
Exploiting Non-Dominance in Multi Agent Systems: An
Artificial Immune Algorithm for Distributed and Complex
Problem Solving Environments

Author:
Efatmaneshnik, Mahmoud; Reidsema, Carl

Event details:
12th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES08)
Melbourne, Australia

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/432

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39117 in https://
unsworks.unsw.edu.au on 2024-03-29

http://dx.doi.org/https://doi.org/10.26190/unsworks/432
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39117
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Exploiting Non-Dominance in Multi Agent Systems: An Artificial Immune Algorithm
for Distributed and Complex Problem Solving Environments

Mahmoud Efatmaneshnik1 and Carl Reidsema1

1 School of Mechanical and Manufacturing Engineering,
The University of New South Wales

Sydney NSW 2052
Australia

Emails: mahmoud@student.unsw.edu.au
Reidsema@unsw.edu.au

Abstract: An ideal Multi Agent System is flat and has no
dominant hierarchy. Multi agent computational and problem
solving environments have been advocated for their ability
to deliver overall solutions that are innovative and creative.
There is however a significant threat to the coherence of
Multi Agent Systems; chaos. This paper poses a new vision
to the control and immunisation of the Multi Agent Systems
against chaos. Employing a complexity measure of the
problem and its lower and upper bounds, and monitoring the
complexity of the problem solving agents’ interactions, we
propose the holistic control of the Multi Agent Systems that
leads to immunisation of the system against chaos. The
control however is not central and appears in the form of the
agents’ common knowledge and determines their tendency
to proactively communicate.
Keywords: Multi Agent Systems, Immunity, Chaos,
Complexity Measure, Parametric Problem Solving,
Innovation

1. Introduction

It is acknowledged that the creativity in product
development organisation is dependent on the amount of
information exchange and communication between the
design groups, individuals, and in general design agents [5]
[24] [36]. It is also well studied that the successful
completion of a complex product design project requires a
substantial amount of creativity in order to integrate many
subsystems of a complex product [2]. The integration is
often the most critical part when dealing with complex
systems. Top level supervision and intervention in the
problem solving process is regarded as a bottleneck of
information that deteriorates the ability of a problem solving
system to deliver creativity and innovation under uncertain
conditions [18] [33]. Non-dominance is a desirable and ideal
attribute of systems that deal with complex problems and
means flat and organic organisations and computational
environments.

Multi Agent Systems are distributed systems that use the
bottom up approach to problem solving, in which case the
intervention of the centralized coordination between agents
is minimal or totally eliminated. Each agent in a Multi Agent

System behaves as an abstraction tool which has the
characteristics of a self-contained problem solving system
that is capable of autonomous, reactive, proactive as well as
interactive behavior [30]. The solution in this case emerges
as a whole and is the result of the synergetic effects. Synergy
denotes a level of group performance that is above and
beyond what could be achieved by the members of the group
working independently [21]. Synergy in a Multi Agent
System enables the integration of partial solutions of
nonlinear and coupled problems.

One important threat to the flat distributed problem
solving environments with no dominant centralized authority
is chaos [38], which is the opposite of coherence. Coherence
is a global property of the Multi Agent Systems that could be
measured by the efficiency, quality, and consistency of a
global solution as well as the ability of the system to degrade
gracefully in the presence of local failures [38]. Coherency is
about the ability of the Multi Agent System to cope with
solutions integration. Several methods for increasing
coherence have been studied, all of which relate to the
individual agent’s ability to reason about the following
questions: who should I interact with? And when should I do
it and why? Sophisticated individual agent reasoning can
increase Multi Agent System coherence because each
individual agent can reason about non-local effects of local
actions, form expectations of the behavior of others, or
explain and possibly repair conflicts and harmful interactions
[38]. These issues are the focus of this paper.

Hierarchical architectures consist of semi-autonomous
agents with a global control agent dictating goals/plans or
actions to the other agents. In these systems control can be
implemented in different ways: using a special control expert
called a supervisor as in EXPORT [27], or a shared database
as in SHARED [41]; or through multiple shared workspaces
as in MATE [31]. In theory, a truly open Multi Agent System
need not have any predefined global control. DIDE
(Distributed Intelligent Design Environment) [32] and
ANARCHY [29] are rare examples of such architectures.
DIDE was based on cognitive agents and a message handling
service called tool-talk server. Shen and Barthès [32] didn’t
present particular strategies for conflict resolution between

agents. ANARCHY was a working prototype of an
asynchronous design environment and used a global design
strategy based on simulated annealing [29]. Agents in
ANARCHY were autonomous, and could have broadcast
type communications.

An immune algorithm is a plan that determines how the
components of the systems are going to interact to determine
the system dynamics [39]. Dasgupta [8] examined various
response and recognition mechanisms of immune system and
suggested their usefulness in development of massively
parallel adaptive decision support systems. Lau and Wong
[22] presented a multi agent system that could imitate the
properties and mechanisms of the human immune system.
The agents in this artificial immune system could manipulate
their capabilities to determine the appropriate response to
various problems. Through this response manipulation, a
non-deterministic and fully distributed system with agents
that were able to adapt and accommodate to dynamic
environment by independent decision-making and inter-
agent communication was achieved [22]. Ghanea-Hercock
[15] maintained a multi agent simulation model that could
demonstrate self organizing group formation capability and
collective immune response. He showed that the network of
agents could survive in the face of continuous perturbations.
Fyfe and Jain [13] presented a multi agent environment in
which the agents could manipulate their intensions by using
concepts suggested by artificial immune system to
dynamically respond to challenges posed by the
environment. Goel and Gangolly [16] presented a decision
support for robust distributed systems security based on
biological and immunological mechanism.

This paper proposes a computational algorithm that
allows for top level managerial knowledge to be present and
meaningful to the low level agents and can be incorporated
into a decision support system. This knowledge is based on
the matching between the complexity measure of the
problem and that induced by cooperation and collaboration
between agents at any instance of the design process.
Exploiting this algorithm in a decision support system can
ensure the coherency of the global behavior of the system
agents and their immunity from chaos. This way this
algorithm is an artificial immune algorithm or otherwise it
might be considered as a class of artificial life. It should be
noted that this algorithm is at conceptual level and has not
yet been implemented.

2. Distributed Problem Solving

Chen and Li [4] referred to Concurrent Product Design
taking place in the parametric design stage as Concurrent
Parametric Design. Concurrent Parametric Design models a
problem as sets of variables. These include the set of design
variables (or inputs) and the set of design objectives (or
outputs). The design variable sets include subsets of sizing
variables, shape variables, topologies, configurations, and
manufacturing variables such as process capabilities [28].
Each variable may be accompanied by a set of constraints.
Design problem solving is the process of assigning values to
these variables in accordance with the given design

requirements, constraints, and optimisation criterion [42]. A
design task in this view constitutes the determination of a
single design variable, determining the value of which is the
task of a design agent. These types of agents are known as
single function agents [10]. An agent is a design participant
that can be, in a broad sense, a human designer, computer or
an algorithm, that is able to cope with distributed tasks as
part of the whole design problem. In this design situation,
agents may face uncertainties during the design process,
especially when their design decisions are interrelated.
Resolving this uncertainty is usually the task of mediators,
facilitators or coordinators. Leenders et al. [24] showed that
design system’s creative performance will be negatively
related to the presence of central supervisors (including
brokers, mediators and facilitators) in the intra-team
communication network. We argue that the mediators’ role
can be omitted if the low level knowledge of the problem is
present at the low level design agents. We will elaborate on
this further in section 3.2. However, in order to produce this
knowledge one needs to resort to simulation based
techniques.

2.1 A Bottom up Approach

In general in a problem solving environment the agents’
actions can be planned or controlled by using three kinds of
knowledge. The low level problem knowledge, the medium
level knowledge of the problem solving process, and the high
level organisational knowledge including high level goals
and strategies. In product design the performance and
operational requirements of the product are micro or low
level parameters, whereas production costs, times and risks
are macro or high level (and often emergent) properties of
process. A system exhibits emergence when there are
coherent properties at the macro-level (i.e. of the system as a
whole) that dynamically arise from the interactions between
the parts at the micro-level [40]. Emergent properties are
meaningless and irrelevant at the local level. Many have
argued that for complex problems bottom up approach must
be used. This means that the local behavior of agents needs
to lead to global emergent solutions. The question is which
rules should the agents use? And, more importantly, what
kind of knowledge should the rules be derived from? Design
planning usually takes place in a top–down fashion by
considering the high level organisational knowledge,
particularly the structure of the organisation. If planning
starts at the top, such models rarely reach the lowest levels of
design activity, where individual design variables are
determined based on other variables [3]. Determining these
variables are the lowest level design activities, and a bottom-
up, integrative analysis of these low-level activities can
provide process structure insights [3]. Thus, in order to
resolve the uncertainty and dealing with high level emergent
properties of the process and organisational operations (that
can become chaotic), the low level knowledge of the problem
must be used to characterize the behavioral rules of agents.
This is indeed a bottom up approach and is elaborated here.

The design structure matrix (DSM) is a well known
knowledge representation and analysis tool for system
modeling. A DSM displays the relationships between

components of a system in a compact, visual, and
analytically advantageous format as a square matrix with
identical row and column labels. DSMs are usually
employed in modelling products, processes, and
organisational architectures. Browning [3] argued that the
three DSMs and the structures they model are tightly related,
and in many real industrial cases they exhibit strong
couplings. He presented the following definitions:
(i) Parameter-Based (or Low-Level Schedule) DSM: Used

for modeling low-level relationships between design
decisions and parameters, systems of equations,
subroutine parameter exchanges which represents the
product architecture.

(ii) Activity-Based or Schedule DSM: Used for modeling
processes and activity networks based on activities and
their information flow and other dependencies.

(iii) Organizational DSM: Used for modeling organization
structures based on people and/or groups and their
interactions.

Browning [3] emphasized that clearly, parameter-based
DSMs have integrative applications. This characteristic of
the parameter based DSM which represents the low level
product knowledge makes it suitable to be utilized in the
planning or determining the rule of behavior for low level
agents involved in the engineering design of complex
systems. This matrix is referred to as the self of the problem
with the values of variables representing the non self [10].

2.3 Simulation Based Engineering

In order to have a priori knowledge of the problem at the
upstream of the design process and early phases, simulation
based techniques must be used. Simulation is the key to
reconcile ambitious performance and operational
requirements improvement with realistic development and
production costs, times and risks for highly innovative
industrial high-tech systems [12]. As creating high-fidelity
simulation models are a complex activity that can be quite
time-consuming [34], the Monte Carlo Simulation is
suggested to establish the fitness landscape of the design
problem [26]. A fitness landscape is a multi-dimensional
data set, in which the number of dimensions is determined
by the number of system variables. Every design variable is
regarded as a random variable. Marczyk [25] has stressed
that by means of Monte Carlo Simulation of design variables
the fitness landscape of the design space is created enabling
the verification of the global dependencies between low
level design variables. We suggest the actualization of
multidisciplinary parameter based DSM through Monte
Carlo and Statistical Simulation in the early stage of the
design process. In order to establish the correlation
coefficients between different variables, global entropy
based correlation coefficients have significant advantage
over linear covariance based correlation coefficients.
Entropy based correlations can capture both linear and
nonlinear dependencies [10]. Table 1 show an example of a
typical simulated parameter based DSM with normalized
weights (all the weights are between zero and one).

Table 1 The parameter based DSM of a design problem
with 10 variables

- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0 0.76 0.45 0.16 0.22 0.77 0.12 0.01 0 0

V2 0.76 0 0.11 0.65 0.44 0.78 0 0 0 0.18

V3 0.45 0.11 0 0.64 0.11 0.31 0.02 0 0.15 0

V4 0.16 0.65 0.64 0 0.45 0.34 0 0 0 0

V5 0.22 0.44 0.11 0.45 0 0 0 0.01 0 0.01

V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0

V7 0.12 0 0.02 0 0 0 0 0.2 0.7 0.1

V8 0.01 0 0 0 0.01 0 0.2 0 0.2 0.8

V9 0 0 0.15 0 0 0 0.7 0.2 0 0.9

V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0

The outcome of a Monte Carlo Simulation can be fed into
the OntospaceTM1 software that, in addition to the self map of
the system, delivers the complexity of the map and its
bounds.

2.4 A Complexity Measure of the Problem and its Bounds

Marczyk and Deshpande [26] stated that complexity is
frequently confused with emergence; emergence of new
structures and forms is the result of re-combination and
spontaneous self-organisation of simpler systems to form
higher order hierarchies, i.e. a result of complexity. We
define complexity as the intensity of emergence in a system.
If the complexity is too high the system becomes chaotic and
uncontrollable and is likely to lose its structure. If the
complexity is too low the system loses the intrinsic
characteristics of the entity it was intended to describe, and
fails to emerge as a spontaneous organization. Complexity
materializes the system’s self by the emergence of the self
structure when the system’s elements have sufficient
interactions. Complexity is a “holistic” measure of the
system that enables us to study the system as a “whole”.
Marczyk and Deshpande [26] proposed a comprehensive
complexity metric that is embedded in OntospaceTM

software. The metric takes into account all significant aspects
necessary for a sound and comprehensive complexity
measure, namely structure, entropy and data granularity, or
coarse-graining [26]. The metric allows one to relate
complexity to fragility and to show how critical threshold
complexity levels may be established for a given system.
This software calculates three complexity measures for every
self map (fig. 1):

(i) The complexity of the map which is a very specific
measure reflecting the coupling, and size of the system.
We will refer to the complexity of this map as self
complexity.

(ii) The upper complexity bound to which the complexity of
the system may be increased without exhibiting chaos.

1 This is a first of its kind complexity management tool

based on measure of complexity. See www.ontonix.com.

(iii) The lower complexity bound which the system with a
complexity lower than that has lost its intrinsic
characteristics and has failed to emerge as a spontaneous
self.

Due to nondisclosure agreement with Ontonix s.r.l. and
commercialization of OntospaceTM software the details of
these measures are not revealed in this paper.

Dembski [9] explained that, a system performing a given
basic function is irreducibly complex if it includes a set of
well-matched, mutually interacting, non-arbitrarily
individuated parts such that each part in the set is
indispensable to maintaining the system's basic, and
therefore original, function. The set of these indispensable
parts is known as the irreducible core of the system. The
lower complexity bound represents the irreducible
complexity of the system that contains the intrinsic
characteristics of the system.

There is a sufficient body of knowledge to sustain the
belief that whenever dynamical systems undergo a
catastrophe, the event is accompanied by a sudden jump in

complexity [26]. This is also intuitive: a catastrophe implies
loss of functionality, or organisation. The increase of entropy
increases complexity (entropy is not necessarily adverse as it
can help to increase fitness) but at a certain point, complexity
reaches a peak beyond which even small increase of entropy
inexorably cause the breakdown of structure [26]. After
structural breakdown commences, an increase in entropy
nearly always leads to loss of complexity (fitness) [26].
However, beyond the critical point, loss is inevitable,
regardless of the dimensionality and/or density of the system.
Therefore every closed system can only evolve/grow to a
specific maximum value of complexity.
This is known as the system’s critical maximum complexity.
Close to criticality, systems become vulnerable, fragile
and difficult to manage. The difference between the
current and critical complexity is a measure of the
overall health of the system. The closer to criticality a
system is, the less healthy and therefore more risky it
becomes.

2.5 The Need for Radical Innovation

Integrated product development describes how tasks are
interconnected and seeks to integrate the product process and
organization (the network of the tasks) but does not provide
adequate problem solving methodologies [28]. Choosing an
integration scheme is critical in determining how efficient or
how flexible the resulting problem solving architecture will
turn out to be [28]. The product/problem architecture and
organization structure relationship can affect an enterprise in
several dimensions, including architectural innovation [3].
The product architecture has a large influence on the
appropriate structure of the product development
organization since organizational elements are typically
assigned to develop various product components [3]. To
incorporate this knowledge into the product development
system, the organizational DSM can be derived directly from

the simulated parameter based DSM. The requisite for this is
that the organization does not have a predefined structure. A
direct mapping can be used to force the organization
structure to mirror the product architecture. This allows for
predefined communication and information exchange
channels, in a large and complex environment. It will also
eliminate or reduce the threat of chaos but such system
would be utterly ineffective in delivering radical innovation
[17]. Creativity requires ad hoc communication in which the
need to communicate often arises in an unplanned fashion,
and is affected by the autonomy of the agents to develop
their own communication patterns [24]. It is thus obvious
that, a fixed organizational structure with established patterns
of communication is not capable of delivering new complex
structures (products).

Henderson and Clark [17] demonstrated that there are
different kinds of innovation as depicted in fig. 2 where

Fig. 1. The self map of the DSM in Table 1 and its three complexity measures calculated by OntospaceTM.

innovation is classified along two dimensions. The
horizontal dimension captures an innovation's impact on
product’s components, while the vertical dimension captures
its impact on the linkages between core concepts and
components. Architectural innovation changes only the
relationships between modules but leaves the components,
and the core design concepts that they embody, unchanged.
Incremental innovation refines and extends an established
design. Improvement occurs in individual components, but
the underlying core design concepts, and the links between
them, remain the same. Modular innovation on the other
hand, changes only the core design concepts without
changing the product's architecture. It can be said that radical
innovation embodies both modular and architectural
innovation. Radical innovation establishes a new dominant
design and, hence, a new set of core design concepts that are
linked together in a new architecture.

An organization’s communication channels, both formal
and informal are critical to achieving radical and
architectural innovation [17]. The communication channels
that are created between design agents will reflect the
organization’s knowledge of the critical interactions between
product modules. Organization’s communication channels
will embody its architectural knowledge of the linkages
between components that are critical to effective design [17].
They are the relationships around which the organization
builds architectural knowledge.

Innovation processes in complex products and systems
differ from those commonly found in mass produced goods
[19]. The creation of complex products and systems often
involves radical innovation [2], not only because they
embody a wide variety of distinctive components and
subsystems (modular innovation), skills and knowledge
inputs but also because large numbers of different
organizational units have to work together in a collaborative
manner (architectural innovation). Here, the key capabilities
are systems design, project management, systems
engineering and integration [19]. Integration in complex
system and product design is to make the solutions to sub
problem compatible with each other and is possible through
innovation [2]. The innovation that integrates the complex
system must be radical innovation accompanied by and
creativity that is an emergent property of the entire system
rather than the property of the sub-solutions to the individual
sub problems [36], [35]. A property that is only implicit, i.e.
not represented explicitly, is said to be an emergent property
if it can be made explicit and it is considered to play an
important role in the introduction of new schemas [14]. The
radical innovation and coherency in an engineered large

scale system is emergent and obtained in a self organizing
fashion in a multi agent environment. When designing self-
organizing emergent Multi Agent Systems with emergent
properties, a fundamental engineering issue is to achieve a
macroscopic behavior that meets the requirements and
emerges only from the behavior of locally interacting agents.
Agent-oriented methodologies today are mainly focused on
engineering the microscopic issues, i.e. the agents, their
rules, how they interact, etc, without explicit support for
engineering the required macroscopic behavior. As a
consequence, the macroscopic behavior is achieved in an ad-
hoc manner [41]. ‘Emerging’ properties and innovative
organizational structures are required to coordinate between
different designs agent actions.

3 Holistic Process Monitoring

When the inherent nature of a complex task is too large a
better solution is to create an environment in which
continuous innovation can occur [2]. This can be
accomplished through process monitoring; Bayrak and Tanik
[1] reported that improving the design process increases the
product quality without increasing the design resources, and
is possible by providing feedback to the designer to help
him/her understand the nature of the design process.
Therefore, the nature of the design becomes easier to analyze
if there are metrics obtained from activity monitoring [1].
Since the design process of the complex systems by
concurrent engineering is an emergent process [6], holistic
metrics are required to monitor the design process. One such
metric is the cognitive complexity of a process that is defined
as the ability of a problem solver to flexibly adapt to a
multidimensional problem space [23]. Cognitive complexity
represents the degree to which a potentially multidimensional
cognitive space is differentiated and integrated. A problem
solver (a person, organization or a Multi Agent System) with
higher cognitive complexity is more capable of having
creative (and holistically correct) outcomes [23].

We suggest measuring the cognitive complexity of a
Multi Agent Design System as a function of the information
exchange between the design agents. The main complication
here is the way in which the information exchange is
measured. Kan and Gero [20] suggested the use of entropy
based measures for evaluation of information content of a
design agent’s interactions. We suggest using a fuzzy method
by simply asking the design participants to tag qualitative
and quantitative information content of their interactions
with a single fuzzy variable, e.g. high, low, and medium, etc.
These can then be defuzzified, which is the process of
producing a quantifiable result in fuzzy logic, according to a
simple fuzzy rule, a simple example of which is shown in
fig 3. Note that the information mentioned here is both
qualitative and quantitative

Incremental
Innovation

Modular
Innovation

Architectural
Innovation

Radical
Innovation

Reinforced Overturned

Changed

Unchanged

Fig. 2. Different types of innovation, from [17].

A main point is that the inclination of the design agents
for more collaboration by the means of information
exchange does not necessarily lead to more overall cognitive
complexity of the design system. This is to say unnecessary
information exchange may lower the overall cognitive
complexity. By testing a sample of 44 new product
development organizations, Leenders et al. [24] showed that
the performances of innovation networks have an inversely
U-shape relationship to frequency of cooperation. One can,
thus, conclude that cognitive complexity of the whole design
system must be upper and lower bounded for having
effective and efficient innovation networks. Chiva-Gomez
[5] also favoured balanced participation of design players in
design decision making process, against increasing
information flow between the design players to a maximum.

Bar-Yam [2] has stated that in order to solve a problem,
the problem solver needs to have (cognitive) complexity
more than or equal to the problem complexity, which is a
version of the Ashby’s law of requisite variety [2]. This is to
say the cognitive complexity of the process must be equal or
more than the minimum (irreducible) complexity of the
problem.

CC ≥ Cmin (1)

It is obvious that the cognitive complexity of the process
needs not be more than the maximum complexity of the
problem since more than required information exchange can
lead to creativity blocks [24] which can be termed a chaotic
situation. Thus an upper bound for the cognitive complexity
of the process is the maximum complexity of the problem:

CC ≤ Cmax (2)

Innovation in a multi agent environment is the result of
communication between social agents that happens in a self
organizing fashion when the Multi Agent System finds itself
on the so-called edge of chaos [37]. When the cognitive
complexity of the process is in between the minimum and
maximum complexity of the problem, the design system
might be on the edge of chaos but certainly not chaotic.
Besides for collaborative Multi Agent Systems with
cognitive complexity less than the minimum complexity the

design process is certainly away from the edge of chaos, thus
the design systems does not have enough functionality to
deliver radical innovation in an optimal and efficient manner.
For systems that are excessively persistent in collaboration
and cooperation the cognitive complexity may reduce and
thus chaos appear. Chaos makes the design process fragile
and susceptible to uncertainties (such as the indetermination
of a design variable) and renders the design system
ineffective.

Fig 4. shows that design system’s overall cognitive
complexity increase only to a certain threshold by the
tendency of the design agents for exchanging design
information. In order to ensure the health of the design
process it is necessary to ensure that the overall cognitive
complexity stays away from and below the maximum
complexity and above the minimum. This way the minimum
and maximum complexity that are obtained by using the
initial Monte Carlo Simulation of the complex product (low
level product knowledge) are used to monitor the efficiency
and effectiveness and health of the complex product design
process. This is the holistic monitoring of the design
process. The process monitoring here serves the purposes of
meeting the design objectives (quality, cost, and lead time)
by immunizing the design system against chaos and lack of
effectiveness. This immunization enables the design system
to integrate the complex system and product through
utilization of radical innovation. Note the holistic process
monitoring does not violate the agents’ autonomy.

3.1 Artificial Immune Algorithm

According to Cohen [7] the immune system is a
computational strategy to carry out the functions of
protecting and maintaining the body. Cohen’s maintenance

 Chaos

Emergence
of innovation

Lack of
efficiency

O
ve

ra
ll

 c
og

ni
ti

ve
 c

om
pl

ex
it

y

Minimum complexity

Maximum complexity

Tendency of agents to proactively communicate

Fig 4. Design process functionality versus process
complexity.

Fig. 3. A simple fuzzification scheme. N is the
maximum amount of information exchange in

parameter based DSM.

role of the immune system requires it to provide three
properties:
(i) Recognition: to determine what is right and wrong.

(ii) Cognition: to interpret the input signals, evaluate them,
and make decisions.

(iii) Action: to carry out the decisions.
These properties are provided via a cognitive strategy in

which self-organization of the immune system is used to
make decisions [39]. The stages correspond to the holistic
control of the system, which is to immunize or ensure the
realization of self-organization, by using a complexity
measure:
(i) Recognition: recognizing the lower and upper

complexity bounds.
(ii) Cognition: evaluating the instantaneous cognitive

complexity of system of agents at every design instance.
(iii) Action: maintaining this complexity in between the

bounds at all times.
Upon the finalized decision on the value of each design

variable, and in general, upon the arrival of any new
information in the design system, the simulation must be
updated. This will allow for new estimation of the problem
complexity and from that, the new estimation of the new
collective cognitive complexity bounds. In this way the
presented algorithm responds to changes that are made in the
problem state. The immune algorithm is therefore
evolutionary and adaptive.

3.2 Agents Structure

The single function agents [10] that can focus their attention
at one design variable at a time need to be equipped with the
right tools in order to be able to benefit from the immune
algorithm. Single function agents perform the design task of
determining the values of the design variables, one at a time.
In artificial intelligence, an intelligent agent observes and
acts upon an environment, as a rational agent: an entity that
is capable of perception, action and goal directed behavior.
The internal architecture of an agent is essentially the
description of its modules and how they work together [33]:
agent architectures in various agent based systems (including
agent based concurrent design and manufacturing systems)
range from the very simple (a single function control unit
with a single input and output) to very complex human like
models.

Four different agent architectures have been discussed in
the literature: reactive agents (also known as behavior based
or situated agent architectures), deliberative agents (also
called cognitive agents, intentional agents, or goal directed
agents), collaborative agents (also called social agents or
interacting agents), and hybrid agents [33]. Reactive agents
are passive in their interactions with other agents. They do
not have an internal model of the world and respond solely
to external stimuli. They respond to the present state of the
environment in which they are situated. They do not take
history into account or plan for the future [38]. Through
simple interactions with other agents, complex global
behavior can emerge. In reactive systems, the relationship

between individual behaviors, environment, and overall
behavior is not understandable. However, the advantage of
reactive agent architecture is simplicity.

Deliberative agents use internal symbolic knowledge of
the real world and environment to infer actions in the real
world. They proactively interact with other agents based on
their sets of Beliefs, Desires and Intentions. These agents
perform sophisticated reasoning to understand the global
effects of their local actions [38]. Consequently, they have
difficulties when applied to large complex systems due to the
potentially large symbolic knowledge representations
required [38]. Shen et al. [33] identified collaborative agents
as a distinct class of agents that work together to solve
problems; communication in between them leads to
synergetic cooperation, and emergent solutions.

Hybrid architectures are neither purely deliberative nor
purely reactive [38]. Hybrid agents usually have three layers:
at the lowest level in the hierarchy, there is typically a
reactive layer, which makes decisions about what to do on
the basis of raw sensor input. This layer contains the self
knowledge that is the knowledge of the agent about itself
including physical state, location, and skills, etc [33]. The
middle layer, typically abstracts away from raw sensor input
and deals with a knowledge-level view of the agent’s
environment, often making use of symbolic representations
[38]. This layer contains two types of knowledge: domain
knowledge and common sense knowledge. The domain
knowledge is the description of the working projects
(problems to be solved), partial states of the current problem,
hypothesis developed and the intermediate results [33]. The
uppermost level of the architecture handles the social aspects
of the environment [38]. This layer contains the social
knowledge and is in charge of coordination with other
agents.

The hybrid agents are suitable for consuming the immune
algorithm. The common sense knowledge in the middle layer
of the agents should contain the status of the collective
cognitive complexity of the system relative to the complexity
bounds of the problem. This knowledge can be produced by
a centralized data base such as a blackboard data base that
stores the current status of the problem, and the map of the
information exchanges taking place between agents at any
time. On the basis of the common sense knowledge the agent
decides whether to be more proactive (if the cognitive
complexity of the agents system is less than the minimum
complexity of the problem) or reactive (if the complexity is
close to the maximum complexity). Fig 5. shows that the
amount of pro-activity as the common sense knowledge of a
hybrid agent should have inverse relation to the distance of
instantaneous cognitive complexity from maximum
complexity. It also should have direct relation to the distance
of instantaneous cognitive complexity of the design system
and the minimum complexity of the problem.

3.3 An Example

Consider the problem with simulated parameter based
DSM in Table 1. From this table and fig 1. the following
prosperities can be clarified:

 Cmin=1.64 (3)
 Cmax = 4.19 (4)

N=0.9 (5)

Where N is the maximum amount of information
exchange, Cmin is the minimum complexity and Cmax is the
maximum complexity. Each of the variables in Table 1 is
assigned to a design agent to determine its value. After a
while the design agents are asked to report the amount of
their information exchanges and interactions with each other.
Consider Table 2 as the reported or observed fuzzy team
based DSM at an instance of the design process.

Table 2 The fuzzy monitored (reported) team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 - Low - Low Low High Low VL - -

A2 H - L MH ML H - - - L

A3 ML L - MH L ML VL - L -

A4 L MH MH - ML L - - - -

A5 L ML L ML - - - VL - VL

A6 H H ML ML - - - - - -

A7 L - VL - - - - VH VL L

A8 VL - - - VL - L - L H

A9 - - L - - - H L - H

A10 - L - - VL - L H H -

Table 3 will be resulted by defuzzifying the observed
team based DSM according to the fuzzy rule in fig 3.

Table 3 The defuzzified monitored team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0 0.18 0 0.18 0.18 0.72 0.18 0.04 0 0

A2 0.72 0 0.18 0.56 0.36 0.72 0 0 0 0.18

A3 0.36 0.18 0 0.56 0.18 0.36 0.04 0 0.18 0

A4 0.18 0.56 0.56 0 0.36 0.18 0 0 0 0

A5 0.18 0.36 0.18 0.36 0 0 0 0.04 0 0.04

A6 0.72 0.72 0.36 0.36 0 0 0 0 0 0

A7 0.18 0 0.04 0 0 0 0 0.9 0.04 0.18

A8 0.04 0 0 0 0.04 0 0.18 0 0.18 0.72

A9 0 0 0.18 0 0 0 0.72 0.18 0 0.72

A10 0 0.18 0 0 0.04 0 0.18 0.72 0.72 0

Eq. (6) shows the complexity of the defuzzified team
based DSM (Table 3) which is in between the minimum and
maximum complexity bounds (1.64, and 4.19).

CC=1.9191 (6)

This information is sent to design agents. By using their
common sense knowledge the agents will know that they are
allowed to communicate more actively and increase the
cognitive complexity of the system.

4. Conclusion

An immune algorithm for the control of Multi Agent
Systems was presented (fig 6.). This algorithm is suitable for
design of complex products such as commercial aircrafts,
cars and other advanced multi technological products that
require the cooperation of hundreds of thousands of
designers. The algorithm allows for the emergence of
innovation because it eliminates the need for centralized
intervention in the problem solving process. The algorithm
however yields control that takes place in a bottom up
fashion: by simply changing the intentions of the agents for
communication through the manipulation of their
communication tendency. The algorithm employs low level
knowledge of the problem and on this basis decides on the
degree of agents’ communications complexity. This
complexity (known as cognitive complexity of the design
system) would be announced to all agents regularly along
with the lower and upper complexity bounds estimated from
the problem map or parameter based DSM. The agents would
then be obliged to adjust their communication tendency
based on the distance of the instantaneous cognitive
complexity of the design system and the measured minimum
and maximum complexity. For emergence of innovation and
also coherency in the design system the cognitive complexity
must be in between the two bounds. If the cognitive
complexity is more than the upper bound chaos may appear
and the agents must reduce their communication tendency. If
it is lower than the lower bound, there would not be enough
functionality in the design system to cope with the problem
and the agents must increase their communication tendency.

Cmin

P
ro

-a
ct

iv
it

y

Cmax

Instantaneous Cognitive Complexity

Fig. 5. The common sense knowledge of the agents.

 The paper did not give any notes on the implementation of
the algorithm in a Decision Support Systems. However, a
blackboard data base can be used to store the design
variables, and determine their interdependency via
simulation. Parts of the blackboard can be dedicated to
agents’ announcement of their communications and
information exchanges.

References

[1] C Bayrak, MM Tanik, A Process Oriented
Monitoring Framework. Systems Integration, Vol.
8, 1998, pp. 53-82

[2] Y Bar-Yam Making Things Work: Solving
Complex Problems in a Complex World, NECSI
Knowledge Press, 2004, pp. 90-91

[3] TR Browning, Applying the Design Structure
Matrix to System Decomposition and Integration
Problems: A Review and New Directions. IEEE
Transactions on Engineering Management, Vol. 48,
2001, pp. 292-306

[4] L Chen, S Li, Concurrent Parametric Design Using
a Multifunctional Team Approach. In Design
Engineering Technical Conferences DETC’01,
Pittsburgh, Pennsylvania, 2001

[5] R Chiva-Gomez, Repercussions of complex
adaptive systems on product design management.
Technovation, Vol. 24, 2004, pp. 707-711

[6] A Cisse, S Ndiaye, J Link-Pezet, Process Oriented
Cooperative Work: an Emergent Framework. In
IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen,
Germany, 1996, pp. 342-347

[7] I Cohen, Real and Artificial Immune Systems:
Computing the State of the Body. Imm Rev, Vol. 7,
2007, pp. 569-574

[8] D Dasgupta, An Artificial Immune System as a
Multi-Agent Decision Support System. In
Proceedings of IEEE International Conference on

Systems, Man and Cybernetics (SMC), vol. 4, 1998,
pp. 3816-3820, San Diego, California

[9] W Dembski, No Free Lunch: Why Specified
Complexity Cannot Be Purchased without
Intelligence, Rowman & Littlefield Publishers, Inc.,
2002

[10] B V Dunskus, Single Function Agents and Their
Negotiation Behavior in Expert Systems. Report
paper, Worcester Polytechnic Institute, Worcester,
MA, 1994

[11] M Efatmaneshnik, C Reidsema, Immunity as a
Design Decision Making Paradigm for Complex
Systems: a Robustness Approach. Cybernetics and
Systems, Vol. 38, No. 8, 2007, pp. 759-780

[12] A Formica, J Marczyk, Strategic Multiscale A New
Frontier for R&D and Engineering, Ontonix, Turin,
2007, pp. 56

[13] C Fyfe, L Jain, Teams of intelligent agents which
learn using artificial immune systems. Journal of
Network and Computer Applications, vol. 29, 2006,
pp.147–159

[14] J S Gero, Creativity, emergence and evolution in
design. Knowledge-Based Systems, Vol. 9, 1996,
pp. 435-448

[15] R Ghanea-Hercock, (2007) Survival in cyberspace.
Information Security, vol. 12, 2007, pp. 200–208

[16] S Goel, J Gangolly, On decision support for
distributed systems protection: A perspective based
on the human immune response system and
epidemiology International. Journal of Information
Management, vol. 27, 2007, pp. 266–278

[17] R M Henderson, K B Clark, Architectural
Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established
Firms. Administrative Science Quarterly, Vol. 35,
1990

[18] P Hinds and C McGarth, Structures that work:
social structure, work structure and coordination
ease in geographically distributed teams. In
proceedings of the 20th anniversary conference on
Computer supported cooperative work, Banff,
Alberta, Canada, 2006, Nov 04-08: pp. 343-352

[19] M Hobday, H Rush, J Tidd, Innovation in complex
products and system. Research Policy, Vol. 29,
2000, pp. 793-804

[20] J Kan, J Gero, Can entropy represent design
richness in team designing? In proceedings of 10th
International Conference on Computer Aided
Architectural Design Research in Asia
CAADRIA'05, Bhatt A (ed.), New Delhi, 2005, pp.
451-457

[21] J R Larson, Deep Diversity and Strong Synergy:
Modeling the Impact of Variability in Members'
Problem-Solving Strategies on Group Problem-
Solving Performance. Small Group Research, Vol.
38, 2007, pp. 413-436

Simulate the fitness landscape or the
solutions space

Measure the cognitive complexity of
the system of agents system

Measure the minimum and maximum
complexity of the solution

Maintain the collective cognitive
complexity of the agents in between

the minimum and maximum
complexity of the solutions

Fig. 6. An Immune algorithm for design of complex
systems

New
Information

[22] H Lau, V Wong, Immunologic Responses
Manipulation of AIS Agents. Lecture Notes in
Computer Science, vol. 3239, 2004, pp. 65-79

[23] J Lee, D P Truex, Cognitive Complexity and
Methodical Training: Enhancing or Suppressing
Creativity. In proceedings of 33rd Hawaii
International Conference on System Sciences, 2000

[24] R Leenders, J Kratzer, J Hollander et al., Virtuality,
Communication, and New Product team Creativity:
a Social Network Perspective. Engineering and
Technology Management, Vol. 20, No. 1, 2003, pp.
69-92

[25] J Marczyk, Principles of Simulation Based
Computer Aided Engineering. FIM Publications,
Barcelona, 1999, pp. 64

[26] J Marczyk, B Deshpande, Measuring and Tracking
Complexity in Science. In 6th International
Conference on Complex Systems, Minai A, Braha
D, Bar-Yam Y (eds.) Boston, MA, 2006

[27] E Monceyron, J-P Barthes, Architecture for ICAD
Systems: an Example from Harbor Design. Sience
et Techniques de la Conception, Vol. 1, 1992, pp.
49-68

[28] B Prasad, Concurrent Engineering Fundamentals,
Volume II: Integrated Product Development,
Prentice Hall, 1996

[29] R W Quadrel, R F Woodbury, S J Fenves et al.,
Controlling asynchronous team design
environments by simulated annealing. Research in
Engineering Design, Vol. 5, 1993, pp. 88-104

[30] C Reidsema, E Szczerbicki, A Blackboard Database
Model of the Design Planning Process in
Concurrent Engineering. Cybernetics and Systems,
Vol. 32, 2001, pp. 755-774

[31] M Saad, M L Maher, Shared understanding in
computer-supported collaborative design.
Computer-Aided Design, Vol. 28, 1996, pp. 183-
192

[32] W Shen, J-P Barthès, An Experimental Multi-Agent
Environment for Engineering Design. International
Journal of Cooperative Information Systems, Vol.
5, 1996, 131-151

[33] W Shen, D H Norrie, J-P Barthès, Multi-Agent
Systems for Concurrent Intelligent Design and
Manufacturing, CRC Press, 2001

[34] R Sinha, V C Liang, C J Paredis et al., Modeling
and Simulation Methods for Design of Engineering
Systems, Computing and Information Science in
Engineering, Vol. 1, 2001, pp. 84-91

[35] R Sosa, J Gero, a Computational Study of
Creativity in Design. AIEDAM, Vol. 19, 2005, pp.
229-244

[36] R Sosa, J Gero, Diffusion of Creative Design: Gate
keeping Effects. International Journal of
Architectural Computing, Vol. 2, 2004, pp. 518-
531

[37] R D Stacey, the Science of Complexity: An
Alternative Perspective for Strategic Change

Processes. Strategic Management Journal, Vol. 16,
1995, pp. 477-495

[38] K Sycara, Multiagent Systems, In AI Magazine Vol.
19, No. 2, 1998, pp.79-93

[39] J Timmis, P Andrews, N Owens et al., an
Interdisciplinary Perspective on Artificial Immune
Systems. Evolutionary Intelligence, Vol. 1, 2008,
pp. 5-26

[40] Wolf TD, Holvoet T () Towards a Methodology for
Engineering Self-Organising Emergent Systems. In
Self-Organization and Autonomic Informatics,
Glasgow, UK, 2005, pp. 18-34

[41] A Wong, D Sriram, SHARED: An information
model for cooperative product development.
Research in Engineering Design, Vol. 5, 1993, pp.
21-39

[42] Zdrahal Z, Motta E, Case-Based Problem Solving
Methods for Parametric Design Tasks. In
Proceedings of the third workshop on Advances in
Case-Based Reasoning, , Springer-Verlag, London,
UK, 1996, pp. 473-486

