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ABSTRACT

Pseudodifferential equations on the unit sphere in Rn, n ≥ 3, are considered. The class of

pseudodiffrential operators have long been used as a modern and powerful tool to tackle

linear boundary-value problems. These equations arise in geophysics, where the sphere

of interest is the earth. Efficient solutions to these equations on the sphere become more

demanding when given data are collected by satellites.

In this dissertation, firstly we solve these equations by using spherical radial basis

functions. The use of these functions results in meshless methods, which have recently

become more and more popular. In this dissertation, the collocation and Galerkin methods

are used to solve pseudodifferential equations. From the point of view of application, the

collocation method is easier to implement, in particular when the given data are scattered.

However, it is well-known that the collocation methods in general elicit a complicated error

analysis. A salient feature of our work is that error estimates for collocation methods are

obtained as a by-product of the analysis for the Galerkin method. This unified error

analysis is thanks to an observation that the collocation equation can be viewed as a

Galerkin equation, due to the reproducing kernel property of the space in use.

Secondly, we solve these equations by using spherical splines with Galerkin methods.

Our main result is an optimal convergence rate of the approximation. The key of the

analysis is the approximation property of spherical splines as a subset of Sobolev spaces.

Since the pseudodifferential operators to be studied can be of any order, it is necessary

to obtain an approximation property in Sobolev norms of any real order, negative and

positive.

Solving pseudodifferential equations by using Galerkin methods with spherical splines

results, in general, in ill-conditioned matrix equations. To tackle this ill-conditionedness

arising when solving two special pseudodifferential equations, the Laplace–Beltrami and

hypersingular integral equations, we solve them by using a preconditioner which is defined

by using the additive Schwarz method. Bounds for condition numbers of the precondi-

tioned systems are established.
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Chapter 1

Introduction

In approximation theory, objects that are approximated are various. They can be, for

example, function values, curves and surfaces, integrals, and solutions to differential or

integral equations, all of which have many applications in science and industry. The

choices of approximation spaces and methods of approximation are also various. Spaces

of splines, wavelets, and radial basis functions are some popular approximation spaces.

Lagrange and Hermite interpolation, collocation, least-squares fitting and finite element

methods exemplify methods of approximation. The quality of the approximation can also

be very flexible in meaning. It can be described, for example, by the visual pleasant of a

surface in concern, or it can be addressed by using some more quantitative measure such

as Sobolev norms. This wide variation in the choice of approximated objects, approxima-

tion subspaces, the method of approximation and the ways of measuring the quality of

approximation results in a diverse and rich theory; see [12, 17, 63].

In this dissertation, we focus on the approximation of solutions to a class of pseudodif-

ferential equations on the sphere. Pseudodifferential operators have long been used [33, 39]

as a modern and powerful tool to tackle linear boundary-value problems. Svensson [73]

introduces this approach to geodesists who study [29, 31] these problems on the sphere

which is taken as a model of the earth. Efficient solutions to these equation on the sphere

have recently been becoming more and more demanding when more and more satellites

have been lauched into the space to collect data around the globe.

Solving pseudodifferential equations on the sphere with spherical radial basis functions

and spherical splines will be the main theme of this dissertation. The precise definitions of

spherical radial basis functions and spherical splines will be introduced in Chapter 2. It is

known [82] that radial basis functions are very suitable for approximation with scattered

data, because they can be easily defined at each data point, and the resulting linear

system are positive definite. However, since the supports of these functions are usually

large, computational effort is wasted when the data points are clustered as large supports

excessively overlap; see [37]. Scaling technique can be applied to reduce overlaps and to

obtain better-conditioned systems [10, 42] but also reduce the approximation power. On

the other hand, finite element methods with spherical splines appear to be accurate [40]

and less costly, so they are widely used and trusted by practioners. However, the cost of
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mesh generation and refinement (to increase accuracy where necessary) is a major part in

the total cost of the methods [37]. For problems on the sphere, in particular problems in

weather forecasting and geodesy, the deficiency seems to aggravate in regions with densely

clustered points.

In the last decades, radial basis functions (in Euclidean spaces) and spherical radial

basis functions have been used successfully in interpolation and data fitting problems (see

e.g. [6, 47, 81, 82, 69, 25, 32, 38]). The use of these functions in solving pseudodifferen-

tial equations on spheres by using collocation methods has been studied by Morton and

Neamtu [50]. Error bounds have later been improved by Morton [48, 49] in which the

error is estimated in Sobolev norm ‖·‖2α, where 2α is the order of the operator. The crux

of the analysis in [49, 50] is the transformation of the collocation problem to a Lagrange

interpolation problem.

Open questions here are that how Galerkin methods can be used to solve pseudodiffer-

ential equations with spherical radial basis functions and are there other ways to obtain

error analysis for the collocation methods based on that for the Galerkin methods, which

is generally simpler, following well-known knowledge on the Galerkin methods. The latter

question is inspired by the works [19, 5, 16], which solve quasilinear parabolic equations,

pseudodifferential equations on closed curves, and boundary integral equations, respec-

tively. These approaches use either a special set of collocation points or the duality inner

product. Answering these two questions will be the first contribution of the dissertation.

The space of spherical splines defined on a spherical triangulation seems particularly

appropriate for use on the sphere. It consists of functions whose pieces are spherical

harmonics joined together with global smoothness, and thus has both the smoothness and

high degree of flexibility [24]. That flexibility makes spherical splines become a powerful

tool. These splines have been used successfully in interpolation and data approximation

on spheres [4]. Baramidze and Lai [7] use these functions to solve the Laplace–Beltrami

equation on the unit sphere.

A highly promising application of spherical splines is to approximate the solutions

of pseudodifferential equations. That use has some significant advantages. One of them

is the ability to write the approximate solutions of the equations in the form of linear

combinations of Bernstein–Bézier polynomials which play an extremely important role

in computer aided geometric design, data fitting and interpolation, computer vision and

elsewhere; see e.g. [23, 34]. Another advantage is the ability to control the smoothness of

a function and its derivatives across edges of the triangulations; see [2].

Our second contribution in this dissertation is solving strongly elliptic pseudodifferen-

tial equations by using the Galerkin method with spherical splines. Error analysis with

optimal convergence rate is obtained, where the key of the analysis is an approximation

property of the spaces of spherical splines as a subspace of Sobolev spaces of negative or

positive orders.

When solving pseudodifferential equations on the sphere with either spherical radial

basis functions or spherical splines, ill-conditioned linear systems may arise. In the case
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of spherical radial basis functions, preconditioning by using additive Schwarz methods has

been studied in [76]. Bounds for the condition numbers of the preconditioned systems

are proved. However, these bounds depend on the number of subdomains and the angles

between the subdomains [76].

In the case of spherical splines the question is still open. Our next contribution in this

dissertation is to fill this gap. We will design additive Schwarz preconditioners for the

Laplace–Beltrami and the hypersingular integral equations.

The additive Schwarz preconditioner is, as usual for finite and boundary methods (see

e.g. [74, 78]), defined based on a subspace splitting of the finite dimensional space in which

the solution is sought. This splitting is in turn defined by a decomposition of the sphere

into subdomains. In our studies of this type of preconditioners, we design an overlapping

decomposition method based on a two-level mesh as usual. However, our construction of

overlapping subdomains is different from the construction that is generally used in finite

element and boundary element literatures, where a fine mesh is created by refining a given

coarse mesh. This approach is impossible in our studies because we work with scattered

data. In this dissertation, we define the fine and coarse meshes independently from two

sets of scattered points, in which the set defining the coarse mesh is reasonably chosen

to be coarser than the other set. A subdomain is constructed from each triangle in the

coarse mesh by taking the union of all triangles in the fine mesh which intersect this

coarse triangle. This results in a set of overlapping subdomains which we use to define

our additive Schwarz operator. Bounds for the condition numbers of the preconditioned

system are proved, witnessing significant improvements in the condition numbers.

In summary, the contributions of this dissertation are as follows.

• Firstly, we solve, with spherical radial basis functions, pseudodifferential equations

of any nature, eliptic or strongly elliptic, and of any order, negative or positive,

by using the Galerkin and collocation methods. A unified error analysis for both

methods is studied.

• Secondly, we use spherical splines to solve strongly elliptic pseudodifferential equa-

tions of any order, negative or positive, by using the Galerkin method. Error analysis

is studied.

• Thirdly, we overcome the ill-conditionedness arising when solving, with spherical

splines, the Laplace–Beltrami and the hypersingular integral equations on the sphere

by using additive Schwarz methods. Bounds for the condition numbers of the pre-

conditioned systems are proved, witnessing significant improvements in the condition

numbers.

The dissertation consists of six chapters. Chapter 1 is the introduction. Chapter 2

reviews some important spaces and operators which will be used frequently throughout the

dissertation. All the results in this chapter are well-known and can be found in different

literatures. Some proofs are presented in this chapter for completeness.



4 1 Introduction

Chapter 3 is devoted to our first contribution. In this chapter, we use spherical ra-

dial basis functions to approximate solutions of pseudodifferential equations by using the

Galerkin and collocation methods. Error estimates of the collocation method are obtained

as a by-product of the analysis for the Galerkin method. The results in this chapter for

strongly elliptic pseudodifferential equations have been reported in our article [59]. The

results for elliptic operators will be reported in another paper.

In Chapter 4, we present the second contribution of this dissertation. Spherical splines

are used to approximate solutions of strongly elliptic pseudodifferential equations. The

method to be used is the Galerkin method. The results in this chapter have been reported

in our article [60].

In Chapters 5 and 6, we present the use of preconditioners by the additive Schwarz

method in solving the Laplace–Beltrami and the hypersingular integral equations with

spherical splines. Although the same preconditioner will be used for both equations,

different analyses are required due to the difference in Sobolev norms in consideration.

The results of Chapter 5 and 6 are reported in our articles [61] and [58].



Chapter 2

Preliminaries

In this chapter we review some important spaces and operators which are used frequently

in the rest of the dissertation. We start by discussing spherical harmonics, then review

Sobolev spaces on the unit sphere. We then introduce the definition of pseudodifferential

operators on the sphere. We finish this chapter with introduction of spherical radial basis

functions and spherical splines. We are not going to recall them as a list of statements

but present them in the way that they are related to each other and to the problems we

are working on. All the results are well-known and can be found in different literatures.

2.1 Spherical harmonics

In this section we introduce spherical harmonics, which are used frequently in this disser-

tation. Good references for this topic are [51, 55].

Throughout this dissertation, for n ≥ 3 we denote by Sn−1 the unit sphere in Rn, i.e.,

Sn−1 := {x ∈ Rn : |x| = 1} where |·| is the Euclidean norm in Rn. Let ∆ be the Laplace

operator in Rn. The Laplace–Beltrami operator ∆Sn−1 on Sn−1 is defined by

∆Sn−1v(x) := ∆v0(x), x ∈ Sn−1, (2.1.1)

where, for any ` ∈ N, v` is the homogeneous extension of degree ` of v to Rn, i.e.,

v`(x) := |x|`v
(

x

|x|

)
, x ∈ Rn\{0}. (2.1.2)

In the case of the sphere S2 in R3, it is natural to use spherical coordinates (r, θ, ϕ),

where r is the radius and θ, ϕ the two Euler angles so that
x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ.

In these coordinates, the Laplace operator has the form

∆v =
1
r2

∂

∂r

(
r2
∂v

∂r

)
+

1
r2

(
1

sin2 θ

∂2v

∂ϕ2
+

1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

))
, (2.1.3)
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and the Laplace–Beltrami operator can be represented as

∆S2v =
1

sin2 θ

∂2v

∂ϕ2
+

1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
. (2.1.4)

The area element on the sphere S2 is given by dσ = sin θ dθ dϕ. The operator ∆S2 is

self–adjoint with respect to the inner product 〈·, ·〉L2(S2) in L2(S2) given by

〈v, w〉L2(S2) =
∫

S2

vw dσ =
∫ 2π

0

∫ π

0
v(θ, ϕ)w(θ, ϕ) sin θ dθ dϕ.

Indeed, using integration by parts, we have

〈∆S2v, w〉L2(S2) =
∫ 2π

0

∫ π

0

(
1

sin2 θ

∂2v

∂ϕ2
+

1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

))
w sin θ dθ dϕ

=
∫ π

0

1
sin θ

∫ 2π

0

∂2v

∂ϕ2
w dϕdθ +

∫ 2π

0

∫ π

0

∂

∂θ

(
sin θ

∂v

∂θ

)
w dθ dϕ

=
∫ π

0

1
sin θ

(
∂v

∂ϕ
w
∣∣∣2π
ϕ=0

−
∫ 2π

0

∂v

∂ϕ

∂w

∂ϕ
dϕ

)
dθ

+
∫ 2π

0

(
sin θ

∂v

∂θ
w
∣∣∣π
θ=0

−
∫ π

0
sin θ

∂v

∂θ

∂w

∂θ
dθ

)
dϕ

= −
∫ 2π

0

∫ π

0

(
1

sin θ
∂v

∂ϕ

∂w

∂ϕ
+ sin θ

∂v

∂θ

∂w

∂θ

)
dθ dϕ

= −
∫ 2π

0

∫ π

0

[(
1

sin θ
∂v

∂ϕ

1
sin θ

∂w

∂ϕ

)
+
(
∂v

∂θ

∂w

∂θ

)]
sin θ dθ dϕ

= 〈v,∆S2w〉L2(S2) . (2.1.5)

The surface gradient of function v, denote by ∇S2v, is defined by

∇S2v :=
1

sin θ
∂v

∂ϕ
eϕ +

∂v

∂θ
eθ, (2.1.6)

where eφ and eθ are the two unit vectors corresponding to the two Euler angles. It follows

from (2.1.5) that

−
∫

S2

∆S2v w dσ =
∫

S2

(∇S2v · ∇S2w) dσ. (2.1.7)

Definition 2.1. A function v defined in Rn is called a homogeneous function of homogein-

ity degree `, for ` ∈ N, if v satisfies

v(tx) = t`v(x) ∀t ∈ R and ∀x ∈ Rn.

We note that if v is a homogeneous polynomial then its polynomial degree equals to

its homogeinity degree.

Definition 2.2. A spherical harmonic v` of order ` on the unit sphere Sn−1 in Rn is the

restriction of a homogeneous polynomial v` of degree ` defined in Rn which is harmonic,

i.e. which satisfies

∆v`(x) = 0, x ∈ Rn.

From Definition 2.2 we have immediately the following corollary.
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Corollary 2.3. Let v` be a spherical harmonic of degree `. There holds

v`(−x) = (−1)`v`(x), x ∈ Sn−1.

Proposition 2.4. Let k and ` be two distinct nonnegative integers. Let vk and v` be two

spherical harmonics of degree k and `, respectively. There holds

〈vk, v`〉L2(Sn−1)) :=
∫

Sn−1

vk(x)v`(x) dσx = 0.

Proof. We assume that vk and v` are two homogeneous harmonic polynomials of degree k

and ` in Rn satisfying

vk(x) = vk(x) and v`(x) = v`(x) ∀x ∈ Sn−1.

Then we have

vk(x) = t−kvk(tx), v`(x) = t−`v`(tx) ∀x ∈ Sn−1, ∀t 6= 0.

Because of the homogeneity of vk and v`, the corresponding normal derivatives on Sn−1

are
∂vk
∂n

(x) = kvk(x) and
∂v`
∂n

(x) = `v`(x) ∀x ∈ Sn−1. (2.1.8)

Noting that vk and v` are harmonic polynomials, using (2.1.8) and Green’s Theorem, we

have

0 =
∫∫∫

|x|≤1
(v`∆vk − vk∆v`) dV =

∫
Sn−1

vk v` (k − `) dσ.

Hence, in the case k 6= `, there holds∫
Sn−1

vk(x)v`(x) dσx = 0,

completing the proof.

In this dissertation, we denote by P` the space of polynomials in Rn of degree less than

or equal to `. Let Π` be the space of homogeneous polynomials of degree ` in Rn and

let H` be the space of homogeneous harmonic polynomials of degree ` in Rn. Denote by

Π̃` and H` the sets of restrictions of polynomials in Π` and H`, respectively, on the unit

sphere Sn−1.

Proposition 2.5. The space H` of spherical harmonics of degree ` on Sn−1 has dimension

N(n, `) being

N(n, 0) = 1 and N(n, `) =
2`+ n− 2

`

(
`+ n− 3
`− 1

)
, ` 6= 0. (2.1.9)

Proof. It is clear that N(n, 0) = 1. We consider the case ` ≥ 1. By the definition of

spherical harmonics, the dimension of the space of spherical harmonics of degree ` is equal

to the dimension of the space of harmonic homogeneous polynomials of degree ` in Rn.

Any homogeneous polynomial v` of degree ` in Rn can be represented as

v`(x) =
∑̀
i=0

xinH`−i(x1, . . . , xn−1),
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where H`−i(x1, . . . , xn−1) are homogeneous polynomials of degree ` − i with variables

x1, . . . , xn−1.

In this proof only, we denote by ∆n the Laplace operator corresponding to Rn. Since

∆n = ∂2

∂x2
n

+ ∆n−1, we have

∆nv`(x) =
∑̀
i=2

i(i− 1)xi−2
n H`−i(x1, . . . , xn−1) +

`−2∑
i=0

xin∆n−1H`−i(x1, . . . , xn−1).

If v` is a harmonic polynomial then ∆nv`(x) = 0 for all x ∈ Rn. This happens when

∆n−1H`−i = −(i+ 2)(i+ 1)H`−i−2, i = 0, . . . , `− 2.

Therefore all the polynomials Hi, for i = 0, . . . , `, are determined by H` and H`−1. Hence

the number N(n, `) of linearly independent homogeneous and harmonic polynomials of

degree ` in Rn is equal to the number of coefficients of H` and H`−1. Denote by M(n, `)

the number of coefficients in a homogeneous polynomial of degree ` and n variables. It is

well–known that

M(n, `) =
(`+ n− 1)!
`!(n− 1)!

. (2.1.10)

It follows that

N(n, `) = M(n− 1, `) +M(n− 1, `− 1) =
(`+ n− 2)!
`!(n− 2)!

+
(`+ n− 3)!

(`− 1)!(n− 2)!

=
2`+ n− 2

`

(
`+ n− 3
`− 1

)
,

completing the proof.

The following proposition will be frequently used in Chapters 5 and 6.

Proposition 2.6. The space Π̃` of spherical homogenous polynomials of degree ` contains

constant functions if and only if ` is even.

Proof. If ` is even, then for any constant c, the polynomial

v(x) = c(x2
1 + x2

2 + . . .+ x2
n)
`/2 ∀x = (x1, x2, . . . , xn) ∈ Sn−1

belongs to the space Π̃` and v(x) = c for all x ∈ Sn−1. On the other hand, if ` is odd and

if there exists v ∈ Π̃` such that v(x) = 1, then by homogeneity we have

1 = v(−x) = (−1)`v(x) = −1.

This contradiction shows that when ` is odd, the space Π̃` does not contain constant

functions.

Recalling the dimension N(n, `) of the space of spherical harmonic of degree ` as given

by (2.1.9), we may choose for this space an orthonormal basis {Y`,m}
N(n,`)
m=1 , i.e.,

〈Y`,m, Y`,k〉L2(Sn−1) = δmk, m, k = 1, . . . , N(n, `). (2.1.11)
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Proposition 2.7. The collection of all spherical harmonics

{Y`,m : m = 1, . . . , N(n, `), ` ≥ 0}

forms an orthonormal basis for L2(Sn−1). Moreover, the space H` of spherical harmonics of

degree ` coincides with the subspace spanned by the eigenfunctions of the Laplace–Beltrami

operator associated with the eigenvalue λ` = −`(`+ n− 2), i.e.,

∆Sn−1Y`,m + λ`Y`,m = 0. (2.1.12)

The eigenvalue λ` has multiplicity N(n, `).

Proof. The orthogonality in L2(Sn−1) results from the orthogonality of the subspaces Hk

and H` when k 6= `; see Proposition 2.4. It remains to show (2.1.12). In the spherical

coordinates in n dimensions, with the parametrisation x = rθ with r representing a

positive real radius and θ an element of the unit sphere Sn−1, the Laplace operator and

the Laplace–Beltrami operator are related to each other by

∆v =
∂2v

∂r2
+
n− 1
r

∂v

∂r
+

1
r2

∆Sn−1v;

see e.g. (2.1.3) and (2.1.4). For any spherical harmonic Y`,m, we denote by p`,m the

homogeneous harmonic polynomial in Rn which is associated with Y`,m. We have

∆Sn−1Y`,m + r2
∂2p`,m
∂r2

+ r(n− 1)
∂p`,m
∂r

= 0. (2.1.13)

Since p`,m is homogeneous of degree `, we have

∂p`,m
∂r

= `
p`,m
r

and
∂2p`,m
∂r2

= `(`− 1)
p`,m
r2

.

This together with (2.1.13) yields

∆Sn−1Y`,m + `(`+ n− 2)Y`,m = 0,

completing the proof.

Proposition 2.8. The space Π` is the direct sum of the space H` and the space |x|2Π`−2,

i.e., each p in Π` can be uniquely written as

p = p1 + |x|2p2, p1 ∈ H`, (2.1.14)

Proof. It is obvious that H` and |x|2Π`−2 are subspaces of Π`. Noting that

dim(H`) = dim(H`), Proposition 2.5 gives

dim(H`) = N(n, `) =
2`+ n− 2

`

(
`+ n− 3
`− 1

)
,

when ` 6= 0. It is also known (2.1.10) that

dim(Π`) =
(`+ n− 1)!
`!(n− 1)!

and dim(|x|2Π`−2) =
(`+ n− 3)!

(`− 2)!(n− 1)!
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A simple calculation reveals

dim(Π`) = dim(H`) + dim(|x|2Π`−2). (2.1.15)

We now prove that

H` ∩ |x|2Π`−2 = {0}. (2.1.16)

Let p` ∈ H` ∩ |x|2Π`−2. Then p`(x) = |x|2p`−2(x), where p`−2 is some polynomial in

Π`−2. Elementary calculations give

∆p`(x) = 2np`−2(x) + 4
n∑
i=1

xi
∂p`−2

∂xi
(x) + |x|2∆p`−2(x).

By writing

p`−2(x) =
∑

i1+...+in=`−2

ci1,...,in x
i1
1 . . . x

in
n ,

we have

∆p`(x) = 2n
∑

i1+...+in=`−2

ci1,...,in x
i1
1 . . . x

in
n + 4

n∑
k=1

∑
i1+...+in=`−2

ik≥1

ik ci1,...,in x
i1
1 . . . x

in
n

+ |x|2
n∑
k=1

∑
i1+...+in=`−2

ik≥2

ik(ik − 1) ci1,...,in x
i1
1 . . . x

ik−2
k . . . xinn .

(2.1.17)

The coefficient corresponding to the monomial xi11 . . . x
in
n is given by

ci1,...,in

(
2n+ 4

∑
k=1,...,n
ik≥1

ik +
∑

k=1,...,n
ik≥2

ik(ik − 1)
)

(2.1.18)

Since p` is a harmonic polynomial, all the coefficients defined in (2.1.18) are equal to

zero. It is easy to see that the factor in the bracket is positive, thus ci1,...,in must be zero.

Hence (2.1.16) is proved. This together with (2.1.15) assures that Π` is a direct sum of

H` and |x|2Π`−2, completing the proof of the proposition.

Proposition 2.8 immediately impliesΠ̃` = H0 ⊕H2 ⊕ . . .⊕H` if ` is even

Π̃` = H1 ⊕H3 ⊕ . . .⊕H` if ` is odd.

Definition 2.9. For any ` ≥ 0, the Legendre polynomial P` of degree ` defined on the

interval [−1, 1] is given by

P`(t) =
(−1)`

2``!

(
d

dt

)`
(1− t2)`, t ∈ [−1, 1].

The following proposition will be used frequently in this dissertation. We omit here

the proof which can be easily found in many literatures; see e.g. [55].
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Proposition 2.10. Let x and y be two unit vectors. The following addition formula

holds:
N(n,`)∑
m=1

Y`,m(x)Y`,m(y) =
N(n, `)
ωn

P`(x · y), (2.1.19)

where Y`,m are the spherical harmonics and P` the Legendre polynomials of orders `. In

particular, we have
N(n,`)∑
m=1

|Y`,m(x)|2 =
N(n, `)
ωn

.

Here, N(n, `) is the dimension of the space of homogeneous harmonic polynomials of degree

` in Rn; see (2.1.9), and ωn is the surface area of the unit sphere Sn−1 in Rn.

2.2 Sobolev spaces on the unit sphere

In this section we discuss the definition of Sobolev spaces defined on the unit sphere Sn−1.

Recall that we denote by {Y`,m : m = 1, . . . , N(n, `), ` ≥ 0} the set of spherical harmonics

which form an orthogonal basis for L2(Sn−1); see Proposition 2.7. For s ∈ R, the Sobolev

space Hs(Sn−1) is defined by

Hs(Sn−1) :=
{
v ∈ D ′(Sn−1) :

∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2s|v̂`,m|2 <∞
}
,

where D ′(Sn−1) is the space of distributions on Sn−1 and v̂`,m are the Fourier coefficients

of v,

v̂`,m = 〈v, Y`,m〉L2(Sn−1) .

The space Hs(Sn−1) is equipped with the following norm and inner product:

‖v‖Hs(Sn−1) :=

 ∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2s|v̂`,m|2
1/2

(2.2.1)

and

〈v, w〉Hs(Sn−1) :=
∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2sv̂`,mŵ`,m.

We note that the series on the right hand side also converges when v ∈ Hs+σ(Sn−1) and

w ∈ Hs−σ(Sn−1) for any σ > 0. Therefore, in the following we use the same notation

〈·, ·〉Hs(Sn−1) for the duality product between Hs+σ(Sn−1) and Hs−σ(Sn−1).

In the rest of the dissertation, we denote Hs := Hs(Sn−1) and the corresponding norm

and inner product ‖·‖s := ‖·‖Hs(Sn−1) and 〈·, ·〉s := 〈·, ·〉Hs(Sn−1), respectively. When s = 0

we write 〈·, ·〉 instead of 〈·, ·〉0; this is in fact the L2-inner product. In this dissertation,

we will frequently use the Cauchy–Schwarz inequality

| 〈v, w〉s | ≤ ‖v‖s‖w‖s for all v, w ∈ Hs, for all s ∈ R, (2.2.2)
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and the following identity which can be easily proved

‖v‖s1 = sup
w∈Hs2
w 6=0

〈v, w〉 s1+s2
2

‖w‖s2
for all v ∈ Hs1 , for all s1, s2 ∈ R. (2.2.3)

In the case k belongs to the set of nonnegative integers Z+, the Sobolev space Hk(Ω)

on a subset Ω ⊂ Sn−1 can also be defined by using atlas for the unit sphere Sn−1 [54].

Let {(Γj , φj)}Jj=1 be an atlas for Ω, i.e, a finite collection of charts (Γj , φj), where Γj
are open subsets of Ω, covering Ω, and where φj : Γj → Bj are infinitely differentiable

mappings whose inverses φ−1
j are also infinitely differentiable. Here Bj , j = 1, . . . , J , are

open subsets in R2. Also, let {αj}Jj=1 be a partition of unity subordinate to the atlas

{(Γj , φj)}Jj=1, i.e., a set of infinitely differentiable functions αj on Ω vanishing outside the

sets Γj , such that
∑J

j=1 αj = 1 on Ω. For any k ∈ Z+, the Sobolev space Hk(Ω) on the

unit sphere is defined as follows

Hk(Ω) := {v : (αjv) ◦ φ−1
j ∈ Hk(Bj), j = 1, . . . , J}, (2.2.4)

which is equipped with a norm defined by

‖v‖∗Hk(Ω) :=
J∑
j=1

‖(αjv) ◦ φ−1
j ‖Hk(Bj). (2.2.5)

Here, ‖·‖Hk(Bj) denotes the usual Hk-Sobolev norm defined on the subset Bj of the plane

R2. In the case Ω = Sn−1, this norm is equivalent to the norm defined in (2.2.1); see [43].

Let v ∈ Hk(Ω), k ≥ 1. For each l = 1, . . . , k, let vl−1 denote the unique homogeneous

extension of v of degree l − 1; see (2.1.2). Then

|v|Hl(Ω) :=
∑
|α|=l

‖Dαvl−1‖L2(Ω) (2.2.6)

is a Sobolev-type seminorm of v in Hk(Ω). Here ‖Dαvl−1‖L2(Ω) is understood as the

L2-norm of the restriction of the trivariate function Dαvl−1 to Ω. When l = 0 we define

|v|H0(Ω) := ‖v‖L2(Ω),

which can now be used together with (2.2.6) to define another norm in Hk(Ω):

‖v‖′Hk(Ω) :=
k∑
l=0

|v|Hl(Ω). (2.2.7)

This norm is equivalent to the norm ‖·‖∗
Hk(Ω)

defined by (2.2.5); see [54]. Hence, in the

case Ω = Sn−1, this norm turns out to be equivalent to the Sobolev norm defined in (2.2.1).

The following theorem, which will be frequently used in the whole dissertation, is true

for Hilbert spaces. We recall here only the result for the Sobolev spaces. For the proof of

the theorem, please refer to [46, Theorem B.2].
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Theorem 2.11. Let s1, s2, t1, t2 ∈ R be such that s1 ≤ s2 and t1 ≤ t2. Assume that

T : Hsi → Hti, i = 1, 2, are bounded linear operators satisfying

‖Tv‖ti ≤Mi‖v‖si ∀v ∈ Hsi ,

for some Mi ≥ 0, i = 1, 2. Then for any θ ∈ [0, 1], the operator

T : Hθs1+(1−θ)s2 → Hθt1+(1−θ)t2 is bounded, and there holds

‖Tv‖θt1+(1−θ)t2 ≤M θ
1M

1−θ
2 ‖v‖θs1+(1−θ)s2 ∀v ∈ Hθs1+(1−θ)s2 .

2.3 Pseudodifferential operators

Let {L̂(`)}`≥0 be a sequence of real numbers. A pseudodifferential operator L is a linear

operator that assigns to any v ∈ D ′(Sn−1) a distribution

Lv :=
∞∑
`=0

N(n,`)∑
m=1

L̂(`)v̂`,mY`,m.

The sequence {L̂(`)}`≥0 is referred to as the spherical symbol of L. Let

K(L) := {` ∈ N : L̂(`) = 0}. Then

kerL = span{Y`,m : ` ∈ K(L), m = 1, . . . , N(n, `)}.

Denoting M := dim kerL, we assume that 0 ≤M <∞.

Definition 2.12. A pseudodifferential operator L is said to be of order 2α for some α ∈ R
if there exists a positive constant C such that

|L̂(`)| ≤ C(`+ 1)2α for all ` ≥ 0. (2.3.1)

A pseudodifferential operator L of order 2α is said to be elliptic if

C1(`+ 1)2α ≤ |L̂(`)| ≤ C2(`+ 1)2α for all ` /∈ K(L), (2.3.2)

and strongly elliptic if

C1(`+ 1)2α ≤ L̂(`) ≤ C2(`+ 1)2α for all ` /∈ K(L), (2.3.3)

for some positive constants C1 and C2.

More general pseudodifferential operators can be defined via Fourier transforms by

using local charts; see e.g., [36, 57].

It can be easily seen that if L is a pseudodifferential operator of order 2α then

L : Hs+α → Hs−α is bounded for all s ∈ R.

The following commonly seen pseudodifferential operators are strongly elliptic; see [73].

(i) The Laplace–Beltrami operator (with the minus sign) is an operator of order 2

and has as symbol L̂(`) = `(` + n − 2). Indeed, this can be derived directly from

Proposition 2.7.
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(ii) The weakly singular integral operator, which arises from the boundary-integral re-

formulation of the Dirichlet problem with the Laplacian in the interior or exterior

of the sphere, is an operator of order −1 and has as symbol ωn/(4πN(n, `)), where

ωn is the surface area of the unit sphere Sn−1.

(iii) The hypersingular integral operator (with the minus sign), which arises from the

boundary-integral reformulation of the Neumann problem with the Laplacian in

the interior or exterior of the sphere, is an operator of order 1 and has as symbol

L̂(`) = `(`+ 1)ωn/(4πN(n, `)).

We define a bilinear form a(·, ·) : Hα+s(Sn−1)×Hα−s(Sn−1) → R, for any s ∈ R, by

a(w, v) := 〈Lw, v〉 for all w ∈ Hα+s(Sn−1), v ∈ Hα−s(Sn−1). (2.3.4)

In the sequel, for any x, y ∈ R, x � y means that there exist a positive constant C

satisfying x ≤ Cy, and x ' y if x � y and y � x.

The following simple results are often used in the rest of the dissertation.

Lemma 2.13. Let s be any real number.

1. The bilinear form a(·, ·) : Hα+s ×Hα−s → R is bounded, i.e.,

|a(w, v)| ≤ C‖w‖α+s‖v‖α−s for all w ∈ Hα+s, v ∈ Hα−s. (2.3.5)

2. If w, v ∈ Hs, then

| 〈Lw, v〉s−α | ≤ C‖w‖s‖v‖s. (2.3.6)

3. Assume that L is strongly elliptic. If v ∈ (kerL)⊥Hs, then

〈Lv, v〉s−α ' ‖v‖2
s. (2.3.7)

In particular, setting s = α, there holds a(v, v) ' ‖v‖2
α for all v ∈ (kerL)⊥Hα.

Here C is a constant independent of v and w.

Proof. Let w ∈ Hα+s and v ∈ Hα−s. Noting (2.3.3) and using the Cauchy–Schwarz

inequality, we have

|a(w, v)| ≤
∞∑
`=0

N(n,`)∑
m=1

|L̂(`)||ŵ`,m||v̂`,m| ≤ C

∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2α|ŵ`,m||v̂`,m|

= C
∞∑
`=0

N(n,`)∑
m=1

(`+ 1)α+s|ŵ`,m|(`+ 1)α−s|v̂`,m|

≤ C

 ∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2(α+s)|ŵ`,m|2
1/2 ∞∑

`=0

N(n,`)∑
m=1

(`+ 1)2(α−s)|v̂`,m|2
1/2

= C‖w‖α+s‖v‖α−s,

proving (2.3.5). The proof for (2.3.6) and (2.3.7) can be done similarly, noting the defi-

nition (2.3.3) of strongly elliptic operators, and noting that v ∈ (kerL)⊥Hs if and only if

v ∈ Hs and v̂`,m = 0 for all ` ∈ K(L) and m = 1, . . . , N(n, `).
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2.4 Spherical radial basis functions

Spherical radial basis function approximation has its roots in physically motivated prob-

lems [30]. It was independently developed by [26] and [79]. The use of these functions

results in meshless methods which, over the past few years, become more and more popu-

lar [81, 82]. These methods are alternatives to finite-element methods. The list of appli-

cations of spherical radial basis functions in geophysics and physical geodesy is long (cf.

[26], [27], [28], and many others). In this dissertation we shall use the spaces of spherical

radial basis functions on spheres to solve pseudodifferential equations on the sphere.

In this section, we review the definition of spherical radial basis functions which are

defined from kernels.

2.4.1 Positive-definite kernels

A continuous function Θ : Sn−1 × Sn−1 → R is called a positive-definite kernel on Sn−1 if

it satisfies

(i) Θ(x,y) = Θ(y,x) for all x,y ∈ Sn−1,

(ii) for any positive integer N and any set of distinct points {y1, . . . ,yN} on Sn−1, the

N ×N matrix B with entries Bi,j = Θ(yi,yj) is positive-semidefinite.

If the matrix B is positive-definite then Θ is called a strictly positive-definite kernel ; see

[68, 84].

We characterise the kernel Θ by a shape function θ as follows. Let θ : [−1, 1] → R be

a univariate function having a series expansion in terms of Legendre polynomials,

θ(t) =
∞∑
`=0

ω−1
n N(n, `)θ̂(`)P`(t), (2.4.1)

where ωn is the surface area of the sphere Sn−1, and θ̂(`) is the Fourier–Legendre coefficient,

θ̂(`) = ωn−1

∫ 1

−1
θ(t)P`(t)(1− t2)(n−3)/2 dt.

Here, P`(t) denotes the degree ` normalised Legendre polynomial in n variables so that

P`(1) = 1, as described in [51]. Using this shape function θ, we define

Θ(x,y) := θ(x · y) for all x,y ∈ Sn−1, (2.4.2)

where x ·y denotes the scalar product between x and y. We note that x ·y is the cosine of

the angle between x and y, which is called the geodesic distance between the two points.

Thus the kernel Θ is a zonal kernel. By using the addition formula (2.1.19), we can write

Θ(x,y) =
∞∑
`=0

N(n,`)∑
m=1

θ̂(`)Y`,m(x)Y`,m(y). (2.4.3)
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Remark 2.14. In [11], a complete characterisation of strictly positive-definite kernels is

established: the kernel Θ is strictly positive-definite if and only if θ̂(`) ≥ 0 for all ` ≥ 0,

and θ̂(`) > 0 for infinitely many even values of ` and infinitely many odd values of `; see

also [68] and [84].

In the remainder of this subsection, we will define a space of spherical radial basis

functions from a given univariate shape function and a set of data points on the sphere.

2.4.2 Spherical radial basis functions

Given a shape function φ satisfying

φ̂(`) ' (`+ 1)−2τ for all ` ≥ 0, (2.4.4)

for some τ ∈ R, the corresponding kernel Φ given by (2.4.2) is then strictly positive-

definite; see Remark 2.14. The native space associated with φ is defined by

Nφ :=
{
v ∈ D ′(Sn−1) : ‖v‖2

φ =
∞∑
`=0

N(n,`)∑
m=1

|v̂`,m|2

φ̂(`)
<∞

}
. (2.4.5)

This space is equipped with an inner product and a norm defined by

〈v, w〉φ =
∞∑
`=0

N(n,`)∑
m=1

v̂`,mŵ`,m

φ̂(`)
and ‖v‖φ =

 ∞∑
`=0

N(n,`)∑
m=1

|v̂`,m|2

φ̂(`)

1/2

.

Since φ̂(`) satisfies (2.4.4), the native space Nφ can be identified with the Sobolev space

Hτ , and the corresponding norms are equivalent.

LetX = {x1, . . . ,xN} be a set of data points on the sphere. Two important parameters

characterising the set X are the mesh norm hX and separation radius qX , defined by

hX := sup
y∈Sn−1

min
1≤i≤N

cos−1(xi · y) and qX :=
1
2

min
i6=j

1≤i,j≤N

cos−1(xi · xj). (2.4.6)

The spherical radial basis functions Φi, i = 1, . . . , N , associated with X and the kernel Φ

are defined by (see (2.4.3))

Φi(x) := Φ(x,xi) =
∞∑
`=0

N(n,`)∑
m=1

φ̂(`)Y`,m(xi)Y`,m(x). (2.4.7)

We note that

(̂Φi)`,m = φ̂(`)Y`,m(xi), i = 1, . . . , N. (2.4.8)

It follows from (2.4.4) that, for any s ∈ R,

∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2s
∣∣∣(Φ̂i)`,m

∣∣∣2 ' ∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2(s−2τ)|Y`,m(xi)|2.
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By using (2.1.19) and noting P`(xi · xi) = P`(1) = 1 we obtain, recalling that

N(n, `) = O(`n−2),

∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2s
∣∣∣(Φ̂j)`,m

∣∣∣2 ' ∞∑
`=0

(`+ 1)2(s−2τ)+n−2.

The series on the right hand side converges if and only if 2(s− 2τ) + n− 2 < −1. Hence,

Φi ∈ Hs ⇐⇒ s < 2τ +
1− n

2
. (2.4.9)

The finite-dimensional subspace to be used in our approximation for strongly elliptic

operators is defined by VφX := span{Φ1, . . . ,ΦN}. For brevity of notation we write Vφ for

VφX since there is no confusion. Due to (2.4.9), we have

Vφ ⊂ Hs for all s < 2τ +
1− n

2
. (2.4.10)

We note that if τ > (n − 1)/2, then Vφ ⊂ Nφ ' Hτ ⊂ C(Sn−1), which is essentially the

Sobolev embedding theorem.

2.5 Spherical splines

In this section we discuss the spaces of spherical splines defined on spherical triangulations

of the unit sphere S2 in R3; see [2, 3, 4]. We first review the key building blocks for spherical

splines.

2.5.1 Spherical barycentric coordinates

Let v and w be two points on the unit sphere S2 in R3 which do not lie on a line through

the origin. The two points divide the great circle passing through v and v into two arcs

in which the shorter is written as vw.

Let v1,v2,v3 be three unit vector (which span R3). The surface triangle generated by

the vectors is called a spherical triangle

τ = {v ∈ S2 : v = b1v1 + b2v2 + b3v3, bi ≥ 0}.

It is clear that the boundary of τ consists of the three arcs v1v2, v2v3, v3v1 which are

called the three edges of the spherical triangle.

Definition 2.15. Let τ be a spherical triangle with vertices v1,v2,v3 and let v be a point

the sphere S2. The spherical barycentric coordinates of v relative to τ are the unique real

numbers b1, b2, b3 such that

v = b1v1 + b2v2 + b3v3. (2.5.1)

Equation (2.5.1) defining spherical barycentric coordinates can be written as a linear

system of equations for b1, b2, b3, supposing that vi = (xi, yi, zi) and v = (x, y, z)x1 x2 x3

y1 y2 y3

z1 z2 z3


b1b2
b3

 =

xy
z

 (2.5.2)
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The matrix in (2.5.2) is nonsingular since the three vectors vi, i = 1, 2, 3, form a basis for

R3. Using Cramer’s rule, we have

b1 =
det(v,v2,v3)
det(v1,v2,v3)

, b2 =
det(v1,v,v3)
det(v1,v2,v3)

, b3 =
det(v1,v2,v)
det(v1,v2,v3)

, (2.5.3)

where

det(v1,v2,v3) := det

x1 x2 x3

y1 y2 y3

z1 z2 z3


and so forth. Equation (2.5.3) shows that b1 is the ratio of the volume of the trihedron

formed by the origin and v,v2,v3 over the volume of the trihedron formed by the origin

and v1,v2,v3. Similar observations for b2 and b3.

The following proposition shows some basic properties of spherical barycentric coordi-

nates.

Proposition 2.16. Let τ be a spherical triangle generated by v1,v2,v3. The following

statements are true.

1. The barycentric coordinates at the vertices of τ satisfy

bi(vj) = δij , i, j = 1, 2, 3.

2. For all v in the interior of τ , bi(v) > 0 for i = 1, 2, 3.

3. If the edges of τ are extended into great circles, the sphere S2 is divided into eight

regions. The spherical barycentric coordinates have constant signs on each of these

eight regions.

4. If a point v lies on an edge of τ , then the spherical coordinate corresponding to the

vertex opposite the edge vanishes. The remaining two spherical coordinates are ratios

of sines of geodesic distances.

5. Spherical barycentric coordinates are infinitely differentiable functions of v.

6. The spherical barycentric coordinates of a point v on the sphere relative to one

spherical triangle τ can be computed from those relative to another spherical triangle

τ ′ by matrix multiplication.

7. The bi are ratios of volumes of tetrahedra.

8. The spherical barycentric coordinates of a point v are invariant under rotation.

9. The span of the spherical barycentric coordinates b1(v), b2(v), b3(v) relative to any

triangle is always the three dimensional linear space obtained by restricting the space

of linear homogeneous polynomials on R3 to the sphere S2.
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Figure 2.1: Spherical barycentric coordinates of v lying on v1v2.

Proof. Statements 1, 2 and 3 can be immediately deduced from Definition 2.15. State-

ment 5 is true because the determinant in the denominators of (2.5.3) is nonzero. State-

ment 7 is deduced directly from (2.5.3). Statement 9 follows from the fact that the spherical

barycentric coordinates of a point v on the sphere are homogeneous polynomial of degree

1 and the fact that they are linearly independent which can be seen easily from (2.5.3).

Assume that M is a 3 × 3 matrix which satisfies that for each v ∈ S2, Mv ∈ S2.

Suppose that vector v is written as in (2.5.1). By multiplying (2.5.1) by M , we obtain

Mv = b1Mv1 + b2Mv2 + b3Mv3,

proving Statement 6. Statement 8 is then a direct consequence since each rotation can be

written as the multiplication of an orthogonal matrix.

For Statement 4, suppose that point v lies on the edge v1,v2 (see Figure 2.1). It is

easy that b3(v) = 0. From Figure 2.1, it is clear that

b1(v) = OA =
sin(α− β)

sinα
and b2(v) = OB =

sinβ
sinα

.

Proposition 2.16 shows that spherical barycentric coordinates have most of the prop-

erties of planar barycentric coordinates. There are some important differences though.

Perhaps, the most significant difference is that spherical barycentric coordinates do not

sum up to 1, except at the vertices of the spherical triangle in concern.

Proposition 2.17. Let τ := 〈v1,v2,v3〉 be a spherical triangle. There holds

b1(v) + b2(v) + b3(v) > 1 ∀v ∈ τ\{v1,v2,v3}.

Proof. We denote by T the planar triangle with vertices v1,v2,v3. Then we have

T = {v ∈ R3 : v = b1v1 + b2v2 + b3v3, bi ≥ 0 and b1 + b2 + b3 = 1}. (2.5.4)
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It is easy to see that for any v ∈ τ , we have v = αw for some α ≥ 1 and w ∈ T . From

this and (2.5.4), we deduce that the spherical barycentric coordinates of v sum up to a

number greater than or equal to 1. The equality holds only when v coincides with the

three vertices v1,v2,v3.

2.5.2 Spherical Bernstein basis polynomials

Definition 2.18. Let v1,v2,v3 be three linearly independent unit vectors in R3 and let

b1(v), b2(v), b3(v) denote the spherical barycentric coordinates of v relative to the spherical

triangle τ := 〈v1,v2,v3〉. Given a nonnegative integer d, the functions

Bd,τ
ijk(v) :=

d!
i!j!k!

bi1(v)bj2(v)bk3(v), i+ j + k = d,

are called the spherical Bernstein basis polynomials of degree d.

It is clear from Definition 2.18 that the spherical Bernstein basis polynomials satisfy

the following recurrence relation:

Bd,τ
ijk = b1B

d−1,τ
i−1,j,k + b2B

d−1,τ
i,j−1,k + b3B

d−1,τ
i,j,k−1, i+ j + k = d. (2.5.5)

Here, we are using the convention that expressions with negative subscripts are defined as

zero.

We have denoted by Πd the space of homogeneous polynomials of degree d in R3 and

by Π̃d the set of restrictions of polynomials in Πd to the unit sphere S2. It is easy to

see that the dimension of the space Π̃d is equal to that of Πd and equal to
(
d+2
2

)
. In the

following proposition we will show that the set {Bd,τ
ijk : i+ j+ k = d} forms a basis for Π̃d.

Proposition 2.19. Let τ := 〈v1,v2,v3〉 be a spherical triangle and let {Bd,τ
ijk}i+j+k=d

be the spherical Bernstein basis polynomials associated to τ . Then the polynomials

{Bd,τ
ijk}i+j+k=d form a basis for Π̃d.

Proof. The above statement will be proved by using induction on d. We note that the

number of spherical Bernstein polynomials {Bd,τ
ijk}i+j+k=d is

(
d+2
2

)
, which is also the di-

mension of the space Π̃d of homogeneous polynomials of degree d on S2. We will prove

that

span{Bd,τ
ijk : i+ j + k = d} = Π̃d. (2.5.6)

It is clear that (2.5.6) is true when d = 0. The result 9 in Proposition 2.16 assures

that (2.5.6) holds in the case d = 1. We now assume that (2.5.6) is true in the case of

degree ` − 1 with ` ≥ 1. Let xiyjzk be a monomial of degree `. Since ` ≥ 1, there exists

at least one of the numbers i,j, k greater zero. Without loss of generality, we assume that

i ≥ 1. Then we have

xiyjzk = x(xi−1yjzk). (2.5.7)

Since (2.5.6) holds when d = 1 and d = `− 1, we have

x = c1b1(x, y, z) + c2b2(x, y, z) + c3b3(x, y, z), (2.5.8)
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and

xi−1yjzk =
∑

i′+j′+k′=`−1

cτi′j′k′B
`−1,τ
i′j′k′ (x, y, z)

This together with (2.5.7) and (2.5.8) gives

xiyjzk =
(
c1b1(x, y, z) + c2b2(x, y, z) + c3b3(x, y, z)

) ∑
i′+j′+k′=`−1

cτi′j′k′B
`−1,τ
i′j′k′ (x, y, z)

=
∑

i′+j′+k′=`−1

cτi′j′k′
(c1(i′ + 1)

`
B`,τ
i′+1,j′,k′ +

c2(j′ + 1)
`

B`,τ
i′,j′+1,k′

+
c3(k′ + 1)

`
B`,τ
i′,j′,k′+1

)
(x, y, z).

Hence, the monomial xiyjzk can be written as a linear combination of {B`,τ
ijk : i+j+k = `}.

This confirms that (2.5.6) is true for d = `.

Hence we have shown that (2.5.6) is true for any degree d. Moreover, since the

number of spherical Bernstein basis polynomials equals the dimension of Π̃d, the set

{Bd,τ
ijk : i+ j + k = d} is a basis for Π̃d, completing the proof of the proposition.

Let τ = 〈v1,v2,v3〉 be a spherical triangle on the unit sphere S2. Proposition 2.19

shows us that any polynomial p in Π̃d has a unique expansion of the form

p =
∑

i+j+k=d

cijkB
d,τ
ijk . (2.5.9)

2.5.3 Derivatives and integration of spherical polynomials

Definition 2.20. Let f be a sufficiently smooth function defined on the unit sphere S2.

Suppose w is a given vector in R3. The directional derivative Dwf(v) of function f at a

point v on S2 is defined by

Dwf(v) := DwF (v) = wT∇F (v), (2.5.10)

where F is some homogeneous extension of f and ∇F is the gradient of the trivariate

function F .

Remark 2.21. For each f defined on the unit sphere, there are an infinitely many homo-

geneous extensions of f . The value of its derivatives may depend on which extensions we

use. However, if w is perpendicular to the vector v then the directional derivative Dw(v)

does not depend on the extension F to be used as shown in the following proposition.

Proposition 2.22. Given a point v on S2. For any vector w perpendicular to vector

v, the directional derivative Dw(v) does not depend on the homogeneous extensions used

in (2.5.10).

Proof. Let P be the plane passing through the point v and the origin, and parallel to

vector w. This plane intersects the sphere S2 by a great circle arc av
w which passes through

the point v. We assume that the arc av
w is parametrised by arc length so that av

w(0) = v.
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Assume that av
w(β) = (x(β), y(β), z(β)). We have w = (x′(0), y′(0), z′(0)). Let F be any

homogeneous extension of f . By the chain rule, we have

df(av
w(β))
dβ

∣∣∣
β=0

=
dF (av

w(β))
dβ

∣∣∣
β=0

= wT ∇F (v) = DwF (v).

This shows that the definition ofDwf(v) does not depend on the choice of the extension F .

Proposition 2.23. Let τ = 〈v1,v2,v3〉 be a spherical triangle on S2 and w be a given

vector in R3. Then

Dwbi = bi(w), i = 1, 2, 3. (2.5.11)

Proof. We prove (2.5.11) for i = 1. The others can be proved in the same manner.

Recalling (2.5.3), we have b1(v) = det(v,v2,v3)/det(v1,v2,v3). Elementary calculations

reveal that

Dwb1(v) = det(w,v2,v3)/det(v1,v2,v3) = b1(w),

completing the proof of the proposition.

The chain rule and Proposition 2.23 imply the following formula for the directional

derivative of an arbitrary homogeneous polynomial.

Proposition 2.24. Let p be a spherical homogeneous polynomial of the form (2.5.9). For

any given vector w, there holds

Dwp(v) = b(w)T∇bp,

where

∇bp :=
( ∂

∂b1
,
∂

∂b2
,
∂

∂b3

)T
.

We are now ready to compute higher order derivatives of spherical homogeneous poly-

nomials of the form (2.5.9), i.e.,

p =
∑

i+j+k=d

cijkB
d,τ
ijk .

Let {w1, . . . ,wm}, 1 ≤ m ≤ d, be a set of direction vectors. Denote

c0ijk := cijk, i+ j + k = d.

For each 1 ≤ ` ≤ m, let

c`ijk = b1(w`)c`−1
i+1,j,k + b2(w`)c`−1

i,j+1,k + b3(w`)c`−1
i,j,k+1, ` = 1, . . . ,m.

Proposition 2.25. For any 0 ≤ m ≤ d, we have

Dw1...wmp(v) := Dw1 . . . Dwmp(v) =
d!

(d−m)!

∑
i+j+k=d−m

cmijkB
d−m
ijk (v). (2.5.12)
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Proof. We have

Dw1p(v) =
∑

i+j+k=d

cijkDw1B
d
ijk(v). (2.5.13)

By Proposition 2.23, for i+ j + k = d, we have

Dw1B
d
ijk(v) =

d!
i!j!k!

(
ibi−1

1 bj2b
k
3Dw1b1 + jbi1b

j−1
2 bk3Dw1b2 + kbi1b

j
2b
k−1
3 Dw1b3

)
= d
(
Bd−1
i−1,j,k(v)b1(w1) +Bd−1

i,j−1,k(v)b2(w1) +Bd−1
i,j,k−1(v)b3(w1)

)
.

Substituting this into (2.5.13), we obtain

Dw1p(v) = d
∑

i+j+k=d

cijk

(
Bd−1
i−1,j,k(v)b1(w1) +Bd−1

i,j−1,k(v)b2(w1) +Bd−1
i,j,k−1(v)b3(w1)

)
.

We then split the right hand side, rearrange it to obtain

Dw1p(v) = d
( ∑
i+j+k=d−1

ci+1,j,kB
d−1
i,j,k(v)b1(w1) +

∑
i+j+k=d−1

ci,j+1,kB
d−1
i,j,k(v)b2(w1)

+
∑

i+j+k=d−1

ci,j,k+1B
d−1
i,j,k(v)b3(w1)

)
= d

∑
i+j+k=d−1

(
ci+1,j,kb1(w1) + ci,j+1,kb2(w1) + ci,j,k+1b3(w1)

)
Bd−1
ijk (v)

= d
∑

i+j+k=d−1

c1ijkB
d−1
ijk (v),

yielding (2.5.12) for m = 1. The general result follows by induction.

Evaluation of integrals of piecewise polynomial functions is of importance in many

applications, e.g., in the finite element method or in minimal energy interpolation. Eval-

uating integrals of spherical polynomials is considerably more difficult than in the planar

case. In the case of planar triangles, the integral of a Bernstein basis polynomial of de-

gree d does not depend on the the particular basis polynomial or on the precise shape

of the triangle. This property does not hold in the case of spherical Bernstein polyno-

mial. In general, the integrals for two different spherical triangles are different, except in

the case the two triangles are similar. Moreover, the integrals of the spherical Bernstein

polynomials of degree d associated with a single triangle are also different in general.

There does not seem to be a convenient closed-form formula for integrals of spherical

Bernstein polynomials. To compute the integrals of a spherical function over a spherical

triangle, Alfeld, Neamtu and Schumaker propose a mapping of a spherical triangle τ to

a planar triangle whose vertices are the same as the vertices of the spherical one. This

enable us to use a standard technique of numerical integration for planar triangles.

Suppose that the spherical triangle τ have vertices being v1, v2 and v3. Let A be the

matrix whose columns are the vertices v1, v2 and v3 of τ . Then we have∫
τ
f dσ =

∫ 1

0

∫ 1−u1

0
f

(
AuT

|AuT |

)
|detA|
|AuT |3

du2 du1, (2.5.14)

where u = (u1, u2, 1− u1 − u2)T ; see [4].
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Proposition 2.26. Let p be a spherical homogeneous polynomial of degree d. Then∫
τ
p(v) dσ = |detA|

∫ 1

0

∫ 1−u1

0

p(Au)
|AuT |d+3

du2 du1.

By (2.5.14), we can now use numerical integration techniques for integral over planar

triangles to evaluate integral for spherical functions.

2.5.4 Spaces of spherical splines

Definition 2.27. A set of spherical triangles ∆ := {τi : i = 1, . . . , N} is called a spherical

triangulation if it satisfies:

1.
⋃N
i=1 τi = S2,

2. each triangle in ∆ has only vertices or edges in common with other triangles.

The definition above can be stated for a subset Ω ⊂ S2 in which the condition 1 in

the above definition is changed to Ω instead of S2. In this dissertation, we only work

with spherical triangulation for the whole sphere. We next introduce the concept of quasi-

uniform and regular triangulation on S2 which will be used in the rest of the dissertation.

For any spherical triangle τ , we denote by |τ | the diameter of the smallest spherical

cap containing τ , and by ρτ the diameter of the largest spherical cap inside τ . Here the

diameter of a cap is, as usual, twice its radius; see (4.3.1). We define

|∆| := max{|τ |, τ ∈ ∆}, ρ∆ := min{ρτ , τ ∈ ∆}, hτ := tan
|τ |
2

and h∆ := tan
|∆|
2
. (2.5.15)

Definition 2.28. A triangulation ∆ is said to be quasi-uniform if for some β > 1, there

holds

|τ | ≤ βρτ ∀τ ∈ ∆,

and regular if for some positive number γ < 1, there holds

|τ | ≥ γ|∆| ∀τ ∈ ∆.

The following proposition states the relationship between the number V of vertices, the

number E of edges and the number T of spherical triangles in a spherical triangulation.

Proposition 2.29. Let ∆ be a spherical triangulation on the sphere S2. Then

(i) E = 3T/2,

(ii) T = 2V − 4,

(iii) E = 3V − 6.

Proof. The equality (i) is obvious since every triangle has three edges and when we count

these edges all, each edge will be counted twice. The proof for (ii) is just a matter of

counting. The triangulation ∆ can be obtained by starting with one triangle and adding

one triangle a time until it covers the whole sphere. Assume that each time, a triangle
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is added so that it shares at least one common edge with the previous triangles already

in. We denote by αi, for i = 1, 2, 3, the number of times that the added triangles share i

common edges with the other triangles. Since we are working on the sphere, we can assume

that α3 = 1. It is obvious that

T = 1 + α1 + α2 + α3 = 2 + α1 + α2. (2.5.16)

For the number of edges, we start with a single triangle which has 3 edges. Each time we

add a triangle, the number of new edges is 2, 1, 0 when the number of edges shared by

the new triangle with the others is 1, 2 and 3, respectively. Thus,

E = 3 + 2α1 + α2. (2.5.17)

Similarly,

V = 3 + α1. (2.5.18)

From (i), (2.5.16) and (2.5.17), we obtain α1 = α2. This together with (2.5.16)

and (2.5.18) implies (ii). The equality (iii) can be deduced from (i) and (ii).

We are now ready to define the space of spherical splines.

Definition 2.30. Let ∆ be a spherical triangulation on the unit sphere S2. The space of

spherical splines of degree d and smoothness r is given by

Srd(∆) := {s ∈ Cr(S2) : s|τ ∈ Π̃d, τ ∈ ∆}

For each spherical triangle τ := 〈v1,v2,v3〉 and for any nonnegative integer d, we

denote

ξijk :=
iv1 + jv2 + kv3

|iv1 + jv2 + kv3|
, i+ j + k = d.

The set

Dd,τ := {ξijk : i+ j + k = d}

is called the set of domain points relative to τ and the set Dd,∆ =
⋃
τ∈∆Dd,τ is called the

set of domain points of the triangulation ∆ relative to the degree d.

Proposition 2.31. There is an one-to-one correspondence between the linear space S0
d(∆)

and the set RDd,∆.

Proof. Given s ∈ S0
d(∆), Proposition 2.19 show that for each triangle τ ∈ ∆, there exists

a unique set of coefficients {cξ : ξ ∈ Dd,τ} such that

s|τ =
∑

ξ∈Dd,τ

cξB
d,τ
ξ , (2.5.19)

where Bd,τ
ξ are the spherical Bernstein basis polynomials of degree d associated with the

spherical triangle τ . Since s is continuous, if ξ is a common vertex or lies on a common
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edge of two triangles τ and τ ′, then the coefficients cξ for τ and τ ′ are the same. Thus,

for each s ∈ S0
d(∆), there is a unique associated set of coefficients {cξ : ξ ∈ Dd,∆}. The

converse also holds, i.e., given any {cξ : ξ ∈ Dd,∆} there is a unique spline s ∈ S0
d(∆)

defined by (2.5.19).

Proposition 2.31 shows that the dimension of S0
d(∆) is equal to the cardinality of Dd,∆.

Proposition 2.32. Let ∆ be a spherical triangulation on the unit sphere S2. Then

dimS0
d(∆) = #Dd,∆ = V + (d− 1)E +

(
d− 1

2

)
T, (2.5.20)

where V , E and T are the numbers of vertices, edges, and triangles in ∆.

Proof. The set of domain points associated with the triangulation ∆ and degree d includes

the vertices of the triangulation, the other domain points on edges which are not vertices

and the domain points inside each triangle.

Let τ := 〈v1,v2,v3〉 be a triangle in ∆. Domain points lie on the edge v1v2 are

vv1v2
ij :=

iv1 + jv2

|iv1 + jv2|
, i+ j = d,

which are v1 and v2 when i = 1 and i = d, respectively. The other domain points on v1v2

are vv1v2
ij when i = 2, . . . , d − 1. This argument shows that the number of domain point

on each edge is a constant and it is equal to d − 1. Hence, the number of domain points

lying on edges of the triangulation which are not vertices is (d− 1)E.

Domain points inside the triangle τ are

vτijk :=
iv1 + jv2 + kv3

|iv1 + jv2 + kv3|
, i+ j + k = d, and i ≥ 1, j ≥ 1, k ≥ 1.

A simple count gives the number of domain points inside τ is
(
d−1
2

)
.

Combining the above arguments, we deduce (2.5.20).

We now construct simple locally supported basis functions for S0
d(∆). For each

ξ ∈ Dd,∆, let ψξ be a spline in S0
d(∆) satisfying

νηψξ = δη,ξ ∀η ∈ Dd,∆, (2.5.21)

where νη is a linear functional which picks off the coefficient associated with the domain

point ξ. By construction, ψξ has all zero coefficients except for cξ = 1.

Since for each triangle τ , the associated spherical Bernstein polynomials are nonneg-

ative on τ , it follows immediately that ψξ(v) ≥ 0 for all v ∈ S2. Moreover, since ψξ is

identically zero on all triangles which do not contain ξ, it follows that the support of ψξ is

• a single triangle τ , if ξ is in the interior of τ ,

• the union of triangle τ and τ ′, if ξ lies on a common edge between τ and τ ′, and ξ

is not a vertex.
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• the union of all triangles sharing the vertex ξ, if ξ is a vertex.

Proposition 2.33. The set of splines B := {ψξ : ξ ∈ Dd,∆} forms a basis for S0
d(∆).

Proof. Since dimS0
d(∆) = #Dd,∆, it suffices to show that the ψξ, ξ ∈ Dd,∆, are linearly

independent. Suppose that

s :=
∑

ξ∈Dd,∆

cξψξ = 0 on S2.

Then on each triangle τ ∈ ∆, the restriction s|τ is a spherical Bernstein polynomial of

degree d which is identically zero. Proposition 2.19 implies that cξ = 0 for all ξ ∈ Dd,τ .
This holds for all triangles in ∆, thus all coefficients must be equal to zero. This has

shown the linear independence of B, completing the proof of the proposition.

We now briefly discuss the construction of a quasi-interpolation operator

Ĩ : L2(S2) → Srd(∆) which is defined in [54]. This operator will be used frequently in

the rest of the dissertation. Assume that Dd,∆ := {ξ1, . . . , ξD}, where D = dimS0
d(∆).

Let {Bl : l = 1, . . . , D} be a basis for S0
d(∆h) such that the restriction of Bl on each

triangle containing ξl is the spherical Bernstein polynomial of degree d associated with

this point, and that Bl vanishes on other triangles.

A set M := {ζl}Nl=1 ⊂ Dd,∆ is called a minimal determining set for Srd(∆) if, for

every s ∈ Srd(∆), all the coefficients νl(s) in the expression s =
∑D

l=1 νl(s)Bl are uniquely

determined by the coefficients corresponding to the basis functions which are associated

with points in M. Given a minimal determining set M, we construct a basis {B∗
l }Nl=1 for

Srd(∆) by requiring

νl′(B∗
l ) = δl,l′ , 1 ≤ l, l′ ≤ N.

The use of Hahn–Banach Theorem extends the linear functionals νl, l = 1, . . . , N , to all

functions in L2(S2). We continue to use the same symbol for these extensions.

The quasi-interpolation operator Ĩ : L2(S2) → Srd(∆) is now defined by

Ĩv :=
N∑
l=1

νl(v)B∗
l , v ∈ L2(S2). (2.5.22)

In this dissertation, we always assume that the integers d and r defining Srd(∆) satisfyd ≥ 3r + 2 if r ≥ 1,

d ≥ 1 if r = 0.
(2.5.23)

The following proposition, which will be used to prove an approximation property of

the spaces of spherical splines in Chapter 4, is a special case of a result established in [7].

Proposition 2.34. [7, Theorem 2] Assume that ∆ is a quasi-uniform spherical triangu-

lation with |∆| ≤ 1, and that (2.5.23) holds. Then for any v ∈ Hm there holds

|v − Ĩv|k ≤ Chm−k∆ |v|m,
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for all k = 0, . . . ,min{m− 1, r + 1}, and

m =

1, 3, . . . , d+ 1 if d is even,

2, 4, . . . , d+ 1 if d is odd.

Here, C is a positive constant depending only on d and the smallest angle in ∆.

Remark 2.35. (i) The condition k ≤ r + 1 is to ensure that Ĩv ∈ Hk, which will be

proved in Proposition 4.2.

(ii) Theorem 2 in [7] proves the result for r ≥ 0 and d ≥ 3r + 2. In fact, the result can

also be proved when r = 0 and d = 1 by using the same argument.



Chapter 3

Pseudodifferential equations with

spherical radial basis functions

3.1 Introduction

In this chapter, we solve the pseudodifferential equation Lu = g with spherical radial

basis functions. The operator L can be of any nature, elliptic or strongly elliptic, and

of any order, negative or positive. To assure the unique existence of the solution to the

equation, side conditions are introduced. The methods to be used are the Galerkin and

collocation methods. From the point of view of application, the collocation method is

easier to implement, in particular when the given data are scattered. However, it is well-

known that collocation methods in general elicit a complicated error analysis.

In this chapter, first we solve strongly elliptic and elliptic pseudodifferential equa-

tions on the sphere by the Galerkin method. Error analysis is performed with well-known

knowledge on Galerkin methods. When the pseudodifferential operator is strongly elliptic,

a Bubnov–Galerkin method is used. However, a Petrov–Galerkin method is required for

elliptic pseudodifferential operators to ensure that the resulting matrices are positive-

definite. As a consequence, it is necessary to prove some inf-sup (or Ladyzenskaya–

Babuška–Brezzi) condition involving spherical radial basis functions. This result is of

interest in its own right. To the best of our knowledge, a first inf-sup condition involving

radial basis functions is proved by Sloan and Wendland [71] for a hybrid of radial basis

functions and polynomials. The inf-sup condition we prove in this chapter involves two

spaces of spherical radial basis functions defined from two different shape functions. The

proof technique is different from that used in [71].

Next, we solve the equations by collocation methods. A salient feature of this chapter

is that error estimates for collocation methods (as considered in References [48, 49, 50]) are

obtained as a by-product of the analysis for the Galerkin method. This unified error anal-

ysis is thanks to an observation that the collocation equation can be viewed as a Galerkin

equation, due to the reproducing kernel property of the space in use. Efforts to perform

error analysis for the collocation method based on that for the Galerkin method have been

made by several authors to solve quasilinear parabolic equations [19], pseudodifferential
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equations on closed curves [5], and boundary integral equations [16]. These approaches

use either a special set of collocation points or the duality inner product.

Our error estimates, as compared to those by Morton and Neamtu [49, 50], cover

a wider range of Sobolev norms. Indeed, these authors only provide error estimates in

the Sobolev norm ‖·‖2α, where 2α is the order of the operator. In the case of elliptic

pseudodifferential operators, we also relax on the smoothness condition of the right-hand

side of the equation, as compared to [49, 50].

3.2 The problem

The problem we are solving in this chapter is posed as follows.

Problem A: Let L be a pseudodifferential operator of order 2α. Let

K(L) := {` ∈ N : L̂(`) = 0}. Assume that the cardinality of K(L) is M . Given, for

some σ ≥ 0,

g ∈ Hσ−α satisfying ĝ`,m = 0 for all ` ∈ K(L), m = 1, . . . , N(n, `), (3.2.1)

find u ∈ Hσ+α satisfying
Lu = g,

〈µi, u〉 = γi, i = 1, . . . ,M,
(3.2.2)

where γi ∈ R and µi ∈ H−σ−α are given. Here 〈·, ·〉 denotes the duality inner product

between H−σ−α and Hσ+α, which coincides with the H0-inner product when µi and u

belong to H0.

An explanation for the inclusion of σ in (3.2.1) is in order. For the Galerkin approxi-

mation, the energy space is Hα. Thus it suffices to assume (3.2.1) with σ = 0. However,

for the collocation approximation, it is required that g be at least continuous. More-

over, we will reformulate the collocation equation into a Galerkin equation which requires

g ∈ Hτ for some τ > 0 to be specified in Section 3.6. Therefore, we include the constant

σ in (3.2.1).

Problem A is uniquely solvable under the following assumption.

Assumption B: The functionals µ1, . . . , µM are assumed to be unisolvent with respect

to kerL, i.e., for any v ∈ kerL if 〈µi, v〉 = 0 for all i = 1, . . . ,M , then v = 0.

The following theorem is proved in [50]. We include the proof here for completeness.

Theorem 3.1. Under Assumption B, Problem A has a unique solution.

Proof. Since kerL is a finite-dimensional subspace of Hσ+α, we can represent Hσ+α as

Hσ+α = kerL⊕ (kerL)⊥Hσ+α ,

where (kerL)⊥Hσ+α is the orthogonal complement of kerL with respect to the Hσ+α-inner

product. Writing the solution u in the form

u = u0 + u1 where u0 ∈ kerL and u1 ∈ (kerL)⊥Hσ+α , (3.2.3)
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and noting that L|(kerL)⊥
Hσ+α

is injective, we can define u1 by

u1 = L−1g (3.2.4)

and find u0 ∈ kerL by solving

〈µi, u0〉 = γi − 〈µi, u1〉 , i = 1, . . . ,M. (3.2.5)

Since u0 ∈ kerL, it can represented as

u0 =
∑

`∈K(L)

N(n,`)∑
m=1

c`,mY`,m.

Substituting this into (3.2.5) yields

∑
`∈K(L)

N(n,`)∑
m=1

c`,m 〈µi, Y`,m〉 = γi − 〈µi, u1〉 , i = 1, . . . ,M. (3.2.6)

Recalling that M = dim kerL, we note that there are M unknowns c`,m. The unisolvency

assumption B assures us that equation (3.2.5) with zero right-hand side has a unique

solution u0 = 0. Therefore, the matrix arising from (3.2.6) is invertible, which in turn

implies unique existence of c`,m, m = 1, . . . , N(n, `) and ` ∈ K(L). The theorem is

proved.

Recalling (2.3.4), we define a bilinear form a(·, ·) : Hα+s ×Hα−s → R, for any s ∈ R,

by

a(w, v) := 〈Lw, v〉 for all w ∈ Hα+s, v ∈ Hα−s. (3.2.7)

In particular, when s = σ we have by noting (3.2.4)

a(u1, v) = 〈g, v〉 for all v ∈ Hα−σ. (3.2.8)

In the next section, we shall define finite-dimensional subspaces in which approximate

solutions are sought for.

3.3 Approximation subspaces

In order to assure the positive definiteness of stiffness matrices arising from solving elliptic

and strongly elliptic pseudodifferential equations, different spaces of spherical radial basis

functions are used. In this section, we first review the definition of the space of spherical

radial basis functions defined from a shape function φ which will be used to solve strongly

elliptic equations. An approximation property of this space as a subspace of Sobolev

spaces will be proved in a wide range of Sobolev norms. We then introduce the spaces of

spherical radial basis functions which will be used to solve elliptic equations.
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3.3.1 Strongly elliptic case

Let φ : [−1, 1] → R be a univariate shape function satisfying (2.4.4). Let

X = {x1,x2, . . . ,xN} be a set of scattered points on the unit sphere Sn−1. For strongly

elliptic operators, we shall use the space Vφ := VφX of spherical radial basis functions

defined as in Subsection 2.4.2.

It is noted that for any function v in the native space Nφ defined by (2.4.5), there

holds

v(xi) =
∞∑
`=0

N(n,`)∑
m=1

v̂`,mφ̂(`)Y`,m(xi)

φ̂(`)
= 〈v,Φi〉φ , i = 1, . . . , N ; (3.3.1)

see [82, page 134]. This property is crucial in our analysis for the collocation method in

Section 3.6.

We finish this subsection by proving the approximation property of Vφ as a subspace

of Sobolev spaces. This property is obtained by using the interpolation error which is

derived in [52, Theorem 5.5]. This theorem states that if v ∈ Hs∗ for some s∗ satisfying

(n− 1)/2 < s∗ ≤ τ then for 0 ≤ t∗ ≤ s∗ there holds

‖v − IXv‖t∗ ≤ Cρτ−s
∗

X hs
∗−t∗
X ‖v‖s∗ . (3.3.2)

Here, ρX = hX/qX , and IXv ∈ Vφ is the interpolant of v at xi, i = 1, . . . , N , given by

IXv(xi) = v(xi), i = 1, . . . , N.

(In fact, it is required that v ∈ Nφ so that IXv is well-defined.) When solving pseudod-

ifferential equations of order 2α by the Galerkin method, it is natural to carry out error

analysis in the energy space Hα. Since the order 2α may be negative (as in the case of the

weakly-singular integral equation discussed after Definition 2.12) it is necessary to show

an approximation property of the form (3.3.2) for a wider range of t∗ and s∗, including

negative real values.

Proposition 3.2. Assume that (2.4.4) holds for some τ > (n− 1)/2. For any s∗, t∗ ∈ R
satisfying t∗ ≤ s∗ ≤ 2τ and t∗ ≤ τ , if v ∈ Hs∗ then there exists η ∈ Vφ such that

‖v − η‖t∗ ≤ Chs
∗−t∗
X ‖v‖s∗ (3.3.3)

for hX ≤ h0, where C and h0 are independent of v and hX .

Proof. For k = 0, 1, 2, . . ., we denote Ik = [−kτ,−(k − 1)τ ] and prove by induction on k

that (3.3.3) holds for t∗ ∈ Ik for all k.

• We first prove that (3.3.3) is true when t∗ ∈ I0. Indeed, let t∗ ∈ I0. In this step, we

consider two cases when s∗ belongs to [τ, 2τ ] and [t∗, τ), respectively.

Case 1.1. τ ≤ s∗ ≤ 2τ .

Let t and s be real numbers satisfying 0 ≤ t ≤ τ ≤ s ≤ 2τ . Let IXv ∈ Vφ be the

interpolant of v at xi, i = 1, . . . , N . Then, by using (3.3.1), we deduce

〈v − IXv, w〉φ = 0 for all w ∈ Vφ.
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Hence, by using (2.4.4) and the Cauchy–Schwarz inequality, we obtain for v ∈ H2τ

‖v − IXv‖2
τ ' ‖v − IXv‖2

φ = 〈v − IXv, v − IXv〉φ = 〈v − IXv, v〉φ

≤
∞∑
`=0

N(n,`)∑
m=1

|v̂`,m − (̂IXv)`,m||v̂`,m|
φ̂(`)

'
∞∑
`=0

N(n,`)∑
m=1

(`+ 1)2τ |v̂`,m − (̂IXv)`,m||v̂`,m| ≤ ‖v − IXv‖0‖v‖2τ (3.3.4)

Proposition 3.5 in [75] gives

‖v − IXv‖0 ≤ Ch2τ
X ‖v‖2τ , (3.3.5)

which, together with (3.3.4), implies

‖v − IXv‖τ ≤ ChτX‖v‖2τ . (3.3.6)

Noting the inequalities (3.3.5), (3.3.6), and applying Theorem 2.11 with T = I − IX ,

s1 = s2 = 2τ , t1 = 0, t2 = τ , and θ = (τ − t)/τ , we obtain

‖v − IXv‖t ≤ Ch2τ−t
X ‖v‖2τ , 0 ≤ t ≤ τ.

On the other hand, by using (3.3.2) with t∗ and s∗ replaced by t and τ , respectively, we

obtain

‖v − IXv‖t ≤ Chτ−tX ‖v‖τ , 0 ≤ t ≤ τ.

Using Theorem 2.11 again with T = I−IX , t1 = t2 = t, s1 = τ , s2 = 2τ , and θ = 2τ−s/τ ,
we deduce

‖v − IXv‖t ≤ Chs−tX ‖v‖s, 0 ≤ t ≤ τ.

Hence, we have proved0 ≤ t∗ ≤ τ ≤ s∗ ≤ 2τ,

∀v ∈ Hs∗ , ∃ηv = IXv ∈ Vφ : ‖v − ηv‖t∗ ≤ Chs
∗−t∗
X ‖v‖s∗ .

(3.3.7)

Case 1.2. t∗ ≤ s∗ < τ .

Let s and t be real numbers such that 0 ≤ s < τ and 2s−2τ ≤ t ≤ s. Let Ps : Hs → Vφ

be defined by

〈Psv, w〉s = 〈v, w〉s ∀w ∈ Vφ. (3.3.8)

It is easily seen that

‖v − Psv‖s ≤ ‖v‖s. (3.3.9)

If 2s − 2τ ≤ t ≤ 2s − τ so that τ ≤ 2s − t ≤ 2τ then we apply (3.3.7) with t∗ and s∗

replaced by s and 2s − t, respectively, to deduce that for any w ∈ H2s−t, there exists

ηw ∈ Vφ such that

‖w − ηw‖s ≤ Chs−tX ‖w‖2s−t. (3.3.10)
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Since 〈v − Psv, ηw〉s = 0, it follows from (2.2.3), (2.2.2), (3.3.9) and (3.3.10) that

‖v − Psv‖t = sup
w∈H2s−t
w 6=0

〈v − Psv, w〉s
‖w‖2s−t

= sup
w∈H2s−t
w 6=0

〈v − Psv, w − ηw〉s
‖w‖2s−t

≤ ‖v − Psv‖s sup
w∈H2s−t
w 6=0

‖w − ηw‖s
‖w‖2s−t

≤ Chs−tX ‖v‖s.

In particular, for t = 2s− τ we have

‖v − Psv‖2s−τ ≤ Ch−s+τX ‖v‖s. (3.3.11)

If 2s − τ < t ≤ s then by noting (3.3.9) and (3.3.11), and applying Theorem 2.11

with T = I − Ps, s1 = s2 = s, t1 = 2s − τ , t2 = s, and θ = (t − s)/(s − τ) we obtain

‖v − Psv‖t ≤ Chs−tX ‖v‖s.
Combining both cases 1.1 and 1.2, we have proved thatt∗ ∈ I0, t

∗ ≤ s∗ ≤ 2τ,

∀v ∈ Hs∗ ,∃ηv ∈ Vφ : ‖v − ηv‖t∗ ≤ Chs
∗−t∗
X ‖v‖s∗ .

(3.3.12)

• Assume that for some k0 ≥ 0, (3.3.3) is true when t∗ ∈ Ik, for all k = 0, 1, . . . , k0, i.e.,

the following statement holds,t∗ ∈
⋃k0
k=0 Ik, t∗ ≤ s∗ ≤ 2τ,

∀v ∈ Hs∗ , ∃ηv ∈ Vφ : ‖v − ηv‖t∗ ≤ Chs
∗−t∗
X ‖v‖s∗ .

(3.3.13)

• We now prove that (3.3.3) is also true when t∗ ∈ Ik0+1. Analogously to the case when

t∗ ∈ I0, we consider two cases when s∗ belongs to [−k0τ, 2τ ] and [t∗,−k0τ), respectively.

Case 2.1. −k0τ ≤ s∗ ≤ 2τ .

Let t and s be real numbers satisfying t ∈ Ik0+1 and s ∈ [−k0τ, 2τ ]. Let

P−k0τ : H−k0τ → Vφ be the projection defined by

P−k0τv ∈ Vφ : 〈P−k0τv, w〉−k0τ = 〈v, w〉−k0τ ∀w ∈ Vφ.

Then P−k0τv is the best approximation of v from Vφ in the H−k0τ -norm. It follows

from (3.3.13) with −k0τ and s in place of t∗ and s∗, respectively, that

‖v − P−k0τv‖−k0τ ≤ Chs+k0τX ‖v‖s ∀v ∈ Hs. (3.3.14)

Since t ∈ Ik0+1 so that −k0τ ≤ −t−2k0τ ≤ 2τ , statement (3.3.13) with t∗ and s∗ replaced

by −k0τ and −t − 2k0τ , respectively, assures that for any w ∈ H−t−2k0τ , there exists

ηw ∈ Vφ such that

‖w − ηw‖−k0τ ≤ Ch−t−k0τX ‖w‖−t−2k0τ . (3.3.15)

Since 〈v − P−k0τv, ηw〉−k0τ = 0, it follows from (2.2.3) and (2.2.2) that

‖v − P−k0τv‖t = sup
w∈H−t−2k0τ

w 6=0

〈v − P0v, w〉−k0τ
‖w‖−t−2k0τ

= sup
w∈H−t−2k0τ

w 6=0

〈v − P0v, w − ηw〉−k0τ
‖w‖−t−2k0τ
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≤ ‖v − P−k0τv‖−k0τ sup
w∈H−t−2k0τ

w 6=0

‖w − ηw‖−k0τ
‖w‖−t−2k0τ

.

Inequalities (3.3.14) and (3.3.15) imply ‖v − P−k0τv‖t ≤ Chs−tX ‖v‖s.
Hence, we have proved that−(k0 + 1)τ ≤ t∗ ≤ −k0τ, −k0τ ≤ s∗ ≤ 2τ,

∀v ∈ Hs∗ ,∃ηv ∈ Vφ : ‖v − ηv‖t∗ ≤ Chs
∗−t∗
X ‖v‖s∗ .

(3.3.16)

Case 2.2. t∗ ≤ s∗ < −k0τ .

Let s and t be real numbers such that −(k0 + 1)τ ≤ s < −k0τ and 2s − 2τ ≤ t ≤ s.

Let Ps : Hs → Vφ be defined by (3.3.8) with this new value of s.

If 2s−2τ ≤ t ≤ 2s+k0τ so that −k0τ ≤ 2s−t ≤ 2τ then we can use the same argument

as in Case 1.2 with (3.3.7) replaced by (3.3.16) to obtain ‖v − Psv‖t ≤ Chs−tX ‖v‖s.
If 2s + k0τ < t ≤ s then we use Theorem 2.11 in the same manner as in Case 1.2 to

obtain the same estimate.

Combining both cases 2.1 and 2.2 we obtain the result for k = k0 + 1, completing the

proof.

3.3.2 Elliptic case

In order to ensure positive definiteness of the resulting matrix (see Section 3.5 for detail),

a different shape function ψ is required for elliptic operators L. Let X = {x1,x2, . . . ,xN}
be a set of points on the sphere. Let φ be the shape function given in Subsection 3.3.1.

We define ψ : [−1, 1] → R by

ψ(t) =
∞∑
`=0

ω−1
n N(n, `)L̂(`)φ̂(`)P`(n; t).

The corresponding kernel Ψ and spherical radial basis functions Ψi, i = 1, . . . , N , are

defined by (see (2.4.2) and (2.4.7))

Ψ(x,y) := ψ(x · y) for all x,y ∈ Sn−1,

and

Ψi(x) := Ψ(x,xi) =
∞∑
`=0

N(n,`)∑
m=1

L̂(`)φ̂(`)Y`,m(xj)Y`,m(x), (3.3.17)

for all i = 1, . . . , N . Note that

Ψi = LΦi, i = 1, . . . , N, (3.3.18)

which are the basis functions used by Morton and Neamtu [50]. Noting (2.4.10) and

ψ̂(`) ' (1 + `)−2(τ−α), we have for any i = 1, . . . , N ,

Ψi ∈ Hs ⇐⇒ s < 2(τ − α) +
1− n

2
. (3.3.19)

The approximation space to be used for elliptic operators is the span of these functions:

VψX := span{Ψ1, . . . ,ΨN}.

In the rest of the dissertation, we use Vψ := VψX .
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3.4 Approximate solutions

In this section we shall use V to stand for Vφ or Vψ.

3.4.1 Approach

Noting (3.2.3), we shall seek an approximate solution ũ ∈ Hσ+α in the form

ũ = ũ0 + ũ1 where ũ0 ∈ kerL and ũ1 ∈ V.

The solution ũ1 will be found by the Galerkin or collocation method. Having found ũ1,

we will find ũ0 ∈ kerL by solving the equations (cf. (3.2.5))

〈µi, ũ0〉 = γi − 〈µi, ũ1〉 , i = 1, . . . ,M,

so that

〈µi, ũ〉 = 〈µi, u〉 , i = 1, . . . ,M. (3.4.1)

The unique existence of ũ0 follows from Assumption B in exactly the same way as that of

u0; see Theorem 3.1.

We postpone, for a moment, the issue of finding ũ1. It is noted that in general

V 6⊆ (kerL)⊥Hσ+α . However, ũ can be rewritten in a form similar to (3.2.3) as follows.

Let

u∗0 := ũ0 +
∑

`∈K(L)

N(n,`)∑
m=1

(̂ũ1)`,mY`,m (3.4.2)

and

u∗1 =
∑

`/∈K(L)

N(n,`)∑
m=1

(̂ũ1)`,mY`,m. (3.4.3)

Then

ũ = u∗0 + u∗1 with u∗0 ∈ kerL and u∗1 ∈ (kerL)⊥Hσ+α . (3.4.4)

It should be noted that, in general, u∗1 does not belong to V, and that this function is

introduced purely for analysis purposes. We do not explicitly compute u∗1, nor u∗0.

3.4.2 Preliminary error analysis

Assume that the exact solution u and the approximate solution ũ of Problem A belong to

Ht for some t ∈ R, and assume that µi ∈ H−t for i = 1, . . . ,M . Comparing (3.2.3) and

(3.4.4) suggests that ‖u− ũ‖t can be estimated by estimating ‖u0 − u∗0‖t and ‖u1 − u∗1‖t.
It turns out that an estimate for the latter is sufficient, as shown in the following two

lemmas.

Lemma 3.3. Let u0, u1, u∗0 and u∗1 be defined by (3.2.3), (3.4.2) and (3.4.3). For

i = 1, . . . ,M , if µi ∈ H−t for some t ∈ R, then

‖u0 − u∗0‖t ≤ C‖u1 − u∗1‖t,

where C is independent of u.
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Proof. For i = 1, . . . ,M , it follows from (3.4.1) that

〈µi, u0〉+ 〈µi, u1〉 = 〈µi, u∗0〉+ 〈µi, u∗1〉 ,

implying 〈µi, u0 − u∗0〉 = 〈µi, u∗1 − u1〉. Inequality (2.2.3) yields

|〈µi, u0 − u∗0〉| = |〈µi, u1 − u∗1〉| ≤ ‖µi‖−t‖u1 − u∗1‖t.

This result holds for all i = 1, . . . ,M , implying

‖u0 − u∗0‖µ ≤ M‖u1 − u∗1‖t,

where M := maxi=1,...,M ‖µi‖−t, and ‖v‖µ := maxi=1,...,M |〈µi, v〉| for all v ∈ kerL. (The

unisolvency assumption assures us that the above norm is well-defined.) The subspace

kerL being finite-dimensional, we deduce

‖u0 − u∗0‖t ≤ C ‖u1 − u∗1‖t,

proving the lemma.

Lemma 3.4. Under the assumptions of Lemma 3.3, there holds

‖u− ũ‖t ≤ C‖u1 − u∗1‖t.

Proof. Noting (3.2.3) and (3.4.4), the norm ‖u− ũ‖t can be rewritten as

‖u− ũ‖2
t =

∑
`∈K(L)

N(n,`)∑
m=1

(`+ 1)2t |û`,m − (̂ũ)`,m|
2 +

∑
`/∈K(L)

N(n,`)∑
m=1

(`+ 1)2t |û`,m − (̂ũ)`,m|
2

=
∑

`∈K(L)

N(n,`)∑
m=1

(`+ 1)2t |(̂u0)`,m − (̂u∗0)`,m|
2

+
∑

`/∈K(L)

N(n,`)∑
m=1

(`+ 1)2t |(̂u1)`,m − (̂u∗1)`,m|
2 = ‖u0 − u∗0‖2

t + ‖u1 − u∗1‖2
t .

The required result now follows from Lemma 3.3.

In the following sections, we describe methods to construct ũ1, and estimate ‖u1 − u∗1‖t
accordingly.

3.5 Galerkin approximation

3.5.1 Strongly elliptic case

In this subsection, we consider the case when L satisfies the strongly elliptic condition

(2.3.3). Recalling (2.4.10), we choose the shape functions φ such that

τ >
1
2

(
α+

n− 1
2

)
, (3.5.1)
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so that Vφ ⊂ Hα. We find ũ1 ∈ Vφ by solving the Bubnov–Galerkin equation

a(ũ1, v) = 〈g, v〉 for all v ∈ Vφ. (3.5.2)

By writing ũ1 =
∑N

i=1 ciΦi we derive from (3.5.2) the matrix equation A(SG)c = b, where

A
(SG)
ij = a(Φi,Φi) =

∞∑
`=0

N(n,`)∑
m=1

L̂(`) [φ̂(`)]2 Y`,m(xi)Y`,m(xi), (3.5.3)

c = (c1, . . . , cN ), and b = (〈g,Φ1〉 , . . . , 〈g,ΦN 〉).

Lemma 3.5. The matrix A(SG) is symmetric positive-definite.

Proof. Let θ be a shape function whose Fourier–Legendre coefficients are given by

θ̂(`) =

L̂(`)[φ̂(`)]2 if ` /∈ K(L)

0 if ` ∈ K(L).

Then A
(SG)
ij = Θ(xi,xi) where Θ is the kernel defined from θ. Since θ̂(`) ≥ 0 for all ` ≥ 0,

and θ̂(`) = 0 only for a finite number of `, it follows from Remark 2.14 that A(SG) is

symmetric positive-definite.

As a consequence of this lemma, there exists a unique solution ũ1 to (3.5.2). With ũ1

given by (3.5.2), u∗1 defined by (3.4.3) satisfies u∗1 ∈ Hα and

a(u∗1, v) = 〈g, v〉 for all v ∈ Vφ. (3.5.4)

Even though in general u∗1 does not belong to Vφ, the following result is essentially Céa’s

Lemma.

Lemma 3.6. If u1 and u∗1 are defined by (3.2.8) and (3.4.3) with ũ1 given by (3.5.2), then

‖u1 − u∗1‖α ≤ C‖u1 − v‖α for all v ∈ Vφ.

Proof. It follows from the definition (3.4.3) of u∗1 that

a(w, u∗1) = a(w, ũ1) for all w ∈ Hα. (3.5.5)

Moreover, since Vφ ⊂ Hα ⊂ Hα−σ (noting σ ≥ 0) we infer from (3.2.8) and (3.5.4)

a(u1 − u∗1, v) = 0 for all v ∈ Vφ. (3.5.6)

Since u1 − u∗1 ∈ (kerL)⊥Hα , Lemma 2.13 yields

‖u1 − u∗1‖2
α ' a(u1 − u∗1, u1 − u∗1) = a(u1 − u∗1, u1)− a(u1 − u∗1, u

∗
1).

It follows from (3.5.5) and (3.5.6), noting u1 − u∗1 ∈ Hα and ũ1 ∈ Vφ, that

‖u1 − u∗1‖2
α ' a(u1 − u∗1, u1)− a(u1 − u∗1, ũ1) = a(u1 − u∗1, u1).

Hence, using again (3.5.6), we obtain for any v ∈ Vφ

‖u1 − u∗1‖2
α ' a(u1 − u∗1, u1 − v) ≤ C‖u1 − u∗1‖α ‖u1 − v‖α,

where in the last step we used Lemma 2.13. By cancelling similar terms we obtain the

required result.
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The above lemma and Proposition 3.2 will be used to estimate the error u1 − u∗1.

Lemma 3.7. Assume that the shape function φ is chosen to satisfy (2.4.4), (3.5.1) and

τ ≥ α, τ > (n − 1)/2. Let u1 and u∗1 be defined as in Lemma 3.6. Assume that u1 ∈ Hs

for some s satisfying α ≤ s ≤ 2τ . Let t ∈ R satisfy 2(α − τ) ≤ t ≤ α. Then for hX
sufficiently small there holds

‖u1 − u∗1‖t ≤ Chs−tX ‖u1‖s. (3.5.7)

The constant C is independent of u and hX .

Proof. The result for the case when t = α is a direct consequence of Lemma 3.6 and

Proposition 3.2 (with t∗ = α and s∗ = s).

The proof for the case t < α is standard, using Aubin–Nitsche’s trick, and is included

here for completeness. It follows from (2.2.3) and (2.3.3) that

‖u1 − u∗1‖t ≤ sup
v∈H2α−t

v 6=0

〈u1 − u∗1, v〉α
‖v‖2α−t

≤ C sup
v∈H2α−t

v 6=0

a(u1 − u∗1, v)
‖v‖2α−t

.

By using successively (3.5.6), Lemma 2.13, (3.5.7) with t replaced by α, we deduce for any

η ∈ Vφ

‖u1 − u∗1‖t ≤ C sup
v∈H2α−t

v 6=0

a(u1 − u∗1, v − η)
‖v‖2α−t

≤ C‖u1 − u∗1‖α sup
v∈H2α−t

v 6=0

‖v − η‖α
‖v‖2α−t

≤ Chs−αX ‖u1‖s sup
v∈H2α−t

v 6=0

‖v − η‖α
‖v‖2α−t

. (3.5.8)

Since 2(α − τ) ≤ t < α, there holds α < 2α − t ≤ 2τ . By invoking Proposition 3.2 again

with t∗ and s∗ replaced by α and 2α− t, respectively, we can choose η ∈ Vφ satisfying

‖v − η‖α ≤ Chα−tX ‖v‖2α−t.

This together with (3.5.8) yields the required estimate, proving the lemma.

We are now ready to state and prove the main result of this section.

Theorem 3.8. Assume that the shape function φ is chosen to satisfy (2.4.4), (3.5.1) and

τ ≥ α, τ > (n − 1)/2. Assume further that u ∈ Hs for some s satisfying α ≤ s ≤ 2τ . If

µi ∈ H−t for i = 1, . . . ,M with t ∈ R satisfying 2(α− τ) ≤ t ≤ α, then for hX sufficiently

small there holds

‖u− ũ‖t ≤ Chs−tX ‖u‖s.

The constant C is independent of u and hX .

Proof. Since µi ∈ H−t for i = 1, . . . ,M , Lemma 3.4 gives

‖u− ũ‖t ≤ C‖u1 − u∗1‖t.

The required result is a consequence of Lemma 3.7, noting that ‖u1‖s ≤ ‖u‖s.
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3.5.2 Elliptic case

In this subsection, we consider the case when L satisfies the elliptic condition (2.3.2).

If we choose the same trial space Vφ as in the previous subsection, then the resulting

matrix would be A(SG) defined in (3.5.3). This matrix might be singular because the

shape function θ defined in the proof of Lemma 3.5 may have negative Fourier–Legendre

coefficients θ̂(`). To avoid this situation, instead of Vφ we follow Morton and Neamtu

[50] to use Vψ as the trial space, see Subsection 3.3.2, and use Vφ as the test space. The

component ũ1 will be found in Vψ by solving the Petrov–Galerkin equation

a(ũ1, v) = 〈g, v〉 for all v ∈ Vφ. (3.5.9)

In this case, recalling (2.4.10) and (3.3.19) we choose the shape function φ such that

τ > max
{

1
2

(
3α+

n− 1
2

)
,
1
2

(
α+

n− 1
2

)}
(3.5.10)

so that Vφ and Vψ are finite-dimensional subspaces of Hα. The matrix A(EG) arising from

(3.5.9) has entries given by

A
(EG)
ij = a(Ψi,Φi) =

∞∑
`=0

N(n,`)∑
m=1

[L̂(`)]2 [φ̂(`)]2 Y`,m(xi)Y`,m(xi). (3.5.11)

Positive definiteness of A(EG) can be confirmed by using a similar argument as in the

proof of Lemma 3.5, which yields the unique existence of ũ1 ∈ Vψ.

As is usually required for Petrov–Galerkin methods, inf-sup (or Ladyzenskaya–

Babuška–Brezzi) conditions are in order. We prove this condition for infinite dimensional

spaces.

Proposition 3.9. Let L be an elliptic pseudodifferential operator of order 2α. For any

t ∈ R, there exists a positive constant C such that

sup
v∈H2α−t

v 6=0

a(w, v)
‖v‖2α−t

≥ C‖w‖t for all w ∈ (kerL)⊥Ht . (3.5.12)

Proof. Let w ∈ (kerL)⊥Ht . Then

ŵ`,m = 0 for all ` ∈ K(L), m = 1, . . . , N(n, `).

We define

v :=
∞∑
`=0

N(n,`)∑
m=1

sgn(L̂(`))
ŵ`,m

(`+ 1)2α−2t
Y`,m

where

sgn(L̂(`)) :=

1 if L̂(`) ≥ 0,

−1 if L̂(`) < 0.

Then, ‖v‖2α−t = ‖w‖t and

a(w, v) =
∞∑
`=0

N(n,`)∑
m=1

L̂(`)ŵ`,m sgn(L̂(`))
ŵ`,m

(`+ 1)2α−2t
=

∞∑
`=0

N(n,`)∑
m=1

|L̂(`)|
(`+ 1)2α−2t

|ŵ`,m|2
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≥ C
∑

`/∈K(L)

N(n,`)∑
m=1

(`+ 1)2t|ŵ`,m|2 = C‖w‖2
t ,

where C is the constant given from the elliptic condition (2.3.2). Hence

a(w, v)
‖v‖2α−t

≥ C‖w‖t,

so that

sup
v∈H2α−t

v 6=0

a(w, v)
‖v‖2α−t

≥ C‖w‖t,

proving the proposition.

In the remainder of this section, we consider a family of sets of data points

Xk = {x1, . . . ,xNk} for k ∈ N where Nk < Nk+1 so that Xk ⊂ Xk+1 and the corre-

sponding mesh norm hk, see (2.4.6), satisfies hk → 0 when k → ∞. The corresponding

finite-dimensional spaces VφXk and VψXk are denoted by Vφhk and Vψhk . Hence Vφhk ⊂ Vφhk+1

and Vψhk ⊂ Vψhk+1
, for all k ∈ N.

The proof of the inf-sup condition involving these finite-dimensional spaces requires

the introduction of the projection

Phk : Hα → Vφhk

which is defined by

a(Phkv, w) = a(v, w) ∀w ∈ Vψhk , k ∈ N. (3.5.13)

We note that (3.5.13) is a Petrov–Galerkin equation, which results in a matrix B whose

entries are

Bij = a(Φi,Ψi) =
∑

`/∈K(L)

N(n,`)∑
m=1

L̂(`)2φ̂(`)Y`,m(xi)Y`,m(xj),

for i, j = 1, . . . , Nk. Using the same argument as in the proof of Lemma 3.5, we can show

that B is positive definite. Hence Phk is well-defined.

Proposition 3.10. There exists a positive constant C independent of hk such that

‖Phk‖α ≤ C ∀k ∈ N. (3.5.14)

Proof. The result is proved by using the Banach-Steinhaus Theorem. Thus we need to

show that

(i) Phk ∈ L (Hα,Vφhk), the space of continuous linear mappings from Hα to Vφhk ,

(ii) supk∈N ‖Phkv‖α ≤ C(v) for each v ∈ Hα where C(v) is a positive constant.

Proof of (i). It is obvious that Phk is linear. For any v ∈ Hα, since Phkv ∈ V
φ
hk

, there

exists c(v) := (c1(v), . . . , cNk(v)) ∈ RNk such that Phkv =
∑Nk

i=1 ci(v)Φi. We have

‖Phkv‖α ≤
Nk∑
i=1

|ci(v)|‖Φi‖α ≤
(

max
i=1,...,Nk

‖Φi‖α
)
‖c(v)‖`1 . (3.5.15)
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Here, for any c = (c1, · · · , cNk) ∈ RNk , ‖c‖`1 is the `1-norm of c, i.e., ‖c‖`1 =
∑Nk

i=1 |ci|. It

follows from (3.5.13), using c(v) = B−1b(v), that

‖c(v)‖`1 ≤ ‖B−1‖`1 · ‖b(v)‖`1 , (3.5.16)

where b(v) =
(
a(v,Ψ1), . . . , a(v,ΨNk)

)
. By using Lemma 2.13, we obtain

‖b(v)‖`1 =
Nk∑
i=1

|a(v,Ψi)| ≤
Nk∑
i=1

‖v‖α‖Ψi‖α ≤ Nk

(
max

i=1,...,Nk
‖Ψi‖α

)
‖v‖α.

This together with (3.5.15) and (3.5.16) implies

‖Phkv‖α ≤ C‖v‖α,

where C is a constant depending on hk, confirming the continuity of Phk .

Proof of (ii). We will show supk∈N ‖Phkv‖α ≤ C(v) for any v ∈ Hα by showing that

‖Phkv − v‖α → 0 when k → ∞. Let {Φ∗i }i∈N ⊂
⋃
k∈N V

φ
hk

and {Ψ∗
i }i∈N ⊂

⋃
k∈N V

ψ
hk

be

such that, for each k ∈ N, the sets {Φ∗1, . . . ,Φ∗Nk} and {Ψ∗
1, . . . ,Ψ

∗
Nk
} are, respectively,

bases for Vφhk and Vψhk which satisfy

a(Φ∗i ,Ψ
∗
j ) = δij , i, j ∈ N. (3.5.17)

The existence of {Φ∗i }i∈N and {Ψ∗
i }j∈N will be discussed later. Since

⋃
k∈N V

φ
hk

= Hα due

to Theorem 3.2, any v ∈ Hα can be represented as v =
∑

i∈N ciΦ
∗
i . It follows from (3.5.17)

that the projection Phkv is given by Phkv =
∑Nk

i=1 ciΦ
∗
i . Hence ‖Phkv − v‖α → 0 when

k →∞.

Estimate (3.5.14) is now a result of (i), (ii), and the Banach–Steinhaus Theorem.

The sequences {Φ∗i }i∈N and {Ψ∗
i }j∈N can be constructed by induction as follows. First,

Φ∗1 and Ψ∗
1 are defined by

Φ∗1 = Φ1 and Ψ∗
1 = e11Ψ1 where e11 =

1
a(Φ1,Ψ1)

.

Assume that Φ∗m and Ψ∗
n, m,n = 1, . . . , i− 1, have been defined in the form

Φ∗m =
m−1∑
s=1

dms Φs + Φm and Ψ∗
n =

n∑
s=1

ensΨs,

where dms , e
n
s ∈ R, so that enn 6= 0 and

a(Φ∗m,Ψ
∗
n) = δm,n, m, n = 1, . . . , i− 1.

The next functions Φ∗i and Ψ∗
i are defined in the following lemma.

Lemma 3.11. There exist dis and eis ∈ R with eii 6= 0 such that if

Φ∗i =
i−1∑
s=1

disΦs + Φi and Ψ∗
i =

i∑
s=1

eisΨs,

then

a(Φ∗m,Ψ
∗
n) = δm,n, m, n = 1, . . . , i.
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Proof. We first note that there exist di1, . . . , d
i
i−1 ∈ R such that

a(Φ∗i ,Ψ
∗
n) = 0, n = 1, . . . , i− 1.

Indeed, the corresponding (i − 1) × (i − 1)-matrix D arising from the above system of

linear equations has entries given by

Dns = a(Φs,

n∑
t=1

ent Ψt), n, s = 1, . . . , i− 1.

By using Gaussian elimination, it is not hard to see that this matrix has the same rank as

the matrix whose (n, s)th entry is a(Φs,Ψn). The latter matrix is positive definite by using

the same argument as in the proof of Lemma 3.5. Hence, the existence of (di1, . . . , d
i
i−1) is

confirmed.

We next need to confirm the existence of ei1, . . . , e
i
i ∈ R with eii 6= 0 such that

a(Φ∗m,Ψ
∗
i ) = δm,i, m = 1, . . . , i.

This system of linear equations results in a matrix equation Ee = δ in which E is an

i× i-matrix with entries given by

Emt = a(
m−1∑
s=1

dms Φs + Φm,Ψt), m, t = 1, . . . , i,

and e = (ei1, . . . , e
i
i) ∈ Ri and δ = (0, . . . , 0, 1) ∈ Ri. By using Gaussian elimination we

transform the matrix equation into

Be = δ,

where B is a i× i-matrix whose entries are given by

Bmt = a(Φm,Ψt), m, t = 1, . . . , i.

Since B is positive definite, the equation has a unique solution (ei1, . . . , e
i
i). Moreover, if

eii = 0 then e = 0, resulting in a contradiction. The lemma is proved.

We are now ready to prove the inf-sup condition for our finite-dimensional subspaces.

Proposition 3.12. Under the condition (3.5.10), there exists a positive constant C such

that

sup
v∈Vφ
v 6=0

a(w, v)
‖v‖α

≥ C ‖w‖α for all w ∈ Vψ. (3.5.18)

Proof. Noting that Vψ ⊂ (kerL)⊥Hα , Proposition 3.9 confirms the existence of a positive

constant C such that

‖w‖α ≤ C sup
v∈Hα

a(w, v)
‖v‖α

∀w ∈ Vψ. (3.5.19)

By the definition of Ph, and noting (3.5.14), we obtain

sup
v∈Hα

a(w, v)
‖v‖α

= sup
v∈Hα

a(w,Phv)
‖Phv‖α

· ‖Phv‖α
‖v‖α
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≤ C sup
v∈Hα

a(w,Phv)
‖Phv‖α

= C sup
v∈Vφ

a(w, v)
‖v‖α

.

This together with (3.5.19) implies (3.5.18).

Similarly to Lemma 3.6, the following result is technically Céa’s Lemma for the Petrov–

Galerkin approximation (3.5.9).

Lemma 3.13. There exists C > 0 such that with u1, ũ1 and u∗1 given by (3.2.8), (3.5.9)

and (3.4.3), there holds

‖u1 − u∗1‖α ≤ C‖u1 − w‖α for all w ∈ Vψ.

Proof. It follows from the definition of u∗1 that

‖u1 − u∗1‖α ≤ ‖u1 − ũ1‖α. (3.5.20)

Let w ∈ Vψ. By noting that ũ1 − w ∈ Vψ and using Proposition 3.12 we obtain

‖ũ1 − w‖α ≤ C sup
v∈Vφ
v 6=0

a(ũ1 − w, v)
‖v‖α

.

On the other hand, (3.2.8) and (3.5.9) give

a(u1, v) = a(ũ1, v) for all v ∈ Vφ. (3.5.21)

Therefore,

‖ũ1 − w‖α ≤ C sup
v∈Vφ
v 6=0

a(u1 − w, v)
‖v‖α

≤ C sup
v∈Vφ
v 6=0

‖u1 − w‖α‖v‖α
‖v‖α

= C‖u1 − w‖α,

where in the penultimate step we use Lemma 2.13. This inequality, (3.5.20) and the

triangle inequality,

‖u1 − ũ1‖α ≤ ‖u1 − w‖α + ‖ũ1 − w‖α,

yield

‖u1 − u∗1‖α ≤ C‖u1 − w‖α for all w ∈ Vψ,

proving the lemma.

Theorem 3.14. Let (3.5.10) hold. We choose the shape function φ such that (2.4.4) with

τ ≥ 3α and τ > (n−1)/2. Let u ∈ Hs for some s satisfying α ≤ s ≤ 2τ−2α. If µi ∈ H−t,

i = 1, . . . ,M for some t satisfying 2(α − τ) ≤ t < α, then for hX sufficiently small there

holds

‖u− ũ‖t ≤ Chs−tX ‖u− ũ‖s.

The constant C is independent of u and hX .
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Proof. We first prove the result for the case when t = α. From Lemmas 3.13 and 3.4 (with

t = α), there follows

‖u− ũ‖α ≤ C inf
w∈Vψ

‖u1 − w‖α. (3.5.22)

We note that Proposition 3.2 cannot be directly used here because the shape function ψ

defining Vψ does not possess a property similar to (2.4.4), due to possible negative sign in

L̂(`). To circumvent this hindrance, we introduce a new function. In this proof only, let

U1 :=
∑

`/∈K(L)

N(n,`)∑
m=1

(̂u1)`,m
L̂(`)

Y`,m.

Then U1 ∈ Hs+2α and ‖U1‖s+2α ≤ C‖u1‖s if u1 ∈ Hs. We also define for any V ∈ Vφ,

w :=
∞∑
`=0

N(n,`)∑
m=1

L̂(`)V̂`,mY`,m.

By using (3.3.17) one can prove that w ∈ Vψ. Moreover,

‖u1 − w‖2
α =

∑
`/∈K(L)

N(n,`)∑
m=1

(`+ 1)2α
∣∣∣(̂u1)`,m − ŵ`,m

∣∣∣2

=
∑

`/∈K(L)

N(n,`)∑
m=1

(`+ 1)2α
∣∣∣L̂(`)

∣∣∣2 ∣∣∣(̂U1)`,m − V̂`,m

∣∣∣2

≤ C
∞∑
`=0

N(n,`)∑
m=1

(`+ 1)6α
∣∣∣(̂U1)`,m − V̂`,m

∣∣∣2
= C‖U1 − V ‖2

3α.

This is true for all V ∈ Vφ. Hence,

inf
w∈Vψ

‖u1 − w‖α ≤ C inf
V ∈Vφ

‖U1 − V ‖3α,

which implies, together with (3.5.22),

‖u− ũ‖α ≤ C inf
V ∈Vφ

‖U1 − V ‖3α.

Since τ > (n− 1)/2, τ ≥ 3α and 3α ≤ s+ 2α ≤ 2τ , we can invoke Proposition 3.2 with t∗

and s∗ replaced by 3α and s+ 2α, respectively, to obtain

‖u− ũ‖α ≤ Chs−αX ‖U1‖s+2α ≤ Chs−αX ‖u1‖s ≤ Chs−αX ‖u‖s.

In the case when 2(α − τ) ≤ t < α, by using Lemma 3.4 and noting the inf-sup

condition (3.5.12), we obtain

‖u− ũ‖t ≤ C‖u1 − u∗1‖t ≤ C sup
v∈H2α−t

v 6=0

a(u1 − u∗1, v)
‖v‖2α−t

.

Since a(u1 − u∗1, η) = 0 for all η ∈ Vφ due to (3.5.21), we can use the same argument

as in the proof of Theorem 3.8 to obtain the required result, finishing the proof of the

theorem.

In the next section we shall use the analysis for Galerkin approximations to estimate

errors in the collocation approximation. This is the novelty of our work.
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3.6 Collocation approximation

3.6.1 Strongly elliptic case

Recall that for this method it is assumed that g ∈ Hσ−α for some positive σ so that

u ∈ Hσ+α; see Problem A. We will assume that

max{2α, α}+
n− 1

2
< τ ≤ min{σ − α, σ}. (3.6.1)

Recall that (2.4.4) implies Nφ ' Hτ . Thus, the condition σ − α ≥ τ assures us that

g ∈ Nφ. The condition 2α + (n − 1)/2 < τ is to assure that Lũ1 ∈ Nφ. Indeed, this

condition implies ũ1 ∈ Vφ ⊂ Hτ+2α which is equivalent to Lũ1 ∈ Hτ ' Nφ.

The functions Lũ1 and g are required to be in the native space Nφ so that prop-

erty (3.3.1) can be used. The conditions α+(n− 1)/2 ≤ τ and τ ≤ σ are purely technical

requirements of our proof.

In this method we find ũ1 ∈ Vφ by solving the collocation equation

Lũ1(xj) = g(xj), j = 1, . . . , N. (3.6.2)

By writing ũ1 =
∑N

j=1 cjΦj , we derive from (3.6.2) the matrix equation A(C)c = g where

A
(C)
ij = LΦi(xj) =

∞∑
`=0

N(n,`)∑
m=1

L̂(`) φ̂(`)Y`,m(xi)Y`,m(xj),

c = (c1, . . . , cN ) and g = (g(x1, . . . , g(xN )). The symmetry and positive definiteness of

the matrix A(C) can be proved in the same manner as Lemma 3.5.

Since the function Φ defined as in (2.4.3) is a reproducing kernel for the Hilbert

space Nφ, see (3.3.1), the collocation equation (3.6.2) can be rewritten as a Galerkin

equation. This allows us to carry out error analysis in the same manner as in Section 3.5.

Recalling (3.3.1) and noting that Lũ1, g ∈ Nφ, we rewrite (3.6.2) as

〈Lũ1,Φj〉φ = 〈g,Φj〉φ , j = 1, . . . , N. (3.6.3)

In order to see that the above equation is a Galerkin equation, we introduce a new finite-

dimensional subspace V φ̃ :

V φ̃ := span{Φ̃1, . . . , Φ̃N},

where the spherical radial basis functions Φ̃j are defined by

Φ̃j(x) := φ̃(x · xj), j = 1, . . . , N.

Here, φ̃ is a shape function given by

φ̃(t) :=
∞∑
`=0

ω−1
n N(n, `)

[
φ̂(`)

]1/2
P`(n; t),

It is easily seen that (cf. (2.4.8))

(̂Φ̃j)`,m = [φ̂(`)]1/2 Y`,m(xj), j = 1, . . . , N. (3.6.4)
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It should be noted that this space V φ̃ is introduced purely for analysis purposes; it is not

to be used in the implementation. Since (cf. (2.4.4))

c1(`+ 1)−τ ≤ (̂φ̃)(`) ≤ c2(`+ 1)−τ ,

we have (cf. (2.4.10))

V φ̃ ⊂ Hs for all s < τ +
1− n

2
. (3.6.5)

In particular, V φ̃ ⊂ Hα due to α+ (n− 1)/2 < τ (see (3.6.1)).

The following lemma defines a weak equation equivalent to equation (3.2.8).

Lemma 3.15. Let

U1 :=
∑

`/∈K(L)

N(n,`)∑
m=1

(û1)`,m[
φ̂(`)

]1/2Y`,m, (3.6.6)

where u1 is the solution to (3.2.8). Then U1 belongs to Hσ+α−τ and satisfies

a(U1, V ) = 〈G,V 〉 for all V ∈ Hα−σ+τ , (3.6.7)

where

G :=
∞∑
`=0

N(n,`)∑
m=1

ĝ`,m[
φ̂(`)

]1/2Y`,m. (3.6.8)

Proof. Since u1 ∈ Hσ+α, it is easily seen that U1 ∈ Hσ+α−τ . For any V ∈ Hα−σ+τ there

holds

a(U1, V ) = a(u1, v),

where

v :=
∞∑
`=0

N(n,`)∑
m=1

V̂`,m[
φ̂(`)

]1/2Y`,m.
Noting v ∈ Hα−σ we deduce from (3.2.8) that

a(U1, V ) = 〈g, v〉 = 〈G,V 〉 ,

finishing the proof of the lemma.

Analogously, the next lemma defines an equivalent to (3.6.3). It will be seen later that

this equivalent is the Galerkin approximation to (3.6.7).

Lemma 3.16. Let

Ũ1 :=
∞∑
`=0

N(n,`)∑
m=1

(̂ũ1)`,m[
φ̂(`)

]1/2Y`,m (3.6.9)

where ũ1 is given by (3.6.2). Then Ũ1 belongs to V φ̃ and satisfies

a(Ũ1, Φ̃j) =
〈
G, Φ̃j

〉
, j = 1, . . . , N. (3.6.10)
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Proof. Since ũ1 ∈ Vφ we have ũ1 =
∑N

j=1 cjΦj for some cj ∈ R, which together with

(2.4.8) implies

(̂ũ1)`,m = φ̂(`)
N∑
j=1

cjY`,m(xj).

This in turn gives

(̂Ũ1)`,m = [φ̂(`)]1/2
N∑
j=1

cjY`,m(xj),

so that (see (3.6.4))

Ũ1 =
N∑
j=1

cjΦ̃j ,

i.e., Ũ1 ∈ V φ̃. By using successively (3.2.7), (3.6.4), (3.6.9), (3.6.3), (2.4.8) and (3.6.8), we

deduce

a(Ũ1, Φ̃j) =
〈
LŨ1, Φ̃j

〉
= 〈Lũ1,Φj〉φ = 〈g,Φj〉φ =

〈
G, Φ̃j

〉
, j = 1, . . . , N,

completing the proof of the lemma.

Using the two above lemmas we can now estimate the error in the collocation approx-

imation in the same manner as for the Galerkin approximation.

Theorem 3.17. Let (3.6.1) hold. We choose the shape function φ such that (2.4.4) holds

with τ > n − 1. Assume further that u ∈ Hs for some s satisfying τ + α ≤ s ≤ 2τ . If

µi ∈ H−t, i = 1, . . . ,M for some t satisfying 2α ≤ t ≤ τ + α, then for hX sufficiently

small there holds

‖u− ũ‖t ≤ Chs−tX ‖u‖s.

The constant C is independent of u and hX .

Proof. Recall that Ũ1 ∈ V φ̃ ⊂ Hα and U1 ∈ Hσ+α−τ ⊂ Hα since τ ≤ σ; see (3.6.1).

Moreover, (3.6.7) and (3.6.10) imply

a(U1 − Ũ1, Φ̃j) = 0, j = 1, . . . , N.

Hence, Ũ1 ∈ V φ̃ is the Galerkin approximation to U1.

Analogously to (3.4.3) we define

U∗1 =
∑

`/∈K(L)

N(n,`)∑
m=1

(̂Ũ1)Y`,m. (3.6.11)

Lemma 3.7 with Vφ replaced by V φ̃ (and therefore, τ replaced by τ̃ := τ/2) and u1, u
∗
1

replaced by U1, U
∗
1 , gives

‖U1 − U∗1 ‖t̃ ≤ Chs̃−t̃X ‖U1‖s̃, α ≤ s̃ ≤ 2τ̃ , 2(α− τ̃) ≤ t̃ ≤ α. (3.6.12)

By the definition of U1, Ũ1 and U∗1 , see (3.6.6), (3.6.9) and (3.6.11), we have

‖u1 − u∗1‖t ' ‖U1 − U∗1 ‖t−τ and ‖u1‖s ' ‖U1‖s−τ . (3.6.13)
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Since t and s satisfy 2α ≤ t ≤ τ + α and τ + α ≤ s ≤ 2τ so that t− τ and s− τ satisfy

2(α− τ̃) ≤ t− τ ≤ α and α ≤ s− τ ≤ 2τ̃ ,

the inequality (3.6.12) with t̃ = t− τ and s̃ = s− τ gives

‖U1 − U∗1 ‖t−τ ≤ Chs−tX ‖U1‖s−τ .

This together with (3.6.13) implies

‖u1 − u∗1‖t ≤ Chs−tX ‖u1‖s

Since µi ∈ H−t, for i = 1, . . . ,M , by using Lemma 3.4 and noting that ‖u1‖s ≤ ‖u‖s, we

deduce

‖u− ũ‖t ≤ C‖u1 − u∗1‖t ≤ Chs−tX ‖u1‖s ≤ Chs−tX ‖u‖s,

completing the proof of the theorem.

3.6.2 Elliptic case

Recall that for this method it is assumed that g ∈ Hσ−α for some positive σ so that

u ∈ Hσ+α; see Problem A. We assume that

max{4α, 3α, α}+
n− 1

2
< τ ≤ σ − α. (3.6.14)

Here, since g ∈ Hσ−α, the condition σ−α ≥ τ assures us that g ∈ Hτ ' Nφ. The condition

4α+ (n− 1)/2 < τ is to assure that Lũ1 ∈ Nφ. Indeed, the condition 4α+ (n− 1)/2 < τ

is equivalent to τ + 2α < 2(τ − α) + (1 − n)/2, which assures that ũ1 ∈ Vψ ⊂ Hτ+2α;

see (3.3.19). This in turn shows that Lũ1 ∈ Hτ ' Nφ.

The requirements that Lũ1, g ∈ Nφ give us the ability to use property (3.3.1).

We find ũ1 by solving the collocation equation (3.6.2), with ũ1 belonging to Vψ instead

of Vφ. The resulting matrix A(EC) has entries given by

A
(EC)
ij = LΨi(xj) =

∞∑
`=0

N(n,`)∑
m=1

[L̂(`)]2 φ̂(`)Y`,m(xi)Y`,m(xj).

The matrix A is positive-definite, and thus ũ1 exists uniquely.

As in the case of strongly elliptic operators, the collocation equation can be rewritten

as a Petrov–Galerkin equation

a(Ũ1, Φ̃i) =
〈
G, Φ̃i

〉
, i = 1, . . . , N, (3.6.15)

where Ũ1 is defined from ũ1 by using (3.6.9). Note that Ũ1 belongs to V ψ̃, where

V ψ̃ := span{Ψ̃1, . . . , Ψ̃N}

with

Ψ̃i :=
∞∑
`=0

N(n,`)∑
m=1

(̂Ψi)

φ̂(`)1/2
Y`,m.
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The finite-dimensional spaces V ψ̃ and V φ̃ are subspaces of Hα due to

max{3α, α} + (n − 1)/2 < τ ; see (3.6.14). Therefore we can use the result in Subsec-

tion 3.5.2 to obtain the following theorem.

Theorem 3.18. Let (3.6.14) hold. We choose the shape function φ such that τ ≥ 6α

and τ > n − 1. Let u ∈ Hs for some s satisfying τ + α ≤ s ≤ 2τ − 2α. If µi ∈ H−t,

i = 1, . . . ,M for t satisfying 2α ≤ t ≤ τ + α, then for hX sufficiently small there holds

‖u− ũ‖t ≤ Chs−tX ‖u‖s.

The constant C is independent of u and hX .

Proof. We can first use the same argument as used in the proof of Theorem 3.17 to

transform the estimate of the collocation solution to the estimate of a Galerkin solution,

and then apply the results in Theorem 3.14 to obtain the desired estimate. The details

are omitted.

Remark 3.19. In comparison with the results obtained by Morton and Neamtu, our error

estimates for the collocation approximation cover a wider range of Sobolev norms for both

strongly elliptic and elliptic operators. In fact, these two authors only proved for strongly

elliptic operators [48]

‖u− ũ‖2α ≤ ch
b2(τ−α)c
X ‖u‖2τ ,

and for elliptic operators [49, 50]

‖u− ũ‖2α ≤ ch2τ−4α
X ‖u‖2τ−2α.

These are special cases of the results in Theorems 3.17 and 3.18.

3.7 Numerical experiments

In this section, we solved the Dirichlet problem

∆U = 0 in Be,

U = UD on S2,

U(x) = O(1/|x|) as |x| → ∞,

(3.7.1)

where Be := {x ∈ R3 : |x| > 1}. It is well-known, see e.g. [62], that the problem (3.7.1) is

equivalent to

Su = g on S2, (3.7.2)

where

g = −1
2
UD +DUD, (3.7.3)

and

Dv(x) =
1
4π

∫
S2

v(y)
∂

∂νy

1
|x− y|

dσy.
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Here, S is the weakly singular integral operator defined by

Sv(x) =
1
4π

∫
S2

v(y)
|x− y|

dσy,

which is a pseudodifferential operator of order −1 and Ŝ(`) = 1/(2`+1); see the examples

following Definition 2.12, noting that when n = 3, N(3, `) = 2`+ 1 and ω3 = 4π.

We solved the problem (3.7.1) with the boundary data

UD(x) := UD(x1, x2, x3) =
1

(1.0625− 0.5x3)1/2

so that the exact solution to the Dirichlet problem (3.7.1) is given by

U(x) =
1

|x− q|
with q = (0, 0, 0.25),

and hence, the exact solution to the weakly singular integral equation (3.7.2) is

u(x) = ∂νU(x); see e.g. [62], i.e.,

u(x) =
−1 + x · q
|x− q|3

=
0.25x3 − 1

(1.0625− 0.5x3)3/2
.

For the approximation of (3.7.2), we use spherical radial basis functions suggested by

Wendland [80, page 128]. The sets X := {x1,x2, . . . ,xN} of points, which are chosen

purely to observe the order of convergence, are generated by a simple algorithm [65] which

partitions the sphere into equal areas. Experiments with real data can be found in [62].

The shape function φ : [−1, 1] → R which is used to define the kernel Φ is given by

φ(t) = ρ(
√

2− 2t), (3.7.4)

where ρ is Wendland’s functions [82, page 128] defined by

ρ(r) = (1− r)2+.

Narcowich and Ward [53, Proposition 4.6] prove that φ̂(`) ∼ (1+`)−2τ for all ` ≥ 0, where

τ = 3/2. The spherical radial basis functions Φi, i = 1, . . . , N , are computed by

Φi(x) = ρ(
√

2− 2x · xi), x ∈ S2. (3.7.5)

We first found an approximate solution uGX ∈ VφX := span{Φ1,Φ2, . . . ,ΦN} satisfying

the Galerkin equation

aS(uGX , v) :=
〈
SuGX , v

〉
= 〈g, v〉 ∀v ∈ VφX . (3.7.6)

The stiffness matrix arising from (3.7.6) has entries given by

aS(Φi,Φj) =
∞∑
`=0

|φ̂(`)|2

2`+ 1

∑̀
m=−`

Y`,m(xi)Y`,m(xj) =
1
4π

∞∑
`=0

|φ̂(`)|2P`(xi · xj).



52 3 Pseudodifferential equations with spherical radial basis functions

The right-hand side of (3.7.6) is computed by using (3.7.3), noting D̂(`) = −1/(4` + 2)

(see [55, page 122]),

〈g,Φi〉 =
∞∑
`=0

∑̀
m=−`

(
− 1

2
− 1

2(2`+ 1)

)
(̂UD)`,mφ̂(`)Y`,m(xi)

= −
∞∑
`=0

∑̀
m=−`

(`+ 1)
2`+ 1

(̂UD)`,mφ̂(`)Y`,m(xi).

The errors are computed by

‖u− uGX‖−1/2 =

 ∞∑
`=0

∑̀
m=−`

|û`,m − (̂uGX)`,m|
2

`+ 1

1/2

. (3.7.7)

Our theoretical result (Theorem 3.8) predicts an order of convergence of 2τ + 1/2 in

the H−1/2-norm. We carried out the experiment and observed some agreement between

the experimented orders of convergence (EOC) and our theoretical results; see Tables 3.1.

Table 3.1: Galerkin method: Errors in H−1/2-norm, τ = 1.5. Expected order of conver-

gence: 3.5.

N hX H−1/2-norm EOC
20 0.65140 0.120349381
30 0.51210 0.054895875 3.262
40 0.44180 0.025612135 5.163
51 0.37500 0.015883257 2.915
101 0.26720 0.006082010 2.832
200 0.19420 0.001977985 3.520
500 0.12370 0.000492078 3.084

The collocation solution uCX ∈ VφX is found by solving

SuCX(xi) = g(xi), i = 1, . . . , N. (3.7.8)

By writing uCX =
∑N

i=1 ciΦi, we derive from (3.7.8) the matrix equation SCc = g, where

c = (ci)i=1,...,N , g = (g(xi))i=1,...,N and

SC
ij = SΦi(xj) =

∞∑
`=0

∑̀
m=−`

φ̂(`)
2`+ 1

Y`,m(xi)Y`,m(xj), i, j = 1, . . . , N.

By using the addition formula (2.1.19), we obtain

SC
ij =

1
4π

∞∑
`=0

φ̂(`)P`(xi · xj). (3.7.9)

The errors are then computed similarly as in (3.7.7). There is agreement between the

experimented order of convergence (EOC) and our theoretical result (which is 2τ + 1/2);

see Tables 3.2.
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Table 3.2: Collocation method: Errors in H−1/2-norm, τ = 1.5. Expected order of con-

vergence: 3.5.

N hX H−1/2-norm EOC
20 0.65140 0.139479793
30 0.51210 0.047806025 4.450
40 0.44180 0.020666895 5.679
51 0.37500 0.011785692 3.426
101 0.26720 0.003674365 3.439
400 0.12370 0.000277996 3.352





Chapter 4

Pseudodifferential equations on

the sphere with spherical splines

4.1 Introduction

In this chapter, we solve strongly elliptic pseudodifferential equations on the sphere by

the Galerkin method using spherical splines. This class of equations includes the Laplace–

Beltrami equation, Stokes equation, weakly singular integral equations, and many others

[29, 31, 73]. Our main result is an optimal convergence rate of the approximation. The

key of the analysis is proving the approximation property of spherical splines as a subset

of Sobolev spaces. Since the pseudodifferential operators to be studied can be of any real

order, it is necessary to obtain an approximation property in Sobolev norms of real orders,

negative and positive (see Theorem 4.3). The results in this chapter have been reported

in our article [60].

4.2 The problem

The problem we are solving in this chapter is posed as follows.

Problem A: Let L be a strongly elliptic pseudodifferential operator of order 2α. Given

g ∈ H−α satisfying ĝ`,m = 0 for all ` ∈ K(L), m = −`, . . . , `, (4.2.1)

find u ∈ Hα satisfying

Lu = g,

〈µi, u〉 = γi, i = 1, . . . ,M,
(4.2.2)

where γi ∈ R and µi ∈ H−α are given.

We note here that the above problem is the problem introduced in Section 3.2, Chap-

ter 3 when σ = 0. Problem A is uniquely solvable under the following assumption.
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Assumption B: The functionals µ1, . . . , µN are assumed to be unisolvent with respect

to kerL.

The unisolvency assumption assures us that Problem A has a unique solution.

Lemma 4.1. Under Assumption B, Problem A has a unique solution.

Proof. The proof of this lemma employs similar argument as in the proof of Theorem 3.1

in which the solution u is written in the form

u = u0 + u1 where u0 ∈ kerL and u1 ∈ (kerL)⊥Hα . (4.2.3)

Here, u1 = L−1g and u0 is found in kerL by solving

〈µi, u0〉 = γi − 〈µi, u1〉 , i = 1, . . . ,M. (4.2.4)

Note here that

〈Lu1, v〉 = 〈g, v〉 ∀v ∈ Hα. (4.2.5)

In the next section, we shall review the definition of the spaces Srd(∆) of spherical

splines and prove that Srd(∆) is a subspace of the Sobolev space Hr+1.

4.3 Spherical splines

Given X = {x1, . . . ,xN} a set of points on S2, we can form a spherical triangulation ∆

whose vertices are points in X. In the implementation, the spherical triangulations are

generated from sets of data points by using stripack free package. We briefly recall here

that for any nonnegative integers r and d, the set of spherical splines of degree d and

smoothness r associated with ∆ is defined by

Srd(∆) := {s ∈ Cr(S2) : s|τ ∈ Π̃d, τ ∈ ∆},

where Π̃d denotes the set of homogeneous polynomials of degree d; see Page 7.

We now use the definition of Sobolev spaces by local charts, see (2.2.4), to show the

following necessary result.

Proposition 4.2. Let ∆ be a spherical triangulation on the unit sphere S2. Assume that

(2.5.23) holds. There holds

Srd(∆) ⊂ Hr+1.

Proof. We prove the result for r = 0 and use induction to obtain the result for r > 0. Here

we use a specific atlas of charts to define the Sobolev space H1. We denote by n = (0, 0, 1)

and s = (0, 0,−1) the north and south poles of S2, respectively. For any point x ∈ S2 and

R > 0, we denote the spherical cap centred at x and having radius R by C(x, R), i.e.,

C(x, R) := {y ∈ S2 : cos−1(x · y) ≤ R}. (4.3.1)
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The interior of C(x, R) is denoted by Co(x, R). Let

U1 = Co(n, θ0) and U2 = Co(s, θ0),

with θ0 ∈ (π/2, 2π/3). Assume that ∆ is fine enough such that S2 admits a simple cover

S2 = Γ1 ∪ Γ2, where

Γj =
⋃
τ⊂Uj

τ, j = 1, 2.

The stereographic projection ψ1 from the punctured sphere S2\{n} onto R2 is defined as

a mapping that maps x ∈ S2\{n} to the intersection of the equatorial hyperplane {z = 0}
and the extended line that passes through x and n. The stereographic projection ψ2 based

on s can be defined similarly. The scaled projections

φ1 :=
1

tan(θ0/2)
ψ2|Γ1 and φ2 :=

1
tan(θ0/2)

ψ1|Γ2

map Γ1 and Γ2, respectively, onto the unit ball of R2. B(0, 1), It is clear that {Γj , φj}2
j=1

is a C∞ atlas for S2.

Let Bj = φj(Γj), j = 1, 2, and let {αj : S2 → R}2
j=1 be the partition of unity

subordinate to {(Γj , φj)}2
j=1; see page 12. For any v ∈ S0

d(∆), it suffices to show that,

see (2.2.4),

wj := (αjv) ◦ φ−1
j ∈ H1(Bj) for j = 1, 2.

This holds because wj is continuous on Bj and wj |σ belongs to H1(σ), where

{σ := φj(τ) : τ ⊂ Γj} forms a partition of Bj ; see [15, page 38].

4.4 Approximation property

When solving pseudodifferential equations of order 2α by the Galerkin method, it is natural

to carry out error analysis in the energy space Hα. Since the order 2α may be negative

(as in the case of the weakly-singular integral equation discussed after Definition 2.3.3)

it is necessary to show an approximation property for a wide range of Sobolev norms,

including negative real values.

Theorem 4.3. Assume that ∆ is a quasi-uniform spherical triangulation with |∆| ≤ 1,

and that (2.5.23) holds. Then for any v ∈ Hs, there exists η ∈ Srd(∆) satisfying

‖v − η‖t∗ ≤ Chs
∗−t∗

∆ ‖v‖s∗ , (4.4.1)

where t∗ ≤ r + 1 and t∗ ≤ s∗ ≤ d+ 1. Here C is a positive constant depending only on d

and the smallest angle in ∆.

Proof. For k = 0, 1, 2, . . ., we denote Ik = [−(r + 1)k,−(r + 1)(k − 1)]. We will prove

that (4.4.1) holds with t∗ ∈ Ik for all k ≥ 0 by induction on k.

• We first prove that (4.4.1) is true when t∗ ∈ I0.
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Assume that t∗ ∈ I0 and t∗ ≤ s∗ ≤ d + 1. Let t and s satisfy 0 ≤ t ≤ r + 1 and

t ≤ s ≤ d+ 1. Proposition 2.34 gives

|v − Ĩv|k ≤ Chd+1−k
∆ |v|d+1, k = 0, 1, . . . , r + 1. (4.4.2)

For k = 0, we have

‖v − Ĩv‖0 ≤ Chd+1
∆ |v|d+1 ≤ Chd+1

∆ ‖v‖d+1 ∀v ∈ Hd+1. (4.4.3)

Summing (4.4.2) over k = 0, 1, . . . , r + 1 and noting that h∆ < 1, we obtain

‖v − Ĩv‖r+1 ≤ Chd−r∆ |v|d+1 ≤ Chd−r∆ ‖v‖d+1 ∀v ∈ Hd+1. (4.4.4)

Noting (4.4.3), (4.4.4) and applying Theorem 2.11 with T = I − Ĩ, t1 = 0, t2 = r + 1,

s1 = s2 = d+ 1 and θ = (t− r − 1)/(−r − 1), we deduce

‖v − Ĩv‖t ≤ Chd+1−t
∆ ‖v‖d+1 ∀v ∈ Hd+1. (4.4.5)

Let Pt : Ht → Srd(∆) be the projection defined by

〈Ptv, w〉t = 〈v, w〉t ∀v ∈ Ht and w ∈ Srd(∆).

It is well-known that Ptv is the best approximation of v from Srd(∆) in Ht-norm. We then

have

‖v − Ptv‖t ≤ ‖v‖t ∀v ∈ Ht,

and

‖v − Ptv‖t ≤ Chd+1−t
∆ ‖v‖d+1 ∀v ∈ Hd+1, (4.4.6)

noting (4.4.5). Applying Theorem 2.11 with T = I − Pt, t1 = t2 = t, s1 = t, s2 = d + 1

and θ = (s− d− 1)/(t− d− 1), we obtain

‖v − Ptv‖t ≤ Chs−t∆ ‖v‖s ∀v ∈ Hs.

Hence, we have proved thatt∗ ∈ I0, t
∗ ≤ s∗ ≤ d+ 1,

∀v ∈ Hs∗ , ∃ηv ∈ Srd(∆) : ‖v − ηv‖t∗ ≤ Chs
∗−t∗

∆ ‖v‖s∗ .
(4.4.7)

• Assume that (4.4.1) is true for all t∗ ∈ Ik, for k = 0, 1, . . . , k0, i.e., the following statement

holds t∗ ∈
⋃k0
k=0 Ik, t∗ ≤ s∗ ≤ d+ 1,

∀v ∈ Hs∗ , ∃ηv ∈ Srd(∆) : ‖v − ηv‖t∗ ≤ Chs
∗−t∗

∆ ‖v‖s∗ .
(4.4.8)

• We now prove that (4.4.1) holds for t∗ ∈ Ik0+1 and t∗ ≤ s∗ ≤ d + 1. We consider two

cases when s∗ belongs to [−(r + 1)k0, d+ 1] and [t∗,−(r + 1)k0).

Case 1. Consider s∗ ∈ [−(r + 1)k0, d+ 1].



4.4 Approximation property 59

Let t ∈ Ik0+1 and s ∈ [−(r + 1)k0, d + 1]. Let P−(r+1)k0 → Srd(∆) be the projection

defined by〈
P−(r+1)k0v, w

〉
−(r+1)k0

= 〈v, w〉−(r+1)k0
∀v ∈ H−(r+1)k0 and w ∈ Srd(∆).

Then P−(r+1)k0v is the best approximation of v from Srd(∆) in H−(r+1)k0-norm. This

together with (4.4.8) with t∗ and s∗ replaced by −(r + 1)k0 and s, respectively, implies

‖P−(r+1)k0v − v‖−(r+1)k0 ≤ Ch
s+(r+1)k0
∆ ‖v‖s ∀v ∈ Hs. (4.4.9)

Applying (4.4.8) with with t∗ and s∗ replaced by −(r + 1)k0 and −t− 2(r + 1)k0, respec-

tively, noting that −(r + 1)k0 ≤ −t − 2(r + 1)k0 as t ∈ Ik0+1, we deduce that for any

w ∈ H−t−2(r+1)k0 , there exists a ηw ∈ Srd(∆) satisfying

‖w − ηw‖−(r+1)k0 ≤ Ch
−t−(r+1)k0
∆ ‖w‖−t−2(r+1)k0 .

Since
〈
P−(r+1)k0v − v, η

〉
−(r+1)k0

= 0 for any η ∈ Srd(∆), applying (2.2.3), (2.2.2) and

(4.4.9), we obtain

‖P−(r+1)k0v − v‖t = sup
w∈H−t−2(r+1)k0

w 6=0

〈
P−(r+1)k0v − v, w

〉
−(r+1)k0

‖w‖−t−2(r+1)k0

= sup
w∈H−t−2(r+1)k0

w 6=0

〈
P−(r+1)k0v − v, w − ηw

〉
−(r+1)k0

‖w‖−t−2(r+1)k0

≤ ‖P−(r+1)k0v − v‖−(r+1)k0 sup
w∈H−t−2(r+1)k0

w 6=0

‖w − ηw‖−(r+1)k0

‖w‖−t−2(r+1)k0

≤ Chs−t∆ ‖v‖s.

Hence, we have proved thatt∗ ∈ Ik0+1, −(r + 1)k0 ≤ s∗ ≤ d+ 1,

∀v ∈ Hs∗ , ∃ηv ∈ Srd(∆) : ‖v − ηv‖t∗ ≤ Chs
∗−t∗

∆ ‖v‖s∗ .
(4.4.10)

Case 2. Consider s∗ ∈ [t∗,−(r + 1)k0).

Let s, t ∈ R satisfy 2s − (d + 1) ≤ t ≤ s < −(r + 1)k0. Let Ps : Hs → Srd(∆) be the

projection defined by

〈Psv, w〉s = 〈v, w〉s ∀v ∈ Hs and w ∈ Srd(∆).

Then it is obvious that

‖Psv − v‖s ≤ ‖v‖s ∀v ∈ Hs. (4.4.11)

If 2s− (d+ 1) ≤ t ≤ 2s+ (r + 1)k0 so that −(r + 1)k0 ≤ 2s− t ≤ d+ 1, then (4.4.10)

with with t∗ and s∗ replaced by s and 2s− t, respectively, assures that for any w ∈ H2s−t,

there exists a ηw ∈ Srd(∆) such that

‖w − ηw‖s ≤ Chs−t∆ ‖w‖2s−t. (4.4.12)
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Since 〈Psv − v, ηw〉 = 0, applying (2.2.3), (2.2.2), (4.4.11) and (4.4.12), we deduce

‖Psv − v‖t = sup
w∈H2s−t
w 6=0

〈Psv − v, w〉s
‖w‖2s−t

= sup
w∈H2s−t
w 6=0

〈Psv − v, w − ηw〉s
‖w‖2s−t

≤ ‖Psv − v‖s sup
w∈H2s−t
w 6=0

‖w − ηw‖s
‖w‖2s−t

≤ Chs−t∆ ‖v‖s.

In particular, when t = 2s+ (r + 1)k0, there holds

‖Psv − v‖2s+(r+1)k0 ≤ Ch
−s−(r+1)k0
∆ ‖v‖s ∀v ∈ Hs. (4.4.13)

If 2s + (r + 1)k0 < t < s, then the required inequality can be obtained by apply-

ing Theorem 2.11 with T = Ps − I, t1 = 2s + (r + 1)k0, t2 = s, s1 = s2 = s and

θ = (t− s)/(s+ (r + 1)k0), and noting (4.4.11) and (4.4.13).

Combining both cases, the following statement holdst∗ ∈ Ik0+1, t
∗ ≤ s∗ ≤ d+ 1,

∀v ∈ Hs∗ , ∃ηv ∈ Srd(∆) : ‖v − ηv‖t∗ ≤ Chs
∗−t∗

∆ ‖v‖s∗ ,
(4.4.14)

completing the proof.

In the next section we will use the result developed in this section to estimate the error

of the Galerkin approximation.

4.5 Galerkin method

4.5.1 Approximate solution

Noting (4.2.3), we shall seek an approximate solution ũ ∈ Hσ+α in the form

ũ = ũ0 + ũ1 where ũ0 ∈ kerL and ũ1 ∈ Srd(∆). (4.5.1)

The solution ũ1 will be found by solving the Galerkin equation

〈L∗ũ1, v〉 = 〈g, v〉 ∀v ∈ Srd(∆), (4.5.2)

in which L∗ is a strongly elliptic pseudodifferential operator of order 2α whose symbol is

given by

L̂∗(`) =

L̂(`) if ` /∈ K(L)

(1 + `)2α if ` ∈ K(L).

Noting (2.3.3), we have

L̂∗(`) ' (1 + `)2α ∀` ∈ N.

This confirms that the bilinear form a∗ : Hα ×Hα → R defined by

a∗(v, w) := 〈L∗v, w〉 , v, w ∈ Hα
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is continuous and coercive in Hα. The well known Lax–Milgram Theorem confirms the

unique existence of ũ1 ∈ Srd(∆).

Having found ũ1, we will find ũ0 ∈ kerL by solving the equations (cf. (4.2.2))

〈µi, ũ0〉 = γi − 〈µi, ũ1〉 , i = 1, . . . ,M,

so that

〈µi, ũ〉 = 〈µi, u〉 , i = 1, . . . ,M. (4.5.3)

The unique existence of ũ0 follows from Assumption B in exactly the same way as that of

u0; see Lemma 4.1.

It is noted that in general Srd(∆) 6⊆ (kerL)⊥Hα . However, ũ can be rewritten in a form

similar to (4.2.3) as follows. Let

u∗0 := ũ0 +
∑

`∈K(L)

∑̀
m=−`

(̂ũ1)`,mY`,m (4.5.4)

and

u∗1 =
∑

`/∈K(L)

∑̀
m=−`

(̂ũ1)`,mY`,m. (4.5.5)

Then

ũ = u∗0 + u∗1 with u∗0 ∈ kerL and u∗1 ∈ (kerL)⊥Hα . (4.5.6)

It should be noted that, in general, u∗1 does not belong to Srd(∆), and that this function

is introduced purely for analysis purposes. We do not explicitly compute u∗1, nor u∗0.

4.5.2 Error analysis

Assume that the exact solution u and the approximate solution ũ of Problem A belong to

Ht for some t ∈ R, and assume that µi ∈ H−t for i = 1, . . . ,M . Comparing (4.2.3) and

(4.5.6) suggests that ‖u− ũ‖t can be estimated by estimating ‖u0 − u∗0‖t and ‖u1 − u∗1‖t.
In fact, in this chapter we require that ‖u− ũ‖t � ‖u1 − ũ1‖t (see Lemma 4.4 and the proof

is omitted), which can be proved by showing that ‖u− ũ‖t � ‖u1 − u∗1‖t as in Lemmas 3.3

and 3.4, and noting that ‖u1 − u∗1‖t ≤ ‖u1 − ũ1‖t.

Lemma 4.4. Let u, u1, ũ and ũ1 be defined by (4.2.3), (4.5.1), and (4.5.2). For

i = 1, . . . ,M , if µi ∈ H−t for some t ∈ R, there holds

‖u− ũ‖t ≤ C‖u1 − ũ1‖t.

We now prove the main theorem of the chapter.

Theorem 4.5. Assume that ∆ is a quasi-uniform spherical triangulation with |∆| ≤ 1 and

that (2.5.23) hold. If the order 2α of the pseudodifferential operator L satisfies α ≤ r+ 1,

and if u and ũ satisfy, respectively, (4.2.5) and (4.5.1), then

‖u− ũ‖t ≤ Chs−t∆ ‖u‖s,

where s ≤ d+ 1 and 2α− d− 1 ≤ t ≤ min{s, α}. Here C is a positive constant depending

only on d and the smallest angle in ∆.
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Proof. The proof is standard using Céa’s Lemma and Nitsche’s trick. We include it here

for completeness. Noting that u1 ∈ (kerL)⊥Hα and (4.2.5), we have

a∗(u1, v) = 〈g, v〉 ∀v ∈ Hα.

Céa’s Lemma gives

‖u1 − ũ1‖α ≤ C min
v∈Srd(∆)

‖u1 − v‖α,

which, together with Theorem 4.3, implies that there exists a constant C satisfying

‖u1 − ũ1‖α ≤ Chs−α∆ ‖u1‖s.

Noting that ‖u1‖s ≤ ‖u‖s and the result in Lemma 4.4 we have

‖u− ũ‖α ≤ Chs−α∆ ‖u‖s. (4.5.7)

Now consider t < α. It follows from (2.2.3) and (2.3.3) that

‖u1 − ũ1‖t ≤ C sup
v∈H2α−t

v 6=o

〈u1 − ũ1, v〉α
‖v‖2α−t

≤ C sup
v∈H2α−t

v 6=o

a∗(u1 − ũ1, v)
‖v‖2α−t

.

By using successively (4.2.5), (4.5.2) we deduce that for arbitrary η ∈ Srd(∆)

‖u1 − ũ1‖t ≤ C sup
v∈H2α−t

v 6=o

a∗(u1 − ũ1, v − η)
‖v‖2α−t

≤ C‖u1 − ũ1‖α sup
v∈H2α−t

v 6=o

‖v − η‖α
‖v‖2α−t

.

Since 2α − d − 1 ≤ t < α, there holds α < 2α − t ≤ d + 1. By using Theorem 4.3 again,

we can choose η ∈ Srd(∆) satisfying

‖v − η‖α ≤ Chα−t∆ ‖v‖2α−t.

Hence,

‖u1 − ũ1‖t ≤ Chα−t∆ ‖u1 − ũ1‖α ≤ Chs−t∆ ‖u‖s.

Using Lemma 4.4, we obtain

‖u− ũ‖t ≤ Chs−t∆ ‖u‖s.

4.6 Numerical experiments

In this section, we present the numerical results obtained from our experiments with dif-

ferent sets of points X = {x1,x2, . . . ,xN}, where xi = (xi,1, xi,2, xi,3), i = 1, . . . , N , are

points on the sphere generated by a simple algorithm [65] which partitions the sphere

into equal areas. From these sets of data points, we used the fortran package stri-

pack (which can be found at http://www.netlib.org/toms/77) to obtain the spherical

triangulations ∆.

http://www.netlib.org/toms/77
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We solved pseudodifferential equations by using the space of spherical splines S0
1(∆),

which is the space of continuous and piecewise homogeneous polynomial of degree 1. A

set of basis functions for S0
1(∆) is

{Bi : i = 1, . . . , N},

where, for each i = 1, . . . , N , Bi is the nodal basis function corresponding to the vertex

xi defined as follows.

For any x = (x1, x2, x3) ∈ S2, there exists a spherical triangle τ ∈ ∆ containing x.

If xi is not a vertex of τ then Bi(x) = 0. Otherwise, assume that τ is formed by three

vertices xi, xj and xk. Then

Bi(x) = det

x1 xj,1 xk,1

x2 xj,2 xk,2

x3 xj,3 xk,3

 ·
det

xi,1 xj,1 xk,1

xi,2 xj,2 xk,2

xi,3 xj,3 xk,3



−1

, (4.6.1)

see [2].

4.6.1 The Laplace–Beltrami equation

We solved the equation on the unit sphere of the form

Lu = g on S2, (4.6.2)

where Lu = −∆S2u + u. This equation arises, for example, when one discretises in time

the diffusion equation on the sphere.

We solved (4.6.2) with

g(x) = 7x3
3 − 6x3(x2

1 + x2
2),

so that the exact solution is

u(x) = x3
3.

We carried out the experiment with various numbers of points N , namely N = 101,

200, 500, 1001, 2000, 4000, and 8001. Noting (2.1.7), the entry Aij of the stiffness matrix

A is computed by

Aij =
∫

S2

(
∇S2Bi(x) · ∇S2Bj(x) +Bi(x)Bj(x)

)
dσx

=
∑
τ∈∆

∫
τ

(
∇S2Bi(x) · ∇S2Bj(x) +Bi(x)Bj(x)

)
dσx,

where, for any i = 1, . . . , N , Bi(x) is computed by using (4.6.1) and ∇S2Bi is the surface

gradient of Bi. The right hand side of the linear system has entries given by

bi =
∫

S2

Bi(x)g(x) dσx =
∑
τ∈∆

∫
τ
Bi(x)g(x) dσx, i = 1, . . . , N. (4.6.3)

The integral of a smooth function f over a spherical triangle τ with vertices

xi = (xi,1, xi,2, xi,3), xj = (xj,1, xj,2, xj,3) and xk = (xk,1, xk,2, xk,3) is computed as fol-

lows. Let T be the planar triangle (in R3) with the same vertices as τ , and let T̂ be the
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Table 4.1: Errors in the L2-norm for the Laplace–Beltrami equation. Expected order of

convergence: 2.

N h∆ ‖uN − u‖0 EOC
101 0.2618 5.853E-2
200 0.1819 2.713E-2 2.11
500 0.1136 1.093E-2 1.93
1001 0.0798 5.230E-3 2.09
2000 0.0570 2.675E-3 1.99
4000 0.0397 1.316E-3 1.96
8001 0.0283 6.627E-4 2.02

planar triangle of vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). A point on T̂ can be represented

as u = (u1, u2, 1− u1 − u2) where (u1, u2) satisfies 0 ≤ u2 ≤ 1− u1 and 0 ≤ u1 ≤ 1. It is

shown in (2.5.14) that∫
τ
f(x) dσx = |detF|

∫ 1

0

∫ 1−u1

0
f

(
F(u)
|F(u)|

)
du2 du1

|F(u)|3
, (4.6.4)

where F : T̂ → T is defined by

F(u) =

xi,1 xj,1 xk,1

xi,2 xj,2 xk,2

xi,3 xj,3 xk,3


 u1

u2

1− u1 − u2

 . (4.6.5)

Having solved the linear system, we computed the L2-norm of the error uN −u, where

in this section we denoted the approximate solution by uN instead of ũ. It is expected

from our theoretical result (Theorem 4.5) that ‖uN − u‖0 = O(h2
∆). The estimated orders

of convergence (EOC) shown in Table 4.1 agree with our theoretical result.

4.6.2 Weakly singular integral equation

The equation

We also solved the weakly singular integral equation

Lu = g on S2, (4.6.6)

where L is the operator given by

Lv(x) =
1
4π

∫
S2

v(y)
1

|x− y|
dσy,

for any v ∈ D ′(S2). This equation is the boundary integral reformulation of the Dirichlet

problem for the Laplacian in the exterior or interior of the sphere [29]. Note that the

weakly singular integral operator L is a pseudodifferential operator of order −1 with

symbol 1/(2` + 1); see examples following Definition 2.12, noting that in the case S2,

ω3 = 4π and N(3, `) = 2`+ 1.
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Table 4.2: Errors in the H−1/2-norm for the weakly singular integral equation. Expected

order of convergence: 2.5.

N h∆ ‖u− uN‖−1/2 EOC
20 0.7432 0.4609E-01
30 0.5153 0.1349E-01 3.36
40 0.4401 0.1110E-01 1.24
51 0.3757 0.8246E-02 1.87
80 0.2958 0.4337E-02 2.69
101 0.2617 0.3072E-02 2.82
125 0.2316 0.2371E-02 2.11
150 0.2104 0.1894E-02 2.35
175 0.1987 0.1602E-02 2.90
200 0.1819 0.1350E-02 1.95
226 0.1692 0.1179E-02 1.87
250 0.1625 0.1046E-02 2.96
275 0.1538 0.8856E-03 3.00

Equation (4.6.6) was solved with g(x) = x1x2/5, so that the exact solution is

u(x) = x1x2. We solved this equation with various values of N , namely N = 10, 20,

30, 40, 51, 80, 101, 125, 150, 175 and 200. Each entry Aij of the stiffness matrix A is

given by

Aij =
1
4π

∫ 2

S

∫ 2

S

Bi(x)Bj(y)
|x− y|

dσy dσx, i, j ∈ {1, . . . , N}. (4.6.7)

Computation of Aij is explained in the subsection below. Computation of the right hand

side is analogous to computation of (4.6.3) and is explained in Section 4.6.1.

To check the accuracy of the approximation, we computed the H−1/2-norm of the error

u− uN , which was calculated as follows:

‖u− uN‖2
−1/2 ' 〈L(u− uN ), u− uN 〉 = 〈L(u− uN ), u〉

= 〈Lu, u〉 − 〈uN , Lu〉 =
∫

S2

gu dσ −
∫

S2

guN dσ.

The estimated orders of convergence shown in Table 4.2 do not quite agree with the

theoretical result, which states that ‖u− uN‖−1/2 = O(h5/2
∆ ). A reason may be the fact

that sets of Saff points used in this experiment are not nested. Indeed, the numbers shown

in Table 4.3, which were obtained by using nested sets of points, seem to agree with the

theoretical result. The starting mesh contains 8 equal spherical triangles with 6 nodes (4

on the equator and 2 at the poles). Every further refinement consists of partitioning every

spherical triangle into 4 smaller spherical triangles by joining the midpoints of the edges

(red refinement).
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Table 4.3: Errors in the H−1/2-norm for the weakly singular integral equation with nested

triangulations. Expected order of convergence: 2.5.

N h∆ ‖u− uN‖−1/2 EOC
6 1.5707 4.0933E-01 0.00
18 0.7853 6.2962E-02 2.70
66 0.3926 7.6483E-03 3.04
258 0.1963 1.2607E-03 2.60

Computation of the stiffness matrix with numerical quadrature

Computation of elements of the stiffness matrix (4.6.7) requires evaluation of integrals of

the type

I =
1
4π

∫
τ (1)

∫
τ (2)

f1(x)f2(y)
|x− y|

dσy dσx, i, j ∈ {1, . . . , N} (4.6.8)

where τ (1), τ (2) are spherical triangles from ∆ and the basis functions f1(x) and f2(y) are

analytic for all x ∈ τ (1) and y ∈ τ (2), cf. (4.6.1). Due to the nonlocal integral kernel

|x − y|−1 the integral value I is in general different from zero, even if f1 and f2 have

disjoint supports. As a consequence, the stiffness matrix (4.6.7) is densely populated.

We computed (4.6.8) approximately by a numerical quadrature. Note that an accurate

numerical approximation of (4.6.8) becomes a challenging task if τ (1) and τ (2) share at

least one point and hence |x− y|−1 may become singular.

For ease of presentation, in this subsection we introduce the following technical no-

tations. Suppose that the spherical triangle τ (q), q = 1, 2 has vertices {v(q)
1 ,v

(q)
2 ,v

(q)
3 }.

Extending the notations of Section 4.6.1 we denote by T (q) the planar triangle sharing

its vertices with the spherical triangle τ (q). Let T̂ be the planar triangle in R3 with ver-

tices (1, 0, 0), (0, 1, 0) and (0, 0, 1) and K be the planar triangle in R2 with vertices (0, 0),

(1, 0) and (0, 1). Any two points u,v ∈ T̂ can be uniquely represented by two pairs

(u1, u2), (v1, v2) ∈ K by

u = (u1, u2, 1− u1 − u2) and v = (v1, v2, 1− v1 − v2).

Firstly, we describe a numerical approximation for (4.6.8) for two disjoint spherical

triangles τ (1) and τ (2) (a so-called far field computation). In this case the kernel |x−y|−1

and the integrand f(x,y) := f1(x)f2(y)
4π|x−y| are analytic on τ (1) × τ (2). Similarly to (4.6.4), I

can be represented as an integral over K ×K

I =
∫
τ (1)

∫
τ (2)

f(x,y) dσxdσy = |detF (1)||detF (2)|

×
∫ 1

0

∫ 1−u1

0

∫ 1

0

∫ 1−v1

0
f

(
F (1)(u)
|F (1)(u)|

,
F (2)(v)
|F (2)(v)|

)
dv2 dv1

|F (2)(v)|3
du2 du1

|F (1)(u)|3
,

(4.6.9)
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where F (q) : T̂ → T , q = 1, 2 is defined by

F (q)(u) =

v
(q)
1,1 v

(q)
2,1 v

(q)
3,1

v
(q)
1,2 v

(q)
2,2 v

(q)
3,2

v
(q)
1,3 v

(q)
2,3 v

(q)
3,3


 u1

u2

1− u1 − u2

 . (4.6.10)

The mappings  K → T (q),

(u1, u2) 7→ F (q)(u),
q = 1, 2

are affine, hence the mappings
K → τ (q),

(u1, u2) 7→ F (q)(u)
|F (q)(u)|

,
q = 1, 2

are analytic if and only if T (q) does not contain the origin, i.e. |F (q)(u)| 6= 0. This

requirement is always satisfied if the underlying spherical triangulation ∆ is sufficiently

refined. Thus the integrand in (4.6.9) is a composition of analytic functions and hence

is analytic. Therefore the integral I in (4.6.8) can be computed numerically by standard

quadrature rules in case of disjoint spherical triangles τ (1) and τ (2).

Secondly, we consider numerical approximation of (4.6.8) for τ (1) and τ (2) sharing at

least one point (a so-called near field computation). Depending on the mutual location of

τ (1) and τ (2) we introduce an auxiliary parameter k as follows:

k =


0 if τ (1) and τ (2) share a vertex,

1 if τ (1) and τ (2) share an edge,

2 if τ (1) and τ (2) are identical.

Efficient and accurate quadratures for integrals of this type have been intensively devel-

oped over the last three decades mostly in the context of Boundary Element Methods

[21, 35, 67, 70]. It is known that there exists a sequence of regularising coordinate trans-

formations which removes the singularity in (4.6.8) completely. Note that this coordinate

transformation is not unique. In this chapter we employ the approach in [13] which also ex-

tends to arbitrary dimension and noninteger singularity orders, cf. [14] for computational

aspects in this approach and [22, 66] for alternative transformations. In the remainder of

this section, we describe details of the computational process.

Without loss of generality we assume that τ (1) and τ (2) intersect at their first k + 1

vertices, i.e.,

v
(1)
j = v

(2)
j j = 1, . . . , k + 1. (4.6.11)

and F (q) is defined by (4.6.10) according to this order. The integrand in the right-hand

side of (4.6.9) has a singularity on K × K. However, location of singularity is easily

described thanks to agreement (4.6.11): for ((u1, u2), (v1, v2)),∈ K ×K, the integrand in
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the right-hand side of (4.6.9) is singular if
u1 = 0 = v1 and u2 = 0 = v2, if k = 0,
u1 = v1 and u2 = 0 = v2, if k = 1,
u1 = v1 and u2 = v2, if k = 2.

(4.6.12)

The algorithm in [13, 14] allows to approximate integrals of the form∫ 1

u1=0

∫ 1−u1

u2=0

∫ 1

v1=0

∫ 1−v1

v2=0
g(u1, u2, v1, v2) dv2dv1du2du1, (4.6.13)

where g(u1, u2, v1, v2) has singular support as in (4.6.12), by a quadrature rule

Nk∑
l=1

g(u1,l, u2,l, v1,l, v2,l)wl (4.6.14)

with weights {wl}Nkl=1 and nodes {(u1,l, u2,l, v1,l, v2,l)}Nkl=1. Here Nk is the number of quadra-

ture data used, which depends on the value of k. This quadrature rule is not of product

type over K × K, thus we enumerate the quadrature weights and nodes by a single in-

dex l. Furthermore, the quadrature error is bounded by C exp(−bN1/4
k ) with b, C > 0

independent of Nk [13]. Based on this result and in view of the transformation (4.6.9) we

approximate the integral I in (4.6.8) by the quadrature rule

QNk = |detF (1)||detF (2)|
Nk∑
l=1

f

(
F (1)(ul)
|F (1)(ul)|

,
F (2)(vl)
|F (2)(vl)|

)
wl

|F (2)(vl)|3|F (1)(ul)|3
.

Here we adopt the notation

ul = (u1,l, u2,l, 1− u1,l − u2,l) and vl = (v1,l, v2,l, 1− v1,l − v2,l) for l = 1, . . . , Nk.

Using again transformation (4.6.9) we express QNk in a simpler form as a quadrature rule

over τ (1) × τ (2):

QNk =
Nk∑
l=1

f1(xl)f2(yl)
|xl − yl|

Wl (4.6.15)

where

xl :=
F (1)(ul)
|F (1)(ul)|

, yl :=
F (2)(vl)
|F (2)(vl)|

, Wl :=
|detF (1)||detF (2)|wl
4π|F (1)ul|3|F (2)vl|3

(4.6.16)

According to [13, 66] the quadrature error is bounded by

|I −QNk | ≤ C exp(−bN1/4
k ) (4.6.17)

with b, C > 0 independent on Nk. This quadrature rule is used in our computations.

We illustrate performance of QNk on the simplified integral

∫
τ (1)

∫
τ (2)

1
|x− y|

dσx dσy (4.6.18)
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Figure 4.1: Relative error of the quadrature rule for approximation of (4.6.18) (left) and

location of spherical triangles (right).

with τ (1) = τm, m = −1, 0, 1, 2, τ (2) = τ2, and τm with vertices

τ−1 = 〈(0, 1, 0), (− 1√
2
, 1√

2
, 0), (0, 1√

2
, 1√

2
)〉, τ1 = 〈(1, 0, 0), ( 1√

2
, 1√

2
, 0), ( 1√

2
, 0,− 1√

2
)〉,

τ0 = 〈(1, 0, 0), ( 1√
2
,− 1√

2
, 0), ( 1√

2
, 0,− 1√

2
)〉, τ2 = 〈(1, 0, 0), ( 1√

2
, 1√

2
, 0), ( 1√

2
, 0, 1√

2
)〉,

as shown Fig. 4.1 (right). Thus, τ (1) and τ (2) are disjoint spherical triangles if m = −1,

share a node if m = 0, share an edge if m = 1 and are identical triangles if m = 2. In case

m = −1 we use a quadrature rule on K×K obtained from the Gauss-Legendre quadrature

rule on [0, 1]2 × [0, 1]2 by Duffy transformation
[0, 1]2 → K,

ζ 7→

(
ζ1(1− ζ2)

ζ2

)
.

(4.6.19)

In Fig. 4.1 (left) we give the relative error of the constructed quadrature approximation.

In the numerical experiment presented in Table 4.2 and Table 4.3 we chose quadrature

rules with the following total number of points: N−1 = 104, N0 = 2 · 114, N1 = 6 · 114 and

N2 = 6 · 124. The corresponding relative errors are marked by solid symbols in Fig. 4.1

(left).

Remark 4.6. The most time consuming part in the numerical simulation is the compu-

tation and assembly of the stiffness matrix, which is fully populated due to nonlocal nature

of L in (4.6.6). It is possible to reduce the order of the quadrature rule if the distance

between τ (1) and τ (2) is large, cf. [66, Section 5]. This reduces the number of function

evaluations, but requires quadratures of different order in the far field computation.





Chapter 5

Preconditioning for the

Laplace–Beltrami equation

5.1 Introduction

We consider the model equation

−∆S2u+ ω2u = g on S2, (5.1.1)

where ∆S2 is the Laplace-Beltrami operator defined in (2.1.1) and ω is some nonzero

real constant. This elliptic equation arises, for example, when one discretises in time the

diffusion equation on the sphere. When solving this equation on the unit sphere by the

Galerkin method with spherical splines, as was done in Chapter 4, an ill-conditioned linear

system will result; see Proposition 5.4 in the next section. Since the conjugate gradient

method will be used to solve this system if the size of the matrix is large, a large number

of iterations will be required.

In this chapter, we overcome this ill-conditionedness by preconditioning with additive

Schwarz methods. This preconditioner has long been used in finite element and boundary

element literatures [41, 74, 78].

As is usual for finite element or boundary element methods, the additive Schwarz

preconditioner is defined based on a subspace splitting of the finite dimensional space in

which the solution is sought. This splitting is in turn defined by a decomposition of S2 into

subdomains. We here design an overlapping decomposition method based on a two-level

mesh. A fine mesh and a coarse mesh are defined from two sets of data points on the

sphere. The cardinality of the set defining the fine mesh is chosen to be larger than that

of the set defining the coarse mesh. A subdomain is constructed from each triangle in

the coarse mesh by taking the union of all triangles in the fine mesh which intersect this

coarse triangle. This results in a set of overlapping subdomains which we use to define an

additive Schwarz operator for solving (5.1.1).

This is our first step in studying overlapping additive Schwarz preconditioners for

pseudodifferential equations on the sphere when spherical splines are used. The results

in this chapter have been reported in our article [61]. This preconditioner will then be
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used when solving the hypersingular integral equation with spherical splines in Chapter 6.

Preconditioners of other types have been studied in [44, 45].

5.2 The meshes

Let X := {x1, . . . ,xK} be a set of points on S2. We denote by ∆h the spherical triangu-

lation generated by X, which will be referred to as the fine mesh. We construct a coarse

mesh ∆H using another set of points Y such that |∆H | > |∆h|. A triangle in the fine

mesh will be denoted by τ whereas a triangle in the coarse mesh will be denoted by τH .

For each τ ∈ ∆h, we denote by Aτ the area of τ . We are interested in small values of |∆h|.
We assume that both ∆h and ∆H are regular and quasi-uniform (see page 24). Here, the

mesh sizes of ∆h and ∆H are denoted by h and H, respectively, i.e.

h = tan (|∆h|/2) and H = tan (|∆H |/2) .

To accompany results used in [7, 54] we also define (see (2.5.15))

% = tan(ρ∆h
/2), hτ = tan(|τ |/2), and %τ = tan(ρτ/2) for τ ∈ ∆h

and, similarly for the coarse mesh,

%H = tan(ρ∆H
/2), HτH = tan(|τH |/2), and %τH = tan(ρτH/2) for τH ∈ ∆H .

It is straightforward to see that since ∆h and ∆H are regular and quasi-uniform, there

hold
ρτ ' |τ | ' |∆h| ' h ' hτ ' %τ ' %

ρτH ' |τH | ' |∆H | ' H ' HτH ' %τH ' %H .
(5.2.1)

Denoting by star1(v) the union of all triangles in ∆h that share the vertex v, we define

stark(v) := ∪{star1(w) : w is a vertex of stark−1(v)}, k > 1,

and

stark(τ) := ∪{stark(w) : w is a vertex of τ}, k ≥ 1.

The following result is proved in [7, 54].

Lemma 5.1. Under the assumptions that ∆h is a regular, quasi-uniform triangulation

satisfying |∆h| ≤ 1 we have, for any τ ∈ ∆h,

1. Aτ ' h2,

2. νk(τ) � (2k + 1)2

where Aτ denotes the area of τ , and νk(τ) denotes the number of triangles in stark(τ).

Here, the constants depend only on the smallest angle of the triangulation.
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5.3 The problem

In this chapter, we will frequently use the following radial projection. Let Ω be a subset of

S2. We denote by rΩ the centre of a spherical cap of smallest possible radius containing Ω,

and by ΠΩ the tangential plane touching S2 at rΩ. For each point x ∈ Ω, the intersection

of ΠΩ and the ray passing through the origin and x is denoted by x. We define

R(Ω) := {x ∈ ΠΩ : x ∈ Ω}. (5.3.1)

The radial projection RΩ is defined by

RΩ : R(Ω) → Ω (5.3.2)

x 7→ x := x/|x|.

It is clear that RΩ is invertible.

Recall the definition of Sobolev space Hk(Ω) defined on a subset Ω of the unit sphere

S2 in Section 2.2. In this chapter, we use the following definition of the Sobolev space

H1(Ω) defined on a subset Ω ⊂ S2 as follows:

H1(Ω) := {v ∈ L2(Ω) : ‖v‖H1(Ω) <∞},

which is equipped with a seminorm

|v|2H1(Ω) :=
∫

Ω
|∇S2v|2dσ

and a norm

‖v‖2
H1(Ω) :=

∫
Ω
|v|2dσ + |v|2H1(Ω). (5.3.3)

Here ∇S2 is the surface gradient (see (2.1.6)), and dσ is the Lebesgue measure on S2. The

norm (5.3.3) is equivalent to that defined by (2.2.5).

To set up a weak formulation for (5.1.1), we introduce the bilinear form

a(u, v) :=
〈
−∆S2u+ ω2u, v

〉
.

Noting (2.1.7) and (5.3.3) we deduce

a(v, v) ' ‖v‖2
H1(S2) ∀v ∈ H1(S2). (5.3.4)

A natural weak formulation of the equation (5.1.1) is

a(u, v) = 〈g, v〉 ∀v ∈ H1(S2).

The bilinear form is clearly bounded and coercive (cf. [9]). The Galerkin approximation

problem is: Find u ∈ Srd(∆h) satisfying

a(u, v) = 〈g, v〉 ∀v ∈ Srd(∆h). (5.3.5)
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Denoting {Φi : i = 1, . . . , N} a basis for Srd(∆h), the problem (5.3.5) reduces to the

problem of solving the following linear system

Ac = g,

where for i, j = 1, ..., N , the entries of the matrix A are given as Aij = a(Φi,Φj) and the

vector f is given as g = [gi]Ni=1 in which gi = 〈g,Φi〉.
It is well known that the matrix A is ill-conditioned, namely, the condition number of

A, defined by κ(A) := λmax(A)/λmin(A), grows like h−2 as h→ 0 (i.e. |∆h| → 0). Since

we cannot find a reference for this seemingly well-known result, we include the proof here

for completeness. We will use the following two results from [7] to achieve this.

Lemma 5.2. [7, Lemma 5] Let p be a homogeneous polynomial of degree d on a spherical

triangle τ . If p is written in Bernstein-Bézier form as

p(v) =
∑

i+j+k=d

cijkB
d,τ
ijk(v), v ∈ τ,

then

‖p‖L2(τ) ' A1/2
τ ‖cτ‖,

of τ and p. Here Aτ is the area of τ and cτ is the vector of components cijk, i+ j+k = d.

Lemma 5.3. [7, Lemma 6] Let p be a homogeneous polynomial of degree d on a spherical

triangle τ in ∆h. Then there holds

|p|H1(τ) � %−1
τ ‖p‖L2(τ).

We can now prove a bound for the condition number of A.

Proposition 5.4. The condition number of the stiffness matrix A is bounded by

κ(A) � h−2.

Proof. Recall that {Φi}Ni=1 is a basis for Srd(∆h). Let c = [ci]Ni=1 ∈ RN . We define

u :=
∑N

i=1 ciΦi ∈ Srd(∆h). Noting (5.3.4), we have

cTAc = a(u, u) ' ‖u‖2
H1(S2). (5.3.6)

From (5.3.6), Lemma 5.3 and (5.2.1), we have

cTAc �
∑
τ∈∆h

(
|u|2H1(τ) + ‖u‖2

L2(τ)

)
� h−2

∑
τ∈∆h

‖u‖2
L2(τ).

It follows from Lemmas 5.2 and 5.1 (i) that

cTAc � h−2
∑
τ∈∆h

Aτ‖cτ‖2 �
∑
τ∈∆h

‖cτ‖2.

Here, cτ is a vector whose components are that of the vector c corresponding to the basis

functions Φj whose supports contain τ . By using Lemma 5.1 (ii) and noting (5.2.1) we

obtain

cTAc � max
τ∈∆h

{#star1(τ)}‖c‖2 � ‖c‖2 = cTc
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which gives

λmax(A) � 1.

Using (5.3.6), Lemma 5.2 and Lemma 5.1 (i) again, we have

cTAc �
∑
τ∈∆h

‖u‖2
L2(τ) �

∑
τ∈∆h

Aτ‖cτ‖2 ' h2cTc,

implying

λmin(A) � h2.

The bound for κ(A) can now be derived.

5.4 Abstract framework of additive Schwarz methods

Additive Schwarz methods provide fast solutions to (5.3.5) by solving, at the same time,

problems of smaller size. Let the space V = Srd(∆h) be decomposed as

V = V0 + · · ·+ VJ , (5.4.1)

where Vi, i = 0, ..., J, are subspaces of V , and let Pi : V → Vi, i = 0, ..., J , be projections

defined by

a(Piv, w) = a(v, w) ∀v ∈ V, ∀w ∈ Vi. (5.4.2)

If we define

P := P0 + · · ·+ PJ , (5.4.3)

then the additive Schwarz method for (5.3.5) consists of solving, by an iterative method,

the equation

Pu = f, (5.4.4)

where f =
∑J

i=0 fi, with fi ∈ Vi being solutions of

a(fi, w) = 〈g, w〉 ∀w ∈ Vi. (5.4.5)

The equivalence of (5.3.5) and (5.4.4) was discussed in [77]. For completeness, we briefly

explain that equivalence here. Let uh be a solution of (5.3.5). From the definition of Pi
and fi we deduce

a(Piuh, v) = a(uh, v) = 〈g, v〉 = a(fi, v) ∀v ∈ V,

i.e. Piuh = fi. Hence Puh = f . On the other hand, if P : V → V is invertible and uh is a

solution of (5.4.4), then by using successively the symmetry of P , (5.4.2) and (5.4.5), we

obtain

a(uh, v) = a(P−1f, v) = a(f, P−1v) =
J∑
i=1

a(fi, P−1v) =
J∑
i=1

a(fi, PiP−1v)

=
J∑
i=1

〈
g, PiP

−1v
〉

= 〈g, v〉 for any v ∈ V.
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A practical method to solve (5.4.4) is the conjugate gradient method; the additive

Schwarz method can be viewed as a preconditioned conjugate gradient method.

Bounds for eigenvalues the condition number of the additive Schwarz operator P , can

be obtained by using the following lemma; see [74].

Lemma 5.5. Assume that for any u ∈ V satisfying u =
∑J

i=0 ui with ui ∈ Vi for

i = 0, ..., J there holds

a(u, u) ≤ C1

J∑
i=0

a(ui, ui). (5.4.6)

Assume further that for any u ∈ V , there exists a decomposition u =
∑J

i=0 u
′
i with u′i ∈ Vi

for i = 0, ..., J satisfying
J∑
i=0

a(u′i, u
′
i) ≤ C2a(u, u). (5.4.7)

Then the extremal eigenvalues of the additive Schwarz operator P are bounded by

C−1
2 ≤ λmin(P ) ≤ λmax(P ) ≤ C1

and thus the condition number κ(P ) = λmax(P )/λmin(P ) is bounded by

κ(P ) ≤ C1C2.

5.5 Additive Schwarz method for the Laplace-Beltrami

equation on the unit sphere

In this section we will define a subspace decomposition of the form (5.4.1), and in this

way define the additive Schwarz operator for problem (5.3.5). Let V ′
0 = Srd(∆H) and

Vj = V ∩H1
0 (Ωj) for j = 1, ..., J , where Ωj are overlapping subdomains (regarded as open)

which will be defined below. Here H1
0 (Ωj) := {u ∈ L2(Ωj) : ‖u‖H1(Ωj) <∞ and u = 0 on

∂Ωj}, where ∂Ωj denotes the boundary of Ωj . Since V ′
0 is not a subspace of V we define

the coarse space V0 = ĨhV ′
0 where Ĩh is a quasi-interpolant over ∆h which is defined as

in (2.5.22). The use of a quasi-interpolant as opposed to a “regular” interpolant is to allow

the use of results in [54]. We now have decomposed V as in (5.4.1) and can hence define

the Schwarz operator P by (5.4.2) and (5.4.3).

We construct one subdomain for each triangle in ∆H , hence the number of subdomains

is J , the number of triangles in ∆H . Consider a triangle τ jH ∈ ∆H , j = 1, . . . , J . The

subdomain corresponding to τ jH is given by

Ωj = ∪{τ ∈ ∆h : τ̄ ∩ τ̄ jH 6= φ}, j = 1, ..., J. (5.5.1)

Since triangles in the fine mesh can intersect more than one triangle in the coarse mesh,

the subdomains are overlapping.

It will be assumed that the subdomains can be coloured using at most M colours in

such a way that subdomains with the same colour are disjoint. It is clear that M depends
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on the smallest angle of the triangulation. We also assume, as in [74], that for j = 1, ..., J ,

there exists δj > 0 such that for any x ∈ Ωj there exists i ∈ {1, ..., J} satisfying

x ∈ Ωi and dist(x, ∂Ωi) := min
y∈∂Ωi

cos−1(x · y) ≥ δj . (5.5.2)

Here δj measures the amount of overlap in Ωj and this assumption ensures that the overlap

of the subdomains is small. We denote

Ωj,δj := {x ∈ Ωj : dist(x, ∂Ωj) ≤ δj}. (5.5.3)

In the proceeding sections a lower bound for the minimum eigenvalue of P will be

obtained by using the quasi-interpolation operators Ĩh and ĨH relative to the fine mesh ∆h

and the coarse mesh ∆H , and a family of functions associated with our set of overlapping

subdomains that form a partition of unity. For the definition of the quasi-interpolation

operator, please refer to (2.5.22).

The following two lemmas consist of stability and approximation results for these quasi-

interpolants. They state the results for Ĩh but similar results for ĨH will also be used in

the remainder of the chapter.

Lemma 5.6. For any τ ∈ ∆h, let ωτ :=
⋃
i∈Iτ ωi, where ωi := supp(Φi) and

Iτ :=
{
i ∈ {1, . . . , N} : τ ∈ ωi

}
. Then for v ∈ Hk(S2), k = 0, 1, there hold

(i) |Ĩhv|Hk(τ) � h−k‖v‖L2(ωτ ),

(ii) |Ĩhv|Hk(S2) � h−k‖v‖L2(S2).

Here, the constants depend only on the smallest angle Θ∆h
of ∆h and the polynomial degree

d.

Proof. The proof for (i) can be found in [54, Proposition 5.2]. The following is the proof

for (ii) when k = 0. By (i) we have

‖Ĩhv‖L2(τ) � ‖v‖L2(ωτ ).

It follows that

‖Ĩhv‖2
L2(S2) =

∑
τ∈∆h

‖Ĩhv‖2
L2(τ) �

∑
τ∈∆h

‖v‖2
L2(ωτ )

=
∑
τ∈∆h

∑
τ ′⊂ωτ
τ ′∈∆h

‖v‖2
L2(τ ′) =

∑
τ ′∈∆h

#{τ : τ ′ ⊂ ωτ}‖v‖2
L2(τ ′).

Noting that #{τ : τ ′ ⊂ ωτ} ≤ #star2(τ ′), by using Lemma 5.1 (ii) we deduce

‖Ĩhv‖2
L2(S2) � max

τ ′∈∆h

{#star2(τ ′)}‖v‖2
L2(S2) � ‖v‖2

L2(S2),

proving (ii) for the case k = 0. A similar argument can be used to obtain the result for

k = 1.
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Lemma 5.7. There exists a constant depending on Θ∆h
, the smallest angle in ∆h, and

the polynomial degree d such that for all v ∈ H1(S2)

‖v − Ĩhv‖L2(S2) � h‖v‖H1(S2).

Proof. Theorem 4.3 in Chapter 4 tells us that for all v ∈ H1(S2), there exists a spherical

spline η ∈ Srd(∆h) such that

‖v − η‖L2(S2) � h‖v‖H1(S2). (5.5.4)

where the constant depends on Θ∆h
and d. By the linearity of Ĩh and the fact that Ĩh

reproduces functions in Srd(∆h), we can write

‖v − Ĩhv‖L2(S2) ≤ ‖v − η‖L2(S2) + ‖Ĩh(v − η)‖L2(S2).

From Lemma 5.6 and (5.5.4) we deduce

‖v − Ĩhv‖L2(S2) � ‖v − η‖L2(S2) � h‖v‖H1(S2),

proving the lemma.

To construct a decomposition of each u ∈ V , we introduce a partition of unity as

follows. Let

dj(x) =

dist(x, ∂Ωj), x ∈ Ωj

0, x 6∈ Ωj

.

The partition of unity {θj}Jj=1 is defined by

θj(x) =
dj(x)∑J
k=1 dk(x)

, x ∈ S2.

The following lemma proves an important property of our partition of unity.

Lemma 5.8. There exists a constant C such that for j = 1, ..., J

|∇S2θj(x)| ≤ CM

δj
, ∀x ∈ S2, (5.5.5)

where δj, which measures the amount of overlap in Ωj, is given in (5.5.2).

Proof. This lemma was proved in [74] for a bounded polygonal or polyhedral domain. We

employ a similar technique to prove the result for the sphere.

Consider an arbitrary but fixed j. Since ∇S2θj(x) = 0 for x 6∈ Ωj we only need to

prove (5.5.5) for x ∈ Ωj . We will actually prove

|θj(x)− θj(y)| � M

δj
|x− y| ∀x,y ∈ Ωj , (5.5.6)

where y is sufficiently close to x. To see that (5.5.6) implies (5.5.5), we extend θj to ψj
defined on

Aj :=
{
u ∈ R3 :

1
2
≤ |u| ≤ 3

2
and

u
|u|

∈ Ωj

}
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as follows. Let ψj(u) = θj(x) for all u ∈ Aj , where x = u/|u|. In fact ψj is the

homogeneous extension of θj of degree 0 toAj . Noting that∇S2θj = ∇S2

(
ψj |2S

)
= (∇ψj)|S2

we obtain (5.5.5) if we have

|∇ψj(u)| � M

δj
∀u ∈ Aj , (5.5.7)

or equivalently

|ψj(u)− ψj(v)| � M

δj
|u− v| ∀u,v ∈ Aj , (5.5.8)

where v is sufficiently close to u. Noting that |ψj(u) − ψj(v)| = |θj(x) − θj(y)|,
where u,v ∈ Aj , x = u/|u|, and y = v/|v|, and that |x− y| ≤ 2|u− v|, we see that

(5.5.6) gives us (5.5.8) which in turn yields (5.5.7) and therefore (5.5.5).

We now prove (5.5.6). Recalling that x,y ∈ Ωj we note that (5.5.6) holds if the

following formulae are proved:

θj(x)− θj(y) =
1∑J

k=1 dk(y)

(
θj(x)η̃j(y,x) + θ̃j(x)ηj(x,y)

)
, (5.5.9)

J∑
k=1

dk(x) ≥ δj , (5.5.10)

|ηk(x,y)| � |x− y|, k = 1, ..., J, (5.5.11)

and

|η̃j(x,y)| �M |x− y|, (5.5.12)

where

ηk(x,y) := dk(x)− dk(y), η̃j(x,y) :=
J∑
k=1
k 6=j

ηk(x,y), θ̃j(x) := 1− θj(x). (5.5.13)

Indeed, assuming (5.5.9)–(5.5.12) hold we have

|θj(x)− θj(y)| =

∣∣∣∣∣ 1∑J
k=1 dk(y)

(
θj(x)η̃j(y,x) + θ̃j(x)ηj(x,y)

)∣∣∣∣∣
≤ 1
δj

(
θj(x)|η̃j(y,x)|+ θ̃j(x)|ηj(x,y)|

)
� M

δj

(
θj(x)|x− y|+ θ̃j(x)|x− y|

)
=
M

δj
|x− y|.

We will now prove (5.5.9)–(5.5.12). From (5.5.13) we have

θj(x)η̃j(y,x) + θ̃j(x)ηj(x,y) = θj(x)
J∑
k=1
k 6=j

(dk(y)− dk(x)) + (1− θj(x))(dj(x)− dj(y))

= θj(x)
J∑
k=1

(dk(y)− dk(x)) + dj(x)− dj(y)

=
J∑
k=1

dk(y)(θj(x)− θj(y)),
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where in the final step we use θj(x)
∑J

k=1 dk(x) = dj(x) twice. Hence (5.5.9) is proved.

The property (5.5.10) is obvious from the assumption (5.5.2).

We now prove (5.5.11) recalling that x,y ∈ Ωj . Noting that our subdomains were

defined as open, for the case when x,y 6∈ Ωk we have ηk(x,y) = 0 and hence (5.5.11) is

trivial. Consider now the case x,y ∈ Ωk. Let z ∈ ∂Ωk be such that dk(y) = cos−1(y · z).
Then

dk(x) ≤ cos−1(x · z) ≤ cos−1(x · y) + cos−1(y · z) = cos−1(x · y) + dk(y)

which gives ηk(x,y) ≤ cos−1(x · y). Similarly dk(y) ≤ cos−1(x · y) + dk(x) and

hence |ηk(x,y)| ≤ cos−1(x · y). By simple geometry it can be shown for a,b ∈ S2

satisfying cos−1(a · b) ≤ π
2 that

|a− b| ' cos−1(a · b). (5.5.14)

Since y is sufficiently close to x we have |ηk(x,y)| � |x − y| and we obtain (5.5.11) for

this case. Finally if x 6∈ Ωk and y ∈ Ωk we have

dk(x) = 0 ≤ cos−1(x · y) + dk(y) and dk(y) ≤ cos−1(x · y).

Then

|ηk(x,y)| = |dk(y)| ≤ cos−1(x · y) � |x− y|

which gives us (5.5.11).

Since there are at most M values of k such that dk(x) 6= 0 (by the colouring assump-

tion), we have at most M values of k such that ηk(x,y) 6= 0. Then (5.5.12) follows from

(5.5.11).

5.6 Main results

In this section we prove a bound on the condition number of P by using the abstract result

in Lemma 5.5. We first prove (5.4.6).

Lemma 5.9. There exists a positive constant C independent of ∆h such that for any

u ∈ V satisfying u =
∑J

j=0 uj with uj ∈ Vj for j = 0, ..., J, there holds

a(u, u) ≤ C

J∑
j=0

a(uj , uj),

where the constant C depends on the smallest angle of the triangulation.

Proof. By our assumption on the colouring of the subdomains there are at most M sub-

domains to which any x ∈ S2 can belong. By a standard colouring argument we have

a(u, u) � ‖u‖2
H1(S2) ≤ ‖u0‖2

H1(S2) +

∥∥∥∥∥∥
J∑
j=1

uj

∥∥∥∥∥∥
2

H1(S2)
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� ‖u0‖2
H1(S2) +M

J∑
j=1

‖uj‖2
H1(S2) �

J∑
j=0

a(uj , uj).

The lemma is proved.

We note that standard analysis as used in [74] cannot be directly used to prove (5.4.7).

There are two levels of difficulties. First, we have to work with homogeneous polynomials

on spherical triangles which do not have all properties of polynomials on planar triangles.

Second, the space Srd(∆h) does not contain constant functions when d is odd.

In the following subsection, we prove (5.4.7) by using a different approach. The result

is not as sharp as expected. In Subsection 5.6.2 we prove a better estimate when d is even

so that the space Srd(∆h) contains constant functions.

5.6.1 A rough estimate for κ(P )

To prove (5.4.7), we need to introduce an operator PH from H1(S2) into Srd(∆H) defined

by

a(PHu, v) = a(u, v) ∀v ∈ Srd(∆H)

for any u ∈ H1(S2). Standard finite arguments yield

‖PHu− u‖H1(S2) � ‖u− v‖H1(S2) ∀v ∈ Srd(∆H)

‖PHu− u‖H1(S2) � ‖u‖H1(S2)

‖PHu‖H1(S2) � ‖u‖H1(S2)

‖PHu− u‖L2(S2) � H‖u‖H1(S2).

(5.6.1)

Lemma 5.10. There exists a positive constant C depending on the smallest angle of ∆h

and the polynomial degree d such that for any u ∈ V there exist uj ∈ Vj , j = 0, ..., J ,

satisfying u =
∑J

j=0 uj and

J∑
j=0

a(uj , uj) ≤ C

(
H

h

)2

a(u, u). (5.6.2)

Proof. Let u′0 := PHu and u0 = Ĩhu′0. We define w := u − u0, and uj := Ĩh(θjw) for

j = 1, ..., J . Since supp(θj) ⊆ Ωj there holds uj ∈ Vj for all j = 1, . . . , J . Moreover,

u0 + u1 + · · ·uJ = u0 + Ĩh

 J∑
j=1

θjw

 = u0 + Ĩhu− Ĩhu0 = u0 + u− u0 = u.

By Lemma 5.6, we have

‖Ĩh(PHu− u)‖H1(S2) � h−1‖PHu− u‖L2(S2). (5.6.3)

By using the triangle inequality, (5.6.3) and (5.6.1), we have, noting that Ĩhu = u,

a(u0, u0) ' ‖u0‖2
H1(S2) ≤

(
‖Ĩh(PHu− u)‖H1(S2) + ‖u‖H1(S2)

)2

�
(
h−1‖PHu− u‖L2(S2) + ‖u‖H1(S2)

)2
�
(
H

h
‖u‖H1(S2)

)2

'
(
H

h

)2

a(u, u).

(5.6.4)
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Noting the support of θj and involving Lemma 5.6 again, we have

a(uj , uj) ' ‖Ĩh(θjw)‖2
H1(S2) = ‖Ĩh(θjw)‖2

H1(Ωj)

=
∑
τ⊂Ωj
τ∈∆h

‖Ĩh(θjw)‖2
H1(τ) � h−2

∑
τ⊂Ωj
τ∈∆h

‖θjw‖2
L2(ωτ )

� h−2
∑
τ⊂Ωj
τ∈∆h

‖w‖2
L2(ωτ )

� h−2‖w‖2
L2(Ωj)

.

Summing up over j = 1, . . . , J , we obtain

J∑
j=1

a(uj , uj) � h−2‖w‖2
L2(S2). (5.6.5)

Lemma 5.6 and (5.6.1) give

‖w‖L2(S2) = ‖u− Ĩh(PHu)‖L2(S2) = ‖Ĩh(u− PHu)‖L2(S2)

� ‖u− PHu‖L2(S2) � H‖u‖H1(S2).

This together with (5.6.5) gives

J∑
j=1

a(uj , uj) �
(
H

h

)2

a(u, u). (5.6.6)

We now obtain from (5.6.4) and (5.6.6)

J∑
j=0

a(uj , uj) �
(
H

h

)2

a(u, u),

completing the proof.

Combining the results in Lemmas 5.9, 5.10 and 5.5 we obtain a bound for the condition

number κ(P ) of the additive Schwarz operator.

Theorem 5.11. The condition number of the additive Schwarz operator P is bounded by

κ(P ) ≤ C

(
H

h

)2

,

where C is a constant depending on the smallest angle in ∆h and the polynomial degree d.

Recall that we have chosen the overlap δ to be proportional to h.

5.6.2 An improved estimate for κ(P ) for even degree splines

In this subsection we find a better upper bound for κ(P ) when d is even. First we introduce

spherical versions of Poincaré and Friedrichs type inequalities, which have been proved for

open subsets of Rn; see e.g. [74]. These results provide tools to prove (5.4.7).
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Proposition 5.12. Let Ω ⊆ S2 be a Lipschitz domain and let fi, i = 1, . . . , L, L ≥ 1, be

functionals (not necessarily linear) in H1(Ω), such that, if v is constant in Ω,

L∑
i=1

|fi(v)|2 = 0 ⇐⇒ v = 0.

Then, there exist constants depending only on Ω and the functionals fi, such that, for

u ∈ H1(Ω),

‖u‖2
L2(Ω) ≤ C1|u|2H1(Ω) + C2

L∑
i=1

|fi(u)|2.

Proof. For any u ∈ H1(Ω), we denote by ū ∈ H1(R(Ω)) the restriction on R(Ω)

(see (5.3.1)) of the homogeneous extension of degree 0 of u. It is obvious that ū = u ◦RΩ

where RΩ is the radial projection defined in (5.3.2). For any i = 1, . . . , L, we define the

functional f̄i : H1(R(Ω)) → R by

f̄i(ū) = fi(u) ∀ū ∈ H1(R(Ω)).

Let v̄ be a constant function in R(Ω). Then v = v̄ ◦R−1
Ω is a constant function in Ω. We

have

L∑
i=1

|f̄i(v̄)|2 = 0 ⇔
L∑
i=1

|fi(v)|2 = 0

⇔ v = 0

⇔ v̄ = 0.

By Theorem A.12 in [74], there exist constants C ′1 and C ′2 depending only on R(Ω) and

functional f̄i, such that, for ū ∈ H1(R(Ω)),

‖ū‖2
L2(R(Ω)) ≤ C ′1|ū|2H1(R(Ω)) + C ′2

L∑
i=1

|f̄i(ū)|2.

By the definition of f̄i and noting that ‖u‖L2(Ω) ' ‖ū‖L2(R(Ω)) and |u|H1(Ω) ' |ū|H1(R(Ω)),

see [54], we have

‖u‖2
L2(Ω) ≤ C1|u|2H1(Ω) + C2

L∑
i=1

|fi(u)|2.

The lemma is proved.

The above lemma, together with a scaling argument as in the case of open sets in Rn

(see e.g. [74]), yields the spherical versions of Poincaré and Friedrichs type inequalities.

Lemma 5.13. Let Ω ⊆ S2 be a Lipschitz domain with diameter H. Then, there exist

constants C, C1 and C2, depending only on the shape of Ω but not on H, such that

‖u‖L2(Ω) ≤ CH|u|H1(Ω)
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for u ∈ H1(Ω) with vanishing mean value on Ω (i.e.
∫
Ω u dσ = 0). Moreover, if Γ ⊆ ∂Ω

has a length of order H, then

‖u‖2
L2(Ω) ≤ C1H

2|u|2H1(Ω) + C2H‖u‖2
L2(Γ)

for u ∈ H1(Ω).

Using Lemma 5.13 we can prove the following result.

Lemma 5.14. There exists a constant C depending on the smallest angle of the triangu-

lation such that for all u ∈ H1(Ωj), j = 1, ..., J , there holds

‖u‖2
L2(Ωj,δj )

≤ Cδ2j

((
1 +

|Ωj |
δj

)
|u|2H1(Ωj)

+
1

|Ωj |δj
‖u‖2

L2(Ωj)

)
.

Here, we recall that |Ωj | is the size of Ωj (the diameter of the smallest cap containing

Ω), δj is the overlapping size of Ωj and Ωj,δj is the set of points in Ωj that are within a

distance δj of ∂Ωj defined by (5.5.3).

Proof. We cover Ωj,δj by shape-regular triangles with O(δj) diameters. By using

Lemma 5.13 for each triangle and then summing over these triangles, we obtain

‖u‖2
L2(Ωj,δj )

≤ C
(
δ2j |u|2H1(Ωj,δj )

+ δj‖u‖2
L2(∂Ωj)

)
. (5.6.7)

We can estimate the second term on the right by combining the trace result in [43] and

the embedding L2(∂Ωj) ⊂ H1(Ωj) with a scaling argument to obtain

‖u‖2
L2(∂Ωj)

� Hj‖û‖2
L2(∂Ω̂j)

� Hj‖û‖2
H1(Ω̂j)

' Hj

(
|û|2

H1(Ω̂j)
+ ‖û‖2

L2(Ω̂j)

)
' Hj |u|2H1(Ωj)

+ 1/Hj‖u‖2
L2(Ωj)

.
(5.6.8)

Here, Ω̂j is the subset in S2 with unit size and has the same shape with Ωj , û is the

composition of u and the transformation which maps Ω̂j onto Ωj . Inequalities (5.6.7)

and (5.6.8) complete the proof, noting that Hj ' |Ωj |.

By using Lemma 5.13 again we will prove the boundedness of the quasi-interpolation

operator Ĩh in H1(S2) when d is even.

Lemma 5.15. Let ∆h be a regular and quasi-uniform spherical triangulation on S2. Then

for any v ∈ H1(S2), there holds

‖Ĩhv‖H1(S2) ≤ C‖v‖H1(S2).

Proof. For any τ ∈ ∆h, we define αv := |ωτ |−1
∫
ωτ
v dσ and v̂ := v − αv. Since the

quasi-interpolant Ĩh reproduces any constant function, we have Ĩh(αv) = αv. Noting that∫
ωτ
v̂ dσ = 0 and applying the results in Lemmas 5.6 and 5.13, we obtain

|Ĩhv|H1(τ) = |Ĩhv − αv|H1(τ) = |Ĩhv̂|H1(τ) � h−1|v̂|L2(ωτ )

� |v̂|H1(ωτ ) = |v|H1(ωτ ).

Summing the above inequality over all τ ∈ ∆h, we obtain |Ĩhv|S2 � |v|H1(S2). This together

with the Lemma 5.6 implies the required inequality.
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We note that a similar result as in Lemma 5.15 is true for ĨH and Srd(∆H). We are

now able to derive a better lower bound for λmin(P ) via (5.4.7).

Lemma 5.16. There exists a positive constant C depending on the smallest angle of ∆h

and the polynomial degree d such that for any u ∈ V there exist uj ∈ Vj , j = 0, ..., J ,

satisfying u =
∑J

j=0 uj and

J∑
j=0

a(uj , uj) ≤ C max
1≤k≤J

(
1 +

Hk

δk

)
a(u, u). (5.6.9)

Proof. Let u′0 := ĨHu and u0 := Ĩhu′0. We define w := u − u0 and for j = 1, . . . , J , let

uj := Ĩh(θjw). It is clear that uj ∈ Vj for j = 0, . . . , J and

u = u0 + . . .+ uJ .

The result in Lemma 5.15 gives

a(u0, u0) ' ‖Ĩh(ĨHu)‖2
H1(S2) � ‖u‖2

H1(S2) ' a(u, u). (5.6.10)

For j = 1, . . . , J , noting that θj vanishes outside Ωj , we have

a(uj , uj) ' ‖Ĩh(θjw)‖2
H1(Ωj)

� ‖θjw‖2
H1(Ωj)

= |θjw|2H1(Ωj)
+ ‖θjw‖2

L2(Ωj)
. (5.6.11)

Since θj is not greater than 1, we have ‖θjw‖L2(Ωj) ≤ ‖w‖L2(Ωj). On the other hand,

|θjw|2H1(Ωj)
≤
∫

Ωj

|w∇S2θj |2 dσ +
∫

Ωj

|θj∇S2w|2 dσ

≤
∫

Ωj

|w∇S2θj |2 dσ + |w|2H1(Ωj)
.

(5.6.12)

Noting that ∇S2θj = 0 outside the strip Ωj,δj and applying the results in Lemmas 5.8

and 5.14, we have∫
Ωj

|w∇S2θj |2 dσ =
∫

Ωj,δj

|w∇S2θj |2 dσ �
C

δ2j
‖w‖2

L2(Ωj,δj )

� C

[(
1 +

Hj

δj

)
|w|2H1(Ωj)

+
1

Hjδj
‖w‖2

L2(Ωj)

]
.

(5.6.13)

We obtain from (5.6.12) and (5.6.13)

|θjw|2H1(Ωj)
� C

[(
1 +

Hj

δj

)
|w|2H1(Ωj)

+
1

Hjδj
‖w‖2

L2(Ωj)

]
.

This together with (5.6.11) gives

a(uj , uj) � C max
1≤k≤J

(
1 +

Hk

δk

)(
‖w‖2

H1(Ωj)
+

1
H2
j

‖w‖2
L2(Ωj)

)
.

Summing over j yields

J∑
j=1

a(uj , uj) � C max
1≤k≤J

(
1 +

Hk

δk

)(
‖w‖2

H1(S2) +
1
H2
j

‖w‖2
L2(S2)

)
. (5.6.14)
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Since the quasi-interpolation operator is bounded in H1(S2), there holds

‖w‖2
H1(S2) = ‖Ĩh(u− u′0)‖2

H1(S2) � ‖u− u′0‖2
H1(S2) � ‖u‖2

H1(S2). (5.6.15)

The results in Lemma 5.6 and the approximate property of spherical splines give

‖w‖2
L2(S2) = ‖Ĩh(u− u′0)‖2

L2(S2) � ‖u− u′0‖2
L2(S2) � H2‖u‖2

H1(S2). (5.6.16)

Combining (5.6.14)–(5.6.16) yields

J∑
j=1

a(uj , uj) � C max
1≤k≤J

(
1 +

Hk

δk

)
‖u‖2

H1(S2) � C max
1≤k≤J

(
1 +

Hk

δk

)
a(u, u).

Combining this with (5.6.10) completes the proof.

Combining the results in Lemmas 5.9, 5.16 and 5.5 we obtain a bound for the condition

number κ(P ) of the additive Schwarz operator.

Theorem 5.17. When the polynomial degree d is even, the condition number of the ad-

ditive Schwarz operator P is bounded by

κ(P ) ≤ C max
1≤k≤J

(
1 +

Hk

δk

)
,

where C is a constant depending on the smallest angle in ∆h and on d.

5.7 Numerical results

We solved

−∆S2u+ u = g

with

g(x, y, z) = ex(x2 + 2x),

which has the solution

u(x, y, z) = ex.

Data sets of various sizes were extracted from the large set of data collected by nasa’s

satellite magsat. Using the software stripack [64] developed by Robert Renka, we ob-

tained Delaunay triangulations of these data sets. Also, the software sparskit2 developed

by Yousef Saad was used to deal with sparse matrices.

The computation of the stiffness matrix A and the load vector is discussed in Subsec-

tion 4.6.1, Chapter 4. We now discuss the overlapping additive Schwarz algorithm. The

algorithm consists of constructing the subdomains, the subproblems for each subdomain,

the stiffness matrix for the coarse mesh, the transformation matrices between the coarse

and fine meshes, and finally solving the problem with the preconditioned conjugate gra-

dient method. Recalling (5.5.1), a pseudo–code to construct the overlapping subdomains

is as follows.
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Input: Sets of triangles of the coarse mesh ∆H and fine mesh ∆h.

Output: A set of subdomains {Ωj : j = 1, . . . , J} where each subdomain consists

of triangles of the fine mesh.

foreach τ jH ∈ ∆H do
Ωj = τ jH
foreach τ := 〈x1,x2,x3〉 ∈ ∆h do

if at least one of x1,x2,x3 belongs to τ̄ jH then
Ωj = Ωj ∪ τ ;

end

end

end

We note that this construction yields overlapping subdomains with overlap size δ propor-

tional to h.

Before presenting results for the condition number of A we examine the L2- and H1-

norms of the errors uh − u for different meshes and different degrees d of the splines to

observe the accuracy of the solutions. From Theorem 4.5, we expect the convergence rates

of the errors to decrease like O(hd+1) in the L2-norm and like O(hd) in the H1-norm. This

can be observed from Table 5.1. The same errors were observed when our preconditioner

was used.

The condition numbers of the unpreconditioned matrices A (with d = 1, 2, 3) were

computed and a log plot shows that κ(A) = O(h−2) as predicted by Proposition 5.4; see

Figure 5.1.

We tested our overlapping method with different values of d, H and h. Tables 5.2, 5.3

and 5.4 present the results for d = 1, 2, and 3, respectively. In all cases, κ(P ) is smaller

than κ(A), as expected. Figures 5.2–5.4 seem to suggest that κ(P ) grows like H
h for both

odd and even polynomial degrees d.

Figure 5.1: Log plot of κ(A) vs h.
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d DoF h ‖u− uh‖L2(S2) EOC ‖u− uh‖H1(S2) EOC
1 12 1.670 0.768124 1.813961

25 1.307 0.331639 3.43 1.219869 1.62
50 0.951 0.182529 1.88 0.906867 0.93
101 0.709 0.093200 2.29 0.648201 1.14
204 0.511 0.044239 2.28 0.444733 1.15
414 0.370 0.023030 2.02 0.322502 0.99
836 0.280 0.011452 2.52 0.226659 1.27
1635 0.184 0.005671 1.67 0.160397 0.82
3250 0.131 0.002923 1.95 0.115241 0.97
6423 0.098 0.001461 2.38 0.081315 1.20
12865 0.072 0.000748 2.17 0.058055 1.09

2 42 1.670 0.115717 0.621473
94 1.307 0.029043 5.64 0.239582 3.89
194 0.951 0.011152 3.01 0.126920 2.00
398 0.709 0.004150 3.37 0.065421 2.26
810 0.511 0.001360 3.42 0.030494 2.34
1650 0.370 0.000508 3.04 0.015895 2.01
3338 0.280 0.000183 3.69 0.007957 2.49
6534 0.184 0.000062 2.59 0.003921 1.68
12994 0.131 0.000023 2.84 0.002048 1.91
25686 0.098 0.000008 3.60 0.001017 2.40

3 92 1.670 0.052294 0.374711
209 1.307 0.010358 6.60 0.112127 4.92
434 0.951 0.002288 4.75 0.036183 3.56
893 0.709 0.000616 4.47 0.013132 3.45
1820 0.511 0.000148 4.37 0.004393 3.35
3710 0.370 0.000039 4.13 0.001591 3.14
7508 0.280 0.000010 4.90 0.000565 3.73
14699 0.184 0.000002 3.62 0.000187 2.63

Table 5.1: Errors in the L2- and H1-norms for d = 1, 2, 3 (EOC: experimented order

of convergence). Expected orders of convergence for degree d = 1, 2, 3 with respect to

L2(S2)-norm and H1(S2)-norm are d+ 1 and d, for d = 1, 2, 3.
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DoF h κ(A) H κ(P )
101 0.709 58.4 0.951 50.6

1.307 43.4
1.670 38.9
2.292 30.6

204 0.511 151.0 0.709 42.2
0.951 58.9
1.307 79.8
1.670 64.6
2.292 68.8

414 0.370 266.5 0.511 40.9
0.709 44.3
0.951 82.9
1.307 93.4
1.670 167.1
2.292 133.1

836 0.280 494.7 0.370 48.1
0.511 45.7
0.709 73.3
0.951 117.4
1.307 255.6
1.670 240.6
2.292 284.0

1635 0.184 1048.5 0.280 47.5
0.370 53.3
0.511 74.7
0.709 126.3
0.951 307.2
1.307 371.0
1.670 444.9

3250 0.131 2005.7 0.184 46.8
0.280 48.2
0.370 93.2
0.511 133.5
0.709 242.1
0.951 607.2
1.307 707.9
1.670 898.8

Table 5.2: Condition numbers when d = 1.
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DoF h κ(A) H κ(P )
194 0.951 68.0 1.307 29.8

1.670 27.6
2.292 29.0

398 0.709 142.8 0.951 33.1
1.307 32.0
1.670 33.5
2.292 40.0

810 0.511 333.2 0.709 37.3
0.951 44.7
1.307 53.3
1.670 58.2
2.292 84.8

1650 0.370 659.4 0.511 40.2
0.709 49.4
0.951 53.1
1.307 80.3
1.670 136.7
2.292 155.7

3338 0.280 1341.1 0.370 49.7
0.511 50.8
0.709 61.0
0.951 105.3
1.307 165.0
1.670 211.3
2.292 323.4

6534 0.184 2616.3 0.280 45.6
0.370 55.6
0.511 64.1
0.709 109.2
0.951 208.3
1.307 207.5
1.670 331.2
2.292 575.4

Table 5.3: Condition numbers when d = 2.
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DoF h κ(A) H κ(P )
893 0.709 269.9 0.951 89.8

1.307 97.9
1.670 100.7
2.292 91.1

1820 0.511 592.5 0.709 149.3
0.951 133.2
1.307 127.9
1.670 119.3
2.292 97.6

3710 0.370 1305.1 0.511 110.8
0.709 152.6
0.951 164.3
1.307 150.2
1.670 128.0
2.292 145.7

7508 0.280 2832.8 0.370 178.6
0.511 163.8
0.709 171.7
0.951 165.1
1.307 185.0
1.670 197.4
2.292 312.0

14699 0.184 6154.1 0.280 158.4
0.370 179.7
0.511 193.1
0.709 218.1
0.951 222.7
1.670 337.8
2.292 498.4

Table 5.4: Condition numbers when d = 3.
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Figure 5.2: Condition number vs H/h for d = 1 and h = 0.131.

Figure 5.3: Condition number vs H/h for d = 2 and h = 0.184.

Figure 5.4: Condition number vs H/h for d = 3 and h = 0.184.



Chapter 6

Preconditioning for the

hypersingular integral equation

6.1 Introduction

Hypersingular integral equations have many applications, for example in acoustics, fluid

mechanics, elasticity and fracture mechanics [18]. Together with physical problems and

their resulting mathematical models from these areas, a wide range of numerical methods

for solving this equation have been proposed and developed during the last few decades;

see for example [55, 72, 83]. In this chapter, we study the hypersingular integral equation

of the form

−Nu+ ω2

∫
S2

u dσ = g on S2, (6.1.1)

where N is the hypersingular integral operator given by

Nv(x) :=
1
4π

∂

∂νx

∫
S2

v(y)
∂

∂νy

1
|x− y|

dσy, (6.1.2)

ω is some nonzero real constant. Here ∂/∂νx is the normal derivative with respect to x.

Equation (6.1.1) arises from the boundary-integral reformulation of the Neumann prob-

lem with the Laplacian in the interior or exterior of the sphere; see e.g. [55, 72, 83]. When

solving the equation by using the Galerkin method with spherical splines, an ill-conditioned

linear system arises as seen in Proposition 6.3 in the next section. The purpose of this

chapter is to overcome this ill-conditionedness by preconditioning with additive Schwarz

methods as used in the previous chapter.

We prove that the condition number of the preconditioned system is bounded by

O(H/δ) for all parities of polynomial degrees, and by O
(
1+log2(H/δ)

)
in the case of even

degree polynomials. Here, H is the mesh size of the coarse mesh and δ is the size of the

overlapping which is proportional to the mesh size of the fine mesh. The weaker estimate

in the case of odd degree might be only a technical obstacle that we could not overcome.

We note that the overlapping subdomains are, in general, not spherical triangles. In the

analysis, we have to use another set of artificial subdomains which are triangles.
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6.2 Preliminaries

Let Ω ⊂ S2 be a Lipschitz domain. Recall that the space H1/2(Ω) is defined by Hilbert

space interpolation [8] so that

H1/2(Ω) := [L2(Ω),H1(Ω)]1/2 (6.2.1)

with the norm

‖v‖2
H1/2(Ω)

=
∫ ∞

0
K(t, v)2

dt

t2
, (6.2.2)

where the K-functional is defined, for v ∈ L2(Ω) +H1(Ω), by

K(t, v)2 = inf
v=v0+v1

(
‖v0‖2

L2(Ω) + t2‖v1‖2
H1(Ω)

)
.

Similarly, we define the subspace H̃1/2(Ω) ⊂ H1/2(Ω) by

H̃1/2(Ω) := [L2(Ω),H1
0 (Ω)]1/2.

The spacesH−1/2(Ω) and H̃−1/2(Ω) are defined as the dual spaces of H̃1/2(Ω) andH1/2(Ω),

respectively, with respect to the L2 duality which is the usual extension of the L2 inner

product on Ω.

For the analysis in this chapter we also define the following norms:

|||v|||2
H1/2(Ω)

:=
1

diam(Ω)
‖v‖2

L2(Ω) + |v|2
H1/2(Ω)

(6.2.3)

and

|||v|||2
H̃1/2(Ω)

:= |v|2
H1/2(Ω)

+
∫

Ω

v2(x)
dist(x, ∂Ω)

dx, (6.2.4)

where

|v|2
H1/2(Ω)

:=
∫

Ω

∫
Ω

|v(x)− v(y)|2

|x− y|3
dx dy. (6.2.5)

For a subset R of R2, the Sobolev spaces H1/2(R) and H̃1/2(R) can be defined similarly

to the case of Ω ⊂ S2, with norms and seminorms given by (6.2.3)–(6.2.5) accordingly. In

particular, when R = I × J , where I, J are intervals in R, there hold

‖v‖
H̃1/2(R)

' |||v|||
H̃1/2(R)

∀v ∈ H̃1/2(R) (6.2.6)

and

|v|2
H1/2(R)

'
∫
I

∫
I

‖v(x, ·)− v(x′, ·)‖2
L2(J)

|x− x′|2
dx dx′ +

∫
J

∫
J

‖v(·, y)− v(·, y′)‖2
L2(I)

|y − y′|2
dy dy′.

(6.2.7)

Here, the constants in the equivalences are independent of the sizes of I and J . The

result (6.2.6) is proved in [1, Lemma 2] and (6.2.7) in [56, Lemma 5.3] (see also Exercise 5.1

following that lemma).

In this chapter, we solve the hypersingular integral equation by using Galerkin method

with the space of spherical splines Srd(∆h). Preconditioning by additive Schwarz method

as introduced in Section 5.4, Chapter 5 will be used. A fine mesh ∆h and a coarse mesh

∆H as defined in the previous chapter will be employed. The following lemma states the

stability for the quasi-interpolation operators Ĩh and ĨH with respect to the spaces of

spherical splines corresponding to the fine and coarse meshes.
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Lemma 6.1. For any τ ∈ ∆h, let ωτ :=
⋃
i∈Iτ ωi, where ωi is the support of the basis

function Φi and Iτ :=
{
i ∈ {1, . . . , N} : τ ⊂ ωi

}
. For v ∈ L2(S2) and k = 0, 1/2, 1, there

holds

‖Ĩhv‖Hk(S2) ≤ Ch−k‖v‖L2(S2). (6.2.8)

Here, the constants depend only on the smallest angle Θ∆h
of ∆h and the polynomial degree

d.

Proof. The proof for k = 0, 1 can be found in Lemma 5.6. We now use the interpolation

inequality

‖w‖H1/2(S2) � ‖w‖1/2
H1(S2)

‖w‖1/2
L2(S2)

∀w ∈ H1(S2),

see e.g. [43, Proposition 2.3], to obtain

‖Ĩhv‖H1/2(S2) � h−1/2‖v‖L2(S2),

completing the proof of the lemma.

We will next prove the boundedness of the quasi-interpolation operator Ĩh in H1/2(S2)

when d is even.

Lemma 6.2. Let ∆h be a regular and quasi-uniform spherical triangulation on S2 and let

Ĩh : L2(S2) → Srd(∆h) be the quasi-interpolation operator defined by (2.5.22) with d even.

Then for any v ∈ H1/2(S2), there holds

‖Ĩhv‖H1/2(S2) ≤ C‖v‖H1/2(S2). (6.2.9)

Proof. Since the degree d is even, Lemma 5.15 proves that

‖Ĩhv‖H1(S2) ≤ C‖v‖H1(S2). (6.2.10)

Inequality (6.2.9) is then obtained by applying Theorem 2.11 with t1 = 0, t2 = 1, s1 = 0,

s2 = 1 and θ = 1/2, noting (6.2.10) and the results in Lemma 6.1 for k = 0.

6.3 The hypersingular integral equation

Recall the hypersingular integral equation (6.1.1) where g is some given smooth func-

tion and the hypersingular integral operator N is given by (6.1.2). To set up a weak

formulation, we introduce the bilinear form

a(u, v) := −〈Nu, v〉+ ω2 〈u, 1〉 〈v, 1〉 , u, v ∈ H1/2(S2).

We note that (see [55])

a(v, v) ' ‖v‖2
H1/2(S2)

∀v ∈ H1/2(S2). (6.3.1)

A natural weak formulation of equation (6.1.1) is: Find u ∈ H1/2(S2) satisfying

a(u, v) = 〈g, v〉 ∀v ∈ H1/2(S2).
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This bilinear form is clearly bounded and coercive (cf. [9]). This guarantees the

unique solvability of the equation. The Ritz-Galerkin approximation problem is: Find

uh ∈ Srd(∆h) satisfying

a(uh, vh) = 〈g, vh〉 ∀vh ∈ Srd(∆h). (6.3.2)

Denoting {Φi : i = 1, . . . , N} a basis for Srd(∆h), the problem (6.3.2) reduces to the

problem of solving the following linear system

Ac = g, (6.3.3)

where for i, j = 1, ..., N , the entries of the matrix A are given by Aij = a(Φi,Φj),

c = (ci)Ni=1 where uh =
∑N

i=1 ciΦi, and the vector g is given as g = (gi)Ni=1 in which

gi = 〈g,Φi〉.
It is well known that the matrix A is ill-conditioned, namely, the condition number of

A, denoted by κ(A), grows like h−1 as h → 0 (i.e. |∆h| → 0). Since we cannot find a

reference for this seemingly well-known result, we include the proof here for completeness.

Proposition 6.3. The condition number of the stiffness matrix A is bounded by

κ(A) � h−1.

Proof. This proposition can be proved in the same manner as in the proof of Proposi-

tion 5.4 in which the result in Lemma 6.1 is employed instead of Lemma 5.3.

This behaviour of κ(A) subjected to the change of h is corroborated by the numerical

results in Table 6.1.

In this chapter we use the same subspace decomposition as used in Chapter 5 in which

the subspaces Vi, i = 1, . . . , J and the set of overlapping subdomains {Ωi, i = 1, . . . , J} are

defined in Section 5.5, Chapter 5. It is also assumed that the subdomains can be coloured

using at most M colours in such a way that subdomains with the same colour are disjoint.

6.4 Main results

In this section we prove a bound on the condition number of P by using the abstract result

in Lemma 5.5. We first prove (5.4.6).

Lemma 6.4. There exists a positive constant C independent of ∆h such that for any

u ∈ V satisfying u =
∑J

i=0 ui with ui ∈ Vi for i = 0, ..., J,

a(u, u) ≤ C
J∑
i=0

a(ui, ui),

where the constant C depends on the smallest angle of the triangulation.

Proof. This lemma can be proved by using a standard colouring argument as in the proof

of Lemma 5.9.

In the following subsection, we prove (5.4.7) for both odd and even polynomial de-

grees d. In Subsection 6.4.2, a better estimate of κ(P ) is established for even degrees d

when the quasi-interpolation operators Ĩh and ĨH reproduce constant functions.
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6.4.1 A general result for both odd and even degrees

To prove (5.4.7), we need to introduce an operator PH from H1/2(S2) into Srd(∆H) defined

by

a(PHu, v) = a(u, v) ∀v ∈ Srd(∆H)

for any u ∈ H1/2(S2). Standard finite element arguments yield

‖PHu− u‖H1/2(S2) � ‖u− v‖H1/2(S2) ∀v ∈ Srd(∆H)

‖PHu− u‖H1/2(S2) � ‖u‖H1/2(S2)

‖PHu‖H1/2(S2) � ‖u‖H1/2(S2)

‖PHu− u‖L2(S2) � H1/2‖u‖H1/2(S2).

(6.4.1)

Lemma 6.5. There exists a positive constant C depending on the smallest angle of ∆h

and the polynomial degree d such that for any u ∈ V there exist ui ∈ Vi, i = 0, ..., J ,

satisfying u =
∑J

i=0 ui and
J∑
i=0

a(ui, ui) �
H

h
a(u, u).

Proof. The proof of this lemma can be done in the same manner as in Lemma 5.10 in

which u0 := Ĩh(PHu) and ui := Ĩh(θiw), i = 1, . . . , J , where w := u − u0,. Here, {θi}Ji=1

is a partition of unity defined on S2 satisfying supp(θi) = Ωi, for i = 1, ..., J . Then we can

split u ∈ V by u = u0 + u1 + . . . + uJ . It is clear that ui ∈ Vi for all i = 0, . . . , J . By

Lemma 6.1, we have

‖Ĩh(PHu− u)‖H1/2(S2) � h−1/2‖PHu− u‖L2(S2). (6.4.2)

By writing u0 = Ĩh(PHu− u) + u and using the triangular inequality, (6.4.2) and (6.4.1),

we have

a(u0, u0) ' ‖u0‖2
H1/2(S2)

≤
(
‖Ĩh(PHu− u)‖H1/2(S2) + ‖u‖H1/2(S2)

)2

�
(
h−1/2‖PHu− u‖L2(S2) + ‖u‖H1/2(S2)

)2

� H

h
‖u‖2

H1/2(S2)
' H

h
a(u, u).

(6.4.3)

Applying Lemma 6.1 and noting that θi vanishes outside Ωi, we obtain

a(ui, ui) ' ‖Ĩh(θiw)‖2
H1/2(S2)

� h−1‖θiw‖2
L2(S2) ' h−1‖θiw‖2

L2(Ωi)
. (6.4.4)

This together with the fact that ‖θiw‖L2(Ωi) ≤ ‖w‖L2(Ωi) implies

a(ui, ui) � h−1‖w‖2
L2(Ωi)

.

Summing up the above inequality over all subdomains, we obtain

J∑
i=1

a(ui, ui) � h−1‖w‖2
L2(S2). (6.4.5)
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Noting that w ∈ Srd(∆h) then Ĩhw = w and by applying Lemma 6.1 and the last inequality

in (6.4.1), we infer

‖w‖L2(S2) = ‖Ĩh(u− ĨhPHu)‖L2(S2) = ‖Ĩh(u− PHu)‖L2(S2)

� ‖u− PHu‖L2(S2) � H1/2‖u‖H1/2(S2).

This together with (6.4.5) gives

J∑
i=1

a(ui, ui) �
H

h
‖u‖2

H1/2(S2)
' H

h
a(u, u).

From this and (6.4.3) we infer

J∑
i=0

a(ui, ui) �
H

h
a(u, u),

completing the proof.

Combining the results in Lemmas 6.4, 6.5 and 5.5 we obtain a bound for the condition

number κ(P ) of the additive Schwarz operator.

Theorem 6.6. The condition number of the additive Schwarz operator P is bounded by

κ(P ) � H

h
,

where the constant depends on the smallest angle in ∆h and the polynomial degree d.

Remark 6.7. Recall that we have chosen the overlap δ to be proportional to h.

6.4.2 A better estimate for even degrees

In this subsection we assume that the degree d of the spherical splines is even. We now

define the triangle τ iH,h satisfying

τ iH ⊂ τ iH,h ⊂ Ωi, i = 1, . . . , J. (6.4.6)

Without loss of generality we can assume that the edges of τ iH,h are parallel and of distance

h from those of τ iH (see Figure 6.1). (We can always choose Ωi to be a bigger domain so

that the assumption holds.)

For simplicity of presentation, we assume that the spherical triangles τ iH , i = 1, . . . , J ,

are equilateral triangles. Then so are the spherical triangles τ iH,h. The set

{τ iH,h : i = 1, . . . , J} is a set of overlapping spherical triangles which covers the sphere

S2 (Figure 6.2). We will define a partition of unity {θi}Ji=1, whose definition is given in

Appendix, satisfying

supp(θi) ⊂ τ iH,h, i = 1, . . . , J. (6.4.7)

In the sequel, we denote

Ti := supp(θi), i = 1, . . . , J, (6.4.8)

and Wi the smallest rectangle which contains Ti and shares a common edge with Ti (see

Figure 6.4).
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Figure 6.1: Extended spherical triangle τ iH,h.
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Lemma 6.8. For any v ∈ H1/2(S2) there holds

J∑
i=1

|||θiv|||2H̃1/2(Ti)
�

J∑
i=1

(
1 + log

Hi

δ

)2

|||v|||2
H1/2(Wi)

. (6.4.9)

Proof. See Appendix.

Lemma 6.9. Assume that the polynomial degree d is even. For any u ∈ V , there exist

ui ∈ Vi for i = 0, . . . , J satisfying u =
∑J

i=0 ui and

J∑
i=0

a(ui, ui) �
(

1 + log2 H

δ

)
a(u, u), (6.4.10)

where the constant depends only on the smallest angle of the triangulations.

Proof. Recall that the support Ti of the partition of unity function θi satisfies Ti ⊂ Ωi

(see (6.4.6)). We now define a decomposition of u ∈ V such that (6.4.10) holds. For any

u ∈ V let u0 := ĨhPHu ∈ V0 and ui = Ĩh(θiw) ∈ Vi, i = 1, . . . , J , where w = u− u0. It is

clear that u =
∑J

i=1 ui. By using (6.2.9) and (6.4.1), we obtain

a(u0, u0) ' ‖u0‖2
H1/2(S2)

= ‖ĨhPHu‖2
H1/2(S2)

� ‖u‖2
H1/2(S2)

' a(u, u) (6.4.11)

‖w‖H1/2(S2) = ‖Ĩh(u− PHu)‖H1/2(S2) � ‖u− PHu‖H1/2(S2) � ‖u‖H1/2(S2) (6.4.12)

and

‖w‖L2(S2) = ‖Ĩh(u− PHu)‖L2(S2) � ‖u− PHu‖L2(S2) � H1/2‖u‖H1/2(S2). (6.4.13)

By Lemma 6 in [1] there holds

‖θiw‖H1/2(S2) ' |||θiw|||H̃1/2(Ti)
. (6.4.14)

By using successively (6.2.9), (6.4.14), (6.4.9) and (6.2.3), we obtain

J∑
i=1

a(ui, ui) '
J∑
i=1

‖ui‖2
H1/2(S2)

�
J∑
i=1

‖θiw‖2
H1/2(S2)

'
J∑
i=1

|||θiw|||2H̃1/2(Ti)

�
J∑
i=1

(
1 + log

Hi

δ

)2

|||w|||2
H1/2(Wi)

'
(

1 + log
H

δ

)2 J∑
i=1

(
1
H
‖w‖2

L2(Wi)
+ |w|2

H1/2(Wi)

)
.

(6.4.15)

It is obvious that
∑J

i=1 ‖w‖2
L2(Wi)

' ‖w‖L2(S2) and by the definition of the seminorm

|·|H1/2(Wi)
, it is clear that

J∑
i=1

|w|2
H1/2(Wi)

� |w|2
H1/2(S2)

. (6.4.16)

This together with (6.4.15), (6.4.13) and (6.4.12) implies

J∑
i=1

a(ui, ui) �
(

1 + log
H

δ

)2 ( 1
H
‖w‖2

L2(S2) + |w|2
H1/2(S2)

)
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�
(

1 + log
H

δ

)2

‖u‖2
H1/2(S2)

'
(

1 + log
H

δ

)2

a(u, u),

completing the proof of the lemma.

Combining the results in Lemmas 6.4, 6.9 and 5.5 we obtain a bound for the condition

number κ(P ) of the additive Schwarz operator.

Theorem 6.10. Assume that the polynomial degree d is even. The condition number of

the additive Schwarz operator P is bounded by

κ(P ) �
(

1 + log2 H

δ

)
where the constant depends on the smallest angle in ∆h and the polynomial degree d.

Remark 6.11. It can be seen that the boundedness in the H1/2(S2)-norm of the quasi-

interpolation operators Ĩh and ĨH is crucial for the proof of Lemma 6.9. The proof of

this boundedness (Lemma 6.2) requires the property that Ĩh and ĨH reproduce constant

functions, which does not hold in the case of odd degree splines.

6.5 Numerical results

We solved (6.1.1),

−Nu+ ω2

∫
S2

u dσ = g on S2, (6.5.1)

with

g(x) = g(x, y, z) = ex(2x− xz).

by using spherical spline spaces S0
d(∆h), in which ∆h are spherical triangulations of the

following types:

• Type 1: Uniform triangulations which are generated as follows. First, we start

with a spherical triangulation whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0),

(0,−1, 0), and (0, 0,−1). The following finer meshes are obtained by dividing each

triangle in the previous triangulation into four equal equilateral triangles (by con-

necting midpoints of three edges), resulting in triangulations with number of vertices

being 18, 66, 258, 1026, and 4098.

• Type 2: Triangulations with vertices obtained from magsat satellite data. The

free stripack package is used to generate the triangulations from these vertices.

Number of vertices to be used are 204, 414, 836, and 1635.

Assume thatB1, B2, . . . , BM are the basis functions for the approximation space S0
d(∆).

The entry Aij , for i, j = 1, . . . ,M , of the stiffness matrix A in (6.3.3) is computed by

Aij = −
∫

S2

(NBi)(x)Bj(x) dσx + ω2

∫
S2

Bi(x) dσx

∫
S2

Bj(x) dσx. (6.5.2)
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The first integral in (6.5.2) is computed by using the following formula

−
∫

S2

(Nu)v dσ =
1
4π

∫
S2

∫
S2

−−→
curlS2u(x) ·

−−→
curlS2v(y)

|x− y|
dσx dσy

for any smooth functions u and v; see [55, Theorem 3.3.2]. Here,
−−→
curl2Sv is the vectorial

surfacic rotation defined by

−−→
curl2Sv = −∂v

∂θ
eϕ +

1
sin θ

∂v

∂ϕ
eθ,

where eϕ, eθ are the two unit vectors corresponding to the Euler angles. Therefore

−
∫

S2

(NBi)Bj dσ =
1
4π

∫
S2

∫
S2

−−→
curlS2Bi(x) ·

−−→
curlS2Bj(y)

|x− y|
dσx dσy

=
1
4π

∑
τ∈∆

∑
τ ′∈∆

∫
τ

∫
τ ′

−−→
curlS2Bi(x) ·

−−→
curlS2Bj(y)

|x− y|
dσx dσy.

(6.5.3)

Computation of the double integrals in (6.5.3) requires evaluation of integrals of the type∫
τ (1)

∫
τ (2)

f1(x) f2(y)
|x− y|

dσxdσy,

where τ (1) and τ (2) are spherical triangles in ∆h and the functions f1 and f2 are analytic

for all x ∈ τ (1) and y ∈ τ (2). For more details about the above evaluation, please refer to

Section 4.6, Chapter 4.

The right hand side of the linear system (6.3.3) has entries given by

bi =
∫

S2

Bi(x)g(x) dσx =
∑
τ∈∆

∫
τ
Bi(x)g(x) dσx, i = 1, . . . ,M. (6.5.4)

The computation of the right hand side as seen in (6.5.4) includes the evaluation of integrals

of a smooth function f over a spherical triangle τ . This computation was discussed in

Section 4.6, Chapter 4. For the overlapping additive Schwarz algorithm please refer to

Section 5.7, Chapter 5.

The results for uniform triangulations are presented in Tables 6.1, 6.2, 6.3 and 6.4.

In Table 6.1 we computed the experimented rate of increasing κ(A) = O(hα), and the

numbers show that α ≈ −1 as predicted by Proposition 6.3. Tables 6.2, 6.3 and 5.4 show

the significant improvement of our preconditioner.

The results for triangulations generated from satellite data are presented in Ta-

bles 6.5, 6.6 and 6.7. Again the advantage of the preconditioner can be observed.

6.6 Appendix

We first define a partition of unity {θi}Ji=1. Note here that the partition of unity will be

defined for the extended spherical triangles {τ iH,h : i = 1, . . . , J} and it is also a partition

of unity for the overlapping subdomains {Ωi : i = 1, . . . , J}.
Let x be a point on the sphere S2. Then θi(x), for i = 1, . . . , J , are defined as follows:
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• Case 1: x belongs to only one triangle τ i0H,h for some i0 ∈ {1, . . . , J} (e.g. x ∈ A in

Figure 6.3). Then

θi0(x) := 1 and θi(x) := 0, for all i 6= i0.

• Case 2: x belongs to exactly two extended triangles τ i0H,h and τ i1H,h (e.g. x ∈ B in

Figure 6.3). Then

θi0(x) := δ−1 dist(x, ∂τ i0H,h)

θi1(x) := δ−1 dist(x, ∂τ i1H,h)

θi(x) := 0, i /∈ {i0, i1},

where ∂τ iH,h is the boundary of τ iH,h.

• Case 3: x belongs to the intersection of more than two extended triangles (i.e.

x ∈ U? in Figure 6.3). For simplicity of notation we denote the six triangles in

Figure 6.3 by τ1, . . . , τ6. Then

θi(x) := 0, i /∈ {1, 2, 3, 4, 5, 6}

θ1(x) =


δ−1 dist(x, ∂τ1), if x ∈ U3 ∪ U7

δ−2 dist(x, ∂τ1 ∩ int(τ5)) dist(x, ∂τ1 ∩ int(τ3)), if x ∈ U1 ∪ U2 ∪ U5

0, if x ∈ U4 ∪ U6,

θ2(x) =



δ−2 dist(x, ∂τ2 ∩ int(τ6)) dist(x, ∂τ2 ∩ int(τ4)), if x ∈ U3

δ−2 dist(x, ∂τ2) dist(x, ∂τ1 ∩ int(τ5)), if x ∈ U2 ∪ U4

δ−3 dist(x, ∂τ2 ∩ int(τ6))×

dist(x, ∂τ2 ∩ int(τ4)) dist(x, ∂τ1 ∩ int(τ5)), if x ∈ U1

0, if x ∈ U5 ∪ U6 ∪ U7,

Here, int(τi) denotes the interior of τi. The function θ4(x) is defined similarly to

θ1(x), and θ3(x), θ5(x), θ6(x) similarly to θ2(x).

The supports Ti of these functions θi can be one of the four shapes in Figure 6.4. The

rectangles Wi mentioned in Lemma 6.8 are also depicted in Figure 6.4.

We will frequently use the following results; see [20].

Lemma 6.12. Let 0 < α < min{β, β′}. If v ∈ H1/2([0, β′]× [0, β]) then∫ β

0

(∫ β′

α

|v(x, y)|2

x
dx

)
dy �

(
1 + log2 β

′

α

)
|||v|||H1/2([0,β′]×[0,β]), (6.6.1)

and
1
α
‖v‖2

L2([0,α]×[0,β]) �
(

1 + log
β′

α

)2

|||v|||2
H1/2([0,β′]×[0,β])

. (6.6.2)
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Figure 6.3: τi: equilateral triangles, i = 1, . . . , 6.
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We note that even though (6.6.1) and (6.6.2) are proved in [20] for β = β′, the results

still hold for β 6= β′.

Recall that for each subset Ω ⊂ S2, R(Ω) is the image of Ω under the inverse of the

radial projection RΩ; see (5.3.1) and (5.3.2). It was shown in [54, Lemma 3.1] that

‖v‖L2(Ω) ' ‖v̄0‖L2(R(Ω)) and ‖v‖H1(Ω) ' ‖v̄0‖H1(R(Ω))

for any v belongs to L2(Ω) and H1(Ω), respectively. Using Theorem 2.11, we obtain

‖v‖H1/2(Ω) ' ‖v̄0‖H1/2(R(Ω)), v ∈ H1/2(Ω). (6.6.3)

From (6.2.3),(6.2.4) and (6.2.5) and repeating the argument used in the proof of [54,

Lemma 3.1], we obtain that for any v ∈ H1/2(Ω), there hold

|||v|||H1/2(Ω) ' |||v̄0|||H1/2(R(Ω))

|||v|||
H̃1/2(Ω)

' |||v̄0|||H̃1/2(R(Ω))

|v|H1/2(Ω) ' |v̄0|H1/2(R(Ω)),

(6.6.4)

where the constants are independent of the size of Ω.

Proof for Lemma 6.8: Recall that we need to prove

J∑
i=1

|||θiv|||2H̃1/2(Ti)
�

J∑
i=1

(
1 + log

Hi

δ

)2

|||v|||2
H1/2(Wi)

,

where for any i = 1, . . . , J , Ti is the support of the partition function θi and Wi is the

rectangle which contains Ti and shares a common edge with Ti (see Figure 6.4). We will
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prove

|||θiv|||2H̃1/2(Ti)
�
(

1 + log
Hi

δ

)2

|||v|||2
H1/2(Wi)

(6.6.5)

for Ti being of the first shape in Figure 6.4. The cases when Ti is of other shapes can be

proved in the same manner.

Equivalences (6.6.4) and (6.6.3) allow us to prove instead of (6.6.5) the following in-

equality

|||θiv0|||2H̃1/2(R(Ti))
�
(

1 + log
Hi

δ

)2

|||v0|||2H̃1/2(R(Wi))
. (6.6.6)

For notational convenience, in this proof we write Ti,Wi, θi, and v instead of R(Ti), R(Wi),
¯(θi)0, and v̄0, namely we think of Ti and Wi as planar regions, and θi and v as two variables

functions. Here Hi and δ are the size of Ti and the size of the overlap.

It is noted that Wi = [0,Hi]× [0,H ′
i] where H ′

i =
√

3/2Hi. Recall that

|||θiv|||2H̃1/2(Ti)
= |θiv|2H1/2(Ti)

+
∫
Ti

[θiv(x)]2

dist(x, ∂Ti)
dx, (6.6.7)

where

|θiv|2H1/2(Ti)
=
∫
Ti

∫
Ti

|θiv(x)− θiv(x′)|2

|x− x′|3
dx dx′. (6.6.8)

We first estimate the second term in the right hand side of (6.6.7), which is split into a

sum of integrals over the triangles T `i := A` ∪B` ∪C` ∪D` (see Figure 6.5), for ` = 1, 2, 3,

as follows: ∫
Ti

[θiv(x)]2

dist(x, ∂Ti)
dx =

3∑
`=1

∫
T `i

[θiv(x)]2

dist(x, ∂Ti)
dx.

We only need to estimate the integral over T 1
i , the other two can be bounded similarly.

Recall that

θi(x) =



1, if x ∈ A1,

δ−1 dist(x, ∂Ti), if x ∈ B1,

δ−2 dist(x, ∂Ti) dist(x, `1), if x ∈ C1,

δ−2 dist(x, ∂Ti) dist(x, `2), if x ∈ D1.

Since δ−1 dist(x, `k) ≤ 1 for k = 1, 2 and x respectively belongs to C1 and D1, there holds

θi(x) ≤ δ−1 dist(x, ∂Ti) ∀x ∈ B1 ∪ C1 ∪D1.

Hence∫
T 1
i

[θiv(x)]2

dist(x, ∂Ti)
dx =

∫
A1

[θiv(x)]2

dist(x, ∂Ti)
dx +

∫
B1∪C1∪D1

[θiv(x)]2

dist(x, ∂Ti)
dx

�
∫
A1

|v(x)|2

y
dx +

1
δ

∫
B1∪C1∪D1

|v(x)|2 dx

≤
∫ Hi

0

(∫ H′
i

δ

|v(x, y)|2

y
dy

)
dx+

1
δ

∫ Hi

0

∫ δ

0
|v(x, y)|2 dy dx.
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It follows from Lemma 6.12 and H ′
i ' Hi that∫

T 1
i

[θiv(x)]2

dist(x, ∂Ti)
dx �

(
1 + log

Hi

δ

)2

|||v|||2
H1/2(Wi)

. (6.6.9)

We now need to use (6.2.7) to estimate the double integral in (6.6.8). This motivates

us to transform the integral over the triangle Ti into the integral over the rectangle Wi.

To do so, we first introduce an extension θ̃i of θi over the rectangle Wi as follows (see

Figure 6.5):

θ̃i(x) :=



θi(x), if x ∈ Ti,

δ−1 dist(x, `k), if x ∈ Fk, k = 1, 2,

δ−2 dist(x, `k) dist(x, `3), if x ∈ Ek, k = 1, 2,

δ−2 dist(x, `1) dist(x, `2), if x ∈ Hk, k = 1, 2,

1, if x ∈ Gk, k = 1, 2.

(6.6.10)

The extension θ̃i is defined in order to preserve the continuity and symmetry of θi across

the edges `1 and `2 of Ti. Since Ti ⊂Wi and θ̃i = θi on Ti, there holds∫
Ti

∫
Ti

|θiv(x)− θiv(x′)|2

|x− x′|3
dx dx′ ≤

∫
Wi

∫
Wi

|θ̃iv(x)− θ̃iv(x′)|2

|x− x′|3
dx dx′.

Noting (6.2.7), we have∫
Wi

∫
Wi

|θ̃iv(x)− θ̃iv(x′)|2

|x− x′|3
dx dx′ '

∫
I

∫
I

‖θ̃iv(x, ·)− θ̃iv(x′, ·)‖2
L2(I′)

|x− x′|2
dx dx′

+
∫
I′

∫
I′

‖θ̃iv(·, y)− θ̃iv(·, y′)‖2
L2(I)

|y − y′|2
dy dy′

=: I1 + I2,

(6.6.11)

where I = [0,Hi], I ′ = [0,H ′
i], x = (x, y) and x′ = (x′, y′). We will show that I1 is

bounded by (
1 + log

Hi

δ

)2

|||v|||2
H1/2(Wi)

.

The term I2 can be estimated in the same manner. By using the triangular inequality,

and noting that θ̃i ≤ 1, we have

I1 ≤
∫
I

∫
I

‖[θ̃i(x, ·)− θ̃i(x′, ·)]v(x, ·)‖2
L2(I′)

|x− x′|2
dx dx′ +

∫
I

∫
I

‖v(x, ·)− v(x′, ·)‖2
L2(I′)

|x− x′|2
dx dx′.

(6.6.12)

It follows from (6.2.7) that the last integral in (6.6.12) is bounded by |||v|||2
H1/2(Wi)

. We

still need to estimate

AI,I(θ̃iv) :=
∫
I

∫
I

‖[θ̃i(x, ·)− θ̃i(x′, ·)]v(x, ·)‖2
L2(I′)

|x− x′|2
dx dx′.

We denote I1 := [0, δ
√

3], I2 := [δ
√

3,Hi − δ
√

3], and I3 := [Hi − δ
√

3,Hi]. In order to

show that AI,I(θ̃iv) is bounded by |v|2
H1/2(Wi)

, we will prove that AIk,I`(θ̃iv) are bounded



108 6 Preconditioning for the hypersingular integral equation

by |||v|||2
H1/2(Wi)

, for k, ` = 1, 2, 3. By the symmetry of θ̃i, it is sufficient to prove the

estimation for AIk,I`(θ̃iv) for (k, `) ∈ {(1, 1), (1, 2), (1, 3), (2, 2)}.
Let x, x′ ∈ I1. Elementary calculation (though tedious) reveals

max
y∈I′

|θ̃i(x, y)− θ̃i(x′, y)| � δ−1|x− x′|.

Thus

AI1,I1(θ̃iv) �
1
δ

∫
I1

‖v(x, ·)‖2
L2(I′) dx =

1
δ
‖v(·, ·)‖2

L2(I1×I′).

Noting that the size of I1 is defined to be proportional to δ, and by using (6.6.2), we

deduce

AI1,I1(θ̃iv) �
(

1 + log
Hi

δ

)2

|||v|||2
H1/2(Wi)

. (6.6.13)

We next estimate AI1,I2∪I3(θ̃iv) by estimating the two integral AI1,[δ
√

3, 2δ
√

3](θ̃iv) and

AI1,[2δ
√

3, Hi]
(θ̃iv). Repeating the argument used in estimating AI1,I1(θ̃iv), we obtain

AI1,[δ
√

3, 2δ
√

3](θ̃iv) �
(

1 + log
Hi

δ

)2

|||v|||2
H1/2(Wi)

. (6.6.14)

We note here that

max
y∈I′

[θ̃i(x, y)− θ̃i(x′, y)]2 ≤ 4, ∀x, x′ ∈ I, (6.6.15)

and

|x− 2δ
√

3| ≥ δ
√

3 ∀x ∈ I1. (6.6.16)

We then deduce from (6.6.15), (6.6.16) and (6.6.2) that

AI1,[2δ
√

3, Hi]
(θ̃iv) �

∫
I1

‖v(x, ·)‖2
L2(I′)

∫
[2δ
√

3, Hi]

1
(x′ − x)2

dx′ dx

�
∫
I1

Hi − 2δ
√

3
(2δ
√

3− x)(Hi − x)
‖v(x, ·)‖2

L2(I′) dx

� 1
δ
‖v(·, ·)‖2

L2(I1×I′)

�
(

1 + log
Hi

δ

)2

|||v|||2
H1/2(Wi)

.

(6.6.17)

We note here that the estimation for AI1,I1(θ̃iv) is based on the fact that the size of I1
is proportional to δ and

|θ̃i(x, y)− θ̃i(x′, y)| � δ−1|x− x′| ∀x, x′ ∈ I1, ∀y ∈ I ′. (6.6.18)

The proof AI1,[δ
√

3, Hi]
(θ̃iv) is then obtained by first splitting it into AI1,[δ

√
3, 2δ

√
3](θ̃iv) and

AI1,[2δ
√

3, Hi]
(θ̃iv) in which the former is bounded by using similar argument as in the proof

for AI1,I1(θ̃iv), requiring the sizes of I1 and [δ
√

3, 2δ
√

3] to be proportional to δ and (6.6.18)

to hold for x ∈ I1, x′ ∈ [δ
√

3, 2δ
√

3]. The latter is estimated by first using (6.6.15) to write

it in the form containing the integral∫
[2δ
√

3,Hi]

1
|x− x′|2

dx′,
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d = 1 ω2 = 0.01 d = 2 ω2 = 0.01 d = 3 ω2 = 0.1
N h κ(A) α κ(A) α κ(A) α

18 0.7071 12.27 469.36 19109.90
66 0.3536 20.90 -0.77 736.53 -0.65 25735.72 -0.42
258 0.1768 39.22 -0.91 1422.77 -0.95 50877.82 -0.98
1026 0.0883 75.93 -0.95 2798.35 -0.97 100876.63 -0.99

Table 6.1: Unpreconditioned systems with uniform triangulations; κ(A) = O(hα).

DoF h κ(A) H κ(P )
66 0.3536 20.90 0.7071 5.37
258 0.1768 39.22 0.3536 6.05

0.7071 6.45
1026 0.0883 75.93 0.1768 6.46

0.3536 6.68
0.7071 7.45

4098 0.0442 149.40 0.0883 6.71
0.1768 6.80
0.3536 7.90
0.7071 9.05

Table 6.2: Condition numbers when d = 1, ω2 = 0.01 with uniform triangulations.

which is then proved to be bounded by cδ−1 for some constant c > 0. This procedure can

be used in estimating AI2,I2(θ̃iv) by first writing

AI2,I2(θ̃iv) =
∫
I2

∫
I2

∫
[0,H′

i]

[θ̃i(x, y)− θ̃i(x′, y)]2v2(x, y)
|x− x′|2

dy dx dx′.

The integral is then split into sum of integrals over subregions in which (x, y) and (x′, y) can

belong to one of the following sets G1, F1∪H1, B3∪C3∪D2∪H2, H1∪C3∪D2∪B2, H2∪F2,

G2, andA1∪A2∪A3 in Figure 6.5. The integral when (x, y) and (x′, y) belong toA1∪A2∪A3

is easily bounded by |||v|||H1/2(Wi)
by using (6.2.7), noting that θ̃i(x, y) = θ̃i(x′, y) = 1.

The other integrals can be estimated by using similar argument as used in the proof

for AI1,I(θ̃iv).

Combining all these we obtain (6.6.5).
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DoF h κ(A) H κ(P )
258 0.3536 736.53 0.7071 7.24
1026 0.1768 1422.77 0.3536 6.92

0.7071 7.06
4098 0.0883 2798.35 0.1768 7.22

0.3536 6.90
0.7071 6.59

Table 6.3: Condition numbers when d = 2, ω2 = 0.01 with uniform triangulations.

DoF h κ(A) H κ(P )
578 0.3536 25735.72 0.7071 412.96

2306 0.1768 50877.82 0.3536 13.49
0.7071 24.62

9218 0.0883 100876.63 0.1768 7.94
0.3536 8.62
0.7071 8.13

Table 6.4: Condition numbers when d = 3, ω2 = 0.1 with uniform triangulations.

DoF h κ(A) H κ(P )
204 0.511 390.4 1.307 19.5

1.670 19.2
2.292 26.7

414 0.370 509.9 1.307 17.2
1.670 17.0
2.292 27.1

836 0.280 785.2 1.307 13.8
1.670 14.9
2.292 28.3

1635 0.184 1048.5 1.307 11.1
1.670 16.3
2.292 31.5

Table 6.5: Condition numbers when d = 1, ω2 = 0.001 with magsat satellite data.
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DoF h κ(A) H κ(P )
810 0.511 1170.9 1.307 23.2

1.670 11.7
2.292 5.7

1650 0.370 1616.9 1.307 17.7
1.670 9.0
2.292 10.0

3338 0.280 2230.5 1.307 13.2
1.670 11.1
2.292 8.1

6534 0.184 3046.7 1.307 13.1
1.670 9.0
2.292 6.3

Table 6.6: Condition numbers when d = 2, ω2 = 0.01 with magsat satellite data.

DoF h κ(A) H κ(P )
1820 0.511 3322.0 1.307 23.9

1.670 10.9
2.292 116.6

3710 0.370 4696.2 1.307 16.5
1.670 7.7
2.292 186.9

7508 0.280 6211.0 1.307 12.1
1.670 12.0
2.292 167.6

Table 6.7: Condition numbers when d = 3, ω2 = 1.2 with magsat satellite data.





Conclusion

Spaces of spherical radial basis functions and spherical splines are used in the solution of

pseudodifferential equations on spheres. Each of the two spaces has both advantages and

disadvantages.

The use of spherical radial basis functions results in meshless methods. Good approx-

imation and easy to program in high dimensions are some advantages of spherical radial

basis functions. Meanwhile, the use of truncated series to compute singular integrals in-

volving spherical radial basis functions can affect the approximation quality of the method

in implementation when solving weakly singular and hypersingular integral equations.

Finite element methods by using spherical splines also apppear to be a very powerful

tool to solve pseudodifferential equations. Good approximation, simple forms of the so-

lution as linear combinations of piecewise spherical harmonics, and the ability to control

the smoothness of the solution and its derivatives across edges of the triangulations are

the most important advantages. Besides, efficient quadrature rules can be used to com-

pute singular integrals involving basis functions of the space of spherical splines. This is

another advantage of the use of spherical splines. Meanwhile, mesh generation and refine-

ment costs are some disadvantages. Ill-conditionedness may also arise. However, it can be

tackled by using efficient preconditioners as shown in Chapters 5 and 6.

A future study may be coupling of spherical radial basis functions and spherical splines

which is not in the scope of this dissertation.
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pseudodifferential operator

of order 2α, 13

strongly elliptic, 13
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quasi-interpolation operator, 27
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spherical symbol, 13

spherical triangle, 17

spherical triangulation, 24
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and sphere-like surfaces. Comput. Aided Geom. Design, 13:333–349, 1996.

[3] P. Alfeld, M. Neamtu, and L. L. Schumaker. Dimension and local bases of homoge-

neous spline spaces. SIAM J. Math. Anal., 27:1482–1501, 1996.

[4] P. Alfeld, M. Neamtu, and L. L. Schumaker. Fitting scattered data on sphere-like

surfaces using spherical splines. J. Comput. Appl. Math., 73:5–43, 1996.

[5] D. N. Arnold and W. L. Wendland. On the asymptotic convergence of collocation

methods. Math. Comp., 41(164):349–381, 1983.

[6] I. Babuška, U. Banerjee, and J. E. Osborn. Meshless and generalized finite element

methods: a survey of some major results. In Meshfree Methods for Partial Differential

Equations (Bonn, 2001), volume 26 of Lect. Notes Comput. Sci. Eng., pages 1–20.

Springer, Berlin, 2003.

[7] V. Baramidze and M. J. Lai. Error bounds for minimal energy interpolatory spherical

splines. In Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., pages

25–50. Nashboro Press, Brentwood, TN, 2005.
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