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Abstract

Machine learning algorithms usually have a number of hyperparameters. The choice of

values for these hyperparameters may have a significant impact on the performance of

an algorithm. In practice, for most learning algorithms the hyperparameter values are

determined empirically, typically by search. From the research that has been done in this

area, approaches for automating the search of hyperparameters mainly fall into the fol-

lowing categories: manual search, greedy search, random search, Bayesian model-based

optimization, and evolutionary algorithm-based search. However, all these approaches

have drawbacks — for example, manual and random search methods are undirected,

greedy search is very inefficient, Bayesian model-based optimization is complicated

and performs poorly with large numbers of hyperparameters, and classic evolutionary

algorithm-based search can be very slow and risks falling into local optimal value.

In this thesis we introduce three improved evolutionary algorithms applied to search

for high-performing hyperparameter values for different learning algorithms. The first,

named EWLNB, combines Naive Bayes and lazy instance-weighted learning. The sec-

ond, EMLNB, extends this approach to multiple label classification. Finally, we further

develop similar algorithms, named SEODP, for optimizing hyperparameters of deep

networks. The experiments show it is useful on a real-world application for donor de-

tection.
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EWLNB is a differential evolutionary algorithm which can automatically adapt to

different datasets without human intervention by searching for the best hyperparameters

for the models based on the characteristics of the datasets to which it is applied. To

validate the EWLNB algorithm, we first use it to optimize two key parameters for a

locally-weighted Naive Bayes model. Experimental evaluation of this approach on 56

of the benchmark UCI machine learning datasets demonstrate that EWLNB significantly

outperforms Naive Bayes as well as several other improved versions of the Naive Bayes

algorithms both in terms of classification accuracy and class probability estimation.

We then extend the EWLNB approach in the form of the Evolutionary Multi-label

Lazy Naive Bayes (EMLNB) algorithm to enable hyperparameter search for multi-label

classification problems.

Lastly, we revise the above algorithms to propose a method, SEODP, for optimizing

deep learning (DL) architecture and hyperparameters. SEODP uses a semi-evolutionary

and semi-random approach to search for hyperparameter values, which is designed to

evolve a solution automatically over different datasets. SEODP is much faster than other

methods, and can adaptively select the hyperparameters based on certain deep network

architecture. Experimental results show that compared with manual search, SEODP

is much more effective, and compared with grid search, SEODP can achieve optimal

performance using only approximately 2% of the running time of greedy search. We

also apply SEODP to a real-world social-behavioral dataset from a charity organiza-

tion. This dataset contains comprehensive real-time attributes on potential indicators

for candidates to be donors. The results show that SEODP is a promising approach for

optimizing deep network (DN) architectures over different types of datasets, including

a real-world dataset. In summary, the results in this thesis indicate that our methods

address the main drawback of evolutionary algorithms, which is the convergence time,
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and show experimentally that evolutionary-based algorithms can achieve good results

in optimizing the hyperparameters for a range of different machine learning algorithms.
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Chapter 1

Introduction

Current machine learning algorithms often rely for their success on setting values for hy-

perparameters — the parameters that the algorithm needs to be specified before training

can proceed1. At the moment finding a “good” set of values for these hyperparameters

can only be done either from human knowledge or by some kind of search method. Al-

though there many approaches to this, the problems with current solutions are that it is

hard to get human knowledge in general, and existing search methods all have various

issues, which we will explain in detail in Chapter 2 on related work. This thesis will

address some of these issues, and to do so we will a propose number of methods based

on the use evolutionary algorithms for searching for the values of the hyperparameters.

In this chapter, we will briefly introduce how to use the evolutionary algorithms

developed in this thesis — EWLNB, EMLNB and SEODP — to optimize hyperparam-

eters for different models, and motivate the use of these methods by explaining their

advantages.

1These are, in general, completely separate from the parameters of the model that are learned by the
algorithm from the training data.
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2 Chapter 1

1.1 Evolutionary Weighted Lazy Naive Bayes

Naive Bayes (NB), a classification model based on conditional probability, is the sim-

plest form of Bayesian network classifier according to [25] and continues to be one of

the most widely used machine learning algorithms. The problem of Bayesian networks

is that they may not scale to large datasets from real-world applications due to the com-

plexity of fitting models to data, given the structure of the model and the way parameters

must be associated with that structure (essentially, estimating the full joint probability

of the variables in the model).

To address this problem, NB relaxes the restriction of the dependency structures

between attributes by simply assuming that attributes are conditionally independent. In

this way, NB is able to handle a large number of classification problems and provide

both high computational efficiency and good classification accuracy without examining

relationships between attributes as shown in [83]. For the above reasons, NB has been

found to be particularly suitable for learning tasks with high dimensional data, such as

text classification by [15, 49] and fingerprint classification by [35].

By relaxing the restriction of the dependency, NB can be very efficient and accurate.

However, in many real-world applications, the assumption of conditional independence

in NB is often violated [73, 84]. Many approaches have been proposed to relax this

assumption and while retaining the effectiveness of NB. The existing methods, such as

[12, 8, 41, 39, 38, 77, 76, 78, 79, 81, 82, 84], can be roughly assigned to five different

categories:

1. structure extension;

2. attribute selection;
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3. attribute weighting;

4. instance selection;

5. instance weighting.

Structure extension methods extend the structure of NB in some way to represent

the dependencies among attributes. Attribute selection (feature selection, e.g.) meth-

ods select a subset of the most relevant/discriminative features for model construction.

Attribute weighting methods assign different weight values to attributes to improve the

quality of the decision. Instance selection methods, such as the k-nearest neighbors or

KNN, employ the principle of local learning to find a local training dataset and use it

to build a classifier. Instance weighting methods assume that the contribution of each

instance is independent but not the same, and assign different weight values to instances.

Among all these algorithms, [24] presented an algorithm LWNB which utilizes a

weighted set of training instances to construct a new Naive Bayes model. However, after

carefully examine the LWNB algorithm, we found that the performance of LWNB is

influenced by parameter K and the calculation of the weighting is very complicated. To

solve this problem, we propose a new algorithm model to weight the instances through

expanding the neighbors according to their distance, then we apply EA to automatically

learn two hyperparameters for the model.

To be specific, we introduce two important parameters in the model to determine the

number of clones for an instance: threshold and weight. Both threshold and weight

are real numbers, the threshold parameter acts as a threshold of the distance, only the

neighbors within threshold will be cloned. This operates similarly to the K parameter

of KNN algorithm - when K is changed, the result of the classification might change as

well. The weight parameter actually acts as a zoom to scale the distance to calculate
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the number of clones according to the characteristic - such as density of the dataset.

The advantages of EWLNB can be summarized as follows:

• EWLNB is a data-driven, self-adaptive method, which does not require explicit

understanding of specification of datasets; and

• EWLNB is simple and can handle different learning tasks such as NB and KNN.

Experiments over different datasets in this thesis will demonstrate that the proposed

EWLNB alogrithm successfully finds the optimal parameters for the model.

1.2 Multi-label Classification for VSS

People have become used to uploading and downloading things from many different

kinds of “Clouds” such as Dropbox, Amazon Web Service (AWS), and Google Drive.

All these convenient and effective “Clouds” can be regarded as one of the important

applications of Virtual Storage Systems (VSS) [72, 22, 7]. In brief, VSS is a type of

promising technology for storage which is composed of numerous disks and connected

by Internet. To be more specific, VSS is generally a huge array of disks which applies

virtual technology to abstract over the details of physical storage media and thus make

the storage system easy to use. Considering that VSS is such a complex system which

involves so many distributed disks connected by internet, how to monitor the perfor-

mance of such a system effectively is particularly important.

The monitoring of a Virtual Storage System basically includes two main parts. The

first part is called performance monitoring, which includes the monitoring of CPU load,

memory load, network flow, and so on. The other part is disk monitoring, which moni-

tors the parameters and status of the disks in the VSS. There are basically two different
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technologies that are widely used in performance monitoring - MRTG (Multi Router

Traffic Grapher) [62, 61, 66] and Ganglia [58]. The main drawback of Ganglia is

that it uses its own private protocol to collect data, which lacks universality. On the

other hand, the main flaw of MRTG is that the monitoring data is stored in a type of

log which consumes lots of resource. For disk monitoring, the most commonly used

method is S.M.A.R.T (Self-Monitoring, Analysis and Reporting Technology, usually

abbreviated as SMART) [59, 2], which can detect and report on various indicators of

drive reliability. However, the main drawbacks of SMART can be grouped into two

categories:

1. SMART can only list the real-time value of parameters of the disks which does

not allow for any visualiation of the data; and

2. SMART is only designed to collect the data from the disks, and does not support

any methods to analyze and predict the status of the disks.

To overcome the drawbacks of the situations described above, we propose a novel

VSS monitoring system called Virtual Storage Monitoring System (namely VSMS).

The proposed VSMS jointly integrates the Multi Router Traffic Grapher (MRTG), Self-

Monitoring Analysis and Reporting Technology (SMART) and round-robin database

tool (RRDtools) to construct a comprehensive monitoring system for both performance

and disk monitoring. To be specific, VSMS can collect data from different devices

using Simple Network Management Protocol (SNMP) and visualize and analyze the

collected data by MRTG and RRDtools. Comparing with the existing VSS systems, the

advantages of our VSMS can be summarized as follows:

1. VSMS uses RRDtools - a circular buffer based database, which makes VSMS

more space efficient and thus run faster.
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2. RRDtools is good at processing time series data, whereas SMART can only dis-

play real-time data.

3. VSMS can unify the data structures of different disk vendors through the use

of a configuration file which can enable the processing and display of data in a

standard way.

4. VSMS can visualize the collected data and provides an interface for users to mon-

itor the devices in a convenient way.

After we construct the VSMS, we expect it to be very helpful if we can predict

any malfunction of the system based on the monitoring data we collect. In our case,

as there can be multiple reasons for a malfunction of the system, this actually leads

to the definition of a multi-label classification problem. In machine learning, multi-

label classification, and the strongly related problem of multi-output classification, are

variants of the classification problem where multiple labels may be assigned to each

instance.

More formally, multi-label classification is the problem of finding a model that maps

an input vector x to a binary vector y (not necessarily of the same dimension — usually,

but not always, x will be of lower dimensionality than y). In other words, the model

assigns a value of 0 or 1 for each element (label) of y that is true for instance x.

In VSS, malfunction of any individual system component can be for different rea-

sons — for example, due to CPU load, disk damage, and so on. These faults can happen

solely or together. Therefore predicting the reasons for the malfunction of the system

is a multi-label classification problem [55, 54, 53]. Similarly, we notice that there are

also important hyperparameters that need to be optimized in the model. Inspired by the
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good performance of EWLNB, we propose to apply and extend our previous methods

to obtain a similar solution to solve the problem.

1.3 Optimizing Hyperparameters for Deep Networks

Deep learning (DL) is a sub-category of machine learning that focuses on learning the

representation for the problem while simultaneously learning a solution to the problem.

The DL extract features from the input data as it transformed through the multiple layers

of of a deep artificial neural network. Although the features are typically learned by deep

networks with little human domain knowledge, the use of DL has actually dramatically

improved state of the art in many applications [4, 32, 34].

However, one of the drawbacks of DL is that the performance of DL algorithms can

be sensitive to the architecture (i.e., the structure and configuration of the layers). Also,

it is often hard to manually design the architecture due to the number of the hyperparam-

eters required to specify. This become more difficult when the dataset is big. [5, 10, 36].

For the general multi-layer networks, these hyperparameters include the number of

layers, the number of hidden nodes for each layer, and so on. For some specific DNs,

such as Convolutional Neural Networks (CNNs), these hyperparameters also include the

kernel size for a layer, the window size of maxpool layer, the stride of the convolution

layer, and so on. Due to the fact that the number of hyperparameters that need to be

tuned is large and the evaluation time for each combination of hyperparameters is often

quite long, manually selecting a suitable network topology for a new dataset can be

quite time-consuming and tedious. This drawback actually makes the optimization of

DL particularly difficult and unstable, which hinders DL algorithms from applying to

some real life scenarios [11, 63, 18, 19].
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Studies of the performance of DN architectures on different datasets have shown

some variations in results, where architectures that have good performance in some

datasets may not have the same performance in other datasets [13]. In more detail,

studies show that the results on one dataset may not transfer to another dataset with

different characteristics, such as the prior probability distribution, number of features,

number of training examples, and so on.

In most of the real applications, there is no prior knowledge to design the optimal

architecture of DN, the selection often rely on subjective previous experience and trial-

and-error. Due to the computationally expensive nature of DL algorithms, this can be

quite inefficient and time consuming.

The reality is DL researchers have consensus on the DN architectures that work well

for certain problems, however, when researchers want to scale the application of DL to

more fields, how to find the optimal DN architectures in a specific domain, is still not

clear.

To address the above problems, we revised and extended our previous algorithms to

enable the application to optimize the hyperparameters for deep networks. We propose

a new algorithm, named SEODP, to search for the a set of “good” DN hyperparameters

which can automatically adapt to different datasets. In more detail, SEODP is a semi-

evolutionary, semi-random algorithm to search the space of hyperparameters for a DN,

which can automatically adapt to different datasets. The results of the the experiments

in this thesis over different datasets show that SEODP can find the (approximately)

optimal combination of hyperparameters in a much more efficient way.
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1.4 Overview of Thesis Chapters

The remainder of the thesis is organized as follows. Chapter 2 reviews related work. Al-

gorithm EWLNB is developed in Chapter 3. Algorithm EMLNB is developed in Chap-

ter 4. Chapter 5 introduces the SEODP algorithm. The thesis is concludes in Chapter 6

by summarising the results and discussing some directions for further research.
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Related Work

Our work in this thesis mainly comprises the three parts introduced in the previous chap-

ter: Evolutionary Weighted Lazy Naive Bayes (EWLNB), Multi-label Classification for

Virtual Storage Monitoring System (EMLNB), and SEODP to search and find the op-

timal DN hyperparameters. Our algorithms in each of these parts depends on several

concepts and methods from the machine learning llterature. In this chapter we review

relevant related work to support each of these three parts which come later in the thesis.

2.1 Naive Bayes

A Bayesian network is a probabilistic graphical model that represents a set of vari-

ables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian

networks are ideal for taking an event that occurred and predicting the likelihood that

any one of several possible known causes was the contributing factor. For example, a

Bayesian network could represent the probabilistic relationships between diseases and

symptoms. Given symptoms, the network can be used to compute the probabilities of

10
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the presence of various diseases. However, the problem of Bayesian Networks are that

they may not scale to the kind of large datasets that occur in real-world applications

due to the complexity of modelling the complete joint distribution, which even when

structured by the graph can have exponential complexity.

To address this problem, Naive Bayes (NB) was proposed. NB is the simplest form

of Bayesian Network classifier according to [25] and continues to be one of the most

widely used machine learning algorithms. NB relaxes the restriction of the dependency

structures between attributes by simply assuming that attributes are conditionally inde-

pendent, although this assumption is often incorrect in practice. In this way, NB is able

to handle a large number of classification problems and provide both high computational

efficiency and good classification accuracy without examining relationships between at-

tributes as shown in [83]. For the above reasons, NB has been found to be particularly

suitable for learning tasks with high dimensional data, such as text classification by

[15, 49] and fingerprint classification by [35],

2.2 Improved Naive Bayes

Given the limitations of the NB conditionally independence assumption as we discussed,

many approaches have been proposed to relax the assumption of independence and

meanwhile retaining the effectiveness of NB. The existing methods can be roughly as-

signed to five different categories: (1) structure extension; (2) attribute selection; (3)

attribute weighting; (4) instance selection; and (5) instance weighting.
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2.2.1 Structure extension

Structure extension methods use directed arcs to represent the dependencies among at-

tributes, which relaxes the assumption. For example, Tree Augmented Naive Bayes

(TAN) extends the structure of NB into a tree-like structure, where an attribute can

be connected by a directed arc [25]. Numerous TAN variants have been researched

in the literature. Friedman [25] presented a TAN variant (simply CL-TAN) to learn

tree-structured Bayesian networks based on the ChowLiu algorithm [16]. Keogh [48]

proposed a Super-parent algorithm to learn TAN (simply SP-TAN), which is a greedy

heuristic search algorithm with high time complexity.

2.2.2 Attribute selection

Attributes in high dimensional data are often correlated, redundant or noisy, which

may result in over-fitting, low efficiency and poor performance in some learning tasks

[14, 52]. Attribute selection (i.e., feature selection) methods select a subset of the most

relevant/discriminative attributes and eliminate those with little or no predictive infor-

mation based on certain criteria. [51] proposed an algorithm called Selective Bayes

Classifier (SBC). The forward greedy search mechanism used in SBC selects a subset

of the most informative attributes from all of the attributes.

2.2.3 Attribute weighting

In most learning tasks, all attributes in a certain dataset are treated with the same weight-

ing, while in reality, different attributes may make different contributions to the labels.

To tackle this issue, attribute weighting methods assign different weight values to at-

tributes to improve the quality of decisions [84]. Attribute weighting is quite similar to
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feature selection, where weight values of informative attributes are set to 1, and those

attributes with little or no predictive information are set to 0. To assign proper weight

values for weighted Naive Bayes, lots of algorithms have been proposed to evaluate

the relative importance of attributes, such as gain ratio ([85]), correlation-based algo-

rithm ([27]), mutual information ([44]), Relief attribute ranking algorithm ([67]) and

evolutionary algorithm [82, 83].

2.2.4 Instance selection

One practical problem in learning a Bayesian Network classifier is the high variance

that results from the insufficiency of training data, especially when we want to build

a local NB model over the original training dataset. To this end, instance selection

methods (i.e., local learning methods) employ the principle of local learning to select

some instances to build the classifier [42]. One type of instance selection method is

similar to data expansion, which adds the clones of instances to the original training

set to promote the learning process. For example, [46] proposed a novel approach,

namely Instance Cloning Local Naive Bayes (ICLNB), to deal with the problem of the

insufficiency of training data. The experimental results in their studies achieved superior

performance to other baselines in term of classification accuracy.

2.2.5 Instance weighting

Like attribute weighting and attribute selection, instance weighting is a generalized form

that is different from instance selection but aims to give improved performance. Instance

weighting methods attempt to assign different weight values to different instances to

determine their worth to the labels. [24] presented an algorithm called Locally Weighted
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Naive Bayes (LWNB), which uses a weighted set of training instances to construct a

new naive Bayes model. In LWNB, K nearest neighbors of the test instance are first

found and each of them is weighted in terms of its distance from the test instance. The

performance of this method was verified on a large number of benchmark classification

datasets from the UCI data repository.

2.3 Lazy Learning

Generally speaking, machine learning algorithms can be split into two categories: (1)

eager learning, and (2) lazy learning. Most of the learning algorithms used in practice

are eager learning methods, and NB is typical of this type. Eager learning methods

try to build a generalized model by using the training instances, which then can be

used to predict the label of test instances. The other type of learning methods are lazy

learning methods. Lazy learning methods [88, 90], also called local learning methods,

form part of instance selection methods. They generally work by selecting the k nearest

instances of the test instance from the training dataset, and the selection is usually based

on Euclidean distance, which is a commonly used distance metric. The most basic

strategy is to use the k-nearest neighbor (KNN) method. In this case, the local training

dataset simply consists of the k nearest selected instances. A variant of this method

is commonly used, in which the local training dataset also consists of the k nearest

selected instances, but these instances have different sizes of clones according to their

weight (i.e., distance between the selected instance and the test instance). The greater

the weight is (i.e., the smaller the distance), the more clones of the selected instance will

be in the local training dataset.

Compared to an eager learning approach, a lazy learning method is typically more
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local, enabling it to focus on the specific instance and minimize the effects of the noise

and in some cases reduce the “bias” component of classification error [31]. Recently,

lazy learning methods have been widely researched for various machine learning algo-

rithms, including Naive Bayes [42], Support Vector Machine [21], and Artificial Neural

Networks. There are several works on lazy Naive Bayes. For example, [40] presented

a lazy learning algorithm, named Lazy Naive Bayes (LNB), to extend Naive Bayes for

evaluating the performance of area under the curve on 36 UCI benchmark datasets.

Also, [43] proposed a lazy learning-based Averaged One-Dependence Estimators (a

variant for NB), called Lazy Averaged One-Dependence Estimators (LAODE) to vali-

date its performance on a large number of benchmark datasets. Inspired by above lazy

NB algorithms, we proposal a novel weighted lazy learning method for Naive Bayes

classification, namely WLNB. It is worth noting that two key parameters need to be

tuned in WLNB. A detailed descriptions of WLNB can be found in Section 3.2.

2.4 Differential Evolutionary Algorithms

The class of differential evolutionary (DE) algorithms [69] is one of the most promising

in evolutionary algorithms (EAs). As a powerful and simple method for searching for

optimized values for parameters, DE simulates the behaviors of biological evolution to

accomplish the search for the best solution. Generally speaking, DE consists of three

major components: (1) a mutation operator; (2) a crossover operator; and (3) a selection

operator. In a learning problem, an assignment of values to the parameters to be opti-

mized is simulated as an individual in the population. The mutation operation maintains

the diversity of the population, the crossover operation passes outstanding genes to the

next generation, and the selection operation selects good individuals with high fitness.
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When the stopping condition is satisfied, the best individual (i.e., assignment of values

to parameters) can be achieved.

Similar to the Differential Evolution algorithm, other evolutionary algorithms (EAs),

such as Genetic Algorithms (GA) [47], Particle Swarm Optimization (PSO) [71] and

Artificial Immune Systems (AIS) [83], are all based on the idea of biological evolution

to control and optimize the artificial system through a form of evolutionary “search”.

Among all the EAs, the differential mutation operation is regarded as the simplest one

since the operation has linear complexity. More detailed information on DE will be

explained in a later part of the thesis using this algorithm. Besides DE, many effective

mutation operators have been proposed in the literature, for example, by [87].

In recent years, DE has been widely investigated due to its simplicity and effective-

ness, and its potential has been exploited in lots of applications, such as neural network

training [6], feature selection [68], digital filter design [56], and extreme learning ma-

chine [89].

Inspired by these advantages of DE, we propose to use Differential Evolution algo-

rithm to optimize two key parameters for WLNB. Our goal in this thesis is to propose

an effective self-adaptive network parameter optimized method for WLNB. In general,

our proposed EWLNB is a self-adaptive learning framework which can be scaled to

different DE variants, as will be described in Chapter 3.

2.5 Virtual Storage Monitoring System (VSMS)

As we discussed in the previous chapter, VSS is a promising type of technology for

storage which is composed of numerous disks and connected by Internet. Considering

that VSS is such a complex system which involves so many distributed disks connected
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by internet, how to monitor the performance of such a system effectively is particularly

important.

There are many different types of technologies and architectures of VSMS which

are currently used for the purpose of performance monitoring and disk monitoring. In

this section, the commonly used technologies will be reviewed.

2.5.1 Performance Monitoring

Performance monitoring is the monitoring of all items which give some indication of

the general performance of the system. If the performance monitoring of the system

finds something unusual, it may imply that the system is not running in the best way —

there may occur an overload or unbalanced load, just for example.

Generally speaking, performance monitoring includes the monitoring of factors like

CPU load, memory load, network flow, and so on. The main technologies of perfor-

mance monitoring are listed as follows:

1. Supermon & Clumon. The main drawbacks are:

(a) No exclusive database is included, so an external database must be used;

(b) Not robust when performing continuous data collection.

2. Parmon. The main drawbacks are:

(a) The Client program can be complicated;

(b) There is a higher possibility of breaking off when performing continuous

data collection.

3. MRTG. The main drawbacks are:
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(a) Only two graphs are allowed in one page;

(b) Monitoring data is stored in types of data structures in the log which con-

sume lots of resources.

4. GANGLIA. The main drawbacks are:

(a) Mainly used in facing large-scale clusters;

(b) Uses its own private protocol to collect data, which lacks universality;

(c) High complexity of the software, which is shown in Figure 2.1.

2.5.2 Disk Monitoring

The most commonly used method for disk monitoring is Self-Monitoring Analysis and

Reporting Technology (SMART for short). SMART is a monitoring system which de-

tects and reports on various parameters of drive reliability.

We can see one interface of SMART in Figure 2.2 which illustrates these points.

Although SMART is a powerful technology, SMART does, however, exhibit a num-

ber of drawbacks, as follows:

1. SMART can only display some real-time parameters of the disks and cannot vi-

sualize the data;

2. SMART is designed to collect the data from the disks, but cannot analyze and

predict the data.

Due to the above disadvantages of the existing systems and technologies, in this the-

sis we will propose a novel Virtual Storage Monitoring System (VSMS) which jointly
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Figure 2.1: The Architecture of Ganglia. Ganglia is a hierarchical system, which can

exhibit high complexity with scale.

incorporates MRTG (see Figure 2.3), SMART and RRDtools to construct a comprehen-

sive monitoring system for both performance monitoring and disk monitoring.
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Figure 2.2: An example of the interface for a SMART application.
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Figure 2.3: A demonstration graph of system monitoring data created by MRTG.
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2.6 Multi-label Classification

In machine learning, multi-label classification, and the closely related problem of multi-

output classification, are variants of the classification problem where multiple labels

may be assigned to each instance.

More formally, multi-label classification is the problem of finding a model that maps

an input vector x to a binary vector y. That is, the model assigns a value of 0 or 1 for

each element (label) of y that is true for an instance x. In VSS, the malfunction of any

individual system component can be for different reasons – for example, due to CPU

load, disk damage, and so on.

These faults can happen individually or together. Therefore predicting the reasons

for the malfunction of the system is a multi-label classification problem [55, 54, 53].

This motivates our development of an algorithm for the problem of finding hyperpa-

rameters for multi-label classification algorithms later in the thesis in Chapter 4.

2.7 Deep Learning

Deep learning (DL) has been making major advances in solving problems in artificial

intelligence community over the last decade. It has turned out to be very good at discov-

ering intricate structures in high-dimensional data and is therefore applicable to many

domains of science, business and government. In addition to beating records in im-

age recognition [50] and speech recognition [60], it has beaten other machine-learning

techniques at predicting the activity of potential drug molecules, analysing particle ac-

celerator data, reconstructing brain circuits [33], and predicting the effects of mutations

in non-coding DNA on gene expression and disease. Perhaps more surprisingly, deep
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learning has produced extremely promising results for various tasks in natural language

understanding [20], particularly topic classification, sentiment analysis, question an-

swering and language translation.

Studies have revealed that the architecture of DN is very important for the perfor-

mance of the DL algorithms. Therefore, the question of how to choose suitable archi-

tectures for DN has been recognized as a very important topic and is attracting more

and more attention recently.

2.8 Parameter Optimization

Research on the problem of hyperparameter selection in DL can be mainly put into

following categories, following [9, 17]:

1. grid search;

2. manual search;

3. random search;

4. Bayesian model-based optimization (BMBP);

5. evolutionary algorithm (EA)-based search.

Here, manual search (MS) refers to the process of a human manually selecting hy-

perparameter sets to evaluate. This is straightforward and can make the deployment of

the model very quick.

However, the drawbacks are quite obvious for at least, but not confined to, the fol-

lowing reasons:
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• MS can be quite subjective, since different persons may have different intuitions

or experience leading them to different design decisions for the architecture of the

DN;

• MS can be quite time consuming, since even for a single dataset there will be a

need to perform lots of different evaluations to find the optimal set of hyperpa-

rameters;

• MS is kind of blind, since there is no direction or instruction about how we can

select the next combination of hyperparameters based on the result of previously

assigned values for hyperparameters;

• Even when an architecture for a DN that works well for one dataset is found,

when it is required to be applied to new datasets, people wll still need to perform

this manual search process again [37].

Grid search (GS) is the process of performing hyperparameter tuning in order to find

the optimal values for a given model by exhaustively trying out all sets of hyperparame-

ter values according to a pre-defined search space. To be specific, GS will build a model

on each parameter combination possible in the search space. These parameter values

can be seen as ordered points in the space defined by a number of dimensions, where

each dimension corresponds to a single hyperparameter. Thus the size of the grid, and

hence the search space, depends on the density of points (hyperparameter values) along

each of these dimensions.

GS is widely used since it is easy and quick to implement, and allows the entire

search space to be explored. However, it is important to note that grid-searching can be

extremely computationally expensive, especially for a complex DN with lots of hyper-
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parameters.

Moreover, for these complex DNs even though many of the hyperparameters may

not be important for the performance of the DN, GS will still cover all the combinations

of these hyperparameters which is actually a waste of time [64, 70].

On the other hand, random search (RS) may be a much more effective approach.

RS falls into the family of methods that do not require complicated calculations and can

therefore be very simple and quick to execute. Because of this simplicity, the application

of RS is often quite easy and straightforward.

However, random search suffers from being non-adaptive (i.e., the hyperparameter

settings that work well on one dataset may not work well on other datasets). What is

more, in many cases, RS and can be outperformed by a combination of manual and grid

search [9, 57].

Although BMBP is a much more advanced method, it is also more complicated to

apply and has been found to perform poorly with large numbers of hyperparameters.

Lastly, classic EA-based search can be very slow and has the risk of falling into local

optima.

To address all these potential problems, we propose in Chapter 5 an alternative to

the above approaches, based on combining some of the ideas in a new methodology.

Our approach, called SEODP, uses a semi-evolutionary and semi-random approach to

automatically determine the optimal, or approximately optimal, architecture of a DN for

a given dataset.

In terms of performance, SEODP improves on the inefficiencies highlighted above

of MS and GS, and improves on the accuracy problems of RS. It is also, we believe, not

as complicated to apply as BMBP. What is more, SEODP can automatically adapt over

different datasets to find the optimal DN architectures. Experiments show that SEODP
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achieves good results on a number of different types of datasets, which includes a real-

world dataset containing donation information from a charity organization.
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Evolutionary Weighted Lazy Naive

Bayes (EWLNB)

In this chapter, we develop the details of the Evolutionary Weighted Lazy Naive Bayes

(EWLNB) algorithm, introduced in the Chapter 1 of the thesis.

3.1 Preliminaries

3.1.1 Notations and Definitions

In this section, we introduce some of the notation and important definitions used in this

chapter, and the remainder of the thesis, as follows.

• Training dataset: Da represents the training dataset, Da �
tpxa

1, y
a
1q, ..., pxa

Na
yaNa

qu, where xa
i � txai,1, ..., xai,nu represents the ith in-

stance with n attributes, yai represents the class label of the ith instance, and Na

represents the size of the training dataset. The class label space Y � tc1, ..., ...cmu

27
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with m different value.

• Test dataset: Db represents the test dataset, Db � tpxb
1, y

b
1q, ..., pxb

Nb
ybNb

qu, where

xb
i � txbi,1, ..., xbi,nu represents the ith instance with n attributes, ybi represents the

class label of the ith instance, and Nb represents the size of the test dataset. The

class label space Y � tc1, ..., ...cmu with m different value.

3.1.2 Naive Bayes

According to the above definitions, after a transformation by application of Bayes’ the-

orem, Naive Bayes predicts the test instance xb by Eq. (3.1):

cpxbq � argmax
cjPC

P pcjqP pxa1, � � � xai , � � � xan |cjq (3.1)

Assuming that all attributes are conditionally independent, given the class, we can

obtain the following:

P pxa1, � � � xai , � � � xan |cjq �
n¹

i�1

P pxai |cjq (3.2)

Combining Eqs. (3.1) and (3.2), Eq. (3.1) can be rewritten as follows, which is a

typical representation of the Naive Bayes classifier:

cpxbq � argmax
cjPC

P pcjq
n¹

i�1

P pxai |cjq (3.3)

where P pcjq denotes the prior probability of class cj in the training dataset and P pxai |cjq
represents the conditional probability attribute xai conditioned by the given class cj .
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3.2 Weighted Lazy Naive Bayes

In this section, we present a novel algorithm named Weighted Lazy Naive Bayes

(WLNB) to extend NB for classification. The most important feature of WLNB is that it

finds the nearest instances of a test instance and adds copies of these neighbors (referred

to as clones) to the training dataset to adjust the weighting of the training dataset. The

commonly used distance metric for choosing nearest neighbors is Euclidean distance.

The Euclidean distance between instance xa and instance xb can be given as follows:

dpxa,xbq �
d

ņ

i�1

pxai � xbiq2; (3.4)

where xai and xbi are attributes in a training instance and test instance respectively.

In WLNB, the calculation of Eq. (3.4) is crucial for choosing the nearest neighbors

of a test instance; however, it does not decide the number of clones of an instance. Here,

we introduce two key parameters in WLNB to determine the number of clones of an

instance: threshold and weight. Both threshold and weight are real numbers. To be

more specific, the threshold parameter acts as a threshold on the distance, so that only

the neighbors with distance less than threshold will be considered for cloning. This

operates similarly to the K parameter of the KNN algorithm — when we vary K for

KNN, the result of the classification might be changed. The weight parameter actually

scales the distance to calculate the number of clones. Some of the main motivations

regarding the choice of these two parameters to optimize are as follows.

• The distribution of different data sets might be quite different. In terms of dis-

tance, some data sets can be quite sparse, while others might have quite high den-

sity. so it is unrealistic to set a fixed threshold for all different datasets, the thresh-

old needs to to adjust according to the distribution of different datasets. Same
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for the weight parameter, datasets with different distribution (sparse or dense)

should have different weighting to scale the distance and thus calculate the num-

ber of cloning. In general, for a sparse dataset, a relatively high weighing should

be given, so more instances will be cloned to form the local training dataset. On

the contrary, for a dense dataset, a low weighing should be given because there

are already enough instances in the local training dataset.

• The distribution of a dataset can be different in different area. In terms of distance,

dataset points can be sparse in one area but dense in other areas. To get a good

performance of classification for the whole dataset, threshold and weight needs

to overlook the whole dataset instead of only local neighbors, which needs to be

optimized according to the distribution of the dataset.

• The distribution of the distance among neighbors can be skewed/even. For ex-

ample, in binary classification, we find ten neighbors for a test instance, nine of

the ten neighbors have value true for the target variable, only one neighbor have

value false. However, the neighbor with value false is much more close to the test

instance than the other neighbors with value true. How we should classify the test

instance in this case? In our algorithm, the weight will act as an adapter to deal

with these skewness.

Given a training dataset Da and a test instance xb, we first use Eq. (3.4) to calculate

the distance dpxb,xa
i q between the test instance xb and each training instance xa

i in Da.

If the distance value dpxb,xa
i q is less than the parameter threshold, we calculate the

number of clones of this training instance by the following equation:

clonenbpxa
i q � rp

?
numattri� dpxb,xa

i qq � weights. (3.5)
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Here, numattri is the number of attributes of the dataset, rs is the Gauss mark to get

the integer of the real number. Since the dataset is discretized in the prepossessing stage,

according to the distance function for category data in the WEKA library, the maximum

distance between two instance in is
?
numattri (which means none of the value for each

attribute in the two instances is the same). So
?
numattri is actually used as the upper

range of the distance. As dpxb,xa
i qq increase, r?numattri � dpxb,xa

i qs decrease, and

clonenbpxa
i q decrease. This actually means the closer a neighbor xa

i is to xb, the more

copy this neighbor will be cloned, vice versa. After this, we add clonenbpxa
i q clones of

the training instance xa
i to dataset Da

�
. Here Da

�
actually acts as a new training dataset

which is initialized by an empty set. After the clones of each instance within threshold

are added into Da
�
, a NB classifier is deployed on Da

�
to predict the class label cpxb

iq of

the test instance xb
i . The detailed learning procedure of WLNB is depicted in Algorithm

3.

Parameter vector w � tw1, w2u contains two key parameters of WLNB, in which

w1 presents parameter threshold and w2 presents parameter weight. The cloning of the

instances based on the distance will actually change the prior probability of different

levels for the target variable, which theoretically will make the later NB more accurate.

In this paper, we aim to learn two optimal parameters for WLNB, which is based on a

self-adaptive evolutionary process. Our method takes the objection function (the calcu-

lation of classification accuracy) into consideration, which improves the performance of

classification accuracy according to the characteristic of a specific dataset.
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Algorithm 1: WLNB: Weighted Lazy Naive Bayes
Input:

Training dataset Da; a test instance xb;

parameter vector w � tw1, w2u;
Output:

The classify result cpxbq;

1: Da
�
ÐH;

2: for all each xa
i in Da do

3: Compute dpxb,xa
i q using the Euclidean distance function by Eq. (3.4);

4: thresholdÐ w1, weightÐ w2;

5: for all the instances yi with dpxb,xa
i q   threshold do

6: clonenbÐ rp?numattri� dpxb,xa
i qq � weights;

7: Adding clonenb instance xa
i to Da

�
;

8: end for

9: end for

10: Build an Naive Bayes classifier on Da
�

and use this NB classifier to give the result

of cpxbq;



Chapter 3 33

3.3 EWLNB: Evolutionary Weighted Lazy Naive Bayes

The proposed Evolutionary Weighted Lazy Naive Bayes (EWLNB) consists of two ma-

jor steps to solve the key challenges described in the above sections. We first present

a new Weighted Lazy Naive Bayes method (WLNB) to locally learn the class label

of a test instance. Then, we use a Differential Evolution-based self-adaptive process

(EWLNB) to auto-learn two key parameters in WLNB. We will introduce the learning

framework of the proposed EWLNB in the following chapter.

3.3.1 Self-adaptive Parameter Optimization

In the proposed WLNB learning framework, there are two parameters to be optimized.

We use a differential evolution-based self-adaptive process to auto-learn their optimal

values, namely Evolutionary Weighted Lazy Naive Bayes (EWLNB). In our solution,

two key parameters of EWLNB are simulated as an individual for the evolutionary pro-

cess. Before introducing the details of the self-adaptive parameter optimization process,

we define some notation, as follows:

• Population: W � tw1, � � � ,wLu represents the population (i.e., the set of indi-

viduals), where L denotes the size of the population. wi � twi,1, wi,2u represents

a single individual in the population. wi,1, wi,2 indicates the first and second pa-

rameters in the first individual. The default value of L is 50.

• Maximum Generations: MaxGen represents the maximum number of gener-

ations of the evolutionary process. After MaxGen generations of evolution, the

algorithm should be able to find the optimal combination of parameters. The de-

fault value of MaxGen is 50.
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• Gene: wi,j indicates the jth gene value of the ith individual.

• Optimal Individual: wc represents the individual which has the best fitness (i.e.,

best classification accuracy) on the test instances.

• Mutation Rate: F indicates the mutation rate in the mutation operation, which

describes the probability of an individual being mutated. The default value of F

is 0.5.

• Crossover Rate: CR indicates the crossover rate in the crossover operation.

Crossover rate is the probability of an individual being crossover. The default

value of CR is 0.5.

The following two hyperparameters are the ones that we are aiming to optimize

using our algorithm

• Threshold: threshold indicates the threshold of the distance, only the neighbors

with distance less than threshold will be considered for cloning. The range of

threshold during initialization is [0,
?
numattri] and this is the first parameter

we want to optimize using EWLNB.

• Weight for Cloning: weight indicates the weight when an instance is cloned.

The range ofweight is [1,50] and this is the second parameter we want to optimize

using EWLNB.

One point we need to mention is how to choose the best meta parameters of DE

(such as MaxGen, L, F, CR) is a complicated and well discussed issue and we will not

discuss the detail of this here but only use some ordinary value based on the experience.

More detailed information can be found in Chapter 2.
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To evaluate the performance of EWLNB, we use classification accuracy as the cri-

terion. In other words, the calculation of classification accuracy is used as the fitness

function [83, 89], which can be presented as:

ACC � 1

N b

Nb¸
i�1

δpcpxb
iq, tiq, (3.6)

where N b is the number of test instances, cpxb
iq is the classification result of the ith

instance in the test dataset and ti is the actual class value of the ith training instance.

δpcpxb
iq, tiq is one if cpxb

iq � ti and zero otherwise. In EWLNB, a good combination

of two key parameters should correspond to high classification accuracy. Accordingly,

we drive a self-adaptive updating process to obtain a good combination of two key

parameters based on the highest classification accuracy as follows:

1) Parameter Initialization: During the evolutionary process, we randomly gen-

erate a set of individuals W � tw1, � � � ,wLu with the population size L, where

wi � twi,1, wi,2u is the ith individual in the population. The population in tth gen-

eration can be represented as:

W t �

�
�����
wt

1,1 wt
1,2

...
...

wt
L,1 wt

L,2

�
����� ; (3.7)

2) Parameter Mutation: To maintain the diversity of the individuals, mutation and

crossover operations are applied. For any individual wt
i , a new variation individual vt

i

in tth generation can be generated by mutation operation as follows:

vt
i � wt

c � F � pwt
r1 �wt

r2q; (3.8)

where r1 and r2 are two different integers uniformly chosen from the set



36 Chapter 3

t1, 2, ..., Luztiu. wt
c is the optimal individual with best fitness value. F is the muta-

tion rate.

2) Parameter Crossover: After the mutation operation, a binomial crossover oper-

ation is used to generate the final trial individual ut
i � ruti,1, uti,2s, which can be formu-

lated as follows:

uti,j �

$'&
'%

vti,j, ifprndrealp0, 1q   CR or j � jrandq
wt

i,j, otherwise
; (3.9)

where jrand is an integer randomly chosen in the range[1,2], and rndrealp0, 1q is a real

number randomly generated from (0,1), CR is the crossover rate.

3) Parameter Updating: This process determines whether the trial individual ut
i

(generated from step 2) or the target individual wt
i (generated from step 1) can survive

to the next generation. In this process, a greedy search strategy is adopted. Only the

variation individuals with higher ACC performance can replace the target individuals

and survive to the next generation.

3.3.2 EWLNB Framework

Our proposed EWLNB method combines (1) WLNB construction (Section 3.2) and (2)

adaptive parameter optimization (Section 3.3.1).

The construction of Weighted Lazy Naive Bayes (WLNB) is presented in Algorithm

3. Given a test instance xb, WLNB first calculates the Euclidean distance between the

test instance xb and each instance xa
i in the training dataset (line 3). The number of

clones of the training instances is then determined (lines 4-8). Lastly, the NB classifier

is trained by the extended training dataset and the underlying class label of the test

instance is predicted (line 10).
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Algorithm 4 describes the detailed process of self-adaptive parameter optimization

for WLNB. During the initialization process, each individualwi in populationW will be

initialized (line 1). During the while loop, the fitness of each individual wi is calculated

firstly by WLNB (line 4). The best individual wt
c with highest fitness value f rwt

cs is

then selected (line 5). Both mutation and crossover operations are used to maintain

the diversity of the population, and variation individuals and trial individuals will be

obtained respectively (lines 6-7). A greedy search strategy is applied to acquire the next

population (line 8), and the evolutionary process is repeated until the stopping condition

(t ¥ MaxGen) is met. After the evolutionary process has been terminated, the labels

of test instances in Db are predicted by WLNB with the best parameter vector wc (line

12).
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Algorithm 2: EWLNB: Evolutionary Process for WLNB’s parameter optimization
Input:

Evolution Population W ; The Size of Population L;

Maximum Evolution Generation: MaxGen;

Training Dataset Da, Validation Dataset Db, Test Dataset Dc;

Output:

Classification Results Labelpxcq of Test Instance xc
t P Dc;

1: W Ð The initial wi,j value for each individual wi is set to a real number;

2: while t ¤MaxGen do

3: for i=1 to L do

4: f rwt
is Ð Use Da as the training dataset and Db as the validation dataset to

calculate the fitness of wt
i in the population W t;

5: wt
c Ð Choose the best individual with highest fitness value;

6: vt
i Ð Apply mutation operation to obtain the variation individual by Eq. (3.8);

7: ut
i Ð Apply crossover operation to obtain the trial individual by Eq. (5.1);

8: W t�1 Ð Apply a greedy search strategy to obtain the next generation. If

f rut
is ¥ f rwt

is, individual ut
i survive to the next generation, otherwise in-

dividual wt
i can be retained.

9: end for

10: t � t� 1;

11: end while

12: Labelpxcq Ð Apply wt
c to MLNB to predict the labels of test instances in Dc.

13: return The labels of test instances in Dc;
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3.4 Experiments

3.4.1 Datasets and Parameters Setting

We implemented the proposed method using the WEKA data mining tool [75]. To

validate the performance of EWLNB, we use 56 benchmark datasets obtained from

the UCI data repository [3]. Table 3.1 shows the characteristics of the 56 datasets.

More details of the datasets can be found on the UCI website1. In our experiments,

we first replace all missing attribute values in our experiment using the unsupervised

attribute filter “ReplaceMissingValues” in WEKA, which replaces all missing values

of an attribute with the mean of the known values. We then apply the unsupervised

filter “Discretize” in WEKA to discretize numeric attributes into nominal or categorical

attributes, because the version of NB we use is designed for categorical attributes only.

The four parameters L, MaxGen, F and CR in our algorithm are set to 50, 50,

0.5 and 0.5, respectively. All reported results are obtained via 10 runs of 10-fold cross

validation and all experiments are conducted on a computer with an Intel(R) Core(TM)

3.30 GHZ CPU and 8 GB RAM.

3.4.2 Baseline Methods

For comparison purposes, we compare EWLNB with several methods as baselines:

• NB: the standard Naive Bayes classifier with conditional attribute independence

assumption [25];

• LNB: Lazy Naive Bayes classifier which calculates the distances of instance

through attribute similarity [40];
1http://archive.ics.uci.edu/ml/datasets.html
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• TreeAWNB: Attribute weighted Naive Bayes with the weighting method according

to the degree to which they depend on the values of other attributes [26];

• MIAWNB: Attribute weighted Naive Bayes using the mutual information weighted

method [45];

• IWNB: Naive Bayes classifier with instances weighting [23];

• KNN: Instance-based lazy learning classifier [1];

• TreeAWKNN: Attribute weighted KNN with the weighting method according to

the degree to which they depend on the values of other attributes [26];

• MIAWKNN: Attribute weighted KNN using mutual information weighted method

[80].

3.4.3 Evaluation Criteria

In our experiments, the selected algorithms are evaluated on the criteria of classification

accuracy (measured by ACC) and class ranking performance (measured by AUC). The

ACC of each method is calculated by the percentage of correctly predicted samples in

the test set, which can be achieved by Eq. (3.6).

In some machine learning applications, learning a classifier with accurate class rank-

ing or class probability distributions is also desirable [86]. For example, in direct mar-

keting, the limitation of the resources might only allow where promotion of the top x%

customers during gradual roll-out, or different promotion strategies might be deployed

for different customers according to the likelihood that they will buy certain products.

To accomplish these learning tasks, ranking customers according to their likelihood of
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Table 3.1: Detailed information of 56 UCI benchmark datasets.

Datasets Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y

anneal.orig 898 39 6 Y Y

artificial 10218 8 10 N N

audiology 226 70 24 Y N

autos 205 26 7 Y Y

balance-scale 625 5 3 N Y

breast-cancer 286 10 2 Y N

breast-w 699 10 2 Y N

car 1728 7 4 N N

climate 540 21 2 N N

colic 368 23 2 Y Y

colic.orig 368 28 2 Y Y

credit-a 690 16 2 Y Y

cylinder 540 40 2 N N

diabetes 768 9 2 N Y

ecoli 336 8 8 N N

Energy1 768 9 37 N N

Energy2 768 9 38 N N

glass 214 10 7 N Y

hayes-roth 160 5 3 N N

heart-c 303 14 5 Y Y

heart-h 294 14 5 Y Y

heart-statlog 270 14 2 N Y

hepatitis 155 20 2 Y Y

hypothyroid 3772 30 4 Y Y

ionosphere 351 35 2 N Y

iris 150 5 3 N Y

kr-vs-kp 3196 37 2 N N

labor 57 17 2 Y Y

letter 20000 17 26 N Y

lymph 148 19 4 N Y

mfeat-f 2000 77 10 N N

monks 556 7 2 N N

movement 360 91 15 N N

mushroom 8124 23 2 Y N

newthyroid 215 6 3 N N

optdigits 5620 65 10 N N

page-blocks 5473 11 5 N N

pendigits 10992 17 10 N N

primary-tumor 339 18 21 Y N

qar 1055 42 2 N N

robot-24 5456 25 4 N N

segment 2310 20 7 N Y

sick 3772 30 2 Y Y

sonar 208 61 2 N Y

soybean 683 36 19 Y N

spectrometer 531 102 48 N N

splice 3190 62 3 N N

steel 1941 34 2 N N

texture 5500 41 11 N N

vehicle 846 19 4 N Y

vote 435 17 2 Y N

vowel 990 14 11 N Y

waveform 5000 41 3 N Y

zoo 101 18 7 N Y

credit-b 1000 21 2 N Y
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buying is more useful than simply classifying customers as buyers or non-buyers [83].

To evaluate the classifier performance in terms of class ranking and class probability

distributions, we use AUC, which is calculated as follows:

E � P0 � t0pt0 � 1q{2
t0t1

(3.10)

where t0 and t1 are the number of negative and positive instances, respectively. P0 �°
ri, with ri denoting the rank of the ith negative instance in the ranked list. It is clear

that AUC is essentially a measure of the quality of ranking. The above measure can only

deal with the two-class problem. For multiple classes, [28] have proposed an extension

to the 2-class AUC measure, calculated by:

E 1 � 2

gpg � 1q
¸

i j L

Epci, cjq (3.11)

where g is the number of classes and Epci, cjq is the AUC of each pair of classes ci and

cj .

3.4.4 UCI benchmark learning tasks

In this section, we first report the performance of standard NB and improved NB meth-

ods (including LNB, TreeAWNB, MIAWNB and IWNB). We then present the perfor-

mance of the standard KNN and improved KNN algorithms (including TreeAWKNN

and MIAWKNN). Lastly, we compare the performance of the proposed EWLNB with

other baselines.

Improved NB vs. standard NB

Tables 3.2 and 3.3 respectively show the detailed classification accuracy and area under

the curve results of all compared methods. The respective standard deviation values are
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also given in Tables 3.2 and 3.3. Tables 3.4 and 3.5 respectively illustrate the compared

results of win/tie/loss record on classification accuracy and area under the curve. On

each w{t{l record, the algorithm in the corresponding row wins in w datasets, ties in

t datasets, and loses in l datasets on the 56 UCI datasets, compared to the algorithm

in the corresponding column. In general, the comparisons between the improved NB

classifiers and the standard NB classifier can be summarized as follows:

1. LNB significantly outperforms NB on ACC (20 wins and 0 lose). In contrast,

LNB shows its inferior performance on AUC (0 win and 40 loses).

2. TreeAWNB shows comparative performance to NB in terms of ACC (5 wins and

2 loses), and shows great superiority to NB with respect to AUC (19 wins and 0

loses).

3. IWNB is slightly superior to NB with respect to ACC (8 wins and 0 loses). By

contrast, IWNB is inferior to NB on AUC (1 win and 13 loses).

4. MIAWNB is an ineffective attribute weighting method for NB to improve clas-

sification accuracy performance. It shows inferior performance on ACC (5 wins

and 9 loses). However, MIAWNB is slightly superior to NB on AUC (12 wins

and 4 loses).

Improved KNN vs. Standard KNN

In this section, we report the comparative results between the standard KNN and the

improved KNN methods. The detailed compared results with respect to ACC and AUC

are shown in Tables 3.2 and 3.3. The two-tailed t-test results on ACC and AUC are

reported in Tables 3.4 and 3.5 respectively. From these figures, we can see that not all
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existing improved KNN methods can achieve good performance in different measures.

Overall, the highlights can be presented as follows:

1. Compared to KNN, TreeAWKNN wins 4 datasets, ties 38 datasets and loses 4

datasets on ACC. In terms of AUC, TreeAWKNN slightly outperforms KNN (9

wins and 2 loses).

2. In terms of ACC, MIAWKNN shows comparative performance to KNN (10 wins

and 10 loses). By contrast, MIAWKNN is inferior to KNN on AUC (3 wins and

8 loses).

Proposed EWLNB vs. Other Baselines

In Figures 3.1 to 3.4 and Figures 3.5 to 3.8, we comparatively report the performance of

EWLNB with other baselines for all benchmark UCI datasets in terms of classification

accuracy (ACC), and area under the ROC curve (AUC), respectively.

Note that the majority of data points fall below the diagonal line y � x in these

figures, illustrating the superior performance of the proposed EWLNB.

More illustrations of performance in terms of ACC and AUC are presented in Ta-

bles 3.2 and 3.3 (detailed results) and Tables 3.4 and 3.5 (two-tailed t-test results). In

both Tables 3.2 and 3.3, the symbols  and � represent statistically significant upgrada-

tion and degradation over the proposed EWLNB with a 95% confidence level. Our ex-

perimental results indicate that EWLNB shows significant gains compared to the other

baseline methods on the above two evaluation criteria. In summary, our experimental

results show:

1. EWLNB shows its superiority compared to NB. It significantly outperforms NB

on both ACC and AUC (20 wins and zero losses).
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2. Compared to the improved NB methods, EWLNB demonstrates the superior per-

formance. EWLNB outperforms LNB (11 wins and 2 losses), TreeAWNB (21

wins and 1 loss), MIAWNB (14 wins and 8 losses) and IWNB (14 wins and 8

losses). Similar superior performance can also be seen on AUC.

3. EWLNB shows good performance compared to KNN, TreeAWKNN and MI-

AWKNN. In terms of ACC, EWLNB outperforms KNN (19 wins and 3 losses),

TreeAWKNN (14 wins and 8 losses) and MIAWKNN (15 wins and 4 losses). For

AUC, EWLNB outperforms KNN (18 wins and 2 losses), TreeAWKNN (16 wins

and 7 losses) and MIAWKNN (15 wins and 4 losses).

3.4.5 Convergence and Learning Curves

To investigate the convergence of the EWLNB, we report the relationship between the

number of generations and the classification accuracy on 4 datasets with a large number

of instances (these are denoted as “artificial”, “letter”, “optdigits” and “page-blocks”)

and another 4 datasets with large number of attributes (these are denoted as “mfeat”,

“movement”, “anneal.orig” and “wave”).

These convergence results are shown in Figures 3.9 to 3.12 for large numbers of

instances, and 3.13 to 3.16 for large numbers of attributes. Each point on the curves

of Figures 3.9 to 3.12 and Figures 3.13 to 3.16 corresponds to the mean classification

accuracy from 10-fold cross validation under the underlying iteration with the current

optimal individual, (i.e., set of hyperparameter values).

The learning curves of EWLNB on eight datasets ascend rapidly in the preceding

generations, and achieve higher classification accuracy in the latter generations, con-

verging to a steady state.
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To further investigate the convergence of EWLNB, we observed the “letter” dataset,

which is a multiple classification dataset (26 classes) with 20000 instances and 17

attributes. Our result in Figure 3.10 shows that EWLNB achieves 84.30% classifi-

cation accuracy, which is significantly higher than NB’s accuracy of 66.2% on the

same dataset. The accuracy of the final convergence is better than LNB (76.00%),

TreeAWNB(66.3%), MIAWNB(68%), IWNB(67.1%), KNN(71.2%), TreeAWKNN(

72.8%) and MIAWKNN(73.3%).

Similar improvements can also be observed from the remaining datasets. In some

situations, our EWLNB obtains a better classification accuracy result than other methods

compared in previous iterations, which illustrates the good convergence performance of

EWLNB.
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Table 3.2: The detailed experimental results: classification accuracy (ACC) %.

Datasets EWLNB LNB TreeAWNB MIAWNB TreeAWKNN MIAWKNN KNN NB IWNB

anneal 97.44 �1.83 97.44 �1.58 94.65 �2.72 � 87.73 �5.50 � 97.55 �1.47 97.10 �1.68 95.88 �1.97 94.32 �2.38 � 97.33 �1.59

anneal.orig 89.53 �3.40 88.53 �3.05 87.42 �2.60 78.28 �4.43 � 86.98 �3.30 87.97 �2.15 84.41 �3.30 � 87.53 �4.69 88.42 �2.77

artificial 68.57 �1.83 47.72 �1.19 � 36.74 �0.90 � 36.23 �1.04 � 56.21 �1.84 � 52.64 �1.26 � 56.14 �2.49 � 36.40 �1.00 � 35.90 �0.85 �

audiology 75.61 �6.93 78.32 �7.12 73.40 �7.13 71.17 �8.16 65.04 �7.91 � 69.47 �6.35 58.79 �8.30 � 71.23 �7.03 78.32 �7.12

autos 72.98 �13.25 74.57 �10.59 66.29 �12.42 65.79 �10.33 68.31 �7.56 65.86 �8.17 62.52 �8.03 64.83 �11.18 66.69 �13.87

balance-scale 90.24 �1.93 91.04 �1.55 90.72 �1.67 90.40 �1.50 79.67 �5.45 � 78.24 �2.56 � 83.84 �4.71 � 91.36 �1.38 90.40 �1.52

breast-cancer 71.06 �12.83 71.74 �8.74 72.76 �8.72 70.27 �10.95 73.46 �6.96 70.96 �5.52 73.09 �4.25 72.06 �7.97 72.09 �8.78

breast-w 97.42 �1.76 97.42 �1.89 97.42 �1.76 97.28 �1.84 94.28 �3.93 � 95.42 �3.49 93.99 �3.42 � 97.28 �1.84 97.42 �1.89

car 89.93 �3.83 86.92 �1.73 84.37 �2.33 � 81.37 �1.97 � 90.97 �2.04 85.82 �2.84 � 93.52 �1.32 85.53 �2.49 � 85.19 �1.73 �

climate 87.78 �4.11 88.89 �1.95 85.19 �4.36 � 77.22 �8.86 � 91.11 �1.91 90.74 �2.31 91.48 �0.96 87.78 �4.11 88.33 �3.27

colic 79.35 �4.07 80.99 �5.80 80.98 �5.07 83.67 �7.86 84.76 �5.07  83.68 �5.90 83.13 �6.29 78.81 �5.05 80.17 �5.52

colic.orig 76.88 �5.40 75.81 �5.19 74.99 �4.62 73.91 �3.94 79.31 �6.06 76.37 �5.10 69.82 �3.40 � 75.26 �5.26 74.99 �5.43

credit-a 85.65 �3.95 84.93 �3.94 86.09 �4.54 86.09 �4.44 86.52 �4.10 85.07 �4.21 86.09 �4.39 84.78 �4.28 84.78 �4.11

credit-g 76.60 �4.45 76.80 �4.18 74.70 �4.22 71.50 �4.43 � 74.20 �2.62 74.70 �4.81 71.90 �3.28 76.30 �4.76 76.50 �4.81

cylinder 77.04 �4.80 81.30 �6.95 77.04 �4.95 79.81 �6.20 63.52 �5.31 � 67.41 �4.80 � 75.00 �6.61 75.37 �4.86 79.81 �6.26

diabetes 75.92 �5.89 75.78 �5.94 75.66 �6.58 76.57 �5.20 73.44 �4.12 73.44 �3.83 69.02 �2.19 � 75.40 �5.85 74.62 �5.85

ecoli 84.23 �5.56 85.42 �4.53 84.81 �7.51 83.92 �6.34 72.94 �5.55 � 74.42 �6.95 � 73.50 �4.74 � 82.14 �5.93 84.80 �6.43

energy1 63.15 �5.87 58.85 �4.30 47.00 �3.55 � 45.18 �3.86 � 61.20 �5.09 59.90 �4.96 59.90 �5.03 45.05 �3.92 � 47.92 �3.88 �

energy2 51.17 �4.13 52.60 �4.52 46.88 �6.10 � 42.71 �5.04 � 52.99 �3.39 52.21 �4.07 51.68 �4.84 46.10 �4.68 � 48.05 �5.64

glass 58.44 �8.06 59.85 �7.39 58.90 �10.43 58.05 �11.11 61.21 �8.84 58.01 �12.39 57.06 �8.03 60.32 �9.69 59.83 �11.97

hayes-roth 83.75 �10.29 83.13 �10.23 84.38 �10.31 85.00 �10.29 66.25 �11.86 � 66.25 �8.94 � 67.50 �10.12 � 82.50 �11.33 85.00 �11.10

heart-c 83.13 �5.84 81.48 �6.21 83.14 �4.65 83.13 �5.17 81.13 �9.25 81.77 �8.29 81.09 �9.77 84.14 �4.16 81.83 �6.57

heart-h 83.70 �5.15 84.05 �4.40 83.38 �6.36 82.70 �7.41 80.36 �8.49 81.34 �6.99 82.02 �6.06 84.05 �6.69 84.39 �4.72

heart-statlog 82.59 �4.95 82.22 �5.47 83.70 �4.68 83.70 �4.68 80.00 �5.00 81.11 �7.50 82.22 �7.37 83.70 �5.00 84.07 �3.92

hepatitis 86.33 �7.95 85.67 �7.57 84.46 �8.72 84.50 �10.51 81.83 �6.23 80.63 �3.21 84.50 �6.22 83.79 �8.79 85.71 �8.09

hypothyroid 92.71 �1.28 92.84 �0.88 90.03 �1.20 � 77.89 �1.95 � 93.27 �0.66 93.21 �0.67 93.08 �0.64 92.79 �1.02 92.82 �0.87

ionosphere 91.17 �3.42 91.44 �3.82 91.74 �3.42 91.17 �3.42 88.61 �4.23 90.60 �4.28 89.74 �2.78 90.89 �3.49 89.17 �4.44

iris 94.00 �8.58 96.67 �4.71 96.00 �4.66 96.67 �4.71 94.00 �5.84 92.67 �6.63 93.33 �6.29 94.67 �8.20 94.67 �8.20

kr-vs-kp 93.56 �1.28 88.67 �1.64 � 90.02 �1.95 � 91.05 �1.82 � 97.97 �0.68  95.74 �0.81  95.06 �1.34 87.89 �1.81 � 88.45 �1.62 �

labor 93.33 �11.65 90.00 �14.05 88.00 �11.46 90.00 �14.05 86.00 �16.39 87.67 �16.93 85.67 �14.49 93.33 �11.65 91.67 �14.16

letter 80.20 �2.37 76.00 �2.23 � 66.25 �2.04 � 68.03 �2.68 � 72.83 �1.83 � 73.28 �2.10 � 71.22 �2.47 � 66.15 �2.15 � 67.13 �2.38 �

lymph 85.00 �8.63 86.33 �8.80 85.67 �8.45 84.33 �7.53 80.24 �9.22 80.29 �8.97 80.86 �12.02 85.67 �9.55 86.33 �8.80

mfeat-f 78.55 �2.19 79.15 �2.91 78.10 �2.11 78.45 �1.79 76.75 �0.82 76.00 �1.96 72.00 �2.71 � 77.15 �1.96 � 77.30 �2.37 �

monks 95.65 �6.92 75.36 �2.53 � 74.64 �2.15 � 74.64 �2.15 � 92.24 �5.53 79.73 �9.81 99.09 �1.77 74.64 �2.15 � 73.74 �3.09 �

movement 72.22 �8.18 80.83 �5.92  64.44 �10.04 � 64.17 �9.48 � 50.00 �9.07 � 48.89 �10.73 � 58.89 �10.04 � 63.89 �10.48 � 73.61 �7.55

mushroom 99.38 �0.65 99.02 �0.97 97.17 �1.42 � 97.97 �1.36 � 99.20 �0.87 99.63 �0.60 99.75 �0.32 93.84 �2.02 � 97.05 �1.68 �

Newthyroid 94.83 �5.21 92.99 �5.08 93.44 �4.60 95.71 �5.70 84.18 �6.73 � 83.29 �8.00 � 80.52 �5.90 � 92.08 �4.46 92.99 �5.08

optdigits 93.88 �1.13 93.01 �1.28 � 92.37 �1.05 � 92.30 �1.02 � 92.88 �1.14 94.18 �0.86 92.83 �1.03 92.38 �1.20 � 92.24 �1.29 �

page-blocks 93.55 �0.81 92.64 �0.80 � 91.59 �1.07 � 86.79 �1.10 � 92.53 �0.97 � 92.02 �1.15 � 92.87 �0.61 92.34 �1.03 � 92.54 �0.99

pendigits 94.93 �0.98 92.86 �0.71 � 87.00 �1.06 � 86.61 �0.95 � 95.89 �0.51 93.40 �0.83 � 95.56 �0.51 87.04 �1.23 � 88.21 �1.06 �

primary-tumor 47.78 �5.25 47.50 �4.90 46.62 �4.50 43.67 �5.46 43.05 �3.48 44.81 �5.49 42.47 �5.67 46.89 �4.32 46.61 �5.55

qar 80.29 �4.42 81.05 �3.37 79.63 �5.15 78.40 �4.97 84.26 �4.00  80.38 �3.71 83.41 �4.28  79.81 �4.43 80.95 �3.66

robot-24 87.83 �1.53 83.84 �1.79 � 80.63 �1.86 � 82.31 �1.74 � 92.93 �1.44  93.07 �1.15  91.00 �1.63  80.57 �2.02 � 80.04 �1.71 �

segment 93.90 �1.56 91.26 �1.67 � 89.57 �1.90 � 87.62 �2.08 � 90.52 �1.31 � 89.26 �2.16 � 89.65 �1.84 � 88.92 �1.95 � 89.91 �2.03 �

sick 97.67 �0.51 97.08 �0.54 � 96.47 �0.81 � 96.29 �0.80 � 97.99 �0.59 97.48 �0.69 97.03 �0.73 96.74 �0.53 � 97.03 �0.61 �

sonar 77.02 �11.72 79.40 �8.88 74.60 �11.98 76.05 �12.58 71.12 �10.15 73.14 �9.96 81.33 �8.42 77.50 �11.99 77.43 �8.95

soybean 93.55 �2.81 94.43 �2.29 91.79 �2.54 91.94 �2.64 90.04 �3.16 90.03 �2.86 89.01 �2.12 � 92.08 �2.34 93.99 �2.36

spectrometer 49.54 �7.05 52.55 �4.61 48.21 �4.46 47.46 �4.36 52.92 �4.88 49.15 �4.72 46.33 �4.50 46.70 �4.82 49.71 �6.47

splice 95.33 �1.43 95.86 �0.87 95.74 �1.11 94.80 �1.36 89.34 �1.93 � 91.07 �2.18 � 83.26 �2.42 � 95.36 �1.00 95.55 �0.94

steel 95.72 �1.35 96.81 �1.34  98.15 �0.81  94.80 �1.62 100.00 �0.00  94.44 �2.10 88.05 �1.60 � 95.26 �1.28 97.27 �1.14 

texture 92.05 �1.02 90.31 �0.96 � 79.60 �1.46 � 79.42 �1.29 � 95.96 �0.50  95.51 �0.87  95.36 �0.67  79.51 �1.33 � 80.15 �1.24 �

vehicle 64.66 �2.87 67.86 �4.73 62.06 �3.44 60.29 �3.90 71.51 �3.20  65.85 �4.03 68.68 �2.74 61.82 �3.54 61.58 �2.96

vote 91.74 �4.06 90.82 �3.72 91.74 �3.91 91.97 �3.61 96.33 �3.25  95.64 �3.94  92.90 �3.61 90.14 �4.17 90.60 �3.78

vowel 90.71 �3.89 87.68 �2.22 67.98 �5.06 � 66.97 �5.55 � 73.54 �5.36 � 62.73 �5.25 � 67.68 �4.04 � 67.07 �4.21 � 66.26 �5.72 �

waveform 83.30 �4.37 83.50 �4.72 79.00 �4.35 � 78.70 �3.68 � 76.70 �5.83 77.50 �4.60 � 74.60 �4.62 � 79.70 �4.00 � 80.50 �4.03

zoo 95.18 �6.65 96.18 �6.54 95.09 �5.18 95.00 �7.07 89.18 �8.57 83.27 �11.28 89.18 �9.78 94.18 �6.60 96.18 �6.54

, �: Statistically significant upgradation and degradation, respectively.
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Table 3.3: The detailed experimental results: area under the curve (AUC) %.

Datasets EWLNB LNB TreeAWNB MIAWNB TreeAWKNN MIAWKNN KNN NB IWNB

anneal 98.88 � 1.68 97.51 � 4.26 98.78 � 1.77 98.83 � 1.72 96.84 � 6.96 98.35 � 3.07 96.70 � 7.80 98.76 � 1.84 98.91 � 1.69

anneal.orig 97.11 � 5.24 92.06 � 6.32 97.69 � 3.19 97.51 � 3.82 96.68 � 5.82 97.69 � 2.37 96.11 � 6.07 � 96.79 � 5.42 98.22 � 2.07

artificial 95.98 � 0.63 70.54 � 0.89 � 81.04 � 0.89 � 80.44 � 0.98 � 93.78 � 0.46 � 92.79 � 0.52 � 93.56 � 0.48 � 81.15 � 0.94 � 80.93 � 0.97 �

audiology 84.24 � 1.64 82.54 � 1.64 � 83.90 � 1.43 84.21 � 1.57 84.13 � 1.57 83.84 � 1.57 83.18 � 1.48 � 83.85 � 1.44 84.65 � 1.71

autos 94.34 � 4.00 89.03 � 6.28 92.80 � 3.60 92.44 � 4.07 92.98 � 3.20 92.12 � 3.15 91.85 � 3.47 91.96 � 3.32 93.38 � 3.69

balance-scale 83.43 � 3.72 75.01 � 3.30 � 86.73 � 4.04 87.12 � 4.18  63.46 � 5.74 � 61.78 � 3.16 � 65.61 � 2.85 � 85.00 � 4.03 84.76 � 4.61

breast-cancer 70.43 �14.77 65.24 �11.29 71.15 �13.67 70.74 �13.23 61.43 �13.46 � 64.92 �14.36 66.46 �11.58 71.32 �13.81 70.49 �13.74

breast-w 99.26 � 0.76 97.84 � 1.44 � 99.26 � 0.76 99.21 � 0.82 98.03 � 1.68 98.20 � 2.49 98.86 � 1.12 99.23 � 0.83 99.26 � 0.77

car 97.51 � 2.35 73.88 � 3.08 � 97.16 � 1.09 97.28 � 1.08 92.38 � 3.22 � 93.63 � 2.57 97.28 � 2.06 92.72 � 1.94 � 93.01 � 2.00 �

climate 74.96 �10.04 50.64 � 3.88 � 78.82 �10.17 82.38 �10.72 77.56 �10.43 81.06 �11.70 68.31 �12.64 76.98 �10.15 78.04 � 9.21

colic 85.71 � 4.50 79.57 � 6.21 � 85.93 � 5.50 87.59 � 6.01 87.95 � 5.93 88.01 � 6.69 87.33 � 5.42 84.42 � 5.45 84.11 � 5.74

colic.orig 83.89 � 6.96 73.30 � 6.74 � 83.13 � 6.39 82.59 � 5.43 83.57 � 6.73 83.50 � 5.98 77.46 � 6.31 81.70 � 7.23 84.09 � 6.11

credit-a 92.20 � 2.97 84.60 � 4.01 � 92.18 � 3.25 92.32 � 3.22 91.35 � 4.04 92.10 � 3.76 91.88 � 3.36 91.97 � 3.14 91.92 � 3.22

credit-g 79.07 � 4.26 70.19 � 4.50 � 79.79 � 4.63 78.83 � 5.25 76.98 � 4.64 76.70 � 6.11 75.99 � 5.47 79.42 � 4.52 79.24 � 4.40

cylinder 86.63 � 5.31 80.02 � 7.39 � 85.57 � 5.75 87.05 � 6.17 69.07 � 7.19 � 73.76 � 6.94 � 83.13 � 4.53 84.38 � 5.42 87.65 � 5.31

diabetes 82.90 � 4.82 73.94 � 7.18 � 83.22 � 4.95 84.01 � 4.83 80.86 � 4.97 80.20 � 4.62 77.93 � 5.69 � 82.74 � 4.94 82.58 � 5.33

ecoli 94.84 � 2.92 91.29 � 1.98 � 94.57 � 2.87 94.26 � 2.93 90.79 � 2.28 � 89.86 � 2.24 � 92.57 � 2.98 � 94.59 � 2.67 95.07 � 2.86

energy1 95.58 � 0.97 83.19 � 0.91 � 93.05 � 1.42 � 93.07 � 1.43 � 97.06 � 0.69  96.57 � 0.98 96.02 � 0.82 92.96 � 1.38 � 93.48 � 1.53 �

energy2 93.41 � 1.66 82.80 � 1.97 � 92.66 � 1.52 92.73 � 1.55 95.55 � 0.85  95.37 � 0.62  94.42 � 1.19 92.86 � 1.50 92.91 � 1.87

glass 86.84 � 7.33 77.41 � 4.17 � 83.25 � 6.26 84.75 � 6.08 88.37 � 2.67 85.25 � 6.88 85.95 � 2.64 82.63 � 6.07 89.00 � 3.13

hayes-roth 95.00 � 4.81 86.19 � 8.33 � 96.08 � 3.68 96.48 � 3.56 84.81 � 9.60 � 84.73 � 8.53 � 85.74 � 8.40 � 95.61 � 4.28 96.48 � 3.52

heart-c 84.17 � 0.43 83.13 � 0.66 � 84.17 � 0.53 84.12 � 0.54 83.82 � 0.85 83.81 � 0.79 83.96 � 0.78 84.17 � 0.50 84.13 � 0.55

heart-h 83.84 � 0.59 83.16 � 0.54 � 83.86 � 0.69 83.95 � 0.68 83.65 � 0.90 83.64 � 0.76 83.78 � 0.86 83.92 � 0.63 83.86 � 0.67

heart-statlog 91.72 � 3.90 81.83 � 5.84 � 91.72 � 4.14 91.67 � 4.55 88.83 � 6.00 89.19 � 5.13 90.72 � 5.36 91.33 � 5.15 91.11 � 4.79

hepatitis 88.70 � 9.41 79.26 �16.76 � 89.34 � 7.65 89.34 � 8.19 77.56 �10.01 � 82.89 � 9.42 85.33 �12.56 89.90 � 8.24 89.25 � 8.75

hypothyroid 86.94 �11.13 78.36 �10.25 � 88.44 � 9.50 88.77 � 9.90 84.49 �10.96 � 83.28 �13.50 84.22 �11.02 � 87.53 � 9.20 88.67 � 9.37

ionosphere 94.84 � 2.92 89.72 � 4.75 � 94.46 � 3.05 94.15 � 2.93 92.50 � 5.81 95.43 � 3.00 94.29 � 4.00 93.90 � 3.21 � 93.89 � 2.80

iris 98.93 � 2.16 98.33 � 2.36 99.20 � 1.80 99.20 � 1.80 98.93 � 1.99 98.93 � 1.76 98.47 � 2.31 98.93 � 2.16 98.80 � 2.31

kr-vs-kp 98.40 � 0.64 88.60 � 1.63 � 96.88 � 0.97 � 98.08 � 0.76 99.80 � 0.15  99.46 � 0.18  99.05 � 0.47 95.20 � 1.28 � 95.62 � 1.19 �

labor 100.00 � 0.00 88.75 �17.13 98.75 � 3.95 98.75 � 3.95 92.50 �13.44 90.00 �24.15 97.50 � 7.91 98.75 � 3.95 100.00 � 0.00

letter 98.57 � 0.30 87.17 � 1.26 � 95.69 � 0.73 � 96.10 � 0.64 � 96.62 � 0.73 � 96.43 � 0.62 � 96.88 � 0.70 � 95.68 � 0.73 � 96.22 � 0.69 �

lymph 94.77 � 4.69 93.19 � 4.39 95.15 � 4.88 94.81 � 4.85 93.30 � 5.55 93.38 � 5.19 94.33 � 5.33 95.01 � 4.87 94.77 � 4.52

mfeat-f 96.66 � 0.67 90.55 � 2.11 � 96.43 � 0.73 96.79 � 0.62 95.92 � 0.87 96.20 � 0.67 94.86 � 0.96 � 96.24 � 0.82 � 96.55 � 0.69

monks 99.63 � 1.13 75.35 � 2.62 � 72.60 � 6.63 � 70.06 � 5.24 � 99.47 � 1.47 83.74 �11.82 � 100.00 � 0.00 72.71 � 6.93 � 71.67 � 6.10 �

movement 97.79 � 1.08 88.13 � 3.55 � 96.38 � 1.50 � 96.24 � 1.68 � 92.78 � 2.89 � 93.33 � 2.74 � 95.78 � 1.38 � 96.26 � 1.38 � 97.18 � 1.20

mushroom 99.99 � 0.03 98.96 � 1.03 99.85 � 0.11 � 99.87 � 0.09 � 99.96 � 0.11 99.95 � 0.16 100.00 � 0.00 99.59 � 0.17 � 99.89 � 0.09 �

Newthyroid 99.80 � 0.48 87.78 � 9.28 � 99.56 � 1.00 99.48 � 1.21 97.10 � 3.29 95.50 � 6.13 97.93 � 2.32 99.56 � 1.00 99.70 � 0.62

optdigits 99.78 � 0.09 96.44 � 0.75 � 99.55 � 0.12 � 99.55 � 0.13 � 99.71 � 0.12 99.75 � 0.14 99.78 � 0.12 99.54 � 0.12 � 99.52 � 0.15 �

page-blocks 92.67 � 1.50 78.44 � 5.63 � 89.86 � 2.76 � 91.13 � 2.09 88.21 � 2.90 � 84.49 � 2.60 � 88.94 � 2.18 � 88.49 � 3.19 � 90.37 � 2.28 �

pendigits 99.77 � 0.09 95.50 � 0.44 � 98.73 � 0.19 � 98.67 � 0.19 � 99.74 � 0.14 99.45 � 0.17 � 99.83 � 0.08 98.70 � 0.20 � 98.95 � 0.17 �

primary-tumor 85.13 � 2.79 79.56 � 1.39 � 85.38 � 2.86 85.34 � 2.53 82.97 � 3.06 � 83.27 � 2.18 � 83.00 � 2.71 85.05 � 2.96 85.14 � 3.24

qar 88.85 � 4.20 81.09 � 2.89 � 88.13 � 5.08 86.58 � 5.42 � 89.72 � 3.02 86.43 � 3.75 89.93 � 3.55 88.06 � 5.14 88.71 � 4.29

robot-24 97.96 � 0.37 89.93 � 1.26 � 95.03 � 0.83 � 95.35 � 0.81 � 98.97 � 0.44  98.77 � 0.50  98.75 � 0.38  94.80 � 0.85 � 94.89 � 0.84 �

segment 99.47 � 0.27 94.89 � 1.15 � 98.45 � 0.49 � 98.16 � 0.60 � 98.99 � 0.33 98.84 � 0.37 � 98.96 � 0.29 � 98.37 � 0.52 � 98.51 � 0.51 �

sick 98.11 � 0.75 89.74 � 2.33 � 96.07 � 2.54 94.94 � 3.41 99.03 � 0.59 97.09 � 2.38 98.04 � 1.22 95.92 � 2.48 � 95.83 � 2.38 �

sonar 85.81 � 9.84 78.80 � 8.53 86.40 � 9.50 86.22 �10.10 79.58 �10.02 82.53 � 8.12 87.92 � 7.95 86.79 � 9.83 85.00 � 8.30

soybean 99.94 � 0.03 99.05 � 0.47 � 99.91 � 0.05 99.91 � 0.07 99.84 � 0.17 99.73 � 0.31 99.79 � 0.13 � 99.90 � 0.07 99.94 � 0.04

spectrometer 87.38 � 1.03 81.90 � 0.84 � 87.52 � 0.87 87.54 � 0.86 87.11 � 1.03 86.75 � 1.17 86.46 � 1.36 87.45 � 0.86 87.71 � 0.78

splice 99.50 � 0.25 96.31 � 1.17 � 99.51 � 0.21 99.46 � 0.24 98.70 � 0.49 � 98.35 � 0.76 � 97.91 � 0.72 � 99.41 � 0.22 99.44 � 0.22

steel 98.85 � 0.70 95.43 � 1.96 � 99.41 � 0.57  98.76 � 0.81 100.00 � 0.00  98.58 � 0.78 95.11 � 1.10 � 98.47 � 0.98 99.28 � 0.62 

texture 99.29 � 0.20 94.76 � 0.67 � 97.02 � 0.37 � 97.02 � 0.38 � 99.78 � 0.08  99.71 � 0.13  99.81 � 0.11  96.94 � 0.38 � 97.12 � 0.37 �

vehicle 85.45 � 3.39 72.22 � 3.58 � 80.99 � 3.69 � 79.89 � 3.87 � 89.34 � 1.24  84.75 � 2.78 88.65 � 2.73 80.85 � 3.73 � 81.29 � 3.03 �

vote 97.84 � 1.43 91.20 � 3.61 � 97.58 � 1.59 97.56 � 1.73 97.53 � 2.90 98.06 � 2.95 98.10 � 1.04 96.79 � 1.95 96.87 � 1.82

vowel 99.43 � 0.67 93.60 � 1.34 � 96.13 � 0.70 � 96.23 � 0.84 � 97.34 � 0.98 � 94.45 � 1.99 � 96.36 � 0.74 � 96.19 � 0.72 � 96.10 � 0.85 �

waveform 96.56 � 0.98 85.56 � 4.22 � 95.61 � 1.35 � 95.26 � 1.39 � 91.22 � 2.66 � 91.87 � 2.01 � 89.64 � 3.12 � 95.41 � 1.36 � 95.34 � 1.37 �

zoo 98.57 � 1.66 96.43 � 5.86 98.57 � 1.66 99.05 � 1.23 96.43 � 3.22 95.83 � 4.10 98.57 � 1.66 98.57 � 1.66 98.57 � 1.66

, �: Statistically significant upgradation and degradation, respectively.
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Table 3.4: Two-tailed t-test on classification accuracy (ACC).

LNB TreeAWNB MIAWNB TreeAWKNN MIAWKNN KNN NB IWNB

TreeAWNB 2/35/19

MIAWNB 1/28/27 2/44/10

TreeAWKNN 11/31/14 19/28/9 22/26/8

MIAWKNN 5/37/14 15/32/9 19/30/7 3/43/10

KNN 9/29/18 16/29/11 19/27/10 4/38/14 10/34/12

NB 0/36/20 2/49/5 9/42/5 9/28/19 7/35/14 13/29/14

IWNB 0/40/16 5/49/2 15/38/3 10/30/16 9/37/10 14/30/12 8/48/0

EWLNB 11/43/2 21/34/1 23/33/0 14/34/8 15/37/4 19/34/3 20/36/0 14/34/8

Table 3.5: Two-tailed t-test on area under the curve (AUC).

LNB TreeAWNB MIAWNB TreeAWKNN MIAWKNN KNN NB IWNB

TreeAWNB 43/13/0

MIAWNB 43/12/1 6/44/6

TreeAWKNN 38/16/2 13/32/11 13/32/11

MIAWKNN 34/21/1 9/36/11 10/36/10 0/47/9

KNN 36/19/1 12/35/9 12/33/11 2/45/9 8/45/3

NB 40/16/0 0/37/19 4/40/12 10/32/14 7/38/11 9/33/14

IWNB 43/13/0 5/44/7 7/41/8 10/34/12 8/39/9 12/31/13 13/42/1

EWLNB 46/10/0 16/39/1 15/40/1 16/33/7 15/37/4 18/36/2 20/36/0 17/38/1

Table 3.6: Effectiveness of EWLNB

DATASET Number of Class ACC(EWLNB) ACC(NB) Improvement Rate IR

vowel 11 90.71 67.07 35% 1

letter 26 80.2 66.15 21% 0.78

artificial 10 68.57 36.4 88% 0.424

autos 6 72.98 64.83 13% 0.048

energy1 37 63.15 45.05 40% 0.014

energy2 38 51.17 46.1 11% 0.013
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Figure 3.1: EWLNB vs. competing algorithms: classification accuracy (ACC).
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Figure 3.2: EWLNB vs. competing algorithms: classification accuracy (ACC) — (con-

tinued).
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Figure 3.3: EWLNB vs. competing algorithms: classification accuracy (ACC) — (con-

tinued).



Chapter 3 53

60 65 70 75 80 85 90 95 100

EWLNB

60

65

70

75

80

85

90

95

100
N

B

(a) EWLNB vs. NB

60 65 70 75 80 85 90 95 100

EWLNB

60

65

70

75

80

85

90

95

100

IW
N

B

(b) EWLNB vs. IWNB

Figure 3.4: EWLNB vs. competing algorithms: classification accuracy (ACC) — (con-

tinued).
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Figure 3.5: EWLNB vs. competing algorithms: area under the ROC curve (AUC).
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Figure 3.6: EWLNB vs. competing algorithms: area under the ROC curve (AUC) —

(continued).
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Figure 3.7: EWLNB vs. competing algorithms: area under the ROC curve (AUC) —

(continued).
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(continued).



58 Chapter 3

5 10 15 20 25 30 35 40 45 50

0.58

0.6

0.62

0.64

0.66

0.68

Generation/Iteration

M
ea

n 
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

artifical(NumInstance:10218 NumberAttributes:8)

 

 

EWLNB

LNB=0.478
TreeAWNB=0.367
MIAWNB=0.362
TreeAWKNN=0.562
MIAWKNN=0.526
KNN=0.562
NB=0.364
IWNB=0.359

Figure 3.9: Convergence learning curves of EWLNB for 4 datasets with large numbers

of instances (a) artificial: 10218 instances.
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Figure 3.10: Convergence learning curves of EWLNB for 4 datasets with large numbers

of instances (b) letter: 4000 instances.
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Figure 3.11: Convergence learning curves of EWLNB for 4 datasets with large numbers

of instances (c) optdigits: 5620 instances.
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Figure 3.12: Convergence learning curves of EWLNB for 4 datasets with large numbers

of instances (d) page-blocks: 5473 instances.
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Figure 3.13: Convergence learning curves of EWLNB for 4 datasets with large number

of attributes (a) mfeat: 77 attributes.
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Figure 3.14: Convergence learning curves of EWLNB for 4 datasets with large number

of attributes (b) movement: 91 attributes.
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Figure 3.15: Convergence learning curves of EWLNB for 4 datasets with large number

of attributes (c) anneal.orig: 39 attributes.



Chapter 3 65

5 10 15 20 25 30 35 40 45 50
0.86

0.862

0.864

0.866

0.868

0.87

0.872

0.874

Generation/Iteration

M
ea

n 
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

wave(NumInstance:1000 NumberAttributes:41)

 

 

EWLNB

LNB=0.835
TreeAWNB=0.79
MIAWNB=0.787
TreeAWKNN=0.767
MIAWKNN=0.775
KNN=0.746
NB=0.797
IWNB=0.805

Figure 3.16: Convergence learning curves of EWLNB for 4 datasets with large number

of attributes (d) waveform: 41 attributes.
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3.5 Time Complexity

The time complexity of EWLNB can be mainly attributed to the following two pro-

cesses: (1) WLNB, and (2) updating of the population.

Prior to the evaluation of the WLNB model, a KNN classifier needs to be trained

from Da with Na instances, which will take OpNa � numattriq, where numattri is the

number of attributes (this is because KNN needs to scan the whole training set, and all

attributes, to find the K nearest neighbors).

To validate the WLNB classifier on a validation dataset Db with Nb instances, the

time complexity will be OpNa � numattri �Nbq.
The subsequent evolution of the population (e.g., the selection, clone, mutation,

and update steps) are all based on the size of the population L, with the corresponding

overall time complexity of OpLq.
So, given the MaxGen, the total time complexity U is shown by Eq. (3.12).

U � OpMaxGen � L �Na � numattri �Nbq (3.12)

Because Na   N , and Nb   N , where N is the total number of dataset , Eq. (3.12)

can be rewritten as

U � OpMaxGen � L �Na � numattri �Nbq

¤ OpMaxGen � L �N � numattri �Nbq

¤ OpMaxGen � L �N � numattri �Nq

¤ OpMaxGen � L �N2 � numattriq

(3.13)

Eq. (3.13) shows that the total time complexity of EWLNB is bounded by four

important factors: (1) the total number of instances N ; (2) the number of attributes
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numattri; (3) the size of the population L; and (4) the Maximum Evolution Generation

MaxGen.

3.6 Effectiveness of EWLNB

When we examine the learning curves of EWLNB, we find that the improvements of

the ACC through EWLNB are different for different datasets. To further investigate the

effectiveness of EWLNB, we analyze the influence of the imbalance degree of a dataset,

which is used to measure the degree of class imbalance for a dataset. Following Zong’s

work [91], we define imbalance ratio (IR) as the following equation:

IR � Min#ptiq
Max#ptiq , i � 1, ...,m; (3.14)

where m is the number of classes of the dataset, and #ptiq indicates the number

of instances in each class. From Eq. (3.14), we can easily see that the maximal IR

value is 1, which indicates that all class labels are of the same size (i.e., have the same

distribution). Generally speaking, if the IR value is closer to 1, the data distribution is

more balanced. Otherwise, the data distribution is imbalanced.

To validate the effectiveness of EWLNB on datasets with different class distribu-

tions, we analyze six datasets with different IR values: “vowel”, “letter”, “artificial”,

“autos”, “energy1”, and “energy2”. From Table 3.6, we can see that the proposed

EWLNB performs well on different datasets with different IR values, mainly because it

uses a self-adaptive evolutionary process for parameter optimization to ensure its algo-

rithmic performance.
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VSMS and EMLNB

In this chapter, we will build on the the work of the previous chapter and introduce the

Virtual Storage Monitoring System (VSMS) problem and our proposed Evolutionary

Multi-label Lazy Naive Bayes Classification (EMLNB) algorithm to address it.

4.1 Virtual Storage Monitoring System

Figure 4.1 shows an overview of our Monitoring System. The system first collects data

from the disk array and the standard MIB (Management Information Base), then it splits

the data into two groups. For one group, the data is used for visualization. For the other

one, the data is used for prediction and alteration. VSMS is a centralized system, it uses

SNMP to collect the data from different devices in the virtual storage network.

4.1.1 Main Technologies in VSMS

In this section, we begin by introducing three main technologies in our proposed VSMS,

including Round-Robin Database Tool (RRDTools), Simple Network Management Pro-

68
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Figure 4.1: Conceptual overview of a Virtual Storage Monitoring System (VSMS).

tocol (SNMP) and Multi Router Traffic Grapher (MRTG).

RRDTools

RRDtools (short for Round-Robin Database Tool) is designed to handle time series data

stored from a system log, such as CPU load, temperatures, network bandwidth, etc.

The data are stored in a circular buffer based database, thus the system storage capacity

remains constant over time.
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SNMP

VSMS uses Simple Network Management Protocol (SNMP for short) [29, 30] to collect

data from different devices. SNMP is an Internet-standard protocol for collecting and

organizing information of devices on networks. Devices that generally support SNMP

include switches, routers, servers and so on. Because of its effectiveness and simplicity,

SNMP is widely used in network management systems to monitor network-attached

devices.

MRTG

MRTG uses SNMP to read the parameters of different devices, logs the data and creates

graphs based on the collected data. The graphs are embedded into webpages which can

be viewed from browser. Figure 4.6 shows a demo graph created by MRTG.

4.1.2 Data Collection

VSMS uses SNMP to collect data from different devices. SNMP has a typical man-

ager/agent architecture, which is as shown in Figure 4.2. From Figure 4.2 we can see

that SNMP contains three main parts: (1) SNMP manager; (2) SNMP agent; and (3)

network. The SNMP manager centralizes and manages all the data collected from dif-

ferent devices. The SNMP agents run on the different devices to collect the data from

the specific devices. The network can be regarded as a “bridge” that transmits the data

from different SNMP agents to the SNMP manager. In VSMS, the SNMP manager

service is running on the server where VSMS is located, while the SNMP agents ser-

vice are running on different disk arrays or network devices. All these agents send the

collected data to the manager by SNMP.
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Figure 4.2: The structure of SNMP.

The data usually comes from two places: one is the disk array, the other one is the

MIB, which is a standard library that contains the data regarding the net flow, cpu usage,

memory usage, and so on. The basic structure of MIB can be found in Figure 4.3. MIB

uses object identifiers (OID) to locate the device and get the specific data of the device.

OID is based on a hierarchical name structure named “OID tree”. The OID tree uses

a sequence of names, of which the first name identifies a top-level “node” in the tree,

and the following ones provide further identification of edges leading to the sub-nodes
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beneath the top-level, and so on, to any depth.

Each leaf of the OID tree represents a specific and unique object which can be re-

ferred to later for further use. One obvious advantage of OID is that we can extend the

OID tree and add our own objects (generally under the node 19040, or any node which

is called private node).

In VSMS, the temperature of a disk is not a standard object of MIB, so we need to

extend the MIB and add the object of disk temperature for monitoring. Figure 4.4 shows

the extended MIB after we add the temperature of disk (disktemp) and flight height of

the magnetic head (fly-height). We can see that the extension is performed by way of

19040.diskmib.diskobj.disktemp and 19040.diskmib.diskobj.fight-height accordingly in

Figure 4.4.

The collected data is split into two groups. For data that indicates the general per-

formance of the system, such as net-flow, memory usage, and disk temperature, VSMS

uses MRTG+RRDtools to visualize the data. This helps to monitor the system in a more

clear and straightforward way. For data that indicates some fatal failure of the disk ar-

ray, such as Raw Read Error Rate and Seek Error Rate, the system will raise an alert

immediately.

Moreover, for the parameters that do raise alerts, we can give different priorities to

the alerts, according to the severity of the problem. This means that we can perform

different strategies to handle the problems with different priorities. In our work, two

different types of alerts are defined. One is called Pre-Fail, with a higher severity. One

is called Old-Age, with a lower severity. This is shown in Figure 4.5.
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4.1.3 Data Visualization

VSMS uses SNMP+MRTG+RDDtools to visualize the collected data. The drawback

of MRTG is that it can only draw two pictures in one page, and the monitoring data is

stored in a type of log data format which consumes lots of space resource. To solve

this problem, we combine MRTG with RRDtools, which can perform the task of data

visualization in a better way. The data of RRDtools refreshes every five minutes, which

means the graphs refresh every five minutes. This time interval can be set through a

configuration file and thus can be adjusted according to different requirements.

4.1.4 User Interface

Main Interface

Figure 4.6 displays the main user interface of our VSMS system. The left panel of

the user interface displays which devices are monitored at the moment. There are two

drop-down menus on the top left of the interface. The first one is used for choosing

which monitoring item to display (net flow, disk temperature, cpu usage, or disk usage,

for example). The second one is used for specifying the time interval. From these

interfaces, VSMS can display different visualization patterns of the data by hour, by

day, by week, and so on.

Detailed Interface

The VSS can display the detailed information of a monitoring item through a click on

the figures on the main interface. Figure 4.7 shows this kind of detailed information, in
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this case for network-flow by day.

The VSS Monitoring System mainly consists of two different modules — the mon-

itoring module and the multi-label classification module. The monitoring module was

explained in the above section. In the following section we will introduce the multi-label

classification algorithm.
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Figure 4.3: The structure of MIB.
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Figure 4.4: The extended structure of MIB.
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The first Error Type: Pre-Fail, which means there may exist fatal errors in the disk. 

 

30001 => { 

  Name => “RawReadErrorRateChanged”, 

  Description => “S.M.A.R.T information RawReadErrorRate has changed”, 

  Cause => “Read data error”, 

  Action => “Backup, Change Disk immediately” 

} 

 

The Second Error Type: Old-Age, which means there may exist potential problem in the disk. 

 

30002 => { 

  Name => “PoweronHours”, 

  Description => “S.M.A.R.T information indicate the overall Power on Hours of the disk”, 

  Cause => “Old Age”, 

  Action => “Backup, Change Disk if possible” 

} 

 

Figure 4.5: Error Types of different priority.
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Figure 4.6: The main user interface of VSMS.
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Figure 4.7: Detailed information on a monitored item in VSMS.
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Figure 4.8: The system architecture of VSMS.
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4.2 Evolutionary Multi-label Classification

Since a multi-label classification task also has many parameters that need optimization,

evolutionary algorithms can be used to address this problem. The proposed Evolution-

ary Multi-label Lazy Naive Bayes (EMLNB) classifier algorithm has two main steps, as

follows. Firstly, a Multi-label Lazy Naive Bayes (MLNB) classification algorithm lo-

cally learns the class labels of a test instance. Secondly, a Differential Evolution-based

self-adaptive process is used to find two key parameters in MLNB.

4.2.1 Data Captured through VSMS

A VSMS will be expected to capture data on any features of components relevant to

system failure, such as disk Read Error Rate, Power-On Hours, CPUs, GPUs, Network

Devices, and so on. The classes of failure for each system component may include

errors such as Pre-fail and Old-Age. Typically there is an severity order over failure

classes, indicating the priority of actions to be taken to correct the failure.

4.2.2 The Framework of MLNB

The main difference between EWLNB and EMLNB is that EMLNB extends EWLNB

to deal with the multi-label classification task. Instead of just predicting a single value

to label a test instance in EWLNB, we require EMLNB to predict multiple values to

label a test instance.

This introduces another important class of hyperparameters for EMLNB, namely

the threshold used as the cutoff for the probabilities of the predicted values.

In MLNB, there are many parameters that are very important. We choose two of

them: the number of nearest neighborsK ofKNN ; and the threshold of the probability
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used by the Multi-label classification. The commonly used distance metric for choosing

nearest neighbors is Euclidean distance. MLNB is shown in Algorithm 3:

Algorithm 3: MLNB: Multi-label Lazy Naive Bayes Classification
Input:

Training dataset Da; a testing instance xb;

parameter vector w � tw1, w2u;
Output:

Classification results (Multi-label) SetsofLabelspxbq;

1: Da
�
Ð Da to prevent operation on the original dataset;

2: K Ð w1, thresholdÐ w2;

3: for all each xa
i in Da do

4: Compute dpxb,xa
i q using Euclidean distance;

5: end for

6: Find the K Nearest Neighbors of xa
i as KN ;

7: Build an Naive Bayes classifier over the KN ;

8: Use this NB classifier to give the probability estimation of all the labels of xb;

9: Use all the labels with probability estimation ¥ threshold as the predicted labels of

xb;

4.2.3 The Framework of EMLNB

To optimize the hyperparameters for MLNB, we propose the use of evolutionary search

of the space, leading to the Evolutionary MLNB. The framework of EMLNB is shown

in Algorithm 4: We use Hamming Loss, i.e., the fraction of incorrectly predicted labels

to the total number of labels, as the fitness function f rs for Algorithm 4.
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Algorithm 4: EMLNB: Evolutionary Multi-label Lazy Naive Bayes Classification
Input:

Evolution Population W , Size of Population L, Evolution Generation MaxGen;

Training Dataset Da, Validation Dataset Db, Testing Dataset Dc;

Output:

Classification Results SetsofLabelspxcq of Testing Instance xc
t P Dc;

1: W Ð The initial wi,j value for each individual wi is set to a real number;

2: while t ¤MaxGen do

3: for i=1 to L do

4: f rwt
is Ð Use Da as the training dataset and Db as the validation dataset to

calculate the fitness of wt
i in the population W t;

5: wt
c Ð Choose the best individual with highest fitness value;

6: vt
i Ð Apply mutation operation to obtain the variation individual;

7: ut
i Ð Apply crossover operation to obtain the trial individual ;

8: W t�1 Ð Apply a greedy search strategy to obtain the next generation. If

f rut
is ¥ f rwt

is, individual ut
i survive to the next generation, otherwise in-

dividual wt
i can be retained.

9: end for

10: t � t� 1;

11: end while

12: SetsofLabelspxcq Ð Apply wt
c to MLNB to predict the labels of testing instances

in Dc.

13: return The labels of testing instances in Dc;
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The development and definition of Algorithm 4 is similar to the way in which we

developed the EWLNB algorithm in Chapter 3.

Due to the inability to access relevant data captured from a VSMS, we have not

been able to perform any experiments with a real-world monitoring dataset using our

EMLNB approach. This will be one part of our future work.
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Semi Evolutionary Algorithm to

Optimize Deep Network

Hyperparameter (SEODP)

In this chapter, we will introduce details of the SEODP algorithm.

As we have mentioned above, studies of DN architectures over different datasets

have shown complicated results. Architectures that show good performance over some

datasets may not have good performance over other datasets with different characteris-

tics. To address this problem, we propose the use of the SEODP algorithm to automate

hyperparameter search for deep networks.

5.1 Definitions

The main motivation of SEODP is that normal Differential Evolution (DE) can converge

very slowly, and might fall into local optima. However, it can be a useful algorithm for

85
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optmization problems. To address this issue, we propose to add a random selection

process as part of the DE process.

In the proposed SEODP learning framework, there are certain number of parameters

to be optimized. We use a semi-evolution process to auto-learn their optimal values.

In our solution, each combination of hyperparameters is simulated as an individual in

the population for the evolutionary process to work on. Before introducing the details

of the self-adaptive parameter optimization process, we define a number of notational

elements, as follows:

• SizeOfParameters: SizeOfParameters indicates the number of parameters to

be optimized.

• NumberOfClassLabels: NumberOfClassLabels indicates the number of labels

that the class variable has.

• Population: W � tw1, � � � , wLu represents the population (i.e., the set of individ-

uals), where L denotes the size of the population. wi � twi,1, wi,2u represents a

single individual in the population. Each individual represents a unique combina-

tion of hyper parameters. The default value of L is 50.

• Maximum Evolution Generation: MaxGen represents the maximum number of

generations of the evolutionary process. This represents an assumption that after

a certain number of generations of the evolutionary process, the algorithm should

be able to find the optimal combination of parameters, or a good approximation

to it. The default value of MaxGen is 10.

• Gene: wi,j indicates the jth gene value of the ith individual.
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• Mutation Rate: F indicates the mutation rate for the mutation operation, which

defines the proportion of individuals that are mutated in each generation. The

default value of F is 0.5.

• Crossover Rate: CR indicates the crossover rate for the crossover operation.

Crossover rate is the probability of an individual being part of a crossover. The

default value of CR is 0.5.

• Maximum Crossover Population: MaxCP represents the maximum number of

individuals in the Crossover Population. The default value of MaxGen is 50.

• Best HyperParameter: BestHP represents the top BestHP combination of hy-

perparameters we choose for the specific model.

5.2 SEODP Algorithm

The general idea is that SEODP is a semi-evolutionary algorithm. The evolutionary

method guarantees that individuals with the best fitness are selected, and the random

method guarantees that the mutation operation will be performed, and SEODP will not

fall into a local optimal value.

5.2.1 SEODP Architectures

We choose different types of DN architectures according to different types of data. For

image datasets we choose a CNN model, whereas for non-image datasets we choose a

compact Multi-Layer Network (MLN) model, due to its simplicity and effectiveness.

To be specific, a CNN is used for the classification of the Animal Image dataset, and

MLNs are used for the other datasets.
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Table 5.1: CNN Architecture

CNN Architecture

Convolutional Layer

MaxPool

Convolutional Layer

MaxPool

DenseLayer

OutputLayer

Table 5.2: CNN Parameters

Parameters Value Range

BatchSize [1,100]

KernelSize [1,5]

MaxpoolSize [1,5]

DenseLayerSize [1,50]
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Table 5.3: MLN

MLN Architecture

Dense Layer

Output Layer

Table 5.4: MLN Parameters

Parameters Value Range

BatchSize [1,100]

DenseLayerSize [1,100]

The overall accuracy of the classification is used as the fitness function. The details

of the DN architectures and hyperparameters are shown in Tables 5.1 to 5.4.

Table 5.1 shows the architecture of the CNN, and Table 5.2 shows the hyperparam-

eters and the value ranges for the CNN model.

Table 5.3 shows the architecture of the MLN, and Table 5.4 shows the hyperparam-

eters and the value ranges for the MLN model.

5.2.2 The SEODP Framework

The evolutionary process of SEODP basically has two stages. The first stage performs

the evolutionary and random search operations. The operation of these processes in the

proposed framework for SEODP is shown in Algorithm 5.

For every generation, SEODP selects the top L � F individuals with the best fitness,

and then randomly generates the other L � p1�F q individuals to replace the L � p1�F q
individuals having lower fitness. This approach guarantees that the best individuals will

be selected for each generation (due to the evolutionary process), and that the algorithm
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does not fall into locally optimal values (due to the random mutation). After the loop

of MaxGen generations, the population should contain the individuals with optimal

fitness.

The second stage performs the crossover operation, which is a genetic operator used

to combine the genetic information of two parents to generate new offspring. In the

SEODP algorithm, the crossover operation is implemented by mixing the genes of two

parents with a certain probability (the crossover rate). For example, the parameter for

KernelSize from individual i and the parameter for MaxpoolSize from individual j

are selected to generate the new individual wi,j .

Equation 5.1 shows more more detailed information on the crossover operation:

uk �

$'&
'%

wi
k, ifprndrealp0, 1q   CRq

wj
k, otherwise

; (5.1)

where uk is the value of the kth gene for the individual u, wi
k is the value of the kth

gene for individual wi, wj
k is the value of the kth gene for individual wj , rndrealp0, 1q

is a real number randomly generated from (0,1), and CR is the crossover rate.
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Algorithm 5: SEODP
Input:

Evolution Population W ; The Size of Population L;

Maximum Evolution Generation: MaxGen;

Training Dataset Da, Testing Dataset Db;

Output:

Sets of individuals (Combination of HyperParameters) that have best fitness over testing

dataset Db;

1: W Ð The initial wi,j value for each individual wi is set to a whole number with the value

range;

t Ð 1;

2: while t ¤ MaxGen do

3: for i=1 to L do

4: f rwt
is Ð Use wt

i as combination of hyperparameters to build the DN model over Da,

use Db to calculate the fitness of wt
i in the population W t;

5: end for

6: Wc Ð Choose the best L � F individuals with highest fitness value;

7: Wr Ð Random generate L � p1� F q individuals as mutation operation;

8: W t�1 Ð Combine the Wc and Wr to form the new generation of population W t�1;

9: t � t� 1;

10: end while

11: i Ð 1;

12: while i ¤ MaxCP do

13: wi, wj Ð Randomly select two different individuals in WMaxGen;

14: ui,j Ð Use 5.1 to perform crossover operation to generation new individuals ui,j , add

ui,j to the Crossover population U ;

15: i � i� 1;

16: end while

17: Uc Ð Choose the best number of BestHP individuals with highest fitness value;

18: return Uc;
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5.3 Experiments

The SEODP algorithm was implemented and evaluated on a number of standard

datasets, as well as on a novel real-world dataset.

5.3.1 Datasets

A number of different types of datasets were used to validate the effectiveness of

SEODP. Detailed information of the datasets are shown in Table 5.5.

The Linear and Saturn datasets are popular for binary classification. Visualizations

of these two datasets are shown in Figures 5.1 and 5.2. The Skin dataset is from the

UCI data repository [3]. The Animal Image dataset is provided as part of the Java

deep learning platform we used for the implementation — Deeplearning4j. This dataset

contains images of animals falling into four categories: bear, deer, duck, and turtle.

The Donor dataset is a a novel real-world dataset from a charity organization that

holds appeal and contact history information of potential philanthropic donors. Mod-

elling can make use of features of the dataset such as the number of phone calls, number

of events attended, and geographical information. In the experiments a sample of 5000

Table 5.5: Description of datasets.

Datasets Instances Attributes Classes Characteristic

Linear 1200 2 2 Linearly separable

Saturn 600 2 2 Simple and not linearly separable

Skin 245057 3 2 Big dataset, large number of instances

Animal Image 83 256*256 4 Image dataset, large number of attributes

Donors 10000 6 2 Novel Real-world Dataset
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Linear Dataset

Figure 5.1: Visualization of the Linear dataset.
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Saturn Dataset

Figure 5.2: Visualization of the Saturn dataset.
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donor and 5000 non-donor records are used for the classification.

All datasets are preprocessed to replace missing values, and then normalized.

5.3.2 Experimental Platform

We used the Java language and the Java deep learning platform — Deeplearning4j — to

implement the algorithm of SEODP. The relevant information concerning the computer

resources we used for the experiments are as follows:

• System Model: HP Z240 Tower Workstation.

• System Type: x64-based PC.

• Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 3401 Mhz, 4 Core(s),

8 Logical Processor(s).

• OS Name: Microsoft Windows 10 Enterprise.

• Total Physical Memory: 15.9 GB.

• Nd4jBackend: CpuBackend.

• Number of threads used for BLAS: 4.

• Memory Allocated: 3.5 GB.

ND4J is a scientific computing and linear algebra library, written in the program-

ming language Java, operating on the Java virtual machine (JVM). ND4J supports two

types of backends, CPU mode and GPU mode. CPU mode is used for these experiments.
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Basic Linear Algebra Subprograms (BLAS) is a standard software library containing

a set of low-level routines for performing common linear algebra operations, such as

vector addition, scalar multiplication and dot products.

The results of applying the above processes for the five different datasets show

clearly in the next section that SEODP is able to optimize the selection of hyperpa-

rameters and fitness in a very time-effective way.

5.3.3 Convergence Learning Curves of SEODP

The performance of SEODP in Figure 5.3 shows that the algorithm is quite effective in

searching for the optimal hyperparameters for different types of datasets.
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Figure 5.3: Convergence of SEODP on all datasets as learning curves.

Over all the datasets, accuracy increases as the number of generations increases.
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For some of the datasets, SEODP converges at a very early stage. For example, SEODP

achieves 100% accuracy on dataset Linear, and 99% accuracy on dataset Saturn, at the

6th and 9th iteration, respectively, which is a fairly early convergence.

One result that needs to be emphasized is SEODP actually achieves 98% accuracy

in our real Donor dataset at the 12th iteration, which is a very good result.

5.3.4 Analysis of Hyperparameters vs. Accuracy

Since we only choose two parameters for SEODP to optimize for MLNs in these ex-

periments — BatchSize and DenseLayerSize — we use a Java library called jzy3d

to generate 3D visualizations to show the impact of hyperparameters on accuracy of

the trained models. This allows a more detailed analysis of the effect of the choice of

different values for hyperparameters on the accuracy, i.e., what the SEODP algorithm is

trying to optimize.

For all the following 3D figures, the X axis represents the first hyperparameter,

which is the BatchSize of the DN, the Y axis represents the second hyperparameter

which is the DenseLayerSize of the DN, and Z represents the accuracy of the DN

model using X, Y as hyperparameter values. The other figures for each dataset show

the effect of tuning in hyperparameter space by plotting X against Y , and vice versa,

with the colour gradient from the 3D plots indicating the accuracy in each case.

“Linear” dataset

Figures 5.4 to 5.6 show the visualizations for the “Linear” dataset, which indicate that,

in general:

• The accuracy decreases as the BatchSize increases. When a relatively small
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Figure 5.4: “Linear” dataset hyperparameter optimization results with SEODP in 3D

with X � BatchSize and Y � DenseLayerSize for Z � Accuracy.
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Figure 5.5: “Linear” dataset hyperparameter optimization results with SEODP in 2D

for X � BatchSize vs. Y � DenseLayerSize with colour showing accuracy.
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Figure 5.6: “Linear” dataset results in 2D for Y � DenseLayerSize vs. X �
BatchSize with colour showing accuracy.
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BatchSize (less than 10, for example) is chosen, the accuracy is around 100%

regardless of the value for the DenseLayerSize. When a relatively large

BatchSize (greater than 60, for example) is chosen, the accuracy varies from

around 5% to 85%, due to the different choices of DenseLayerSize.

• There is no obvious trend concerning how accuracy is influenced by the

DenseLayerSize. For most values, the accuracy varies from 50% to 100%.

However, there are some exceptions: for values between 30 and 50, the ac-

curacy varies from around 80% to 100%, which indicates a good choice for

DenseLayerSize. On the contrary, with value 10, the accuracy varies from

around 1% to 100%, which is very unstable, and thus indicates a bad choice for

DenseLayerSize.

“Saturn” dataset

Figures 5.7 to 5.9 show the visualizations for the “Saturn” dataset, which indicates that

in general:

• The accuracy decreases as the BatchSize increases — a similar pattern to the

Linear dataset.

• The MLN performs better when the DenseLayerSize is greater than 20, similar

to the Linear dataset. In this case, the accuracy varies from 52% to 100%. When

the value is less than 20, the accuracy varies from around 33% to 98%, which is

below average.
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Figure 5.7: “Saturn” dataset hyperparameter optimization results with SEODP in 3D

with X � BatchSize and Y � DenseLayerSize for Z � Accuracy.
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Figure 5.8: “Saturn” dataset hyperparameter optimization results with SEODP in 2D

for X � BatchSize vs. Y � DenseLayerSize with colour showing accuracy.
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Figure 5.9: “Saturn” dataset results in 2D for Y � DenseLayerSize vs. X �
BatchSize with colour showing accuracy.
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“Skin” dataset

Figures 5.10 to 5.12 show the visualizations for the “Skin” dataset, which indicate that

in general:

• There is no obvious trend between accuracy and BatchSize, which is different

from what is observed with the previous datasets. The range in accuracy over

hyperparameter space is wide — from 0 to 100%.

• The MLN performs much better when DenseLayerSize is around 50. In this

case, accuracy varies from 40% to 100%. ForDenseLayerSizewith values other

than 50, the accuracy can vary from around 0 to 100%, which is very unstable.

“Donor” dataset

Figures 5.13 to 5.15 show the visualizations for the “Donor” dataset, which indicate

that:

• The MLN performs better when BatchSize is greater than 10. In this case, the

accuracy varies between 13% and 99.3%. When the value of DenseLayerSize

is less than 10, the accuracy varies from around 0 to 99.3%, depending on

DenseLayerSize.

• The MLN performs best whenDenseLayerSize is around 20, 45, 55 and 70, and

it performs worst when DenseLayerSize is around 5, 35, 50, 60, and 95.

Best hyperparameters obtained for each dataset

Table 5.6 shows details of the best hyperparameters obtained using the SEODP algo-

rithm for each dataset.
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Figure 5.10: “Skin” dataset hyperparameter optimization results with SEODP in 3D

with X � BatchSize and Y � DenseLayerSize for Z � Accuracy.
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Figure 5.11: “Skin” dataset hyperparameter optimization results with SEODP in 2D for

X � BatchSize vs. Y � DenseLayerSize with colour showing accuracy.
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Figure 5.12: “Skin” dataset results in 2D for Y � DenseLayerSize vs. X �
BatchSize with colour showing accuracy.
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Figure 5.13: “Donor” dataset hyperparameter optimization results with SEODP in 3D

with X � BatchSize and Y � DenseLayerSize for Z � Accuracy.
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Figure 5.14: “Donor” dataset hyperparameter optimization results with SEODP in 2D

for X � BatchSize vs. Y � DenseLayerSize with colour showing accuracy.
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Figure 5.15: “Donor” dataset results in 2D for Y � DenseLayerSize vs. X �
BatchSize with colour showing accuracy.
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Table 5.6: Best hyperparameters for each dataset

Linear Saturn Skin Donor Animal

Parameters Accuracy Parameters Accuracy Parameters Accuracy Parameters Accuracy Parameters Accuracy

[1, 2] 100.00% [1, 17] 100.00% [68, 38] 100.00% [3, 84] 98.00% [63, 5, 3, 6] 42.86%

[1, 3] 100.00% [1, 25] 100.00% [88, 13] 100.00% [2, 78] 98.00% [53, 2, 1, 32] 42.86%

[1, 5] 100.00% [1, 29] 100.00% [91, 13] 100.00% [3, 55] 98.00% [38, 2, 3, 26] 42.86%

[1, 8] 100.00% [1, 34] 100.00% [83, 70] 100.00% [2, 71] 98.00% [4, 1, 1, 41] 42.86%

[2, 2] 100.00% [1, 39] 100.00% [91, 100] 100.00% [45, 71] 91.11% [15, 1, 2, 19] 42.86%

[2, 3] 100.00% [1, 41] 100.00% [56, 2] 100.00% [89, 84] 91.01% [20, 1, 5, 46] 42.86%

[2, 4] 100.00% [1, 44] 100.00% [88, 13] 100.00% [89, 71] 89.89% [15, 1, 2, 19] 42.86%

[2, 5] 100.00% [1, 54] 100.00% [83, 70] 100.00% [72, 36] 88.89% [20, 1, 5, 46] 42.86%

[2, 6] 100.00% [1, 58] 100.00% [12, 2] 100.00% [9, 54] 88.89% [63, 5, 3, 6] 42.86%

[2, 8] 100.00% [1, 60] 100.00% [91, 70] 100.00% [72, 36] 88.89% [20, 1, 5, 46] 42.86%

[2, 9] 100.00% [1, 65] 100.00% [68, 38] 100.00% [9, 54] 88.89% [34, 2, 4, 47] 35.71%

[2, 10] 100.00% [1, 71] 100.00% [88, 13] 100.00% [89, 36] 88.76% [66, 1, 5, 15] 35.71%

[2, 11] 100.00% [1, 76] 100.00% [68, 38] 100.00% [44, 71] 88.64% [34, 2, 3, 47] 35.71%

From the table, we can see that, in general, for datasets “Linear” and “Saturn”, the

accuracy decreases as BatchSize increases, and the accuracy is relatively high when

DenseLayerSize is greater than 20. However, for datasets “Skin” and “Donor”, the

pattern is not clear, which indicates we might need to change the basic structure of the

DNs, such as adding more layers or using different types of DNs — CNNs, Recurrent

Neural Networks (RNNs), or some other architectures.

5.3.5 SEODP vs. Greedy Search

To validate the effectiveness of SEODP, we ran a greedy search of the hyperparameter

space for the MLN architecture over the above four non-image datasets. Note that for

the “Animal” image dataset, because a CNN model is used to perform the classification,

it is quite difficult to perform a greedy search over the parameter space. The reason

is that for the CNN model there are dependencies between the selection of individual
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Table 5.7: Best vs. worst using greedy search

Datasets Accuracy Parameter

Best Worst Best Worst

Linear 100.00% 1.00% [11, 83] [100, 19]

Saturn 100.00% 24.00% [3, 74] [71, 6]

Skin 100.00% 0.00% [68, 38] [68, 46]

Donor 99.30% 0.00% [3,23] [30,51]

hyperparameters.

For example, one restriction is 0   KH  � inHeight � 2 � padH . Here, KH is

the kernel height, inHeight is the input height for this layer, and padH is the padding

height. We will not go into detail here concerning the formula, but the point is that

the selection of one hyperparameter, MaxpoolSize, for example, is dependent on the

selection of another hyperparameter, such as KernelSize. Such dependencies among

the set of hyperparameters makes a greedy search for the CNN architecture very hard.

For the MLN model, since the model has two hyperparameters, BatchSize and

DenseLayerSize, both with a value range of r1, 100s, the overall parameter space is

100�100 when incrementing in steps of 1, which means we need to train and test 10, 000

models with different combinations of hyperparameters.

Table 5.7 shows the highest and lowest accuracies found, and one of the correspond-

ing hyperparameters used to achieve each accuracy. The results show that the choice of

values for hyperparameters are very important for the performance of the model, as the

range of accuracy is quite wide — for the Donor dataset, the range of accuracies actually

varies from 0 to 99.3%.

Table 5.8 shows a comparison between SEODP and greedy search. The table shows
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Table 5.8: SEODP vs. Greedy Search

Accuracy Runtime

Datasets SEODP Grid Search SEODP Grid Search

Linear 100% 100% 40s 2106s

Saturn 100% 100% 22s 1139s

Skin 100% 100% 397s 18847s

Donors 98% 99.3% 105s 5504s

that for all the five datasets, SEODP achieves almost the same level of accuracy, but only

uses less than 2% of the running time of greedy search. Furthermore, for the “Linear”,

“Saturn” and “Skin” datasets, SEODP actually achieves the same accuracy as greedy

search, which is 100%. This shows clearly that deep learning with the use of SEODP to

search for hyperparameters is a very efficient, as well as effective, method.

Additioanlly, for the “Animal” image dataset, the demo model in the Deeplearning4j

library scores an accuracy of 14.29%, while using SEODP to tune the hyperparameters

secures an accuracy of 42.86%, which is much better than the benchmark.

In this work, we only chose two hyperparameters to optimize, since our purpose is to

show how the framework works. It is very straightforward to apply the same framework

to optimize more hyperparameters — as long as there are no constraints between the

candidate hyperparameters. For larger numbers of hyperparameter in the optimization

task, the run-time and accuracy of SEODP will be different. The actual effect observed

will depend on what hyperparameters will be chosen to be optimized, and how those

specific hyperparameter will affect the deep networks.
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Conclusions and Future Work

This thesis started from the observation that machine learning algorithms usually have

a number of hyperparameters, and that the choice of values for these hyperparameters

may have a significant impact on the performance of these algorithms. There is currently

no standard solution to the general problem of searching for values for hyperparameters

that reliably produce the best performance (or a close approximation to it) for a range of

machine learning algorithms. Furthermore, as machine learning models and algorithms

increase in complexity in order to achieve higher performance (such as predictive accu-

racy) the complexity of hyperparameter spaces to be searched will increase also.

However, since this space is not, in general, structured in a way that typical optimiza-

tion or search algorithms can be applied, often machine learning practitioners instead

tend to apply either brute-force algorithms or ad hoc manual hyperparameter tuning.

An alternative approach to approximate the search for an optimal set of values for

hyperparameters is the use of evolutionary algorithms. These are suitable for the hyper-

parameter space search problem since they do not require a priori assumptions about the

structure of the search space. In this thesis, we introduced three improved evolutionary-

115
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based algorithms to solve different problems in the area of hyperparameter search for

machine learning algorithms. These were implemented for different tyes of machine

learning algorithms, and for different types of hyperparameters. Evaluation of our meth-

ods showed that they lead to improved performance on a number of metrics.

6.1 Contributions

6.1.1 EWLNB

Firstly, we proposed a unique Weighted Lazy Naive Bayes algorithm (WLNB) to learn

the class labels of the test instances, using a lazy learning method. To improve the per-

formance of WLNB, a self-adaptive evolutionary process was used to optimize two key

parameters in WLNB, which enhanced the algorithmic performance according to the

NB objective function. Experiments and comparisons on 56 UCI benchmark datasets

demonstrated that our proposed method (i.e., EWLNB) achieved superior performance

to other baselines in terms of classification accuracy, and the area under the curve. The

studies of convergence learning curves, and the imbalance ratio of datasets, also demon-

strated the effectiveness of EWLNB.

6.1.2 EMLNB

Next, we investigated current monitoring methods for Virtual Storage Systems (VSS)

and analyzed their existing shortcomings. Motivated to address the existing short-

comings, we presented a new Virtual Storage Monitoring System (VSMS) with the

aim of improving the performance of monitoring systems. Our VSMS jointly inte-

grated the methods of MRTG, SMART and RRDtools to construct a comprehensive
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monitoring and analysis system for both performance and disk monitoring. In order

to analyze the reasons for malfunctions VSS, we proposed a Multi-label Lazy Naive

Bayes (MLNB) model for VSMS, and then used a similar evolutionary procedure to our

first method to optimize the hyper-parameters for MLNB, thus forming the multi-class

method EMLNB.

6.1.3 SEODP

Lastly, as an extension to and improvement of the above algorithms we proposed an new

method, SEODP, for optimizing the architecture and hyperparameters of Deep Neural

Networks by using a combined semi-evolution and semi-random approach. The exper-

imental results, including on a real-world social behavioral dataset from a charity orga-

nization for the task of predicting candidate donors, showed that SEODP is a promising

approach.

6.1.4 Summary

Moreover, in general, all the experimental results indicate that evolutionary-based algo-

rithms can achieve very good results in optimizing the parameters of different machine

learning algorithms.

6.2 Limitations and Future Work

No thesis is perfect, and we need to make some statement regarding the limitations of

the work, but this can be a guide to follow-up research.
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6.2.1 EWLNB

The main limitation of EWLNB is that it is still not clear which hyperparameters are

important for the models and should be chosen to optimize. Some other limitations

include: how to choose the initialized population so that the evolutionary algorithms

does not fall into local optima; how to speed up the evolutionary process to approach

the global optimal value; also, how to adjust the learning rate to ensure it is not too

large to miss the global optimum. Since differential evolution (DE) is a fairly simple,

although powerful, evolutionary algorithm, it may be possible for future work to inves-

tigate useful extensions or variations of DE specifically oriented to parameter search for

machine learning. Further analysis of DE for this kind of search over different datasets,

including synthetic datasets as part of controlled experiments, should be carried out to

better understand the advantages and disadvantages of DE for such tasks.

6.2.2 EWLNB

The main limitation of the EMLNB is that in this thesis we did not have access to the

necessary data to perform the experiments. Also, EMLNB is designed to work offline

now, more work need to be done to integrate EMLNB with VSMS to perform online

monitoring and prediction in the future.

More specifically, there needs to be further work on how to design and implement

the evolutionary search process in an online setting. For example, some work on online

optimization could be used as a guide on how to implement this.
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6.2.3 EWLNB

For SEODP, the limitations are mainly that the analysis of the hyperparameters for CNN

in our experiments was not sufficient. In addition, more detailed research on how the

different characteristics of datasets affect the optimal hyperparameters for a model is

required. More generally, for deep networks the complexity of the architectures means

that SEODP should be tested on tasks of finding values for many more hyperparameters

simultaneously. This will let us investigate how well the method can scale to large num-

bers of hyperparameters, and whether the good level of performance can be maintained

as the size of the hyperparameter space increases.

6.2.4 Summary

From all of the above work, it is clear that hyperparameters play a vital role for machine

learning models, and how to optimize the hyperparameters for machine learning models

is an important topic. There are many methods to perform the optimization for hyper-

parameters, including manual search, random search, greedy search and evolutionary

search. Among all these methods, in this thesis we have shown that evolutionary search

has its own advantages, if used suitably. In particular, we have shown that it can find a

set of high-performing hyperparameters using less time compared to other methods.

However, the application of evolutionary search can be quite complicated, and can

depend on the choice among many possible design options in setting up the evolutionary

algorithm. How to address the above problems in order to use evolutionary algorithms

in a more effective way will also form part of our future work.
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