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This thesis addresses a key challenge for creating synthetic distribution networks and

open-source datasets by combining public databases and data synthesis algorithms. Novel

techniques for synthetic network creation and open-source datasets that enable model val-

idation and demonstration without the need for private data are developed. The developed

algorithms are thoroughly benchmarked against existing approaches and validated on in-

dustry servers to highlight their usefulness in solving real-world problems.
Three contributions have been made in this thesis. The first contribution is the de-

velopment of a data protection framework for anonymizing sensitive network data. A

novel approach is proposed based on the maximum likelihood estimate for estimating

the parameters that represent the actual data. Then, a data anonymization algorithm that

uses the estimated parameters to generate realistic anonymized datasets is developed. A

Kolmogorov-Smirnov test criteria is used to create realistic anonymized datasets. Val-

idation is carried out by collecting actual network data from an energy company and

comparing it to anonymized datasets created using the methods developed in this thesis.

The practical application of the method is shown on the IEEE 123-node test feeder.

The anonymization methods developed in the first contribution of the thesis are de-

pendent on the data provided by electrical companies. What if energy companies refuse

to provide this data due to the risk of privacy disclosures? To answer this question, the

second contribution of the thesis is the development of synthetic networks and datasets by

combining open-source data platforms and data synthesis algorithms. New data synthesis

algorithms are proposed to create synthetic networks and datasets. The proposed algo-

rithms include a topology for designing power lines from road infrastructure, a method

for computing the lengths of power lines, a hub-line algorithm for determining the num-

ber of consumers connected to a single transformer, a virtual layer approach based on

FromNode and ToNode for establishing electrical connectivity, and a technique for in-

gesting synthesised network data to industrial data platforms. The practical feasibility of

the proposed solutions is demonstrated by creating a synthetic test network and datasets

for a distribution feeder in the Colac region in Australia. The datasets are then validated

by deploying them on industry servers and the results are compared with actual datasets

using geo-based visualizations and by incorporating feedback from industry experts fa-
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miliar with the analysis.

The crucial part in the creation of the synthetic networks are the buildings (end-

users). The changing load profiles (demands) of buildings in the current COVID-19 sit-

uation presents new challenges for distribution network operators, as most people work

from home and spend the majority of their time in buildings. The third contribution of

this thesis is to address the problem of electric load profile classification in the context of

buildings. This classification is essential to effectively manage energy resources across

buildings in power distribution networks. Two new methods based on sparse autoencoders

(SAEs) and multi-stage transfer learning (MSTL) are proposed for load profile classifi-

cation. Different from conventional hand-crafted feature representations, SAEs can learn

useful features from vast amounts of building data in an unsupervised automatic way.

The problems of missing data and class imbalance for building datasets are addressed by

proposing a minority over-sampling algorithm that effectively balances missing or un-

balanced data by equalizing minority and majority samples for fair comparisons. The

practical feasibility of the methodology is shown using two case studies that include both

public data for benchmarking and real-world datasets of buildings. An empirical compar-

ison is conducted between the proposed and the state-of-the-art methods in the literature.

The results indicate that the proposed method is superior to traditional methods, with a

performance improvement ranging from 1 to 10 percent.
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In terms of societal impact, this thesis has three main implications. Firstly, the data

anonymization contribution facilitates open-data sharing to remove the data access barri-

ers between academic and industry users. Secondly, the synthetic network and datasets

provide practical and generic solutions to have distribution network models that are not

limited to a specific region. This approach overcomes the issues related to the dimensions

and diversity of distribution systems in different geographic locations. Thirdly, the load

profiling classification model can be used in the current era of COVID-19 to improve

building energy efficiency, demand flexibility, and building-grid interactions.
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Graphical summary and coherence of thesis

Development of synthetic distribution network and datasets with industrial validation

Possible solution

Gap

The anonymization process is 
dependent on data provided by 

electrical utilities. What if they refuse 
to release data due to the risk of 

privacy disclosures?

Motivation

Distribution networks are undergoing 
a transition. However, concerns over 
revealing critical infrastructure 
information have significantly 
hindered the development of power 
distribution networks. Many 
applications that require data sharing 
are still impractical due to the lack of 
sufficient datasets, privacy concerns, 
and data access problems.

Validation

• Collection of real network data from 
energy company and comparing 
actual and anonymized datasets

• Validation by simulating the 
anonymized datasets on IEEE 123 
node test system

Outcome and significance

• The proposed solutions provide 
competitive performances and a 
practical solution for anonymizing 
distributed datasets.

• They facilitate open-data sharing to 
remove the data access barriers 
between academics and industry 
users.

Anonymization of  network data?

Contribution: 1
(Chapter:1)

Develop data protection framework to 
anonymize network data

Publication:1

Possible solution

Gap

The developed distribution network 
contains end-users with residential, 
commercial and industrial buildings. 
How should buildings and their load 
profiles be classified based on their 

energy consumption patterns?

Motivation

•To fill the gap of previous works by 
creating synthetic network and 
datasets that enable model 
validation and demonstration  
without the need for private data

•To address the challenging problem 
of creating a synthetic network and 
datasets, especially in the Australian 
context as existing test systems 
were developed mainly for European 
and American distribution networks.

Validation

• Validation by simulating synthetic 
network and datasets in energy 
utility industry servers

•Validation by expert feedback and 
analysis

Outcome and significance

• The proposed solutions are practical 
and   generic in the sense that they 
are not limited to a specific region.  
It is possible to create synthetic test 
cases for any geographical region 
as the developed methods are 
based on OpenStreetMap 
databases that facilitate public data 
sharing for the entire planet. 

Develop synthetic network and 
datasets from open-data?

Contribution: 2
(Chapter: 2)

Modelling synthetic network and 
datasets from open-data and data 

synthesis algorithms

Publication: 2

Possible solution

Motivation

Buildings are a crucial part of a 
distribution network, and their increasing 
percentage of energy consumption  
presents new challenges for distribution 
network operators. In the post-COVID 
era, the energy demand of buildings is 
increasing at a much faster pace than 
ever before due to various factors, 
including work from home, total time 
spent inside buildings and increasing 
indoor comfort needs. To effectively 
manage energy resources across 
buildings in power distribution networks, 
the increasing availability of data 
collected from these buildings is an 
asset for research and development to 
explore and classify energy consumption 
behaviors based on building type for 
energy efficiency programs.

Validation

•Validation on open-access public 
benchmark dataset of buildings.

•Applying methodologies on real-world 
datasets of 105 buildings.

Outcome and significance

• A good understanding of the 
building load profile plays a 
significant role in energy 
management and conservation. The 
developed classification model can 
be used to create prototypes for 
developing more advanced tools for 
building energy classification. 

• This study contributes to automate 
and improve the predictive modeling 
process while bridging the 
knowledge gaps between deep 
learning and building professionals

Develop a classification model?

Contribution: 3
(Chapter:3)

Develop AI based sparse autoencoder 
multi-stage transfer learning framework 
for classification of building load profiles

Publication:3
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“Be kind, for whenever kindness becomes part of something, it beautifies it.

Whenever it is taken from something, it leaves it tarnished.”

- Prophet Muhammad (peace be upon him)
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Chapter 1

Introduction

1.1 Motivation

The electricity system is a national asset: it is large, complex, and interconnected.

Currently, electrical distribution networks are transforming, and distribution network op-

erators are confronted with three crucial challenges: the increasing penetration of renew-

able and distributed energy resources; weather instability and storm effects; network and

data integrity [2]. Of the three, network and data integrity are the primary concerns for

grid operators, owing to the proliferation of new technologies and increasing amounts

of data generated by intelligent devices [3]. New technologies are being introduced to

upgrade the aging infrastructure of power distribution networks. However, the ability

to test and analyze the new solutions and developments in existing networks is limited

by a scattered and somewhat incomplete set of public test systems. Privacy concerns in

network data and lack of network visibility significantly impede network updates and im-

provements. There is a scarcity of publicly available networks for use as test networks.

This need has prompted the research community and industry users to develop and inno-

vate synthetic test systems that are adapted to modern distribution networks. However,

creating such networks and datasets is difficult due to increasing constraints on power dis-

tribution networks, such as the continuous expansion of networks, the integration of new

low carbon technologies, and the significant penetration of renewable energy resources

in the network. A challenge is posed to develop feasible methods for creating synthetic

networks and datasets to meet the evolving problems and opportunities, a challenge that

this thesis responds to.
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1.1.1 Potential of synthetic test networks and datasets

The benefits of synthetic datasets and test systems are becoming increasingly ap-

parent. According to a recent report [4], the value of the Australian government open

data is $25 billion per annum, which illustrates the importance of the data created during

research. The report shows that a relatively small investment in a combination of data

generation and infrastructure development provides a significant increase in value for in-

novation, research, industry, and the broader economy. Synthetic networks and datasets

are at the forefront of the vision to address the challenges of transforming the operations

and improving the efficiency and reliability of modern distribution networks.

1.1.2 Can network data from energy companies be used?

Although distribution network data is known to distribution system operators (DSOs),

very seldom the topology and details of networks are available for research to stimulate

innovation. Due to privacy and confidentiality concerns, electrical utilities refuse to share

sensitive network data, which, in turn, affects the validation of new concepts in existing

networks. Even if they disclose at some level for testing purposes, privacy regulations

and market competition from energy traders hamper this pursuit. This situation is exacer-

bated further by the large amounts of uncontrollable renewable energy sources connected

to distribution systems. In some cases, data is accessed only through strict privacy agree-

ments. However, data-sharing agreements are very slow, taking months on average to

establish [5]. As a result, many promising collaborations can fail even before they begin.

A potential solution to address the data sharing problem is the data protection frame-

works. The data protection approaches enable open data sharing to remove the data access

barriers between academic and industry users. This is beneficial since many applications

that require data sharing in distribution networks are still impractical due to the lack of suf-

ficient datasets, privacy concerns, and data access problems. Motivated by these factors,

the first part of this thesis examines data protection frameworks. The aim is to propose

novel data protection solutions that anonymize sensitive data through data synthesis, of-

fering an effective solution to facilitate open data sharing. A collaboration is established

with a distribution network service provider (DNSP) to access the actual distribution net-

work data and evaluate the proposed solutions under different scenarios.
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1.1.3 Network synthesis and the role of buildings

Building load profiles have a substantial influence on distribution network opera-

tions [6]. To accurately design the synthetic networks, it is important to understand the

load profiles of buildings [7]. A distribution network is comprised of a diverse pool of

grid components. The distributed energy sources, the energy users (buildings), and the

distribution grid need to work together to optimize the system operation. As a result,

the system becomes more complex and sophisticated. A classic example of this is the

emerging concept of building-to-grid (B2G) [8], which provides seamless interactions

between buildings and evolving grid infrastructure. Buildings are crucial part of power

distribution networks and play a central role in network operations. Their increasing

percentage of energy consumption presents new challenges for distribution network oper-

ators. With the extended COVID-19 lockdowns in various countries, the energy demand

of buildings is changing, and there is a global debate about stabilizing energy demand,

recovering energy-economic resilience, lessons learned, and new prospects. With the fast

deployment of smart meters, huge amount of data is generated from network devices. The

increasing availability of data collected from smart meters in buildings provide a valuable

opportunity for research and development to understand the energy consumption profiles.

A careful analysis of the building load profile is important for energy management

and conservation [9]. In this context, data analytics techniques such as deep learning can

play an important role in performing benchmarking, enhanced analysis, and classification

of buildings based on their energy usage. The last part of this thesis investigates data-

analytic techniques based on deep learning to explore and classify energy consumption

behaviours based on building type for energy efficiency programs.

This thesis has the three objectives of developing: feasible methods for modeling

synthetic networks and datasets; data protection frameworks for confidential net-

work data; and a deep learning solution for classifying the electric load profiles of

buildings in distribution networks.

1.2 Background

Based on the abovementioned three objectives, this section explains the background

knowledge of the topics and examines their current progress and critical challenges.
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1.2.1 Synthetic networks and global debate

In 1991, for the first time, the Institute of Electrical and Electronics Engineers (IEEE)

Power and Energy Society (PES) published four reference test systems for the United

States (US) distribution system [10]. Now, 30 years later, the number of published test

systems is still limited or only applicable to specific geographical regions. Several or-

ganizations have contributed to the development of synthetic test systems for scientific

analysis and improvements in modern power networks, as shown in Figure 1.1. The

IEEE PES released transmission and distribution network datasets in [10]. A group of re-

searchers at Texas A&M University provided synthetic transmission network datasets to

study transient stability [11]. The goal of this study was to design dynamic cases for syn-

thetic network models. The Electric Power Research Institute (EPRI) developed synthetic

test cases for grid analysis, grid planning, and grid operation management [12]. Their

datasets were based exclusively on geographical regions in the US. In [13], a comprehen-

sive illustration of the transmission system network operated by members of the European

Network of Transmission System Operators (ENTSO) was presented. Pacific Northwest

National Laboratory (PNNL) provided benchmark systems for small-signal stability anal-

ysis and control [14]. Scientific GRID (SciGRID) released transmission network datasets

for European energy networks. The United Kingdom Generic System (UKGS) provided

EPRI

Texas A&M 
University

IEEE

ENTSO 

PNNL

SciGRID

Openmod
UKGDS 

CIGRE

OPSD

OEP

ICSEG

MATPOWER
LINES (MIT)

SimBench

United kingdom

France

Belgium

(Europe)

U.S

Figure 1.1: Participation of global organizations in developing synthetic test systems
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network datasets representing the UK power system [15]. CIGRE published a database

including a collection of power system test cases to compare solutions for electromagnetic

transients (EMT) [16]. Similarly, Open Energy Modelling (OPENMOD) [17], the Open

Power System Data (OPSD) [18], the Open Energy Platform (OEP) [19], the Illinois Cen-

ter for a Smarter Electric Grid (ICSEG) [20], MATLAB-based power system simulation

package (MATPOWER) [21], and the Laboratory for Intelligent Integrated Networks of

Engineering Systems (LINES) [22] produced synthetic datasets for the development of

novel solutions. In [23], a comprehensive dataset known as SimBench was presented for

grid-related solutions. It limited to specific geographical areas, such as Central Europe

and Germany.

1.2.2 Data protection frameworks

According to recent research [8], the worldwide market for distribution grid data

analytics is estimated to reach US$4.6 billion by 2022. The volume and complexity of

data generated in the distribution environment necessitate the development of novel ways

to data synthesis, sharing, and visualization. A key element is data privacy that must be

addressed before the data can be shared safely.

The confidentiality of critical network data can be achieved using data anonymization

methods. There are five techniques for data anonymization that includes generalization

[24], suppression [25], perturbation [26], permutation [27], and anonymization through

data synthesis [28]. Another popular method is encryption and decryption techniques to

preserve data privacy [29]. Cybersecurity techniques have also drawn increasing attention

in both academia and industry. False data injection attack methods are used in cyber-

security for protecting data [30]. In [31], extensive research and analyses of data privacy

concerns in a distribution grid were presented. The resultant survey [31] revealed the

increased need for data protection schemes for distribution networks in recent years. This

is due mainly to the geographical distribution of devices and distributed data acquisition

for the economical operation of a/the grid. Despite the effectiveness of existing methods,

there remain open questions that need further investigation. For instance, a trade-off

between privacy preservation and data utility is essential as the loss of crucial information

renders the data meaningless. A classic example in [32] demonstrates why it is crucial

to preserve correlations between data attributes. Electrical utilities spend a significant

amount of money on cybersecurity solutions which can be complex and ineffective, as

5



indicated in recent literature [33, 34]. There is a need for the simple and user-friendly

techniques to reduce the gap between academic research and industry users [35]. Also,

there is no standard criteria that define the representativeness of anonymized datasets

[36]. For instance, anonymized datasets should be representative of the original ones.

This thesis aims to address these challenges by proposing novel solutions and validating

them using an actual network.

1.2.3 Network synthesis and buildings

In distribution networks, buildings serve as end-connection points. Figure 1.2 shows

an overview of a typical distribution system with buildings. The network is managed by

a distribution system operator (DSO), and there are end-users (buildings) that generate

data at an unprecedented rate. The data of building load profiles contain meaningful in-

formation that enables data-driven decisions such as real-time monitoring of end-users

energy consumption. Since loads in buildings change throughout the day, the difficulty

is transforming highly heterogeneous datasets into actionable outcomes. In this context,

data-predictive analytics combined with visualization can lead to better predictive deci-

sions and situational awareness.

The current trend in building energy modeling is changing from conventional physics-

based modelling [37] to data-driven techniques [38]. Physics-based modelling needs en-

Local network Distribution network
operator

Data
Data

Data

Figure 1.2: Network to buildings operations with data from building load profiles
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gineering expertise and effort (with a related cost), which is a major bottleneck for the

feasibility of predictive models [39]. Also, benchmarking methods, including clustering

algorithms (k-means) [40], fuzzy clustering algorithms [6], and hierarchical clustering al-

gorithms [41], are used to covert the building load profiles into decisions. The k-means

algorithm was used with success for the classification of building profiles. However, these

methods mostly used manual procedures in clustering analysis. For instance, manual la-

beling of building load profiles for predictions, hand-designed indicators (features) such

as the magnitude of load profiles, and prior assumptions for selecting a suitable number

of customer groups in the clustering analysis. The manual procedures are not applica-

ble in real-world settings because buildings exhibit significantly different patterns in their

energy consumption. Manual selection of features (key indicators) from building load

profiles is not possible due to the vast amount of data generated on daily basis.

The load profile data presents opportunities for insights and improvements. Data-

driven techniques are now the most suitable options due to their user-friendly implemen-

tations and good prediction performance. Recently, machine learning and deep learning

techniques have drawn an increasing attention due to their capability for handling large

amounts of generated data, providing new solutions and algorithms to address techni-

cal challenges [38]. The most promising machine learning applications in the energy

domain are the prediction of building energy demand [42], operational optimization

of buildings [43], the evaluation of occupants influence on building energy consump-

tion [44], detection and commissioning of building equipment operational status and fail-

ures [45], energy benchmarking analysis [46], and the characterization of building energy

demand [47]. This thesis investigates the classification of electric load profiles of build-

ings into three types of buildings: residential, commercial, and industrial by developing

a novel deep learning framework. Classification of load profiles from all sectors (e.g.,

residential, industrial, and commercial) will benefit grid services, minimizing energy loss

and assisting in peak shaving [48]. The classification of load profiles of buildings not

only provides reliable energy benchmarks [49], it also helps in the creation of demand

response programs and energy management initiatives [50].
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1.3 Challenges and research opportunities

Based on the above discussion, the current challenges are summarized below:

• The lack of network visibility and data constraints are the major problems in developing

innovative strategies for improving current power networks. Figure 1.3 illustrates the

present issues associated with network modernization. The absence of synthetic test

systems and network visibility makes it difficult for researchers to understand where

restrictions exist in networks or are likely to arise in the future [51].

• Existing solutions mainly focused on synthetic transmission systems. The difficult

problem of developing synthetic LV distribution networks was not addressed.

• An important distinction of a distribution network that was not adequately addressed

in previous studies is geospatial information of network elements. The significance of

geographic information is suggested in [52, 53]. Geographic information is crucial for

the planning, modeling, and management of distribution network assets. For instance,

the geographical locations help planners to install new assets in existing networks.

• There is no standard criteria and guideline for establishing electrical connectivity be-

tween network components. The difficulty is to develop a method that meets the stan-

Structure of power grid LV network visibility and data constraints

generation transmission distribution Increasing 
Consumption 
in COVID-era

Buildings
Load profiling of buildings

Challenges in current 
distribution networks

Test systems and 
network transformation

Figure 1.3: Challenges of transforming existing networks
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dards of distribution network operators for practical implementation. Also, the power

lines in a network are added to the datasets manually, making them unsuitable for real-

world applications.

• Most current solutions were designed for European and US networks, with no test cases

or data representations developed for Australian ones. Different from existing literature,

this thesis focuses on Australian distribution networks.

• There is no investigation in the current literature that confirms the validation of synthetic

network and datasets by replicating them on real-world industrial servers. The study

in [1] validated its methods through statistical, and operational analysis. It is essential

to validate the developed techniques with industrial tools to ensure that the obtained

synthetic distribution test systems are similar to the real ones.

• Another critical aspect that is not adequately handled for the existing networks is en-

ergy consumption in buildings. Buildings are an integral part of distribution networks,

and their increasing share of energy consumption presents new challenges for distribu-

tion network operators, particularly in the current COVID-19 environment, where work

from home, total time spent inside buildings, and indoor comfort demands are signifi-

cantly increased. In this regard, data analytic techniques such as deep learning can help

improve building energy efficiency and demand flexibility by classifying building load

profiles according to their energy usage.

1.4 Contributions and solutions

Based on the motivation and research opportunities previously discussed, the follow-

ing contributions are made in this thesis.

1. Anonymization of network data to synthesize similar systems.

• A novel statistical distribution and parameter estimation approach is proposed

for anonymizing distribution network data. An algorithm based on the maxi-

mum likelihood estimate (MLE) is proposed to estimate the statistical distri-

bution parameters that represent the actual data. Then, a data anonymization

algorithm that uses the estimated parameters to generate realistic anonymized

datasets is developed.
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• Hypothesis testing based on Kolmogorov-Smirnov (K-S) test is conducted to

make the datasets realistic

• A practical demonstration is provided by obtaining actual (real) datasets from

a local distribution network provider. These datasets are then anonymized and

a comparison is made between actual and anonymized methods.

• Validation on benchmark test systems such as the IEEE 123-node test system.

• The methodology is experimentally proven by comparing it to the benchmark

data anonymization methods in the literature.

• The solutions provided alleviate network visibility concerns by introducing a

new, open, and flexible data anonymization framework.

2. Modeling synthetic networks and datasets from open-source public databases and

data synthesis algorithms with industrial validation

• Data synthesis algorithms are proposed to obtain the network datasets for the

power distribution system. For the first time, the topology of power distribu-

tion lines is developed using public road infrastructure. The proposed method

simplifies the design of power lines by using the concept of nodes and edges.

• A new method for identifying the number of energy consumers supplied by

a transformer in a distribution network is developed. For example, the hub-

line algorithm is proposed that connects the energy consumers based on their

nearest spatial distance to a transformer. A standard cut-off distance from

the transformer to households is maintained by adhering to the guidelines in

CIGRE publications [54].

• A distinctive characteristic of distribution networks that has not been properly

addressed in existing studies is the geographical structure of the system. This

thesis includes the geospatial locations of network elements by implementing

a batch-geolocation (BGL) algorithm.

• A standard way of representing electrical connectivity between two or more

equipment’s in the network is provided by proposing the fromNode and ToN-

ode concept. Connectivity is established by defining the start and end points

of the network’s elements.
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• A new way of obtaining substation data is developed by creating overpass

XML queries in OpenStreetMap (OSM) databases.

• A technique for ingesting synthetic data to industrial data platforms is devel-

oped. The developed method converts synthetic data into a Common Informa-

tion Model (CIM)-based format, which is a widely used data standard in the

power industry [55]

• The practical feasibility of the proposed algorithms is demonstrated by an

illustrative case study of the Colac region in Australia. Synthetic datasets are

created for the distribution feeder, and the datasets are deployed in the industry

servers. The results are then compared to the original feeder datasets to verify

the applicability of the proposed techniques.

• The solutions are tested using a two-step validation process. In the first stage,

solutions are validated by replicating them on real-world industrial servers,

and in the second stage, solutions are verified using expert comments and val-

idation. This method contributes to expanding the utility of synthetic networks

and datasets beyond university researchers to industry users.

• Interactive maps are created to visualize the synthetic network and datasets.

This allows users to manage the key assets in an existing power distribution

infrastructure.

3. Developing an AI-based based multi-stage transfer learning for building load profile

classification in the COVID-19 era.

• A deep learning solution is proposed for addressing the problem of electric

load profile classification in the context of buildings.

• Two new methods based on sparse autoencoders (SAEs) and the multi-stage

transfer learning (MSTL) are proposed. Different from conventional hand-

crafted feature representation, SAEs can learn useful features from a large

number of buildings data in an unsupervised automatic way. This is important

since each building has unique electrical load patterns, and manually extract-

ing the key features of every building is not possible in practical situations. A

MSTL approach is applied to enhance the classification accuracy by combin-

ing sequential unsupervised and supervised learning.
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• A minority oversampling (MOS) algorithm is proposed that effectively bal-

ances missing or unbalanced data by equalizing minority and majority sam-

ples for fair comparisons.

• Two case studies are presented to validate the methodology. In case study 1,

the techniques are evaluated on public benchmark datasets of buildings. In

case study 2, the results are validated using real-world datasets of 105 build-

ings (35 residential, 35 commercial, and 35 industrial).

• An empirical comparison is made with the benchmark methods in the liter-

ature. A performance improvement ranging from 1 to 10 percent has been

achieved. Standard performance criteria such as a confusion matrix, receiver

operating characteristic (ROC) curves, recall, F1-score, specificity, and pre-

cision are used to compare the findings. For a fair assessment, an average

percentage performance improvement obtained by the proposed method over

traditional methods is computed.

1.5 Thesis organization

The structure of the thesis is shown in Figure. 1.4, and is organized as follows.

• Chapter 2 provides a comprehensive overview of previous works in the area of data

anonymization, synthetic network modeling, and benchmarking practices for load

profiling classification of buildings in distribution networks. The proposed methods

for solving this problem are described.

• Chapter 3 presents the details of the developed data protection framework for anonymiz-

ing network data. The strengths and limitations of previous works are reviewed,

and the advantages of this research are briefly summarized.

• Chapter 4 describes the proposed methods for synthetic networks and datasets. A

case study of the Colac region in Australia is presented. Also, details of the experi-

mental validations of the proposed methods on industrial servers, such as the evolve

ARENA data platform, are provided.

• Chapter 5 details the procedure for developing AI-based SAEs and the MSTL

framework. It explains how the unsolved problem of building load profile classi-
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Figure 1.4: Structure of the thesis

fication in the distribution network is addressed. The practical feasibility of the

proposed approach is demonstrated by presenting two case studies.

• Chapter 6 summarizes the findings, and recommendations for future research direc-

tions are presented. The practical challenges considered in this thesis and recom-

mended future extensions of this study are provided.

13



Chapter 2

Literature review

The work presented in this chapter is published in the following article:

1. [Journal] M. Ali, K. Prakash, and HR. Pota, “Intelligent energy management:

Evolving developments, current challenges, and research directions for

sustainable future,” Journal of Cleaner Production, Sep. 2021. IF: 9.297

Summary: This chapter provides the essential background that links this work to

other studies in the literature. A literature review of existing studies is conducted to justify

the need for this research. A novel strategy for systematically surveying relevant studies

by converting the scattered literature into visual presentations is proposed. The process

begins by identifying relevant studies from high-impact journals and filtering them based

on their relevance. Using VOSviewer analysis, the relevant literature is transformed into

visual representations. This analysis identifies the current research gaps and explores

existing issues, methods, and findings. It also critiques existing countermeasures and

their limitations.

2.1 Introduction

In Chapter 1, the motivation for using synthetic networks and datasets is discussed.

There have been significant developments in the field of power distribution networks,

with various methods and new solutions proposed for creating synthetic test systems. An

important issue is to determine key insights from the scattered academic literature in the

age of digital publishing. In this Chapter, a review using novel techniques that provides

unique insights into the literature is conducted to identify research gaps.
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2.1.1 VOSviewer approach to identify key research gaps

VOSviewer provides clustering solutions with different colors to indicate the most

important occurring topics in scarce literature. In the age of big data, scholarly informa-

tion usually contains thousands of raw data, such as papers, books, or scientific reports.

Analyzing hundreds of scientific publications can be a tedious and troublesome task. One

way to overcome this problem is to introduce clustering solutions. Clustering techniques

identify related publications or journals by clustering each publication and developing

a citation network. A total of ninety-one papers published in high-impact journals are

identified based on their scientific soundness and relevance, and a VOSviewer analysis is

applied. The findings of collected articles are then reported with VOSviewer experiments.

In a clustering technique, publications are assigned to clusters by maximizing a qual-

ity function, as defined by Waltman [56] and Nees [57].

Q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

δ
(
xi, xj

)(
aij −

γ

2n

)
(2.1)

where n represents the total publications, aij shows the relatedness of publication i with

publication j. γ is a resolution parameter, and xi denotes the cluster to which publication

i is assigned. The term δ
(
xi, xj

)
equals 1 if xi = xj and 0 otherwise. The relatedness of

publication i with publication j is given by

aij =
cij∑n
k=1 cik

(2.2)

where cij shows the citations of publication i and j. It will be equivalent to 1 when

publication j refers to publication i or either publication i refers publication j. Otherwise,

it is 0 . Thus, if there is a citation link between publication j and i, the relatedness a of

publication i with publication j is equal to citations of publications i and j divided by the

total number of citations of publication i.

2.2 Results and identified gaps

In this section, the key research themes identified from VOSviewer experiments are

discussed. A network visualization map is constructed from the collected articles, and

results are presented with the visual clusters. The visualization results obtained from
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Figure 2.1: VOSviewer experiments to find key insights from highly cited papers

VOSviewer experiments are shown in Figure. 2.1. The key emerging areas are presented

with six visual clusters in black circles. Clusters with different colors indicate the relat-

edness of topics and publications in the respective fields. The size of a cluster represents

the number of publications that belong to each cluster. The colored lines connecting

clusters show their relatedness, with line width reflecting the number of citations between

clusters. The description of each cluster is summarized in Table 2.1. Cluster 1 (row 1)

demonstrates that data development and network privacy are the primary problems for

distribution network operators. Cluster 2 (row 2) indicates a lack of distribution network

data for updating current networks. Cluster 3 (row 3) demonstrates the missing infor-

mation about the geographical locations of network assets in existing network datasets.

Clusters 4 and 4.1 (rows 4 and 5) show rising energy consumption in buildings and the

need for load profile classification in energy management and conversion. This cluster

also points out the problem of low classification model accuracy and suggests new and

advance machine learning methods as a possible solution.

The VOSviewer experiments reveal the existence of three research gaps in the recent

literature: data integrity and privacy concerns in distribution network datasets; lack of
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distribution network datasets to test new solutions in existing networks; and the impact

of load profiles of buildings (end-users) across power distribution networks. In the next

subsections, the breakthroughs of previous research contributions on these topics, as well

as the main challenges and potential solutions, are explained. The aim is to identify

research gaps and opportunities and provide novel insights from scientific and practical

perspectives.

Table 2.1: Key research words in terms of clusters

Total
Research works Cluster Observed

keywords Explanation

91

1
dataset, development, privacy,
network, operation, challenge Privacy in the network dataset

2 distribution network, data Distribution network data

3 location
Geographical location of
network assets

4 load, model, accuracy
Load profile classification of buildings
and accuracy of the model

4.1
machine learning, machine,
solution

Machine learning solutions for
load profile classification

2.2.1 Literature review on data protection frameworks

This subsection explains the contributions of past research in data protection frame-

works to address data confidentiality challenges in distribution network datasets. There

are five fundamental techniques for data anonymization, which include generalization

[24, 58], suppression [25, 59], perturbation [26, 60] permutation [27, 61], and anonymiza-

tion through data synthesis [28, 62]. Different approaches have been thoroughly investi-

gated to mitigate the privacy risks in data. [63, 64]. In [62], a machine learning approach

to preserve the privacy of data with a utility function of electronic health records of hospi-

tal patients was proposed. The authors in [65] proposed a statistical clustering procedure

to create prototypical feeders without revealing private information. Its limitation is that

it requires manual selection of the parameters for each cluster, which is not possible in

practical situations. In [66], an information-masking mechanism was proposed for hid-

ing the original information by transforming it into another form. The proposed solution

obfuscates the targeted information by adding additive noise to the sensitive parts of the

data. In [25], the perturbation approach was used to anonymize the key attributes of data

by adding noise to the datasets. However, this technique fails to retain the key statisti-

cal characteristics or trends of the data, resulting in the loss of critical information. The
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inclusion of noise can generate fake trajectories in the data that do not correspond to the

realistic scenarios [67].

Data masking techniques such as suppression [25] are also implemented to ensure

privacy. Often, the simple masking or removal of identifiers may not be sufficient to

ensure privacy [68] and masking reduces the amount of information available by sup-

pressing some of the data or decreasing the level of its details. In [69], a data encryption

system based on cryptographic techniques was proposed. The cryptographic techniques

used to prevent information leakage are computationally expensive [70, 71]. A data ag-

gregation scheme based on local differential privacy was provided in [72]. A lightweight

privacy preserving data aggregation technique to address the problem of complexity and

computation costs in existing methods was proposed in [73]. Other common approaches

for data anonymization are k-anonymity [74], l-diversity [75,76], and t-closeness [77,78]

for data anonymization. The random-data perturbation techniques do not entirely protect

privacy [68] while the t-closeness limits the amount of useful information released and

destroys the correlations between key attributes and confidential attributes [75].

A multi-level reversible data anonymization technique for obfuscating the sensitive

parts of documents was presented in [79]. The authors developed a data hiding technique

by using a compressive sensing theory. In [80], an entropy-based measure for quantifying

the real privacy provided by anonymous privacy-preserving smart metering methods was

proposed. A concept of the generative adversarial network (GAN) to anonymize the

sensitive data was proposed in [81]. Despite their effectiveness, GANs have limitations,

including instability and mode collapse during model training, which significantly impact

the quality of anonymised datasets [82]. In [83], a high-degree noise addition method for

enhancing data privacy was provided. An innovative differential privacy algorithm for

ensuring the privacy of the smart meter data in power distribution networks was proposed

in [84]. The impacts of the proposed algorithm on the operations of distribution grid data

were thoroughly investigated. A Gaussian noise approach based on artificial intelligence

for maintaining data privacy was proposed in [85]. A machine learning model was trained

to ensure both demand-side management and consumer data privacy. In [86], a unique

decentralized privacy-preserving technique for anonymizing sensitive information from

distribution network data was presented.
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2.2.1.1 Findings and research gaps:

The literature presents many solutions and recommendations. However, there exist

open questions that need further investigation, with the most important listed in Table 2.2.

This chapter proposes a data anonymization through data synthesis to address the com-

mon limitations of traditional anonymization methods. The frameworks and objectives of

several works in the existing literature are quite different from those of ours. The goal is

not to implement encryption and decryption techniques, rather a simplified anonymization

methodology for addressing the problem of data sensitivity in critical power infrastruc-

tures. The idea is to search for statistical patterns that emerge in the data of distribu-

tion feeders and their properties and use them to synthesize similar systems. Using the

proposed solutions, electric utilities and academic researchers can generate anonymous

datasets with minimal expert knowledge. Traditional methods mainly focused on swap-

ping and noise addition techniques to de-identify sensitive data. However, recent research

has shown that de-identification is not sufficient for preserving privacy in data [62]. With

technological advancements and computer experts, it is easy to re-identify (reverse engi-

neer) hidden information [87]. In the case of noise addition, it is difficult to preserve

the main statistical characteristics or patterns of the data, resulting in a loss of pivotal

information [88]. Instead of de-identifying private information through swapping and

noise addition methods, there is a need for techniques that mimic the properties of orig-

inal datasets, which is the motivation for this study. In this thesis, an attempt is made to

reduce the gap between academic research and industry regarding privacy concerns, as

many collaborative projects are based on sensitive and privacy-encumbered data.

2.2.2 Literature review on synthetic test systems

Synthetic power networks are fictitious test cases created for research, development,

and demonstration purposes. Their distinguishing feature is systematic validation to ver-

ify that they accurately replicate the properties of actual grids. Free from confidential

data, the synthetic test cases can be widely shared and published. In the existing litera-

ture, there are research efforts to create synthetic networks and datasets for distribution

networks [91,92]. The first distribution dataset for the investigation of radial distribution

feeders was published in [93]. A taxonomy of prototypical radial electrical distribution

feeders for analyzing smart grid technology models was provided in [94]. The test dataset
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Table 2.2: Summary of knowledge gap in the existing literature

Recent studies Findings
Yoon et al., 2020

[62]
• Most existing solutions focus on data-masking or hiding

sensitive data without considering the key relationships or
statistical patterns in data. This leads to the loss of important
information and a decrease in data usability [79, 89]. The
addition of new techniques considering statistical patterns
will improve the reliability of data utility.

• Electrical utilities spend a significant amount of money on
cybersecurity solutions which can be complex and
ineffective, as indicated in recent literature [33, 34]. How can
data privacy and security be protected in the absence of
expert knowledge of cybersecurity techniques?

• Unavailability of simple and user-friendly techniques that
can reduce the gap between academic research and industry,
as suggested in [35]. Collaborative projects are based on
sensitive and privacy-encumbered data and many promising
collaborations can fail even before they begin due to
data-sharing problems.

• There is a lack of hypothesis testing to confirm the
representativeness of anonymized datasets [36]. For
instance, anonymized datasets should be representative of
the original ones.

Xin et al., 2018
[66]

Shaham et al., 2020
[67]

Bassoo et al., 2019
[68]

Belguith et al., 2019
[70]

Minello et al., 2020
[74]

Raymond et al., 2021
[75]

Yamac et al., 2020
[79]

Zang et al., 2020
[85]

Dondeti et al., 2021
[88]

Yan et al., 2022
[90]

was created for several regions in the United States. A fictitious synthetic power system

network to capture the functionality, characteristics, and topology of the actual system

was created in [95]. In [96], a synthetic electric grid was created to consider the reac-

tive power planning requirements. A methodology for bus level static load modeling in

synthetic electric grid test cases was presented in [97].

A clustering approach for creating synthetic power system test cases was proposed

in [98]. The methodology demonstrated various real-world examples; however, the con-

cept was built for synthetic transmission systems. A random topology method to generate

synthetic data for power transmission grids was proposed in [99]. Synthetic electric grid

datasets describing high-voltage transmission grid was created in [100]. The datasets

covered the large geographic regions of North America. A method of generating realis-

tic power system steady-state scenarios using synthetic transmission networks and time
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series was developed in [92]. Their findings indicate that specialized strategies are re-

quired to accelerate the convergence of a power flow solution and to prevent low voltage

solutions. In [101], complex-network techniques were presented to generate synthetic

transmission networks for European grids. The topological properties of high-voltage

electrical power transmission networks were studied in [102]. A two-phase methodol-

ogy for creating synthetic transmission grid was proposed in [103]. A comprehensive

cyber-physical model for a synthetic electric grid was created in [104].

Recently, distribution systems have been regarded as random graphs for constructing

synthetic distribution datasets [105], with the findings tested by Monte Carlo simulations.

In [106], a bottom-up approach was used to develop a synthetic distribution dataset. A

conic-based optimization model for developing a synthetic medium-voltage network for a

geographical region of Singapore was presented in [107]. The problem of phase-selection

in synthetic systems was addressed in [108]. This study proposed two algorithms that

determine the number and sequence of phases at each feeder section. The methodology in

[109] integrated dynamic models for renewable resources into synthetic electric grids. In

[110], a methodology was proposed to synthesize and validate bus-level load time series

in the existing synthetic power systems. The need for synthetic representative networks

and the challenges faced by distribution utilities were briefly discussed in [111].

National and international organizations have contributed to the development of syn-

thetic test systems and datasets for scientific analysis and improvements in existing power

networks. Table 2.3 summarizes current test systems, and their common limitations. For

decades, researchers have used a limited set of standard networks such as IEEE transmis-

sion and distribution test cases [21, 94, 112]. The major concern is the restricted number

of standard test systems that are only suitable for specific regions [48]. In [11], the Texas

AM University researchers published synthetic transmission network datasets to explore

transient stability. The goal of this study was to provide dynamic examples for synthetic

network models. EPRI created synthetic test cases for grid analysis, grid planning, and

grid operation management [12]. These datasets were created solely for geographical ar-

eas in the United States. A comprehensive illustration of the transmission system network

operated by ENTSO members [13]. PNNL provided benchmark systems for small-signal

stability research and control [14]. SciGRID published transmission network datasets

for European energy networks [113]. UKGS offered network datasets describing the UK

power system [15]. CIGRE developed a database including a variety of power system
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Table 2.3: Summary of knowledge gap in the existing literature

Network data
repository Findings

IEEE Test
Cases [10]

• Mainly focused on synthetic transmission systems.

• Topological network data, including geospatial information,
is not included.

• Designed primarily for North American electrical
distribution networks, which differ significantly from
European and Australian systems.

• There is no information provided for creating an electrical
connection between network elements.

• There is no standard guideline or strategy for designing
power lines in a distribution network. In some cases, power
lines are built using manual techniques that are not suitable
for real-world applications.

• Synthetic networks and datasets are created from paid
softwares which are not easily accessible or reproducible for
the research community.

• Geographical verification and visualizations are not available
to monitor the electrical assets in an organized manner.

• The essential element of buildings (end users) in the
distribution network and their increasing share of energy
consumption in the post-COVID-19 period is not examined.

• Validation of developed solutions using real industry servers
is seldom provided.

Texas A&M
University [11]

EPRI [12]

ENTSO [13]

PNNL [14]

SciGRID [113]

OPENMOD [17]

UKGDS [15]

CIGRE [114]

OPSD [18]

OEP [19]

ICSEG [20]

MATPOWER [21]

LINES [22]

SimBench [115]

test cases that may be used to compare solutions for electromagnetic transients [16]. Sim-

ilarly, OPENMOD [17], the OPSD [18], the OEP [19], the ICSEG [20], Matlab-based

power system simulation package (MATPOWER) [21], and the LINES [22] produced

synthetic datasets for the development of novel solutions. In [23], an extensive dataset

known as SimBench was released for grid-related solutions. The created dataset was

restricted to specific geographical regions, such as Germany and Central Europe.
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2.2.2.1 Findings and research gaps:

Despite the proven success of previous works, some questions remain unsolved, as

described below:

• Limited to power transmission network: Previous works [116–118] mainly focused

on generating synthetic transmission networks, where the effects of individual cus-

tomer decisions were neglected. Compared to the transmission network, research

on synthetic distribution network and datasets is still at preliminary stages. The

development of synthetic distribution test cases with more detail, including geo-

graphical information will contribute to this topic and enable cross-validation of

developed techniques.

• Missing geospatial information: Topological network data, including geospatial

information, is not included. Conventional design techniques focused primarily

on reducing costs such as investment, operation, maintenance and energy losses,

while ensuring the safety and reliability of the network. Geographical information

regarding distribution networks, such as the location of transformers, substations,

power lines, and energy customers is critical for managing distribution network

assets. Geographical information gives a valuable topological representation of

the network layout. In the event of a network failure, these topological aspects

have a substantial impact on network expansion planning and future modernization

techniques.

• Differences in network topologies and appropriate representations: Most of the ex-

isting network datasets were developed for American and European systems. Distri-

bution systems around the world are characterized by different standards and their

topologies are constituted by different ranges of line lengths and different trans-

formers that deliver electricity to consumers. A clear difference between European

and U.S. distribution systems is the number of phase connections and low voltage

power lines that link each power transformer in the street, as shown in Figure 2.2. In

Europe (a), all the systems are three-phase (represented by black). In the USA (b),

primary feeders are made up of one and three-phase sections that deliver electricity

to specified coverage regions. In the USA, the number of consumers served by a

low-voltage distribution transformer is considerably smaller than in Europe. For
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(a) (b)

Figure 2.2: Differences in distribution networks (a) Europe (left) and (b) US (right) [1]

this reason, low-voltage network lengths in the USA are shorter than those in Eu-

rope. Considering these differences in networks, a representative dataset is essential

for different regions.

• Electrical connectivity between network elements: There is no standard way defined

to create electrical connection between network elements. The term standard relates

to how well it satisfies the needs of distribution network service providers. In [119],

a minimum spanning tree solution was proposed to establish electrical connectivity

in synthetic transmission network. The solution was not tested in practical environ-

ments such as industry servers and neither followed the industry standards or even

examined by industry experts to validate its practicality.

• Standard guideline for creating power lines in a network: There is no standard

guideline or strategy for designing power lines in a distribution network. In some

cases, power lines are constructed using manual techniques that are unsuitable for

real-world applications. For example, in [120], a random electric topology was

proposed to create power lines using the random set of transmission gauge ratios.

• Datasets for specific applications: As most network datasets were designed for

addressing a specific technical or economic operational issue, they were often in-

sufficient for use in other kinds of applications or problems due to a lack of relevant

information. For instance, the test network provided for the distributed generation

protection analysis [121].

• Scalability: A network scale is crucial as it affects the validation of the overall

network [1]. Currently, test datasets are only accessible for limited segments of
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distribution networks, such as a single feeder. The largest IEEE test system, for

instance, has just 8,500 nodes [122]. However, real-world systems contain millions

of nodes. Detailed descriptions are required to assess the efficacy of large-scale

solutions provided by new algorithms.

• Validation and metrics: In the extant literature, no research has validated its ap-

proaches using real-world industrial servers. The study in [1] validates the method

through statistical, and operational analysis. It is essential to validate the developed

techniques with industrial tools to ensure that the obtained synthetic distribution

test systems are similar to the real ones.

2.2.3 Literature review on load profiling classification

Load profiles that are neatly presented and accurately classified are crucial for net-

work planning, demand response, resource allocation, and load forecasting [7]. Accord-

ing to [6], electric load profiles assist utility businesses to develop better marketing tactics,

increase energy savings, improve existing operational facilities and reduce forecasting

mistakes. Three types of methods were used in the literature to create an effective and

efficient load profiling classification. As shown in Figure 2.3, the methods include clus-

tering techniques, artificial intelligence approaches, and time-frequency domain methods.

Clustering techniques are widely used for load profile classification. In [123], a compre-

hensive review of clustering algorithms for classifying electric load profiles was provided.

A k-means clustering method was proposed in [124] to classify the daily load profiles of

academic buildings. A density-based spatial clustering method was reported in [125]. A

clustering strategy based on a Gaussian mixture model for classifying building load pro-

files was provided in [126]. A shape-based clustering method for pattern recognition of

residential electricity consumption was investigated in [127]. Recently, two classification

studies utilizing k-means clustering approaches for the study of building operating data

were published, discussing relevant applications in this area [124, 128]. Using clustering

methods, it is difficult to specify the k-value at the beginning of investigations [129,130].

Also, clustering techniques assume that each cluster has roughly equal numbers of obser-

vations in the dataset [131, 132]. However, in real life, residential buildings have more

observations than industrial and commercial. The clustering algorithms classify the load

patterns by grouping them into different clusters. Grouping load profiles into specific

25



clusters is ineffective for real-time evaluations since loads constantly change throughout

the day.

Artificial intelligence approaches have also received increasing attention in load pro-

filing classification. For instance, a support vector machine (SVM) approach for classi-

fying the electric load profiles of buildings based on the climatic conditions and building

characteristics was proposed in [133]. A classical feed-forward neural network (FFNN)

model to investigate the load profiles of a commercial building was implemented in [134].

The results revealed that the FFNN model performed better than echo state networks on

an aggregated load. In [135], an ensemble learning method based on a random forest (RF)

was implemented for the characterization of non-residential buildings. This work [135]

showed that feature selection is important for lowering calculation costs in large-scale

deployments, minimizing model over-fitting, enhancing interpretability, and improving

the accuracy. The concept of the k-nearest neighbor (kNN) was adopted in [136] to clas-

sify customer load profile. A model which was a variant of the decision tree technique

was developed in [137]. The characteristics of residential building were classified with

a precision of 82 percent and recall of 81 percent. Besides conventional artificial in-

telligence algorithms, more advanced technologies such as deep learning and adversarial

learning can be used to achieve continuous breakthroughs in data resolution, learning, and

computing ability, which will have broad application prospects in the research of electric

Load profile 
classification

Clustering 
methods

Artificial intelligence 
methods

Time and frequency 
domain methods

• K-means, Fuzzy K-
means, Fuzzy C-means, 
Hierarchical clustering, 
Self-organizing Maps, 
density-Based 
Clustering algorithms

• Support vector 
machine, feed-forward 
neural network, 
random forest, k-
nearest neighbor

• Fast fourier
transformation, 
traveling time 
window, discrete 
fourier transform

Figure 2.3: An overview of load profile classification methods
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load clustering [138]. As complexity in load profiles increases, the incorporation of deep

learning technologies in electric load classification will become increasingly important. It

entails sophisticated real-time decision making that is backed up by data-driven models.

Deep learning approaches have the potential to overcome the limitations of conventional

electric load classification algorithms by providing more precise information about the

load profile. The new techniques can help improve the operation of the distribution grid

and the planning of future networks [138].

Load profiles were also investigated using time-and frequency-domain methods [50,

139]. These methods [50,139] classify the electric load profiles by transforming the time-

based load profile data into their frequency domain representation. The periodic patterns

in the load profile were identified using signal processing techniques such as discrete

Fourier transform (DFT) In [41], hierarchical classification of load profiles was pro-

posed by using the load profile characteristic attributes in the frequency domain. In [140],

household consumption load profiles were analyzed using Fourier and Wavelet transform.

The authors in [141] proposed a frequency domain load profile descriptor for load pro-

file characterization. In [142], a unique frequency–domain approach for classifying the

typical load patterns of consumers was provided. This study [142] used harmonic anal-

ysis to extract key features from the load patterns. In [143], frequency-domain features

were extracted using a discrete wavelet transform for classifying household load profiles.

A load identification algorithm based on load decomposition was proposed in [144]. A

comparative research of time-and frequency-domain algorithms for electric load pattern

classification was presented in [145].

2.2.3.1 Findings and research gaps:

Following research gaps are observed during the review of related works:

1. Most of the efforts presented in the literature are devoted to developing classifiers

(i.e., the pattern classification phase), often neglecting the role of the feature ex-

traction process in learning important representations from the data. How to extract

useful knowledge or features from the vast number of buildings data was not fully

investigated [146]. For example, in [147,148], the useful patterns or features such as

magnitudes of daily load curves were extracted from data using manual techniques

or general assumptions that are not applicable in real-world settings. In [41], load

profile characteristics are studied using frequency and time-domain pattern charac-
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teristics, such as base load, peak load, rise time, fall time, and high-load duration.

Qualitative manual labeling is used to classify load profiles and to capture the peri-

odic characteristics of load profiles.

2. The most widely used approach for classification in the current literature is k-means

clustering. Despite the demonstrated efficacy of clustering algorithms, recent re-

search [138] shows that these methods have three major drawbacks: it is difficult to

specify the number of clusters in clustering algorithms; the methods rely on manual

parameter adjustment; the validation of these methods is limited to specific datasets

(not generic); and the methods assume that the current state is only related to the

previous state, which is not true in the case of electric load profiles because load

patterns change continuously based on energy consumption behaviors. With the

integration of distributed energy resources, load profiles are becoming increasingly

unpredictable. To address the growing challenges, more flexible and reliable load

profiling approaches are required.

3. The problem of class imbalance and missing data values in building datasets are not

properly handled. This is crucial since real-world data is often incomplete or incon-

sistent and it is likely to produce error-prone results in developed models [149].

4. Existing studies considered mainly residential households [150,151]. Non-residential

buildings such as industrial and commercial buildings have seldom been consid-

ered.

5. A problem of low classification accuracy due to high variations in building load

profiles [152, 153].

6. The existing results are mostly validated on simulated datasets or only one type

of building [154]. Insights based on real datasets are seldom provided. This re-

search contributes by integrating computational intelligence with building energy

evaluation and management, which in the end facilitates building owners and pol-

icymakers to optimize energy utilization and minimize carbon emissions for the

development of green buildings [155].
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Chapter 3

Anonymization of distribution network
data using statistical distribution and
parameter estimation approach

The work presented in this chapter is published in the following article:

1. [Journal] M. Ali, K. Prakash, C. Macana, M. Rabiul, A. Hussain, and HR.

Pota, “Anonymization of distribution feeder data using statistical distribution

and parameter estimation approach,” Elsevier Sustainable Energy

Technologies and Assessments, vol. 52, p. 102152, Aug. 2022. IF: 5.353.

Summary: Based on the research gaps in Chapter 2, this chapter provides a novel

method for anonymizing distribution network data using a statistical distribution and

parameter estimation approach. The statistical patterns of real distribution feeders are

examined by accessing the confidential database of a local distribution network service

provider. An algorithm based on the maximum likelihood estimate (MLE) is applied to

estimate the statistical distribution parameters that represent the actual data. Then, these

statistical distribution parameters are used to generate anonymized datasets that are re-

alistic. A Kolmogorov-Smirnov (K-S) test is conducted to confirm the effectiveness of

anonymized datasets, and the results are compared with the actual feeder datasets. Val-

idation is carried out with existing methods and comparisons are shown on the different

portions of the datasets (25 percent, 50 percent, 75 percent, and 100 percent). The com-

parison results indicate superior performance over traditional methods, with a perfor-

mance improvement ranging from 1 to 13 percent. The practical application of the method

is demonstrated by performing simulation studies on the IEEE 123-node test feeder. The
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method achieves consistent results on voltage profiles, with a maximum difference of 0.420

percent between actual and anonymized datasets.

3.1 Research gaps and contributions:

This chapter introduces a data anonymization technique that can be used by utilities

and researchers to generate anonymous datasets with minimal expert knowledge. The

frameworks and objectives of several works in the existing literature are quite different

from those of ours. The goal is not to implement encryption and decryption techniques

rather a simplified anonymization methodology for addressing the problem of data sen-

sitivity in critical power infrastructures. The idea is to search for statistical patterns that

emerge in the data of distribution feeders and their properties and use them to synthe-

size similar systems. This chapter aims to reduce the gap between academic and industry

users regarding privacy concerns as many collaborative projects are based on sensitive

and privacy-encumbered data.

3.1.1 Contributions

• An effective solution for data anonymization is developed by leveraging the statis-

tical distribution techniques and parameter estimation approach.

• An algorithm based on the MLE is proposed for estimating the parameters that best

represent the data. Then, a data anonymization procedure is established that uses

the estimated parameters to generate anonymized datasets that are realistic.

• A new way to verify the representativeness of anonymized datasets is provided with

Kolmogorov-Smirnov (K-S) hypothesis test.

• The quality of anonymized datasets is assessed by simultaneously considering the

outlier detection and identifying the missing values, as suggested in [156].

• The effectiveness of the presented approach is validated with the key attributes of

distribution feeders, such as feeder line length and results are compared with the

existing data anonymizers.

• The practical feasibility of the proposed method is demonstrated by simulating on

an IEEE 123-node test system and results are compared with original datasets.
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3.2 Proposed data anonymization framework

Figure 3.1 provides an overview of the proposed framework. Confidential dataset

from a distribution company’s database is the input to the framework and the output

is the anonymized dataset preserving the privacy. This framework consists of different

mechanisms that work together to anonymize feeder datasets, e.g., an SQLite database in-

put, distribution-fitting modeling in Python, an investigation of statistical characteristics,

estimations of distribution parameters, hypothesis testing via the K-S test, data quality

management, and comparison of results with popular anonymization methods. A short

description of each mechanism is provided in the following paragraphs.

• Phase 1: In the first stage, the feeder data, which contains the key characteristics of

distribution feeders, such as their line length, connected loads, capacitors, etc., is obtained

from the distribution operator in Canberra, Australia. The data are originally available in

a relational database such as SQL (Structured Query Language) and SQL queries are

generated to retrieve the desired data from database tables. For instance, the SQL query

SELECT Line.L FROM database is used to select all the feeder line lengths.

• Phase 2: In the second stage, the statistical characteristics of the feeder data are investi-

gated by distribution fitting modeling. The motivation of this task is to understand the key

characteristics of original data and identify their best distributions for study and analysis.

• Phase 3: After finding the best distribution, the statistical parameters of each distribution

• Compare actual and 

anonymized data.

• Compare with 

traditional approaches

• Estimate statistical parameters based 

on MLE Algorithm.

• Develop a data anonymization 

procedure that uses the estimated 

parameters.

Methodology:

D
is

tr
ib

u
ti
o
n
 c

o
m

p
a
n
y
 

D
a
ta

b
a
s
e

• Generate SQL queries to obtain 

desired data

• Distribution fitting modeling in Python

• Investigate statistical characteristics

• Find best distributions based on chi-

square test.

Actual data

Anonymized data

• Conduct K-S 

hypothesis test

• Evaluation on IEEE 

test system

• Examine the data 

quality issues

Figure 3.1: Proposed framework.
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are estimated. The estimated parameters are then used to generate anonymized datasets.

• Phase 4: To confirm the representativeness of anonymized datasets, hypothesis testing

based on the K-S test is conducted, with the hypothesis either selected or rejected ac-

cording to its significance level and K-S static value. The quality of the data or loss

of information in the anonymized datasets are assessed using box and whisker plots, as

indicated in [156].

• Phase 5: The original and anonymized datasets are compared to evaluate the variations

among them. The proposed approach is evaluated on an IEEE 123-node test feeder. In

addition, the results are compared with recently developed anonymization methods.

3.2.1 Verification of actual and anonymized datasets

The choice for determining how well the anonymized datasets resemble the real data

is the K-S test [157], a non-parametric goodness of fit test that compares a sample with

a reference probability distribution (one-sample K–S test), or two samples (two-sample

K–S test). The test compares a known hypothetical probability distribution of real data

with the anonymized data distribution. A null hypothesis is formed to verify that the data

samples are drawn from the same distribution to a certain degree of significance. Failing

to accept the null hypothesis indicates that they come from different distributions.

3.2.2 One-sample K-S Test

In the one sample K-S test, we are given a sequence of data samples (z1, z2, . . . , zN)

with unknown distribution F . The underlying cumulative distribution function (cdf) is

denoted by F1(z), and a hypothesized distribution by cdf F0(z). The null hypothesis is

tested as

H0 : F = F0 vs. H1 : F ̸= F0 (3.1)

The empirical cdf formed by the K-S test from the data samples is

F̂1(z) =
1

N

N∑
n=1

I (zn ≤ z) (3.2)

where I(·) is an indicator function that represents the value 1 if the input is true and zero

otherwise. The maximum difference between the two cdf’s F1(z) and F0(z) is estimated
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using the K-S static,

D = sup
z∈R

∣∣F1(z)− F0(z)
∣∣ (3.3)

and, in practice, it is computed by

Dn = max
i

∣∣∣F̂n (zi)− F̂0 (zi)
∣∣∣ (3.4)

The decision of the hypothesis (δ), i.e., acceptance or rejection, can be determined by the

decision rule

δ =

 H0 : Dn ≤ Dcrit

H1 : Dn > Dcrit

(3.5)

The threshold Dcrit is dependent on the level of significance α and is found from the

condition

α = F
(
δ ̸= H0 | H0

)
= F

(
Dn ≥ Dcrit | H0

)
(3.6)

Since the distribution of Dn can be tabulated for each n under H0, the critical value

(threshold) Dcrit = Dcrit, α is approximated from the statistical tables [158, 159]. If the

level of significance is taken as α = 0.05, then the critical value is estimated as

Dcrit,0.05 =
1.36√
n

(3.7)

The hypothesis H0 is accepted at the significance level α if Dn < Dcrit . Also, the H0 is

tested with P value and significance level α. The P value is computed by

Prob(D > Dn) = 1− 2
∞∑
i=1

(−1)(i−1)e(−2i2z2) (3.8)

The hypothesis H0 is accepted at significance level α if P value> α.
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3.2.3 Two-sample K-S Test

If the hypothesized cdf F0 is not available, and the data samples are drawn from

another sequence F0, ξ1, ξ2, . . . , ξN0 , the empirical cdf F̂0(ξ) is formed as

F̂0(ξ) =
1

N0

N0∑
n=1

I (ξn ≤ ξ)

The K-S statistic is now

D̂ = max
1≤n≤N

∣∣∣F̂1 (zn)− F̂0 (zn)
∣∣∣

If the level of significance is α = 0.05, then the critical value is

Dcrit ,0.05 = 1.36

√
1

nx

+
1

ny

(3.9)

3.3 Experiments and results

For analysis, the real data provided by the distribution system operator in Australia

is used. Table 3.1 presents a summary of the dataset statistics and these datasets are used

to investigate the techniques developed in this study. Table 3.2 lists the steps taken to

obtain the required feeder data from the electrical company database which is provided

in SQLite files, the proprietary format of the SQLite database software. SQL queries are

performed for easier manipulation and to obtain the data required for further operations.

The feeder line length is considered in this paper as it is an important factor for the voltage

profile of the distribution networks [160]. Investigations are carried out on the feeder line

length dataset, and then the data is further clustered into HV and LV line lengths to test

the proposed solutions under different scenarios. A summary of the dataset statistics is

presented in Table 3.1 and these datasets are used to investigate the techniques developed

in this study.

3.3.1 Scenario 1: Experiments on feeder line length dataset

In this section, the results obtained from the feeder line length dataset are analyzed

to identify the key statistical distributions in the data that can be exploited in a process for
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Table 3.1: Experimental datasets and scenarios used in this study

Statistics (percentiles)

Scenarios
Experimental

datasets
Total

samples Mean (m) Std (m) 25% 50% 75% 85% 95%

1 Feeder line length 8276 18.96 20.73 8.23 17.77 22.52 27.44 45.17
2 HV line length 463 45.23 59.31 1.00 31.58 62.81 84.42 157.16
3 LV line length 7816 17.40 14.28 8.44 17.62 21.97 25.69 37.33

Table 3.2: SQL queries to obtain data from an electrical utility database

Query SQL Statement
Query:1 SELECT Line. 1 FROM Database
Description Select feeder line length
Query:2 SELECT Line. I FROM Database WHERE VoltageLevel= low
Description Cluster low voltage line length from line data
Query:3 SELECT Line. I FROM Database WHERE VoltageLevel = high
Description Cluster high voltage line length from line data

data synthesis. The distribution patterns are identified by statistical distribution modeling

using the Python programming language. The purpose is to assess, understand and ana-

lyze the fitting of the distributions about the data. Figure 3.2(a) shows these patterns as

well as a fit line that follows the lognormal distribution,

f(x;µ, σ2) =
1

sx
√
2πσ2

e
− (ln x−µ)2√

2σ2 (3.10)

where x > 0, s > 0 and f(x;µ, σ2) is the lognormal probability density function (PDF).

This equation represents the parameters of a lognormal distribution, that is, the mean

(µ) and standard deviation (σ) with s as a shape parameter. The obtained distribution

characteristics are shown in Figure 3.2(a). From the figure, it is clear that the feeder

line length follows a lognormal distribution which means that, if the feeder data (x) has

a lognormal distribution, Y = ln(x) has a normal one. This distribution is justified

with the non-negative feeder line length and the distributions are right-skewed curve.

Of the several distributions, the best fits for the data provided are determined using the

chi-squared test [161] which sums the relative squared error between the observed and

expected frequencies of data, and it is mathematically defined as

chi-square test =
∑

((observed - predicted) 2/ predicted) (3.11)

The lower the value obtained from this test, the better the fit. For example, the lognormal
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(a) Illustrations of distribution patterns (b) Best fits obtained from chi-squared test
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Figure 3.2: Distribution characteristics of feeder line length dataset

distribution has the lowest chi-squared value, as shown in Table 3.3, and, based on these

values, the best-fit distributions are plotted in Figure 3.2(b). The distributions with the

lowest chi-squared values are ranked first. The pearson3 is the second best distribution

followed by beta, expon, exponnorm, and norm distributions, respectively. Besides the

chi-squared test, the distribution fits of the data are also validated by probability (P–P)

plots. They are used to compare the probability distributions of the observed (empirical)

data with those from a specified theoretical distribution such as a lognormal one, as shown

in Figure 3.2(c). In order to compare distributions, we verify if the data points lie on a

45◦ line (x=y). If they deviate, the distributions differ while, if the fit is perfect, the data

appears as a straight diagonal line. In the P-P plot, it can be seen that the feeder line data

fits the theoretical lognormal distribution perfectly.
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Table 3.3: Chi-squared test to assess the distribution fitting with PDFs and estimated
parameters for specific distributions.

Rank
Distribution

pattern

Chi-Squared

test
Probability density function (PDF) Estimated parameters

1 lognorm 69.41 f(x;µ, σ2) = 1

sx
√
2πσ2

e
− (ln x−µ)2√

2σ2 (s=1.54, loc=19.95, scale=4.55)

2 pearson3 1055.63 f(x,skew) = |β|
Γ(α)

(β(x− ζ))α−1 exp(−β(x− ζ)) (skew=2.60, loc=32.89, scale=16.79)

3 beta 1221.28 f(x, a, b) = Γ(a+b)xa−1(1−x)b−1

Γ(a)Γ(b)
(a=0.55, b=140, loc=20, scale=3384)

4 expon 6808.78 f(x;λ) =


λe−λx x ≥ 0

0 x < 0

(loc=20, scale=13.21)

5 exponnorm 6824.54 f(x,K) = 1
2K

exp
(

1
2K2 − x/K

)
erfc

(
−x−1/K√

2

)
(k=2380.38, loc=20, scale=0.0055)

6 norm 42720.14 f(x) =
exp(−x2/2)√

2π
(loc=33, scale=27.13)

Once the distribution patterns are identified, the parameters of a specific distribution

fit are estimated by the MLE technique [162–164]. The MLE involves a likelihood func-

tion to find the probability distributions and parameters that best explain the observed data.

The rationale is to find model parameters that can be used later in the data anonymization

process. For instance, if the model parameters are denoted by θ = (µ, σ) for the given

data Xi, i = 1, 2, . . . n. The objective of MLE is to define the likelihood function for the

relevant distribution and search for the parameter values by maximizing the data likeli-

hood L
(
µ, σ2 | X

)
. The steps for parameter estimation are shown in Algorithm 3.1 and

the results are presented in column 5 of Table 3.3. In the case of the lognormal distri-

bution, the three parameters are location, scale and shape parameter as denoted with µ,

σ, and s respectively. The shape parameter is presented with s = sigma(σ), location

with loc = mean(µ), and scale with scale = exp(µ). The overall objective of these

estimations is to use these parameters at a later stage in the data anonymization process.

3.3.2 Scenario 2: Experiments on HV feeder line length dataset

In this section, the results obtained for the HV feeder line length dataset are pre-

sented. The same process as for the feeder line length dataset is repeated for this one

except that it has different distribution characteristics, the patterns of which are shown in

Figure 3.3(a). The results show that the HV feeder line dataset follows the exponnorm

distribution. This means that this dataset inherits the characteristics of both normal and
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Algorithm: 3.1 Parameters estimation procedure.
Input: Data samples Xi(i = 1, 2, . . . n) and distribution model
Output: Estimated model parameters θ.
Consider the unknown model parameters are denoted by µ and σ2 i.e θ= (µ, σ2)
/*The first phase*/

L
(
µ, σ2 | X

)
=

n∏
i=1

[
f
(
Xi | µ, σ2

)]
//Define Likelihood function

=
n∏

i=1

(2πσ2
)−1/2

X−1
i exp

− (ln (Xi)− µ
)2

2σ2


 //Density function

=
(
2πσ2

)−n/2
n∏

i=1

X−1
i exp

 n∑
i=1

−
(
ln (Xi)− µ

)2
2σ2


/*The second phase*/
Take the natural log of the likelihood function:

L
(
µ, σ2 | X

)
= ln

((
2πσ2

)−n/2∏n
i=1X

−1
i exp

[∑n
i=1

−(ln(Xi)−µ)
2

2σ2

])
/*The third phase*/
Find MLEs of µ and σ2 which are µ̂ and σ̂2, To do this, take the gradient of L with respect
to µ and σ2

δL
δµ

=

∑n
i=1 ln (Xi)

σ̂2
− 2nµ̂

2σ̂2
= 0//Solving with respect to µ

=⇒ µ̂ =

∑n
i=1 ln (Xi)

n
δL
δσ2

= −n

2

1

σ̂2
−
∑n

i=1

(
ln (Xi)− µ̂

)2
2

(
−σ̂2

)−2
//Solving with respect to σ2

=⇒ σ̂2 =

∑n
i=1

(
ln (Xi)− µ̂

)2
n

=⇒ σ̂2 =

∑n
i=1

(
ln (Xi)−

∑n
i=1 ln(Xi)

n

)2
n

Return the parameters θ

exponential distributions as the exponnorm is a mixture of them, with its PDFs as

f(x,K) =
1

2K
exp

(
1

2K2
− x/K

)
erfc

(
−x− 1/K√

2

)
(3.12)

where x is a real number and K > 0 is a shape parameter. The best-fit distribution for the

data provided is determined by a chi-squared test and the results are plotted in Fig. 3.3(b).

The probability distributions of actual (observed) data and the data coming from a specific

theoretical distribution like exponnorm is compared in P-P plots of Fig. 3.3(c). It can be

seen that both fall along a diagonal line which indicates good fits despite some differences
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(deviations) in the middle of the two distributions. The parameters that explain the HV

feeder line length dataset are estimated by Algorithm 1 and results are shown in Table 3.4.

(a) Distribution patterns (b) Best fit with chi-square

(c) P-P plot

Figure 3.3: Distribution characteristics of HV feeder line length dataset

3.3.3 Scenario 3: Experiments on LV feeder line length dataset

In this section, the results are extended for the LV feeder line length dataset. The pur-

pose is to test the presented solutions under different scenarios. As in Sections 3.3.1 and

3.3.2, the results are examined from three aspects, the distribution patterns, goodness-of-

fit values using a chi-squared test, and P-P plots, to compare their probability distributions.

Figure 3.4(a) shows the distribution patterns as well as a fit line that follows the lognormal
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Table 3.4: Distribution fits with parameter estimations

Rank Distribution pattern Chi-Squared test Estimated parameters

1 exponnorm 23.76 (k = 1173.41, loc = 19.99, scale = 0.043)

2 expon 23.90 (loc = 20.044, scale = 51.34)

3 pearson3 52.49 (skew = 2.14, loc = 69.40, scale = 52.89)

4 beta 55.97 (a = 0.834, b = 40.63, loc = 20.04, scale = 2721.77)

5 norm 1992.32 (loc = 71.38, scale = 62.52)

6 lognorm 2761.51 (s = 1.36, loc=19.90, scale = 11.19)

distribution

f(x;µ, σ2) =
1

sx
√
2πσ2

e
− (ln x−µ)2√

2σ2 (3.13)

where x > 0,µ ∈ R, σ > 0 and f(x;µ, σ2) is the lognormal probability density function.

It can be seen from Figure 3.4(a) that samples from the LV feeder line length dataset

have lognormal distributions which means that they have positive real values. Of the

multiple distributions, the best fits are determined from the values of the chi-squared test

and plotted in Figure 3.4(b). The comparisons of the observed and theoretical distributions

are made with probability plots in Figure 3.4(c). The plot shows a perfect fit of data

along the diagonal line indicating that data distributions are consistent with a lognormal

model. As the plots follow the 45◦ diagonal quite well, it can be considered that the fitted

lognormal distributions are reasonably good at describing the LV feeder line length data.

The best fit parameters are calculated using the MLE technique defined in Algorithm 1,

and the results are shown in Table 3.5.

Table 3.5: Estimated parameters and distribution patterns

Rank Distribution pattern chi-squared test Distribution parameters

1 lognorm 31.09 (s = 1.31, loc = 18.92, scale = 3.94)

2 beta 658.87 (a = 1.003, b = 41.38, loc = 19, scale = 2714.83)

3 pearson3 1378.48 (skew = 2.463, 10c = 27.744, scale = 10.76)

4 exponnorm 3521.25 (k = 1463.87, loc = 19, scale = 0.006)

5 expon 3533.45 (loc = 19, scale = 8.816)

6 norm 38731.09 (loc = 27.81, scale = 15.14)
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(a) Distribution patterns (b) Best fit with chi-square

(c) P-P plot

Figure 3.4: Distribution characteristics of LV lines dataset

3.3.3.1 Summary and findings from distribution patterns

The key observations from the statistical patterns obtained in section 3.3 are summa-

rized as follows.

• The best distributions are identified and justified by conducting a chi-squared test.

The test sums the relative squared error between the observed and expected fre-

quencies of data, and it is mathematically presented in equation (3.11).

• In section 3.3.1, the distribution patterns of feeder line length datasets are shown

and the results of the chi-squared test are presented in Table 3.3. The lower chi-
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squared values indicate a better data fit. The tabular results show that the best

distribution fit for feeder line length is lognormal as it has the lowest value of 69.41

among other distributions.

• In section 3.3.2, the distribution patterns collected from the HV feeder line length

dataset are illustrated. The chi-squared test shows that the data samples have char-

acteristics of an exponnorm distribution. The dataset inherits the characteristics of

both normal and exponential distributions as the exponnorm is a mixture of them.

As shown in Table 3.4, the exponnorm has the lowest chi-square value of 23.76,

indicating that the statistical correlations of HV correlate with the exponnorm dis-

tribution. The second distribution fit is exponential, followed by person3, beta, and

lognormal distributions.

• In section 3.3.3, the results indicate that the dataset of LV feeder line lengths forms

the lognormal distribution. The distribution patterns show that the LV data is log-

normally distributed and has only positive real values. As shown in Table 3.5, the

lognorm has the lowest chi-square value of 31.09, indicating that the statistical cor-

relations of LV correlate with the lognormal distribution. The second distribution

fit is beta, followed by person3, exponnorm, exponential and normal distributions.

3.3.4 Data anonymization procedure

The data anonymization process is established from the parameters estimated by Al-

gorithm 1. The procedure is formally presented in Algorithm 3.2, and it begins by taking

the actual data and then initializing the required variables. For instance, the required

variables are the best distribution parameters which are denoted by Pd =
{
Sp, Lp, Si

}
.

The algorithm searches for the distribution patterns in data in order to obtain the required

variables and decides the best distribution based on the results of the chi-squared test in

Section 3.3.1. Once the distributions are identified, the parameters are estimated using

the MLE technique in Algorithm 3.2. The estimated parameters are then used to generate

an anonymized dataset. The benefit of this approach is to construct representative anony-

mous datasets that can be used for research purposes without accessing the confidential

data. In the next step, the representations of the anonymized datasets are verified through

K-S test simulations to determine whether anonymized and original data samples have

the same distribution characteristics. To make this decision, the K-S test establishes the

following two hypotheses: (1) a null hypothesis (H0) which considers that two datasets
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Algorithm 3.2 Generate anonymized dataset
1: Input: Data samples
2: Required Variables :Pd =

{
Sp, Lp, Si

}
▷ Get the best parameters

3: for Data samples Xi(i = 1, 2, . . . n) do
4: Get the distribution patterns
5: Collect the distribution names
6: Determine the best distributions with Chi-square test.
7: Rank the distribution by Chi-square value.
8: Estimate the parameters with Algorithm:1
9: Return the best parameters

10: end for
11: Use the estimated parameters to generate anonymize dataset
12: Check the representativeness of anonymized dataset with KS test
13: for Hypothesis testing do
14: Estimate (P values), (α), (Dn), (Dcrit )
15: Accept or reject based on (P values) verses (α) and (Dn) verses (Dcrit )
16: end for
17: Compare the characteristics of original and anonymized dataset
18: Store the results in output variable
19: Output: Anonymized dataset

values are from the same distribution; and (2) another (H1) that they are from different

distributions. The test for accepting or rejecting a hypothesis can be carried out using

two criteria: (a) comparing the K-static value obtained from the K-S test with the critical

value in the K-S table [158, 159]; and (b) comparing the P value of the K-S test with the

level of significance which is 0.05 in our case. Then, the characteristics of the original and

anonymized datasets are compared and results obtained are stored in the output variable.

The output of the algorithm is an anonymized dataset that represents the original data.

The comparison results of actual and anonymized datasets are evaluated using three

different datasets as shown in Figures 3.5(a), 3.5(b), 3.5(c), respectively. The comparisons

are drawn with the overlapping histograms and comparing the datasets with different col-

ors. A visual inspection suggests that anonymized data reflects the similar patterns or

trends as observed in actual data and shows strong statistical consistency with the real

distribution data.

After a visual comparison of the actual and anonymized datasets, the next step is

to assess the representativeness of the anonymized datasets. The anonymized datasets

should reflect the statistical properties of the original data. To confirm this, a K-S test is

carried on the anonymized datasets and decided to accept or reject them based on the two
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(a) Feeder line length (b) HV feeder lines

(c) LV feeder lines

Figure 3.5: Comparisons of actual and anonymized data on three different datasets

standard criteria mentioned in Table 3.6. In the first criteria, the P value obtained from

the K-S test is compared with the significance level (α = 0.05) which corresponds to a

1 − 0.05 = 0.95 or 95% confidence interval. In the second criteria, the K-S static (Dn)

is compared with the critical value (Dcrit ) obtained from the K-S table [158, 159]. If the

P value is greater than the significance level (0.05), the hypothesis is accepted otherwise it

is rejected. Its acceptance indicates that the anonymized datasets are drawn from the same

distributions and have the same characteristics as the original one. While its rejection

demonstrates that the anonymized datasets are not drawn from the same distribution and

have different characteristics than the original dataset. From Table 3.7 (row 1), it is evident

that the anonymized P value is greater than the significance level which means that the

hypothesis that the anonymized dataset has the same distribution (lognormal) as the real
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one is accepted. The other distributions fail to satisfy this criteria as their P values are

less than the significance level. To test using the second criteria, the K static (Dn) in

Table 3.7 (row 1) is compared with the critical value (Dcrit ) of K-S table. From the

results, it is apparent that the Dn is less than Dcrit which indicates that this hypothesis is

accepted and the anonymized datasets have the same statistical properties as the original

one. The results obtained from the anonymized datasets are presented in Table 3.8. The

results show that the hypothesis criteria is accepted for all datasets, indicating that the

anonymized datasets have same representations (statistical compliance) to real data.

Table 3.6: Criteria for acceptance or rejection of anonymized datasets

Criteria:1 P value and significance level
Accept If P value > significance level (α)
Donot Accept: If P value < significance level (α)

Criteria:2 K static and critical value
Accept If K static (Dn) < Critical value (Dcrit )
Donot Accept: If K static (Dn) > Critical value (Dcrit )

Table 3.7: Results obtained from K–S test on anonymized datasets

Dataset:1

Rank Distribution KS Test
1 lognorm (‘lognorm’, Dn = 0.02386, P value=0.05671)
2 pearson3 (‘pearson3’, Dn = 0.0846,P− value = 0.0)
3 beta (‘beta’, Dn = 0.07885,P− value = 0.0)
4 expon (‘expon’, Dn = 0.20439,P− value = 0.0)
5 exponnorm (‘exponnorm’, Dn = 0.20422,P− value = 0.0)
6 norm (‘norm’, Dn = 0.31315, P− value = 0.0)

Dataset:2

1 exponnorm (‘exponnorm’, Dn = 0.0710, P value =0.1079)
2 expon (‘expon’, Dn = 0.07231,P− value = 0.09665)
3 pearson3 (‘pearson3’, Dn = 0.06559,P− value = 0.1648)
4 beta (‘beta’, Dn = 0.0703,P− value = 0.11394)
5 norm (‘norm’, Dn = 0.20577,P− value = 0.0)
6 lognorm (‘lognorm’, Dn = 0.35233,P− value = 0.0)

Dataset:3

1 lognorm (‘lognorm’, Dn = 0.01685, P value=0.2916
2 beta (’beta’, Dn = 0.06224,P− value = 0.0)
3 pearson3 (‘pearson3’, Dn = 0.0775,P− value = 0.0)
4 exponnorm (‘exponnorm’, Dn = 0.15285,P− value = 0.0)
5 expon (‘expon’, Dn = 0.15354,P− value = 0.0)
6 norm (‘norm’, Dn = 0.28027,P− value = 0.0)
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Table 3.8: Testing of anonymized datasets using two standard criteria

Testing Dataset 1 Dataset 2 Dataset 3

Criteria:1 Accept Hypothesis:
P value (0.0567) is
> α(0.05)

Accept Hypothesis:
P value (0.1079) is
> α(0.05)

Accept Hypothesis:
P value (0.2916) is
> α(0.05)

Criteria:2 Accept Hypothesis:
Dn (0.0238) is <
Dcrit (0.0243)

Accept Hypothesis:
Dn(0.0710) is <
Dcrit (0.0806)

Accept Hypothesis:
Dn(0.0168) is <
Dcrit (0.0234)

3.3.5 Data quality assessment

The quality of anonymized datasets is investigated using box-and-whisker plots, as

suggested in [156]. The aim is to determine how the data is spread in the actual and

anonymized datasets and the presence of unusual data points (outliers). The data quality

is assessed by dividing the data into five key components as shown in Figure 3.6. This

includes the minimum value (lower line), the first quartile (Q1), the sample median (Q2),

the third quartile (Q3), the maximum value (upper line), and outliers which are indicated

by dot points. Any point above the upper or below the minimum value is considered an

outlier or unusual data point. Q1 shows the first 25% of the data, Q2 50%, and Q3 75%.

The procedure for computing these five components is briefly discussed in [156]. In Fig-

ure 3.7(a),3.7(b),3.7(c), the box-and-whisker plots for the three experimental datasets are

shown, demonstrating the dispersion of data samples in actual and anonymized datasets,

as well as outliers in the datasets. Figure 3.7(a) shows that the data samples of actual and

anonymized datasets fall within the upper and lower lines on the plot. Within the upper

and lower lines, the Q1 of an actual dataset is 23.83 and for the anonymized dataset is

22.24. It shows that 25 percent of the feeder line segments are below 23.84 m (meters) in

length in the actual dataset and 22.34 m in the case of the anonymized dataset. The Q2

of actual is 24.03 m and the anonymized one is 22.32 m. The Q3 of the actual dataset

is 24.20 m and for anonymized dataset s 23.27 m. Any data sample above the upper or

below line is considered an outlier or unusual data point in the dataset. Table 3.9 shows

the summary of the total numbers of outliers in the datasets and their percentages. The

highest number of outliers are found in dataset 3 which contains 341 data points. In addi-

tion to the unusual data points (outliers), the positions of individual data points in actual

and anonymized datasets are shown using scatter plots, as presented in Figure 3.8. Each

data sample in the actual and anonymized datasets is presented in blue and orange, respec-
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(a) Feeder line length (b) HV feeder lines (c) LV feeder lines

Figure 3.7: Data variations and outliers in actual and anonymized datasets

(a) Feeder line length (b) HV feeder lines (c) LV feeder lines

Figure 3.8: Individual data points from actual and anonymized datasets are shown in
scatter plots

tively. The horizontal position (x-axis) indicates the total number of line segments, and

the vertical position (y-axis) indicates the length of lines (in meters). From the plot, it has

been found that the number of lines and lengths in actual datasets are closely positioned

with the anonymized datasets.

Min

Whisker

Max

Unusual data points
(Outliers)

Data

25% 50% 75%

Q1 median Q2 Q3

Figure 3.6: Data quality check based on five components of box-and-whisker plots
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Table 3.9: Numbers of outliers in actual and anonymized datasets

Dataset: 1 Dataset: 2 Dataset:3

Actual Anonymized Actual Anonymized Actual Anonymized

No.of unusual data points 294 365 24 15 291 341

(%) Unusual data points 9.39 10.80 8.36 5.22 8.60 10.07

3.4 Implementation on IEEE 123-node test feeder

To verify the practical feasibility of the proposed technique, the methodology is

tested on IEEE 123-node system by anonymizing the test system distribution grid data.

At first, an anonymized dataset is created for the IEEE 123-node test feeder. The load

flow results for the anonymized IEEE 123-node feeder are analyzed and compared with

the original IEEE 123-node test feeder from the EPRI website [165]. In this work, we

analyze two metrics, the voltage profiles and power flow through the lines, to compare the

anonymized and the actual IEEE 123 test feeders.

3.4.1 Voltage profiles

The voltage profiles of the anonymized and the actual IEEE 123-node feeder are

analysed and compared, as shown in Figure 3.9(a) and Figure 3.9(b). The phase voltages

of the anonymized and actual IEEE 123-node feeder are presented using three distinct

colors. The black represents phase A, the red phase B, and the blue phase C. From the

obtained graphical results, it has been found that the anonymized IEEE 123-node feeder

can provide similar load flow results to the actual IEEE 123-test system. Table 3.10 pro-

vides the load flow results. Using the results from Table 3.10 and equation (3.14), the

percentage mismatch is calculated at randomly selected nodes to quantify the mismatch

between the anonymized and the actual results. It was found that the maximum varia-

tion between the actual and the anonymized dataset occurs at Bus 57, with 0.420 percent

for phase A, 0.256 for phase B, and 0.303 for phase C. To ensure this percentage varia-

tion is acceptable, we compared the obtained results with relevant work published in the

literature [166]. For clarification, the per-unit voltages are also converted to the actual op-

erating voltages by multiplying them with the base operating voltage of 2.4 kV. As shown

in Table 3.10, the maximum voltage difference between the actual and the anonymized
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dataset occurs at Bus 57, with a total voltage difference of 10.046 V (0.42 percent) at

phase A, 6.336 V (0.256 percent) at phase B, and 7.368 V (0.303 percent) at phase C.

(a) Voltage profile from IEEE 123-node feeder

(b) Voltage profile from anonymized test feeder

Figure 3.9: Comparison of results on IEEE 123-node test feeder

Percentage Mismatch =| (Actual-Anonymized) | / (Actual) × 100 (3.14)
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Table 3.10: Percentage mismatch and voltage difference calculations for actual and
anonymized data

Actual Anonymized Percentage mismatch Voltage difference (V)

Sr.# Bus
Phase A

(p.u.)

Phase B

(p.u.)

Phase C

(p.u.)

Phase A

(p.u.)

Phase B

(p.u.)

Phase C

(p.u.)

Phase A

(%)

Phase B

(%)

Phase C

(%)

Phase A

(V)

Phase B

(V)

Phase C

(V)

1 51 0.990 1.024 1.006 0.990 1.024 1.006 0.023 0.004 0.023 0.5568 0.1200 0.5760

2 95 1.033 1.026 1.037 1.032 1.028 1.037 0.091 0.231 0.057 2.2800 5.7120 1.4400

3 57 0.994 1.030 1.011 0.990 1.028 1.00 0.420 0.256 0.303 10.046 6.3360 7.3680
4 151 0.990 1.024 1.006 0.990 1.024 1.006 0.023 0.004 0.023 0.5568 0.1200 0.5760

5 8 1.015 1.038 1.025 1.012 1.037 1.023 0.329 0.069 0.203 8.0400 1.7280 5.0160

6 44 0.991 1.026 1.008 0.992 1.027 1.009 0.066 0.073 0.081 1.5720 1.8000 1.9680

7 8 1.015 1.038 1.025 1.012 1.037 1.023 0.321 0.069 0.203 7.8432 1.7280 5.0160

8 52 1.002 1.034 1.016 1.004 1.035 1.017 0.218 0.054 0.121 5.2560 1.3440 2.9520

9 7 1.022 1.039 1.029 1.022 1.039 1.029 0.053 0.007 0.033 1.3200 0.1920 0.8160

10 50 0.990 1.024 1.006 0.990 1.024 1.006 0.005 0.002 0.022 0.1224 0.0720 0.5520

3.4.2 Power flow through the lines

The power flow through the lines of the anonymized and the actual networks are

compared and the percentage mismatch between the two load flow results are shown in

Figure 3.10. The maximum difference in active power flow through the lines of the actual

and anonymized networks is 0.307 percent on line 19 (phase A), whereas the maximum

difference in the reactive power is 0.382 percent at line 36 (phase C). It has been found

from the obtained results that the difference in active and reactive power flow through

the lines of the actual and the anonymized networks is mostly between 0 to 0.4 percent,

which is relatively small and acceptable, as discussed in [167]. It can be concluded that

the anonymized network can provide reasonably accurate load flow results in terms of

power flow in lines compared to the actual IEEE 123 bus network.

3.5 Comparison with the state of the art

The proposed approach is compared with recently published noise addition methods

(NAM) [27,168–170] and the machine learning based data perturbation (MLDP) method

[85]. In the case of NAM, anonymization is performed by adding noise to data. However,

including noise causes uncertainty in data, reducing its utility [171]. Due to additive

noise, the correlations between the attributes are distorted or lead to trends that do not

actually exist. A classic example is presented in [32] to demonstrate why it is crucial to
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Figure 3.10: Power flow through the lines of IEEE 123-node test feeder

preserve correlations between data attributes. In other words, a trade-off between privacy

preservation and utility of data is essential as the loss of statistical properties makes the

data meaningless. In the MLDP approach, a machine learning model is trained from the

actual data and similar kind of anonymized datasets are created to ensure data privacy.

For validation, data anonymization is applied on the three datasets as described in

Table 3.1. A standard metric, root-mean-square error (RMSE) [172,173], is used as a per-

formance measure to compare the proposed method with previous works. The RMSE is

calculated by equation (3.15) for each data sample in the actual and anonymized datasets,

and the results are shown in Table 3.11. The smaller RMSE indicates a better performance

with less information loss. For fair comparisons, the results are assessed on different per-

centages of the datasets. For the first 25 percent of data, the proposed scheme obtained a

RMSE value of 48.37 percent compared to 50.6 and 52.68 of MLDP and NAM methods.

The performance is also evaluated on 50 percent of the data and 49.86 percent RMSE

value is obtained by the proposed method compared to 51.95 and 52.88 from two other

methods. The process is repeated for 75 percent and 100 percent of data and results are

shown. The RMSE values of the proposed scheme are lower than the traditional methods

on different percentages of datasets, indicating a comparable performance from published

works. There are two reasons for the performance improvements compared to existing ap-

proaches: the presented method ensures that the anonymized datasets are not dubious as
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Table 3.11: Comparison of performances for different percentages of datasets

Experimental

Datasets

Method:1

Proposed (RMSE)

Method:2

MLDP (RMSE)

Method:3

NAM (RMSE)

Data percentage

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

Anonymized Dataset:1 48.37 49.86 48.22 50.94 50.6 51.95 49.64 51.62 52.68 52.88 50.45 52.28

Anonymized Dataset:2 70.63 77.02 75.13 76.8 72.59 77.96 78.44 77.71 73.19 78.32 79.33 79.01

Anonymized Dataset:3 25.52 26.26 24.89 26.6 27.35 28.55 28.32 27.26 28.71 29.06 28.69 28.82

it correctly identifies the best parameters from distributed data. Also, it successfully cap-

tures the underlying correlations (trends) of real data, which is important in generating

synthetic records and maintaining a balance between privacy preservation and data utility.

RMSE =

√√√√(
1

N
)

N∑
i=1

(Actuali − Anonymizedi)2 (3.15)

3.5.1 Percentage improvements

The performance improvements obtained by the proposed method over recent meth-

ods were computed as [174]

Improvement =
Rt −Rp

Rt

× 100 (3.16)

where Rt and Rp represent the RMSE values of the traditional and proposed method.

Figure 3.11 shows the performance improvements obtained by the proposed method over

two recent methods. The x-axis shows the different percentages of dataset (25 percent, 50

percent, 75 percent, and 100 percent) and y-axis presents the percent improvements. The

improvements over dataset 1 is presented in blue, whereas on datasets 2 and 3 are shown

in orange and grey. An average improvement of 1 to 13 percent is observed on three

separate datasets. It demonstrates that the results are comparable to those of previously

published works. The success of the proposed method is due to three important factors.

The statistical trends are exploited in the data synthesis process to generate similar char-

acteristics to the real samples. The K-S test is used to evaluate analysis and synthesis

results, ensuring that anonymized datasets adhere to the statistical compliance of actual
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datasets. The proposed algorithms search for the statistical distribution parameters of

actual datasets to reproduce similar anonymized datasets.
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Figure 3.11: Performance improvements obtained by the proposed method over recent
methods on three datasets

3.6 Concluding remarks

In this chapter, a privacy-preserving data anonymization scheme for obfuscating

the sensitive information in distribution networks is presented. The scheme accommo-

dates the statistical distribution with the parameters estimated from the data provided.

It involves two algorithms, a MLE for estimating the parameters from the data and a

data anonymization procedure for generating anonymized datasets that are sufficiently

realistic. The statistical patterns of real utility data are studied, and representations of

anonymized datasets are analyzed using the K–S hypothesis test. The method is validated

on the IEEE 123-node test feeder by simulating the anonymized datasets on OpenDSS.

The experimental results show that the presented approach offers competitive perfor-

mance in terms of voltage profiles and power flow through the lines, with a maximum

difference of 0.420 percent and 0.383 percent between actual and anonymized datasets.

The anonymized datasets show good statistical compliance with trends identified in real

distribution feeders. The method was then experimentally proven by comparing it to

the benchmark data anonymization methods. Validation is conducted on three different

scenarios (datasets) for a fair assessment, and findings are shown using a standard error

metric, RMSE. The comparison results indicate a performance improvement of 1 to 13
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percent over traditional approaches. This is due to two factors: its ability to capture the

key characteristics and correlations from the data and the correct estimation of parameters

that reflect the actual data.

As a benefit, the data anonymization contribution facilitates open-data sharing to

remove the data access barriers between academics and industry users. The proposed

techniques provide competitive performances and a practical solution for anonymizing

distributed datasets. The anonymized datasets can be used for research purposes without

the need to access confidential data. The research in this chapter can be regarded as a

step towards the implementation of information security in future distribution networks

to maintain data integrity in real-world applications.
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Chapter 4

Synthetic power distribution networks
and datasets from open-data and data
synthesis algorithms

The work presented in this chapter is published or submitted in the listed articles:

1. [Journal] M. Ali, K. Prakash, C. Macana, MQ. Raza, AK. Bashir and HR.

Pota, “Modelling synthetic power distribution network and datasets with

industrial validation,” Elsevier Journal of Industrial Information Integration,

Dec. 2021. [under-review] IF: 10.063

2. [Journal] M. Ali, K. Prakash, C. Macana, AK. Bashir, A. Jolfaei, A. Bokhari,

JJ. Klemes, and HR. Pota, “Modeling residential electricity consumption from

public demographic data for sustainable cities,” Energies, vol. 15, no. 6, Art.

no. 6, Jan. 2022. IF: 3.004

3. [Conference] M. Ali, C. A. Macana, K. Prakash, R. Islam, I. Colak, and H.

Pota, “Generating open-source datasets for power distribution network using

OpenStreetMaps,” Sep. 2020, pp. 301–308. IEEE International Conference

on Renewable Energy Research and Application (ICRERA)

4. [Conference] M. Ali, C. A. Macana, K. Prakash, B. Tarlinton, R. Islam, and

H. Pota, “A novel transfer learning approach to detect the location of

transformers in distribution Network,” Jun. 2020, pp. 56–60. Sep. IEEE

International Conference on Smart Grid (icSmartGrid)

55



Summary: The methods for anonymization established in chapter 3 of the thesis

are based on data given by electricity companies. This chapter presents a practical ap-

proach for generating synthetic distribution networks and datasets by combining public

databases and data synthesis algorithms. A synthetic network is developed in an open-

source QGIS platform by leveraging the open-data from local government databases,

OpenStreetMaps, and mapping engines such as Google Street View. New data synthesis

algorithms are proposed to create synthetic networks and datasets. The practical feasi-

bility of the proposed solutions is demonstrated by an illustrative case study of the Colac

region in Australia. Synthetic networks and datasets are created for the distribution

feeder, and then evaluated on industry servers. The results are compared using a two-step

validation procedure: comparing the synthetic and actual network datasets using geo-

based visualizations and by incorporating feedback from industry experts familiar with

the analysis. The comparison results demonstrate the efficacy of developed networks and

datasets as they show resemblance to real network and datasets while providing the geo-

graphical validation of distribution network models. The procedure for creating synthetic

test networks is illustrated graphically in the Figure. 4.1.

1) Problem definition

2) Data collection

3) Data pre-processing

5) Model deployments

4) Data synthesis algorithms

6) Network generation

7) Network Validation

Figure 4.1: Process for generating synthetic networks
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4.1 Research gaps and contributions:

The motivation for the work presented in this chapter is based on the research gaps

presented in Chapter 2. The contributions made in this context are summarized below:

1. A methodology is proposed to design the topology of power distribution lines us-

ing public road infrastructure. The proposed method simplifies the design of power

lines by using the concept of nodes and edges. This concept is supported in the

power distribution planning book [175] and power system planners can leverage

from this approach to select suitable routes for new power lines.

2. The geospatial locations of network elements are added to the generated datasets

to fill the gaps in existing datasets. The importance of geographic information is

indicated in [52, 53]. It is crucial for the planning, modeling and management of

the assets of a distribution network. For instance, the geographical locations assist

planners in installing new assets in existing networks.

3. A new way to create network datasets from publicly available platforms including

local government energy databases, OpenStreetMaps (OSM) and mapping engines

such as Google Street View is proposed. The opportunity to access these trustwor-

thy public sources means that there is now a greater level of transparency than ever

before, especially when it relates to government information.

4. An algorithm based on the virtual layer approach (FromNode and ToNode) con-

cept is proposed to establish electrical connectivity between different components

of distribution networks.

5. A new method for identifying the number of energy consumers supplied by a trans-

former in a distribution network is developed. A hub-line algorithm is demonstrated

to connect energy consumers based on their nearest spatial distance to a transformer.

A standard cut-off distance from the transformer to households is maintained by ad-

hering to the guidelines in CIGRE publications [54].

6. Most existing solutions are designed for European and North American systems.

Our research efforts concentrate on Australian distribution networks. As the pro-

posed concept is applicable to both small- and large-scale networks, an attempt is

made to address the problem of scalability

57



7. The practical validation of the proposed algorithms is demonstrated by an illustra-

tive case study of the Colac region in Australia. A synthetic dataset is created for

the distribution feeder, and datasets are deployed and visualized in industry servers.

The results are then compared to the original feeder datasets to verify the applica-

bility of the proposed techniques.

4.2 Methodology for creating synthetic distribution net-

works and datasets

The proposed framework consists of four main modules: the collection of infor-

mation from public resources, the development of a synthetic distribution network, the

formulation of new data synthesis algorithms for synthetic data generation, and its de-

ployment in industrial servers for methodology validation. The four phases are shown in

Figure 4.2, and the descriptions of each module are as follows:

• Module 1: In the first stage, the raw data from publicly available platforms is col-

lected and processed for extracting the maximum level of information. This study
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Figure 4.2: Framework of the proposed methodology
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used the land and parcel data from the local government databases to design the

topology of power distribution lines. The databases include spatial datamart [176],

that provides topologically structured datasets of road networks. To minimize miss-

ing data, the data of OSM are also used simultaneously by generating overpass

API queries for the relevant region. The critical information of energy consumers

and building footprints are retrieved from a geocoded database of property address

points. The data includes real life locational property addresses provided by lo-

cal government. In the case of power transformers, the information is collected by

leveraging the platform of Google Street View.

• Module 2: In the second stage, the acquired data is imported into an open-source

application such as QGIS [177] for creating the synthetic network. The objective is

to develop the structure of the distribution grid, and then create the required system

components. The system components such as power lines (ac line segments) are

created from the road network information. The lines are linked using the concept

of nodes and edges, where nodes represent the intersection points of the lines and

edges represent a link between two nodes. For energy consumers, the addresses of

individual consumers are first retrieved. The address points are then translated into

geometry coordinates (latitude, longitude) using batch geocoding simulations. The

simulation generates geographical data for each energy consumer. The transformer

information is obtained from Google Street View by searching for transformers on

particular streets in a region.

• Module 3: This stage includes the data synthesis algorithms to complete the miss-

ing data of the entire network. A solution for estimating the lengths of power lines

is proposed. A batch-geolocation algorithm (BGL) to identify the geographical lo-

cations of the energy consumers is developed. A hub-lines algorithm is designed to

estimate the number of energy users connected to each transformer. The algorithm

is based on the nearest neighbor concept, and more information is provided in Sec-

tion 4.3. The substation information is retrieved from OSM approach by creating

overpass queries in overpass-turbo portal [178]. The connectivity nodes data is gen-

erated with the concept of utility poles and lines associated with them. A FromNode

and toNode technique is developed to establish electrical connectivity between dif-

ferent electrical components. The proposed techniques are then applied to create a
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synthetic distribution network and datasets for a Colac region in Australia. The syn-

thetic datasets describing system components are then stored as tables for further

analysis. A map-based visualization is created to validate the geographical layout

of the network.

• Module 4: The final step is to test the synthetic datasets in industrial servers and

compare the results to the original feeder datasets. The synthetic data is translated

into GeoJSON format, which is supported by industrial servers [179]. An algorithm

is developed to automatically ingest data from QGIS into industry servers. The

experiments are carried out on two servers, Cimcap and Energy workbench (EWB).

The Cimcap converts synthetic data into CIM-based format by taking QGIS datasets

as input, which is a widely used data standard in the power industry [55]. The EWB

server translates the generated data into geo-based visualizations and enables the

geo-validation of created datasets. The developed synthetic network and datasets

are then compared with real distribution networks. The comparison is made by geo-

based visualization in industry servers and feedback from industry experts who are

familiar with the analysis.

4.3 Algorithms for synthetic network creation and data

generation

This section describes the approach for developing synthetic networks and generat-

ing data. The details of the data synthesis methods are described in detail, with practical

demonstrations.

4.3.1 Building power line topology

Since power lines generally follow road paths [180], the topology of power distribu-

tion lines is designed using public road infrastructure. Figure 4.3 illustrates the concept.

On the left, the road network obtained from the local government databases is shown. On

the right, power line paths are shown representing the real distribution network. The road

transport network information is obtained from a spatial datamart from the local govern-

ment, that offers topologically organized datasets of road networks. By integrating this
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(a)

(b)

Figure 4.3: Illustration of (a) road network and (b) paths of power lines in real network

information, the suggested approach enables a realistic representation of the lines in a

network.

The network is topologically structured by N nodes and E Edges as shown in Figure

4.4. The nodes (blue) indicate the places at which the lines intersect, while the edges

(green) represent the link between two nodes. Given the importance of line length in

distribution networks, an algorithm for calculating the length of each line segment is

proposed. This method is based on the Euclidean distance, with the steps outlined in

Algorithm 4.1. The input of the network is node points Np taken from the road network

RN , while N represents the total number of node points in the network. The goal is to
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compute the Euclidean distance deucl[x, y] for each line segment which is the output of

the network.

6

Task :  Ac line segments in distribution Network

METHODOLOGY / EXPERIMENTAL PROCEDURES:

Figure 4.4: A concept of nodes and edges that forms power lines in the network.

Algorithm 4.1 Algorithm for computing lengths of line segments
1: for Computing Lp do ▷ Lp: Length of power lines
2: Get Node points Np

3: for Np(x, y = 1, 2, . . . n) do
4: Get Road network RN

5: for RN do
6: Access land parcel data from Gd ▷ Gd: Government databases
7: Filter the area based on postcode
8: Processing on raw data ▷ Filter relevant columns
9: Get the line features (nodes and edges)

10: end for
11: Origin Np(xi), destination Np(yi),
12: compute: deucl[x, y]← dist(Np[xi], Np[yi])
13: end for
14: Output: Lp, estimated length of power lines
15: end for

4.3.2 Energy consumers data generation

The information of energy consumers is generated from databases of property ad-

dress points obtained from local government land and planning departments. The database

comprises real-world property addresses, household identifiers, and street addresses for

broader application scenarios. The benefit of this approach is that the raw data is freely
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Algorithm 4.2 BGL process for geo-locations of energy consumers
1: for Batch-geolocation do
2: Get property address points Ap

3: for Ap(i = 1, 2, . . . n) do
4: Connect geocoded government database
5: Select the area based on postcode
6: Get the locational property address identifiers
7: Request the order and download property Ap

8: end for
9: for Bulk geolocation do

10: Pass the shapefile of Ap to QGIS
11: Add geometry attributes to each point feature.
12: Compute geometric properties (x-y coordinate of the address point).
13: Get the geographical coordinates (Lat, Long) of individual house
14: end for
15: Store the results in the output variable
16: Map the geographical coordinates into online maps
17: end for

available without the requirement to register details or any licenses that limit how it may

be used. As it contains only household addresses, their geographical locations are ob-

tained by implementing a batch-geolocation (BGL) process in Algorithm 4.2. The first

stage involves retrieving household addresses or property addresses Ap from the spa-

tial datamart database. The second phase then transforms residential addresses into geo-

graphic coordinates (latitude and longitude). A bulk geolocation method is carried out to

execute large numbers of addresses at their geographical locations. Each address is parsed

to return geocoded locations. The output includes the entire address, location, and fea-

tures like the postcodes. As geolocation services are usually not free for bulk addresses,

the ‘add geometry’ function [181] in the QGIS tool [177] is used which provides free-of-

cost bulk geocoding services. The results obtained from the BGL algorithm are then visu-

alized using QGIS maps for geographical validation of energy consumers and the data are

stored in the form of CSV files. The geographical locations may not be explicitly linked to

the energy usage of individual buildings, their spatial position specifically defines energy

usage among groups of buildings and may be used to identify high-consumption regions.
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4.3.3 Power transformers data generation

The dataset of transformers is created by following a two-step procedure. In step

one, the number of transformers in a specific region is identified using Google Street

View. Then, those for each street are searched using the appropriate postcodes and their

locations saved in data tables. In the second step, a hub-line algorithm is developed to

identify the number of consumers connected to a single transformer. This establishes a

hub (transformers) and the nearest feature in a destination layer (energy consumers). Fig-

ure 4.5 shows an illustration where hub (transformer) is denoted with p and the nearest

objects (energy consumers) are presented with e1, e2, e3, and e4. The closest energy con-

sumers from the hub are determined based on k-nearest neighboring concept [182], and

it estimates the closest consumer based on spatial distance. The difficulty is maintaining

a standard distance between a transformer and the households. The transformer should

not connect energy users that are more than 2 kilometers away to avoid losses and voltage

drops. To address this issue, we adhere to the guidelines outlined in CIGRE publica-

tions [54]. According to the CIGRE C6.24 document [16], if the rated capacity of a LV

transformer is 400kVA, the average distance from it to households is 415.5m. Based on

this definition, a cut-off distance whereby an energy consumer can be no more than 415

meters away from its nearest hub (transformer) is defined. Shorter distances can also be

selected based on transformers’ ratings and other requirements for the sizes of conductors

and lines. The steps in this hub-line technique are given in Algorithm 4.3.

2

Hub Near Distance

1 101 65.8

1 102 83.2

1 103 77.2

1 104 90.5

Figure 4.5: Illustration of closest energy consumers search from the main hub based on
k-nearest neighbor
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Algorithm 4.3 Hub lines Algorithm
1: procedure
2: Step:1 Define the hub layer p and spoke layer e in the network.
3: The hub is transformer and spoke layer is energy consumers
4: Step:2 Define allocation criteria: Nearest feature Nf

5: Step:3 Search for the Nf in e from p
6: for Nf do
7: Determine the distances d from p to each nearest features e

8: d(p, e) =

√(
px − eix)

)2
+
(
py − eiy

)2
9: Find Nf from p within a radius, r < 415 m, ▷ CIGRE C6.24 standards [16]

10: Record the d in the output table
11: end for
12: Step:5 Iterate the steps for each feature in the p and e
13: Step:4 Based on Nf and d, connect p with e
14: Step:6 Add connection lines on the map.
15: Step:7 Count number of e connected to each hub p
16: end procedure

4.3.4 Substations and connectivity nodes

An up-to-date repository of substation information is retrieved from the OSM database

which is accessible via the overpass-turbo portal [178]. Multiple queries based on query

language are created in an overpass-turbo to identify the locations of the substations. The

existence of substations in a given region is detected by adding a tag power=substation

to the overpass-turbo wizard. Figure 4.6 demonstrates the approach for obtaining substa-

tion information. On the left, queries generated in overpass-turbo wizard are shown. The

area id used in the query is given on the right. For instance, the area ID of the Colac re-

gion in OSM is 360314511. Based on the given ID, OSM gives the required information

of substations in the area.

Figure 4.7 demonstrates the concept of connectivity nodes in a network where the

end-users (loads) are connected using these nodes (poles). The connectivity nodes data is

generated with the concept of utility poles and lines associated with them [183]. Accord-

ing to IEC 61970 CIM standards [184], a connectivity node is a point where the conduct-

ing equipment’s terminals are all connected. For example, connectivity nodes are created

by specifying the standard distance between two electric poles. For distribution networks

(35 kV and less), typical spacings between two poles range from about 40–100m [185].

Based on this distance, connectivity nodes are created along the lines. The steps taken to
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Area id: 3603143511

Figure 4.6: Approach to obtain substation data (a) Overpass queries in open street maps
(left) and (b) Area id (right)
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Figure 4.7: A concept of connectivity nodes in a network

achieve this are given in Algorithm 4.4. Initially, the length of each segment of a power

line is found. Then, based on the estimated distance, connectivity nodes are created along

with it at specified intervals. This approach is implemented in PyQGIS (a Python envi-

ronment inside QGIS). Then, the interpolate technique from QgsGeometry [186] in QGIS

is performed to assign connectivity nodes to lines. After creating connectivity nodes, the

topology checker operation in QGIS is undertaken to identify disconnected nodes. Two

rules are added, one for the connected nodes and one for the associated lines (links). Un-

der rule 1, each link’s end point must be covered by a node. Under rule 2, each node

must be covered by the end point of a link. The resultant output is the proportion of

connectivity nodes remaining in the network.
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Algorithm 4.4 Connectivity nodes in the network
1: for Connectivity nodes generation, Cn do
2: Get Lp

i , ▷ the length of each line segment,
3: if Lp

i is <50 m then
4: Create one Cn along Lp

i

5: else if Lp
i is >50 m then

6: Create two or more Cn along Lp
i

7: end if
8: Perform interpolate method from QgsGeometry [186]
9: Identify disconnected nodes Dn with topology checker [187]

10: for Dn do
11: set rule 1: the end point of each line must be covered by a node
12: set rule 2: each nodes must be covered by the endpoint of a line
13: end for
14: Remove duplicate connectivity nodes
15: return Cn

16: end for

4.3.5 Algorithm for establishing electrical connectivity

This section provides a standard way of representing electrical connections between

two or more equipment in the network. An algorithm based on the virtual layer approach

(FromNode and ToNode) is proposed to establish electrical connectivity between different

components of networks. Figure 4.8 illustrates the concept where a nearby connectivity

node connects the service point (energy consumer). The connectivity is established by

defining the starting point and ending point of network elements. The start and endpoints

are defined with ‘from’ and ‘to’ nodes respectively. Each starting and ending point is

assigned with a unique object id to prevent duplication or false connections.

Algorithm 4.5 explains the proposed methodology in detail. The ‘from’ and ‘to’

information of line layer Llayer is obtained using st startpoint(geometry) and

st endpoint(geometry) functions [188]. For doing so, a virtual layer concept in

QGIS is used. SQL queries are generated in the virtual layer to extract the required

information. The query saves the start and endpoints in two columns. An algorithm

is created in PyQGIS platform to create ‘from’ and ‘to’ information of node points np.

Unique id,s are assigned to the data attribute and the process is enumerated for all features

in a layer. The connectivity is then established by joining the FomNode and ToNode

information. The connectivity is established based on the nearest feature criteria given in
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Task 5: Establishing electrical connectivity in the distribution network

2

1

3

fromNode

toNode

node453896

Service_point6538

Feature Value

id cable773897

class Ac line segment

length 71.83

name acls1

location Queen Street

Creation date 4 Oct 2021

Network level Distribution

fromNode node453896

toNode Service_point6538

Figure 4.8: Concept of FromNode and ToNode for establishing electrical connectivity

Algorithm 4.5 Electrical connectivity based on FromNode and ToNode concept
1: procedure
2: for electrical connectivity between electrical components do
3: Get FromNode fn and ToNode tn information
4: Stage:1, line layer Llayer

5: for fn and tn in Llayer do virtual layer query
6: Select FromNode, st startpoint(geometry) as geometryFrom,
7: ToNode, st endpoint(geometry) as geometryTO
8: From Llayer

9: end for
10: Stage:2, node points np

11: for fn and tn in np do PyQGIS
12: set layer l= np

13: Add data attributes (FromNode, ToNode) in l
14: Update attributes in main l
15: Assign object id’s in data fields = l.fields()
16: Enumerate for all layer feature, (l.getFeatures():
17: Update the fields with np(count+1)
18: end for
19: Select the start point S and end point E of network elements.
20: Define connectivity criteria: Nearest feature Nf

21: Obtain Nf from Algorithm 4.3
22: join S with E to build connectivity Cl

23: Iterate the steps for each feature in S and E in the network.
24: Add Cl on the map.
25: end for
26: end procedure

68



Algorithm 4.3. The process is iterated for each feature in the network components and

connectivity lines are added on the maps for further validation.

4.4 Case studies: Generation of a test network

In this section, the proposed techniques are applied to create a synthetic distribu-

tion system in the Colac region of Australia. A repository of network elements including

power lines, transformers, energy consumers, substations, and connectivity nodes is cre-

ated. This approach establishes grid connectivity and generates geographical locations of

grid components to obtain a comprehensive test case. Additionally, datasets of network

elements are constructed and visualized, and interactive maps for validation are created.

4.4.1 Synthetic test system: Colac area, Australia

The first step is to design power distribution lines in the network. For this purpose,

public road infrastructure is used based on the concept presented in section 4.3.1. This

generic design approach significantly increases their re-use potential and the ease they can

be for any national context. Figure 4.9 shows the power lines for the Colac region with line

segments shown on the street map. The network is topologically structured by nodes and

edges. In total, the dataset consists of 311 nodes and 559 edges. Geospatial information

of each node is derived and power-line characteristics, such as lengths, are computed

4

Task :  Ac line segments in distribution Network

Results in QGIS:

Power lines

Figure 4.9: Topology of power lines created from public road infrastructure
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RESULTS:

Task 2:  Energy consumers in the distribution network

Figure : Energy consumers in COLAC, Victoria, Australia. 

Energy 
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Figure 4.10: Energy consumers in Colac region, Australia.

using Algorithm 4.1. The data records are saved in .CSV files for further analysis and

validation.

The second step is to create energy consumers in the network. The necessary in-

formation is obtained by querying a public local government energy database comprising

real-world metadata of property addresses. The consumers in the test area are filtered

based on the postcode of the Colac region which is 3250. In Figure 4.10, 4155 iden-

tified energy consumers, which are in a densely populated residential area, are shown.

The points of the buildings closest to the streets represent consumers and are indicated

by red dots. As this public database contains only the addresses of consumers, their spa-

tial information (latitude, longitude) are obtained by implementing the BGL technique, as

previously explained in Algorithm 5.2. A bulk geolocation methodology is used to con-

vert large numbers of addresses in their geographical locations. The geospatial locations

obtained are then examined with interactive network maps to assess the completeness and

functionalities of the datasets derived. These geospatial locations are essential because

they provide an overview of the networks topology and the distribution of its assets [189].

The third step is generating data for the distribution transformers. For this purpose,

a Google Street View method is used because it supports the real-time locations of trans-

formers that connect energy consumers. Figure 4.11 shows the location of the distribu-

tion transformers on the street map. In total, 48 distribution transformers are identified
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Figure 4.11: Power distribution transformers in the Colac region, Australia.

in the region. These are public transformers with a typical rating of 11 kV with primary

and secondary voltages of 220V and 415V, respectively. These are public transformers

with typical ratings of 11 kV and primary and secondary voltages of 220V and 415V,

respectively. To determine how many customers are linked to a single one, the hub-line

algorithm (Algorithm 4.3) discussed in section 4.3.3 is implemented. In Figure 4.12, its

outputs, where each transformer is connected to its nearest energy consumers, are shown.

The bar chart on the left side shows the location of each transformer with the number of

connected energy consumers. On the right-hand side, a simple illustration of the energy

consumers connected to the transformer located at 65 Sinclair St, Colac, Victoria, 3250

is provided. In total, 95 energy consumers are connected to this transformer which are

shown with red dots on the right side of Figure 4.12.

The fourth step is to add substation information to the network. The substation data

is created by querying the area from the OSM databases. A unique area id (3603143511) is

used to identify the substation of a certain region. A filter tag of "power=substation"

is applied to locate the substations in the area. The query ["power"="substation"]

["substation"="distribution"] returns all the distribution transformers in the

region (3603143511) which represent Colac, Australia. In Figure 4.13, the results of the

substation information are presented. On the turbo left generated in the overpass wizard.

On the right, the query results with additional substation information such as voltages,

names, indoor-outdoor locations, and operators are shown. The graphical results reveal

that there is a 66/22kV substation in the Colac area operated by a distribution company
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Figure 4.12: Hub-line algorithm for identifying the number of energy consumers linked
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5

Figure 4.13: Substation data: (left) overpass queries in open street maps; and (right) query
results

called Powercor.

The last stage is to establish connectivity (links) between different network elements

in the datasets. For example, details on how buildings are connected to a connectivity

node (pole) on the street and how that pole is connected to the distribution transformer

are provided. Connectivity is established by the ‘FomNode’ and ‘ToNode’ concept, as

discussed in section 4.3.5. Figure 4.14 shows a simple illustration of the structure for

connecting grid components. For instance, to connect a utility pole with an end-consumer,

the ‘FromNode’ and ‘ToNode’ information of the pole and energy user, respectively, are

used to connect the two grid components. Each consumer is connected to its nearest pole

which is connected to the distribution transformer via low-voltage lines.
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Figure 4.14: Demonstration of electrical connectivity between different network elements

Once all network elements are created, the complete network is visualized in QGIS

software, as shown in Figure 4.15. The catalog of network elements includes 4714 power

lines, 48 distribution transformers, 4155 energy consumers, 609 electrical nodes, and one

substation. The satellite view of the synthetic network is shown in Figure 4.16. A network

data repository is then established by saving the files in a.geojson format. This format

is used because most industry servers can read and write geojson files, and it is simple to

validate and test [179]. The dataset files are also structured and prepared as .CSV, with

the file name indicating what it contains. To clarify the data, its attributes in the dataset

files are explained in Table 4.1.

Energy Consumers

6

Ac line segments

Transformers
Substation
Connectivity nodes

Figure 4.15: Complete visualization of synthetic distribution network in QGIS
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Figure 4.16: Satellite view of synthetic network developed for Colac region in Victoria

Table 4.1: Data attributes in datasets

Attribute Description Example

• Object ID identification index of nodes and edges ‘4571’

• Name label of the equipment ‘81 Murray Street, Colac, 3250’

• Lat latitude of the node ‘-38.342835390’

• Lon longitude of the node ‘143.605306759’

• Global ID unique identifier of equipment ‘Line4572’

• Class equipment type ‘transformer’, ‘Energy consumer’

• FromEq starting point for connection ‘Source’ ‘node1854088615’

• ToEq end point for connection ‘Target’ ‘node1854088612’

• BaseVoltage voltage levels of lines and equipment ‘415V, 22kV’

• headTerminal power source of network ‘Substation’

• Length length of line segments (m) ‘78.13’
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4.5 Comparisons and validation in industry servers

A two-step procedure is used to validate the synthetic network and datasets: 1) en-

ergy utility industry servers; and 2) expert feedback and evaluation. The validation pro-

cess compares the synthetic and real distribution systems. They also aim to test the gen-

erated datasets for their completeness, consistency, and usefulness. While validating the

synthetic network and datasets, geographical network maps are constructed to assist in

verifying the logical consistency of the relationships among elements.

4.5.1 Validation 1: Industry servers

This procedure involves the four steps shown in Figure 4.17. Firstly, a QGIS net-

work dataset is exported into .geojson format. Secondly, it is transformed into evolve

data server standards [190] by implementing Algorithm 4.6. This step is important be-

cause industry servers, such as EWB, require a certain data file structure in order to run.

The developed method converts synthetic data into a Common Information Model (CIM)-

based format, which is a widely used data standard in the power industry [55]. A group

of equipment is converted into evolve CIM classes by importing the utility libraries such

as import zepben.evolve as ev. These libraries map the GIS standard data into

CIM based schema. The ev.location class converts the geographical locations into

evolve CIM data standard which is ev.PositionPoint(coord[0],coord[1])).

The position points represent the geographical data such as latitude and longitude. Thirdly,

a Cimcap server is executed in parallel to map the dataset into SQLite network data model

(.sqlite). Fourthly, this model is then loaded into an EWB server that converts the

synthetic data into geo-based visualizations and enables geographical validation of cre-

ated network and datasets. For more details about the evolve platform and servers, please

refer to [190].

The experimental setup used for dataset validation is shown in Figure 4.18. The

procedure begins with the execution of the Cimcap server, which then communicates

with the data ingestion process in stage 2. The second stage is a data ingestion procedure

to EVOLVE server as shown in Algorithm 4.6. This step translates the QGIS data to an

EWB compatible database by interacting with the Cimcap server at stage 1. The created

SQLite network data model is then simulated in the EWB server to validate the synthetic

datasets using geographical visualizations.
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Figure 4.17: Procedure for technical validation of synthetic distribution network in utility
servers

4.5.1.1 Demonstration using a small network

In Figure 4.19, the synthetic network for a small region in Colac, Australia, is shown.

The synthetic network is created on a QGIS platform and datasets of network elements

are extracted in different formats such as .csv and .geojson files. This synthetic data

is then deployed in evolve data server platform and the results are compared with the

real utility network as shown in Figures 4.19(a), 4.19(b). The network begins from the

energy source (substation), then high voltage (11kV) to low (415V) power lines to feed the

energy consumers. The junction represents the node (pole) that connects the end-users.

The comparison results demonstrate that the dataset created for the synthetic network has

similar features to those of the real utility one, as verified by both geo-visualizations and

the data attributes of both datasets.

4.5.1.2 Demonstration using large-scale network

The proposed methodologies are then applied to create a large-scale synthetic sys-

tem. The full synthetic system is illustrated in Figure 4.20. This network is designed for

the distribution feeder in the Colac region in Victoria, Australia, with datasets simulated

in industry servers. The results obtained are then compared with those of the original

feeder datasets to verify the applicability of the proposed techniques. The objective is to
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Figure 4.18: Experimental setup used in the dataset validation procedure

demonstrate how the topology of synthetic network and dataset resemble with the data

of distribution network operator (industry). For validation, the synthetic network and

datasets are supported with map-based visualizations that consider real street maps as

shown in Figures 4.20(a), 4.20(b), 4.20(c) and 4.20(d). The visualization shows the en-

tire network as well as zoomed-in details of individual components. In Figure 4.20(c),

the individual element of real network in industrial servers such as transformer with the

asset id “20527638”, supply point (energy consumer) with the id“32817388”, an energy

source with the id “15400706”, the HV line with the id “62137567” and other parts are

presented in detail. In Figure 4.20(d), the individual component of the synthetic net-

work is illustrated. For example, the energy source is shown with asset name “Energy

Source1” that represents the substation in the network, energy consumers with service

points “servi9242”, the HV line “Line4675” and LV lines “Line5576”, power transform-

ers with “PowerTransformer16”, and the connectivity nodes are presented with asset id
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(b) Synthetic network for a small region in Colac
area

Figure 4.19: Validation on a small network

“node498”. The comparison leads to two conclusions. Firstly, the synthetic datasets accu-

rately reflect the data obtained from the distribution network service provider (DNSP), as

evidenced by geo-based visualizations. Secondly, the synthetic datasets appear complete

and dense, whereas the industry datasets are usually outdated. As the population grows,

more energy consumers are added every day, which is missing in actual networks. The

use of street maps and geo-visualization of networks and data synthesis algorithms in in-

dustry platforms enables the realism of synthetic networks that are comparable to actual

distribution networks.

4.5.2 Validation 2: Expert feedback and evaluation

This validation is performed by industry and academic experts providing their feed-

back based on the methods adopted, datasets created and visualizations of results in indus-

try servers. The suggestions include the number of customers connected per distribution

transformer, synthetic datasets ingestion to proven industry servers, the configuration and

validation of industry servers, industry data standard practices such as CIM, network ele-

ments at relevant locations, a connection topology in the network, standard voltage levels

of the equipment, lengths of distribution lines and geographic representations. These im-

provements suggested throughout the expert validation procedure greatly improved the

realism of the synthetic systems. Such details in the system creation process are difficult

to find in real utility data. The advantage of this technique is that it eliminates the com-
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Figure 4.20: Validation using a larger network

putationally expensive necessity of simulating large number of real-world networks by

including input from industry specialists who are familiar with the analysis.

4.6 Discussion and findings

Based on the results obtained in this chapter, the following comments are made.

• An undressed problem of synthetic network and open-source datasets that repre-

sent the real distribution system is addressed. The aim is to remove the barriers that

exist between academic researchers and industry users when it comes to sharing

open data for the evaluation and testing of newly developed algorithms. The use of

open-data from government databases, OpenStreetMaps, geo-visualization of net-

works and data synthesis algorithms in industry platforms enable the establishment

of realistic synthetic networks that are comparable to actual distribution ones.
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• New ideas and solutions are integrated for the development of power distribution

networks. For instance, power lines are designed by using public road infrastruc-

ture. Also, information of the end-users (energy consumers) on the distribution

side, which was lacking in previous studies, is added.

• A distinctive characteristic of distribution networks that was not properly addressed

in existing studies is the geographical structure of the system. Using prior works as

a foundation, this study includes the geospatial locations of a network’s elements,

with each component having a specific geographical position. Although geospatial

information is not always included in typical power system models, geographic co-

ordinates allow market models to be benchmarked against realistic outcomes [189].

• A new method for identifying the number of energy consumers supplied by a trans-

former in a distribution network is developed. For example, the hub-line algorithm

demonstrated in section 4.3.3 connects energy consumers based on their nearest

spatial distance to a transformer. A standard cut-off distance from the transformer to

households is maintained by adhering to the guidelines in CIGRE publications [54]

to avoid losses and voltage drops.

• A standard way of representing electrical connectivity between two or more equip-

ment’s in the network is provided by proposing fromNode and ToNode concept.

Connectivity is established by defining the start and end points of the network’s

elements.

• The methodology is applied to the Australian case because most test cases in the

literature typically focused on European and American grids, with no test cases or

data representations developed for Australian networks.

• The practical feasibility of the proposed algorithms is demonstrated by an illustra-

tive case study of the Colac region in Australia. A synthetic dataset is created for

the distribution feeder, and the datasets are deployed in the industry servers. The

results are then compared to the original feeder datasets to verify the applicability

of the proposed techniques. Case studies demonstrate that the synthetic distribution

system has similar data characteristics to actual networks as validated by geo-based

visualizations.
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• Unlike previous works that validated synthetic networks in only a statistical man-

ner [1], our solutions are tested using a two-step validation process. In the first

stage, solutions are validated by replicating them in real-world industrial servers,

and in the second stage, solutions are verified using expert comments and valida-

tion. This method contributes to expanding the utility of synthetic network and

datasets beyond university researchers to industry users.

• The datasets are created with interactive maps in both QGIS and evolve data server

platforms allowing users to manage and visualize the key assets in an existing en-

ergy infrastructure.

• The synthetic network creation and visualizations are developed entirely using open-

source software which enables the wider research community to reproduce or im-

prove the presented results. The created synthetic networks exhibit the critical elec-

trical characteristics of real-world networks. However, they are entirely fictitious,

and users cannot extract any actual network information from synthetic networks

by reverse engineering.

4.7 Chapter conclusions

This chapter develops a comprehensive framework for creating synthetic power dis-

tribution networks and datasets by integrating public databases and data synthesis algo-

rithms. Firstly, raw data from public databases is retrieved and processed for extracting the

maximum level of information. Using this information, a synthetic network is developed

in open-source software such as QGIS. Data synthesis algorithms are proposed to com-

plete the entire network and then validated in industry severs. During network creation,

a concept of road network topology is proposed to create the power distribution lines. A

BGL algorithm is proposed to identify the geographical locations of energy consumers.

A hub-line method is developed to identify the number of energy consumers linked to

a distribution transformer in a network. The information of substations is retrieved from

the OSM approach. A standard way of establishing electrical connectivity between two or

more equipments in the network is provided by proposing fromNode and ToNode concept.

The chapter demonstrates the practical feasibility of the proposed solutions by evaluating

the synthetic network and datasets on industrial servers. The validation is demonstrated
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by creating synthetic datasets for the distribution feeder in the Colac region of Australia.

The results of the synthetic datasets are then compared to the actual feeder datasets. The

comparison results indicate the effectiveness of created synthetic network and datasets,

as they are validated by geo-based visualizations on industrial servers and including the

expert feedback analysis.

The findings of this research will contribute to the growing field of industrial infor-

mation integration and informatization in current distribution networks. The proposed

approaches are generic in the sense that they are not limited to a specific region. It is pos-

sible to create synthetic test cases for any geographical region as the developed methods

are based on OSM databases that facilitate public data sharing for the entire planet. This

generic approach permits overcoming the issues related to the dimensions and diversity of

distribution systems in different national contexts. Using synthetic network and datasets,

utilities will no longer be concerned about making data publicly available at the request

of industry and academia.

Network creation and all dataset availability

Network creation and all datasets are available on https://github.com/

casemsee/Synthetic-Network-Creation-and-Datasets.git for im-

provements and reproducibility. We used freely available open access tools such as QGIS

and PyQGIS to develop solutions. During data creation, we mainly used Python 3.5

along with Numpy 1.9.1, Fiona 1.8.18, Dataclassy 0.6.2, Libgdal 2.66.4, Osmnx, and

Sharply 1.7.1. For industry servers and simulations, we used DNSP libraries such as

Zepben-evolve 0.21.0, Zepben-cimbend 0.16.0, and Zepben-protobuf 0.10. For industrial

database integration and SQL queries, we used SQLite express software. To visualize the

network, we used geopandas 0.19.2, QGIS interactive maps, Mapbox studio, and Mat-

plotlib 1.4.2. For geopspatial datasets and government databases, we used Overpass API

queries in overpass-turbo wizard of openstreetmaps.
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Chapter 5

Buildings in synthetic network: A
multi-stage transfer learning approach
for classification of building load
profiles

The work presented in this chapter is submitted or published in the listed articles:

1. [Journal] M. Ali, K. Prakash, MQ. Raza, AK Bashir, and HR. Pota, “Load

profile classification of buildings using AI-based multi-stage transfer learning

approach for sustainable energy future,” (Under-review) Elsevier Energy,

May. 2022. IF: 7.147.

2. [Conference] M. Ali, K. Prakash, and H. Pota, “M. Ali, K. Prakash, and H.

Pota, “A Bayesian approach based on acquisition function for optimal

selection of deep learning hyperparameters: a case study with energy

management data ,” Apr. 2020, vol. 2, no. 1. Science Proceedings Series

Summary: The synthetic network developed in chapter 4 contains end-users (build-

ings). The load profiles of buildings have a substantial influence on distribution network

operations, especially in the current situation of COVID-19 where most people work from

home and spend most of their time in buildings. To effectively manage and optimize the

energy consumption of buildings, a careful analysis of the building load profiles is es-

sential. This chapter presents a deep learning solution to address the problem of electric

load profile classification in the context of buildings. An unsupervised feature extraction
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process based on sparse autoencoders (SAE) is developed to automatically learn useful

features from the data. A layer wise multi-stage transfer learning (MSTL) approach is

proposed by combining unsupervised and supervised learning to improve the classifica-

tion accuracy. To address the problem of missing data and class imbalance, a minority

over sampling algorithm is presented, that effectively balances missing or unbalanced

data by equalizing minority and majority samples for fair comparisons. The practical

feasibility of the proposed approach is demonstrated by presenting two case studies. In

case study 1, the techniques are evaluated on public benchmark datasets of buildings.

In case study 2, the results are validated using real-world datasets of 105 buildings (35

residential, 35 commercial, and 35 industrial). The results indicate an overall accuracy

of 93 percent on benchmark and 85 percent on real buildings datasets despite the high

variations in building load profiles. An empirical comparison with the proposed method

is carried out with popular machine learning methods, including support vector machine,

random forest, k-nearest neighbors, and naive Bayes. The comparison results indicate

superior performance over traditional machine learning methods, with a performance

improvement that ranges from 1 to 10 percent.

5.1 Research gaps and contributions:

This chapter has made the following contributions to address the research gaps pre-

sented in Chapter 2.

• Two new methods based on sparse autoencoders (SAEs) and the multi-stage transfer

learning (MSTL) are proposed. Different from conventional hand-crafted feature rep-

resentation, SAEs can learn useful features from a large number of buildings data in an

unsupervised automatic way. This is important since each building has unique electrical

load patterns, and manually extracting the key features of every building is not possi-

ble in practical situations. A MSTL approach is applied to enhance the classification

accuracy by combining sequential unsupervised and supervised learning.

• A minority oversampling (MOS) method is proposed to handle the incomplete or un-

balanced real-world data. The data inconsistencies can produce error-prone results in

developed models [149]. The MOS algorithm successfully balances missing or unbal-

anced data by equalizing minority and majority samples for fair comparisons.
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• Three groups of buildings (residential, commercial, and industrial) are investigated for

load classification. In the existing literature, only one type of reference building was

considered for classification analysis. Using only one or a few typical profiles might

not be sufficient to characterize a building’s operational patterns [128].

• The load profiles of buildings vary from region to region. The practical feasibility of

the proposed approach is demonstrated by presenting two case studies. Case study

1 involves testing the algorithms on the public benchmark dataset of buildings [191].

Case study 2 validates the results using real-world datasets of 105 buildings (residential,

commercial, and industrial).

• An empirical comparison is made with the most widely used machine learning methods

including SVM, RF, kNN, and naive Bayes (NB). Standard performance metrics such

as a confusion matrix, receiver operating characteristic (ROC) curves, precision, recall,

specificity, and F1-score are used to compare the findings. For a fair assessment, an

average percentage performance improvement obtained by the proposed scheme over

traditional machine learning approaches is computed.

5.2 Load profiling classification solution for buildings in

the distribution network

In Figure 5.1, an overview of the proposed framework is illustrated. It consists of

four parts: (1) data analytics on raw data; (2) a feature learning framework; (3) a multi-

stage transfer learning approach; and (4) a case study of two datasets that evaluates the

model’s performances and visualizes its results. A short description of each mechanism

is provided in the following paragraphs.

• Step 1: The first step is to clean the dataset from invalid and missing values. This

is important because real-world data is often incomplete or inconsistent, and it is

likely to generate error-prone results. In this study, two cases (datasets) are used

to validate the solutions. In the first scenario, a publicly available benchmark

dataset [191] of electric load profiles of buildings is used to test the proposed al-

gorithms. This dataset contains the hourly load profiles over a year (8760 hours

data) for a set of 24 representative facilities from various end-use sectors, including
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Figure 5.1: Proposed framework.

industrial, commercial, and residential consumers. During data-processing, the null

data and missing values are removed to ensure the high quality of data. In the sec-

ond scenario, realistic load profiles of 105 buildings are obtained from a distribution

system operator in Australia. The data includes the energy consumption values of

the buildings monitored in five-minute time steps.

• Step 1.1: In raw data, class imbalance and missing data are common issues that

have been actively discussed in recent literature [192,193]. A dataset is unbalanced

if the classification classes are not equally represented. In practice, commercial and

industrial buildings are fewer in numbers than residential buildings. In other words,

residential buildings are more dominant (majority class) compared to commercial

and industrial buildings (minority class). If the machine learning model is tested

on an unbalance dataset, this leads the classifier to be biased in favor of the major-

ity classes and consequently suffers from higher misclassification on the minority

classes [193]. To address this issue, a MOS technique is applied to the raw data

of buildings to balance the minority and majority samples. Firstly, k-nearest neigh-

bors close to the minority class are identified. Then, new synthetic samples S are

created along with the line segments by taking the difference D between the actual

minority sample Os and its nearest neighbor K. This difference is then multiplied

by a random value ranging from 0 to 1 and added to the original minority sample

Os. The output from this method is a balanced dataset with an equal distribution

of samples in each class. The intuition behind the MOS is summarized in Algo-

rithm 5.1 and visually demonstrated in Figure 5.2. This approach is inspired from

the oversampling strategy suggested in [194] and is effective because it creates new
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synthetic instances from the minority class that are realistic to existing minority

class samples.

• Step 2: This stage involves the development of an unsupervised feature learning

framework based on SAEs that automatically discovers useful features in the data

for classification. The motivation is to discover the comprehensive features in elec-

tric load profiles of building as every building has unique load characteristics. These

features are then employed to classify the electric load profiles of buildings. The

overall procedure is briefly explained in Section 5.3.

• Step 3: Following the feature learning process, a multi-stage transfer learning strat-

egy is developed. It incorporates both unsupervised and supervised learning process

to fine-tune the results and improve overall performance. The output of MSTL is

then utilized to integrate the ensemble classification. It determines the best accuracy

for each class by using the majority voting mechanism. Details of these techniques

are provided in Section 5.4.

• Step 4: The practicality of the proposed approach is demonstrated using two case

Algorithm 5.1 Proposed MOS framework
1: MOS (M, J, N, K)
2: Input:

M: minority samples;
J: majority samples;
N: number of new samples;
K: number of nearest neighbours

3: Output: Synthetic samples for minority classes (S = len(J))
4: for i← 1 to M do
5: Compute k nearest neighbors for ith minority samples,
6: Save the indices in the NA. ▷ NA: new array
7: Populate (N, i, NA )
8: end for
9: for Creating synthetic samples for minority class do

10: Compute: D = Os - K ▷ D: difference, Os: actual minority samples
11: Compute: G = Generate random number between [0,1] ▷ G: gap
12: Synthetic samples = Os +D ∗G
13: Repeat step 10− 12 until desired proportion of minority class reached.
14: end for
15: return (Balanced dataset)
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Figure 5.2: Results of MOS technique applied to handle missing and class imbalance
problem. Synthetic data S1, S2 and S3 is created from o1 considering three nearest neigh-
bors (o2, o3 and o4)

scenarios. The techniques are evaluated on benchmark and real building datasets

and the results are graphically illustrated by a confusion matrix and ROC curves.

While evaluating the performance, the classification scores of each class are recorded.

• Step 5: In the final stage, an empirical comparison is performed using typical ma-

chine learning methods such as SVM, RF, kNN and NB, and results are compared

using standard performance measures such as confusion matrix, ROC curves, and

F1-score. A 4-fold cross-validation approach is used to evaluate the performance

of the models.

5.3 SAE based feature learning for electric load profile

classification

A SAE is a type of artificial neural network that works on the principle of unsuper-

vised feature learning. Its unique feature is its capability to detect key features in a dataset

using the concepts of encoding and decoding. Due to this behavior, it is widely utilized

for feature extraction, dimensionality reduction, and compression [195]. This is of partic-

ular significance for building load profile classification as every building has unique load

characteristics.
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5.3.1 Why SAE for electric load feature learning?

Classical feature learning methods includes principal component analysis (PCA)

[196], independent component analysis (ICA) [197], linear discriminant analysis (LDA)

[198], and t-distributed stochastic neighbor embedding (t-SNE) [199]. Using SAE for

feature learning in this chapter has four main motivations. These include, accuracy im-

provements [200], overfitting risk reduction using L2 regularization [201], speed up in

training [202], and improved data visualization and model implementation [203]. PCA is

one of the most extensively used algorithm; yet recent research shows that PCA considers

correlations in data to be linearly mapped [204]. Building datasets are not always linearly

solved and possess high complexity in the load profiles. Also, PCA searches for features

by using principal components. The manual selection of principal components using the

variance in data results in the loss of critical information [205]. A comparative analysis

of feature selection algorithms showing the strengths and weaknesses of each technique

is explored in [204, 206]. The SAE used in this chapter is designed to automatically dis-

cover patterns and dependencies in data by learning compact and broad representations

that make it easier to extract useful information from electric load profiles of buildings.

Figure 5.3 shows the three layers of an autoencoder: an input layer, a hidden layer,

and an output layer. The hidden layer shows the learned features. The two main compo-

nents are an encoder and a decoder. The encoder f(x) receives the input x and transforms

it into hidden representations hd. The decoder g(h) receives these hidden representations

from the encoder and transforms them into a reconstruction of the original input x̂.
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Figure 5.3: Feature learning mechanism in an autoencoder

For a dataset having input samples x(1), x(2), x(3), . . . , x(D) where x(i) ∈ Rn, the
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feature representation vector hd and reconstruction vector x̂ are calculated by equations

(5.1) and (5.2). The weight of the encoder is W and it is equal to the transpose of the

decoder weight W T . The terms b is the bias from the input layer, and b̂ represents the

bias from the hidden layer to the output layer. The expression σ(·) indicates the activation

function in the network. The reconstruction error is given with mean square error cost

function J in equation (5.3). For a given set of n training samples, the overall cost function

E(W, b) is defined in equation (5.4). The goal is to minimize E(W, b) as a function of W

and b to obtain the optimal results.

h = σ(Wx+ b), (5.1)

x̂ = σ(W Th+ b̂), (5.2)

J =
1

2
∥x̂− x∥2 , (5.3)

E (W, b) =

 1
n

n∑
i=1

(
J
(
W, b;x(i), x̂(i)

))+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(5.4)

Substituting equation (5.3) in equation (5.4)

E (W, b) =

 1
n

n∑
i=1

(
1

2

∥∥∥x̂(i) − x(i)
∥∥∥2)

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(5.5)

where in equation (5.5), nl is the number of layers in the network, λ is a weight decay

term, and W
(l)
ji is the connection of weights between unit j and unit i of layer l. The term

si indicates the number of units in layer l. The reconstruction error is shown by the first

part of equation (5.5), and the second part is a weight decay term, commonly known as

the regularization term, which aims to address the over-fitting problem.

In general, an autoencoder simply reconstructs the input data at the output layer, this

technique is less effective for extracting essential features from data. A sparse constraint

is typically added to the autoencoder cost function in equation (5.5) to assure improved

feature representation. In this study, a sparsity constraint is placed in the autoencoder

hidden units to obtain appropriate features from the input data. The sparsity parameter γ

is presented in equation (5.6). The term hj(x
(i)) denote the activation of hidden unit j on
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the i-th sample of input x. The sparsity parameter is denoted with γ and has a small value

close to 0 (e.g., 0.1). To keep the activation of each hidden neuron j to be close to 0.1,

penalty factor KL
(
γ∥γ̂j

)
is added to equation (5.4). The penalty term KL

(
γ∥γ̂j

)
takes

a form that penalizes γ̂j for deviating significantly from γ, exploiting the KL divergence.

The term KL
(
γ∥γ̂j

)
is the Kullback-Leibler (KL) divergence [207], and it is shown in

equation (5.7). After adding the sparsity parameter and KL divergence factor, the overall

cost function of (5.5) is updated with equation (5.8).

γ̂j =
1

n

n∑
i=1

[
hj

(
x(i)
)]

(5.6)

KL
(
γ∥γ̂j

)
=

s2∑
j=1

γ log
γ

γ̂j
+ (1− γ) log

1− γ

1− γ̂j
(5.7)

Esc (W, b) = E(W, b) + β

s2∑
j=1

KL
(
γ∥γ̂j

)
(5.8)

where, β in equation (5.8) is the sparsity term, and s2 denotes the hidden units. In essence,

SAE improves the performance of classical autoencoder and identifies sparse feature rep-

resentation. Instead of simply converting the inputs, it extracts more information from

them by adding a sparsity constraint that forces the model to respond to the unique sta-

tistical features of the data. The penalty induces the model to activate (i.e., produce an

output value close to 1) in specific parts of the network based on the input data, while

deactivating all other neurons (i.e., to have an output value close to 0). The steps of the

feature learning process are summarized in Algorithm 5.2.

5.4 Multi-stage transfer learning approach

A layer-wise multi-stage transfer learning approach is implemented to improve clas-

sification accuracy. The method is named as a multi-stage or two-phase protocol because

it combines the pretraining (unsupervised phase) and a supervised learning phase. A SAE

model is initially trained in an unsupervised fashion while saving the key data features as

described in Section 5.3. The knowledge (features) learned by an SAE is then re-trained

with DNN in a supervised manner to fine-tune the results.

In the first step, a SAE is trained on the raw inputs xk to obtain primary features in
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Algorithm 5.2 Feature learning for building load profiles based on SAE
1: Input: Data samples x(i) = x(1), x(2), . . . , x(D) where x(i) ∈ Rn

2: for Data samples x(i), i = 1, 2, . . . n do
3: Transform the x(i) ∈ Rn into hd = F ▷ F :feature space
4: Encoder stage: h = (Wx+ b)
5: Add element-wise activation function σ(x) = 1/(1 + e−x)
6: Initialize W and b in network ▷ W :weight, b: bias
7: Map the hd to the reconstruction vector x̂
8: [t] Decoder stage: x̂ = σ(W Th+ b̂)
9: Return the reconstruction vector x̂

10: Compute reconstruction error using eq (3)
11: Apply the weight decay term λ
12: Minimize the error using eq (4)
13: end for
14: for Improve feature learning do
15: Add sparsity term γ
16: Add penalty factor KL

(
γ∥γ̂j

)
to eq (4)

17: Penalizes γ̂j for deviating significantly from γ
18: Update the eq (4) with γ and KL

(
γ∥γ̂j

)
19: Minimize eq (7) with optimizer, i.e., scaled conjugate gradient
20: end for

hidden layer h(1)
k as shown in first stage of Figure 5.4. In the second step, the features

(data representations) learned by SAE is transferred as input to the second SAE to extract

secondary features h
(2)
k as shown in second stage of Figure 5.4. The key difference be-

tween the two SAEs is that the features extracted from the first autoencoder are used as

the training input to the second autoencoder. This layer-wise representation is also known

as ‘pre-training in deep learning [208]. In the third step, a softmax regression classifier

is added on top of the features learned in the pretraining phase for classification task. In

other words, it has been added to the main network to classify the various levels of load

profiles of buildings. This stage involves supervised fine-tuning of the entire network

learned in the pretraining. A softmax layer and all the layers of SAE are stacked to form

a deep network and the whole network is retrained in a supervised manner to fine tune the

classification results. The steps of the approach are illustrated in Figure 5.4. Using this

approach has two benefits. First, it reduces the generalization error. Second, it facilitates

the development of deeper networks by stacking multiple SAEs, resulting in improved

classification performance.
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Figure 5.4: An illustration of multi-stage transfer learning concept

As this study deals with multi-class problem (residential, commercial, industrial), a

softmax regression classifier is added to the main network. It means that the output class

labels are multi-class classification instead of binary classification. For a given input of x,

softmax layer estimates the probability of training sample x(i) belongs to class c given the

weight W and net input z(i). The probabilities of each class c = 1, . . . , k are determined

as follows.

p
(
O = c | x(i);Wc

)
=

ez
(i)∑k

c=1 e
z(i)

(5.9)

where O is the output class that corresponds to the input vector x(i) and Wc is the

weight parameter for each class c, where c = 1, 2, 3 . . . , k. The maximum probability of

each class of building is calculated as follows

Class
(
x(i)
)
= max p

(
O = c | x(i);Wc

)
(5.10)

where x(i) denotes the class with the maximum probability. As softmax layer returns

probabilities in the range [0-1], the target values are binarized using one-hot encoding

technique [209] as presented in Table 5.1.
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Table 5.1: Binarized target values for multi-class using one-hot encoding

Class Labels Binary form
1 Residential class 100
2 Commercial class 010
3 Industrial class 001

After obtaining the softmax probabilities and class labels, the best accuracy on each

class is determined using the majority vote ensemble learning technique. It totals the votes

for all of the predicted labels from the ensemble learners, and generates a final prediction

based on the label with the most votes. Alternatively, it averages the labels from basic

learners and selects the label with the highest value. For majority voting, three ensemble

learners including Bagging [210], AdaBoost [211] and RUSBoost [212] are used in this

study. The steps of MSTL process are summarized in Algorithm 5.3.

Algorithm 5.3 Multi-stage transfer learning approach (MSTL)
1: procedure
2: for multi-stage learning strategy do
3: First stage, get f ← h

(1)
k

4: Second stage: forward h
(1)
k to h

(2)
k

5: Add softmax regression classifier Sc on top of h(2)
k

6: Stack layers L of network with Sc

7: Re-train in supervised manner f ← (f,X,Y )
8: Fine-tune the results ▷ lower generalization error
9: Binarize the output values ▷ one-hot encoding

10: Estimate p
(
O = c | xi;Wc

)
= ez

(i)
/
∑k

c=1 e
z(i)

11: Find Class (xi) = max p
(
O = c | xi;Wc

)
12: Decide predicted class based on highest probability
13: Create ensemble classification for each class label
14: Decide best accuracy based on majority voting
15: Make final prediction using label with most votes
16: end for
17: end procedure

5.5 Results and experimental verification

Figure 5.5 shows the model validation procedure. A k-fold cross-validation method

is used to assess the classification performance. While testing a model, k smaller sets
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of data are used to train the model and the remaining (k − 1) sets of data are used to

evaluate it. This method is repeated for all k distinct sections of the data, resulting in each

component being used once as validation data and (k − 1) times as training data. The

average classification accuracy of k experiments and error are computed to create a single

performance metric.
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Figure 5.5: Evaluation of model performance and k-fold validation

5.5.1 Performance criteria

Standard performance metrics are used to evaluate the model performance, as ex-

plained in the following sections.

1) Confusion Matrix

A confusion matrix is used to visualize the classification performance of each class.

It is a simple yet efficient way of evaluating classification performance and visualising

actual versus expected class accuracies [213]. The predicted class is represented by each

column in the confusion matrix, whereas the actual class is shown by each row. It shows

the total number of true negatives (TN), false negatives (FN), true positives (TP), and

false positives (FP). The TP represents the labels that belong to the class and is accurately

predicted. The FP denotes labels that do not belong to the class are predicted as positive

by the classifier. Similarly, TN indicates that the labels do not belong to the class, and it

is rightly predicted. The FN indicates that the labels belong to the class are predicted as

negative. Figure 5.6 shows the layout of a confusion matrix with three classes.
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Figure 5.6: Structure of confusion matrix having three classes

2) Recall, precision, specificity, and f1-score

Based on the information of TN, TP, FN and FN in the confusion matrix, other met-

rics including accuracy, recall, precision, specificity, and F1-score are calculated. The

ratio of correct predictions TP and TN to the total number of occurrences is defined as

accuracy. The recall is a model ability to correctly classify the TP. For example, recall

indicates how many residential profiles were correctly identified among all the load pro-

files that truly have the residential class. Precision is defined as the ratio of the TP to

all positives. The F1-score is a combination of accuracy and recall. Table 5.2 shows the

details for each metric.

Table 5.2: Performance metrics to assess the classification model

3) Performance analysis using ROC curves

This technique is used to determine how well a method performs when it comes to

classification accuracy, particularly sensitivity and specificity. In comparison to precision,

recall, and F1-score, ROC curves mainly show the relationship between the false positive

rate (FPR) and the true positive rate (TPR).
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5.5.2 Scenario:1 Validation on the benchmark dataset

An open-access benchmark dataset of buildings is used [191] for validation. The

dataset is available for a broad range of analysis, and it contains hourly load profiles of 24

buildings from various end-use sectors, including industrial, commercial, and residential

consumers. For performance analysis, the entire year data of 2020 is used. The data set

contains a total of 8,760 observations. Using 4-fold cross-validation, the entire dataset is

divided into training and testing datasets. The training dataset is used for feature engi-

neering and classification model building, while the testing data set is used to calculate

and report classification performance.

The classification performance on 4-fold cross-validation is shown in Table 5.3. The

model is validated on various parts (folds) of the dataset and the accuracy of each fold

is provided, along with its error rate. The results show that the classification accuracy

is above 90 percent for each subset of the dataset. The highest accuracy is recorded in

iteration 1 (k = 1), with a classification rate of 93.28 percent. The maximum number of

misclassifications are observed in iteration 3 (k = 3) with a misclassification rate of 7.28

percent. The results of four iterations (folds) are averaged to yield a single classification

metric. The average classification accuracy is 92.97 percent without overfitting the data.

Figure 5.7 shows an illustration of the classification of electric load profiles. The

input of the model is the electric load profiles of buildings, and the output is the clas-

sification of load profiles. The green mark shows that the load profiles are classified

correctly, whereas the red cross indicates the misclassification. For example, if the actual

load profile is industrial and model classified it is as residential, then it is counted as mis-

classification. For the sake of clarity, 15 load profiles are shown. Out of the 15 profiles,

11 are correctly classified and 3 profiles are misclassified by classification model.

To visualize the classification accuracy of each class, a confusion matrix is used, and

results are shown in Figure 5.8(a)(b). The matrix compares the actual target values (rows)

Table 5.3: Classification accuracy on test dataset

K-fold Classification Accuracy (%) Error rate (%)
K = 1 93.28 6.72
K = 2 92.77 7.23
K = 3 92.72 7.28
K = 4 93.10 6.90

Average: 92.97 7.02
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: Correct classification : Mis-classified

Actual: Residential
Predicted: Residential

Actual: Commercial
Predicted: Residential
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Predicted: Commercial
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Predicted: Residential

Actual: Commercial
Predicted: Commercial

Actual: Industrial
Predicted: Industrial

Actual: Industrial
Predicted: Commercial

Actual: Commercial
Predicted: Commercial

Actual: Residential
Predicted: Commercial

Actual: Commercial
Predicted: Commercial

Actual: Commercial
Predicted: Commercial

Model Classification

Actual: Industrial
Predicted: Industrial

Actual: Residential
Predicted: Residential

Actual: Industrial
Predicted: Industrial

Actual: Residential
Predicted: Residential

Figure 5.7: An illustration of classification of load profiles of buildings.

with those predicted (columns) by the classification model. It gives a holistic view of how

well the classification model is performing and what kinds of errors it is making. Figure
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5.8(a) shows the classification accuracy of each class on training data, whereas Figure

5.8(b) displays the classification results for each class on test dataset. The diagonal cells

(blue) correspond to observations that are correctly classified. The off-diagonal cells (or-

ange) correspond to incorrectly classified observations. Figure 5.8(b) indicates that all

residential observations (2190) are correctly classified. However, there are 260 and 193

misclassifications in the commercial and industrial classes, respectively. A row summary

(right side) displays the percentages of correctly and incorrectly classified observations

for each true class. A column summary (bottom) displays the percentages of correctly

and incorrectly classified observations for each predicted class. The overall accuracy is

shown at the top of the confusion matrix. Figure 5.8(b) shows that the proposed approach

successfully classified the load profiles of buildings, i.e., residential, commercial and in-

dustrial classes with an overall accuracy of 93.11 percent on the test dataset.

Figure 5.8(c)(d) shows the ROC curve for both the training and test sets to illustrate

the classification between the three classes. The FPR on the x-axis shows the positive

cases that were wrongly classified as negative during the classification process, whereas

the TPR on the y-axis describes the positive cases that were correctly classified during

the test. Classification models with ROC curves that touch the top left corner of the curve

indicates good classification performance. The ideal point on the curve would be (0,1) in

the upper left corner, where all positive instances are correctly classified and no negative

cases are incorrectly classified. The training and test curves in 5.8(c)(d) are near to the

top left corner (0,1), indicating a higher TPR. As a result, it indicates a good classification

on both the training and test sets.

Classification accuracy alone is usually not enough to determine whether the devel-

oped model is sufficient to provide accurate classifications. The issue with accuracy is

that it cannot distinguish between various types of misclassifications and is dependent on

the distribution of classes in the dataset [214,215]. Suppose a dataset contains 1000 sam-

ples, 995 of which are from the residential class and five from the commercial class. If

the model correctly classifies all of them as residential, the accuracy is 99.5 percent, even

though the classifier missed all commercial samples. In such situations, classification ac-

curacy as a measure of model quality is not an adequate measure. This chapter constructs

various performance metrics, including precision, recall, specificity, and F1-score. The

results are shown in Table 5.4.
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Figure 5.8: Classification results on benchmark dataset (a) Confusion matrix results on
training data (b) results on test data (c) ROC curve on training data (d) ROC curve on the
test dataset

Table 5.4: Classification performance on commonly accepted performance metrics

Performance Metric Class 1
(Residential)

Class 2
(Commercial)

Class 3
(Industrial) Average

Precision (%) 100 90.82 88.50 93.11
Recall (%) 100 88.17 91.09 93.09
Specificity (%) 100 95.55 94.08 96.54
F1-score (%) 100 89.48 89.78 93.08

5.5.3 Scenario:2 Validation on real buildings dataset

After first validation with benchmark data of buildings and discussion of obtained

results, the results are expanded on real building datasets collected from local distribution

network operator. The goal is to evaluate classification performance on diverse datasets

and under different regional prevailing conditions. A five-minute time-step is used to

evaluate the classification performance. Figure 5.9 shows the load profiles of buildings

at five-minute time-step with 288 values for each building for a single day. The graphic
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Figure 5.9: Load profiles of buildings showing the demand at different times of the day.

shows that each building has diverse load profiles, and this is probably due to different en-

ergy consumption behaviors of occupants, and activity schedules in individual buildings.

The accuracy of classification is calculated using 4-fold cross-validation, and results

are shown in Table 5.5. The results are validated on four different folds (sets) of the

dataset and accuracy is noyed for the individual fold. The tabular results show that the

model achieved classification accuracy of above 84 percent on each fold. The maximum

accuracy is noticed in iteration 4 (k = 4) with a classification rate of 85.90 percent. The

highest misclassifications are observed in iteration 2 (k = 2) with a misclassification rate

of 15.81 percent. The four iterations (folds) are averaged to yield a single classification

metric. The average classification accuracy is 85.26 percent without overfitting the data.

Figure 5.10 shows the performance in terms of the confusion matrix and ROC curves.

The accuracy achieved on the training dataset is shown in Figure 5.10(a), with an over-

all accuracy of 85.95 percent. Figure 5.10(b) shows the model performance on the test

dataset, with an overall accuracy of 85.90 percent. For residential class, 411 data sam-

ples are misclassified. In the case of commercial and industrial classes, 260 and 193 data

samples are misclassified by model. As accuracy metric only is not enough to evaluate

the classification performance [216], ROC curves are used to test the model performance.

Figure 5.10 (c)(d) shows a plot of three ROC curves, each representing one of the three

classes. ROC curves are shown on the training and test dataset. The curve closer to the top

left corner indicates a high level of accuracy. Similarly, the higher AUC values indicate

better performance. For instance, the ROC curve and AUC value of the industrial class

is higher in both training and test dataset, indicating better accuracy from the other two

classes. The performance of the model on each class is shown in Table 5.6.
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Table 5.5: Classification accuracy on test dataset of buildings

K-fold Classification Accuracy (%) Error rate (%)
K = 1 84.78 15.22
K = 2 84.19 15.81
K = 3 85.16 14.84
K = 4 85.90 14.10

Average 85.26 14.74
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Figure 5.10: Classification results on real buildings dataset (a) Confusion matrix results
on training data (b) Results on test data (c) ROC on training data (d) ROC on test set

Table 5.6: Performance of proposed method on classification metrics.

Performance Metric Class 1
(Residential)

Class 2
(Commercial)

Class 3
(Industrial) Average

Precision (%) 77.88 82.54 96.42 85.61
Recall (%) 80.80 76.66 99.60 85.68
Specificity (%) 90.36 90.86 97.93 93.05
F1-score (%) 79.07 78.88 97.98 85.31
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5.6 Comparison with the state of the art

To compare the performance of the proposed method, four state-of-the-art methods

including SVM, RF, kNN and NB are considered. For a fair comparison, same datasets are

used for all methods and results are reported with standard performance metrics such as

precision, recall (sensitivity), specificity, F1-score, and ROC-AUC values. As parameters

greatly impact the performance of the models, the best combination of hyperparameters

are selected by adopting the random search technique [217].

5.6.1 Experiment 1: Comparison on benchmark dataset

In the first phase, optimal parameters of each model are obtained by applying a ran-

dom search technique [217]. A hyper-parameter optimization based on random search is

performed across all models and the best combination of parameters are selected based on

their minimum error. The optimal parameters for the models are shown in Table 5.7 and

the graphical demonstrations are shown in Figure 5.11. After finding the optimal param-

eters, the comparisons are drawn on widely accepted classification metrics and results are

Table 5.7: Hyperparameter tuning to select the optimal parameters for each model
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Figure 5.11: Optimal parameters selection for models evaluation. (a) Minimum error
hyperparameters for proposed method (b) for SVM (c) for RF (d) for kNN, and (e) for
NB model

shown Table in 5.8. This table presents the classification performance of proposed meth-

ods on the other four methods. For each class of the dataset, classification performance
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is compared in terms of sensitivity (recall), specificity, precision, F1-score and AUC. The

results show that proposed method has on average the best classification accuracy from

all other methods. The proposed method has an average sensitivity of 93 percent, com-

pared to 89 percent for the SVM, 87 percent for the RF, 86 percent for the kNN, and 83

percent for the NB model. In terms of specificity, precision, and F1-score, the proposed

method produces the best classification results, ranging from 93 to 97 percent. The other

approaches achieved classification performance ranging from 83 to 95 percent.

Figure 5.12 demonstrates the performance of different models on ROC-AUC curves.

The results show that the proposed model obtains good results for ROC-AUC, i.e., 1.0

for class 1, and 0.98 for both class 2 and class 3. SVM achieves a ROC-AUC of 1.0 for

class 1, and 0.95 for other two classes respectively. RF also perform well with ROC-AUC

values of 1.0 on class 1, and 0.94 for the other two classes. Similarly, kNN and NB achieve

good performance with ROC-AUC score of 1 for class 1, and 0.94 and 0.90 for other two

classes. These findings demonstrate that the proposed solution efficiently classifies the

load profiles samples from the dataset. For the sake of clarity, the average of AUC values

are presented in Table 5.9. SVM obtained a reasonable ROC-AUC scores with an average

of 0.97 percent, 0.96 percent for RF and KNN and 0.94 percent for NB. The proposed

scheme achieves the highest ROC-AUC of 0.99, proving its superiority among all other

conventional techniques.

5.6.2 Experiment 2: Comparison on real buildings dataset

In this section, extensive simulations are conducted using real-world building mea-

surements to demonstrate the efficacy of the proposed approach in comparison to existing

methods. Table 5.10 provides the summarized performance comparison of results. The

results reveal that the proposed scheme outperformed existing methods in terms of sen-

sitivity (recall), specificity, precision, and F1-score. Over the given dataset, the proposed

model achieves average values of 0.86, 0.93, 0.86, and 0.85 for sensitivity (recall), speci-

ficity, precision, and F1-score. The SVM, on the other hand, yields average values of 0.84,

0.92, 0.85, and 0.83 for sensitivity (recall), specificity, precision, and F1-score. Looking

at the RF and kNN, the average results are quite similar (0.83 for RF vs 0.82 for kNN,

0.92 for RF vs 0.92 for kNN, 0.85 for RF vs 0.82 for kNN and 0.82 for RF vs 0.82 for

kNN). It is worth noting that the average results for RF and kNN are quite identical; nev-

ertheless, classification performance varies between individual classes in the dataset. NB
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Table 5.8: Comparison of performance with benchmark classification algorithms.

Method Class Sensitivity Specificity Precision F1-score AUC

Proposed

Residential 1.00 1.00 1.00 1.00 1.00
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

Commercial 0.88 0.96 0.91 0.89 0.98
Industrial 0.91 0.94 0.88 0.90 0.98

Average: 0.93 0.97 0.93 0.93 0.99

SVM

Residential 1.00 1.00 1.00 1.00 1.00
Commercial 0.76 0.96 0.90 0.83 0.95
Industrial 0.92 0.88 0.80 0.85 0.96

Average: 0.89 0.95 0.90 0.89 0.97

RF

Residential 1.00 1.00 1.00 1.00 1.00
Commercial 0.77 0.92 0.82 0.80 0.95
Industrial 0.84 0.89 0.79 0.81 0.95

Average: 0.87 0.94 0.87 0.87 0.96

kNN

Residential 1.00 1.00 1.00 1.00 1.00
Commercial 0.78 0.90 0.80 0.79 0.94
Industrial 0.80 0.89 0.79 0.79 0.94

Average: 0.86 0.93 0.86 0.86 0.96

NB

Residential 1.00 1.00 1.00 1.00 1.00
Commercial 0.72 0.89 0.76 0.74 0.90
Industrial 0.77 0.86 0.73 0.75 0.90

Average: 0.83 0.91 0.83 0.83 0.94

Table 5.9: Comparison of performance on average values of ROC-AUC

Performance Metrics Classes
Methods

SVM RF kNN NB Proposed

AUC (Case study:1)
Residential 1.00 1.00 1.00 1.00 1.00
Commercial 0.95 0.95 0.94 0.90 0.98

Industrial 0.96 0.95 0.949 0.90 0.98
Average: 0.97 0.96 0.96 0.94 0.99

has the lowest values with an average sensitivity of 0.81, specificity of 0.91, precision of

0.83, and F1-score of 0.93.

Figure 5.13 displays the performance comparison in terms of ROC-AUC curves.

AUC describes how much the curve is stretched towards the upper left corner from the

diagonal. It exhibits how the number of correctly predicted positive cases varies with

the number of incorrectly predicted negative cases. The AUC numbers clearly show that

the proposed strategy produces superior outcomes by attaining the highest AUC values

for each class (class 1, AUC = 0.92, class 2, AUC= 0.94, class 3, AUC= 0.99). SVM

obtain the second highest AUC values with AUC=0.93 for class 1, 0.92 for class 2 and

0.99 for class 3. The AUC values for the other models, which included RF, kNN, and
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(a) (b)

(c) (d)

(e)

Figure 5.12: ROC-AUC curves for models evaluation. (a) Proposed (b) SVM (c) RF (d)
kNN (e) NB

NB, ranged from 0.81 to 0.98 depending on the class type in the dataset. AUC values

are given alongside three curves (blue, black, and red) for each class type to demonstrate

classification performance. The ROC curve closest to the top left corner or the point

(0, 1) on the plane shows the most accurate classification. For example, the proposed
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Table 5.10: Comparison of performance with popular classification algorithms

Method Class Sensitivity Specificity Precision F1-score AUC

Proposed

Residential 0.81 0.90 0.78 0.79 0.95

C
as

e
st

ud
y:

2
(V

al
id

at
io

n
on

ac
tu

al
da

ta
of

bu
ild

in
gs

)



Commercial 0.76 0.91 0.82 0.79 0.94
Industrial 1.00 0.98 0.96 0.98 1.00

Average: 0.86 0.93 0.86 0.85 0.97

SVM

Residential 0.90 0.84 0.70 0.79 0.94
Commercial 0.62 0.96 0.88 0.73 0.93
Industrial 1.00 0.98 0.96 0.98 0.99

Average: 0.84 0.92 0.85 0.83 0.95

RF

Residential 0.94 0.81 0.69 0.79 0.90
Commercial 0.56 0.91 0.91 0.70 0.86
Industrial 1.00 0.95 0.95 0.97 0.99

Average: 0.83 0.92 0.85 0.82 0.91

kNN

Residential 0.72 0.89 0.74 0.73 0.89
Commercial 0.77 0.86 0.75 0.76 0.81
Industrial 0.98 0.99 0.99 0.98 1.00

Average: 0.82 0.92 0.82 0.82 0.90

NB

Residential 0.96 0.80 0.66 0.78 0.91
Commercial 0.46 0.98 0.93 0.62 0.89
Industrial 0.93 0.93 0.90 0.94 1.00

Average: 0.81 0.90 0.83 0.78 0.93

Table 5.11: A comparison of performance based on average ROC-AUC values

Performance Metrics Classes
Methods

SVM RF kNN NB Proposed

AUC (Case study:2)
Residential 0.94 0.90 0.89 0.91 0.95
Commercial 0.93 0.86 0.81 0.89 0.94

Industrial 0.99 0.99 0.99 1.00 1.00
Average: 0.95 0.91 0.90 0.93 0.97

approach obtains the best ROC curves among the four methods. For the sake of clarity,

the mean values of AUC for each model are shown in Table 5.11. The findings show that

the proposed strategy obtained 0.97 AUC on average, 0.95 for SVM, 0.91 for RF, 0.90 for

kNN, and 0.93 for NB.

5.6.3 Analysis of percentage improvement in accuracy

The percentage improvement in performance obtained by the proposed method over

traditional schemes is computed using equation (5.11), and the results are shown in Fig-

ure 5.14. The term AP represents the accuracy obtained by the proposed method on
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(a) (b)

(c) (d)

(e)

Figure 5.13: Confusion matrix and ROC curves for model evaluation. (a) Classification
performance on training data (b) Results on test data (c) ROC curve on training data (d)
ROC curve on test set

certain performance metrics such as sensitivity, specificity, precision, and F1-score. AO

represents the accuracy of other reference models on the same performance metrics. For

example, in experiment 1 (dataset 1), the proposed method achieve a sensitivity of 0.93,

while SVM achieves 0.89. The percent improvement is calculated by subtracting the
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value of the proposed method from the value of the reference method, such as SVM, i.e.,

0.93 − 0.89 × 100 = 4 percent. This implies that the suggested approach outperforms

SVM on sensitivity measures by percent. When compared to the RF, KNN, and NB mod-

els for the same metrics, improvements of 6, 7, and 10 percent are noted. In the case of

specificity, performance gains of 2, 3, 4, and 6 percent are obtained when compared to the

RF, KNN, and NB models. Similarly, the performance of the four models for accuracy,

F1 score, and AUC ranges from 3 percent to 10 percent. For experiment 2 (dataset 2), the

percentage improvements over four reference methods range from 1 percent to 7 percent.

% improvement = (AP − AO)× 100 (5.11)
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Figure 5.14: Comparison of percentage improvements over four methods (a) Improve-
ments on benchmark dataset (experiment 1) (b) Improvements on real data of buildings
(experiment 2)

5.7 Discussion and reasons

Based on the obtained results, the following comments are cited from this chapter.

• Reason for improved accuracy: The performance of the proposed method is better

than traditional machine learning methods in three situations. Firstly, it automati-

cally handles the missing data and class imbalance problem in the given datasets.

Second, it captures efficient high-level feature representations of buildings load pro-

file data, resulting in better performance on classification task. Third, it incorpo-
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rates an MSTL approach that follows a two-phase protocol combining pretraining

(unsupervised phase) and supervised learning phase to improve the accuracy.

• Unsupervised feature learning: The benefit of the proposed model is that it incor-

porates the automatic (unsupervised) feature learning with minimum human inter-

vention. This is important in the context of building load profiles since in practical

situations, each building has unique electric load patterns and the manual extraction

of key features for each building is not possible. The current baseline approaches

rely on handcrafted features, which leads to poor classification performance be-

cause they are unable to generalize due to a lack of ability to capture useful features.

This demonstrates the importance and necessity of utilizing essential information

and features for building profile classification.

• Impact of different regions and datasets: This study shows that diverse datasets

and prevailing conditions of regions considerably affect the accuracy of models. A

thorough analysis of classification systems require appropriate data. Unbalanced

and incomplete data is hard to analyse [218]. To address this issue, a minority over-

sampling technique is proposed to fill in the missing data and balance the minority

and majority samples.

• Classification groups and implications: The experiments are performed for di-

verse group of buildings including residential, industrial, and commercial sectors.

The accurate and reliable classification of building load profiles is helpful for the de-

velopment of building energy conservation measures. The results could contribute

to the establishment of an energy saving policies, thereby possibly aiding energy

managers to accurately predict electricity demand. The managers could conduct en-

ergy simulation by considering these load classifications. Thus, the energy-saving

design of buildings can be optimized.

• Effect of time interval: In terms of time interval, the results showed that the classi-

fication accuracy improves with the increase in time interval. This has been verified

by experimenting the results on 5 min and 1 hour interval datasets. It is observed

that the classification accuracy is better on longer time intervals. This finding meets

the fact that the increase of the data time interval can reduce the volatility of build-

ing load profiles, thereby making the load variation more stable and thus more pre-

dictable. This is also echoed in existing studies [219, 220].
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• Validation using two case studies: The validation is performed using real mea-

surements of buildings and benchmark datasets. The classification metrics includ-

ing accuracy, F1-score, recall, precision, and AUC are used for performance eval-

uation. Case studies demonstrate that the proposed model obtained good results

compared to state-of-the-art methods, exhibiting higher accuracy on all the evalua-

tion metrics.

5.8 Concluding remarks

A novel deep learning framework for the classification of building load profiles is

proposed. The goal is to classify different groups of buildings and to study the load profile

of each group. The approach incorporates an unsupervised feature extraction based on

SAEs to automatically learn the useful representations from data. The obtained features

are then utilized in the MSTL technique to improve the classification accuracy. The MSTL

approach employs a two-phase protocol that combines unsupervised pretraining with a

supervised learning strategy. The model’s performance is validated using both real-world

and benchmark simulated datasets. The results of the 4-fold cross-validation demonstrate

that the model exhibits a strong ability in classifying the building load profiles precisely.

On benchmark buildings dataset, classification scores exceed 90 percent on the testing set,

while accuracy exceeds 85 percent on the real-world building dataset. For fairness, the

results are compared to the most commonly used approaches in the literature. It is found

that the proposed methodology outperforms state-of-the-art methods, displaying superior

accuracy across all evaluation metrics. More importantly, an analysis is performed to

determine the percentage improvement in accuracy, and the findings are compared using

standard performance metrics such as overall accuracy in confusion matrix, precision,

recall, F1-score, and ROC-AUC values. The results indicate an increase in accuracy,

with a percentage improvement of about 1 to 10 percent over conventional classification

models.

As a benefit, the proposed approach is generic in the sense that it is not restricted to

a specific classification task or a specific region. It can be used to create prototypes for

developing more advanced tools for building energy classification. The findings of the

study contribute to automate and improve the predictive modeling process while bridg-

ing the knowledge gaps between deep learning and building professionals. The created
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algorithms performed well and considerably increased the viability of a building profile

classification procedure in real-world building datasets.
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Chapter 6

Conclusion and future research

directions

This thesis began with three aims:

1. providing a data protection framework for anonymizing a distribution network’s

data and validating the solutions on the IEEE 123-node test system;

2. developing novel solutions for building a synthetic network and datasets, and vali-

dating them in practical environments such as industrial servers; and

3. addressing the issue of classifying the load profiles of buildings to effectively man-

age energy sources across power distribution networks.

These aims are pursued in the three core chapters of this thesis. In this chapter, the

findings of this study are summarized, its contributions to the existing literature identified

and future research directions and final remarks provided.

6.1 Research significance and outcomes

This research led to the development of algorithms that address the following issues:

• Firstly, a new way of conducting a literature review is presented by performing

VOSviewer experiments. The scattered literature is transformed into visual presen-

tations and key research gaps are identified in the form of visual clusters.
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• Based on the findings of the review, a novel method for anonymizing distribution

networks data using a statistical distribution and parameter estimation approach is

proposed.

• An algorithm based on the MLE is proposed for finding the statistical distribution

parameters that represent the actual data.

• A K-S test is conducted to make anonymized network datasets realistic. Two stan-

dard criteria are used to test the statistical compliance of anonymized datasets with

real ones.

• A data anonymization process is developed to create representative anonymous

datasets that can be used for research purposes without accessing the confidential

data. The comparison results of actual and anonymized datasets are evaluated using

three different datasets.

• In Chapter 2, new data synthesis algorithms are created for synthetic power distri-

bution networks. The topology of power distribution lines is developed from public

road infrastructure. The proposed method simplifies the design of power lines by

using the concept of nodes and edges. This concept is supported in the power dis-

tribution planning book [175] and power system planners can leverage from this

approach to select suitable routes for new power lines.

• An algorithm for computing the lengths of power line segments is proposed.

• A batch-geolocation algorithm is proposed for identifying the geographical location

of households in a network.

• A hub-line algorithm is developed to identify the number of consumers connected to

a single transformer. A standard distance between a transformer and the households

is maintained by following the CIGRE C6.24 standards [16].

• An up-to-date repository of substation information is retrieved from the OSM ap-

proach. Multiple queries based on a query language are created in an overpass-

turbo [178] to identify the locations of substations.

• A new algorithm for creating connectivity nodes data is generated using the concept

of utility poles and their associated lines.
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• A standard way of representing electrical connectivity between two or more equip-

ment’s in the network is provided by proposing fromNode and ToNode concept.

Connectivity is established by defining the start and endpoints of the network ele-

ments.

• The datasets are created with interactive map-based visualizations. The maps dis-

play the topological structure of the developed network, allowing different sections

of the network to be examined in detail. The interactive geographic maps show

the names of the nodes and IDs of the network elements (substations and power

transformers) assigned to them.

• In Chapter 3, two novel approaches based on SAEs and the MSTL are proposed.

Different from standard hand-crafted feature representations, SAEs can learn mean-

ingful features from vast amount buildings data in an unsupervised automated man-

ner. This is significant as each building has unique electrical load patterns, and

manually extracting the key features of every building is not possible in actual sce-

narios. An MSTL approach is developed to improve the classification accuracy by

combining sequential unsupervised and supervised learning.

• A MOS method is proposed for dealing with incomplete and unbalanced real-world

data. It effectively balances missing or unbalanced data by equalizing minority and

majority samples for fair comparisons.

6.2 Comparisons with benchmarks

In this dissertation, several case studies that validate the proposed solutions are pre-

sented.

• In chapter 1, the methodology is tested on the IEEE 123-node system by anonymiz-

ing the test system distribution grid parameters. Firstly, an anonymized dataset is

created for IEEE 123 node test feeder. Then, the anonymized IEEE 123 node feeder

was simulated in OpenDSS by reference to the actual IEEE 123-node test feeder

• The results are compared on three different industrial datasets. The validation is

performed by collecting the network datasets from a local DNSP in Canberra.
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• Comparisons of existing methods and proposed solutions are conducted. The re-

sults are compared with recently published noise addition methods. Also, for fair-

ness, the results are evaluated and compared on two metrics, the voltage profiles

and power flow through the lines.

• In Chapter 2, the practical feasibility of the proposed algorithms is demonstrated

by an illustrative case study of the Colac region in Australia. A synthetic network

and dataset is created for the distribution feeder, and validated on industrial data

platforms.

• The results of the proposed solutions are compared using a two-step validation pro-

cess. In the first stage, solutions are validated by replicating them in real-world

industrial data platforms such as EVOLVE [221], and in the second stage, solutions

are verified using expert comments and validation. This method contributes to ex-

panding the utility of synthetic networks and datasets from university researchers

to industry users.

• Geographical validation of distribution network models is assessed using interactive

maps in the QGIS platform which enables users to manage and visualize the key

assets of an existing energy infrastructure.

• In Chapter 3, empirical comparison is conducted with the most widely used ma-

chine learning methods including SVM, RF, kNN, and NB. The standard perfor-

mance criteria, a confusion matrix, ROC curves, recall, F1-score, specificity and

precision, are used. For a fair assessment, an average percentage performance im-

provement obtained by the proposed method over traditional methods is computed.

• As the load profiles of buildings differ from region to region, the practical feasi-

bility of the proposed solutions is shown through two case studies. Case study 1

involves testing the algorithms on a public benchmark dataset of buildings [191].

Case study 2 validates the results using real-world datasets of 105 buildings (resi-

dential, commercial, and industrial).

6.3 Extensions and future research directions

The algorithms developed in this thesis could be extended in the following ways.
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1. In Chapter 3, the value and effectiveness of anonymization approaches are dis-

cussed. Anonymizing data can lead to the loss of its critical information. In future,

more robust and advanced anonymization systems that can maintain a balance be-

tween data protection and utility are required to maintain data integrity in real-world

applications.

2. In Chapter 4, novel solutions for developing a synthetic network and datasets are

provided. The methodology is applied to the Australian case while demonstrating

a case study of a distribution feeder. Future work includes the implementation

of these methods in large scale networks to enhance the utility of the proposed

solutions.

3. The electrical characteristics are not considered during synthetic network develop-

ment. However, by integrating them with the topology of a synthetic network, their

value for testing and developing new algorithms, such as a load-flow analysis, could

be increased.

4. It is also noticed that a lack of available data platforms hinders the applications of

synthetic networks and datasets. Data platforms that facilitate efficient querying of

realistic distribution network models and sharing research results are required. Fu-

ture work will include implementing cloud-based data platforms for data protection

whereby the data will eventually be transmitted to a centralized platform server to

provide real-time services to the targeted research community.

5. In Chapter 5, two novel AI-based approaches created to solve the problem of clas-

sifying load profiles are demonstrated. The methods perform well and considerably

increase the viability of a building profile classification procedure in real-world

building datasets. In the future, more intriguing approaches, such as graph neural

networks, will be investigated to evaluate their expressive capacities in classifica-

tion problems.

6.4 Key takeaways

The following are the key takeaways of this thesis.
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• The evolving constraint of LV network visibility in power systems is addressed by

developing synthetic networks and datasets. The associated challenges, such as

privacy and confidentiality concerns in critical network data and the problem of

load profiling classification in the distribution networks are addressed with novel

solutions.

• The various approaches reported in this thesis have been evaluated through rigorous

experimentation. For example, a case study of a synthetic network for the Colac

region in Australia is presented as a practical application of the methodology. The

methods are also experimentally proven by simulating them in the IEEE 123-node

test feeder.

• The methodologies are validated on an industry scale and also by including the

feedback from industry practitioners familiar with this field.

• The solutions are also shared with the wider audience in the field by submitting

the results to peer-reviewed journals. In total, eleven research papers are produced

from this research (eight as the lead author and three as a co-author). This thesis

also resulted in an industry-sponsored research grant for solving issues associated

with current electrical distribution networks.

It is hoped that the solutions presented in this thesis will kindle the interest of future

researchers and practitioners in synthetic networks and datasets, and encourage them to

develop more realistic distribution network models. The three developments highlighted

in this thesis can be used to improve present network operations while continuing to ex-

pand innovations of synthetic networks and datasets in scientific research.
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Appendix A

Supplementary Materials

Developed procedure for evaluating synthetic networks and datasets on industry

(DNSP) servers

1 # Python environment

2 # Experimental setup and ingestion of synthetic networks

3 # Case study of Australian region, Evolve-project

4

5 import geopandas as gp

6 import zepben.evolve as ev

7 from zepben.evolve import connect_async, ProducerClient

8 from tkinter import filedialog

9 from tkinter import *

10 from pathlib import Path

11 import logging

12 import asyncio

13 import argparse

14 import pydash

15 import json

16 import os

17

18 logging.basicConfig(level=logging.DEBUG)

19 logger = logging.getLogger(__name__)

20

21

22 def get_path():

23 root = Tk()

24 root.filename = filedialog.askopenfilename(initialdir=Path.home(),

title="Select file",
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25 filetypes=(("jpeg files"

, "*.geojson"), ("all files", "*.*")))

26 return root.filename

27

28

29 def read_json_file(path):

30 with open(path, "r") as f:

31 return json.loads(f.read())

32

33

34 class Colac_Network:

35

36 def __init__(self, path, namespace=’evolve’):

37 self.namespace = namespace

38 self.path = "ColacDemoFeeder31.geojson"

39 logger.info(f’Creating Network from: {path}’)

40 self.geojson_file = read_json_file(self.path)

41 self.mapping = read_json_file(’cim-mapping.json’)

42 self.config_file = read_json_file(’geojson-config.json’)

43 self.feeder_name = os.path.basename(self.path)

44 self.fdr = ev.Feeder(name=’ColacDemoFeeder31’, mrid=’

ColacDemo_mrid’)

45 self.headEqMrid = None

46 self.gdf = gp.read_file(self.path)

47 self.ns = ev.NetworkService()

48 self.ds = ev.DiagramService()

49 self.add_base_voltages()

50

51 def get_cim_class(self, gis_class):

52 if self.mapping.get(gis_class):

53 return self.mapping[gis_class]["cimClass"]

54 else:

55 return None

56 def get_field_name(self, field):

57 if self.config_file.get(field):

58 return self.config_file[field][self.namespace]

59

60 def add_diagram(self):

61 diagram = ev.Diagram(diagram_style=ev.DiagramStyle.GEOGRAPHIC)

62 self.ds.add(diagram)

121



63 return diagram

64

65 def add_location(self, row):

66 loc = ev.Location()

67 for coord in row["geometry"].coords:

68 logger.info(f’Creating coordinates: {coord}’)

69 loc.add_point(ev.PositionPoint(coord[0], coord[1]))

70 logger.info(’Add Location to Network Service’)

71 self.ns.add(loc)

72 return loc

73

74 def add_base_voltages(self):

75 self.ns.add(ev.BaseVoltage(mrid=’415V’, nominal_voltage=415,

name=’415V’))

76 self.ns.add(ev.BaseVoltage(mrid=’11kV’, nominal_voltage=11000,

name=’11kV’))

77 self.ns.add(ev.BaseVoltage(mrid=’22000’, nominal_voltage=22000,

name=’22000’))

78 self.ns.add(ev.BaseVoltage(mrid=’UNKNOWN’, nominal_voltage=0,

name=’UNKNOWN’))

79

80 def create_equipment(self, row, loc):

81 class_name = self.get_cim_class(row[self.get_field_name(’class’

)])

82 if class_name is not None:

83 logger.info(f’Creating CIM Class: {class_name}’)

84 class_ = getattr(ev, class_name)

85 eq = class_()

86 if isinstance(eq, ev.EnergySource):

87 logger.info(f"Creating EnergySourcePhases for

EnergySource: {eq}")

88 esp_a = ev.EnergySourcePhase(phase=ev.SinglePhaseKind.A

)

89 esp_b = ev.EnergySourcePhase(phase=ev.SinglePhaseKind.B

)

90 esp_c = ev.EnergySourcePhase(phase=ev.SinglePhaseKind.C

)

91 self.ns.add(esp_a)

92 self.ns.add(esp_b)

93 self.ns.add(esp_c)
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94 eq.add_phase(esp_a)

95 eq.add_phase(esp_b)

96 eq.add_phase(esp_c)

97

98 logger.info(f’Creating Equipment mRID: {row[self.

get_field_name("mrid")]}’)

99 eq.mrid = str(row[self.get_field_name("mrid")])

100 eq.name = str(row[self.get_field_name("name")])

101 eq.location = loc

102 if type(eq) == ev.PowerTransformer:

103 pte1 = ev.PowerTransformerEnd(power_transformer=eq)

104 eq.add_end(pte1)

105 pte2 = ev.PowerTransformerEnd(power_transformer=eq)

106 eq.add_end(pte2)

107 self.ns.add(eq)

108 self.ns.add(pte1)

109 self.ns.add(pte2)

110 self.ns.add(eq)

111 self.ns.add(pte1)

112 self.ns.add(pte2)

113 logger.info(f’Creating PowerTranformerEnds for

PowerTransfomer: {eq}’)

114 if row[self.get_field_name(’baseVoltag’)] is not None:

115 logger.info(f’Assigning BaseVoltag: {row["baseVoltag"]}

’)

116 eq.base_voltage = self.ns.get(row[self.get_field_name(’

baseVoltag’)])

117 else:

118 logger.info(f’baseVoltag = None. Assigning BaseVoltag:

UNKNOWN’)

119 eq.base_voltage = self.ns.get(’UNKNOWN’)

120 else:

121 raise Exception(f’GIS Class: {row[self.get_field_name("

class")]} is not mapped to any Evolve Profile class’)

122 self.ns.add(eq)

123 return eq

124

125 def add_equipment(self):

126 for index, row in self.gdf.iterrows():

127 loc = self.add_location(row)

123



128 eq = self.create_equipment(row, loc)

129 if eq is not None:

130 self.fdr.add_equipment(eq)

131 eq.add_container(self.fdr)

132 if row[self.get_field_name("headTermin")] == 1:

133 self.headEqMrid = row[self.get_field_name("mrid")]

134 logger.info(f’Detect head Equipment: {self.

headEqMrid}’)

135 else:

136 logger.error(f’Equipment not mapped to a Evolve Profile

class: {row[self.get_field_name("mrid")]}’)

137 self.ns.add(self.fdr)

138 self.connect_Colac_equipment()

139 return self.ns

140

141 def connect_Colac_equipment(self):

142 gdf_b = self.gdf[self.gdf[’geometry’].apply(lambda x: x.type ==

’LineString’)]

143 for index, row in gdf_b.iterrows():

144 if row[self.get_field_name(’fromEq’)] is not None:

145 logger.info(f’Connecting: {(row[self.get_field_name("

fromEq")])} to {row[self.get_field_name("toEq")]} ’

146 f’with acls: {row[self.get_field_name("mrid

")]}’)

147

148 mrid_equipment = self.ns.get(mrid=str(row[self.

get_field_name(’mrid’)]))

149 eq1 = self.ns.get(mrid=row[self.get_field_name(’fromEq’)])

150 eq2 = self.ns.get(mrid=row[self.get_field_name(’toEq’)])

151

152 geophases = ev.PhaseCode[row.get(self.get_field_name(’

phases’), default="ABC")]

153 Terminal_1 = ev.Terminal(conducting_equipment=

mrid_equipment, phases=geophases)

154 Terminal_2 = ev.Terminal(conducting_equipment=

mrid_equipment, phases=geophases)

155

156 mrid_equipment.add_terminal(Terminal_1)

157 mrid_equipment.add_terminal(Terminal_2)

158
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159 from_Equipment = ev.Terminal(conducting_equipment=eq1,

phases=geophases)

160 eq1.add_terminal( from_Equipment)

161

162 To_Equipment = ev.Terminal(conducting_equipment=eq2, phases

=geophases)

163 eq2.add_terminal( To_Equipment)

164

165 if eq1.mrid == self.headEqMrid and self.fdr.

normal_head_terminal is None:

166 logger.info(f’Assigning head terminal to Feeder for the

Equipment {eq1.mrid}’)

167 setattr(self.fdr, ’normal_head_terminal’,

from_Equipment)

168 if eq2.mrid == self.headEqMrid and self.fdr.

normal_head_terminal is None:

169 logger.info(f’Assigning head terminal to Feeder for the

Equipment {eq2.mrid}’)

170 setattr(self.fdr, ’normal_head_terminal’, To_Equipment)

171 self.ns.add(Terminal_1)

172 self.ns.add(from_Equipment)

173 self.ns.add(Terminal_2)

174 self.ns.add(To_Equipment)

175 self.ns.connect_terminals(Terminal_1, from_Equipment)

176 self.ns.connect_terminals(Terminal_2, To_Equipment)

177

178

179 async def main():

180 parser = argparse.ArgumentParser(description="Zepben_UNSW cimbend

demo for geoJSON ingestion")

181 parser.add_argument(’server’, help=’Host and port of grpc server’,

metavar="host:port", nargs="?",

182 default="localhost")

183 parser.add_argument(’--rpc-port’, help="The gRPC port for the

server", default="50051")

184 parser.add_argument(’--conf-address’, help="The address to retrieve

auth configuration from",

185 default="http://localhost/auth")

186 parser.add_argument(’--client-id’, help=’Auth0 M2M client id’,

default="")
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187 parser.add_argument(’--client-secret’, help=’Auth0 M2M client

secret’, default="")

188 parser.add_argument(’--ca’, help=’CA trust chain’, default="")

189 parser.add_argument(’--cert’, help=’Signed certificate for your

client’, default="")

190 parser.add_argument(’--key’, help=’Private key for signed cert’,

default="")

191 parser.add_argument(’--geojson_path’, help=’Path of the geojson

input file’,

192 default= "C:/Users/Ali/Desktop/Git projects

/2021/evolve-python-sdk-tests/src/ColacDemoFeeder31.geojson")

193 args = parser.parse_args()

194 ca = cert = key = client_id = client_secret = None

195 if not args.client_id or not args.client_secret or not args.ca or

not args.cert or not args.key:

196 logger.warning(

197 f"Using an insecure connection as at least one of (--ca, --

token, --cert, --key) was not provided.")

198 else:

199 with open(args.key, ’rb’) as f:

200 key = f.read()

201 with open(args.ca, ’rb’) as f:

202 ca = f.read()

203 with open(args.cert, ’rb’) as f:

204 cert = f.read()

205 client_secret = args.client_secret

206 client_id = args.client_id

207 # Creates a Network

208 network = Colac_Network(args.geojson_path).add_equipment()

209

210 # Connect to a local cimcap instance using credentials if provided.

211 async with connect_async(host=args.server, rpc_port=args.rpc_port,

conf_address=args.conf_address,

212 client_id=client_id, client_secret=

client_secret, pkey=key, cert=cert, ca=ca) as channel:

213 client = ProducerClient(channel)

214 # Send the network to the postbox instance.

215 res = await client.send([network])

216

217
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218 if __name__ == "__main__":

219 loop = asyncio.get_event_loop()

220 loop.run_until_complete(main())
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Hodge, V. Krishnan, and B. Palmintier, “Building large-scale us synthetic electric

distribution system models,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp.

5301–5313, 2020.

[2] “General electric (GE) global transmission and distribution grid challenges,” https:

//www.ge.com/digital/lp/frost-and-sullivan-awards-ge-digital-product-leadership-

award, 2021.

[3] E. Y. Dari, A. Bendahmane, and M. Essaaidi, “Verification-based data integrity

mechanism in smart grid network,” International Journal of Security and Net-

works, vol. 16, no. 1, pp. 1–11, 2021.

[4] J. Houghton and N. Gruen, “The value of research data: Open research data report,”

https://www.ands.org.au/working-with-data/articulating-the-value-of-open-data,

2020, [Online; accessed 22-October-2021].

[5] H. Ping, J. Stoyanovich, and B. Howe, “Datasynthesizer: Privacy-preserving syn-

thetic datasets,” in Proceedings of the 29th International Conference on Scientific

and Statistical Database Management, 2017, pp. 1–5.

[6] N. Anuar, N. Baharin, N. Nizam, A. Fadzilah, S. Nazri, and N. Lip, “Determination

of typical electricity load profile by using double clustering of fuzzy c-means and

hierarchical method,” in 2021 IEEE 12th Control and System Graduate Research

Colloquium (ICSGRC). IEEE, 2021, pp. 277–280.

128

https://www.ge.com/digital/lp/frost-and-sullivan-awards-ge-digital-product-leadership-award
https://www.ge.com/digital/lp/frost-and-sullivan-awards-ge-digital-product-leadership-award
https://www.ge.com/digital/lp/frost-and-sullivan-awards-ge-digital-product-leadership-award
https://www.ands.org.au/working-with-data/articulating-the-value-of-open-data


[7] Y. Sun, W. Gu, J. Lu, and Z. Yang, “Fuzzy clustering algorithm-based classification

of daily electrical load patterns,” in 2015 12th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD). IEEE, 2015, pp. 50–54.

[8] Z. Ma, A. Clausen, Y. Lin, and B. N. Jørgensen, “An overview of digitalization for

the building-to-grid ecosystem,” Energy Informatics, vol. 4, no. 2, pp. 1–21, 2021.

[9] Y. Pan and L. Zhang, “Data-driven estimation of building energy consumption with

multi-source heterogeneous data,” Applied Energy, vol. 268, p. 114965, 2020.

[10] “IEEE, PES AMPS DSAS Test Feeder Working Group, Test feeders.” http://sites.

ieee.org/pes-testfeeders/resources/ [Accessed: 1-Aug-2021].

[11] “Texas A&M university electric grid datasets.” https://electricgrids.engr.tamu.edu/

electric-grid-test-cases/datasets-for-arpa-e-perform-program/ [Accessed: 6-Aug-

2021].

[12] “EPRI, (Electric Power Research institute).” https : / / smartgrid . epri . com /

SimulationTool.aspx [Accessed: 6-Aug-2021].

[13] “ENTSO-E transmission system,.” https://www.entsoe.eu/data/map/ [Accessed:

6-Aug-2021].

[14] “PNNL (pacific northwest national laboratory), ”taxonomy of prototypical feed-

ers,.” https://sourceforge.net/p/gridlab-d/code/HEAD/tree/Taxonomy Feeders/

[Accessed: 6-Aug-2021].

[15] “United kingdom generic distribution system (ukgds),.” https://github.com/sedg/

ukgds [Accessed: 6-Aug-2021].

[16] “Cigre capacity of distribution feeders for hosting der, 2014,” https://www.

cigreaustralia . org . au / assets / ITL - SEPT- 2014 / 3 . 1 - Capacity - of - Distribution -

Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf.

[17] “Open energy modelling (OPENMOD) initiative,.” https://openmod-initiative.org/

[Accessed: 28-Aug-2021].

129

http://sites.ieee.org/pes-testfeeders/resources/ 
http://sites.ieee.org/pes-testfeeders/resources/ 
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/datasets-for-arpa-e-perform-program/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/datasets-for-arpa-e-perform-program/
https://smartgrid.epri.com/SimulationTool.aspx
https://smartgrid.epri.com/SimulationTool.aspx
https://www.entsoe.eu/data/map/
https://sourceforge.net/p/gridlab-d/code/HEAD/tree/Taxonomy_Feeders/
https://github.com/sedg/ukgds
https://github.com/sedg/ukgds
https://www.cigreaustralia.org.au/assets/ITL-SEPT-2014/3.1-Capacity-of-Distribution-Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf
https://www.cigreaustralia.org.au/assets/ITL-SEPT-2014/3.1-Capacity-of-Distribution-Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf
https://www.cigreaustralia.org.au/assets/ITL-SEPT-2014/3.1-Capacity-of-Distribution-Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf
https://openmod-initiative.org/


[18] “OPSD (open power system data),.” https://open-power-system-data.org/data-

projects [Accessed: 6-Aug-2021].

[19] “Open energy platform (OEP) .” https://openenergy-platform.org/ [Accessed: 16-

Aug-2021].

[20] “Illinois center for a smarter electric grid (ICSEG) .” https://icseg.iti.illinois.edu/

power-cases/ [Accessed: 26-Aug-2021].

[21] “MATPOWER test cases, ”electric power system simulation and optimization,.”

https://github.com/MATPOWER/matpower [Accessed: 6-Aug-2021].

[22] “LINES (laboratory for intelligent integrated networks of engineering systems) .”

http://amfarid.scripts.mit.edu/Datasets/SPG-Data/index.php [Accessed: 23-Aug-

2021].
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cases.” https://e-cigre.org/publication/736-power-system-test-cases- for-emt-

type-simulation-studies.

[115] “SimBench - benchmark data set for grid analysis, grid planning and grid operation

management,” 2020,” https://simbench.de/en/ [Accessed: 26-Aug-2021].

[116] R. Atat, M. Ismail, M. F. Shaaban, E. Serpedin, and T. Overbye, “Stochastic

geometry-based model for dynamic allocation of metering equipment in spatio-

temporal expanding power grids,” IEEE Transactions on Smart Grid, vol. 11, no. 3,

pp. 2080–2091, 2019.

140

http://git.scigrid.de/
 https://e-cigre.org/publication/736-power-system-test-cases-for-emt-type-simulation-studies
 https://e-cigre.org/publication/736-power-system-test-cases-for-emt-type-simulation-studies
https://simbench.de/en/


[117] A. B. Birchfield, K. M. Gegner, T. Xu, K. S. Shetye, and T. J. Overbye, “Statis-

tical considerations in the creation of realistic synthetic power grids for geomag-

netic disturbance studies,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp.

1502–1510, 2016.

[118] K. M. Gegner, A. B. Birchfield, T. Xu, K. S. Shetye, and T. J. Overbye, “A method-

ology for the creation of geographically realistic synthetic power flow models,” in

2016 IEEE Power and Energy Conference at Illinois (PECI).

[119] S. Soltan and G. Zussman, “Generation of synthetic spatially embedded power grid

networks,” in 2016 IEEE Power and Energy Society General Meeting (PESGM).

IEEE, 2016, pp. 1–5.

[120] H. Sadeghian and Z. Wang, “Autosyngrid: A matlab-based toolkit for automatic

generation of synthetic power grids,” International Journal of Electrical Power &

Energy Systems, vol. 118, p. 105757, 2020.

[121] T. E. McDermott, “A test feeder for dg protection analysis,” in 2011 IEEE/PES

Power Systems Conference and Exposition, 2011, pp. 1–7.

[122] K. P. Schneider and J. C. Fuller, “Voltage control devices on the ieee 8500 node

test feeder,” in IEEE PES T&D 2010. IEEE, 2010, pp. 1–6.

[123] A. Rajabi, M. Eskandari, M. J. Ghadi, L. Li, J. Zhang, and P. Siano, “A comparative

study of clustering techniques for electrical load pattern segmentation,” Renewable

and Sustainable Energy Reviews, vol. 120, p. 109628, 2020.
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[216] H. A. Güvenir and M. Kurtcephe, “Ranking instances by maximizing the area un-

der roc curve,” IEEE Transactions on Knowledge and Data Engineering, vol. 25,

no. 10, pp. 2356–2366, 2012.
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