CAmKES: A component model for secure microkernel-based
embedded systems

Author:
Kuz, Ihor; Liu, Yan; Gorton, lan; Heiser, Gernot

Publication details:

Journal of Systems Software
v. 80

Chapter No. 5

pp. 687-699

0164-1212 (ISSN)

Publication Date:
2007

Publisher DOI:
http://dx.doi.org/10.1014/j.jss.2006.08.039

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39908 in https://
unsworks.unsw.edu.au on 2024-04-26

http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2006.08.039
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39908
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

CAmMKES: A Component Model for Secure
Microkernel-based Emebedded Systems

lhor Kuz, Yan Liu, lan Gorton, Gernot Heiser

National ICT Australia!
University of New South Wales, Sydney, Australia

Abstract

Component-based software engineering promises to provide structure and reusability
to embedded-systems software. At the same time, microkernel-based operating systems
are being used to increase the reliability and trustworthiness of embedded systems. Since
the microkernel approach to designing systems is partially based on the componentisa-
tion of system services, component-based software engineering is a particularly attrac-
tive approach to developing microkernel-based systems. While a number of widely used
component architectures already exist, they are generally targeted at enterprise computing
rather than embedded systems. Due to the unique characteristics of embedded systems, a
component architecture for embedded systems must have low overhead, be able to address
relevant non-functional issues, and be flexible to accommodate application specific require-
ments. In this paper we introduce a component architecture aimed at the development of
microkernel-based embedded systems. The key characteristics of the architecture are that
it is has a minimal, low-overhead, core but is highly modular and therefore flexible and
extensible. We have implemented a prototype of this architecture and confirm that it has
very low overhead and is suitable for implementing both system-level and application level
services.

Key words. component architecture, microkernel, embedded system,

Email addresses: i hor . kuz@ni ct a. com au (lhor Kuz),
jenny.liu@icta.com au(YanLiu),i an. gorton@i cta. com au (lan
Gorton), ger not . hei ser @i ct a. com au (Gernot Heiser).

1 National ICT Australia is funded by the Australian Government’s Department of Com-
munications, Information Technology, and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research Centre of Excellence programs.

Preprint submitted to Elsevier Science 23 May 2006

1 Introduction

Traditional methods for developing embedded systems are resulting in increasingly

unreliable embedded software. As embedded hardware capabilities increase, the

ability to add more functionality to embedded systems also increases, leading to a

growing complexity of embedded system software. However, while the complexity

of the software increases, the methods and technologies used to develop have not

changed significantly. While arguably sufficient for small systems, these methods
and technologies are insufficient for building the larger and more complex systems
being developed today.

Overcoming this problem requires the application of more advanced software engi-
neering techniques to help ensure improved quality and more efficient development
of embedded software. Component-based software engineering (CBSE) is a tech-
nigque that is particularly well suited to this problem. CBSE provides a way to com-
pose systems from independent, well-defined building blocks. Organising software
in this way helps to provide structure and improves the reusability of code. It also
improves flexibility by allowing components to be added and removed from a sys-

tem (possibly at run-time), as well as allowing components developed in different
languages to interact with each other. This means that developing and maintaining
software becomes overseeable and more efficient. Furthermore, CBSE also enables
independent development of components which means that specialised expertise
can be (independently) concentrated on different parts of the system as required.

While CBSE has seen a wide adoption in the domain of enterprise computing, there

are major differences between software for enterprise systems and software for em-

bedded systems that prevent us from simply taking enterprise CBSE technologies

and applying them in the embedded systems domain. The differences between em-

bedded and enterprise systems fall into two categories: resource restrictions and

non-functional requirements. Unlike enterprise systems, embedded systems have

considerable resource restrictions. Deployment, cost and size concerns lead to sig-

nificant restrictions in processing power, memory size and energy resources. De-
velopers of software for embedded systems must ensure that their software can

perform sufficiently on slower processors, can fit into reduced memory, and can
run efficiently in order to conserve energy.

Embedded systems also have non-functional requirements such as timeliness, safety
and dependability, that are less relevant to enterprise systems. Embedded systems
are often real-time systems, which means that they have a temporal aspect to their
behaviour. Software developed for such systems must be predictable so that its
temporal properties can be analysed and reasoned about. The software must also
be written in such a way that strict temporal deadlines can be dependably met. Be-
sides being real-time systems, many embedded systems are also deployed in safety
(or mission) critical applications. The software developed for such systems must

not fail. Software failure in such applications could lead to mission failure, damage
to material and even loss of lives. Finally, many embedded systems are deployed
in environments where they cannot easily be maintained or replaced. This means
that the software must be reliable and counted on not to fail. Alternatively, if the
software does fail, the system must provide mechanisms to notice the failure and
rectify itself so that it can continue functioning.

In this paper we propose a component model and associated architecture targeted
specifically at the development of embedded systems.?

The main contribution of this paper is a component model and architecture designed
to run on a small microkernel-based operating system. It is meant to be used to de-
velop components that provide OS services (such as drivers, file systems, network
stacks, etc.) as well as application components that make use of the underlying OS
services. The key feature of the model is that it is highly flexible and extensible,
and has an extremely low overhead.

In the next section we discuss the role of operating systems in embedded systems
and review existing component models, both those meant for enterprise computing
and those meant for embedded systems. Afterward, in Section 3 we present the
design of our architecture. In Section 4 we discuss how non-functional properties
and requirements are dealt with in our architecture. We have built a prototype of the
system which is discussed in Section 5. Using this prototype we have performed
experiments to measure the overhead imposed by our component architecture, we
provide an overview of these experiments and discuss their results in Section 6.
Finally, we conclude with observations about the overhead costs of our component
architecture and discuss future work.

2 Background

Due to their unique resource and non-functional constraints, embedded systems
have different operating system (OS) requirements than traditional and enterprise
computing systems. Likewise they impose different constraints on the software en-
gineering approaches used to build them. In this section we discuss the use of op-
erating systems in embedded systems and look at existing component models that
have been designed for the development of embedded systems.

2 Note that while we are initially targeting non-distributed systems, we have taken care
that the model remains applicable to distributed embedded systems as well.

2.1 Embedded Operating Systems

Often the resource restrictions and the highly specific nature of an embedded sys-
tem lead developers to choose not to use an operating system at all. Instead, all
resource management functionality is implemented directly in the application soft-
ware. More likely, however, an embedded system will be based on a real-time op-
erating system (RTOS). An RTOS provides OS functionality tailored toward the
needs of real-time applications. Currently, as the capabilities of embedded hard-
ware increase, we find that many general-purpose operating systems (such as Win-
dows and Unix) are being deployed in embedded systems. Usually these operating
systems are modified to decrease their size, and have some real-time functionality
(such as real-time schedulers) added to them.

While there has been much focus on the real-time aspects of embedded operating
systems, few existing embedded operating systems sufficiently address issues of
protection, reliability and trustworthiness. With safety critical embedded systems
becoming more complex and security threats becoming more prevalent in the em-
bedded systems domain, security, reliability and trustworthiness requirements are
becoming more acute. Microkernel-based operating systems are stepping in to fill
this void (as evidenced by the microkernel-based embedded OSes from vendors
such as Green Hills, QNX, Sysgo, etc.).

In a microkernel-based system, a minimal set of operating system functionality
(most importantly memory protection and inter-process communication) is imple-
mented in the kernel, while all other functionality is implemented as services that
run outside the kernel. Since the microkernel is the only code that runs in a pro-
cessor’s privileged mode, there is only a small amount of code that can directly
interfere with the proper function of the whole system (either by causing irregular
system behaviour, or by violating system security). All other code runs in a pro-
cessor’s unprivileged user-mode and is protected by the microkernel from direct
interference by unrelated code. All of this has a number of important implications
for embedded systems. The minimality of a microkernel means that it does not use
excessive resources. Furthermore, it also means that it is easier to analyse the code
to verify that it is bug-free. The fact that most functionality runs in user-mode and
is protected from other user-mode code means that microkernel-based systems can
provide good partitioning between different applications and even between differ-
ent OS services. This means that buggy or malicious code is not as likely to take the
whole system down as it would be if there was no protection. Furthermore it means
that misbehaving code can be spotted, stopped and replaced without bringing the
system down.

Since microkernel-based systems promote the separation of functionality into sepa-
rate services, there is a strong synergy between the approach of microkernel-based
system design and CBSE. On the one hand, the CBSE approach of modeling a

system as interacting components fits the model of an operating system as a set of
interacting services. On the other hand, a microkernel provides exactly those fea-
tures (protection and communication) needed to build secure and reliable systems
consisting of interacting components.

2.2 CBSE for Embedded Systems

Many of the component models based on enterprise component technologies such

as .Net, J2EE and CORBA Component Model (CCM), fail to address the crit-

ical issues of using components in embedded systems, including resource con-

straints, real-time performance, fault tolerance, energy use, etc. Recent research

and engineering efforts have focused on establishing component-based software

engineering disciplines targeted specifically at embedded systems. We roughly di-
vide this related work into three categories. (1) Component models that target

specific application domains such as field devices, consumer electronics, vehicu-
lar systems, etc. Examples of such models include PECOS (GenRler et al., 2002),

Koala (van Ommering et al., 2000) and Save (Hansson et al., 2004). A detailed sur-

vey of other domain-specific component models is available (Mdoller et al., 2004);
(2) Component-based operating systems such as TinyOS (Hill et al., 2000), Peb-

ble (Gabber et al., 1999) and Think (Fassino et al., 2002); (3) Middleware-based

component models tailored for embedded and real-time systems and focusing on

non-functional attributes. Examples of these include CIAO (Wang et al., 2001),

COMQUAD (Gobel et al., 2004) and PECT (Wallnau, 2003).

PECOS was originally designed in the domain of field devices. It has a data-
flow-oriented model where components communicate by sending or receiving data.

Components can be either active or passive, with active components having their
own thread of control. PECOS does not focus on non-functional properties other
than timeliness and performance optimisiations.

Koala is designed by Philips and is focused on software product-line development
of consumer electronic devices. Koala focuses mainly on restricted resource con-
straints and provides a lightweight component model. Koala components commu-
nicate through remote procedure call style interfaces. Only static binding of compo-
nents is supported and all invocations are hard-coded into components so that the
runtime overhead is minimised. Koala does not take into account non-functional
properties such as timing, safety and security.

The SAVE (SAfety critical components for VEhicular systems) project has devel-
oped a component model, SaveCCM, targeted at vehicular systems (Hansson et al.,
2004). SaveCCM is part of a component-based development framework called
SAVEComp (Tivoli et al., 2005). SaveCCM supports static configuration of com-
ponents and component bindings. It focuses on quality attributes such as timeliness

and predictability of component behaviors. Analysis tools are actually provided
by the SAVEComp environment. An example is using SaveCCM components to
composite control loops.

TinyOS is an open-source operating system designed for wireless embedded sensor
networks. It features an event driven component model, which is complementary to
typical hardware models. This makes it possible to implement components in hard-
ware, or to implement hardware devices as software components. TinyOS supports
only static component bindings. There are no facilities for dynamic component
creation or destruction, dynamic binding, or dynamic allocation. TinyOS provides
very primitive services and does not provide any protection.

CIAO (Component-Integrated ACE ORB) is a CCM implementation built on top
of TAO (The Ace ORB). It is optimised for distributed real-time embedded sys-
tems (DRE) by modeling DRE-critical systemic aspects, such as QoS requirements
and real time policies, as installable and configurable units. Following the CCM
specification, components interact using interfaces and events. CCM components
run in a container, which provides them with an execution environment. The over-
head of common container-management operations must be minimised by a CCM
implementation to meet the resource constraints of an embedded system. Evalua-
tion of CIAO performance based on a benchmark measurement indicates that by
optimising the component communication, CIAO’s CORBA 3.x CCM capabilities
do not add significant overhead above and beyond its underlying TAO CORBA 2.x
implementation (Krishna et al., 2005). However the ORB (Object Request Broker)-
based communication in TAO can still impose overhead that is not affordable for
strict resource-bound embedded systems.

Research effort has also been devoted to component models and architectures de-
signed to fulfill non-functional requirements. COMQUAD (COMponents with QUan-
titative Properties and ADaptivity) has devised a component container architecture
that splits the architecture into a real-time capable (RT) part and a non-real-time ca-
pable part (NRT). The requirement of a specific non-functional quality attribute is
specified in a contract. The COMQUAD container uses JBoss, a J2EE component
container, to coordinate the interaction between the NRT and RT parts and guaran-
tee the quality attributes as specified in the contract. JNI (Java Native Interface) is
used to invoke the native code of RT parts from the COMQUAD Java-based con-
tainer. The use of Java makes this architecture less suited to resource-constrained
embedded systems

PECT (Prediction-enabled Component Technology) provides a general framework
for reasoning about quality attributes of component-based systems. The focus is
on how to apply an analytical theory to predict a specific quality attribute for a
component-based system given the component specification and the properties at-
tached to each component. PECT works at the conceptual level and has to be sepa-
rately instantiated for individual cases.

Schmidt (Schmidt, 2003) has proposed a dynamic model that defines configuration
and behavioral contracts and associates these to components and architectural as-
semblies of components. This enables the prediction of extra-functional properties
during architectural design. However, this work is mainly focused on distributed
real-time systems and does not address all the critical embedded-systems issues.

3 Component Architecture

In this section, we present our layered component architecture called, CAMKES
(Component Architecture for microkernel-based Embedded Systems). The pur-
pose of the architecture is to provide support for developing embedded systems on
top of microkernels. The architecture provides a component model, standard inter-
faces and component definitions, component implementations, standard services,
and support for various architectural patterns suited to embedded systems.

Before presenting the details, it is important to emphasize the relationship between
our component architecture and the underlying microkernel-based operating sys-
tem. Since the architecture is meant to be used to develop both application and
operating system components, one of the driving motivations of the design is tight
integration with the operating system. This results in two requirements. First, the
architecture must directly make use of any mechanism provided by the OS (this in-
cludes inter-process communication, memory management and protection) and not
reimplement similar mechanisms. Second, all mechanisms provided by the archi-
tecture must be efficient enough that they can be used by operating system compo-
nents without creating significant performance penalties for the rest of the system.

3.1 Overview

The CAMKES layered architecture is shown in Figure 1. At the bottom is the hard-
ware layer, which includes the CPU, memory, bus and any other devices. On top
of the hardware layer is the RTOS (Real-Time Operating System) layer, which con-
sists of a microkernel and a supervisory OS (in our case the microkernel is L4 and
the supervisory OS is Iguana). Further support such as device drivers, file systems
and network stacks can be included in this layer, however, these services can also be
implemented as CAmMKES components and can, therefore, reside at a higher layer
instead.

The CAmMKES core runtime forms the foundation of the component architec-
ture, providing an execution environment and the basic services required to deploy
CAmMKES components. The core runtime supports static components and compo-
nent compositions. This means that component instances are only created at system

initialisation (i.e., boot) time and that connections between components are estab-
lished at design time and cannot be created or modified dynamically at run-time.
This allows us to minimise overhead (for example by inserting direct procedure
calls into components, thus avoiding inter-process communication (IPC) and mar-
shaling overheads) for the most basic component-based applications.

More advanced component features are provided by extensions that run on top of
the core runtime in the extension layer. The extensions are themselves components
that make use of the core runtime features. The extension layer is designed to ad-
dress the various aspects of supporting dynamic components, including dynamic
creation and destruction, dynamic binding, dynamic configuration, etc.

Frameworks further extend the functionality of the component architecture by
providing components and services specifically geared to particular application
domains. Finally, user-defined components combine with the underlying layers to
form complete applications.

This layered architecture provides a good separation of concerns. Putting advanced
component features in the extension layers separate from the core runtime allows
the core runtime overhead to be minised. For example, support for dynamic bind-
ing implies increased overhead with regards to code size and processing. By placing
this support outside the core we can limit this overhead cost to those systems that
actually require dynamic binding. The extension layer will clearly have fewer re-
source constraints than the core runtime layer. In the rest of this paper, we focus on
the design and implementation of core runtime part of our component architecture.
The extension layer and frameworks are part of our ongoing research effort.

3.2 Feature Summary of the Core Runtime

The core runtime forms a key part of the CAmMKES layered architecture. Its main
features are listed below:

Modular: The core runtime only includes features that are really needed for any
particular target application. Other features can be added in the form of exten-
sions. This modularity allows users to extend the runtime with special features
on an as-needed basis depending on their specific applications.

Simple: The core runtime is lightweight and only focuses on static components
and their composition. This minimises the overhead introduced by the compo-
nent architecture.

Predictable: For static components, stubs and glue code are inserted into the com-
ponents themselves at compile time. This allows the temporal behaviour of the
resulting application to be analysed. Predictability can be achieved for static
components with static composition.

<<framework>>

Codec
2> O o
Audio Output Audio Input

% ‘@' @ {(—Video I?-hp:u't — Applications

Video Output
5
=1
—)— PVR User - =]

Interface GUI

Ein®:

—

File System

Frameworks

—
Services Toolkits Components Drivers }

CAmMKES Extension Extension Layer

CAmMKES System Components
(File System, Drivers, Network Stack)

] CAmMkKES
CAmMKES Core Runtime Runtime
Iguana Server
RTOS
Layer
L4 Kernel
Reconfigurable General Purpose Hardware
Hardware Hardware Layer

Fig. 1. The CAmKES layered architecture.
3.3 Component Model

The CAmMKES core runtime supports a component model that includes the fol-
lowing architectural elements, namely components, interfaces, connectors, connec-
tions, compositions and configurations.

3.3.1 Component

A component is the basic unit of encapsulated behavior, which is used to organise
operations and data into interfaces that have well defined semantics and behaviors.
Components expose interfaces that allow applications and other components to ac-
cess their features.

A component can be either passive or active. A passive component is similar to a
language level object. It provides access to methods but does not have a thread of

control. An active component, on the other hand, does contain its own thread of
control.

3.3.2 Interfaces

CAmMKES supports three types of interfaces, namely remote procedure call (RPC),
event and dataport interfaces. An interface is defined by a CAmKES-specific inter-
face definition language (IDL), which is based on the CORBA IDL (Object Man-
agement Group, 2004).

RPC interface: An RPC interface defines synchronous communication between
components by remote procedure calls. A component must explicitly state whether
it provides or uses an RPC interface.

Event: CAmKES supports a publish/subscribe event model. Events are used for
asynchronous notifications between components and they are emitted or con-
sumed by components at event interfaces.

Dataport: The dataport interface represents shared variables that allow compo-
nents to transfer data between each other. A pair of connected dataports repre-
sents the same variable or the same range of memory. This is unlike the data-only
interfaces (or ports) defined in other component models, where they are used
to transfer or copy data between components, but do not have sharing seman-
tics. True data-sharing allows us to reduce performance overhead as compared
to copying.

3.3.3 Connectors and Connections

Our component model encapsulates communication between components in ex-
plicit architectural elements called connectors and connections. A connector is a
runtime pathway of interaction between two or more components (Clements et al.,
2002, Part 1. Chapter 3). In our model, a connector has a name and a list of inter-
face types that it connects. For example, a connector connecting a pair of dataports
describes a data sharing relationship between them. A connector can describe 1-
to-1, 1-to-many, many-to-1 and many-to-many relationships among interfaces. A
connection is the instance of a connector. It is associated with two or more com-
ponents. An example of the use of connectors and connections to define a com-
posite component is shown in Figure 2. Details of composition are discussed in
Section 3.3.4.

The use of connectors and connections in our model leads to a unique feature of
CAmMKES: being able to encapsulate data sharing between components as an archi-
tectural connector. For example, two components may require synchronised dat-
aport connections. This can be done using different synchronisation mechanisms
such as mutexes, semaphores, spin locks, etc. In our model each mechanism is de-
fined and implemented as a separate connector. Communicating components sim-

10

Component 1 Data Connector Component 2

int int
Define a connector: Use a connection in the composition:
connector DataConnector { composition {
IntPort portl, IntPort port2; component componentl c1;
} component component2 c2;

connection DataConnector conn
(cl.portl, c2.port2);
}

Fig. 2. Using connectors to connect components.

ply use a dataport interface, with the synchronisation being taken care of by the ap-
propriate connector. Which connector is used depends on the connection specifica-
tion. This approach is in line with the general vision of software architecture (Shaw,
2005).

The flexibility provided by connectors is, of course, not limited to dataport mech-
anisms, and can equally be applied to RPC and event mechanisms. Architectural
connectors provide a means for separating concerns, that is separating a compo-
nent’s functional behavior from its interactions with others. This improves the ex-
tensibility of the system since a communication protocol can be replaced without
affecting the component implementation. Also the use of connectors and connec-
tions facilitate the representation, analysis and enforcement of requirements at run-
time (Hansson et al., 2004; Genller et al., 2002).

3.3.4 Composition

In CAMKES, an entire application is modeled as a composite component, i.e., one
that contains instances of other components. Component composition makes use of
connectors and connections. A composite component, like a non-composite com-
ponent, generally exports interfaces, however it does not directly implement these
interfaces. Instead, the interfaces are connected directly to constituent components,
which provide the implementations. An example of this is shown in Figure 3 where
Component 2 implements all of Compound 1’s interfaces. For the core runtime all
instances of composed components are created at compile time.

3.3.5 Configuration

A component can also have one or more attributes, whose values represent the
component’s status or settings. These values are specified, not inside the compo-
nent definition, but in a separate configuration specification when components are

11

5 N component compoundl {
Compound 1 uses Interfacel inf;
provides Interfaces? inf2;
consumes Eventl esl,;

—D
<Z emits Event2 e2;

composition {
component component2 c2;
component component3 c3;

Component 2

Interf 2
terface Event

L Interfacel

Event

inf2 = c2.inf2;

e2 =c2.e2,
Component 3 c2.infl = inf1;

c2.esl = esl,;
c2.pl =c3.p;
c3.inf = c2.inf3;

L)>—Interface3 int| |

. = }
Fig. 3. Component composition.

assembled. A component is instantiated with the attributes specified at compile
time. The use of configuration is quite flexible in the CAMKES component model.
Both attributes and configuration specifications can also be applied to compound
components and connections. This configuration model provides a way to address
both functional and non-functional requirements for embedded systems built on
CAmMKES. An example of using configuration to specify secure access control is
presented in Section 4. Further investigation into addressing non-functional prop-
erties and requirements using this configuration model is part of our ongoing work.

3.4 Computational Model

The CAmKES component model is general and not targeted at any specific embedded-
application domain. As a result it does not prescribe any specific execution (or com-
putational) model. For example, systems built based on the CAMKES model can
be control-flow oriented, where executions are triggered by invocations on RPC
interfaces or events through event interfaces. It can also be data oriented, with ac-
cess to shared data between components being established through dataports. The
CAmMKES core runtime provides a library of default connectors for RPC, event and
dataport interfaces.

4 Non-Functional Properties

The CAMKES component model, together with its core runtime support, addresses
the restricted resource aspect of embedded systems, both in terms of memory and

12

processing constraints. Since CAmMKES also targets the development of operating
system components, this imposes stricter constraints on its overhead. Because of
this, rather than reimplementing various mechanisms in the architecture, our sup-
port for non-functional properties largely relies on mechanisms already provided by
the OS. Furthermore, since the core model is static and components, connections,
and configurations are all known ahead of time, glue and stub code are aggressively
optimised to reduce the overhead introduced by the component model.

Besides resource restrictions, the safety and security properties of embedded sys-
tem are of utmost importance. These are addressed in our model through a tight in-
tegration with an underlying secure microkernel-based operating system (L4/Iguana).
L4/lguana, which has been developed specifically for safe and secure embedded
systems (Heiser, 2005), provides protection mechanisms such as capability-based
access control to encapsulate complex software into protected components. 3

The basic security model provided by CAmMKES is based on Iguana’s capability

model and involves controlling and restricting access to components. In particu-

lar we use configuration specifications, as discussed in Section 3.3.5, to specify
a capability list in the configuration of a connection. Figure 4 shows a scenario
where Component 1 provides interfaces to Component 2 and Component 3. In this

example, c2.interfacel.method2=x means that Component 2 can access method?2

of interfacel provided by Component 1. Similarly, c3.intfacel.method3=- means

Component 3 cannot access method3 defined in interfacel provided by Compo-
nent 1. We can see from the configuration of the capability list that Component 2
is given permission to invoke method2 defined in interfacel, while Component 3
does not have the right to invoke method3, but can invoke method4. These access

restrictions are enforced by Iguana at runtime. Note that by relying on mechanisms

already provided by Iguana, we can support this model without adding significant
overhead to the CAmMKES runtime. Furthermore, since the access control is part of

the functionality of a connector, it is possible to use different access control mech-

anisms by using different connectors.

Given our static model, it would also be possible to analyse a composition at build
time to ensure that no access restrictions are violated. In such a situation, the run-
time access controls would not be required, which would save much runtime over-
head. This approach to safety and security has not yet been followed up, but is
something that we wish to look into in the future.

3 lguana’s access control is partially based on the model of Mungi (Heiser et al., 1998), a
single-address-space operating system developed by the same group as Iguana.

13

Component 1 Component 2
Interfacel)— Interfacel

- J

(Component 3

)— Interfacel

AN J

configuration {

connection SimpleInfConnector conn {
capabilitylist {
cl.interfacel.* = x;
c2.interfacel.method2 = x;
c3.interfacesl.method3 = —;
c3.interfacel.method4 = x;

11}

Fig. 4. Configuration of access control.

5 Implementation

To validate our design we have implemented a prototype of the CAmKES core
runtime. The main goal of this protoype is to show that the design can lead to a
low overhead, minimal and efficient implementation. Besides the fact that we have
taken effort to make the design of the core runtime minimal and modular, we have
also made sure that the implementation maps onto the underlying operating system
mechanisms with as few mismatches as possible.

5.1 L4 and Iguana

Since the CAmKES architecture is designed to run on the L4/Iguana embedded
operating system we provide a short overview of the L4 microkernel and Iguana
supervisory OS before continuing with a discussion of the prototype and its perfor-
mance.

L4 is a second-generation operating-system microkernel. It provides a small set of
fundamental mechanisms and abstractions that run privileged in kernel-mode, leav-
ing typical operating systems tasks (such as process management, device drivers,
interrupt handlers, file system, etc.) to be implemented and run as unprivileged user-
mode servers. L4’s main features include memory protection, memory mapping
between address spaces, low inter-process communication (IPC) overhead (very
close to the host platform’s hardware-dictated context-switch costs), and a small

14

footprint. More information about microkernels and L4 can be found in (Liedtke,
1996; L4 Community, 2005)

Due to its minimal nature, L4 does not provide much of the functionality that one
would normally expect from an operating system. In particular, since L4 also avoids
implementing policy, it does not provide any specific model of operating system
services such as process management, memory and address space management,
access control, etc. This task is left up to a supervisory OS running in user-mode
on top of the microkernel. In our case this OS is Iguana.

Iguana is specifically designed for use in embedded systems. It has low memory
and cache footprints and provides basic services such as memory management,
protection management, a remote procedure call (RPC) based IPC mechanism, low-
overhead data-sharing and a basic device driver framework. Iguana provides a sin-
gle non-overlapping address space that is shared by all threads. In Iguana the con-
cerns of memory protection and memory translation (i.e., providing address spaces)
are separated. This means that despite all threads sharing the same address space,
Iguana also provides memory protection. The separation of memory protection and
translation also means that Iguana-based systems can be readily deployed on pro-
cessors without virtual memory. Moreover, this allows increased performance to be
gained on processors (such as ARM7 and ARM9) with virtually-addressed caches
where an overlapping address space layout would require a cache flush on every

context switch.

Iguana provides a client-server model of interaction. Applications and operating
system services run as Iguana servers and interact with each other using IPC. An
Iguana server consists of a thread with an associated memory section running in a
protection domain. Threads are Iguana’s basic units of execution and scheduling,
and memory sections are the basic units of virtual memory allocation and pro-
tection. Protection domains provide memory protection between threads executing
different programs (or servers). A protection domain roughly corresponds to the
concept of a task or process in other systems, except that a protection domain does
not define a separate virtual address space. Threads in the same protection domain
have full access to each others memory, while threads in different protection do-
mains are protected from each other and can access each others memory only if
permitted to by the access control system. This is implemented using capabilities,
which are security tokens that define access rights to memory sections and threads.
Thus, in order to access a memory section in another protection domain a thread
must hold an appropriate read or write capability for that memory section.

Each Iguana server implements a server-specific interface that consists of a set of
methods that can be invoked on that server. Iguana provides a remote-procedure-
call style of IPC. A client invokes a server’s method by calling a local stub function.
The stub marshals parameters and sends a message to the server using underlying
L4 IPC mechanisms. At the server side, the message parameters are unmarshaled

15

by a similar stub and the appropriate function is invoked. Before invoking another
server’s methods, a session must be established between the client and server. Be-
sides setting up a communication channel, establishing a session also involves en-
suring that the communicating parties hold the right capabilities. In order to invoke
a method on a server in another protection domain, the invoker must hold an appro-
priate execute capability for that server.

5.2 Mapping CAMKES to Iguana

In order to run CAmMKES components on top of Iguana we provide a mapping
of CAmKES concepts onto Iguana concepts. CAMKES components are generally
placed in separate Iguana protection domains and are implemented as separate
Iguana servers. This provides proper encapsulation and prevents other components
(or processes) from purposefully or inadvertently accessing a component’s inter-
nals. Furthermore, it allows the architecture to restrict access to a component’s
interfaces to authorised parties only, as shown in the example in Section 4. Note
that the underlying OS makes use of hardware-based memory protection to enforce
this.

CAmMKES RPC interfaces map indirectly to Iguana interfaces. Unlike CAMKES in-
terfaces, Iguana interfaces act as units of protection rather than encapsulation. In
order to provide method-level access control this means that, when mapping to
Iguana, the individual methods of a CAmMKES RPC interface are translated to sepa-
rate Iguana interfaces. We call these the Iguana equivalent interfaces.

In our prototype implementation, the components are active and contain dispatch
threads that allow them to service Iguana RPC requests. CAmKES dataports map
to shared Iguana memory sections so the sharing of memory sections in Iguana is
managed by the memory management (or protection) unit and does not require any
copying of data. CAmkes events map to Iguana asynchronus notifications, however,
since the Iguana implementation of these is currently in a state of flux, they have

not been included in the prototype.

Connections are mapped according to the interfaces that they connect. RPC con-
nections naturally result in Iguana IPC communication. This is managed by stubs
generated from Iguana IDL descriptions of the connected interfaces’ Iguana equiv-
alents. Dataport connections are implemented as shared Iguana memory sections.
Dataport initialisation code takes care of setting up the memory sections and map-
ping these onto appropriate local variables in the relevant components.

Compound components do not map directly onto any Iguana entities. Since a com-
pound component contains other components, but does not implement any func-
tionality itself, it is not necessary to have a separate entity representing it. Instead,
any access to a compound component’s interface is routed directly to the compo-

16

nent actually implementing that interface.

Loading and initialising a CAmMKES-based system proceeds roughly as follows:

A boot image containing L4, Iguana, and CAmMKES components is loaded into

the system’s memory.

e L4 starts and loads the Iguana user-mode server.

e Once loaded, the Iguana server proceeds to load and initialise its services.

e After basic services such as chipset drivers, naming, etc. have been loaded, a
CAmMKES loader routine is run. The loader routine is responsible for loading all
components, initialising them and establishing connections between them.

e Connection establishment involves the creation of Iguana sessions, allocation
of shared memory sections and the distribution of capabilities according to the
component configuration specifications.

e Finally, once all components and connections have been initialised, component

dispatch and control threads are started.

6 Evaluation

The main goal of our prototype was to show that the CAmKES architecture design
can lead to a low overhead implementation. In this section we provide empirical
evidence that this is the case. We focus both on the memory and performance over-
head and show that it is minimal compared to standard Iguana overhead. We also
provide a rough idea of the overhead that Iguana imposes compared to bare L4.
Note that we do not include a discussion of the suitability of L4/lguana as a base
OS for embedded systems. A discussion on this can be found elsewhere (Elphin-
stone et al., 2005; Heiser, 2005). For this evaluation it is assumed that the overhead
of L4/Iguana itself is acceptable. 4

For this evaluation we implemented a filesystem service as a CAMKES component.
We examined the size of this implementation and compared it to an equivalent im-
plementation based on plain Iguana (one using IPC and one using no IPC). We
also implemented a simple benchmark program to exercise the filesystem service’s
interfaces and measured the performance overhead introduced by the IPCs and ad-
ditional CAmKES infrastructure code.

4 There are, however, possibilities for optimising L4/Iguana and improving its overhead.
A CAmKES based system will clearly benefit from any such optimisations.

17

6.1 Filesystem Service

For the filesystem service we implemented a simple FAT32 filesystem library, which
was utilised in three different scenarios. In the first scenario the library was linked
directly into a client program, which allowed the client to directly access the filesys-
tem without having to use any IPC. In the second scenario we wrapped the library
in Iguana code so that the functionality could be accessed from other protection do-
mains using Iguana IPC. In the third scenario we wrapped the library in CAmMKES
component code, creating a FAT filesystem component. These three designs are
illustrated in Figures 5 and 6.

In Figure 5(a) the FAT library is linked into the test program and all the code runs
in a single protection domain. In Figure 5(b) the FAT code is linked into an Iguana
server. The client runs in a separate protection domain and must use Iguana IPC to
invoke the file system functions. The underlying block device (which simply pro-
vides a block interface to a region of memory) runs as a separate server in a different
protection domain. In Figure 6 the FAT functionality is implemented as a compo-
nent. We added an additional utility component so that we could test the overhead
of compound components as well. The FAT and Util components are combined in
a single compound FATFS component that provides separate file system and utility
interfaces. This scenario also includes a separate Block Device component. Note
that the components also provide some dataports. These are used to transfer data
during the read and write operations.

l— IPC
Client | FAT Block Client |—| FAT || Block
! Device Device
single protection domain separate protection domains
(a) Library scenario (b) lguana server scenario.

Fig. 5. Library and Iguana server scenarios

6.2 Performance Overhead

A simple analysis of the design reveals basic information about the IPC overhead
of the different scenarios. Whereas the library design has no IPC overhead, the
Iguana design introduces at least two IPCs per invocation (one to invoke an opera-
tion and one to return the results). Most of the calls also require access to the block
device which involves at least two more IPCs. The calls that transfer data also re-
quire shared data to be read and written. The IPC and data sharing overheads in

18

Client

? util

|
L B

" FATES

util

ﬁ 6 Block

| —

Block
Device

Fig. 6. CAmMKES component scenario.

the component scenario are similar to the Iguana scenario overheads. Note that in
the component design, there are extra connections between the compound compo-
nent’s interfaces and the actual components implementing those interfaces. In our
implementation these connections disappear and the invocations are performed di-
rectly on the inside components. The case where the Util component is called adds
at least two extra IPCs since the Util component must invoke operations on the FAT
component.

We performed tests to determine the exact performance overhead imposed by both
Iguana IPC and CAmMKES as compared to the simple library scenario. The exper-
iments were performed on a PLEB2, a small, locally developed embedded sys-
tems board featuring an XScale PXA255 processor with 32MB SDRAM and 8MB
FLASH memory.

In order to calculate the overhead of Iguana and CAmMKES on the performance
of components we ran a series of tests exercising each method provided by our
filesystem implementation. Figure 7 shows the results of these tests. The detailed
results of our measurements are shown in Table 1.5 The nul | operation measures

® The nmkdi r operation in the library version was broken and we therefore do not provide

19

the pure round trip time of an invocation going to the file system server and back.
It shows that the extra overhead introduced by CAmKES is approximately 1us or
2.65% overhead over the Iguana scenario. Other operations involve more than a
single round-trip IPC (e.g., calling the block device component) and therefore have
higher overheads. However, in all cases the overhead remains below 7%. For r ead
and wr i t e operations, we also measured the execution times for different buffer
sizes ranging from 1 byte to 4 KB. Figure 8 shows the average execution time of
the read and write operations. We can see from Figure 8 that CAmMKES performs
very close to Iguana, the average overhead being within 5% of Iguana.

18000
17000 -
16000 -
15000 -
14000 -
13000 -

6000 -

g 12000

2 ;ggg] ELIBRARY
= 9000 BIGUANA

o 8000 -

2 000] O CAMKES
3

>

w

5000 -
4000
3000 -
2000 -

1091 | il wl
0 4

null copy create del mkdir open rename

Fig. 7. Execution time of FAT file system operations.

The benchmark results demonstrate that the CAmKES component model only intro-
duces a very low level overhead and the overhead of most operations are within 5%.

6.3 Footprint Overhead

Besides performance overhead, the footprint or size overhead is also an important
metric for embedded systems. There are several ways to measure the footprint of
a system. Counting the lines of code gives an idea of the size and complexity of
the source code that makes up a system. However, this does not always reflect on

the final size of the running system. Code may be conditionally compiled based on
configuration parameters, which means that not all the source code is used to create
an image. Likewise platform specific code is often reimplemented for each platform
that the code runs on and greatly inflates a system’s code base. The static size of the

loadable binary gives a more realistic measure of the system size. In the following
analysis we will look at both of these measurements of CAmKES overhead.

With regards to lines of code (loc), the FAT file system library itself is 728 loc. The

a number for it.

20

Read
10000

1000 /

_J —+—LIBRARY
100 —=— IGUANA
.\,/*/' —a— CAMKES

10

Execution time (us)

1 4 16 64 256 1024 4096

Buffer size in byte
(@) r ead operations

Write
10000

1000 /
M —e—LIBRARY

100 —=— IGUANA
/ —a— CAMKES

10

Execution time (us)

1 4 16 64 256 1024 4096

Buffer size in byte

(b) wr i t e operations

Fig. 8. Execution time for r ead and wr i t e plotted on a logarithmic axis.

test client is 508 loc. The library scenario does not add any significant code over-
head to this. The Iguana scenario adds 361 loc in the form of generated stubs and
extra code to make accessing the stubs more programmer friendly. The CAmMKES
scenario adds 786 lines of code compared to the library scenario. Compared to the
Iguana scenario, CAmMKES adds 425 lines of code. This extra code is mainly due to
the fact that the CAmKES to Iguana mapping implements each method as an Iguana
interface, which adds extra generated structural code for processing and initialising
those interfaces. There is also some duplication of generated code due to similar
connections (for example between the client and the FS component and the Util
component and the FAT component) and the fact that the Util component is in a
separate protection domain in the component scenario.

We also analysed the static image sizes of the Iguana and component scenarios.
The overall sizes are presented in Table 2. The table shows a significant overhead

21

Operation Library (us) | lIguana (us) | CAmMKES (us) | CAmKES/Iguana
null Average 0 44.21 45.38 | 2.646%
Std dev NA 1.578 2.977
copy Average 14677.54 16398.11 17078.02 | 4.146%
Std dev 784.05 543.90 528.15
create | Average 11269.69 11884.96 12103.49 | 1.839%
Std dev 76.84 431.35 433.17
del Average 3161.44 4284.01 4305.82 | 0.509%
Std dev 24.23 49.91 56.70
mkdir | Average NA 14688.44 15233.34 | 3.710%
Std dev NA 543.49 528.56
open Average 1006.03 1216.11 1283.22 | 5.518%
Std dev 784.05 543.90 528.15
rename | Average 954.3 1181.46 1258.34 | 6.507%
Std dev 4.262 4,713 5.351

Table 1

Benchmark results for the FAT file system operations.

(54.5%) of the component scenario compared to the Iguana scenario. This is due
to the fact that the component scenario has an extra Iguana server running (the Util
component). Since each server runs in a separate protection domain it must link
in all the (standard) libraries that it uses, which makes up for a substantial part of
the overhead. ¢ If we look at the sizes without the Util component, we see that the
overhead in the component scenario is much smaller (1.3%).

7 Conclusion

We have presented CAMKES, a component architecture for the development of em-
bedded systems. It is designed to run on top of microkernel-based operating sys-
tems, which provides the features and mechanisms necessary to develop protected
components with very low overhead. In this paper we focused on the component
model and the core runtime support for components developed according to the
CAmMKES specification. While many of the individual features presented can be
found in other models, we claim that the particular combination of features makes
our model ideal for development of embedded systems. In this light, the most im-

6 This is an issue with lguana that will be resolved in the future.

22

Scenario Server | text data | total

Iguana FAT 39008 | 3094 | 42102
block 33264 | 2162 | 35426
total 72272 | 5256 | 77528

Component | FAT 40040 | 3030 | 43070
Util 39100 | 2158 | 41258
block 33352 | 2138 | 35490
total 112492 | 7326 | 119818

Table 2
Static image sizes (in bytes) for the Iguana and component scenarios.

portant features of our component model are that it is extensible, flexible and not

restricted to any specific architecture style. Furthermore, in contrast to component
models introduced in the related work, the data sharing architecture style enabled
by the dataport interface and connectors reduces the overhead of communication
compared to copying data between components.

We have implemented a prototype of the core runtime and devised a case study us-
ing it. We developed a FAT file system OS component using the CAMKES compo-
nent model. Using this component we measured overhead introduced by the com-
ponent model both in terms of the memory footprint and the round trip time of
the invocation of each function defined in the interface. The results verify that the
CAmMKES component model has very low overhead (within 7% invocation overhead
compared to the underlying OS).

In our future work, we will incorporate the management of other non-functional
requirements such as timeliness into the core-run time. We will also implement
the extension layer adding dynamic behavior, such as hotswapping of components,
dynamic binding of interfaces and providing protection of access to newly created
or added components.

References

Clements, P., Bachmann, F., Bass, L., Garlan, D., lvers, J., Little, R., Nord, R.,
Stafford, J., 2002. Documenting Software Architectures: Views and Beyond. Ad-
dison Wesley Professional.

Elphinstone, K., Heiser, G., Huuck, R., Petters, S. M., Ruocco, S., Nov. 2005.
L4cars. In: Embedded Security in Cars (escar 2005) Workshop. Cologne, Ger-
many.

Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G., Jun. 2002. Think: A software

23

framework for component-based operating system kernels. In: Proceedings of
the USENIX Annual Technical Conference. Monterey, CA, USA.

Gabber, E., Small, C., Bruno, J. L., Brustoloni, J. C., Silberschatz, A., Jun. 1999.
The Pebble component-based operating system. In: Proceedings of the USENIX
Annual Technical Conference, General Track. Monterey, CA, USA.

Genller, T., Christoph, A., Winter, M., Nierstrasz, O., Ducasse, S., Wuyts, R.,
Arévalo, G., Schdnhage, B., Miller, P., Stich, C., Oct. 2002. Components for
embedded software: the PECOS approach. In: Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES ’02). Grenoble, France.

Gobel, S., Pohl, C., Rottger, S., Zschaler, S., Mar. 2004. The COMQUAD compo-
nent model: enabling dynamic selection of implementations by weaving non-
functional aspects. In: Proceedings of the 3rd International Conference on
Aspect-Oriented Software Development (AOSD ’04). ACM Press, Lancaster,
UK.

Hansson, H., Akerholm, M., Crnkovic, 1., Torngren, M., Sep. 2004. SaveCCM -
a component model for safety-critical real-time systems. In: Proceedings of the
30th EUROMICRO Conference (EUROMICRO ’04). Rennes, France.

Heiser, G., Dec. 2005. Secure embedded systems need microkernels. USENIX ;lo-
gin: 30 (6), 9-13.

Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., Liedtke, J., Jul. 1998. The
Mungi single-address-space operating system. Software: Practice and Experi-
ence 28 (9), 901-928.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K., Nov. 2000. System
architecture directions for network sensors. In: Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000). Cambridge, UK.

Krishna, A. S., Wang, N., Natarajan, B., Gokhale, A., Schmidt, D. C., Thaker, G.,
Mar. 2005. CCMPerf: A benchmarking tool for CORBA component model im-
plementations. Real-Time Systems 29 (2-3), 281-308.

L4 Community, 2005. The L4 headquarters. http://14hg.org.

Liedtke, J., Sep. 1996. Towards real microkernels. Communications of the ACM
39 (9), 70-77.

Moller, A., Froberg, J., Nolin, M., May 2004. Industrial requirements on compo-
nent technologies for embedded systems. In: Proceedings of the International
Symposium on Component-based Software Engineering (CBSE7). Edinburgh,
Scotland.

Object Management Group, Mar. 2004. Common object request broker architecture
(CORBAV/IIOP). OMG Specification.

Schmidt, H., Mar. 2003. Trustworthy components: compositionality and prediction.
Journal of Systems and Software 65 (3), 215-225.

Shaw, M., Nov 2005. Sparking research ideas from the friction between doctrine
and reality. Stevens Award Lecture.

Tivoli, M., Fredriksson, J., Crnkovic, 1., July 2005. A component-based approach
for supporting functional and non-functional analysis in control loop design. In:

24

Tenth International Workshop on Component-Oriented Programming. Glasgow,
Scotland.
URL http://www.mrtc.mdh.se/index.phtml?choice=publications&id=0927

van Ommering, R., van der Linden, F., Kramer, J., Magee, J., Mar. 2000. The Koala
component model for consumer electronics software. Computer 33 (3), 78-85.

Wallnau, K. C., 2003. Volume I11: A technology for predictable assembly from cer-
tifiable components. Tech. Rep. CMU/SEI-2003-TR-009, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Wang, N., Schmidt, D. C., Kircher, M., , Parameswaran, K., 2001. Adaptive and re-
flective middleware for QoS-enabled CCM applications. IEEE Distributed Sys-
tems Online 2 (5).

25

