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Abstract: An ideal Multi Agent System is flat and has no 
dominant hierarchy. Multi agent computational and problem 
solving environments have been advocated for their ability 
to deliver overall solutions that are innovative and creative. 
There is however a significant threat to the coherence of 
Multi Agent Systems; chaos. This paper poses a new vision 
to the control and immunisation of the Multi Agent Systems 
against chaos. Employing a complexity measure of the 
problem and its lower and upper bounds, and monitoring the 
complexity of the problem solving agents’ interactions, we 
propose the holistic control of the Multi Agent Systems that 
leads to immunisation of the system against chaos. The 
control however is not central and appears in the form of the 
agents’ common knowledge and determines their tendency 
to proactively communicate. 
Keywords: Multi Agent Systems, Immunity, Chaos, 
Complexity Measure, Parametric Problem Solving, 
Innovation

1. Introduction

It is acknowledged that the creativity in product 
development organisation is dependent on the amount of 
information exchange and communication between the 
design groups, individuals, and in general design agents [5] 
[24] [36]. It is also well studied that the successful 
completion of a complex product design project requires a 
substantial amount of creativity in order to integrate many 
subsystems of a complex product [2]. The integration is 
often the most critical part when dealing with complex 
systems. Top level supervision and intervention in the 
problem solving process is regarded as a bottleneck of 
information that deteriorates the ability of a problem solving 
system to deliver creativity and innovation under uncertain 
conditions [18] [33]. Non-dominance is a desirable and ideal 
attribute of systems that deal with complex problems and 
means flat and organic organisations and computational 
environments. 

Multi Agent Systems are distributed systems that use the 
bottom up approach to problem solving, in which case the 
intervention of the centralized coordination between agents 
is minimal or totally eliminated. Each agent in a Multi Agent 

System behaves as an abstraction tool which has the 
characteristics of a self-contained problem solving system 
that is capable of autonomous, reactive, proactive as well as 
interactive behavior [30]. The solution in this case emerges 
as a whole and is the result of the synergetic effects. Synergy 
denotes a level of group performance that is above and 
beyond what could be achieved by the members of the group 
working independently [21]. Synergy in a Multi Agent 
System enables the integration of partial solutions of 
nonlinear and coupled problems. 

One important threat to the flat distributed problem 
solving environments with no dominant centralized authority
is chaos [38], which is the opposite of coherence. Coherence 
is a global property of the Multi Agent Systems that could be 
measured by the efficiency, quality, and consistency of a 
global solution as well as the ability of the system to degrade 
gracefully in the presence of local failures [38]. Coherency is 
about the ability of the Multi Agent System to cope with 
solutions integration. Several methods for increasing 
coherence have been studied, all of which relate to the 
individual agent’s ability to reason about the following 
questions:  who should I interact with? And when should I do 
it and why? Sophisticated individual agent reasoning can 
increase Multi Agent System coherence because each 
individual agent can reason about non-local effects of local 
actions, form expectations of the behavior of others, or 
explain and possibly repair conflicts and harmful interactions 
[38]. These issues are the focus of this paper. 

Hierarchical architectures consist of semi-autonomous 
agents with a global control agent dictating goals/plans or 
actions to the other agents. In these systems control can be 
implemented in different ways: using a special control expert 
called a supervisor as in EXPORT [27], or a shared database 
as in SHARED [41]; or through multiple shared workspaces 
as in MATE [31]. In theory, a truly open Multi Agent System
need not have any predefined global control. DIDE 
(Distributed Intelligent Design Environment) [32] and 
ANARCHY [29] are rare examples of such architectures. 
DIDE was based on cognitive agents and a message handling 
service called tool-talk server. Shen and Barthès [32] didn’t 
present particular strategies for conflict resolution between 



agents. ANARCHY was a working prototype of an 
asynchronous design environment and used a global design 
strategy based on simulated annealing [29]. Agents in 
ANARCHY were autonomous, and could have broadcast 
type communications. 

An immune algorithm is a plan that determines how the 
components of the systems are going to interact to determine 
the system dynamics [39]. Dasgupta [8] examined various 
response and recognition mechanisms of immune system and 
suggested their usefulness in development of massively 
parallel adaptive decision support systems. Lau and Wong 
[22] presented a multi agent system that could imitate the 
properties and mechanisms of the human immune system. 
The agents in this artificial immune system could manipulate 
their capabilities to determine the appropriate response to 
various problems.  Through this response manipulation, a 
non-deterministic and fully distributed system with agents 
that were able to adapt and accommodate to dynamic 
environment by independent decision-making and inter-
agent communication was achieved [22]. Ghanea-Hercock 
[15] maintained a multi agent simulation model that could 
demonstrate self organizing group formation capability and 
collective immune response. He showed that the network of 
agents could survive in the face of continuous perturbations. 
Fyfe and Jain [13] presented a multi agent environment in 
which the agents could manipulate their intensions by using 
concepts suggested by artificial immune system to 
dynamically respond to challenges posed by the 
environment. Goel and Gangolly [16] presented a decision 
support for robust distributed systems security based on 
biological and immunological mechanism.

This paper proposes a computational algorithm that 
allows for top level managerial knowledge to be present and 
meaningful to the low level agents and can be incorporated 
into a decision support system. This knowledge is based on 
the matching between the complexity measure of the 
problem and that induced by cooperation and collaboration 
between agents at any instance of the design process. 
Exploiting this algorithm in a decision support system can 
ensure the coherency of the global behavior of the system 
agents and their immunity from chaos. This way this 
algorithm is an artificial immune algorithm or otherwise it 
might be considered as a class of artificial life. It should be 
noted that this algorithm is at conceptual level and has not 
yet been implemented. 

2. Distributed Problem Solving 

Chen and Li [4] referred to Concurrent Product Design 
taking place in the parametric design stage as Concurrent 
Parametric Design. Concurrent Parametric Design models a 
problem as sets of variables. These include the set of design 
variables (or inputs) and the set of design objectives (or 
outputs). The design variable sets include subsets of sizing 
variables, shape variables, topologies, configurations, and 
manufacturing variables such as process capabilities [28]. 
Each variable may be accompanied by a set of constraints. 
Design problem solving is the process of assigning values to 
these variables in accordance with the given design 

requirements, constraints, and optimisation criterion [42]. A 
design task in this view constitutes the determination of a 
single design variable, determining the value of which is the 
task of a design agent. These types of agents are known as 
single function agents [10]. An agent is a design participant 
that can be, in a broad sense, a human designer, computer or 
an algorithm, that is able to cope with distributed tasks as 
part of the whole design problem. In this design situation, 
agents may face uncertainties during the design process, 
especially when their design decisions are interrelated. 
Resolving this uncertainty is usually the task of mediators, 
facilitators or coordinators. Leenders et al. [24] showed that 
design system’s creative performance will be negatively 
related to the presence of central supervisors (including 
brokers, mediators and facilitators) in the intra-team 
communication network. We argue that the mediators’ role 
can be omitted if the low level knowledge of the problem is 
present at the low level design agents. We will elaborate on 
this further in section 3.2. However, in order to produce this 
knowledge one needs to resort to simulation based 
techniques.

2.1 A Bottom up Approach

In general in a problem solving environment the agents’ 
actions can be planned or controlled by using three kinds of 
knowledge. The low level problem knowledge, the medium 
level knowledge of the problem solving process, and the high 
level organisational knowledge including high level goals 
and strategies. In product design the performance and 
operational requirements of the product are micro or low 
level parameters, whereas production costs, times and risks 
are macro or high level (and often emergent) properties of 
process. A system exhibits emergence when there are 
coherent properties at the macro-level (i.e. of the system as a 
whole) that dynamically arise from the interactions between 
the parts at the micro-level [40]. Emergent properties are 
meaningless and irrelevant at the local level. Many have 
argued that for complex problems bottom up approach must 
be used. This means that the local behavior of agents needs 
to lead to global emergent solutions. The question is which 
rules should the agents use? And, more importantly, what 
kind of knowledge should the rules be derived from?  Design 
planning usually takes place in a top–down fashion by 
considering the high level organisational knowledge, 
particularly the structure of the organisation. If planning 
starts at the top, such models rarely reach the lowest levels of 
design activity, where individual design variables are 
determined based on other variables [3]. Determining these 
variables are the lowest level design activities, and a bottom-
up, integrative analysis of these low-level activities can 
provide process structure insights [3]. Thus, in order to 
resolve the uncertainty and dealing with high level emergent 
properties of the process and organisational operations (that 
can become chaotic), the low level knowledge of the problem 
must be used to characterize the behavioral rules of agents. 
This is indeed a bottom up approach and is elaborated here.

The design structure matrix (DSM) is a well known 
knowledge representation and analysis tool for system 
modeling. A DSM displays the relationships between 



components of a system in a compact, visual, and 
analytically advantageous format as a square matrix with 
identical row and column labels. DSMs are usually 
employed in modelling products, processes, and
organisational architectures. Browning [3] argued that the 
three DSMs and the structures they model are tightly related, 
and in many real industrial cases they exhibit strong 
couplings. He presented the following definitions: 
(i) Parameter-Based (or Low-Level Schedule) DSM: Used 

for modeling low-level relationships between design 
decisions and parameters, systems of equations, 
subroutine parameter exchanges which represents the 
product architecture. 

(ii) Activity-Based or Schedule DSM: Used for modeling 
processes and activity networks based on activities and 
their information flow and other dependencies.

(iii) Organizational DSM: Used for modeling organization
structures based on people and/or groups and their 
interactions.

Browning [3] emphasized that clearly, parameter-based 
DSMs have integrative applications. This characteristic of 
the parameter based DSM which represents the low level 
product knowledge makes it suitable to be utilized in the 
planning or determining the rule of behavior for low level 
agents involved in the engineering design of complex 
systems. This matrix is referred to as the self of the problem 
with the values of variables representing the non self [10].  

2.3 Simulation Based Engineering  

In order to have a priori knowledge of the problem at the 
upstream of the design process and early phases, simulation 
based techniques must be used. Simulation is the key to 
reconcile ambitious performance and operational 
requirements improvement with realistic development and 
production costs, times and risks for highly innovative 
industrial high-tech systems [12]. As creating high-fidelity 
simulation models are a complex activity that can be quite 
time-consuming [34], the Monte Carlo Simulation is 
suggested to establish the fitness landscape of the design 
problem [26]. A fitness landscape is a multi-dimensional 
data set, in which the number of dimensions is determined 
by the number of system variables. Every design variable is 
regarded as a random variable. Marczyk [25] has stressed 
that by means of Monte Carlo Simulation of design variables
the fitness landscape of the design space is created enabling 
the verification of the global dependencies between low 
level design variables. We suggest the actualization of 
multidisciplinary parameter based DSM through Monte 
Carlo and Statistical Simulation in the early stage of the 
design process. In order to establish the correlation 
coefficients between different variables, global entropy 
based correlation coefficients have significant advantage 
over linear covariance based correlation coefficients. 
Entropy based correlations can capture both linear and 
nonlinear dependencies [10]. Table 1 show an example of a 
typical simulated parameter based DSM with normalized 
weights (all the weights are between zero and one).

Table 1 The parameter based DSM of a design problem
with 10 variables

- V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0 0.76 0.45 0.16 0.22 0.77 0.12 0.01 0 0

V2 0.76 0 0.11 0.65 0.44 0.78 0 0 0 0.18

V3 0.45 0.11 0 0.64 0.11 0.31 0.02 0 0.15 0

V4 0.16 0.65 0.64 0 0.45 0.34 0 0 0 0

V5 0.22 0.44 0.11 0.45 0 0 0 0.01 0 0.01

V6 0.77 0.78 0.31 0.34 0 0 0 0 0 0

V7 0.12 0 0.02 0 0 0 0 0.2 0.7 0.1

V8 0.01 0 0 0 0.01 0 0.2 0 0.2 0.8

V9 0 0 0.15 0 0 0 0.7 0.2 0 0.9

V10 0 0.18 0 0 0.01 0 0.1 0.8 0.9 0

The outcome of a Monte Carlo Simulation can be fed into 
the OntospaceTM1 software that, in addition to the self map of 
the system, delivers the complexity of the map and its 
bounds. 

2.4 A Complexity Measure of the Problem and its Bounds

Marczyk and Deshpande [26] stated that complexity is 
frequently confused with emergence; emergence of new 
structures and forms is the result of re-combination and 
spontaneous self-organisation of simpler systems to form 
higher order hierarchies, i.e. a result of complexity. We 
define complexity as the intensity of emergence in a system. 
If the complexity is too high the system becomes chaotic and 
uncontrollable and is likely to lose its structure. If the 
complexity is too low the system loses the intrinsic 
characteristics of the entity it was intended to describe, and 
fails to emerge as a spontaneous organization. Complexity 
materializes the system’s self by the emergence of the self 
structure when the system’s elements have sufficient 
interactions. Complexity is a “holistic” measure of the 
system that enables us to study the system as a “whole”. 
Marczyk and Deshpande [26] proposed a comprehensive 
complexity metric that is embedded in OntospaceTM

software. The metric takes into account all significant aspects 
necessary for a sound and comprehensive complexity 
measure, namely structure, entropy and data granularity, or 
coarse-graining [26]. The metric allows one to relate 
complexity to fragility and to show how critical threshold 
complexity levels may be established for a given system. 
This software calculates three complexity measures for every 
self map (fig. 1): 

(i) The complexity of the map which is a very specific 
measure reflecting the coupling, and size of the system. 
We will refer to the complexity of this map as self 
complexity.

(ii) The upper complexity bound to which the complexity of 
the system may be increased without exhibiting chaos.

                                                          
1 This is a first of its kind complexity management tool 

based on measure of complexity. See www.ontonix.com.



(iii) The lower complexity bound which the system with a 
complexity lower than that has lost its intrinsic 
characteristics and has failed to emerge as a spontaneous 
self. 

Due to nondisclosure agreement with Ontonix s.r.l. and 
commercialization of OntospaceTM software the details of 
these measures are not revealed in this paper. 

Dembski [9] explained that, a system performing a given 
basic function is irreducibly complex if it includes a set of 
well-matched, mutually interacting, non-arbitrarily 
individuated parts such that each part in the set is 
indispensable to maintaining the system's basic, and 
therefore original, function. The set of these indispensable 
parts is known as the irreducible core of the system. The 
lower complexity bound represents the irreducible 
complexity of the system that contains the intrinsic 
characteristics of the system.  

There is a sufficient body of knowledge to sustain the 
belief that whenever dynamical systems undergo a 
catastrophe, the event is accompanied by a sudden jump in 

complexity [26]. This is also intuitive: a catastrophe implies 
loss of functionality, or organisation. The increase of entropy 
increases complexity (entropy is not necessarily adverse as it 
can help to increase fitness) but at a certain point, complexity 
reaches a peak beyond which even small increase of entropy 
inexorably cause the breakdown of structure [26]. After 
structural breakdown commences, an increase in entropy 
nearly always leads to loss of complexity (fitness) [26]. 
However, beyond the critical point, loss is inevitable, 
regardless of the dimensionality and/or density of the system. 
Therefore every  closed system  can  only  evolve/grow  to  a
specific  maximum  value  of  complexity.
This is known as the system’s critical maximum complexity.
Close  to  criticality,  systems  become  vulnerable,  fragile
and  difficult  to  manage. The  difference  between  the
current  and  critical  complexity  is  a  measure  of  the
overall health of  the  system.  The closer  to  criticality  a
system  is, the  less  healthy  and  therefore  more  risky it 
becomes.

2.5 The Need for Radical Innovation

Integrated product development describes how tasks are
interconnected and seeks to integrate the product process and 
organization (the network of the tasks) but does not provide 
adequate problem solving methodologies [28]. Choosing an 
integration scheme is critical in determining how efficient or 
how flexible the resulting problem solving architecture will 
turn out to be [28]. The product/problem architecture and 
organization structure relationship can affect an enterprise in 
several dimensions, including architectural innovation [3].
The product architecture has a large influence on the 
appropriate structure of the product development 
organization since organizational elements are typically 
assigned to develop various product components [3]. To 
incorporate this knowledge into the product development 
system, the organizational DSM can be derived directly from 

the simulated parameter based DSM. The requisite for this is 
that the organization does not have a predefined structure. A 
direct mapping can be used to force the organization
structure to mirror the product architecture. This allows for 
predefined communication and information exchange 
channels, in a large and complex environment.  It will also 
eliminate or reduce the threat of chaos but such system 
would be utterly ineffective in delivering radical innovation
[17]. Creativity requires ad hoc communication in which the 
need to communicate often arises in an unplanned fashion, 
and is affected by the autonomy of the agents to develop 
their own communication patterns [24]. It is thus obvious 
that, a fixed organizational structure with established patterns 
of communication is not capable of delivering new complex 
structures (products).

Henderson and Clark [17] demonstrated that there are 
different kinds of innovation as depicted in fig. 2 where 

               

Fig. 1. The self map of the DSM in Table 1 and its three complexity measures calculated by OntospaceTM.



innovation is classified along two dimensions. The 
horizontal dimension captures an innovation's impact on 
product’s components, while the vertical dimension captures 
its impact on the linkages between core concepts and 
components. Architectural innovation changes only the 
relationships between modules but leaves the components, 
and the core design concepts that they embody, unchanged. 
Incremental innovation refines and extends an established 
design. Improvement occurs in individual components, but 
the underlying core design concepts, and the links between 
them, remain the same. Modular innovation on the other 
hand, changes only the core design concepts without 
changing the product's architecture. It can be said that radical 
innovation embodies both modular and architectural 
innovation. Radical innovation establishes a new dominant 
design and, hence, a new set of core design concepts that are 
linked together in a new architecture. 

An organization’s communication channels, both formal 
and informal are critical to achieving radical and 
architectural innovation [17]. The communication channels 
that are created between design agents will reflect the 
organization’s knowledge of the critical interactions between 
product modules.  Organization’s communication channels 
will embody its architectural knowledge of the linkages 
between components that are critical to effective design [17]. 
They are the relationships around which the organization
builds architectural knowledge. 

Innovation processes in complex products and systems 
differ from those commonly found in mass produced goods 
[19]. The creation of complex products and systems often 
involves radical innovation [2], not only because they 
embody a wide variety of distinctive components and 
subsystems (modular innovation), skills and knowledge 
inputs but also because large numbers of different 
organizational units have to work together in a collaborative 
manner (architectural innovation). Here, the key capabilities 
are systems design, project management, systems 
engineering and integration [19]. Integration in complex 
system and product design is to make the solutions to sub 
problem compatible with each other and is possible through 
innovation [2]. The innovation that integrates the complex 
system must be radical innovation accompanied by and 
creativity that is an emergent property of the entire system 
rather than the property of the sub-solutions to the individual 
sub problems [36], [35]. A property that is only implicit, i.e. 
not represented explicitly, is said to be an emergent property 
if it can be made explicit and it is considered to play an 
important role in the introduction of new schemas [14].  The 
radical innovation and coherency in an engineered large 

scale system is emergent and obtained in a self organizing
fashion in a multi agent environment. When designing self-
organizing emergent Multi Agent Systems with emergent 
properties, a fundamental engineering issue is to achieve a 
macroscopic behavior that meets the requirements and 
emerges only from the behavior of locally interacting agents. 
Agent-oriented methodologies today are mainly focused on 
engineering the microscopic issues, i.e. the agents, their 
rules, how they interact, etc, without explicit support for 
engineering the required macroscopic behavior. As a 
consequence, the macroscopic behavior is achieved in an ad-
hoc manner [41]. ‘Emerging’ properties and innovative 
organizational structures are required to coordinate between 
different designs agent actions.

3 Holistic Process Monitoring

When the inherent nature of a complex task is too large a 
better solution is to create an environment in which 
continuous innovation can occur [2]. This can be 
accomplished through process monitoring; Bayrak and Tanik 
[1] reported that improving the design process increases the 
product quality without increasing the design resources, and
is possible by providing feedback to the designer to help 
him/her understand the nature of the design process. 
Therefore, the nature of the design becomes easier to analyze 
if there are metrics obtained from activity monitoring [1]. 
Since the design process of the complex systems by 
concurrent engineering is an emergent process [6], holistic 
metrics are required to monitor the design process.  One such 
metric is the cognitive complexity of a process that is defined 
as the ability of a problem solver to flexibly adapt to a 
multidimensional problem space [23]. Cognitive complexity 
represents the degree to which a potentially multidimensional 
cognitive space is differentiated and integrated. A problem 
solver (a person, organization or a Multi Agent System) with 
higher cognitive complexity is more capable of having 
creative (and holistically correct) outcomes [23].  

We suggest measuring the cognitive complexity of a 
Multi Agent Design System as a function of the information 
exchange between the design agents. The main complication 
here is the way in which the information exchange is 
measured. Kan and Gero [20] suggested the use of entropy 
based measures for evaluation of information content of a 
design agent’s interactions. We suggest using a fuzzy method 
by simply asking the design participants to tag qualitative 
and quantitative information content of their interactions 
with a single fuzzy variable, e.g. high, low, and medium, etc. 
These can then be defuzzified, which is the process of 
producing a quantifiable result in fuzzy logic, according to a 
simple fuzzy rule, a simple example of which is shown in   
fig 3. Note that the information mentioned here is both 
qualitative and quantitative

Incremental 
Innovation

Modular 
Innovation

Architectural 
Innovation

Radical 
Innovation

Reinforced Overturned

Changed

Unchanged

Fig. 2. Different types of innovation, from [17].



A main point is that the inclination of the design agents 
for more collaboration by the means of information 
exchange does not necessarily lead to more overall cognitive 
complexity of the design system. This is to say unnecessary 
information exchange may lower the overall cognitive 
complexity. By testing a sample of 44 new product 
development organizations, Leenders et al. [24] showed that 
the performances of innovation networks have an inversely 
U-shape relationship to frequency of cooperation. One can, 
thus, conclude that cognitive complexity of the whole design 
system must be upper and lower bounded for having 
effective and efficient innovation networks. Chiva-Gomez 
[5] also favoured balanced participation of design players in 
design decision making process, against increasing 
information flow between the design players to a maximum.

Bar-Yam [2] has stated that in order to solve a problem, 
the problem solver needs to have (cognitive) complexity 
more than or equal to the problem complexity, which is a 
version of the Ashby’s law of requisite variety [2]. This is to 
say the cognitive complexity of the process must be equal or 
more than the minimum (irreducible) complexity of the 
problem.

CC   ≥  Cmin                     (1)

It is obvious that the cognitive complexity of the process 
needs not be more than the maximum complexity of the 
problem since more than required information exchange can 
lead to creativity blocks [24] which can be termed a chaotic 
situation. Thus an upper bound for the cognitive complexity 
of the process is the maximum complexity of the problem:

CC  ≤  Cmax           (2)

Innovation in a multi agent environment is the result of 
communication between social agents that happens in a self 
organizing fashion when the Multi Agent System finds itself 
on the so-called edge of chaos [37]. When the cognitive 
complexity of the process is in between the minimum and 
maximum complexity of the problem, the design system 
might be on the edge of chaos but certainly not chaotic. 
Besides for collaborative Multi Agent Systems with 
cognitive complexity less than the minimum complexity the 

design process is certainly away from the edge of chaos, thus 
the design systems does not have enough functionality to 
deliver radical innovation in an optimal and efficient manner. 
For systems that are excessively persistent in collaboration 
and cooperation the cognitive complexity may reduce and 
thus chaos appear. Chaos makes the design process fragile 
and susceptible to uncertainties (such as the indetermination 
of a design variable) and renders the design system 
ineffective. 

Fig 4. shows that design system’s overall cognitive 
complexity increase only to a certain threshold by the 
tendency of the design agents for exchanging design 
information. In order to ensure the health of the design 
process it is necessary to ensure that the overall cognitive 
complexity stays away from and below the maximum 
complexity and above the minimum. This way the minimum 
and maximum complexity that are obtained by using the 
initial Monte Carlo Simulation of the complex product (low 
level product knowledge) are used to monitor the efficiency 
and effectiveness and health of the complex product design 
process.  This is the holistic monitoring of the design 
process. The process monitoring here serves the purposes of 
meeting the design objectives (quality, cost, and lead time) 
by immunizing the design system against chaos and lack of 
effectiveness. This immunization enables the design system 
to integrate the complex system and product through 
utilization of radical innovation. Note the holistic process 
monitoring does not violate the agents’ autonomy. 

3.1 Artificial Immune Algorithm

According to Cohen [7] the immune system is a 
computational strategy to carry out the functions of 
protecting and maintaining the body. Cohen’s maintenance 
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role of the immune system requires it to provide three 
properties: 
(i) Recognition: to determine what is right and wrong. 

(ii) Cognition: to interpret the input signals, evaluate them, 
and make decisions.

(iii) Action: to carry out the decisions. 
These properties are provided via a cognitive strategy in 

which self-organization of the immune system is used to 
make decisions [39]. The stages correspond to the holistic 
control of the system, which is to immunize or ensure the 
realization of self-organization, by using a complexity 
measure:
(i) Recognition: recognizing the lower and upper 

complexity bounds. 
(ii) Cognition: evaluating the instantaneous cognitive 

complexity of system of agents at every design instance.
(iii) Action: maintaining this complexity in between the 

bounds at all times.
Upon the finalized decision on the value of each design 

variable, and in general, upon the arrival of any new 
information in the design system, the simulation must be 
updated. This will allow for new estimation of the problem 
complexity and from that, the new estimation of the new 
collective cognitive complexity bounds. In this way the 
presented algorithm responds to changes that are made in the 
problem state. The immune algorithm is therefore 
evolutionary and adaptive. 

3.2 Agents Structure

The single function agents [10] that can focus their attention 
at one design variable at a time need to be equipped with the 
right tools in order to be able to benefit from the immune 
algorithm. Single function agents perform the design task of 
determining the values of the design variables, one at a time. 
In artificial intelligence, an intelligent agent observes and 
acts upon an environment, as a rational agent: an entity that 
is capable of perception, action and goal directed behavior.
The internal architecture of an agent is essentially the 
description of its modules and how they work together [33]: 
agent architectures in various agent based systems (including 
agent based concurrent design and manufacturing systems) 
range from the very simple (a single function control unit 
with a single input and output) to very complex human like 
models. 

Four different agent architectures have been discussed in 
the literature: reactive agents (also known as behavior based 
or situated agent architectures), deliberative agents (also 
called cognitive agents, intentional agents, or goal directed 
agents), collaborative agents (also called social agents or 
interacting agents), and hybrid agents [33]. Reactive agents 
are passive in their interactions with other agents. They do 
not have an internal model of the world and respond solely 
to external stimuli. They respond to the present state of the 
environment in which they are situated. They do not take 
history into account or plan for the future [38]. Through 
simple interactions with other agents, complex global 
behavior can emerge. In reactive systems, the relationship 

between individual behaviors, environment, and overall 
behavior is not understandable. However, the advantage of 
reactive agent architecture is simplicity. 

Deliberative agents use internal symbolic knowledge of 
the real world and environment to infer actions in the real 
world. They proactively interact with other agents based on 
their sets of Beliefs, Desires and Intentions. These agents 
perform sophisticated reasoning to understand the global 
effects of their local actions [38]. Consequently, they have 
difficulties when applied to large complex systems due to the 
potentially large symbolic knowledge representations 
required [38]. Shen et al. [33] identified collaborative agents 
as a distinct class of agents that work together to solve 
problems; communication in between them leads to 
synergetic cooperation, and emergent solutions.  

Hybrid architectures are neither purely deliberative nor 
purely reactive [38]. Hybrid agents usually have three layers: 
at the lowest level in the hierarchy, there is typically a 
reactive layer, which makes decisions about what to do on 
the basis of raw sensor input. This layer contains the self 
knowledge that is the knowledge of the agent about itself 
including physical state, location, and skills, etc [33]. The 
middle layer, typically abstracts away from raw sensor input 
and deals with a knowledge-level view of the agent’s 
environment, often making use of symbolic representations
[38]. This layer contains two types of knowledge: domain 
knowledge and common sense knowledge. The domain 
knowledge is the description of the working projects 
(problems to be solved), partial states of the current problem, 
hypothesis developed and the intermediate results [33]. The 
uppermost level of the architecture handles the social aspects 
of the environment [38]. This layer contains the social 
knowledge and is in charge of coordination with other 
agents.

The hybrid agents are suitable for consuming the immune 
algorithm. The common sense knowledge in the middle layer 
of the agents should contain the status of the collective 
cognitive complexity of the system relative to the complexity 
bounds of the problem. This knowledge can be produced by 
a centralized data base such as a blackboard data base that 
stores the current status of the problem, and the map of the 
information exchanges taking place between agents at any 
time. On the basis of the common sense knowledge the agent 
decides whether to be more proactive (if the cognitive 
complexity of the agents system is less than the minimum 
complexity of the problem) or reactive (if the complexity is 
close to the maximum complexity). Fig 5. shows that the 
amount of pro-activity as the common sense knowledge of a 
hybrid agent should have inverse relation to the distance of 
instantaneous cognitive complexity from maximum 
complexity. It also should have direct relation to the distance 
of instantaneous cognitive complexity of the design system 
and the minimum complexity of the problem. 



3.3 An Example

Consider the problem with simulated parameter based 
DSM in Table 1. From this table and fig 1. the following 
prosperities can be clarified:

           Cmin=1.64                                     (3)
          Cmax = 4.19                                    (4)

N=0.9                                       (5)

Where N is the maximum amount of information 
exchange, Cmin is the minimum complexity and Cmax is the 
maximum complexity. Each of the variables in Table 1 is 
assigned to a design agent to determine its value. After a 
while the design agents are asked to report the amount of 
their information exchanges and interactions with each other. 
Consider Table 2 as the reported or observed fuzzy team 
based DSM at an instance of the design process.

Table 2 The fuzzy monitored (reported) team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 - Low - Low Low High Low VL - -

A2 H - L MH ML H - - - L

A3 ML L - MH L ML VL - L -

A4 L MH MH - ML L - - - -

A5 L ML L ML - - - VL - VL

A6 H H ML ML - - - - - -

A7 L - VL - - - - VH VL L

A8 VL - - - VL - L - L H

A9 - - L - - - H L - H

A10 - L - - VL - L H H -

Table 3 will be resulted by defuzzifying the observed 
team based DSM according to the fuzzy rule in fig 3. 

Table 3 The defuzzified monitored team based DSM

- A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0 0.18 0 0.18 0.18 0.72 0.18 0.04 0 0

A2 0.72 0 0.18 0.56 0.36 0.72 0 0 0 0.18

A3 0.36 0.18 0 0.56 0.18 0.36 0.04 0 0.18 0

A4 0.18 0.56 0.56 0 0.36 0.18 0 0 0 0

A5 0.18 0.36 0.18 0.36 0 0 0 0.04 0 0.04

A6 0.72 0.72 0.36 0.36 0 0 0 0 0 0

A7 0.18 0 0.04 0 0 0 0 0.9 0.04 0.18

A8 0.04 0 0 0 0.04 0 0.18 0 0.18 0.72

A9 0 0 0.18 0 0 0 0.72 0.18 0 0.72

A10 0 0.18 0 0 0.04 0 0.18 0.72 0.72 0

Eq. (6) shows the complexity of the defuzzified team 
based DSM (Table 3) which is in between the minimum and 
maximum complexity bounds (1.64, and 4.19). 

CC=1.9191                                 (6)

This information is sent to design agents. By using their 
common sense knowledge the agents will know that they are 
allowed to communicate more actively and increase the 
cognitive complexity of the system.

4. Conclusion

An immune algorithm for the control of Multi Agent 
Systems was presented (fig 6.). This algorithm is suitable for 
design of complex products such as commercial aircrafts, 
cars and other advanced multi technological products that 
require the cooperation of hundreds of thousands of 
designers.  The algorithm allows for the emergence of 
innovation because it eliminates the need for centralized 
intervention in the problem solving process. The algorithm 
however yields control that takes place in a bottom up 
fashion: by simply changing the intentions of the agents for
communication through the manipulation of their 
communication tendency. The algorithm employs low level 
knowledge of the problem and on this basis decides on the 
degree of agents’ communications complexity. This 
complexity (known as cognitive complexity of the design 
system) would be announced to all agents regularly along 
with the lower and upper complexity bounds estimated from 
the problem map or parameter based DSM. The agents would 
then be obliged to adjust their communication tendency 
based on the distance of the instantaneous cognitive 
complexity of the design system and the measured minimum 
and maximum complexity. For emergence of innovation and 
also coherency in the design system the cognitive complexity 
must be in between the two bounds. If the cognitive 
complexity is more than the upper bound chaos may appear
and the agents must reduce their communication tendency. If 
it is lower than the lower bound, there would not be enough 
functionality in the design system to cope with the problem
and the agents must increase their communication tendency. 
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Fig. 5. The common sense knowledge of the agents.



  The paper did not give any notes on the implementation of 
the algorithm in a Decision Support Systems. However, a 
blackboard data base can be used to store the design 
variables, and determine their interdependency via 
simulation. Parts of the blackboard can be dedicated to 
agents’ announcement of their communications and 
information exchanges. 
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