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Abstract

Partial Response Systems (PRS) are useful tools to achieve frequency 

efficiency, especially the improved PRS model. In these systems digital 

signals can be transmitted above the Nyquist rate which once was 

thought to be impossible. The frequency efficiency of PRS systems is 

achieved at the expense of a deterioration of the system performance. 

Such a deterioration can be expressed as an SNR (signal to noise ratio) 

penalty. The SNR penalty of Duobinary (class 1) or, 1 + D PRS system, 

in terms of the system polynomial version was evaluated by Zakarevicius 

and Feher under some assumptions. There two questions remained: what 

is the validity of the assumptions used earlier and can we find some 

other PRS systems which have better performance in high speed 

transmission?

By using computer simulation some PRS systems categorised by 

Kabal and Pasupathy [6] have been evaluated by the Author. The results 

of the project show:

1) The superiority of the improved PRS systems to conventional PRS 

systems is generally true.

2) The assumption that an alternating error pattern

would produce the worst SNR penalty should be modified when the 

length of the error sequence is relatively large.

3) Some of the PRS systems have good speed tolerance, especially the 

improved PRS system 1+2D+D2 (class 2) which has about 0.02 dB
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SNR penalty when operated at a speed 10% above the Nyquist rate.

Chapter 1 of the this project report is used to introduce the PRS 

systems and their the system polynomial expressions. Chapter 2 

introduces the method of SNR penalty computation. Chapter 3 presents 

the improved PRS system version. The SNR penalty calculations for 

some PRS systems are demonstrated in chapter 4. The explanation of the 

reason for the good speed tolerance in appropriate cases is given in 

chapter 5. The detailed data of SNR penalties for these PRS systems 

appear in the Appendix of the this project report.
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Introduction

In digital communications, PCM (Pulse Code Modulation) and PAM 

(Pulse Amplitude Modulation) are both useful tools. The constraint on 

permissible PAM and PCM signal waveforms is that they should not 

cause intersymbol interference (ISI). However the inevitable timing errors 

and incompatibilities with some channel characteristics cause signal 

design based on this criterion to become very difficult. The use of 

partial-response signalling (PRS) can alleviate the constraints on 

waveforms. The basic idea behind the PRS is to introduce some 

controlled amount of ISI into the data stream, rather than try to eliminate 

it completely, since the intersymbol interference is then known. The 

controlled intersymbol interference introduced can shape the system 

spectrum and this spectrum shaping can make the system less sensitive to 

timing errors. This allows practical PRS systems to transmit at a speed 

equal to or even faster than the Nyquist rate.

The partial response systems introduced by Lender [1] are capable of 

being operated at or even above the Nyquist rate. Let us call it 

conventional model PRS. Conventional model PRS systems are speed 

tolerant, but this speed tolerance is quite limited. A new partial response 

system model discovered by Wu and Feher [2] demonstrated greater 

speed tolerance than conventional model partial response systems in the
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computer simulations and experimental hardware results. Let us call it 

improved partial response system.

When transmission speed goes up, especially when the Nyquist rate is 

exceeded, the system performance goes down. The increased spectral 

efficiency obtained by PRS signalling above the Nyquist rate will be at 

the expense of the deterioration of the system performance. This 

performance deterioration can be conveniently expressed as a certain 

signal_to_noise ratio (SNR) penalty [3,4]. Partial response system 

introduces a controlled amount of intersymbol interference (ISI) by itself 

to achieve spectral efficiency. Operating above the Nyquist rate then 

introduces further ISI, which is undesired and yields the SNR penalty.

Kretzmer categorised the characteristics of several PRS schemes [5]. 

Kabal and Pasupathy presented their study of PRS on the comparison of 

different PRS schemes on their paper ’Partial_Response Signalling’ [6]. 

Zakarevicius and Feher evaluated the SNR penalty in one of the partial 

response systems, the version 1+D (after the terminology of Kabal and 

Pasupathy), both in conventional and improved versions with MLSE 

[3],[4]. By introducing a signalling technique of subsequent bandwidth 

expansion at the signal destination Court has discussed the high speed 

property of PRS class 4 [13]. In this project the SNR penalties for some 

types of PRS systems have been evaluated by using the principles used 

by Zakarevicius and Feher.

The results of the project show that 1) the superiority of the improved
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PRS system versions to conventional versions is generally true, 2) the 

assumption made by Zakarevicius and Feher of that the worst SNR 

penalty would occur when the error pattern is alternating in sign should 

be modified when the length of the error sequence is large, 3) some of 

the improved PRS systems show very good speed tolerance, especially 

the improved PRS system version 1 + 2D+D2 which has about 0.02 

dB SNR penalty at 10% above the Nyquist rate and less than 1 dB at 

45% above the Nyquist rate.

This project report consists of 5 chapters, a short conclusion and an 

appendix. Chapter 1 is used to introduce the PRS systems and their 

polynomial expressions. Chapter 2 introduces the method of the SNR 

penalty computation. Chapter 3 presents the improved PRS systems. The 

SNR penalty calculations for some PRS are demonstrated in chapter 4 

and the explanation of good speed tolerance for some improved PRS is 

given in chapter 5. The detailed result data are listed in the appendix.
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Chapter 1. GENERALIZED PRS
SYSTEMS

The general baseband model of a synchronous data communications system 

has been discussed by several authors [5], [6]. Fig. 1.1. shows a block diagram 

of a typical baseband digital communication system. The model’s transfer 

function 7/(g>) encompasses the transmitter filter (baseband modulator or signal 

generator characteristic), the equivalent baseband channel, and the receiving 

filter (which may include an equalizer).

The sample sequence of the impulse response h{t) can characterize an 

ideal, noiseless digital system (no distortion due to channel imperfections or 

sampler offsets in the system). Fig 1.2 shows a typical system, where the 

system consists of a tapped delay line with coefficients {'f ]. Let N be the 

smallest number of contiguous nonzero samples of the impulse responseh(t) 

and , n = 0, 1,2, ..., N-l, be these N sample values, Then the system 

polynomial F(D) can be expressed as

AM
F(D) = ZfDn (L1)

n=0

where D is the delay operator. The output sample sequence {y^} of the
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system is then expressed in terms of the input sample sequence {xn] and the 

PRS system polynomial as

Y(D) = X(D)F(D) O-2)

where

X(D) = ZxD\
»=° (1.3)

Y(D) = JlynDn.
n=0

The {xn} is assumed to be an independent m-ary symbol sequence which 

has the equally likely values {-(m-l),-(m-3),... (m-3),(m-l)}.

While Fig 1.2 naturally suggests a digital system, an analog approach has 

its advantages in some cases. For this reason let us consider PRS systems in 

the frequency domain by evaluating the PRS system function #((*>) which can 

give an insight into the frequency domain properties of PRS systems.

In Fig. 1.2, the system has a tapped delay line with coefficients and 

a cascaded filter with frequencyresponse G(g>)- The frequency response 

C^o>)) of the delay line or the transversal filter is periodic and the period is 

2tt/7\ where T is the symbol duration. The Fourier transform ^(co) of the first 

part of the system is given as

«^(CO) = F{D) |Z) = exp(-y(07)
N-1

= £ fn exp(-yco«7)
n-0

(1.4)
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Fig. 1.2 A general partial response system model (redrew from[6]).
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The entire system’s impulse response h(t) will then be equal to if and

only if G(c*>) satisfies Nyquist’s first criterion, that is all but one of the 

samples of the impulse response of g{t) be zero, i.e., g{nT) = 0, f°rn * 0, 

and g(0) = 1 [7]. That is

By now we have artificially separated the PRS system into two parts 

and G(o>) as shown in Fig. 1.2. is used to produce the desired

periodical sample values, while G(co) preserving the sample values may be 

used to band-limit the resulting system function. This separation has its 

advantage in the study of different system functions. When system polynomial F(D) 

is given, one can choose different G(g>) satisfying Nyquist’s first criterion to 

get different system functions //(go), while all of them can have identical 

sampled responses. If one goes further to study the various desirable properties 

of //(g>) and how some of these properties, such as spectral nulls, are affected 

by the choice of G(g>) it can be found that this separation will give more 

convenience.

Within Nyquist’s first criterion, to maximize the data rate in the available 

bandwidth, one may choose the PRS systems which occupy the bandwidth that 

can support the transmission without undesired intersymbol interference, i.e.,//(g)) = 0 

when | g> | > n/T. • Equivalently it can be expressed as

| (0 | zn/T 
elsewhere

(1.6)
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The corresponding system impulse response is given by

n-i sin ^(t-nT)
h(t) = E /„— ----------- (1-7)

n=0 — (t-nT)
T

The PRS systems which satisfy this criterion were called minimum bandwidth 

systems [6].

Some further studies have shown that at the expense of a degradation of 

the error performance the use of even narrower bandwidth for PRS systems is 

still possible [2], [3]. There are still other choices for G(g>) (occupying a larger 

bandwidth) that allow the use of system polynomials (such as i - D) but 

which are unsuitable for so-called minimum band-width systems.

The use of system polynomial F(D) gives great convenience in studies in 

PRS systems. With a particular F(D) given one can write out the 

corresponding system impulse response easily. When the system polynomials 

have the two factors l + D and 1 - some of system’s important properties 

such as spectral null can be deduced out. With combinations of just the two 

factors i + D and l - £), most of the common partial-response systems can 

be developed. Table 1.1 (introduced from [6]) shows a number of PRS system 

polynomials, the corresponding | H(co) |, h(t) and the output levels L. The 

class designations of the table come from Kretzmer [5]. In the general formula 

f°r h(t) (1*7), the time origin is chosen at sample f . However shifting the
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time zero often simplifies the resulting expression. In Table 1.1, the time origin 

of h(t) has been changed to the center of the nonzero samples to simplify the 

exprssions, that is t - {N - 1)7/2 •

The first entry in the table, version \ + D, or duobinary PRS, being the 

typical PRS system, has been discussed in details by many authors [1], [6], [8]. 

Not only does this PRS system satisfy Nyquist’s first criterion, it can also 

satisfy Nyquist’s second criterion, i.e., that the pulsewidth should be 

undistorted. The second system \ - D which has a discontinuity in the system 

function H(g>) at a> = tt/T is not practical in the minimum bandwidth. 

Modified duobinary, the next entry, has both a dc null and a null at q> = n/T- 

Those features make it practicable in minimum bandwidth with reduced low- 

frequency components in spectrum that are desirable in systems such as 

transformer coupled circuits, dc powered cables, SSB modems, and carrier 

systems with carrier pilot tones. The fourth entry, 1 + 2D + D2, which has 

the same response as a full raised cosine characteristic [8] but sampled at twice 

the usual rate, has a very good performance when operated on improved 

version at a speed above the Nyquist rate. It has been found that the SNR 

penalty is less than 1 dB while the operating speed has exceeded the Nyquist 

rate 45%. In the last chapter, this PRS system will be discussed in detail. The 

next 5 entries were used to demostrate the fact that any appropriate polynomial 

in D may be used to modify the basic polynomials 1 ± D - These entries’ 

high speed performance will be evaluated as well. The number of output levels 

L for a PRS system with M nonzero pulse samples lies in the range
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TABLE 1.1
Characteristics of Minimum Bandwidth Partial-Response Systems

System
Polynomial
F(D)

Frequency Response 
tf(co) for

I co | s n/T

Impulse Response ft(f) No. of
output
levels L

1 + D 
duabinary 

class 1
2Tcos— T

2
472 cos(7ir/7)

7i 72 - 4r2
2m-1

1 - D 
dicode j2T sin — r

2
87 f cos(7i//T)

71 4t2 - T2
2m-l

1 - DL 
modified 
dubinary

j2T sin 0)7 2T2 sin(7i?/7)
7t t2 - T2

2m-l

1+2D+D2 
class 2 4 T cos2—r

2
273 sin(7ir/7)
Tlf T2 - t2

4m-3

l+D-
-D2-D3 j4T cos^~ sin o>7 6473r cos(7ir/7)

n (4r2-9r2)(4t2-r2)
4m-3

1 -D-
-D2+D3

-47sin-^^sino>7
2

16T2 cos(ixf/7)(4i2-3T2)
* (4r2-9r2)(4f2-T2)

4m-3

1-2D+D4 
class 5 -47 sin2 g)7 873 sin(7rf/7)

7i f r2 - 47^
4m-3

2+D-D2 
class 3

7 + 7coso>7 +
+/37 sin 0)7

72 . 3f-7— sin(i«/7)(^-±-)
Tcf r-72

4m-3

2-D2-D4 -7+7 cos2o)7 +
+ y’37 sin2o)7

2T2 , , , 2F-3i,sin(7rf/7)( )
Tit t2-4r2

4m-3
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M(m - X) + \ <> L <> mM

for a m-ary input signal. The minimum value can be obtained when the pulse 

samples have the same magnitude. The limitations of the number of output 

levels for a practical PRS system are the complexity of implementation and 

the inevitable distortions present in real systems. For a PRS system with a 

large number of output levels the error performance tends to degrade at a 

given SNR.
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Chapter 2. SNR PENALTY 
OF PRS WITH MSLE

In digital communication systems, one way to achieve good spectral 

efficiency is to increase the signalling rate to above the Nyquist rate. The 

expense of doing so is the deterioration of system performance. One convenient 

way to express this deterioration is to treat it as a certain signal-to-noise ratio 

penalty.

Partial response systems are known to have speed tolerance [1], [8]. Some 

articles have addressed that not only can PRS systems be operated at the 

Nyquist rate, but they can also work at a speed faster than the Nyquist rate as 

well, which once was thought to be a impossible [2], [3]-[4],[9]-[l 1].

The principle behind partial response systems is the introduction of a controlled 

amount of intersymbol interference (ISI). Operating above the Nyquist rate then 

introduces further ISI, which is undesired and it can be expressed as the SNR 

penalty.

The SNR penalty is the increase in SNR that is required in the presence of 

the undesired ISI to achieve the same bit error rate that would have been 

present if the undesired ISI had been absent. The introduction of the improved 

efficiency partial response systems largely reduces the undesired ISI, especially 

for modest increases in signalling speed above the Nyquist rate [2], [3].
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MLSE can be employed to minimise the PRS systmes SNR penalty. The

derivation for the SNR penalty after MLSE has been presented by Zakarevicus

and Feher [4]. The SNR penalty for a certain PRS system, version 1 + /),

after MLSE was computed as a function of the signalling rate in excess of the

Nyquist rate, both in the conventional and the improved efficiency types.

One of the jobs for digital communication systems is to estimate the

transmitted symbols from the information provided by the received wave form.

Maximum Likelihood Sequence Estimation (MLSE) is a way of doing this

estimation which minimises the probability of error.

MLSE can be summarised as follows: If the information symbols are

Cl1, a2, dN which are transmitted by modulating a train of pulsesg(f)

then the transmitted waveform produced is
N

s(t) = J2aig(t-iT)
i=l

where T is the symbol duration and respectively 1/T is the signalling rate.

When s(t) is the input to the channel, then the output of the channel will be
N

r(t) = Y,aih(t-iT) + n(t) (2*2)
i= 1

where h(t) is the convolution of g{t) and the channel impulse response, andw(j) 

is white Gaussian noise. For simplicity we can include g(t) within the channel 

impulse response without loss of generality; i.e. from now on we will treatg(f) 

as an impulse and simply call h(t) the channel impulse response.

Let the output signal sequence from the system be £ q aN> then in
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MLSE the selected sequence will minimise [12]

N 2
r(t) - E di h{t-iT) \ dt <2-3)

i-\

If the channel were noiseless or n(t) were zero, and there is not any 

undesirable ISI in the channel, the integral (2.3) would be zero for the 

sequence that was actually transmitted. It is the presence of noise and the 

undesirable ISI, if there is any, which make (2.3) non-zero for the transmitted 

sequence and allows the possibility that the sequence ft ft ..#J ftN is not 

in fact the sequence which was transmitted, i.e. at least one error has been 

made in the estimation. The MLSE procedure is used to minimise this error. 

To calculate the error possibility for such a system one may compute (2.3) for 

every possible transmitted sequence. 2N computations would be involved if'#^ d2, &N 

were only a binary sequence and m n computations for the case of M levels. 

Clearly this is not an easy task. Using a dynamic programming approach the 

Viterbi algorithm can greatly reduce the number of computations required to 

a much lower number. Since in practice the Viterbi algorithm or a variant of 

it will invariably be used in MLSE, we can simply refer to MLSE as Viterbi 

detection.

A digital signal or a pulse sequence (possibly multi-level) distorted by the 

addition of noise and intersymbol interference (ISI) after having passed through 

a channel is estimated by MLSE in an optimum fashion, but a certain 

probability of error remains.
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Consider an error sequence [g] which is the differences between the true 

channel input and the estimated channel input after MLSE at the sampling 

instants. This error sequence [e] can be written as

[e] = [ev ev ev ... ] (2-4)

where g is assumed to have a value between M to 0 and M is an integer. This 

value represents the error between the true channel input and the estimated 

channel input at that instant. For example, 0 corresponds to no error at that 

instant, ± 1 corresponds to an error between immediately adjacent levels, ±2 

corresponds to an error between levels separated by an intervening level and 

so on. Thus ± 1 is much more likely than ±2 and so on.

If we let [e] be the input to the channel, with the channel characterised by 

its discrete-time response [h] then we have a corresponding (discrete-time) 

channel output [q]. Clearly [^] is given by

[q\ = [e] ® [A] (2-5)

where the symbol (g) stands for discrete convolution. This [q] represents the 

differences between the true output due to the correct input sequence and the 

output due to the erroneous input sequence as deduced by the MLSE detector, 

at the output side of the channel. The ISI due to the channel is included in 

both output sequences (due to the true and erroneous inputs).

Let the symbol Q be introduced for the energy content of the output in Fig.2.1, 

thus
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t e ] L [q]

Fig. 2.1 Output due to an input error sequence (redrew from [4]).

where [q\' represents the transpose of [q].

To evaluate the SNR penalty of a PRS system, we may want to compare 

only the performance of the system with or without undesirable ISI. According 

to [4] we can, without loss of generality, make

since only the relative magnitudes of the [h] components are of significance. 

When there is no undesirable ISI, [h] will have no sidelobe component. If a 

single error of magnitude 1 occurs in the sequence [e], we will have Q = l. 

The evaluation of the probability of error p can be best illustrated by 

computing the probability of error p for a particular sequence [g] at a 

particular signal-to-noise ratio (SNR), or the probability of occurrence of a

Q = [g] k]f (2.6)

[h] [h]' = 1 (2.7)
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particular sequence [e]. Let us first compute the special error sequence

[1, 0, 0, 0]

which corresponds to a single error, still in the presence of undesirable ISI. To 

find the SNR penalty for such a special case, one then needs to compare the 

with ISI to the p with no ISI.

That an error occurs means the MLSE has selected the wrong input 

sequence. The condition for this to happen is that the channel noise is such that 

expression (2.3) is smaller for the wrong sequence than for the true sequence. 

In the discrete time case, the probability of selecting the wrong sequence 

becomes the probability that

2 2nx + n2 + ... > 

(«i-tfi)2 + (n2-q2f + ...
(2.8)

where n n2, ... stand for the noise components at the appropriate sampling 

instants. (2.8) can be condensed to

n > A (2.9)

where

A = <h+<h + Q
2

and

2
(2.10)
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n = qlnl + q2n2 + (2-11)

and, further, the variance q2 of the random noise n (i.e. noise power) can be 

written as

o2 = (q\ + ql + ...) = <2ATn (212)

where TV represents the noise power (variance) associated with each of n
n2, .... After the normalisation of [e] and [h] as disussed earlier, the 

signal level has then been fixed, 1/TV is thus proportional to SNR. We know 

that the probability that n > A or the probability of the MLSE selects a 

wrong input sequence is proportional to

00

erfc(AI\j2a) = —f exp{-u2)du (213>
A Ajy/2a

and from (2.10) and (2.12) we can get

A 2

O 2
_Q_

4 Nn
(2.14)

By putting (2.14) into (2.13), we can find that the p for a particular [e] is

determined by the SNR and [e], but only through its contribution to Q. How

the q’s are distributed is irrelevant. That is to say, for a given SNR, n willr e
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be the same for all combinations of ISI and [e], provided which result in the 

same Q. In particular, if there is no undesirable ISI and meanwhile there is 

only one single error, Q will be replaced by 1. Thus (2.14) will become

A* _ J_
a2 AN'

(2.15)

where is proportional to the original SNR (the case with no SNR penalty). 

In the presentation of the undesirable ISI, Q will no loger be equal to 1. In this 

case, to keep p unchanged, we should change Nn so as

l _ _Q_
4< 4W

From (2.16) we can find

(2.16)

Q
(2.17)

Clearly Q represents the change of SNR which results p unchanged and 

since typically Q < \ thus \/Q expressed in dB represents the SNR penalty 

due to undesirable ISI after MLSE.

So far only some specific error sequences have been considered. To 

compute the total probability of error, we should included all possible error 

sequences into the consideration and the number of errors in each sequence has 

to be taken into account in obtaining even the probability of a single symbol
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error. However, the fact that the exponential dependence of p on SNR, which 

appears as the so called rain fall curve, reminds us that for large enough SNR 

the p of one sequence, for which q is minimum, will dominate the overall 

n . Here let us denote it as O . •r e ^ min
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Chapter 3. THE IMPROVED 
PRS SYSTEMS

In the PRS systems showed in chapter 1 it was found that they were speed 

tolerant in some degree [1] [8]. Later on Feher et al demonstrated a new PRS 

model which has a greater speed tolerance than the older model [2] [3]. Here 

following the terminology of Feher let us denote the new PRS model as 

Improved version and the others as Conventional version. In the case of 

signalling at the Nyquist rate the signalling rate f is at double the Nyquist 

bandwidth f \i.e.,

fs = 2?N = 1 IT

where T is the symbol duration. If f were to be increased to above 2fN> the 

system would have operation above the Nyquist rate. There is an alternative 

and equivalent way of looking at the operation above the Nyquist rate used by 

[2] and [3], that is to keep f the same, but reduce the bandwidth to less than 

f . To keep consistency with [2], [3], the latter way will be adopted here. The 

increase above the Nyquist rate can be expresed by using a parameter g such

+ 0-that the reduced bandwidth comes to be as
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When the conventional PRS systems are operating at a speed above the 

Nyquist rate, only the frequency scale is changed, which results in all 

frequency components suffering distortion as illustrated in Fig. 3.1 (a,b) where 

the cosine partial response case (or the \ + £)) is used. For an improved 

version of such a PRS system as in Fig. 3.1 (c) the frequency response is 

simply "chopped off" at + £) • In this case most of the original frequency 

components thus remain, the only frequency components suffered are whose 

which have been cut off. Such a PRS system can be considered as a cosine 

response PRS system followed by a brick wall filter.

The impulse response h(t) of a PRS system consists of some SINC pulses 

separated by a certain delay time. This time delay is related to the original 

frequency transfer function //(a>). Ordinarily it corresponds with the spectral 

null at cj = tz/T- The width of the SINC pulses is controlled by the 

bandwidth. The difference in the impulse response h(t) between a conventional 

PRS system and a improved PRS system can be illustrated by Fig. 3.1 where 

a PRS system version 1 + /) is used as an example. Fig. 3.1 (a) shows a 

conventional model at Nyquist rate scheme, in which the cosine response null 

is at f' , that makes the delay between the two SINC functions equal to the
j y

symbol period T. The bandwidth is also f f so that

h{t) = fit) +flt-T) (3D

where
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Fig. 3.1 The illustration of improved PRS system (redrew from [3J).
(A) Operation at or below thw Nyquist rate. (B) Conventional mofel operating 
above the Nyquist rate where all frequency components are suffering. (C) The 
Operation of an impeoved model above the Nyquist rate where high frequency 
components are chopped off whlist the frequency components below 1 + ^) are 
kept undistorted.
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sin (271/^)

The system’s behaviour of time domain in this situation is shown in Fig. 3.2. 

When operating at a speed above the Nyquist rate for the same scheme, f is 

simply changed to + £) and Tto 7(1 + £), where j represents the

fractional increase above the Nyquist rate, as showing in Fig. 3.1 (b). Fig. 3.3 

shows the corresponding SINC functions, where we can see the curves of the 

SINC functions become wider and the second one shifts to right as the 

operating speed goes up. On the other hand, for an improved model in Fig. 3.1 

(c), f goes to + £) but t is kept unchanged. In Fig. 3.1 (c) it is

clearly shown that the frequency components below y^/(l+£) are kept 

undistorted. The related SINC functions are illustrated in Fig. 3.4 where the 

curve of the SINC functions are wider as in Fig. 3.3 but the second one is kept 

unshifted. It is this fact that makes the sidelobes, clearly they stand for the ISI, 

smaller than the conventional model.

The system impulse response expressed for computing purpose of such 

schemes can be written as

/?„=/„+/„, n J n Jn-I (3.3)
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. 3.2 The time domain behaviour of the PRS version 1+D operating at the
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Fig. 3.3 The time domain behaviour of the conventional PRS version 1+D 
operating above the Nyquist rate.
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Fig. 3.4 The time domain behavior of the improved PRS version 1+D 
operating above the Nyquist rate.
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&=/+/„, n J n Jn-i

where f sin (nx) 
nx

sin(» ^X and 
(n-l)x

X =-------- (3.3) applies to the conventional case while
1+5

(3.4) is used for the improved case.

(3.4)
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Chapter 4. THE SNR PENALTY 
COMPUTATIONS

So far we have discussed Q and found that \/Q is the SNR penalty. Also 

have we introduced the conception of Q . • The interest in computation of 

Q . lies on what is the best that one can do in terms of SNR penalty, when 

the Nyquist rate is exceeded, especially in the improved efficiency systems 

[2,3].

To find Qm-n > strictly speaking, one have to compute all possible [e], that 

is to calculate all possible [e] lengths as well as a function of the increase 

above the Nyquist rate. Clearly this is a formidable task. Zakarevicius and 

Feher did this by using some reasonable simplifications. Since the likelihood 

of the errors between adjacent levels are much larger than errors between levels 

separated by an intervening level, they assume that the [g] components are 0 

or ± i only. Furthermore, after computing q for all possible [g] at a fixed rate 

above the Nyquist rate and for a constant number of elements in [e], they 

found that worst Q . is produced by an alternating pattern of +1 and -1, i.e. 

with

[e] = [+1, -1, +1, -1, ... ] (2.22)
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They then assume that the error pattern in (4.1) will give Q . for all 

signalling speeds and all [e] length.Using the formulas for [ft] as shown earlier 

and the assumption they then computed SNR penalty for PRS system version \ + D 

and the result is shown in [4].

Now the raising questions are: can we find some other PRS systems which 

are better in high speed transmission and what the validity of the assumption 

used earlier is? By using the principles discussed earlier and used by 

Zakarevicius and Feher [4], the SNR penalties for most of the PRS systems 

introduced in Chapter 1 are computed by the author. The method of calculation 

used can be best illustrated by using the familiar PRS system version l + £), 

or duobinary system, as the example which follows.

The impulse response [ft] of the PRS system can be found by using (3.3) 

and (3.4) for a given £ . For the convenience of the computation, 2 data files 

of [ft] (for improved and conventional models respectively) are created for 

some typical points of £ from 0.01 to 0.1. Fig.4.1 shows the sidelobes of [ft] 

at the point of g = o.l • From Chapter 2 we know that

Q = M [qf

and

[q\ = [e] 0 [h],

where ® stands for discrete convolution and [q]' for the transpose of [q].
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Using a computer the discrete convolution can be done by doing the shifting 

and adding recurrently. This is the first principle of the discrete convolution, 

that’s first moltiplying [ft] by en then shifting [ft] to the right by n, then 

adding the items at corresponding position together to find n . Suppose we 

have a error sequence [e] = [1, -1, 1, -1, ...], then table 4.1 shows the 

method of the convolution.

After having found Q, the calculation of SNR penalty becomes simple and 

it can be written out as

Penalty = 10xlog(lIQ) dB. (41)

By using the method intruduced by Zakarevicius and Feher and discused in 

Chapter 2 and the assumption made by them, which states that an alternating 

pattern of [g] produces the smallest Q or Q . for PRS system version 

1 + D> a O f°r such a system was computed out by the author and the 

results are plotted in Fig. 4.2 which is similar with Zakarevicius and Feher [4].

In Fig. 4.2 we can find that there are differences between the lines that 

represent 11 and 22 error items in [g] respectively. The differences here 

indicate that the number of error items is a factor in the computation of SNR 

penalty. Theoretically speaking, the number of error items in [^] to be 

considered in MLSE should be infinite as well as h . Clearly these are



Table 4.1
38

Where h and q  stand for nth item of [h] and [^] respectively.
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(ap)  
m

s

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
The speed increment above the Nyquist rate (£)

Fig. 4.2 The SNR penalties for improved PRS version 1+D, alterlating error pattern.
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impossible at present situation. However the number of error items to be 

considered is a function of the number of [/j] of which are significantly non­

zero. Thus what we can do is to evaluate the effect of the number of error

items as well as h upon the computation of the SNR penalty and find out 
n

when the number of error items and h to be considered is large enough in
n

present circumstance. The SNR penalties corresponding to the [e]’s from 11 

error item to 22 items are computed and the results are plotted in Fig. 4.3 for 

this purpose.

In Fig. 4.3 one can find that after the error items calulated are large than

about 10 to 15 the SNR penalties become roughly steady. Thus 22 error items

is probably a sufficiently large enough number in the computation. For the

number of h to be computed the situation is similar since the magnitudes of 
n

the sidelobes of h decline very rapidly for small speed increase above the 
n

Nyquist rate. In the SNR computations the number of used is 30. This 

number may be possibly sufficient in present situation.

The second question is the validity of the assumption made by Zakarevicius 

and Feher. They assumed that the worst SNR penalty would be produced by 

an alternative pattern of [^]. To verify this assumption, one has to check all 

possible error pattern for all length of [e] as well as a function of all possible 

£ . This is a forbidable task in present circumstance. What has been done by 

the author is test all possible combinations of [e] for a length of 8 in [^] and
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11 values of £ from 0.00, 0.01 ..., to 0.1 for the PRS version 1 + £). The way 

of doing the test is to sort a file of Q which contains all calculated Q for the 

PRS version by using a computer to find the smallest Q or Q . . The 

number of the error patterns associated with only one £ value tested here is

No. = 2°xC81+21xCg+22xCg+...+26xCg+27xC| =
= 1x8+2x28+4x56+...+64x8+128x1 =
= 3280.

For all 11 values of £ the computations involved is 11 x 3280 = 36080 • 

The result shows that for small £, alternating pattern of [e] produces 

but the bigger ones don’t. This result leads us back to the old question of what 

pattern of [e] will produce • At present situation we can not increase the 

length of [e] because the file to sorted will become too large for the computer 

used. However by analysing the sorted file we can find that only a certain 

number of [g] series can possibly produce Q . . By carefully choosing 

candidate [e] series we then can greatly reduce the size of the file of Q which 

is going to be sorted.

To find out the candidate [e] series for the PRS systems, all possible^) 

for the systems with error items limited to 6 has been sorted. The [e] patterns 

which give small Q are then chosen as the candidate patterns and rearranged 

for large number of error items, here are 11 and 22 error items in agreement 

with Zakarevicius and Feher [4]. Clearly such an arrangement is still another
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assumption for [e]. However the results of the computations shows that there 

are no significant differences between the Q values in the first group of the 

sorted file for those candidate patterns. From this fact we further assume that 

the difference between Q . , if it is not produced by one of those candidate 

patterns, and the smallest Q produced by those candidate patterns is not of 

significanceso that we can use this smallest Q in the place of Q . The 

candidate patterns chosen are shown in table 4.2.

The [h] for the PRS systems introduced in Chapter 1 are given in table 4.3 

except version 1 - /) or Dicode PRS system since this PRS system has a 

unique | | form which is unsuitable for narrow bandwidth systems.

The computations of Q . for those PRS Systems are similar with the 

computation for version l + D except that sometimes Q values are larger than 

1. This is because we are computing multi-error case instead of single error 

case. It shall not be a serious problem because what we are computing is the 

SNR penalty, that is a comparison for the systems with or without ISI, so that 

we can use Q without ISI to normalize the result, in this case, it is the Q for

5 = 0-

The final results for seven improved PRS versions are plotted in Fig. 4.4 

where we can find that some of the PRS systems have good high speed 

properties and some have not. In Fig. 4.4 the length of the error sequences are 

chosen as 22 to be consistent with Zakarevicius and Feher. Since the SNR
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Table 4.2

No Candidate Error Pattern
1 1-11-11-11-11-11
2 1-11-11-11-11-10
3 001-11-11-11-11
4 0 1-11-11-11-110
5 1-11-11-11-110 0
6 000 1 -1 1 -1 1 -1 1 -1
7 001-11-11-11-10
8 0 1-11-11-11-10 0
9 1-11-11-11-10 0 0
10 0000 1 -1 1 -1 1 -1 1
11 000 1 -1 1 -1 1 -1 1 0
12 001-11-11-1100
13 0 1-11-11-110 00
14 1 -1 1 -1 1 -1 1 0 0 0 0
15 0 10 1-11-11-11-1
16 0 1-11-110 1-11-1
17 0 1-10-11-11-11-1
18 10 1-11-110 1-11
19 10101010101
20 10 1-11-11-11-11
21 0 1-11-10-11-11-1
22 0 1-110 1-11-11-1
23 10 0-11-11-11-11
24 1-10 1-10 1-10 1-1
25 0 1-10 1-10 1-10 1
26 1-110-11-101-11
27 1-11-10 0-11-11-1
28 1-11-1... 11-11-1
29 1-11-1 ... -11-110
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30 00 1 -1 1 -1 ... 1 -1 1 -1
31 0 1-11-11 .... 1-11-10
32 1 -1 1 -1 1 ... 1 -1 1 -1 0 0
33 0 0 0 1 -1 1 -1 ... -1 1 -1 1
34 00 1 -1 1 -1 1 ... -1 1 -1 1 0
35 0 1 -1 1 -1 ... -1 1 -1 1 0 0
36 1 -1 1 -1 1 ... -1 1 -1 1 0 0 0
37 0 000 1 -1 1 -1 ... 1 -1 1 -1
38 00 0 1 -1 1 -1 1 ... 1 -1 1 -1 0
39 00 1 -1 1 -1 1 ... 1 -1 1 -1 0 0
40 0 1 -1 1 -1 1 ... 1 -1 1 -1 0 0 0
41 1 -1 1 -1 1 ... 1 -1 1 -1 0 00 0
42 0000 0 1 -1 1 -1 ... -1 1 -1 1
43 0 0 0 0 1 -1 1 -1 1 ... -1 1 -1 1 0
44 00 0 1 -1 1 -1 1 ... -1 1 -1 1 00
45 0 0 1 -1 1 -1 ... 1 -1 1 -1 1 0 0 0
46 0 1 -1 1 -1 1 ... 1 1 -1 1 0 0 0 0
47 1 -1 1 -1 1 ... -1 1 -1 1 0 00 00
48 0 0 00 00 1 -1 1 -1 ... 1 -1 1 -1
49 0 0 0 0 0 1 -1 1 -1 1 ... 1 -1 1 -1 0
50 0 00 0 1 -1 1 -1 ... 1 -1 1 -1 00
51 0 0 0 1 -1 1 -1 ... 1 -1 1 -1 0 0 0
52 0 0 1 -1 1 -1 ... 1 -1 1 -1 0 0 0 0
53 0 1 -1 1 -1 ... 1 -1 1 -1 000 00
54 1 -1 1 -1 ... 1 -1 1 -1 0 000 00
55 101010... 1010101010
56 1 -1 0 1 -1 0 0 0... 0 0 0 0 00 0
57 1 -1 0 0 1 -1 0 0... 0 0 1 -1 00 1 -1
58 1 0 1 -1 1 -1 ... 1 -1 1 -1 1 -1 1
59 1 -1 1 -1 1 ... 1-11-110 1
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penalty isdependent on the error length as shown in Fig 4.3 as well as the
number of h , the values of the SNR penalty shown in Fig. 4.4, in Fig. 4.5 n
and 4.6 are used to illustrate the tendency rather than the precision. Fig. 4.5 
and 4.6 are plotted in different vertical scale to suit the PRS versions which 
have extreme values of SNR penalty. The comparison between Improved PRS 
system version and conventional version is shown in Fig. 4.7 where the 
superiority of improved version can be seen very clearly.

List 4.1 gives some sample data of the results in columns of SNR penalty 
in dB, the values of £ and the corresponding error patterns [e] .
The results here illustrate that there are three improved versions of PRS 

systems, 1+2D + D2, 1 + D - D2 - D3 and 1 - 2D2 - D4 
(see Fig. 4.5, and appendix) which have very good performance when 
operating above Nyquist rate, especially version 1 + 2D + D2 which has 
only about 0.012 dB and 0.02 dB SNR penalties for 11 error and 22 error 
items at a speed 10 percent above Nyquist rate. The reason will be explained 
in next chapter.
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Fig. 4.7 The SNR Penalty comparison of improved and conventional PRS version 
1+2D+D2- The length of [e] is 22. line 3 for improved version and line 3b for conventioal
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List 4.1

The SNR Penalties (dB), the speed increments £ and the error 
sequences [e\ for Improved Version l+D- The number of the 
error sequences is 22.
PENALTY (dB) £ [e]

6.539xl0~3 0.01 1-11-1 ... 1-11-1

4.718xlCT2 0.02 1-11-1 ... 1-11-1

1.363x10-* 0.03 1-11-1 ... 1-11-1

2.622x10"* 0.04 1 -1 1 -1 ... 1-11-1

3.941x10"* 0.05 1-11-1 ... 1-11-1

4.984x10"* 0.06 1-11-1 ... 1-11-1

5.563x10"* 0.07 1-11-1 ... 1-11-1

5.849x10-* 0.08 1 -1 1 ... 1 -1 1 0 0 0

6.232x10-* 0.09 1 -1 1 ... 1 -1 1 0 00000

6.628x10* 0.10 1 -1 1 ... 1 -1 1 0 0 0 0 0 0

The same items whi e the number of the error sequences is 11.
PENALTY (dB) e [e]
1.652xl0~3 0.01 1-11-11-11-11-11

1.245xl0-2 0.02 1-11-11-11-11-11

3.843 xlO"2 0.03 1-11-11-11-11-11

8.138xl0-2 0.04 1-11-11-11-11-11

1.402x10-* 0.05 1-11-11-11-11-11

2.131x10-* 0.06 1-11-11-11-11-11

2.992x10* 0.07 1-11-11-11-11-11

3.965x10-* 0.08 1-11-11-11-11-11

5.011x10* 0.09 1-11-11-11-11-11

6.062x10* 0.10 1-11-11-11-11-11
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The SNR Penalties (dB), the speed increments f and the error 
sequences [e] for Improved Version 1+2D+D2• The number of 
the error sequences is 22.
PENALTY (dB) [e]
1.957 xlO-4 0.01 1-11-1 ... 1-11-1
1.353x10 3 0.02 1-11-1 ... 1-11-1
3.626xl0~3 0.03 1-11-1 ... 1-11-1
6.514xl0~3 0.04 0 0 0 0 1 -1 1 ... -1 1 -1
1.062xl0“2 0.05 000 000 1 -1 ...-1 1 -1
1.365xl0"2 0.06 00 0 000 1 -1 ... -1 1 -1
1.588xl0~2 0.07 000 000 1 -1 ... -1 1 -1
1.606xl0'2 0.08 00 0 0 00 1 -1 ... -1 1 -1
1.752x10 2 0.09 1-11-1 ... 1-10 1
2.086xl0'2 0.10 1-11-1 ... 1-10 1

The same items whi e the number of the error sequences is 11.
PENALTY (dB) e [e]

4.521 xl0~7 0.01 1-11-11-11-11-11

1.281 xlO"5 0.02 1-11-11-11-11-11

8.661 xlO-5 0.03 1-11-11-11-11-11

3.257 xlO"4 0.04 1-11-11-11-11-11

8.810xl0~4 0.05 1-11-11-11-11-11

1.913xl0~3 0.06 1-11-11-11-11-11

3.538xl0'3 0.07 1-11-11-11-11-11

5.804xlO’3 0.08 1-11-11-11-11-11

8.704xl0'3 0.09 1-11-11-11-11-11
1.220xl0“2 0.10 1-11-11-11-11-11



54

The SNR Penalties (dB), the speed increments £ and the error 
sequences [e] for Improved Version 1+D-D-D3' The number 
of the error sequences is 22.
PENALTY(dB) l M

3.948xl0“4 0.01 1-11-1 ... 1-11-1

2.792xl(T3 0.02 1-11-1 ... 1-11-1

7.769x1O'3 0.03 1-11-1 ... 1-11-1

1.439xl0~2 0.04 0 0 0 1 -1 1 ... 1 -1 1 -1 1

2.309xlO2 0.05 00 0 0 0 0 1 -1 1 ... -1 1 -1

3.278xl0'2 0.06 0 0 0 0 0 0 1 -1 1 ... -1 1 -1

4.100xl0"2 0.07 0 0 0 00 1 -1 ... 1 -1 0

4.580xlO2 0.08 00 0 0 0 1 -1 ... 1 -1 0

4.569x10 2 0.09 00000 1 -1 ... 1 -1 00

5.032xlO’2 0.10 0 0 1 -1 ... 1 -1 0 0 0 0 0

The same items while the number of the error sequences is 11.
PENALTY (dB) e [e]
1.802 xl0“6 0.01 1-11-11-11-11-11

5.102xl0'5 0.02 1-11-11-11-11-11

3.442xl0“4 0.03 1-11-11-11-11-11

1.291 xlO’3 0.04 1-11-11-11-11-11

3.489xl0"3 0.05 1-11-11-11-11-11

7.583xl0’3 0.06 1-11-11-11-11-11

1.405xl0-2 0.07 1-11-11-11-11-11

2.310xl0"2 0.08 1-11-11-11-11-11

3.464xl0'2 0.09 1-11-11-11-11-11

4.848 xlO'2 0.10 1-11-11-11-11-11
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The SNR Penalties (dB), the speed increments £ and the error 
sequences [e] for Improved Version 1-2Z)2+Z)4‘ The number of 
the error sequences is 22.
PENALTY (dB) [e]
7.563 xlO4 0.01 1-11-1 ... 1-110
5.404xl0~3 0.02 1-11-1 ... 1-110
1.531 xlO'2 0.03 1-11-1 ... 1-110
2.875 xlO'2 0.04 00 1 -1 ... 1 -1 1 0
4.608 xl0~2 0.05 00 0 0 0 1 -1 ...-1 1 -1 0
6.544xlO'2 0.06 0 00 00 1 -1 ...-1 1 -1 0
8.176xl0'2 0.07 000 00 1 -1 ...-1 1 -1 0
9.090xl0'2 0.08 00 0 00 1 -1 ...-1 1 -1 0
9.002xlO'2 0.09 000 00 1 -1 ...-1 1 -1 0
9.948 xlO2 0.10 0 1 -1 1 ... 1 -1 0 00 00

The same items whi e the number of the error sequences is 11.
PENALTY (dB) M

3.596xl0"6 0.01 1-11-11-11-11-11

1.016xl0~4 0.02 1-11-11-11-11-11

6.840xl0'4 0.03 1-11-11-11-11-11

2.560xl0~3 0.04 1-11-11-11-11-11

6.913xl0'3 0.05 1-11-11-11-11-11

1.504xl0'2 0.06 1-11-11-11-11-11

2.793xl0-2 0.07 1-11-11-11-11-11

4.601xl0-2 0.08 1-11-11-11-11-11

6.907x10-2 0.09 1-11-11-11-11-11
9.655x10-2 0.10 1-11-11-11-11-11
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Chapter 5. PRS system

1+2D+D2

The results of chapter 4 indicate that there are three types of PRS 

Systems which have very good speed tolerance when operating in the 

improved system version, especially improved version 1+2D+D2 • In 

this chapter the explanation of why this can happen and how fast the 

system can run above the Nyquist rate are presented.

The research of Zakarevicius and Feher shows that in the improved 

PRS version when £ (the fractional increase above the Nyquist rate) is 

small, the sidelobes of sine function are approximately equal but with 

alternative sign. The use of the improved version i + d results in the 

cancellation of the sidelobe [3].

The mathematical analysis shows as:

f ( n T) =sin
n* 0

sim
=1

I rm
TiT

Ijnli\
\ 1+U

(5.1)

Because

U+s) sin(nn 1+\)sin( nn

= (-D n+1
“"(fHi-

(5.2)
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so we have

f { n T) = (-l)n+1Z> (5.3)

When ^ < 1 we can get 1 + £ » 1 so that

f ( n T) » (-1)n+1 £ sin (rml;) 
mr£

Furthermore if .n is relatively small so as nn i; < 1 , then we can 
have

Equ.(5.4) shows us that all the sidelobes of f(nT) (n*0) have 

the magnitude £ weighted by a sine function. When £ < i and n is 

small then the sidelobes are independent of n and all have the same 

magnitude £ . This analysis was used by Zakarevicius and Feher in 

their computation of the improved version i+d ■ But the second 

condition of n 7t £ « 1 is quite restrictive. If £ = 0.1 » only 

for n < 1/k <1 can we get nn i < 0.1 ■ For

(5.4)

- (-l)n+1 l - (-l)n+1 l .
n n ^
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5 = 0.01 we need I2<10/tt:«3 t0 yield the same result. 

Clearly such a small n is not sufficient and consequently for a 

relatively large the remaining sidelobes of hn f°r the improved 

version could be comparatively large and thus the SNR penalties

are also large.

From (5.3) we know that the sidelobes of f(nT) {n*0) have 

the magnitude £ weighted by a SINC function. For such a SINC 

function, if n is a continuous variable, zero points can be found at the 

points

rm 5
1+5

± Nil, N - 0 , ±1, ± 2, . . .

or

On = x N, N = ± 1, ±2, . . .
C

For a discrete variable n, there should be about (l + £) / £

sidelobes between any of the two zero points. When £ is small the

number of the sidelobes should be quite large. For example, when 

£ = 0.1 there are about 11 sidelobes within one span of the SINC 

function and we may expect more sidelobes for smaller £ . Clearly for 

such a £ the curve of the SINC function between the adjacent 

sidelobes can be well linearly approximated and the smaller £ is, the 

more the sidelobes are within one span, and the more accurate the
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approximation is.

For a PRS system if which can linearly cancel the SINC function 

sidelobes then it will have better speed tolerance than Duobinary or 

1 +£} PRS system. This is the case of improved version 

1 + 2D+D2 • This particular version adds the two next adjacent 

sidelobes together and then adds them to the middle one which has been 

multiplied by two. Because the sidelobes of SINC function are 

alternating in sign, to add to the middle one means to cancel them. The 

use of three adjacent sidelobes in the cancellation is a use of linear 

approximation. In this PRS system even £ is relatively large, for 

£ = 0.1 the cancellation is still nearly complete.

Fig.5.1 shows the variation of the sine function with the improved 

brick-wall type low-pass filter is implemented and the absolute values of 

the sidelobes, with £ = 0.1 • Here we can see the variation of 

sidelobes is approximately linear.

There is another way of looking at this PRS system which is to note 

that

1 + 2 D + D2 
= (1+D)+D(1+D)

(5.5)

This equation shows us that the 1 + 2D + D2 system can be 

thought of as two 1 + D systems, one delayed by? , combined 

together. Since the sidelobes of the impulse response [_fa] in the
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Fig. 5.1 The SINC function the sample values for improved PRS version, while
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l + d are of alternating sign and adjacent sidelobes are of 

approximately equal magnitude when £ is small as shown in Fig 5.2, 

combining itself after a delay of d can cause further sidelobe 

cancellation. Let us extend this point of view further to combine two 

PRS system 1 + 2D+D2 » °ne delayed by jQ to form a new PRS 

system. Similarly it can be written as

(1 + 2D+D2) +D (1 + 2D+D2)
= (1+D) (1+2D+D2)
= 1 + 3D+3D2+D3

Using the same calculation method used by [4] and chapter 3, the SNR 

penalties for the improved PRS version 1+2D+D2 and the new PRS 

system version 1 + 3D+3D2 +D3 are computed. The results are 

plotted in Fig.5.4 and 5.5 while in Fig. 5.5 £ is taken as 0.10,0.15,

0.20 to 0.55. As we can see the curves indicate the new version has 

better speed tolerance as we expected. In Fig. 5.5 The curves show that 

even when £ = 0.45 the SNR penalty is still less than 1 dB. This 

means a very good speed tolerance indeed.

Fig.5.3 shows the comparison of the impulse response [ fo] of two 

improved PRS versions 1 + 2.D+.D2 and 1+D • For other two 

improved PRS systems, 1+D-D2-D3 and 1-2D2-DA > similar

linear sidelobe cancellation can be found.
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Table 5.1

Row Class dB

1 1 + D 0.66

2 1-D2 1.39

3 1 + 2D + D2 
= (1+D) +D(1+D)

1 + D - D2 - D3

0.02

4 = (1+D) -D2(l+D)
= (1-D2) +D(1-D2)

0.05

5 1 - 2D2 + D4 
= (1-D2) -D2 (1-D2)

0.10

6 1+3D+3D2+D3 
= (1+D) (1 + 2D+D2)

0.003

'In all cases the SNR penalty is for the improved version)

A comparison for a number of the improved PRS systems ars shown 

in Table 5.1 where the frequency increment above the Nyquist rate 

£ = 0.1 • In the case of 1-D2 , raw two, a degree of sidelobe 

cancellation is found. Since after two period of delay the sidelobes of the 

SINC fuction are now in phase. The subtraction of them means 

cancellation. The result of this cancellation is not as good as for the case 

of 1+D in raw 1, because after two period shift the equality of the 

SINC fuction sidelobes is not as good as after one period shift. But If we 

examine the case of improved PRS version 1+D-D2-D3 » row 4, 

we can find that it is a combination of two 1-D2 °ne shifted by
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D . Among the more complicated systems in raw 3 to 6 the 

1 + 2D+D2 gives the second best performance and It is the simplest, 

requiring the smallest number of output levels.
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Conclusion

Partial Response Systems (PRS) are speed tolerant. In these systems 

digital signal can be transmitted at a speed faster than the Nyquist rate. 

The price of doing so is a deterioration of the system performance. This 

system performance reduction can be expressed as an SNR (signal-to- 

noise ratio) penalty. The performance of conventional versions of PRS 

systems deteriorate rapidly when the Nyquist rate is exceeded. In this 

sense their speed tolerance is quite limited. The improved version of PRS 

systems introduced by Wu and Feher shows much better high speed 

performance.

Zakarevicius and Feher in a computer simulation have evaluated the 

SNR penalty for Duobinary or, in the system polynomial version, 1+D 

PRS system with MLSE under some assumptions both in conventional 

and improved versions. The raising questions here are: are there any

other PRS systems which have better speed properties and what is the 

validity of the assumptions made by Zakarevicius and Feher? Following 

the method introduced by Zakarevicius and Feher, the author of this 

project report evaluated the validity of the assumption used earlier and 

calculated the SNR penalties for some other PRS systems with MLSE.

The results show that the assumption of that the alternating error 

pattern would produce the worst SNR penalty should be modified when 

the length of the error sequence is relatively large. By carefully sorting
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the error patterns a group of candidate error patterns were then chosen.

The computations of SNR penalties for those PRS systems indicate 

that the superiority of the improved PRS system version to the 

conventional PRS system version is generally true.

The results show that some improved PRS systems versions have 

much better speed property than the improved version of Duobinary, or 

1+D PRS system, such as the improved PRS version 1+D-D2-D3 > 

1-2D2-D4 and 1+2D+D2> especially the improved PRS version 

1+2D+D2 (class 2) which shows about 0.02 dB and 1 dB SNR penalty 

at 10% and 45% above the Nyquist rate. The reason is that under the 

linear approximation the sidelobe cancellation which occurs in the 

improved version is more complete than the one used earlier.

For the purpose of comparison a new improved PRS system version 

1+3D+3D2+D3 was introduced and its SNR penalty was computed. The 

high speed performance of this newly introduced version is even better 

than the improved PRS version 1+2D+D2 as we expected. From the 

implementation point of view, the improved PRS version 

l+3D+3D2+D3 is not very valuable because of its complexity. 

However the most valuable one hence should be the improved PRS 

system version 1+2D+D2 rather than any other PRS systems. Its system 

performance is better than all other PRS systems which have been 

computed except the PRS system \+j) whilst its complexity is same as 

or better than all other PRS systems.
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Appendix

The SNR penalties for some PRS systems (both improved and conventional), 

corresponding [e] patterns and £ (fractional increase above Nyquist rate) are 

listed below:
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PRS Improved Version 1+/), 22 error sequence.

PENALTY 0dB) 5 [e]

6.539xl0~3 0.01 1-11-1 ... 1-11-1

4.718xl0~2 0.02 1-11-1 ... 1-11-1

1.363x10’’ 0.03 1-11-1 ... 1-11-1

2.622x 10'1 0.04 1-11-1 ... 1-11-1

3.941x10’’ 0.05 1-11-1 ... 1-11-1

4.984x10“’ 0.06 1-11-1 ... 1-11-1

5.563x10’’ 0.07 1-11-1 ... 1-11-1

5.849x10-’ 0.08 1 -1 1 ... 1 -1 1 0 00

6.232x10-’ 0.09 1 -1 1 ... -1 1 0 0 0 0 0 0

6.628x10’ 0.10 1 -1 1 ... -1 1 0 0 0 0 0 0

PRS Improved Version 1+/), 11 error sequence.
PENALTY (dB) i [e]

1.652xl0’3 0.01 1-11-11-11-11-11

1.245xl0’2 0.02 1-11-11-11-11-11

3.843 xlO’2 0.03 1-11-11-11-11-11

8.138xl0-2 0.04 1-11-11-11-11-11

1.402x10-’ 0.05 1-11-11-11-11-11

2.131x10-’ 0.06 1-11-11-11-11-11

2.992x10-’ 0.07 1-11-11-11-11-11

3.965x10’ 0.08 1-11-11-11-11-11

5.011x10-’ 0.09 1-11-11-11-11-11

6.062x10-’ 0.10 1-11-11-11-11-11
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PRS Improved Version \-D2, 22 error sequence.

PENALTY (dB) 5 [e]

1.286x10 2 0.01 1-11-1 ... 1-11-1

9.296xl0~2 0.02 1-11-1 ... 1-11-1

2.690xl0_1 0.03 1-11-1 ... 1-11-1

5.174xl0_1 0.04 1-11-1 ... 1-11-1

7.838xl0_1 0.05 1-11-1 ...1 -1 1 0

1.025x10° 0.06 1-11-1 ...1 -1 1 0

1.177x10° 0.07 1-11-1 ...1 -1 1 0

1.242x10° 0.08 1 -1 1 ... 1 -1 1 0 0 0

1.312x10° 0.09 1 -1 1 ... 1 -1 0 0 0 0 0 0

1.392x10° 0.10 1 -1 1 ... 1 -1 00 0 0 0 0

PRS Improved Version \-D2, 11 error sequence.

PENALTY (dB) 5 [e]

3.283xl0~3 0.01 1-11-11-11-11-11

2.482xlO'2 0.02 1-11-11-11-11-11

7.692xl0'2 0.03 1-11-11-11-11-11

1.698X19-1 0.04 1-11-11-11-11-11

2.836X101 0.05 1-11-11-11-11-11

4.330xl0_1 0.06 1-11-11-11-11-11

6.100x1c1 0.07 1-11-11-11-11-11

8.118x10'* 0.08 1-11-11-11-11-11

1.032x10° 0.09 1-11-11-11-11-11

1.258x10° 0.10 1-11-11-11-11-11
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PRS Improved Version 1+2Z)+Z)2> 22 error sequence.
PENALTY (dB) 5 [e]

1.957x10“* 0.01 1-11-1 ... 1-11-1

1.353xlO'3 0.02 1-11-1 ... 1-11-1

3.626xl0"3 0.03 1-11-1 ... 1-11-1

6.514xl0'3 0.04 0 0 0 0 1 -1 1 ... -1 1 -1

1.062xl0~2 0.05 000 000 1 -1 ... -1 1 -1

1.365xl0"2 0.06 000 0 0 0 1 -1 ... -1 1 -1

1.588 xlO2 0.07 000 000 1 -1 ... -1 1 -1

1.606xl0'2 0.08 000 000 1 -1 ... -1 1 -1

1.752xl0'2 0.09 1-11-1 ... 1-10 1

2.086xlO'2 0.10 1-11-1 ... 1-10 1

PRS Improved Version 1+2Z)+Z)2> H error sequence.
PENALTY (dB) 5 M
4.521 xlO'7 0.01 1-11-11-11-11-11

1.281 xlO'5 0.02 1-11-11-11-11-11

8.661 xlO'5 0.03 1-11-11-11-11-11

3.257x10“* 0.04 1-11-11-11-11-11

8.810x10“* 0.05 1-11-11-11-11-11

1.913xl0'3 0.06 1-11-11-11-11-11

3.538xl0"3 0.07 1-11-11-11-11-11

5.804xl0'3 0.08 1-11-11-11-11-11

8.704xl0'3 0.09 1-11-11-11-11-11

1.220xl0'2 0.10 1-11-11-11-11-11
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PRS Improved Version \+D-D2-D3> 22 error sequence.

PENALTY 0dB) 5 [e]

3.948 xlO-4 0.01 1-11-1 ... 1-11-1

2.792xlO'3 0.02 1-11-1 ... 1-11-1

7.769xl0~3 0.03 1-11-1 ... 1-11-1

1.439xl(T2 0.04 00 0 1 -1 1... 1 -1 1 -1 1

2.309xlO'2 0.05 000000 1 -1 ... -1 1 -1

3.278 xlO'2 0.06 00 0 000 1 -1 ... -1 1 -1

4.100xl0'2 0.07 0 0 0 0 0 1 -1 ... 1 -1 0

4.580xl0~2 0.08 0 0 0 00 1 -1 ... 1 -1 0

4.565 xlO'2 0.09 00 0 0 0 1 -1 ... 1 -1 0

5.032xl0"2 0.10 0 0 1 -1 ... 1 -1 0 000

PRS Improved Version \+D -Z)2-Z)3> 11 error sequence.

PENALTY (dB) i [e]

1.802xlCT6 0.01 1-11-11-11-11-11

5.102X105 0.02 1-11-11-11-11-11

3.442xlO"4 0.03 1-11-11-11-11-11

1.291 xl(T3 0.04 1-11-11-11-11-11

3.489xl0'3 0.05 1-11-11-11-11-11

7.583xlO~3 0.06 1-11-11-11-11-11

1.405xl0'2 0.07 1-11-11-11-11-11

2.310xl0'2 0.08 1-11-11-11-11-11

3.464xl0'2 0.09 1-11-11-11-11-11

4.848 xl0~2 0.10 1-11-11-11-11-11
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PRS Improved Version 1-2Z)2+Z)4> 22 error sequence.
PENALTY (dB) 5 [e]

7.563 xlCT4 0.01 1-11-1 ... 1-110

5.404xlO'3 0.02 1-11-1 ... 1-110

1.531 xlO'2 0.03 1-11-1 ... 1-110

2.875xl0'2 0.04 00 1 -1 ... 1 -1 1 0

4.608 xlO-2 0.05 00 0 00 1 -1 ...-1 1 -1 0

6.544xlO'2 0.06 0 0 0 0 0 1 -1 ... -1 1 -1 0

8.176xl0'2 0.07 0 0 0 0 0 1 -1 ... -1 1 -1 0

9.090xl0'2 0.08 000 00 1 -1 ...-1 1 -1 0

9.002xl0~2 0.09 0 0 0 00 1 -1 ...-1 1 -1 0

9.948 xlO"2 0.10 0 1 -1 1 ... 1 -1 0 0 0 0 0

PRS Improved Version l-2Z)2+£)4? H error sequence.
PENALTY (dB) $ [e]

3.596xl0~6 0.01 1-11-11-11-1 1 -1 1

1.016xl0"4 0.02 1-11-11-11-11-11

6.840xl0"4 0.03 1-11-11-11-11-11

2.560xl0'3 0.04 1-11-11-11-11-11

6.913xl0'3 0.05 1-11-11-11-11-11

1.504xl0‘2 0.06 1-11-11-11-11-11

2.793 xlO'2 0.07 1-11-11-11-11-11

4.601 xlO'2 0.08 1-11-11-11-11-11

6.907xlO"2 0.09 1-11-11-11-11-11

9.655 xlO2 0.10 1-11-11-11-11-11



78

PRS Improved Version \-D-D2+D39 22 error sequence.
PENALTY (dB) [e]

2.332xl0~2 0.01 1 0 1 -1 ... 1 -1 1 -1

1.699x10* 0.02 1 0 1 -1 ... 1 -1 1 -1

4.994x 10-1 0.03 1 0 1 -1 ... 1 -1 1 -1

9.802X10'1 0.04 1 0 1 -1 ... 1 -1 1 -1

1.490x10° 0.05 1 0 1 -1 ... 1 -1 1 -1

1.865x10° 0.06 1 0 1 -1 ... 1 -1 1 -1

2.001x10° 0.07 1 0 1 -1 ... 1 -1 1 -1

1.928x10° 0.08 1 0 1 -1 ... 1 -1 1 -1

1.808x10° 0.09 1 -1 1 ...-1 1 00 000

1.906x10° 0.10 000 0 1 -1 ... 1 -1 0 0

PRS Improved Version \-D -Z)2+Z)3? 11 error sequence.
PENALTY (dB) i M
4.347xl0~3 0.01 1-11-11-11-11-11

3.297xl0'2 0.02 1-11-11-11-11-11

1.025x10-* 0.03 1-11-11-11-11-11

2.194x10-* 0.04 1-11-11-11-11-11

3.825x10-* 0.05 1-11-11-11-11-11

5.868x10* 0.06 1-11-11-11-11-11

8.285x10-* 0.07 1-11-11-11-11-11

1.105x10° 0.08 1-11-11-11-11-11

1.410x10° 0.09 1-11-11-11-11-11

1.735x10° 0.10 1-11-11-11-11-11
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PRS Improved Version 2+D-£)2, 22 error sequence.

PENALTY (dB) 5 [e\

1.075 xlCT2 0.01 1-11-1 ... 1-11-1

7.816xl0~2 0.02 1-11-1 ... 1-110

2.295 x 10'1 0.03 1-11-1 ... 1-110

4.522x 1C1 0.04 1-11-1 ... 1-110

6.995 xlO1 0.05 1-11-1 ... 1-110

9.117X101 0.06 1-11-1 ... 1-110

1.046x10° 0.07 1-11-1 ... 1-110

1.104x10° 0.08 1 -1 1 -1 ... -1 1 0 0 0

1.170x10° 0.09 1 -1 1 ... 1 -1 00 0 0 0 0

1.243x10° 0.10 1 -1 1 ... 1 -1 00 0000

PRS Improved Version 2+Z)-/)2, 11 error sequence.

PENALTY 0dB) 5 M
2.961 xlO’3 0.01 1-11-11-11-11-11

2.237 xlO'2 0.02 1-11-11-11-11-11

6.923 xlO2 0.03 1-11-11-11-11-11

1.472X10-1 0.04 1-11-11-11-11-11

2.546x10-1 0.05 1-11-11-11-11-11

3.886xl0_1 0.06 1-11-11-11-11-11

5.474X10-1 0.07 1-11-11-11-11-11

7.283X10'1 0.08 1-11-11-11-11-11

9.252X10'1 0.09 1-11-11-11-11-11

1.126x10° 0.10 1-11-11-11-11-11
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PRS Improved Version 2-D2-£)4, 22 error sequence.

PENALTY (dB) [e]

2.174xl0~2 0.01 1-11-1 ... 1-11-1

1.578x10-' 0.02 1-11-1 ... 1-11-1

4.603x10' 0.03 1-11-1 ... 1-11-1

8.944x10"' 0.04 1-11-1 ... 1-11-1

1.344x10° 0.05 1-11-1 ... 1-11-1

1.842x10° 0.06 1 -1 1 -1 ... -1 1 0 0 0

2.254x10° 0.07 1 -1 1 -1 ... -1 1 0 0 0

2.489x10° 0.08 1 -1 1 -1 ... -1 1 0 0 0

2.599x10° 0.09 1 -1 1 ...-1 1 0 0 0 00

2.736x10° 0.10 1 -1 1 ... 1 -1 0 0 0 0 0 0

PRS Improved Version 2-D2-/)4, 11 error sequence.

PENALTY (dB) $ [e]

5.853xl0'3 0.01 1-11-11-11-11-11

4.444xl0'2 0.02 1-11-11-11-11-11

1.384x10"' 0.03 1-11-11-11-11-11

2.966x10-' 0.04 1-11-11-11-11-11

5.171x10-' 0.05 1-11-11-11-11-11

7.945x10-' 0.06 1-11-11-11-11-11

1.125x10° 0.07 1-11-11-11-11-11

1.506x10° 0.08 1-11-11-11-11-11

1.930x10° 0.09 1-11-11-11-11-11

2.379x10° 0.10 1-11-11-11-11-11
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PRS Conventional Version 1 +£), 22 error sequence.

PENALTY (dB) l [e]

2.673 x1C1 0.01 1-11-1 ... 1-11-1

5.066x 10-1 0.02 1-11-1 ... 1-11-1

7.073X10'1 0.03 1-11-1 ... 1-11-1

8.695xl0_1 0.04 1-11-1 ... 1-11-1

1.001x10° 0.05 1-11-1 ... 1-11-1

1.111x10° 0.06 1-11-1 ... 1-11-1

1.210x10° 0.07 1-11-1 ... 1-11-1

1.305x10° 0.08 1-11-1 ... 1-11-1

1.399x10° 0.09 1-11-1 ... 1-11-1

1.494x10° 0.10 1-11-1 ... 1-11-1

PRS Conventional Version 1 +£), 11 error sequence.

PENALTY (dB) i [e]

2.088X10-1 0.01 1-11-11-11-11-11

4.019X101 0.02 1-11-11-11-11-11

5.762x 10-1 0.03 1-11-11-11-11-11

7.315X10'1 0.04 1-11-11-11-11-11

8.686X101 0.05 1-11-11-11-11-11

9.885 xlO1 0.06 1-11-11-11-11-11

1.130x10° 0.07 1-110-11-101-11

1.305x10° 0.08 1-110-11-101-11

1.483x10° 0.09 1-110-11-101-11

1.664x10° 0.10 1-110-11-101-11
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PRS Conventional Version 1 -/)2, 22 error sequence.

PENALTY 0dB) t [e]

2.530x10"* 0.01 1-11-1 ... 1-110

5.210x10* 0.02 1-11-1 ... 1-110

8.048x10"* 0.03 1-11-1 ... 1-110

1.090x10° 0.04 1-11-1 ... 1-110

1.352x10° 0.05 1-11-1 ... 1-110

1.567x10° 0.06 1-11-1 ... 1-110

1.726x10° 0.07 1-11-1 ... 1-110

1.834x10° 0.08 1-11-1 ... 1-110

1.915x10° 0.09 000 00 1 -1 1 ... 1 -1 0

2.016x10° 0.10 00 0 0 0 1 -1 1 ... 1 -1 0
PRS Conventional Version 1 -£)2, 11 error sequence.

PENALTY (dB) i [e]

1.928x10-* 0.01 1-11-11-11-11-11

3.871x10-* 0.02 1-11-11-11-11-11

5.834x10-* 0.03 1-11-11-11-11-11

7.806x10-* 0.04 1-11-11-11-11-11

9.770x10-* 0.05 1-11-11-11-11-11

1.172x10° 0.06 1-11-11-11-11-11

1.364x10° 0.07 1-11-11-11-11-11

1.551x10° 0.08 1-11-11-11-11-11

1.731x10° 0.09 1-11-11-11-11-11

1.898x10° 0.10 1-11-11-11-11-11
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PRS Conventional Version 1+2Z)+Z)2> 22 error sequence.

PENALTY (dB) 5 [e]

1.323x10-' 0.01 1-11-1 ... 1-11-1

2.338x10-' 0.02 1-11-1 ... 1-11-1

3.341x10-' 0.03 1 -1 0 1 -1 0 ... 1 -1 0 1

4.456x10-' 0.04 1 -1 0 1 -1 0 ... 1 -1 0 1

5.564x10-' 0.05 1 -1 0 1 -1 0 ... 1 -1 0 1

6.657x10-' 0.06 1 -1 0 1 -1 0 ... 1 -1 0 1

7.734x10-' 0.07 1 -1 0 1 -1 0 ... 1 -1 0 1

8.794x10-' 0.08 1 -1 0 1 -1 0 ... 1 -1 0 1

9.843x10-' 0.09 1 -1 0 1 -1 0 ... 1 -1 0 1

1.088x10° 0.10 1 -1 0 1 -1 0 ... 1 -1 0 1

PRS Conventional Version 1+2D+D2 > H error sequence.

PENALTY (dB) 5 M

9.517xl0“2 0.01 1-10 1-10 1-10 1-1

1.892x10-' 0.02 1-10 1-10 1-10 1-1

2.820x10-' 0.03 1-10 1-10 1-10 1-1

3.732x10-' 0.04 1-10 1-10 1-10 1-1

4.628x10-' 0.05 1-10 1-10 1-10 1-1

5.506x10-' 0.06 1-10 1-10 1-10 1-1

6.362x10-' 0.07 1-10 1-10 1-10 1-1

7.196x10-' 0.08 1-10 1-10 1-10 1-1

8.002x10-' 0.09 1-10 1-10 1-10 1-1

8.779x10' 0.10 1-10 1-10 1-10 1-1
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PRS Conventional Version 1+D-D2-D3 > 22 error sequence.

PENALTY (dB) * [e\

1.309x10* 0.01 1-11-1 ... 1-11-1

2.319x10“* 0.02 1-11-1 ... 1-11-1

3.057x10“* 0.03 1-11-1 ... 1-11-1

3.672x10“* 0.04 000 000 1 -1 1 ... 1 -1

4.208 x 10'1 0.05 000 0 00 1 -1 1 ... 1 -1

4.667x10“* 0.06 0 0 0 0 0 0 1 -1 1 ... 1 -1

5.131X10"1 0.07 1 -1 0 1 -1 0 ... 1 -1 0 1

5.903x10-* 0.08 1 -1 0 1 -1 0 ... 1 -1 0 1

6.683x10-* 0.09 1 -1 0 1 -1 0 ... 1 -1 0 1

7.473x10-* 0.10 1 -1 0 1 -1 0 ... 1 -1 0 1

PRS Conventional Version 1+D-D2-D3> 11 error sequence.

PENALTY (dB) e [e]

1.014x10-* 0.01 1-110-11-101-11

2.021x10-* 0.02 1-110-11-101-11

3.018x10-* 0.03 1-110-11-101-11

4.001x10-* 0.04 1-110-11-101-11

4.968x10* 0.05 1-110-11-101-11

5.913x10-* 0.06 1-110-11-101-11

6.833x10-* 0.07 1-110-11-101-11

7.723x10-* 0.08 1-110-11-101-11

8.581x10-* 0.09 1-110-11-101-11

9.405x10° 0.10 1-110-11-101-11
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PRS Conventional Version 1 -D-D2+D3 > 22 error sequence.
PENALTY (dB) £ [e]

2.033x10'* 0.01 1 0 1 -1 ... 1 -1 1 -1

4.741 x 10'1 0.02 1 0 1 -1 ... 1 -1 1 -1

8.390x10'* 0.03 1 0 1 -1 ... 1 -1 1 -1

1.263x10° 0.04 1 0 1 -1 ... 1 -1 1 -1

1.659x10° 0.05 1 0 1 -1 ... 1 -1 1 -1

1.932x10° 0.06 1 0 1 -1 ... 1 -1 1 -1

2.038x10° 0.07 1 0 1 -1 ... 1 -1 1 -1

2.074x10° 0.08 0 1 -1 1 ... -1 1 0 0

2.197x10° 0.09 000 0 1 -1 ... 1 -1 0 0

2.306x10° 0.10 000 0 1 -1 ... 1 -1 00

PRS Conventional Version 1 -D-D2+D3> 11 error sequence.
PENALTY (dB) 5 [e]

1.299x10'* 0.01 10 1-11-11-11-11

2.734x10'* 0.02 10 1-11-11-11-11

4.384x10'* 0.03 10 1-11-11-11-11

6.264x10'* 0.04 10 1-11-11-11-11

8.349x10'* 0.05 10 1-11-11-11-11

1.061x10° 0.06 10 1-11-11-11-11

1.304x10° 0.07 10 1-11-11-11-11

1.562x10° 0.08 10 1-11-11-11-11

1.831x10° 0.09 10 1-11-11-11-11

2.101x10° 0.10 10 1-11-11-11-11
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PRS Conventional Version 1 -2Z)2+Z)4? 22 error sequence.

PENALTY (dB) 5 [e]

1.449x10”’ 0.01 1-11-1 ... 1-110

2.673x10”’ 0.02 1-11-1 ... 1-110

3.675x10”’ 0.03 0 00 00 1 -1 ...-1 1 0

4.534x10”’ 0.04 0 00 00 1 -1 ... -1 1 0

5.230x10”’ 0.05 0 00 00 1 -1 ...-1 1 0

5.790x10”’ 0.06 000 00 1 -1 ... -1 1 0

6.248x10-’ 0.07 0 00 00 1 -1 ... -1 1 0

6.642x10-’ 0.08 0 00 00 1 -1 ... -1 1 0

7.004x10-’ 0.09 0 00 00 1 -1 ... -1 1 0

7.371x10-’ 0.10 1-11-1 ... 1-110

PRS Conventional Version 1 -2D2+D4> 11 error sequence.

PENALTY (dB) 5 [e]

8.601 xlO”2 0.01 1-11-10 0-11-11-1

1.684x10-’ 0.02 1-11-10 0-11-11-1

2.470x10-’ 0.03 1-11-10 0-11-11-1

3.220x10’ 0.04 1-11-10 0-11-11-1

3.938x10-’ 0.05 1-11-10 0-11-11-1

4.629x10’ 0.06 1-11-10 0-11-11-1

5.301x10-’ 0.07 1-11-10 0-11-11-1

6.030x10’ 0.08 1-110-11-101-11

6.787x10-’ 0.09 1-110-11-101-11

7.542x10-’ 0.10 1-110-11-101-11
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PRS Conventional Version 2 -Z)2-/)4? 22 error sequence.
PENALTY (dB) S [e]

2.637X10'1 0.01 1 -1 1 -1 ... 1 -1 1 000

5.800X10'1 0.02 1 -1 1 -1 ... 1 -1 1 0 0 0

9.733X10'1 0.03 1 -1 1 -1 ... 1 -1 1 000

1.434x10° 0.04 1 -1 1 -1 ... 1 -1 1 00 0

1.917x10° 0.05 1 -1 1 -1 ... 1 -1 1 000

2.358x10° 0.06 1 -1 1 -1 ... 1 -1 1 0 00

2.696x10° 0.07 1 -1 1 -1 ... 1 -1 1 0 0 0

2.906x10° 0.08 1 -1 1 -1 ... 1 -1 1 0 0 0

3.001x10° 0.09 1 -1 1 -1 ... 1 -1 1 0 0 0

3.093x10° 0.10 000 1 -1 1 ... 1 -1 0 00

PRS Conventional Version 2 -Z)2-Z)4> 11 error sequence.
PENALTY (dB) e [e]

1.980xl0_1 0.01 1-11-11-11-11-11

4.132X10'1 0.02 1-11-11-11-11-11

6.546X10'1 0.03 1-11-11-11-11-11

9.241 xlO'1 0.04 1-11-11-11-11-11

1.219x10° 0.05 1-11-11-11-11-11

1.537x10° 0.06 1-11-11-11-11-11

1.877x10° 0.07 1-11-11-11-11-11

2.235x10° 0.08 1-11-11-11-11-11

2.605x10° 0.09 1-11-11-11-11-11

2.972x10° 0.10 1-11-11-11-11-11
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PRS Conventional Version 2+Z)-Z)2> 22 error sequence.

PENALTY 0dB) 5 [e]

2.990x10'1 0.01 1-11-1 ... 1-110

5.945x10"* 0.02 1-11-1 ... 1-110

8.780x10"* 0.03 1-11-1 ... 1-110

1.137x10° 0.04 1-11-1 ... 1-110

1.361x10° 0.05 1-11-1 ... 1-110

1.541x10° 0.06 1-11-1 ... 1-110

1.681x10° 0.07 1-11-1 ... 1-110

1.790x10° 0.08 1-11-1 ... 1-110

1.880x10° 0.09 1-11-1 ... 1-110

1.968x10° 0.10 1-11-1 ... 1-110

PRS Conventional Version 2+D-D2> H error sequence.

PENALTY (dB) i [e]

2.302x10"* 0.01 1-11-11-11-11-11

4.560X10-1 0.02 1-11-11-11-11-11

6.754x10'1 0.03 1-11-11-11-11-11

8.862x10"* 0.04 1-11-11-11-11-11

1.087x10° 0.05 1-11-11-11-11-11

1.278x10° 0.06 1-11-11-11-11-11

1.458x10° 0.07 1-11-11-11-11-11

1.625x10° 0.08 1-11-11-11-11-11

1.779x10° 0.09 1-11-11-11-11-11

1.917x10° 0.10 1-11-11-11-11-11
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