer behavior, the “first mover” advantage. Finally, Section 3.4.3

explores other phenomena that may result in rich-get-richer behavior, including search

bias towards popular videos.

3.4.1 Models

We consider rich-get-richer models wherein the probability Π(vi) that a video i with

vi views will be selected for viewing follows a power law

Π(vi) ∝ vα,

where α is the power exponent.

Perhaps the most interesting case is when α = 1, which was considered by Barabasi

and Albert [10]; this corresponds to linear preferential selection, and can be shown

to result in a scale-free distribution (in our context, of total view counts). For the

more general non-linear case, the underlying distribution depends strongly on the

parameter α and the scale-free characteristic no longer holds [42]. The sub-linear case
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Slope estimate Confidence intervals Hypothesis testing

Metric α (σ) 90% 95% H0: α = 1 H0: α ≥ 1 H0: α ≤ 1

Individual 1.027 (0.091) 0.988-1.065 0.981-1.073 0.85 0.57 0.43

Content-based 1.003 (0.014) 0.98-1.027 0.976-1.031 0.81 0.59 0.40

Aggregate 0.932 (0.016) 0.906-0.958 0.901-0.963 REJECTED REJECTED 1.00

Table 3.5: Rich-get-richer slope estimates and hypothesis testing.

(α < 1) results in a stretched exponential distribution. In the super-linear case (α >

1), the rich get much richer, and when α > 2 a winner-takes-all phenomenon quickly

occurs. We note that these cases can be compared against a bank giving differentiated

interest rates on their customers savings. The linear case simply corresponds to the

case where everybody gets the same interest, but whoever has more money naturally

will gain more money than those with less money. Similarly, the sub-linear case

corresponds to the case where people with less money will be given a higher interest

rate, such as to help them catch up with the richer people, and of course, as suggested

by the winner-takes-all phenomenon, for example, the super-linear case have opposite

effect.

Basic rich-get-richer models as described above consider only the number of ac-

cumulated views as a determinant of the rate of acquiring additional views. With

YouTube videos, however, user interest in particular subjects changes over time, caus-

ing a deviation from rich-get-richer behavior when one considers a collection of such

videos with differing contents. An important question is whether a rich-get-richer

model is applicable when one removes the impact of changing user interests, as we

are able to do with our clone-based methodology.

To answer this question, we first identify within each clone set videos of similar

“generation” (age within a multi-year window). We restrict attention to videos of

similar generation to avoid our analysis being impacted by wide variations in video

quality (or other generation-related effects). Specifically, for each clone set, we first

find the video clone with the highest current popularity (i.e., the video that acquired

the most additional views during our one week measurement window). We then
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consider only the videos in the clone set that were uploaded within two years of the

upload time of this video.

We now take a closer look at the impact differences in video identity can have

on the rich-get-richer phenomena. We examine how the rate at which videos attain

new views depends on the total view count using univariate linear regression (using

log-transformed data). All three analysis approaches, namely regression analysis on

individual clone sets, on the aggregate, and the aggregate considering content identity,

were applied. Using hypothesis testing, we determine if the system is sub-linear

(α < 1), linear (α = 1), or super-linear (α > 1). Table 3.5 summarizes our results.

The first column in Table 3.5 shows the coefficient estimates and standard devia-

tion resulting from the univariate regression analysis. The second and third columns

show the corresponding confidence intervals. The results indicate that the slope es-

timates are often around one and that the rate at which videos acquire views is

correlated with their current total view count, providing quantitative evidence for

the existence of preferential selection. For the individual clone sets, and the extended

content-based model, α is typically equal or slightly higher than one. The selection

rate is linearly dependent on the current total view count, proposing that the popular-

ity evolution is scale free, and strongly controlled by rich-get-richer behavior. For the

aggregate model, α is less than one, indicating an exponential popularity evolution

that could result in a much more even popularity distribution than that suggested by

the pure (linear) rich-get-richer dynamics.

To validate these observations, we performed hypothesis testing to check whether

each slope estimate is linear, super-linear, or sub-linear. The last three columns

in Table 3.5 show the p-values for hypothesis tests that α is equal to 1 (H0), α is

greater than 1 (H1), α is less than 1 (H3). Here, the p-values express the results

of the hypothesis test as a significance level. If p-values are smaller than 0.05, the

hypothesis is rejected. Using standard hypothesis testing, we remind the reader that
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these tests can only determine if the null hypothesis can be rejected, in favor of the

alternative hypothesis, not if the null hypothesis is true. However, note that if two

out of three (mutually exclusive) hypothesis are rejected, this would suggests that

the third hypothesis likely is true.

From the results in Table 3.5, we note that the hypothesis testing in fact validates

many of the observations based on our discussion of the slope estimates. In particular,

it is clear that a model that does not take the clone set identity into account (e.g.,

the aggregate model) may suggest a much weaker sub-linear relationship than if the

clone identity is taken into consideration. Note that for the aggregate model, we can

reject both the linear and super-linear hypotheses, which clearly suggests sub-linear

preferential selection. Further, the extended model that takes into account the clone

set identity does not allow us to reject any hypothesis, but the values suggest that a

linear relationship is plausible. The results are interesting as they provide evidence

for linear (and in some cases even super-linear) preferential selection once we control

the individual heterogeneity in content.

3.4.2 First Mover Advantage

Rich-get-richer behavior may result in part from a “first mover” advantage. The first

video to include particular content may have already achieved significant dissemina-

tion by the time that clones appear, causing it to acquire new views at a higher rate

(for example, via recommendations from previous viewers, featuring, or bias in search

algorithms). Using our clone-based methodology, we now evaluate the advantage of

being the first to upload particular content.

To track video popularity over time, we use YouTube’s insight data collected

through HTML scraping. As a first step, we consider the success of the first mover

in each cloneset, where a success event for a particular video is defined as when that

video accumulates the larger number of total views compared to all other videos
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1st 2nd 3rd 4th 5th later
Winner uploaded 27.1 12.5 8.3 6.3 6.3 39.6
Winner searched 66.7 8.3 0.0 8.3 8.3 8.3

Table 3.6: The percentage of times a video clone that obtained the highest total view
count was the first, second, third, fourth, fifth (or later) among the videos in the clone
set with respect to being uploaded or searched. (Clone sets with relevant statistics
considered.)

within the clone set. We first consider how often the most successful video within a

clone set is the first to either be uploaded or discovered through search. Table 3.6

shows the number of times the video clone that obtained the highest total view count

was first, second, third, fourth, or fifth, among the videos in the clone set, to be

uploaded or found through search. Overall, the winner was uploaded first among the

videos in the clone set in 27.1% of the observed cases, and was among the first five

in 60.4% of the cases. Similarly, the winner is the first to be found through search

in 66.7% of the cases for which we have (insight data) statistics, and among the first

five to be found through search in 92% of the cases. Clearly, there is a significant

advantage to the first mover.

While the first mover is not always the winner, it is often highly successful, even

when it is not the winner. To illustrate this, we consider the view count of the first

uploaded video relative to the winner. A ratio of one corresponds to the case where

the first mover is the winner, and a small ratio indicates that the first mover was

relatively unsuccessful. Figure 3.7 shows the complementary cumulative distribution

function (CCDF) of this ratio for our dataset. In addition to the 27% of clones sets

where the first mover was the winner, this ratio is above 0.5 for 35% and above 0.1

for 50% of the first-movers. Given the high skew in overall view counts, these values

are high.

While these results suggest that the first mover typically is relatively successful, it

is interesting to note that there are cases where other videos have been able to surpass

the first mover in popularity. What is it that allows some other video to overtake the
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Figure 3.7: CCDF of the ratio of the view count of the first uploaded video in a clone
set, relative to the view count of the video with the highest view count in the same
set.

spot as the most popular clone? Section 3.5 takes a closer look at some influences

that can cause such overtakings.

3.4.3 Video Discovery and Featuring

We now examine the roles that video discovery and featuring mechanisms may play in

the observed rich-get-richer preferential selection behavior. Aspects such as featuring

on YouTube, ranking of a video in YouTube search, and embedding of a video on

external sites, are difficult to capture over time. Nonetheless, the “video referrers”

part of the YouTube insight data provides (for some videos) additional information

necessary for our analyses. The results presented here are based on analysis of clone

sets that have multiple videos with insight data. We use YouTube’s classification of

registered referrers (Table 3.7).
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Referrer type Description
Ad The viewer was referred to the video through a paid

Youtube promotion. Videos can be promoted on the
YouTube website through paid advertisement. Such
videos are labeled as ”Promoted Videos” and appear
next to related search results.

Featured The viewer was referred to the video through an un-
paid Youtube promotion such as the YouTube ”Featured
Videos” or ”Spotlight Videos” sections. It’s interesting
to note that most of the videos in the ”Featured Videos”
list are selected from the ones uploaded by Youtube
partners due to commercial advantages.

Mobile The video views occurred on a mobile device through the
mobile version of the Youtube website (m.youtube.com)
or through Youtube apps.

Google Search The viewer was referred to the video through keyword
searches on the Google search engine.

YouTube Search The viewer was referred to the video through keyword
searches on YouTube.

Related The viewer was referred to the video through related
videos in YouTube.

Embedded The viewer was referred to the video through an embed
on an external website.

First embedded view The video was embedded on another website when it
was viewed.

External The viewer was referred to the video through links on
other websites.

Other/Viral YouTube could not recognize a referrer for the views
because the the user navigated directly to the video by
copying and pasting the video’s URL or by clicking on
a link to the video from an email or instant message
application.

Youtube other (Internal) The viewer was referred to the video through a Youtube
link other than a related video or search result. Other
pages on YouTube could be the YouTube homepage, cat-
egory pages, a user profile page, other peoples channel
pages and a user generated playlist.

Subscriber The video views occurred as a result of the uploader
channel’s subscribers clicking on it in one of the sub-
scription notification modules.

Channel The video views occurred on the uploader’s channel
page.

Table 3.7: YouTube’s classification of registered referrers
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Figure 3.8: Boxplot of the average fraction of views (per cloneset) coming through
different referrer categories.

We first consider how the most popular videos within each clone set have obtained

their views, compared to their less popular counterparts. Figure 3.8 compares the

average fraction of views coming through different referrer types for the most popular

clones, with that of the remaining clones.4

The results are somewhat counter-intuitive. Notice that the “Top 2” most popular

videos are not necessarily the videos that are prominently featured or externally

linked. Instead, the search discovery method alone accounts for most of the difference.

For example, for the search referrer category, the median of the top clones is almost

equal to the 90th quartile of the remaining videos. On the other hand, the less

successful clones get most of their views through related (video) referrals.

4We present the mobile referrers separately as it is not a source a discovery per se, but is never-
theless impacts discoverability, as more users are accessing videos exclusively through mobile devices
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Figure 3.9: The fraction of views coming through external sources, for clones that are
externally linked.

Figure 3.9 shows the fraction of views coming through external referrers only (not

including embeds). Note that Google is shown as an external source of traffic and

it is driving most of the external views of the popular clones. Google is considered

an external referrer because views may come from a number of Google non-search

services such as Google News, Google Reader, and Google Group posts.

Overall, the highest fraction of clicks to a video is coming through the search

referrers. As all videos can potentially be found through search, but not all videos

are featured or embedded on external websites, we take a closer look at these referrers.

Figures 3.11(a) and 3.11(b) show the corresponding boxplots of the fraction of views

coming through different referrer types for only the clones that are featured and

externally linked, respectively. The same conclusion applies to these data subsets:

search referrers are the most powerful in terms of the percentage of traffic they bring,
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Figure 3.10: Search bias towards top 2 videos in each clone set versus the median age
of the videos in each clone set.

whereas search and mobile referrers are still showing the biggest differences between

successful and less successful videos.

Recall that we are considering multiple videos containing essentially the same

content, and this allows us to remove biases introduced because of differences in

content (e.g., popular content is more likely to be searched for than non-popular

content). Our results suggest that successful videos are much more prominently

selected through searches. This could potentially occur because of YouTube’s internal

search mechanism, the keywords associated with the videos, the keywords entered by

the users, user biases when selecting among search results, or a combination thereof.

For example, people may be more likely to pick the first search results than pick items

lower down on the list, or to pick videos with higher view counts (visible to the user at
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(a) Externally linked clones

(b) Featured clones

Figure 3.11: Boxplot of the fraction of views of clones externally linked and featured,
coming through different referrer categories.
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the time of selection) [58]. Again, we note that our unique dataset allow us to remove

the importance of content. This is an important observation as we can eliminate the

obvious bias that some videos have more views because more people searched for that

content. Instead, videos with a higher fraction of views due to searches (within a

clone set) must either have been more frequently returned by the search engine or

more frequently selected by the user, than the other clones.

Next, we statistically test whether or not the search is providing additional bias

towards more popular clones, and enabling the videos with larger view counts to

attract even more views. For each clone set, we compute the fraction (xi) of all search

induced views that are to the top ranked videos in a clones set, and the fraction (yi)

of the views that are to the top ranked videos. Each (xi,yi) pair is an observation.

If there is no additional (unproportional) bias in the search methods, the ratio xi/yi

should be bigger than one only half of the time (and less than one the other half).

Figure 3.10 shows a scatter plot of this ratio against the median age of the videos in

each clone set when considering the top two clones in each set. We note that 10 of

the points are above the x/y = 1 line and only 5 are below the line. The probability

for this or a more skewed observation in the case there was no bias is 0.171. This

low probability suggests that the search may be biased. The figure suggests that any

such bias likely is caused by the younger clone sets, for which search may be a more

important factor.

We use hypothesis testing to systematically quantify the likelihood that the search

mechanism is proportionally fair given the observed results. Similar to the scale-free

rich-get-richer models, proportional fairness would ensure that views from search are

proportional to the total view count. We formulate the null hypothesis, denoted H0,

as the “search mechanism is fair”. Mathematically, we express the null and alternative

hypothesis as:

H0 : P (xi > yi) = 0.5
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Top 1 Top 2 Top 3 Top 4
p-value 0.075 0.171 0.035 0.285

Table 3.8: Hypothesis testing of whether or not the search mechanism is unpropor-
tionally biased towards the most popular clones.

Ha : P (xi > yi) 6= 0.5

where p = P (xi > yi) is the probability of observations below the x/y = 1 line. We

estimate the standard deviation and calculate the test statistic z, which measures how

far the sample mean p diverges from the expected mean of a fair search mechanism.

We then compute the p-value of the test statistic and conclude whether or not the

null hypothesis is rejected. We choose a 95% confidence interval, and so the level

at which we reject the null hypothesis is 0.05. Table 3.8 shows the p-values for a

different subsets of the most popular clones (top 1, top 2, top 3, and top 4 ranking

videos). While the null hypothesis only is rejected for the top 3 case, we note that

we get relatively small p-values for the other cases as well. We believe that a larger

dataset would help further validate our observations.

We surmise that YouTube’s search mechanism, at the time of these measurements,

either was biased towards the most popular clones or in the case multiple clones are

presented to the user, the users are biased towards picking the videos with higher

view counts. This further strengthen the rich-get-richer phenomenon.

As previously discussed, the first mover advantage can be important for the success

of a video. In addition to being uploaded, it is important that the video is discovered

and/or made available through different paths. Using correlation analysis, we have

observed that there is often a significant positive correlation between the total view

count and the order in which clones are first referred, featured, or accessed through

mobile devices. While omitted, these results suggest that there is also is a first-

discovery advantage, where videos discovered earlier through internal search methods,

featured earlier, or that is accessed through mobiles earlier, tend to be ranked higher.
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Figure 3.12: The weekly views for a number of example videos in clone set 14 (18
clones).

3.5 Factors Impacting Initial Popularity

This section considers factors impacting the view count early in a video’s life, which

in turns impacts the overall video popularity due to the rich-get-richer behavior, as

shown in the previous section.

3.5.1 Uploader Characteristics

We analyzed the YouTube social network size of the uploaders’ observed in our

dataset. In general, uploaders of top-ranked videos have large social networks. Fur-

thermore, manual examination of the top uploaders confirmed that they are often

commercial entities promoting their official external websites. Usually commercial

uploaders are the “first-movers”. In fact, even when they were not, it appear that

their videos often manage to move ahead in popularity. Figure 3.12 shows an example

clone set where a commercial user (video with rank 1) catches up and surpasses a pri-

vate uploader (video with rank 2) even though the former was not the first uploader.
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Aggregate Content-based
Predictor / Age 1d 3d 7d 14d 1d 3d 7d 14d
View count 0.44 0.42 0.50 0.55 0.60 0.59 0.66 0.70
Video quality 0.08 0.35
Video age 0.00 0.43
Number of keywords 0.04 0.36
Uploader view count 0.41 0.64
Uploader followers 0.40 0.58
Uploader contacts 0.19 0.42
Uploader video count 0.08 0.38
Uploader age 0.02 0.35

Table 3.9: Age effect on R2 values when taking into account the clone set identity
(content-based) and when not (aggregate).

This is a typical example showing the importance of the uploader characteristics and

its impact on a video’s popularity.

3.5.2 Age-based Analysis

As seen previously in this paper, the uploader characteristics can be useful for pre-

diction of future popularity. While the total view count can be an important factor

when predicting a video’s future popularity, it has the disadvantage that all videos

start with a view count of zero. However, at the time of upload, some of the other

predictors are known, including the uploader network and the prior success of the

uploader. Indeed, based on our PCA analysis in Section 3.2 we have seen that the

uploader characteristics can be a good predictor for young videos. We now perform

an age-based regression analysis to determine how the relative importance of the total

view count changes with time, relative to these more static factors.

Table 3.9 shows the coefficient of determination R2 between the predictors in the

first two weeks since a video’s upload and the total view count at the half-year point

since upload. We calculate the total view count of videos at 1 day, 3 days, 1 week,

2 weeks, and half a year using the historical view statistics. Linear interpolation
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is needed to calculate the approximate total view count at specific time thresholds,

as the data provides only 100 points, equally spaced through the video’s lifetime.

The file-related information and the uploader characteristics properties are assumed

constant. The first four columns show results for the aggregate set of videos and the

last four columns show results when clone set identity is accounted for.

These results show that the total view count quickly become the strongest predic-

tor of the view count at the half-year point. The results also confirm that during the

early stages of a video’s lifetime, the uploader’s social network is a more significant

factor than the total view count. Indeed, already at upload, approximately 64% of

the variation in views can be explained by the uploader view count alone, and it

takes a week for the total view count to become a similar or better predictor than the

uploader social network. The impact of the uploader characteristics are significant in

the beginning, probably because an established social network is a source of initial

views from subscribers, that could boost the video view count in a short duration,

and let the video move forward in rankings even if it does not enjoy a first mover

advantage.

Finally, we note that some factors have much more impact when the influence of

the content is considered through the clone set identity factor. For example, factors

such as the keyword number, the video quality and the video age, have a great impact

in the early stages of a video’s lifetime. The keyword metric, although appeared to

be insignificant in the aggregate analysis, is an important factor when a video is first

uploaded, explaining up to 36% of the variation in views. This may suggest that

keywords in fact may be one of the main factors in helping find the video in the first

place (when competing against videos with the same content). The more targeted

keywords a video has, the greater the probability that it will be discovered after its

upload.
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3.6 Conclusion

With such a large user base, video sharing sites such as YouTube have the abil-

ity to impact opinions, thoughts, and cultures. On such sites, not all videos will

reach the same popularity and have the same impact. Popularity evolution of such

user-generated content is a complex process and has garnered increasing interest.

Prior works have used datasets with videos that contains completely different con-

tent. These approaches fail to provide an unbiased view of the underlying factors and

dynamics as they cannot distinguish the differences in popularity occurring because

of content difference from other, non-content related factors.

In this chapter, we take a closer look at content-agnostic factors that impact

YouTube video popularity. We design a content-aware methodology for studying,

both qualitatively and quantitatively, the impact different factors have on video pop-

ularity. Using a systematic investigation of the content-agnostic factors that most in-

fluence a video’s current popularity, we find that the most significant content-agnostic

factors are the total number of previous views and the video age. When controlling for

video content, we show that “rich-get-richer” preferential selection based on the cur-

rent video popularity appears to provide a good model of popularity evolution, except

for very young videos. However, when looking across different contents, the rich-get-

richer behavior becomes inaccurate and significantly weaker. For young videos we

find a variety of other significant factors, including uploader characteristics such as

size of social network, and number of keywords.
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Chapter 4

Popularity Dynamics

Characterization and Modeling

In Chapter 3, we observed that the popularity evolution of user-generated content

is goverened by a strong linear “rich-get-richer” behavior, with the total number of

previous views as the most important factor. However, when not controlling for video

content, we showed that the preferential selection behavior gets weaker and becomes

inaccurate, and thus rich-get-richer type of models do not accurately capture the

popularity dynamics. This finding motivates models that attempt to capture the

popularity evolution of user-generated videos in time. In the second part of this

thesis, we present a systematic study of the long term popularity evolution of videos.

We perform a characterization and modeling of the popularity dynamics using only

the total view count for analysis.

Examining the popularity dynamics of user-generated videos requires tracking a

representative sample of videos over a period of time. Obtaining a random sample

of user-generated videos from YouTube is, however, challenging because of the scale

of the service, its continually-expanding catalogue of videos, and the service-specific

limitations associated with discovering and tracking videos. Moreover, the possible
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biases in the datasets introduced by common sampling approaches from services such

as YouTube pose another challenge. In this work, we illustrate the biases resulting

from the sampling approaches employed, and we use for analysis a seemingly unbiased

sample of videos that we tracked on Youtube over a period of eight months.

This chapter is organized as follows. Section 4.1 describes how we collected our

datasets, and presents some initial analyses concerning possible biases in the datasets

owing to use of sampling techniques. Section 4.2 examines popularity dynamics and

churn for our dataset of recently-uploaded videos. Section 4.3 presents our three-

phase characterization of popularity evolution, and provides the underpinnings for

the model proposed in this work. Section 4.4 presents the basic model, its validation,

and also insights drawn from the model. An extension of the basic model is described

in Section 4.5. Finally, Section 4.6 concludes the chapter.

4.1 Sampling Approaches and Bias

Studying the popularity dynamics of user-generated videos requires tracking a rep-

resentative sample of videos over a period of time. Obtaining a random sample of

user-generated videos from YouTube is, however, challenging because of the scale of

the service, its continually-expanding catalogue of videos, and the service-specific lim-

itations associated with discovering and tracking videos. Section 4.1.1 describes how

we collected our datasets, including the two alternative sampling approaches used

and the tracking of the sample videos over a period of eight months. Section 4.1.2

presents a high-level summary of our datasets. Section 4.1.3 describes the results of

some initial analyses designed to identify possible biases in the datasets, as might

result from the sampling approaches employed.
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4.1.1 Data Collection Methods

We collected meta-data (such as number of views, ratings, and comments) on more

than one million YouTube videos on a weekly basis for over eight months. The videos

were selected by sampling, over a one-week period from 27 July to 2 August, 2008. A

one-week sampling period was chosen to avoid potential day-of-the-week effects. We

used two different sampling approaches, both based on functionality provided by the

YouTube API1, as described below:

• Sampling from the recently-uploaded videos: The API provides a call that

returns details on 100 recently-uploaded videos. Using this API, we collected

meta-data on approximately 29,500 videos during the one-week sampling period.

• Sampling using keyword search: The API also allows retrieval based on keyword

searches; the API returns search results sorted by “relevance”. We performed

keyword searches using words chosen randomly from a dictionary. As search

results for some words return a very large number of videos, for those returning

more than 500 videos we selected only the first 500. We found approximately 1

million videos using this method during the one-week sampling period.

There are several other possible approaches to sampling videos. One approach is

to sample from the “most-popular” lists. A closely-related variant is to start the

sampling process from one or more videos in the “most-popular” list and subsequently

follow “related videos”. A detailed investigation of the biases introduced by other

sampling approaches is left for future work.

During the remainder of our measurement period, specifically from 3 August 2008

to 29 March 2009, we collected meta-data for the videos identified in the sampling

phase on a weekly basis. Using the timestamp at which the meta-data for a video was

first captured, we ensured that subsequent measurements (“snapshots”) were exactly

1http://code.google.com/apis/youtube/overview.html
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Table 4.1: Summary of datasets.
Dataset Recently-uploaded Keyword-search
Videos 29,791 1,135,253
Views (start) 1,203,755 40,094,514,507
Views (end) 39,089,184 64,019,907,026

one week apart. For example, if a video was sampled on Tuesday evening, then each

weekly measurement for this video was performed as close to the same time of day

as possible, on Tuesday evenings, in the following weeks. This form of staggering

allowed us to track a large number of videos without exceeding YouTube’s query rate

limitations, while enabling easier management of our own measurement resources.2

4.1.2 Summary of Datasets

A summary of our datasets is presented in Table 4.1. In total, we have 35 snapshots for

each sampled video’s meta-data (counting also the “seed” snapshot collected during

the sampling phase), with one-week spacings between consecutive snapshots. From

the total view count at each snapshot i (1 < i ≤ 35), we can determine how many

times the video was viewed during the one-week period since snapshot i − 1, which

we term the “added views” at snapshot i. The total view count at snapshot 1 (the

seed snapshot) tells us the total views acquired by the video from its upload time

until the start of our data collection for that video.

During the measurement period, the 29,791 recently-uploaded videos acquired

about 38 million additional views, and the 1,135,253 keyword-search videos received

about 24 billion additional views. Note that the keyword-search videos acquired

additional views at a higher average rate than the recently-uploaded videos. This

suggests possible bias in the keyword-search dataset towards more popular videos,

which is investigated further in the next section.

2Our datasets are available at http://www.cs.usask.ca/faculty/eager/Performance11.html.
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4.1.3 Sampling Bias in the Datasets

One indicator of sampling bias is a skewed age distribution, where video age is defined

as the time since upload of the video. Figure 4.1 shows histograms for the age at

seed time (i.e., when meta-data for the video was first collected) for the recently-

uploaded videos, using 6-hour bins (left plot), and for the keyword-search videos,

using one-week bins (right plot). The age of the videos in the recently-uploaded

dataset is approximately uniformly distributed within a week, which is consistent

with the hypothesis that the YouTube API call used to obtain these videos returns

randomly-selected videos at most one week old.3 The age distribution of the keyword-

search dataset videos, in contrast, shows that this dataset is far from being a random

sample of (all ages of) YouTube videos. There is a strong skew towards younger

videos, with a prominent spike in the distribution for the first bin corresponding to

an age of at most one week. The age of the oldest video is about 38 months. One

possible explanation of the observed skew is that the results returned from keyword

searches are biased towards more popular videos. This hypothesis is supported by

the popularity characteristics of the keyword-search and recently-uploaded videos, as

described next.

Figure 4.2 shows the complementary cumulative distribution function (CCDF) of

the added views at snapshots i = 2, 8, 32, using logarithmic scales on both axes, for

both datasets. Comparing the added views of the keyword-search and the recently-

uploaded videos at the same snapshot, note that the keyword-search videos receive

substantially more views than the recently-uploaded videos. This is reflected, for

example, by a heavier right tail for the keyword-search video curves. At each snapshot,

the most (currently) popular keyword-search videos (i.e., those with the most added

views) have an order of magnitude more new views than the most popular recently-

3We notice a dip in the histogram for videos that are approximately 96 to 108 hours old at time
of collection. This dip is currently unexplained.
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Figure 4.1: Age distribution of the videos (left: recently-uploaded; right: keyword-
search).

Figure 4.2: Distribution of added views at snapshot i, for recently-uploaded and
keyword-search videos.

uploaded videos. Further, for the recently-uploaded video dataset, as we look further

into the measurement period the curves shift to the left, owing to a decreasing fraction

of these videos that are currently popular. The corresponding shift for the keyword-

search videos is less pronounced.
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Figure 4.3: Average added views at each snapshot.

Figure 4.4: Average added views at each snapshot for subgroups of the recently-
uploaded videos.
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The popularity characteristics of the recently-uploaded and keyword-search videos

are investigated further in Figure 4.3, which shows the average added views at each

snapshot for both datasets. For the keyword-search videos, we also consider sub-

groups based on video age at the time of seeding. On average, the keyword-search

videos (cf. the “Search (all)” line in the graph) attract more than 10 times as many

views throughout the measurement period compared to the recently-uploaded videos,

providing additional evidence that the keyword-search video dataset is biased towards

more popular videos. (Note that the y-axis is on logarithmic scale.) The results for

the keyword-search video subgroups based on age further support this conclusion.

First, we note that the older videos in the keyword-search dataset appear to attract

substantially more new views, on average, than their younger counterparts. Second,

note that the week-or-less old keyword-search videos obtain new views at a higher

rate than the recently-uploaded videos, which have the same age range, throughout

the measurement period.

The fact that these popularity differences persist for the entire measurement period

indicates that the keyword-search video dataset is biased towards videos with elevated

long-term popularity. Figure 4.3 also suggests bias based on elevated short-term

popularity. In particular, consider the results for keyword-search videos that are 2

years or older at the time of seeding. For a randomly-selected set of videos of this

age, one would expect to see a fairly stable average viewing rate over periods of a

few weeks, whereas for this subgroup of keyword-search videos, as seen in Figure 4.3

there is an initial period of significantly higher average viewing rate, reflecting elevated

short-term popularity.

Next, we consider further the possibility of biases in the recently-uploaded video

dataset. Recall from Figure 4.1 that the age at seed time for these videos is approx-

imately uniformly distributed, up to a maximum of one week. One indicator of bias

towards more popular videos would be a correlation between the age at seed time,
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and the rate of accumulating new views, since it may be easier to predict (for the

purposes of preferential selection) the future popularity of older videos. Figure 4.4

shows the average number of added views at each snapshot for those videos in the

recently-uploaded video dataset whose age at seed time is less than 3.5 days, for those

videos whose age at seed time is at least 3.5 days, and for the entire dataset. Note that

there are no observable longer-term differences in the viewing rate behavior among

these three groups of videos. There do exist some differences in the first few weeks of

the measurement period, which is to be expected for recently-uploaded videos. We

have also considered other properties such as the distribution of the total views at the

end of the measurement period, and have similarly found no significant differences

among these groups.

To summarize, our conclusions regarding sampling bias are:

• The keyword-search videos appear to be biased towards those videos that exhibit

both higher short-term and long-term popularity.

• The recently-uploaded video dataset appears to exhibit no observable bias to-

wards popular content.

Based on our analysis, we conjecture that the recently-uploaded video dataset is a

random sample representative of the videos uploaded to the service. In the remainder

of this paper, we characterize the popularity dynamics of these videos over the first

eight months of their lifetime, and from this characterization develop a model for

popularity evolution of newly-uploaded videos.

4.2 Popularity Dynamics and Churn

In this section, we dig deeper into the popularity dynamics of the videos in the

recently-uploaded dataset, with the objective of developing insights for modeling the
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Figure 4.5: Scatter plot of the number of added views at snapshots i versus i+1.

popularity evolution of these videos. One goal is to understand whether or not current

popularity is a good predictor of future popularity of user-generated videos. If current

popularity is indeed a good indicator of future popularity, then modeling the popu-

larity evolution of individual videos is certainly feasible [60]. However, the popularity

of an object may be influenced by many exogenous and endogenous factors [59, 27],

which may introduce some degree of inherent unpredictibility [59, 43]. In this section,

we characterize the degree of (in)stability and (un)predictability of the popularity of

individual videos and the extent of churn in the relative popularities of videos.

Figure 4.5 shows scatter plots for the number of added views received by a video

at adjacent snapshots for some example early and later snapshots. With our notion

of added views at a snapshot (or the weekly viewing rate, as determined by our

measurement granularity), this figure illustrates the change in viewing rate between

consecutive snapshots. The scatter plots, especially for the first few snapshots since a

video is uploaded, show substantial point spreads which indicates that a large number

of videos experience significant variation in viewing rate from one week to another.

We observe that a video that is mildly popular in the week prior to one snapshot

can become highly popular before the following snapshot, and vice versa. Videos

that have about 1,000 views added at snapshot two, for example, could receive less

than 100 additional views, or more than 10,000 additional views, at snapshot three.

Overall, we observe substantial non-stationarity in the popularity of individual videos,

especially within the first five to six weeks of their upload. Looking further in our

measurement period, we see that there are fewer diverging points at the top right
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Figure 4.6: Distribution of change in popularity ranks of videos.

quadrant of the scatter plots, as the videos become older. Note that the scatter plots

have fewer points for later snapshots owing to videos that received no views in one

or both of the weeks of interest (and hence are not shown on the log-log plots).

We also computed the Pearson’s correlation coefficient between the added views

at adjacent snapshots. A correlation coefficient value of 0.8 or more is considered to

reflect strong positive linear correlation [18]. The correlation coefficient between the

added views at snapshots two and three is close to zero (0.09). Until week eight of

our measurement, as may be expected from visual inspection of Figure 4.5, at best,

a weak positive linear correlation (less than 0.7) between added views at successive

snapshots is observed. As videos become older, we observe a very strong positive

linear correlation between the viewing rate of videos across adjacent snapshots. These

observations, together with Figure 4.5, indicate that the initial or current popularity

of a random young video is likely not a reliable indicator of its future popularity;

on the other hand, it appears that the current popularity of an older video may be

indicative of its immediate future popularity.

The non-stationarity in the weekly views to videos impacts the relative popularity

of videos. For any snapshot of our measurement period, we can rank the videos

according to the number of views added to each video’s view count at the considered

snapshot. Ties are broken using an assigned video id. Based on the assigned ranks
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in any two snapshots, we can calculate how much each video’s rank shifts. Figure 4.6

(a) shows the cumulative distribution of the absolute value of the rank shifts for some

example snapshots. Early in the measurement period, and thus when the videos are

young, videos experience significant rank changes. For example, between snapshots

two and three more than 30% of the videos in our recently-uploaded dataset switch

10,000 or more rank positions. The changes in the relative popularities of videos

stabilize after the initial weeks; however, there are still some videos that experience

substantial rank shifts between consecutive weeks. This trend is consistent with the

trend suggested by Figure 4.5.

In Figure 4.6 (b), we present the cumulative distribution of the ratio of ranks

for some example snapshots. This analysis complements the results presented in

Figure 4.6 (a) by considering each video’s popularity rank increase/decrease relative

to its current rank. Significant changes in the relative ranks of videos are observed

when videos are young. Between snapshots two and three, for example, about 30% of

the videos gain a factor of two or more in popularity rank, whereas less than 10% of

the videos experience similar increases in popularity rank in later snapshots. In fact,

when videos become eight weeks or older, approximately 75% of them retain their

popularity rank across (weekly) snapshots.

Differences in how rapidly videos attain their peak popularity can be a major

cause of churn in relative popularities. Figure 4.7 shows the cumulative distribution

of time-to-peak for the videos in the recently-uploaded dataset, where we define time-

to-peak for a video as its age (time since upload) at which its weekly viewing rate

is the highest within our measurement period.4 The time-to-peak distribution shows

that a large fraction of the videos, approximately three-quarters of them, peak within

the first six weeks since their upload. The remainder peak at times approximately

4Appendix A describes the details of how we determine this age given the fairly coarse granularity
of our measurements. In general, we have found our results to be insensitive to alternative choices
for these details.
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Figure 4.7: Time-to-peak distribution for videos.

uniformly distributed between week six and the end of our measurement period. For

those videos that peak within the first six weeks after upload, we find the time-to-

peak to be approximately exponentially distributed. As we show later in the paper,

the fact that many videos reach their peak popularity quickly plays an important role

in explaining the high churn observed in the relative popularity of the videos over the

first few weeks of the measurement period.

4.3 Three Phase Characterization

The results of Section 4.2 suggest the futility of attempting to reliably model the

popularity evolution of individual videos. We can, however, attempt to model the

popularity dynamics of a collection of videos. In this section, we develop a charac-

terization of the popularity evolution observed for our dataset of recently-uploaded

videos. This characterization is applied to develop a popularity evolution model in

Section 4.4.
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Perhaps the biggest challenge in developing such a characterization is that of cap-

turing the churn in the relative popularities of videos that is observed in the empirical

data. As noted in Section 4.2, variations in time-to-peak may be an important factor

in this churn. This motivates us to develop a three-phase characterization of popular-

ity evolution, in which videos are grouped according to whether they are before, at,

or after the age at which they attain their peak popularity.

Of particular interest in this characterization are: (a) the movement of videos

among these phases (i.e., the time-to-peak distribution, as examined in Section 4.2),

(b) the distribution of the viewing rate for the videos belonging to each group, and

(c) the dependence of these distributions on video age.

First, consider the distribution of weekly views to videos in each phase. Figure 4.8

shows the complementary cumulative distribution of views during a week within each

phase, using a logarithmic scale on each axis. Note that, by definition, none of the

videos are past their peak (i.e., in the after-peak phase) in the first week. Similar to

the distribution of views during a week for all videos, the distribution of views for the

videos within each phase is also heavy-tailed. It also appears that the skew towards

larger view counts is the largest when the videos are at their peak, and the least when

the videos are past their peak. By inspection of Figure 4.8, we notice that, within

each phase the distribution of views each week is approximately similar and suggests

the possibility of modeling the distributions as week-invariant.

We now investigate the efficacy of assuming the weekly viewing rate within each

phase to be approximately week-invariant. Figure 4.9 shows for each week and phase

(of the lifetime of the videos) the average number of weekly views. The average

viewing rate at peak exhibits a fair degree of variability. The observed variability

may be expected as videos peak with varying (and occasionally very large) numbers

of views during a week. An interesting observation is that there is no discernible trend

in the average viewing rate in the at-peak phase; this provides additional evidence in
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Figure 4.8: Distribution of weekly views to videos in the before-peak, at-peak, and
after-peak phases for example weeks i (i = 1, 2, 4, 8, 16).
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Figure 4.9: The average weekly viewing rate of videos in the before-peak, at-peak,
and after-peak phases.

support of a modelling approach in which the at-peak views distribution is modelled

as week-invariant.

Unlike the high variability observed for the average number of weekly views to

videos that are in their at-peak phase, the average views for after-peak videos appears

to be quite stable throughout the measurement period. The average views for before-

peak videos also lacks the high variability that is observed for at-peak videos, but

appears to exhibit an increasing trend. This increasing trend may be an artifact of

the finite measurement period, however; note that as the end of the measurement

period grows closer, the maximum time period until each of the before-peak videos

peaks corresponding shrinks.

Working further with our week-invariant assumption, we take a closer look at the

distribution of views during a week, or equivalently the distribution of the viewing

rates, for each of the three phases. Our goal was to get an understanding of the

distribution of the viewing rate when videos are grouped by phases, ignoring week-

specific behavior. Figure 4.10 shows that the distribution of weekly views to videos
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Figure 4.10: Distribution of views during a week for videos that are in their before-
peak, at-peak, and after-peak phases.

within each phase is heavy-tailed. As expected from our earlier discussion, the skew

towards larger views is greatest when videos are at their peak, and least when they

are past their peak.

Because of the heavy-tailed nature of the views distribution in each phase, we

took a closer look at the tail of each distribution where we define the tail to consist

of only the largest ten percent of the views within each phase. Using our definition of

the tail, we determine thresholds of 116, 296, and 31 weekly views for a video to be

considered in the tail of the before-peak, at-peak, and after-peak view distributions,

respectively. Figure 4.11 shows, for each week of our measurement period, the average

number of weekly views for those videos that acquired greater than or equal to these

threshold weekly views. The average viewing rate is quite steady for each phase,

suggesting that the week-invariant assumption is a reasonable approximation for the

distribution tails.

To summarize, our three-phase characterization suggests that the viewing rate

distribution within each phase could be modelled as week-invariant. We find that the
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Figure 4.11: The average weekly viewing rate of videos in the tail of the before-peak,
at-peak, and after-peak distributions.

tail of the viewing rate distribution can be modelled separately using heavy-tailed

distributions. Appendix A.2 presents the specific distribution fits that are found

to best capture the characteristics of the empirical data. Overall, we find that the

distribution of weekly views, for each of the three phases, can be modelled using an

appropriately parameterized lognormal distribution for the tail and a beta distribution

for the views that are not in the tail.

4.4 Basic Model

Guided by the observations made in the foregoing sections, we develop a basic model

for generating weekly views to individual videos in a collection of newly-uploaded

videos. The model is developed using the observations pertaining to the before-peak,

at-peak, and after-peak phases. The distribution of weekly views to videos within each

phase is modelled to be week-invariant. From a modeling point of view, this is an

attractive property as the distribution of weekly views can be succinctly represented
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using only three distributions, one for each phase. Transitions of videos between

phases, specifically from being in their before-peak phase, to their at-peak phase, and

then to their after-peak phase, are modelled using a time-to-peak distribution (such

as the one shown in Figure 4.7).

The basic approach consists of sampling views from the before-peak, at-peak,

and after-peak distributions (cf. Figure 4.10), and assigning them to videos. For

each modelled week, we sample views from the before-peak, at-peak, and after-peak

distributions based on how many videos are in each of these phases. Note that

the number of videos that peak in any week is determined using a time-to-peak

distribution (cf. Figure 4.7). At the start of an arbitrary week, from among the

videos that have not peaked thus far, some videos transition to being at their peak;

subsequently, at the end of this week these videos will move into the after-peak phase.

For this approach to yield weekly views for individual videos, a framework for

assigning the sampled views to individual videos is required. A straightforward ap-

proach for assigning weekly views to videos is based on an assumption that the relative

popularities of videos in the same phase, or that were in the same phase during the

previous week, are unchanged from the previous week, and precedes as follows. As-

sign the views sampled from the before-peak and at-peak distributions to those videos

that were in their before-peak phase during the previous week; similarly, assign the

sampled views from the after-peak distribution to those videos that were in their at-

peak or after-peak phases during the previous week. In both cases, the assignment is

made such that the relative popularities of the respective videos are preserved. Now,

among those videos that were in the before-peak phase during the previous week,

those that are assigned views from the at-peak distribution are assumed to peak in

this week (and will be in their after-peak phase for all subsequent weeks). With this

approach for assignment of views, churn with respect to the relative popularity of

videos is introduced by videos moving between the three phases.
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4.4.1 Views Generation Algorithm

Our algorithm requires the following input: the total number of newly-uploaded

videos N , the total number of weeks d, a time-to-peak distribution, a distribution

for the weekly views for videos in the before-peak phase, a distribution for the weekly

views for videos in the at-peak phase, and a distribution for the weekly views for

videos in the after-peak phase. The main steps of the algorithm are as follows:

1. Determine the number of videos in the before-peak, at-peak, and

after-peak phases.

Sample N values from the time-to-peak distribution and determine the number

of videos nati that peak at week i, for all i ≤ d. Note that nbeforei = nbeforei−1 −

nati , nafteri = nafteri−1 + nati−1, for i > 1. Also note that N = nbeforei + nati +

nafteri and nafter1 = 0. Therefore, following this step, we know the number of

videos nbeforei , nati , and nafteri that are in the at, before, and after-peak phases,

respectively, during week i. In our experiments, as described in Appendix A.2

the time-to-peak distribution is chosen as a mix of an exponential and a uniform

distribution.

For i = 1, 2, · · · d:

2. Sample views from the before-peak, at-peak, and after-peak distribu-

tions.

Sample nbeforei , nati , and nafteri times from the before-peak, at-peak, and after-

peak distributions. In our experiments, we use a mixture of beta and lognormal

distributions for each of these three phases.

3. Assign views to the videos.

(a) if i = 1: Note that nafter1 = 0, i.e., there are no videos in week one that are

after their peak. Assign the N (= nbefore1 + nat1 ) sampled views to the videos.

(b) if i > 1: Sort the sampled nati “at-peak” views and the nbeforei “before-peak”
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views and assign them to those videos that are in the “before-peak” phase

during week i− 1 such that the video with the highest view during week i− 1

is assigned the highest view in week i, the video with the second highest view

during week i− 1 is assigned the second highest view during week i, and so on.

Similarly, assign the sampled nafteri after-peak views to those videos that were

either at or after their peak in week i− 1.

4. Determine the videos that peak in this week.

The videos that were assigned views sampled from the “at-peak” distribution

are assumed to peak this week; for all subsequent weeks these videos will be in

their ”after-peak” phase.

4.4.2 Results and Discussion

This section presents results from our basic model. We used our implementation of

the basic model to generate synthetic views for N = 29, 791 videos for a total of

d = 32 weeks. The parameterization of the distributions (i.e., time-to-peak, weekly

views during each phase) was done as specified in Appendix A.2.

Simple tests of our model include comparisons of the time-to-peak distribution,

and the viewing rate distributions for videos in each of the three phases, for the syn-

thetic data versus the corresponding empirical distributions for the recently-uploaded

video dataset. Good matches are obtained but this is not surprising since the model

was parameterized from these empirical distributions. Such tests do not show that our

simple three-phase characterization (on which our model is based) captures enough

of the detail of popularity evolution, to ensure that our synthetic data matches the

empirical data on the metrics of practical interest concerning popularity and its evo-

lution.

For such an evaluation, we test whether the synthetic data matches the empirical

data from the recently-uploaded video dataset with respect to: (a) the distribution
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(over all videos) of views received during each week (e.g., the skewness in popularity

among the videos, and the evolution of this skewness over time), (b) the distribution

of the total views since upload at the end of each week (e.g., the skewness in total

accumulated video views, or “long term average popularity”, and the evolution of this

skewness over time), and (c) hot set dynamics (e.g., how much churn is experienced

in hot sets of various sizes from week to week). Note that the evaluation metrics

considered above are not directly fitted from the empirical data. Instead, for the

synthetic data, these evaluation metrics are consequences of the views generation

algorithm and modeling parameters derived from the three-phase characterization of

the recently-uploaded dataset.

Distribution of Weekly Views

Figure 4.12 shows the CCDF of the views received during week i, for i = 2, 8, 32, for

both the recently-uploaded dataset and the synthetic views generated by our basic

model. We first observe that the weekly views distributions exhibit heavy tails, with

videos receiving fewer large views in later weeks than earlier weeks. Further, we

observe that the average weekly views to videos do not significantly change after the

initial six weeks.

Overall, the match between the model generated views and the views in the

recently-uploaded dataset is good, except for some differences for the least popular

videos during a week (which is to be expected owing to our simplifying assump-

tion of week-invariant distributions for the phases). Quantile-to-quantile (Q-Q) plots

were used to evaluate the match for the body and tail of the distribution (cf. Ap-

pendix A.3). The observation pertaining to the average weekly views changing sub-

stantially only in the first six weeks is explained by the fact that a large majority,

approximately 80% of the videos, peak within the first six weeks since their upload.

Once a video is past its peak, it is in the after-peak phase where the viewing rate is
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Figure 4.12: Distribution of the views during week i in the recently-uploaded dataset
and the basic model (i = 2, 8, 32).

approximately week-invariant. With a majority of the videos in the after-peak phase,

the average viewing rate remains approximately constant.

Distribution of Total Views

The next property we consider is the distribution of total views as a function of weeks

since upload (or equivalently the age of the videos). Figure 4.13 shows the CCDF

of the total views received by week i, for i = 2, 8, 32, for both the recently-uploaded

dataset and the synthetic views generated by our basic model. We observe an excellent

match between the empirical and synthetic datasets. Again, Q-Q plots were used to

evaluate the match for the body and tail of the distributions (cf. Appendix A.3).

The general shape of the total views distribution from the recently-uploaded

dataset and the model provide insights into the popularity dynamics of the videos.

Notice that the distribution of views during a single week, shown in Figure 4.12 for

several representative weeks, appears to have a fairly “straight” tail. The total views

distribution, for both the empirical dataset and the model, is fairly straight for the
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Figure 4.13: Distribution of the total views by week i in the recently-uploaded dataset
and the basic model (i = 2, 8, 32).

first few weeks, but transitions to a more “curved” tail as the videos become older. In

the figure presented, this change can be seen by comparing the curves for weeks two

and eight. If videos that are currently popular continue to be popular in the future,

as one expects in simple rich-get-richer models, then we expect the distribution of the

sum of the views to also exhibit a “straight-ish” tail. We believe that this change in

the characteristics of total views can be explained by the presence of churn in video

popularity. Our basic model, which retains strong correlation between current view-

ing rate and future viewing rate except when videos change state (e.g., move from

being in the before-peak phase to at-peak phase to after-peak phase), exhibits a very

similar change in the shape of the distribution.

Churn and Hot Set Dynamics

The skew observed in the popularity of videos can aid in caching [30, 18]. However,

caching decisions become difficult with increase in churn among the videos [49]. This

section quantifies the amount of churn among the most popular videos, its potential
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impact on caching decisions, and studies how well our model captures the churn

observed in the recently-uploaded dataset.
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(a) Week i and i+1 hot sets
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Figure 4.14: Churn in video popularity measured by changes to the hot set for the
recently-uploaded dataset and the basic model.

For studying churn, we define the hot set at week i to consist of the most popular

x% of the videos with respect to the views received during week i. Figure 4.14 (a)
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shows the overlap between hot sets of successive weeks for both the recently-uploaded

dataset and our basic model, for hot sets of size x = 1% and x = 10%. If caching

decisions are made based on the hot sets of the week immediately preceeding the cur-

rent week, then these graphs give us an indication of the amount of cache replacement

traffic. Effectively, these results tell us how good an indicator the immediate past is

with respect to the immediate future.

The results indicate presence of substantial churn. With a hot set of size x = 10%,

for example, we observe between 20-60% change in the constitution of the hot sets

between two consecutive weeks, with significantly higher churn observed in the first

eight weeks. Comparing the results for the smaller and larger hot sets, the percentage

change is more for larger hot sets, because of replacement of videos in the hot set with

videos of similar popularity. Our model captures the trend of increased churn early in

the lifetime of videos. However, our model suggests relatively smaller week-to-week

changes than the corresponding empirical dataset.

The results presented in Figure 4.14 (a) show the relative change in the hot set

from week-to-week. Figure 4.14 (b) presents an example result for the absolute change

in the hot set. Here, we measure the number of common videos between the actual

hot set at week i and the hot set of week two.5 Both the model and the empirical hot

set analyses show that there is substantial non-stationarity in the hot sets, with the

model capturing the trend exhibited by the recently-uploaded dataset.

It is not surprising that our basic model does not exhibit as much churn as seen

in the recently-uploaded dataset. Our basic model introduces churn by transitioning

videos between phases. The model captures the large change in position caused by

videos moving from being before their peak to being at their peak, and subsequently

being after their peak. As we capture churn caused only by movement between phases,

5We present comparisons with the hot set for week two because the empirical dataset has only a
partial first week (i.e., a snapshot at seed); refer to Section 3.1.1 and Appendix A.1 for details on
data collection and sampling granularity.
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we see a better match for the smaller hot set then the larger hot set. The next section

extends the model to introduce second-order churn effects with respect to the relative

popularity of videos within each phase of their lifetime.

4.5 Model Extension: Perturbations

Our basic model introduces churn in relative popularity of videos only owing to the

videos moving between the three phases during their lifetime. We now extend the

model to introduce second-order churn by shuffling the popularity of videos within

each phase, while preserving each video’s phase.

The model extension is as follows. We first generate weekly views for videos

conforming to the basic model. Then, we introduce perturbations in the relative

popularity of videos during a week by exchanging the views assigned to selected

videos. The views are exchanged such that none of the key characteristics of the basic

model, specifically the distribution of weekly views for the before-peak, at-peak, and

after-peak phases, as well as the distribution of time-to-peak are affected.

The algorithm for introducing additional churn is as follows. First, we assign

weekly views to N videos for a period of d weeks according to our basic model. Then,

for each week i and video v that does not peak in that week, we define a window W v
i

that specifies the bounds on views for a possible exchange:

W v
i = [

xvi
g
,min(xvi × g, xvmax)], g ∈ [1,∞]

where xvi is the view assigned to video v during week i, xvmax is video v’s peak weekly

viewing rate (i.e, xvmax = maxj x
v
j ), and g is a modeling parameter that controls the

maximum distance a video would be shifted with respect to its view count in a week.

Specifically, we repeat the following step a sufficiently large number of times:
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Figure 4.15: Impact of the churn modeling parameter, with respect to the weekly
churn in video popularity, as measured by weekly changes to the hot set using the
extended model.

• Randomly pick a week i and two videos u and v such that either both videos

peaked before week i, or both peak after week i. If the views during week i to

videos u and v can be exchanged without causing either video’s views for week

i to move outside their respective windows W v
i and W u

i , switch the views.

Following a large number of iterations, views would be “uniformly mixed” subject

to the constraint specified by the tunable parameter g; g = 1 conforms to the basic

model outlined in the preceeding section, and g = ∞ incorporates the maximum

possible churn while still preserving the per-phase properties.

Figure 4.15 presents results for a hot set evolution for hot set of size x = 10% for

various values of g. As expected, with increasing g there is increased churn. This

allows the model to capture a wide range of churn activity. With no additional churn,

as described by the g = 1 (basic model), the constitution of hot sets between adjacent

weeks changes by less than 10% once videos are seven weeks old. With g = ∞, the
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Figure 4.16: The total views distribution after 32 weeks, in the recently-uploaded
dataset and the extended model.

composition of videos in the hot sets change by as much as 50-60% during the course

of the 32 weeks.

Through experimentation, we found that g in the range 8 ≤ g ≤ 16 yeilds a close

match to the churn observed in the recently-uploaded dataset. Figure 4.17 compares

the hot set churn in the recently-uploaded data set with the hot set churn using our

extended model, with g = 12. Results are shown for both hot set size x = 1% and

x = 10%. We obtain a much better match between the curves than when only using

the basic model.

Note that the model extension is constructed such that the distribution of weekly

views is not impacted by the introduction of additional churn. We close our discussion

on model extensions by investigating how the additional churn influences the total

views distribution of videos. The results are presented in Figure 4.16. Also here, we

note that introduction of additional churn does not affect the tail of this distribution.

Addition of further churn, by tuning the parameter g, however, has some (mostly

negligible) impact at the head of the distribution.
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Figure 4.17: Churn in video popularity measured by changes to the hot set for the
recently-uploaded dataset and the extended model.

4.6 Conclusion

Content popularity dynamics can have a significant impact on the effectiveness of

different designs of content distribution, content storage, and advertisement systems.
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It is particularly important to understand the popularity dynamics of user-generated

content, specifically user-generated video, given its widespread appeal. The volume

of such content, as provided by popular services such as YouTube, however, makes it

challenging to study these dynamics. In this chapter we make several contributions

that address this challenge.

We first illustrate the biases that may be introduced in the analysis for some

choices of the sampling technique used for collecting data; however, sampling from

recently-uploaded videos provides a dataset that is seemingly unbiased. We then

develop a framework for studying the popularity dynamics of user-generated videos.

Using a dataset that tracks the views to a sample of recently-uploaded YouTube videos

over the first eight months of their lifetime, we show that there is significant churn in

the relative popularities of videos, mainly because of large differences in the required

time since upload until peak popularity is finally achieved, and secondly to popularity

oscillation. We find that the current popularity of a video is not a reliable predictor

of its future popularity. This finding motivates models that attempt to capture the

popularity dynamics of collections of videos, rather than attempting to predict the

popularity evolution of individual videos. To this end, we develop a novel three-

phase characterization of the popularity dynamics. Based on this characterization,

we propose a model that can accurately capture the popularity dynamics of collections

of recently-uploaded videos as they age, including key measures such as hot set churn

statistics, and the evolution of the viewing rate and total views distributions over

time.
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Chapter 5

Conclusion

Video sharing services provide a convenient platform for widespread dissemination of

content. Everyday, several million videos are uploaded and several hundred million

videos are watched from YouTube alone. Over time, some videos reach iconic status,

while many others are simply forgotten.

There are several factors that potentially impact the views to a video. Popularity

evolution of such user-generated content is a complex process and have garnered

increasing interest. The focus of this thesis is to study how content-related and

content-agnostic factors impact future views to a video and to analyse the long-term

temporal dynamics of user-generated videos popularity.

In the first part of this thesis we develop a methodology that is able to accurately

assess the impact various content-agnostic factors have on popularity. We posit that

the content itself plays a key role for a video’s eventual popularity. Therefore, to study

how content-agnostic factors such as the uploaders social network size, the current

total view count, the current rating of the video, and so on, we need to factor out the

impact of the content. Towards this goal, we identify and collect a large dataset that

consists of multiple identical copies (called clones) of a range of different content; we

make this dataset available to the research community. We then develop a rigorous
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analysis framework, based on well-known statistical tools, that allows us to control

bias introduced when studying videos that do not have the same content. Overall,

our new analysis framework enables us to understand the influence the content and

several content-agnostic factors have on a video’s future popularity.

Using our clone-based methodology, we provide several findings. First, we show

that inaccurate conclusions may be drawn when not controlling for video content.

Second, controlling for video content, we observe scale-free rich-get-richer, with view

count being the most important factor except for very young videos. However, when

looking across different contents, we demonstrate that the rich-get-richer behavior

gets weaker and becomes inaccurate, and thus rich-get-richer type of models do not

accurately capture content popularity. Third, we find that while the total view count

is the strongest predictor, other content-agnostic factors can help explain various other

aspects of the popularity dynamics. For example, the uploader’s social network can be

a good predictor for newly uploaded videos, and the video age can help differentiate

videos at similar view counts that are accumulating views at different rates. Finally,

we present concrete evidence of the first-mover advantage where the early uploaders

of a content have an edge over later uploaders of the same content.

The observations in the first part of our work motivate the need for a new model

that captures the evolution of content popularity in time. The second part deals with

the popularity evolution of user-generated video content and presents a systematic

study of the long term popularity evolution of videos. The volume of such content,

as provided by popular services such as YouTube, however, makes it challenging for

researchers to study these dynamics. We make several contributions that address this

challenge.

One main contribution concerns the use of sampling. Sampling is necessary given

the huge volume of content available from popular services, but sampling may yield

datasets biased towards content with elevated short-term and/or long-term popular-
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ity. We find that sampling from recently-uploaded videos, as provided by the YouTube

API, appears to yield a dataset that is seemingly unbiased, unlike sampling based on

keyword searches.

We next show that there is substantial churn in the relative popularities of videos,

particularly young videos, and that the current popularity of a video is not a reliable

predictor of its future popularity. This finding motivates models that attempt to

capture the popularity dynamics of collections of videos, rather than attempting

to predict the popularity evolution of individual videos. To this end, we develop a

novel three-phase characterization of the popularity evolution of a dataset of recently-

uploaded YouTube videos. This characterization provides a basis for a model that,

using a small number of distributions as input, is able to generate synthetic data

matching empirically observed characteristics with respect to key metrics concerning

popularity and its evolution, such as hot set churn statistics, and the evolution of the

viewing rate and total views distributions over time.

5.1 Future Work

Our long-term research aim is to understand and accurately model the popularity

evolution of user generated content, and ultimately design an accurate workload gen-

erator. To reach this goal, our future work consists of:

1. Conducting larger scale datasets collection, because some characteristics might

be perceived only when the amount of data is fairly large.

2. Working with richer types of content from different user-generated content dis-

semination services that would provide scope for novel observations and models.

We intend to study the suitability of our clone-based approach for other user-

generated content platforms, and the applicability of our model for different

UGC types.
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3. Investigating how to enhance and extend our current workload generator to

reflect the general characteristics and dynamics of UGC popularity. Our current

model has its own limitations, such as generating views for a certain video

set (newly uploaded videos), and for a specific duration (32 weeks). One of

our short-term goals for example, is to explore whether or not it’s possible to

generate views for really old videos (beyond 32weeks).

4. Performing large-scale tests of the current model and its future extensions.
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Appendix A

A.1 Sampling Granularity

The recently-uploaded dataset was obtained by sampling the video popularity at a

weekly time granularity. By taking the difference of the total view counts between

consecutive snapshots, we can measure the weekly viewing rate (i.e., the number of

views in a week). For simplicity, and for the purpose of our analysis, we say that a

video’s peak viewing rate occurs at the midpoint between the two snapshots, between

which the highest weekly viewing rate was observed. (As we sample videos of different

ages at the time that we first start tracking them, we can still have videos peaking at

an arbitrary age less than the total measurement period.)

To obtain a weekly viewing rate associated with the first snapshot (at which the

videos may be of any age between 0 and 7 days), we inflate the view count at the first

snapshot using a fraction of the added views during the following week to account for

the missing days needed to get a weekly view count. Note that alternative ways of

calculating a weekly viewing rate, such as dividing the views at the first measurement

point by the time since upload, may result in extremely large viewing rates, if the

time since upload is small, for example. Finally, in the case that the initial viewing

rate is higher than for any other measurement point, we say that the video peaked at

the halfway point between its upload time and the initial measurement point (as the
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rate in this interval, in such a case, is higher than the average rate during following

weeks).

A.2 Model Parametrization

As discussed in Section 4.2, a large fraction of the videos, approximately three-quarter

of our sample, peak within the first six weeks since their upload. The remaining peak

at times uniformly distributed between week six and the end of our measurement

period. To estimate the rate parameter λ of the exponential part, we use the Max-

imum Likelihood Estimation (MLE) method. For the recently-uploaded dataset, we

determine λ=0.598. Time-to-peak values greater than six weeks are then drawn from

a uniform distribution U(6, d), where d is the duration of the measurement period.

Figure A.1 shows the cumulative distribution function (CDF) of the empirical time-

to-peak and the analytical fitting.

We parametrize the weekly views of videos belonging to the before-, at-, and

after-peak phases. As our model assumes week-invariant distributions for the three

phases, we only consider the aggregated before-peak, at-peak, and after-peak weekly

views. The body and tail are modelled separately, with the tail assumed to consist

of all videos with weekly views greater or equal to a threshold xthresh views, selected

such that the tail of each phase contains the 10% videos with the largest weekly view

counts.

The distribution of weekly views within each phase is heavy-tailed (cf. Fig-

ure 4.10). Using the approach developed by Clauset et al. [24], we investigated

whether the tail of each phase could be modelled using a power-law distribution

or a lognormal distribution.
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Figure A.1: Time-to-peak distribution of videos.

The MLE method is used to estimate the respective distribution parameters. The

power law scaling parameter α (for the continuous case) can be estimated using:

α = 1 + n

[
n∑
i=1

ln
xi

xthresh

]−1
,

where n is the number of unique view count observations that fall into the tail distribu-

tion. To estimate the parameters µ and σ of the lognormal model, direct maximization

of tail-conditional log-likelihood was applied [24]. Note that to model the empirical

data using a lognormal distribution above the specified lower threshold xthresh, we use

the tail-method, where we consider that the right tail exhibits the same shape as the

right tail of a lognormal distribution, without essentially having an equal probability

of being in the tail.

Table A.1 presents the parameter estimation results for the tail of the before-

peak, at-peak, and after-peak distributions. Each group has ntail observations x ∈

[xthresh,xmax], α is the scaling parameter of the power law model, and µ and σ are

the parameters for the lognormal model.
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Table A.1: Power law and lognormal fits for the tails of the distributions.
Parameters Power law Fits Lognormal Fits R= Lp

Lln

Phase ntail xthresh xmax α µ σ

Before-peak 16,829 119 89,090 1.996 2.000 2.135 -186.947
At-peak 2,986 297 476,100 1.950 -3.826 3.477 -8.164

After-peak 83,148 30 94,930 1.895 -0.356 2.533 -762.172

In order to compare the power-law and lognormal models, we apply the Log Likeli-

hood Ratio (LLR) test to determine which distribution best fit the empirical data [24].

This test computes the ratio of the logarithm of the the likelihood of our empirical

data in the two candidate distributions, and find which distribution best fits the

data depending on the sign of LLR. In our case, we calculate the log-likelihood ratio,

R = log(LPL

LLN
) where, LPL is the likelihood of the power law distribution, and LLN

is the likelihood of the lognormal distribution. The values of R in Table A.1 suggest

that the lognormal hypothesis is more suitable to model the distribution of weekly

views for each of the three phases. To verify that the sign of R can be reliably used to

make a quantitative judgement about which model is a better fit, we computed the

standard deviation of R using the Vuong method [24]. Figure A.2 shows the CCDF

of the weekly views in the tail of the before, at, and after-peak distributions, and the

respective analytical lognormal (LN) and power law (PL) fittings.

Table A.2: Beta fits for the body of the distributions.
Parameters Beta Fits

Phase nbody xmin xthresh α β

Before-peak 151,051 0 119 0.191 1.330
At-peak 26,805 4 297 0.543 2.259

After-peak 732,075 0 30 0.077 0.968

To determine a distribution that best models the body of the the weekly views

distribution for each phase, we tried several probability distributions and found the

beta distribution provides the best approximation to the empirical data. Since there

is no closed-form of the maximum likelihood estimates for the parameters of the beta
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Figure A.2: Power law and lognormal fits for the before, at, and after-peak phase.
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distribution, we estimate the shape parameters α and β, over an interval [xmin, xthresh],

using the method-of-moments, where:

α = x̃× (
x̃× (1− x̃)

v
− 1),

β = (1− x̃)× (
x̃× (1− x̃)

v
)− 1,

with

x̃ =
E[x]− xmin
xthresh − xmin

and

v =
V [x]

(xthresh − xmin)2
.

Here, the E[x] is the sample mean and V [x] is the sample variance. The estimated α

and β parameters results are shown in Table A.2. Each group has nbody observations,

x ∈ [xmin, xthresh], where xmin is the smallest observation in the dataset and xthresh is

equal to the threshold separating the body from the tail.

A.3 Model Validation

To evaluate the goodness of fit of the synthetic data obtained from our models, in

addition to the graphical illustrations presented in Sections 4.4 and 4.5, we present

here quantile-quantile (Q-Q) plots. Figure A.3 shows the Q-Q plot for the views

during a week. Recall that both the basic model and the extended model generate

identical views during a week, and thus this plot is representative of both models.

Figure A.4 shows the Q-Q plots for the total views by week 32, for three different

values of g, including g = 1 (basic model), g = 12 (extended model), and g = ∞

(extended model).
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Figure A.3: Q-Q plot for the views during a week from the model and the recently-
uploaded dataset.

Figure A.4: Q-Q plot for the total views from the model and the recently-uploaded
dataset.
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In general, the Q-Q plots show that the models are able to to generate synthetic

data matching the empirical views distributions. A good match is observed for the

body and tail of the distributions. We observe some biases in the head of the dis-

tributions; however, these are for the less popular videos and we did not focus on

accurately modeling these videos.
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